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Gregor Papa, Špela Poklukar, Isabel Praça, Ville Rauhala
Daniel Reguera, Marjan Šterk, Gorka Urchegui,
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Foreword

This book aims to highlight the fundamental underpinnings of Condition-
Based Maintenance and related conceptual ideas. It also presents an overall
view of i) proactive maintenance, and ii) condition-based maintenance,
including its potential economic impact and latest technical solutions.

The core content of this book describes the outcome of the MANTIS
project. The ambition was to support the creation of a platform to enable
novel kinds of maintenance strategies for industrial machinery. The key
enabler was considered to be the carefully crafted symbiotic combination
of data collection through Cyber-Physical Systems, and the use of machine
learning techniques and advanced visualization for the enhanced monitoring
and prognosis of the machines.

After more than 3 years of hard work, the MANTIS consortium has spent
uncountable hours on the MANTIS platform, working on its implementation
and its application to a wide range of industrial use cases.

It is our sincere hope that others will, with the help of this book and
on-line resources, benefit from the MANTIS reference architecture, and the
techniques employed in it. Hopefully we can build an open community
around this technology so that the maintenance industry can take a step into
the future of massive, agile yet affordable monitoring systems.

The book is therefore suitable for industrial and maintenance managers
that want to implement a new, or enhance an existing, maintenance system for
their companies. This book should give them a basic idea of the first required
steps in implementing advanced monitoring and analytics systems.

Chapter 1 describes the fundamentals of advanced monitoring practices
and strategies in industry, and sets the context for the rest of the book.

Chapter 2 delves into the economical pillars behind advanced monitoring
and analytics that lead to the importance of both technological advances and
new business models, which promote the acceptance of these technologies.

Chapter 3 describes the architecture envisioned for a collaborative
platform for proactive maintenance and the functional requirements it must
satisfy.

xxv



xxvi Foreword

Chapter 4 focuses on the data collection work that is the basic requirement
for advanced data analysis techniques to succeed. Two main problems
emerged with regards to the huge amount of data that were collected in this
context: how to process the data, and how to visualize them.

Chapter 5 introduces a number of data analysis and machine learning
techniques that can be – and were – applied to support advanced maintenance
strategies.

Chapter 6 provides insights into the techniques used to visualize the data,
and how the data can be manipulated and inspected.

Chapter 7 describes a number of real-life pilots that were implemented
based on the MANTIS platform.

Chapter 8 discusses novel business models and strategies, proposes their
application to modern maintenance techniques, and provides a quantitative
example based on a real-life scenario.

Chapter 9 concludes the book by considering open research questions that
arose during the execution of the MANTIS project.
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Current advances in ICT are shaping the way we live and work. Current com-
munication solutions allow people to be “always online, always connected”,
and similar technologies are applied to machine communication, also known
as M2M communication. In particular, research and development efforts
are devoted to extending the IoT to maintenance, thus providing ubiquitous
access through the Internet to industrial systems under maintenance.

Two cornerstones for this (r)evolution, which is part of Industry 4.0, are
the utilization of CPS in maintenance contexts, and leveraging data collected
in the field by means of techniques from the Artificial Intelligence family. In
this context, and based on these two cornerstone technologies, the MANTIS
project (Cyber Physical System based Proactive Collaborative Maintenance)
was born, to realize platforms that can perform CBM and PM in real industrial
contexts.

In this vision, physical systems (e.g., industrial machines, vehicles,
renewable energy assets) and the environment they operate in are mon-
itored continuously by a broad and diverse range of intelligent sensors,
resulting in massive amounts of data that characterise the usage history,
operational condition, location, movement and other physical properties of
those systems. These CPS form part of a larger network of heterogeneous
and collaborative systems (e.g., vehicle fleets or photovoltaic and windmill
parks) connected via robust communication mechanisms able to operate in
challenging environments [Jantunen et al., 2017].
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Sophisticated distributed sensing and decision-making functions are per-
formed at different levels in a collaborative way ranging from (i) local nodes
that pre-process raw sensor data and extract relevant information before
transmitting them, thereby reducing bandwidth requirements of communica-
tion, (ii) over intermediate nodes that offer asset-specific analytics to locally
optimise performance and maintenance, (iii) to cloud-based platforms that
integrate information from ERP, CRM and CMMS systems and execute
distributed processing and analytics algorithms for global decision-making
[Jantunen et al., 2018].

The resulting technological ecosystem can empower methodologies such
as CBM, which aims at predicting the condition of machinery based on the
parameters or conditions of the equipment, in which some limits are estab-
lished and the behaviour of such parameters are verified through different
strategies. The objective of CBM is to provide the maximum objective data
of the equipment to identify and avoid possible failures that could generate
non-desired downtime in advance.

PM moves the bar one step further, and considers how the collected
data have to be processed to extract more information, for example by
allowing intelligent software to learn the behaviour of equipments in terms
of the monitored parameters, and thus to identify outliers that correspond to
potential problems. The modelling of faults can lead to the prognosis about
the condition of machinery, comprising approximate information regarding
when and how faults can present themselves given the current condition of
the machine, the environment it is working in, and data collected on similar
machines.

Throughout this book, authors mention both CBM and PM terms
repeatedly.

As we have made clear here, CBM is based on using real-time data to pri-
oritize and optimize maintenance resources. Observing the state of the system
is known as condition monitoring. Such a system determines the equipment’s
health, and acts only when maintenance is actually necessary [Wikipedia].
The work in [Jardine et al., 2006] defines CBM as a maintenance program
that recommends maintenance decisions based on the information collected
through condition monitoring, consisting in three main steps: data acquisition
(to get condition data), data processing and maintenance decision-making (to
aid in diagnosis and prognosis functions).

Thus, PM uses a CBM strategy, and considers the detection and correction
of root cause conditions that would otherwise lead to failure.
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This introductory chapter draws a picture of the current trends in mainte-
nance, and then summarizes the content of the rest of the book by providing
hints to what PM can be and can do for the industry.

1.1 Maintenance Today

Maintenance in industry today focuses on aspects related to availability,
profitability and safety [Holmberg et al., 2010; Paz and Leigh, 1994]. Com-
panies wish to improve OEE, availability, performance and quality to supply
better products, reducing the costs and increasing profitability and safety as
much as possible [Ferri et al., 2012]. In fact, the economic importance of
the machinery and equipment maintenance is huge, as hinted for example
by the current average level of OEE is 50% i.e., there is a hidden factory
behind every factory. The current view of the maintenance primary task is to
keep the machinery and equipment constantly in working order to perform
their intended functions [Swedish Standards Institute, 2010]. The definitions
available in current literature are very close to each other and encompass the
following basic assumptions [Mikkonen, 2009]:

• Maintenance tends to ensure that machinery remain in working order or
that they are restored to normal operating condition;

• Maintenance includes all technical, administrative and management
actions implemented during the lifetime of a machine.

The importance of condition monitoring is also highlighted in traditional
industries, where the shortcomings in maintenance activities often end in
decreased performance and quality. This obviously results in economic
losses [Mikkonen, 2009]. Traditional maintenance methods are not cost
optimised, and therefore new more effective means are being developed. In
fact, maintenance today is moving in the direction of intelligent maintenance,
and concepts such as CBM are gaining ground where efficiency is sought by
means of information technology.

1.2 The Path to Proactive Maintenance

The main objective of MANTIS is set to “develop a Cyber Physical Sys-
tem based Proactive Maintenance Service Platform Architecture enabling
Collaborative Maintenance Ecosystems”.

For an optimum maintenance of assets, different systems and stakeholders
have to share information, resources and responsibilities, in other words,
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collaboration is required. Such a Collaborative Maintenance Ecosystem
aims to:

• Reduce the adverse impact of maintenance on productivity and costs;
• Increase the availability of assets;
• Reduce time required for maintenance tasks;
• Improve the quality of the maintenance service and products;
• Improve labor working conditions and maintenance performance;
• Increase sustainability by preventing material losses (due to out-of-

tolerance production).

PM commissions corrective actions aimed at sources of failure. It is designed
to extend the life of mechanical machinery as opposed to 1) making repairs
when often nothing is broken, 2) accommodating failure as routine and
normal, and 3) pre-empting crisis failure maintenance – all of which are
characteristics of the predictive/preventive disciplines.

A PM platform has to enable service-based business models and improved
asset availability at lower costs through continuous process and equipment
monitoring and data analysis. With this goal in mind, MANTIS also aims
to identify and integrate critical information from other sources such as
production, maintenance, equipment manufacturers and service providers.
This service platform architecture has to take into account the needs of
industries in the forefront of service-based business and operations as well
as less mature ones, allowing improvements in maintenance to be achieved
gradually and consistently.

The PM service platform consists of distributed processing chains that
efficiently transform raw data into knowledge while minimising the need for
transfer bandwidth. Chasing this overall objective gives raise to the need for
a smart integrated domain knowledge system with advanced data monitoring,
communication and analytics with self-learning capabilities, which them-
selves have to be overall dependable and secure. Thus, this chain includes
key technologies such as (Figure 1.1):

• Smart sensors, actuators and cyber-physical systems capable of local
pre-processing and local data storing/buffering;

• Robust communication systems for harsh environments;
• Distributed machine learning tools for data validation and decision-

making;
• Cloud-based processing, analytics and data availability;
• HMI to provide the right information to the right people at the right time

in the right format.
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Figure 1.1 Overall concept idea.

1.3 Why to Read this Book

In this book, different current maintenance activities are discussed, and, while
focusing on the particular case of CBM and PM, it also considers future trends
and technologies that can support maintenance.

Especially for industrial readers, the book has a section focused on
the economic aspects and it introduces some potential methods on how to
evaluate the cost benefits of PM and justify the implementation of preventive
maintenance.

CBM (and therefore PM), is broken up into processing phases, according
to the MIMOSA standard, and later on the processing phases are related to
the tools that could be used to fulfil these processing phases.

One further objective of the book is a focus on how the integration
between different CBM systems can be done and the benefits of creating an
integrated system.
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The elevated complexity and costs of production assets combined with
the requirements for high-quality manufactured products necessitate novel
design and condition-based maintenance approaches that are able to provide
the required levels of availability, maintainability, quality and safety while
decreasing the cost of the system as a whole and throughout the production
lifecycle.

2.1 Introduction

A few years ago, maintenance was considered only a cost factor in industry,
but the situation has changed radically over the last years. There are still
companies whose maintenance strategy is based solely on the fact that the
machine is repaired only at the stage when one of its components breaks
down. For certain types of businesses, such a strategy may be working, where
the degradation of a component does not generate major costs, for example.

However, mainly unpredictable degradation of industrial machines causes
production standstills and thus high costs. The availability of spare parts
is also affecting the costs, as they may not be immediately available. On
the other hand, keeping all spare parts in the stock while waiting for the
degradation of any component is not suitable, since the stocking itself

7
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is expensive. On top of this comes the cost of time spent on the repair of
the machine.

The implementation of a PM strategy, and the application of a CBM
platform, are not only a technological challenge but a deeper question of new
business models and their acceptance. The problem is that it has been claimed
that maintenance personnel tend to be conservative and not prone to change.

On a conceptual level, the economic impact of a CBM platform may be
expressed as:

• Reducing the total cost of ownership – CBM allows preventive and
corrective actions to be scheduled at the optimal time, and concurs to
the implementation of a PM strategy;

• Reducing maintenance costs – Reduce equipment downtime, lower
maintenance costs and improve equipment life cycle management;

• Increased safety where an unpredictable catastrophic system failure
could cause severe damages, e.g., an explosion.

2.1.1 CBM-based PM in Industry

One of the main reasons and the single most common cause for the damage
of the machines is overloading or improper use. For the person in charge of
maintenance, it is important to monitor the use of the machine and guide
the user so that the machine does not wear any more than in normal use.
In addition, it is important to control the use of the machine so that the
machine works as efficient as possible and does not cause any unnecessary
environmental burdens. Typically, the OEE is measured by performance,
availability and quality. When one or more of these elements are out of
operating range, profits are declining.

The aim of the production plant maintenance is continuous improvement
of the factory assets and increased OEE. Plant maintenance enables one or
more algorithms to be assigned to each asset or asset type. The algorithms can
be based on an asset’s operational status (e.g., a pump’s total running time)
or its condition (e.g., vibrations or temperature), or a combination of both.
The useful set of parameters are based on analysis of the system’s critical
components and their behaviour.

Using real-time data from the asset, the plant maintenance system can
automatically inform maintenance personnel when it is time for inspection or
corrective action well in advance. This way, the maintenance can be sched-
uled to interfere as little as possible with the production. Job performance
can be guided, e.g., with a mobile device, and add a pictorial execution
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instructions or exploit augmented reality. Reporting work should be carried
out as detailed as possible, because only in this way it can help to increase
the availability of the machine.

Inventory management optimization is also an important issue requiring
that both location(s) and the number of spare parts must be optimized.
The ordering system itself should be automatic and deliveries should go to
the right place at the right time. In addition, guidance should be available,
that means installation and operating instructions, as well as access to the
manufacturer’s data.

CBM in plant maintenance system is not intended to replace established
maintenance procedures. Rather, it improves the effectiveness and increases
the value of such systems. As well as helping to optimize maintenance
routines, it also provides a basis for continual improvement, e.g., allowing
users to compare the performance of several assets of the same type and then
applying the best maintenance practice across that group.

2.1.2 CBM-based PM in Service Business

Advances in information technology and the intensification of competition
has forced companies to a situation where the significance of the service
business in the market has increased significantly. Previously, profit was
particularly due to new sales and post marketing. After-sale services were
not important aspects. However, nowadays, many appliance manufacturers
post-market will take up to 30–50% of their net sales [Mikkonen et al., 2009].

As a result, companies are becoming interested in the services they can
provide to their customers and at the same time, gather information about
their own products, such as design improvements, maintenance or warranty
analysis. This information makes possible to offer customers even better
services during the product’s life cycle.

New sophisticated data systems in production assets enables various
types of new business models. One promising avenue is MaaS, which is
a close relative to Power-by-the-hour concept. Drawing on the capabilities
now afforded by new wireless sensors, advanced connectivity and cloud
computing, OEMs can innovate in the areas of machine support and main-
tenance packages. By empowering remote access and real-time monitoring
capabilities, new HMI (Human Machine Interface) software makes it possible
to offer preventive maintenance, quick troubleshooting advice or the ability
to access machines and screens remotely for real-time service and operational
parameters.
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Customers are also particularly interested in the factors affecting the
overall performance of the equipment. As it has been mentioned before, the
availability, efficiency and quality can be influenced and improved by CBM-
based PM avoiding unforeseen problems, which may become a determinant
factor in the cost of a product.

This business model is becoming increasingly popular among many
industries. For instance, software is typically downloaded to a computer and
its maintenance, or updates, are run automatically if the monthly licence fee is
payed. Some advanced cars are also gathering data and communicating with
the factory about their health status and need for maintenance. Manufacturers
are able to use this real driving condition data as basis to their product
development, an extra asset gained as side product.

2.1.3 Life Cycle Cost and Overall Equipment Effectiveness

The main costs affecting to the asset within its life-cycle are the purchase
price, use of the product and the costs associated with maintenance. The
OEE has a major impact to the product’s lifecycle costs throughout its life-
cycle. All the decisions that are made regarding the design and manufacture
of the machine affect its performance, availability, quality, safety, reliability
and maintainability, and ultimately decide the purchase price and the costs
associated with the ownership and disposal.

LCC is the tool to optimize this kind of economical challenge. It is most
effective when it is carried out at an early design stage of the machine, making
it possible to optimize the basic structure of the machine. It should also be
updated and used in the following stages of the life cycle, when looking for
significant cost uncertainties and risks (IEC 60300-3-3, 2004). In addition,
LCC can be effectively applied to evaluate the costs associated with a specific
activity, for example, the effects of different maintenance strategies, to cover
a specific part of a product, or to cover only selected phase or phases of a
product’s life cycle. Typical LCC analysis is as follows, according to IEC-
60300-3-3, 2004:

• LCC plan;
• LCC model selection or development;
• LCC model application;
• LCC documentation;
• Review of LCC results;
• Analysis update.
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2.1.4 Integrating IoT with Old Equipment

In the previous sections, the cost of the life cycle of a product has been
discussed. Usually, when a machine becomes obsolete or needs a repair, it
is necessary to make an investment to fix the problem.

However, with new technologies such as IoT it is possible to delay this
obsolescence and to monitor the wearing and condition of the machines.
The IoT means having the ability to access data about the condition of the
machine or product from anywhere instantaneously. By using wireless com-
munications, managers or maintenance technicians can measure the health of
their infrastructure and take proper action.

IoT can help companies improve their operations by using their own data.
First of all, the data needs to be collected from various sources to make a
study and gather meaningful information. This is usually done by integrating
different sensors in the machines and doing various tests. The collected
data are then used to develop algorithms that will monitor the status of the
machine. If the algorithm detects that the machine is going to have a problem
or if it already has one, an error or alarm will be sent to the proper manager.

As an example, a manager could install a temperature sensor in an old
valve, where the sensor would not have any effect on its operation, and
monitor its activity to see if the valve needs to be changed or it has started to
wear in the most critical parts. If that is the case, the system could send an
SMS to the manager informing which valve has to be changed. Depending on
the automation of the system, it could also make an order of the parts needed
so that when the manager gets to the valve, the spare part is already there.

This way, the break-fix mentality is eliminated and substituted with a PM
approach. Improving the equipment by using IoT monitoring could lead to a
reduction in costs and a prolonged life cycle of the machines.

2.1.5 CBM Strategy as a Maintenance Business Driver

There are many recognised business drivers and the implemented or rele-
vant ones depend on the market where the company performs its business.
However, the typical business drivers are profit and growth, and different
stakeholder’s expectations, which are normally connected with a company’s
policies and its productivity [Lozano, 2015].

Financial Times (lexicon.ft.com) defines business driver as “A descriptive
rationale, ideally measurable, used to support a business vision or project to
clarify why a change or completely new direction is necessary”.
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The business drivers are applied to achieve effective prioritising within a
consolidated programme of business initiatives [Ward and Peppard, 2002].
Therefore, the business drivers are a set of critical forces that the busi-
ness must consider. They usually characterise short, medium and long-term
aspects that the business must include with the aim to meet the objectives
and satisfy the CSFs. Thus, the business drivers are the core constitutes of a
business strategy.

A business strategy consists of the mission, i.e., a company’s primary role
to set a direction for the company/department to follow, namely its mission on
the market. The vision is about the future aims, and it is normally visualised as
a common picture that everyone agrees on about the company. The business
drivers are a set of forces that need to be met to be able to compete in the
specific market, and the objectives are the targets the company/departments
set to achieve its vision. The strategies define how these objectives will
be met. The CSFs are a small number of key areas where things must go
right for the business to flourish and be able to compete under the same (or
better) conditions than the competitors. In addition, the CSFs also provide
information about the actions one should take as well as how they should
be measured to confirm that they have been achieved. Figure 2.1, highlights
the above mentioned. It shows as well some examples of objectives in
connection with improved cost/financial indicators. In addition, it highpoints
the measurements and actions (CSFs) related to the objectives.

Mission

Vision

Business 
drivers

Objec�ves

Measure (s) Ac�on (CSFs)

The company/department primary role.

A common understanding of the company/department
that everyone can visualise.

A set of forces that needs to be met/considered,
to be able to compete on the specific market.

Improved cost /financial
indicators.

Cost of maintenance per unit 
Cost of failures
Cost of lost produc�on

Op�miza�on of maintenance tasks

Strategy:
Defines how the objec�ves will be met.

Figure 2.1 The business strategy main elements.
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Thus, the departmental strategy must be connected with the business
strategy, as is the case of the asset maintenance management strategy and
overall business strategy.

Accordingly, in the area of industrial asset management, the mainte-
nance department might implement a variety of maintenance strategies (see
Chapter 1). The corrective is immediate or deferred, while preventive can
be on condition or predetermined. The preventive maintenance (including
reactive, predictive and proactive maintenance) is where the CBM falls in
(is classified), and it is preferable to use whenever it is appropriate.

In CBM the equipment is periodically inspected by manual or automatic
systems so that their condition may be assessed and the rate of degradations
can be identified by data analytics. According to British Standards [BS 3811,
1993], CBM is the maintenance carried out according to the need indicated
by condition monitoring. Then action is taken based on the CM information.
The most common CM techniques used for CBM are visual monitoring,
performance monitoring, vibration monitoring, and wear debris analysis.

The need for maintenance emerges from the production department that
needs to have its equipment in good health to be able to run the production
smoothly and efficiently, see Figure 2.2.

The connection between the three crucial components of any production
system is the production, quality and asset management function, which are
shown in Figure 2.2. The secondary output of production is maintenance
(shown as demand for service), whose output is an increased production
capacity. Both the production process and the quality of the maintenance
work, which, in turn, affects equipment condition, affect the state and quality
of the final product.

The asset management needs for service can be highlighted as business
drivers, and the objective of PM is to avoid, diminish, or identify the onset of
failure using diagnostic techniques [Ben-Daya and Duffuaa, 1995].

Produc�on

Asset
management – 

Func�on

Primary
produc�on input

Primary output:
Product

Produc�on capacity Secondary output:
Demand for equipment service

Figure 2.2 Production – maintenance relationship (modified from Ben-Daya and Duffuaa,
1995).
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The expected benefits, i.e., business drivers from equipment condition
monitoring, fall into two general categories, namely Financial and Soft ben-
efits [Spare, 2001]. Figure 2.3 shows the relationships between the business
drivers, a maintenance process/es and the role of performance measurements.

It is important to first identify the business drivers that will be aligned
with the business strategy, in this case the maintenance department strategy.
The business drivers are usually a financial measure or other performance
measures that the specific company or department might have.

Business drivers connected with the financial part are, for instance, to
reduce maintenance costs, reduce catastrophic failures, defer replacement
(extend life), and increase equipment utilisation.

For the case of preventive maintenance, the objective is to reduce the costs
of maintenance by the monitoring of equipment health and avoid unplanned
failures.

Preventive maintenance objective is to reduce unplanned catastrophic
failures. Condition monitoring, which is part of the CBM strategy, provides
the detection of failures that might be developed before or after a scheduled
maintenance service task. The approach averts the result of high cost related

Business 
drivers

CBM process & Condi�on
Monitoring technologies

Machines
(Equipment)

Performance measurements

Figure 2.3 Implementing CBM in support of business drivers (modified from Spare, 2001).
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to maintenance since it detects a failure in time, which results in a usually
much easier and less costly service provided.

In addition, CBM provides an extended life to the equipment since the
equipment is better maintained by the service given in a timely manner. Also,
the CBM strategy provides an increased equipment utilisation since it results
in an opportunity to increase the value of its utilisation by following a strategy
that continuously monitors the health of the equipment.

Continuously, the so-called soft benefits are reliability/availability, as
well as safety concerns. The reliability/availability are goals that need to be
achieved by the maintenance department to be able to increase the profit or
at least not increase the cost of maintenance and by keeping the machines
running for the production department. Another aspect is safety, which is
an important factor that provides acceptable conditions to work for the
employees.

It is crucial to identify and have an understanding of different business
drivers that might exist for the specific domain, and specifically the mainte-
nance department in this case. Consequently, this should be done to be able
to run the business into the right direction, i.e., by transforming the written
strategy into action and implement all its parts with appropriate actions and
measurements to track its deviations from the predetermined plans and act
accordingly.

Furthermore, it is crucial to understand the link between production and
maintenance departments to be able to see the interdependence between the
two mentioned departments in a company and the need to adjust the business
drivers for the successful implementation of the overall business strategy.

2.2 Optimization of Maintenance Costs

Even though maintenance has the potential to provide revenue streams, one
of the main pillars for advanced maintenance is still the reduction of the
maintenance costs while keeping the machinery and equipment constantly in
working order. The traditional maintenance methods are not cost optimised,
and ICT can help in this sense, by allowing for intelligent maintenance and
concepts such as CBM.

Nowadays, the smartphones and mobile devices play a huge role in
society. It was only a matter of time that these devices would be integrated in
the industrial field, and more specifically in the maintenance services. Many
organizations have implemented CMMSs on their smartphones or handheld



16 Business Drivers of a Collaborative, Proactive Maintenance Solution

devices. As smartphones are getting more powerful, they are substituting
the handheld tools that have been used until now, enhancing the CMMS
experience and providing the necessary tools for the occasion.

The internet connection of the smartphones enables the technician to
view the maintenance history of that asset and make a first assessment of
the problem. If he needs a spare part, he could order it straight from his
phone and have it delivered to the exact location. Once the problem has
been fixed, he could make a report and upload it directly to the history
database.

A technician that needs to scan barcodes or QR codes typically uses a
barcode reader. Nevertheless, with the camera of a smartphone it is possible
to substitute the reader, and it could also show the info of the asset and even
take you to its location. The camera could also be used to upload images of
the product to another technician to solve any issues instead of describing the
problem on the phone.

Most of the smartphones are equipped with NFC technology. NFC is used
to read RFID tags, in a similar manner to the barcodes.

GPS, barometer, metal detector, sound meter or vibration analyser could
be some of the other uses a smartphone could have.

With these examples it can be seen that the smartphone can substitute
a considerable amount of handheld tools. However, it must be taken into
account that even if these technologies are well-developed, they might not
be comparable to the quality of other tools or suitable for all the needs a
company has.

2.3 Business Drivers for Collaborative Proactive
Maintenance

Corrective maintenance is carried out after failure recognition. It is aimed to
restore the equipment to a state in which it can perform its required function.
Corrective maintenance can be deferred or immediate. The deferred main-
tenance is not done immediately after a fault has occurred. The immediate
maintenance refers to provide service to the equipment without any delay at a
suitable time. Therefore it is also called emergency maintenance. Hedderich
[1996] indicated that the maintenance philosophy must change from a purely
repair function to one that focuses on the operations of the equipment.
Corrective maintenance, also called as “Fix when failed” was not a good one
because when things break down maintenance has failed [Blann, 2003].
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Corrective maintenance had many drawbacks, which led to evolution of
Preventive Maintenance or TBM. Preventive maintenance is “the mainte-
nance carried out at predetermined interval or according to prescribed criteria
and intended to reduce the probability of failure or the degradation of the
functioning of an item” [BS 3811, 1993] [SFS-EN 13306, 2010], and can thus
be based on condition or predetermined interval maintenance. The basis for
the determination of intervals can be in terms of time, number of operations,
mileage etc. It is most effective when historical data exist to provide statistical
failure rate for the equipment, MTBF can be accurately predicted, knowledge
about the failure mode/s exist, low costs are associated with the regular over-
haul of the equipment and low costs spare parts are available, etc. Preventive
maintenance started to emerge in 1950s when reliability engineering started
gaining popularity. The well-known bath-tub curve was based on the hypoth-
esis that all equipment go through similar kind of deterioration and therefore,
similar kinds of maintenance actions are required to keep it running. This is
definitely not true because the failure in the equipment is based not only on
its age, but also on the operating conditions. These operating conditions vary
in terms of temperature, operator expertise, environmental factors, etc. This
meant that sometimes, the maintenance actions happened before the required
time, and in other cases, the maintenance was scheduled a little too late. When
the maintenance happens before it is required, it leads to avoidable loss of
production time and maintenance resources. A delayed maintenance action
can result in the machine running up to failure, thereby loss of production
time and other related problems. There are some other challenges, like
inadequate data on asset performance and service history, maintenance not
as a top priority for management, and nonstandard maintenance processes.

Collaborative proactive maintenance practices provide an answer to
these challenges. Proactive maintenance strategies such as predictive main-
tenance that uses sensors for monitoring the health of the equipment by
measuring vibrations, acoustic emissions, pressure waveforms, etc. further
improve maintenance performance. Optimal asset performance is not depen-
dent on maintenance practices alone. Planned maintenance activities must
be scheduled to minimally impact production requirements and schedules.
This necessitates close collaboration and planning between both maintenance
and operations staff. Such collaborative proactive maintenance can result in
improved asset reliability, greater asset uptime and availability, lower costs
of servicing assets, fewer unexpected downtimes and outages, and a higher
return in invested capital.
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Business drivers are the crucial factors which lead to success in business.
In case of asset maintenance, two broad categories of business drivers can
be identified. These are Financial and Operational drivers. These two broad
drivers can be further sub-divided and are shown in Figure 2.4 below.

RoI is a measure used to evaluate the efficiency of an investment or to
compare the efficiency of a number of different investments. RoI measures
the amount of return on an investment relative to the investment’s cost.
To calculate RoI, the benefit (or return) of an investment is divided by the
cost of the investment, and the result is expressed as a percentage or a ratio.
In the current context, it is the overall benefit accrued by the company due to
its investment in a proactive collaborative maintenance approach divided by
the cost of the investments.

RoI =
(Financial Benefits from the investment − Cost of the investment)

Cost of the investment

Reduction in Operational and Maintenance Costs are also important business
drivers. The companies that seek to apply collaborative proactive mainte-
nance for managing their assets look for reducing these costs. These two
drivers can be analysed intelligently by studying them as a percentage of the
revenues that the company is generating. This would make sense as the larger
companies will spend more on operations and maintenance and yet be better
off as they generate much larger revenues.

Collaborative proactive maintenance strategy achieves a reduction in
these costs through various means. When the company is proactive in asset
maintenance, it has the foresight to plan for maintenance breaks. The strategy

Asset 
Maintenance 

Business Drivers

Financial 
Drivers

Return on 
Investment

Opera�onal 
Costs

Maintenance 
Costs

Opera�onal 
Drivers

Asset 
Availability

Asset 
Produc�vity

Figure 2.4 Classification of business drivers.
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also enables the firms to pre-position the spare parts and the technically
skilled personnel at the right place and right time. This will help in reducing
costs of employing costly skilled manpower. The approach will also result in
reduction in the cost of spare parts by reducing the MRO inventory.

Corrective maintenance or fix-when-fail is an often used strategy. How-
ever, it has serious drawbacks. It results in unplanned stoppages of production
when the machine fails. This unplanned stoppage can have an adverse impact
on the production schedule, leading to not fulfilling the customer demands.
Corrective maintenance also has other drawbacks where a damaged part can
lead to secondary faults. A broken bearing or a gear can foul with other parts
of the machine and damage them too. This will increase the maintenance
costs. A proactive maintenance strategy can help in removing an about-to-fail
spare part, thereby avoiding damage to other parts of the machine.

Collaborative proactive maintenance strategy results in keeping the
machine in a better state. A well-maintained machine, with reliable spare
parts will produce better quality product. A calibrated machine will produce
the products that are within tolerances. Such machine will also have a longer
usable life. This can help in reducing further investments in new capital
procurements at the end of life of the current machines.

Operational Drivers of asset maintenance are increase of asset reliability
and availability. Asset Reliability is defined as the probability that a compo-
nent or system will perform a required function for a given time when used
under stated operating conditions. Asset availability is the asset’s availability
to be put to its intended use. A Proactive maintenance strategy will help in
increasing both the availability and the reliability of the assets.

Another Operational Driver is increasing the Asset Productivity. It
describes how effectively are the business assets deployed. This ratio typ-
ically looks at sales dollars generated per unit of resource. Resources can
include inventory, fixed assets, and occasionally other tangible assets. Similar
analyses may also be done not just for financial assets but also for operational
assets like square footage, number of employees, etc.

The financial and operational drivers of boosting service and mainte-
nance effectiveness in asset intensive industries are substantial. Preventive
maintenance is effective, but proactive maintenance strategies such as pre-
dictive maintenance and reliability centred maintenance processes have a
positive impact on nearly every asset performance measurement. Collab-
oration must be carried out between maintenance and operations staff to
develop planned maintenance schedules that minimally affect production
requirements. The companies must try to bring all maintenance planning
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and maintenance operations together under the control of one senior-level
executive to strengthen maintenance processes across the entire enterprise,
not just within individual departments or operations. The companies must use
the latest analytics software to drive the business. Such software solutions are
very useful in pinpointing the areas that need focus for improving the asset
performance.

2.3.1 Maintenance Optimisation Models

Maintenance optimisation models are those mathematical models whose aim
is to find the optimal balance between the costs and benefits of maintenance,
while taking all kinds of constraints into account [Sharma and Yadava, 2011].
In general, maintenance optimisation models cover four aspects:

• A description of the system (or component), and the function and
importance of the system in keeping the business operational;

• A modeling of the physical deterioration of the system in time as well
as the failure behavior and consequences;

• A description of the available information about the system (i.e., state
space) and the decisions available to management (i.e., action space);

• An objective function and a set of constraints along with an optimisation
technique in order to find the best balance.

The maintenance optimisation models in the literature can be classified based
on different aspects such as the presence of randomness in the system, the
number and interdependency of failure-prone units, discretization of time,
model types, optimality criterion, methods of solution and planning time
horizon. Figure 2.5 summarizes these aspects within a proposed workflow
in building maintenance optimisation models.

In the context of maintenance optimisation, it is common to model the
uncertainty in the time-to-failure with a known probability distribution func-
tion. However, this probability distribution function is not readily available
in practice, requiring data-driven maintenance optimisation policies. Alter-
natively, uncertainty in the failure behaviours can build on the knowledge
about the failure characteristics learned from historical data. In particular,
the maintenance optimisation models provide the tools that potentially rely
on the output from root cause analysis, remaining useful life time analysis
and alerting and prediction of assets failures in the optimal planning of
maintenance and related resource allocation.

The optimisation methods for solving the mathematical formulations
of the maintenance-planning problems often include linear and nonlinear
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• Planning horizon (single-
period vs multi-period; 
discrete-time vs 
continuous time)

• Objective function (one 
vs many; risk 
sensitiveness)

• Constraints (stochastic vs 
deterministic)

• Decision variables 
(continuous vs integer)

Formulation of the 
maintenance problem

Uncertainty in the 
failure behavior of 

systems/components

Maintenance Optimisation Model 

• Linear vs nonlinear
• Analytical vs simulation-based
• Heuristics vs optimality guarantee

Historical 
Data

T4.1 Root cause failure 
analysis
T4.2 Remaining useful life 
identification of wearing 
components
T4.3 Alerting and
prediction of asset failures

Validation

Implementation

Figure 2.5 Workflow in building maintenance optimisation models.

programming, dynamic programming, Markov decision processes, decision
analysis techniques, search techniques (i.e., simulation-based optimisation)
and heuristic approaches.

Maintenance optimisation models yield various managerial outcomes
[Dekker, 1996]: First of all, the structure of optimal polices, like the existence
of an optimal control-limit policy, can be established. Second, models can
assist in the timing aspect of maintenance activities: how often and at what
extent to inspect or to repair a machine or a component; and if applicable,
how often to preventively replace them. Finally, models can also be of
help in determining effective and efficient schedules and plans for service
engineers and spare-part stocking, taking all kinds of operational, physical
and economic constraints into account.

2.3.2 Objectives and Scope

In general, an optimal maintenance policy achieves one of the two objec-
tives: minimizing system maintenance cost (e.g., the sum of failure and
proactive maintenance costs) while the system reliability requirements (e.g.,
system availability or uptime) are satisfied, or maximizing the system
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reliability measures when requirements for the system maintenance cost
are satisfied.

In line with these objectives, the maintenance decision making process
(Figure 2.6) is composed of two main assessments followed by the selection
of the appropriate decision model [Ahmad and Kamaruddin, 2012]:

• Operational cost assessment: The aim of this assessment is to calculate
the two types of operational costs, namely the failure cost, the setup cost
for data-driven maintenance (e.g., the cost of collecting, storing, and
processing data, the cost of installing new sensors for condition moni-
toring) and the preventive maintenance cost (e.g., the cost of performing
inspections to detect failures or to perform data analytics to predict the
failures in order to act before they are realized);

• Component assessment: The goal of this assessment is to classify
the maintenance type of the equipment as either non repairable or
repairable, and if so, to what extent, and to identify the structure and
interdependency of the components in the system;

• Decision (optimisation) model selection: After the component assess-
ment, the appropriate maintenance model is built to identify the opti-
mal maintenance policy. The maintenance policy is the output of the
maintenance model. Maintenance models can also be used to evalu-
ate the performance of the practical policies that are not necessarily
optimal.

In the remainder of this section, we use the term maintenance policy in
its most general meaning, including an inspection (information collection)
policy, repair policy, or replacement policy. That is, maintenance optimisation
is a unifying approach for finding the optimal subset of policy for inspection,
repair, or replacement activities.

We note that the maintenance optimisation starts at the design phase of
a system of components because the level of redundancy or accessibility in
product design have significant impact on the maintainability of a system.
Therefore, it is of practical importance to account for the total maintenance
costs in the product-life cycle during new product development. This is an

Operational cost 
assessment

Failure costs vs preventive 
maintenance costs

Component assessment

• Structure type: Single-unit, multiple 
unit (system-level)

• Maintenance type: Repairable vs 
non-repairable

Decision (optimisation) model 
selection/development

• Inspection (information collection) policy
• Repair policy
• Replacement policy

Figure 2.6 Maintenance decision making process.
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example of a strategic decision in maintenance optimisation. Alternatively,
operational and tactical decisions in the scope of the maintenance optimisa-
tion models consider that maintenance has to be planned and scheduled once
the system is in operation, in accordance with other plans (e.g., production,
planned maintenance, spare parts planning) by building on the data-driven
prediction tools that capture the uncertainty in the failure behaviour of a
system.

2.3.3 Maintenance Standards

It is essential to understand the definitions of maintenance when selecting a
maintenance strategy. The starting point may be considered generally known
standards where maintenance is defined as follows:

• Standards PSK 6201 and PSK 7501: Maintenance is the totality of all the
technical, administrative and management issues designed to maintain
the target object or return it to a state where it is capable of performing
the required function during its entire life cycle [PSK 6201, 2003], [PSK,
2010];

• The European standard SFS-EN 13306: Maintenance consists of all
technical, administrative and management issues of the lifetime of the
object designed to maintain or restore the object so that the object is
capable of performing the required function [SFS-EN 13306, 2010].

2.3.4 Maintenance-related Operational Planning

Maintenance optimisation models often span multiple business functions
as maintenance decisions are directly linked to service-logistics operations.
Based on the preliminary feedback from use-case owners, the maintenance-
related operational planning can be divided into three stream:

Service logistics/transportation: Since the capital goods are often operated
at remote locations in a network, unplanned maintenance requires significant
logistic effort and hence can be very costly. The data-driven planning of the
routes, vehicles, and skill levels of the maintenance teams, is of interest in
reducing high maintenance costs.

Spare parts/service tools planning: Because the demand for spare parts
is uncertain (as it is unknown when machines or certain components break
down), and the spare parts should be delivered in a timely manner, most often
the practical approach is to stock resources (spare parts, tools and service
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engineers) in all the places where such needs can arise. This leads to high
inventory holding costs. The failure prediction algorithms bring an opportu-
nity to enrich the spare parts/service tools planning via the joint maintenance
and spare-parts planning models. Houtum and Kranenburg [2015] present
accurate evaluation and optimisation algorithms for spare parts stocking
policies.

Operational decision-making based on remote monitoring: The advanced
sensor and ICT technology allows acquiring the physical conditions of sys-
tems/components remotely and with less cost. Based on these condition data,
significant amount of unnecessary maintenance tasks can be avoided, by
taking maintenance actions only when the failure of critical components is
imminent. This can be seen as a special case of predictive maintenance,
through which maintenance costs can be significantly reduced in com-
parison to preventive maintenance (Figure 2.7). Remote maintenance and
service-logistics planning are highly relevant here.

Deterioration modelling to 
evaluate/predict the future 

equipment condition 

Is the future 
equipment 
condition 

reached or close 
to the failure 

limit?

Plan and schedule the 
appropriate maintenance 

activities 

Evaluation process

No (do nothing)

Yes (do something)

Figure 2.7 Decision framework for predictive maintenance.
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2.4 Economic View of CBM-based PM

According to the standard SFS-EN 15341, 2007 (Maintenance. Maintenance
Key Performance Indicators), total maintenance cost (often based annually
related only to the maintenance activities performed on the asset/item).
Includes costs referred to:

• Wages, salaries and overtimes for managerial, supervision, support staff
and direct staff;

• Payroll added costs for the above mentioned persons (Taxes, Insurance,
Legislative contributions);

• Spares and material consumables charged to maintenance (including
freight costs);

• Tools and equipment (not capitalized or rented);
• Contractors, rented facilities;
• Consultancy services;
• Administration costs for maintenance;
• Education and training;
• Costs for maintenance activities carried out by production people;
• Costs for transportation, hotels, etc.;
• Documentation;
• CMMS and Planning Systems;
• Energy and utilities;
• Depreciation of maintenance capitalized equipment’s and workshops,

warehouse for spare-parts.

Exclusions:

• Costs for product changeover or transaction time (e.g., Exchange of
dies);

• Depreciation of strategic spare parts;
• Downtime costs.

A remote access to the plant data would reduce the travel time needed to
perform the service and significantly cut costs. Remote access also allows
experts from different specialities and physical locations to share data and
collaborate. The analysis work could be performed remotely while travel-
ing, from home or office or from anywhere increasing work flexibility and
improving personnel efficiency.

A continuous data collection piloted in the use-case enables the use of
automated analysis and monitoring software more effectively. The software
would monitor the data collected from the plant and alert the expert to



26 Business Drivers of a Collaborative, Proactive Maintenance Solution

cases that would require special attention. This enhancement is also aimed
at reducing personnel costs involved.

The new business model aims to provide:

• Own fleet operation and maintenance

• Better availability by using predictive condition monitoring;
• Possibility to apply platform architecture and advanced maintenance

concept to operation;
• More exact timing of maintenance action based on actual condition.

• Increasing sales of O&M services and cost effective operation support

• Possible contractual based long term maintenance agreements by
using condition monitoring for energy production customers;

• Optimal use of personnel for remote sites by using predictive tools
and utilizing new operation concept concerning local and back office
support;

• Faster and optimized failure correction by using analytics and progno-
sis for critical components enables management of larger power plant
fleet;

• Systematic long term information collection for root cause analysis
and investment planning of replacements.

Estimating the revenue of a new business model is rarely accurate and due to
the high variance in the potential business models, it is impossible to show a
typical revenue stream projection of a remote support service.

Previous experiences and references show that successful implementation
of a remote monitoring system can reduce the unscheduled unavailability of
a component by 35%–45%. This can have a serious impact on reducing the
lost production, e.g., of a power plant.

Like in the traditional service model, the most significant costs of the
service come from personnel costs. Utilization of machine aided monitoring
these costs could potentially be reduced, but often this is not possible. In a
well designed service, each member is a specialist in a certain field and their
area of expertise needs to be covered.

Benefits of Collaborative, Proactive Maintenance solution could be:

• Production price (taxes, emission taxes, tariffs, government support);
• Price of energy as a function of seasonal demand (e.g., winter time

demand for energy is high and so is price/revenue);
• Demand as a function of time (seasonal, each plant has a maximum

energy production capacity);
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• Investment cost of the critical component;
• Maintenance work required (hours);
• Work cost, based on market situation;
• Reduction of unnecessary travel to remote locations -> increases sus-

tainability by reducing emissions caused by travelling -> increases
company’s public image.

2.5 Risks in CBM Plan Implementation

CBM has developed rapidly as a maintenance concept and is being considered
as panacea for all ailments related to machine health. But like with all things
that seem miraculous, there are a few issues in successful implementation
of a CBM plan. Many implementation efforts fail and condition monitoring
tools too often end up at maintenance workshops cupboards, hardly ever used
[Walker, 2005]. Nearly 30% of industrial equipment does not benefit from
CBM [Hashemian and Bean, 2011]. This may be due to a number of reasons.
The data is gathered in large amounts, often from assets that are dispersed
over large distances; sometimes even across continents. The collected data
needs to be integrated from multiple sources such that effective analysis
could be done. In certain cases, new assets and data acquisition sources
get added. Additional resources are required to integrate this new data with
existing data in order to derive meaningful insights. In some CBM plans, the
collected data and the derived results are required to be assessed by an expert.
There is a scarcity of good experts who can recommend corrective actions in
time. Therefore, even if a condition monitoring programme is in operation,
failures still occur, defeating the very purpose for which the investment
was made in CBM [Campos, 2009; Prakash, 2006; Rao et al., 2003]. The
basic idea behind implementing a CBM plan is to detect the impending
failures and initiate corrective actions that are timely. A good CBM plan
will ensure that the maintenance scheduling is neither too early (leading
to unnecessary maintenance) or too late (catastrophic failures resulting in
disruptions of manufacturing operations). However, it must be noted from
the operational viewpoint that any prospective maintenance policy based on
condition information must have clear economic benefits; otherwise the initial
outlay for the CM system and associated costs cannot be justified [McMillan
and Ault, 2007]. There are a large number of other factors that not only
impede a smooth implementation of a CBM plan but also result in a system
that is ineffective and considered as an unnecessary burden in terms of costs
and workload. Through an extensive literature review, this chapter identifies
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these issues that can hamper a successful conversion of a theoretical plan into
an effective workable solution.

CBM Implementation is not devoid of the challenges and hurdles associ-
ated with programs that require a drastic change in the way an organization
functions. In this chapter, an attempt has been made to classify these issues
into four major categories. These are: Technology, People, Processes and
Organizational Culture. Every organization that is planning to implement a
successful CBM program must pay attention to these issues and avoid the
obvious pitfalls. The risks are listed below.

2.5.1 Technology

CBM is a technology rich maintenance driver that aims at taking over the
functions of humans. In certain cases, only the mundane monitoring is han-
dled by the technology while in some other advance CBM systems, even
the decision making is automated. Technological barriers to a successful
implementation are most important because these factors can lead to efforts
getting wasted on unfruitful activities. Some of the issues are listed below.

Selection of assets to Monitor: First and foremost, the organizations must
select the assets that require condition monitoring. CBM is supposed to
be applied where appropriate, not as an overall policy as some techniques
are expensive and it would not be cost effective to implement everywhere
[Starr, 1997]. This selection should be based on technical and economical
feasibilities. The selected asset must be such that it has the parameters that can
be monitored with the sensors. Also, the machine should be critical enough
to warrant large investments in a CBM system.

Complexity of measuring parameters: One of the most important step in
CBM implementation is to decide the parameter that should be measured
by the sensors. Most CBM implementation drives fail because the organi-
zations start to measure ‘what can be measured’ rather than ‘what should
be measured’. The first challenge is to obtain effective features from many
candidate features to reflect health degradation propagation in the whole
life of machines [Yu, 2012]. In machine-learning-based defect detection, the
accuracy of prognostics and diagnostics models subsequently dependents on
the sensitivity of the features used to estimate the condition and propagation
of the defects. Therefore, it is critical to devise a systematic scheme that
is capable of selecting the most representative features for current machine
health states [Yu, 2012; Malhi et al., 2004]. The complexity of selecting a
suitable measure can be gauged from an example. Some research shows that
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the use of acoustic signal is better than vibration signal due to its sensitivity
and accuracy [Al-Ghamd and Mba, 2006; Baydar and Ball, 2001; Tandon
et al., 2007]. However, in practice, the application of acoustic signal may not
appropriate due to the significant effects of noise (unwanted signals) from
other equipment. In addition, alternative sources of information are important
contributors to health monitoring. These sources include the OEM, ISO stan-
dards, experience of the workers, etc. The new challenge is to find ways to use
these alternative sources of information in order to achieve better monitoring
of assets and correct decision making [Ahmad and Kamaruddin, 2012].

Complexity of sensors: Choice of a correct sensor with appropriate sensi-
tivity is an important step. Selecting a costlier sensor when it is not required
will make the CBM system unnecessarily expensive, which will not be able
to justify the cost-benefit argument. On the other hand, selecting a cheaper
non-sensitive sensor when the data being measured has minute variations
that require high quality sensor can also upset the cost-benefit balance as
the diagnosis of the fault may not be correct. Other ICT challenges include
sensor data quality related to gathering frequency, noise, and level of details
of sensor data, data availability, wireless communication problem, frequency
of diagnostics and prognostics, and so on [Shin and Jun, 2015]. In addition,
the technologies and technical methods for the CBM approach are still in their
infancy. It means that there are some limitations in ensuring the accuracy
of diagnostics and prognostics [Shin and Jun, 2015]. Numerous different
techniques and technologies exist but choosing the correct one, or even
remembering to make the decision in due time can be a troublesome activity
which can put an entire implementation effort at risk [Bengtsson, 2004].

Deciding on thresholds: The condition monitoring practice is based on the
fact that a sensor is used to measure a parameter. When the value of the
measured parameter crosses a pre-determined threshold, suitable mainte-
nance actions are initiated. In practice however, deciding on the threshold
is a complex process. The failure of each of equipment may be defined
and classified in different ways. Some organizations consider failure as the
physical event such as a breakage that stops production. The machine stops
to function as a result of such a failure. In some other cases, a functional
failure may occur which results in the final product of the machine to have
quality flaws but the machine may continue to work. It is necessary for
the organizations to determine threshold based on their requirements. The
definition and determination of failure limits should be considered from
both the entire machining process perspective (system/sub-system) and the



30 Business Drivers of a Collaborative, Proactive Maintenance Solution

overall output of the system (e.g., product quality characteristics) [Ahmad
and Kamaruddin, 2012].

Noise effects: Analysing waveform data is an intricate process because of
noise effects, which are unwanted signals generated by other equipment.
Noise must be minimised or eliminated from the data [Ahmad and Kamarud-
din, 2012]. Some noise also gets generated due to the transmission medium.
It is necessary to identify which data transmission type (wire or wireless) is
effective in terms of cost and reliability with least noise [Shin and Jun, 2015].

Data storage and monitoring period: In many cases, the assets that are
monitored with sensors are big machines that need years of use in order to
show wear in some parts, or need years to reach failures. Thus, there is a need
to monitor and store huge time periods (and related data) in order to provide
enough data to generate predictive models.

Data cleaning: Large data sets are required for effective data analysis and
modelling. This collected data needs to be cleaned before any analysis. This
is a complex task, especially for waveform-type data.

Biased thresholds: Determination of thresholds is a complex process. Often,
the complexity increases due to biases that get introduced in determining
these failure limits [Ahmad and Kamaruddin, 2012].

New Assets and the complexities: Newly commissioned systems have no
historical data. Even the OEM is not aware of the failure patters or failure
rates. In such cases, it is not possible to identify the trends or failure thresh-
olds. Such situations are no-data situations [Si et al., 2011]. The quantity and
completeness of data are insufficient to fit the full statistical models. Hence,
it may be a better choice to develop physics-based models with the help of
subjective expert knowledge from design and manufacturing [Si et al., 2011].

2.5.2 People

CBM aims at using technology to monitor and/or diagnose the faults in
machines. The focus of CBM is to replace humans by machines to carry out
mundane monitoring and intelligent decision making tasks. In spite of this,
it is not possible to replace humans completely. The success of any CBM
implementation program depends on a lot of people factors. Some of these
are listed below.

Training and Skills: There is a need to have requisite skills in the personnel
that are responsible to use CBM. Familiarity with the condition monitoring
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system and training for analysis of the data is required to be imparted.
Advanced data analysis such as frequency analysis requires advanced skills
[Rastegari and Bengtsson, 2014]. Education and training is important pre-
requisites for a company to increase the competence [Rastegari et al., 2013].
Other factors like technical competence and knowledge is required in order
to completely implement a CBM system.

Human Factors: Other human factors also need special emphasis. Walker
[2005] lists several factors like lack of direction, unwillingness to adopt a
new approach to maintenance, etc. as reasons for failure of CBM approaches.
Senior technicians often treat a CBM initiative as something that is unnec-
essary expenditure. There are also some reservations about the frequency of
monitoring. Technicians often feel that it is better to spend the money in other
systems which can give more money back [Rastegari et al., 2013].

2.5.3 Processes

The implementation of a CBM program is a long drawn complicated process
that needs careful planning. The processes must be put in place to implement,
monitor, measure and improve the system.

Economic Feasibility study: An economic feasibility study must be carried
out before the implementation process. It is imperative to define the busi-
ness model for new maintenance operation and identify benefits and costs
[Shin and Jun, 2015]. High data collection costs must be considered in the
feasibility study [Kothamasu et al., 2006]. All these support monitoring tools
directly involve high costs, and not all companies are willing to invest in them
[Ahmad and Kamaruddin, 2012]. Specific computerized monitoring systems
and experts are required. These requirements directly involve large company
investments, especially since such companies must buy and maintain these
systems, as well as provide training for their use [Ahmad and Kamaruddin,
2012].

Assignments of Responsibilities: In order to have a more structured imple-
mentation, it is needed to define the responsibilities in early phase of the
implementation [Rastegari and Bengtsson, 2014]. Implementation responsi-
bilities must be written down as company documents and adhered to.

Piecemeal implementation: To get the practical benefit of CBM approach, it
is necessary to consider applying CBM into not only one piece of equipment
but also an integrated system level [Shin and Jun, 2015]. The implementation
process should consider holistic application of the technology at all levels.
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2.5.4 Organizational Culture

It is important to have encouraging atmosphere in the organization to suc-
cessfully implement a CBM program. Some of the related factors are listed
below.

Top management commitment: One of the main challenges to implement
CBM at the company is management support. The management must com-
prehend the importance of the CBM’s role at the company and provide the
resources needed. It needs to have a long term strategy to change the way
of working from reactive maintenance to proactive maintenance [Shin and
Jun, 2015]. That is why, the top management must continue to support the
initiative for as long as it is necessary.

Alignment of business objectives with the workforce: The workforce must
be on the same page as the top management. The process must not look like
a management fad in which the workforce has no interest.

Establishment, documentation and communication of objective: The
overall objective of CBM must be decided and documented. The objective
must be communicated down to each of the stakeholder. The communication
gap often results in the worker considering CBM as another top driven agenda
with no fixed goals. This leads to failure or partial implementation of CBM
which provides no benefits to the organization.

Conflicting departmental priorities: There may exist conflicting priorities
amongst several departments in an organization. For example, Maintenance
Department may want a machine for inspection/maintenance before it fails
but the production department wants high utilization of the equipment
and hence does not hand over the machine to the maintenance people
[Campos, 2009]. The organization must have conflict resolution rules such
that the CBM implementation as well as the health of the equipment does not
suffer.
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The purpose of this chapter is to describe the MANTIS reference
architecture. The generic focus here is on an architecture that enables
service-based business models and improved asset availability at lower costs
through continuous process and equipment monitoring, aided by big data
analysis. This architecture takes into account needs of various industries
in the forefront of service-based business and operations models. It also
takes into account less mature industrial domains, where improvements
in maintenance can be only achieved gradually and consistently. The
higher level requirements for the whole project are described by [The
MANTIS Consortium, 2018] and further tuned for the architecture
in [Jantunen et al., 2016].
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3.1 Introduction

The MANTIS proactive service maintenance platform and its associated
architecture draws inspiration from the CPS approach. Physical systems
(e.g., industrial machines, vehicles, renewable energy assets) operate in an
environment, where everything is continuously monitored by a broad and
diverse range of intelligent sensors.

This continuous, high resolution monitoring eventually results in massive
amounts of data. Systems are characterized, for example, by their usage
history, operational conditions, location, movements and other physical
properties. These systems and machines form larger collaborative systems-
of-systems over heterogeneous networks (e.g., vehicle fleets, photo-voltaic or
windmill parks), and hence should be connected via robust communication
mechanisms able to operate in challenging (industrial) environments.
Here, sophisticated, distributed sensing and decision making functions are
performed at different levels in a collaborative way ranging from:

• the local nodes (that pre-process raw sensor data and extract
relevant information before transmitting it, thereby reducing bandwidth
requirements of communication);

• over intermediate nodes (that offer asset-specific analytics to locally
optimize performance and maintenance);

• into cloud-based platforms (that integrate information from ERP, CRM
and CMMS systems and execute distributed processing and analytic
algorithms for supporting global decision making processes).

For the optimal maintenance of assets, different systems, and stakeholders
will have to share information, resources, and responsibilities. In other words,
collaboration is required. Such a Collaborative Maintenance Ecosystem
will have to be able to reduce the adverse impacts of maintenance on
productivity and costs, increase the availability of assets, reduce time required
for maintenance tasks, improve the quality of the maintenance service and
products, improve labor working conditions, and maintenance performance,
increase sustainability by preventing material loss (due to out-of-tolerance
production), and help optimizing spare part management.

The overall concept of MANTIS aims to provide a proactive maintenance
service platform architecture that allows the precise forecasting of future
performance, the prediction and prevention of imminent failures, and
should also be able to schedule proactive maintenance tasks. This proactive
maintenance service platform will consist of distributed processing chains
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that can efficiently transform raw data into knowledge while minimizing the
need for transfer bandwidth, as already mentioned in Chapter 1.

Reference architectures provide a template, often based on the
generalization of a set of solutions. This is also the case for MANTIS. These
solutions may have been generalized and structured for the depiction of one
or more architecture structures based on the harvesting of a set of patterns
that have been observed in a number of successful implementations. Further,
it shows how to compose these parts together into a solution. Reference
architectures can be instantiated for a particular domain or for specific
projects.

The role of the reference architecture in MANTIS is to provide guidance
on how to instantiate an architecture for a particular MANTIS domain
or specific MANTIS task, and to ensure consistency and applicability of
technologies, interoperability mechanisms, data formats and models, and data
analysis tools to be used in the different MANTIS use cases.

Based on requirements and use case descriptions, the reference service
platform architecture and overall design needs to address a number of aspects.
Important aspects addressed by this chapter are:

• Interface, protocol, and functional interoperability ensuring that
several cooperating vendors can effectively assemble the complete
MANTIS service platform. Includes the need to identify or develop
standards for data semantic representation and exploitation;

• Data validation ensuring that data analyses are made on data that give
clean, correct and useful data information about the system;

• Distributed data, and information processing, and decision-making
ensuring consistent behavior and avoid contradicting actions, e.g.,
between local and distributed data analysis and decision making;

• Information validation ensuring that created information still is
relevant for the system analyzed;

• System and service level security ensuring that the system incorporates
means to hinder misconfiguration and can be protected from wire-
tapping and various attacks;

• System engineering and re-usability of defined and existing services;
• System verification and validation of the service platform architecture

and overall design, covering both functional and non-functional
properties.
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3.1.1 MANTIS Platform Architecture Overview

The development of a specific implementation of the reference architecture
can make use of any of the generalized artifacts, described in this Chapter.
All of them help in various ways to avoid having to create a whole reference
architecture from scratch, and help to leverage the knowledge and experience
that went into the formation and definition of the generalized models,
architectures, and patterns.

Adopting a reference architecture within an organization accelerates
delivery through the re-use of an effective solution and provides a basis for
governance to ensure the consistency and applicability of technology use
within an organization. In the field of software architecture, empirical studies
have shown the following common benefits and drawbacks from adopting
a software reference architecture within organizations [Martinez-Fernandez
et al., 2015]:

• improvement of the interoperability of the software systems by
establishing a standard solution and common mechanisms for
information exchange;

• reduction of the development costs of software projects through the
reuse of common assets;

• improvement of the communication inside the organization because
stakeholders share the same architectural mind-set;

• influencing the learning curve of developers due to the need of learning
its features.

The purpose of the MANTIS ecosystem is to make proactive maintenance
possible in a scalable, multi-leveled way. We are targeting CBM: the
processes are defined by the ISO 13374 standard [ISO, 2012].

In order to enable maintenance optimization and new business models
within MANTIS, appropriate utility services and modules are elaborated and
implemented. Within these, data mining and analytic services are created,
which are mainly related to these functions [Jantunen et al., 2016]:

• RUL of components: continuous tracking of telemetry (usage) data and
estimating how much time the given device or component has left before
needs to be replaced;

• FP: the system shall predict based on diagnostic data an inbound failure
mode (different to wear-out to be detected by RUL);

• RCA: when an unpredicted, complex failure occurs, the system shall
deduct the actual module, the rout caused of the issue;
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• MSO: provide a decision making support on better maintenance
planning.

To facilitate the requirements and business goals, the MANTIS ARM consists
of five elements from high-level design to implementation of the architecture
in various use cases:

• Reference Model: a reference model is an abstract framework for
understanding significant relationships among the entities of some
environment;

• Reference Architecture: provide a template solution for the architecture
(aka. architectural blueprint) for a particular domain;

• Feature model: Introduces key concepts to characterize common and
varying aspects in the architectures to be derived from the reference
architecture;

• Guidelines: discusses how the provided models, views and perspectives
are to be used;

• Reference applications: show the diversity of the included solution
variants, and thus illustrate architecture signification features and related
design decisions.

The approach for architecting MANTIS use cases follows the principle
of architecting for concrete stakeholder concerns (based on Architecture
Drivers). These stakeholder concerns will drive the eventual architecture
design, which is based in the approach follow by the SPES consortium [Pohl
et al., 2012]. This approach suggests to start by delineating system and its
context, then to continue with the functional decomposition of the system.
The next step is the software realization. The final steps consider the hardware
realization of functions and the deployment of software entities, as depicted
in Figure 3.1.

3.2 The MANTIS Reference Architecture

As discussed in Chapter 2, many of the requirement categories are related
to the operating environment of the MANTIS architecture: communication
restrictions and expectations, design principles, the need for web clients,
integration of legacy human-machine interfaces, and so on. These have not
been addressed by MANTIS on an implementation level (since being a
reference architecture model), although, when designing an installation, we
have to keep in mind that the final, integrated systems has to cover these
as well. These categories included (i) data handling, (ii) event handling,
(iii) guarantee-related, and (iv) security issues.
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Figure 3.1 Mantis architecture construction approach.

The most important implementation-related requirements are aimed
towards scalability and fault tolerance in the data collection and processing.
The inputs of the platform are coming from so-called edge devices,
and the output is utilized by various enterprise systems and maintenance
operations personnel. It is worth noting that the scope of MANTIS platform
architecture does not include or target the actual life-cycle management
of the devices. To do that, MANTIS relies on the already existing
corporate systems, and resources. However, these interactions with external
systems is planned and designed into the framework via standardized
secure communications between platform modules using the interoperability
guidelines set [Di Orio et al., 2018].

3.2.1 Related Work and Technologies

Every novel result is based on previous work, which acts as background for
the novel advances. In fact, background information lays the foundations
for the MANTIS architecture, which is built over novel and existing
technologies that are composed to allow for the MANTIS maintenance
strategies. Moreover, other related work acts as reference and comparison for
the MANTIS architecture. This section describes this plethora of information
to support the description and discussion on the architecture.
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3.2.1.1 Reference architecture for the industrial internet
of things

CPSs are nowadays built together within some form of IoT architectures. A
“usual” IoT application employs various things collecting enormous amounts
of data from a number of places and sending them to an IT cloud for a specific
purpose. A survey of 39 IoT platforms [Mineraud et al., 2016] concluded
in a generic architecture and common characteristics of IoT platforms.
Figure 3.2 depicts a generalized commercial IoT platform in its fullest form,
and two possibilities are shown. The various IoT modules and services can
be deployed on local premises – or within a global IT cloud, depending on
the restrictions made by the use case.

The generic modules in such a platform are the following [Mineraud et al.,
2016]:

• Sensor or actuator nodes, i.e., “motes” or “things” that create and then
send in the data – or act based on the received data;

• Gateways that “hide” constrained devices that might be communica-
ting via non-IP based networking (“legacy”) and/or incapable of
implementing the platform interface on their own;

• A platform interface that receives the data from the devices and passes
it to other modules (gateway and data distributor);

• Data storage, often distributed, which is accessible by other modules of
the platform;

• Various service modules that can access the historical or even the current
inbound data streams and generate insights and various processing tasks
(i.e., “big data applications”);

Figure 3.2 A generalized IoT framework [Mineraud et al., 2016].
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• Graphical interfaces for operators to manage the system and validate the
output (i.e., “Business Insights”).

The data gathering and processing viewpoint shown by Figure 3.3
corresponds to that of the IIoT reference architecture proposed by the
IIC [Industrial Internet Consortium, 2017]. However, three additional
architecture patterns are proposed to better suite the targeted environments,
extending the general standalone IoT solutions. These include (i) a three-tier
architecture pattern; aided by (ii) gateway-mediated edge processing; and a
(iii) layered databus pattern.

This latter term is related to one of fundamental value added of the
IIoT approach: enhancing “legacy” production systems by “making them
smart” with additional, usually non-invasive components. This additional
device (i.e., gateway) shall utilize e.g., the management interfaces of the
machines, and represent the functionalities provided there using IP-based
interfaces. Nevertheless, this results in the physical machines being connected
to the network, their operations offered as “services” – hence creating
CPSs [Cengarle et al., 2013] out of them.

Therefore, we also have to create a logical space that implements a
common schema, while it also has to provide a “language” used in the
communications between endpoints (i.e., translation between various data
description ontologies into one understanding). Such a logical data bus design

Figure 3.3 The industrial internet of things reference architecture.
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pattern hence supports communication between applications and devices:
semantics and translation are the basis for interoperability within MANTIS,
and in IIoT, in general.

Moreover, this architecture is therefore dissected into three Tiers. The
first one is the Edge Tier, where the sensors and actuators are located
(e.g., production floors). In here, we are tapping out information from
the communications within the (real-time) control loops between the
given CPSs (cf. ISA95 systems [International Electrotechnical Commission,
2003–2007]). This way, we are collecting mostly process telemetry, then
aggregating and preprocessing it locally. This is usually supported by an
application gateway that provides the connectivity: it bridges to a WAN
towards the platform level(s). It also acts as an endpoint for the WAN, while
isolating the local network of edge nodes (i.e., the involved local CPSs). This
architecture pattern allows for localizing operations and controls (i.e., edge
analytics and computing). Its main benefit, however, is that this way, we are
breaking down the complexity of IIoT systems, so that they may scale up both
in the numbers of managed assets as well as in networking.

The access network enables connectivity for data and control flows
between the edge and the platform tiers. It may be a corporate network, or
an overlay private network over the public Internet or a 4G/5G network.

The Platform Tier receives the streams of telemetry data from the Edge
tier. It is also executing the control commands coming from the Enterprise
Tier, and may forward some of these commands to the Edge Tier in a cloud-
to-device manner. It consolidates and analyzes the data flows from the Edge
Tier and other systems. It provides management functions for devices and
assets (e.g., Over The Air firmware updates for the application gateways).
It also offers non-domain specific services such as data query and analytics.
The functional blocks of the cloud platform are the same as in any generic
IoT platform.

Meanwhile, the Enterprise Tier receives the processed data flows (i.e.,
business insights) coming from the Edge devices towards Platform Tiers. It
might also issue control commands to the Platform and Edge Tiers. This tier
is the main beneficiary of the IIoT system. However, the utilization of a well-
built MANTIS platform is also not an easy task on the corporate side either.
The issues are presented and tackled in Chapter 8.

3.2.1.2 Data processing in Lambda
The primary purpose of any (I)IoT systems is to create value added by
processing the collected data in a cloud platform. To do so, there are many
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paradigms, software stacks (both open source and commercial), consultant
firms. However, in general, the data processing usually follows the same
logic. Within MANTIS, the Lambda architecture [Hausenblas and Bijnens,
2017] is considered, however, there are many, similar “competitors” of it as
well [Kappa, 2018].

According to the generalized Lambda architecture pattern [Hausenblas
and Bijnens, 2017] defined by industry experts, data can be processed either
as soon as it reaches the platform (stream processing), or later on, on demand
fetched from storage (batch processing). Figure 3.4 depicts the overview of a
generic analytic platform.

In here, the “speed layer” comprises of stream processing technologies,
that are processing inbound data real time. This is an event-driven
programming paradigm, where the processing functionality receives touples
periodically, and executes the same function over them (e.g., creating a
counter for a specific message type or classifying them using a well-taught
machine learning algorithm). The other type of processing is asynchronous
to the inbound data, and can be called on batched, already stored datasets.
These tasks are run once at a time and might take long to complete – such
as the training phase of a machine learning algorithm. An other major
responsibility of the batch layer is to maintain the (distributed) data storage,
aided by the serving (database) layer. These modules are naturally part of

Figure 3.4 The Lambda data processing architecture.
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any IIoT application. Many commercial products and platforms support these
operations.

The batch layer has two major tasks: (a) managing historical data; and
(b) recomputing results such as machine learning models. Specifically, the
batch layer receives arriving data, combines it with historical data and
recomputes results by iterating over the entire combined data set. The batch
layer operates on the full data and thus allows the system to produce the most
accurate results. However, the results come at the cost of high latency due to
high computation time. The speed layer is used in order to provide results in
a low-latency, near real-time fashion. The speed layer receives the arriving
data and performs incremental updates to the batch layer results. Thanks
to the incremental algorithms implemented at the speed layer, computation
cost is significantly reduced. This is an event-driven programming paradigm,
where the processing functionality receives touples periodically, and executes
the same function over them (e.g., creating a counter for a specific
message type or classifying them using a well-taught machine learning
algorithm).

3.2.1.3 Maintenance based on MIMOSA
OSA-CBM has developed an system architecture for condition-based
maintenance, i.e., a way to enhance the modularization of different vendor
systems, while not locking customers into a single-source solution. The
MIMOSA has since the middle of the 1990’s hosted open conventions for
information exchange between plant and machinery information systems,
namely a way to enhance, amongst other things, the compatibility issue
between different vendor products [MIMOSA consortium, 2016].

The OSA-CBM and MIMOSA are two major standard organizations
and they claim that an accepted non-proprietary open system architectural
standard is important, since it would bring an improved ease of upgrading
system components, a broader supplier community, more rapid technology
development, and reduced prices [Lebold and Thurston, 2001].

One of MIMOSA’s most valuable contributions are the development of
a CRIS. It is a relational database model for different data types that need
to be processed in a CBM application. The system interfaces are defined
according to the database schema based on CRIS. The interfaces’ definitions
developed by MIMOSA are an open data exchange convention to use for
data sharing in today’s CBM systems. In addition, defined by MIMOSA Cris
is also MIMOSA’s OSA-EAI, which provides an open exchange standard,
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for technology types, in key asset management areas, such as asset register
management, work management, diagnostic and prognostic assessment,
vibration and sound data, oil, fluid and gas data, thermographic data and
reliability information.

Besides supporting all the data needed for a CBM application it also
considers for instance the CMMS handling, to be precise work management
of a maintenance department. The structure of data in a relational database
is predefined by the layout of the tables and the fixed names and types
of the columns, which is the case of the MIMOSA CRIS database model.
In addition, during 2012 the OSA-EAI V3.2.3 released a complete UML
model and XML schema implementation called CCOM-ML for the CCOM,
in addition to continued support and updates for CRIS.

Within MANTIS, MIMOSA [MIMOSA consortium, 2016] is providing
the common understanding and data ontology between partners and
applications (Figure 3.5). It is presented as a defining standard format for the
data exchange, while it also provides the data meta-model structure together
with the definition of the ontologies of the data. In fact, one of the greatest
benefits in using MIMOSA is this definition of semantics and ontologies
so that parties developing their MANTIS solutions do not need to worry
about how different types of information need to get linked together. In
here, therefore, MIMOSA serves the role of the common data bus [Industrial
Internet Consortium, 2017], while remaining loosely coupled. MANTIS has
developed a full stack of message models extending the MIMOSA ontology

Figure 3.5 MIMOSA data model diagram [MIMOSA consortium, 2016].
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that are designed to facilitate communications between edge and cloud, and
also between the various cloud modules.

Moreover, MANTIS follows the ISO-17359 standard in terms of
the scope of functionality as a specific, maintenance-related IIoT
implementation. According to this standard, a CBM system should be
composed of various functional blocks, which then corresponds well to a
general IoT system architecture with edge computing, as the implementations
of the MANTIS architecture. In Figure 3.6 can the three parts be visualized
against the OSA-CBM architecture.

3.2.2 Architecture Model and Components

As Figure 3.7 suggests, the architecture follows the IEC IIoT [Industrial
Internet Consortium, 2017] reference architecture model in general, in
the sense of using the edge computing paradigm in connection with the
gateway mediated pattern; and the MANTIS architecture is also planned for
multiple tier levels. However, certain features are added to support additional,
maintenance-related tasks, as well.

3.2.2.1 Edge tier
Within the MANTIS use cases, there are primarily two main types of edge
level devices: closed, fully fledged (i.e., production) sites and standalone
devices (e.g., vehicles or outdoor measurement points). These two cases
require completely different approaches, and completely different design in
the edge-cloud interface.

Figure 3.6 A three-part CBM architecture in the light of the OSA-CBM [Lebold and
Thurston, 2001].
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Figure 3.7 Overview of the MANTIS reference architecture.

• Standalone Devices

In this case, there can be standalone machines, CPSs, vehicular system
or other outdoors systems that are equipped with various sensors. Their
communication capability is mostly wireless (i.e., via mobile networks) and
therefore limited due to the radio interface capabilities. To these cases,
MANTIS proposes an alleviated implementation of the edge-cloud interface,
still relying on the MIMOSA ontology model. In these use cases, the
standalone edge devices implement some pre-processing and aggregation
algorithms, and only transmit an extract of the high frequency information
available locally in order to save traffic.

Meanwhile, it is also possible that besides the periodical uploads
from these devices, the platform level can still request additional, on
demand, temporary data streams from the devices. This might help with the
verification of a prediction provided by an analytic module. This measure is
also implemented to save bandwidth. However, this might be limited in some
use cases, since the nature of the edge device being a low power embedded
system operating on battery (e.g., a sensor mote), attached to a machine. It
is worth noting here from a development point of view, that these use cases
require extensive training and familiarization phases, where all available data
from all possible sources are collected. This phase is required in order to
develop the necessary local analytic models that allows to decide what pre-
processing is viable on-board (what information is necessary to transmit and
what is redundant).
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Furthermore, in these cases, the standalone devices (motes) are also
expected to have intelligent functions on their own. These include intelligent
sensor management, self diagnostics, and resilience to the unreliable nature
of the communications. MANTIS does not propose limitations on these
matters, but provides guidelines based on the lessons learned in the sensor
developments of the project.

• Cyber-Physical Production Systems

In many of the cases, the Edge Tier includes complex CPSoS, based on legacy
production machines (“made smarter”) that are are connected through closed,
self-contained networks. The primary data source consists in these CPSs, by
means of their continuous (telemetry) output. Within MANTIS, building the
automation based on the CPS context is out of scope.

Here, the choice fell on the gateway-mediated edge connectivity design,
where a gateway is responsible for communications towards the platform
level. These systems are usually not constrained by processing or power
limitations. Rather the communications need to be efficient for different
purposes: to increase the scalability of the overall platform. There was
also the need to design various pre-processing and analytical modules
that have to be put locally for at least three reasons. Firstly, raw process
telemetry information is too much to send to any outside platform. Secondly,
companies are reluctant to share critical real-time information about their core
business, while also legal restrictions might apply [Donnelly, 2015]. Finally,
maintenance personnel is usually located on-site. In a sense, therefore, these
edge setups are complete on their own.

3.2.2.2 Platform tier
When realizing the Platform Tier, MANTIS initially employs five modules.
These are:

• the edge broker;
• multi-purpose (distributed) data storage and management;
• stream processors;
• batch processors;
• HMI.

The speed and batch layers are dedicated towards the three main
maintenance-related objectives. The development of these modules are
iterated over two phases: first an off-line, manual establishment of the
algorithms with expert and data analyst knowledge is carried out, and then
the developed solutions are deployed into the on-line system, taking the
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specific use case dependent constraints into account. The modules in the
Platform Tier are generally intended to scale well: there can be multiple
modules of each type resulting in a large distributed system. In such
cases, a big data processing platform is needed for the implementation.
Possible implementations build on commercial solutions, but open source
implementations can also be applied. Within MANTIS, the following
platforms have been used, without being exhaustive:

• Microsoft Azure [Microsoft, 2017];
• Amazon AWS [Amazon, 2017];
• Apache ecosystem (Kafka [Apache Community, 2017], Storm [Apache

Community, 2017] and Spark [Apache, 2017]);
• Wapice IoT-Ticket [Wapice, 2018].

The Edge Broker is responsible for keeping the direct communication
with the edge level devices and gateways. It provides translation between
the data format used in the edge-cloud interface, and within the platform
level. Its primary purpose is to forward the inbound data towards the
various cloud modules. It also includes the addition of all the required
asset information to the upstream data to be MIMOSA compliant. Based
on the added information, all the processing and database nodes in the
platform can identify and process the inbound data. Moreover, since the
edge-cloud interface is not restricted to one implementation, the edge broker
usually implements multiple transport protocols. Therefore, edge devices can
communicate via publish-subscribe protocols [Curry, 2004] (such as MQTT)
or request-response type of protocols (such as RESTful HTTP). In a sense,
the edge broker is fulfilling the role of an enterprise service bus [IBM, 2011],
and here consists of three major components:

• Protocol facades (e.g., an MQTT broker or an HTTP server, to receive
the messages from the edge);

• Message parser and translator (from the edge-cloud interface to the data
distributor feed);

• Client to the data distributor module (to push the translated message into
the various platform modules).

Within MANTIS, the Edge Broker has been implemented in a multitude
of ways. One cornerstone of this module is that it might be use case
and edge device dependent. The MANTIS platform does not wish to
rule out legacy or COTS implementations for brown field use cases: the
cost of deployment for MANTIS is intentionally kept to the minimum.
Therefore, the edge broker is modular, and its main purpose is to translate
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between the various ways of communication formats within the framework,
using the interoperability messaging schema of the framework. Moreover,
since bidirectional communication is expected for some use cases in the edge-
cloud interface, the edge broker is addressable by the cloud modules and can
send messages (i.e., commands) towards the edge devices, as well.

The Data Management system (or data distributor) is needed when a large
system is being implemented, to ensure scalability and robustness. In smaller
deployments, the edge broker can forward the inbound data to other modules
in the cloud, directly as well. Basically, this module is a message oriented
middleware on its own. Its purpose is to collect the inbound data stream
from the edge brokers, and build a data pipeline towards the other modules
in the platform. One popular solution for data distribution is the Apache
Kafka [Apache Community, 2017]. Section 3.3 further discusses the issues
and design decisions to be made regarding data management and collection
tasks necessary to build such IIoT big data systems as MANTIS.

The main data storage and everything connected to data descriptions
within MANTIS is based on MIMOSA. The reference implementation of
this domain ontology is provided in a Microsoft SQL database, deploying
the MIMOSA structure. MANTIS has developed a RESTful HTTP interface
for the database as well. This database is used for handling various types
of information: from raw sensory data to the scheduled maintenance events,
as discussed in section 3.2.1.3. This central database provides storage of the
historical data (per asset and measurement point) for the analytic modules.
The MANTIS reference HMI solutions also utilize it to fetch all information
required for the overview of the system.

It is worth noting, that fully fledged production edge systems (i.e.,
CPPSs) can also have their own local storage, local MIMOSA instance.
This enables easy operation and implementation: every level/tier utilizes its
own MIMOSA instance, and when further interaction is needed between
levels, it can happen via simple database synchronization, using the same
semantics. This is one of the great advantages brought by MIMOSA,
besides the implemented standard-compliant domain expertise (operational
management) and affiliated information ontologies.

The Stream Processing functionality is required for several maintenance
functions and features, that can be executed in real-time. Such functions
include the detection and triggering of different types of events, based on
simple rules such as thresholds. A typical example is when a measurement
exceeds a threshold indicating a failure condition, and further investigation is
needed to confirm the failure (hence fault prediction and root cause analysis).
Moreover, various KPIs for predictive maintenance are also computed
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on-the-fly by the stream processor. Such KPIs include for example the RUL
of the main components.

The Batch processors are designated to run asynchronous tasks (such
as machine learning jobs) on big bulks of data. Such functions here
include training root-cause analysis, prognosis estimation on historical data
and possible recalibration of the applied machine learning models when
sufficient new information has been collected. These typically require further
information or historical data, fetched from the MIMOSA storage. These
processes might be triggered by the stream processors during runtime or
run periodically, and they perform complex tasks that are not needed to be
real-time. An example scenario here is the detection of a possible failure: a
value in the streaming data passing a threshold initiates a longer (i.e., batch)
analysis on the system logs, for example looking for an known failure pattern
beforehand.

3.2.2.3 Enterprise tier
The Enterprise Tier consists of the following elements:

• Analysis Applications provide result dashboards, as well as analysis
request HMI for the operators and other experts at the enterprise level;

• Service Management Applications enable configuration and tracking of
the services provided by the overall architecture in the given domain
with all of its applications;

• Service Execution Applications support service deployment and
execution;

• Management Applications enable configuration and tracking of the
status for the platform, interfacing the Cloud- and Edge management
functions at the Platform Tier;

• Edge IDE supports the configuration of the Edge Tier equipment and
network setup through an Integrated Development Environment.

The Enterprise tier provides the usual features of HMI applications such
as presentation and processing of information, and moreover it adds
mechanisms for explanation and adaptability based on user and application
models. Therefore, these are knowledge-based systems for decision support
as well. While MANTIS strongly emphasizes autonomy, self-testing, and
self-adaptation, the human role remains one of the important factors in
the system operation. It is however twofold: controlling, which comprises
continuous and discrete tasks of open- and closed-loop activities and problem
solving which includes the higher cognitive tasks of fault management
and planning. These issues are further described in the next Chapters,
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as considerations are made for the generic parts (e.g., HMI) and installation-
specific issues as well.

The HMI also benefits from the MIMOSA based implementation of the
MANTIS architecture. As all information are stored in a database in a well-
defined format, the relevant information can be easily extracted and presented
in a unified manner. Furthermore, participating in the distribution process by
subscribing to the relevant channels, an efficient HMI can be implemented.
It supports decision making by proactively pushing relevant information to
the right people at the right time, by intelligently filtering and summarizing
information to prevent information overload through context awareness, by
automatically and dynamically scheduling and adapting maintenance plans,
thereby keeping the human in the loop at all times.

3.2.2.4 Multi stakeholder interactions
One major issue tackled by MANTIS is the realization of multi-stakeholder
integration and support for collaborative (maintenance) decision making:
external and other corporate internal parties should be able access information
tailored for them. One exemplary use case is the establishment of the
necessary collaboration between the supplier of replacement parts and
the service departments, since these have high stakes in the maintenance
operations, as described in [Jantunen et al., 2018]. This requires a service-
oriented approach [Bell, 2008].

Multiple Platform or Enterprise Tiers are enabled to access information
coming from one single production site or edge device, in a controlled way.
The same goes vice versa, one edge deployment shall be able to locate
and connect to additional (external) services, once local decision making
algorithms are deployed. An example case for this might be that a production
plant shall be able to inquire replacement part orders if it detects the need
for it (based on RUL estimation). All this can be aided by the architecture,
so that multiple stakeholders can run-time receive and request information
they need, in an asynchronous way. For this matter, the integration of the
Arrowhead framework [Delsing, 2017] is proposed since it also supports
other capabilities that are useful for advanced maintenance operations, such
as Quality of Service [Albano, 2017].

3.3 Data Management

Since MANTIS is proposing big data based analytic solutions to solve
Maintenance 4.0 problems, the data storage solutions are essential to discuss
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and design into the framework’s core architecture. Cisco has forecasted
that by 2020, 92 percent of the workloads will be processed by cloud data
centers of which 68 percent will be in public data centers [Cisco, 2016].
Within project MANTIS, Big Data are collections of data entries having the
following characteristics [Munshi and Yasser, 2017; Laney, 2001; Assunção
et al., 2015] (while adding the newest and oriented interpretation [Fan and
Bifet, 2013; Grover and Kar, 2017] dimensions as well):

• Volume: big data implies enormous volumes independently of the data
source: machine or environmental sensors, event logs, external data
sources;

• Variety: the diversity in source and format of the data collections.
Although data repositories or processing may allow a restricted amount
of heterogeneity, it is safe to include variety as one of the implicit
features of big data as a whole;

• Velocity (i.e., data generation rate): Notwithstanding that collections
and repositories may be static at a certain point, data is generated
over time and that is what is referred to as velocity. Data might also
be geographically distributed to make geographic static classifications,
however such static representations of geographic distribution in an
isolated or discrete point in time are more on the statistical side than
in the big data spectrum;

• Variability in the units, data structures and formats that hold an
equivalent representation of a measurement, state or data entries from
different sources. Data transformations have to guarantee that input as
output are equally faithful to the information they account for;

• Value is the engineering process behind that converts any piece of
information into a mercantile asset that has enterprise value;

• Veracity makes reference to the quality of data. Raw data is often
preprocessed to fit a particular data process. The veracity of the data
refers to the appropriate handling of data formats and preprocessing
transformations. Data transformations should always keep the relative
real representation of the truth status they represent.

For data to be turned into an economic asset, so called Big Data,
engineers, architects and scientists are involved in the data gathering and
engineering processes that collect and convert the terabytes of information
into meaningful added value. One of the well recognized obstacles that
prevents potential useful data from being exploited is that 60% to 80% of data
mining efforts is strictly dedicated to the preparatory work. This is yet another
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motivation to carefully study the needs of a data exploitation infrastructure
and put attention to data engineering process before turning data into insights
and building a MANTIS (or alike) architecture deployment.

3.3.1 Data Quality Considerations

Thorough the data life cycle, data transformations and data source integration
processes, original data entries might suffer from inadequate handling,
leading to misleading data analysis results. Some highlighted threats to data
integrity are found in the literature [Singh et al., 2010].

Completeness here makes reference to whether data values are missing or
that some data points are noisy. Besides that, completeness is a data quality
issue that goes beyond the strict integrity of the data entries themselves. It
also makes reference to the context information necessary to make adequate
interpretations to the data. Meanwhile, validity refers to the correctness and
reasonableness of data as the capability to faithfully represent the piece of
reality it describes. As a title of example, it implies that data is describing
reality in a scientifically accepted manner. Accuracy is the exactness with
which data represents the real world. The concern here is whether a specific
piece or collection of data or reading “makes sense” in comparison with the
actual state of what originates that data. Meanwhile integrity: this entails in
the broader sense the lack of corruption of data through the entire life cycle.

3.3.2 Utilization of Cloud Technologies

Cloud services do not necessarily have to be outsourced to third parties
entirely and in industrial cases they are not. Within an organization, cloud
services can be provided internally, as private clouds; as shared, as hybrid
clouds or fully hosted in a third party infrastructure, as commercial solutions.
This classification entails the following [Lenk et al., 2009; Hashem et al.,
2015]:

• Private/Local clouds: all services, infrastructure, platform and software
on which a solution runs, are hosted entirely by the party that exploits
the solution. This does not imply that all the services in the system
are proprietary solutions, there can be commercial, licensed products
(services) hosted in a private environment;

• Hybrid clouds: the solution is partially hosted by a third party service
provider and partially hosted by the same entity that exploits the service.
The distribution of who hosts what does not affect the classification;
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• Public or Commercial clouds: these are fully hosted by a service
provider that is a different entity than the entity exploiting or consuming
the service. In this case the differentiation between service provider and
user/consumer is complete.

It is possible, however, that a particular implementation has a service
provider to fully host one of the layers of a system architecture (i.e.,
infrastructure, platform, software), in which case, the specific terminology
to refer to the cloud hosting scheme can be used differently for each of those
layers.

MANTIS promotes the utilization of distributed data storage solutions,
regardless on how the solution shares its resources between the various types
of CSP and on what level it is utilizing a COTS technology (i.e., provided
infrastructure, software or platform “as a Service” [Bermbach et al., 2017]).
The interoperability issues and how they can be tackled the MANTIS way
when using different solutions and products in the data pipelines is presented
in Section 3.4.

3.3.3 Data Storages in MANTIS

The Central Data Storage is the main storage system where all maintenance
related data is collected. It should be a scalable, possibly cloud based.
Its implementation should be possible using both open source tools (e.g.,
Apache big data framework) or vendor specific (like Microsoft Azure). The
adoption of MIMOSA (see Section 3.2.1.3) is recommended in the MANTIS
architecture.

High granularity measurement data is usually not needed to be uploaded
to the central database. However, local databases are maintained (in a CPPS
for example), and in case when needed, the data can be accessed from the
local database. Such high granularity measurement data can be for example
raw vibration measurement data.

Although, in some cases local storage is not practical or it is not possible.
However, diagnostics and prediction would benefit of the high granularity
data. In these cases, it can be considered the possibility of ad-hoc data
request in between the tiers of the MANTIS architecture (e.g., between
edge-platform, where the CPS performs a high granularity measurement and
provides the data as a response).

The MANTIS reference architecture proposes to encapsulate the actual
storage technology behind a respective data management facade in order to
mitigate the impact of technology changes of the data storage on the data
analysis functions. There are several other databases that may be needed
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for the main functions of MANTIS (i.e., RUL, RCA, FP and MSO). Such
databases include for example:

• Environmental database (e.g., weather): to complete the diagnostics data
environmental conditions may be taken into consideration;

• Component stock database at subcontractors: needed for efficient
planning;

• Other examples: Safety/regulatory databases, etc.

Scalability is the service property of the system to adapt to larger workloads
(storage or cloud service) such as to “serve X% more requests when deployed
on X% more resources” [Bermbach et al., 2017]. This is at least the general
concept of scalability, which is also known as vertical scalability.

However, another aspect of scalability concerns the way a system is able
to accommodate new functional requirements over time. This characteristic
has been given the name of horizontal scalability, it played an important role
in the evolution from RDBMS to NoSQL paradigms, with a lower threshold
for system adaptation in the latter.

It is also worth noting that many enterprises are not only migrating
their database systems to the cloud but also shifting their original relational
databases to non structured NoSQL databases. One of the main reasons to
adopt this new paradigm is the ability of the services in the digital system
to handle real-time data, with high agility and flexibility. The problem is
well posed in [Hecht and Jablonski, 2011]: “In the past SQL databases were
used for nearly every storage problem, even if a data model did not match
the relational model well. The object-relational impedance mismatch is one
example, the transformation of graphs into tables another one for using a
data model in a wrong way. This leads to increasing complexity by using
expensive mapping frameworks and complex algorithms”.

3.3.4 Storage Types

MANTIS relies on already existing data sources, or promotes the
development of new data collection and storage if legacy sources are
insufficient for the targeted analytic services.This section introduces some
of the most popular storage solutions classified in a taxonomy of
storage infrastructures. Although there are more technologies available both
commercial and open source, the following have been researched to take in
consideration for possible use. In this section, the following database types
are considered for implementation of the MANTIS platform:
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• Traditional SQL databases: Microsoft SQL, MySQL, etc;
• Big Data File Systems: Google File System, Hadoop File System, Disco

File System;
• NoSQL: Key-Value, Column-Oriented, Documents, Graph.

3.3.4.1 Big data file systems
Big data file systems in this section are easily scalable and can support a
variety of data formats, and databases in both structured and unstructured data
models. These are the most widely spread and flexible data storage systems,
also the most rudimentary in terms of pre-packaged functionality.

The Google File System is a scalable distributed file system for large
distributed data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers high aggregate
performance to a large number of clients [Ghemawat et al., 2015]. A Google
File System cluster consists of a single master and multiple chunkservers and
is accessed by multiple clients. Chunkservers store chunks on local disks as
Linux files and read or write chunk data specified by a chunk handle and byte
range.

The HDFS [Apache, 2017] is also a distributed file system designed to run
on commodity hardware. It has many similarities with existing distributed
file systems. However, the differences from other distributed file systems
are significant. HDFS is highly fault-tolerant and is designed to be deployed
on low-cost hardware. HDFS provides high throughput access to application
data and is suitable for applications that have large data sets. HDFS relaxes a
few POSIX requirements to enable streaming access to file system data.

Disco Distributed Filesystem (DDFS) [Nokia, 2017] provides a
distributed storage layer for Disco. DDFS is designed specifically to support
use cases that are typical for Disco and MapReduce in general: Storage and
processing of massive amounts of immutable data. This makes it very suitable
for storing, for instance: log data, large binary objects (photos, videos,
indices), or incrementally collected raw data such as web crawls. Although
DDFS stands for Disco Distributed filesystem, it is not a general-purpose
POSIX-compatible filesystem.

3.3.4.2 NoSQL databases
In line with what the acronym indicates (Not Only SQL) NoSQL data
storage systems integrate structured and not-structured or semistructured
data structures. NoSQL is becoming increasingly popular for its
compatibility with the object oriented programming paradigm that many
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application use nowadays [Assunção et al., 2015]. NoSQL technologies
avoid the architectural friction called Impedance Mismatch [Sahafizadeh and
Nematbakhsh, 2015] between object oriented data generation at edge and
hard-shaped relational database information storages. In here, the data types
under consideration can be enumerated as (i) key-value, (ii) column-oriented,
(iii) document-oriented, (iv) graph-oriented and (v) time-series.

Cassandra [Apache, 2017] is an open source distributed storage for
managing key-value typed data. The properties mentioned in [Han et al.,
2011] for Cassandra are the flexibility of the schema, supporting range query
and high scalability. Cassandra, among others, sadly has the potential for
denial of service attacks because it performs one thread per one client and
it does not support inline auditing [Noiumkar and Chomsiri, 2014].

Other key-value typed database implementations are the Voldemolt1,
Redis2 and DynamoDB3.

Meanwhile, HBase4 is an open source column oriented database modeled
after Google big table and implemented in Java. Hbase can manage structured
and semi-structured data and it uses distributed configuration and write ahead
logging.

HyperTable5 is also an open source high performance column oriented
database that can be deployed on HDFS. Hypertable does not support data
encryption and authentication [Noiumkar and Chomsiri, 2014]. Eventhough
Hypertbale uses HQL which is similar to SQL, it has no vulnerabilities for
the injection [Noiumkar and Chomsiri, 2014]. Additionally, no denial of
service vulnerability is reported to work against Hypertable [Noiumkar and
Chomsiri, 2014].

MongoDB6 belongs to the third category here, namely it is a document-
based database. It supports complex datatypes and has high speed access to
huge data [Han et al., 2011]. All data in MongoDB is stored as plain text and
there is no encryption mechanism to encrypt data files.

There are also databases that are tailored to store time series. In here,
arrays of numbers are indexed by time (a range of datetime). In some fields
these time series are called profiles, curves, or traces. A time series of stock

1Project Voldemort. A distributed database. Online: http://www.project-voldemort.com
2Redislabs. Redis. Online: http://redis.io/
3Amazon Web Services, Inc. Amazon DynamoDB. Online: http://aws.amazon.com/

dynamodb
4Apache HBase, Online: https://hbase.apache.org/
5HyperTable. Online: http://www.hypertable.org
6MongoDB. Online: https://www.mongodb.com/
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prices might be called a price curve. A time series of energy consumption
might be called a load profile. A log of temperature values over time might
be called a temperature trace. Popular implementations are eXtremeDB7 and
Graphite8.

Other document-typed NoSQL database implementations are the
CouchDb and DynamoDB9. Meanwhile, Neo4J10 is an open source graph
database, for example.

3.4 Interoperability and Runtime System Properties

The MANTIS approach for interoperability specifications and guidance
definition builds up on the main assumption that the identification of a
reference model for the interoperability of CPS systems cannot be established
without any link to the concrete, instantiated architectures. Therefore, in
order to extract the main requirements and models for interoperability and
its level of application, the steps presented in Figure 3.8 have been followed.
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Figure 3.8 MANTIS interoperability proposed approach.

7eXtremeDB. Online: http://www.mcobject.com/extremedbfamily.shtml
8Graphite. Online: https://graphiteapp.org/
9DynamoDB. Online: http://aws.amazon.com/dynamodb

10Neo Technology, Inc. Neo4j. Online: http://neo4j.com
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These steps provide the interoperability requirements that are used to create
reference models for interoperability, i.e., to define specification and guidance
to respond to the main interoperability requirements. The main steps of the
proposed approach are the following:

• Use Case Analysis: characterization of the use case concrete architecture
in which the MANTIS platform will be integrated;

• Concrete System Unified Description: unique description of the
overall system, i.e., concrete use case architecture plus MANTIS
platform;

• Platform Interoperability needs: identification of the interoperability
issues at platform;

• Edge Interoperability needs: identification of the interoperability issues
at edge level;

• Component Interoperability needs: identification of the interoperability
issues at component level;

• Base technology: identification of the base technologies.

In here, various reference models for interoperability are taken into account
and utilized. It is necessary to identify elements on the tools and technology
level that could potentially help the integration of the MANTIS platform
within the use case ecosystems. Interoperability needs to be handled on
four different levels that are component, edge, platform, and on the global
level as well.

The component level focuses on how physical entities should be
virtualized, i.e., how physical entities can be “cyberized” in terms of the
functionalities and/or services that they are able to provide or in other
words how to create MANTIS-enabled CPS. The edge level issues revolve
around a set of physical entities belonging to the same local system logically
represented by a LAN. At this level, the data extracted from physical entities
is used to model and analyze the behavior of the system. The edge level
also includes a sub-level that is the component level where physical entities
are analyzed singularly. At the machine and component sub-level the data
extracted from a physical entity is used to model and analyze the behavior of
a physical entity singularly.

The platform level needs to describe the information exchange and data
integration in the cyberspace. At this level, the data coming from the edge
level is organized in order to be processed by MANTIS digital artifacts, i.e.,
integration between digital artifacts that are responsible to analyze the data
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provided by CPS located at edge level. Moreover, the global interoperability
reference model needs to provide a unique model that is the confluence of the
platform, edge and component interoperability reference models.

3.4.1 Interoperability Reference Model

Inspired by IoT-A [IoT-A Reference Architecture Model, 2018], a MANTIS-
ARM has been created to provide the cornerstone for designing, developing
and deploying MANTIS-enabled solutions.

The reference architecture provides views and perspectives on distinct
architectural aspects that provide the foundation for building compliant
architectures. A perspective here defines a collection of activities, tactics,
and guidelines that are used to ensure that a system exhibits a particular
set of related quality properties that require consideration across a
number of the system’s architectural views [International Electrotechnical
Commission, 1993]. Therefore, the interoperability perspective is something
orthogonal to the several other views defined within the MANTIS reference
architecture building blocks: interoperability is considered in all tiers of the
architecture.

Considering a complex system (e.g., industrial production system) it is
composed of a huge number of machines and their related components.
Thus, the machine or component level comprises of physical entities that are
part of the same functional unit. At machine and component level the main
interoperability issues are related to

• the definition of the granularity level for CPSs;
• the design and development of communication library for extracting raw

data from physical entities and appending it into the cyber entity.

The edge level comprises physical entities that belong to the same local
network and functional area. The topology and the intrinsic characteristics
of the edge level strictly depend on the particular architectural pattern that is
used for designing the MANTIS platform. As a matter of fact, the edge level
can be as simple as an elementary gateway that delivers data to the platform
level (where the intelligence is installed and deployed) or as complex as a
network of digital artifacts that provide advanced edge data analytics and
knowledge generation functionalities as well as transmission of the data to
the platform level for more accurate and resource consuming tasks. In both
of the cases, the main interoperability issues are related to:
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• the integration of the CPS entities into the edge: It implies the
virtualization of the physical entities into CPS (component level
interoperability) to be integrated within the edge;

• data extraction, translation and pre-processing from the available edge
nodes;

• provisioning of the data extracted from the CPSs (i.e., edge nodes) to the
platform level.

The platform level receives, processes and forwards commands from/to the
edge level. It provides more complex and resource consuming data analytics
and knowledge generation functionalities wrapped into digital artefacts
than the edge level. At platform level data received from the edge level
are organized according to a common ontology and/or data model that
supports the data flow and exchange between the digital artefacts. Therefore,
at platform level there are two main interoperability issues. The first one
is concerned with the semantic data representation and exchange, to allow
the digital artefacts of data analyitics to process the data. The second
interoperability issue is on how to represent the knowledge models generated
by the digital artefacts of data analytics, in order to enable the usage of such
models back to the edge level for local control.

Finally, there are several interoperability issues that are orthogonal to the
considered interoperability levels, i.e., models, guidelines and specifications
that can be applied to all the interoperability levels without any restriction.
These topics reveal interoperability issues that are related on how CPS and,
more in general, digital artefacts are connected together. This includes the
definition of the communication protocol and message exchange pattern to
use in both edge and platform levels and the definition of an ontology of
events to support systems interactions at both edge and platform levels.

3.4.2 MANTIS Interoperability Guidelines

The MANTIS Interoperability Guidelines have been structured into three
main parts:

• Conceptual integration (modeling and design stage): it is focused on
concepts and their relationships, models and meta-models. It provides
the modeling foundation for systemizing the relevant interoperability
aspects for the specific application domain;

• Application integration (guidance to instantiate the models): it is focused
on methodologies, guidance and patterns to support the design and
development of their own MANTIS concrete instantiations;
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• Technical integration (specific implementation and integration): it is
focused on technical aspects related to the networking (protocols,
connectivity, etc.), hardware (CPU/memory power preferably low-cost
and low-power consumption) and more in general to integration of
heterogeneous data sources.

3.4.2.1 Conceptual and application integration
The model for conceptual integration (see Figure 3.9) has been created
following a model-driven development approach to enable the design of
interoperable and interconnected CPS-populated systems. It starts with the
definition of a domain model (see Figure 3.10) that is aimed to capture
the essence of the CPS while enabling the specification of the services
and interfaces that the CPS must provide. The domain model is then
complemented with the semantic data representation and exchange model
and the system interaction model. The former is aimed to define and specify
the structure of all the data and/or the information handled by CPS at the
network level. The latter is aimed to define and specify the relevant events
produced/consumed within the MANTIS platform, as well as, the distinct
patterns for system interactions.

Architectural aspects are related to the use case specific, concrete
architectural pattern used to design the MANTIS platform. Interoperability

Figure 3.9 Model for conceptual integration.



3.4 Interoperability and Runtime System Properties 67

Figure 3.10 Domain model for MANTIS CPS.

issues are different in number, type and location if a cloud-based or an
edge-based pattern is used and/or a facade, broker or mediator [Martin,
2002] pattern is applied. While the CPS level issues are related to the
design and development of a given CPS, i.e., to provide guidance and
guidelines on how to virtualize physical entities (i.e., machines) in terms
of services/functionalities, especially for those that are low-tech. This is
connected to the information level that is related to the description of
the data and the messages/structures exchanged, processed and stored. The
messages/structures exchanged here are connected to a MIMOSA-compliant
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database that models the specific application context by using the MIMOSA
OSA-EAI standard. Finally,interaction modeling is related to the definition
and the identification of the necessary MEPs, i.e., how messages/structures
are exchanged within the MANTIS platform.

The semantic data representation and exchange (see Figure 3.11) is
aimed to describe the structure of all the data and/or information handled
by cyber entities at a network level. Thus, the provided model details the
way information should be modeled inside the cyber entity of a CPS and
represents a necessary condition to guarantee that all the data circulating
within the MANTIS platform cyberspace satisfies a well-defined structure
to assure interoperability between different digital artifacts.

In here, the user can be a human person or some kind of a Digital Artefact
(e.g., a Service, an application, or a software agent) that needs to interact with
a Physical Entity, where a digital artifact is a software component.

Figure 3.11 Semantic Data representation and information exchange model.
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A Cyber Entity is represented in the digital world of Physical Entities. The
Cyber Entities have two fundamental properties: (i) they are digital artifacts
and (ii) they are the synchronized representation of a given set of aspects of
their Physical Entities. Any change in the Physical Entity affects the Cyber
Entity and vice-versa.

A resource is a software component that provides data from or is used in
the actuation of Physical Entities. Since it is the Functionality that makes a
Resource accessible, the relations between Resources and Cyber Entities are
modeled as associations between Cyber Entities and Functionality. Resources
can run on Devices or somewhere in the network (Network Resources).
Devices host the technological interface (Native Communication Library) for
interacting with, or gaining information about the Physical Entity.

The obvious similarities between IoT and CPS-based systems are always
pushing the merging of the two research streams. The main aspects are
represented by the elements Cyber Entity, Functionality Description and
Association. A Cyber Entity is the cyber counterpart of a Physical Entity
and the Functionality Description describes the set of functionalities the
cyber entities are sharing within the virtual space. Actually, a functionality
can be mapped to a service if the SOA technology [Thomas, 2008] is used
or a skill/capability in a MAS [Jacques, 1999]. The Association is used
to establish the connection between the Attribute of a cyber entity and
the Functionality Description. As an example, for a temperature sensor a
functionality could be the getTemperature function that provides information
about the temperature Attribute value. A cyber entity can have zero to many
different attributes.

Each Attribute has a name (attributeName), a type (attributeType),
and one to many values (Value Containers). The attributeType specifies
the semantic type of an attribute, for example, that the value represents
temperature. Each value container groups one Value and zero to many
Metadata fields that belongs to the given value. The metadata can, for
instance, be used to save the timestamp of the value, or other quality
parameters, such as accuracy or the unit of measurement. The cyber entity
is also connected to the functionality description via the Functionality
Description – Cyber Entity association. Additionally, it may contain one
(or more) Resource Description(s). Finally, the resource description might
contain information about the physical entity. The concept of Value within the
MANTIS information model is specified according to the OSA-CBM open
standard (see Figure 3.12).
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Figure 3.12 Value concept specification.

3.4.2.2 System interaction model
Significant actions, incidents or episodes need to be registered and stored
in the MANTIS platform that promotes monitoring or data analysis for
performance improvement. Those events store data relevant to the entities
related in the process (e.g., temperature of a surface) but additionally
must collect both spatial and temporal information and associate them
to entities/measures (e.g., Cyber Entity controlling rolling sheets or
temperature). Events might be triggered and/or should be created after a given
situation (such as after sensor reading, an operational action, a breakdown or
other maintenance actions).

3.4.2.2.1 MANTIS event model
Events are a fundamental part within MANTIS for supporting system
interactions (at cyber level) at both edge and platform levels while
interlinking data and automatic machine data processing. Consequently, a
generic event model (see Figure 3.13 has been designed to provide the
skeleton for the definition of all the events produced/consumed within the
MANTIS platform.

The base type of all events is the Abstract CEP Event type. It
provides the skeleton and basic information for modelling all the events
within the MANTIS platform. This basic information is the DateTime,
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Figure 3.13 MANTIS event model (based on the IoT-A event information model).

the EventDescription and the MeasurementLocation. The concepts/classes
DateTime and MeasurementLocation are defined to adhere to the OSA-CBM
standard (the same is for the unique identifier type UUID).

There are two very generic concrete events type: i) the Simple CEP Event,
that contains atomic event information and ii) the Complex CEP Event that
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contains information derived by a complex event processing application. The
Value Container, Value and MetaData concepts/classes are used to model the
content of each event that in turn can be as simple as a temperature value to
complex strings that are serialized objects.

3.4.2.2.2 Patterns for interactions
The definition of the most suited MEPs in the context of distributed computed
is a typical problem [Martin, 2002]. MEPs refers to the way messages
are exchanged between distributed components. It is worth noting that the
selection and usage of a message exchange pattern can affect the way digital
artifact should be implemented in order to be interoperable. In the context of
MANTIS, three type of MEPs are considered, namely:

• Push/Fire-and-forget: messages are sent in between digital artefacts and
with CPSs. The sender sends the message and the receiver receives the
message and ends the message exchange activity;

• Request/Response-Reply: request response messages are sent in
between digital artefacts and with CPSs. The sender sends a request
message and the receiver receives the message and informs the sender
with a response;

• Publish/Subscribe: messages are sent in between digital artefacts and
with CPSs in the form of events. The event source publishes a topic
and all the digital artefacts and/or CPS that are interested to the topic
subscribe to it and will receive events.

The types of CPS and/or more in general digital artefacts that can be found
within the MANTIS platform are: MANTIS-enabled that are supposed to be
natively MANTIS platform compatible. These CPSs and/or digital artefacts
already support the MANTIS interoperability specifications and can be
immediately integrated within the MANTIS platform. These digital artefacts
and/or resources need mechanisms and/or additional work in order to be
integrated within the MANTIS platform. In this case, external adapters are
needed to harmonize and bring together them within the MANTIS platform,
i.e., translations from native to common protocols used in MANTIS.

3.4.2.3 Implementation integration
The model for implementation integration (see Figure 3.14) has been
developed to capture and show how the provided interoperability models
can be related to a concrete MANTIS platform instantiation with specifying
and/or establishing technologies used.
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Figure 3.14 Model for technical integration.

The business model describes the specific domain for the software
solution that needs to be implemented. The software model represents
the instantiation of the semantic data representation and exchange model
and system interaction model in the specific domain derived from the
business model. Therefore, in the software model all the necessary aspects
of the conceptual integration are included. Finally, the technical architecture
represents and describes the concrete environment, infrastructure and related
technologies for supporting the platform/application.

The technical framework of the MANTIS platform can be distilled into
a model (see Figure 3.14) focused on the interoperability perspective. The
model is represented by a 4-tier model that covers all the necessary issues and
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aspects that developers need to consider whenever they want to implement
MANTIS-compliant systems, i.e., data representation and exchange, system
interactions (event models and patterns for interaction), data transformation
and translation and services and functionalities definition, as well as, physical
entities virtualization (domain model). A central part of the framework is
the MIMOSA data storage that acts as a facilitator for the design and
implementation of maintenance applications within the business tier.

3.5 Information Security Model

Traditionally, security has been just a commodity but along the years this
perception has being changing to become an integral and an inseparable
part of any system. Indeed, security nowadays is a functional requirement
to become interoperable with many existing systems. In this sense, MANTIS
addresses these requirements and has been not only focusing in providing
functionalities but being secure by design. This aim can only be accomplished
by means of a modern secure information model and the most suitable access
control information system. In order to achieve this goal is necessary to
understand the basic pillars of the information security [Rahalkar, 2016]:

• Integrity: to maintain the completeness and accuracy of data over its
entire lifecycle;

• Confidentiality: to guarantee the privacy of data over its entire lifecycle
to unauthorized individuals, entities or processes;

• Availability: to guarantee that the information is available when is
needed.

Nevertheless, these principles impose various requirements towards the
architecture. The system must be defined with having

• its every relevant element supplied with a digital identity;
• a specific information model for managing different levels of

confidentiality;
• that is enforced by a security policy model.

From these requirements the right process for obtaining a realistic and
effective security management system involves the following processes:

• Process 1. Digitization or the process of obtaining a unique and
distinguishable digital identity;

• Process 2. Definition of an information model;
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• Process 3. Definition of a control access policy specification;
• Process 4. Definition of additional requirements associated with

MANTIS.

Finally, practical consideration is detailed in order to fulfill with existing
security technologies such as advanced threat detection techniques.

3.5.1 Digital Identity

In MANTIS every object, subject and action must have a digital reflect
recorded. Therefore, it is necessary to establish a specification and
classification of the elements of the system, that can be involved in the
processing of the information. In this context, digital identities are the key to
be able to establish effective and realistic security policies, without them it is
not possible to control the behavior of the system. Having in mind, MANTIS
associates every element of the platform with one of the following categories:

• Subject is the element in charge of requesting operations (actions)
with objects. These are the actors of the system. In many situations
the subjects are processes intermediated by users but there are other
situations where the processes are not associated with users;

• Action is the definition of an operation; every operation must be defined
in order to control the behavior of the system;

• Object are the elements, which receive the actions. In this category,
certain elements can be subjects and/or objects such as processes.

Nowadays, the process of giving an identity to an object/subject is performed
by generating a digital certificate, and an unique identifier [Vacca, 2004], as
depicted in Figure 3.15.

Figure 3.15 Elements having their digital identity (certificate).
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3.5.2 Information Model

In previous steps, the digital identity for every element of MANTIS
was defined. Now, it is necessary to define the security classifications of
information while taking into account the potential of the platform under two
challenging situations:

• Industrial environments. The companies try to maintain the availability
of the system as well as the confidentiality of the information of the
processes (key performance indication, KPI), the model of machines,
the technology used, etc. In addition to this, there are two factors that
become very important:

• The integrity of the industrial processes is very important for taking
right decisions on processes;

• The system must respect operational safety systems. MANTIS
cannot interfere with real-time systems, since that may produce
personal injuries or catastrophic losses.

• Medical environments. The personal health information is one of
the most critical assets, very restrictive legislation exist a in many
countries related to that (c.f. GDPR [Donnelly, 2015]). MANTIS
should implement a model, which guarantees this confidentiality of the
information.

The assessment of these two challenging environments leads the use of
restrictive security information models. A priori, the first candidate is the
most restrictive information model known as Bell LaPadula (BLP) [Hansche
et al., 2003]. This model is used in government and military applications and
it is focused in enforcing the access control to confidential data. This model
has the following properties, see Figure 3.16:

• The simple security property. This establishes that a subject of a specific
level cannot read information at a higher security level;

• The *(star) property. This establishes that a subject of a specific level
cannot write to any object at a lower security level;

• The discretionary security property. In this the specification of the
discretionary access control is made by means an access matrix;

• Security levels introduced: Top Secret, Secret, Confidential and
Unclassified.
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Figure 3.16 Elements of the BLP model [Hansche et al., 2003].

3.5.3 Control Access Policy Specification

The information model requires an access control policy to ensure security
of the system. With this aim in mind, the original model specified (BLP)
establishes the policies as a matrix where the access to every element is
specified. The main drawback of the original specification here is related
to the inherent complexity of MANTIS, which requires a more complex
specification of security, and at the same time, a way to facilitate the
management of the security. The direct application of this matrix will
conclude in a huge matrix and poses significant problems to manage the
policy in real life. With the aim of overcoming this drawback, an initial
approach is trying to facilitate with the use of the concept of Roles. It is a
mechanism for grouping sets of subjects with the same level of security but
with some other interesting properties in terms of manageability:

• Encapsulating the organizational functions/duties of a user;
• Different roles can be defined, each for different types of competences,

which are then assigned to users;
• Realizing the security principle of “least privilege” [Rahalkar, 2016];
• It is consistent with BLP model.

Therefore, in MANTIS, the first approach to manage the security will be
the use of roles and BLP for establishing the security policy. The NIST
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establishes some subdivisions of the original model such as: Core RBAC,
Hierarchical RBAC, Constraint RBAC and Consolidated Model [Ferraiolo
and Kuhn, 1992]. An RBAC model can formally be described by the tuple
RBAC=< U,R, P,O, >, the most important elements of this tuple are:

• U: User;
• R: Role;
• P: Permission;
• O: Object.

The model that best suits to MANTIS is the Hierarchical and Constrained
RBAC model [Ferraiolo and Kuhn, 1992], which supports challenging
environments and situations. The joint use with the BLP model facilitates
the management of the security of the system. MANTIS uses the standard
for specifying the security policy called eXtensible Access Control Markup
Language (XACML) [OASIS, 2018]. This standard provides

• a Policy Language;
• a Request and Response Language;
• Standard data-types, functions, combining algorithms.

It is extensible, where there can be privacy profiles, with architecture defining
the major components in an implementation. The structure of a security
policy is specified in Figure 3.17 and the relevant, general terms within
XACML are the following:

• Resource: Data, system component or service;
• Subject: An actor who requests to access certain Resources;
• Action: An action on resource;
• Environment: The set of attributes that are relevant to an authorization

decision and are independent of a particular subject, resource or action;
• Attributes: Characteristics of a subject, resource, action or environment;
• Target: Defines conditions that determine whether policy applies to

request.

3.5.4 Additional Requirements

MANTIS is an agnostic reference architecture, which can be applied in
many environments, but like many technologies it is necessary to have high
adaptibility. In this sense, many situations might exist where the classic
security information model and their corresponding access control policies
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Figure 3.17 Policy hierarchy.

are instantiated; however there might be other situations involve relevant
additional changes (e.g., the integration of new sensors in every machine that
the company sells). This innocent change might cause a nightmare in terms
of efficiency when only classic security access controls are in place. Taking
these aspects in MANTIS into account, it will be necessary to consider the
nature of changes to be introduced for improving the efficiency of the security
management.

MANTIS considers not only the joining of the RBAC [Ferraiolo and
Kuhn, 1992] and BLP [Hansche et al., 2003], but the use of modern
approaches, that is, an ABAC model. The solution relies on the use of
additional PKI [Vacca, 2004] in a different way to support the sharing
of responsibilities. With these, emphasis is put on having a controlled
but shared access model. The access to information is conditioned by the
security policy defined in the cloud, managed by the company. This allows
controlling situations such as validity periods for accessing the information
but also it would be beneficial to the original company to be able to control
external parties interesting in their data. This leads to work with a federated
PKI for sharing Certification Authorities and to introduce the concept of
secret sharing schemes. An increase in the number of sensors also requires
additional considerations. In order to alleviate this, MANTIS introduces the
concept of attributes in final elements for controlling the access by using
existing RBAC based policies.
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3.6 Architecture Evaluation

Software and systems design, in its core essence, is the creative activity
of software engineers making principal design decisions about a software
system to be built or to be evolved. It translates the concerns and drivers
in the problem space into design decisions and solution concepts in the
solution space. Architecture evaluation is a valuable, useful, and a worthwhile
instrument to manage risks in software engineering. It provides confidence
for decision-making at any time in the lifecycle of a software system [Knodel
and Naab, 2016].

3.6.1 Architecture Evaluation Goals, Benefits and Activities

Architecture evaluation is the key quality-engineering instrument in software
and systems design. Its goal is to make sure that the resulting systems really
exhibit the desired qualities. To this end, it pursues two major objectives:

On the one hand, architecture evaluation aims at improving the overall
quality of software and systems design. Architecture evaluations challenge
the decisions made. They help clarifying quality requirements and enable
to analyse the adequacy of the architecture solution. Further, they allow
predictions of the impact of the architecture solutions and consequently the
decisions made on the quality of the resulting system. As the architecture
sets the course for the resulting system, quality problems and drawbacks
of decisions can be detected early. Thus, architecture evaluation serves to
mitigate risks. Eventually, it enables the improvement of the architecture by
correcting and adapting the decisions made. Furthermore, architecture
evaluation comes along with the side effect of increased architecture
awareness in the development organization. While reasoning about and
communicating the decisions made, their understanding in the organization
is improved. Architecture evaluation reveals the rationales for the decisions,
and their justification allows achieving a common understanding in the
development organization. In short, architecture evaluation determines how
well suited the architecture of the system for its purpose is.

On the other hand – once having a well-designed architecture –
architecture evaluation aims as well at preserving architectural decisions
and quality in the evolution of software systems. The follow-up activities
in the lifecycle of a software system first translate architectural decisions
into component models, detailed design models, and eventually source code
including data structures and algorithms. At later points in time, evolving
requirements and change requests yield modified system artefacts. However,
to reap the architectural investment benefits, the managed software system
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lifecycle needs to enforce and preserve the architectural decisions made. This
sustainment of architectural decisions assures that the architecture is in fact
the conceptual tool to cope with challenges in its evolution. To be able to
evaluate the decision enforcement, architecture documentation must trace
all decisions to the system artefacts. Traceability of architectural decisions
breaks down into the accuracy of their description and the distance of the
system to its architecture.

With this said, the benefits of architecture evaluation turn out to be
an improved software architecture, improved architecture documentation,
and improved implementations of architectural solutions. The evaluation
activities help to mitigate risks by raising the likelihood to detect problems
early and to clarify the required system qualities. Evaluation also improves
the understanding of design decisions and leads to a higher awareness
of the architecture in organizations. As needed for input, the traces from
architectural decisions to the system artefacts help their preservation and
allow for higher compliance in implementations.

To achieve the above-mentioned objectives, MANTIS follows the RATE
approach [Knodel and Naab, 2016], developed by Fraunhofer. RATE is a
compilation and collection of best practices of existing evaluation approaches
tailored towards a pragmatic (or rapid) application in industry. It comprises
five checks, whereby each check serves for a distinct purpose. All checks
follow the same working principle: to reveal findings to confirm and improve
the system quality and/or the artifact quality.

3.6.2 Concepts and Definitions

RATE uses the following concepts and definitions in its analysis:

Stakeholder: A stakeholder in a software architecture is a person, group,
or entity, with an interest in or concerns about the realization of the
architecture [ISO/IEC/IEEE, 2011].

Concern: A concern about an architecture is a requirement, an
objective, an intention, or an aspiration that the stakeholder has for the
architecture [ISO/IEC/IEEE, 2011].

Usually the stakeholder concerns are not consolidated or validated. This
makes dealing with the stakeholder concerns challenging, since concerns
might be ambiguous, conflicting with other stakeholders’ concerns, and
are likely to be incomplete. In case a concern is specific, unambiguous,
and measurable, it is possible to call it a requirement concern; otherwise,
architecture scenarios can capture concerns. In either case, stakeholder
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concerns form the product and drive the architecture, which explains the need
for compensation of missing and too complex concerns, for their aggregation
and consolidation as well as their negotiation in case of ambiguity and
inconsistency. This the architect does by deriving architecture drivers from
the concerns.

Architecture Driver: In general, it can be drawn a distinction between four
main classes of architecture drivers: business goals, functional requirements,
constraints, and quality requirements. Each of these classes might have its
individual stakeholders that articulate concerns belonging to that particular
class. In other words, all drivers originate from stakeholders in one way
or another. The identification and analysis of stakeholders for further
requirements elicitation and their stake within the architecture development
is therefore key to any architecture definition or evaluation.

Business Goals: are the first class (and most abstract) of architectural drivers.
Business goals are goals that are important for the overall enterprise that is
developing the respective architecture or has placed an order to build the
system. Usually the business goals are quite abstract and are only partially
depending on the architecture under consideration. However, the business
goals are the most essential ones, since without the business goals there would
be no need to think about creating an architecture of (a set of) products that
end up in supporting a business goal. Examples for business goals are time to
market (denoting the strategy in terms of time), the market scope, or costs.

Functional Requirements: are drivers for the architecture as well. However,
there are differences in functional requirements: some drive the architecture –
some do not. It depends on characteristics like “Does this particular function
separate us from competitors’ products?” In some sense, the functional
requirements that make the product unique and worth building are the
ones that influence the architecture development the most. These kinds
of functional requirements the architecture needs to explicitly support;
otherwise, the endeavour of building an architecture would be meaningless.

Quality Requirements: Quality is not only about correctness of functionality.
Successful software systems have to assure additional properties such as
performance, security, extensibility, maintainability, and so forth. In general,
it is possible to distinguish between run-time and development-time quality
attributes. Run-time quality attributes can be measured by watching the
respective system in operation. Examples for run-time quality attributes are
performance, security, safety, availability, and reliability. Development-time
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quality attributes can be measured by watching a team in operation. Examples
for development-time quality attributes are extensibility, modifiability, and
portability. One problem, however, is that there is no standard measurable
meaning of quality attributes. Besides naming issues, people also tend to
create new notions on their own. The solution towards this problem is to
utilize the so-called architectural scenarios (see Architecture Scenario) that
make the meaning of the quality attribute in the system context clearer and
that lower the chance for misinterpretations.

Constraints: One important but easily overlooked input for software and
systems design are constraints that influence the design decisions of
subsequent steps. Constraints can be organizational, technical, regulatory, or
political. Organizational constraints might arise from the resources available
for a particular system development effort. Technical constraints might arise
from legacy systems that are already deployed in the field. Regulatory
constraints usually stem from obligations to comply with particular standards.
Depending on the domain, there might be different standards to consider.
Political constraints are most of the time disguised as technical constraints.
There might be different (more or less reasonable) roots for the existence
of the constraint, however, since the source of the constraint is most likely
higher management there is only low negotiability of the constraint from the
perspective of the architects. Making them explicit, however, provides a solid
basis for subsequent decision making in design.

Architecture Scenario: An architectural scenario is a crisp, concise
description of a situation that the system is likely to face, along with a
definition of the response required of the system [Rozanski and Woods,
2011]. Architecture scenarios could be used to document both, functional
and quality drivers in a measurable way, but are especially used for capturing
software and system qualities. Functional requirements are usually clearer
than quality requirements. However, it is the quality requirements that drive
the architecture most. Therefore, it is crucial to elicit required qualities
using scenarios in a measurable way, so that architects or evaluators can
find a baseline to work with. The scenarios are the input for creating,
designing and evolving architectural solutions, which have to be preserved in
follow-up activities. Thereby scenarios evolve over distinct states: Unknown,
Elicited, Designed, Documented, Implemented, and Sustained. Depending
on the state of the scenario, different types of architecture evaluations are
possible. Architecture scenarios should be documented in a structured way
(cf. [Clements et al., 2010]), rendering data on the following aspects:
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• Scenario: Representative name (and ID) of the scenario;
• Quality: Related quality attribute;
• Environment: Context applying to this scenario (if possible provide

quantifications);
• Stimulus: The event or condition arising from this scenario (if possible

provide quantifications);
• Response: The expected reaction of the system to the scenario event;
• Response Measure: The measurable effects showing if the scenario is

fulfilled by the architecture.

3.6.3 Architecture Evaluation Types

RATE (Figure 3.18) comprises five checks on three evaluation levels,
whereby each check focuses on different aspects. The main levels are
stakeholder level, architecture level and implementation level. In the
stakeholder level, architecture drivers are validated, in the architecture level,
the architecture and its documentation are checked and in the implementation
level, the compliance and code quality is checked.

All checks performed come with a related rating of the confidence level
of the findings.

Figure 3.18 Architecture evaluation with Fraunhofer RATE [Knodel and Naab, 2016].
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The rating comprises

• the severity of findings that expresses the criticality of the findings
aggregated over all findings per goal;

• the balance of findings that expresses the ratio of positive vs. negative
findings aggregated per goal.

The combination of the ratings results in a rating of N/A (Not Applicable),
or an assignment to one of the target achievement levels NO, PARTIAL,
LARGE, and FULL where each check defines its own target achievements.

Driver Integrity Check (DIC): The goal of the Driver Integrity Check is to
get confidence that an architecture is built based on a set of architecture
drivers that is agreed among stakeholders and to clarify unclear or not agreed
architecture drivers. DIC also aims to compensate not elicited requirements
and to aggregate a large set of requirements into a manageable set for
an architecture evaluation. Inputs of the DIC are stakeholder information
(if available), existing documentation (if available), and a template for
documenting architecture drivers (mandatory). It is crucial to elicit required
qualities using scenarios in a measurable way, so that architects or evaluators
can find a baseline to work with. One can use architecture scenarios to
document both, functional and quality drivers in a measurable way.

Solution Adequacy Check (SAC): The Solution Adequacy Check can be
done as soon as there is a first idea of the architecture, and tries to answer
the question how well suited the architecture for the intended purpose is.
The SAC

• can determine whether an architecture permits or precludes the
achievement of targeted functional and quality requirements;

• can determine whether an architecture or part of it is concrete enough or
redundant for the purpose it will be used for;

• enables the identification of problematic design decisions;
• enables the early prediction;
• enables a timely reaction and correction.

That is, the main purpose of the SAC is to gain confidence, to predict the
future behaviour of the system or to get some evidences. Inputs for the SAC
are architecture drivers and architecture documentation. Besides findings on
the adequacy of architecture decisions to fulfil architecture drivers (explicit
rationales, risks, trade-offs, assumptions) SAC puts out revised architecture
decisions, driver solutions, and diagrams.
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Documentation Quality Check (DQC): The Documentation Quality Check
can be done as soon as there is a first draft of the architecture description, and
tries to answer the question how well documented the architecture solution
for its audience and purposes is. The DQC

• can determine whether or not an architecture documentation allows
understanding the solution;

• enables information sharing on architecture;
• enables consistency checks;
• enables the detection of gaps in architecture and its documentation.

The main purpose of the DQC is to ease information sharing within
architectural stakeholders. Inputs for the DQC are the documentation
purposes, architecture documents, models, wikis, sketches, API document-
ation, and the targeted audience. It feeds back findings on adequacy of the
documentation and its adherence to best practices.

Architecture Compliance Check (ACC): The Architecture Compliance Check
can be done as soon as there is a first skeleton of the implementation, however,
it should be iterated, as there may be modified implementations during the
lifecycle of the system. The ACC tries to answer the question how well
realized the architectural solution by the implementation is. The ACC

• can determine whether or not the implementation violates architectural
solutions;

• enables traceability;
• enables compliance checking (as-is vs. planned intention);
• enables delta tracking (as-is vs. envisioned target).

The main purposes for ACC are to identify the structural and behavioural
compliances between the architecture and the implemented system. Inputs
for the ACC are architecture documents, models, wikis, sketches, API
documentation, source code, and the running system (if applicable). It results
in findings on the compliance of the implementation with respect to the
intended architecture, convergences, divergences (violations) and absences
(violations).

Code Quality Check (CQC): The Code Quality Check’s main goal is to
gather data about the source code base. As such, the CQC is not a direct
part of architecture evaluation. However, reasoning about quality attributes
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(in particular maintainability) requires the CQC results in order to make valid
statements about the software system under evaluation. CQC helps to

• improve the implementation of a software system;
• monitor (and fix) anomalies over time;
• derive common metrics and coding best practices;
• define team-specific coding guidelines;
• improve the overall understanding of the code base;
• make the development organization more robust.

Inputs for the CQC are the source code, and build scripts (if applicable). It
puts out findings on quality of the source code, best practice violations, code
clones, quality warnings (maintainability, security), code metrics, and more.

3.7 Conclusions

Proactive maintenance for the CPS domain requires solutions that cover
data gathering, storage, processing, feedback and presentation to the human
operator. While examples of custom-tailored systems are appearing, this
chapter presents a generic platform together with specific toolset to cover
the problem space. Typical target areas of proactive maintenance include FP,
calculation of the RUL, RCA, among others.

Beside providing an architectural view on data gathering and handling
for the given area, the MANTIS architecture for CPS-based proactive
maintenance provides solutions for the Egde Tier, for the Platform Tier,
and for the Enterprise Tier, as well. The main building blocks of the Edge
Tier are physical sensors and actuators, as well as local, edge-level data
processing entities. These also communicate with the elements of a system-
wide view at the Platform Tier. Depending on the targeted area (i.e., FP,
RUL, RCA), stream processing or batch processing entities handle the data
and provide meaningful output that either gets feed back to the physical
entities as control information, or gets presented towards the Enterprise Tier
for further processing or action (e.g., ordering spare equipment, scheduling
jobs, visualizing trends, etc.). There are various issues to tackle on each of
the tiers, and even within the communications between the various actors
and tiers. Therefore, the interoperability and security aspects must be focal
points when such an installation is made, and hence their place in this
Chapter.
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Moreover, such an architecture has to be evaluated and has to facilitate
the requirements of every actor and stakeholder. To this end, evaluation
techniques are instruments to increase the confidence level in the architecture
solutions, where the confidence level expresses trust in the architecture
designed and the system derived from it. In addition, architecture evaluation
allows the prediction of the impact of decisions made and helps secure the
consistency across decisions in descriptions. It helps to check the structural
and behavioral compliance of the implemented as-is architecture with the
intended one, and makes possible the assertion of qualities in the system at
execution. Therefore, architecture evaluation is the key quality-engineering
instrument in software and systems design, and it provides confidence for
decision-making at any time in the life cycle of a software system.

This architecture already has been successfully utilized in various use-
cases from industrial utility vehicles (forklifts) through railway control
system to CPPSs [Ferreira et al., 2017; Hegedüs et al., 2018], as part of the
ECSEL MANTIS project [The MANTIS Consortium, 2018]. These use case
instantiations are presented in Chapter 7.
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Hegedüs, C., Ciancarini, P., Franko, A., Kancilija, A., Moldovan, I., Papa,
G., Poklukar, S., Riccardi, M., Sillitti, A., and Varga, P. (2018) ‘Proactive
maintenance of railway switches,’ In Proceedings of the 5th International
Conference on Control, Decision and Information Technology (CoDIT),
Thessaloniki, Greece.

IBM. ‘The enterprise service bus, re-examined: Updating concepts
and terminology for an evolved technology,’ https://www.ibm.com/
developerworks/websphere/techjournal/1105 flurry/1105 flurry.html.

Industrial Internet Consortium. (2017) The industrial internet of things
reference architecture.

International Electrotechnical Commission. (1993) Information Technology –
Vocabulary – Part 1: Fundamental terms.

International Electrotechnical Commission. (2003–2007). Enterprise-control
System Integration.

IoT-A Reference Architecture Model. (2018) http://open-platforms.eu/
standard protocol/iot-a-architectural-reference-model/.

ISO. (2012) Condition monitoring and diagnostics of machines – data
processing, communication and presentation.

ISO/IEC/IEEE. (2011) ‘Systems and software engineering – architecture
description,’ ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pp. 1–46.

Jacques, F. (1999) Multi-agent Systems: An Introduction to Distributed
Artificial Intelligence. Addison-Wesley.

Jantunen, E., Di Orio, G., Hegedus, C., Varga, P., Moldovan, I., Larrinaga,
F., Becker, M., Albano, M., and Malo, P. (2018) Maintenance 4.0 world of
integrated information.

Jantunen, E., Zurutuza, U., Ferreira, L. L. and Varga, P. (2016) ‘Optimising
maintenance: What are the expectations for cyber physical systems,’
In 2016 3rd International Workshop on Emerging Ideas and Trends in
Engineering of Cyber-Physical Systems (EITEC), pp. 53–58. IEEE.

Kappa. (2018) ‘The kappa architecture site,’ https://www.talend.com/blog/
2017/08/28/lambda-kappa-real-time-big-data-architectures/.

Knodel, J. and Naab, M. (2016) Pragmatic Evaluation of Software
Architectures, p. 132.



References 91

Laney, D. (2001) ‘3d data management: Controlling data volume, velocity
and variety,’ META Group Research Note, 6, p. 70.

Lebold, M. and Thurston, M. (2001) ‘Open standards for condition-based
maintenance and prognostic system,’ In Proceedings of MARCON 2001 –
Fifth annual maintenance and reliability conference, Gatlinburg, USA.

Lenk, A., Klems, M., Nimis, J., Tai, S., and Sandholm, T. (2009) ‘What’s
inside the cloud? An architectural map of the cloud landscape,’ In
Proceedings of the 2009 ICSE Workshop on Software Engineering
Challenges of Cloud Computing, pp. 23–31. IEEE Computer Society.

Martin, R. C. (2002) Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall.

Martinez-Fernandez, S., Dos Santos, P. M., Ayala, C., Franch, X., and
Travassos, G. (2015) ‘Aggregating empirical evidence about the benefits
and drawbacks of software reference architectures,’ In ACM/IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), Beijing.

Microsoft. (2017) ‘Azure web services,’ https://azure.microsoft.com.
MIMOSA consortium. (2016) ‘The mimosa project site,’ http://www.

mimosa.org/.
Mineraud, J., Mazhelis, O., Su, X., and Tarkoma, S. (2016) ‘A gap analysis

of internet-of-things platforms,’ Computer Communications, 89, pp. 5–16.
Munshi, A. A. and Yasser, A.-R. I. M. (2017) ‘Big data framework for

analytics in smart grids,’ Electric Power Systems Research, 151, pp. 369–
380.

Noiumkar, P. and Chomsiri, T. (2014) ‘A comparison the level of security on
top 5 open source nosql databases,’ In The 9th International Conference on
Information Technology and Applications (ICITA2014).

Nokia. (2017) ‘Disco distributed file system,’ https://disco.readthedocs.io.
OASIS. (2018) ‘eXtensible Access Control Markup Language (XACML),’

https://www.oasis-open.org/committees/tc home.php?wg abbrev=xacml#
CURRENT.

Pohl, K., Hönninger, H., Achatz, R., and Broy, M. (2012) Model-
Based Engineering of Embedded Systems: The SPES 2020 Methodology.
Springer, 2012.

Rahalkar, S. A. (2016) Information Security Basics. In Certified Ethical
Hacker (CEH) Foundation Guide, Apress, Berkeley, CA, pp. 85–95.

Rozanski, N. and Woods, E. (2011) Software Systems Architecture: Working
with Stakeholders Using Viewpoints and Perspectives, p. 678.



92 The MANTIS Reference Architecture

Sahafizadeh, E. and Nematbakhsh, M. A. (2015) ‘A survey on security issues
in big data and nosql,’ Advances in Computer Science: an International
Journal, 4(4), pp. 68–72.

Singh, R., Singh, K., et al. (2010) ‘A descriptive classification of causes
of data quality problems in data warehousing,’ International Journal of
Computer Science Issues, 7(3), pp. 41–50.

The MANTIS Consortium. (2018) ‘The mantis project website,’ http://www.
mantis-project.eu/.

Thomas, E. R. L. (2008) SOA: Principles of Service Design. Upper Saddle
River: Prentice Hall.

Vacca, J. R. (2004) Public Key Infrastructure: Building Trusted Applications
and Web Services, CRC Press. ISBN 978-0-8493-0822-2.

Wapice. (2018) IoT-Ticket. https://iot-ticket.com/.



4
Monitoring of Critical Assets
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Sensors used in the MANTIS project must be able to measure the physical
phenomenon relevant for the assets’ condition. Examples of this include
temperature, light intensity, pressure, fluid flow, velocity, and force among
others. Anyhow, it is not a trivial problem for a given installation, where
an adequate measurement solution must be chosen or developed in order to
accurately and robustly acquire data about the physical process related to each
MANTIS use cases [Jantunen et al., 2017].

Another relevant matter is the cost of the monitoring solution. Industry is
always aiming for cost savings and a better market positioning. Therefore,
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new technological solutions such as WSNs have become a strategic asset
in this context, increasing the interest of the industrial companies. This
type of sensor networks is used to share information with the purpose of
increasing productivity, gathering data for developing future technological
improvements and/or detecting/predicting maintenance issues. Moreover,
even when a single sensor is considered instead of a WSN, the use of wireless
communications provides flexibility, installation ease, weight reduction,
which makes them suitable for many applications, conditions and situations.

Industrial environments usually have hostile site conditions, both for
the sensors themselves and for the wireless communication systems, and a
section is devoted to the analysis of the issues and the solutions raising in
these environments.

Finally, a section is focused on the intelligent functions that can be offered
by CPS, both to preprocess collected data and to support the CPS itself.

4.1 The Industrial Environment

There are situations in which the integration of sensing devices and their
associated processing systems within the framework of a hostile environment
pose challenges that have to be overcome. Viable solutions must take into
account different factors related to the factory and to the environment where
the monitoring process takes place. Examples of such situations are described
below.

4.1.1 Extreme High/Low Temperatures (Ovens, Turbines,
Refrigeration Chambers etc.)

Silicon based conventional electronic devices fail to perform within
specifications when subject to external temperatures over 150◦C, as
conventional CMOS substrates are not designed to withstand such high
temperatures, and the same applies to batteries. Regarding plastic materials
like cable covers made of polyethylene, they can suffer severe damage,
exposing conductive parts, which increases the risk of short circuits or
malfunctioning in general.

Opposite to this, temperatures below zero can drain batteries faster,
and short circuits can also appear due to ice and frost formations between
conductive parts of the circuits. Any amplifying device used in the sensor
can suffer from increased gain due to cold temperatures. In addition to this,
any cabling deployed between sensing devices and data processing units can
break the thermal insulation of the premises. Finally, a wide temperature



4.1 The Industrial Environment 95

span can induce thermic stress in the sensing components, and substrates
withstanding extremely high and low temperatures (generally of a ceramic
type) must be considered.

4.1.2 High Pressure Environments (Pneumatic/Hydraulic
Systems, Oil Conductions, Tires etc.)

Sensors or devices inside structures subject to high hydraulic and pneumatic
pressure can suffer structural damage, as they are subject to mechanical stress.
Furthermore, not only the sensing device is subject to mechanical stress, but
the containment vessel itself is subject to pressure, and thus can have its
structural integrity compromised, for example if cables are allowed to get
outside the housing. Fluids or air used in the industrial process could also
escape from sealing O-rings. In the case of tire pressure sensors, for example,
small volume, lightweight devices are necessary, as they are introduced on
a rubber frame that could be torn if a sharp metallic piece impacted into the
tire fabric.

4.1.3 Nuclear Radiation (Reactors or Close and Near-By Areas)

Radiation is a direct threat not only for human individuals, but also for
electronic systems (e.g., memory contents can be changed when subject
to radiation). In these case, only rad-hard devices that are manufactured
to withstand the impact of these high energy particles can be used for
the development of intelligent sensors, or sensors with electronic circuitry.
Additional elements like cabling coming out of the radiation zone can
imply a direct biological hazard to humans, as containment sealing is
not guaranteed and the components involved become radioactive wastes.
All of these increase the development, deployment and operative costs.
Additionally, the replacement of complex and bulky equipment and cabling
can become a difficult, costly and time consuming task. If the adopted
approach looks for a wireless solution, it is necessary to bear in mind that
the containment walls of such premises are usually made of thick reinforced
concrete, which means high signal loss, requiring additional amplification for
thru-wall communications.

4.1.4 Abrasive or Poisonous Environments

This situation can be similar to the extreme temperature case. Corrosive
liquids and gases can degrade plastic covers and generate short circuits in
the sensor circuit. The metallic parts and electronic components themselves
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are also subject to corrosion, compromising sensor performance. Like in the
previous situations, an appropriate cabling scheme will usually increase costs.

4.1.5 Presence of Explosive Substances or Gases

It is obvious that in the case of potentially explosive environments, it is of
utmost importance the control upon the electric signals that are present on the
premise where the sensing process is to be carried out. Electric fields due to
excessively high signaling voltages in cables in a flammable gas environment,
or current and voltage surges and spikes (due to thunder strikes) travelling
down the cables can ignite the explosive substances, if these locations are
physically hardwired to the exterior.

4.1.6 Rotating or Moving Parts

The inherent dynamical nature of certain systems (rotors, assembly chains,
clutches) persuades the system out of using cables, for obvious reasons,
unless additional elements like electric brushes are added. In addition to
this, in situations where high rpm regimes are attained (e.g., turbines or
motors), the inertial mass, shape and even the orientation of the inserted
sensor structure have to be considered carefully beforehand and in direct
relation to the particular application for which they are to be used. The reason
for this is not only to obtain a reliable and accurate measurement from the
sensor, but also not to compromise the structural integrity and performance
of the component or part that is being measured (e.g., sensors or parts of
sensors impacting on the frame structure, damaging it).

4.2 Industrial Sensor Characteristics

Sensors used in advanced maintenance operations can be classified into three
main categories, based on how they are acquired. The first category is the off-
the-shelf sensors, which are the most commonly employed in the industry,
are mass-produced, are cheaper when bought, and target the most common
environmental data, which are temperature, acceleration, light, force, audio,
humidity and proximity according to [Beigl et al., 2004].

Specialized kinds of sensors make up the category of the custom sensors,
can be found in specific applications, and are usually not mass produced,
their structure presents a high degree of customization, and they retrieve
very specific environmental data. Among the plethora of the custom sensors,
there are sensors capable of performing crack detection, torque measurement,
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analyse wear of material and retrieve oil status. All of these environmental
data are more complex to detect and can be collected using different
approaches. For example, crack detection through non-destructive methods
can be performed using different techniques like radiography, ultrasonic,
penetrating liquid, and magnetic particle inspection.

The last category is the soft sensors (also called virtual sensors), which
is a technology used to distil more effective and accurate information out
of collected data. Soft sensors make use of readings collected either by a
sensor network, or from a single sensor. The soft sensors operate based on
data analyses and advanced modelling techniques in order to provide new
data related to the physical processes. Data are combined from multiple
sources (e.g., temperature, humidity, CO2) and process models are applied
to compute new outputs, based on not only current sensor values, but also on
its time series.

Many work have already surveyed off-the-shelf sensors, such as [Beigl
et al., 2004], and they will not be further described in here. The rest of this
section considers selected topics regarding custom sensors and soft sensors.
In particular, PWS is considered, followed by MEMS sensors, and soft sensor
computational trust.

4.2.1 Passive Wireless Sensors

Often, a hostile environment comprises several of the aforementioned
characteristics. Plus, it is usually difficult to have regular access to the
physical location of the sensor, for example for battery replacement or system
reset after latching. For each and every sensing case in a hostile environment,
sensor performance must be guaranteed under all circumstances. It is
advisable thus to make use of a physical working principle, implemented in
a simplified architecture, built from durable and robust components to reduce
the risk of errors or malfunctions. In addition to this, a reduced consumption
or, equivalently, the capability to operate in a passive way is desirable also
to minimize maintenance service. This not only reduces costs, but also the
probability of errors committed by human operators. On this regard, PWS
devices come out as an appropriate and affordable solution that can overcome
many of the difficulties that the hostile environments pose, due to their simple
working principle and robustness, which is highlighted by their definition
itself:

• Passive: No need for batteries or power supplies. Energization of the
sensing structure relies on the impinging EM field power. Several
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solutions for this energy harvesting principle are available, like
inductively or capacitively coupled antennas or rectennas for DC voltage
generation;
• Wireless: No cables are needed to convey information from one

communication device to the other. All exchanges are carried out via
electromagnetic waves. Only antennas are needed for this purpose,
decreasing in size as the involved frequencies are located at higher
bands.

Surface acoustic wave (SAW) devices or bulk acoustic wave (BAW)
devices are feasible options for the implementation of PWS in case there is
a need for measuring a temperature in a given location, due to their inherent
robust properties and simple operation. The working principles of a SAW
device is first reviewed, as BAW’s operation is similar to that of SAW’s, and
then 3 examples of PWS temperature measurement systems are described.

SAW devices for temperature measurement

A SAW device, represented in Figure 4.1, is a small element that consists of a
piezoelectric crystal substrate with a metallic pattern printed on its surface
in a hairpin-like form, with an input port and an output port. An electric
signal applied to this substrate generates a mechanical wave propagating in
the surface of the structure (BAW devices operate in a similar fashion, but
generating a wave propagating in the bulk of the substrate, rather than in
the surface). In a reciprocal way, a mechanical wave moving on the surface
can generate an electrical signal that can be captured across the terminals
of a metallic port that has been deposited on the piezoelectric substrate. The
equivalent circuit of such a component can be approximated by a combination
of resistance, inductance and capacitance, thus showing a resonant behavior.
As the resonance frequency value depends on the physical properties of the
piezoelectric crystal (with these properties varying with temperature) this
very resonance frequency of a SAW device can be used as an indicator of
the temperature of the environment on which the SAW device is embedded.

It is possible to add antennas to the described device, make an EM wave
impinge upon it and then analyze the frequency of the reradiated wave. If the
frequency of the “interrogating” wave lies close to the resonance of the SAW
element, energy will be stored in the device in the form of an acoustic wave,
and for a given frequency bandwidth centered at the resonant frequency. The
majority of this stored energy will be contained in this resonant frequency,
and when the excitation signal ceases, the device will progressively radiate
back the stored energy (as this will convert from a mechanical wave to
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Figure 4.1 SAW device’s RLC equivalent circuit.

an electric signal at the antenna terminals, for reasons explained above).
An analysis of this received “response” will provide an estimation of the
temperature of the SAW device, as the maximum amplitude of the received
signal’s spectrum will give the value of the resonance frequency. On this
regard, the implementation of a group of intelligent functions (mainly
signal processing algorithms like filtering and transform calculations, to be
explained in this chapter) is necessary in the edge server of the sensing
system.

As can be deduced from the explanation above, also represented in
Figure 4.2, such a scheme allows for the measurement of temperature
in a wireless fashion, allowing for a simple remote temperature sensing
method. Nonetheless, in the case of measurements to be carried out in high
temperature environments (such as turbines and ovens) the sensing SAW
devices that provide the readings need to be designed to withstand such
hostile conditions, so that these extreme temperatures do not compromise
the device’s performance and, hence, the temperature estimation. Different
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Figure 4.2 Signal processing scheme.
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manufacturers providing high-temp SAW devices have been identified
[Wisen-tech; Syntonics; SAW].

PWS temperature measurement examples

Environetix has built a dedicated PWS sensor network for hostile
environments, and has applied it to helicopter motor monitoring. They have
also developed high temperature PWS devices for measurements in rotating
parts. These sensors have been tested in JetCat turbine engine. A second
example can be found at Wireless Sensor Technologies LLC. This company
has developed a temperature measuring system for turbine blades, based on
SAW sensors. The sensors were designed to operate in hot sections of gas
turbines and the research project was sponsored by the U.S Air Force, Navy
and the Department of Energy of the United States [Environetix].

On the framework of the MANTIS collaborative project, a research group
at the MGEP (Mondragon Goi Eskola Politeknikoa, Arrasate-Mondragón,
Spain) has developed a system for temperature measurement, based on the
concepts explained above. The objective consisted on the measurement and
monitoring of the temperatures at the surfaces of heating resistances inside a
concrete-block curation oven. The mentioned resistance surface temperatures
can range from some 20◦C up to well in excess of 200◦C at the hottest
curation process steps. It is known that the properties of the cured blocks
correlate with the curation temperature, which, at the same time, is related
to the surface temperatures on the surfaces of the heating resistances. Thus,
it is of paramount importance to collect a measurement as close to the real
surface temperature as possible in order to carry out a real time manufacturing
process monitoring. Several issues have to be considered in this case for a
correct temperature sensing:

• Wireless operation. The high temperatures present inside the oven
preclude the use of cables with plastic covers, which can rapidly degrade
after few thermal cycles;
• Passive sensor implementation. The necessary capability to withstand

high temperatures renders commercial electronics, batteries and plastic
battery holders, if not unusable, at least not recommendable;
• Accurate surface temperature measurement. The sensing element has

to be in close contact with the surface under measurement via a low
thermal resistivity path. For this reason, if the sensing device is located
at a certain distance from the heat source, the sensing structure has to be
small in size to avoid heat dispersion in the path between the hot surface
and the sensing element (by thermal radiation to the air or by thermal
diffusion to other components).
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The size constraint is fulfilled by the use of a COTS SAW resonator
component (SAW Components GmbH) with a QFN encapsulation. Designed
to work from −50◦C up to 275◦C in the ISM 343 MHz band, it allows for
a temperature sensitivity of 15 KHz/◦C. Two sensor prototypes have been
constructed for this purpose, and they can be seen in Figures 4.3 and 4.4.

The sensor on Figure 4.3 consists of a SAW device with two metallic
arms (conforming a dipole) soldered together in a low cost FR-4 substrate.
This low cost material does not, of course, withstand high temperature. As
a dipole, it cannot be laid in metallic surfaces, as it would preclude the EM
energy radiation and absorption from and towards the sensor, but has been
used nonetheless as a proof of concept and for validation purposes.

The device in Figure 4.4 is a prototype of the planned temperature sensor
for the heating resistances. It consists of a small metallic surface (FR-4
substrate) on which the SAW device is soldered in the upright position.
A single metallic arm (monopole) is soldered to one of the terminals of the
resonator, the other being soldered to the flat metallic surface (ground) that
will mimic the remaining arm of a dipole to sustain the resonance in the SAW
device. In the final implementation, the SAW device was soldered vertically
to a thin sheet of copper, and the vertical monopole arm included a supporting
structure consisting of an additional metallic arm to ground to convert the
short circuit at the ground level to an open circuit in the monopole end,
thus leaving the monopole’s electrical behavior unchanged. Before placing
the sensor upon the heating resistor, the bottom part of the copper sheet
got covered with thermal grease to keep the thermal resistance from the hot
surface to the SAW device to a minimum value. Tests proved that the SAW
device is in perfect thermal equilibrium with the surface under measurement,

Figure 4.3 First prototype of a SAW sensor.
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Figure 4.4 Second prototype of a SAW sensor.

and resonant frequency value readings provide an accurate estimation for the
temperature of the heating resistance surface.

An external system has been devised to first interrogate and then
frequency-analyze the response from the temperature sensor. This system,
based on a Software Defined Radio (SDR) architecture, implements the
interrogation and response processing systems in a Nutaq’s ZeptoSDR c©
unit [NutaQ]. The hardware solution is visible in Figure 4.5, and it provides
the designer with the digital signal processing capabilities of a reconfigurable
logic device like an FPGA and the high frequency operation possibilities
offered by an incorporated RF front-end mezzanine card.

Two quasi-Yagi antennas were designed and simulated in-house, and
they provide enough gain, directivity and required linear polarization to
adequately interrogate the sensor and listen to its response. Figure 4.6
shows a graphic user interface (GUI) that has been developed in Matlab c©.
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Figure 4.5 Standalone SDR platform, antennas and sensor.

Figure 4.6 Developed GUI showing real time temperature measurements.
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This GUI communicates via Ethernet to the SDR unit, and extracts the
temperature measurement to show it in an appropriate manner. A graph shows
the temperature variation in real time. Data can also be stored in binary
files for further data analysis. It is worth noting the flexibility that such a
system architecture offers, as the parameters of the interrogating signal can be
accommodated to those of the sensor in use. Thus, as long as the SAW devices
used for sensing fall inside the operative frequency band of the ZeptoSDR
unit (300MHZ – 3GHz), all that is needed to carry out the temperature
estimation is an appropriate set of transmitting and receiving antennas.

4.2.2 Low-Cost Sensor Solution Research

New sensor technologies like Micro Electro Mechanical System (MEMS)
sensors and printed sensors are becoming more popular nowadays. The
MEMS sensors take advantage of manufacturing processes that are used
commonly with the family of integrated circuits called semiconductor
manufacturing processes. The used semiconductor manufacturing methods
include for example wet etching, dry etching, molding and plating [Angell
et al., 1983]. With the semiconductor manufacturing processes it is possible
to build many kinds of sensors cost-effectively, and get the price down for the
single sensor. Wide variety of MEMS sensors can be acquired commercially,
including, but not limited to, accelerometers, gyroscopes, temperature sensors
and pressure sensors. The MEMS commonly integrate also capabilities
other than just sensing to the same package such as amplification, pre-
processing and analogue-to-digital conversion by combining micromechanics
and microelectronics. One advantage of MEMS is their small size and
lightness in weight. MEMS structures can be really tiny.

Selection of printed sensors is not as wide as with MEMS sensors but the
variety is increasing by the day. For example, currently at least temperature
sensors, pressure sensors, gas sensors, strain gauges, parts of accelerometer
sensors and moisture sensors can be found as printed sensors. Chansin [2014]
from IDTechEx divides the printed sensors into 9 categories, and Figure 4.7
shows the ten year market forecast for the printed sensors divided into these
categories. Printed sensors are made using common printing methods and
equipment. Conductor, semiconductor, dielectric and/or insulator inks are
printed on surfaces, leading to flexible and really low-cost sensors. Altogether
manufacturing processes have improved in sensor production, decreasing the
price of sensors. Table 4.1 shows multiple examples of different low-cost
sensors with their prices.
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Figure 4.7 Ten year market forecast for printed sensors made in 2014 (in $ million)
[Chansin, 2014].

4.2.3 Soft Sensor Computational Trust

This intelligent soft sensor focuses on the interpretation of the errors that
occur during the production process in terms of frequency and severity of the
different errors in the shaver production plant described in Section 7.1.

In the shaver production plant, tooling quality is one of the factors
affecting product (shaver cap) quality. Tooling quality drops as the number
of products generated increases and due to problems like a (series of) short
circuit(s). When the production monitoring system observes such a problem,
it raises an error. There is a list of error codes in the system resulting from
different measurements. There is an order of importance among the errors that
are considered relevant for tool damage. Increasing number and frequency
of errors in a time interval is also considered critical for tooling quality.
Operators can stop the process and change the tool due to raised errors and
due to finding visible distortions in products upon examination. The changed
tool is inspected: if it is faulty it is discarded, otherwise it is added back to
the stock.
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Table 4.1 Low-cost sensors [Junnola, 2017]
Manufacturer Model Type Sensor Type Price
Rohm
Semiconductor

KXTJ3-1057 MEMS Accelerometer 0,49 e

STMicroelectronics LIS2HH12TR MEMS Accelerometer 0,49 e
TE Connectivity 1007158-1 Printed Sensor;

Piezofilm
Accelerometer 3,40 e

Allegro
MicroSystems,
LLC

LLC
ACS711EEXLT-
31AB-T

Integrated Circuit Current Transducer 0,56 e

Melexis
Technologies NV

MLX91209LVA-
CAA-000-CR

Integrated Circuit Current Transducer 1,63 e

Bosch Sensortec BMP280 MEMS Pressure Sensor 1,17 e
EPCOS (TDK) B58601H8000A35 MEMS Pressure Sensor 1,17 e
Microchip
Technology

MTCH101T-I/OT Integrated Circuit Proximity Sensor 0,36 e

Semtech
Corporation

SX9300IULTRT Integrated Circuit Proximity Sensor 0,73 e

NXP LM75BDP Integrated Circuit Temperature Sensor 0,22 e
Texas Instruments LMT88DCKR Integrated Circuit Temperature Sensor 0,17 e

There is room for improvement in this process. Firstly, there can be
inconsistencies among operators in interpreting the errors. Moreover, as the
shift changes, operators tend to look into the errors raised in their shift time
only. A model is presented in the following. It uses error data and the expert
knowledge about the relative order of importance among error codes as input
and raises a flag when the errors imply a critical tool condition. This soft
sensor combines insight coming from different errors and provides some sort
of data fusion.

The dataset under consideration consists of process data that were
collected for several months (162 days) for one of the machines in the shaver
production plant and maintenance logs serving as the ground truth for why a
tool was changed.

A record in the process data contains several process parameters that
were measured in the making of a single product, including the time of
the production, error code (see Figure 4.8), the ID of the tool used, the
numbers of products produced with this tool since it was last replaced and
since the first time this tool was ever used. During normal operation the
error code parameter contains a 0, otherwise it contains a specific error code
corresponding to a certain error type.
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Figure 4.8 Error codes over time, colored based on the tool IDs.

A record in the maintenance log contains the time of the tool change, the
number of products produced with that tool at the time of the change, and a
note written by the operator indicating the reason why the tool was sent for
maintenance.

For tooling quality, not all error signals are considered equally relevant.
The codes that operators take into account in practice are 50, 150, 52, 186,
182 and 188. According to the production experts, in a scale of 1 to 5
(5 meaning the most and 1 meaning the least critical), their importance levels
are 5, 4, 2, 2, 1 and 1, respectively. This grading can be described by the
function:

g : X = {50, 150, 52, 186, 182, 188} → {1, 2, 3, 4, 5}

g(e) =


5 e = 50,
4 e = 150
2 e ∈ {52, 186}
1 e ∈ {182, 188}

(4.1)
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Theoretical background:

Trust is “the degree of justifiable belief a trustor has that, in a given context, a
trustee will live up to a given set of statements about its behavior” [Bui et al.,
2014]. Computational trust aims to quantify the subjective probability (a trust
value in [0,1]) that a trustor A attributes to the truth of a trust statement P that
has the following form: “The trustee T satisfies a predicate ℘ within context
c in the time period δ”. In a trust statement, time and context are usually not
given explicitly.

The inputs to compute the trust value tvP,i are: positive evidence pAP,i,
negative evidence nAP,i, prior trust aA and the weight of prior trust WA (see
Equation 4.2). Positive evidence and negative evidence are cumulative, and
updated after each observation i via update rules. These rules capture the
anticipated behavior of a trust curve. The weight WA determines how fast
the effect of prior trust decays.

tvAP,i =
pAP,i + aAWA

pAP,i + nAP,i +WA
(4.2)

This is a Bayesian trust model. For further information about Bayesian
trust models, see [Jøsang, 2016; Ries, 2009].

Application:

The trust framework was applied to the afore-mentioned production plant
dataset. The goal is to make the operators’ job easier in a way that
reduces inconsistencies across different operators and shifts. Computing
trust based alerts can support stability across different operators. Moreover,
computed trust will not be impacted by shift changes of people. After each
observation, the updated trust value can be compared to a threshold. When
the computed trust is below the threshold, the operator can be notified. The
trust statement of interest is: “The tooling is in good state for production.”
The trustee (T) refers to “the tool”, and ℘ refers to “. . . is in good state
for production”. Domain knowledge is inserted into the trust computation
through the error importance levels and the design of the update rules
given next.

An update rule is implemented by means of the constants η, γ, ζ, ψ ∈
(0, 1), which are chosen to decay the evidence over time. The constants are
used together with ei, which is the error code at observation i, and are used to
implement the set of formulas in Equation 4.3.
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PA
P,i =

{
ζ · pAP,i−1 ei ∈ X
ψ · pAP,i−1 + 1 otherwise

nAP,i =

{
η · pAP,i−1 + g(ei) ei ∈ X
γ · pAP,i−1 otherwise

(4.3)

After each time the tool is replaced, the positive and negative evidences are
reset back to zero, implying that the trust value is reset back to the prior trust
value (see Equation 4.2). In case the error code is in X, the positive evidence is
expected to decay quickly. Also, each time error code is not in X, the negative
evidence should decay, but slowly. The following coefficients were chosen to
make this possible: γ = .99, η = .999, ζ = .4, ψ = .999. The prior trust aAis
set to .95 and WA is set to 10.

Figure 4.9 shows the behavior of trust over a shorter interval. The tool
was changed three times (on November 3 at 03:24, November 6 at 03:36, and
November 9 at 20:53) in that interval and, according to maintenance logs, the
reason was error code 186 two of the times, and distortions found upon visual
inspection once. There is a small interval with relatively low trust values, on

Figure 4.9 Error codes over time, and corresponding trust values.
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November 7 around 21 pm. At that time, there is an accumulation of error
codes 186 and 52, but the operator chose to take no action.

A set of 13 instances were inspected, where the tool was changed to
see if the computed trust was low in the 50 minutes leading to that change.
According to the maintenance log, 8 changes were due to errors. Among these
for 6 of them the trust was also relatively low. In the remaining 2, despite
the operators note that the change was due to errors, these errors were not
concentrated in a small enough time interval around a tool change, hence
they did not result in low trust. Among the 5 changes that were due to other
reasons (due to the preventive maintenance schedule, due to visible distortion
in products or other) in two cases, there was also some accumulation of error
codes prior to change, hence trust was also low.

Some errors imply deteriorating tool condition, which should result in a
tool change. The proposed approach was evaluated by comparing the times
of low trust in the tooling being in a good state with the operator notes in the
maintenance logs. Mostly, tool changes due to error codes coincide with time
intervals with low trust value. There are cases where accumulation of errors
did not result in a tool change, or tool changes were due to errors when in
fact there were not so many errors. The trust computation shows that there
are inconsistencies of operators about how and when the error signals result
in a tool change. Supporting operators with the proposed trust framework can
anticipate the need for tool changes, improving the timely maintenance of
tools and reducing the number of faulty products.

4.3 Bandwidth Optimization for Maintenance

Condition monitoring approaches require sensors in order to gather
information about the different components and elements that take part in
the performance of the machine. This information may be used locally for
estimating the state of the components, but has to ultimately be conveyed
from sensors to edge servers or processing centres for data analysis, but
bandwidth is, in most cases, a limited resource. Roughly speaking, the
bandwidth occupied by a signal can be related to the highest relevant
frequency component that conforms the signal waveform. Thus, if one is
to reach the maximum data throughput that the channel can offer, a natural
choice would consist on trying to reduce the time duration of the waveform
for the individual piece of information. This way, more and more information
is packed in a given time duration and throughput increases. But as waveform
change rate increases, so does the required bandwidth. Fast changing signals
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occupy a wider bandwidth, and less spectrum-demanding signals have to
vary in a slower fashion. With this scheme in mind, it is needed to think of
approaches that address the bandwidth optimization issue in an appropriate
way. Three such approaches are described below.

4.3.1 Reduced Data Amount and Key Process Indicators (KPI)

One way for decreasing the necessary bandwidth is the reduction in the
amount of exchanged data. This way, less spectrum is utilized for the required
data throughput and both systems, sensor and edge server, can be of a
simpler nature, at least with regards to data processing capabilities. This
may lead to a reduced system cost and complexity, but with the drawback
of compromised accuracy and reliability of the obtained measurements, as
important pieces of information may have to be discarded for transmission.
A much better approach could be the reduction of the amount of data
by discarding the undesired data and sending only key indicators of the
condition of the machines by means of KPIs, which are fundamental for the
design and maintenance phase of a machine, as they allow identifying faults,
their underlying causes, and any effect that can propagate to other systems.
Usually, the monitored machines or parts are comprised of components
that are related with each other, so that the deviation of a component
from its normal performance causes additional, measurable effects in other
components. KPIs are extracted from qualitative models of devices under
observation, taking advantage of measurements and estimated magnitudes
and parameters. For this purpose, the most meaningful magnitudes of the
machines are analysed, highlighting the performance of the system as shown
below and described for example in [Mehdi et al., 2015]. See Figure 4.10 for
a graphical representation of the process.

On a first stage, all the raw data collected from installed sensors is pre-
processed in order to obtain appropriate signals of the measured magnitudes
for their later analysis. On the second stage, the preprocessed data is
processed through data analytic tools made available by software sensors. At
this stage, the condition monitoring of the machines is performed, extracting
magnitudes and parameters of interest. At this point, these magnitudes and
parameters themselves could be used as KPIs, as they monitor directly the
condition of the analysed machine. On the final stage of the data analysis, a
high level abstraction data reduction is still possible, by combining the most
relevant magnitudes and parameters extracted from the previous stage. These
KPIs may not have a straightforward physical interpretation, but they show
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Figure 4.10 BW optimisation by KPI extraction.

the working condition at which the machine is. In this way, KPIs can be used
to effectively reduce the amount of data that will be exchanged with the main
processing and decision centre, optimising the use of bandwidth.

4.3.2 Advanced Modulation Schemes

In the previous approach, a decrease in the quantity of transmitted data was
used for the reduction of the required transmission spectrum bandwidth.
Second scheme focuses on the time percentage on which the physical medium
is occupied for data exchange, so that alternative sensors can communicate in
different time slots.

Communication is performed by the transmission over the wireless of
wired medium of a symbol, which is the minimal entity that can represent
some digital data to be sent. The bandwidth optimization technique is based
on the concept of modulation, which is the way that data bits are associated
to the symbols.

The bandwidth optimization can be addressed from a frequency, phase or
amplitude point of view, or by a combination of them, by means of applying
different modulations to the signal used to carry over the data. In fact, while
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the most obvious signal modulation is able to send a single bit with each
signal, for example by encoding a 1 with the presence of a wireless wave
and a 0 with its absence, it is possible to use a richer alphabet of symbols
to encode the data, and this way send more than one bit at a time. On this
regard, an N-fold increase in the number of the allowed discrete symbols
used for the modulation allows to send a larger (logN ) number of bits at the
same time while occupying a single symbol duration, i.e., by means of one
symbol. More information on modulation schemes and related subjects can
be found in [Proakis, 1995; Oppenheim and Willsky, 1997; Haykin, 1994;
Proakis, 1995].

It is worth mentioning that the increase in the data transmission
rate achieved by means of such modulation processes comes at the
expense of more complex sensor and data processing systems, involving
electronics related to modulating and demodulating processes, adding
protocol complexity to the signal processing methods and thus increasing the
total development and deployment cost. On this regard, despite commercial
transceivers are readily available in the market and render the development
of such systems from scratch unnecessary, their protocols are generally
proprietary and restricted to work at certain limited frequency bands
(such as ISM). In addition to this, the power supply requirement of such
electronically advanced sensors has to be considered before opting for a
complex modulation scheme, as in several measurement systems, low power
consumption is an important constraint.

4.3.3 EM Wave Polarization Diversity

The third approach for the bandwidth optimization arises from the fact that
antennas respond differently to electromagnetic fields whose spatial field
distributions show diverging field orientations. This phenomenon is known
as polarization [Mehdi et al., 2015] and implies that, for antennas that lie
in a given plane, such as the ones represented in Figure 4.11, maximum EM
wave power reception occurs for the plane parallel to that of the antenna. On
the contrary, a minimum fraction (ideally zero) of the incoming EM field
power is captured by the antenna if the relative angle between incoming
field and antenna approaches 90 degrees. With this behaviour in mind, it
is possible to think of an arrangement of a couple of antennas, orthogonal
to each other and both making use of the same transmission frequency
value. As long as the data receiving part of the system deploys a pair of
also relatively perpendicular antennas (with spatial orientations respectively
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Figure 4.11 Linearly polarized quasi – Yagi antennas: Maximum alignment (left) and
maximum misalignment (right).

parallel to those of the transmitting antennas), an effective doubling of
the data transmission rate is at hand, at the expense of doubled antenna
and cabling deployment cost. Nonetheless, present antennas fabricated in
printed circuit form (integrating the associated electronic circuitry) can
achieve the desired goal at a reduced cost. Finally, it is of importance to
consider situations in which the spatial orientation of the antennas changes
with time (e.g., Rotating or translating frames for the sensors and/or data
receiving equipment). In those cases, it is necessary to ensure that the relative
orientation of the transmitting and receiving antennas does not change, as
the aforementioned dynamic displacement could lead to a situation in which
transmitting sensor antennas are spatially paired with a wrong receiving
antenna, and thus different sensor information would not be received and
processed by the appropriate system. Several classical texts on antennas
[Balanis, 1982; Krauss and Marhefka, 2002; Stutzman and Thiele, 2013] can
be consulted for a more in depth knowledge on the subject.

4.4 Wireless Communication in Challenging Environments

New technological solutions such as WSNs have become a strategic asset
in industrial context. This type of sensor networks are used to share
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information with the purpose of increasing productivity, gathering data
for developing future technological improvements or detecting/predicting
maintenance issues. Besides, the use of wireless communications provides
flexibility, installation ease, weight reduction, etc. which makes them suitable
for many applications, conditions and situations.

Industrial environments usually have hostile site conditions, both for
the sensors (dust, oil, heat, corrosive products, vibrations, etc.) and for the
wireless communication systems (interferences, metallic environments, etc.).
These conditions must be considered before and during the design and
development process of a WSN as they could make an impact on the resultant
performance. Besides, there are also requirements such as synchronization,
low power consumption or data security that can constrain the design process
of the wireless sensors to be deployed within an application.

In this section different possible networking solutions are analyzed in
order to describe a design methodology to be followed when a wireless sensor
solution has to be deployed within a specific challenging environment. The
design methodology aims to gather as many technological alternatives and
communication solutions as possible.

4.4.1 Design Methodology Basis

The proposed design methodology is targeted at wireless networks in
industrial scenarios, and it is organized as follows:

• Requirements and challenges identification. This task consists in the
network requirements definition according to the specifications and
needs of the industrial application, to investigate the constraints and
limitations of the resulting network;
• Characterization of the medium. This is an essential step during the

development of the communication system, as well as the available
bandwidth measurements. This provides information about the main
parameters that can negatively affect the wireless signal propagation
inside the factory. Moreover, mathematical representation of the
environment or wireless channel can be obtained;
• Interference detection. It is mandatory to know about the presence of

other possible users of the spectrum in the area where the network
is located. Interference level information would provide a view on
the minimum requirements for the device under design, especially
to develop a system robust enough to handle and maintain the
communication in a specific interference level;
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• Power and energy saving aspects. Wireless devices usually are battery
powered devices, and consequently they have a limited autonomy level.
Therefore, low power and energy cost aspects have to be taken into
account before and during the network design and development in order
to extend the network lifetime;
• Development of the device. Considering all the information gathered

from the previous tasks, it is time to select, design and develop the
components, the topology and the PHY and MAC layers required by the
wireless communication system. There are many examples proposed in
the literature, so the adequate alternative should be chosen and modified
depending on needs and the requirements determined in the previous
steps;
• Validation. Once the network is designed and deployed, it is necessary

to carry out its validation. As a first step, performance tests using a
channel emulator are highly valuable, since this type of device enables
the designer to test different propagation parameters and effects in a lab
environment, testing if the designed system is reliable enough for the
industrial site it is destined to;
• Performance tests. As a last step, it is necessary to make performance

tests in the target location to know whether the network fulfils the
specified initial design requirements or not.

4.4.2 Requirement and Challenge Identification

This step collects the requirements and challenges that can be found in a
project related to wireless communication systems.

The industrial environment has always been a very demanding scenario
for technology, especially for wireless communications. There are usually
elements such as metallic surfaces, electro-magnetic interferences, rotating
or moving elements, vibrations, etc. that influence directly or indirectly the
wireless devices or the electromagnetic waves used for communication.

The large metal surfaces that are usually located in industrial
environments distort the wireless signal, which leads to reflections, scattering
and diffraction. The metal surfaces can make the signal travel via different
paths, which then suffers from multipath interference.

Moreover, in industrial spaces there is also massive electromagnetic
noise. Noise is usually caused by hardware thermal effects, other wireless
networks or industrial machinery which can alter the correct behavior of the
network at the industrial site. Figure 4.12 shows some processes and devices
which cause interference in industrial environments.
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Figure 4.12 Interferences from different processes and devices in industry.

Sometimes it is possible to used wired technologies to protect
communication from these problems, but many scenarios do not allow for
cables and must use wireless nodes. For example, machines can have rotating
or moving parts such as rotors, assembly chains or clutches.

4.4.3 Channel Measurement

The main objective of the channel measurement task is to reduce the effort
involved in the selection of the most suitable PHY and MAC layers during the
following steps of the methodology as well as to obtain detailed information
about the specific industrial environment. This reduces the time and effort
required for the development, while maximizing the performance of the
resulting network.

Most of channel characterization techniques are based on stimulus-
response measurements. The channel is excited with a predefined and known
signal and it is received on the other side of the communication. Then,
the differences between the acquired and emitted signals are observed to
determine the characteristics of the channel. As a result, a mathematical
model for the channel is obtained. This model is to be used both in the PHY



118 Monitoring of Critical Assets

and MAC selection and as well in the validation process, for example while
using a channel emulator.

The most important statistical parameters within a channel model are the
following:

Multipath characterization – The multipath effect causes signal amplitude
variations because of the arrival of the waves from different paths.
Signals usually suffer similar attenuations but different phase modification,
which leads to constructive or destructive interference in the receiver. The
characterization of this effect may be useful to place the antennas and
avoid destructive interferences. To compensate the effect of multipath, the
equalization technique is commonly employed. Furthermore, other solutions
such as directional antennas provoke less multipath signal components and
consequently less fading and delay spread.

Coherence bandwidth measurement – This is a statistical measurement of
the range of frequencies over which the channel can be considered “flat”,
which is the frequency interval over which two frequencies of a signal are
likely to experience comparable or correlated amplitude fading.

The obtained results help in the further selection of the PHY and MAC
layers of the communication system to be deployed: wide-band/narrow-
band, techniques to mitigate fading (diversity, equalization, OFDM, MIMO),
techniques to mitigate interference, etc.

3D modelling – Simulation algorithms based on the ray tracing method-of-
images enhanced by double refraction modelling can be used to identify the
correct placement of the receiver and transmitter antennas. The algorithm
takes as input a 3D model provided as a list of triangulated surfaces and a
list of convex edges, outputs a signal loss value in dB for each surface in the
receptor plane. An example is represented in Figure 4.13, where the colour
scale is from 0 dB loss (black) to 100 dB (white).

4.4.4 Interference Detection and Characterization

The current use of the wireless spectrum by the nearby elements or devices
has an influence in the design of a wireless network, so interference
measurement and interference modeling is useful to characterize wireless
behaviour in a specific environment. Therefore, it is essential to study
the primary users of the desired frequencies in order to avoid possible
interferences and poor network performance.
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Figure 4.13 Example of a 3D model.

The main causes of external interference are the electric interference and
other RF wireless networks. Furthermore, these interfering signals might have
been transmitted maliciously by a jammer. RF interference can be a very
serious threat especially for low power wireless networks.

Interference may be also caused by industrial machinery, such as
motorized devices or computers. Electrical motors and relays are one of
the most interfering elements, especially during the switching instants. In
addition, other types of high-voltage devices can also be an interference
source due to defective insulation.

To solve RF interference problems, the most common alternatives involve
eliminating the source of the interference, or modifying the transmission
frequency. However, this is not always possible, so researchers are developing
new mechanisms to behave dynamically in case of RF interference presence.

4.4.5 PHY Design/Selection and Implementation

The PHY layer is the first and lowest layer of the OSI model, and
consequently it has a considerable impact on the final operation and
performance of the network. Therefore, the physical layer should be carefully
designed/selected to satisfy the requirements defined during the first step of
the methodology.

Most standards address PHY and MAC layers together, hence a decision
regarding the PHY layer has an impact regarding which MAC layers can be
used in the system.
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4.4.5.1 Single/multi carrier
The first aspect a designer should decide is whether the physical layer is
a single carrier or multicarrier based physical layer. In single carrier based
physical layers, just one carrier is used to carry all the information. They
are simpler than multicarrier based alternatives and are a better fit for low
consumption but low performance solutions.

On the other hand, multicarrier based physical layers are designed to
operate with multiple carrier signals at different frequencies to send the
data. This approach has got performance advantages and is more robust
against narrow-band and multipath interference. On the other hand, the main
limitation of multicarrier physical layers is the difficulty to synchronize the
carriers correctly. Besides they require more bandwidth and the PHY layer’s
complexity has a direct impact on power consumption.

4.4.5.2 High performance/low power
This is a dual view with respect to the previous section. An engineer
should also take into account the difficulties that may appear to achieve
the desired performance with low power consumption. For example, multi
carrier modulations are more complex and they are more demanding on the
energy. However, they provide a higher data rate and a high robustness against
interference comparing to single carrier modulations. Therefore, the data rate
and the results from the interference detection step must be taken into account
in this decision.

4.4.6 MAC Design/Selection and Implementation

The MAC sublayer is part of the Data Link Layer of the OSI model and
there are many alternatives to design or select a MAC layer for the wireless
communication system to be developed.

Many aspects can be discussed within the selection/development of a
MAC layer: low power consumption, synchronization and real-time features,
cognitive features, security, reliability, etc. Moreover, the selected MAC layer
must be compatible with the PHY layer chosen in the previous step.

4.4.6.1 Real-time/deterministic MACs
There are many mechanisms to access the medium for wireless technologies,
though the techniques can be classified into two major groups. On the one
hand, there are channel partitioning based Media Access Control mechanisms
where the channel is divided into several parts so that several nodes can access
the channel in a multiple manner. In this way, nodes can only communicate
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on their assigned division. The main advantage of channel partitioning is the
ease to organize the communications between nodes, but this alternative is not
suited for sporadic and bursty communications. On the other hand, random
access based MACs can be also divided depending on contention capacities,
such as in the case of ALOHA or CSMA.

The MAC layer has to be chosen depending on the requirements of
the application as well as the characteristics of the environment. To ensure
determinism and real-time communications, partitioning based media access
should be used. The random access based MACs do not ensure transmissions
bounded in time because they can allow the presence of collisions among
the nodes in the network. However, the partitioning based MACs are more
complex due to the fact that they require coordination among the different
nodes in the network.

4.4.6.2 Low-power MACs
Apart from the most common options and standards, there are many Low
Power MACs for WSNs in the literature. The studied MACs can be
divided into the following three categories: asynchronous, synchronous and
multichannel.

The asynchronous MACs are aimed for networks whose nodes have
different active/sleep schemes. The nodes of this type of networks are asleep
most of the time and they wake up to just communicate occasionally. The fact
that each node has its own scheme requires communication establishment
process with long communication preambles in order to make the receiver
detect the transmitter node. Therefore asynchronous MACs can result in
an adequate alternative for low traffic networks. The main drawbacks of
asynchronous MACs are the low spectral efficiency and channel inhibition
due to long preamble as well as poor or none time synchronization, which is
usually required by many industrial applications.

The synchronous protocols are thought to obtain instantaneous wake up
between the nodes and, on the contrary of asynchronous MACs, the devices
of the network have a predefined behaviour. Only predefined transmitter and
receiver access the channel at a determined moment, while the other devices
remain asleep or just listen to the channel until their communication time.
The energy consumption is usually a main issue for synchronous MACs,
thus their techniques try to avoid the principal energy wastes: collisions,
overhead and overhearing. Synchronization can result in delay reduction and
throughput improvement, although it requires an additional overhead to the
communication to send information related to the clocks and synchronization.
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This requires the implementation of algorithms to manage the temporal
aspects of the network.

Multichannel MACs are used to enable parallel transmissions by using
different channels for the communication between groups of nodes. The
tendency is to combine TDMA and FDMA in order to achieve a higher
communication rate and consequently a better overall network performance.
Therefore, the nodes must be able to handle frequency changes over time,
which usually require more expensive technologies.

4.4.6.3 High level protocols for error mitigation
Communication in a challenging environment has to cope with problems
in the communication process, which can take the form of errors in
the transmitted data, fluctuating bandwidth, and intermittent connections.
Current approaches to cope with the hurdle can be divided into two families:

• Message caching: this set of approaches is based on caching the
messages to be exchanged. The message is kept in the cache and the
communication process is repeated until the recipient is reached. Most
of these techniques are based on brokers that act as intermediaries in
the communication process. These techniques help only with errors
on the channel from the broker to the receiver, and do not support
communication from sender to the broker. The Advanced Message
Queuing Protocol (AMQP), the Message Queuing Telemetry Transport
(MQTT), the Java Message Service (JMS), the Data Distribution System
(DDS) and the Open Platform Communications Unified Architecture
(OPC-UA) are some of the most common implementations;
• Cognitive communication: it is based on the use of context information

to drive the mechanisms of communication protocols. Context
information is exchanged over the application layers, and it is used
to drive the lower layers in order to mitigate the noisy and congested
spectrum bands, for example by controlling which wireless frequencies
are used over time, yielding reliable and high capacity links for wireless
communication.

4.4.7 System Validation

The main objective of system validation is to measure the performance
of the designed wireless communication system and verify if it fulfils the
requirements identified in the first steps of the design process. This validation
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Figure 4.14 Channel emulator scheme.

can be done using instrumentation such as channel emulators or/and via tests
in the target location.

4.4.7.1 Channel emulation
Channel emulators enable to reproduce controlled and programmable channel
conditions so that product performance can be evaluated in realistic
conditions before product release or delivery. Information obtained from
the channel measurement step is used in this emulation process, such as
parameters on Pathloss, Multipath, Doppler or Noise.

This is shown for example in Figure 4.14, which depicts the insertion of
these effects during the emulation of the channel.

The validation by channel emulation can provide useful information about
the networks behaviour or performance. The main drawback of wireless
channel emulators is the limited support for a high number of devices.

4.4.7.2 Performance tests
Once the communication system has been installed in the target location, the
initial design requirements satisfaction needs to be verified. These are the
main topics to be taken into account:

• Channel selection: Depending on the wireless spectrum used, and
especially in 2.4 GHz frequency bands, it is important to select the best
channel to avoid interferences;
• Coverage verification: For each wireless device installed, it is needed to

know how much signal power is arriving to the installation point. Using
this information, usually some range or ranges can be defined:

signal > -x → Good coverage
-x > signal > -y → Normal coverage
-y > signal → Poor coverage
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After these verifications, some corrective measures could be needed.
Some examples could be to move the sensor to a new spot, to use an
antenna extender or to add a repeater to improve the coverage area;
• Regarding the topology, it is recommended that every sensor should

have at least two good neighbours (with good coverage) to ensure that if
any problem occurs with one link, the communication is guaranteed by
routing over other links;
• Packet reception verification. Once the coverage checking process is

completed and eventual problems described in previous paragraphs are
solved, it is necessary to ensure that data is transmitted continuously
and without losses that could show any kind of coverage problems.
Ideally, the test period should have enough time to cover at least: all
possible climate conditions (rain, sun, etc.), day and night and several
days operating in normal environmental condition with all equipment
and staff working as usual.

4.5 Intelligent Functions in the Sensors and Edge Servers

In the present section, the main categories and their subcategories regarding
intelligent functions are presented, the main distinction being whether the
function falls in the “intelligent” or “smart” category. Nonetheless, other
possible categorizations arise, and are briefly discussed. Later on, a list of
intelligent and smart functions is given, depending on the way the data is
handled, and details on the implementations are also given, based on real-life
sensors developed for various use cases.

Smart vs Intelligent

A sensor is a combination of one or many sensing elements, an analog
interface, an analog to digital converter (ADC) and a bus interface all in
one housing. A smart sensor can be defined as a sensor that, in addition
to the pure sensing, provides communication and preprocessing, which are
needed in most Maintenance 4.0 applications, and possibly more complex
capabilities pertaining to the following categories:

• outlier detection (from historical data);
• false value detection (from data);
• combine and choose the best value.

An intelligent sensor has got some level of self-awareness, and for example
can provide functions such as self-testing, self-identification, self-validation,
self-adaptation, etc. (see Figure 4.15). These functions can also support the



4.5 Intelligent Functions in the Sensors and Edge Servers 125

Figure 4.15 Schematic outline of a process measured by a sensor with sensing elements
A and B.

maintenance of the sensor itself, or they could give additional information
about the accuracy, the confidence of the measurement result or about the
sensor’s own “health status”, and can support in more sophisticated ways
the distributed collaborative decision-making concept for monitoring and
proactive/predictive maintenance.

The most common intelligent function found in the industry is self-
validation. In many use cases the intelligent functions are implemented at
a higher level than the sensor level, therefore they are not directly associated
to the sensor. In the edge tier, this set of functions is commonly implemented
in the Raspberry Pi based gateways, where considerable processing power is
present.

Domains of the measurements

Most sensing aspects relate to six well-defined physical domains, listed in
Figure 4.16.

Most of the use cases of the MANTIS project monitor environmental data
such as environmental temperature, humidity. More often than not, use cases
have special sensors, not shared by other use cases. This was expected, as
different use cases have case specific sensors.

However, there are some sensors that are common for many industrial use
cases. Such examples include:

• Oil quality;
• Vibration;
• Temperature (not environmental);
• Air pressure sensor;
• Power sensor (electrical);
• Current sensor.

More information on this topic can be found in [Albano, 2018].
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Figure 4.16 Sensing Physical Domains.

Communication

The sensors can communicate through a wired or wireless technology.
From the communication perspective, the sensors can use unidirectional

communication (just upstream, uploading data) or bidirectional, where
sensors can also receive commands. The bidirectional communication
enables additional intelligent functions and interaction between different
levels of processing, such as collaborative decision making.

The sensors may be able to communicate directly to the cloud, or
they may require a gateway for communication. In many cases the sensor
is only capable to send the actual sample, using simple wired/wireless
communication. In these cases a gateway is needed which can run a more
complex communication stack capable of uploading data to the cloud with
the required context and security. The analysis of the collected data showed
that many of the use cases have complex devices, such as gateways, that are
used as aggregation point for sensors and perform smart/intelligent functions
and communication.
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Figure 4.17 Categories table header.

Function categories

It is possible to compile a table for the categories of smart and intelligent
functions, to find commonalities along the categories. This approach can
provide a further level of refinement to three subcategories cited above (self-
calibration, self-diagnostics and self-testing), and the same is true for the
smart functions.

The categories table is reported in Figure 4.17. No straightforward
hierarchical characterization and listing of sensors emerge from the table,
and the proposed taxonomy considers “intelligent” and “smart” as the two
main categories for intelligent function distinctions, considering additional
characteristics (those regarding aspects like communication or measurement
domain) as implementation details for a given function. In the following
sections, the defined intelligent functions are explained and practical
examples are given.

4.5.1 Intelligent Function: Self-Calibration

Sensors are used to measure different physical magnitudes, and their outputs
are correlated to the absolute values of the latter. This correlation can
consist in an absolute value correspondence between the output value and
the measured property, or can also consist on a relative change representing
the variation of the magnitude under measurement. Whatever the case, be it
absolute or relative measurement, one desirable property of a sensor is that
of being able to compare its present output value against a predefined input,
the latter emulating the effect that the magnitude under measurement exerts
upon the sensor. This way it is possible to check whether the outcome of
the sensing follows the expected performance. Sensors that incorporate the
ability of self-calibrating function substitute thus the actual magnitude under
measurement with known input values and check the corresponding output,
in order to apply the needed corrections.
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Figure 4.18 Torque sensor.

4.5.1.1 Practical application: Press machine torque sensor
The strain gauges used in the press machine for the torque sensing,
represented in Figure 4.18 and further described in Chapter 7 Section 3,
require a good initial settlement to enhance dynamic range and avoid
signal saturation. Two techniques have been implemented to achieve this
initial settlement: auto-zeroing and offset cancellation. The self-calibration
intelligent function is handled by the microcontroller through programmable
interface electronics in an iteration loop until both the pursued zero value and
the elimination of the offset are reached.

4.5.1.2 Practical application: X-ray tube cathode filament
monitoring

In the monitoring of health equipment, described in Chapter 7 Section 9, an
X-ray tube is connected to a so-called High Voltage generator to enable and
control its operation. There are three basic functions that the generator has to
perform to enable the X-ray generation:

• It needs to supply the high voltage (in the range of 40 kV to 125 kV)
between the cathode and the anode;
• It needs to supply a heating current to the cathode to control the amount

of electrons emitted;
• It needs to power the electromotor to spin the anode disk, so the electrons

hit an ever moving “focal track” to avoid too much damage in one
position.

The X-ray tube can electronically be seen as a passive component without
any intelligence. The control intelligence and sensing are mainly built into the
generator. In the use case on X-ray tube monitoring some extra intelligence
was added to the sensing already available.
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The X-ray tubes are used for making medical images. Depending on the
type of image desired, the properties of the patient, the technique used and
considerations of physical and regulatory limitations, an optimal regulation
strategy was designed. This makes it possible to obtain very similar imaging
results for a wide range of patients with different weights and bone structures.
It is important for the Image Quality that images are taken at correct set points
for tube voltage and emission current. The first time a X-ray tube is used
a number of properties of this tube are measured and stored to enable the
generator to actually reach the desired settings. The usage of the tube will
cause the actual behavior to deviate increasingly from the stored properties.
During a semi-annual recalibration cycle, the properties need to be measured
again. The self-calibration intelligent function implemented in the context of
the MANTIS project, was able to remove the need for this recalibration cycle.

There are three reasons why it is desirable to eliminate the need for
recalibration:

• For the recalibration it is necessary to produce X-ray for a non-medical
purpose. For reasons of radiation-safety it is highly desirable to limit this
as much as possible;
• The further the tube starts to deviate from the stored properties the

higher the probability that regulatory constraints or image quality are
compromised;
• The recalibration takes time of field service engineers and the faster they

can perform their jobs the lower the cost is.

The proposed intelligent function limits itself to the direct relationship
between a particular high voltage generator and the X-ray tube connected
to it. The algorithm provides means to automatically adjust the initially
established properties to the changes caused by the wear of X-ray tube parts.
The algorithm to perform this adjustment runs inside the generator itself. It
also provides a means to monitor X-ray tube wear.

The algorithm is represented in Figure 4.19, and it proceeds as follows.
When a filament heating current (Ifa) is applied, given a tube voltage,
this produces an actual emission current (Iea), this allows to look-up the
corresponding filament current at this tube voltage in the adaptation table:
(Ift). For the next run it is possible to find the set-point for the filament current:
(Ifn) by looking-up the filament current for the desired emission current and
tube voltage: (Ifd) with the formula:

(Ifd) = (Ifn) ∗ (Ifa)/(Ift) (4.4)
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Figure 4.19 Filament heat/emission correction.

Figure 4.20 Sphere Avisense.

The factor: (Ifa) / (Ift) that actually adjusts the adaptation table is a correction
factor called the C-factor (Fc).

4.5.1.3 Practical application: Compressed air system
The Air pressure sensor called Sphere Avisense, represented in Figure 4.20
and used in the use case on pultrusion described in Chapter 7 Section 2,
supports the user by displaying the different steps to follow for analog outputs
calibration. The output calibration procedure consists in measuring the
current for 5mA and 19mA current set by the sensor. After entering those real
values, a correction is done on board to calibrate the output. This calibration
needs to be done for the 2 analog outputs and then must be stored locally.
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4.5.2 Intelligent Function: Self-Testing (Self-Validating)

The performance of wireless sensor networks could be greatly improved by
self-testing or self-validation techniques. Fault tolerance is a highly desirable
property for any control system. Fault-tolerant controllers typically rely on
some sort of fault detection algorithm, and self-testing or validating devices
extend this concept, supplying the user with an estimate of measurement
reliability as well as measurement value and its associated uncertainty.
Generally, this type of function relies on data analysis techniques applied
to aggregated information, gathered from several distinct sensors. This
aggregated data can be analysed and mathematically processed to obtain
a basis for the identification and quantification of inconsistent data, and
evaluation of reference values and associated uncertainties. Self-validation
thus becomes more important when various data from multi-sensors or
multi-measurements are sent to the system.

4.5.2.1 Practical application: Oil tank system
The algorithm of Software Based Testing with Compressed is used for the Oil
Condition Sensor in Figure 4.21 and employed in the monitoring of pultrusion
process (Chapter 7 Section 2). The algorithm combines SBST testing with CS
and can improve some limits such as limited time testing, limited energy and
limited processing capability in WSNs. The framework contains six major
steps:

• Step1. The SBST produces test vectors for each WN and test vectors
development to all units of WN such as power supply, communication
and sensing units;
• Step2. The test-result is compared with a result known in each WN to

uncover any fault;
• Step3. The BS collects all compressive test-results of all WNs with

recovers the original test-result for each WN;
• Step4. The WN is implemented UT that is Test Driven Development

(TDD) that produces different test vector than SBST program and new
test-result is written on WN;
• Step5. The WN is sent the new test-result to BS.

Figure 4.21 Oil condition sensor.
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4.5.2.2 Practical application: Air and water flow and temperature
sensor

The sensor in Figure 4.22 is used to monitor the pultrusion process, described
in Chapter 7 Section 2. The sensor incorporates a red/green display for clear
identification of the acceptable range. If the measured value is outside the
measuring range or in the event of an internal error, the current or frequency
signals indicated in Figure 4.23 are provided.

For measured values outside the display range or in case of a fault,
messages are displayed

The analogue signal in case of a fault is adjustable:

[FOU] = On determines that the analogue signal goes to the upper final value
(22 mA) in case of an error.

[FOU] = OFF determines that the analogue signal goes to the lower final
value (3.5 mA) in case of an error.

4.5.2.3 Practical application: Sensors for the photovoltaic plants
When reviewing irradiance sensors in the field, it was found that they
often tend to underestimate the solar resource. This phenomenon has been

Figure 4.22 Air/water Flow and temp: SA5000, IFM electronic.

Figure 4.23 Air/water/temperature sensor: Error signals for self-test result indications.
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identified by analysing data from a random selection of 88 sensors recorded
by 3E, who is the use case owner and built the monitoring platform SynaptiQ,
and comparing it with irradiation data derived from satellite images, which
has proven to have a very low error for annual irradiation. The results,
collected on the use case described in Chapter 7 Section 7, show that
50% of all sensors tended to underestimate the yearly irradiation by 7% or
more. It is therefore possible to conclude that many resource assessments
or PR calculations based on these sensors and data will be biased in the
same way.

A Solar Sensor Check has been developed and applied to check the
integrity of irradiance sensors based on measurements and indicate if their
measurements are wrong or imprecise. The PV Sensor Check checks for a
selection of most important faults and imprecisions in an automated process
based on measurements. It returns a conclusion on whether a fault could be
detected or not. If a fault is detected, the Sensor Check specifies and quantifies
the error and indicates the most probable root causes (see Table 4.2), so
that the user can decide on alleviation actions. The effects considered in the
developed work are plausibility (data completeness, minimum and maximum
values, overall data bias), soiling (reduction on the measured irradiance
relative to the real irradiance) and shading (reduction on the measured
irradiance in dependence of the sun position in a highly nonlinear way).

Table 4.2 Sample output of the Solar Sensor Check
Fault Illustrator

Check Fault Illustrator Value Conclusion
Recording: maximum
irradiance

Maximum Irradiance 1126 W/m2 OK

Recording: minimum
irradiance

Minimum Irradiance 0.75 W/m2 OK

Recording: sensor
data complete

Daytime recording
fraction

68.5 % Not OK

Total irradiation Mean bias error −6.48 % Not OK
Clock
synchronization

Time shift 0 min OK

Sensor orientation Estimated azimuth &
tilt

58◦, 10◦->− 20◦,
29◦

Not OK

Sensor calibration:
offset

Sensor offset 1.8 W/m2 OK

Sensor calibration:
slope

Sensor slope 0.968 OK
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4.5.3 Intelligent Function: Self-Diagnostics

Broadly speaking, self-diagnosis can be thought of as the process by which a
sensor self-applies a method to detect or evaluate a failure in its functioning.
These methods often rely on “pulling” different state indicators from the
sensors (e.g., connectivity metrics, current or voltage consumption, historical
measurements. . . ) and conducting then the pertinent analysis upon the
gathered data. The sensor can be represented for example as a state-machine
that, in accordance with the given inputs, transits from state to state, reporting
(based on constructed fault detectors) back to the central analysis unit and
taking decisions based on the estimated performance and possible failures.
The state of the sensor can be checked for detection of lost calibration.
For example, if after the self-diagnosis a sensor presents offset behavior,
an alarm should be triggered. Other sensors correlated to this sensor need
to be checked to distinguish a sensor anomaly from a component and/or
compressor anomaly. If redundant or highly correlated sensors are available,
relationship between the sensor can be used to perform further tests.

4.5.3.1 Practical application: Environmental parameters
A number of alarms can be configured for the sensor in Figure 4.24. In the
use case of pultrusion described in Chapter 7 Section 2, two different alarms
can be configured for each of the three different parameters measured by the
device: minimum (low) and maximum (high) levels can be specified in the
device.

The device is continuously verifying the voltage of the battery. If the level
of mV falls under a certain threshold (where the device still runs but the
situation starts to be dangerous), an alarm is raised.

Figure 4.24 ZED-THL-M ZigBee sensor for temperature, humidity and light.
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4.5.3.2 Practical application: Intelligent process performance
indicator

The production process of shavers, described in Chapter 7 Section 1,
consists of several physical manufacturing processes. Electrical, chemical
and mechanical elements are working together in order to produce the
products, making it a highly complex process where interactions between
different signals can be easily overlooked when just monitoring every
signal individually. A soft sensor that combines all different signals and
processes them together will give better insight in these interaction effects
via computational intelligence. This sensor fusion mechanism will deal with
signals of disparate sources that do not have to originate from identical
sensors.

The PCA algorithm in combination with the Hotelling’s T2 score is used
to get insight in the interaction effect of all different process parameters. The
process parameters are first preprocessed by the PLC-PMAC system, after
which they are stored in a database to serve as input to train algorithm. To
train the model, the data is extracted from this database and analyzed to make
sure that the historical dataset consists of data that indicates only normal
process behavior, without any deviations or outliers. This is an important step,
since this data will serve as a reference for future predictions.

For real-time calculations the trained PCA model is deployed on a server
and data from the PLC-PMAC system is fed into this model in order to
obtain the new weighted scores that indicate how close new observations are
related to the historical dataset. Because the PCA algorithm is a ‘white box’
algorithm it can have self-diagnostics abilities. For example, the model can be
instrumental to determine the root causes for fluctuations, trends and outliers.

This results in a single value to monitor if the machine is still
operating within its stable operating window and triggers trends and outliers.
Furthermore, the interaction effects between parameters can be taken into
account in a multivariate manner.

4.5.4 Smart Function: Formatting

Data formatting consists of using predefined data “shapes” or types, for
exchange of information between the sensor and the central unit. The sensor
data, usually in analogue format, has to be translated to the mentioned
digital representation, and this conversion usually involves an appropriately
chosen representation format that avoids transmitted data increase due to
unnecessarily complicated protocols or data length in excess of what actual
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accuracy requires, like the number of bits/bytes used in the codification of the
data sample.

4.5.4.1 Practical applications: Compressed air system
The sensor in Figure 4.18 on page 128 is used in the pultrusion use case
(Chapter 7 Section 2) and it sends the collected data via a Modbus field bus
protocol. In the present case, the data formatting can be either Float or int32.

4.5.5 Smart Function: Enhancement

In addition to simply collecting data, it would be desirable that a sensor
developed further data processing function upon the data. This functionality
not only increases added value on the performance of the sensor but also
relaxes the burden of overall data processing requirements on the central
node(s). These are, in general, the units upon which relies the duty of
calculation and decision, and an appropriate mathematical manipulation of
the locally sensed quantities would shorten the reaction times upon data
collection events and improve the overall sensor network performance.
Various functions like averages, moving windows, transforms and statistical
indicators fall in this category.

4.5.5.1 Practical application: Air and water flow and temperature
sensor

Hysteresis or window function: When the hysteresis function of the sensor
in Figure 4.21 on page 131, used in the pultrusion use case of Chapter 7
Section 2, is set (Figure 4.25), the set point SP and the reset point rP
are defined. The rP value must be lower than the SP value. The distance
between SP and rP is at least 4% of the final value of the measuring range
(= hysteresis). If only the set point is changed, the reset point is changed
automatically, since in this way the difference remains constant.

By setting the window function, it is possible to use the curve to compute
proper values for the upper limit value FH and the lower limit value FL. The
distance between FH and FL is at least 4% of the final value of the measuring
range. FH and FL have a fixed hysteresis of 0.25% of the final value of the
measuring range. This keeps the switching status of the output stable if the
flow rate varies slightly.

Damping of measured value: The damping time is the number of seconds
that are waited before considering new values after there has been a change
in the output values. In fact, whenever a signal gets out of the limits, there is a
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Figure 4.25 Window function (Hysteresis) indications.

change in the outputs, the displayed values and the process value transfer via
the IO Link interface. The damping time is able to stabilize these elements
against flow values that change suddenly.

4.5.5.2 Practical application: Railway strain sensor
The focus in the use case on railway maintenance (Chapter 7 Section 6) is
on optical strain sensors used in train check points. Train “check points”
are installations at certain locations in a railway network that monitor key
parameters of passing trains to establish a number of safety relevant features
of a train and to produce an automated warning in case safety critical limits
are exceeded. These train parameters are derived from the strain introduced
into the rail by the train’s axle loads and by dynamic parameters, such as
wheel out of roundness. This strain can be measured by fiber-Bragg-grating
(FBG) sensors attached to the rail.

The core functionality of the FBG sensor is to measure strain applied to
the sensor. The measured strain is derived from an optical resonant peak in a
reflected light spectrum. The core measurement parameter is represented by
the position of the resonance peak in the spectrum, measured in wavelength
units.

Laser pulses are sent to the FBG by a device (Interrogator) via an optical
fiber cable. The reflected light is then analyzed for the presence and location
of the resonant peak in the spectrum. A number of FBGs, characterized
by their individual resonant frequencies, can be “daisy chained” along one
optical fiber cable for a finer measurement of the strain, by investigating for
the presence of a resonant peak at different frequencies.
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4.5.5.3 Practical application: Conventional energy production
The monitoring of rolling element bearings, such as the ones described
in Chapter 7 Section 8, is based on using vibration measurements made
with accelerometers. Since measurements of this kind are made at high
frequency i.e., the data is collected at e.g., 10 kHz frequency, a lot of data is
collected, assuming the measurements are made continuously. Consequently,
it is natural to try to do the signal analysis, diagnosis and prognosis close to
the monitored machine in order to avoid the need to send enormous amounts
of data to a central processing unit. In the Mantis project these analysis
functions are processed in a Raspberry processor which is located close to
the accelerometer.

The commonly known envelope analysis [Randall, 2011] is used for
signal analysis for the detection of possible bearing faults. With envelope
analysis the indication of upcoming failures can be detected at an early stage,
as well as the fault type i.e., outer or inner race etc. can be detected. The used
band pass frequencies are tuned based on the geometry of the bearing.

The diagnosis of a bearing fault is based on comparison of the amplitudes
of the envelope spectrum at the bearing fault frequencies to the amplitude
levels at neighboring frequencies. The used mathematical formulas are simple
enough that the functions can easily be handled at local level (Raspberry) and
naturally, if needed, as Web services and at a service center.

4.5.6 Smart Function: Transformation

In some cases, the estimation of a magnitude is calculated in terms of
manipulation of acquired data that refers to a different type of measurement.
Data has thus to be transformed from one domain to the other via models,
estimators and other mathematical tools. The transformation could range
from a simple proportionality factor up to a complex signal processing
algorithm involving Fourier transforms, statistical models, Kalman filters
etc. From a different point of view, transformation can also be considered
as the process by which commands or data in a given protocol have to be
translated to a different one. An example of this can consist on a group
of neighboring sensors, interconnected via some type of field bus (e.g.,
Modbus). These sensors can then be connected to a second type of network,
such as 802.3 based Industrial Ethernet. There is a clear need for a “gateway”
that transforms commands and information from one realm to the other and
vice-versa.
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4.5.6.1 Practical application: Pressure drop estimation
The aim of the present function is to determine the relationship between the
pressure drop and the flow velocity with a data driven approach and to track
the change of this relationship overtime in order to follow the degradation
of the filter. An ARX parametric model (see Figure 4.26) was used to model
the relationship between the input (air velocity) and output (pressure drop).
A recursive least square approach with forgetting factor was used to estimate
the model parameters of the system.

The Kalman filter was used to recursively estimate the model parameters
whenever new data was acquired. The principle of the Kalman filter is that the
estimation of new parameters ϑ̂ (k+1) at time k+1 depends on the predicted
error and on the previous parameter estimation ϑ̂ (k) at time k.

Considering equation y= Zϑ+e, when new data arrived in form of input
and output, the new problem consisted in estimating the new parameters w
based on the old data [y Z] and the newly gathered data [ỹ z̃]. The problem
was solved by minimising the 2-norm of the following equation:

minw

∥∥∥∥(y

ỹ

)
−
(

Z

z̃T

)
w

∥∥∥∥2
2

→ w= (ZTZ+ z̃z̃T )
−1

(ZTy+ z̃ỹ) (4.5)

The formula can be computed by using the Woodbury-Sherman-Morrison
equation (Sherman and Morrison 1950) and after some simplifications, the
formula can be described as follows:

w=ϑ̂ (k+1)=ϑ̂ (k)+G[ỹ − z̃T ϑ̂(k)] (4.6)

where
[
ỹ− z̃T ϑ̂ (k)

]
is the error of the prediction and G is the gain:

G =

(
ZTZ

)−1
z̃T

1 + z̃T
(
ZTZ

)−1
z̃

(4.7)

By estimating the model parameters, the relationship between the sensor and
the data is learned and the deviation between the estimated model and the
actual measurement can be calculated by using the model residuals:

residual= |̂y − y| (4.8)

Figure 4.26 Parametric model used to estimate the relationship between the air velocity and
the pressure drop.
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The model obtained can be therefore used to recalculate the pressure drop at a
reference air flow (50% of the flow range), allowing tracking the degradation
of the component, or for anomaly detection.

4.5.7 Smart Function: Fusion

Health monitoring strategies usually require that more than a single
magnitude be measured by a single or multiple sensors. In case a sensor
is devoted to measuring different quantities, a data fusion process could
be pertinent. In this case, several data from various different measured
magnitudes are sent together to the central node(s) in a single transmission.
Plus, if the aforementioned measurements are of different nature (analog and
digital), an appropriate data formatting could also be necessary.

4.5.7.1 Practical application: Off-road and special purpose
vehicle

The purpose of the practical case described in Chapter 7 Section 5 is
to perform a fusion between data obtained from an inertial measurement
unit (IMU) and an ultra-wideband localization device (UWBL), for indoor
location services. The proposed algorithm is based on the IMU and UWBL
measurements. This sensor fusion efficiently combines the advantages of
both methods. Accelerometer and gyroscope measurements are useful to
track the inertial move of the vehicle with a really high refresh rate, but
suffer from the measurement error and perturbations, such as drift. UWB
measurements provide global positions in the navigation environment, and
are accurate enough to determine the IMU measurement drift. The sensor
fusion can be solved using extended Kalman filter principles. An initial
estimation on the position and direction is calculated. Then, when new data
are available, comparison of estimated and actual position and direction
values gives correction factors that are further utilized by the filter to improve
the estimation quality for the following iterations. Refer to Figure 4.27 for a
graphical representation of the process.

4.5.7.2 Practical application: MR magnet monitoring
(e-Alert sensor)

The e-Alert sensor is described in Chapter 7 Section 9 and in [Albano,
2018], and it is a stand-alone sensor, which can autonomously, 24/7,
monitor environmental conditions such as temperatures, humidity, magnet
field, mains power, in the vicinity of a Philips MRI system. The e-Alert



4.5 Intelligent Functions in the Sensors and Edge Servers 141

Kalman filter

Predic�on,
(state propaga�on)

Correc�on,
(meas. update)

New IMU
measurements

New UWB
measurements

uk

Ini�aliza�on

zk

xk Pk

Q Rx0

Figure 4.27 Kalman filter based process for sensor data fusion.

controller is wall-mounted in the technical room of the MRI system and its
sensors are physically connected to those parts of the MRI system where
environmental conditions are measured. The e-Alert sensor (Figure 4.28) is
based on a Raspberry Pi mini-computer. The embedded software is developed
specifically for this purpose, and is built on GPLed libraries and APIs. The
sample values and logs are stored on an internal SD-card.

The temperature sensors are off-the-shelf one-wire sensors. These sensors
are connected to an interface box (max 8 sensors per interface box). The

Figure 4.28 e-Alert controller to monitor environmental conditions in a medical device.
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Figure 4.29 e-Alert control sensor context diagram.

interface box is connected to one of the inputs of the e-Alert sensor.
Multiple interface boxes can be daisy-chained. This provides a scalable
sensor platform that can be tailored for the specific device under monitoring.

As represented in Figure 4.29, the e-Alert sensor acquires sensor values
once per minute and checks these values against configured control limits.
To avoid false positives, a sensor value must exceed the control limits for a
number of consecutive samples before an alert is sent. In that case, the e-Alert
sensor sends an E-Mail or text message to the configured alert receivers.

4.5.7.3 Practical application: MR critical components
The performance of critical components in a medical device is monitored,
as described in Chapter 7 Section 9. Intelligent components were developed,
able to record their own state in real-time and provide access to this data
via a software interface. The next generation high-power amplifiers will
offer capabilities that enable data-driven diagnostics. Recorded data can be
summarized as follows:

• Identification – critical parts of the amplifier contain identification data
such as serial numbers, firmware versions. This data can be used to track
component and firmware changes;
• Firmware upgrade – amplifier firmware can be upgraded via a remote

connection. This capability can be used to upgrade amplifiers in the field,
without physical presence of a field service engineer;
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• Monitoring – physical characteristics (e.g., temperatures, voltages, and
currents) are measured periodically and stored in memory as time-series
data. This capability can be used to define the exact conditions of the
amplifier;
• State logging – the state of the internal state machine of the amplifiers’

firmware is stored in memory as time-series data. These data can be used
to reproduce the exact conditions under which the amplifier goes into an
error state;
• Clock synchronization – the internal clock of the amplifier is sync’d

periodically with the clock of the medical device.

The medical device periodically retrieves the data that is stored in
the amplifier’s memory and combines these data with data from other
components in the medical device, to reconstruct the operational conditions
of the amplifier in the medical device.
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Gorka Urchegui17, Godfried Webers7, Yi Yang11,
Andriy Zubaliy16, Ekhi Zugasti2, and Urko Zurutuza2

1Innopolis University, Russian Federation
2Mondragon University, Arrasate-Mondragón, Spain
3IK4-Ikerlan, Arrasate-Mondragón, Spain
4Philips Consumer Lifestyle B.V., The Netherlands
5Instituto de Engenharia de Sistemas e Computadores do Porto, Portugal
6Tekniker, Spain
7Philips Medical Systems Nederland B.V., The Netherlands
8University of Groningen, The Netherlands
9AITIA International Inc., Hungary
10Technische Universiteit Eindhoven, The Netherlands
11Aalborg University, Denmark
12Ilias Solutions, Belgium
13Budapest University of Technology and Economics, Hungary
143e, Belgium
15Bosch, Germany
16Sirris, Belgium
17Mondragon Sistemas De Informacion, Spain

145



146 Providing Proactiveness: Data Analysis Techniques Portfolios

5.1 Introduction

Data analysis is of paramount importance in the management of proactive
maintenance. This chapter provides a deep analysis of the different techniques
that can be adopted when dealing with the automation of maintenance pro-
cesses. In particular, it focuses on three aspects of the maintenance that we
have considered as the cornerstones of PM:

• Root cause analysis: aims to identify the causes of failures that have
occurred in the past and avoid their appearance in the future. Basically, it
provides a set of approaches intended at building a knowledgebase that
relies on past experience to identify the core causes behind a problem
in the system under investigation. This kind of analysis is useful when
performing post-mortem analysis of the failures that have been reported
and learn from them;
• Identification of the remaining useful life: aims to estimate the

operational life of a component to support different activities including;

• The proper design of a system based on the operational constraints
and the expectations of the users to guarantee its usability;
• The definition of a proper plan of maintenance activities to avoid

unexpected down times.

• Alerting and predicting of failures: aims to identify possible failures
before they actually happen and/or provide an alert about a set of still
acceptable conditions that are unusual and that may result in a failure of
the system if they are not managed properly in a timely fashion.

Besides these three main aspects, there are a number of additional ones
that could be considered to create a comprehensive proactive maintenance
environment. Since modern systems are very complex and taking decisions
about maintenance requires taking into account many aspects, the decision-
making approach needs the participation of multiple stakeholders and the
implementation of collaborative decision-making strategies.

In a collaborative process, entities share information, resources and
responsibilities, risks and rewards to jointly plan, implement, and evaluate
a program of activities to achieve a common goal. Collaboration usually
involves mutual engagement of participants to solve a problem together,
which implies mutual trust. Coordination, that is, the act of working together
harmoniously, is one of the main components of collaboration (Figure 5.1). In
MANTIS, the common goal is the maintenance optimization of assets and the
different systems and stakeholders that take part in maintenance tasks, will
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Figure 5.1 The collaboration concept.

have to share information, resources and responsibilities. From the process
automation point of view, a key aspect of collaborative automation includes a
single, unified environment for the presentation of information to the operator
as well as the ability to present information in context to the right people, at
the right time, from any access point within the system. This implies that the
Proactive Maintenance Service Platform Architecture of MANTIS requires to
collect data from all equipment regardless of type or age, store and organize
the collected data over time, perform advanced analytics and provide decision
support. Thus, MANTIS pursues a collaborative maintenance ecosystem.

Maintenance management can nowadays take advantage of many infor-
mation sources for faster and more accurate prognosis. Data can be extracted
and stored from machines and components. Machine based data analysis may
be used locally to optimize the machine’s maintenance. Better results may be
expected if these particular data are combined with other data sources such
as that from the MES, ERP, cloud-based open-data sources and the machine
operators.

Proactive and collaborative decision support is an integral part of a
proactive maintenance strategy. Condition monitoring is only one part of the
equation, since the actual assets’ condition needs to be combined with other
relevant information, such as customer needs, ambient conditions, business
models and service contracts in order for a service team to make the right
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decision and take the appropriate actions. The goal of MANTIS is to provide
the service team with an intuitive, proactive and context-aware system for
industrial maintenance that supports maintenance by proactively pushing rel-
evant information to the right people at the right time, by intelligently filtering
and summarizing information to prevent information overload through con-
text awareness, by automatically and dynamically scheduling and adapting
maintenance plans, thereby keeping the human in the loop at all times. The
chapter is organized as follows:

• Section 5.2 focuses on root cause analysis providing a short introduction
to the theoretical background and a catalogue of techniques that have
been demonstrated to be useful in this kind of analysis. Such tech-
niques are mainly based on statistical and machine learning approaches.
Moreover, a set of real-world applications are shortly introduced;
• Section 5.3 deals with the identification of the remaining useful life

of components. The section provides a short theoretical background, a
catalogue of the useful approaches, and an analysis of some use cases
to demonstrate the applicability of the described techniques analysing
different modelling approaches;
• Section 5.4 investigates how to alert and predict failures. The section

provides an extensive catalogue of useful techniques. The presented
techniques are also mainly based on statistical and machine learning
approaches;
• Section 5.5 provides some real examples that come from different appli-

cation domains where most of the techniques previously presented have
been applied with valuable results.

5.2 Root Cause Failure Analysis

RCA is a methodology to identify the primary cause of a failure in a system.
RCA is the function that makes PM possible, detecting and correcting root
conditions that would otherwise lead to failure. Once the root cause is
identified, corrective action can be taken to make sure that the issue does
not re-occur.

5.2.1 Theoretical Background

Data-driven RCA uses data and data analysis techniques to identify root
causes, based on the observable states of the system. These observable states
may be directly or indirectly related to identifiable components in the system.
Based on the design of the system, it is necessary to define the relevant
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features in the available data and to identify the components that are most
likely involved in the failure. The latter may require, for example, expert
domain knowledge, historical maintenance data and historical performance
data. If data analysis reveals that a single component caused the (majority of)
issues, then the RCA is complete; otherwise the RCA is re-iterated with an
updated set of features and/or components.

The CRISP-DM defines a methodology for structured data mining. For
RCA, the following phases are used: business understanding, data under-
standing, data preparation, modelling.

Business understanding
Due to the size/complexity of systems and the amount of available data, it
is necessary to narrow down the scope of RCA data analysis a-priori. Expert
domain knowledge is required to scope the RCA in terms of machines, failure
modes, parts and data sources. This is an iterative approach; insights in the
data helps the expert to refine the scope. When the system is complex, expert
knowledge may not be adequate to identify a-priori the relevant system com-
ponents and data features. Probabilistic graphical models could, for example,
be used to identify the most probable components and features.

Data understanding
There is a wide variety of visualization and statistical techniques to provide
an overview of the data. Graphs and statistical characteristics are instrumental
in understanding the data (-distributions) and to identify the relevant features
in the data in the next analysis phases. Examples of data visualization are
PCA and t-Distributed Stochastic Neighbour Embedding. These techniques
can provide insights of the distribution and classification of data in the
multi-dimensional feature space. Examples of statistical techniques are for-
ward/backward selection, trend extraction, and classification. The purpose
of these techniques is to reduce the multi-dimensional feature space to a
manageable number of features, which represent the system adequately for
RCA purposes.

For specific RCA cases, the influence of features evolves over time while
the system evolves. This adds time as an additional dimension. There are
statistical techniques that include implicitly time as dimension, but this raises
the risk that the statistics get biased by the more recent data.

Data preparation
The collected data usually originate from a variety of data sources. These can
comprise machine data, e.g., sensor data obtained by sampling in real-time,
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or machine logs that represent the internal condition of the system. Service
maintenance records are another source of data. These data contain, for
example, specifics of parts replaced (quantity, quality). Each data source may
require specific pre-processing and transformation techniques before it can
be used by data analysis algorithms. Examples include aligning timestamp
formats, correcting for missing data and erroneous data and the aggregation
of noisy data.

Modelling

Once the data features are identified, it is possible to develop algorithms
(models) that identify the specific components -which are the most probable
root cause of a specific issue - and the failure modes. The input of the
algorithms are the data, which are prepared specifically for each algorithm.
The output of the algorithm is a statistical measure that can be used to identify
the specific component as the root cause.

5.2.2 Techniques Catalogue

There is a wide variety of modelling techniques available. Table 5.1 shows an
excerpt of techniques.

Based on research of practical systems, a selected set of algorithms is
described in the next sections. For each algorithm, the main aspects are
outlined, and some practical examples are given. Some of the described
algorithms are used for RCA only; other algorithms are used for root cause
analysis and for failure prediction (Figure 5.2). Some of the examples
illustrate how to embed the algorithm in the system, while other examples
illustrate how to the use the algorithm outside the system.

Table 5.1 Root Cause Analysis Techniques
Modelling technique Algorithm
Classification Random forest classification, Naive Bayes, Support Vector

Machine (SVM), Limit and trend checking
Regression Partial least square regression (PLS), Random forest regression,

Least absolute deviations regression, Logistic regression,
Bayesian network (BN)

Neural network Artificial Neural network, recurrent neural network,
convolutional neural network

Unsupervised learning Hierarchical clustering, K-means clustering, attribute-oriented
induction

Pattern analysis Hidden Markov model (HMM), expectation maximization,
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Figure 5.2 Overview for RCA.

5.2.2.1 Support vector machine
A SVM is a supervisory learning algorithm that can be used for binary
classification. It uses feature data as input and it calculates the most probable
class. This algorithm is trained by providing feature data that is already
classified, i.e., labelling. The algorithm then constructs a hyper plane or a
set of hyper planes based on linear combination of features in the multi-
dimensional feature space and optimizes the distance between the feature
values and the hyper plane(s). For some problems, it may be required to first
linearize the feature values by a (non-linear) transformation. Once the hyper
plane(s) have been constructed, the algorithm is applied to a test dataset. The
percentage of correctly classified cases is a measure for the performance of
the algorithm.

SVM is capable to handle high-dimensional feature spaces adequately
and is insensitive to outliers in feature values. Domain expertise can be
embedded in the transformation of feature values. Furthermore, SVM has
proven its use in numerous application domains, such as text mining, face
recognition, and image processing.

5.2.2.2 Limit and trend checking
Limit and trend checking are a classical algorithm where (derived) feature
values are compared against limits (one-sided or two-sided). Feature values
that are within the limits represent normal behaviour of the system, feature
values that are outside the limits can be caused by defective component(s).
Limit and trend checking are commonly integrated in process automation
systems. These algorithms are in many cases sufficient to prevent larger
failure or damage. However, faults are detected rather late and a detailed com-
ponent diagnosis is mostly not possible. The limits can be based on design
and/or historical data and this represents, in general, a trade-off between
early detection (narrow limits) and inherent statistical variation of the system
(wide limits). Limits may be fixed values, may vary in time or may vary with
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other feature values, depending on the characteristics of (components of) the
system.

Example: press machine
In a press machine, the forces in the ram (which consist of 2 rods) are
measured during the stamp. A misalignment (eccentricity) in the rod forces
creates undesired loads in the press and may lead to premature wear and
future malfunction of the press. Piezoelectric sensors measure the force in the
press rods. During each stroke, the eccentricity is calculated and compared
against limits. When the eccentricity is outside limits, a maintenance action
is triggered by the press.

Example: photovoltaic plant
For a photovoltaic plant, the performance loss ratios are determined by each
energy conversion component. These ratios are aggregated for a given time
span, e.g., one day up to several months. These ratios are compared against
configured limits. The limits are derived from the technical specifications
of the components in the system and from field measurements of “known
good” photovoltaic plants. Furthermore, the limits are corrected for weather
conditions in the given time span. When the performance is outside the limits,
a maintenance action is triggered.

Example: health equipment
In a health equipment, the ambient conditions are monitored to make sure
that the system operates within its operational limits. Sensors continuously
measure ambient temperature, humidity and cooling water temperatures. The
health equipment compares these values against configured limits. When the
ambient conditions are outside the limits, a maintenance action is triggered
by the health equipment. The (wide) limits are based on the design of the
health equipment. The limits can be localized (narrowed) using the configu-
ration capabilities on the health equipment, if local environment operational
conditions justify this.

5.2.2.3 Partial least squares regression
PLS is an algorithm that constructs a hyper plane or a set of hyper planes
based on linear combination of features in the multi-dimensional feature
space and minimizes the distance between the feature values and the hyper
plane(s), based on mathematical projections to a lower-dimensional feature
space. The weight of a feature in the linear fit is a measure of the relative
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impact of the component, associated to that feature. The higher the weight,
the higher the detection capability of a defective component.

The upside of this algorithm is that it can handle a large (more than
10) number of features, it can handle correlated features effectively, and
it can handle missing data points. The downside is that the output of the
algorithm may be difficult to interpret, for example confusing causality with
co-linearity.

PLS was initially developed for econometrics and chemo-metrics. Since
then, it has been applied in numerous domains, such as education, manufac-
turing, marketing and social sciences.

Example: shaver production plant
In a shaver production plan, the product quality is measured and is expressed
as 4 geometry features (Y). The production line quality is measured and
expressed as 12 sensors features (X). Product features are measured on a
sample-basis; production line features are measured continuously. A unique
product identifier is used to join the product features and the production
line features, furthermore, short terms sensor failures are removed from
the production line features. The dataset was fed into the PLS algorithm
where production line features are the independent variables (X) and the
product quality features are the dependent variables (Y). This provided the
weighting factors and the root mean square error. It was concluded that the
root mean square error is acceptable for each of the product features, given the
acceptable bandwidth of product quality. This enabled the shaver production
plant to implement the algorithm in the production line to monitor product
quality in real-time.

5.2.2.4 Bayesian network
A BN is a probabilistic directed acyclic graph of nodes where the nodes
represent observable stochastic variables of a system. Such graphs can be
used to calculate the probability distribution of specific conditions or states,
where multiple nodes interact. More specifically in the case of RCA, nodes
can represent machine components and the node state can represent the
failure modes and non-failure states of the corresponding components [3].
One can therefore calculate the probability of a state (for example failure
or no failure) of a component based on the states of the other dependent
nodes (marginal probability). The process of building a BN graph uses expert
domain knowledge to identify the primary components and their interactions.
In general, many components work independently and their failure does not
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propagate to all other components. This simplifies the BN and allows for
computation that is more efficient.

Common Applications:

Because the BNs are a general probabilistic inference method, it can be
applied to a wide range of problems where objects can be assigned a
probability of being in a state. Examples of application include:

• Medicine (diagnosing disease or illness based on symptoms);
• Document classification (classifying a document belonging to a given

subject based on the word content);
• Image processing (for example assigning a pixel to a region based on

its colour components and the region membership of its surrounding
pixels);
• Spam filters (determining if a message is spam or not);
• Biology (inferring the network), etc.

Strengths and challenges:

The BN model is a very good fit for the RCA problem. It is only necessary
to identify the components and their failure modes. The components are
then mapped to the nodes and the states of each node are used to hold the
conditional probabilities. The problem with constructing this model however
is twofold. The first is determining the state dependency between each pair
of components (establishing the network) and the second is acquiring enough
failure data for each and every component (conditional probabilities). This
requires good domain knowledge and much effort. Since it was used a very
small model (modelled only fail or non-fail states), calculating the marginal
probabilities could be done efficiently.

• Advantages:

• Intuitive model construction;
• Allows for on-line model updates;
• General model applicable to many problems.

• Disadvantages:

• Difficult to automatically infer the network;
• Requires detailed domain specific knowledge to construct the

network;
• Has high computational costs.
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Example: sheet metal machinery
One of the subsystems in a sheet metal machine is the hydraulics subsystem.
Domain expertise is used to define a set of hydraulics failure modes, which
are easy to understand and easy to describe. To further reduce the feature
dimensional space, it is opted to use a binary representation of the state
of the hydraulics subsystem: healthy or faulty. As there was no live data
available from a working sheet metal machine, a BN simulation was built
using hypothetical probability distributions and using a limited set of compo-
nents, such as motors, encoders, actuators, sensors, valves. Each node in the
graph represents one of these components. An interactive User Interface was
developed to select the state of each node; the BN then calculates the failure
probability distribution of each of the nodes in the network. The node with the
highest probability is the most likely defective component. This interactive
tool can be used to obtain a list of most probable defective components, based
on real observations.

5.2.2.5 Artificial neural network
An ANN is a collection of computational units called artificial neurons that
mimic the human brain cells. Each neuron performs a weighted summation
of its input values and applies an activation function, such as ReLU, sigmoid,
Softmax. The output of a neuron is input to other connected neurons. The
neurons are organized into layers: an input layer where the input values are
fed into, the hidden layers that perform the learning process and the output
layer that performs the final decision making process. The variability in
number of layers, number of neurons and the activation functions results in
a wide variety of possible ANN architectures. Similarly to SVM, the ANN
algorithm is trained using a training data set and is validated using a test
data set.

In recent years, the advances in computation power and effective imple-
mentations have enabled ANN to learn through large datasets and in
numerous application domains.

Example: health equipment
To research predictive maintenance capabilities for healthcare equipment,
ANN was used to predict part replacement, with ANN training based on
historical machine data. Historical part replacements were extracted from
service business data. The matching machine errors in an observation window
of 14 days before (failure sequence) and after the part replacement (non-
failure sequence) was retrieved from machine logs. The machine data were
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grouped into features and represented as 1-dimensional and two-dimensional
images and provided as input to the ANN. To test the influence of the chosen
ANN architecture, five deep learning architectures were tested: artificial
ANN, 1D convolution ANN, 2D convolution ANN, LeNet ANN, LSTM. For
each architecture, the ANN is trained using 70% of the feature values while
the remaining 30% is used to test the ANN. To judge the performance of
each architecture, the percentage of correctly predicted part replacements is
determined. All the above-mentioned ANN architectures yielded a percentage
between 50% and 70%. This percentage does not significantly increase when
doubling the number of features or doubling the historical period of time.

Example: metal cutting machine
To research predictive maintenance capabilities for a metal cutting machine,
ANN was used to predict the texture classification of machined products.
The hypothesis is that machine defects may lead to surface defects in the
machined products. The surface could be measured using cameras in the
production line and the resulting images could be inspected in real-time. A
ANN is a well known algorithm to classify image data. For that purpose,
a convolution neural network has been built and trained. The Northeastern
University, or NEU, surface defect database, publically available, was used
to train the ANN. This database contains labelled images that cover multiple
texture classes and contains hundreds of images per texture class. Each
texture type is related to a certain, known, root cause. The ANN was tested
using another dataset, containing images from machined products. The ANN
yielded a performance of 95% of correctly classified textures. This is a good
starting point to further explore how to improve maintenance of the metal
cutting machine, based on visual inspection of metal surfaces.

5.2.2.6 K-means clustering
The purpose of clustering is to group features in such a way that features of
elements inside one cluster are more similar to each other than to the elements
in other clusters. Clustering is useful to gain insights on the internal structure
in data. In the clusters, it is easier to detect recurrent patterns and underlying
rules. K-means clustering is a widely used algorithm that groups data points
around centroids or means. The algorithm iteratively determines the centroids
by minimizing the distance between data points and the centroids. The num-
ber of iterations depends on the dimensions of feature-space and the number
of means. There is a variety of strategies how to select the centroids best, e.g.,
farthest point selection, K-means++.
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Example: press machine
In a press machine, the acceleration of the ram is measured during stamp-
ing. The acceleration is a measure for the vibration state of the press. The
frequency spectrum is calculated from the accelerometer data. The peaks
in the spectrum are identified using a peak detection algorithm. Data of
multiple ram cycles are fed into a K-means cluster algorithm. The K-means
algorithm is designed to detect the highest peak clusters in the frequency
spectrum, covering the different press operating conditions. The higher the
peak, the more it can contribute to a vibration induced failure. From the data
analysis, it was concluded that 4 main peaks in the frequency spectrum can be
clearly identified and can be related to excessive vibrations in the press. This
knowledge is an enabler to implement this algorithm in the press machine in
real-time and to trigger a maintenance action when if required.

Example: special purpose vehicles
To research predictive maintenance capabilities in special purpose vehicles,
log messages from hundreds of these vehicles have been analysed. The data
set contains log messages from multiple vehicle types, multiple customers
and multiple service providers. Each vehicle produces a time-series of log
messages for what is considered as a stochastic process. The K-means
algorithm is designed to detect log message patterns as function of vehicle
type, customer and service provider. It was concluded that there is a strong
relation between log message patterns and vehicle type but that there is no
relation between log message patterns and service provider. Depending on
the clustering size, there is a weak relation between log message patterns and
customer; this indicates a weak impact of vehicle utilization.

5.2.2.7 Attribute oriented induction
AOI is considered a hierarchical clustering algorithm for knowledge dis-
covery in databases. Specifically, it is considered a rule-based concept
hierarchy algorithm, due to the fact that the representation of the knowledge is
structured in different generalization-levels of the concept hierarchy. The exe-
cution of the AOI algorithm follows an iterative process where each variable
or attribute will have its own hierarchy tree. Later, data must change from one
generalization-level to another, generalizing all the data in the dataset. That
step is denoted concept-tree ascension. AOI is an algorithm whose power
resides on defining thresholds and generalization hierarchies for the attributes
of the data. This means that it is an algorithm where domain expert feedback
is very useful. Basically, AOI must be trained first with healthy data, and
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build the base tree using these healthy data. Later, in the test part it is checked
whether the evaluated data creates the same tree or it creates a different one. If
the data creates the same tree, the asset can be considered to be healthy; if new
instances are created, the asset had probably some issues in the meantime.

This would be the first level of maintenance: the anomaly detection. In
order to provide RCA, there should be a database of each type of damage, to
allow to correlate the cluster apparition with the damage itself.

Example: clutch brake machine
AOI was successfully applied to a clutch brake machine monitoring use case.
Brake pads are consumable parts of the clutch brake, and it is important to
know when they wear out. Historical data from a clutch break machine was
extracted. These data comprise information of pressure, rotating speed, air
pressure and trigger, of a clutch brake both with complete brake pads and
with worn out brake pads. First, using information provided by the domain
expert, the generalizations of the AOI algorithm were established. Using data
with the healthy clutch brake, the AOI algorithm was trained. Later, using the
test data, the anomaly detection part of the AOI was used in order to model
the wear of brake pads. Finally, thanks to the wear model, the solution was
able to provide a RUL estimation for the asset.

5.2.2.8 Hidden Markov model
A HMM is a statistical Markov model in which the system being modelled
is assumed to be a Markov process with unobserved (hidden) states. The
HMM is represented by a collection of states, state transitions probabilities
and observations. It is the task of the HMM model to calculate, in the best
way, the probability for a particular sequence of observations, without prior
knowledge of the states. Similarly to other algorithms, such as SVM and
ANN, the HMM is trained using a training data set and is validated using
a test data set.

Example: off-road and special purpose vehicles
To research predictive maintenance capabilities for forklift trucks, HMM
was used to predict the probability of part replacement, based on histori-
cal machine data. Historical part replacements were extracted from service
technician logs, based on text keywords. The matching machine data in an
observation window of 30 days before the part replacement data (failure
sequence) were retrieved from machine error logs. Machine errors after a
part replacement (non-failure sequence) were also retrieved from machine
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error logs. These data sets were joined and fed to the HMM algorithm to train
it. The performance of the HMM algorithm was determined using a test data
set, randomly selected failure sequences and non-failure sequences.

5.3 Remaining Useful Life Identification of Wearing
Components

The RUL is the useful operational life left on an asset at a particular instance
in time. Depending on the scientific or engineering field, RUL definitions can
also include the usable or productive keywords, when defining the end of the
asset useful life [ISO 13381-1, 2004].

5.3.1 Theoretical Background

An essential question for design and operation of technical components is
their expected useful lives. The estimation of useful life is important for
designers and manufacturers for design improvements and marketing pur-
poses, as well as product users for making decisions on which product to buy.
Furthermore, the estimation of remaining useful life after the product has
been put into operation is important for making decisions on maintenance,
repair, reinvestment and new investments. RUL estimation is also important
in relation to possibly existing service agreements between the users and
manufacturers and possible guarantee periods. In this sense, the estimation
of RUL of any asset is the first step towards CBM. A RUL prognostic model
will typically provide at least two components: the RUL estimation and an
associated confidence limit. Models that are more informative provide for
instance an estimate of the failure distribution function.

5.3.2 Techniques Catalogue

Various RUL models classification systems exist within the scientific litera-
ture. For instance [Si et al., 2011] classify RUL prediction models into two
main types depending on whether they use: 1) direct condition monitoring
data, or 2) indirect condition monitoring data. The first type is then divided
into models which model the state evolution as a continuous process or
alternatively as a discrete state space; while the second type is divided into the
subcategories: a) filtering type of models, 2) covariate-based hazard models,
and 3) hidden Markov model based methods. [Welte and Wang, 2014] classify
RUL prediction models into physical, stochastic, data-driven and artificial
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Table 5.2 RUL techniques categories
Classification Techniques
Physical modeling Application specific
Artificial Neural networks RUL forecasting, Parameter estimation
Life expectancy models Trend extrapolation, Auto regressive mean average methods,

Proportional hazard models, reliability function, (Hidden)
Markov models, Kalman filter, Particle filters

Knowledge based models Expert systems, Fuzzy rules

intelligence model, while [Sikorska et al., 2011] categorize models into four
main groups and a varying number of subgroups where the latter consist of the
various RUL techniques. The classification system of Sikorska et al. is applied
in the setup of this section and Table 5.2 shows the four main classification
categories together with the techniques that fall within each group.

5.3.3 Physical Modelling

The application of RUL techniques depend on expert knowledge that is dis-
tilled into a model of the physical asset being evaluated. The model families
used in this context can differ between applications, and a few selected
families are described in this section.

5.3.3.1 Industrial automation
Manufacturing defects combined with severe working conditions and lack of
maintenance, accelerate structural damage in the press head that can lead to
failures in the form of fractures in the structural components of the press. The
structural components, such as the press head, are typically welded steel parts.
The welds are one of the sensitive parts where cracks can initiate because
of notch stress concentration, residual stress and base material properties
degradation.

Crack growth can be divided into three stages: initiation, stable propa-
gation and fracture after an unstable or fast propagation. The first stage is
difficult to predict and difficult to detect during regular maintenance ser-
vice by traditional methods. Cracks are usually only detected when large
enough to be visually localized during inspection. In such cases, a corrective
maintenance action is taken to repair the failure. For this application, two
degradation models have been used to predict the RUL: classical high cycle
fatigue damage and crack propagation according to Paris’ law.
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Figure 5.3 Press machine head critical zones and measured forces at the rods.

High cycle damage: RUL to crack initiation
Classical high cycle fatigue is used to estimate the RUL to a certain thresh-
old damage value, assuming that it is associated with a predefined initial
crack length. Three methods oriented to welded structures recommended
by the [International Institute of Welding, 2008] are used to evaluate the
damage. The steps consist of 1) the stress evolution is calculated by Finite
Element models applying the real forces measured at the press rods, see also
Figure 5.3, 2) once the stress time history is calculated, the stress cycles
during operation are obtained with the standard rain-flow cycle counting
algorithm, then 3) the fatigue damage due to ni constant stress cycles δσi is
obtained by the corresponding structural detail SN curve:Di = ni/Ni, where
Ni indicates the maximum allowable stress cycles of range δσi that a struc-
tural detail can withstand before failure for a given S-N curve characterized
by C and m (slope). The SN-curve can have a different slope depending on
the stress range, that is Ni = C/(δσi)

m. The total damage D due to different
stress cycles is calculated according to Miner’s rule, D = ΣDi = Σni/Ni.

Finally, the RUL, considered as the estimated cycles (time) to the end of
the first stage (crack initiation), is estimated at each critical zone setting up
a damage threshold and calculating the remaining cycles. A fatigue damage
indicators map is created in the studied component in order to identify the
most probable crack initiation locations due to the real forces history applied
in the press.

Crack growth, Paris’ law and particle filters
During the stable propagation stage, in the case of one-dimensional frac-
ture, the crack growth rate is governed by a power law such as Paris’ law.
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This model gives a measure of the crack growth rate proportional to the stress
intensity factor

da

dN
= c(∆K(a))m, (5.1)

with a the crack length, N the number of stress cycles; C and m material
specific parameters ∆K=Kmax-Kmin, the stress intensity factor, which is a
function of the applied stress (load) range ∆σ, ∆K(a)=Y(a) ∆σ (πa)1/2,
and Y(a) the geometry function taking into account the geometry of the
surrounding of the crack.

Under the hypothesis of a crack of certain length started at a critical zone
of the structural component, it is possible to estimate when the crack will
reach a threshold length for a given loading. If experimental data on crack
length propagation are available, the estimation of the RUL can be improved
combining the measurements and the physics based crack propagation model.
In this case, a particle filter technique has been applied to obtain the RUL. The
technique handles the error associated to the measurements and to the model
and updates the RUL, and it is supplemented with an interval of confidence
every time a new observation becomes available.

In Figure 5.4, RUL estimation based on real data from a component under
constant stress loading is shown. The initial crack size is 14 mm and the
maximum crack size is set to 32 mm. The observed crack propagation is given
by the blue line. An initial RUL estimation is done from the initial crack size
based on the physical model (blue dotted line).

5.3.3.2 Fleet’s maintenance
Within MANTIS one of the goals is to find ways towards predictive fleet
maintenance. With respect to RUL prediction, the main goal is to develop a
method to optimize the maintenance protocols for defence vehicles and other
types of complex machines, such that maintenance paradigms can be mod-
ified from a “time-of-usage” and a “number-of-driven-kilometres” approach
to an approach taking into the account the severity of usage during operation.
Thereby, the predictive power for when maintenance is truly necessary to be
performed on the vehicle in order to prevent failure is increased.

An algorithm for determining the remaining useful life for a vehicle as
one whole unit is introduced here. The goal of the algorithm is to estimate the
wear induced on a vehicle by surface induced vibrations. The wear is quanti-
fied by calculating a wear index that is weighted with both the magnitude and
the duration of an excitation. Damages due to the long-term use of a structure
are typically associated with fatigue failure. This failure mode occurs when a
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Figure 5.4 RUL calculation at 4.5 104 cycles.

structural member is exposed to a repeated loading a critical number of times.
The fatigue strength of a certain material is often represented by an SN-curve.
An SN-curve shows the mean number of constant stress-cycles it takes to
break the material versus the applied, constant, stress magnitude. The critical
number of cycles as a function of the applied constant stress level often
follows, approximately, an exponential function of the form:Ni = (S0/Si)

m,
whereNi is the critical number of cycles, S0 a constant, Si the constant stress
magnitude applied, and m an exponent. In real-life, structures are exposed to
excitations of varying amplitudes. Cycle counting then yields a histogram
of cycles binned according to amplitude range. In this case, to compute the
cumulative damage due to the cycles with various stress levels, Miners rule is
applied, which states that:

D =
k∑
i=1

ni
Ni
, (5.2)
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with ni the number of cycles with stress level Si; Ni denotes the number
of cycles after which (approximately) failure will occur when a constant
stress level of Si is applied and k denotes the number of discrete stress levels
possibly applied to the structure. When D > 1 it is typically assumed that the
structural member is expected to fail.

The concept behind the developed RUL algorithm is to estimate the wear
of a vehicle to surface excitation in a manner similar to the Miner’s rule
damage estimation described above. However, as it is not feasible to measure
the applied stress directly, as a measure of the stress the force applied to the
structure of the rigid vehicle frame is used. To that purpose, the acceleration
of the vehicle is measured with a 3D accelerometer sensor, and the amplitude
of the force follows then directly from this measurement. The overall concept
has some challenges. First of all the wear has to be calculated for the vehicle
as one unit, although it consists of multiple structural members. Further,
the loads cannot be measured directly, and instead the measured parameters
are the accelerations. Finally, no parameters for the SN-model are available,
moreover, these parameters are also expected to depend on other factors such
as the location of sensor on the vehicle, the suspension system and the vehicle
type.

To overcome many of these challenges a position translation algorithm
has been developed. The position translation algorithm transforms the obser-
vations made at one location of the vehicle, the physical position of the
sensor, to find the impact at another location of the vehicle, the physical
position of the desired place of impact for the RUL computation. The so-
called Inertial Measurement Unit measures translational accelerations and
rotational velocities, and is located in the moving reference frame mounted
on the vehicle frame close to the centre of gravity of the vehicle. Denoting
the reference frame by x’ y’ z’, the task is to transform the data measured in
the reference frame to a similar aligned reference frame x” y” z” defined by
displacing the reference frame by a displacement vector s′p. The prime in s′p
indicates that the displacement vector for the new double primed reference
frame is written in terms of the primed vehicle fixed system. Denoting the
angular rotation vector as ω’ =[ωx’, ωy’, ωz’]T , which is the vector filled
with data from the Inertial Measurement Unit, then the transformation of the
translational accelerations from the primed to the double primed system are
governed by the following relation r̈

′
P = r̈

′
+ ω

′
Ms

′
P + ω

′
Mω

′
Ms

′
P , in which
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ωM is the so called skewed symmetric matrix defined through ω as

ωM =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (5.3)

The numerical differentiation of the angular velocities is necessary to
estimate the angular acceleration of the primed system.

5.3.3.3 Eolic systems
A degradation model is applied to predict the RUL of REBs in wind turbine
gearboxes. The model can be viewed as a hybrid of a statistical model
and a qualitative physics-based model. The objective of qualitative physics-
based models is typically to select a proper damage indicator to construct
a statistical model. The statistical model can then be fitted to the damage
indicator data. Prior knowledge concerning probable values for the model
parameters can be incorporated into the model by applying a Bayesian
approach. By gathering an increasing amount of on-line monitoring data over
time, the uncertainty related to the value of the model parameters decreases
by applying a Bayesian updating method. In parallel the probability density
function describing the remaining useful life of the REBs, which uses the
parameter estimates, is updated accordingly.

Implementation
Among four vibration features extracted from the full frequency domain
vibration spectrum, the so-called High Frequency Peak Value was selected
as the damage indicator to apply for the diagnosis and the prognosis of
REBs. An exponential statistical model with multiplicative error terms is
used, originally proposed by [Gebraeel, 2005] and [Gebraeel, 2003]. The
mathematical form of the model is S(ti) = θ exp[βti + ε(ti)], in which the
parameters θ and β are assumed to follow, respectively, a log-normal and a
normal distribution. Generally, the logarithm of the raw vibration signal S(ti)
is taken to fit the model to the data.

Given a specific time tk, RUL denoted by T is defined as the duration from
tk to the critical time reaching the critical threshold denoted by D. The prob-
abilistic distribution of T is equivalent to the logarithm of High Frequency
Peak Value to reach D, and can be expressed by: P (T < t|L1,L2,. . . ,Lk)
= P [L(tk+ T) = D|L1,L2,. . . ,Lk], with L1, L2,. . . , Lk the logarithm of the
observations. The data related to a number of REBs was used to infer prior
information for both the model parameters and the pdf of RUL. For each of
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Figure 5.5 Illustration of Updated pdf of RUL for a REB.

these REBs, part of the signals was approximated by an exponential trend,
over a period from the start-up of increase in vibration signal amplitude (day
ts) to the occurrence of cut-off (day te), and used to fit the statistical model.
The statistics of θ and β of this specific REB is estimated based upon the
other N-1 REBs, also known as leave-one-out cross validation, and is used as
the prior distribution of θ and β for this specific REB. Bayesian updating
is performed four times with the interval of 10 days (e.g., first Bayesian
updating performed at Day (ts+10), and so on), with the updated pdfs of one
specific REB illustrated in Figure 5.5.

5.3.3.4 Medical systems
The activity concerns the wear of cathode filaments in X-ray tubes that are
used in interventional X-ray systems. X-ray tubes are the most expensive
replacement parts of an interventional X-ray systems and therefore of major
concern for the service organization. Because of the major impact, in terms of
downtime and costs related to an X-ray tube replacement, it is important for
Philips to be able to predict an upcoming failure of X-ray tubes accurately in
order to provide in time replacement. A failure analysis was performed and
the dominant failure mode turned out to be a blown cathode filament.

X-ray tube cathode filaments are heated to a high temperature dur-
ing operation, in order to emit sufficient electrons to produce the desired
X-ray dose. The high temperature, however, also makes the Tungsten—of
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which the filaments are made of—to evaporate. Thereby, a hot-spot forms
locally at a certain location, where the generated heat and the evaporation
increase exponentially over time, until the material melts at the hot-spot
resulting in the opening of the filament, see also [Webers et al., 2016] and
[Horster et al., 1971]. The physics of failure of the X-ray tube is very similar
to the physics of failure for incandescent lamps [Rice, 1997]. Understanding
the stress applied and having a damage indicator at hand are two prerequisites
for building a physical model for RUL prediction of the filament. From the
previous literature and experience, the filament stressor (which is the filament
temperature) and a proper damage indicator (which is the filament resistance)
are known. However, monitoring the damage increase over time by simply
plotting the filament resistance as a function over time is problematic for
two reasons: 1) individual interventional X-ray systems are daily used with
various settings, meaning that is different filament currents are applied from
run to run, implying that time is not a proper aging factor to apply as
independent variable. 2) The filament resistance cannot be measured directly.

The first issue is dealt with by using a method similar to Miner’s rule [10].
Instead of using the accumulated run time, an accumulation of linear damage
(W) is used

W = X∆Wi (5.4)

with the sum applied over the total number of runs, and

∆Wi =
tij
Tj

(5.5)

where ti,j is the time duration of run i, carried out with an applied current
of Aj , j = 1, . . . , k, and k the total number of possible Ampere values to be
applied; and Tj the mean lifetime for a filament when a constant current Aj

is applied to it.
The second issue is overcome by using the c-factor as a damage indicator

rather than the filament resistance. The relationship between the resistance
and the c-factor is given below. If the resistance of the filament at a particular
temperature is R0 at the start of use, while after being used for i runs the
resistance at the same temperature has changed to Ri, then the c-factor for
that run is:

ci =

√
R0

Ri −R0
(5.6)

The value of cican be derived for each run, without involving measurement
of Ri. Two small modifications are made to the two variables in order to



168 Providing Proactiveness: Data Analysis Techniques Portfolios

use them for monitoring the degradation over time. For the ∆W calculation,
the mean lifetime Tj— mean lifetime for a filament when a constant current
Aj is applied to it— is not used. In fact, the sum is divided by the mean life
time for a current Aj /ci. Without going into detail, by dividing the applied
filament current by the c-factor, the accumulation of wear per unit time
remains constant if the user keeps on using the system in the same way, and
the new variable is referred as linear wear (LW), that is

LW = X∆LWi (5.7)

with the summation over all runs i, and

∆LWi =
ti,j

T
′
j

(5.8)

with T’j the mean lifetime for a filament for which a constant continuous
current Aj /ci is applied. The need for this modification is a consequence
of using a constant heating current during the lab experiments rather than
constant heating power, which would have resulted in a constant filament
temperature during a single experiment. In Figure 5.6, the logarithm of the
c-factor is plotted as a function of linear wear for lab data.

Figure 5.6 ln(c-factor) vs. linear wear from lab experiments.
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It was observed that the slope of the linear part of the curve and the slope
at time of failure are correlated, meaning that the relative large initial negative
slope implies relative large negative slope at time of failure. This observation
was quantified and incorporated in the final RUL estimation method.

The RUL estimation method entails now roughly the following steps

• For the linear part of the curve a simple linear regression is used to
determine the slope of this segment. For the curved segment a third order
polynomial fit is applied, leading to c-factor= a LW3+ b LW2+d LW +
e, with LW representing linear wear, and a, b, d and e coefficients that
need to be found experimentally;
• The first derivative with respect to the linear wear is taken, resulting in

the quadratic function: c-factor’= 3a LW2+ 2b LW +d. This quadratic
function needs to fulfil two requirements. First, it needs to be a negative
parabola, i.e., downward opening and second the top of the parabola
should be located before the split of the two segments;
• If the quadratic function is found, and writing the empirical found

relation between the slope (aini) of the initial part of the curve and at
failure (aend) as aend = p aini+ q, then by solving c-factor’=aend for
LW, gives the prediction for when failure will occur;
• Finally, by extrapolating the observed increase of linear damage with

time, an estimate can be found in terms of calendar date when the LW
obtained under step 3) presumably is reached. Similarly, the latter can
be done to obtain two confidence limits for which the filament will fail
with 95% confidence.

5.3.4 Artificial Neural Networks

ANNs are Machine Learning algorithms inspired by biological nervous sys-
tems such as the human brain. ANNs process information using a set of highly
interconnected nodes, also referred as neurons, organized into layers. The
structure of ANN’s are typically split into three types of layers: one input
layer; one or more hidden layers; and one output layer (see Figure 5.7). The
input layer receives the data and is connected to the first hidden layer, which
in turn is connected either to the next hidden layer (and so on) or to the output
layer. The output layer returns the ANN’s predictions.

A node links to other nodes by weighted connections. At each node,
an activation function combines these weights into a single value, which
may limit signal propagation to the next nodes. These weights, therefore,
enforce or inhibit the activation of the network’s nodes. Neural networks can
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Figure 5.7 Schema of an artificial neural network, from [Haeusser, 2017].

detect complex nonlinear relationships between dependent and independent
variables and require very little feature engineering.

5.3.4.1 Deep neural networks
DNNs (see Figure 5.8) brought major advances in solving some problems
that were previously difficult to overcome in the artificial intelligence field
[LeCun et al., 2015]. They have proved to be good at finding intricate
structures in high dimensional data, which makes them relevant for many
fields of study. Despite the fact that there is no clear border between what
distinguishes a DNN from the others, a simple definition is that, a DNN
contains many hidden layers in the network [Schmidhuber, 2015].

Common applications
• General classification [Baxt, 1990; Widrow et al., 1994];
• General regression problems [Refenes et al., 1994];
• Prediction of medical outcomes [Tu, 1996];
• Environmental problems [Maier and Dandy, 2000];
• Stock market index predictions [Moghaddam et al., 2016];
• Remaining useful life (RUL) [Ali et al., 2015];
• DNNs for image processing [Egmont-Petersen et al., 2002];
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Figure 5.8 Deep Neural Network with 3 hidden layers, from [Nielsen, 2017].

• DNNs for audio [Lee et al., 2009];
• DNNs for text [Collobert and Weston, 2008];
• DNNs for regression tasks and remaining useful life [Tamilselvan and

Wang, 2013].

Strengths and challenges
• Some of the strengths of ANNs are:

• ANNs are effective at modelling complex non-linear systems;
• Once an ANN has been trained, it processes the data efficiently;
• ANNs (and DNNs in particular) require little to no feature engi-

neering [Tran et al., 2011].

• Some of the challenges are:

• Training a model usually incurs high computational and storage
costs;
• Lack of interpretability (“black boxes”) despite efforts to extract

knowledge from them [Andrews et al., 1995; van der Maaten and
Hinton, 2008; Merrienboer et al., 2014];
• Many hyper parameters need to be tuned;
• Many configurations are possible;
• DNNs typically require a lot of data to be trained [Chilimbi et al.,

2014];
• Collecting large labeled datasets required for training the DNNs is

a challenge.
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Research has been carried out in order to reduce the training time by
using simple learning functions [Guo and Morris, 2017] or by transfer
learning [Schmidhuber, 2015]. In regards to hyper-parameter tuning, sev-
eral approaches have been proposed to automate this process; for example
[Domhan et al., 2015].

Implementation
The use-case considered has a dataset that represents a time-series of sensor
readings from a fuel system. Each sample provides information from several
sensors and the current health state of the system (range from 0% to 100%).
Exposing these sensors to extreme driving or ambient conditions for several
years can lead to their failure or deviations in measurement. The goal is to
predict the current health state of the fuel system as accurately as possible
while being robust to sensor failure and deviations. Experiments based on
small feed-forward neural network with only 3 hidden layers (Input layer: 161
neurons; Hidden layer 1: 128 neurons; Hidden layer 2: 256 neurons; Hidden
layer 3: 128 neurons; Output layer: 6 neurons) and using drop-out and noise
injection were able to maintain accurate predictions with as much as 40% of
incorrect sensor data (using simulated errors).

5.3.5 Life Expectancy Models

In some cases, RUL computation leverages on models of life expectancy of
assets. This is the case, in particular, when time series are used to express
collected data over data, and to drive the prediction regarding particular
parameters that can be useful to obtain a reliable RUL.

5.3.5.1 Time series analysis with attribute oriented induction
A time series is a collection of data measured over time and represents the
evolution of a certain quantity over a certain period. The main feature of a
time series is that the collected data values are successive in time and typically
strongly correlated with neighbouring observations. In many scenarios the
goal is to predict the future outcomes of a variable of interest. The overall
research field dealing with time series is referred to as time series analysis.
Commonly, in order to analyse a time series the signal is: 1) decomposed
in various parts, that is in a trend component, a cyclic (seasonal) component
(both nonstationary) as well as in the random (stationary) component that
remains after removing the cyclic and trend effect from the observed series;
2) analysis is performed on the various parts, which are then 3) recombined
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in order to make predictions. One of the most utilized time series forecasting
models are autoregressive and moving average models (ARIMA). The AR
part of ARIMA indicates that the evolving variable of interest is regressed
on its own lagged, i.e., previous, values. The MA part indicates that the
regression error is actually a linear combination of error terms whose values
occurred contemporaneously and at various times in the past. The “I” (for
“integrated”) in the name ARIMA indicates that in many applications, instead
of analysing the original data, the data is preliminary differentiated, one
or multiple times. The purpose of each of these features is to construct an
ARIMA model to fit the data as well as possible.

AOI is a data mining hierarchical clustering algorithm. The main charac-
teristic of AOI is the capacity to describe the information in more general
concepts/terms, reducing the dimension of the data. Its power resides on
combining the monitored data with domain expert knowledge, in order to
provide a more trusty knowledge generation.

The execution of the AOI algorithm follows an iterative process where
each variable or attribute will have its own hierarchy-tree. Later this data
must change from one generalization-level to another, generalizing all the
data in the dataset. That step is denoted concept-tree ascension. AOI is an
algorithm whose power resides on defining thresholds and generalization
hierarchies for the attributes of the data. This means that it is an algorithm
where domain expert feedback is necessary. Based on the defined hierarchy
trees, generalizations are performed iteratively in order to conform similarity
clusters. The higher the generalization level on the hierarchy tree is, the more
general—but thereby also the more ambiguous—the cluster description gets.
The more general the cluster, the lower the value of significance of the cluster.
Such clusters refer to different states of the behaviour of the monitored asset.

Implementation
Time Series analysis with AOI was applied in relation to a clutch brake
machine monitoring use case. Two main phases are employed on RUL
calculation: (i) quantification, and (ii) time series analysis. The aim of
quantification is to describe the signal(s) to be forecasted in a measurable
(numeric) way. When quantification is applied over a set of signals, its
information representation becomes simpler and easy to deal with, but also
some information-loss occurs. With the help of AOI, different work-cycles
(clutch or brake cycles) were labelled by a training process with a value
corresponding to their level of normality, called Normality Factor, according
to the ambiguity values of clusters. Thereby, a minimum value for a work
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cycle to be considered as normal is calculated based on training phase data.
Finally, the evolution of the Normality Factor value can be modelled with a
time series based ARIMA model, in order to check when a work-cycle, which
does not meet the normality conditions, occurs.

5.3.5.2 Application to a pump
A methodology for quantifying and monitoring the evolution of the perfor-
mance of a pump has been formulated, in order to take maintenance decisions
based on this information. The performance of a pump is influenced by two
main causes: the wear/tear of its components and the clogging situations.
In both cases, maintenance tasks may be needed to recover the best pump
performance. A maintenance task is recommended when the performance
decreases more than 20%. Therefore, in this context, RUL is understood as
the time (in days) until a pump’s performance decreases more than 20%. The
methodology is based on data typically available for pumps: the operation
frequency (Hz) and the pumped flow rate (m3/h).

First of all, the performance of the pump is estimated each day using
the available frequency and flow rate historical data. Later, the evolution of
the pump performance is used for estimating the RUL. Thus, the trend of
the pump performance is calculated applying a linear regression algorithm.
Finally, this linear regression is used for predicting the evolution of the pump
and calculating the RUL, i.e., the time until the performance reaches the value
of –20%.

The RUL estimation error has been analysed for three clogging situations
which vary in duration and magnitude. For each clogging period, Figure 5.9
shows the RUL estimation error on the Vertical Axis, as a function of the
remaining days to clogging situation (Horizontal Axis). In particular, day 0
corresponds to the day of a −20% performance.

The RUL estimation error ended up being between ±5 days during the
analysed situations, which is considered good enough taking into account the
duration of the clogging situations and the randomness of its nature.

5.3.5.3 Application to industrial forklifts
This use-case used data collected from industrial forklifts. The overall goal
is to provide RUL estimates for forklift tires. Two different datasets were
available to achieve this goal. The Fleet Manager system provides data on
the usage by the on-board computers of different forklifts and generates
10-minute aggregated data reports. It contains fields like driven time, dis-
tance travelled, number of direction changes and consumed energy amount.
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Figure 5.9 RUL error vs remaining days to clogging situation.

The second data source are the service reports from service technicians, in
which they reported in free text both the problems identified in a forklift and
the repairs that were performed.

Text analysis was used to identify and extract the dates from the service
reports when a tire replacement occurred due to the tire being worn-out
(and not due to any other cause). Thereafter, the Fleet Manager data set was
further aggregated into time intervals where forklifts used a given set of tires.
The regression model was built using this pre-processed dataset. The Fleet
Manager data set was also clustered into three driving profiles by using expert
knowledge, which resulted in useful categorical variables in the regression
model.

The clustering was done in two steps. In the first step, a centroid-based k-
means algorithm was used, and then the final 3 driving profile classifications
were created with a hierarchical clustering method. This was needed to lever-
age the advantages of both algorithms, while minimalizing their drawbacks.
For example, the k-means clustering algorithm tends to create equally sized
convex clusters, which is not physically meaningful in relation to this data
set. A more detailed analysis of these clustering solutions, highlighting the
strength and weaknesses of both can be found in [Kaushik and Mathur, 2014].

The second step involved building an ensemble tree-based regression
model, called Gradient Boosted Decision Trees [Friedman, 1999]. Like other
ensemble regression models (e.g., Random Forest), this algorithm provides
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good defence against overfitting at the cost of interpretation, in the sense that
the predictions of the model are less transparent. The model handles different
variable types well, and it is insensitive to correlated variables. With adequate
parameter optimization, it is shown in [Caruana and Niculescul-Mizil, 2005]
that the Gradient Boosted Decision Trees provides great accuracy com-
pared to many other classical machine learning models. The model training
included cross-validation to reduce the level of overfitting due to the limited
amount of data points, and hyper parameter optimization to find the optimal
algorithm parameters (e.g., number of trees or tree depth). The results were
evaluated based on the Root Mean Square Error measure.

5.3.5.4 Application to a gearbox
One of the main objectives in this use-case in relation to RUL prediction is in
improving the failure prediction of a gearbox by incorporating an additional
covariate besides produced GWh to a failure model, and to test whether
or not incorporating this additional covariate adds predictive power. The
additional covariate is allowed to change with time and so it is a so-called
time dependent variable.

The additional covariate is incorporated by applying proportional haz-
ard modelling with a time-dependent covariate. The Incorporation of a
time-dependent covariate within a proportional hazard model, requires the
knowledge at each failure time t the value of the time dependent covariates
of all assets that did not fail until time t. The latter demand is in practice
in many situations hard to fulfil. Through the last two decades, applying
time dependent covariates has become more and more common and standard
software is available in for instance [R Core Team, 2014] to incorporate them
[Therneau, 2015; Therneau and Atkinson, 2017; Fox and Weisberg, 2010].

Denoting w the produced energy [GWh], then for an object with one
single GWh-dependent covariate the hazard function takes the form [Thomas
and Reyes, 2014]

λ(w|z(w)) = λ0(w) exp(βz(w)), (5.9)

with z(w) the value of the covariate at n of w, and w ≥ 0. By the hazard rate
the survival function conditional under z(w) is

S(w|z(w)) = exp[−Λ(w|z(w))] (5.10)

with the cumulative hazard conditional under z(w) defined by

Λ(w|z(w)) =

∫ w

0
λ(u|z(u))du. (5.11)
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The latter two equations taken together imply that to define the survival
function for an asset at w=0—or at the current value of w—it is necessary
to know the future values of the covariate as a function of w, which is often
an impossible requirement to fulfil [Fisher and Lin, 1999]. For more details
concerning including time-dependent covariates in a proportional hazard
model, please refer to [Fisher and Lin, 1999] and [Collett, 2003].

5.3.6 Expert Systems

An extended Expert system can be used as support for both RUL and RCA
algorithms. The extension includes a Petri net [Aghasaryan, 1997] based
execution scheduling, which allows for further enhancements of the system.
The method entails introducing a supporting function in order to use an expert
system along with a RUL estimation algorithm. In this use case the method is
applied together with a Proportional hazard model based RUL estimation of
tire wear (see Section 5.3.5.3).

The objective of the Expert System is to verify and make decisions based
on the result of the RUL estimation algorithm. The RUL estimation is per-
formed online, and updated every time a new sensor measurement set arrives.
However, the estimated RUL needs to be validated, and then a decision is
taken. The Expert System is performing the validation, and makes a decision
accordingly. A rule-based system is selected as it scales well, provides results
faster than case based systems [Simpson and Sheppard, 1998], and does not
require large amounts of labelled training data like machine learning based
methods. The proposed method mimics the behaviour of a human expert as
follows:

• The Expert System is triggered by a rule;
• It extracts key parameters from the trigger description and based on this,

a course of actions is selected;
• It initiates elementary investigation checks, search routines and possible

correlated processes in a simultaneous manner;
• Once a result of a check is available, new routines are started using the

new pieces of information;
• It continue to perform checks and tests until a result is found.

The course of actions to be executed for a specific trigger is based mainly
on expert knowledge. For each monitored component, a different rule set is
used, specific to the component.

Petri nets present an efficient way to implement data flow-driven pro-
gramming. They can be used to mimic the simultaneous data processing
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capabilities of a human expert. System specialists make ad-hoc plans or fol-
low predefined procedures to find the root cause of an alarm. Consciously or
not, they fetch further input data e.g., environment data, to start measurement
or analysis processes. Simultaneous processes finish asynchronously, which
forces the expert to make decisions on what to do next: what kind of further
checks can be initiated using the gathered input data? In short, the expert’s
behaviour that consists in scheduling elementary checks to solve a RCA
problem can be naturally modelled with Petri nets. In the use-case, the Petri
net describes rules, extended with elementary checks. The elementary checks
are typically basic checks like database lookups, more detailed data requests
as well as they may include active measurements like on-demand vibration
analysis. The various triggers associated with the definition of such Petri nets
are based mainly on expert knowledge.

Implementation
In a complex system the input of RCA and RUL calculation is big data
aggregated from multiple distinct sources, and the analysis of such big data
is performed in the cloud. For implementation, Microsoft Azure has been
chosen which provides extensive functionality for collecting and processing
data from different sources. Azure IoT Hub is used to handle incoming
chunks of data such as real-time measurements. The failure prediction is
performed in Azure Stream Analytics based on the trigger conditions, which
need to be uploaded to Azure Storage in advance. The IoT Hub receives
the error logs and other measurements from the trucks and forwards this
data to Stream Analytics, which checks for trigger conditions. A simple rule
set can be implemented in Stream Analytics directly. The Stream Analytics
process is defined in stream analytic query language, which has a similar
syntax to SQL. When a failure is predicted, a Web based remote application
will be informed, which does the actual verification. The remote application
implements the Petri-net based scheduler and the elementary checks. The
output of the application can be visualized in Azure Power BI, and it also
integrates in the Mantis HMI (see Chapter 6).

5.4 Alerting and Prediction of Failures

Alerting is a method to trigger a corrective action. The purpose of the
corrective action is to make sure that the failure does not re-occur. Data
driven alerting is based on algorithms that detect and predict failures. These
algorithms process historical data and, based on domain knowledge, produces
a failure probability (see Figure 5.10). Based on business understanding, these
probabilities are used to define the precise corrective action.
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Figure 5.10 Overview for Alerting and prediction of failures.

5.4.1 Theoretical Background

There is a wide variety of algorithms available to detect and predict fail-
ures. The algorithm selection is based on business understanding, data
understanding, and data preparation.

The CRISP-DM defines a methodology for structured data mining. For
prediction and alerting of failures, the following phases are used: modelling,
evaluation, deployment.

Modelling
Once the relevant data features have been identified, the algorithm to predict
failures can be developed. The output of the algorithm is a statistical measure
that indicates the failure probability. Based on business rules, an alert can be
created if the probability warrants this.

Evaluation
The model is applied to a selected set of real-life cases. These cases are
evaluated to judge whether there is a sufficient match between prediction and
reality.

Deployment
The model is brought into production after successful evaluation. The model
can be implemented in the system or outside the system (depending on the
required data sources and computation capabilities) to create alerts in real-
time.

5.4.2 Techniques Catalogue

There is a wide variety of modelling techniques available. Table 5.3 shows an
excerpt of techniques.

Based on research on practical systems, a selected set of algorithms is
described in the next sections. For each algorithm, the common application,
strengths and challenges are outlined, and some practical examples are given.
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Table 5.3 Techniques for Alerting and Prediction of Failures
Modelling technique Algorithm
Pre-processing Nearest Neighbor Cold-deck Imputation
Classification /
Pattern Recognition

SVM, LDA, Pattern Mining

Dimensionality
reduction

Temporal Pattern Mining, PCA

Probabilistic graphical
models

Hidden Semi-Markov model with Bayes Classification

Neural networks DNN, Autoencoders, Convolutional neural network with
Gramian Angular Fields, RNN with LSTM

Time Series Analysis Change detection
Statistical tests Fisher’s exact test, Bonferroni correction, Hypothesis test-

ing using univariate parametric statistics, Hypothesis testing
using univariate non-parametric statistics, Mean, thresholds,
normality tests

5.4.2.1 Nearest neighbour cold-deck imputation
General description
Many machine learning algorithms assume that all records in the data set
are complete, i.e., there is no missing data. Industrial data, however, often
contains gaps e.g., due to misconfigured sensors, connectivity problems or
manual input. One approach for addressing the missing data problem is to
impute the missing values. Let us assume that the data is provided as a table,
with columns representing the features and rows representing the records. The
common hot-deck methods include mean imputation (the missing values in a
column are filled in with the mean of that column), fixed value imputation,
random imputation (the missing values are filled by randomly sampling the
given values in the column), considering donor samples from the same data
set. Nearest neighbor cold-deck imputation fills in the missing values from
donor records that are selected from a different data set. It selects the donors
by searching for the nearest neighbours using meta-features describing the
original data set or its column. The meta-features can be derived from
the available data samples (e.g., mean, range, ...) or external to the data
(e.g., specification of the data source, conditions under which the data was
collected . . . ).

Common applications
Cold deck imputation in general is commonly used in for imputing missing
data in structured collections of data such as tables and questionnaires.
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Strengths and challenges
Nearest Neighbour Cold-deck Imputation performs better than the traditional
hot deck imputation methods for data sets for which a significant proportion
of the data is missing. The performance of Nearest Neighbour Cold-deck
Imputation also depends on the meta-features used for selecting the nearest
neighbour donors, and how they partition the donor space. If donors are
selected based on meta-features derived from the data set, then (similarly to
hot deck imputation) the more data is missing the less accurate the imputa-
tion. If external meta features are used, then the imputation accuracy does not
depend on the amount of missing data, but on the relationship between the
external features and the underlying data generating process.

5.4.2.2 Support vector machine
General description
A SVM is a supervised learning model that can be used for binary classifi-
cation and regression analysis. Supervised learning requires labelled training
data consisting of input objects (e.g., a feature vector) and a desired output
in order to infer the model parameters from the data and to be able to predict
new incoming data. A SVM constructs a hyperplane or a set of hyperplanes
to separate classes in the feature space. SVM defines optimal hyperplanes
for linearly separable patterns and can be extended to patterns that are not
linearly separable, by transforming the original data to a new space by using
a kernel function.

A hyperplane is defined as f (x) = b + wT x where w is the weight vector,
b is the bias and x the training dataset. Infinite hyperplanes can be used to
separate the classes by scaling w and b (See Figure 5.11). Rewriting the
hyperplane in canonical form states

∣∣b+ wTx
∣∣ = 1.

The optimal hyperplane is therefore defined as the plane maximizing the
margin of the training data. In SVM the data points that lie the closest to
the decision surface and therefore the most difficult to classify, are the ones
influencing optimality. These points are called support vectors.

The distance between points is defined as di =
|b+wT xi|
‖w‖ = 1

‖w‖
In a binary classifier, the margin M is defined as twice the distance to the

closest examples M = 2
‖w‖

Therefore, the problem of maximizing the margin M is the same as the
problem of minimizing the following function L subject to constraints:

min
w,b

L (w) =
1

2
‖w‖2 subject to yi( b+ wTxi ) ≥ 1 ∀i (5.12)
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Figure 5.11 Linearly separable point can be separated in an infinite number of ways.

Where yi represents each of the labels in the training dataset. This is a
constrained optimization problem that is solved by Lagrangian multiplier
method as:

L =
1

2
‖w‖2 −

∑
αi[yi

(
b+ wTxi

)
− 1] (5.13)

By equating the derivatives to 0, the result is w = Pαiyixi and Pαiyi = 0
(Figure 5.12).

In case the data are not separable by a hyperplane, SVM can use a soft
margin, meaning a hyperplane that separates many but not all data points
(Figure 5.13). Different formulations are possible for adding soft margin by
adding slack variables si and a penalty parameter C. An example is the L1-
norm problem:

min
w,b,s

L (w) =
1

2
‖w‖2 + C

∑
j

si subject to yi( b+ wTxi )

≥ 1 ∀i and si ≥ 0 (5.14)

Figure 5.12 Optimal hyperplane in a 2D feature vector obtained by maximizing the margin.
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Sj
Si

Figure 5.13 Slack variables introduced for not linearly separable problem.

Some problems that do not have a simple hyperplane as a separator may
require nonlinear transformation with kernels. The idea is to gain linearly
separation by mapping the data to a higher dimensional space (Figure 5.14).

SVM are inherently a binary classifier that can be extended to the multi-
class problem (e.g., by reducing the multiclass problem into multiple binary
classification problem).

In the context of anomaly detection, one-class SVM can be used to detect
if the system is behaving normally or not. In order to define the normal
behaviour of the system to be monitored, historical data of the system running
in normal behaviour is required. The support vector model is hence trained on
the anomaly-free data and afterwards each new measurement point is scored
by a normalized distance to the decision boundary.

Common applications
SVM was developed by Vapnik and Chervonenkis [1971]; Vapnik [1995]
and became popular because of its success in handwritten digit recognition.

Φ:  x→φ(x)

Figure 5.14 SVM kernel transformation to gain linearly separation.
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SVMs have demonstrated highly competitive performance in numerous real-
world applications such as bioinformatics, text mining, face recognition, and
image processing, which has established SVMs as one of the state-of the-art
tools for machine learning and data mining.

Strengths and challenges
• Some strengths of SVM are:

• Training time necessary depends on the number of supports and the
kernel chosen, while the execution time is very short so that it is
suitable for real-time application;
• SVM do not suffer from the curse of dimensionality;
• SVM is not much affected by local minima in the data;
• Does not require lot of data to be trained, however the data should

come from all the possible normal behaviours of the system.

• On the other hand, it also has some limitations, some of them being listed
below:

• The feature space of a SVM is often high dimensional and
therefore has many parameters and is hard to estimate;
• Selection of the kernel function is not trivial.

5.4.2.3 Linear discriminant analysis
General description
Let P(x) be the probability distribution of the input data, and P(y) the class
distribution. The goal of a classifier is to assign a sample x to the class y,
which corresponds to the largest posterior probability P(y|x) that input x
belongs to class y. The LDA classifier relies on the Bayesian theorem

P (y | x) =
P (x | y)P (y)∫

y P (x | y)P (y) dy
(5.15)

to compute the posterior using the likelihood P(x|y) of input x being gen-
erated by class Y, the prior P(y) and the marginal probability P(x) of input
x. The P(y) can be easily estimated from the data by taking the fraction of
samples that belong to class Y. Assuming that likelihood P(x|y) is normally
distributed, it can be estimated by fitting the mean and variance parameters to
the data. See James et al. [2014] for more details, including the formula for
the discriminant function used to select the most likely class for input x.
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Common applications
LDA is a general classifier that can be applied in various applications.
In the context of failure predictions, it can be applied to classify process
measurements as those likely to result in a failure.

Strengths and challenges
• LDA is applicable in cases when there are few samples, or the classes

are overlapping or well separated (in contrast to other classification
methods, e.g., logistic regression, which become unstable when classes
are well separated). LDA performs best when the classes (i.e., P(x—y))
are approximately normally distributed.

5.4.2.4 Pattern mining
General description
Pattern mining is one of the most known methods to extract useful infor-
mation from the data. By looking for patterns, i.e., closely linked events or
items, this technique allows to analyse behaviour and make prediction on
future behaviour.

By knowing this behaviour, pattern mining can predict when a failure will
occur (by detecting also when the start of the sequence occurs) and can signal
the problem before it occurs. This method can be deployed in many various
fields, such as maintenance of a factory or a wind mill farm, determining a
disease, predicting the next medical prescription, analysing the behaviour of
cyclists in a town.

The first pattern mining algorithm, Apriori, was created in 1995 and was
only able to find frequent item sets, i.e., to find items that usually occur
together. Now pattern-mining methods can also look for sequences of items
where the order of the items matters.

Common applications
The list below only mentions the main topics, but many others exists:

• Frequent item sets
A supermarket can analyse the list of goods bought by their customers to
find those usually bought together. It can help the supermarket managers
to reorganize their shelves or to propose special offers;
• Sequence of events

A logistic company that continuously monitors events occurring in their
vehicles, e.g., engine oil level too low or motor temperature too hot.
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As they also know when the vehicles are break, they can find patterns
leading to failures, i.e., the sequence of events that usually precede a
failure;
• Multi-level

In multi-level pattern mining, not only the items are considered, but also
their hierarchy. Going to the supermarket use case, multi-level pattern
mining can output purchases containing apples, pears, kiwis. All of them
are considered as distinct items although they are all fruits. Therefore,
the supermarket may also be interested to find patterns containing fruits
and not the more specific sub-level items, e.g., apples. In addition, by
considering the fruits as a whole, it is possible to find patterns that would
be hidden if selected independently.
• Multi-domain

The multi-domain pattern mining methods consider multiple properties
of the items when looking for patterns. The supermarket could have
stores all over a country and would be interested to check if there
are different patterns depending on the location of the purchase. These
methods could also analyse the patterns depending on gender or income
of the customer. Multi-domain methods will answer questions such as
which goods are usually bought together by rich women in Brussels.
• Temporal pattern mining

When considering a sequence, the interest property can be not only
the next item of the sequence, but also the usual gap time before the
occurrence of that item. This is particularly interesting for maintenance
purposes. If a pattern leads to a failure or defective product, it can
be interesting to know how many times it is necessary to prevent that
problem and ensure that there is enough time to do so. Indeed, nobody
is interested in a pattern than only allows to predict a car’s failure 3
seconds before it happens.
• Constrained pattern mining

This topic covers many different methods that allow to impose con-
straints to the patterns. A constraint can be defined on the length of the
patterns, to only retrieve patterns of more than 5 items. For example,
directed pattern can search for patterns containing items of interest,
e.g., to find patterns containing fine Belgian chocolate. Aggregate
constrained pattern mining imposes a constraint on an aggregate of
items, e.g., to find patterns where the average price of all items is above
50 euro.
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Strengths and challenges

• Strengths

• Insights about the sequences of events;

• Challenges

• Computation time on large datasets.

5.4.2.5 Temporal pattern mining
General description
Temporal abstraction is the process of transforming a point time series into
a series of state intervals and is widely used in data mining to aggregate
multivariate time series into a representation that is easier to analyse. This
higher-level representation is equivalent to a smoothing of the data. Instead
of a series of points, the values are discretized using an abstraction alphabet Σ
that represents the set of possible value ranges a variable can assume (e.g., Σ
= {High, Medium, Low}). Each time series is then represented by a series
of intervals during which the value is constant. Temporal Pattern Mining
then searches for (multivariate) temporal patterns that are common among
the input samples, where a pattern encodes the temporal ordering between
the intervals present in the sample (e.g., “Sensor1.High before Sensor2.Low
and Sensor2.Low concurrent with Sensor3.Medium”). Each sample can then
be reduced to a binary vector indicating which temporal patterns it contains.
The input dimensionality can be further reduced by keeping track only of
those patterns, which are sufficiently long and unique. See Batal et al. [2013]
for more details.

Common applications
Temporal pattern mining is applied for mining symbolic patterns in various
domains, including natural language processing, bioinformatics (e.g., finding
discriminative patterns, sequence alignment).

Strengths and challenges
Temporal Pattern Mining can be used as a dimensionality reduction technique
for multi-dimensional time series, as a pre-processing step for classify-
ing noisy multivariate time series with irregular time intervals between
measurements, different granularity across time series, and missing values.



188 Providing Proactiveness: Data Analysis Techniques Portfolios

5.4.2.6 Principal component analysis
General description
PCA is a space transformation method used to reduce the dimensional space
from a multivariate dataset while retaining most of the information (com-
ponents). This statistic technique converts a set of observations of possible
correlated variables into a set of values of linearly uncorrelated variable called
principle components by applying a transformation in such a way that the
first principal component has the largest possible variance [Pearson, 1901].
The key idea is that if two signals are highly correlated or dependent, one is
enough to carry the information.

Two steps are performed in the PCA transformation [Jolliffe, 2002]:

• Find principal components (Figure 5.15);

• Compute the covariance matrix Σ of the dataset X;
• Find P = (n,n) the n eigenvectors −→p1,−→p2, . . . ,−→pn of Σ and the

corresponding eigenvalues Λ1= Λ2= = Λn where P represents
an orthonormal basis.

• PCA approximation by ignoring components with lower significance.

Important properties of the PCA transformation are 1) that the principal
components are uncorrelated since they are orthogonal to each other; 2) the
data can be transformed between the bases without loss of information; 3) the
principal components are ordered so that the first retain most of the variation
in the data.

The PCA can be used for different applications, one of which is fault
detection. This requires having historical data of the system to be monitored

Figure 5.15 Principal components of a 2-dimensional data.
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in a healthy state Xh. For each new input data Xobs, the projection on the
eigenvectors is calculated, and then anti-transformed in order to calculate
the normalized reconstruction error, which is a measurement for determining
whether the input belong to normal or to abnormal conditions, as follows:

• Normalize the data so that the mean is zero and standard deviation is
one;
• Calculate the principal components P of Xh and retain only the first n

components containing a predefined variance (e.g., 95%);
• Reconstruct the input data Xobs by projecting in the transformed

basis, keep only the principal components and anti-transform: Xrec =
XobsPP

T ;
• If Xrec = Xobs then the input data belong to the normal condition,

otherwise it belongs to the abnormal condition. This distance need to
be defined based on threshold values.

Common applications
PCA is often used as a technique to reduce the amount of information from
an original dataset before a classification or a clustering step is applied.
Moreover, it can be used for finding patterns in the data and for data
compression.

Strengths and challenges
• Some strengths of PCA are:

• Training time necessary to find the principal components is pro-
portional to the number of measured signals, usually denoted as
n, while the execution time is very short so that it is suitable for
real-time applications;
• Reduce the dimensionality of the problem, retaining only the

relevant information;
• Sound statistical technique;
• Does not require lots of data to be trained, however the data should

come from all the possible normal behaviours of the systems.

• On the other hand, it also has some limitations, the most prominent of
them are listed below:

• PCA has low robustness on highly correlated measurements;
• PCA produce unsatisfactory results for dataset characterized by

highly nonlinear relationships.
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5.4.2.7 Hidden Semi-Markov model with Bayes classification
General description
HMM is a form of Markov Mixture Model, which contains a hidden and
observable stochastic process. The former is a hidden process representing the
system states while the latter is a Markov chain of the output of the system
known as observations. A complex system (of which we cannot model its
internal operation) can be represented by a HMM. A model can be trained
with observation sequences which can (using a proper structure and sufficient
number of training sequences) estimate the likelihood distribution of states at
each transition, e.g., the most likely state of the system.

The Hidden Semi-Markov Model is an extension of HMM with the
duration parameter, e.g., we can use sequences where observations do not
follow in constant time.

Common applications
HMMs have been used in speech recognition for many years, using it for
failure prediction is quite new. It is a supervised learning approach, so
training data is needed. Multiple models need to be trained, at least one for
failure sequences and one for non-failure sequences. Based on observations,
sequences are assembled and sequence likelihood is calculated on each
model. A Bayes classification algorithm is used to detect a failure-prone case
and the probability of failure.

Strengths and challenges
For the successful outcome of using the HMM approach, a proper model
structure needs to be selected. The number of states needs to be selected based
on the length of the observation sequences. In addition, this length needs to
be the same for each sequence. Shorter sequences need to be padded with
synthetic symbols.

5.4.2.8 Autoencoders
General description
An autoencoder is a neural network specifically designed for learning rep-
resentation (encodings) from data. It can be used in an unsupervised setting
such as dimensionality reduction. It mays also be used for creating generative
models, which were exploited in the MANTIS project.

An autoencoder is a standard feedforward multilayer neural network,
however, its topology (structure) is characterized as follows:
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• The number of output nodes is the same as the inputs in order to allow
for signal reconstruction;
• A central layer with the minimum number of nodes is used to encode

the data (minimal representation), denoted as the z layer;
• The connections from the input nodes through 0 or more hidden layers

to the z layer are used to encode the signal;
• The connections from the output nodes through 0 or more hidden layers

to the z layer are used to decode the signal;
• The network on left (input) and right (output) are usually symmetric.

The simplest autoencoder network consists of one input layer, a single hidden
z layer and one output layer. Autoencoders are trained to minimize the
reconstruction error by measuring the difference between the input and the
output. One such loss function can be for example the squared error.

It is important to note that the z layer must have a reduced number
of nodes, otherwise it will not be able to learn an encoding and simply
“memorize” all of the examples. In effect, the z layer should be small enough
to compress the data into a reduced set of useful features, although not too
small, otherwise the learned features will not be useful. Several variations
of these networks have been developed with the aim of finding such useful
features, i.e., capturing essential information and find a richer set of features.

One variant is the denoising encoder that assumes that the input data
consists of a stable set of higher level features that are robust to noise. The
aim is to extract those high-level features that represent the data distribution
robustly. In this variant, the learning procedure first corrupts the signal and
uses that as input to the network. Learning follows the usual procedure of
loss evaluation and backpropagation of the error. However, it is important to
note that the loss function is between the original uncorrupted signal and the
network’s output signal.

The sparse autoencoder works under the assumption that by making the
hidden layers sparse, it is possible to better learn the structures that are present
within the data. Sparsity is imposed by either manipulating the loss function
or deactivating some of the hidden nodes with higher activation values (for
example using a L1 regularizer). Intuitively, the network will learn to select a
subset of features for a given number of inputs that are characterized by those
features only.

The variational autoencoder has its roots in Bayes inference and graphi-
cal models. It considers the hidden nodes as a set of latent variables connected
in a regular graph (fully connected layers) and whose parameters (weights)
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are unknown. Variational Bayesian methods are then used to provide an
approximation to the posterior probability (weights) of the unobserved vari-
ables (hidden nodes), and base their mechanisms on an iterative procedure
similar to expectation maximization to determine the solution. More con-
cretely, they use a loss function with additional penalty terms (function
includes a term using Kullback–Leibler divergence) and trains the network
with the Stochastic Gradient Variational Bayes algorithm. Note the posterior
probability that is learned can be seen as two conditional probabilities each
with its own set of parameters, one for encoding and another for decoding.
Moreover, these are encoded separately in the loss function.

The contractive autoencoder [Rifai et al., 2011] uses a loss function that
promotes learning models that are robust to variations of the input. The loss
function uses a Frobenius norm of a Jacobian matrix as a regularizer. The par-
tial derivatives of this norm apply only to the activations of the input nodes.
This penalty has the effect of ensuring that only significant changes of the
input cause changes in the hidden layers. In other words, if the partial deriva-
tives are zero, then feature learning is reduced. The intuition here is that only
important changes will promote significant changes in the learned parameters.

Common applications
The autoencoders ability to encode data and regenerate the input can be taken
advantage of in the following way:

• Dimensionality reduction: use the z hidden layer as an output for
visualization;
• Feature engineering: use the z hidden layer as an output to generate input

for other machine learning algorithms (regression, classification);
• Clustering: use the distance between the z hidden layer’s outputs

measure similarity and difference between input signals (feature engi-
neering for exploratory analysis). The same technique can be used for
classification;
• Pre-training of Deep Network: some deep neural networks are difficult

to train due to the vanishing and exploding gradients. The deep networks
can use autoencoders’ learning process in an initial stage in order to
initialize the parameters (weights) that will facilitate learning in the next
stage (the use of ReLU as activation functions has made this largely
unnecessary);
• One-Class Classification: the error of the regenerated signal can be used

to determine if the input signal has any new features that differentiate it
from the training dataset;
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• Image denoising: robust autoencoders can regenerate noisy input signals
by extracting and using only the most salient features that are resistant
to noise;
• Natural language processing (NLP): autoencoders have been used to

solve problems in word embedding (converting words or sentences to
vectors), build bilingual word and phrase representations, document
clustering, sentiment analysis and paraphrase detection.

Strengths and challenges
The main difficulty in using the autoencoder was the set up of the hyper-
parameters and the topology. A simple grid search was performed. We found
that a simple 3 layers network was effective (the input and output layers
consisted of 32 nodes). We could successfully detect changes in the normal
distribution’s standard deviation (z layer with 16 nodes) and the mean and/or
standard deviation (z layer with 25 nodes).

Advantages

• No need to understand the data;
• Automated feature engineering (data transformation);
• Reduced pre-processing required (except for normalization or scaling).

Disadvantages

• Requires large datasets of relevant high quality data;
• Requires large amounts of CPU time and memory;
• Many hyper-parameters to tune;
• Difficult to select the most appropriate loss function and network

topology;
• Model validation is difficult (requires correct data labelling);
• Training is difficult if the data is not representative of the problem (for

example, non-failure data contaminated with failures);
• May learn irrelevant features (only detectable during model valida-

tion). One further issue regards how to bias the network to learn those
important features;
• Features are not interpretable.

Use in MANTIS
The technique described above can be used to detect anomalies that may
occur in a press brake machine. Signals indicating the movement (velocity
and distance) of the press ram and back gauge, oil temperature and vibration
can be used to detect failure.
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Denoising encoders allows us to encode and regenerate the signals that
represent the machine with no failure. To test for failure, the signals is
encoded, and it is verified that its reconstruction is within a given bound. If it
is not, it can be concluded that the signal signature has not been encountered
before (because it cannot be decoded successfully) and it most probably
represents a failure. Unlike the statistical test, we are not testing if a given
sample belongs to the same population. We are in effect testing if the “curve”
that describes the displacement of the ram or back-gauges have the expected
“shape”. Samples of non-failures “curves” are the dominant class that were
used during an initial training phase. Samples of failures “curves” can then
be used to establish the cut-off threshold between the fail and no fail classes
during a second phase of learning. This threshold is then used again for model
evaluation.

Due to a lack of data, synthetic data were used for the tests, generated
using a normal distribution by varying either the mean, standard deviation
or both. The autoencoder was trained for datasets with a single set of known
statistics (no failure). The autoencoder was then used to reconstruct the signal
for data with a different set of statistics (with and without failure labels).
During the learning phase, we determined the minimum square error thresh-
old that was necessary to reduce false positives. During a second learning
phase, signals with different statistics were used to determine the minimum
square error threshold that was necessary to reduce false negatives. The final
threshold was then set to the mean of these two separate thresholds.

Test sets were then used to regenerate the input signal and calculate the
reconstruction error (containing both failure and non-failure signals). If this
error was below the threshold no failure was assumed, otherwise the data was
labeled as a failure. The Mathews correlation coefficient was then used to
evaluate the performance of the model. The Mathews correlation coefficient
emerged from the experiment was evaluated as 1 (perfect score).

5.4.2.9 Convolutional neural network with Gramian angular
fields

General description
According to a survey from 2014 [Schmidhuber, 2015], one of the currently
most successful deep learning methods uses RNNs with LSTM or CNNs with
max-pooling. This technique description will focus on the latter one.

In image classification, the goal is to recognize (classify) what is shown
in a given input image. Typically, an image is encoded as a matrix with values
between 0 and 1 or 0 and 255, along with the correct label (i.e., what is
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shown in the image). Colour images are typically encoded as 3-channel (red,
green, blue) images. Several benchmark datasets are available in this domain,
including MNIST1 (grayscale images of handwritten digits), ImageNet [Deng
et al., 2009] (colour images of objects, animals and scenes) and CIFAR2

(colour images of vehicles and animals), to name a few.
In essence, CNNs rely on three basic concepts, which are described below

and illustrated graphically in Figure 5.16. To simplify discussions, we assume
that the input consists of 1-channel images. Note that in a CNN, the input
image is treated as an h× h square, with h the number of pixels (or: the height
and width of the image). Hence, the input layer of a CNN contains h× h input
neurons, where each neuron contains the intensity of one pixel of the image.

Each neuron in the first layer after the input layer, known as the convo-
lutional layer, is only allowed to connect to a small part of the input layer.
In particular, each neuron in the latter layer connects to a small square of the
input neurons (e.g., 3 × 3), known as the local receptive field. In this work,
the size of this square region is denoted as recepsize. Each hidden neuron will
learn a weight over the connections from its local receptive field, along with
a bias. Intuitively, each neuron in the convolution layer thus learns to analyse
the data in its local receptive field.

In Figure 5.16a, a 10 × 10 pixel input image is shown (i.e., h = 10). The
neurons of the next convolution layer use local receptive fields of recepsize
= 3 to connect to a small square region of the input. The first convolution
neuron (top-left neuron first row, light orange circle) connects to the top
left receptive field (light orange rectangle) of the input. For the next neuron,

Figure 5.16 Detection of the presence or absence of a 3× 3 square in the input image by a
Convolutional Neural Network.

1Y. LeCun, C. Cortes, and C. J.C. Burges. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/

2A. Krizhevsky. CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/
kriz/cifar.html
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the receptive field is shifted by 1 pixel horizontally, obtaining the receptive
field for the second convolution neuron (dark orange). This procedure repeats
itself, up to the borders of the input image. For the first neuron on the second
row of the convolution layer (brown circle), the local receptive field of the
first neuron in the first row is shifted by 1 pixel vertically (brown rectangle).
The amount of pixels shifted (either horizontally or vertically) to obtain local
receptive fields for convolution neurons is known as the stride length, denoted
stridelen. Subsequent horizontal or vertical local receptive fields therefore
always overlap by recepsize x stridelen pixels from the input.

The number of pixels that remain of an h pixel image after applying
convolution with receptive fields of size recepsize and stride length stridelen
can be computed according to the following formula:

convsize =
h− recepsize

stridelen
+ 1. (5.16)

In Figure 5.16a, h=10, recepsize=3 and stridelen=1 resulting in a 10−3
1 +

1 = 8 pixel image. In order to match this reduced image size, there are 8 × 8
convolution neurons in the subsequent layer.

Shared weights and biases

In a CNN, all the weights and biases of the neurons in the convolutional layer
are shared. This allows the network to detect a particular feature in the input
image at any position; this property is also called translation invariance. Note
that the term feature in the context of CNNs has a different meaning than
the feature from feature selection methods. In the former context, a feature
typically represents a certain part of an image (such as a horizontal line).
In the latter context, it refers to a piece of information in a dataset (e.g., a
column or a combination of columns) that can be used for classification, to
distinguish failures from non-failures.

The weights and biases from the input to the convolutional layer are often
referred to as a feature map; a CNN usually has multiple feature maps to learn
different features in the input image (e.g., horizontal, vertical and diagonal
lines). In this work, the number of feature maps is denoted as nrmaps. In
Figure 5.16a, three feature maps (nrmaps = 3) are used to analyse the 10× 10
input image, where each of the neurons in the other feature maps has the same
connectivity pattern of the top feature map shown here.

Pooling

The objective of pooling is to simplify or summarize the information from
a convolutional layer in a small square region (e.g., 2 × 2), for a particular
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feature map. The size of the pooling region is also known as the pooling size,
denoted poolsize. Different types of pooling exist, but the most common form
is max-pooling, where a pooling unit outputs the maximum activation in its
pooling region. Pooling is a nice way to reduce the number of parameters of a
CNN, because it reduces the size of the remaining input image (after applying
convolution). In particular, if the size of an image after applying convolution
is convsize, then this is reduced to a convsize

poolsize image after max-pooling.
Max-pooling is illustrated in Figure 5.16b. Each neuron in the pooling

layer uses the convolution layer from Figure 5.16a as input. The first neuron
in the pooling layer (light orange circle) connects to a small square pooling
region of size 2 (light orange square). For the second neuron (dark orange
circle), this square is shifted horizontally by the pooling size, obtaining
the pooling region for this neuron (dark orange square). This procedure
is repeated up to the borders of the input. For the first pooling neuron
on the second row (dark brown circle), the square from the first pooling
neuron of the first row (light orange) is shifted vertically by the pooling
size to obtain a new pooling region (dark brown square). As in convolution,
pooling is done per feature map separately and so there are again 3 feature
maps in Figure 5.16b that follow the same connectivity pattern. Unlike
convolution however, there is no overlap in subsequent horizontal or vertical
(pooling) regions. According to the calculations from above, convsize = 8
in Figure 5.16a after convolution. With poolsize = 2, this image is further
reduced to 8

2 = 4 after applying pooling; there are therefore 4 × 4 pooling
neurons in Figure 5.16b.

Because of these three basic concepts, CNNs are powerful networks that
can learn useful spatial representations of images and at the same time require
relatively few parameters when compared to other types of networks. Gener-
ally speaking, if a neural network has few parameters, it also has a shorter
training time. How well a neural network performs is not only determined by
its test performance, but also by the time needed to train the network. After
all, a network that performs very well (e.g., achieves over 90% accuracy) that
takes weeks (or even months) to train is not very useful.

Common applications
CNNs are typically used to perform classification tasks on images, for
instance on the ImageNet dataset [Deng et al., 2009]. Images are not time
series however and in some approaches [Wang and Oates, 2015; Bashivan
et al., 2015], a transformation technique is employed to transform the raw
time series data into a sequence of images, before providing it as data to
some kind of CNN. Other approaches make use of EEG, video or log data
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to do time series classification with CNNs, for instance in the context of
making predictions in the medical domain [Hajinoroozi et al., 2016], human
action recognition [Ijjina and Chalavadi, 2016], automatic annotation of
clinical texts [Hasan et al., 2016] and automatic identification of predatory
conversations in chat logs [Ebrahimi et al., 2016].

Strengths and challenges
• Some strengths of CNN are:

• CNN is one of the strongest algorithms with a high accuracy for
image recognition;
• CNN can automatically extract high-level features from the raw

data that are suitable for solving classification or regression prob-
lems, without relying on features designed manually by an expert;
• CNN are robust for distortions in the image caused by the camera

lens; different lighting conditions, horizontal and vertical shift, etc.
[Hijazi et al., 2015];
• Convolving filters over the input vector allow to reduce the number

of trained parameters, thus reducing the resource requirements for
training and storing CNN models.

• On the other hand, the usage of CNN gives rise to some challenges:

• The algorithm requires huge amounts of data. Most problems
using neural nets require somewhere around 10.000 examples, but
preferably more. To collect and label these examples can be very
time consuming;
• CNN and artificial neural networks in general are very computa-

tionally expensive to train. Due to the advancements in GPUs in
the last decade, it is now viable to train neural networks;
• While visualizing the feature maps can provide some insight into

the features that a CNN extracts in the intermediate layers, the
inclusion of dense layers makes it difficult to interpret how the
neural network model produces its prediction and to trust the result.
For some domains, e.g., medical and fraud investigation, this is
unacceptable;
• The design of CNN architectures for solving a particular machine-

learning task remains an art.
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5.4.2.10 Recurrent neural network with long-short-term memory
General description
According to a survey from 2014 [Schmidhuber, 2015], some of the most
successful deep learning methods nowadays use Recurrent Neural Networks
RNNs with LSTM or CNNs with max-pooling. This technique description
focuses on RNN with LSTM.

In a RNN [Zachary et al., 2015], both forward and recurrent edges to neu-
rons are allowed. Recurrent edges may form cycles in a network, including
a cycle of length 1 (known as a self-connection or self-loop). Because of the
recurrent connections, a certain neuron now not only receives input from the
current data at time t, but also from the previous hidden state at time t - 1. The
recurrent edges thus introduce a notion of time in RNNs and as such, they are
naturally used to model sequences (including time series). An example of a
time series classification benchmark dataset is the University of California,
Riverside (UCR) repository [Chen et al., 2015]. Although RNNs are very
powerful networks, they often suffer from either the vanishing gradients or
exploding gradients problem. In the former problem, the gradients (used to
update the weights in the various layers) grow exponentially smaller as they
are propagated backward through the hidden layers. In the latter problem, the
opposite occurs, and the gradients grow exponentially larger. Both problems
cause learning to considerably slowdown in RNNs. To overcome this prob-
lem, a special type of neuron or memory cell has been introduced, known
as a LSTM cell [Gers et al., 2000]. This memory cell provides a form of
intermediate storage in between the long-term memory stored in the weights
of an RNN (which tend to change slowly over time during training) and
the short-term memory stored in the activations passed from one neuron to
another (which can change much faster). A simplified overview of an LSTM
is shown in Figure 5.17a. The idea of the LSTM cell is to allow a network to
hold a value for a longer period of time, using a special internal state that has
a self-loop with weight 1. Both the flow in and out of the cell are controlled
via gates, as illustrated in Figure 5.17a (gates are shown in gray). If the input
gate is set to high (Figure 5.17b), data from the rest of the network (e.g.,
a value) can flow into the memory cell and change the internal state. If the
input gate is set to low (Figure 5.17c), no data can flow into the cell. A similar
mechanism is used to control the output of the memory cell, through the use
of an output gate (Figure 5.17d and e). The network can also ‘flush’ (remove)
the contents of the memory cell using a special forget gate. In particular, if
the forget gate is set to high (Figure 5.17f), the previous state is maintained; if
the forget gate is set to low (Figure 5.17g), the content of the memory cell is
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Figure 5.17 Illustration of the components of a LSTM cell.

removed (forgotten). During training, the RNN learns when it is appropriate
to remember or forget data using the LSTM cells.

In an RNN, the neurons in the hidden layers (which typically have
sigmoid or tanh activation functions) are replaced by LSTMs, obtaining
an entire layer with LSTM cells. Using these cells, an RNN can model
long sequences reliably without suffering from the vanishing or exploding
gradients problems.
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Common applications
RNNs are naturally used to model time series and have been applied success-
fully in many application domains, including video description [Yuea et al.,
2016], speech recognition [Li and Wu, 2015; Li et al., 2016; Cai and Liu,
2016], computer vision [Chen et al., 2016] and diagnosing medical EEG data
[Lipton et al., 2016].

Strengths and challenges
• Some strengths of RNN in combination with LSTM are:

• Deep learning methods, such as RNN, have the ability to learn
and model non-linear and complex relationships, which is a major
advantage since in practice many of the relationships between
inputs and outputs are non-linear as well as complex;
• Recurrent Neural Networks are suitable for problems that require

sequential processing of information;
• LSTM models are powerful to learn and remember the most impor-

tant past behaviours, and understand whether those past behaviours
are important features in making future predictions;
• The recurrent connections effectively allow RNNs to share param-

eters and thus capture long time dependencies using simpler
models than deep feed-forward neural networks, making them
suitable for cases with smaller data sets.

• On the other hand, the usage of RNN with LSTM provides some
challenges:

• RNN and artificial neural networks in general are very computa-
tionally expensive to train. Moreover, RNN are more difficult to
parallelize (e.g., using GPUs) than feed-forward networks, due to
the sequential dependencies between the states;
• It is difficult to interpret how the neural network model produces its

prediction and to trust the result. For some domains, e.g., medical
and fraud investigation, this is unacceptable.

5.4.2.11 Change detection algorithm
General description
Change detection is the problem of finding abrupt changes in data when the
probability distribution of a stochastic process or time series changes in order
to determine the fault early enough and to provide an early warning alarm
[Aminikhanghahi and Cook, 2017].
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Change detection algorithm is therefore not a single algorithm but a
family of algorithms that can be categorised as follows [Gustafsson, 2000]:

• Methods using one filter, where a whiteness test is applied to the residual
• Methods using two or more filters in parallel, each one following a

specific assumption for the change to be detected (Figure 5.18).

A filter in system identification is a mathematical model that maps the
relation between the input and output of the system and returns a sequence of
residuals. Which filter to be used is a research topic by itself and it depends
on the problem under study [Ljung, 1999] and does not matter from a change
detection perspective [Gustafsson, 2000]. Examples of filters can be Kalman
filter, kernel, parametric models, state space models and physical models.

The basic idea of a change detection system is that if there is no change
in the system and the model is correct, given the input and output variables,
the result is a sequence of independent stochastic variables with zero mean
and know variance. When a change occurs in the system, the model cannot
capture anymore the behaviour of the system and this affects the residuals.
The essential step now is to define a rule of thumb to indicate whether the
residuals are too large and an alarm needs to be generated or not.

This can be formulated into the problem of deciding between two
hypotheses where a stopping rule is achieved by low-pass filtering of st and
comparing the value with a threshold [Gustafsson, 2000]:

H0 : E (st) = 0
H1 : E (st) > 0

(5.17)

Figure 5.18 Filter that map the relation between inputs ut and output yt and generate
residuals εt.
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Below two examples of common rules are given [Gustafsson, 2000]:

• CUMSUM is a sequential analysis technique [Barnard, 1959]. It implies
calculating the cumulative sum from the residuals of the filter as follows:

S0 = 0

St+1 = max(0, St+1 + st − v)
(5.18)

When the value of S exceeds a certain threshold value, a change in the
timeseries has been found where v represents the likely-hood function.

• Geometric Moving Average:
The Geometric Moving Average calculates the geometric mean of the
previous N values in the time series as follows:

St+1 = λSt + (1− λ)st (5.19)

Where λ introduces a forgetting factor to account for the slow timevary-
ing behaviour (i.e., degradation) of the system. When the value of S
exceeds a certain threshold value, a change in the time-series has been
detected.

Therefore, a change detection algorithm based on time-series requires the
definition of the model to represent a system and a rule to define when the
model does not match anymore the behaviour of the system and therefore an
alarm must be triggered.

Common applications
Change detection has been used in a number of applications [Aminikhanghahi
and Cook, 2017] from stock analysis, to condition based monitoring, to
speech detection and image analysis. Moreover, it has been used for detecting
climate change and human activity analysis. Generally, it can be used for any
process in which time series are available and a model representing the system
can be defined.

Strengths and challenges
• Some strengths of change detection algorithms are:

• Expert knowledge can be included in the model;
• Fast technique that can be used also on embedded devices in

real-time;
• Do not require historical data;
• Can track dynamic change of the behaviour of the system if timevary-

ing parameters are used.
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• On the other hand, it also has the limitations listed below:

• Requires defining or identifying a model of the system of interest;
• Selection of the stopping rule is not trivial and can vary depending

on the system of interest.

5.4.2.12 Fisher’s exact test
General description
Fisher’s exact test3 is a statistical significance test used in the analysis of
contingency tables. It is in particular suitable for small sample sizes, where
an χ-squared test is less appropriate or would yield unreliable results. For a
given contingency table, its p-value is given by the sum of all probabilities
that are at most the probability of the given contingency table of any other
contingency table that is realizable with the original row and column sums in
the given contingency table [Fisher, 1922, 1954; Agresti, 1992]

Common applications
The test is useful for categorical data that result from classifying objects in
two different ways. As such, it has a broad applicability in many domains.
A typical example is where one classification constitutes a so-called ground
truth, of which the validity is beyond doubt, and the other consists of the
output of a machine-learning algorithm. In this case, one normally speaks of
a confusion matrix instead of a contingency table.

Strengths and challenges
Fisher’s exact test is particularly suitable when the sample size is small. Also,
the fact that it is a nonparametric test is a strength, as no assumptions have
to made about the shape of the distributions. It is, however, based on the
assumption that the row- and sum-totals of the contingency table are fixed,
which may be problematic in practice. In the current context, this assumption
could be defended. Where, in the social sciences, p-values in the order of 0.01
or 0.001 are common, in the current context, values in the order of 10−7and
even orders of magnitude smaller were often encountered. This has to do with
the fact that, in a given dataset, there are many calls where neither a given part
is replaced, nor the log pattern occurs. The latter, by the way, demanded an
implementation of the binomial coefficients using logarithms and additions
instead of multiplications.

3https://en.wikipedia.org/wiki/Fisher%27s exact test
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5.4.2.13 Bonferroni correction
General description
Statistical hypothesis testing is based on rejecting a null hypothesis if the
likelihood of the observed data under the null hypotheses is low. If multiple
hypotheses are tested, the chance of a rare event increases, and therefore, the
likelihood of incorrectly rejecting a null hypothesis (i.e., making a Type I
error) increases. The Bonferroni correction provides a remedy for this. For
a given confidence level α and m hypotheses, by rejecting a hypothesis if its
pvalue exceeds α/m, the so-called familywise error rate, i.e., the probability of
making at least one type-I error is bounded from above by α [Mittelhammer
et al., 2000] (https://en.wikipedia.org/wiki/Bonferroni correction).

Common applications
As this technique is quite general, it is broadly applicable to cases where
statistical hypothesis testing is done repeatedly. In the context of alerting and
predicting failures, it is one of the key methods by which log patterns are
selected.

Strengths and challenges
Its broad applicability and simplicity as well as being non-parametric is an
important strength. One of its weaknesses is that it may be overly conservative
if there is a large number of tests. The correction comes at the cost of
increasing the probability of accepting false hypotheses, i.e., missing good
log patterns.

5.4.2.14 Hypothesis testing using univariate parametric
statistics

General description
Statistical hypothesis testing allows one to compare two processes by com-
paring the distributions generated by the random variables that describe those
processes [Stuart et al., 1999]. A distribution of a given process may be
described by one or more random variables. Univariate statistics refers to the
use of statistical models that use only one variable to describe the process.
Several univariate statistics can be extended to cater for multi-variate statistics
that use two or more random variables (for example, the 2 variable Gaussian
processes using the correlation matrix instead of the mean and deviation).

There are two basic methods used in statistical inference. The first
establishes a null hypothesis that stipulates the no differences between two
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processes (distributions) exist. Inference therefore consists in testing the
hypothesis and rejecting the null hypothesis. For example, given the heights
of men and women we can test whether or not the mean heights are different.
The null hypothesis states that no such difference exists. If we reject this
null hypothesis, then the alternative hypothesis, that states that there is a
difference, is assumed to be true.

The second consists of modelling each process (distribution) with a set
of possible statistical models. Each model is a parametric mathematical
equation that describes a possible hypothesis (given a set of random input
variables, it outputs a frequency). Inference then consists of evaluating and
selecting the most appropriate model. The models are selected according to a
specific criterion such as the Akaike information criterion or the Bayes factor
[Burnham and Anderson, 2002].

Parametric statistics refers to the use of parametric mathematical mod-
els of distributions. Examples of these distributions include both continuous
(Uniform, Gaussian, Beta, Exponential, Weibull, etc.) and discrete distri-
butions (Uniform, Binomial, Poisson, Bernoulli, etc.). Statistical inference
requires that we estimate the parameters and use this directly or indirectly to
compare the distributions.

When performing statistical inference, statistical significance is used to
determine how likely it is to assume that the null hypothesis is not rejected
under the current circumstances. The statistical significance level establishes
a threshold, under which a null hypothesis rejection cannot be accepted. Note
that, in addition to this threshold, additional limits on the type 1 (incorrect
rejection of a true null hypothesis – false positive) and type 2 errors (incorrect
retaining a false null hypothesis – false negative) can be set.

As a title of example, let us consider the p-value and establish the
significance level of 0.05 (could be as low as 0.02 or lower). If the p-value of
the statistical test is below the threshold, it is highly unlikely (less than 5% of
the time) that such a distribution can be observed, and the null hypothesis is
true. In this case, the null hypothesis can be rejected. Note however that if it
fails, there is not enough information to reject the null hypothesis. Therefore,
the test is inconclusive.

The testing process is as follows:

• Select the null and alternative hypothesis;
• Establish the assumption under which the test will be made (type of

distribution);
• Select the significance level to use as the threshold;
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• Select the test statistic to use and calculate it (single sample, two
samples, pared test, etc.);
• Compare the “t” statistics with the p-value threshold and decide if it can

be rejected or not.

Note that test statistic “t” can be calculated from the observations and
compared with the p-value, or it is possible to use the statistical tests to
compare the distributions’ samples directly. In either case a “t” statistic that
is comparable to the p-value is obtained.

The naive Gaussian parametric tests that are used are of two types: one
checks for differences in the distribution mean and another one is used to
test differences in variance. The variance tests allow us to check that a sensor
signal is within a given threshold of a constant (zero for example).

In this case, the t-Test was performed. More concretely, the t-test was
performed by means of a two-sample location test of the null hypothesis
that states that the means of the populations are equal. The independent two
sample t-test calculates the t statistic based on the number of samples and
the means and variances of each population. The t statistic led to a 2-sided
p value that is then used to compare against the threshold that allows either
accepting or rejecting the null hypothesis.

Common applications
Statistical tests allow to analyse data collections when no prior theory exists
that can be used to predict relationships. In such cases, one can design and
implement experiments to evaluate if a hypothesis is likely to be true. In these
experiments, data is collected under the conditions of the null hypothesis and
the alternate hypothesis under test. For example, to test the effectiveness of
a certain pharmacological treatment two data sets are collected, one where
no treatment is applied and one wherein it is (note that in the clinical cases
usually a third dataset that uses placebos is also used). The effectiveness of the
treatment can then be established by testing if there is a statistically significant
difference between the two distributions.

Other examples include [Larsen and Stroup, 1976]:

• Determining the effect of the full moon on behaviour (null hypothesis:
no full moon);
• Establishing the range at which bats can detect an insect by echo (null

hypothesis is the mean detection range);
• Deciding whether or not carpeting results in more infections or not (null

hypothesis: no carpets).
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Note that depending on the hypothesis that is under test and the experiment
set-up, it is either possible to use a single distribution (for example the bat’s
echo location range) or two (for example testing whether or not carpets cause
infections).

Strengths and challenges
The following is a list of general advantages and disadvantages of the
parametric tests.
Advantages:

• Simple process;
• Easy to calculate;
• Provides additional information (confidence intervals);
• Some models can be learned (updated) and tested as streams of data

(Gaussian model);
• Can deal with skewed data;
• Greater statistical power;
• Robust to samples with different variability (2-sample t-test or one-way

ANOVA).

Disadvantages:

• Assumes the type of distribution is known and does not change with
time;
• If the null hypothesis is not rejected, no conclusion can be reached;
• Requires large data sets;
• Lack of robustness (sensitive to outliers, sensitive to comparison point4);
• Assume all samples are i.i.d (Independent and identically distributed

random variable);
• Experiments may produce unexpected effects resulting in failed tests

(type 1 and 2);
• Each test has its own assumption (example t-Test of independent means

assumes populations of equal variance).

Use in MANTIS
The technique described above was used to detect anomalies that may occur
in a press brake machine. Signals indicating the velocity and distance of the

4For example, when comparing two Gaussian curves, because the tails fall off at an
exponential rate, the difference in distributions is small when close to the mean but very large
close to the tail ends.
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press ram and back gauge, oil temperature and vibration were used as the
univariate variables.

The parametrical statistical tests were used to determine whether new
samples conform to the same distribution of previously sampled machine
states that are known to be failure free. If the distributions are not equivalent,
(null hypothesis rejected) then it was assumed that a failure occurred and
alerts are generated.

In the case of the formal statistical tests, if the p-value does not allow us
to reject the null hypothesis, it is not possible to infer that the machine has no
failure (type 2 error). However, for simplicity, it was assumed that it was true
and alerts were only sent when the null hypothesis was successfully rejected.

In the case of a test for a constant (for example position), the signal is
normalized prior modelling and testing (a machine may stop its ram at any
position, and the interest regards only knowing if it is stopped, and not were).
In addition to this, two signals (for example the rams speed at the two different
pneumatic pistons) are subtracted one from another. The result is a single
sample whose means should be 0 (no need for normalization). The statistical
test is then performed as is done for the first case.

Parametric Gaussian tests were performed on the mean (t-Test) and
deviation (directly compare deviations, F-test, Bonett’s test and Levene’s
test).

The test for a difference in the mean and deviation were also done using
the naive statistical test. In this case, an online Gaussian model is obtained
via the calculation of a mean and variance. These means and variances are
then directly compared to the continually sampled signals from a working
machine. If significant divergence is found, alerts are generated. Due to the
high false positive and false negative rates (type 1 and type 2 respectively),
an additional multiplicative threshold (in respect to one standard deviation) is
used when comparing deviations. The initial values of this threshold are set
automatically by selecting the lowest possible threshold that reduces type 1
errors.

Due to lack of data, initial tests were performed with artificial data. For
large samples the effectiveness of the t-test appeared to be reduced (increased
number of false positives and false negatives), and it was also concluded that
the naive statistical tests using simple means and variance are very effective.
The naive statistical tests were used on a sample of real data first before
committing to the more complex t-test. The latest tests on the real data
seem to show that the t-test is ineffective for some of the signals. Work in
progress is still trying to ascertain why this is so (noise, incorrect labelling
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of failure, non-normal distribution, variance does not follow the Chi-square
distribution, etc).

5.4.2.15 Hypothesis testing using univariate non-parametric
statistics

General description
As with the case of parametric statistics (see hypothesis testing using uni-
variate parametric statistics in Section 5.4.2.14), the process of defining the
hypothesis, sampling data and establishing a significance level as a threshold
are the same. However, not all of the non-parametric methods provide a
p-value for a significance level comparison. This section describes three
types of statistical tests that were used in project MANTIS: the Kolmogorov-
Smirnov test (K-S test), the Man-Whitney U test and the use of a Kernel
Density Estimation. In the first case, the U statistic (as performed by the
software library) is approximated by a normal distribution and a p-value is
available. In this case, the p-value is used to establish a threshold to accept or
reject the null hypothesis (distributions are the same).

In the case of the KDE, an online algorithm was used that generates
a configurable number of (Gaussian) kernels. The kernels and respective
parameters of two different distributions cannot be directly compared. Exper-
imentation shows that the estimated densities may be visually very similar,
but the kernels themselves differ significantly. However, since the kernel
can be used to sample the underlying estimated distribution, the statistical
tests were used to compare the samples (for both the parametric cases and
nonparametric cases using the Kolmogorov-Smirnov test and Mann-Whitney
U test). Another option could have been the use of alternate algorithms such
as the earth mover’s distance, but they were not applied to the case at hand
because the naive parametric tests seemed to be working well [Levina and
Bickel, 2001].

Kolmogorov-Smirnoff test
This test compares an empirical distribution function (estimate of the CDF)
of a sample to a cumulative distribution of a reference distribution. The
two sample K-S test can detect differences in both the location and shape
of the empirical CDFs of both populations. Given two CDFs (the reference
population distribution being a known function or sample), the Kolmogorov–
Smirnov statistic is the maximum difference between these two CDFs. The
two sample S-K test can be used to compare two arbitrary distribution func-
tions of a single random variable. Here the Kolmogorov– Smirnov statistic
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Dn,m is the supremum of only two samples (with n and m being the number
of samples in each population). This supremum is used to reject the null
hypothesis. The rejection threshold is calculated by applying a significance
level (α) to a known function (c(α) pn + m/nm)). Note that this expression
is an approximation. The critical values Dα are usually generated via other
methods and can be made available in a table form [Facchinetti, 2009].

Man-Whitney U-Test [Mann and Whitney, 1947]
This test allows to check if a random variable is stochastically larger than
another one. The test is done by calculating the U statistic, which has a known
distribution. Usually the U statistic is calculated directly (see next paragraph)
and not from the distribution itself. For large datasets however, the U statistic
can be approximated by a normal distribution. The large U statistic associated
to a given dataset indicates that the dataset’s random variable is larger.

Two methods exist to calculate the U statistic: The first can be used in
small data sets. In this case all pairs are compared, to sum the number of
times the first sample is greater than the second (ties are assigned a value
of 0.5). This sum is the U statistic U1. The process is repeated by swapping
the pairs that are compared. This U statistic is U2. In the second case, both
datasets are joined and ranked. The ranks of all elements from the first dataset
are the summed to obtain the U1. U2 can now be calculated based on the total
number elements in each dataset. In either case, the large U value indicates
which dataset is stochastically higher.

The advantages of this test compared to the t-test is that it can be used for
ordinal data, is robust against outlier (based on rank) and is a better estimator
(higher efficiency) for large datasets that are not normally distributed (for
normal distributions its efficiency is 5% below that of the t-test). Note that
this test can also be used when comparing two populations of different
distributions.

Kernel density estimation [Rosenblatt, 1954; Parzen, 1962]
Also known as Parzen–Rosenblatt window method, this is a data smoothing
technique that estimates the shape of a function of unknown density.

The kernel density estimator is a sum of scaled kernel functions. A kernel
function is a function that has an integral of 1. Density estimation consists
of identifying the type and number of kernels to use and determining the
kernels and smoothing parameters (also referred to as the bandwidth). These
parameters are selected in order to reduce an error, usually the MISE. This
process of estimating the density has similarities to that of manifold learning,
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which includes among other techniques auto-encoders (see category Artificial
Neural Network, technique auto-encoders in Section 5.4.2.8).

Several kernels exist, such as the uniform, triangular, Epanechnikov
and normal functions, among others. Usually a normal (Gaussian) kernel
is used for mathematical convenience. Its efficiency is close to that of the
Epanechnikov, which is optimal with respect to MISE.

The selection of the parameters, based on the MISE, is not possible
because it requires prior knowledge of the density function that is being
estimated. Several techniques have been developed [Xu et al., 2015], which
include the most effective plug-in and cross validation selectors. However,
bandwidth selection for heavy-tailed distributions is difficult.

Besides the various techniques used to estimate the various parameters
such as the bandwidth, kernel density estimators also differ in the number
of random variables modelled (uni- or multi variate), the use of constant or
variable bandwidth (variable kernel density estimation) and the use of a single
kernel per data-point or a variable (optimal) number of kernels.

Common applications
Function smoothing in general has many uses that include:

• Kernel smoothing allows to estimate underlying function of a noisy
sample;
• Kernel regression uses the learned function for prediction (non-linear

regression);
• Conditional probability density estimates can be obtained from the

data by estimating the density functions of the data that are selected
according the desired conditionals (Bayes theorem);
• The maxima can be used for data analysis and machine learning such as

clustering and image processing (multivariate kernel density estimation).

Strengths and challenges

Advantages

• Does not require the process to be Gaussian;
• Can be used in small datasets;
• Some tests have simple calculations and are easy to understand. Man-

nWhitney U test is based on the more robust median (instead of the
mean of the parametric tests, therefore not so sensitive to outliers);
• Mann-Whitney U test can analyse ordinal and ranked data (for example,

data using the Likert scale use the de Winter and Dodou).
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Disadvantages

• Lower probability of detecting an effect as compared to parametric
methods;
• May have additional assumptions that are required of the dataset (for

example the Mann-Whitney U-Test requires that the distribution be
continuous and that the alternative hypothesis being tested represent the
distribution is stochastically greater than that of the null hypothesis.);
• Still require the estimation of parameters for model generation;
• These tests are usually less efficient than the parameterized versions;
• CPU intensive (KDE);
• The K-S test requires large data sets to correctly reject the null

hypothesis.

Use in MANTIS
The technique described above was used to detect anomalies that may occur
in a press brake machine. Signals indicating the velocity and distance of the
press ram and back gauge, oil temperature and vibration were used as the
univariate variables.

The non-parametric statistical tests were used to determine whether new
samples conform to the same distribution of previously sampled machine
states that are known to be failure free. If the distributions are not equivalent,
(null hypothesis rejected) then it can be assumed that a failure occurred and
alerts are generated.

When testing for a constant (for example position), the signal is normal-
ized prior modelling and testing (a machine may stop its ram at any position,
we are only interested in knowing if it is stopped, but not where it happened).
In addition to this, two signals (for example the rams speed at the two different
pneumatic pistons) are subtracted one from another. The result is a single
sample whose means should be 0 (no need for normalization). The statistical
test is then performed as it is done for the first case.

The Mann Whitney U test was applied directly to the previously recorded
samples of a correctly functioning machine and new samples were obtained
from a working machine. As with the parametric case, a p-value was set to
reduce the type 1 errors. In the case of the KDE, a model was generated for
a sample of the correctly function machine. This model was used to generate
a reference sample. The reference sample was then compared to the new
working machine samples. Once again, Mann Whitney U test was applied
as previously described.
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Of all the parametric and non-parametric tests, the Mann-Whitney seemed
to be the most robust and effective method. The KDE was tested by applying
the t-Test, the Kolmogorov-Smirnov test and the Mann-Whitney U test. The
result was no better than applying the Mann-Whitney U test directly. The
Mann-Whitney U test is used were the naive statistical tests fails (note that it
is necessary to use alternate tests when comparing variability because all the
tests discussed here only deal with the mean).

5.4.2.16 Mean, thresholds, normality tests
General description
Descriptive statistics [Mann, 1995] is often used to provide a basic analysis
of an unknown dataset and identify the basic properties of the data that can
be used to select proper techniques to perform a deeper investigation and
build statistical models. Moreover, such analyses are useful to identify the
characteristics that allow the use of specific statistical approaches. The most
common are the following:

• Mean: it measures the average value of a dataset;
• Median: it measures the central value of a dataset (half of the dataset

is greater than the median value and the other half is smaller). In many
cases, it is preferred compared to the mean since it is less affected by
outliers;
• Quartiles: they provide a basic understanding on how the values are

distributed. Usually, they are calculated to identify where the 25%, 50%,
75% of the data reside;
• Variance: it measures the variability and the spread of the data.

After this preliminary set of analyses, it is required to investigate more deeply
the distribution of the data. In particular, it is required to understand if the
distribution is normal (or Gaussian) since many statistical approaches can be
used only if the data distribution is of this kind.

To test normality, there are many different approaches but the most used
is the Shapiro-Wilk test [Shapiro and Wilk, 1965] (another popular but
less powerful test is the Kolmogorov–Smirnov one [Wayne, 1990]). After
verifying whether a dataset follows a normal distribution, it is possible to
select properly the statistical tools to perform further investigations.

To define “normal” and “abnormal” values for a variable in a dataset,
it is required to define thresholds, and it requires a dataset that includes a
large number of repeated measures of the variable. Such measures should be
labelled as “normal” or “abnormal” since the threshold can be built using
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the “normal” measures and verified against both “normal” and “abnormal”
ones to build a good descriptive model. In addition, in this case there are
several approaches and one that is very popular when dealing with data not
distributed normally is the Tukey’s range test [Tukey, 1949]. This technique
allows the definition of thresholds for outliers, such as the values outside the
range are candidate to be considered “abnormal”.

Common applications
Descriptive statistics is used as a preliminary investigation in any anal-
ysis of an unknown dataset regardless of the application domain. They
include basic measures that are useful to characterize the data and decide
further actions (e.g., subsequent analysis, split/merge of datasets, apply
transformations, etc.).

After the extraction of descriptive statistics, testing the data for normality
distribution is the second most common activity in any kind of application
domains if the distribution of the data is not known. It is also possible to
test the compliance with other distributions, but several statistical methods
require the normality distribution of the data to be applicable. Therefore, this
kind of tests is performed as a pre-requisite for the identification of the proper
statistical tool to apply.

Thresholds definition using different kinds of approaches is frequently
used to perform statistical process control, to define statistical models, and
to evaluate their performances using only data from the field (e.g., historical
data) and perform online checks of the behaviour of a system to rise alerts
in case of violations. The developed models can also be used to make
predictions of violations in conjunction with other statistical techniques that
are able to identify trends in data (e.g., using time series analysis techniques).

Strengths and challenges
Strengths

• Simple mathematical approach;
• The definition of the model requires a limited amount of data;
• The model can be generated on-the-fly and adapted to different working

conditions;
• Models can be generated using limited computational resources.

Challenges

• Can be sensitive to noise;
• Requires fully labelled data.
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Use in MANTIS
The described techniques have been used for the characterization of the
datasets coming from railway switches and to define their expected behaviour
based on available data. In particular, the used data regarded the adsorbed
current of the motor and the position of the switch over time to define the
profiles of correct behaviour through the analysis of the variability of the
data at each time instant. The distribution of the samples from different
movements of the switch at each time instant was analysed, followed by
the definition of thresholds of acceptable values based on an analysis of the
outliers. Moreover, since the collected data are affected by the temperature of
the environment, the adopted approach can continuously adapt itself using
the data from the latest movements that were considered correct. Finally,
the work on the project also proved that abnormal behaviours can be easily
detected since the correct profiles have a low percentage of samples that are
outside the threshold defined (less than 5%) while the abnormal ones have a
much higher percentage and/or the duration of the movement is very different
from the expected one.

5.5 Examples

This section entails some example use cases of the unsupervised algorithms
and the recurrent neural networks for analysing and predicting temporal
message log respectively, and investigates the use of convolutional neural
network architectures for predicting textures of the metal surface, which is
very useful for maintenance.

5.5.1 Usage Patterns/k-means

In the context of the MANTIS project, a small pilot experiment was per-
formed by Liebher on a dataset containing log files with messages and time
stamps for about 900 machines of two types. Assume a machine is a stochas-
tic message generator, assume for the time being that the order is not impor-
tant (in other words, that the order is of secondary importance if compared
to the presence vs absence of a message). The message patterns emitted by
the machine are a function of machine type, part characteristics, usage condi-
tions, possibly by the conditions of repair (quality of the servicer/mechanic).
This research attempted to answer the following questions.

• Are there groups (clusters) of message pattern generators?
• Are there machines that have a pattern of message generation?
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• How many of such groups do exist in the data? Is there a relation to the
service mechanic? Is there a relation to the customer? Is there a relation
to the type of the machine?

5.5.1.1 Data analysis
Data were preprocessed in the following sequence;

• Extracting machine-specific information;
• Computation of message histogram row counts and message probabili-

ties per machine;
• Use of own K-means clustering script for computing k centroid vec-

tors for the message probabilities to identify patterns in the machine
generators;
• Computation of an optimal number of clusters (machine groups).

Figure 5.19 shows the Euclidean distance between cluster centroids
and the input data. The figure represents the error curve for cluster-
ing results as a function of the expected number of customer groups.
Average Euclidean distance between message histograms of k-means
centroids and machine instances, respectively, was used. Each clustering
attempt for a value k was performed 20 times and the mean curve as
well as the standard-deviation band are shown. There is no ‘knee’ or
convincing discontinuity indicating the optimal number of clusters. The
variants of this method showed a similar behaviour (silhouette method,

Figure 5.19 Error curve for clustering results as a function of the expected number of
clusters k.
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gap statistic). Hence, a chi-square was experimented with, which has,
to our knowledge, not been used in this manner before. The rationale is
that if there is an underlying distribution of k clusters in the data, there
should be a distribution of instances over clusters that is deviating from
a uniform or expected distribution. Conversely, if there is no underlying
cluster structure, the assignment of instances to clusters is random over
several Monte-Carlo clustering attempts and a statistical frequency test
should yield non-significant results;
• Using χ 2 for testing cluster independence;
• Computation of factors such as : machine type, customer ID, servicerID;
• Random trials of k-means estimations for a range of k;
• Analysis of contingency table significance of interesting factor interac-

tions. For this step, the research question was: what will be the average
estimate of the significance of the count independence in the selected
table (cls x cust or cls x serv)? In order to get reliable results, the average
p values are calculated over one hundred (100) independent k-means
model estimations for each of the k = [2, . . . , 25] values. For instance,
Table 5.4 reports the ClusterID vs MachTyp: cls x typ (the other, cust
and srv tables would be too big horizontally to fit here);
• The p value was extracted from the contab log file and was averaged over

the 100 random retries of the kmeans estimation. In Table 5.4, p equals
‘zero’, because of the trivial fact that the messages for MachTyp=1 and

Table 5.4 ClusterID vs MachTyp contingency table
typ2 typ1 Totals

c1 115 0 115
c2 267 9 276
c3 103 0 103
c4 4 0 4
c5 27 6 33
c6 53 0 53
c7 4 0 4
c8 52 1 53
c9 142 34 176
c10 38 67 105
Totals 805 117 922
Analysis for cls x typ:

chisq 323.812158 df 9 P 0.000000
Cramer’s V 0.592627

Source: cls typ
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MachTyp=2 are significantly different: These are physically different
machines, each type sending messages with its own pattern statistics;
• Average expected significance probability: compute the averages for

p values, their standard deviation (sd) and standard error (se). The results
obtained are discussed in the next section.

5.5.1.2 Results
Average significance of clustering results for different k, for interaction
‘cluster x customer’ in Table 5.5.

5.5.1.2.1 Plotting
The data information from column 1 and 3 in Table 5.5 are plotted in a
histogram as shown in Figure 5.20, with k on the x axis and avg p signif
on the y axis. The left plot of Figure 5.20 is the average p-significance
levels as a function of k (number of groups) for the interaction (clusters
x customers). There is a clear minimum at k = 7, indicating that for this
number of groups the distribution of machines over (clusters x customers) is
not likely to be random, in case of seven groups of prototypical message gen-
erators. Although the minimum value (p = 0.0588) is above the commonly
maintained ‘0.05’, the result is sufficiently different from the other values
to be actually meaningful (error = 0.0143). The right plot is the average p-
significance levels as a function of k (number of groups), for the interaction
(clusters x servicers) There is no tendency for non-random distributions,
thus it is highly unlikely to find significant differences in the distribution of
machines over bins defined by (clusters x servicers).

Table 5.5 Results of multiple Monte Carlo experiments (N = 100), for different k. A low
average p-significance level indicates an underlying structure for this value of k

k N Avg p signif sd se
2 100 0.2674 0.3294 0.0329
3 100 0.1627 0.2307 0.0231
4 100 0.1763 0.2902 0.0290
5 100 0.1340 0.2811 0.0281
6 100 0.1245 0.2708 0.0271
7 100 0.0588 0.1426 0.0143 <==
8 100 0.1543 0.2932 0.0293
9 100 0.2029 0.3608 0.0361
. . . . . . . . . . . . . . .
25 100 0.2630 0.3748 0.0375
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Figure 5.20 Average p-significance levels as a function of number of groups for interactions
(clusters × customers) on the left, and (clusters × servicers) on the right.

5.5.1.2.2 Replicability of results
Since the k-means algorithm entails random initialisation and the data scatter-
ing is noisy by itself, the question is warranted what a repetition of the whole
procedure would yield. When repeating the complete procedure 24 times, the
average value for k was 6.6 with a standard deviation of 1.5 (see Table 5.6).

However, apart from the ‘best’ number of clusters, the most interesting
finding is the contrast between the ‘Customers’ and ‘Servicers’ factors, where
the latter do not seem to induce a clear clustering of message patterns
generated by the machine instances.

5.5.1.2.3 Summary of results
There is a very strong relation p < 0.000001 between cls x typ (cluster-
ID x machine type) i.e., the algorithm detects that machine type 1 and 2

Table 5.6 Results of k-means algorithm repetition
k Freq
4 1 *
5 2 **
6 12 ************
7 4 ****
8 2 **
9 2 **
10 0
11 1 *
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generate different message patterns, in all possible cluster forms, with k in
the range [2, 25]. There are no different messaging patterns for the machines
in the clusters with respect to Servicer-ID. There is a clear significance if the
counts in the clusters are based on Customer-ID. This occurs when the data
is segmented into k = 6 ± 1 clusters (see Table 5.6).

Since there are only two machine types, a grouping into six or seven
prototypical message patterns cannot be the result of machine type alone.
Customers may be using machines differently, leading to different message
patterns for each of the user groups. On the other hand, for the Servicers, no
indications are found for a cluster structure with different machine-messaging
patterns for different clusters. Clustering results varies slightly over several
estimations, but not drastically. Repeated runs (i.e., again a full set of 100
tests per value of k from 2–25) yielded comparable results.

5.5.2 Message Log Prediction Using LSTM

An efficient approach to time-series prediction of message code sequences
generated from the Litronic machine (for Liebherr) is proposed. For this
aim, the choice fell on an Integrated Dimensionality-Reduction LSTM (ID-
LSTM) that mainly consist of one encoder LSTM, a chain decoder with three
LSTMs, one repeat-vector that connects the encoding and decoding sections
of the network architecture, and a time-distributed wrapper. Preliminary
experiments were carried out using separate single layer predictive models
(SL-LSTM or SL-GRU) and ID-LSTM for predicting two or more forms
of the message code representations. The best approach from this earlier
investigation is used to analyse all the message codes by considering ten
unique subsets of the same size that sum up to the entire message codes.
The results show that ID-LSTM using one-hot-encoding data-representation
yields a performance that surpasses all other approaches on the small sample
of the data. Additionally, the average prediction accuracy for the ten unique
subsets of the entire message codes during training and testing phases of the
proposed method is very good.

There exist groups of message pattern generator, and there is a need
to know how well a neural network can predict this pattern. The resulting
questions to be answered regard how we should encode arbitrary nominal
machine codes to be useable in a vectorial processing paradigm, and whether
we can predict error codes or not.
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5.5.2.1 Data interpretation and representation
This section describes the Litronic dataset, and provides a brief description
for each of the message code data-representations passed as input to the
different predictive models.

5.5.2.1.1 Litronic dataset
This dataset contains several machine code generator. Each row within the
dataset describes nine unique data fields that provide the machine ID, mes-
sage code, time information and some other industrial properties. The total
number of timestamps present in the dataset is 15, 461, 890 (i.e., 15M) which
also corresponds to the total-time counts.

In the experiments, we considered two forms of data sizes:

• A small number of samples: this data size contains one machine ID
(mach4545) over a short duration of 10,000 time-counts;
• A more significant number of samples: this data size involves a col-

lection of different machine IDs with unique message codes for ten
different subsets but with the same amount of data samples. Note that
each subset uses the same number of time-counts 1.546×106. This sam-
ple size is convenient for a memory-based model estimation. We remark
that the sum of each subset time-counts yields the total time-counts of
15.46 × 106, which is ten times as large.

5.5.2.1.2 Data representation
We considered three forms of data-representation, individually passed as
input to the predictive models.

• Raw Code: only the raw message code is used for the time-series
prediction with no transformation or pre-processing on the raw code.
Some of the unique sets of message code include: {464, 465, 466, ...,
946, ...., 31662};
• OHE Code: these codes are obtained by transforming the RC to an index

encoded integers; then the output is further processed to a categorical
representation of the message codes. Note the final versions of these
message codes contain binary values {0, 1}. Note that the dimension-
ality of the feature vector of the encoding is dependent on the amount
of the index codes for a given number of time counts. Note that for the
entire 15,461,890 samples of codes, the vector matrix of the OHE is
R15,461,890×1304, that is, there are 1304 codes (unique index);
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• PCA Code: these codes are obtained by using a linear dimensionality
reduction (DR) algorithm to reduce the feature dimensionality of the
OHE codes into a reduced feature space that contains the most important
information, based on the covariance structure of the data.

5.5.2.2 Predictive models
We employed Single Layer Predictive Models, namely LSTMs and GRU,
which are mainly designed to avoid the long-term dependency problem.

An approach to sequence prediction using an integrated dimensionality
reduction LSTM model was devised. The model is set-up using one encoder
LSTM interconnected to a decoder section (that comprises three LSTMs)
using a repeat-vector algorithm. The first-two LSTMs in the decoder section
help in the reconstruction process of the squeezed feature vector output
from the encoding section into a lower dimensional feature space. Later on,
the final feature x from the last LSTM is wrapped with a time distributed
algorithm that presents the reproduced data in a sequential series; this was
achieved using a fully connected layer f (x) = Wx + b, that is activated
using a rectified linear units, or RELU, activation function max(0,f (x)). Note
that all the LSTMs use a return sequence (that is set to TRUE). Moreover,
each of the LSTM uses 10 output nodes except for the last LSTM that
contains output nodes that corresponds to the exact number of the input
feature dimension, and is dependent on the input data-representation if they
exist as either OHE or PCA codes. Figure 5.21 shows the block diagram of
the integrated dimensionality-reduction LSTM architecture. The bold lines
indicate the network connection while the dotted lines show the non-network
connection, which represent data copying.

The network is compiled using an Adam optimizer [Kingma and Jimmy,
2014], while training for specific conditions depending on the data represen-
tation and data-size:

• Small sample data represented in OHE codes: trained for 100 epochs
and setting the batch size to 10;
• Small sample data represented in PCA codes: trained for either 100 or

200 epochs and setting the batch size to 10;
• Large sample data represented in OHE codes: trained for 100 epochs and

setting batch size to 10,000, presents a significant computational benefit
as it computes faster using higher batch size compared to lower batch
size (which require more extended training time).
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Figure 5.21 Block diagram describing the predictive recurrent neural network using an
Integrated Dimensionality LSTM architecture applied on Litronic message codes.

Note that training the proposed network on the PCA codes presents varying
trainable parameters, and this is due to the variation in the PCA feature
dimensions {1, 2, 3, 4, 5, 10, 20, 40} on the small data samples. In this
method, we consider 70% samples of the data-distribution for training and
the remaining 30% for testing, for each of the used data sizes (small or large).

5.5.2.3 Results
This section reports on performances of the various predictive models with
respect to the used data sizes.

5.5.2.3.1 Evaluation of predictive models on small number of
samples

The performances (accuracies and output-target plots) for the proposed pre-
dictive method on OHE codes are represented graphically in Figure 5.22. The
experiments considered a small number of samples, and featured 10 K time
samples, of 64 possible message codes. The upper left graph (Figure 5.22a)
shows the ID-LSTM prediction accuracy for both training and testing
phases while training the network for 100 epochs. The upper right graph
(Figure 5.22b) shows a plot of the index prediction in the training and
testing phases to their corresponding target values. The bottom left graph
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(Figure 5.22c) and bottom right graph (Figure 5.22d) represent the confusion
matrix, by showing the plot of the output predictions against their target
values for both training and testing phases respectively. Additionally, the
several predictive model’s evaluations on the different data representations
are reported in Table 5.7.

ID-LSTM Evaluation on OHE Codes

As can be observed from Table 5.7, the use of ID-LSTM on OHE yields a per-
formance that surpasses all other approaches: the method shows a high level
of precision in the predictive values compared to their corresponding target
values. Other interesting techniques involve the use of ID-LSTM examined
on high order dimensional PCA codes, which persistently outperform both
ID-LSTM or single layer predictive models when applied on one-dimensional
PCA versions or raw codes.

The second best approach is the ID-LSTM on 20-dimensional PCA codes;
this is due to their performance in the testing phase. There exist some failure
in the prediction for few epoch instances in the testing phase. An exception

Figure 5.22 Result on small pilot test 10K time samples, 64 possible message codes.
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Table 5.7 Training performance metrics on the different approaches using a batch size of 10
Method Train Accuracy Test Accuracy
ID-LSTM-I-OHE-Codes 0.9957 0.9920
ID-LSTM-I-20-DIM-PCA-Codes 0.9763 0.9843
ID-LSTM-I-40-DIM-PCA-Codes 0.9760 0.9733
ID-LSTM-I-10-DIM-PCA-Codes 0.9316 0.9727
ID-LSTM-I-5-DIM-PCA-Codes 0.9139 0.9593
ID-LSTM-I-4-DIM-PCA-Codes 0.9424 0.9410
ID-LSTM-I-3-DIM-PCA-Codes 0.9463 0.9593
ID-LSTM-I-2-DIM-PCA-Codes 0.9424 0.9590
ID-LSTM-I-1-DIM-PCA-Codes 0.8729 0.9340
SL-LSTM-I-1-DIM-PCA-Codes 0.8757 0.9340
SL-GRU-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-GRU-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MAE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-MSE-SI-1-DIM-PCA-Codes 0.8715 0.9316
SL-LSTM-I-Raw-Codes 1.429 × 10ˆ-4 0.0000
SL-GRU-MSE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-GRU-MAE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-LSTM-MSE-SI-Raw-Codes 2.858 × 10ˆ-4 0.0000
SL-LSTM-MAE-SI-Raw-Codes 1.429 × 10ˆ-4 0.0000

to this is the ID-LSTM on 20 or 1-dimensional PCA codes. Based on this
observation, it can be deduced that it is essential to optimize PCA codes with
different feature dimensionality to solve a large-scale sequence prediction
problem; this will aid to provide a predictive model that will be free from
prediction failure in the testing phase. Moreover, this allows to retain useful
covariance information that can provide an alternative basis for good temporal
prediction. Even the external cases of applying PCA and only using largest
eigenvector yielded a reasonable performance of 93%.

Hence the experimental result indicates that the use of OHE or PCA codes
with their respective index provide a better basis for temporal prediction.
Due to the performance of the best approach, ID-LSTM only was employed
to examine OHE codes from the more significant amount of the message
sequence.

5.5.2.3.2 Evaluation of the ID-LSTM on OHE codes for more
significant number of samples

In this subsection, the proposed network was trained on ten different sub-
sets that sum up to the entire message codes. The ID-LSTM evaluation on
196 machines from subset 9, is shown in Figure 5.23 with subfigures that
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describe the prediction accuracy curve, index prediction, and the confusion
matrix plot in both training and testing phases respectively. In particular,
the upper left graph (Figure 5.23a) shows the ID-LSTM prediction accuracy
for both training and testing phases while training the network on subset 9
for 100 epochs. The upper right graph (Figure 5.23b) shows a plot of the
index prediction in the training and testing phases to their corresponding
target values. The bottom left graph (Figure 5.23c) and bottom right graph
(Figure 5.23d) represent the confusion matrix, by showing the plot of the
output predictions against their target values for both training and testing
phases respectively. The performance metrics obtained after 100 epochs for
the different subsets are reported in Table 5.8. In the training phase each of
the models performed very well with an average accuracy of 0.9844, while
the average test performance is 0.9506. The proposed predictive model can
handle very complex sequential problem irrespective of the size of data (time-
counts). Please note that the lower performance in the test phase may have
arisen due to variation in the codes that were used during training of the

Figure 5.23 ID-LSTM prediction accuracy for both training and testing phases while
training the network on subset 9 for 100 epochs.
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Table 5.8 Train and Test performance assessment on the different subsets using a batch size
set to 10,000

No. of Index Train Test
Data Type Time counts No. of Machines (class label) Accuracy Accuracy
Subset 1 0.00-1.54M 20 948 0.9826 0.9751
Subset 2 1.54-3.09M 30 606 0.9979 0.9695
Subset 3 3.09-4.63M 36 535 0.9886 0.9624
Subset 4 4.63-6.18M 48 619 0.9961 0.9021
Subset 5 6.18-7.73M 62 620 0.9837 0.9806
Subset 6 7.73-9.27M 109 675 0.9962 0.9347
Subset 7 9.27-10.8M 64 648 0.9205 0.9293
Subset 8 10.8-12.3M 95 679 0.9973 0.9576
Subset 9 12.3-13.9M 196 717 0.9943 0.9681
Subset 10 13.9-15.4M 263 624 0.9871 0.9268
Average 0.9844 0.9506

proposed network. Both the training and testing phases show outliers. Some
of the outlier points represent few instances of absolute average accuracy
error in prediction is < 5% for both phases. This performance measure
indicates that the proposed method yields a good result.

5.5.2.4 Discussion
This research has addressed the two questions in Section 5.5.2: The research
demonstrated the transformation of arbitrary machine codes (raw data) into
a useable vector representation, with the objective to identify correlated
patterns. To deal with this problem, OHE was used to convert the nominal
codes to a vector representation. However, the vector dimensionality is high,
and correlations are to be expected between message patterns. To reduce the
dimensionality to a lower feature space, PCA was employed to select the most
informative dimensions. The best result was obtained on OHE code, however
with the risk of overfitting depending on the number of message sample and
lexicon sizes. Additionally, the results obtained with PCA transformed data
are very good, as the use of only 20-dimensional PCA yielded a prediction
accuracy of 98%. However, the use of raw codes with no transformation
yields the worst result; this implies that the raw codes are not suitable or
sensible to the neural networks.

Furthermore, we investigated whether predictive recurrent neural net-
works can be trained and tested on datasets of varying samples sizes,
message lexicon size, and underlying machines. For the experiment led to an
integrated dimensionality reduction LSTM (ID-LSTM) and external LSTM
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(SL-LSTM or SL-GRU) for predicting the discussed data. The results show
that in the pilot experiment on the small samples, the use of the proposed
method (ID-LSTM on OHE codes) yields performance that surpasses all
other approaches. ID-LSTM also obtain better performance on higher order
dimensional PCA codes than on one-dimensional PCA or raw codes. It is
possible to conclude that, for a large data sample with PCA code, there is
the is a need to optimize the dimensionality to obtain good performance.
Moreover, the ID-LSTM on OHE codes obtained< 5% error on the predicted
codes in a realistically large dataset.

The research suggests that it may be possible to combine the proposed
model with an early anomaly detection algorithm to allow continuous pre-
diction of physical problems in the machines generating the message logs.
Finally, with advance knowledge on the message log data, it is possible to
develop a precise system that can handle detection of an anomaly in the
message log, and hence providing a comprehensive basis for the root-cause
analysis.

5.5.3 Metal-defect Classification

This section describes using deep learning techniques for predicting textures
of metal surface, which is very useful for maintenance. The defects on the
surface of, e.g., a cutting tool in a production line are detrimental to the
quality of the end product produced by the tool. Therefore, it is important to
inspect the cutting tool regularly to maintain the quality of the product, which
is usually done manually by human experts. However, manual inspection of
cutting tools on production line is costly and difficult whereby the entire
process slows down. Some defects are hard to measure by digital sensors,
but might be easily spotted by the naked eye. For example, the pollution of
tool surface due to scraped metal particles can be detected by a camera. Visual
inspection is a promising way to automatically find out defects in the cutting
surface in real-time in production lines. Images of metal surfaces of cutting
tools can be obtained with sensors, such as the digital microscope. Different
defects on metal surfaces result in different types of textures and recognizing
the textural surface helps to reveal original (root) causes. For example, if a
burnt texture is found on the metal surface, the possible reason is that the
temperature is high and the cooling system is failing. The defect textures
of metal surfaces are usually different on different metal materials. However,
there are some generally known and well-documented defect textures in metal
surfaces, which provide a good indication of the root causes. In this pilot
project, CNNs are used for metal texture classification. Since data sets with
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labels are hard to collect from the real-word production line, a public metal
surface defect data set was used and later a new data set from metal images
with different textures was collected.

5.5.3.1 Data collection
The NEU surface defect database is a public data set5, which contains six
kinds of typical surface defects of the hot-rolled steel strip. It has 300 images
per surface defect type and 1800 greyscale images in total, where the size
of each image is 200x200 pixels. This image size is very suitable for the
application of CNNs. Examples of images are shown in Figure 5.24 (left).
A new data set named MTEXTURE was also collected. Example images
are shown in Figure 5.24 (right).This data set has seven texture attributes,
which are related to defect textures on metal surface. The size of images
is 100 × 100 with greyscale. Table 5.9 below shows the attributes of each
data set.

5.5.3.2 Experiments
The AlexNet [Krizhevsky et al., 2012] CNN has five convolutional layers
with Leakly-ReLU as activation function. The Leakly-ReLU is defined as:

Figure 5.24 Example of images in the NEU data set (left) and the newly collected
MTEXTURE data set (right).

Table 5.9 Attributes in the two data sets

Database
Attribute

1 2 3 4 5 6 7
NEU Rolled-in scale Patches Crazing Pitted Inclusion scratches

MTEXTURE Worn Debris Dented Rough Rust Scratched Crumpled
Attribute Database

5http://faculty.neu.edu.cn/yunhyan/NEU surface defect database.html
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Figure 5.25 Performance of VGGnet and AlexNet on NEU6

(left) and the collect set (right) with different epochs.

y = max(x,λ x), where x is the input, y is the output and λ is a constant
parameter which is set to 0.25. After each convolutional layer, a max-pooling
layer is used with kernel size 2x2 and stride 2. Three fully-connected layers
are applied on the output and the cross-entropy softmax loss is used to train
the model. The total number of trained parameters for AlexNet is 26.4M.
VGGNet [Simonyan and Zisserman, 2014] is deeper than AlexNet. It consists
of sixteen convolutional layers, five max-pooling layers and three fully-
connected layers. The training procedure is the same as AlexNet. There are
50.8M parameters in VGGNet. The performance of AlexNet and VGGNet
on the two datasets with different epochs is shown in Figure 5.25. The
performance looks promising and the precision of metal texture recognition
is higher than 95%. The performance of AlexNet and VGGNet has no signifi-
cant difference, but the number of parameters of AlexNet is much smaller and
therefore it is easier to be trained and applied in real-world product lines. The
defect textures in metal surface can be detected by a sliding-window strategy.
Each patch on the metal image is classified into different defect textures. Once
the texture attributes are detected, the related root causes may be found, such
as an external (metal) element, which is affecting the surface of the tool.
This is an exploratory result and more wear and tear textures can be added if
available.

5.5.3.3 Discussion
Hunting for root causes of metal surface defects can be performed by an
analysis of the textural attributes of metal surfaces. Textural attributes can
be learned from an annotated data set. This experiment gives initial results
useful for RCA where damage of metal surfaces is involved. From the initial
results of two small data sets, it is clear that textural analysis on metal surface
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can provide information for maintenance of product lines with classification
of 95%.

Several issues should be solved to apply this method in the real-word:

• Real data set collection and annotation. The challenge of using deep
learning in general on metal surfaces concerns the labelled data set. The
number of parameters in the network is very large and thus the system
provides higher performance when more data is available or the network
is pre-trained on other large-scale databases;
• Running the complex deep neural network takes computing time and

memory. Networks that are more efficient might be investigated, such as
quantizing the parameters of the network;
• Continuous learning is also very important because unseen causes are

coming in over time. The system should learn new things when new
labels are added and operators may need to perform this additional task
before valid results can be obtained.
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New technologies are being developed towards Industry 4.0 such as the
establishment of smart factories, smart products and smart services embedded
in an internet of things and of services. As a result, the development of
prognostic and collaborative technologies have become a necessity. New
technological solutions that can make the best use of existing physical assets
while following company’s important metrics to provide a quick overview of
business performance are now starting to be developed. Examples of such
solutions include the development of dashboards that can show the Key
Performance Indicators (KPI) for processes involved in the production site
and Human-Machine Interfaces (HMI) that allow the visualization of data
collected directly from the machine in different formats such as graphic, table
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or even through augmented and virtual reality, while their adaptive interfaces
can present relevant information according to the user and the context.

This chapter explores these new technological solutions in the context
of the MANTIS project and consists of four main sections. The first
section presents the HMI technology and the specifications, design principles
and recommendations, requirements, and modelling of the HMI that
guides and follows the principles of the MANTIS Reference Architecture
(see Chapter 2). The second section discusses the concept of adaptive
interfaces and the two main approaches that were considered (Context-aware
and Interaction based/driven). The third section discusses advanced data
visualization methods for HMIs and presents different scenarios according to
the different use cases defined in MANTIS. In the last section, the usability
testing methodology considered for industrial HMIs is discussed.

6.1 HMI Functional Specifications and Interaction Model

Human-machine interaction denotes real-time interaction and communication
between human users and a machine via a human-machine interface
[Techopedia, 2011]. Hereby, the term “machine” indicates any kind of
dynamic technical system and it relates to different technical and production
processes in diverse application domains. Beside traditional functionalities of
HMI such as presentation and processing of information, advanced features
include explanation and adaptability based on user and application models
and knowledge-based systems for decision support. HMI for proactive
maintenance should therefore contribute to:

• enhanced monitoring of shop-floor conditions (i.e., the machines health
condition, the efficiency of the production lines, and the safety of
workers);

• automatic self-adaptation of control strategies based on the context
related to user status, machine status, general environment and time;

• user-friendly, ergonomic and intuitive interaction between workers and
machines, and consequently positive user motivation leading to higher
efficiency and safety.

While MANTIS strongly emphasises autonomy, self-testing and self-
adaptation, human role remains one of the important factors in system
operation. The human role is twofold: controlling, which comprises
continuous and discrete tasks of open- and closed-loop activities, and problem
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solving which includes the higher cognitive tasks of fault management and
planning. The increased degree of automation in control of dynamic technical
systems does not replace the human users, but rather modifies the interaction
between both. Appropriate matching of both leads to a user-centred design.

To propose a user-centred design in the project comprising eleven use
cases from four different sectors transpired to be a challenging task. Diversity
of MANTIS use cases resulted in a wide range of requirements that could
hardly fit a common MANTIS HMI structure. Design and development of a
common MANTIS HMI is not only difficult but also most likely to result in
a poor usability of the products. One of the goals of the MANTIS project
is therefore to offer a common ground for designing user-centred, usable
and use case specific HMIs. The goal has been achieved by developing
the human-machine proactive maintenance-based interaction model that on
one hand covers all proactive maintenance related requirements of every
use case and stays general enough to be applicable to every MANTIS and
potential future use case. The MANTIS HMI model has been conceived to
provide means that would help to identify the HMI content elements and their
relationships of a given use case. Together with the functional specification,
described later in this section, it may serve as a reference point for writing
use case specific requirements specifications and for designing the user
interaction.

6.1.1 HMI Design Principle Followed in the MANTIS Project

MANTIS followed Scenario-Based Design (SBD) [MANTIS Consortium,
2016] which is an established approach for describing the use of a system
at an early point in the development process. Narrative descriptions of the
envisioned scenarios help to guide the development of the system and serve,
among others, as a basis for setting efficient human-machine interaction.
Use case owners described some typical problem scenarios and refined
them through the activity, information and interaction phase and as a result
to provide the scenarios that would include sufficient details for HMI
prototyping [MANTIS Consortium, 2016].

Scenarios gathered in this document are the result of iterative process of
the SBD phase, which is reflected in their common structure:

• situation that describes the circumstances in which the scenario occurs,
focused on the perspective as seen by the user;
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• device which holds the interaction, most suitable for the nature of the
user’s activity;

• information, available for the user (What options are available in the
interface);

• the way user interacts with the interface (How is it done);
• current implementation.

The activity scenarios describe pure functionality of HMI. They have been
refined to information scenarios through the What options are available in
the interface section of each scenario and further particularized to interaction
scenarios through the How is it done section. This way the scenarios are
elaborated to the point where they provide the details of user action and
feedback.

A common structure of each scenario intended to unify the diversity of
requirements, imposed by the wide range of distinct use cases, and to gather
functional specifications, common to all use cases and specific for proactive
maintenance.

6.1.2 MANTIS HMI Specifications

To provide the right information, in the right modality and in the best way
for users when needed, the user interface should be highly personalized
and adapted to each specific user or user role. Any unification of the HMI
design might impose the constraints that could result in an HMI with a poor
usability.

The approach, adopted in the MANTIS project, therefore focuses on the
requirements, common to most of the use cases and specifics for proactive
and collaborative maintenance. In the following section, a generic MANTIS
HMI is specified to the extent that does not introduce any constraints for
the use cases, but at the same time describes the most important features of
the MANTIS HMI that should be considered when designing the HMI in
individual use cases.

6.1.2.1 Functional specifications
The specifications provided in this section, are the result of refinement of
scenarios, provided by industrial partners. Functional specifications describe
the HMI functionalities present in most use cases and abstracted from
the specific situation of every single use case. They are not meant as a
replacement of MANTIS HMI requirements specifications for a separate use
case but may serve as a reference point when writing ones.
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Scheduling of Maintenance Tasks

• MANTIS HMI allows the user to see all relevant maintenance tasks
together with some additional information such as description of the task
(including suggested time schedule), relevant asset related information
(e.g., sensor logs, maintenance history and statistics), guides, manuals or
instructions for maintenance task, task progress information and client
information;

• MANTIS HMI allows adding of task related information, such as task
acceptance or rejection, task progress (e.g., start and stop indication),
assigning resources (e.g., necessary time and equipment);

• MANTIS HMI allows adding of asset related information such as asset
status, image of the failure (in case of failure), and feedback to the
system (e.g., identification of the failure root cause, estimation of the
actual wear, . . . );

• MANTIS HMI allows spare parts managing. This may include the
inquiry of spare part availability, ordering spare parts and vendors
contact information;

• MANTIS HMI allows maintenance tasks rescheduling (automatically,
based on MANTIS maintenance optimization and manually by the user);

• Maintenance tasks display enables filtering and sorting;
• Maintenance tasks display is updated immediately after a new

maintenance task is scheduled;
• MANTIS HMI is able to automatically generate reports on maintenance

activities and to transfer the maintenance related data to other users;
• MANTIS HMI displays an alert in case of asset failure, or if the spare

parts required for scheduled maintenance task are not available. The alert
contains additional information, such as description of the failure, asset
status, or the additional information on spare parts.

Monitoring Assets

• MANTIS HMI displays current, historical and predicted parameter
values of monitored assets and expected range of these parameters;

• MANTIS HMI displays comparison between actual and estimated asset
wear and/or predicted remaining useful life;

• MANTIS HMI displays various statistics of historical parameter values
of monitored assets;

• MANTIS HMI displays possible failures of assets together with some
additional description, such as current and historical parameter values
related to the faulty asset and possible feedback from other;
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• MANTIS HMI allows the user to sort and filter monitored assets, select
different data sources, and to select time range of monitored parameters;

• MANTIS HMI allows the user to select and flag the data;
• MANTIS HMI is able to automatically generate reports on monitored

parameters and to transfer the monitored data to other users;
• MANTIS HMI displays data in real time;
• MANTIS HMI displays an alert if the monitored asset parameter is out

of a predefined range. The alert carries additional information on the
monitored asset parameter such as historical values of the parameter.

Data Analysis

• MANTIS HMI is able to display remaining useful life of the assets,
predicted future values of monitored parameters, comparison between
predicted and actual parameter values and feedback from other users in
textual as well as graphical form;

• MANTIS HMI allows the user to manage prediction models. This
includes model inspection, activation or deactivation of the model,
updating, generating and evaluating predictions;

• MANTIS HMI displays an alert if the prediction performance of
MANTIS system is below the predefined threshold. The alert will carry
additional information on prediction performance.

Reporting

• MANTIS HMI is able to generate automatic reports in pdf or html
format;

• MANTIS HMI is able to process spoken reports;
• MANTIS HMI allows the user to manually generate reports. This

includes information input (textual and graphical) and data export.

Communication

• MANTIS HMI supports the textual, visual and audial communication
among the users;

• MANTIS HMI enables the transfer of different data sources, images,
videos, and documents among the users as well as to and from the
MANTIS platform.

6.1.2.2 General requirements
The following general requirements have also been identified by industrial
partners and must require that:
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• MANTIS HMI performs just-in-time;
• MANTIS HMI supports different types of devices, including mobile

phones, tablet computers, laptop computers, network computers and
machine displays;

• MANTIS HMI supports at least the most commonly used operating
systems such as Windows, Android, and IOS;

• MANTIS HMI supports multiple levels of alerts;
• MANTIS HMI allows user’s input such as confirmation of the alert and

providing feedback to the intelligent MANTIS features;
• MANTIS HMI is able to automatically generate reports on alerting

activities and to transfer the maintenance related data to other users.

6.1.3 MANTIS HMI Model

As stated in [Techopedia, 2011], human-machine interface (HMI) is a
component of certain devices that are capable of handling human-machine
interactions [Boy, 2011]. The interface consists of hardware and software
that allow user inputs to be translated as signals for machines that, in turn,
provide the required result to the user. Since HMI technology is ubiquitous,
the interfaces involved can include motion sensors, keyboards and similar
peripheral devices, speech-recognition interfaces and any other interaction in
which information is exchanged using sight, sound, heat and other cognitive
and physical modes are considered to be part of HMIs.

The initial phase of scenario-based design approach commonly applied
for all MANTIS use cases resulted in an extensive set of divergent scenarios,
which required considerable additional activities to get the descriptions
suitable for HMI design.

In the following we describe a generic static model that can be used
together with the requirement specifications of each individual use case to
formalize the structure of the target HMI implementation. The model has
been conceived, in particular, with two ideas in mind: to provide means that
would help to identify the HMI content elements and their relationships of a
given use case and to unify (as much as possible) the HMI design of different
use cases, which would be useful for comparison of implementations and
exchange of good practices. When setting up the model structure we follow
the concepts of descriptive models applied in task analysis [Diaper, et al.,
2004] and add specifics of MANTIS gathered maintenance scenarios, denoted
as MANTIS high level tasks. For each of these high level tasks we provide a
list of functionalities supporting the given high level task. In addition to the
model, a Requirements Specification template was used to identify the HMI
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content elements and their functionalities supporting the high level tasks of a
given use case.

MANTIS human-machine interaction comprises five main elements
(Figure 6.1):

• user interfaces;
• users;
• MANTIS platform;
• assets;
• environment.

MANTIS platform allows communication with several different users
through their user interface. Interaction between the users and the platform is
bidirectional; users can not only access the information retrieved from assets
and stored in the platform, but can also provide an input to the MANTIS
system. In case of proactive maintenance, user feedback is especially valuable
since it is providing additional input to the prediction algorithms. Users can
also initiate an operation which is then carried out by the platform, such as
rescheduling maintenance task, or respond to a system triggered operation
such as handling an alarm. Another aspect of the user interaction is the
communication between different users through the MANTIS platform. In
addition to the straightforward communication in terms of the textual or video

Figure 6.1 MANTIS human-machine interaction.
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chat functions, the users can also communicate via established workflows or
shared widgets.

Although environment cannot be treated neither as a direct link between
the user and the system nor as a part of communication between the users, it
can significantly improve the human-machine interaction in terms of context-
aware functionalities.

Proactive and collaborative maintenance oriented human-machine
interaction within the MANTIS system supports five main high-level user
tasks:

• monitoring assets;
• data analysis;
• maintenance tasks scheduling;
• reporting;
• communication.

These tasks were identified as the key user tasks in the initial process
of user-centred design. Monitoring the assets, data analysis and maintenance
task scheduling proved to be vital for proactive maintenance, while reporting
and communication allow collaboration between different user roles. Tasks
can be carried out using several MANTIS specific functionalities that can be
classified as user input, system output, user- or system- triggered operation.
Functionalities, described later in this section, cover all the main aspects of
MANTIS human-machine interaction and are general enough to be applicable
to any MANTIS or potential future use case.

6.1.3.1 Functionalities supporting high level tasks
A more detailed description of each functionality previously identified is now
provided including the expected Output, Input and/or related Operations.

Scheduling Maintenance Tasks

Output:

• Maintenance tasks schedule together with some additional information
for each task, such as:

• description of the task (including suggested time schedule);
• relevant asset related information (e.g., sensor logs, maintenance

history and statistics);
• task progress information;
• client information;
• spare parts related information (availability, vendor information).
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Input:

• Input of task related information, such as:

• task acceptance/rejection;
• task progress (e.g., start and stop indication);
• assigned resources (e.g., necessary time and equipment).

• Input of asset related information:

• asset state information (e.g., description, image, failure description);
• feedback to the system (e.g., identification of the failure root cause,

estimation of the actual wear).

Operations:

• User-triggered operations:

• task rescheduling;
• filtering and sorting maintenance tasks;
• report generation (automatic or manual);
• spare parts management.

• System-triggered operations:

• update when new task is scheduled;
• alert (when new task is scheduled, spare parts are not available,

etc.).

In scheduling maintenance tasks, the display of maintenance tasks
schedule, produced as a result of MANTIS system intelligent functions,
is the most important functionality. It offers the overview of all relevant
maintenance tasks and provides them with additional, task related
information such as task description (including suggested time schedule),
relevant asset related information (e.g., sensor logs, maintenance history
and statistics), maintenance personnel support such as guides, manuals or
instructions for a maintenance task, task progress information and client
information. Information, displayed in the schedule is, together with the user
input data, one of the main sources for automatic report generation.

MANTIS HMI allows the user to input some of the task and critical
asset related information, such as task acceptance or rejection, task progress
(e.g., start and stop indication), assigning resources (e.g., necessary time and
equipment), critical asset status, or image of the failure (in case of failure).
Such input is important for monitoring the maintenance activities’ progress
and especially for providing feedback to the system (e.g., identification of
the failure root cause, estimation of the actual wear, etc.), which may have
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a considerable impact on improvement of predictive algorithms. The user
feedback may be taken into account in two ways. It can serve as a direct
input to predictive models, or it can be used indirectly as a domain expert
knowledge that can provide an important insight in the quality of predictive
models.

Schedule updating operation can be triggered automatically by the system
when a new maintenance task is scheduled according to the maintenance tasks
scheduling algorithms. If the newly scheduled maintenance task is considered
critical for the production process or for the health of assets, the system may
trigger an alert as well. These two system-triggered operations can affect the
display of the maintenance task schedule by changing the schedule or/and
in case of alert by modifying the graphical display of the schedule, which
happens mostly in the case of a critical maintenance task.

Manual rescheduling, filtering and sorting maintenance tasks, and spare
parts managing are user-initiated operations and can affect the display of the
maintenance task schedule. In addition to these operations, users can trigger
the automatic report generation. In response to this user action the system
gathers tasks related information and the user input to generate a report in
any desired format.

Monitoring

Output:

• Current, historical and predicted parameter values of monitored assets,
together with the expected range of monitored parameters;

• Comparison between actual and estimated wear or predicted remaining
useful life;

• Possible failures of assets together with some additional description
(e.g., current and historical parameter values related to the faulty asset,
possible feedback from other users).

Input:

• Flagging the data.

Operations:

• User-triggered operations:

• sort and filter monitored assets;
• select different data sources;
• select time range of monitored parameters;
• generate reports on monitored parameters;
• transfer the monitored data to other users.
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• System-triggered operations:

• continuous updating of the monitored parameters;
• alert when monitored asset parameter out of predefined range.

The most common assets monitoring related functionality is definitively
the real time display of parameter values, measured by multiple sensors
in the MANTIS system. Amounts, displayed on the user interface, vary
from the actual current and historical parameter values to the predicted
future parameter values. In case of abnormal values of these parameters, the
interface can adapt the display to alert the users. It is often required to display
the expected (normal) range of the parameter values, the comparison between
the predicted and actual parameter values or remaining useful life of the asset,
and various statistics of historical parameter values of the monitored asset.

Other monitoring features include the display of the possible assets
failures together with some additional description, such as current and
historical parameter values related to the faulty asset and possibly the
feedback from other users.

Although the user input is typically not required for monitoring itself,
MANTIS HMI should allow the user to flag, label and comment the data. In
this way, the users can provide the additional data that might not be captured
by the sensors.

Real time display of information is often vital for an efficient maintenance
process which means that the MANTIS HMI should be able to frequently
update the parameter values. Also, the display of alerts if the monitored
asset parameters are out of predefined range is another important system-
triggered operation. It is often helpful if the alert carries some additional
information related to the monitored asset parameter such as historical values
of the parameter. Both operations have influence on the display of parameter
values and the display of possible failures. While an update of the monitored
parameter changes the values of the parameter itself, alarms or alerts have
influence only on the display of the parameter values.

MANTIS HMI should allow the users to sort and filter monitored assets
to advance the navigation among different assets and monitored parameters.
To make the monitoring more flexible and tailored to the users’ current needs,
the interface should allow the selection of different data sources and the time
range of the monitored parameters.

Finally, the interface should be able to produce automatically generated
reports that include various information about the monitored parameters and
to transfer the monitored data to other users.
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Data Analysis

Output:

• Assets wear;
• Remaining useful life of the assets;
• Predicted future values of monitored parameters;
• Comparison between predicted and actual parameter values;
• Feedback from other users.

Operations:

• User-triggered operations:

• Prediction models management:

• model inspection;
• activation or deactivation of the model;
• updating, generating and evaluating predictions.

• Report generation.

• System-triggered operations:

• Alert when prediction performance of MANTIS system is below
the predefined threshold.

Since the data analysis is one of the key tasks in proactive maintenance,
it is important that it is supported by the MANTIS HMI. In most of
the MANTIS use cases, data analysts are already using various software.
However, in order to reduce the time of frequent tasks it might still be
useful to have an additional user interface. Such interface can also allow
the users that are not specialised in data analysis to perform some basic
data analysis operations such as displaying some basic statistics or choosing
between predefined models.

Displaying the production assets wear, remaining useful life of the assets,
or predicted future values of monitored parameters can therefore represent
valuable features of the MANTIS HMI. Also, the of comparison between
predicted and actual parameter values and feedback from other users in
textual and/or graphical form can aid in evaluating the performance of the
predictive algorithms.

To some extent, the users can also be able to manage the prediction
models. These functionalities are usually limited to model inspection,
activation or deactivation of the model, and updating, generating and
evaluating predictions. Manipulation of the prediction models influences not
only on the display of different parameter values in scope of data analysis,



252 From KPI Dashboards to Advanced Visualization

but does also have a significant impact on every aspect of the proactive
maintenance. Designers of such interfaces should pay a special attention
to the automatic update of the predicted parameter values and estimated
remaining useful life of the assets in case of applying a new model. Usually,
the maintenance tasks should be rescheduled as well. If the new estimation
of the remaining useful life of the asset is lower than the previous one, this
might also trigger some possibly indispensable alarms.

The results of the model management should be reported with the use of
automatic report generation feature of the MANTIS HMI. The report should
contain the information, displayed on the data analyst’s user interface, and
optionally the description and interpretation of the used models.

The prediction performance of the MANTIS system can be estimated
from the comparison of the predicted and actual parameter values or the
feedback from the users working on the field. If the performance is below the
predefined threshold, MANTIS HMI should display an alert with additional
information on prediction performance and send the relevant data to other
users whose work is influenced by these models.

Reporting

Output:

• Report in pdf or html format.

Input:

• Textual information input;
• Graphical information input;
• Spoken report.

Operations:

• User-triggered operations: data importing and exporting;
• System-triggered operations: processing spoken reports.

Generating reports can be triggered manually by the user or automatically by
the system on regular bases. If a user triggers the report generation, the system
should be able to produce the report in any required format, most commonly:
pdf or html. The report should contain all the relevant information related to
the maintenance process, assets and the input that the user has provided.

In addition to the content that is automatically generated by the system,
the MANTIS HMI should allow the users to input any additional information,
either by means of importing the data from different data sources or manually
input textual or graphical information.
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Although the reporting is more of a by-product than a vital part of
the maintenance process, it can significantly reduce the workers’ time and
the effort dedicated to this task. Some advanced reporting features include
process the spoken reports, which could especially benefit the maintenance
technicians on the field.

Communication

Operations:

• User-triggered operations:

• textual, visual and audial communication between the users;
• transfer of different data sources, images, videos, and documents

among the users;
• transfer of different data sources, images, videos, and documents

to and from the MANTIS platform.

Communication is an important aspect of proactive and collaborative
maintenance. Communication is not present only between the user and the
system but also between different users. Enhanced communication not only
boosts the working productivity but also helps to avoid the human mistakes
caused by misunderstanding. MANTIS HMI should therefore support both
direct messaging in form of chat or video and indirect communications via
shared widgets or established workflows.

For each of these high level tasks we provide a list of functionalities
supporting given high level task (Figure 6.2). In addition to the model,
we provide a Requirements Specification template, which can serve
for identification of the HMI content elements and their functionalities
supporting the high level tasks of a given use case. More details are also
available in [Poklukar et al., 2017].

6.1.4 HMI Design Recommendations

Functional specification and thereby derived interaction model, described in
the previous section, cover the functional aspect of the MANTIS HMI. In
order for resulting interfaces to be intuitive and easy to use, the established
design principles should be applied. Regardless of technical implementation
choices, design recommendations and guidelines can be provided that
facilitate HMI implementations to fulfil the requirements of maintenance-
based user interaction and offer a good user experience.
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The first step towards a personalised interface that enables the
user’s maximum efficiency is the definition and design of different HMI
representation types, associated with different scenarios, users (workers,
administrators, services, managers, etc.), and platforms. The selection of the
HMI representation types was accomplished by extracting the requirements
of interaction scenarios from the MANTIS use cases. All use cases require
the use of PC interfaces (desktop/laptop) and most require mobile devices
(smartphone/tablet). A few need to use industrial PC consoles or specialized
external devices as well.

A central feature of most use cases is displaying and responding to alarms
and monitoring processes by displaying data in the forms of tables, charts
or graphs. Some scenarios also require the interface to display maintenance
plans and guides on how to perform tasks, to exchange messages with other
users, and/or to input reports on the performed maintenance tasks. Non-
textual input is required by some use cases, such as sound and video recording
and text-to-speech and speech-to-text.

Based on user interface design best practices, but focussed on collected
MANTIS requirements, provided design guidelines strive to find a balance of
being specific enough to add value over generic UI design literature, while
still being applicable to most MANTIS use cases. They are also applicable to
industrial maintenance use cases outside of MANTIS. The guidelines relate to
the structure of the interface (a levels-based screen hierarchy and navigation
between the screens), layout of the screen elements, visual design (general
appearance of the interface, colour selection, etc.), and data representation.
Furthermore, interactions and collaboration between users are addressed, for
example managing alarms and events, creating reports, and communicating
via messaging and chat.

The aspect of supporting different HMI platforms is taken into
account by analysing their specifics and differences. We argue that for
most interaction scenarios all platforms can be supported adequately by
implementing the HMI as a web application. Responsive design should
be used to adapt automatically to the screen size, input capabilities, and
other specifics of the particular device a user chooses to employ. To this
end, we recommend following the model-view-controller architecture for
web application development. We also briefly list some of the popular web
development back- and front-end frameworks that could serve as a basis for
implementations. Finally, some suitable libraries for data visualisation are
also listed, e.g., for graphs and charts.



256 From KPI Dashboards to Advanced Visualization

6.1.5 MANTIS Platform Interface Requirements

The definition and design of different HMI representation types is associated
with different scenarios and different users, e.g., workers, administrators,
services, managers, etc. This includes defining the modalities of adaptive user
interfaces in order to setup a context sensitive monitoring environment as well
as taking the aspect of supporting different HMI platforms into account, e.g.,
web, mobile. The maintenance personnel should get mobile and easy-to-use
extensions to the existing industrial dashboards (usually) on fixed-position
screens. Maintenance procedures are presented via user-friendly, ergonomic
and intuitive human-machine interactions, which might include the use of
monitors, cameras and other HMI-specific sensors.

The devices that can be used for human-machine interaction range from
general-purpose input- and output-capable devices, either static (desktop
PCs), portable (laptops), or mobile (tablets, smart phones). Certain scenarios
also include special-purpose PCs integrated into industrial equipment, as
well as special purpose output (line monitors) and input devices (e.g., GoPro
cameras).

Preferably each MANTIS HMI implementation should be usable on PCs
and mobile devices, rather than requiring two separate implementations. The
two most prominent interface elements are alarms and guides. Alarms play an
important role in cyber-physical systems in general and in their maintenance
in particular. Guides need to be taken into account when the operators need to
follow the prescribed maintenance processes or machine failure interventions.
The other elements are more generic; however, numerous design guidelines
and examples can be provided to facilitate the implementation of HMI that
can fulfil the objectives of MANTIS.

6.1.5.1 Analysis of different interface types
User interfaces can be divided into many types based on the input and output
devices that a user can interact with (Wikipedia). The most traditional is the
combination of keyboard and mouse input with screen output. Touchscreens
serve as both input and output. Additional types of interaction can be
facilitated with audio (microphones for voice recording or recognition,
speakers or headphones for voice synthesis or playback of pre-made sounds)
or video devices (cameras). Finally, pointing devices (mouse, touchscreen,
trackballs, user’s hand recognized by a camera, etc.) can be used to recognize
user’s gestures rather than as pointing to a particular object on the screen.
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Types of user interfaces were strictly divided in the past, but nowadays
trends in design are more oriented into combining different existing types,
exploring new ones, to enable most natural interaction between user and
machine (natural user interfaces) [Wigdor, et al., 2011].

Smartphones and tablets have become two most commonly used types of
mobile smart devices in everyday life. Most of the users are therefore familiar
with their UI and should not need any device-specific training.

Smartphones and tablets run various operating systems (most commonly,
Android, iOS or Windows platforms are used) with a graphical user interface.
Mobile devices offer a wide variety of additional hardware characteristics,
which can be used as a part of application HMI, e.g., playing sound for
alarms. The camera has become an almost essential part of mobile devices.
Every device is also equipped with a microphone. Mobile devices connect
to networks wirelessly, either to local networks via Wi-Fi or to the internet
via mobile networks. Because of the size and hardware characteristic, mobile
devices can be brought almost everywhere [Dunlop, et al., 2002].

The characteristics of the smartphones and tablets enable the use of
different HMI types. The basic type of a mobile HMI is the graphical user
interface, most commonly using a touchscreen as a combined input and
output device. A first type of advanced HMI is the gesture interface, which
enables inputs made in a form of hand or stylus gestures. To improve user
experience, some additional features, such as photo capturing and video or
voice recording can be added to the HMI, as an example, for error reporting.

The second type of advanced HMI that is discussed in this context, is
voice user interface, where the input is made by voice commands. Voice
recordings can be added to error reports for later playback to other users or
provide real-time interaction between the machine and its user. An example is
voice dialling on mobile phones. Similarly, generated voice output is meant
to be interpreted and acted upon by the user, such as in the case of voice
commands of car navigation devices.

Display Size
The main difference between a smartphone and a tablet is the display size.
While smartphones are smaller and “pocket-sized”, the tablet is able to
leverage on a larger diaplay to show more information. From an analysis
on smartphone commercialized by market leaders, it was found that display
diagonal size ranges between 3.5′′ and 6′′, which means HMI should be
adjusted to hardware restrictions. In this kind of scenario, the user interface
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should provide only basic information, and be menu based to enable easy
access to application features.

Tablets display diagonal sizes ranges between 7′′ and 12′′. Larger display
provides easier access and interaction. The larger display is also crucial when
more urgent information needs to be available, so there are little actions
needed to navigate to them.

Controls
The controls are one of the most notable aspects when user is selecting a
device for specific MANTIS task. Mobile HMI is usually controlled by means
of a touch screen display with hand or stylus. Graphical user interface is
combined with menu user interface, which means there are visual buttons
on the display to lead interaction with certain actions. Most of the mobile
devices have some physical buttons (depends on the manufacturer), where
basic functions of devices can be applied, for instance on/off button, camera
shortcut etc. Finally, smartphones and certain tablets can provide simple
haptic feedback to the user through vibration.

Other possibilities of controlling tablets or smartphones are with external
controls, such as an external keyboard or access through an external device,
for instance, PC-smartphone connection, Bluetooth connection, and remote
control.

User Role
The mobile HMI is typically used by users who only need to see a limited
amount of information and alerts.

Examples of roles in MANTIS use case scenarios interacting with mobile
HMI are:

• An operator, who is a person usually dealing is usually dealing directly
with the technical process. Due to the type of work, operators may have
wet, dirty hands or wear gloves, which means they are incapable of using
a keyboard or mouse. Devices are therefore touch-screen based and
should work with gloves as well as hands. Some scenarios require them
to also be mobile, while in other scenarios the cyber-physical system
being worked on contains fixed operator consoles. In case of production
line noise, voice user interfaces, excluding alarms, can only be used with
caution or not at all;

• Other user roles, such as maintenance team member, 3rd level
development support, service technician, who are working both on the
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terrain and in the office but only need to see certain information, alerts
and notifications, are using mobile HMI as well.

Additional Sensors and Context Sensitivity
Mobile devices can also include other sensors, such as a GPS receiver, air
temperature and pressure sensor, accelerometer, compass, fingerprint reader,
etc. Some of those may be useless in industrial scenarios. For example, in
production plants where ambient temperature is important, highly accurate
temperature sensors will be permanently installed, rather than relying on
measurements from a worker’s tablet. The compass may not work well
in vicinity of large metal structures. Furthermore, the MANTIS use case
scenarios do not explicitly mention human interaction with data from such
sensors; therefore these aspects are not further considered in this chapter.

On the other hand, the MANTIS deliverable on context-awareness
explored when, where and how the human-machine interaction can be
supplemented by implicitly taking into account the context of the task being
performed. For example, if the mobile user’s location can be determined
accurately enough, the HMI could automatically switch to the screen relevant
to the machine closest to her.

The context is not limited to the sensors on the mobile device, but rather
includes any data related to the task but not explicitly being handled (typed in,
read) by the user. Some of the goals of the MANTIS project are measuring,
recording, and statistically processing huge amounts of data, all of which
provide additional context for HMI tasks. Moreover, the latest global trend
of making industrial machines connected and intelligent shows that context-
sensitive HMI is an important topic and not just limited to MANTIS.

6.1.5.2 PC HMI
PC platforms are more commonly used professionally, for instance in
industry, production and design. In industry, it is usually used as a set of
desktops in the control room, or as industrial PC located on the production
site (extreme environment). The majority of average users are able to manage
PC devices.

PCs, used in MANTIS scenarios, can be divided into three groups,
desktop PC, laptop and industrial PC. All of them have some advantages,
which can be used in different environments, with different user types. They
are typically connected into local wired (e.g., Ethernet) networks, which are
secured more easily than the wireless networks used by mobile devices.



260 From KPI Dashboards to Advanced Visualization

PCs are highly customizable. Their operating systems are different than
those on mobile devices (different versions of Windows, Linux, MacOS, etc.)
and they usually, but not always, use a graphical user interface. Some older
or specialized software still uses the command-line interface (CLI). Desktop
PCs are dependent on peripherals (external components), such as a display,
keyboard, mouse, to enable access to the HMI. Through the use of external
components, PCs are much more customizable than smartphones and tablets.
Except for laptops, PCs are not mobile, which means they are engaged in the
certain environment (office, production site, etc.).

Interactions on PCs are usually restricted to keyboard and mouse,
although hybrid laptops with touchscreens are also popular in some circles.
External components, such as microphone and cameras, can be used where
needed for additional interaction modes. However, there is less need for
voice-based interactions (voice commands and voice generation) than with
mobile devices, because with PCs there is rarely a need for hands-free
interaction and because the keyboard is much more usable for entering text
then the on-screen emulated keyboards of mobile devices.

Display Size
The currently common display diagonal size of external monitors can range
from 19′′ to 30′′ and 13′′–17′′ for laptop screens. Wide-screen ratio 16:9 and
16:10 are common formats on the market, though more information can be
shown on traditional 4:3 screens. Some external monitors can be switched
from landscape to portrait orientation. In any case, MANTIS HMI design
should be adjustable to one format or another, to avoid vital information
not being available. Display size, compared to mobile HMIs, is larger and
therefore can display greater amount of information on the screen. Users like
data analysts, in need of having to look at plenty of data at once, need large
displays; mobile display sizes do not meet the requirements.

Controls
Desktop PC can only be controlled by external input and output modalities.1

Common modalities are based on vision (screen), sound (audio outputs) and
sense of touch (vibrations, movements).

Considering users’ needs, different components are used for input. The
computer keyboard allows the user to enter typed text and the mouse
allows the user to input spatial data to a computer. On a desktop computer,

1A modality is a path of communication employed by the user to carry input and output.
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a virtual keyboard might provide an alternative input mechanism for users
with disabilities who cannot use a conventional keyboard, or for bi- or
multi-lingual users who switch frequently between different character sets
or alphabets. There are many variations of pointing devices, such as 3D
mice, joysticks, etc. Some other devices, such as a digital pen, digitizing
tablet, high-degree of freedom input and composite devices are available
on the market. Most common input devices for imaging, which are used to
digitalize video or image to the computer are for instance digital camera,
webcam, fingerprint scanner etc. Audio input allows the user to capture
sound.

The output is another aspect of HMI. Displays visually represent text,
graphic, and other video material. The visual material can be also printed
on paper by other output devices, such as printers, 3D printers, etc. Audio
can be heard through speakers or headphones. More uncommon is the
haptic technology, which provides tactile feedback using the sense of touch,
vibrations, the motion of the user.

User Role
PC HMI is usually used by users based in one place, such as an office, control
room or production site. PC users need to manage a larger amount of data and
therefore need a more powerful device. There are usually no restrictions for
keyboard or mouse use.

Examples of users from MANTIS use case scenarios interacting with PC
HMI:

• Maintenance managers are responsible for long-term analysis of tool
usage. They communicate with the business manager. For a better
overview, a maintenance manager uses PC HMI, where all available data
can be shown. Important notifications can be also received via an e-mail;

• The data analyst is responsible for analysing the results from
prediction/learning algorithms. His work is connected to a large amount
of information, which can only be represented on PC display. He or she
can access all live streaming data and historical data from several data
sources. Best HMI for this user role is the graphical user interface as
there is many data to be displayed;

• Production manager, qualifier, maintenance planner, maintenance
planner unit, plant operator need to use a PC HMI due to a larger
amount of data, better access to other applications and permanent
workspace.
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6.1.6 Recommendations for Platform Selection

The main factors defining which type of HMI to be used in certain
situation are:

• users (needs, preferences, capabilities);
• user tasks, interactions and goals;
• platform (hardware, software constraints);
• environment (noise, lighting, dirt, vibrations, etc.).

MANTIS scenarios present common situations in terms of maintenance
of the system and trouble-shooting:

• monitoring the system (e.g., monitor the information on screen, reading
reports);

• simple interactions;
• analysis;
• usage of the machine and trouble-shooting;
• communication.

The selection of HMI to be used for certain situation can be summarized
as follows:

• For monitoring the machines and generated data, both mobile and PC
HMIs are required. The preferred selection of mobile device is tablet as
it can present more data on screen due to larger display size. The users,
performing monitoring tasks, are diverse – from machine operator, to
maintenance engineer and data analyst. The selection of the HMI, based
on the user is therefore more dependent on the location of the user rather
than their role. The users with fixed workplace location will prefer the
PC HMI with larger display size, while users working on the terrain will
prefer mobile HMIs due to ease of accessibility. Mobile HMI can be
used as a remote extension to PC HMI as well;

• For simple interactions with HMI (confirmations, calculations, ratings
etc.), buttons and menus are mainly used as interface elements. As trivial
interface elements to use and implement, there is no limitation for usage
to either HMI. The main difference is the control function; normally
touch for mobile HMI and keyboard with mouse for PC HMI;

• For analysis of system data, generated reports or financial aspects,
responsible by data analyst, PC HMI is preferred in all MANTIS
scenarios. For component analysis and usage of various analysis tools
by some maintenance managers, tablet is required as a HMI;
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• For usage of the machine, troubleshooting and following guidelines and
instructions when repairing the machine, both mobile and PC HMIs are
required. The preferred selection of mobile device is tablet, while the
PC HMI is mainly presented as industrial PC. The users of PC HMI
can be defined as machine operators and the users of tablet are defined
as service technicians, support team or maintenance engineers, without
fixed workplace, moving from site to site, or working remotely;

• For communication between users (e.g., text, audio or video chat), both
mobile and PC HMIs are required. Communication is not limited to any
user role and device, it could be used on various devices (smartphone,
tablet, desktop PC and laptop PC) by various users. It can be assumed
that the selection of HMI by specific user is affected by other factors or
tasks rather than chat requirements.

All the user roles enumerated for mobile and PC HMIs can be supported
well with a web-based HMI. To run well on the type of device each user role
typically uses and to ensure good user experience, the web-based HMI has to
be implemented carefully so that it is able to adapt to different devices and
display sizes.

A web application intended for both mobile and PC users must be able
to adapt to screen sizes from 4′′ to 30′′ in both portrait and landscape
orientations. However, individual screens of the web HMI only have to adapt
to the typical screen sizes of the devices that will be used for tasks that the
screen is part of. The screens intended for mobile devices will still be usable
on PCs. The opposite, using a mobile device for a task intended for PC, will
be possible as a workaround (e.g., the PC broke down) but not recommended
for extended periods.

The same can be said for the difference in controls. The tasks intended
for mobile devices should require at most a minimal amount of typing, thus
the inputs are limited to multiple-choice buttons and alternative modalities
(sound, camera). The workflow should lead the user through well-defined
procedures using linear navigation. No high-precision pointing should be
required unless a stylus is used.

The tasks intended for PCs, however, can offer richer navigation, can use
typing as the default input method and should offer keyboard shortcuts for
buttons, menus, and navigation. Obviously, multi-touch gestures must not be
required.

LED-based projection technology is currently getting build into
smartphones and tablets, giving them the potential of projecting a big (touch)
screen on any surface. Although a very promising solution to the current
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screen size limitations, this technology is still in its infancy and there are
many obstacles to overcome before it will become mainstream.

6.1.6.1 Web-based HMI
Web applications are increasingly being used in all domains where the
application is not an isolated island, but has to also interact with other
users and/or data residing elsewhere. A well-known example are office
suites (Google Drive, MS Office Online), where web applications enable
collaboration in the sense of multiple users simultaneously editing the same
document. On the other hand, they are less feature-rich than their desktop
counterparts, the interaction is less responsive in certain cases and might
require a continuous web connection to work.

In case of MANTIS maintenance HMI, most use cases require
both PC and mobile HMI. The operating systems and consequently the
native software development stacks (programming languages, integrated
development environments, libraries and frameworks for user interface
creation, debuggers, etc.) are completely different in these two cases,
requiring significant duplicated effort. Windows platforms do strive to unify
mobile and desktop development to a degree. However, only supporting
Windows as a mobile platform is currently limited and has low availability of
hardware. Web applications, on the other hand, run out of the box on all PC
and mobile operating systems, making it much easier to support both types
of devices.

Another advantage of web applications is that they can be deployed
and managed centrally and are easier to ensure that all users use the same
(latest) version [Miller, 2008]. They need continuous access through a
network with a (local) server to work. Nowadays, all devices are already
suitable for connections, either through Wi-Fi or mobile network. Since
most of MANTIS scenarios involve cooperation of multiple users. This is
a requirement regardless of whether web or native applications are used.

The upcoming evolution in web applications is the ability to run and
store data when no connection to a server is present. In this case, data is
managed on the local browser and once the connection restores, all data will
be synchronized. This is already the case in some progressive applications
and receives increasing supported from browser vendors.

6.1.6.2 Responsive design
The user interface of the MANTIS platform has to be flexible and modular, to
easily adapt layout, content and appearance to different screen sizes. In this
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context responsive design approach proposes an efficient and suitable method
to solve the challenges of modularization, flexibility and scalability and to
optimize user experience across devices of varying sizes and capabilities.

Responsive design allows a page to adapt layout and content to viewing
contexts across a spectrum of digital devices. Responsive design approach
supports the adjustment of device’s resolution, size, and layout, from
smartphones to desktop PCs. Devices such as tablets and smartphones
also support orientation changing, providing two possible screen widths.
Developers now have new web standards like Hypertext Markup Language
version 5 (HTML5), and Cascading Style Sheets version 3 (CSS3), enabling
them to design and build user-sensitive sites that respond to a range of
contexts and device capabilities [Gardner, 2011].

“Mobile first” is a more recent design paradigm whereby web-based user
interfaces are optimized for mobile use first and have a graceful fall back
when being used on devices with larger screens instead of the other way
around. This is done by gradually offering more information and options
once the real estate allows it. Starting from the essential must-haves on small
screens to additional nice-to-haves on larger screens.

Marcotte [Marcotte, 2010] outlined a method for creating fluid layouts
that are screen-resolution agnostic and capable of dynamically changing
according to user context. He describes responsive design as having three
elements:

• a fluid layout that uses a flexible grid, which in turn ensures that a
website can scale to a browser’s full width;

• images that work in a flexible context, whether fluid themselves or
perhaps controlled through overflow mechanisms;

• media queries, which optimize the design for different viewing contexts
and spot-fix bugs that occur at different resolution ranges.

6.1.7 Interface Design Recommendations for MANTIS Platform

Although MANTIS use cases come from different domains (production
assets, vehicles, energy production and health equipment), common
recommendations can be provided that apply to most or all of them. The
objective was to provide a set of guidelines that, if followed by the various
MANTIS HMI designs, will ensure a consistent interaction between the
users and the system with the common pitfalls avoided. The user will be
provided with simple, intuitive, legible displays that are suitable for the
intended purpose. These recommendations can be applied to any potential
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interface, emphasizing maintenance tasks, alarm management, pro-activeness
and collaboration.

Based on the understanding of the use case scenarios and a design
philosophy, a set of recommendations for designing interfaces for MANTIS
platform was established and refined:

• The structure of the interface has to be defined (a four-level screen
hierarchy and organization of screen flows) and the implemented logic
of navigation controls and menus that allow the user to navigate more
easily through the HMI;

• Overall screen layout has to be defined including a consistent
arrangement of interface elements and distribution of information on the
screen to enable a fast orientation of the user;

• The visual design section has to describe the general appearance of the
interface and specify the properties of the interface elements, such as
colour selection and display text;

• Decision has to be made about the most effective way of data
presentation using components such as tables, charts, bar charts and
line graphs;

• Interaction and collaboration betweenusers have to be defined, for
example managing alarms and events, creating reports, following step-
by-step guides and communicating via messaging and chat.

6.2 Adaptive Interfaces

A great challenge in human-machine interaction is to ensure that the
information presented on the interface is meaningful and relevant, properly
represented, location-aware and targeting the appropriate person. It is also
important to bring the attention of the user at the most suitable moment,
instead of disrupting him/her with information overload.

In a proactive and collaborative maintenance platform, gathering and
combining condition monitoring data with contextual information can
provide numerous benefits such as a better productivity, improved decision-
making, accuracy of predictions and process optimisation, together with an
enhanced usability and personalisation on the HMI.

6.2.1 Context-awareness Approach

Context-aware computing is a paradigm where applications and services use
environmental information acquired by sensors (such as user and device
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location, state, time, nearby places, people and devices, etc.) to provide
relevant information and/or services to the user.

The concept of context has been researched over the last decades
in software engineering, especially in areas such as Natural Language
Processing, and more generally in Human-Computer Interaction.

Context makes the interaction with computers easier by adapting the
information to the user, discriminating what is relevant and what is not, so
that the user in human-machine interactions can focus on high-level tasks,
which is very important in scenarios of information overload, especially as
we move towards a world of ubiquitous and pervasive computing and the
Internet of Things.

6.2.1.1 Context and context awareness fundamentals
The term “context” has been addressed by some authors such as Abowd and
Dey [Abowd, et al., 1999], which identified the two main types of context:
primary and secondary context. These contexts differ through four main
categories which are location, identity, activity and time.

Following this study, [Perera, et al., 2014] referred to the main difference
between each context as:

• Primary context: Any information retrieved without using existing
context and without performing any kind of sensor data fusion
operations;

• Secondary context: Any information that can be computed using
primary context by using sensor data fusion operations or data retrieval
operations.

Figure 6.3 shows some examples of context categorization from a
conceptual and operational perspective:

The term “context awareness” refers to the ability of computing systems
to acquire and reason about the context information and subsequently adapt
the corresponding applications accordingly.

This term was first introduced in the research field of pervasive and
ubiquitous computing by Schilit and Theimer in 1994 in a paper entitled
“Context Aware Computing Applications” [Schilit, et al., 1994], describing
software which adapts according to its location of use, the collection of
nearby people and objects, as well as changes to those objects over time.

Abowd and Dey [Abowd, et al., 1999], provided the most widely accepted
categorizations of context aware features which are the presentation of
information and services, automatic execution of services an tagging of
context.
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Figure 6.3 Categories of Context [Perera, et al., 2014].

Another interesting study is the one done by Barkhuus and Dey
[Barkhuus, et al., 2003] where they identified three levels of interactivity in
context awareness based on the user interaction which are personalization
(based on the preferences and expectations of the user), passive context
awareness (updated contextual information is presented to the user) and
active context awareness (application autonomously changes its behaviour
according to the sensed information).

6.2.1.2 Context lifecycle in context-aware applications
Perera et al. [2014] selected ten popular data lifecycles [Hynes, et al., 2009;
Chantzara, et al., 2005; Ferscha, et al., 2001; Wrona, et al., 2006] to analyse
them in their survey. After reviewing these works, the authors stated that
applications use typically four phases when processing context, from the
moment it is acquired from sensors in raw format, to the moment it is
consumed by the end-user application:
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• Context Acquisition: Contextual data is captured from the environment
using sensors;

• Context Modelling: The collected data needs to be represented in a
meaningful manner through a context model;

• Context Reasoning: Modelled data needs to be processed to derive
high-level context information from low-level raw sensor data;

• Context Dissemination: High-level and low-level context need to be
distributed to the consumers who are interested in context.

6.2.1.3 Adaptive and intelligent HMIs
Information overload, variety of heterogeneous users and cognitive overload
for decision making are different problems to deal with the process of HMI
design and development. Different research areas such as Intelligent User
Interfaces (IUI) and Adaptive User Interfaces (AUI) face with those problems
applying intelligence during the process, investigating new algorithms and
promising techniques for user, context and content adaptation.

Intelligent User Interfaces (IUI)
Intelligent User Interfaces (IUI)2 is a multidisciplinary area inside the
Human-Computer Interaction (HCI) research field that aims to improve
human-computer interaction by applying technology to those interfaces
[Ehlert, 2003].

Over the years, many researchers from different fields (as shown in
Figure 6.4) have influenced and made improvements on areas related to
IUI, for example in psychology (advances in cognitive sciences or human
perception), in artificial intelligence (improvements in user modelling, or
in machine learning to predict user behaviours), and in the HCI field
(new visualization and interface evaluation techniques to have a better user
experience and usability).

Intelligent interfaces can adapt to user, context and situation, they have
the ability to communicate and they have the ability to solve different
problems, improving the usability, flexibility [Maybury, et al., 1998] and user
experience adding Artificial Intelligence.

Adaptive User Interfaces (AUI)
Adaptive User Interfaces is a subtype of IUIs that improve the interaction
with the user with knowledge taken from this user [Langley, 1997]. We can

2IUIs can be described as interfaces that, using intelligent technology, can improve the
communication between the machine and the end user.
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Figure 6.4 Research Fields Influencing the Development of Intelligent User Interfaces.

divide them in two main groups according to the type of feedback that the
user must provide:

• Informative Interfaces. For example, recommender systems or
information filtering, where the interfaces select or filter information for
the end user to improve the user experience;

• Generative Interfaces. For example, systems for planning or document
preparation, where the generation of a useful structure is needed.

AUI was recognized as very promising and challenging area [Norcio,
et al., 1989]. The purpose of this field is to provide a user experience that
is automatically created via machine-learned processes. We can define AUI
as the intersection between HMI and Machine Learning.

A user model is the description and knowledge of the user maintained by
the system. User modelling is concentrated on individual users’ knowledge,
goals, plans, emotions, personality, ability etc. [Kobsa, 2011]. Early
researches of adaptive interface models are based on user data.

Context-aware user interfaces play an important role in many adaptive
human-computer interaction tasks of location-based services. Examples of
works in this area is the context-aware adaptive models for mobile location
proposed by [Feng et al., 2015], the personalized traveler information system
(ATIS) presented by LBS, [Lathia, et al., 2012] or the AUI based on various
possible contexts such as handicap user profile proposed by [Zouhaier, et al.,
2013].
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6.2.1.4 Context awareness for fault prediction and maintenance
optimisation

The use of context information within prediction and maintenance-related
processes is one application of context awareness mechanisms. Here, the
focus is to enhance the reasoning/modelling systems (e.g., diagnostics,
prognostics, maintenance scheduling) to improve decision support.

Concerning predictive analytics, the predictive ability of a system is
enhanced by contextual information present in the environment [Kiseleva,
2013]. Besides that, context can also be used to improve the Remaining
Useful Life (RUL) prediction, as expressed in [Ahmadzadeh, et al., 2012;
Thaduri, et al., 2014]. Different approaches can be used to obtain an accurate
RUL using operational context, there could be better ways to make this
prediction.

An example of an approach would be to predict the degradation
of an equipment (e.g., machine tool) based on how it is being used
using “Fingerprint” is the recorded data obtained periodically when
monitoring a sensorised machine doing the same set of predefined operations
(see Figure 6.5).

Another approach is to calculate a more accurate RUL, where context
information concerning the future operational conditions have an impact in
the final prognosis scenario. This approach was applied in a study done in
[Ferreiro, et al., 2012] to predict the RUL of aircraft brake wear.

Figure 6.5 Context-Dependent Data Integration in Maintenance Scenarios (POWER-OM,
Lulea Technology Univ., 2015).
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6.2.1.5 Context awareness for maintenance personalisation and
decision-making

Personalization has become an important aspect in many areas, e.g.,
personalization of car interfaces [Endres, et al., 2010; Garzon, et al., 2011],
in smart home environments [Ma, et al., 2005], automatic profile selection
[Coutand, et al., 2006], healthcare [Zhang, et al., 2005; Hashiguchi, et al.,
2003; Koutkias, et al., 2001; Koutkias, in drugi, 2001].

Finding proper patterns and accurately predicting the results could
provide better personalization and adaptation. Here, context has an important
role, because the behaviour of persons/users may be related on the context
(i.e., location, time, access device).

Context awareness allows the development of personalized services
that automatically adapt to the user’s situation, and in this sense, context
management mechanisms can complement prediction models so that
predictive analytics decisions can be more accurate.

One of the main challenges in this area is to construct the mechanisms
which would detect what context is, how to integrate context into the
prediction models, or monitoring the stream of contextual data over time to
detect anomalies.

Results could be displayed in various human-machine interface
applications. One of the main characteristics of modern intelligent user
interfaces is the integration of multiple users with diverse needs and
requirements. Benefits of such personalization include improved safety,
added comfort, increased efficiency, or enabling access for users with special
needs.

Personalization in maintenance could be reached by using different
artificial intelligence concepts to predict next steps and help maintenance
workers in decision-making tasks. These tasks could consist of fault detection
and diagnosis, detecting anomalies, scheduling suggestions, choosing proper
maintenance concepts, optimizing energy consumption during the operations,
informing operators about actions, or planning a repair action, among
other things, which could be displayed through different HMIs. HMIs in
maintenance are customized to the worker’s need and depends on the type
and environment of industry.

To make accurate predictions in maintenance, qualitative data (context
information) is needed which is usually historical data of maintenance
activities; large amounts of sensor measurements, history of user interactions,
anomalies, faults, etc.
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Wearable devices are important in the plant maintenance, because they
allow the user’s hands to remain free to do the work and currently rely on
voice recognition and voice response [Nagamatsu, et al., 2003; Nicolai, 2005;
Nicolai, et al., 2006; Stiefmeier, et al., 2008].

As stated by Lee in the article “Cyber physical systems: Design
challenges” [Lee, 2008] cyber-physical systems (CPS) are integrations
of computation and physical processes, where physical processes affect
the computation and vice versa. The addition of context information to
the monitoring and prediction in maintenance activities can contribute to
improve maintenance approaches, enhancing the cost, time and quality of
the processes.

The large amount of data collected using sensors can be used for detecting
and analysing anomalies and faults in large and complex systems. Data-
driven approaches leverage on this large amount of data which is collected
by CPS and is used to learn the necessary models automatically; recognize
unusual situations, optimize energy consumption during the operations and
inform operators who use this information to modify system processes, or
plan for repair or maintenance. System’s engineers and experts can use this
information to take further actions (e.g., update operations procedures or
redesign the system).

The data-driven prognostic approach [Swanson, et al., 2000; Niggemann,
et al., 2015; Krueger, et al., 2014; Jämsä-Jounela, et al., 2013; Zhang, et al.,
2015] could be used to determine the fault and predict the amount of time
before it reaches a predetermined threshold level.

6.2.1.6 Context awareness approaches in a proactive
collaborative maintenance platform

Here are three generic context awareness approaches that could be
incorporated in a collaborative maintenance platform to provide some kind
of benefit to its users:

• Adaptation to scenarios
From alerting and warning situations, to special events in the state of
the production process, or changes in the location of a user, these are
examples of scenarios where the use of context awareness could be
relevant to deliver the right information, at the right moment, in the right
format, to the right person by means of an adaptive and intelligent user
interface;
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Table 6.1 Context Awareness Approaches in a Proactive Collaborative Maintenance
Platform

Context Awareness Approach Benefits
Adaptation to scenarios • Personalisation

• Usability
• Maintenance optimisation
• Better ergonomics

Enhanced reasoning algorithms • Improved decision-making
• Better maintenance planning
• Accuracy of predictions
• Cost savings
• Maintenance optimisation

Personalized maintenance suggestions • Productivity
• User experience
• Enhanced asset management

• Enhanced reasoning algorithms
The goal here is to use operational information as a contextual extra
input to reasoning algorithms (diagnostics, prognostics, scheduling, etc.)
to optimize their results;

• Personalised maintenance suggestions
Context could be used to make personalized maintenance suggestions
to users when performing everyday processes in the system to improve
their productivity and overall experience on the HMI.

Table 6.1 summarizes the main benefits of the approaches described
above.

6.2.2 Interaction Based/Driven Approach

Nowadays interaction analysis (e.g., clickstream analysis) is one of the
most frequently used techniques to understand user behaviour while he is
using the interface. This understanding can help not only in the interface
design and development process but also providing some inputs to carry on
intelligent adaptation. This interface adaptation, commonly called adaptive
user interface, can enhance usability and user experience.

User interaction data have detailed information of how users perform
actions with the different elements of the interface such as visualization
elements, buttons or icons, and also how the user navigate between them.
Interaction history gathered in these datasets can be described as a collection
of different timestamped actions performed by a single user whilst is using
the interface [Nguyen, et al., 2017].
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Analysing these datasets can give us information about user sequences or
recurrent patterns [Soh, et al., 2017] Furthermore, this analysis can be used as
relevant information to perform different automatic adaptation in the interface
[Dev, et al., 2017].

Therefore, it is necessary to have different tools which allow to track
and store all the interaction between user and the interface. In the context of
MANTIS project this interaction driven approach will be focused on defining
a methodology to track and store navigation and actions performed by the
user with the interface.

6.2.2.1 Introduction
When the user accesses a web interface and interacts with it, a digital
fingerprint is recorded. This digital fingerprint can be defined as the record
of actions and steps performed by the user in a time slot. These actions have
been captured and stored automatically with a timestamp key that allow us
user tracking.

The issue has been approached from two different perspectives at it is
shown in Figure 6.6:

• Navigation between the different interfaces. Extracted and parsed from
the web server logs. Analysing this data can give us information about
the common paths and navigation flows;

• The interaction carried out in the different interfaces. Extracted
automatically from the interface via JavaScript. Analysing this data can
give us information about the common actions or sequences.

For the user interaction capture and storage system Elastic3 technological
framework has been proposed. Elastic is a tool which is often used in Log
Analytics use cases.

Elastic is an open source platform based on Lucene4 that allows save,
search and display information stored in different indexes. Elastic provides
different tools such as Logstash5 for data parsing, ElasticSearch6 for data
storage and Kibana7 for data visualization. The main point to be considered
is that the information should be indexed by time (Timestamped data) and

3http://elastic.co
4https://lucene.apache.org/core/
5http://elastic.co/products/logstash
6http://elastic.co/products/elasticsearch
7http://elastic.co/products/kibana
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Figure 6.6 Interaction driven approach for visualization recommender.

ElasticSearch is a good option for that purpose. ElasticSearch is a powerful
tool with many advantages such as:

• speed: ElasticSearch uses distributed inverted indexes;
• APIs: ElasticSearch offers a REST API and uses JSON schema;
• variety of plugins: Logstash for data parsing and processing or Kibana

for developing different dashboards and interactive visualizations;
• real time index updates: Very important when you are monitoring a

scenario;
• available for different languages: Python, Java, Ruby or Node.js.

6.2.2.2 Navigation tracking and storage
When a user is navigating among different interfaces, this navigation
information can be extracted from the access log files. A log file is a collection
of events and actions that is stored in the web server. In the context of the
MANTIS project, common log file format will be considered. This format,
NCSA Common format8, is an standardized text file that is generated by
different web servers.

8https://httpd.apache.org/docs/trunk/logs.html#common
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Access log files can have the following structure:

192.168.2.22 - -[12/Feb/2018:15:20:02 +0200]”GET /mantis? P=1 HTTP/1.1
” 200 136 ” http://mantis.com/true ”” Mozilla/5.0 (Windows NT 6.1; rv: 24.0)
Gecko/20100101 Firefox/24.0 ”.

Parsing this file can give us the following information:

• user IP address;
• date time. Timestamp value that will be used for index;
• method. (GET or POST);
• HTTP protocol version;
• response status code: 10x Informative response, 20x successful

response, 30x Redirection, 40x Client error or 50x Server errors;
• system information: Operative system and browser.

Accessing the server log files and parsing them with Logstash, raw
information can be converted into a format that allows traceability. This
information will be stored in an ElasticSearch index.

Indexing by ‘datetime’ let us to analyse the navigation flow and detect
the most common paths while using the interfaces. This information can be
used for instance to improve the process by reducing the number of clicks
performing some action.

As it is shown in Figure 6.7, this navigation capture and storage can be
done in an automatic and non-intrusive way. Other frameworks or solutions
have been found in the literature [Hashemi, et al., 2016; Atterer, et al., 2006]
but they are not as flexible as this approach. Each navigation will add a new
register in the access log file and in turn will be recorded in the ElasticSearch
index.

6.2.2.3 Action logs
Other important component for the interaction analysis is the register of
different actions performed by the user with the interface. Those actions will
be executed through different devices such us mouse, keyboards or tactile
interfaces. One of the main advantages of using web based interfaces is that
JavaScript can be used for adding functionalities to the interface.

JavaScript9 is an event-driven, dynamic and multi-paradigm programming
language that allows to add functionality not only to the client side but also to
the server side. JavaScript is proposed as the programming language to track
and send the interaction to the ElasticSearch index.

9https://developer.mozilla.org/en-US/docs/Web/JavaScript
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Figure 6.7 Navigation parse and index on ElasticSearch.

To track and store all the interactions with the interface performed by the
user, different triggers must be defined and implemented. These triggers will
record insert new record into the ElasticSearch index. The triggers will be
associated to different interaction events.

In the context of MANTIS project only will be considered six kind
of interaction events: mouse events, keyboard events, focus, drag and drop
events, clipboard events and view events. Once the user performs an action
on the different interface elements, the trigger will be fired and automatically
upload new record to ElasticSearch index via JavaScript. Figure 6.8 shows
the process of event triggering and storing into ElasticSearch index.

Apart from the system ‘datetime’ date and time other important
information must be stored, for instance: which interface the user is using,
with which element the user has interacted or what kind of action was
triggered by the user. This way, we can trace interactions performed on the
different interfaces and in turn we can perform an analysis for instance to
detect patterns. Note that this should only be done on a temporarily basis for
study purposes and with clear and written consent of the monitored user.

As we can see in Figure 6.9, for each of the interactions carried out in the
interface the following information is stored in the ElasticSearch index:
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Figure 6.8 Interaction capture and store in ElasticSearch index.

Figure 6.9 Index structure created in ElasticSearch to capture the interaction of the user with
the interface.

• type of event that the user has made: Click, mouse movement... These
events are predefined by JavaScript;

• timestamp of when the action was taken. With this information the
traceability can be done;
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• interaction element;
• which interface;
• ElasticSearch index name.

This methodology of capturing navigation and interaction allows storing
the interaction with the interface in a non-intrusive and transparent way. On
one hand, we have information about navigation flows indexed by time and
on the other hand, we have the information about different performed actions
between user and interface.

This dataset can be used as a powerful set of information to
perform different analysis techniques in order to detect patters, provide
recommendation or develop automatic adaptation engines.

6.3 Advanced Data Visualizations for HMIs

The visualization requirements of a data analyst or a highly skilled
maintenance expert go beyond the basic graphs and other widgets typically
present on industrial dashboards. Most importantly, such experts need to
be able to choose what data to visualize and how in order to gain further
insight.

6.3.1 Visualization of Raw Data

The specific requirements in the different maintenance use cases, in MANTIS
and beyond, are so diverse that no single visualization tool can cover them all.
On one hand, raw data can be visualized by various methods in order for a
human expert to explore relations between data. On the other, visualizing the
results of analysis and decision-making algorithms, such as those presented
in Chapter 5, can provide insights into their operation and help improve
the algorithms or validate their results. Thus, an overview of some data
visualization tools is given here. Most tools require specific input formats
and thus need to import the data rather than use it directly from the data
store already set up for maintenance data. One of them, Kibana, was chosen
as applicable to the widest array of maintenance use cases and therefore the
process of its integration is also described.

6.3.1.1 Visualisation tools overview
There is an abundance of utilities for producing the basic kinds of graphs,
from office software to web graphing libraries to the built-in capabilities
of scientific computing tools. The latter (e.g., Matlab, Octave, R) are most
suitable for data analysts and already routinely used for such purposes.
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Certain tools stand out due to innovativeness of the visualizations they
offer. Plot.ly10 is a tool with libraries for JavaScript, Python, and R. It can, for
example, intuitively illustrate how various machine learning algorithms work
on given datasets11. Inner workings of neural networks can also be visualized
in interesting, interactive ways12. This can be particularly engaging if the
problem being solved by the neural network is also visual in its nature, such as
optical character recognition13 or, for a maintenance-related example, optical
recognition of worn-out machine components.

Finally, specialized machine learning tools, such as Orange14, typically
also include visualization capabilities. Orange enables data analysis, machine
learning, and visualization via interactive workflows, as shown in Figure 6.10.
The upper right part shows a workflow where an example data set is clustered
using the k-Means method and then shown as a scatter plot (upper branch
of workflow). The raw data is shown as mosaic (lower branch). The actual
mosaic visualization is shown in the lower part. A powerful feature is the
“Find informative . . . ” button included in most Orange visualizations. As

Figure 6.10 Data analysis and visualization workflow in Orange.

10https://plot.ly/
11See the on-line example at https://plot.ly/˜jackp/16209/machine-learning-classifier-

comparison.embed.
12A. W. Harley, ”An Interactive Node-Link Visualization of Convolutional Neural

Networks,” in ISVC, pages 867-877, 2015.
13See interactive example at http://scs.ryerson.ca/˜aharley/vis/conv/.
14https://orange.biolab.si/
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shown in the lower right corner, this suggests which attributes of the data
set to base the visualization on for most informative results. The left part of
Figure 6.10 is the Orange visualization toolbox, listing all available types of
visualizations.

Orange can be recommended as the most universally applicable tool with
a shallow learning curve, while Matlab, R, and similar tools offer more
flexibility and possibilities of automation of processes at the expense of
having to learn the respective programming languages. However, neither of
them scales well to truly large datasets of gigabytes or more.

6.3.1.2 Scenario 1: Kibana
Kibana15 is a visualization plugin for ElasticSearch16, and the latter is
a distributed, highly scalable indexing and search engine. ElasticSearch
can store a huge number of schema-free JSON documents. The fields of
the documents are automatically indexed and can be searched for using a
powerful query syntax. The documents of different types can either be stored
separately (in different indices in ElasticSearch terminology) or in the same
index, such that the search query determines whether all documents or just
those with certain attributes present should be searched for. Architecturally,
ElasticSearch is a service based on Apache Lucene indexing/search library,
accessed via a REST/HTTP(S) API.

Kibana is implemented as an interactive web portal into ElasticSearch. It
provides a user interface for performing queries on the stored data, but more
interestingly, it can produce various visualizations. It is particularly powerful
for viewing datasets that include a time dimension and allows interactive
selection of time ranges, scales, filters, and aggregations. Together with
Elastic search’s support for large datasets, it is well suited to the maintenance
use cases that continuously monitor processes and assets and thus, over longer
time, invariable end up with large datasets.

The first step of integration of Kibana into a maintenance MANTIS
prototype consists of development of a service that continuously requests
new data from the data store, such as a MIMOSA database, and adds it to
the ElasticSearch index. ElasticSearch also provides libraries for common
programming languages, which are more straightforward to use than the
HTTP-based REST API. Within the MANTIS project, a MIMOSA-to-
ElasticSearch import service was developed in Python. The service simply

15https://www.elastic.co/products/kibana
16https://www.elastic.co/
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adds the JSON objects returned by the MIMOSA REST API as ElasticSearch
documents. Full contents of the (chosen subset of) MIMOSA tables are thus
available for search and visualization. On the other hand, the data is raw and
thus requires knowledge of MIMOSA data model (or, in general, the specific
data model used). This can be seen in Figure 6.11, which shows a Kibana
dashboard with three different graphs from a MANTIS use case17 – alarm
types and environmental measurements are labelled by raw MIMOSA field
values, because that is how they are stored in ElasticSearch.

Kibana individual visualizations or whole dashboards can be embedded
in any HTML document using the <iframe> tag. Figure 6.12 shows a single
visualization inside the MANTIS generic HMI prototype, based on the data
from a MANTIS use case. Note that the embedded graph is interactive and
allows the user to change the time range shown or apply custom filter, as
shown in this example. In cases when this is not desired, static snapshots of
visualizations can be embedded instead.

To conclude, Kibana is particularly useful for (but not limited to)
exploring large datasets of time-based data, such as sensor measurements and

Figure 6.11 MANTIS data visualization in Kibana.

17Please note that the time range includes periods when the MIMOSA database contained
test data rather than real sensor measurements, therefore, the values shown here may not be
realistic.
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Figure 6.12 A Kibana graph embedded in the MANTIS HMI prototype.

alarms. It is being widely used for monitoring assets in cloud computing and
should thus perform equally well in industrial asset monitoring.

6.3.1.3 Scenario 2: Textual and graphical data representation
Data on the machine is collected by means of sensors that are part the
machine’s control systems or from sensors which were added specifically
for maintenance purposes. In the MANTIS sheet metal industry use case
[Ferreira et al., 2017], raw data visualization includes the visualization of
both historical and streamed data.

Historical Data
Historical data is related with the values detected by sensors installed in the
machine and is stored in the centralized database. It can then be consulted in
a table or graphical format.

Figure 6.13 shows the data collected from the machine in a table format.
This data includes all the variable values that were measured during the
machine operation.
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Figure 6.13 Machine Data Visualization (Table).

Streamed Data
Streamed data is also related with sensor values detected however the data is
received directly from the message broker in the communication middleware
and is presented to the user immediately after being consumed. For this the
HMI subscribes to the appropriate machine queue and as soon as new data
is loaded into that queue, it is transmitted to the HMI and is converted to a
graphical format.

Figure 6.14 shows the data collected from the machine in a graphic
format. After the user selects the data interval and the variables to be
analysed the corresponding plot will be generated with all the values recorded
from the machine within the selected interval. The user may then perform
different analysis operations such as variables comparison, zoom in/out,
define offsets, etc.

Figure 6.15 shows data obtained from Maintenance Sensors which are
placed on the machine, usually communicating over an independent channel
(e.g., a wireless network). These sensors only acquire specific maintenance
related information. In this case the sensor is acquiring the values regarding
machine’s moving parts.

6.3.2 Augmented and Virtual Reality

Virtual reality and augmented reality were chosen as the technologies to be
used in the advanced HMI approaches for the Finnish conventional energy
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Figure 6.14 Graphic Visualization of Machine Data.

Figure 6.15 Maintenance Sensor Data Visualization.

production use case. They are an emerging market especially on consumer
side and will most likely have an impact on maintenance in the future in
one form or another. There is also a lot of innovation potential in these
technologies.

The distinction between industrial maintenance related usage of VR and
AR approaches can be roughly defined between factory-floor and back-office,
where AR is more applicable for factory-floor and on the field maintenance
tasks and guidance. VR is inherently more suited for back-office and other at
office activities such as training and planning. VR’s reliance on raw graphical
computing power and, depending on the hardware solution used, external
location and position hardware eliminates any possibility of it being mobile.

HTC Vive and its direct competitor Oculus, both rely on external
hardware for position and location functionalities and are considered to be
outside-in tracking solutions, meaning that the location and position data
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for the headset on the user’s head comes from external beacons. However,
hardware solutions such as the Microsoft Mixed Reality platform, which
uses cameras attached to the headset itself to orient themselves and the
controllers, are considered inside-out tracking solutions. This negates the
need for external beacons and makes the VR more portable. The Microsoft
MR platform also enables mixing in live, real-world stereo video using stereo
cameras for a through-camera AR like approach, hence the name mixed
reality.

Initially interest in the use case was placed on the AR approach, as it was
more suitable for use in maintenance monitoring on the field or factory floor.
The AR approach was done on the Google Tango platform that consists of a
comprehensive Unity compatible AR SDK and a special hardware platform
that consists of an IR dot matrix projector and a special camera capable of
measuring the time-of-flight of the independent dots projected onto a shape.
The combination of the SDK and the hardware platform is used to mitigate
inherent drift in any pure IMU based positioning solution.

The AR application named AHMI (Advanced HMI) would enable users
to create a virtual representation of the flue gas blower in the Järvenpää
plant (see Figure 6.16) and retrieve real-world measurement data onto the
measurement points attached to the 3D model. It also supports adding virtual
measurement points to real-world objects using real-world measurement data
retrieved from MIMOSA (see Figure 6.17). It also had additional features
such as disassembling of 3D models (where the model allows it) and virtual
post-it notes for leaving virtual messages onto the factory floor. The texts
contained on the notes are stored in MIMOSA and thus could be used to
gather tacit knowledge.

Development of the AR version of AHMI was halted as it became
apparent that Google was halting support and development of the Tango
platform. With the emergence of Apple’s own proprietary augmented reality
ARKit SDK, Google announced their own, mostly hardware-independent AR
SDK the AR Core, which then quickly superseded the Tango platform that
relied on specific hardware to be present on the device. On 15th of December
2017 Google announced that the Google Tango platform will be deprecated
on 1st of March 201818, and that finalized the cessation of AR development
for the MANTIS platform as AR Core was still not ready for release.

18https://twitter.com/projecttango/status/941730801791549440
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Figure 6.16 3D model of flue gas blower placed at meeting room table.

Figure 6.17 Marker object representing data from sensor.

As the fate of the Tango Platform was already quite apparent during
development, it was decided to develop a VR solution based on the work
done with AR. In fact, the VR application was very similar to the AHMI one
as it re-used most of code, as both were developed in Unity and were therefore
mostly compatible. Some additional features were introduced such as more
in-depth measurement windows and the possibility of viewing spectrums
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and even listening to the raw vibration measurement data. The VR AHMI
application was built solely on the HTC Vive platform, however it could be
transferred to other VR hardware platforms such as Oculus, possibly even the
Microsoft mixed reality platform.

Figure 6.18 shows the windows displaying real-world data from the
Järvenpää plant. The users can open and reposition these windows to their
own preferences. They also have a snap functionality that allows for neat
alignment of all windows. It is possible to load FFTs and raw vibration data
for any data point by moving a red indicator. It is also possible to move
the indicator on all windows at the same time by enabling the indicator
lock visible on the right hand corner of the window. Figure 6.19 shows
these measurement windows opened to a selected data point, where the raw
measurements are shown in the top windows and the FFT are shown in the
lowest windows. Figure 6.20 shows closer inspection of the FFT data using
gesture control enabled by Leap Motion.

Both VR and AR solutions could be utilized as a part of collaborative
decision-making. The VR could be used to convene and observe anomalies
online over wide geographic distances. Experts around the world could
communicate with each other using avatars in a 3D space. AR could be used,
for instance locally to observe machinery status. It would allow the users
to load the 3D model onto a conference room table and it could be visible
to all users with AR capable devices. This could allow for new business

Figure 6.18 Screen capture of the VR demonstrator displaying real measurement data.
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Figure 6.19 FFT and raw vibration data opened for a measurement.

Figure 6.20 FFT data inspection with Leap Motion controls.

opportunities in maintenance related decision support and collaboration. A
separate “control room” was created as a part of the VR application. It’s an
empty VR space where collaborators can “send” measurement windows from
the VR factory floor. This enables collaborativeness in the VR world between
experts.
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During testing and demonstration of the VR system, utilizing the HTC
Vive included controllers, observations were made that the controllers
themselves makes the VR less approachable and less intuitive. The controllers
were then replaced with Leap Motion controller, which is a structured
light based IR projection camera system intended for recognizing hand
positions and gestures. This was incorporated into the VR demo to replace
the hindrance of the controllers allowing for an immediately more intuitive
approach using the user’s hands as control tools. The Leap Motion unit
came with a cradle that allowed it to be attached to the HTC Vive headset.
The application was then modified to support the Leap Motion SDK and
functionalities.

In Use Case 3.3 two separate scenarios related to HMIs were identified in
the requirement specifications; automated vibration monitoring and condition
and incoming maintenance alert for plant operators. Each of these scenarios
were implemented in the Finnish consortium partners’ own HMI approaches.
These scenarios were also implemented in the advanced visualization
approaches, as described in the following subsections.

6.3.2.1 Scenario 1: Automated vibration monitoring
In the VR implementation, the system level is represented by the virtual
models of the equipment. The component levels are represented by the virtual
sensor nodes. Drilling down to the measurements is enabled by opening the
individual sensor positions and accessing the measurements by picking the
point in time the operator would like to examine. At its current state the VR
implementation does not allow for automated opening of measurement levels,
it depends on user interaction to drill down to the FFT and raw data.

All the measurement data displayed within the VR environment is
obtained from the REST interface and the MIMOSA database. Due to the
way the measurement data is inserted into the database, it is not real-time.
However, were the data stored in the database in real-time, it could be
displayed near real-time within the VR environment.

6.3.2.2 Scenario 2: Condition and incoming maintenance alert
for plant operators

The VR demonstrator supports alarms via MIMOSA’s alarm related tables.
They are implemented in a manner that makes the alarms visible to the people
using the VR application and the headset. The alarms appear as hovering
items in the field of view of the operator and does not go away until the
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Figure 6.21 Screenshot showing a super-imposed alarm and the synthetic data that has
caused it.

operator has confirmed the alarm by interacting with it with either the HTC
Vive controllers or by hands.

The alarm item does also show the measurement that has caused the alarm
and can provide the operator a virtual representation of the equipment or
measurement point that has caused the alarm. From there the operator can
observe the cause of the alarm using the normal VR demonstrator tools.
Figure 6.21 shows two active alarms and the measurements that has caused
the alarm. Using the VR controller to click and dismiss the alarm will teleport
the user to the equipment the measurement point is attached to, which is
visible in Figure 6.21 as the electric motor with the red dot attached. There are
plans to incorporate user recognition to direct the alarms at correct personnel.

6.4 Usability Testing Methodology for Industrial HMIs

Usability aspects are becoming increasingly important and a common
criterion associated with performance is the quality of service. Quality of
service can be studied from both the system point of view and the user point of
view. In this context, quality of service from the system point of view means,
that the system is capable of offering and doing required functionalities
which users are observing or commanding through the HMI. Quality of
service from the user point of view means, that the users are capable of
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reading or doing those required functionalities through the HMI. Even if there
are divergences for the evaluation approaches of these services we shall
follow the best practice in individual aspects such as input performance,
interpretation performance, context appropriateness (at the system side) and
perceptual effort, cognitive workload, physical effort on the user side. In
addition, quality of experience covering user perception and satisfaction
issues is also gaining importance [MANTIS Consortium, 2015].

Before proceeding to the usability evaluation of specific HMI
implementation, first refer to the issue of usability as defined by the
standards (ISO) dealing with human computer interaction (HCI), focusing
on ergonomics of human-system interaction and associated product quality.

The website of the UsabilityNet, a project funded by the European Union
to promote usability and user centred design (Usability Net), provides an
extensive list of standards related to HCI and usability. They are categorised
into four groups, as those primarily concerned with:

• the use of the product (effectiveness, efficiency and satisfaction in a
particular context of use);

• the user interface and interaction;
• the process used to develop the product;
• the capability of an organization to apply user centred design.

6.4.1 Human-system Interaction – Usability Standards

As regards usability definition, ISO 9241-11, ISO 9241-210, ISO/IEC 9126
standards and ISO/TR 16982 technical report are exposed. In the following,
we borrow some parts of their descriptions in order to reveal their specific
features for the purposes of the MANTIS project.

ISO 9241-11: Guidance on Usability (1998)

In this standard, usability is defined as the “extent to which a product can
be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use”.

Hereby:

• effectiveness denotes the accuracy and completeness with which the
users achieves specified goals;

• efficiency measures the resources spent in relation to the accuracy and
completeness with which users achieve their goals;
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• satisfaction designates the freedom from discomfort, and positive
attitudes towards the use of the product;

• context of use includes a description of users, their tasks, employed
equipment and physical/social environment.

In order to specify or measure usability, it is necessary to identify the
goals and to decompose effectiveness, efficiency and satisfaction and the
components of the context of use into sub-components with measurable and
verifiable attributes.

Guidance is given on how to describe the context of use of the product
and the measures of usability in an explicit way. The document also explains
how measures of user performance and satisfaction can be used to measure
how any component of a work system affects the quality of the whole work
system in use [ISO, 1998].

ISO 9241-210: Ergonomics of Human-system Interaction – Part
210: Human-centred Design for Interactive Systems (2010)

As the title suggests, this standard deals with human-centred design for
interactive systems and explains the activities required for user centred
design. It is intended to be used by those managing design processes.

Principles of human-centred design are listed and described. Next,
the main steps of planning human-centred design are surveyed. Once the
planning is done, the following design activities are foreseen and described
in more details:

• understanding and specifying the context of use;
• specifying the user requirements;
• producing design solutions;
• evaluating the design.

User-centred evaluation should involve:

• properly allocating resources, such as properly selected users,
description of product functionalities and context of use (in an
early stage) to obtain feedback that can be used to improve or
redesign the product and (later) to determine whether the requirements
have been met;

• planning the user-centred evaluation;
• carrying out comprehensive testing to provide meaningful results for the

system as a whole;
• analysing the results;
• communicating the results so that they can be used by the design team.
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Two widely used approaches to user-centred evaluation are

• user-based testing;
• inspection-based evaluation.

Both are described at the appropriate level of details considering the fact
that the standard is intended primarily for managers and not for product
developers [ISO, 2010].

ISO/IEC 9126: Software Product Evaluation – Quality
Characteristics and Guidelines for their Use (1991)

This standard was developed separately as a software engineering standard.
It defined usability as one relatively independent contribution to software
quality associated with the design and evaluation of the user interface and
interaction. This standard has been replaced by a new four-part standard
ISO/IEC FDIS 9126 (2000) [ISO, 1991].

ISO/IEC FDIS 9126-1: Software Engineering – Product Quality –
Part 1: Quality Model (2000)

This is the first of the four parts of ISO/IEC FDIS 9126 (2000) and describes
a two-part model for software product quality:

• internal quality and external quality;
• quality in use.

Internal Quality Requirements specify the level of required quality from
the internal view of the product and address implementation issues (such as
employed models, source code, etc.). Internal quality represents the internal
characteristics of the software product and can be evaluated against the
internal quality requirements. External Quality Requirements specify the
required level of quality from the external view and are derived from user
quality needs. External quality thus represents the characteristics of the
software product from an external view.

The quality model of the internal quality and external quality specifies six
categories of software quality that are relevant during product development:
functionality, reliability, usability, efficiency, maintainability and portability.
Each of them is further divided in sub-categories.

Quality in use is the user’s view of quality. It is specified in four
categories: effectiveness, productivity, safety and satisfaction. Hereby the
effectiveness, productivity and satisfaction somehow correspond to the
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notions of effectiveness, efficiency, and satisfaction defined in ISO 9241-11
[ISO, 2001].

ISO/IEC FDIS 9126-2: Software Engineering – Product Quality –
Part 2: External Metrics and ISO/IEC FDIS 9126-3: Software
Engineering – Product Quality – Part 3: Internal Metrics

As the title suggests, these two parts of the standard define metrics for
quantitative measuring software quality. Each of the two parts contains an
explanation of how to apply software quality metrics and a basic set of
metrics for each sub-characteristic of the stated six categories. Additional
explanations, such as considerations when using metrics (i.e., interpretation
of measures, validation of metrics, etc.) and explanation of metric scale
types and measurement types are given in informative annexes [ISO, 2003;
ISO, 2003].

SO/IEC FDIS 9126-4: Software Engineering – Product Quality –
Part 4: Quality in Use Metrics

Similar to the above two, this part of the standard defines metrics for
quantitative measuring of software quality related to the four categories
defined by the quality model for quality in use [ISO, 2004].

SO/TR 16982: Ergonomics of Human-system Interaction –
Usability Methods Supporting Human-centred Design

In reference to ISO 9241-11 and ISO 9241-210 this technical report provides
an overview of existing usability methods which can be used on their own or
in combination to support design and evaluation. Each method is described
with its advantages, disadvantages and other factors relevant to its selection
and use. The purpose of this technical report is to help project managers make
informed decisions about the choice of usability methods to support human-
centred design principles as described in ISO 9241-210.

In order to incorporate usability requirements, the following four human-
centred design activities are suggested:

• understanding and specifying the context of use;
• specifying user requirements;
• producing designs and prototypes;
• performing user-based assessment.
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The described usability methods are focused either on design or
evaluation. In the first case data-gathering techniques that are applied early
in the design phase and are used to guide the design. The second case
refers to the evaluation of design such as assessment of interface features,
expected task completion time, expected use pattern, etc. The methods that
are presented in this technical report are those that are most frequently used.
The methods are listed in a table and divided into two broad categories:

• methods that imply the direct involvement of users;
• methods that imply the indirect involvement of users, which are used

either when it is not possible to gather usage data due or where they
provide complementary data and information.

After the description of individual usability methods, the preferred choice
of usability methods some general guidelines for their application during
the different design phases are given. The last part is devoted to the choice
of usability methods depending on life-cycle process, constraints of project
environment, user characteristics, characteristics of the task to be performed,
the product used and the abilities required for the designer or evaluator
[ISO, 2002].

While ISO 9241-11 and ISO/IEC FDIS 9126-1 address the usability in a
slightly different way, the approach described in ISO 9241-11 is more closely
related to the issues of the MANTIS project and we shall adopt it as the
starting point of usability testing. According to ISO 9241-11, the following
information is needed when measuring usability:

• a description of intended goals;
• a description of the components of the context of use including users,

tasks, equipment and environments;
• target or actual values of effectiveness, efficiency, and satisfaction for

the intended contexts.

According to ISO 9241-11, measures of usability should be based on data,
which reflect the result of user interaction with the system. Effectiveness,
efficiency and satisfaction can be measured as follows:

• Effectiveness is defined as accuracy and completeness with which the
users achieve specified goals. Hereby, the accuracy can be measured
to which extend the quality of the implemented HMI corresponds to
the specified criteria. For example, how consistent are the implemented
functionalities. The completeness can be measured as the extent of
the achieved target quantity. For example, how many of the specified
functionalities have actually been implemented;
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• Efficiency is measured by relating the level of effectiveness achieved
to the resources used. For example, for a given functionality, how long
does it take to perform given task and achieve the result complying to
the stated goal;

• Satisfaction can be assessed by objective and subjective measures.
Objective measures are based on observation of the behaviour of the
user. Subjective measures comprise data expressing user’s opinions,
attitudes and reactions. These data can be obtained by asking users
to express their feeling when performing specific task, or by using an
attitude scale based on a questionnaire.

In order to properly measure effectiveness, efficiency and satisfaction,
appropriate metrics should be applied. In this regard, metrics for software
product quality described in the four-part standard ISO/IEC FDIS 9126
(2000) can serve as an example or a guideline. In particular, metrics described
in ISO/IEC FDIS 9126-2 and ISO/IEC FDIS 9126-3 can be applied to
measuring effectiveness and efficiency of the implemented HMI; and metrics
described in ISO/IEC FDIS 9126-4 for measuring user satisfaction when
performing tasks on the implemented HMI, respectively.

Usability tests differ in the way that usability measurements are
performed, depending on the phase of the design process in which they are
applied. In ISO/TR 16982, advantages and disadvantages of each type of
usability methods are described.

While all standards described previously deal with usability issues,
none of them gives explicit guidelines for performing usability tests. To
some minor extent, the usability testing is described in ISO 9241-210. Two
widely used approaches to user-centred evaluation are: user-based testing and
inspection-based testing.

User-based testing can be undertaken at any stage in the design. At a
very early stage, users can be presented with models, scenarios or sketches of
the design concepts and asked to evaluate them in relation to a real context.
Such early testing can provide valuable feedback on the acceptability of the
proposed design. At a later stage in the development, user-based testing can
be carried out to assess whether usability objectives, including measurable
usability performance and satisfaction criteria, have been met in the intended
context.

Inspection-based evaluation complements user testing. It can be used
to eliminate major issues before user testing and hence make user testing
more cost-effective. Usually two to three analysts evaluate the system
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with reference to established guidelines or principles, noting down their
observations and often ranking them in order of severity. The analysts are
usually experts in human factors or HCI. However, inspection does not always
find the same problems that would be found in user-based testing. The greater
the difference between the knowledge and experience of the inspectors and
the real users, the less reliable are the results.

For detailed description, how to perform usability testing one should
rather rely upon the information and guidelines provided in (Usability Net)
(Usability.gov), or in [Rubin, et al., 2008]. Based on the above resources we
describe in the next section the usability testing methods.

6.4.2 Usability Testing Methodology for MANTIS

In the case of MANTIS HMI, usability testing was performed primarily as
user-based testing. Usability test is performed by representative users under
guidance of a skilled moderator. Users are observed when performing given
tasks (e.g., the most frequent or the most critical). The collected qualitative
and quantitative data related to the performed tasks serve for the improvement
of the product.

Basic elements of usability testing can be summarised as follows:

• development of research questions or test objectives;
• use of a representative sample of end users;
• presentation of the actual work environment and usability tasks;
• observation of users who use the product in order to perform given task;
• interviewing the users by the test moderator;
• collection of quantitative and qualitative performance and preference

measures;
• recommendation of improvements to the design of the product.

As described in [Rubin, et al., 2008], three types of usability testing are
distinguished depending on the phase of a development cycle:

• exploratory study;
• assessment or summative test;
• validation or verification test.

The exploratory study is conducted early in the development cycle, when
a product is still in the preliminary stages of design when its basic concept
and functionalities are being defined. Some typical user-oriented questions
that an exploratory study would attempt to answer might include: what do
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users think about using the product, are product’s functionalities useful to the
user, how easily can the user learn to use the product, etc.

The main objective of the exploratory study is to examine the
effectiveness of preliminary design concepts. Exploratory tests are
characterised by extensive interaction between the participant and the test
moderator. Since the product is in the early design phase, only preliminary
versions (in a form of prototype) are available for user’s evaluation. During
the test of such a prototype, the user would attempt to perform representative
tasks or just simply express his feeling about the product under test. The user
is encouraged to “think aloud” and his comments and remarks are collected
for subsequent analysis and improvement of the product. Collected data is
qualitative. Its benefits are twofold:

• Potential usability problems can be detected at an early stage before
development is complete;

• A deeper understanding of the users’ expectations and impressions of
the system.

Assessment tests are performed early or midway into the product
development cycle, usually after the fundamental concept and functionalities
of the product have been established. The product is developed with specified
functionalities but probably requires optimization and polishing. The purpose
of the assessment test is to examine how effectively the concept has been
implemented. Assessment test thus reveals how well a user can actually
perform a typical realistic task and identifies possible usability deficiencies
that manifest during the task completion. In contrast to exploratory study:

• the user will always perform tasks rather than simply walking through
and commenting;

• the communication with the test moderator is less concerned about user’s
feeling and comments and more focused on the actual task execution.

Qualitative and quantitative data are collected. Its benefits are:

• identified deficiencies can be improved since the product is still in a
development phase, with all development tools and development team
available;

• possible missing functionalities can be implemented.

The validation test, also referred to as the verification test, is usually
conducted late in the development cycle and, as the name suggests, it should
confirm that the problems identified in the earlier phases have been solved
and that the product under test operates without faults. It may also be used
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to measure usability of a product against established benchmarks. This test
typically takes place close to the release of the product.

• Usability goals are stated in terms of performance criteria. The
effectiveness and efficiency metrics are defined in accordance with the
stated goals;

• Participants perform tasks without (or very little) interaction with the
test moderator;

• Quantitative data related to the stated effectiveness and efficiency
metrics is collected.

Exploratory test will be made in an early design phase. The main
purpose of exploratory test is to help HMI developers to improve their HMI
already in the design phase. The advantage of the exploratory test is that the
shortcomings are noticed early enough before the first version of HMI has
actually been built. The exploratory test can be performed independently for
every HMI related use case.

Assessment test will be made when the basic HMI functionalities are
implemented in use-case but not yet optimized. Some general guidelines
how to perform assessment test for the first version of implemented HMI
are given in the following section. The purpose is to help use-case owners
and HMI developing partners to improve their implemented HMIs towards
the final version and validation testing. The same way as exploratory testing,
the assessment test can be made independently among use-case owners and
HMI developing partners based on the given guidelines.

Validation is the final testing phase. The purpose of the validation test is
to provide valuable feedback how to improve individual HMIs in use-cases.
The main idea is that validation tests are done in each use-case according to
the common guideline. In this way, the results of different use-cases can be
compared and possible deviations and deficiencies removed.
The following guidelines have been adopted from (Usability Net).

Planning:

• Define goals of the performed usability testing;
• Define metrics that will be used to assess or measure to what extent the

goals have been achieved;
• Select representative users. The same users can be employed in all stages

of usability tests;
• Select the most important tasks (e.g., the most frequent or the most

critical) related to the stated goals;
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• Produce task scenarios and input data and write instructions for the user
(tell the user what to achieve, not how to do it);

• Plan sessions allowing time for giving instructions, running the test, and
a post-test interview;

• Invite developers to observe the sessions if possible. An alternative is
to videotape the sessions, and show developers edited clips of the main
issues.

Running sessions:

• Welcome the user, and give the task instructions. Ask for their consent
do gather, keep and use the collected data (according to GDPR rules);

• Ask user to perform the task and record and/or measure task
implementation (e.g., record user’s comments and questions, measure
task completion time);

• Do not give any hints or assistance unless the user is unable to complete
the task;

• Observe the interaction and note any problems encountered;
• During exploratory study and in some cases also during assessment test,

the user may be prompted for their impressions of the design, what they
think different elements may do, and what they expect the result of their
next action to be. The user may also be asked to suggest how individual
elements could be improved;

• Interview the user to gain general opinions, and to ask about specific
problems encountered.

Output:

• Report of the conducted usability tests, including employed metrics and
achieved results;

• Based on the above results produce a list of usability problems,
categorised by importance and an overview of the types of problems
encountered;

• Arrange a meeting with the designers to discuss whether and how each
problem can be fixed.

While the above guidelines are quite general and could be applicable
to any type of usability testing, some additional commends and
recommendations specific to exploratory study, assessment test, and
validation or verification test in the case of MANTIS HMI given in the
following paragraphs might be helpful.

Since the initial steps toward HMI design in individual use cases have
already started and each use case addresses specific user requirements, the
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approaches in exploratory studies and assessment tests are likely to be
divergent to some extent. Nevertheless, it would be prudent to collect and
document the acquired usability test data for possible exchange of “lessons
learned” among use cases and for reporting.

In the early design phase, preliminary concepts are evaluated with
representative users. The focus group research employs simultaneous
involvement of more than one user and deals with the target product in a very
preliminary form (i.e., paper drawing, screen-based prototypes) and explores
users’ judgements and feelings. In this way, basic functionalities of the target
product are explored, and possible missing items can be identified. Such proof
of concept may include also surveys and questionnaires employed in order to
understand the preferences of a broader base of users. For these procedures
no formal templates are foreseen in the frame of MANTIS project but use
case owners are advised to document the data in an appropriate way.

Assessment test and verification test differ in the goals and
the corresponding metrics. Assessment test typically establishes if
the functionalities stated in the requirement specifications have been
implemented. On the other hand, verification test checks the efficiency of the
implemented product and typically measures the time and resources required
to accomplish given tasks. For example, the assessment test can be employed
to check the functional implementation completeness in the following way:
count the number of missing functions detected in evaluation and compare
with the number of functions described in the requirement specifications. The
goal of a verification test could be, for example, to verify that 70 percent of
the users could meet the established successful completion criteria for each
major task scenario.

When conducting usability testing it is good to have a validation plan.
In MANTIS one of the methods to plan this activity was to fill in a two-
page, interactive dashboard-like planning template. This offers a concise
yet rather comprehensive way to plan the usability testing procedure. It is
based on David Travis’ single page usability testing dashboard document.
The original document was expanded and modified slightly with additional
space for objectives, test tasks and measureable usability goals descriptions.
This was done in order to make it more suitable for MANTIS and industrial
HMI testing purposes. The idea was to provide a comprehensive dashboard
for testing procedures.

Figures 6.22 and 6.23 are screen captures for a validation plan done
for a VR based advanced HMI approach developed by Lapland University
of Applied Sciences. This document, together with the report template, was
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Figure 6.22 An example of a filled Usability Validation Plan document page 1.

Figure 6.23 An example of a filled Usability Validation Plan document page 2.
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used to conduct the usability testing of the developed VR HMI. The same
validation plan templates were also used in other use cases successfully.

The usability validation plan was done in a dashboard form factor. This
was then released as a PDF document template with two pages and multiple
prepared form fields that allow for insertion of text. Each text field also had
a tooltip that would guide how to fill each field accordingly. The tooltip
was a mouse-over based event and would appear once the user moves the
mouse over the form field similar to those used in webpages. Each usability
validation plan document was then saved as its own PDF document for the
use case usability testing.

The document is divided into 12 separate sections that further explain the
testing procedure and requirements. There are also MANTIS specific fields
that tie the planned test to the use case and related content or HMI element.
Text intensive fields such as the test objectives, tasks and measurable usability
goals have been extended to the second page in order to fit more content. It
is advised however to try to keep the content as short as possible to keep the
plan as concise and easy to approach as possible.

The ultimate goal of MANTIS HMI is to provide interaction facilities
that comply to the established usability goals: effectiveness, efficiency, and
satisfaction. In order to help use case owners to perform usability tests and
report the results in a way that would allow easy comparison and exchange
of good practices.
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Silvia Hernández1, Petri Helo19, Mike Holenderski3,
Erkki Jantunen20, Matti Kaija21, Aleš Kancilija22,
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Eva Martı́nez1, Diogo Martinho4, Asif Mohammed12,

Mikel Mondragon5, István Moldován23, Antti Niemelä24, Jon Olaizola8,
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This chapter describes success stories. The MANTIS architecture (Chapter 3)
was implemented for a number of use cases on real pilots, and the techniques
described in Chapters 4, 5, and 6 were experimented with in real settings.
Results on the techniques were already presented in previous chapters. This
chapter, on the other hand, describes the pilots, from their objectives and
context to the system integration efforts to the attained results. One of the
results of the application of the techniques was the enhanced Technology
Readiness Level of the techniques, which is summarized in Figure 7.1.

Each section takes care of providing details for a different use case, and
as a whole the chapter proves the large breadth of the applicability of the
MANTIS approach.

7.1 Shaver Production Plant
Contributors: Bas Tijsma, Paulien Dam and Daan Terwee

The goal of the shaver production plant use case is to increase the
predictability of the maintenance actions through smart use of data. By
actively utilizing various data sources in an automated manner, it is expected
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Figure 7.1 Maturity Level before and after the MANTIS project for the techniques in the
use cases.

to reduce the cost of the tooling, and reduce the amount of unexpected
downtime, thereby reducing the total cost of production. This section
provides an overview of the practical application of the several elements
developed and applied to this use case. The rationale of the approach is
represented in Figure 7.2.

7.1.1 Introduction to the Shaver Manufacturing Plant

The shaver manufacturing plant is one of the largest manufacturing plants
of Philips. For mass production of certain parts of the shaver an advanced
machining technique is used as manufacturing technology. The tools used in
this manufacturing process are the focus area for this use case.

Large amounts of data are gathered in the manufacturing plant about the
products and processes. These data is mostly used for manual, after-the-fact
analysis of process disruptions, machine failures and quality issues.

It is expected that these data (and where necessary additional data)
can be used to make predictions about product quality, process disruptions
and impending maintenance actions. By actively utilizing the data in an
automated manner, it is expected to reduce the cost of our tooling and
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Figure 7.2 Goals and vision for the shaver manufacturing site.

maintenance. The objective is to demonstrate that impending failures can be
accurately predicted by mining large amounts of data from heterogeneous
databases, such that tooling maintenance can be timely scheduled to prevent
unexpected downtime of the production lines and maximize tooling lifetime.

7.1.2 Scope and Logic

For the complete project, a full project scope was made. This chapter focusses
on a subset shown in Figure 7.3, and is largely based on practical experience
and domain expertise. The main focus, the prediction of tool failure, is put in
the center of the picture.

There are three main influencing factors regarding the life-time of a tool:

• Process behavior
The combined behavior of the process (measured by many sensors, see
Section 7.1.3) during the discrete manufacturing processes, as well as
process error behavior over time. Both the process sensor measures
behaviors, as well as process errors which may cause damage to the
tool and influence the state of the tool;
• Quality Status

It entails the geometrical measurements of the products made by
the aforementioned process, which need to comply with product
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Figure 7.3 Basic interactions.

specifications. Many quality deviations on the products can be related to
a change (damage, wear) in the tooling geometry, which might indicate
an (upcoming) failure;
• Tooling status

The current status of the tools with respect to wear, small damage, etc.,
over time. These cannot be measured by the process sensors and the
quality status, and usually imply measurements performed over longer
time periods.

The main goal is to use these three data sources in a combined model to
predict tool failures.

With the ability to model tool failure behavior, the output can be used
as an input to optimize Philips’ current maintenance policy and strategy. For
example, the amount of spare stock can be regulated much better, if the future
failures of tools can be predicted.

7.1.3 Data Platform and Sensors

In this use case, the existing proprietary platform of the manufacturing site
is used as much as possible, to be able to focus more on the analysis
and application part of the project. Most of the manufacturing machines
are connected to a legacy data platform, known as the Factory Information
System (FIS). It consists of various relational databases, to which the
machines are connected by custom developed drivers. This was custom built
over the course of several decades by the internal IT department.

Despite to recent developments in the so-called industry 4.0 revolution,
where much progress has been made into generic data exchange protocols
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(e.g., OPC-UA) and storage architectures (e.g., Mimosa), the equipment in
scope is legacy and cannot be changed easily. During the course of the project,
it became clear that performance of the existing platform was sufficient.
However, in the future, increasing amounts of data requests might hamper
overall performance.

The main data source in the platform is the process data. The machines in
scope are equipped with a wide variety of sensors. The output of the sensors
is collected by a machine controller to perform several pre-processing steps,
like filtering and aggregation, before the data is sent to the FIS platform. In
general, a set of data is collected and sent once per production cycle (in one
cycle one product is made). Each cycle contains over 100 parameters. The
data is externally accessible via the FIS platform.

Tooling information is also automatically stored in a separate database.
A digital log is kept on the lifecycle of each individual tool, for example on
which machines it was placed, the amount of products the tool has made and
maintenance actions taken by the tooling maintenance department.

The last data source is the product quality metrics. Quality data is
gathered by taking offline product samples on dedicated measuring devices.
These measurements are inputs for the quality system, which is also part
of the FIS platform, meaning they can also be accessed externally. All
measurements are geometrical, like form accuracy and thickness. Usually
these data are aggregated values of a larger set of measurement points, like
average, standard deviations, etc.

7.1.4 Data Analytics and Maintenance Optimization

The manufacturing process consists of several physical elements. Electrical,
chemical and mechanical elements are working together in order to manu-
facture the products, making it a highly complex process where interactions
between different signals can be easily overlooked when just monitoring
every signal individually. A prediction model (soft sensor) that combines all
different signals and processing them together gives better insight in these
interaction effects via computational intelligence. This sensor fusion deals
with disparate sources that do not have to originate from identical sensors.

7.1.4.1 Physical models and background
Before being able to successfully analyze process and manufacturing data,
domain knowledge is required, which can be provided by process engineers.
Without domain knowledge, it is very hard to understand the data, do the
analysis and validate the results.
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The machining process in scope is electrochemical machining (ECM).
This is an unconventional electrochemical manufacturing process, but it
is well established in niche applications like turbine blades and medical
implants [McGeough, 1988; De Barr and Oliver, 1975]. This process removes
material at the anode (work piece) using current controlled electrochemical
process. By feeding a shaped cathode (tool or electrode) towards the work
piece, the reverse shape of the tool is copied to the work piece.

It is a complicated process incorporating a number of physical phenomena
interacting with each other. Common problems with this process are related to
the variations of the material composition, variations in chemical conditions,
as well as the influence of the geometry of the tools. All these effects may,
in some form or another, change or damage tooling geometry, which in effect
will lead to quality issues.

7.1.4.2 Process monitoring with Principal Component Analysis
& Hotelling’s T2

The Principal Component Analysis algorithm in combination with the
Hotelling’s T2 score is used to get insight in the interaction effect of all
different process parameters. To train the model, the data is extracted from
the FIS platform and analyzed to make sure that the historic dataset consists
of data that indicates only normal process behavior, with no deviations or
outliers. This is an important step, since this data will serve as a reference for
future predictions.

The PCA algorithm is trained on the historical data where the
dimensionality of the entire dataset is reduced, while retaining as much as
possible of the variation present in the data set. This is done by transforming
the data to a new set of variables called the Principle Components (PCs),
which are, by definition, uncorrelated. By definition the PCs are ordered in
such a way that the first few PCs contain most of the variation present in
the original variables (see Figure 7.4). In this example, the red line indicates
that 5 PCs explain more than 90% of the original variance thus reducing the
dimensionality from 15 to 5 parameters. The PCA model transforms every
observation of the dataset into a set of scores of the same size as the number
of PCs.

For real-time calculations the trained PCA model is deployed on a server
and data from the PLC-PMAC system is fed into this model in order to obtain
the new weighted scores that indicate how close new observations are related
to the historic dataset. Because the PCA algorithm is a ‘white box’ algorithm,
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Figure 7.4 Cumulative explained variance of the principal components.

it has self-diagnostics abilities. The model can be used to determine the root
causes for fluctuations, trends and outliers.

The resulting PCA model allows for real time streaming data to be
transformed onto the principal component space defined during the training
phase. Assuming the training dataset is a good representative of normal
machine behavior, any significant deviations seen with the live streaming data
can be interpreted as signs of a defective machine behavior.

The Hotelling’s T2 value can be used as a measure for how close the
transformed live streaming data are to the training set. It is reasonable to start
from the simpler univariate case t-test that is defined as follows:

t=
x− µo
s/
√
n

(7.1)

where the null hypothesis H0 (the historic dataset) provides a mean µ = µ0
and a sample of n can be acquired from the population with mean x and
standard deviation s. The statistical interpretation is as follows: on average
the difference between the sample and null hypothesis will fall within s if
normal statistical variation can explain these differences. The overall t-score
is weighted by

√
n since any differences in the numerator become more

significant the larger the sample size becomes.
To generalize this result, it is possible to square the expression for the

t-test to obtain:

t2=
(x− µo)2

s2/n
(7.2)
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t2= n (x− µo)
(

1

s2

)
(x− µo) (7.3)

This is the same as an F-distributed random variable with 1 and n-1 degrees
of freedom. We can replace the difference between the sample mean x and µ0
with the difference between the sample mean vector

⇀
X and the hypothesized

mean vector
⇀
µo. The inverse of the sample variance is replaced be the inverse

of the sample variance-covariance matrix S:

T 2=n
(⇀
X −

⇀
µo

)
′S−1

(⇀
X −

⇀
µo

)
(7.4)

Using the above expression for T2 it is possible to compress a multivariate
dataset into one scalar metric that can quantify the status of a given
manufacturing machine. The use of a single parameter also facilitates
machine status visualizations with the monitoring of a single quantity, and the
calculated T2 value can be compared with predetermined confidence limits to
trigger warnings or alarms, should human interaction be needed to return the
given machine to a nominal status (see Figure 7.5).

7.1.4.3 Product quality prediction with partial least squares
regression

As described in Section 7.1.4.1, the product geometry is a negative copy of
the tool. Therefore, the product geometry is a suitable metric for detecting
deviations in the tool geometry such as damages or wear. In production, the
product geometry is measured on a sample basis, once every 4 hours. This

Figure 7.5 Control chart showing the Hotelling’s T2 score and tolerances to identify trends
and outliers in the multivariate data.
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is not frequent enough for monitoring potential tooling issues. However, by
relating the process data as described in the previous section with the product
quality data, a predictive model can be trained to estimate the quality of every
product made.

For this predictive model, the process data, enriched with a few extra
variables of the tooling is used as predictors (X). This process data has already
been pre-processed, and consists of an observation for every product made.
Each observation, in turn, consists of a collection of data points coming from
a variety of different sensors in the production machine. After careful research
and bootstrap modelling, 12 predictor variables were selected as input for the
modelling algorithm.

As response data (Y), product geometry data is used, which consists of
four Y-variables, which are sub selection of all the quality indicators for
products made by the manufacturing process. Both data sets have a common
product identifier which makes a good join between the two possible data
sets. Since product quality data is only measured on a sample basis, the time
interval between observations differs greatly from the process data. For this
reason, the data set is filtered, where only those observations that consist of
both process and quality data are kept.

The last step in the data preparation is outlier removal. The outliers (see
Figure 7.5) due to short term sensor failures or miscalculations during ETL
are removed from the dataset. Outliers due to physical events in the process
itself remain in the dataset, since they can hold valuable information for
modelling the relationships between parameters. Finally, the data is ready
to serve as an input for model training.

When the number of predictors (X) is too large (10) the more traditional
regression methods, such as linear regression, are not adequately effective.
Furthermore, in many cases manufacturing and/or sensory data have a
correlated nature. This causes the sample covariance matrix to be ill-
conditioned, because it becomes almost singular, which is a problem for
the more traditional regression methods. This can be solved by using linear
projection methods such as Partial Least Squares Regression [Wold, 1975].

Mathematically, there are quite some advantages for PLS compared to
traditional regression algorithms. Because PLS is a linear projection method,
it decomposes the covariance matrix that settles the singularity problem. This
gives PLS the ability to handle multicollinearity among the predictors (X).
Furthermore, these linear projection methods have the advantage that they
can handle missing data points in the data set. For example, if a particular
sensor has a short term failure or certain data points are removed from the
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data set during outlier analysis, then the whole observation does not have to
be discarded, but can still serve as input to the algorithm. Moreover, PLS has
the extra advantage that it can incorporate multiple Y-variables (or responses)
in one statistical model. Finally, PLS is suitable for modelling and monitoring
larger number of variables simultaneously.

The trained PLS model gives promising results. In Figure 7.6, the results
of the PLS predictions are plotted against the actual (observed) results of a
specific product quality parameter. We see that there is only a small deviation
between the two trend lines; the Root Mean Square Error (RMSE) is 1.86,
and the R2 is 71.2%, which are good results given the acceptable range of the
quality parameter and the complexity of the production process itself.

7.1.4.4 Computational trust
Every production line has incidents. These incidents can be related to, for
example, machine failures or process errors. Due to the complexity of the
manufacturing process, quite many process errors are generated in time.
Some of these errors are critical, as they may cause additional damage.
Other errors have minor impact. The impact level and the frequency of
occurrence are both important factors in calculating the current state of a
particular process, but more advanced interactions are only possible, in which
a particular order or process errors can be critical.

Therefore, the concept of computational trust is researched, in order to
quantify the current ‘trust’ in the machine being in a ‘good’ state, or in a
‘bad’ state. This allows for errors to be specified (impact-level, fall-off level)
and to be combined in a specific ‘trust in good machine’-metric, as input for
the overall tool failure predictions. For example, refer to the particular case
presented in Figure 7.7, which reports generated error codes over time. Values
under the threshold of 0.6 are considered as a ‘bad’ state.

Figure 7.6 Graph of the predicted and the observed quality with PLS regression.
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Figure 7.7 Error codes over time, and corresponding trust values.

7.1.5 Visualization and HMI

For visualization of the analytics toolset, a prototype interactive dashboard
was developed and tested in production. It is inspired by a principle
component analysis (PCA) score plot, but redesigned to be better usable in a
production environment.

The goal is to give operators direct insight to the current status of the
production process in terms of overall process stability, but also enable
more detailed insight by allowing to drill down to the specific cause of
potential deviations. This is a major advantage of the methods described in
Sections 7.1.4.2 and 7.1.4.3, since it allows to relate aggregated scores (like
Hotelling’s T2) with individual sensor values.

The main screen (Figure 7.8) for giving direct insight consists of eight
plots, corresponding to eight machines performing the same process in
parallel. The individual graphs consist of a scatterplot, where the first and
second principal components are plotted. The green ellipse indicates the 95%
confidence limit, in which the process can be considered stable. Each point
represents an individual product manufactured on that specific machine (the
yellow point is the latest product).
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Figure 7.8 Main screen for production operators, showing process performance for eight
similar machines. The green circles indicate ‘good’ behaviour.

When the outcome of the process is too critical, the top bar will change
to either orange or red, indicating potential problems. The operators are
expected to respond to the alarm, and perform pre-specified actions.

By clicking on one of the eight machines, the dashboard will show
more information about this particular machine (see Figure 7.9). This
screen provides additional details, such as time-series graphs, to get a

Figure 7.9 Analysis screen of operator dashboard.
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better understanding of the problem. The operator (or engineer) can select
individual points, can show individual plots of sensor values and can colour
the scores based on a selected sensor. These are all experimental tools to help
find root-causes and solve production issues much faster.

7.1.6 Maintenance and Inventory Optimization Results

Within the MANTIS project, research has been performed on both the
prediction of machine process errors and failures of tools. So far, remaining
useful life estimations for the tooling are still uncertain, but moderate results
have been achieved with classification methods. Hence, it is investigated
what the added value is by using imperfect predictions of tool failures
to decide when to perform maintenance actions (e.g., tool inspections and
replacements) and when to place orders for new tools. Therefore, it is
assumed that a classification model (and its approximate performance) will
be the predictive input to the designed policy.

Furthermore, an analysis is carried out into the amount of products that
a tool can produce before being discarded. It turns out that the chance that a
tool is replaced due to a defect decreases when a tool reaches a longer tool life
(see Figure 7.10). In other words, tools that have a longer lifetime are more
likely to be replaced due to the age of the tool rather than defects caused by
the machine.

For the proposed policy, predictions of upcoming tool failures are
generated for every predefined time period (8-hour shift) within a prediction
horizon. With a multi-period prediction horizon, the predictions thus overlap.
The aggregate of the overlapping predictions is compared to an ‘inspection
threshold’ to decide whether to inspect a tool in the upcoming shift.
This threshold is optimized by explicitly modeling the imperfectness in
predictions. The predictions are also added as a data-driven component
to a (R, s, Q) inventory control policy. The expected amount of tools is
added to not fail in the coming review period (based on imperfect predictions)

Figure 7.10 Time to failure (in amount of products) for the three main tool types.
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to the conventional inventory position (IP). This altered IP is compared
to the reorder level s at each review period R to decide on whether to
order Q tools.

The predictions thus allow for postponing orders to the next review period
if enough tools are still expected to be operational by then. Implementing this
joint policy for the use case study will lead to an estimated annual savings that
consists of inventory savings, maintenance savings and a decrease in tools
ordered. There are also one-time savings in tooling purchasing costs from
lowering the current average inventory on hand level to the optimal level.

7.1.7 Conclusions

For the shaver production plant use case, quite a lot of effort has been spent
on the analytics parts during the MANTIS project. This was mainly possible
due to the already existing data acquisition platform, which provided a solid
starting point for analytics. Some very promising results have been found for
this use case.

It is proven that it is possible to use process data of the machines to make
good estimations of product quality. As a result, insights into current quality
performance has increased significantly, as well as a reduced reliability on
(slow) offline quality measurements of the products. On top of this, it can also
be used as an input for estimation on tooling status, since there is a known
relationship between the quality (shape) of the product and the shape of the
tool.

Another result is that with some creative thinking, concepts from the
academic world can be translated to real-world use cases. One such an
example is the computational trust-modeling, which looks quite promising
to quantify machine performance with respect to error behavior over time.
Again, this quantification is important, as it can be used as an input to the
tooling status model.

Image recognition techniques applied to the tools has proven to be
difficult, especially on complex shapes and glossy surfaces. Several attempts
have been made to use image recognition techniques to calculate tool wear,
which can also be used as an input for the wear model. None of them, so far,
have given any usable results.

Last, we also looked at the promises of predictive maintenance on tooling,
while keeping in mind the future applications to other production tooling
assets as well. One challenge is the predictive performance of models, which
is hard to estimate when the real output of the models is yet unknown.



326 Success Stories on Real Pilots

Data driven assumptions and simulation modeling can still provide good
insights in potential (financial) benefits. From a business point of view this
is important, as businesses typically demand clear business cases in order to
provide resources for further enhancements of these concepts.

7.2 Deploying an User Friendly Monitoring System for
Pultrusion Line Production

Contributors: Rafael Socorro, Raquel Garcı́a, Nayra Uranga, Silvia
Hernández, Mónica Sánchez, Alejandro Veiga, Eva Martı́nez, Stefano Primi

This use case aims to design and develop a reliable monitoring system
locating different sensors in key locations for gathering relevant data to
improve the preventive maintenance for different processes included in the
pultrusion process. Moreover, it allows to create an historical storage of all
the data collected to identify patterns in the future, and contribute to better
proactive maintenance.

7.2.1 Introduction to the Pultrusion Use Case

ACCIONA operates one manufacturing plant (with two production lines)
in Alcobendas (Madrid) for production of composite structures through a
pultrusion process. This process has been widely used for manufacturing
highly strengthened and continuous composite structures with low weight,
elevated mechanical and chemical resistance, and electrical and thermal
insulation. For example, they were used for the Pajares tunnels in Asturias
(Figure 7.11), for Valencia Lighthouse (Figure 7.12), and for the pedestrian
bridge in Madrid (Figure 7.13). The properties of the composite structures are
the main reason why this method has become essential in the development of
ACCIONA’s highly differentiated construction projects.

This process is very challenging in terms of production and maintenance
of the equipment involved as it is a continuous process and the machines
are running 24 hours a day, so it is necessary to avoid production stops or
unexpected delays.

7.2.2 Scope and Logic

The production line, shown in Figure 7.14, is continuous, it stops only when
the part model being produced changes. A new product to be produced
entails a new configuration of the machine. The current maintenance policy
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Figure 7.11 Waterproofing the Pajares tunnel in Asturias, Spain.

Figure 7.12 Valencia lightouse (Spain).
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Figure 7.13 Pedestrian bridge in Madrid (Spain).

Figure 7.14 Pultrusion machine at ACCIONA workshop.

for the pultrusion line is preventive (some tasks are performed every time unit
periodically), reactive corrective (if a failure is detected) and opportunistic (if
the line is stopped and the deadline for the maintenance task is close), which
means that once the production line stops to perform maintenance tasks, units
can be replaced because they were detected as defective but also because it is
an opportunity to change it because the line is stopped. Ideally the line will
not stop until the type of product being produced changes.

There exist three roles involved in the production site of pultrusion line
from ACCIONA; production manager, process engineer and operator. Each
of them has the following responsibilities and objectives in the framework of
the pultrusion process:
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• Production Manager responsibilities:
Study how to improve the overall process for achieve a higher level
of efficiency, adapt the process to new kinds of work requests,
transmit the outputs obtained from the aforementioned evaluations to the
process engineer, and along with the process engineer make appropriate
decisions about how to solve deviations caused by repetitive failures;

• Process Engineer responsibilities:
General maintenance of the machine, designing the incoming updates
from the production manager, deploying the aforementioned updates
and test them, leave the equipment ready for use, develop technical
instruction for the operators to explain how to proceed with the process,
give training sessions to the operators involved in the process, decide
how to proceed when a deviation occurs;

• Operator responsibilities:
Daily use of the machine, acquire a high level of autonomy to perform
the work requests without supervision, in case of any nonconformity in
the process the operator must report the problem to the process engineer.

Focusing on maintenance tasks, the process engineer is the person
who makes important decisions related to several aspects, such as machine
maintenance or in the case of any deviation occurs. He is responsible for
the equipment to be ready for use and this requires to develop technical
instruction for the operators explaining how to proceed with the maintenance
tasks. Furthermore, he is in charge of giving training sessions to the operators
involved in the maintenance process oriented to apply knowledge in a
practical way from the technical instruction.

Maintenance tasks within pultrusion line are manual processes based on
visual checks or manual tasks scheduled from time to time. For this reason,
these processes must be optimized in order to achieve a reliable analysis
of maintenance tasks, foresee potential failures in the systems, decrease
production delays and assure proper machine functioning.

7.2.3 Data Platform and Sensors

The maintenance tasks related to this machine do not only involve the
machine itself. It is necessary to monitor the workshop’s environmental
conditions.

Data to be collected from the workshop.
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• Environmental parameters:
Temperature, humidity and luminosity. These parameters concern
to possible change of machine configuration, which can affect the
maintenance tasks. The obtained information through temperature and
humidity sensors will be an indication of workshop status with a direct
implication on the workshop maintenance tasks. For example, the resin
used during the production process becomes solid at different points
depending on temperature and humidity. The proper mixture of the
components should be carried out in a controlled environment that
influences on the reaction rate and the proper maintenance of these
substances to ensure good criteria of quality. In turn, environmental
conditions affect the cleanup and purge tasks of the machine;
• Workshop air extraction capacity:

The maintenance of the ventilation system can vary significantly
depending on its use and the outside environment. It is an important
system to be taking into account due to the kind of substances that are
used during the pultrusion process (i.e., carbon fibre, resin...) and the
need to offer the best conditions in the workshop;
• Workshop electrical consumption:

Currently there is no information about machine downtimes produced
by electrical failures. Electrical consumption monitoring will help to
provide a reliable maintenance of the machine, engines or any other
electrical installation in order to find the possible causes of downtimes
or malfunctions.

Data to be collected from the pultrusion machine:

• Pull-Clamp system:
It is one of the main pultrusion line subsystems responsible for moving
the profile along the machine and its subsystems while the different
treatments to produce composite profiles are performed. The data that is
missing regarding this subsystem is the one related to production speed,
pull force and presses oil status:

• Production speed in order to detect machine behavioural patterns
and anomalies;
• Pull force in order to know the appropriate amount of oil for

lubricating this subsystem;
• Oil tank presses system. Generally, oil contamination is one of the

major causes of hydraulic system and lubricating system failures.
The oil inside the hydraulic system is changed from time to time by
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the operators, based on the process engineer instructions through
visual check. Therefore, the continuous supervision of oil state
plays a vital role in predictive maintenance systems. The status of
oil humidity and temperature are parameters that influence on the
quality and profitability of process;

• Injection Chamber Resin system:
It is the responsible for impregnating the fiber with resin. The profile
quality depends on the homogeneity of the spray pattern within this
process. There are several parameters that will help to analyze an
adequate maintenance of this system, such as:

• Injection System Temperature: To determine possible malfunctions
that can impact on the proper resin status and manufacture profile
quality;
• Thermocouples break detection, in order to avoid malfunctions and

errors in the production line;
• Resin Header (resin pressure or stream flow rate): It was an

unreliable system without any sensor installed. Measuring pressure
or resin stream flow rate proved to help to identify when drain
maneuvers are needed to avoid breakdown/malfunction of resin
injection system;

• Compressed Air:
Monitoring pressure, humidity and temperature for ensure a proper
maintenance of this system. Continuous monitoring reduces ongoing
operation costs, cuts investment costs for new compressors and ensures
availability around-the-clock. Compressed air subsystem is one of the
most expensive systems in production plants. Many companies are not
aware of the fact that the generation and treatment of compressed air
accounts for up to 20% of their overall energy costs;

Measurement of compressed air maintenance activities is the first
important step towards a cost-conscious and efficient approach to energy
consumption and to increase the life-time of the system. Detailed
knowledge of the actual compressed air is the basis for reducing energy
costs and is an important indicator for investment decisions;

Dew point, pressure, temperature and flow monitoring makes a
significant contribution to quality assurance in expensive systems and
the products produced there. Only sufficiently dry compressed air can
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reduce the risk of corrosion, machine failures and low-quality end
products;

The correct maintenance of this system will assure:

• To ensure efficiency

Permanently record, monitor and optimize the effectiveness
and efficiency of compressed air generation and treatment
processes;

• To assure product quality

A change in consumption of compressed air in a production
plant is a first indication of possible deviations in the
production process. Sufficiently dry compressed air assures
the quality of the system and the pultrusion pieces produced;

• For accounting

Billing individual costs for compressed air according to actual
consumption can contribute significantly to enhancing a cost-
conscious system, and it can suggest whether the compressed
air is dry enough and can thereby avoid unnecessary operating
costs for compressed air treatment;

• To detect leaks

25–40% of the compressed air generated is lost through leaks.
Consumption of compressed air in a system that is switched
off is a clear indication that there is a leak.

After some analysis and lab tests, the most suitable sensors were selected for
gathering the data.

The main drivers and constrains that were considered are:

• An efficient sensor installation process was needed, as the
pultrusion line is continuously working with a few limited stops
per months. Moreover, these stops usually are very short;
• Wires installation has been limited, both for communication and

for powering the devices;
• The required maintenance for the monitoring system should be

minimum;
• The ambient conditions inside the workshop are far from a friendly

environment, so all devices installed need to be protected.
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An overview of the architecture deployed in the use case demonstrator is
given in Figure 7.15, and the list of installed sensors is given in Table 7.1.
The figure represents all equipment, communications and software services
needed to transfer the information provided by sensors to the specific point
where the HMI is going to show all the information to the user.

The system implemented can be divided in different parts or subsystems:

• Sensors;
• Local Sensors Controller

• Zigbee Root Node
• X86 Gateway
• LTE Router
• Wi-Fi Access Point

• Local HMI
• Cloud Servers

• OpenMQ Server
• Database Server
• Web Server

Figure 7.15 Monitoring system.
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Table 7.1 List of installed sensors

Sensor Measure Unit Range

Connection
with Wireless
Platform Icon

Environmental
parameters:
Temperature,
Humidity,
Luminosity

Temperature,
humidity,
luminosity

◦C, %, lux -50 - 80,
0 - 100,
0 - 1000

Wireless
ZigBee

Workshop and
Pultrusion
Machines
Electrical
Consumption –
Energy meter
sensor

Energy
consumption
and electrical
parameters of
the installation.

V, Hz, A,φ 0-200A Wireless-
Modbus RTU
Protocol

Air flow sensor Air flow m/s, l/min,
m3/h (fps,
gpm, cfm)

Measuring
range [m/s]
2...100
Setting range
[m/s] 0...200

Wireless-4-
20mA
output

Air pressure
sensor

Air pressure bar 0-35 bar Wireless-
Modbus RTU
Protocol

Air temperature
and humidity
Sensor

Air temperature
and humidity

◦C, % Relative
humidity: 0
%HR ... 100
% HR
Temperature:
0 ◦C ... 85 ◦C

Wireless-
Modbus RTU
Protocol

Oil quality sensor Percentage of
fine particles/
Percentage of
coarse
particles/

µm % 4,6,14,21µm
%

Wireless-
4-20mA output

Oil Temperature
sensor

Oil temperature ◦C 0 - 200 Wireless-
4-20mA output
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Table 7.1 Continued
Water temperature
sensor

Water
temperature

◦C Measuring
range [◦C]
-20...90
Resolution
[◦C] 0.2

Wireless-4-
20mA and
frequency
output

Water flow sensor:
Up Circuit/ Flow,
Temperature: Down
Circuit

Water flow m/s, l/min,
m3/h (fps,
gpm, cfm)

Measuring
range [m/s]
0.05...3Setting
range [m/s]
0...6

Wireless-4-
20mA and
frequency
output

Coolant reservoir
level

Level
measurement

◦C -40◦C to
+125◦C.

Wireless-
0-5V Analogue
output

Resistors
Consumption/
Rupture of wire

Consumption/
Rupture

A 0˜50mA Wireless-4-
20mA
output

Impregnation
chamber
temperature/
Surface resistors
temperature

Surface
temperature

◦C 0-150 Wireless

7.2.4 Human Machine Interfaces

Given the different roles of the professionals who use this system, there have
been developed and deployed two different HMIs: Local HMI and Remote
HMI.

Local HMI:

Our use case has particularities due to 24h/day production in the pultrusion
line. In general, local HMI is focused on providing useful information for the
machine operators and process engineers, displaying instant parameter values
and alerts detected by the sensors (Figure 7.16). The display is located near
the pultrusion line machine, in a very visible spot for the workers. Whenever
an alert occurs in the local HMI (due to data out of range) the operators
and process engineers who are near the local HMI are able to see the alert
and they will act in order to face the problem when possible. The operators,
following process engineer directions, get the job done and in case of any
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Figure 7.16 Local HMI. PC, Tablets, mobile devices.

nonconformity in the process the operator must report the problem to the
process engineer.

All the information and alarms should be shown without any interaction.
There are several priorities of alert level composed by warnings and alarms.

Remote HMI:

This HMI, on the other hand, is focused on displaying historical information
and high or low level alerts detected by the sensors devices (data out of range,
the latter will be the same alert as in local HMI). Historical information and
its representation using graphs can help the process engineer or production
manager to anticipate possible failure and plan maintenance tasks.

The objective of this HMI, represented in Figures 7.17 and 7.18, is to
provide a powerful tool not only for data visualisation but also for showing
any analysis that the production manager (or the maintenance staff) would
require.

Some of the features include:

• User management;
• Notifications configuration;
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Figure 7.17 Remote HMI. Home menu.

• Alarms configuration;
• Report generation;
• Data graphs.

The HMI is able to display alerts if values are out of range (warning or
alarms) or if possible anomalies or failures are detected from historical data.
Historical information includes input of time-stamped data. The detection of
anomalies could have future implications in the machine with the resulting
risk of failures. The system involved in the maintenance task would be
identified, together with what is wrong according to the sensing devices.

7.2.5 Maintenance Optimization and Validation Results

This section focuses on the results achieved on the pilots by the MANTIS
techniques and monitoring process.

7.2.5.1 Temperature control system located in the mixing area
and in the storage area

It is required to keep the storage and mixing temperature of some products
used during the pultrusion process lower than a specific value due to safety
and quality issues. Consequently, the temperature of the storage and mixing
area (Figure 7.19) must be controlled, in this case using an air cooling
system.



338 Success Stories on Real Pilots

Figure 7.18 Remote HMI. Temperature, Humidity & Light (THL) menu.

The environmental parameters are gathered through the monitoring
system. The operator checks out on the local display warnings and alarms in
case that abnormal values of temperature, flow, or air pressure were detected.
The Process Engineer checks out the system performance through the Remote
HMI according to the Control Program.

In the case that a temperature alarm has been triggered and if the
maximum temperature allowed is reached (safe temperature is recommended
in the safety-sheet of the stored products), explosive products should be
moved to an alternative secure area before carrying out the reparation of
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Figure 7.19 Mixing area at workshop.

the cooling system and the safety manager should be reported. If failure was
not critical, the problem could be solved during a scheduled stop of the line
according to the maintenance program.

Figures 7.20 and 7.21 show some values of temperature and relative
humidity of the mixing zone during a continuous parameter registration
between February and March 2018. The plots illustrate periods where the
machine is not working, achieving temperatures between 15 to 23 degrees
Celsius, as well as temperature ranges where the pultrusion line is working
during production, achieving temperatures between 22 to 24 degrees Celsius.
Relative humidity is always below 50%.

No warning and alarms (yellow and red color alarms) were detected by
the operator in the local and remote user interfaces according to the obtained
data. The temperature and humidity were kept within the optimal parameters
in the mixing area during the pultrusion process tests.

7.2.5.2 Cooling system for the injection chamber
The cooling system (Figure 7.22) maintains the temperature of the injection
chamber low enough to avoid premature gelification of the resin inside the
injection chamber. The temperature of the chamber is controlled through a
liquid chiller. The cooling fluid must be water, optionally mixed with a certain
percentage of ethylene glycol (to prevent freezing), depending on the water
outlet temperature. The water is cooled using a refrigeration circuit.
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Figure 7.20 Temperature control in the Mixing Area. (Monitoring period 21/02/2018
-06/03/2018).

Figure 7.21 Humidity control in the Mixing Area. (Monitoring period 21/02/2018 -
06/03/2018).

Figure 7.23 shows the elementary scheme of the circuit that allows a
refrigerating cycle. Figure 7.24 shows a schema of the pipeline circuit used
to cool the injection chamber.

The cooling system is monitored detecting the liquid temperature and
flow as well as its level in the chiller’s deposit, using wireless sensors located
in the liquid tank (level) and at the pipelines that connect the chiller with the
refrigeration circuit of the injection chamber (temperature and flow).

The operator checks the possible warnings and alarms on the local display
in the case that abnormal values of temperature, level or flow of refrigerant
liquid were detected. The process engineer views the system performance
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Figure 7.22 Cooling system from injection chamber.

through the Remote HMI according to the Control Program. The specialized
operator, who is allowed to manage the machine in emergency cases, will be
responsible for checking the local display.

If failures were not critical, the problems would be solved during a
scheduled stop of the line according to the maintenance program or keeping
the machine running (for example, when the chiller’s deposit needs to be
filled or if a leak occurs). Repair on the fly is allowed in this scenario because
the chiller is not physically integrated in the pultrusion machine so it is easier
and safer to solve small complications. If it was critical, a non-scheduled
stop would be performed and the process manager would be reported. Then,
both the process engineer and the process manager would analyse the data
available and decide if it is necessary to modify the maintenance program
or instead, if it is an unforeseen failure and it is preferable to contact the
specialised technical service.

The limits of the temperatures were defined by means of previous
manufacturing experience and taking into account that the set temperature of
the chiller must be different than the ones we obtain inside the manufacturing
site. During the winter the chiller set temperature is between 22–24◦C and
during summer it is adjusted to 16–18◦C to obtain the desired process
parameters. It is expected that after a complete year of monitoring a more
accurate relationship between these two parameters can be obtained. The
installed sensors can be seen in Figure 7.25.
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Figure 7.23 Schema of the chiller cooling system from injection chamber.

Figure 7.24 Schema of the injection chambers cooling circuit.
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Figure 7.25 Sensors installed in the refrigeration circuit.

Time series data of the liquid temperature have been recorded for
3 months with the sensors installed as part of the Mantis project. Due to some
problems between the sensors and the data acquisition program it has not
been possible to see the flow measurements, but it can be predicted that some
of the variations seen in the temperature could be directly related with it.

The graphical display for room temperatures and the inlet circuit
temperature of the refrigeration liquid is shown in Figure 7.26. It can be
clearly seen that although the exterior temperature suffers large variations
than the temperature in the refrigeration circuit. An important point to check
is that the refrigeration circuit operates correctly and that the external factors
are not directly affecting the manufacturing process.

Taking into account upper and lower limits for the alarms defined, it can
be seen that some points must be checked although none of them are in the
red alarm range. In the first part of the control chart the variation of the
temperature is larger than in the last stage. The increase of the temperature
(Early January 2018) is due to problems derived from non-constant flows, the
water stagnates in the pipes and the temperature increases. On the other hand,
low temperatures (middle January 2018) are due to some maintenance stops
for the installation of new sensors and connections. As the room temperature
is low the refrigeration system decreases its temperature.

In the chart in Figure 7.27, which corresponds to the production of the
pultruded profiles, the temperature of the refrigeration circuit is more stable.
It can be seen that some points are in the rage of the yellow alarm. As can be
seen by comparing Figures 7.27 and 7.28, these increases in the temperature
occur at the same time that the level of the liquid in the refrigeration circuit
decrease.
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Figure 7.26 Room temperature vs. liquid inlet temperature control chart.

Figure 7.27 Refrigeration circuit inlet temperature control chart.

Figure 7.28 shows the evolution of the refrigeration liquid tank level.
The consumption of the tank depends on different factors such as exterior
temperature, working hours, number of equipment connected to the circuit,
etc. so it is not easy to predict a constant behavior. But it has been seen that
a reduction of more than a 35% of the level of the tank has a direct impact in
the refrigeration circuit temperature, so it has been decided to refill the tank
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Figure 7.28 Refrigeration liquid tank level control chart.

once a day above the 80%. The operator must be in charge of this action and
also must be aware of any other alarm that can appear.

All the charts in Figures 7.26–7.28 are displayed in the data recorded by
the remote HMI system. Any data out of the target values will give an alarm
that must be checked out by the process engineer.

It has been seen that the monitoring system of the refrigeration
temperature and tank level exhibit useful information for the control of the
manufacturing process. The system works correctly and in-situ checks with
the control through the monitoring system could avoid production problems
and advise of maintenance needs that otherwise are difficult to detect. A good
control of the refrigeration circuit will allow reducing the purge needs of the
system and the cleaning operations.

7.2.5.3 Compressed air system from pulling system
For this application, the goal is to assure the correct workings of
the compressor (Figure 7.29) and, on the other hand to detect any
anomaly in the injection circuit (Figure 7.30) (pressurized tanks, pipelines,
connections, etc.).

Using wireless sensors located at the compressor outlet and at the
pipelines that connect to the injection chamber, air pressure, temperature and
flow are monitored. The operator checks out on the local display warnings and
alarms in case of abnormal values of temperature, flow or air pressure were
detected. The process engineer checks out the system performance through
the Remote HMI according to the Control Program.

Figure 7.31 shows the data record of the evolution of the air pressure
obtained from the Remote HMI interface for a period of two and a half
months of production (Monitoring period 01/01/2018–14/03/2018).
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Figure 7.29 Detail of the main compressor that supplies compressed air to the resin injection
system.

Figure 7.30 (a) Schema of the injection chamber resin injection circuit. (b) Detail of the
resin injection circuit.

Figure 7.31 shows that the air pressure remained above 8 bar and thus
above the operational limits fixed during the period studied. In fact, the
Control Program states that:

• Value > 6 bar that corresponds to regular operational conditions no
alarm;
• L1: Value < 6 that corresponds to non-regular operational conditions,

but not critical alarm turns to yellow;
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Figure 7.31 Data record of the evolution of the air pressure obtained from the Remote HMI
interface.

Green Alarm Yellow Alarm Red Alarm
Temperature 10–25◦C 5–10◦C//25–30◦C > 30◦C and < 5◦C

Pressure >6% 2–6% < 2%

• L2: Value < 2 bar that corresponds to critical operational conditions
alarm turns to red.

The air pressure remained stable oscillating between 8–9.5 bars
(Figure 7.32). This oscillation is normal within the regular operating regime
of the compressor because the compressor’s engine does not work constantly.
It automatically turns on when the pressure inside the pressurized tank falls
below a consigned value (about 8 bar).

Operators did not detect any alarm trigger in relation to air pressure
during this period except 19 January when the compressor shut down due

Figure 7.32 Detail of the data record of the evolution of the air pressure obtained from the
Remote HMI interface.
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to a power cut. Because of this event, the pressure decreased, triggering the
yellow alarm. However, the red alarm was not activated since the pressure
remained above two bars until the power was recovered. The compressor
was able to keep the air moderately pressurized inside the tank for few hours
(Figure 7.31).

Therefore, the in situ control carried out by the operators matched with
the data recorded by the remote HMI system and checked out by the process
engineer.

The temperature inside the room where the compressor is placed was
also recorded. Figure 7.33 shows the data record of the evolution of the
temperature obtained from the Remote HMI interface for a period of two and
a half months of production (Monitoring period 01/01/2018–14/03/2018).

Even though the temperature oscillates between 10 and 25◦C inside the
room, the effect on the air pressure control is negligible (Figure 7.32). The
heat generated by the operation of the compressor causes this oscillation. The
room is conditioned by means of an extraction system that brings out the room
the hot air when the temperature inside the room reaches 25◦C. On weekends,
highlighted in red, the compressor remains off and the temperature is closer
to the exterior room temperature.

During the monitoring period, the temperature values stayed within
the operational limits allowed, between 5–30◦C. Therefore, the current
conditioning system is enough to keep the temperature within the
recommended operation values.

In addition to the sensors installed in the compressor room, another
sensor has been installed at the furthest point from the compressed air circuit
(Figure 7.34). This sensor will help to check if the pressure in the compressor

Figure 7.33 Data record of the evolution of the temperature obtained from the Remote HMI
interface.
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Figure 7.34 Pressure and temperature sensor installed in the compressed air circuit.

maintains the same or if there is any loss along the circuit. The installation
of the sensor had to be done while there was no production in progress and
complies with different security.

7.3 Maintenance in Press Forming Machinery

Contributors: Urko Zurutuza, Javier Fernandez-Anakabe, Ekhi Zugasti,
Petri Helo, Lauri Välimaa, Mathias Grädler, Mikel Mondragon,
Andoitz Aranburu, David Chico, Oier Sarasua, Marı́a Aguirregabiria,
Xabier Eguiluz, Iosu Gabilondo, Eduardo Saiz, Iban Barrutia Inza,
Mikel Viguera, Félix Larrinaga Barrenechea, Mikel Anasagasti,
Jon Olaizola and Ricardo Romero.

This use cases focuses on stamping press machines, which are metal working
machines used to shape or cut metal by deforming it with a die. See
Figure 7.35 for some examples of this kind of machinery.

This kind of press is built by FAGOR and, during its active lifetime, might
be capable of giving more than 40 million strokes characterized by impressive
force and precision, insofar as the press is used and maintained appropriately.
This use case considers two scenarios.

The first scenario focuses on the press forming machinery itself.
The customers expect both high quality of the pieces produced by the
machine, and high availability, which led FAGOR to incorporate cutting-edge
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Figure 7.35 Fagor Arrasate mechanical and servo driven presses.

technologies in their products as a means of enhancing products robustness
and functionality in order to facilitate proactive maintenance activities.

The second scenario considers the pneumatic Clutch Brake, which is a
critical device within the mechanical press machine. The Clutch Brake is
responsible of activating and stopping the tool of the press machine in order
to perform different processes. In this scenario, the clutch brake became a
CPS itself, able to provide data regarding its own health conditions.

7.3.1 Introduction

FAGOR ARRASATE S.COOP is a company of 800 employees specialized
in designing, manufacturing and supplying sheet metal forming machine
tools. Fagor Arrasate was created in 1957 and, since then, has expanded its
products and business in an significant manner, being now one of the world
leaders in the field. It is one of the 5 biggest manufacturers in the world in
terms of turnover and the first one considering the product’s portfolio.

The Company is located in the Basque Country, in the north of Spain,
very close to the French border in the most industrialized area of the country
and surrounded by a traditionally metallurgical and exporting environment.

FAGOR is a world leader in the design and manufacture of mechanical
and hydraulic presses, complete stamping systems, transfer presses, robotised
press lines, press hardening, forging; Cut-to-Length, Slitting, Combi and
multiblanking lines; Processing lines as pickling lines, skin passes, reversible
mills, painting, galvanizing or levelling lines; special metal part forming
systems, strip roll forming, flexible roll forming, rotor/stator cutting
equipment, dies and many other types of equipment.
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Fagor Arrasate serves to numerous sectors, with a particular focus on the
car industry, the domestic appliances industry, the Steel Industry and Service
Centres. For Fagor Arrasate a key goal is the constant collaboration with
its customers, so there is a close and continuous presence in order to give
solutions for any process with the most adequate technology.

GOIZPER S.COOP is one of the leading technology suppliers in power
transmission components, such us brakes, clutches, turning systems, gear
boxes, cams or elevators. GOIZPER designs, manufactures and supplies
customized power transmission components to meet market needs in sectors
like metal forming, automotive, aeronautics, packaging, construction, marine,
machine tools, etc.

As mentioned, Clutch Brakes and gearboxes are products consumed in
automotive industry and Fagor Arrasate is currently using them within their
mechanical press machines (see Figure 7.36). In other words, Goizper is one
of Fagor Arrasate’s current power transmission components supplier.

GOIZPER’s headquarters and productive plant are located in Antzuola,
Spain, and almost 80% of the sales come from exports all over the world. The
maintenance of sold parts has become an issue due to the different locations
of the parts around the world.

GOIZPER also has another division, totally different, focused on the
design, manufacture and marketing of manual sprayers and dusters for
treatments in farming, gardening, industry, construction, cleaning, pest
control and vector control.

7.3.2 Scope and Logic

The final customers of FAGOR ARRASATE produce products with high
levels of quality and availability seeking a drastic reduction of high
cost caused by production downtimes with required maintenance-repair
operations and a better delivery times’ compliance. This is why FAGOR

Figure 7.36 Clutch Brake (left) and gearboxes (center) by Goizper, used in Fagor’s
mechanical press machines (right).
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ARRASATE needs to increase the reliability of machines and components.
To meet this challenge FAGOR ARRASATE is continuously incorporating
cutting-edge technologies in their products as a means of enhancing products
robustness and functionality in order to facilitate proactive maintenance
activities.

7.3.2.1 Background information on the press machine
Mechanical and servo driven press machine elements have been analysed
using sensor technologies in order to improve maintenance strategies for
detecting early failures on the cranks and in forming elements of the stamping
press.

A platform has been developed where the data from different components
of a press machine could be captured, monitored, transmitted, stored and
analyzed in order to come to reliable predictive and proactive maintenance.
The data is analyzed and monitored via local or cloud level (see Figure 7.37).

The components of the press machine that require sensors with innovative
CPSs are:

• Bushings (Temperature and oil condition status);
• Bolster (Relative displacements);
• Head (Structural health);
• Gear axis (Torque);
• Engine (Tension and current);
• Connecting rod (Displacement, forces).

Figure 7.37 Predictive maintenance HMI platform.
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Figure 7.38 illustrates the location of the source of each component data.
The objectives of this use case are:

• Maintenance Cloud Platform development;
• Torque measurement using wireless sensors;
• Head structural health monitoring;
• Torque measurement using wireless sensors;
• Bushing status measurement;
• Gears wear measurement;
• Crank strain and force measurement;
• Press unbalances forces measurement;
• Press cutting shock measurement.

Figure 7.38 Location of data sources.
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7.3.2.2 Background information on the clutch brake component
A critical device within the mechanical press machine is the pneumatic clutch
brake. The Clutch Brake is the responsible component of activating and
stopping the tool of the press machine in order to perform different processes.
In this case, metal forming process is considered, where the clutch brake
works as a mechanical commutator. The clutch brake components suffer
from degradation during operation. Component degradation usually causes
machine failures and downtime, generating unwanted and unexpected costs.
Figure 7.39 shows how a pneumatic clutch brake looks like.

The focus lies on identifying issues related to the maintenance of the
clutch brake, adopting strategies to monitor and to make decisions against
those issues.

Downtimes caused by the clutch brake have been listed taking into
account the number of stops. From this list, the following topics were picked
in order to analyse and solve.

• Friction material slippage detection at clutching;
• Friction material slippage detection at braking;
• Friction material wear and misalignment;
• Piston chamber air leakage;
• Brake springs degradation.

For the Clutch Brake scenario, two demonstrators have been used. One of
them is situated at MGEP facilities in Mondragon, Spain, and it consists of
a Fagor mechanical press machine that contains a GOIZPER’s Clutch Brake
component. The other one is located at GOIZPER’s facilities in Antzuola,
Spain, and it consists of a Clutch Brake wear test bench.

MGEP Press Machine demonstrator
In Figure 7.40, Fagor’s press machine demonstrator’s front and back sides are
shown. This machine contains a GOIZPER Clutch Brake and it is located in
MGEP shopfloor for small size metal parts forming.

Figure 7.39 GOIZPER pneumatic Clutch Brake outside and inside.
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Figure 7.40 MGEP press machine, demonstrator 1.

This machine is a mechanical press machine used for low duty metal
forming processes. It contains a pneumatic Clutch Brake at the back side
(shown in Figure 7.41) in order to activate and deactivate the ram of the press.
The ram is the orange part of the press which performs the action of metal
forming.
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Figure 7.41 GOIZPER clutch brake in MGEP demonstrator before MANTIS.

Figure 7.42 shows the back side of the demonstrator, and the GOIZPER
clutch brake next to the flywheel (orange). Sensors have been installed within
the Clutch Brake in order to capture data and execute the algorithms for the
preventive maintenance of the component. The electric motor, power source
of the application, is located at the top side (not visible) connected to the
flywheel by means of a black belt.

Within the pneumatic circuit, the electro valve is located at the right side
of the picture, opening and closing the air flow into the clutch brake. This
air is introduced through the black tube connected to the application axis, in
the middle of the picture. Sensors have been installed in order to receive data
from the Clutch Brake. These installed sensors are visualized in Figure 7.40,
which indicates each sensor’s location.

GOIZPER Test Bench
The second demonstrator is the test bench in GOIZPER’s installations
(Figure 7.43). Friction discs accelerated degradation has been forced in order
to get the data from the beginning (%0 of wear) until the end of the friction
discs life (%10 of wear).

The installed sensors are not giving direct information, all the captured
data needs a processing stage (Figure 7.44) in order to know the actual health
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Figure 7.42 Clutch Brake in MGEP demonstrator with the sensors installed.

Figure 7.43 GOIZPER Clutch Brake test bench, demonstrator 2.

of the Clutch Brake. From these calculations, different problematic scenarios
have been identified. Some of the algorithms are located in a local data logger
and the rest are located within the cloud.

7.3.3 MANTIS Solutions for Press Machine

This section focuses on the first scenario of the use case, and thus on the
solution implemented by FAGOR for the press machine itself.
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Figure 7.44 Local data logger for data capturing and processing.

7.3.3.1 Maintenance cloud platform
A new demand of technical solutions and services aiming at improving the
efficiency of maintenance and repair operations is arising. In line with this
need, FAGOR ARRASATE wants to offer to its customers a broad range of
maintenance services based on digital technologies that allow the company to
collect real-time data from the press machines installed all over the world. As
Fagor and Goizper are different firms, each company is developing its own
Cloud solution. However, interoperability has been taken into account for the
cases that both partners work together.
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7.3.3.1.1 Solution approach
The solution selected by FAGOR has been to develop a digital cloud platform
where data from different components of a remote press machine can be
collected, monitored, transmitted, stored and analysed providing services for
reliable predictive and proactive maintenance. The cloud platform has an
architecture divided into two different environments: On-cloud where data
coming from the different sources are stored, processed and analysed and
On-premise where is the data acquisition system to extract the data from
the different sensors of the machines. Data format is based on the Event
Information Model adopted for the present project and communications
among both environments are secured by using VPN tunnels that guarantee
the data integrity, confidentiality and availability.

In the Cloud, a Big Data architecture following the MANTIS reference
architecture principles and based on different applications has been designed
aiming at supporting fault-tolerance and high scalability. In this way,
each part of the system is independent and loosely coupled. The general
architecture of this approach is illustrated in Figure 7.45.

On-Cloud architecture consists of the following core components:

• Elastic Search: The data coming from the different manufacturing
facilities will be persisted in a NoSQL database. It allows the storage
of huge volumes of data as well as an optimised search mechanism with
a flexible approach to perform a number of aggregations;
• [Apache Kafka]: A distributed queue message system to decouple

the different applications by following the publisher-subscriber
communication pattern. This technology uses a topic approach to
categorise the data. In this work the different data natures are published
through different topics;
• Proxy: This application is an HTTP proxy that receives the data from

on-premise sources and categorises them in different data natures by
considering their origin. Afterwards, the data is published in different
Kafka topics;
• Real Time Processing: this application has three objectives:

• Extracting the raw data categorised by means of the Kafka topics;
• Persisting the data in elastic search also categorised by data nature;
• Executing data analytics to detect possible alarms (that are

published to Kafka), and performing a predictive maintenance.

• API: A REST API in charge of exposing the functionalities supported
by the Cloud to allow the connection with a front-end (App Web).
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Figure 7.45 Architecture design.

Among the functionalities, they are worth emphasising the possibility
of querying an Elastic Search NoSQL database to obtain historic data
by applying distinct filters, the execution of [CRUD] operations over
the resources required and the users’ management system. This API is
implemented as a [Spring Boot] application, a framework to simplify the
creation and development of Java Web applications. In addition, OAuth
2.0 protocol [Aaron Parecki, 2018] is adopted in order to guarantee the
security in the communications;
• Alarm: This application consumes from Kafka the alarms generated

from real-time processing and push the corresponding values to a front
end to trigger an alarm when necessary.
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On-premise is considered as the technological solution deployed on the
manufacturing plants of the customers where their machines are located. This
environment usually has limited hardware, software and network resources.
This leads to frequently delegate the high-consume processes and the
exhaustive exploitation of the data to the cloud environment. Therefore, in
some cases data will be directly submitted to the Cloud, while in other cases
data will be normalised, standardised and persisted in a local database to
subsequently be submitted to the Cloud. In the On-premise environment there
is an Industrial PLC that provides resources with which the information from
the automation is obtained from the sensors of the machines. This computer
executes the following modules:

• Machine2Raw: This is the system in charge of extracting the data from
the different PLCs through a PLC obtaining, in turn, the data from the
different machines of the customers;
• Datalogger: This system is responsible for storing in a local database

the data coming from the sensors and the systems that are being
monitored;
• Local Database: A local database in SQL server to allocate the raw

data structures provided by the sensors. In this database there are some
triggers to centralize the information in a table that is the entry point for
Apache NiFi;
• Apache NIFI [The Apache Software Foundation, 2018]: A technology

that processes the raw data stored in the local database by the
DataLogger. This system allows defining data-flows in a visual way. It
is fault-tolerant, has a low-latency and is able to manage a high volume
of data. After processing the data, Apache NiFi transfers the data to the
cloud through a proxy.

7.3.3.1.2 Results
As a first result, FAGOR ARRASATE ended up having a cloud platform
(Figure 7.46) to monitor the status of the press machine park running on their
customers’ premises. This platform provides several functionalities to create
the network of press machines, to collect and monitor data from selected
components, to analyse them and triggering alarms.

For operating the cloud platform, a control room (Figure 7.47) is set
up at FAGOR’s headquarters in Arrasate. This will allow the company to
offer new maintenance services to its customers looking for increasing their
press machines performance and availability. This way, the company aims to
strengthen their market position and to create new business opportunities.
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Figure 7.46 FALINK Cloud Platform.

7.3.3.2 Torque measurement using wireless sensors
Press machines manufacturers are confronted with increasing technological
and cost pressure. Many customers demand faster and more precise presses.
The more precisely force is applied in a press machine, the higher is the
quality of the parts manufactured. Thus, increasing the press machines
accuracy is one of the most important challenges for manufacturers of these
assets. In addition, the market requires increasingly faster press machines
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Figure 7.47 FAGOR ARRASATE future control room.

that, at the same time, offer higher bandwidth to increase production output
in existing systems.

Nowadays, the torque of the press gear shaft is measured indirectly from
the force that is applied in the connecting rod. This measure is quite precise
but it needs to be continuously recalibrated to keep it accurate. To solve this
problem, the torque is measured directly by using wireless sensors placed in
the press gear shaft.

7.3.3.2.1 Solution approach
As a solution, IKERLAN has designed and manufactured a prototype of
a shaft-adapted wireless sensor node that comprises a transducer based on
torque oriented gauges, a signal conditioning circuit and a signal processing
software, the latter allowing local preprocessing and treatment of the
collected data by means of intelligent functions.

The design process has been made following two main phases:

• Phase 1: Testbed validation

Before starting the development of the wireless torque sensor, a preliminary
validation step was made in testbeds both in IKERLAN and in the Try-Out
press machine of FAGOR ARRASATE. This was an initial requirement to
ensure the proper functioning of gauges, generic electronics and wireless
communication for working in press-based conditions.

Two types of strain gauges were used: FCT strain gauges designed for
torque measurement and FCA gauges chosen as a pair of strain gages oriented
at 90. Also, a generic signal conditioning circuit was used where the signal
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is then processed by a low power microcontroller, which transmits data
wirelessly with a radio module. The data is received by a similar access
point, which is controlled by a LabVIEW National Instruments Corporation
interface (configuration and visualisation).

Initial tests were carried out on two testbeds scenarios. In the first testbed
(Figure 7.48), different weights, which correspond to corresponding micro
strains, were loaded on the bar and static measurements were performed in
half bridge and full bridge configuration for gauge calibration. In the second
one (Figure 7.49), the test was made using a motorized test bench. To check if
measurements were suitable, the electric engine speed was slowly increased
resulting in increases of the measured torque.

With regards to wireless communications, two main challenges were
tested: (i) signal attenuation due to the rotation of the emitter around the
shaft and (ii) multipath fading due to RF signal reflections in the metallic
(steal) elements of the head of the press in which the torque sensor will
be installed. Tests were successful, taking into account that depending on
the angular position of the shaft, and therefore, on the relative position of
the transmission and reception antennas, more or less amount of power is
received periodically.

Figure 7.48 Static testbed scenario.
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Figure 7.49 Dynamic testbed scenario.

A similar test has been performed in the Try-Out press machine from
FAGOR ARRASATE. In this case, both the emitter and the reception antenna
have been placed in a realistic place within the head of the press machine as
in can be seen in Figure 7.50.

Once the top cover is closed, creating a complete metallic case, it was
observed how the received signal was not as clean as the one in the previous
measurements due to multipath reflections. The statistical features obtained
from this signals were used in the selection of the most suitable wireless
communication technology to be used for the torque sensor.

Figure 7.50 Measurement setup in the press machine.
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• Phase 2: Design and development

Once the concept and the elements of the device (gauges, conditioning and
processing, radio) were validated in a rotational environment, the system
design and development was started taking into account the following
Try-Out press specifications:

• Shaft material: F1140 (C45E) steel;
• Shaft dimensions:

• Diameter: Φ 310.07 mm
• External diameter: Φ 360 mm
• Width: 150 mm

• System thickness: 25mm max
• Electronics & Cover:

• No screwing
• Speed: 88 rpm
• Expected torque:

• 188762 Nm
• ∼200 microstrain

• Environment:

• Temperature: <45◦C
• Subjected to oil: CLP-150ftesp @ 400cm3/mm

• Placement: Head of the press machine (see Figure 7.50)

From these specifications, a prototype of the wireless sensor node was
designed and developed. It consists of a single PCB with the necessary
interfaces to attach torque gauges, besides the conditioning, processing and
wireless communication electronics. The whole system is powered by a
rechargeable lithium ion polymer battery and it is encapsulated and protected
by a plastic cover in the shape of the press’ secondary driving shaft, which is
prepared to avoid oil leakage (see Figure 7.51).

In order to configure the system and show the measured data, an user
interface was designed in LabVIEW. From this interface, the Gage Factor,
Poisson Ratio, Young modulus and the bar diameter can be configured.
Typically the amount of received data is huge, so data values are averaged
and only the average value is visualised in the user interface.

7.3.3.2.2 Results
Once the design and fabrication of the wireless torque sensor was finished,
the sensor was installed in the Try-Out press machine from FAGOR
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Figure 7.51 Wireless sensor node.

ARRASATE. First tests regarding the overall performance of the sensor were
successful providing signals with the torque measurements were sent to an
external laptop were they could be visualized (Figure 7.52).

Later, the complete validation process was carried out. This process aimed
to test de accuracy of the sensor’s measurement against several torque and
speeds and the robustness of the wireless communication protocol employed.

15 different tests were carried out combining 30%, 60% and 87% of the
nominal torque of the press, 57%, 78% and 100% of the nominal speed
and several configurations of the sensing electronics. These results were

Figure 7.52 Torque measures.
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compared with an estimation of the torque at the drive shaft obtained from an
overload pressure evolution analysis. Besides, some measurements regarding
the performance of the wireless communication were also taken.

Figure 7.53 shows the results of the test in which the maximum torque
(87%) and the maximum speed (100%) were configured at the press machine.

The measured torque values at almost each stroke are close to 60 kNm,
which fit the estimated torque values. Moreover, the clutch brake engage and
disengage events were captured.

In general terms, it is considered that the obtained results are valid, taking
into account that they are compared with estimated values and not with
another measurement obtained by a commercial system. However, regarding
the amount of data shown at the measured torque values, some data can be
missed either on the positive or the negative peaks, as the same amplitude
should be acquired for each stroke. With regards to wireless communications,
in general the expected performance in terms of data throughput and network
availability has been achieved. However, the loss of some data packets has
been detected, which should be corrected in future versions.

As future work, the use of antenna diversity inside the shell of the press
machine will improve the communication between emitter and receiver hence
decreasing the number of packets lost. Besides, being the energy management
of the system a key feature if it is pretended to leave it permanently attached
to the press machine’s drive shaft, a more energy efficient redesign will be
carried out together with the development of an energy harvesting system to
power up the wireless sensor node.

Figure 7.53 Comparison between estimated and measured torque values (87% of the
nominal torque, 100% of the nominal speed and gain 1000).
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7.3.3.3 Head structural health monitoring
The press structural components are welded steel structures where, on rare
occasions, cracks may appear. The crack initiation is usually associated to
fatigue damage in the welds and weld transitions (maximum design load is
not exceeded due to the overload security devices). Fatigue is a cumulative
phenomenon due to fluctuating loads, when material is subjected to repeated
loading and unloading. The nominal stress for such loads may be much
less than the ultimate tensile stress limit of the yield stress. If the loads
are above a certain threshold, microscopic cracks begin to form at the stress
concentrators. Eventually, a crack could reach a critical size, suddenly spread
and provoke the fracture of the structure.

7.3.3.3.1 Solution approach
Physics based degradation models (see Section 3 of Chapter 5 on RUL)
are implemented to detect most damaged zones of the press structural
components. Based on the classical high cycle fatigue damage model, a
damage indicator map is implemented. A damage threshold is set (Damage
threshold = 1.3, for example), which is associated with a minimum
length crack (2 mm, for example) appearance probability. Based on the
measurements of real forces in the press rods and the stresses calculated at
every point with Finite Element Models, 3 methods recommended by the
International Institute of Welding are used to calculate the damage indicators
at the welded structural components (mean stress, hot spot and notch stress).

As the real forces are being measured, dynamic and asymmetric loading
effects are taken into account and accumulated over time. At the same
time the damage indicator is calculated, the remaining time to reach the
predefined threshold (see Section 3 of Chapter 5 on RUL) is also calculated.
Identification of unexpected premature occurrences can easily be identified
and analyse probable associated Root Cause (see Section 2 of Chapter 5 on
RCA).

Additionally, for certain cases, a minimum crack length is supposed and
a second physics based degradation model is applied to study the fracture
mechanics. This is the field of mechanics concerned with the study of
the propagation of cracks in materials. During the second stage of crack
propagation or stable propagation stage, Paris’ law is used to estimate the
crack propagation under certain load. The time needed to reach a threshold
critical length is calculated. This is interesting when a crack is detected
and the evolution needs to be estimated in order to schedule the corrective
maintenance action.
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Two different crack sensors were tested to detect or measure crack
propagation: a commercial local crack gauge and a conductive ink sensor at a
stage of development. Once a crack has been localised, the RUL to a critical
crack length is calculated. If crack length data is available, Particle Filter
method is used. This method combines the physical model and the available
measurements in order to improve the RUL estimation to the critical crack
length.

Algorithms and sensors are applied in a testbed prototype before the final
application in the press machine head, shown in Figure 7.54. As a result of
this, the structural health of the head of the press machine is monitored by
means of two developments: i) The setup of a testbed for structural failure
prediction and simulation and, ii) the analysis of conductive inks for crack
detection.

• Testbed for structural failure prediction and simulation

Due to the difficulty to artificially create structural failures in a real press, the
press head Structural Health Monitoring scenario has two demonstrators:

• A fatigue testbed, where welded structural details are tested until
complete fracture. The algorithms and sensors are applied and checked
in this demonstrator prior to applying them in a real press machine;
• A real press, where a structural damage and associated RUL indicator

is applied, taking into account the results obtained in the fatigue testbed
demonstrator and the features of the real press.

In the case of the testbed, a fully sensor welded specimen has been submitted
to fatigue loading until its complete fracture. The welded specimen is selected
according to a structural detail located in the press head. The material of the
specimen is the same of the press head as well as the welding procedure.
The thicknesses of the sheets have been reduced according to the testbed load
capacity.

Figure 7.54 Selected structural detail from press head.
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A Finite Element Model of the specimen (Figure 7.55) was built in order
to estimate the stresses at any location of the welded specimen.

The damage and RUL are estimated every minute during the test.
Complete sensor data for a period of 20 seconds were stored every hour. Some
results to remark are that the complete fracture occurs at 3.1E6 cycles, 3.8
times compared to the design life for 95% (8.4E5). The macrocrack initiation
(failure) is estimated to occur near 1.25E6 cycles, 50% above the estimated
design life. Crack initiation occurs where predicted by the FE model and the
weld damage methods (Figure 7.56).

• Conductive inks

The objective is to proof the concept of using conductive inks to detect
cracks in a mechanical test specimen. Tests with several conductive inks
have been carried out. Different circuits are painted by this conductive ink
on top of a test specimen coated manually with an insulating layer (e.g.,
Magnesia 919). The specimen is heated at different temperatures to increase
the ink conductivity. During this heating step, cracks appeared in the
insulating layer, which is interesting for the application since the objective
is to study the bottom crack effect in the conductive ink. It is observed that
it is difficult to apply the conductive ink homogeneously along the insulating
layer surface.

Figure 7.55 Fully sensorised welded specimen in the testbed.

Figure 7.56 Stress plot in the testbed due to a unitary load.
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After these preliminary tests, a conductive ink is deposited on top of a
mechanical test specimen prior to subjecting it to a mechanical fatigue test to
create a crack, which should be detected by the conductive ink.

First, the “silver conductive adhesive pro” from RS is deposited on top
of a mechanical test specimen shown in Figure 7.57, next to the pre crack,
in perpendicular direction. First of all, an insulating layer is bonded directly
on the test specimen surface. Secondly, different insulating adhesive layers
are tested: a kapton adhesive film (A) and a Teflon adhesive film (B). Then,
a rectangle of silver conductive ink (4 x 40 mm2) is painted on top of each
insulating layer, using the paint brush provided by the ink. Finally, electric
cables are bonded in the four ends using a silver conductive epoxy adhesive.

Regarding the experimental conditions for fatigue test, a mechanical
test specimen made of S235JR steel material and CT Compact Tension
geometry is created. The stress is applied in a different way in two different
phases: (i) 225000 cycles of 0.8–8 kN with a frequency of 10 Hz and
(ii) 109000 cycles of 1–10 kN with a frequency of 10 Hz. In both phases,
every 1000 cycles, a constant force is applied (F = (Fmax + Fmin)/2) during
10 seconds. The subsequent post processing is carried out with data acquired
in these intervals of 10 seconds. The sampling frequency is 20Hz.

Apart from the signal of conductive inks, two other signals are acquired in
the test, in order to be able to compare afterwards the results with a reference
(a commercial crack detection gauge and a commercial extensometer, see
Figure 7.58 for all the elements used in the test, and Figure 7.59 for the final
set-up for the experiments).

7.3.3.3.2 Results
Structural damage and associated RUL indicator based on fatigue damage are
ready to be integrated in a real press machine. Stress at critical positions is
obtained from a finite element model and online experimentally measured
forces.

Figure 7.57 Mechanical test specimen with two sensors based on silver conductive adhesive
deposited directly on top of the surface.
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Figure 7.58 (a) Two sensors based on conductive inks placed in one side of the specimen;
(b) Commercial crack detection gauge placed on the opposite side of the specimen; (c)
Commercial extensometer placed in the crack, during the fatigue test.

Figure 7.59 Picture of experimental set-up.

With regards to conductive inks, the following results were achieved. The
blue line in Figure 7.60 corresponds to ink B, which is placed closer to the
pre-crack and is deposited on top of the Teflon insulating layer. On the other
hand, the red line corresponds to ink A, which is placed farther away from
the pre-crack and is deposited on top of the Kapton insulating layer.

The signal increase of ink B indicats the presence of a crack. However,
this increase started too late, when the tests specimen was completely broken.
The behaviour of ink A is similar, where the signal began to increase later,
again when the test specimen was completely broken.

It is concluded that although apparently the ink performance is correct,
the bottom insulating layer behaviour is not as expected. It is too flexible and
does not transfer in a correct way the crack from the test specimen to the ink.
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Figure 7.60 Ink signal during the second phase of fatigue test and ink pictures corresponding
to the two points indicated in the graph. Pictures of both sides of the test specimen, at the end
of the fatigue test.

Both insulating layers are extended too much before cracking due to their
high flexibility.

Direct crack detection methods are going to be tested (ink sensors and
crack gauges, acoustic emission sensors) and an indirect model based damage
detection method (Extended Constitutive Relation Error approach). This
method compares the measured strain at different moments of the system
with the ones expected by the model. It is a method to identify, localize and
determine the severity of the damage.

Three research lines of interest are identified:

• Probabilistic approach of the fatigue damage;
• Stress estimation based on model and sensor data. Improvement of stress

estimation and hence, structural damage and associated RUL indicators;
• Crack length estimation based on fracture mechanics and RUL

estimation using particle filter based prognostics algorithm.

The last two will improve the estimation of the stress or the crack length by
combining physical models and experimental data.

7.3.3.4 Bushing status measurement
Bushings are critical parts in press machines to reduce friction between
rotating shafts and stationary support members. Depending on the working
conditions and oil status, the bushing can increase its temperature getting
stuck with the connecting rod. This failure forces to stop the stamping process
and the time to repair it is about one working week. Taking into account that
the one just described is the best case scenario when there are spare parts
available in stock, due to the magnitude of the problem, it was necessary to
tackle it within the MANTIS project.



7.3 Maintenance in Press Forming Machinery 375

7.3.3.4.1 Solution approach
It is considered that bushing failure due to seizure can be anticipated, and
that it is possible to estimate its RUL by collecting and analysing defined
measured data. Bushings were tested and run to failure at different ranges of
working conditions in a test bench. A wear out model is created based on the
time data obtained from the sensors and control installed in the test bench.
For the analysis, regression based models are used as a first approach.

Bushing temperature and oil sensor signal based alarms are set in order
to prevent seizure failure. This is done by limit and trending checking. A
physical model represented in Figure 7.61 and based on DIN 31652 has been
programmed in a simulator to characterise the theoretical behaviour of the
bushing when it is working in hydrodynamic ideal conditions. For some given
working conditions, the model calculates the expected equivalent friction,
temperature rising in the bushing as well as the lubrication through the oil
film thickness (Figure 7.62). This is done in two steps:

• Firstly, it is checked if the model describes the real behaviour of the
bushings during the tests;
• Secondly, the model is used to define a safety working condition where

bushing seizure should not occur. The main idea lies in detecting bushing
abnormal behaviour when temperature alarm triggers in the defined
safety working conditions.

Figure 7.61 Bushing seizure model.
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Figure 7.62 OilWear sensor.

7.3.3.4.2 Results
Some improvements were made to the test bench in order to improve the
automation of the tests and lubrication conditions. Further tests are carried out
in different working conditions and bushing types to complete the correlation
between the measurements and the model, characterising the theoretical safe
working conditions zone. Additionally, analysis is conducted to establish the
safe working condition area based on real data measured from the tests.

Results of this analysis are expected to be applied in the future to press
machines by installing temperature and oil sensors in critical bushings for
collecting, monitoring and analysing real time data. This is in line with the
company strategy of minimising these kinds of incidents.

7.3.3.5 Gears wear measurement
Another failure that happens in press hardening machinery is that, depending
on the force and working conditions of the press, the gear can be damaged.
Sometimes this damage is caused by wear with the passing of the years or
working hours, sometimes the problem can raise much earlier caused by bad
working conditions.

7.3.3.5.1 Solution approach
To predict that the gear is wearing out and must be replaced, it is possible to
analyze the oil condition. Taking into account that the more hours the press
works the more metal particles appears in the oil, it is possible to predict if
the gear is wearing by analysing the oil itself.

The selected sensor for acquiring and monitoring the particles present
in fluids is the OilWear S100. This sensor can classify particles larger than
20 µm according to their size and shape, to determine the root cause: fatigue,
sliding or cutting.
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The OilWear S100 is located in the hydraulic tube from where the oil
returns to the tank.

Data is captured every scan cycle. The different data values are stored on
a local server.

Once data is storage in the local server, data pre-processing is done in
local mode, taking into account requited parameters such as the maximum
and minimum values as KPIs. After data pre-processing, particles data that
FAGOR ARRASATE considers are critical for their press machine working
conditions will be analyse using specific algorithms for that.

Apart from acquiring oil particles characteristics data, some other data is
acquired, in order to know exactly the main reason of the gears wear:

• Die reference;
• Press machine Total Strokes;
• Die Total Strokes;
• Press machine Speed: Stroke Per Minute;
• Press machines maximum force;
• Stamping force.

7.3.3.5.2 Results
The OilWear S100 sensor is now installed in FAGOR ARRASATEs press
machine. During next months, data will be captured and preprocessed locally
tacking into account defined KPIs.

The next step will be to integrate the data sources within the cloud
platform.

7.3.3.6 Press forces measurement
The ram force is a fundamental parameter that affects the final quality of
the produced workpieces. Furthermore, its deviations could cause damage to
the press machine’s components. Besides, in presses with multiple cranks, an
unbalanced forces could appear due to an imbalance of the cranks or other
components, affecting both the quality of the produced workpieces and the
integrity of the press. The cutting shock effect is another undesired effect that
has to be taken into account during any process of metal forming. If a big
enough cutting shock is exerted, many components of the press can suffer
damages.

These force measurements usually are carried out by hardware sensors
located throughout the press structure and tooling, whose calibration loss are
caused by the strongest forces the press experiences during its life cycle.
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7.3.3.6.1 Solution approach
In order to overcome the limitations associated to the hardware sensors,
indirect measurements are proposed by means of model based soft sensors
that leverage the existing signals and the knowledge about the process that
the system performs.

The servo driven press machine is modelled as slider - connecting rod -
crank mechanism, considering also the gearbox between the connecting rod
shaft and the servomotor shaft. Along with the servo driven press machine
model signals are measured in order to use them as inputs for the model,
such as the servomotor current signals, voltage signals and rotor position
signal. A Prediction Error Method based soft sensor is used for estimating
the coefficients of a friction model that completes the model of the system.

As visible in Figure 7.63, the servo driven press machine model is formed
by three sub-models, each one generating a torque that interacts with the rest
of the system.

After estimating the coefficients of the friction model, the whole model is
utilised for estimating important coefficients that are:

• Press ram/slider force;
• Cutting shock effect;
• Unbalanced forces.

Model

Initially the system model mathematical representation is developed applying
Euler-Lagrange function considering all the mechanical elements of the
system. The shortened mathematical model is reported in Equation (7.5):

M (θ) θ̈ (t) +N (θ) +O (θ) = τe + τlb − τfric (7.5)

Figure 7.63 Servo driven press machine model diagram.
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WhereM (θ) , N (θ) andO(θ) represent the inertia and mass of the gearbox,
crank, connecting rod and the slider of the system. Respectively, τe is the
electric torque, τlb is the load balancer torque and τfric is the torque exerted
by the friction of the system. At this point, the Prediction Error Method
based soft sensor is applied for estimating the aforementioned friction model
coefficients, yielding a friction related torque that acts against the electric
torque. For this purpose, unladen tests (without strokes) are carried out at
different press speeds.

Once the model is fitted, the estimated angular position is plotted against
the measured one, tracing a path similar to the measured one, as shown in
Figure 7.64.

Estimation of the objectives
The estimation of the previously mentioned objectives is performed adding
another stroke related torque to the Equation (7.1), which yields the
Equation (7.6):

M (θ) θ̈ (t) +N (θ) +O (θ) = τe − τfric − τS (7.6)

where τS represents the torque generated by the slider stroke. This new
term collects the applied force during a cycle, and thus, many metal
forming processes are monitored through the measured signals, the model
(Figure 7.65), and a soft sensor.

In order to estimate the states (position and velocity of the slider, process
force) of the model, a step by step Bayesian soft sensor is used, which
can perform real time estimations of the system states. On a first stage,

Figure 7.64 Estimated and actual angular positions.
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Figure 7.65 Step by step Bayesian soft sensor estimation performance diagram.

all the system inputs are recorded in advance and are used in a computer
environment. The Bayesian soft sensor takes system inputs and measured
outputs and is able to estimate unmeasured system states as shown in
Figure 7.65.

The three estimation objectives of the use case are related to the slider
stroke force.

7.3.3.6.2 Results
Preliminary results of measured electric magnitudes of the servomotor
are discussed in this section. Some of those test results are displayed in
Figures 7.66 and 7.67 where the relation between electric magnitudes of the
servomotor and the applied ram force is shown.

Figure 7.66 Estimated electric torque for different tonnage tests.
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Figure 7.67 Calculated active power for different tonnage tests.

These tests reveal that the servomotor magnitudes (electric torque and
active power) change accordingly with the applied process force, feature that
is used for estimating the applied real force directly from measurement of the
servomotor magnitudes.

Regarding the cutting shock effect, Figure 7.68 shows the estimated
electric torque and its corresponding tonnage for two cutting shock tests. In
the test where the narrowest metal sheet is cut, the cutting process finishes
earlier comparing to the widest metal sheet cutting test and besides, the
generated cutting shock compensation electric torque is smaller than in the
other test. The image on the right side of Figure 7.68 depicts the applied
force and the cutting shock effect quantification which are of 5 and 21 tons
for the 300mm and 500mm wide metal sheets respectively.

Figure 7.69 displays the consumed active power by the PMSM. As in
Figure 7.68, the cutting process and the cutting shock effect compensation
shape the PMSM power consumption.

With respect to the unbalanced forces, tests have not revealed any
difference looking at the analysed electric magnitudes between the balanced
and unbalanced process. Figure 7.70 shows a similar electric torque for
the unbalanced and balanced processes. Estimated electric torques for
unbalanced and balanced processes are also unable to determine differences
between the two processes, as displayed in Figure 7.71.
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Figure 7.68 Estimated electric torque for 300mm and 500mm wide tough metal sheet
cutting process.

Figure 7.69 Calculated active power for 300mm and 500mm wide tough metal sheet cutting
process.
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Figure 7.70 Calculated active power of centred and off-centred tests.

Figure 7.71 Estimated electric torque for a centred and off-centred tests.
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As future work, the soft sensor approach will be employed once the final
test is done in order to measure indirectly (estimate) the applied ram force.

7.3.4 MANTIS Solutions for Clutch Brake

GOIZPER considers critical to increase machines and components reliability.
To meet this challenge GOIZPER decided to incorporate cutting-edge
technologies in their products as a means of enhancing product robustness and
functionality in order to facilitate proactive-predictive maintenance activities.

GOIZPER decided to investigate different ways of sending data of its
components to the Cloud. The main objective is to find the most robust
and reliable architecture, and for this reason, two different data fluxes were
developed in order to send the Clutch Brakes information to the cloud. One
of the architectures is coordinated and developed by MGEP and the second
architecture is coordinated by TEKNIKER. These two different approaches
(at edge/sensor, and at platform level) are explained in detail in the next
sections.

7.3.4.1 Maintenance cloud platform by MGEP
The platform presented in this section is concerned with analysing a clutch
brake system and its components in press machines to detect the most
important failure sources and be able to perform predictive maintenance
in those press machines. Analysis techniques and algorithms, to be used
on the assets data, were implemented in the platform with the aim to
support predictive maintenance of clutch-brake. These technologies are
(1) Root Cause Analysis powered by Attribute Oriented Induction Clustering
and (2) Remaining Useful Life powered by Time Series Forecasting. The
implementation of that platform was previously published in a conference
paper [Larrinaga et al., 2018].

7.3.4.1.1 Background
The overall objective sought by GOIZPER is to early detect internal
wear of a clutch-brake. To do that, the moving parts of the clutch-brake
were sensorized. By continuously monitoring the system conditions proper
operation of the clutch-brake can be ensured. Moreover, the most critical
operating variables are registered in the platform in order to analyze the
working process and prevent misuses. The data is uploaded enabling the
holistic analysis of the clutch-brake system, with the aim to determine/detect
the main causes of failure and the components’ remaining useful life.
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7.3.4.1.2 Solution approach
The architecture implementation agrees with the three-tier architecture
presented in [Hegedus, 2018] and in Chapter 3. There are three levels: Edge
tier, Platform tier and Enterprise tier. The Edge Tier is concerned with
the technological solution deployed on the sites where the Press Machines
(including the Clutch Brake component) are located. At this level, data
acquisition systems to extract the data from the different sensors and SCADA
systems connected to the machines are deployed. Figure 7.72 depicts the
elements of this tier. An Industrial PLC based on the B&R X20CP1382
module was connected to the sensors attached to the Clutch-Brake (including
the intelligent soft-sensors). The module collects all the measurements from
the sensors and runs local code to pre-process the signals and produce a set of
parameters that are able to characterize the overall status of the Clutch Brake.
The module stores these parameters in a local file to act as a Datalogger for
the cyber physical system. A second embedded computer (Edge Gateway)
is attached to the Datalogger, and it retrieves the parameter files and creates
IoT-A CEP Events [Internet of Things Architecture] that are sent to the cloud
platform as messages.

At platform level, data coming from the different sources is persisted
and different applications that allow analyzing of this data are available. The
specific modules for the Platform Tier are presented in Figure 7.73, and are:

• Edge Brokers: It maintains the connection between the edge devices
and edge tier, and it includes a data distributor. The distributor is a
message-oriented component to collect and redistribute the in- and
outbound messages between components. In this use case, this module
is a publish/subscribe system that receives the data from edge tier in
different queues and publish the message received to the modules in the

Figure 7.72 Edge Tier.
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Figure 7.73 Platform Tier.

platform that have subscribed to each queue. The technological solution
for the Edge Broker is RabbitMQ. RabbitMQ [RabbitMQ, 2018] is an
open source message broker that supports multiple messaging protocols
[Albano et al., 2015] such as Advanced Message Queuing Protocol
(AMQP) [Vinoski, 2006];
• Converters: Software components or modules to translate edge cloud

interface (IoTA CEP Events) into a database interface (MIMOSA API
Rest [MIMOSA Consortium, 2003]) or files system interface (HDFS
API). The converter is implemented using the translation capabilities of
an Enterprise Service Bus (ESB) named WSO2 [WSO, 2018];
• Data Storage systems store the information coming from Cyber

Physical Systems (CPS) and results obtained from data analysis
maintenance actions and algorithms. Two storage systems are employed:

• MIMOSA DB: This is a database compliant with the ISO-
13374 Standard (Condition Monitoring and Diagnostic of
Machines) [ISO, 2018]. One of the main objectives of the
MIMOSA CBM architecture is to standardize the information
flow between the various blocks, so that equipment from different
vendors could be interoperable. The MIMOSA database is
deployed in SQL Server and API REST is used to access data from
applications;



7.3 Maintenance in Press Forming Machinery 387

• Hadoop Distributed File System (HDFS): This is a distributed file
system designed to run on commodity hardware. Designed to be
deployed on low-cost hardware, HDFS is highly fault-tolerant and
provides high throughput access to application data, which makes
it suitable for applications that have large data sets;

• Batch Processing: data analysis and processor mechanisms to enable
the management of large volumes of data, fetched from storage
systems and process on demand. This is implemented over Apache
Spark [Apache, 2018]. The batch processor units implement the offline
analytics capabilities of the platform. These technologies are (1) RCA
powered by Attribute Oriented Induction Clustering and (2) RUL
powered by Time Series Forecasting;
• API or WS: To interact with the Enterprise Tier an API offering services

is provided. This component provides information and functionality (for
example RUL) to components external to the platform such as HMI,
applications (ERP) or even other platforms that lack certain maintenance
algorithms.

The enterprise level is concerned with the applications that integrate
information from one/several sites to enhance the global decision-making
process using monitoring through Human Machine Interfaces (HMI) and data
aggregation and analysis.

In relation to CBM-based PM the following aspects have been addressed
for this scenario:

Equipment Failure Root Cause Analysis: The RCA is the first and
necessary step to identify the main equipment failure causes. An AOI
algorithm is used as the principal RCA algorithm. AOI is considered
a hierarchical clustering algorithm, it is considered a rule-based concept
hierarchy algorithm, and it was first proposed by [Han et al., 1992] Jiawei Han
et al. as a method for knowledge discovery in databases. The representation of
the knowledge is structured in different generalization-levels of the concept
hierarchy with IF-THEN rules. The execution of the algorithm AOI follows
an iterative process in which each variable (also referred as attribute) is
generalized based on its own hierarchy-tree. This step is denoted as concept-
tree ascension [Cheung et al., 1994]. To ensure the correct functioning of the
algorithm, it is necessary to establish background knowledge, which specifies
attribute generalization levels.

Equipment Remaining Useful Life estimation: The main objective of
the RUL estimation process is to estimate the useful life of an asset before
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a catastrophic failure occurs. The RUL estimation process is performed as
a combination of AOI algorithm outcome and Auto Regressive Integrated
Moving Average (ARIMA) statistical time series forecasting models. A
common objective of Time Series Forecasting methods is to learn from
previous data in order to be able to make predictions of future behaviours.
In order to estimate the RUL, the first step is to evaluate a new variable
to represent the machine behaviour correction factor, denoted as Normality
Factor. The Normality Factor quantifies the extent of the damage of the
machine. By applying ARIMA time series forecasting models, the Normality
Factor evolution is modelled. As a final result, the Normality Factor model
allows to predict the wear of the Normality Factor, providing the machine
RUL in terms of clutch-brake cycles. Finally, clutch-brake cycles are
translated into days, by combining the number of cycles the clutch-brake
system does per day.

7.3.4.1.3 Results
Regarding the implementation of the reference architecture, a platform
that accommodates different industrial processes and assets data for CBM
analysis was built. The platform integrates an interoperable data model
for CBM. Additionally a data/protocol converter that enables translations
between most common data formats and protocols was developed.

Regarding data analysis, preliminary results performed as a proof of
concept show the capability of the proposal. For the experiment, several
features of the clutch-break machine have been used (trigger, angular
position, application pressure, line pressure and flywheel speed). Once the
knowledge-base has been created applying AOI and the most significant
cluster-appearance order for the working cycles was calculated, the anomaly
detection step is processed using the Normality Factor as threshold (value
of 0.70). The Normality Factor evolution signal shown in Figure 7.74, is the
result of applying ARIMA model over the training data utilized to generate
the knowledge-base. In this experiment, around two hundred and fifty ‘break’
working cycles have been predicted. As it can be observed, there are five
different work cycles cutting the established Normality Threshold; thus, it
can be inferred that five different anomalies were detected. The next step is
to analyze the characteristics of the anomalies, inspecting the reasons of their
occurrence. For example, if there is any cluster in the abnormal work cycle
that is not registered in the knowledge-base, it is recommendable to check
the features or the grips of features in which the new values have occurred in
order to establish the reason of the failure; if the order of the clusters inside



7.3 Maintenance in Press Forming Machinery 389

Figure 7.74 Evolution of the Normality Factor over work cycles.

the abnormal working cycle is significatively different respect to the ones
registered in the knowledge-base, it can be reasonable to check the evolution
of the values of the features in order to specify the reasons of the failure.

7.3.4.2 Maintenance cloud platform by Tekniker
As it is stated at the beginning of Section 7.3.4, the main objective of
Tekniker’s platform is the analysis of clutch-brake systems in order to
detect failures. The platform supports Smart-G, a cyber-physical system that
compiles critical process values and condition-related parameters, performs
pre-processing based on algorithms specifically designed for this purpose,
and offers a first level of monitoring and decision support directly back at the
edge tier.

In addition, this valuable information recorded locally can be sent to the
cloud platform where the user can access the entire historical information
related to the use of the component. Therefore, the objective of this platform
is to support the knowledge of GOIZPER and give predictive maintenance
capabilities using different algorithms integrated in the system.

7.3.4.2.1 Background
The main objective is to understand clutch-brake wear in order to give
services and advices to the customers. All the critical signals are acquired,
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stored and processed in a PLC-based device called “Smart-G”, and then sent
to the cloud platform, where they are stored and processed to predict failures
and give visual decision support capabilities. Therefore, information on the
condition of machine components and operating processes is recorded locally
on the Smart-G devices, and transmitted remotely to reduce unforeseen
downtime and increase equipment availability.

7.3.4.2.2 Solution approach
The platform is built using the Microsoft Azure cloud services, and is
represented in Figure 7.75.

The system is designed using a typical pattern in big data scenarios
known as “lambda architecture”, with uses three layers to solve the computing
problem: speed layer, batch layer and serving layer. The batch layer holds
an immutable, read-only master database, and it pre-computes a batch view
with indicators and aggregated data. The speed layer deals with recent data
only and executes quick algorithms (rules and machine learning algorithms)
to produce a speed view with alarms and predictions. The serving layer is
composed of the batch view and the speed view mentioned before.

Exploitation and visualization of data relies on the Microsoft Power
Business Intelligence capabilities to show aggregated information, indicators
and transient raw data of the monitored assets.

Application of big data techniques, combined with machine learning for
pattern identification, and complex event processing for the detection in real

Figure 7.75 Azure-based Maintenance Cloud Platform.
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time of the learned patterns, is the approach for reaching a high ratio of
availability and operational performance.

The Azure services used to build the platform are described below:

• Azure Event Hubs: It is a highly scalable publish-subscribe message
broker for event ingestion, with a partition-based approach to support
the ingestion of millions of events per second;
• Azure Stream Analytics: This is an event data processing service for

real-time analysis of streaming data. It uses a SQL-like language to
create rules, and can sent requests to the Azure Machine Learning
Service to execute algorithms in real time;
• Azure Machine Learning: It is a cloud service for the implementation

of predictive analytical solutions. It provides a big number of built-in
packages, and allows the customization of new ones;
• Azure HDInsight: This is a highly scalable solution used to prepare the

data in the batch layer. It allows the combination of data and statistical
equations providing many possibilities for data enrichment;
• Azure Blob Storage: It is a cloud service to store unstructured data as

blobs. A variety of data files can be stored, for example binary, text,
documents, multimedia files, etc.;
• Azure SQL Database: This is a relational database that is used to store

alarms and aggregated values.

Additionally, a business intelligence tool (Microsoft Power Business
Intelligence) is used for reporting and visualization of data. This tool
facilitates the representation of information in attractive panels and reports
that can be customized in a very flexible manner.

7.3.4.3 Friction material slippage
Two kind of slippages can arise during operation, clutch side slippages and
brake side slippages. Each of them are caused by different reasons. Clutch
side slippages cause a transmitted torque loss to the output shaft, which is
dissipated as heat. Brake side slippages also cause a transmitted torque loss
and in turn, a delay of the shaft’s braking time.

7.3.4.3.1 Solution approach
In the proposed solution, many factors have been considered in order to
identify slippages causes for each case. For the slippages that come up during
clutching, air leakages and clutch side friction material degradation have been
analysed. On the other hand, brake side slippages are produced due either to
brake springs degradation or brake side friction material degradation.
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Slippages can be detected directly from encoder velocity and acceleration
signals as shown in Figures 7.76 and 7.77.

7.3.4.3.2 Results
Figure 7.76 shows velocity and acceleration profiles when no slippage is
generated. As it is noticed, clutching and braking velocity and acceleration
curves are continuous.

In Figure 7.77, one can notice an interruption in the velocity and
acceleration rising curves generated during clutching. This interruption is
provoked by slippages that have emerged due to the different reasons
mentioned above.

Figure 7.76 Clutching and braking velocity and acceleration without slippage.

Figure 7.77 Clutching and braking velocity and acceleration with slippage at clutching.



7.3 Maintenance in Press Forming Machinery 393

7.3.4.4 Brake spring degradation
Brake springs degradation reduces braking torque, increasing braking time.
This effect may put the integrity of the produced work pieces at risk, as well
as operators’ integrity.

7.3.4.4.1 Solution approach
A soft sensor approach is developed for estimating the brake springs stiffness.
Several test were done with many brake spring combinations for simulating
degradation. The set-up is shown in Figure 7.78. The pressure sensor P1
measured the line pressure, the pressure sensor P2 measured clutch brake
input port pressure and the pressure sensor P3 measured the chamber
pressure.

The developed soft sensor is able to estimate several clutch brake states
and a parameter by measuring only the line pressure P1 and the clutch
brake input port pressure P2. The estimated states were piston displacement,
velocity and acceleration, and the inner chamber pressure evolution over time.
The estimated parameter was the brake springs stiffness.

7.3.4.4.2 Results
For each test the inner brake springs were changed and the soft sensor is
able to estimate the brake springs stiffness with an error less than 5%. The
estimation results are depicted in Figure 7.79.

In the case of the estimated stiffness, the estimation line converges quite
well with the actual value of the brake springs. The estimation of the chamber
pressure does not converge so well due to the leakages that are not yet taken
into account in the model.

Figure 7.78 Prototyping clutch brake set-up.
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Figure 7.79 Estimated vs actual inner chamber pressure and brake springs stiffness.

7.3.4.5 Friction material wear
During operation, clutch and brake sides’ friction material suffer from wear.
These issues could cause some problems such as delays at braking and
clutching and, at the same time, they could also cause the degradation of
other components.

7.3.4.5.1 Solution approach
The wear of the clutch side and brake side friction material is monitored by
means of a soft sensor that takes advantage of the already installed pressure
sensors signals. Some metrics are defined in order to relate the air mass flow
and the instantaneous pressure level with the wear of both friction materials.
As in all cases where soft sensors have been applied, this solution needs a
model of the analysed system.

Many tests have been carried out combining different wear levels for
friction material for both sides. Analysed magnitudes or metrics have revealed
a similar behaviour for an identical friction material wear in the same side,
either in clutch side or brake side. Figure 7.80 shows air pressure vs air
mass curves shapes for different friction material wear combinations. The
percentages that appear in the figure legend represent the wear level of both
sides, being left side percentage brake side wear and right side percentage
clutch side’s.

7.3.4.5.2 Results
Figure 7.81 shows a zoomed-in view of the brake and clutch related curve
sections and shows how the curves track the same path for an identical wear
level for both sides.
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Figure 7.80 Air pressure vs air mass representation.

Figure 7.81 Left side, brake friction material related curve section. Right side, clutch friction
material related curve section.

From those results, the soft sensor was able to estimate the wear level
of the friction material attached to the friction discs, establishing some
thresholds for different friction wear levels.

7.3.4.6 Piston chamber air leakage
Air leakages during a clutching operation imply an engaging force loss, which
in turn is associated to economic losses since more compressed air must be
provided to the clutch brake in order to compensate those leakages.
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7.3.4.6.1 Solution approach
The air leakages are detected and measured by the air mass flowmeter. The
mass flow of air reveals directly the air leakages during the press machine
operation while the clutch brake is clutched.

7.3.4.6.2 Results
Figure 7.82 depicts the evolution of the air mass flow during a single stroke
operation of the press machine. The portion surrounded in purple quantifies
the air leakage that the whole system has experimented.

7.4 Fault Detection for Metal Benders

Contributors: Rafael Rocha, Michele Albano, Luis Lino Ferreira,
Hugo Ferreira, Catarina Félix, Carlos Soares, Goreti Marreiros,
Diogo Martinho, Isabel Praça, Giovanni Di Orio, Pedro Maló,
Asif Mohammed, Rui Casais

The objective of this use case is to apply anomaly detection algorithms to
the data from the the CNC of metal benders and additional sensors in order
to detect failures. The idea is that the machine tool will have an expected

Figure 7.82 Air mass flow profile during a single stroke cycle.
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behaviour given a set of environmental and production parameters. If at any
point in time this behaviour deviates from the expected, then we can assume
that something is wrong. In such cases, it is necessary to flag these states
and warn both machine operator and maintenance personnel of this event.
More concretely an analytics module that processes the data generates alerts
or alarms according to the deviation detected from normal operation. These
alerts are sent to a monitoring system were they can be viewed and analysed
by the machine operators. This can save on downtime by both supporting the
diagnosis of the potential malfunction, collecting spare parts in advance, and
repairing the machine before the malfunction occurs [Ferreira et al., 2017].

7.4.1 Introduction to Press Braking

Press braking (brake forming) is the process of deforming a sheet of metal
along an axis by pressing it between a clamp (tool) (Figure 7.83), performed
by metal sheet bender machines, such as the one in Figure 7.84. A single sheet
metal may be subject to a sequence of bends resulting in complex metal parts.
Such operations can be used to produce a wide variety of products ranging
from electrical lighting posts to metal cabinets.

In the case at hand, brake forming can bend sheet-metal (thus the
common name of metal sheet benders) from 0.6 to 50 mm thick and lengths
from 150 mm to 8 m long. The sheet metal bender machine considered
in this section is a top of the line model and pertains to the Greenbender
family [Ferreira et al., 2017], manufactured and commercialized by ADIRA.
The machine (Figure 7.84) is able to exert a force up to 2200 kN using
2 electric motors of 7.5 kW each, and it is able to bend metal with high
precision while saving a considerable amount of energy in the process, as
per the EcoDesign (2005/32/CE) European directives.

Figure 7.83 Bending process.
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Figure 7.84 Sheet metal machine.

The angle and type of the bend are determined by the shape of the punch
and die and the depth with which a punch penetrates a die. The dies can
have “U”, “V” or channel shapes. A movable ram is attached to the beam
and is covered by a shroud. The punch is attached to the bottom of the ram
and the die to the top of bed (covered by the lower shroud). When the ram
descends on the table, a bending force is exerted on the sheet-metal between
the punch and the die. The bending force and bending speed must be carefully
controlled in order for the material being used to maintain their physical
characteristics and insure the required bending precision. Additionally, the
machine structure deforms due to the forces involved and those deformations
have to be compensated in order to guarantee the machine precision.

Although this may seem simple enough, these machines require very
accurate control to ensure the required bending precision (in the order of
tens of microns). This accuracy is critical when the bending axis is long. The
success of the operations depends on many variables including for example
the tensile strength and thickness of the work piece, the type of tools (punch
and die) used and the type of bend required.

To ensure the quality of the final product, the bending process comprises
of several sophisticated control methods that include:

• Calculating the deformation of the workpiece based on the metals
characteristics, tool geometry and the desired bend;
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• Compensating for spring back by measuring the deviations and repeating
the bending process;
• Compensating for frame deformation by measuring changes in the

machine tools structure and adapting the pressing accordingly;
• Compensating for deflections in the bed by changing the shape of the

bed during the pressing of the workpiece.

The machines used for this process consist of a hydraulic system that applies
pressure to sheet metal thereby deforming the workpiece to the required
specifications. The hydraulic and mechanical systems (pistons, valves, tubes,
pumps) are subject to high pressures and may fail. Mechanical wear and tear
also occur, which may result in damaged axis, shafts, bearings and tools
(punch and dies). The hydraulic systems depend on the correct function of
the electromechanical valves and motors. These elements are also subject to
electrical failure. Many supplies are consumed periodically, such as hydraulic
fluid, air filters and oil filters. These elements may also be subject to failure.

These machines have stringent safety requirements that also impose
certain restriction on its operation. In addition to this, the production
efficiency is also a very important factor in its operation. Moreover, since
these machines are used for very costly manufacturing processes, downtime
is extremely hurtful to the company that bought the machine. All these
requirements mean that the various components such as the hydraulic system,
tools (punch, die and bed) and back gauges, which are subject to extreme
pressure, must operate in the best of conditions. It is therefore important to
predict, detect and correct any failures that will either generate scrap, put an
operator’s life at risk, or cause downtime.

Next section describes the PM platform implemented to support this
use case, while Section 7.4.3 provides insights regarding the employed data
analysis techniques and their results.

7.4.2 Design & Implementation

Proactive maintenance strategies are implemented on the sheet metal bender
machine by means of a distributed platform compliant with the MANTIS
architecture described in chapter 3, and tailored to the work at hand. In
particular, the focus of the platform is on sensor data acquisition, data
transmission and storage, and forecasting and machine learning techniques.

The deployed platform is represented in Figure 7.85 and is described
in the rest of this subsection. In particular, the components are put into
relation with the three tiers the architecture is divided into (edge, platform,
and enterprise).
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Figure 7.85 Design of the Proactive Maintenance solution.

7.4.2.1 Data collected by the machine’s sensors
Data on the machine are collected by means of sensors that are part the
machine’s control systems or from sensors which were added specifically
for maintenance purposes. In fact, the machines under study are advanced
and heavily sensorized. The existing sensors can be grouped into three
different data sources: the Programmable Logic Controller (PLC), the
machine’s Computerized Numerical Controller (CNC) that controls the
machine, merging data from the PLC-connected sensors and actuators, and
the Safety PLC.

The sensors of the PLC are used internally to control its operation.
These range from buttons and pedals to advanced electric motor drives, with
positioning information. Although used primarily for control functions, these
sensors can also be used to determine anomalous events or states, to diagnose
problems and even to infer the root cause of problems.

The PLC works in close cooperation with the CNC controlling all
automation functionalities and, at the same time, it can send information from
its sensors to the CNC. The Safety PLC handles only safety-related functions
for the machine, such as preventing humans from being too close while the
machine is working, detecting critical conditions, etc. Data from these sensors
is mainly used to distinguish between component failures and safety-related
events.

Data are collected indirectly from the CNC of the Green Bender Press
Brake machine, which in turn collects information from the PLC control
system of the machine and from its Safety PLC. An application on the
CNC stores data regarding raised alarms, machine configuration and ERP-
related information (e.g.,: production related data such as type of metal and
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bend) on a Microsoft Access database. Note that the CNC is based on a
Windows machine. The same application stores data collected from existing
machine sensors (e.g.,: extensometers, pressure sensors, oil temperature and
oil quality), which is collected from shared memory and to a file in the
CNC filesystem. The information stored is then sent to the Edge Local
node using the OPC-UA protocol. The ideal solution would be to access the
shared memory directly by a single software module, but this solution was
a compromise in order to ensure the safety and certification of the machine
control system.

The application can be tailored and configured to different machines and
applications, but the current pilot collects data from 50 machine sensors,
with a periodicity of 20 ms, and from the MS Access database, which is
scanned every second. The amount of data generated and transmitted to
the cloud depends on the machine operation cycles. However, according to
the data collected so far, we can extrapolate that it averages 300 MB per
working day.

7.4.2.2 Wired nodes: The oil sensor
The application installed on the CNC also receives data directly from some
of the sensors that were installed for maintenance-specific purposes and
integrated with the PLC module. In particular, an oil sensor was the only
wired sensors installed explicitly for Proactive Maintenance operations.

Oil condition sensors have the capability to detect ferrous particles,
water, viscosity changes, etc., to detect lubricant related engine wear and
lubricant quality degradation, among other problems. The installed sensor
monitors the oil that lubricates the machine’s hydraulic circuits, both
in terms of its temperature and its quality, the latter being related to
presence of contaminations like water, particles, glycol and other impurities
in the oil.

The system that analyses the oil consists of two parts, the sensor unit
(Hydac Sensor AS1008), and the data acquisition and computation board.
The sensor reads temperature from –25 to 100◦C, and saturation from
0% to 100%. Both signals are reported using a 4–20 mA interface. The
data acquisition/computation module receives the signals, convert them, and
exports the data through an analogic voltage signal with a range from 0V to
10V to the machine’s CNC. The CNC digitalizes and sends the data through a
communication middleware to the cloud for storage and processing, the latter
being the comparison with custom thresholds.
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7.4.2.3 Wireless nodes: The accelerometer
Each machine is equipped with two wireless accelerometer sensors,
represented in Figure 7.86. The sensors monitor the blade that actually
performs the bending of the metal sheet. The sensors collect the data from
the own movement of the blade in the press, especially from the vibration
patterns that are caused by the hydraulics. In fact, given the fact that the
vibratory pattern can be associated to the condition of the machine’s bending
motors, the collected data can be used to perform PM of the machine.

The wireless protocol for the communication with the accelerometers
is Bluetooth Low Energy (BLE), which enables data collection while
maintaining energy consumption low. BLE is optimized for low power use
at low data rates, and was designed to operate from simple lithium coin cell
batteries.

The sensors are based on the Arduino 101 platform, which provide a
3-axis accelerometer with a maximum amplitude range of 8g. They are
powered by two 9V batteries, and the sensors are configured for a lower
measurement range (between 0 and 2g), aiming to attain a better accuracy.
The sensors are able to perform self-calibration, synchronization and security,
and the CurieBLE library is used to support communication between
the sensors and the Edge Gateway by using of the Generic Attribute
Profile (GATT). According to some preliminary experiments, the maximum
distance for this technology is 30 meters, which corresponds with the BLE
specifications.

7.4.2.4 Edge gateway
The Edge Gateway used for this deployment is located in the factory and
it isolates the latter from the outside world, at the same time providing
some functionalities at local level. From the security point of view, the Edge

Figure 7.86 Sensor component hardware
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gateway creates a DeMilitarized Zone (DMZ) in the sense that it is the only
module in the factory premises that has network access, and thus concentrates
all the security requirements on itself. Communication with the cloud is
mediated by the AMQP protocol, and in particular through a RabbitMQ bus.

On the other hand, communication with the wireless sensors in a factory
is done through BLE protocol, and the rest of the systems (CNCs of the
machines and the wired sensors) is done by means of the OPC-UA protocols,
which allows for a number of capabilities, including node discovery, data
caching, and some degree of security.

Node discovery is used to enable the fast configuration of new
machines in a factory. The CNC and the wireless sensors act as OPC-
UA server and are discoverable by the Edge Gateway, which then provides
the servers with mechanisms to support communication and management
of the data acquired across multiple heterogeneous and distributed data
sources. This is accomplished by providing an abstraction layer that
detaches the application development from the intricacies of the lower
level details. It acts as a virtualization platform and as data broker that
connects the Machine logical block to the Cloud Middleware, capable of
extracting, collecting, distributing/sharing, pre-processing, compressing, and
semantically enhancing the data produced in an efficient manner. Therefore,
the one of the fundamental goals of the Edge Gateway is – from one side is to
support the data integration of multiple data sources and – from the other side
is the provisioning of data to the cloud where more complex and resource
consuming data processing takes place.

Finally, the Edge Gateway of this pilot comprises a database to cache
collected data, and a local HMI service responsible for visualizing all the
necessary information generated within the factory, such as list of machines
available and their conditions, and data readouts.

7.4.2.5 Communication in the cloud
A few components on the cloud (Messaging Bus, Management Panel, Edge
Broker and Database) manage the data, by storing and transporting them
between the Edge Gateways of the factories and the Data Analysis and
HMI modules. The communication mechanisms are implemented on top of a
message-oriented bus and allow the interaction of the factories, mediated by
their Edge Gateway, with the rest of the Platform tier, and the Enterprise tier.
Communication is performed on top of a RabbitMQ bus, which is the most
popular implementation for the AMQP protocol.
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The basic elements of the message distribution system are the exchange
and the queue. The exchange is the recipient of a message from a message
producer, and its duty is to deliver the message to one or more queues,
the latter being buffers from which the message consumers will pull the
messages. An exchange can be connected to multiple queues, and the
exchange can be configured to treat messages in different ways, such as
relaying the messages to the queues in a round-robin fashion or broadcasting
the messages to all the queues. Finally, the decision on which queue(s)
receives each message from the exchange, is done by means of a routing key,
which is a meta-datum assigned to each message. The messaging system can
also implement Remote Procedure Calls (RPC) mechanisms, see for example
Figure 7.87.

In the pilot at hand, Edge Gateways send data to the RabbitMQ
server, where the routing process is used to deliver specific messages to
the other components, and in particular the Edge Broker and the Data
Analysis components. The RabbitMQ Bus is configured using a RabbitMQ
Management panel (which is part of the Enterprise tier as far as the
MANTIS reference architecture is concerned) and that obeys the REST
architectural pattern. The component respects the reactive programming
properties, namely, Responsive, Resilient, Elastic, and Message Driven. For
example, the RabbitMQ platform is fault tolerant since, if a message delivery
fails, the queue buffers the messages and retransmits them when the message
consumer is back online. Moreover, if the broker malfunctions, messages in
the queues are not lost since they are saved in the persistent memory of the
broker.

Figure 7.87 Consumer Remote procedure call (RPC).
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The Edge Broker is the main peer that receives messages from several
Edge Gateway devices through the queues and saves the data to a database
module, which is structured according to the MIMOSA standard, which
is described in Chapter 3. Current implementation of the DB is based on
Microsoft IIS, even though an alternative design based on No-SQL Mongo is
available. The RabbitMQ Bus provides queues for generic RPC connectors
for handling database queries, to expose stored data to other components.
The HMI is allowed to make queries trough RPC patterns to the database.
Anyway, when data from a device is received in the middleware, the Data
System Module component and HMI component will receive asynchronous
messages.

7.4.2.6 Components for data analysis
The Data Analysis techniques and results for this pilot are described in next
subsection, while this subsection is focused on the implemented components
that support the techniques.

The main component for Data Analysis is the Intelligent Maintenance
Decision Support System, which is used to manage the models (model
generation, selection, training and testing), for example on reception of
training data. The Intelligent Maintenance Decision Support System is
composed of a Knowledge Base that uses diagnosis and prediction models
and the data sent by sensors. On top of this Knowledge Base there will
be a Rule based Reasoning Engine which includes all the rules that are
necessary to deduce new knowledge that helps the maintenance crew to
diagnose failures.

In addition to the data and algorithms, expert knowledge has been
encoded as a set of rules that are used to detect and flag possible failures.
Each rule indicates what sensor and CNC signals need to be acquired, how
they are segmented, the type of analysis to be executed and what failure is
associated with these signals.

As an example, let us consider when the brake press is working in
automatic mode, terminates its bend cycle and has parked the ram on the
top position waiting for the next task. If no failure exists then the ram must
remain still in the same position where it stopped. Because the hydraulic
system is constantly losing pressure, the CNC compensates for any deviation.
Normally, such deviations are minor (imperceptible to the naked eye) and
occur at very low rates. However, if a hydraulic pump fails or a hydraulics
tube ruptures, leaks will cause large deviations as the CNC compensates for
this.
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In order to detect such problem, the positions of the pistons are recorded
when the control signal indicates that the ram is at top dead center
(segmentation). Statistical tests are used to check that the deviation is within
a specific tolerance threshold. This threshold is determined via the machine
learning algorithm (stream based) and is tweaked in order to reduce the false
positive and negative detection rates.

7.4.2.7 Human machine interface
This module is part of the Enterprise tier, and it provides a Human interface
for the proactive maintenance system. The HMI follows a web-oriented
design and therefore can be accessed from anywhere, at any time and through
all sort of electronic devices with the only requirement being the use of
the Internet to do so. This allows both remote (administrative) and on-site
operations such as analyzing the machine’s state or view its past performance.
It has two main modes, one for data visualization and another for data
management.

In the visualization mode, it is possible to view historical and live data,
which is collected from specific machine sensors (e.g., machine status, speed,
positioning and pedals state). It is also possible to show the results generated
by the data analysis module, more specifically the alarms for unusual sensor
data and the warnings regarding impending failures. It is possible to match
the warnings from the Data Analysis block with historical data collected
from the sensors. All data retrieved from the machine and the Data Analysis
logical block can be inspected through graphs and tables, provided by the
HMI module (see Figure 7.88). Also, each user can be promptly notified of
any event on the machine through a text notification.

The HMI also displays the results of data aggregation and calculation
of statistics. Several descriptive statistics provide useful (albeit simple)
indicators that support the decisions making by those responsible for
maintenance and design. These indicators are therefore available to the Data
Analysts. The results of the machine learning algorithms are displayed when
they generate alerts and alarms, but they can also be visualized as historical
data.

The Management mode allows for all the administrative operations,
like users and roles management, as well as factories and machines setup.
Role management allows to dynamically assign specific permissions to
each type of user, which can be Operator, Data Analyst, and Maintenance
Manager.
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Figure 7.88 Checking the “Bend” variable on a GreenBender machine.

Operator can view historical and live data only. The Data Analyst role
allows inspecting live streamed data collected from the machine, such as
oil-flow and temperature sensors. The data is displayed in near real-time
(Figure 7.89). The Data Analyst role also allows the visualization of historical
data by selecting the data variables to be shown as well as the desired time-
frame. The Maintenance Manager role allows to view some statistics, e.g., the
type of components substituted and the frequency rate of the replacements.
This should be specified for each monitored parameter according to the
current number of cycles performed and to the maintenance actions of the
machine tools. The user can also choose to display the results of the Data
Analysis logical block, in the form of alarms, alerts and reports, which
are displayed highlighting the relevant information for the maintenance
manager and allowing the consultation of details on their provenance. These
notifications include alarms that indicate unusual sensor data (for example
based on simple statistics) and, unexpected behavior (for example, using
outlier detection algorithms). These notifications only allow the detection of
failures (corrective maintenance), but in the future may also be used to plan
preventive maintenance tasks.

Security is implemented by means of SSL/TLS, for both the communi-
cation with the Cloud Middleware and the access to the HMI webpage
(HTTPS). It is also important to note that the web-based HMI is running
in the same node as Cloud Middleware, in order to reduce system complexity
and to be able to access the same Database.
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Figure 7.89 Example data from the controller.

7.4.3 Data Analysis

The analysis on data collected in the pilot is limited to a set of signals that can
be divided into 3 groups: a) movements of the mechanical parts via hydraulic
or electric power, b) temperature of the hydraulic fluid and c) extensometers
that measure the deformation of the press brake machine structure. Additional
signals are also available such as error codes and from the machine’s soft
numerical controller and alarms generated by the safety system. However
these are not processed statistically and are only forwarded as alerts to a
monitoring application.

The machine’s designers and maintenance engineers determine the
signals that need to be analysed. They are compiled as a set of rules that
indicate not only the signals that must be monitored, but also when these
signals should be collected and analysed and how the testing should be
performed.

The pilot applies anomaly detection algorithms to the data from the
machine tools controllers and sensors in order to detect failures. The idea
is that the machine tool will have an expected behaviour given a set
of environmental and production parameters. If at any point in time this
behaviour deviates from the expected, then we can assume that something
is wrong. In such cases, it is necessary to flag these states and warn both
machine operator and maintenance personnel of this event. More concretely
an analytics module that processes the data generates alerts or alarms
according to the deviation detected from normal operation. These alerts
are sent to a monitoring system were they can be viewed and analysed by
the machine operators. Anomaly detection done in this work uses simple
statistical testing (See for example Figure 7.89). The control signals are
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those signals generated by the machine controller that are used to activate
components and/or inform of the various process phases. Examples include:
the Top Dead Centre signal that is active when the press ram is parked at
the top position, the pedal signals (indicating if the operator pressed the up
or down pedals), the axis in position signal (indicates when the backgauge
is in position), the bending signal (that indicates if the ram is deforming the
workpiece in manual or automatic mode), the speed change points (when the
ram slows down for a press), the pinch points (indicating the start and end of
the press phase).

Domain knowledge was elicited from brake press machine experts, which
was then encoded as a set of rules that allow for the detection of possible
failures. These rules indicate how to use the control signals to sample the
process signals, thereby sampling data only during valid periods of time. It
also substantially reduces the amount of data that is processed and analysed
by the analytics module (for example, certain signals need not be collected
when the machine is in standby or parked).

The machine tool manufacturer has provided a list of components that
may be the cause of the failure for a given rule. For example, any deviations
in the ram’s position when parked may be indicative of a failure in hydraulic
system. This list includes leaking tubes or oil sump (due to ruptures),
malfunctioning valves, broken oil pumps and clogged tubes or pumps. Note
that this information does not indicate the root cause of the failure. For
example, a ruptured tube may be due to the hydraulic fluid being below
the required temperature or a broken pump may have either electrical or
mechanical malfunctions in other subcomponents. Currently this information
is not used but could conceivably be combined with the alerts to help in
diagnosing problems.

7.4.3.1 Data pre-processing
Data related to the machine’s behaviour are received from the machine in
chunks and are sent to the Data Analytics module, which has two functions.
The first is the off-line learning and tweaking of the statistical anomaly
detection models and the second is the on-line use of the models to detect
failures and generate alerts. The combination of the alerts generated by the
analytics module and the signal data collected from the machine tool facilitate
the diagnosis of failures by machine operators and maintenance personnel
(data selection and visualization).

An initial pre-processing phase of data processing will first segment and
collect only those signals that, according to the rules we have previously



410 Success Stories on Real Pilots

described, are required. For example, only the movement data is collected for
the “parking rule” when the Top Dead Centre signal is on or we only analyse
the ram speeds and synchronization when the pedal down control signal is on.

A second pre-processing phase will transform data in order to be
able to either learn the statistics or use the statistical tests to check for
anomalies. These transformations depend on the type of test to perform,
which is determined by the rule. For example, this can involve calculating
the difference between the two signals of piston distances when testing for
synchronization between those pistons.

A third transformation of the signals is the calculation of the temporal
difference of the piston displacement signals. This is used in the rules that
use speed as a basis for comparison and checking. Note that usually such
difference introduces significant noise into the signal and this may require
additional filtering (smoothing).

From the experiments, it appears that the signals from the numeric
controller and the oil quality sensor are clean. Even though the accelerometer
and extensometers data are relatively noisy, no additional sophisticated
pre-processing was used because the related failures could not be evaluated.

7.4.3.2 Failure detection
Statistical hypothesis testing allows one to compare two processes by
comparing the distributions generated by the random variables that describe
those processes [Stuart et al., 1999]. If the distributions are not equivalent,
then we assume a failure occurred. A p-value is used as a threshold in
order to detect any deviations from the expected process with the goal of
reducing the number of false positives and negatives. In the case of the formal
statistical tests, if the p-value does not allow us to reject the null hypothesis
we cannot infer that the machine has no failure (type 2 error). However, here
we assume that this is true, and alerts are only sent when the null hypothesis
is successfully rejected. A distribution of a given process may be described
by one or more random variables. Here we limited our analysis to the use of
univariate statistics only using both parametric and non-parametric models.

7.4.3.2.1 Parametric models
In the case of the parametric models two basic tests were performed:
univariate signal that should be close to a constant (within an unknown
threshold), or two signals must not diverge from each other (no more than
an unknown threshold). In both cases we can use the signals that indicate
velocity, distance, heat and acceleration. In either case, if we can perform a
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parametric Gaussian test on the mean (using a t-Test) or deviation (directly
compare deviations, F-test, Bonett’s test and Levene’s test).

In addition to the tests described above, additional naı̈ve statistical
tests were used. In both cases an online Gaussian model is obtained via
the calculation of a mean and variance. These means and variances are
then directly compared to the continually sampled signals from a working
machine. If a significant divergence is found, alerts are generated. Due to the
high false positive and false negative rates (type 1 and type 2 respectively),
an additional multiplicative threshold (in respect to one standard deviation) is
used when comparing deviations. The initial values of this threshold are set
automatically by selecting the lowest possible threshold that reduces type 1
errors.

7.4.3.2.2 Non-parametric models
As with the case of parametric statistic, the process of defining the hypothesis,
sampling data and establishing a significance level as a threshold were the
same. However, not all of the non-parametric methods provide a p-value for
a significance level comparison. Three types of statistical tests were used in
our work: the Kolmogorov-Smirnov test (K-S test), the Mann-Whitney U test
and the use of a kernel density estimator (KDE). In the case of the U statistic,
which is approximated by a normal distribution, a p-value is available to
establish a threshold for accepting or rejecting the null hypothesis.

In the case of the KDE, an online algorithm was used that generates
a dynamic number of (Guassian) kernels. The kernels and respective
parameters of two different distributions cannot be directly compared.
Experimentation shows that the estimated densities may be visually very
similar, but the kernels themselves differ significantly. However, because
we can use the kernel to sample the underlying estimated distribution we
used the parametric statistical tests to compare the samples (both for the
parametric cases and non-parametric cases using the Kolmogorov-Smirnov
test and Mann-Whitney U test respectively). Here we could have also opted
for the use of alternative algorithms such as the earth movers distance but
did not do so because the naı̈ve parametric tests seemed to be working well
[Levina and Bickel, 2001] (see Section 7.4.3.2.1).

7.4.3.2.3 Evaluation and interpretation
For anomaly detection the positive labels are indicative of failures. Expected
failure rates (as reported by the machine tool manufacturer) are very low. We
therefore need to deal with data-sets that will be highly skewed (very few
positive labels). This brings with it two challenges.
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The first is that false negatives are more important than the false positives.
This is due to the fact that if we incorrectly predict that the machine is failing
(false positive), the alert/alarm message will be sent and the operator, which
will verify that the machine is not in fact failing. On the other hand, if we in-
correctly predict the machine is not failing (false negative) it could have seri-
ous consequences, since the operator will not receive any warning message.

The second challenge is related to the selection of the appropriate metrics
used in the evaluation of the model’s performance. Accuracy is not a viable
metric because a biased prediction of no failure will always result in high
accuracy values. We considered the following metrics: the AUC-ROC (Area
under the Curve for the ROC Curve) and a set of relations involving a
combination of true positive (TP), true negative (TN) and false positive (FP)
and false negative (FN) counts:

Precision, P rec =
TP

TP + FP
(7.7)

Recall, Rec =
TP

TP + FN
(7.8)

Accuracy, Acc =
TP + TN

TP + FP + FN + TN
(7.9)

F0.5, F1 and F2 measures (Fβ for β ∈ {0.5, 1, 2}), Fβ =
(1+β2)×(Prec×Rec)

(β2×Prec+Rec)

Mathews correlation coefficient,

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(7.10)

Exploratory work was done using precision, accuracy and the MCC
metrics. Final comparisons were done using MMC. Future work will consider
the metric Fβ and how to establish an appropriate value of β.

Due to lack of data, initial exploratory work used artificial (synthetic)
data. This data was generated using normal (Gaussian), Bimodal (composed
of two joined normal distributions), Pareto and Weibull distributions because
we had no way of checking the signals distributions. We assumed a
failure rate of 5%. Each of these distributions was tested for differences
in the mean and/or standard deviation using both the parametric and non-
parametric statistics referred to above (T-test, Kolmogorov-Smirnov Test,
Mann-Whitney U test). We also generated non-parametric statistical models
of the synthetic data using the Kernel Density Estimation (KDE). We then
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used this model to generate a reference distribution that was used in the
statistical test. In addition to this we also modelled the data as a Gaussian
distribution and naively compared the means and deviations to determine if
the processes are different.

We found that statistical methods tend to be very brittle and usually
result in many false positives. Increasing the threshold would result in an
unreasonably high rate of false positives. The reason is that the formal
statistical tests make important assumptions about the distributions. For
example, the t-Test is only valid if the distributions have the same standard
deviation. The best results were obtained using the Mann-Whitney U test and
the naı̈ve Gaussian tests.

In the next phase of the work we opted to use the naı̈ve Gaussian tests
because it allowed for the easy generation and update of the model. The data
we got from the machine seems to be Gaussian (we say seems to be because
at the time of writing, data with failures had not been obtained and cannot
therefore confirm this). During this period we collected data from a single
machine tool executing a preprogramed sequence of operations under optimal
conditions for several days.

The pre-processing steps described above are applied to this data (each
segment collected for a given rule) and the mean and standard deviation are
calculated using a robust algorithm. The Gaussian model is initially generated
using the first 10% of the data stream. During the calibration we use the same
10% of the data set to establish the threshold so that no false positives are
detected. The threshold indicates by how much a mean or standard deviation
must differ from the base models’ mean or standard in order to flag a failure.
This is not an appropriate way of setting this threshold, but because no failure
data exists, using a ROC curve to establish a good compromise between false
positives and negatives is not possible. We then tested the failure detection
models of each rule calculating the Gaussian parameters of the segmented
data and comparing those parameters to the base model. We expected a false
positive rate to be close to 0 but got the results in Table 7.2.

As referred above, a multiplicative factor can be tweaked to increase or
decrease the false positives rates, but there is no way to measure the false
negatives and hence use the MCC metric (Equation (7.3)). However, these
test serve as an important sanity check and allow us to detect and correct
several issues.

The first issue is that there is a lag between the control and measured
signals (due to sampling delays and (mostly) due to mechanical inertia). This
means that, for example, when a control signal indicated the start or stop
of the ram, the corresponding sensor reading of the ram displacement does
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Table 7.2 True negatives (OK) and false positives (ALERT, ALARM) detected
rule trained OK ALERT ALARM

1 112 1004 0 7
2 83 749 0 7
3 112 1011 0 0
4 146 1310 0 5
5 187 1631 0 152
6 187 1631 0 52
7 112 1010 0 0
8 90 813 0 0
9 120 1027 53 0

101 152 1368 0 1
102 95 855 0 3
11 117 0 0 1058
12 8109 8109 0 0
13 14938 74690 0 0
14 95 734 0 124
15 184 1665 0 0

not show up immediately. This also means that the control signals are not
perfectly aligned with the ram movement (for example ram movement occurs
after a stop signal is sent). To solve this, in certain rules, only the final signal
samples are used to generate and compare the models.

Another issue is that oil temperature varies widely during the operation
of the machine. This depends not only on the load, but also on the rate of the
ram movement and the environmental temperature. In addition to this, several
brake press machines have a heating element to warm up the oil to acceptable
operational levels. The only way to truly solve this is to increase the sampling
population to several machine tools operating in very diverse conditions.
More important however is the fact that the machines’ oil temperature will
initially rise significantly compared to its initial operation. This means that
we cannot limit our sampling of the oil temperature (or any other signal) to
the start of the data stream when generating the models.

7.4.4 Conclusions

The pilot described in this section is used to experiment with building a
PM platform able to collect data in an effective and efficient manner from
a metal sheet bender machine, and with machine learning techniques applied
to collected data to find misbehaviors.

The implemented platform is used to collect data from a single machine
in a factory, and transport data to a cloud for processing. It is straightforward
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to align all of the pre-existing and new components with concepts from the
MANTIS reference architecture, and the design of the platform is used to
validate the solution described in Chapter 3. The platform uses different
protocols in the different tiers of the platform, and in particular OPC-UA
in the Edge tier, AMQP between the Edge Gateway and the Edge Broker and
between the components in the Platform tier, and HTTPS for the components
in the Enterprise tier since these latter components are web-based.

A naı̈ve Gaussian model is used to identify failures in a brake
press machine using signal readings of position, speed, temperature, and
acceleration. The type of failures and the respective signal analysis is selected
and encoded by domain experts. Due to a lack of failure data (positive labels)
it is not possible to evaluate the effectiveness of the models using standard
metrics such as the F score and MCC (Equation (7.3)). On the other hand,
it is possible to partially validate the solution based on the measure of false
positives. The results seems to indicate that for this specific case, the naı̈ve
Gaussian model may be a viable solution. We are able to determine how
to implement and test the experts’ checks by applying a simple set of pre-
processing steps and using Gaussian means and standard deviations. More
importantly, it enabled us to identify and resolve some issues regarding the
sampling and use of the signals (delayed signals due to inertia, time series
with very high variability of the oil temperature).

7.5 Off-road and Special Purpose Vehicles

Contributors: Ansgar Bergmann

Off-road and special purpose vehicles include lorries (trucks), buses,
agricultural machinery, construction machinery, and forklift trucks. These
types of vehicles share many common characteristics, and offer the possibility
of the development of related technical solutions and technologies under
technically similar challenges. In addition to the property as an investment
and a working machine in production and value-added processes, there are
facts like high complexity, low-volume, high variety and high quality and
reliability requirements over a long lifetime.

7.5.1 Introduction to the Use Case on Vehicles

STILL supplies customized internal logistics solutions and implements
the intelligent management of material handling equipment, software and
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services worldwide. With over 7000 employees, four production facilities,
14 branches in Germany and 20 international subsidiaries as well as a
global dealer network, STILL is a successful international player. Today and
in the future, STILL fulfils the requirements of small, medium-sized and
large companies with highest quality, reliability and innovative technology.
STILL’s forklift trucks are operating in a variety of areas and conditions
with often totally different application profiles, which differ not only in the
temporal use (one to multi shift) as also in the environmental conditions
(from easy hall operation up to use in the heavy industry or fishing industry).
This results in high demands concerning ensuring the availability of vehicles,
recognition of special types of damage and an optimized maintenance
scenario, which fits to the special needs of this types of usage and thereby
minimizes potential and also safety-critical damages resulting from this.

STILL currently collects its data only for internal processes and customer
applications. A key problem lies in the mobility of the machines, which
does not allow large amounts of data to be transferred on a wireless way
without high costs. In addition, the systems are operated in a wide variety of
environmental conditions. Within this project, the aim is to determine whether
existing data collection mechanisms are already sufficient for the desired
objectives or whether new solutions have to be chosen, to be an enabler for
new service solutions and other maintenance based products. Basing on these
fundamental analyses, options for business actions can be derived.

Smart services (see Figure 7.90) are interesting for a company as they:

• Enable higher added value (optimization of service in combination with
intelligent products) and better service quality, e.g., through shorter
reaction and repair times;
• Increase user-friendliness;
• Open up new markets for services and data-driven business models;
• Enable a drastically increased efficiency of service-based operating

models;
• Result in higher machine availability;
• Guarantee a more detailed planning of machine operation and downtime

times;
• Improve component design through monitoring.

7.5.2 Scope and Logic

Currently, STILL has established systems to support all standard issues of
maintenance, where actions and processes are mainly based on existing



7.5 Off-road and Special Purpose Vehicles 417

Figure 7.90 Smart service landscape as a possible result of the Mantis basis work.

technical and historical know-how and supplier specifications. There is no
off-the-shelf solution for such brand specific processes on the market, all the
tools which are used to day have been custom-made for the company. This
is also due to the fact that this is property and essential technical expertise
of the company, so there is a need to protect this intellectual property. But
because of the increasing demands of the market and the increasing price
pressure, processes have to be shortened and optimized. In addition, the
complexity and variability of forklift trucks is increasing, so solutions have
to be implemented to support the service technician in his work. In order to
ensure the next steps in the service evolution, clear statements in the process
chain must make fault detection clearer. First time fix is one of the most
important goals of the future. By analyzing the internal system values of
machine components and all other existing databases related to the service
process (master data, repair databases, customer information) a fundamental
base for this steps will be generated. For this reason, both the technical know-
how from the examination of defective parts and the big data analysis will be
used to identify specific patterns in the application and the environmental
conditions that lead to breakdowns or high service costs. STILL GmbH is
focusing on two main topics - Wear and Root cause analysis. Both topics
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are too extensive, that a global solution found in one research project, so the
expectation lies in creating first demonstration cases on this topics, which are
to be refined over a longer observation period.

So concerning wear, STILL is finally focusing now on the subject of tires,
because there are measurable conditions. All other relevant topics of wear
of filters, mechanical and electronic parts have been discussed in the first
phase of this project, but the necessary measures go beyond the possibilities
of MANTIS. The study focuses in particular on the relationship between
usages of the forklift by the driver and wear, since this knowledge can also
be used in other business models (e.g., pay per use). Due to the lack of
other environmental information like temperature, humidity and quality of
the ground (this information is not recorded by the truck automatically) which
are also important on wear, their influence has to be estimated.

In the topic of RCA, STILL uses the existing error messages of the forklift
trucks with regard to the cumulated service reports and internal knowledge.
At present, most error messages have no clear reference to the existing error
screens in the field, since they are created as developer knowledge under
laboratory conditions. Influencing conditions such as the environment or
faulty interaction with other damaged components can be difficult to simulate
in the laboratory. Under real conditions, however, the causal chains can differ
considerably, so that errors can have other causes or effects. A broken wire
can cause the display of a device defect, although the control unit is fully
functional. The aim is therefore to achieve useful results through pattern
finding and cooperative decision-making. The project will initially focus on
some electronic errors to validate these results. However, these analyses are
made more difficult by the fact that the error reports are freely formulated and
do not show any clarity either.

The illustrated example (Figure 7.91) shows the complete range of
components required for a powerful future concept in the field. Most of these
modules are only listed for the purpose of being complete, but will not be
considered in the following context.

7.5.3 Data Platform and Sensors

As mentioned above, most industrial companies, as well as STILL, tend
to have a grown data infrastructure. For these reasons, data are neither
harmonized nor centralized. The data used can therefore be based on
platforms whose technologies are up to 10 years apart. The demands on the
merge are enormous, especially since many data have not been checked for
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their electronic processing capability in the past. It must therefore be checked
whether it is meaningful and effective to integrate these data via interface, or
whether one prefers to collect the data in a new and future-proof way. This is
also due to the fact that 80% of the time spent on data analysis flows into data
preparation. The following graphic (Figure 7.92) shows the necessary data
sources for the following analytic steps.

Since the data landscape of STILL GmbH cannot be completely
replicated for MANTIS, a demonstration solution on MS Azure was chosen
(see Figure 7.93). The main reasons for this decision is the great flexibility
of the step and the simple scalability. All Elements can be selected without
having a negative impact on normal business processes. In the initial phase,
a small number of internal forklifts (up to 5) are connected to this system.
The advantage of this approach lies in the traceability of the use of these
forklifts. The results can thus be validated directly. Once usable results are
achieved, the integration of forklifts can also be extended to rental forklifts,
for example.

The presented architecture serves as a basis for the validation and further
development of the resulting knowledge from the project. As data sources, the
architecture includes vehicle data as well as data from company databases and
from results of the interaction with the service technician. It is deliberately
designed in such a way that individual blocks can be extended or replaced as
required. Communication with the forklift trucks is via Microsoft’s IoT Hub1.
The industrial protocol MQTT is used for data transmission. The incoming
data can be pre-processed via various stream analytics blocks and thus either
reformatted or already evaluated in parts for further steps. The incoming
data is stored in the data lake for the next analysis steps. This enables the
possibility of offline processing. Modified analysis methods can then be
applied to vehicle data several times and the results can be compared directly
with each other. This part is mainly used for RUL. For RCA additional the
event hub is used, which can convert online analysis results directly into an
action. This will be used for pattern recognition. To make the results available
for the service technician in a special smartphone app, STILL uses the API
app from Azure. Company data from the SAP system is coupled in via the
Azure data factory element.

As mentioned in the previous paragraphs, forklift truck data in particular
are used for the analysis. The forklift truck itself has a large number

1An IoT Hub is a site focused on the connectivity between software, the cloud and the
devices used in everyday business operations.
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of sensors that are used to control its movements and processes to the
operator. These sensors are primarily intended for internal control operations,
so their measurement data are not transferred to the outside world for
further processing as a standard. Therefore, there is a need for an additional
external sensor that records on one hand all relevant external measurement
data autonomously. So this sensor should provide the following external
information to draw a precise picture of the environment conditions:

• Acceleration in x, y and z direction;
• Ambient temperature;
• Humidity;
• Pollution degree.

On the other hand he should also have access to internal control values,
with the aim to draw a precise picture of the detailed usage profile and transfer
this data to the Azure cloud.

This sensor is shown in Figure 7.94 and it was built prototypically, but
due to the complex mechanical interfaces, e.g., for dirt detection, the sensor
could not be implemented in this project for a real validation on the forklift
truck. Nevertheless, the functional principle is promising and will be used in
further developments. Without this sensor, the environmental data are initially
determined via questionnaires and weather information from the internet.
The vehicle information is provided by so-called soft sensors. Soft sensors
are software solutions that convert existing system variables into algorithmic
data.

First, all available and relevant data for the creation of possible soft
sensors were recorded via data logging and visualized for the forklift. For

Figure 7.94 Raspberry Pi based sensor based.
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logging, powerful multi-channel industrial data loggers are used, which
record the data traffic on the can bus in real time (see Figure 7.95). It
is important to ensure that the process does not interfere, as the vehicles
have a high risk potential during operation and are subject to the Machinery
Directive. Especially since most measurements have to be carried out on real
customers in order to obtain data sets that are as variable as possible. These
several gigabytes of data were then processed via Matlab2 to determine the
most promising constellation.

7.5.4 Data Analytics and Maintenance Optimization

The core problem for the subsequent analytical processes lies in both data
preparation and the transfer of expert knowledge as described in the chapters
before. The data is therefore first processed after the ETL3 process to extract
the core information. The data situation in mobile systems is fundamentally
problematic for statistical processes, since the high transfer costs and the
low storage depth of these devices mean that less data is available about
these systems than needed for statistical analytics. The high influence of
the environment also reduces the possibility to extract algorithms from the
data, because each additional element need more validation data. The last
burdening influence on analytics is the lack of precision in describing the
problem. Many data sources (e.g., service reports) are not designed for later

Figure 7.95 Data Logging on the internal CAN bus.

2Matlab (spelling: MATLAB) is a commercial software from the US company MathWorks
for solving mathematical problems and displaying the results graphically.

3ETL is a process in which data from several possibly differently structured data sources is
combined in a target database.
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analysis processes. Several preliminary studies are conducted to find out
which data sources and constellations are suitable for the expansion of its
existing processes and business models. Among other things, tools such as
Spotfire4 and programming languages such as R5 are used for faster analysis
visualization.

The example in Figure 7.96 illustrates the analysis of vehicle usage data
with regard to fault events for RCA. In particular, pattern analysis plays an
important role. Are there recurring patterns to which special errors can be
assigned? Once such patterns are identified, appropriate processes can be
stored to perform automatic service actions. For this reason, STILL initially
selected errors for its basic analysis that have little scope for interpretation.
For meaningful results, the ambient boundary conditions are also of great
importance (see also Chapter 5 Section 2). For the final results in real-time
operating systems, it is necessary to choose learning systems that allow an
adequate response also to each new situation.

Figure 7.96 Example for graphical pattern recognition by Spotfire.

4TIBCO Spotfire Analytics is a commercial software platform for business intelligence
solutions for the systematic analysis of internal and external data.

5R is a free programming language for statistical calculations and graphics.
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In the area of wear, as mentioned above, STILL has concentrated on tires,
assuming that the tires in particular give a good picture of how the truck is
used by the driver and of the interaction with the environmental situation.
STILL has analyzed the data sets of approximately 70 forklift trucks in the
topic RUL in terms of use and tire wear.

However, the first approaches basing on the service reports were
problematic, since the reason for replacing a tire can be quite different:

Not every tire is changed because it is worn. A lot of tires are also
changed, due to damages (see Figure 7.97), so the existing database is faulty
with respect to precise information about the real wear. Due to this fact we
start with a basic analytic, which will be optimized during operation.

In order to find a pragmatic solution, STILL approached the problem by
analyzing the behavior of the different forklift trucks. This means that the
forklift trucks are examined over a long period of time and their behavior
is classified. The basis for this assumption is the fact that there must

Figure 7.97 Tire changed due to wear and damage.
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be a statistical correlation between physical usage and the resulting wear.
Therefore, various operating conditions of the forklift truck are considered
with regard to their possible influence. It turned out that agility seems
to be the one of the most promising values, since its influence on wear
is disproportionately high. For the first analytics the agility was divided
into 100 elements, where 100 is representing an extreme dynamic driving
(Figure 7.98). As a rule, the forklift trucks are observed over a period of one
year, so that it can be assumed that we have an average of the typical usage of
the trucks. The individual dynamic elements are summed up per vehicle and
per class. Due to a simple weighting of the dynamic classes, a ranking of the
dynamic use could be created, which corrodes in parts with the wear. Since
the ground condition, load and environmental conditions were not considered,
certain deviations can be explained. For the complete model further
analyses are necessary, but these are not carried out in the course of this
project.

The graphic in Figure 7.98 also shows that the weighting does not always
allow an explicit conclusion. Vehicles with low dynamics can be clearly
identified and the result fits to their wear. But there are also vehicles in the
midfield in particular that have entries in the very dynamic classes. However,
due to the weighting selected so far, they are classified as medium in terms of
wear. Since the associated tire wear does not match the placement, it can be
assumed that a linear weighting between the classes does not seem to finally
apply. There are currently too few data sets available for a clear statement,
so that the results still need to be sharpened with appropriate self-learning
mechanisms.

Figure 7.98 Agility heat map of analysed forklift trucks.
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The extent to which the knowledge gained can be used to improve
maintenance processes must be demonstrated by subsequent field studies. An
installed example architecture (shown in green in Figure 7.99) will produce
over a period of time to be defined, results of the algorithm. This results are
then rated and used to refine the analytics.

The high level of service product requirements is due to the fact that a
large part of these products are subject to a fee for the customer. For this
reason, the highest diligence is required when developing solutions so that
these do not have a negative cost effect on the customer and burden the
business relationship. However, there is always a need to improve processes,
since all services provided are subject to considerable cost pressure from
the market. For this reason, the provision of individualized solutions and the
increase in effectiveness is of great importance to the company.

The developed solution modules from the wear area are used in particular
for the optimization of demand-based billing of services like rental or
full service, while the RCA solutions are to be used for increasing the
effectiveness in the processing of defects in the field.

Figure 7.99 Second step in architecture to improve process results.
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7.5.5 Conclusions

Considerations in the project have shown that mobile systems with small data
volumes are particularly difficult to handle. For this reason, technical aspects
are required in such systems in a much higher than expected dimension.
Purely statistical observation cannot lead to success with such conditions.

It became clear that especially the knowledge of the required data is of
great importance and an important key to success. It also became clear that
the quality of the data has to be checked at an early stage and ensured by
appropriate measures.

For STILL, these considerations provide clear starting points that can be
used in future applications. Due to the very complex relationships between
physical vehicle use and the interaction with environmental influences, an
expansion of the data structures will be necessary in the future. The results
achieved so far are refined in further validation loops and enriched by artificial
intelligence. This is necessary in order to realize the high potential in the
general area of optimization of maintenance processes. However, in addition
to the classical support in problem solving tips and analyses results, there are
also elements that will result from visual and/or HMI technology. These will
even open up opportunities for further business areas.

A chosen system architecture must therefore always offer the possibility
of expansion. The platform of this system architecture plays a rather
subordinate role, as the solutions present themselves as a kind of modular
system rather than an integrated solution.

7.6 Proactive Maintenance of Railway Switches

Contributors: Csaba Hegedűs, Paolo Ciancarini, Attila Frankó,
Aleš Kancilija, István Moldován, Gregor Papa, Špela Poklukar,
Mario Riccardi, Alberto Sillitti, Pal Varga, Paolo Sannino,
Salvatore Esposito, and Antonio Ruggieri

A larger pressure on the railway infrastructure has been created by a strong
necessity for faster mass transport with high capacities and frequent runs.
This makes it fundamental to continuously monitor the technical equipment
of the railroad tracks in the most efficient way possible. By detecting fatigue
wear of the track system in an early stage – due to issues such as broken
rails or increased rail wear, caused by natural hazards or by excess loading
on the track system – it is possible to avoid serious damage, also by means
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of correct interpretation of collected data, which allows for rapid intervention
on the track system.

The railway use-case within the MANTIS project [The MANTIS
consortium] is dealing with these issues through a proactive maintenance
approach of the railway system [Hegedus et al., 2018]. This concerns the
interlocking system and the study of possible complications that affect
railway signalling – i.e., non-functional and out of control situations – with its
main focus on describing the development of a set of approaches and support
tools which allow to continuously analyse the status of specific components
within the infrastructure. The use case aims at determining whether and
within which limits it is possible to make reliable predictions for improving
the maintenance process. In particular, it targets identifying anomalies and
reducing emergency maintenance, since it is very costly and cases major train
delays.

7.6.1 Introduction to Railway Monitoring

In the railway infrastructure, the prevailing maintenance approach is still
following the preventive model where most of the maintenance operations
are based on periodical check-ups and substitutions of parts when a failure
is detected. These tasks are carried out at given periodical intervals designed
to mitigate risk with a considerable safety margin involving having to send
maintenance staff to the asset site on a regular basis, exposing them to the
usual safety risks of a running railway [Cocciaglia, 2012].

Modern railways have very low level of signalling installed. For switches,
this comprises only of the detection if a switch is in the correct end position
and locked. The development of new maintenance systems, including the
integration of heterogeneous monitoring and diagnostic technologies, plays a
key role in the improvement of railway safety operations. Existing monitoring
solutions show some limitations due to their non-standardized, proprietary
nature and very low integration level. Consequently, they are not able to
monitor properly the degradation of complex asset, and to detect correlations
between the condition of assets [Cocciaglia, 2012].

7.6.2 Scope and Logic

A railroad switch allows trains to change tracks (Figure 7.100). When a train
is destined to run on another track, the switch-man on the train or another
employee in the railroad yard will turn the switch to direct the train toward
the chosen direction. The railroad switch is activated by moving a long arm
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Figure 7.100 Simple turnout schematic. Moving switch blades are shown in red.

from side to side and moving the train tracks to the desired position. While
many railroad switch activations are accomplished by hand, nowadays some
are electronic and can be changed by an employee in an elevated office at the
railroad yard.

A realistic proactive maintenance solution for railway switches is based
on the concept of Cyber-Physical Systems (CPSs), where a cyber-twin of the
physical system is modelled, and its status is kept up-to-date through data
collection from physical sensors deployed on-site.

The rest of this section provides some details on data processing,
presents the proactive measurement system, and describes the developed data
visualization subsystem.

7.6.3 Data Processing

The data processing requires the consideration of all the available datasets
connected to each switch. In particular, the data available are in the form of
time series and can be grouped as follows:

• Control: data generated by the switch control unit. They include
commands sent to the switch (i.e., start, stop, etc.), and some feedback
data provided by already existing sensors in the switch. The collected
information is coarse grained, with a log sequence structure;
• Physical: data generated by sensors temporary added to the switches

to measure some specific parameters. The most interesting data
used in this analysis are the electric current consumed during the
movement [Ampere], the duration of the movement [second], and the
environmental temperature [◦C].
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The goal is to identify anomalies that could require a maintenance activity.
We have focused on the following behaviours:

• Drifts of the profiles: could be caused by accumulation of dust on the
switch resulting in an increased amount of current leading also to a
failure of the switch;
• Unexpected behaviour: could be caused by physical obstacles in the

switch that may cause damages to the device.

During data exploration, we have identified the following behaviours:

• Behaviour 1 (Figure 7.101): This is a very noisy profile that makes the
identification of the behaviour difficult and may highlight problems in
the data collection. In particular, in the correct positioning of the sensor
and/or the presence of sources of noise that may alter the collection;
• Behaviour 2 (Figure 7.102): Similar to Profile 1 but with a limited

amount of noise;

Figure 7.101 Switch Data – Behaviour 1.

Figure 7.102 Switch Data – Behaviour 2.
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• Behaviour 3 (Figure 7.103): Expected profile of a double switch;
• Behaviour 4 (Figure 7.104): Expected profile of a switch;
• Behaviour 5 (Figure 7.105): Profile of a switch with an abnormal

behaviour.

The profiles of the current depend on several physical variables linked
to the mechanical and electrical components that compose switches. These
profiles are linked to the specific model of the switch from which the
data are collected. The current is influenced also by environmental factors:
temperature, humidity, and dust.

Due to the large variability of the profiles, our main problem is the
identification of an approach to define the default correct behaviour. This can
be achieved in different ways:

• Physics: this approach is able to define the physical model of each
switch, and it is able to predict the correct behaviour in many different

Figure 7.103 Switch Data – Behaviour 3.

Figure 7.104 Switch Data – Behaviour 4.
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Figure 7.105 Switch Data – Behaviour 5.

environmental conditions. However, it requires building a model for
each kind of switch and tuning the parameters for each installation;
• Statistics: this approach requires the collection of data from a wide

set of devices in different operating conditions to define the default
behaviours that are known with some level of uncertainty, but it does not
require the manual development of a physical model for each switch.
The model can be derived from the data and can be adapted to different
switches collecting additional data.

Figure 7.106 shows the statistical features of a specific switch. The
black line is generated calculating the median of the different time series
representing the current profiles of hundreds of movements that happened
correctly in the past.

Threshold detection was used. If the current is outside the bounds, a
warning is risen. The definition of proper bounds is of a great importance

Figure 7.106 Identification of bands for quartiles and outliers.
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for the detection of an abnormal behaviour. As the distribution of the samples
at each time instance is not normal, the outliers’ bounds are defined using
the 1st and 3rd quartiles, according to the Tukey’s range test for outliers
[q1-1.5*IRQ; q3+1.5*IRQ].

There is quite a large range, especially at the end of the movement. After
a deeper investigation, it was found that the behaviour was caused by the
fact that the analysed single set of data was hiding two different data sets.
Actually, the behaviour of the switch in the summer and in the winter is
different due to the temperature sensitiveness. There are several aspects that
depend on the temperature, such as the duration of the movements (longer
in winter) and the current peaks (higher in winter). For these reasons, the
statistical model had to consider the current season (the temperature of the
environment). Therefore, the same analysis was repeated, but the dataset was
divided into two sets based on the time of the year of the data.

The model validation was done by a bootstrap approach building the
model using a random subset of correct movements in the same season and
verifying it with the rest of the data. This analysis was helpful for defining
the statistically correct behaviour of a switch using data coming from the field
and tuning a model without any specific knowledge of the internal structure of
the switch. Such a model can be easily adapted to different switches working
in different conditions, and it was tuned using data in the different seasons.

The data can be analysed by log analysis approaches. However, the coarse
grain and the lack of a sufficient information from the field (including tagged
data describing anomalies) resulted in an analysis that was not able to build a
relevant model that can actually be used.

So, the aim for analysing such data by applying those different statistical
approaches is to determine a model of the default behaviour of the switch,
and to identify anomalies in the behaviour. Among various purposes of
diagnosis and prognosis [Jantunen et al., 2016], this can be used for
failure prediction [Fronza et al., 2013], and other proactive maintenance
purposes [Lenarduzzi et al., 2017], including root cause analysis and the
calculation of remaining useful life.

7.6.4 Measurement System for Proactive Maintenance of
Railway Switches

For failure prediction and diagnostics, a new maintenance system was
needed. We built a new, low cost non-invasive measurement system that
can be attached in retrofit to operational switches. The measurement
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system measures the factors that affect the life expectancy of the railway
infrastructure. The choice of the appropriate attributes is based on expert
knowledge since the different types of switches are not equally affected by
these impacts.

The data acquisition system is part of an architecture which is based
on the MANTIS platform [Hegedus et al., 2018] and complies with
the architecture of the platform in full extent. The architecture of the
system is shown on Figure 7.107 and consists on the following modules:
(1) Standalone data gathering edge device; (2) Edge broker implementing
MQTT; (3) MIMOSA database on a Microsoft SQL Server; (4) Data analytic
modules; and (5) MANTIS Human-Machine Interface (HMI).

The edge device – which is the embedded subsystem deployed with
the railway switch – is not only responsible for gathering new data but
pre-processing and forwarding it to the cloud in an appropriate, MANTIS-
enabled message format. The heart of this device is an STM32F4 series
MCU (Microcontroller Unit) which employs a single ARM-Cortex-M4 core
is capable of collecting, storing and pre-processing the information, while
also handing the communication tasks as well. It offers numerous interfaces –
including UART, SPI, I2C –, and 12-bit analogue-to-digital converters; thus
both analogue and digital sensors can be used.

In this use case, the edge device contains one digital integrated humidity
and ambient temperature sensor, a digital temperature sensor and four
analogue displacement sensors.

Figure 7.107 Measurement system setup.
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7.6.4.1 New factors collected
The system measures several factors that can affect the wear of the railway
switch over time. These expert-identified factors can be divided into two
groups:

• Operational factors: These parameters are directly related to the
operation of switches – they have direct impact on condition
deterioration. In our implementation, we measure lateral and
longitudinal displacement of point blades. These point blades direct
trains to one of the possible paths, i.e., they are the moving parts of a
switch. Here the excepted resolution is high, and we are interested in
gathering data only during switching sequences;
• Environmental factors: These parameters are well-known to affect

almost every cyber-physical system. The most significant one is
temperature. Both the ambient temperature and the temperature of the
rails are measured. The rail temperature can cause dilation of rails thus
it affects the operation of switches indirectly. Another environmental
factor is humidity, which plays a lead role in corrosion. Since the
ambient parameters are changing slowly, reading the values periodically,
every half an hour provides appropriate accuracy and resolution for this
use-case.

The blade movement measurement must be event driven, data is collected
when a switching of blades occurs. Therefore, the switching itself must be
detected. Detecting the start of a switchover is tricky, since measurement
noise and passing trains may interfere. Therefore, a threshold based triggering
is used together with a pre-fetch measurement phase, as Figure 7.108 shows.
The thresholds are set high enough to avoid false positive triggers, and the
pre-fetch phase ensures that the acquired data contains the full movement
of the blades. Moreover, if the device starts a measurement and the actual
position does not reach the end position – just nearly approaches it –, the
measurement cycle will not stop. In this case all information about the
movement between the real end positions and the threshold levels would be
lost.

The state-transitions of the measurement are presented on Figure 7.109.
In the case when the measurement takes longer than a predefined (expected)
interval, the measurement stops and triggers the device to send a warning
message to the central cloud. This function indicates an error, which means
that the point blades cannot reach their end position – so the switching
operation failed.
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Figure 7.108 Switch’s point blades displacements.

7.6.4.1.1 Platform level
The gathered information is encoded in an interoperable JSON-based
message format developed within the MANTIS project, based on the
MIMOSA [MIMOSA Consortium] domain ontology. The messages contain
not only the results of measurements, but additional information: (i) exact
timestamp, (ii) duration of the measurement, (iii) identifier of the edge device
instance and (iv) additional values that help the re-assembly of the message
at broker side.

The messages are transmitted via the MQTT protocol over TCP/IP. The
wireless connection between the edge device and the central cloud is provided
by a SIMcom SIM800 based GPRS modem which is attached to the MCU via
serial line. The central cloud contains an MQTT Edge Broker, which handles
the messaging, while both the Low-level Device and the cloud have an MQTT
implementation each.

In the central cloud, the message is received by a Mosquitto MQTT
broker [MosquittoTM, 2010] with a parser client. The information is then
stored into a MIMOSA OSA-CBM database, which is a standard architecture
for condition-based maintenance systems. The parsed datasets will be
processed offline by data mining and analysing tools. Future work includes
that the incoming message can be analysed online, automatically by a stream
processor. This will enable an automated alerting and forecasting system.
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Figure 7.109 Measurement state diagram.

The processed and analysed information is stored in the database, thus
the central cloud can provide relevant information to different parts of the
MANTIS architecture, for example for the Human-Machine Interfaces.

7.6.5 Data Visualization

To increase the efficiency of the maintenance personnel and to evaluate the
results of the data analysis [Korošec et al., 2013], an intelligent HMI had
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to be developed. Following the scenario-based design approach, user needs
and the context of use were described in the human-machine interaction
scenarios. In the iterative process of scenarios refinement, five main human
roles have been identified, ranging from the maintenance technician to the
business manager. Further refinement of the scenarios led to identification of
three main functionalities of the user interface:

• Monitoring the parameters given by the measurement box;
• Displaying the alarms that indicate the abnormal movement of the

railway switch;
• Displaying the task schedule for the maintenance service.

The interface was developed on top of the generic MANTIS HMI,
described in Chapter 6. It supports multiple users with different roles, where
each user or role can be presented with one or more dashboards covering
their intended interaction. Dashboard is customizable and does not require
any web development skills.

As it can be seen in Figure 7.110, the HMI allows the user to quickly
see the position of the railway switch through the corresponding graphics.
An additional graphics with the IoT image indicates the connection to the
measurement box to ensure the reliability of the data. When the connection
is established, the image turns green. Otherwise, the user should not assume

Figure 7.110 Graphics, displaying the state and the position of the switch (left) and the
instant values of the environmental parameters (right).
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that the data presented on the interface is accurate or up to date. In addition to
the switch position and state, instant parameter values related to the railway
switch, such as the rail temperature, switch status, ambient temperature and
humidity, are displayed. If the alert thresholds for a measurement are set,
values out of range will also be shown as alarms. Historic values of the
raw sensor measurements and environmental parameters are displayed as
a graph (Figure 7.111). Visualization of the data analysis and prediction
results is done through the same monitoring widgets, which can also show
predictions, remaining useful life estimations. For more in-depth analysis,
Kibana visualizations are integrated.

Scheduled maintenance tasks are currently displayed in the alarms table,
but they can also be displayed separately. The table is editable, filterable and
sortable and allows the user to acknowledge the task/alarm as well as to enter
textual feedback. To assist the maintenance personnel working on the field, a
map with the location of the railway switch is displayed on a separate widget.

Several context-awareness features, mainly based on location and the user
role, have been proposed to assist the maintenance personnel in performing
their tasks. Such features proved to be most useful in performing the
maintenance actions on the field, where the visualization of the information
varies depending on the location of maintenance team. Another such example
is a personalised suggestion of the user’s next step according to their past
interaction with the interface. In this way, the users are provided with the
right information in the right moment and context.

Figure 7.111 Graph displaying blade displacement sensor measurements.
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7.6.6 Conclusion

The Industrial Internet of Things, the concept of CPS and the industrial
initiatives force the evolution of proactive maintenance solutions for
industrial systems. This section presented some results, where the MANTIS
concepts were applied to the use-case of railway switches. These include
the measurement method, the analysis of the measured data, and the result
visualization HMI tailored for various types of contexts and users – ranging
from the maintenance technician to the business manager.

7.7 Fault Detection for Photovoltaic Plants

Contributors: Achim Woyte, Babacar Sarr, Karel De Brabandere,
Tom Tourwé

The high-level objectives of the Photovoltaic plants use case are mainly
concerning the reduction of efforts for operation and maintenance (O&M)
by more cost-efficient monitoring. This is pursued through smart sensing and
data acquisition as well as through analysis and decision-making functions
applied in real time to the operational data. These developed analytical
methods are meant to reduce downtime and subsequent losses in electricity
production due to component failures. Also one of the main objective is
to improve the energetic performance of the plants by detecting design
flaws, bad installation and maintenance practices, performance degradation
of components over time, and sudden changes in the performance of
components. Such possibility of early detections requires improvements of
O&M scheduling departing from root cause analysis, alerting and prediction
functions, and maintenance optimisation.

7.7.1 Introduction to PV Plants

Established in 1999, 3E is an independent technology and consultancy
company. 3E provides solutions as well as guidance to improve renewable
energy system performance, to optimise energy consumption and facilitate
grid and power market interaction. 3E pursues innovation to provide leading
energy intelligence and practical solutions to its customers and it disposes
of long-term monitoring data sets recorded with high time resolution for
more than 3000 PV installations distributed over the world with a total
installed capacity of more than 2GW via its monitoring service SynaptiQ.
3E has worked on projects in more than 40 countries and operates with an
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international team of around 100 experts from its headquarters in Brussels
and offices in Toulouse, Paris, Beijing, Istanbul, Cape Town, and London. 3E
is certified ISO 9001:2008 since early 2010.

A huge potential for more effective pro-active maintenance actions
passing through automated fault detection and identification lies in the large
amounts of PV monitoring data that are recorded but currently used in a
very limited way. It is in this perspective of exploiting this potential that 3E
has been developing analysis and decision-making functions for proactive
maintenance of Photovoltaic (PV) plants.

In view of the objectives of this use case, mentioned at the beginning of
this section, the exploration and validation of analysis and decision-making
functions for proactive maintenance of PV plants has therefore been the
principal focus. 3E and its partners have been developing intelligent functions
for pyranometers sensors, and overall automatic PV plant analysis to assess
the “health” of the plant.

The following section provides an overview of a practical application of
RCA developed for the Photovoltaic Plants use case lead by 3E. It focuses
on the illustration of one of the techniques used for fault detection: Limit
checking applied on the PV use case.

7.7.2 Practical Application of Root Cause Analysis in
Photovoltaic Plants

Photovoltaic plants are energy conversion systems. They convert the power
of light, i.e., photon beams or electromagnetic waves, into electricity that can
be used in an off-grid system and/or fed into the public utility grid in terms
of frequency and voltage. The efficiency of this energy conversion step is
influenced primarily by ambient temperature and secondarily by wind speed
(Sw). Wind speed is often neglected.

Consequently, the primary input variables for this energy conversion
process are the solar irradiance in the plane of the PV array (GPOA) and the
ambient temperature (Tamb). The output variable is the electric AC power
to the grid (PAC) as indicated in Figure 7.112. The PV module temperature
(Tmod), the DC voltage, current and power at the output of the PV array
(VDC, IDC, PDC, respectively), and the AC voltage and current to the grid
(VAC, IAC, respectively) may be considered measurable state variables of
this conversion process. The so-called yields (Y) and losses (L) describe the
energy balance throughout the system in operation and are represented in
Figure 7.112 at the different stages of the plant.
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Data received from the PV array comes in the form of time-series data.
After standard data cleaning procedures, based on pre-mentioned variables
listed above, normalized performance parameters are derived. They allow to
quantify the energy flow and losses through the PV array per loss type.

They are:

• Availability loss: due to unavailability of grid, inverter, or DC input. This
is encountered in the situation when power monitored from the plants is
equal to zero while there is still light coming from the sun;
• Array-current loss: due to deviations of the measured DC current from

proportionality with irradiance through STC (Standard Test Conditions),
for times when the plant is available;
• Array-voltage loss: due to deviations of measured DC voltage from

‘STC voltage’;
• Inverter loss: due to deviations between measured AC and DC power.

The yields and losses are typically hourly average values but can be
integrated over time.

The main variables used for limit checking are solar irradiance in the
plane of the PV array (GPOA), ambient temperature (Tamb), PV module
temperature (Tmod), DC voltage and current at the output of the PV array
(VDC, IDC) and electric AC power injected to the grid (PAC). The AC
voltage (VAC) and power factor (PF) are not used for limit checking.

For checking the operational performance over different energy
conversion steps, a performance loss ratio per step is defined. This
performance loss ratio is computed for a given time span, e.g., a day up
to several months. It is the useful energy lost over the energy conversion
step divided by the energy available, i.e., the incoming solar energy on
the PV array as represented by the solar irradiance in the plane of the PV
array (GPOA); all normalized to standard rating conditions of the PV array.
Accordingly, the overall performance of a PV plant is described by the
performance ratio (PR), i.e., 100% minus the sum of all performance losses.

In practice, we compare the performance loss ratios from measurements
to model-based performance loss ratios and thresholds. The model is fed
with measured values of GPOA and Tamb. The model parameters can be
set from data sheet parameters of the devices in the PV plant or identified
from measurements from the plant in a healthy state. Accordingly, adequate
limits can be derived either from tolerances on the data sheet parameters
or from choosing percentiles from the healthy plant. Both the model-based
performance loss ratios and their limit values vary depending on the PV plant
and the weather during the evaluation period.
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Figure 7.113 illustrates this application of limit checking for a PV plant
located in Belgium. The current-related array losses (‘Array (current)’) in the
upper half of Figure 7.113 by far exceed the threshold. During a thorough

Figure 7.113 Example of limit checking results for the energy conversion process in a
PV plant; performance loss ratios per conversion step are compared to the model for each
conversion step.
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maintenance action after this problem was detected, several smaller PV
module failures were fixed. After maintenance action, all performance loss
ratios were back within their expected ranges, yielding a much higher PR of
82.9% (lower half of Figure 7.113).

7.8 Conventional Energy Production

Contributors: Matti Kaija, Antti Niemelä, Juha Valtonen, Ville Rauhala,
Veli-Pekka Salo, Erkki Jantunen

The most important goal of a power plant operator is to maximize the
availability and performance of their power plant and to minimize the
generating costs of energy. To reach this goal, the maintenance of the power
plant is crucial and maintenance can account up to 30 % of the cost of the
produced energy.

Most modern power plants use a combination of scheduled maintenance
and corrective maintenance. In this strategy, critical components, such as
turbines and pumps, are serviced based on statistical trend data and less
critical components are left to a run-to-failure strategy, where maintenance is
not done until the machinery fails. These maintenance strategies are not cost
optimized since scheduled maintenance usually results in either unnecessary
repairs if servicing is done too frequently or potentially catastrophic failures
if service is neglected. Ineffective maintenance not only wastes materials
and resources, but lost operating time resulting from equipment failure is a
significant expenditure to a power plant operator.

Effective maintenance planning and scheduling is essential for shortening
revision and downtime periods. Most of the revision work is done by external
contractors and work delays can be expensive. By maintaining components
based on their condition, revision work and cost can be optimized.

Current condition based maintenance strategies usually rely on periodical
measurements done by experts, because the power plant staff do not have
the necessary skills to analyse the measurement data. Most power plants
collect information that could be utilized in condition based maintenance,
but the data is not used because it is difficult to interpret or because it lacks
parameters for fault prediction. Implementing new sensors in power plant
equipment can be difficult.
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7.8.1 Introduction to the Plant Under Study

The Järvenpää power plant is combined heat and power (CHP) power plant
owned by Fortum Power and Heat Oy and operated by Maintpartner Oy. The
power plant is located in the city of Järvenpää in the Tuusula municipality in
southern Finland. The power plant main boiler K1 is a fluidized bed boiler
(BFB) with a fuel capacity of 76 MW. The K1 boiler was commissioned in
2013 and has a wide range of utilizable fuels, mainly wood biomass, peat and
waste based fuels. The plant also has three natural gas boilers for peak- and
reserve situations. Yearly the power plant generates 250-330 GWh heat for
the district heating network and 100 GWh electricity.

The flue gas recirculation blower was selected as the monitored machine
due to its easy accessibility and constant run status. The blower is used to
recirculate scrubbed flue gas back to the boiler to lift the fluidized bed in the
boiler in order to cool the bottom of the boiler furnace. The recirculation fan
is not an immediately process critical component, but a failure can affect the
combustion process and prolonged operation can reduce the boiler lifecycle
by overheating the boiler grate.

The blower consists of three parts, the engine, bearing and impeller
inside the impeller housing. Most common faults for any rotating machines
are bearing failures, imbalance and misalignment. All of these causes
have distinct vibration patterns that can be identified with proper vibration
instrumentation. The pilot instrumentation consisted of vibration sensors
installed to the blower bearing and a tachometer for measuring the rotation
frequency of the blower. The monitored blower is shown in Figure 7.114.

Figure 7.114 Flue gas recirculation blower monitored in the pilot project.
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7.8.2 Scope and Logic

The pilot project consists of instrumenting a flue gas recirculation blower
at Järvenpää power plant with several different types of vibration sensors
and creating a data collection and data storage system for the data. Also
implementing data collection from the plant process data to the same
data storage as the vibration data is studied. The goal of the project is
generate a pilot condition monitoring system including installed sensors, data
connection and collection and data analysis and display possibilities. The
current planned pilot structure is presented in Figure 7.115.

The pilot has been divided into three phases for management purposes.
The first phase consists of installation of the sensors and local data
collectors at the site. The installation takes into account the current Finnish
standards regarding vibration measurements and monitoring [PSK Standards
Association, 2006, 2007]. In the second phase, the local data collectors
are connected to the MANTIS data storage that is created following
the MIMOSA data structure presented in the OSA-CBM and OSA-EAI
standards [MIMOSA, 2010, 2014]. The data storage also utilizes the
reference architecture [Mantis Consortium, 2016]. From the MANTIS data
storage, the data is distributed to the individual systems. Some of the sensors
also provide direct access via internet that is used in the first phases of the
pilot to collect preliminary measurement data. The third phase focuses on the
analysis of the data and failure prediction.

The pilot structure allows for comparison of several different sensor types
to find the most applicable sensor for this type of condition monitoring
if such a preference can be made. The standardized data structures for
data communication and storage provide a basis for collaborative use and
development of the MANTIS platform.

The analysis and failure prediction study of the pilot is focused on rotating
machines. The applied techniques will be specified later in the project after
a preliminary technical study is complete and the data collection system
provides preliminary results for analysis.

As several partners already have commercial sensor and data collection
solutions available, these are used for maximum benefit in order to focus
the research work to areas that have not yet been studied. The main
focus of the pilot is the collaboration of different standardized solutions
and protocols and the utilization of the collected data to create new
value. The data analysis and failure prediction is a relatively new area
that is not implemented in the commercial systems and will require
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research on the analysis methods, not only implementation and collaboration
research.

7.8.3 Monitoring Rolling Element Bearings

Rolling element bearings are vital components of rotating machinery and
they can be found in almost all rotating machines. In theory they are usually
designed so that they should last the whole life time of the machine assuming
that proper lubrication is provided and that no over-loading takes place.
Unfortunately in real life it is rather typical that something goes wrong
either with the lubrication or the loading and that initiates the wear of the
bearing. Assuming that the outer or inner rolling surface has suffered, the
wear takes place with increasing speed because the wear particles tend to
cause further wear and worn surfaces cannot withstand the loading as well
as new intact surfaces. Consequently bearing wear develops in exponential
way. From financial point of view, it’s important to know if the worn bearing
will last until the next planned stoppage since in many cases it is very costly
to stop the production in order to change one bearing. Naturally, one option
could be to have redundancy i.e., a spare machine that could be used while the
one suffering from bearing wear is repaired. However, it is easy to understand
how costly this kind redundancy would be as in such a case two factories
would be needed to do the work of one.

Traditionally the condition monitoring of bearings is carried out manually
so that a trained professional is manually doing measurements once a month
or every two weeks and possibly so that if something strange has been noticed
in the measured signals the time period between consecutive measurements
has been reduced to much shorter level e.g., once a day measurements.
Clearly, this kind of manual monitoring is rather costly and takes a lot of
effort in industry because of the high number of potential bearing failure
objects. The aim is to automate the above described measuring process and
also to be able to carry out the diagnosis automatically i.e., define whether a
bearing fault is initiated with signal analysis and diagnosis based on artificial
intelligence. In addition, the capability of predicting the remaining useful life
is one of the objectives. In practice this means that we can predict when the
latest date would be when the bearing has to be changed.

During recent years, the price of sensors and processors has reduced
dramatically and this is the reason why three different type of vibration
monitoring solutions for the detection of bearing wear have been tested. One
of the tested solutions is the Nome nmas system, which is developed for this
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type of purpose i.e., condition monitoring of machinery. The second tested
solution WRM can be seen as a more generic platform that supports not
only vibration measurement but also a wide range other kind of techniques.
The third option is based on low cost components Mems sensor and
RaspberryPi [Junnola, 2017] for processing the data, (see Figure 7.116). The
idea is to find out how well this kind of solution performs when compared to
more sophisticated equipment. The results of that comparison are discussed
in chapter 4 of this book.

The most common technique today to diagnose whether a bearing fault is
present or not is so called envelope detection, which is based on the detection
of the vibration impulses that are caused when a rolling element hits the worn
surface. The impulses vibrate at the first natural frequency of the structure in
question i.e., at relatively high frequency 0.5–5 kHz. The frequency at which
the impulses take place reveal which kind of fault is present. Is it outer or
inner race or possible cage fault? Naturally the reliable detection of bearing
faults at an early stage is the key action in condition monitoring. Quite a
lot of effort is dedicated in being able to predict the development of the
wear process. This is a very challenging task as there are so many factors
that influence this phenomenon. For example, the loading and lubrication
conditions together with the bearing geometry and material have an influence.

Figure 7.116 RaspberryPi based measuring system with a mems accelerometer.
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The fact that the signal analysis indicators that reveal the existence of a
bearing fault do not increase linearly but instead both increase and decrease
at certain phases. The development in the end of life is so rapid that it makes
the prognosis process challenging [38]. These techniques have been more
thoroughly discussed in chapter 5 of this book.

With the introduction of new sensor types and processing power of current
CPSs, the amount of data that needs to be managed increases dramatically
and this in turn emphasises the role of the platform that is for this purpose.
In this use case the idea is to use hierarchical data structure so that most of
the data is processed locally and only meaningful information of exceptions
is passed to higher levels. For example, the RaspberryPi processor is capable
of carrying out the necessary signal analysis tasks together with the diagnosis
of possible faults. The maths are programmed with Python which is an open
programming language dedicated to mathematical programming. It should
be noted that due the openness of the programming language a lot of useful
material is available free of charge. The data is at all levels (locally e.g.,
RaspberryPI, plant, cloud -Azure in this use case-, service centre) managed
with MIMOSA [Gorostegui, 2017]. This is again an open solution for
maintenance related data. MIMOSA can hold data of the bearing type and
geometry, its maintenance history (who, when, what . . . ), measurement data,
data to support the making of diagnosis and prognosis, results of diagnosis
and prognosis. Basically, this is all data that is needed for a CMMS that is
handled with MIMOSA. MIMOSA has also served the purpose of integration
(installation in Kemi) between the various systems that the individual partners
have been using. Mimosa is the platform for supporting the development of
OSA-CBM Web Services that are developed for diagnostic and prognostic
purposes.

7.8.4 IoT-Ticket Platform

One of the measurement platforms used in the pilot was industrial IoT
platform IoT-Ticket and reference edge computing device WRM247+ both
developed and owned by Wapice. For data connectivity IoT-Ticket offers
several possibilities to connect into data sources. These are e.g., OPC, OPC
UA, MQTT and other industrial standard communication methods. Custom
connectivity is possible through ready-made developer libraries and REST
API. Using the WRM247+ multi-purpose data collection and edge computing
device it is also possible to execute vibration measurements. As an off-the-
shelf solution for the vibration measurements it is possible to connect the
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device into IFM VSE sensor gateway solutions. Connectivity to any industrial
standard IEPE 4-20mA vibration sensor is built during the pilot phase in
addition to existing methods. In pilot setup the WRM 247+ device was
directly connected to vibration sensors using a signal condition amplifier. The
benefit of this approach is that it gives a full control of all measurements that
are done in the device. IMI 603C01 sensors are selected and connected to the
system under test using magnetic connectors.

A support for computing RMS (Root Mean Square), Peak (Maximum
Peak) and Crest (Peak/RMS) time domain analyses (KPIs) and FFT analysis
for sampled signal is implemented and configured appropriately. The pre-
processed data is then uploaded to IoT-Ticket server in regular intervals for
further analysis and condition dashboards and reports (see Figure 7.117).

Using the Interface Designer and graphical flow programming tools
the connection to MIMOSA database is implemented by creating the
necessary flows to connect, read and analyze required data. From IoT-
Ticket connectivity to MIMOSA was done using a standard flow-component
that allows connectivity to external REST sources. As a parameter this
component takes a combination of username and password, source URL and
REST method (contains the XML/JSON payload). Virtual data tags allow
forwarding REST response into IoT-Ticket’s system. In order to post-process
the data further several diagnostics flows are created to automatically monitor

Figure 7.117 IoT-Ticket dashboard utilizing the 3D model built by LapinAMK. Live values
are fused into 3D model.
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the vibration levels. Data driven events are enabled by utilizing the IoT-
Ticket alarms and reports feature. Automatic reporting was setup to trigger
if something exceptional would happen in the diagnosed data. This could
be for example an exceptional signal level in vibration measurements or a
decision based on statistical information computed inside IoT-Ticket or one
of the external prognostics service providers available through MIMOSA.

7.8.5 nmas Measuring System

Nome used and further developed the nmas monitoring system in the use case.
The nmas monitoring system is developed and owned by Nome and is made
for condition monitoring of rotating machinery. Connectivity to MIMOSA
database is made through a REST API. The pilot case monitoring system
included a local measurement unit capable of measuring, calculating, and
storing data. A remote connection is build using 4G connection and locally
the measurement unit is connected through WLAN.

Industrial standard 100mV/g IEPE acceleration sensors and optical
tachometer are used for measurements. All measurement channels are
measured simultaneously. Local device calculated velocity RMS (Root Mean
Square) values and acceleration peak value continuously and stored time
signals in defined intervals. Pre-Alarm and alarm limits are set according to
ISO10816 standards.

Analysing of signals is done using nmas Analysator or View Java based
analysing tools. A browser based viewing interface is made to view results
with cellular phone or tablet. Viewing software and browser interface displays
measurement trends, raw time signal, velocity spectrums, and alarm statuses.
More sophisticated analysis including different mathematical functions,
band-pass filters, window functions, different spectrums are available with
analysis software. Basic view of nmas View and Analysator software is
presented in Figure 7.118.

During the project Nome developed nmas Simple measuring device that is
highly adaptive and easy to install condition monitoring system for local and
remote monitoring of critical machinery. Nmas Simple measurement device
is presented in Figure 7.119.

7.8.6 Mantis Cloud Platform

A Microsoft Azure based MIMOSA deployment is used as an information
exchange platform. A REST interface into MIMOSA was developed by
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Figure 7.118 nmas Analysator UI basic view.

Figure 7.119 nmas Easy condition monitoring device.

Lapland University of Applied Sciences (LUAS) in order to integrate various
different measurement platforms together. It’s been developed in JAVA
using existing libraries such as Jersey2 and Jackson to provide basic REST
and JSON functionalities. The REST interface is named MIREI short for
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MIMOSA REST Interface. RESTful approach is chosen due to its simplicity,
ease of use and bi-directionality. Any possible performance related downsides
in the way REST operates is outweighed by the overall ease of integration and
flexibility of the approach.

MIREI was initially released as two separate variants with slightly
different HTTP command structures; the standard MIREI and the
experimental MIREI. The standard MIREI provides helpers to make CRUD
operations more streamlined and concise. It also can contain vendor specific
data mappers that allow systems to store and retrieve native data from
MIMOSA while still retaining MIMOSA compliancy. Such a mapper is
developed for Nome’s measurement system. The standard MIREI release
however is only available for specific tables and does not allow access to
other MIMOSA tables without further expansion. The MIREI experimental
enabled access to all MIMOSA tables. This, however, requires better
understanding of the MIMOSA data model to be of use. It does not contain
any helper functions and will require users to fill in all the fields marked NOT
NULL and adhere to the constraints existing within the data model. Though
the new commands automatically fill the information related to row updates.

Later the two were merged into a single release enabling both
functionalities, however the REST URLs are still kept separate. This is done
in order to make it easier to access the REST commands in scenarios where
it is necessary to use both the helpers and have a more complete access to the
underlying MIMOSA database. Figure 7.120 shows the REST interface and
its role in this use case.

The type of data inserted into the MIMOSA database is mostly focused on
measurement data and generated data provided by the analytics, prognostics
and simulation tools developed by VTT. Envisioned CMMS and ERP data
integration is not completed, however the REST interface would make this
possible. The MIMOSA database is used to store different types of location
information used in augmented reality and virtual reality applications. This
is accomplished by creating new data types to the MIMOSA and using the
existing tables related to assets, segments and measurement locations.

HTTP Basic authentication is used to restrict access to MIREI. Partners
received their own username and password for the system. There is
also possibility to enable more secure token-based authentication for the
MIREI. In the token-based authentication method the client needs to request
authentication token from the server using the login information provided and
then include this token in the REST headers.



458 Success Stories on Real Pilots

SE
NS

O
RS

(N
OM

E 
N

M
AS

, W
ZZ

AR
D

, 
Se

ns
or

Ta
gs

 e
tc

.)

PR
O

CE
SS

 D
AT

A
(T

O
Pi

 s
ys

te
m

)

M
AN

UA
L 

DA
TA

(P
er

so
nn

el
)

CM
M

S

ER
P

O
th

er
 s

ys
te

m
s

RE
ST

 in
te

rfa
ce

M
IM

O
SA

Da
ta

 
m

ap
pe

r
(o

p�
on

al
)

U
I t

oo
ls

Vi
su

al
is

a�
on

 
to

ol
s

AR
 to

ol
s

Go
og

le
 

Ta
ng

o 
pl

a�
or

mm
Vu

fo
ria

 
Pl

a�
or

m

Ho
lo

Le
ns

 
pl

a�
or

m

U
I t

oo
ls

Vi
su

al
is

a�
on

 
to

ol
s

nssssssss mmmmm
Vi

rt
ua

l
Re

al
ity

 

F
ig

ur
e

7.
12

0
R

E
ST

in
te

rf
ac

e
fo

r
th

is
us

e
ca

se
.



7.9 Health Equipment Maintenance 459

7.8.7 Data Analytics and Maintenance Optimization

The main optimization problem in power plant maintenance is to minimize
the total lifecycle maintenance costs and to maximize the total lifecycle
availability. This means that it could sometimes be beneficial to select
“sub-optimal” operational modes to reduce maintenance costs or vice-versa.
However these decions need to be made based on actual data that is carefully
analyzed.

The success/failure of lifecycle optimization is measured by total plant
availability and maintenance costs. However power plants are designed to
operate for 25–40 years making lifecycle optimization difficult. In order
to collect better data and thus make more informed decisions, better data
collection and analysis tools need to be developed. Modern data collection,
remote monitoring and analysis tools (neural networks, statistical analytics,
physical models) also allow cost effective implementation of more advanced
maintenance methods on less critical components.

7.8.8 Conclusions

This use case represents a quite normal situation that occurs in power plant
environments. Power plants are long-term investments and house IT systems
from several different vendors and technologies that need to be integrated
with each other and need to be able to communicate. Each of the different
technologies operate in their individual fields of expertise, but can have
common elements such as data collection and databases.

This use case represents such an integrated system and the research done
in the use case provides a reference architecture of how such a system can be
built as well as benchmarking some of the open source technologies such as
MIMOSA database and REST API needed for the integration.

Each of the partners also continued developing the individual components
of the integrated system to provide improved analysis, connectivity and
prognosis capabilities for the users. HMI and AR/VR is developed by the
partners and is presented and discussed in Chapter 6.

7.9 Health Equipment Maintenance

Contributors: Jeroen Gijsbers, Mauro Barbieri, Verus Pronk, Hans Sprong,
Jaap van der Voet, Godfried Webers, Karel Eerland, Marcel Boosten,
Kees Wouters, Mike Holenderski, and Alp Akçay
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This chapter provides an overview of practical application of several elements
developed for the Health equipment use-case lead by Philips Healthcare.
The chapter focusses on the most essential activities carried out by Philips
Healthcare and its research partners, as the whole use-case description would
go into too much detail for a chapter.

7.9.1 Introduction to Health Imaging Systems

Healthcare Imaging Systems are essential for the diagnosis and treatment of
patients in hospital and private clinics (Figure 7.121). Due to the complexity
of these systems and the large costs involved, it is not economically feasible to
implement backup systems. Therefore, system uptime has to be maximized,
planned downtime has to be minimized and unplanned shutdown has to
be prevented. To cope with the exploding cost of healthcare, the cost of
ownership has to be reduced, which also implies that maintenance budgets are
under pressure. In response, Philips Healthcare has developed maintenance
services for hospitals based on remote monitoring of their systems.

The biggest challenge there is to retrieve, store and analyze large amounts
of data from globally distributed systems such that predictive maintenance

Figure 7.121 Unplanned system shutdown has a large impact on patients and hospital staff.
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can be offered instead of maintenance at fixed time intervals. Furthermore, an
alerting system is necessary when the online data analysis detects a threat of
shutdown.

Due to the large purchase cost and the cost of housing, unplanned
shutdown has a large impact on the hospitals and on the patients who may not
get the care they need. Philips Healthcare made use of MANTIS Reference
Architecture for equipment asset optimization, thereby aiming to move from
a reactive to proactive and predictive maintenance.

The objective is to accurately predict upcoming failures by mining large
amounts of data from heterogeneous systems distributed globally, such that
maintenance can be timely scheduled or in urgent cases, the responsible
person can be alerted. The main challenge is understanding how to get from
large amount of data to accurate and precise failure detection and prediction.

Next to that, the availability of data and the analytical outcomes can give
additional opportunities to exploit this information.

Every Healthcare Imaging Systems contains many sensors and generates
large log files daily. Since these systems are heterogeneous by nature, the
first challenge is to optimize logging such that data mining success can
be optimized (anamnesis in Figure 7.122). The next challenge is to make
all data available worldwide in the cloud (transport in Figure 7.122). Once
the data is centrally available, it has to be translated to behavioral models
and consolidated in a limited set of relevant parameters (translation in
Figure 7.122). This translation requires significant computing power and
storage space (infrastructure in Figure 7.122). Next, the obtained parameters
have to be analyzed with respect to the maintenance challenges (analytics in
Figure 7.122) and the results have to be visualized by end-users (visualization
in Figure 7.122).

From the Healthcare Imaging Systems division of Philips two modalities
participate in the MANTIS project: the Magnetic Resonance modality and the
Interventional X-ray modality recently renamed to Image Guided Therapy
Systems. They are introduced separately in the following sections.

7.9.1.1 Introduction to magnetic resonance
In the Business Unit Magnetic Resonance, medical Magnetic Resonance
systems are developed (see Figure 7.123). These systems are mainly used
to diagnose diseases. There is a variety of Magnetic Resonance system
configurations to cover different magnetic field strengths, different gradient
power strengths and different clinical application areas.
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Figure 7.123 Magnetic Resonance Unit.

A Magnetic Resonance system contains a cryogenically cooled
superconductive coil that generates a static magnetic field. When the cryo-
genic cooling shuts down, the liquid helium level reduces and, within a
few days, the superconducting coil loses its superconducting properties and
results in a quench. The net effect is that the static magnetic field is lost and
operation of the Magnetic Resonance system is no longer possible. It requires
days to refill and ramp up the magnetic field back. Early detection of the loss
or reduction of the cryogenic cooling function may stop the cascade of events
that lead to a quench.

7.9.1.2 Introduction to IGT systems
In the Business Unit Image Guided Therapy Systems, medical X-ray systems
in a C-arm configuration are developed (see Figure 7.124). The focus will be
on the larger motorized ‘fixed’ systems (also called Cath labs), though some
of the ideas may also be viable for the smaller “mobile” C-arms.

These larger X-ray systems can be used for diagnostics, but are most
useful in minimal invasive interventional X-ray procedures like the treatment
of coronary disease (Dotter treatment or stenting), structural heart disease
(valve placement or repair), stroke treatment (aneurisms or stenosis), vascular
disease (aortic aneurism or revascularization of limbs) and many other less
known treatments. Because vital organs are often targeted, it is essential that
the doctor can follow accurately what he is doing inside the patient’s body.
A wrong movement with a lead wire or catheter may cause serious harm
to the patient or even death. Hence, IGT systems philosophy of avoiding
interruptions of the image chain while there is a patient being treated. In the
equipment of interventional X-ray systems, there obviously is a serious need
for reliability.
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Figure 7.124 Image Guided Therapy Unit.

7.9.2 Data Platform

The existing data storage platform is outdated, not scalable, unstable, and
requires too much maintenance. The focus therefore is to transform the
existing platform towards a platform that adheres to the MANTIS Reference
Architecture. This is the foundation for all other activities in the project as
well for future activities. Figure 7.125 shows a high-level overview of the
implemented data architecture.

Healthcare Imaging Systems can upload their data via the Philips Remote
Services VPN. A Data Lake provides the high-volume storage required to

Figure 7.125 High-level overview of the data architecture.
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store large amounts of historical device files. The device files in the Data
Lake are processed by parallel ETL scripts to extract more useful information
that is then stored in a Data Warehouse. The Data Warehouse is also the
destination for structured data coming from administrative databases such
as MS SQL Server, SAP and Teradata. Data analytics can be performed on
the data stored in the Data Warehouse by using RapidMiner or programming
languages such as R, Python or Java.

The next sections provide more details on the individual elements of the
architecture.

7.9.3 Data Lake

Data from Healthcare Imaging Systems (Installed base) has been centrally
collected by Philips via the Philips Remote Services VPN and stored in
a Data Lake. The Data Lake is a component allowing low-cost secure
storage of large amounts of data. The current capacity is of a few hundred
terabytes but the system can be scaled out to multiple petabytes. It is
realized using a Spectrum Scale storage cluster with GPFS file system and
disaster recovery that is mounted as network shares on Linux and Windows
machines.

Approximately 3 years of data have been stored in the Data Lake.
Logically, the data lake space is divided in an archive and a live data-landing
zone. The archive contains all the historical data available while the live data-
landing zone contains the data received from medical devices that has still to
be processed.

Both the archive and the live data-landing zone are further divided per
imaging modality (e.g., Magnetic Resonance, IGT) and, within each imaging
modality, each medical device has its own space. Within the reserved space
for a medical device, the archive and the live data-landing zone are further
divided per year, month and day.

7.9.4 ETL Scripts

Although it is possible to run analysis scripts on the Data Lake, this is not
done very often due to the costs of developing parallel scripts and the lack
of interactivity. The preferred way to analyze the data is by interactively
querying a data warehouse that contains a pre-processed version of the
information contained in the log files.
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Log files come in many different file formats depending on the type of
equipment, type of log file, type of device and release. For example, IGT
equipment stores log events in textual format, parameters in a Microsoft
Windows registry format, and configuration information in XML. Magnetic
Resonance equipment produces log event files and parameters in textual
format, XML, and proprietary binary formats.

For each log file format, a parser has been developed or adapted from
existing tools to process the files and extract relevant data that can support
root cause analysis and predictive maintenance. Given the diverse nature,
formats and the large size of the log files from Healthcare Imaging Systems,
ETL scripts have been developed to extract known, potentially useful,
information from the log files. This information is stored in a Data Warehouse
along with structured data to enable the scenarios. The ETL scripts are
written in Java, Ruby, and Python and run on a cluster of computers that
uses TORQUE, a distributed resource manager for cluster management, to
parallelize the import operations. Each script is therefore written to support
parallel processing and be resilient to failures.

To this aim, two aspects are very important: idempotence and ensuring
correct data provenance. With idempotence we mean that an ETL script can
be applied multiple times to the same input file without resulting in the data
being imported more than once. This facilitates re-running ETL jobs that have
failed or partially failed. With data provenance, we mean that every record
in the Data Warehouse should have associated at least three key pieces of
information:

• A reference to the Healthcare Imaging System, preferably a direct
reference (e.g., serial number) that does not require joins with other
tables;
• The file it originates from with full path and last modification timestamp;
• The version of the ETL script that created the record;
• The date and time at which the record was created.

7.9.5 Data Warehouse

For the architecture, we choose a distributed column-based storage solution
(Vertica) that allows to store large amounts of data and to perform SQL
queries as if it were a “standard” relational database. The main characteristics
of the chosen data warehouse are the following:
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• Distributed: this allows scaling-out when more storage or speed is
required, increases robustness by replicating data on multiple nodes,
increases speed of access by storing multiple copies of the data and by
distributing load across nodes;
• Column-oriented: optimized for data access. Data is logically organized

in tables as in traditional relational databases, though on disk, the data
is stored “per column” instead of “per row”. This allows speeding up
queries by only reading the files of the columns involved in the queries;
• Advanced compression: aggressive compression of the data is used to

replace slow disk I/O for fast CPU cycles. Because the data is stored in
columns, different compression schemes can be used depending on the
property of a column (e.g., type, cardinality, order) achieving extremely
high compression rates;
• SQL-compatible: data can be retrieved using standard SQL queries and

via ODBC/JDBC connections. This makes it easy for the applications
and ETL scripts to upload data and for the users to retrieve it and
to perform data analytics. Additionally, structured data from existing
relational databases can be imported directly 1-1 without having to
change the data models.

Before designing and implementing ETL scripts, domain knowledge
experts and data scientists decide which information from device log
files they consider useful for further analysis. This is typically done in
an interactive way that involves interviews with R&D experts, gathering
of documentation and specification documents of the Healthcare Imaging
System, gathering and manual exploration of sample data as well as automatic
analysis to determine: structure, data types, data value boundaries, etc.

A “data model document” provides the specification of the ETL task as
well as the final format in which the data will be stored in the Data Warehouse.
Identifying the dataset to import is also part of the specification (e.g., which
files should be skipped or declared invalid).

After the data model document is approved by domain knowledge experts
and data scientists, the ETL is designed, implemented (this may include
porting or adapting an existing parser), tested and applied to the set of
historical device files. The resulting data is then verified using basic analytics
(e.g., checking data boundaries, number of records, etc.) and validated by
data scientists and domain knowledge experts. The process is repeated until
the desired quality level is achieved.
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Note that the data in the Data Warehouse is typically written once and read
multiple times. Unless the data needs to be corrected, updates and deletes will
be done rarely. Furthermore, due to the column-oriented nature of the chosen
Data Warehouse technology, the data models are de-normalized to achieve
fast access and simplify data analysis.

The data model document has also the function of data dictionary
documenting the definitions and the logic behind the records stored in the
Data Warehouse.

The ingestion in the Data Warehouse of structured data from existing
databases follows a similar process with the difference that instead of ETL
scripts, data loading scripts are written that use JDBC/ODBC connections or
simple CSV files to move sets of relational data from the sources to the Data
Warehouse.

7.9.6 Sensors

To monitor the performance of critical components in a Healthcare Imaging
System, intelligent components are developed. These intelligent components
sense and record their state in real-time. For components that have a wear-
out mechanism that would make them fail within the estimated lifetime of
a system, the known wear can be removed from computation by means of
calibration during planned maintenance activities. For the IGT equipment one
of these calibrations is automated in real-time with the use of an intelligent
function. There are more opportunities to automate calibrations in the future,
but therefore the required feedback loops need to be in place, which is not
always the case.

In the installed base, there are still many Healthcare Imaging Systems
that lack the required sensing for critical components. For those devices an
intelligent sensor, e-Alert sensor, has been developed. This stand-alone sensor
has embedded sensors to measure physical properties of the equipment or
environment, to process the signals and to send alerts. Such a sensor is not
available in the Healthcare Imaging System itself. The sensor is connected
to the healthcare facility network and can communicate via E-Mail and/or
SMS. Figure 7.126 shows the context diagram of the e-Alert sensor. In case
of unfavorable conditions that require a corrective action to resolve the issue,
messages can be sent directly to customers as well as to service engineers.
Next to that, the e-Alert sensor can be connected to the Philips Remote
Service Network. The e-Alert sensor uploads sensor logs and alert logs to
Philips Remote Service Network, where the data is stored and pre-processed.
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This data is accessible via a Philips Remote Service portal to enable Philips
to determine operational profiles (aggregated or on e-Alert sensor level). This
information is used to define control limits to keep the Healthcare Imaging
System in optimal operational condition.

7.9.7 Analysis and Decision Making Functionalities

The next sections explain on high level some topics with respect to analysis
and decision making functionalities. First, the scoring of predictive models
using live data, data sources and data preparation steps for the Log Pattern
Finder is explained. Then physical modeling of a unit that dominantly fails
due to wear-out, and finally a mathematical model that optimizes the decision
making process of remote service engineers in the presence of imperfect
failure alerts.

7.9.7.1 Predictive model deployment and live scoring
The data ingested in the data warehouse is used to develop predictive models
for particular failure modes. Predictive models are software programs that
take as input “live” and “historical” data from a Healthcare Imaging System
and calculate a probability of failure of a certain component or group of
components within a given period. Predictive models can be based on simple
and static rules and thresholds when the failure modes are well understood
and can be easily modelled with the data provided by the Healthcare Imaging
System. In the case of static rules and thresholds, historical data is typically
used to choose the best threshold values that minimize the false positive rate
while providing a high number of true positives.

Very often, simple and static rules and thresholds are not sufficient to
predict failures with the desired level of accuracy. In these cases, statistical
learning is applied. A machine-learning algorithm, such as a neural network
or a support vector machine, is trained on a historical dataset until it reaches
sufficient predictive performances on historical data.

Once a predictive model has been developed (and trained or tuned with
historical data), the model is deployed in a Quality Assurance environment
where it is scored daily with new data coming from the Healthcare Imaging
Systems in the field. The results of the models, called “alerts”, are stored
in the data warehouse for being consumed by a web application called
the “remote monitoring dashboard” where a team of remote monitoring
engineers evaluates them for their accuracy and predictive power. During this
evaluation, the remote monitoring engineers check whether an alert actually
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corresponds to a situation of imminent failure using all the knowledge at their
disposal. Furthermore, the remote monitoring engineers provide feedback
to the model development team on the text and plots to be used in the
alerts in order to make them more actionable and easier to understand. The
model development team uses the feedback of the remote monitoring team
to improve the predictive models until the alerts they generate in Quality
Assurance are deemed good enough for being promoted to production. At
this stage, a predictive model is deployed into production and its alerts are
displayed in the production remote monitoring dashboard. These alerts are
used to create the actual proactive cases for Healthcare Imaging Systems in
the field.

7.9.7.2 Log pattern finder data
In the previous section, we have seen how predictive models can be developed
and used within the data processing architecture. A particular set of models
that is useful in this context are the so-called log patterns. A log pattern is a
logical sequence of log events that correlates with a particular failure mode.
Ideally, we would like to be able to discover log patterns automatically using
data. In this section, an approach for automatically finding log patterns is
described.

7.9.7.3 Data sources
For the log pattern finder for IGT equipment, we make use of various data
sources. The primary data source is the calls data source. As the objective
is to find reactive patterns, we make use of a calls table to identify (i) the
time of the call, (ii) the system to which the call applies, (iii) the parts that
were replaced, if any, and the log events that were generated by the identified
system during a time window prior to the call. These four data sources are
linked as shown in Figure 7.127, where an arrow from data source A to B
indicates that one or more fields from an entry in A are used to identify the
proper entry or entries in B.

For any call, there is always a single associated Healthcare Imaging
System, but there may have been various parts replaced, depending on the
outcome of a root-cause analysis by the service engineers. There are also
calls where no part has been replaced, but other actions have been undertaken
to resolve the issue. We do not consider these and concentrate on those calls
where at least one part has been replaced.

For collecting the appropriate set of log events, we use various methods,
ranging from taking a fixed observation interval of n days prior to the call in
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Calls Log Events 

Systems

Parts

Figure 7.127 Overview of the main data sources used.

order to retrieve a set of log events to more carefully selecting an observation
interval containing a sufficient number of log events.

7.9.7.4 Inspect and normalize the data
It was necessary to invest quite some time into getting to “know” the data.
Blindly applying an algorithm to the data is usually not a good idea. For
example, for log events only a portion of the available fields is used to
obtain a concise representation of an event. This approach, however, results
in millions of different log events, a situation that is not appropriate in the
current context. We discovered that event ids with multiple descriptions are
present. The main reason for this is that these descriptions contain numbers,
dates, times, ip-addresses and such. As these numbers are most likely not
interesting, a normalization step is applied to reduce the number of different
descriptions. A specific filter has to be created for each specific issue. These
filters are handcrafted, based on the inspection of numerous descriptions.

As another example, there is the issue of dates and times. As the
Healthcare Imaging Systems are located in many different countries, one
inevitably has to investigate how time is represented in the data coming from
the various countries. This encompasses time zones, daylight savings time,
and the use of local time without any time zone. Especially for identifying
the proper log events, the call-open date is used, so the time information for
log events and calls should be encoded in the same way.
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7.9.7.5 Data pre-processing
As retrieving a complex set of data from various large databases can be quite
time consuming, we decided to implement a pre-processing step to generate
intermediate data, stored in easily accessible files. In particular, for a certain
configuration (e.g., a time window, a selected set of system codes and system
releases and the (maximal) length of the observation interval) we determine
for each part replaced, during a call that opened in the given time window,
details of all part replacements during this time window. These details include
the system for which the replacement was done, the exact system release,
various parameters and, finally, all the log events that occurred.

Although we do not consider calls wherein no part has been replaced, we
do generate data for these calls, as their contribution in all calls is significant.
We do this by creating a virtual part “NO PART” and treating all calls
without any part replacements as if this “NO PART” has been replaced. By
consistently doing this during the pre-processing step, we already prepare
ourselves to look in more detail into these calls.

As this pre-processing is only done once for each configuration, much
time is saved and the time required to run the experiments is greatly reduced.

7.9.7.6 Data representation
Finding log patterns entails combining the occurrence of combinations of log
events during an observation interval and the replacement of a specific part
during the associated call. To enable an efficient implementation, we decided
to encode calls, together with their observation intervals, as integers, meaning
that one integer is used to encode both a call and the associated observation
interval. In this way, a part p can be represented by a set of integers, i.e., those
that encode calls in which p has been replaced. A log event e can analogously
be represented as a set of integers, i.e., those that encode observation intervals
in which e has occurred. Note that log patterns in general can be represented
in exactly the same way.

This representation of parts and log patterns allows efficient computation
of all kinds of logical operations. For example, all calls wherein part p
has been replaced and before which log event e has occured is represented
by the intersection of their respective sets. A log pattern AND(E1, E2)
is also represented as the intersection of the representation of its two
arguments.

Another advantage of this representation is that, by precomputing a
fingerprint for each part and log pattern, checking equality can be done very
efficiently. Concatenating the integer elements of a set in a string in increasing
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order, separated by an appropriate character, allows string comparison to be
used. This will be further elaborated upon in the next subsection.

In addition, log events are encoded to allow efficient computation. The
encoding is by using integers, prepended with the letter E. This allows quick
comparison of log events, as well as a concise notation of log patterns. It is
noted that especially the additional info field can be as large as a few KBs,
so that a concise representation not only aids in readability, it can potentially
save a considerable amount of memory during computations.

7.9.7.7 Equivalent log patterns
When two log patterns have the same representation in terms of their sets or
fingerprints, they are called equivalent. This is handy when looking for log
patterns: of the equivalence classes that can be created by this equivalence
relation, only one representative needs to be used, as the others will give the
same results. This can significantly reduce the number of log patterns to be
searched through when looking for good log patterns, and even more when,
testing for a limited number of hypotheses, the total number of log patterns
to be taken into account gets small.

Although two equivalent log patterns give the same results, this does not
mean that they are equivalent in every sense. A service engineer may make a
distinction between two log patterns based on the available information. It is
also important to mention that this equivalence relation depends on the dataset
at hand. On a different dataset, e.g., the test set, they may not be equivalent.
Therefore, they may have differing performance. A service engineer may be
able to identify the most suitable candidate from an equivalence class to act
as representative. Of course, multiple log patterns from an equivalence class
can be selected.

7.9.7.8 Log pattern selection problem
Once candidate log patterns have been identified, they will have a certain
performance in terms of the number of true positives (TP) and false positives
(FP) found in the training data. During the search for log patterns, these
numbers have been subject to a number of constraints in order to generate
log patterns of sufficient quality.

Part of the functionality of the log pattern finder is the false-positive
analysis. Once, for a given part p, a log pattern with sufficient quality in
terms of the number of true positives (TPs) and a sufficiently low false
discovery rate (FDR) has been identified, an important and useful exercise
is to investigate why a false positive (FP) ended up as such. This gives us a
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better insight into the issues that caused these false positives and allows us to
improve the log pattern finder.

7.9.7.9 Design decisions
In order to limit the wide spectrum of possibilities, we have made a
number of simplifying assumptions and design decisions. The most important
one is choosing a fixed observation interval length of one day. This
has disadvantages, but we have experimented with longer intervals, and,
although the results are different, they were not significantly better. Currently,
investigations into choosing a proper observation interval length are ongoing.
Note that the observation interval length could be chosen differently for
different parts.

Another important decision is that we look at binary occurrences rather
than frequencies of occurrences. In other words, either a log pattern occurs or
it does not occur during an observation interval. We also do not consider the
ordering of individual log events in a log pattern containing more than one
log event. Yet another decision is not to apply processing on the description
and additional info other than normalization.

Further, we restrict ourselves to log events that only occur a limited
number of times, i.e., at most 400 times per year. This is a heuristic that
we introduce to deal with the issue of significance of individual log events in
a log pattern. We could have been stricter by also here considering p-values,
but this is for further investigation.

Finally, we adopt a file naming approach in order to facilitate the
management of these files. Although seemingly unimportant, we prepend all
generated files with a timestamp, so that the order in which they are generated
can be reflected in the directory and files are never overwritten. We use one
timestamp for each individual run of the software, so that multiple runs can
be performed in parallel.

7.9.7.10 Output
As output, we create files for individual parts and list all patterns found,
their performance, their equivalents, as well as the results of the FP-analysis.
We also report on the number of possible, allowed and actually generated
hypotheses. In the end, the individual log patterns are combined into an
overall log pattern, consisting of ORs of ANDs of individual log events.
Several dozen of these log patterns are now actively monitoring thousands
of Healthcare Imaging Systems daily and a few dozen are still under
development.
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7.9.7.11 Failure prediction
To come to a prediction, research is done on neural networks and their
capability to predict failure of a specific component, a high power amplifier
in equipment of the Business Unit Magnetic Resonance.

A neural network algorithm is used to predict failures in the high power
amplifiers, based on system utilization data and power amplifier demands. For
this purpose, utilization and demand data prior to an amplifier replacement
was compared to utilization and demand data after an amplifier replacement.
Data prior to amplifier replacement is considered as Failure data whereas
data after an amplifier replacement is considered as Good data. The Failure
data is gathered from a period of 17 days prior to device failure to 4 days
prior to device failure. The Good data for period of 13 days is collected after
10 days of part replacement. Please refer to Figure 7.128 for a summary of
the timeline for data collection. The cooling period masks the uncertainty in
dates where the amplifier was actually installed and masks potential “burn-in”
related failures.

The problem of fault prediction is here onwards addressed as a
classification problem where, the model reads 13 days of historical data and
predicts if it is Failure data or Good data. If it is predicted as Failure data, then
it is more likely that the device is going to become faulty at least after 4 days
and if it is predicted as Good data, the device is less likely to become faulty in
the next few days. The dataset covers 219 amplifier replacements in a period
of 1.5 years (July 2015 until the end of 2016). However, due to connectivity
issues, we have got data for 134 systems only prior to amplifier replacement,
and data of 154 machines only after amplifier replacement. Summarizing, we
have 134 failure data points and 154 good data points. For each replacement,
16 features (F16) have been defined. Hence, the total data set consists of
(134 [replacements] + 154 [Good]) * 16 [features] * 13 [days data/features]
= 59.9k feature points. The data points are ordered as a single dimensional
array (1D) (see Figure 7.129). The 1D arrays are formed by lexicographical

Figure 7.128 Timeline of gathered categories of data from a single system.
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Figure 7.129 Conversion of features into arrays.

ordering of the above features where F1 D1 denotes first feature recorded at
Day 1.

The neural network used in this research is an Artificial Neural Networks
(ANN), where the input is fed as a single dimensional array. The ANN used
consists of 7 fully connected layers. The initial 6 layers consist of 50 neurons
and a relu activation function and the last layer consists of two neurons and
a softmax activation function. The network consists of two dropouts. The
initial dropout in forward direction drops 25% of the features and the next
dropout eliminates 50% of the features. This helps the network to develop a
generalization that prevents overfitting. Once trained, the output layer of the
model returns a probability of how it is likely that the device corresponding
to the input data fails.

The data is split into training and testing sets at a proportion of 70% of
samples and 30% of samples respectively. The ANN architecture, represented
in Figure 7.130 was built and the training data was used to train it for 20,000
epochs. Figures 7.131 shows the learning curves (accuracy, loss, validation
accuracy, validation loss) for increasing epochs of the ANN architecture.

It was necessary to train for 1500 epochs to attain the target accuracy
of 95% over 1000 epochs. It can also be observed that the learning late
curves are oscillatory in nature. This is because of the dropout which helps to
reach a higher level of generalizability for the model. The resulting validation

Figure 7.130 ANN Architecture.
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Figure 7.131 Learning curves.

accuracy is 67%. Subsequently, the algorithm was fed with data from the
years 2016+2017, covering more power amplifier replacements. The resulting
validation accuracy is 54%; we could not achieve better validation accuracy.
This is understandable since the number of amplifier replacements is still
limited and deep learning architectures generally require thousands to obtain
a generalised model. However, the ability of the deep learning architectures to
perform satisfactorily on the limited data is promising. Additional work will
be carried out to collect more data in order to achieve a validation accuracy
of more than 90%.

7.9.7.12 Physical modeling
This section will reflect on the 10-step method used to come to a RUL
prediction for the X-ray tubes. X-ray tubes are the most expensive parts to
replace of IGT equipment and they are as such a major concern for the service
organization. It is known that X-ray tubes are subject to wear-out, so it can
be expected that they fail after some usage. Because of the major impact (in
terms of downtime and cost) of an X-ray tube replacement, it is important to
understand the failure of X-ray tubes better in order to improve the service to
customers.
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Step 1: Weibull analysis
As a starting point, do a Weibull analysis of the failures of the unit you want
to make a RUL prediction for. The presence of a significant wear-out means
that a RUL prediction is feasible. Next to working on the prediction of the
wear-out, a second activity should be started to eliminate other failure modes
as much as possible.

Step 2: Identify the responsible failure mode
The Weibull plot for the unit only tells whether there are failures due to wear-
out, but not which is the related failure mode. After a candidate failure mode
is found, a Weibull plot for just that failure mode should confirm that this
is indeed the failure mode responsible for wear-out. As a rule of thumb, at
least 80-85% of the failures should be related to wear-out in order for the
prediction to be useful.

Step 3: Gather knowledge about the physics of the failure mode
X-ray tube cathode filaments wear, because they are heated to a high
temperature during an X-ray run to emit sufficient electrons to produce the
desired X-ray dose, but the heat causes the Tungsten, the material they are
made of, to evaporate. Over time, a hot spot forms where heat and evaporation
are exponentially increased until the material melts at the hot spot resulting
in the opening of the filament. Understanding the stress and having a damage
indicator at hand are two prerequisites for finalizing this step and continue
with the next step in the method.

Step 4: Establish the relationship between stress and damage
indicators and an end criterion in controlled experiments
Controlled experiments can be performed in the lab or in the field, but they
usually require extra instrumentation. The controlled experiments will allow
modeling a first order relationship between damage and stress for the unit,
without the interference of secondary influences. These will appear later in
the field, but can be recognized by comparing them with the first order model.

Step 5: Measure variables with a strong relationship to the stress
and damage
Sometimes stress and damage can be measured directly, but often only
indirect methods are available in the field. Make sure that the relation between
the field data and the variables in the wear model are well established and
understood.
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Step 6: Collect, plot, and monitor the data
Once the field data becomes available, they can be collected and plotted. To
be able to predict the amount of time that is left before a failure, you need
to know how much wear is accumulated per time unit. A convenient way
to represent the data is a (Damage/Load/Time) DLT plot. An example of a
DLT-plot is given in Figure 7.132.

In Figure 7.132, the blue curve represents the ln(c-factor) against the
linear wear (damage vs. load). This curve is called the wear curve. The
orange curve represents the linear wear against calendar dates (load vs. time).
It is remarkably straight for this particular DLT plot, indicating this user
on average keeps on using the system in the same way every day over a
long period of time. The blue curve is called the usage curve. At this stage,
it is important to look for anomalies in the data, be able to explain these
anomalies, and see if the failure is actually close when the wear curve starts
to bend.

Step 7: Segment the usage curve
The usage curve in Figure 7.132 shows a relatively straight line for the linear
wear against time plot. There are examples, where the usage curve changes
significantly as can be seen in Figure 7.133.

When the usage changes, the best predictor for the future will also change.
A change in usage depends on human decisions. In our case, it is related to
the number of patients being treated on the system per unit time, the type of
treatments, the availability of staff and all kinds of causes that would make
the use of the system fluctuate. Therefore it is necessary to look for significant
changes in the usage and adjust the prediction when such a significant change
is detected. This can be done and tuned just based on the shape of the usage
curves themselves.

In Figure 7.133, the dashed line represents the prediction of load at a
particular time considering the usage change. In this particular case, the usage
curve was segmented in two segments and the dashed line is based only on
the second segment and obtained by means of linear regression.

Step 8: Collect sufficient wear curves to failure and establish an
end criterion
When sufficient units have actually failed with reasonable certainty that they
failed with the failure mode related to wear-out, the ends of their wear curves
can be used to establish values for end criteria. In step 4, the variable for the
end criterion is selected. In our case, this is the slope of the wear curve. When
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sufficient units have worn out, an average value at which failure happens can
be established. This may not be necessary in all cases, for instance there may
be a limit value already defined (like a minimum profile depth of a car tire).

Step 9: Predict the wear curve progression for curves
approaching failure
Once the end criteria are found, predictions can be made for units
approaching failure.

Step 10: Assess the prediction stability
As time goes by, more data will be available and this will have influence on
the prediction. At a certain moment, the prediction should however become
more or less stable.

7.9.7.13 Maintenance and inventory optimization
Philips Healthcare is interested in developing a cost effective proactive
maintenance strategy, relying on mathematical tools for statistical life-cycle
and reliability analysis. The goal is to come to the optimal planning of
maintenance and related resource planning. This consists of two different
elements:

• Develop maintenance optimization models that can be used to make
a balanced tradeoff between the cost of a failure and the cost of
proactive maintenance, taking the uncertainty in the prediction models
into account;
• Create a decision support system for remote monitoring engineers to

come to the business optimal decision, and to guide them on what to do
in case of imperfect predictions.

In addition to providing a recipe for the remote monitoring engineers to
follow, we expect that the maintenance optimization model will also shed
light on how much can be invested in improving the predictive/proactive
models, i.e., the value of improved predictive/proactive models will be
revealed by comparing the optimal expected costs under different levels of
imperfectness in alert predictions.

7.9.7.14 Model and analysis
This section describes the creation of a mathematical model that supports
remote monitoring engineers in their proactive maintenance decision making.
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The model should support in the decisions that follow on an alert raised by
predictive models. Whenever an alert is seen, a remote monitoring engineer
needs to decide whether to create a case or to reject the alert.

Decision variables
As reported in Table 7.3, there are two decision variables in the model:
a represents the decision to create a maintenance case and y represents
the decision to combine the case with an already scheduled maintenance
activity.

Table 7.3 Decision variables of the model
Decision variable Notation
Initiate maintenance actions a ∈ {0, 1}
Combine with next maintenance activity y ∈ {0, 1}

Model parameters
Table 7.4 summarizes all the parameters used in the model to support the
remote monitoring engineers.

Table 7.4 Parameters used in the model
Parameter Notation
No Facility Systems Engineer on site m ∈ {0, 1}
No open case o ∈ {0, 1}
Customer contract v ∈ {0, 1, . . . , 6}
Outside working hours coverage owh
Costs of downtime per unit time cd
Downtime compensation ccdt ∈ {0, 1}
Customer’s region monitored by RME r ∈ {0, 1}
Expected costs of PdM cPdM

Expected costs of PdM combined with PM c′PdM

Expected costs of CM ccm
Expected costs of diagnostics cdiagnostics

SLA Response time for contract V Trv
Estimated time for diagnostics tdiagnostics

Estimated repair time tr
Time to next Planned Maintenance tsm
RUL X
Time to on-site maintenance Tos

Probability that the alert is true P
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Alert 1. Failure          Maintenance          2. Failure 

 

 

Figure 7.134 Timeline of Events (1: failure occurs before maintenance, 2: maintenance
occurs before failure).

Timeline of events and probabilistic scenarios in the model
The model includes two random variables, X and Tos. These variables
measure the time from the alert arrival to the failure and on-site maintenance,
respectively (see Figure 7.134). When the remote monitoring engineer
decides to create a case, the local service organization schedules the
maintenance activities to resolve the case. Since X is random, we have to
distinguish several scenarios when a case is created (see Table 7.5).

A proactive case is scheduled on Tos when a = 1, y = 0, and Tos < tsm.
We assume that if the realization of Tos is greater than tsm, the LSO makes
the decision to combine the case with the already scheduled maintenance case
on tsm. It makes no sense to execute the case later than this moment because
it will lead to an additional visit and costs. Therefore, a proactive case is
scheduled on tsm when a = 1 and y = 1 or when a = 1, y = 0, and
Tos > tsm.

The equipment can fail before the case is solved. This happens ifX < Tos
when the case is scheduled on Tos or if X < tsm when the case is scheduled
on tsm. The downtime is equal to the response time plus the repair time when
the equipment fails before the case is solved; corrective maintenance (CM)
costs are incurred.

The proactive maintenance case can also prevent a failure. This happens
when X > Tos or X > tsm. The downtime is equal to the repair time and
proactive maintenance costs are incurred. Costs of c′PdM are incurred if the
proactive case is combined with another case, and costs of cPdM are incurred
when the proactive case is not combined with another case.

When no case is created and the equipment fails, CM and diagnostic costs
are incurred because the local service organization did not receive a case. The
problem needs to be diagnosed first because the problem is unknown, when
the customer calls. In this situation, the downtime consists of response time,
time for diagnostics and repair time.

When the remote monitoring engineer decides to create a case, it is always
possible that the alert was false. The local service organization discovers that
the alert was false and costs of cFP are incurred in such a scenario.
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Mathematical formulation of the model
After an alert arrival, the remote monitoring engineer has to make the decision
such that the expected costs and downtime are minimized. We define two
objective functions. The first one aims to minimize the expected costs, and
the second one is used to minimize the expected downtime:

Min E [C] = a · (1− y) · E [Ccase] + y · E [Ccombine]

+ (1− a) · E [CSNAR] + ccdt · E [D] · cd (7.11)

Min E [D] = a · (1− y) · E [Dcase] + y · E [Dcombine]

+ (1− a) · E [DSNAR] (7.12)

s.t.
a ≤ r, o, m, v (7.13)

y ≤ a (7.14)

a, y ∈ {0, 1} (7.15)

Equation (7.4) represents the minimization objective of the expected costs
because of the decisions made by the remote monitoring engineer. E [Ccase]
represents the expected costs of creating and sending a case to the local
service organization (a = 1, y = 0). E [Ccombine] represents the expected
costs of creating a case and suggesting to combine it with an already
scheduled case (a = 1, y = 1). E [CSNAR] represents the expected costs
of SNAR (a = 0). The expected downtime costs are represented by ccdt ·
E [D] · cd and are only incurred when the customer is entitled to downtime
compensation (ccdt = 1).

We can calculate the expected costs of each action by summing the
multiplications of scenario probabilities for that action with the associated
costs. These expected costs expressions for the different actions are given
below:

E [Ccase] = P · (ccm · (Pr (X < Tos, Tos < tsm) + Pr (X < tsm, Tos > tsm) )

+cPdM · Pr (X > Tos, Tos < tsm ) + c
′

PdM

·Pr (X > tsm, Tos > tsm) ) + (1− P ) · cFP (7.16)

E [Ccombine] = P ·
(

(Trv + tr) · Pr (X < tsm) + c
′

PdM · Pr (X > tsm)

+ (1− P ) · cFP )

E [CSNAR] = P · (ccm + cdiagnostics) (7.17)
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Equation (7.5) represents the minimization objective of the expected downtime.
E [Dcase] represents the expected downtime of creating and sending a case to the
local service organization (a = 1, y = 0). E [Dcombine] represents the expected
downtime of creating a case and suggesting to combine it with an already scheduled
case (a = 1, y = 1). E [DSNAR] represents the expected downtime of SNAR
(a = 0). We can calculate the expected downtime of each action in the same way
as the expected costs. The expected downtime expression for each action are given
below:

[E [Dcase] = P · ((Trv + tr) · (Pr (X < Tos, Tos < tsm) + Pr (X < tsm, Tos > tsm) ))

+ tr · (Pr (X > Tos, Tos < tsm ) + Pr (X > tsm, Tos > tsm) ) (7.18)

E [Dcombine] = P · (ccm · Pr (X < tsm) ) + tr · Pr (X > tsm)

E [DSNAR] = P · (Trv + tr + tdiagnostics) (7.19)

Equation (7.6) makes sure that an alert is SNARed if, the customer’s region is not
monitored (r = 0), the customer has no contract (v = 0), the Facility Systems
Engineer is already on-site (m = 0), or there is already a maintenance case
opened for the system (o = 0). Alerts with such characteristics should be SNARed
automatically.

Equation (7.7) enforces that a case can only be combined with an existing case
when the remote monitoring engineer decides to create a case for the alert.

Equation (7.8) ensures that a and y can only take binary values.

7.9.7.15 Results and insights
The model is implemented in a case study for flat detectors, which converts X-ray
into electrical signals. Since we have two objective functions, there is not always
a single solution for the optimization problem. Lower costs can result in higher
downtimes. The remote monitoring engineer can take three different decisions:
(i) SNAR the alert (a = 0), (ii) create a case (a = 1, y = 0), or (iii) create a
case and combine it with an already scheduled case (a = 1, y = 1). The model aims
to evaluate all three options in terms of expected costs and expected downtimes. The
output of Model 1 consists of a summary of each option with the expected costs and
downtime of each option. This gives the remote monitoring engineer support in their
decision making because they can account for the possible consequences of their
decisions.

With the Flat-Detector-specific default values, creating a case is the optimal
decision to make by the remote monitoring engineers. In Figure 7.135, we see that
the optimal action outperforms the other actions in both expected costs and expected
downtime at a specific value of the model parameter P.

Notice that Figure 7.135 is made for a credible alert with P = 0.8. If we use the
same input values but set P to 0.15, we receive the plot in Figure 7.136. It can be
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Figure 7.135 Model output default values for flat detector with P=0.80.

seen that there is no optimal decision to make. No action outperforms all others in
terms of both expected downtime and expected costs. Create a case is the best option
in terms of costs while combining the case is the best option in terms of downtime.

If we vary P from 0 to 1 with steps of 0.01, we receive the plots in Figure 7.137
and Figure 7.138. We observe the existence of a probability threshold for creating a
case.

We next evaluate the influence of the service contracts on the optimal decisions
according to the model. We create three fictitious customers, which we refer to as
Customer A, Customer B and Customer C. Customer A has a contract with the
most extensive entitlements. Customer B has a contract with no coverage options.
Customer C has the most basic service contract.

Figure 7.136 Model output default values for flat detector with P=0.15.
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Figure 7.137 Influence of P on expected costs in flat detector case.

Figure 7.138 Influence of P on expected downtime in flat detector case.

We vary P to find out if different probability thresholds exist for different types
for customer. Figure 7.139 shows the influence of P on the expected costs and
downtime for the different types of customers.

We observe that the expected costs incurred for Customer A are the highest.
This is due to the compensation of downtime received by this type of customer.
The expected downtime of all actions is the lowest for Customer A. The reason
behind this is that shorter on-site response times are offered to customers with
higher contracts. After a customer call, the field service engineer is faster on-site
to conduct maintenance on the failed equipment. In addition, the customer is entitled
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Figure 7.139 Influence of P on expected costs and downtime for different customers.

for maintenance outside operating hours. For Customer B and C, the expected costs
of each action are equal. The value ccdt is the only customer-specific parameter that
influences the expected costs.

7.9.7.16 Visualization and HMI
Two HMIs were created related to the Philips Healthcare use case. One related to
the development of the e-Alert sensor and one to assist the remote monitoring team.
Both are explained in the sections below.
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7.9.7.17 E-Alert portal
The e-Alert sensor provides a web-based user interface to configure sensors and
to configure the control limits. When the healthcare facility allows it, the staff
of the healthcare facility can access the user interface of the e-Alert sensor.
This user interface provides capabilities to view the history of sensor values to
support root cause analysis. Service engineers can also access the user interface
of the e-Alert sensor. The user interface provides capabilities to view the history
of sensor values, to configure the control limits and to update the embedded
software.

Each e-Alert sensor is able to upload its sensor logs and alerts to the Philips
Remote Service Network. A portal (see Figure 7.140) has been developed to gain
access to these logs and alerts for offline data analysis. This enables Philips to
determine operational profiles, specific to the Healthcare Imaging System where the
e-Alert sensor is connected. This information can be used to fine-tune the configured
control limits for that specific Healthcare Imaging System to keep it in optimal
operational conditions.

7.9.7.18 Remote monitoring dashboard
A dashboard to created, to provide an overview of all Health Imaging Systems that
generated an alert for the remote monitoring engineers. On the highest level of the
dashboard an overview of all alerts is presented, as shown in Figure 7.141.

When one of the alerts is selected, a detailed report is presented (see
Figure 7.142). This report contains all details for the related Health Imaging System

Figure 7.140 Portal to gain access to e-Alert sensor data.
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Figure 7.141 Remote monitoring dashboard high level overview.

Figure 7.142 Remote monitoring dashboard detailed report.

like system type, model version, software release, alert history, parameter trends, and
maintenance history. This will support the remote monitoring engineer to be able to
take further action. When further action is required, the remote monitoring engineer
can directly initiate a service work order. Depending on the urgency of the service
action, the engineer can combine it with an already scheduled appointment.
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7.9.7.19 Conclusions
For the Philips Healthcare use-case, quite a lot of effort has been spent on the data
storage platform and the analysis and decision making functionalities of the Mantis
project. Having a large set of historical data already available, made it possible to
make a lot of progress from the start. It also made the cooperation much smoother
with both our main research partners, Philips Research and the Technical University
of Eindhoven, because from an early stage we were able to share data. In our case,
the misconception that only providing data eventually will lead to results is once
again proven true. Without decent domain knowledge, it is virtually impossible to
get usable results. Besides explaining the research partners what all the available data
means, domain knowledge is also needed to review and filter possible outputs. This
means that in the beginning intensive collaboration is required to get the research
partners up-to-speed, followed by frequent updates. This is something that needs to
be taken into consideration.

The Philips Healthcare use case featured a few challenging topics and goals
set at the beginning of the project. Most of them were realized. The data storage
platform is mature and ready to be extended, sensors and intelligent functions have
been designed, and a considerable amount of predictive and proactive models has
been created. All the different aspects combined, resulted in a remote monitoring
capability. We envision that, from 2018 onwards, one in every five system service
events worldwide will be triggered by careful analysis of system data – and will
therefor take place before any major issues arise. This maintenance can also be
planned so there is no disruption to the workflow.
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As stated by Brisk Insights market analysis [Brisk Insights, 2016] the global
operational predictive maintenance market will grow at a CAGR of 26.6%
within 2016–2022, foreseeing a total market value of 2.900 million by the
end of such period. This will be certainly boosted by the IIoT market rise,
which is growing at a CAGR of 42%, and will act as an enabler for its rapid
industrial penetration. One of the key sectors (among all industries), in which
predictive maintenance will make a huge difference will be manufacturing.
The European manufacturing sector accounts for 2 million companies and
33 million jobs, representing the 15% of the total European GDP. With the
aim of increasing this contribution to 20% by 2020, European manufacturing
industry faces a huge but promising challenge, given industry’s potential
in jobs and growth creation. However, industry’s share in the European
GDP has declined during the last years, mainly due to a deceleration of
global investments, market uncertainty and production offshoring to low-
cost countries. This applies to all actors of the manufacturing value chain,
involving production asset end users, asset manufacturers and asset service
providers.
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In order to cope with that, the full digitization of European industrial
ecosystems has been stated as the foundation upon which competitive-
ness goals will be achieved. Within this framework, predictive maintenance
accounts for a huge improvement potential to all actors mentioned: rel-
evant productivity increase (asset end users), new revenue streams with
higher profit margins (asset manufacturers) and new business opportunities
based on analytics (asset service providers). According to McKinsey, pre-
dictive maintenance in factories could cut maintenance costs down by 10
to 40 percent, leading to manufacturers savings of 215 to 580 Billione in
2025 [McKinsey, 2015], resulting from reduced downtimes and minimized
manufacturing defects among others. Despite this clear potential, mainte-
nance strategies in place still rely on ineffective corrective and preventive
maintenance actions, which have a high impact on productivity (higher pro-
duction costs, delays on delivery, customer dissatisfaction, etc.). Not only
available shop floor data and production assets behavior knowledge is under-
utilized, but also new businesses generation along the value chain is heavily
hampered.

Regarding technology, there are several reasons behind the lack of
adoption of predictive maintenance across European industries:

• Production systems complexity: the majority of European industrial
facilities is shaped by very heterogeneous assets, being the asset end
user unable to gather deep knowledge about the behavior of each asset
(expertise often retained by the asset manufacturer);

• Lack of interoperability among different assets: afraid of the possi-
bility of having a 3rd party providing services on their production assets,
asset manufacturers often apply vendor lock-in solutions to their prod-
ucts. This results in a huge IT integration work required to connect them,
usually preventing end users from implementing predictive maintenance
solutions;

• Non-reliable prognostics estimates at a system level: even though
successful prognostics applications have been deployed at component
and sub-system level, asset end users interest focuses on increasing the
availability of the whole system, which has a direct impact on com-
petitiveness. Thus, the lack of real prognostics and health management
systems demonstrated at industrial level derives from a reluctance in
early adopters.

In order to overcome those limiting factors, there is a clear need of bring-
ing together all value chain actors (gathering real-time data, asset behavior
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knowledge and analytics expertise); as well as taking advantage of advanced
analytics technologies already applied in a wide range of sectors. This
will enable to match predictive management system capabilities with real
industrial needs, achieving downtime minimization and OEE maximization
at a system level. Besides all above, several non-technological challenges
(such as corporate culture) prevent the penetration of predictive maintenance
technologies across industries. This applies especially to SMEs, being the
most relevant the following challenges:

• Uncertain RoI: industrial CAPEX plans are fully subject to their
expected profitability, usually in a short-term (depending on the com-
pany’s balance sheet, often 2–3 years). Since the implementation of
such predictive maintenance systems may imply investing in data acqui-
sition, industrial communications and advanced analysis technologies
(mainly regarding old production assets), companies often opt for more
profitable investments (e-g purchasing new machinery, which leads to a
direct productivity improvement);

• Required skills: despite the high level of automation in place in most of
the European industrial companies, the implementation of Industry 4.0
(within which predictive maintenance is located) is currently requiring
a shift from classical operators to highly analytical profiles. Industrial
HMIs usually do not take advantage of available technologies such as
adaptability, self-learning features, etc., resulting in workers frustration
by not showing the right information to the right people.

8.1 Maintenance Present and Future Trends

Ever since asset failures have caused downtimes and extra costs, accidents
or inefficiencies, businesses have supplied material and human resources to
minimize their impact and avoid their re-occurrence. These resources have
been different depending on a) the harm to be avoided, b) impact on the
balance sheet and Profit & Loss Statement, or c) competitive threats that
hinder business survival causing very different grades of implementation
depending on the sector and the type of asset.

Current approaches try to preserve function and operability, optimize
performance and increase asset lifespan with optimal investments. This
approach is the result of a significant evolution through time. According to
some authors, four maintenance generations can be distinguished and each
represents the best practices used in particular periods of history, as depicted
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in Figure 8.1 or Figure 8.2, both from [Cristián M. Lincovil B and G. Ivonne
Gutiérrez M, 2006]

Towards the end of the 90s, the development of 3rd generation mainte-
nance included:

• Decision-making tools such as risk management and error analysis;
• New maintenance techniques like condition monitoring;
• Design, with special relevance on reliability and ease of maintenance;
• Wide-reaching organizational changes looking for employee input,

teamwork and flexibility.

The new approach of the fourth generation is centered on failure elimina-
tion using proactive techniques. It is no longer enough to eliminate failure
effects but to pinpoint the root causes of malfunctions and avoid their
re-occurrence.

Additionally, there are growing concerns about equipment reliability and
thus maintenance is gaining more relevance starting from the design phase of
the project. Also, it is very common to implement continuous improvement
systems regarding preventive and predictive maintenance plans, applied to the
planning and execution of maintenance.

Apart from the mentioned characteristics, there are other aspects whose
importance had gotten considerable greater:

Figure 8.1 Main maintenance objectives evolution [Cristián M. Lincovil B and G. Ivonne
Gutiérrez M, 2006].

Figure 8.2 Evolution of maintenance techniques [Cristián M. Lincovil B and G. Ivonne
Gutiérrez M, 2006].
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• Risk management. The identification and control of possible incidents
that have low probability but high impact (especially in high-risk indus-
tries) was gaining more relevance. The role of maintenance is key in this
process and there are concerns that methodologies in use for “low prob-
ability / high impact” incidents are not effective, so new methodologies
have to be developed;

• Failure patterns. Traditional thinking about the link between machine
aging and malfunction is being shifted. In fact, there is evidence for
some equipment that there is a low correlation between operation time
and failure probability. The rate of machine failures can be repre-
sented in a bathtub curve (Figure 8.3) that shows that there are more
probabilities of early and wear-out failures. [Arnold Vogt, 2016].

Proactive maintenance consists of a step beyond when aiming to reduce
failure probabilities. The main focus of proactive maintenance relies on
eliminating failures, not their impact. For this purpose, root causes have to
be removed, which requires deep knowledge of the system. Some tools like
RCA are helpful although they are often used as reactive tools rather than
proactive ones.

Figure 8.3 Bathtub Curve used in reliability engineering [Arnold Vogt, 2016].
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Methods for improving reliability can be divided into two families [Jantunen,
2016]:

• Proactive methods: they seek to improve reliability using techniques
that allow gradual removal of both persistent and potential failures;

• Reactive methods: they seek quick and effective solutions to daily
problems and to avoid repetition of major failures. Basically, it consists
of “post-mortem” methods and its main exponent is RCA.

At this time, there are multiple maintenance techniques, methodologies
and philosophies. The use of these methodologies is sector dependent and
also differs between companies within the same sector. The main factors that
drive the selection of a methodology are the risks and impact of the failures,
the cost and implementation difficulties, and the competitive intensity within
the sector. The most common tools, trends and methodologies are detailed
below.

8.1.1 Tools

This section gets through the most used strategies and techniques applied for
advanced maintenance operations.

8.1.1.1 Total productive maintenance
Known for the great benefits obtained in manufacturing companies and
bold success stories in Japan, TPM emphasizes teamwork and it leans on
correct cleaning and lubrication for chronic failure removal. It involves a
strong team culture and sense of belonging to employees. When this is not
applicable, a cultural shift is required as it is strongly related to continuous
quality improvement and zero-defects philosophies. Anyway, this is difficult
to implement in process-focused companies due to the ambiguity between the
concepts of quality and defects [Márquez et al., 2004].

When the roll-out of the methodology has been successful, there have
been vast improvements in safety, reliability, availability and maintenance
costs.

8.1.1.2 Root-cause analysis
RCA is a very powerful technique that allows problem resolution with a
short and mid-term view. It uses exhaustive research techniques with an
intent to remove problem and failure root-causes. Its value is not only to
avoid critical events but to eliminate chronic events that tend to consume
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maintenance resources. Gradual chronic and small problem removal require
deeper analysis [Márquez et al., 2004].

8.1.1.3 Reliability centered maintenance
RCM is a technique that appeared in the late 90s to respond to high
maintenance (preventive) costs in aircrafts. It proved its validity within the
aerospace’s sector, not only lowering costs and maintenance activities but
also improving reliability, availability and security. This makes it appealing
to other industries such as military, oil & gas and utilities [Brisk Insights,
2016].

It is based on selecting maintenance only in the case that failure con-
sequences so dictate. To do so, exhaustive studies have to be carried out
for every function. RCM establishes priorities: safety and environment, pro-
duction, repair costs. This has made this technique a very valuable tool in
industries with high-security demands, generating excellent results.

8.1.1.4 Improving operational reliability
Improving Operational Reliability gathers the best maintenance practices and
operations with a business focus recognizing maintenance limitations to reach
appropriate reliability levels [Márquez et al., 2004]. This technique focuses
on different aspects of operational reliability (see Figure 8.4).

It divides the techniques in:

• Diagnosis: using short/mid-term reactive and long-term proactive oppor-
tunities;

• Control: RCM as proactive technique and RCA as reactive. Also,
Improving Operational Reliability used for static equipments;

Figure 8.4 Aspects of operational reliability.
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• Optimization: using advanced statistical risk management tools for
optimal maintenance intervals, downtimes, inspections, etc.

8.1.1.5 Criticality analysis
This methodology allows establishing hierarchies or priorities of processes,
systems, and equipment, creating a structure that makes decision making
easier and effective. Efforts and resources are analyzed in key areas based
on real data [4].

Once areas are identified it is much easier to design a strategy to make
studies or projects that improve operational reliability, initiating applications
to a group of processes or elements that form part of high criticality areas.

8.1.1.6 Risk-based maintenance
This technique establishes inspection patterns for static equipment based on
associated risks. It is a methodology for determining the most economical use
of maintenance resources. This is done so that the maintenance effort across a
facility is optimized to minimize any risk of a failure [Márquez et al., 2004].

A risk-based maintenance strategy is based on two main phases:

• Risk assessment;
• Maintenance planning based on the risk.

8.1.1.7 Maintenance optimization models
These are mathematical models whose purpose is to discover a balance
between costs and benefits, taking into account all type of restrictions.

The maintenance optimization models provide various results. First, they
can be evaluated and used to compare different strategies regarding the
characteristics of reliability and profitability. Second, the models can be
monitored. Third, the models can determine how often to inspect or maintain
the assets. Fourth, results of the evaluations of the models can be used for
maintenance planning.

8.1.1.8 Model-based condition monitoring
This tool involves the monitoring of one or more condition parameters in
machinery (vibration, temperature etc.), in order to identify a significant
change that is indicative of a developing fault.

The following list includes the main condition monitoring techniques
applied in the industrial and transportation sectors:

• Vibration Analysis and diagnostics;
• Lubricant analysis;
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• Acoustic emission (Airborne Ultrasound);
• Infrared thermography;
• Ultrasound testing (Material Thickness/Flaw Testing);
• Motor Condition Monitoring and Motor Current Signature Analysis.

The use of Condition Monitoring is becoming very common. It was
originally used by NASA to monitor and detect errors in the development
of spacecraft engines.

8.1.2 Trends

This section provides some background on a number of different strategies
that are currently gaining interest in the field of maintenance.

8.1.2.1 Servitization
Currently, traditional product-centric models are being transformed into
customer-centric models where the focus shifts from creating the best product
to the best solution for the customer. Product-based organizations focus their
efforts on the development of products that they put on the market rather than
the development of client-driven solutions. In the former model, companies
sell and customers buy, whereas, in the latter, the company is focused on
meeting customers’ needs. There is also a symbiotic model where both, the
vendor and the client collaborate in a solid relationship in order to succeed
(Figure 8.5).

Variations on the product-driven model have been predominant in the
manufacturing industry so far and services have historically been a small
fraction of revenue (around 10–20%) for traditional manufacturing compa-
nies, although having greater gross margin compared to traditional goods’
sales.

In order to survive and thrive in a globalized market, companies are
being forced to develop intelligent maintenance solutions and move towards a
balanced mix of product- and client-focused approaches. Hence, companies
will benefit from high service gross margins, much less adjusted than the
traditional product-focused ones (Figure 8.6).

Most companies recognize the urgency for moving their approach
towards this new model, also known as Servitization, and thus are creating
sophisticated platforms that leverage IT innovations such as cloud comput-
ing, machine learning, distributed databases, sensors, embedded solutions
and so on, to create services that offer customized added value for the
customer.
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Figure 8.5 Different models of collaboration between vender and client.

Figure 8.6 Margin in product-driven model vs margin in service models.

8.1.2.2 Degree of automation
The level of maturity of the maintenance platforms and the degree of
automation (Figure 8.7) differ greatly among the studied organizations.

For example, global 500 company Siemens has launched in Q1 2016
its platform – MindSphere – for optimizing asset performance, energy and
resource consumption, maintenance and related services. Siemens will inte-
grate it with existing platforms of the entire value-chain. SAP launched “SAP
Predictive Maintenance and Service, cloud edition” on November 2014; IBM
is able to predict and prevent asset failures, detect quality issues and improve
operational processes since 2012 with its platform. Large Enterprises such as
Rolls Royce have been performing predictive maintenance related activities
for a long time being for them IoT and cloud-based platforms an evolution,
instead of revolution. Trumpf founded Axoom (2015, within the framework
of a consortium), a digital platform that covers the complete machine tool



8.1 Maintenance Present and Future Trends 507

Figure 8.7 Degree of platforms automation among organizations.

solution value-chain with the goal of shifting from being a machine vendor
to a software vendor.

Current market solutions can be divided into a) customized solutions that
cover the all maintenance services and b) standardized mainstream plat-
forms [Arnold Vogt, 2016]. The current trend among large companies is to
acquire the former due to the high level of customization and complexity that
companies demand. Among SMEs, the standardized platforms are popular
due to agile implementation efforts.

Vendors are trying to merge both solutions with the aim of providing
customized vertical solutions (extensions) based on standardized platforms.
New functional modules -verticals- are getting installed on top of horizontal
core platforms and provide customized experiences to the user (Figure 8.8).

8.1.2.3 Top-down vs. bottom-up
Market leaders see Industry 4.0 as a Roadmap to build the ultimate CPS
where smart products have all the information to be manufactured in every
step of the value chain and the flexibility to adapt to changing conditions in an
integrated production lifecycle, from product design to services (Figure 8.9).
In short, market leaders are pursuing a strategic top-down approach.

Figure 8.8 Customized vertical where solutions based on standard platform.
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Figure 8.9 Top-down approach, where the product has all the information in every step of
the value chain.

Meanwhile, some Large Enterprises and SMEs are building platforms
bottom-up in a Lean strategy, with a more limited functional scope to
digitalize a particular area. In maintenance, this scope usually covers:

• Monitorization, and smart data analytics;
• Customized reports, alerts and warnings;
• Consulting services.

8.1.2.4 Smart products
Smart products are CPSs providing new features and functions based on
connectivity. In industry 4.0 the smartification of the products and machinery
is a key factor for the predictive maintenance. The information gathered from
products and machines are translated into maintenance plans and products
improvements (Figure 8.10).

8.1.2.5 Machine learning
There are several software techniques and methods that uncover hidden
patterns in large data-sets. ML in particular deals with algorithms that give
computers the ability to learn based on empirical data.

ML makes software applications act without being explicitly pro-
grammed. ML has made possible the emergence of self-driving cars, effective
medical diagnosis, chess champions (Deep Blue) and a deep inflection point
due to AlphaGos win (Googles DeepMind). AlphaGo relies on several ML
components, like deep neural networks and tree search.

Many companies are looking at using ML in their products. The manufac-
turing industry is not an exception, and it is currently developing algorithms
to make data-driven predictions or decisions.

8.2 Shift to a Proactive Maintenance Business Landscape

The current technical development in industry regarding information han-
dling and digitalization leads to new ways of producing goods. The industry
demands flexible, safe, environmental friendly and available production
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Figure 8.10 Smart product as CPS providing new features and functions based on
connectivity.

processes. At the same time, production processes become more automated,
complex and dynamic. This approach, called Industry 4.0, focuses on deliver-
ing advanced technical solutions to manufacturing problems and supporting
new industrial philosophies such as lean production, but in order to become
successful these technical innovations in manufacturing must be connected
with strategic business models.

In order to get an effective and successful business model, the char-
acterization must be oriented in a dynamic market that demands flexible
product-service model. The PMM business models analysed during the
execution of the MANTIS project have this orientation.

Predictive/proactive maintenance solutions are common in processing
industries like Oil & Gas, Wind, Utilities, and aerospace. These solutions
allow efficient critical asset management based on condition monitoring using
predetermined models.

Monitored data correspond to parameters such as vibration, lubrication,
temperature, and strength, among others. For example, vibration analysis
can be used to detect regular mechanical defects like lack of alignment,
component erosion, and union weakening.
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A normality model is established as an ideal standard, consisting of a
specification of how an asset behaves under certain conditions, and therefore,
a deviation of the “normality model” indicates asset deterioration. The model
has to be able to offer early predictions and exact diagnosis. The model of
normality is built based on several approaches:

• An empirical approach based on historical asset data;
• Engineering approach based on engineering principles that help

describing how an asset should function under specific conditions;
• A combination of the empirical and the engineering approaches.

The design and implementation of a good model of normality require
a precise asset’s know-how in order to define failure patterns. A pivoting
process readjusting parameters and KPIs helps to establish a robust normality
model.

Manufacturing facilities also use PMM solutions to verify conditions of
their most critical assets, although their degree of implementation is lower
than in the processing industries. There are barriers that have to be overcome
if PMM solutions are expected to be successful. They can be summarized as
follows:

• Complex and extended asset mix. Depending of the type of industry, the
critical chain focuses on few or huge amount of equipment;

• Capacity to function with changing conditions. The working conditions
of assets are usually variable due to a high level of human interac-
tion, a wide range of materials, multiple asset operations and changing
processed end-products;

• Asset data availability. Many critical assets are not monitored and not
even have data capture options so they cannot be substituted by smart
assets in a short period of time;

• Confidence in PMM solutions. The high degree of skepticism regarding
technologies capacity with respect to traditional maintenance methods.

Advanced predictive/proactive maintenance solutions are supported
by technological innovations. The rise of Cloud Computing, distributed
databases and the establishment of machine learning algorithms, among other
technologies, are helping companies create new sophisticated maintenance
solutions and allowing new business models to emerge.

Proactive and Monitoring Maintenance solutions analyse data from mul-
tiple sources (Physical assets, SCADA, PDM, PLM, ERP, etc.) and provide
recommended actions based on smart analytics, using advanced statistical
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models such as classification, regression, associations, clustering and many
more.

8.2.1 Key Success Factors

According to IBM [IBM, 2013], 83% of CIOs cited advanced analytics as the
primary path to competitiveness enabling Asset Performance by a) improving
quality and reducing failures and outages, b) optimizing services and support
and c) optimizing operations, maintenance and product quality. As a title
of example, Table 8.1 maps this path to competitiveness onto the predictive
maintenance use case.

Companies need transformations to be competitive as they face unprece-
dented global challenges. Thus, new type of organizations are emerging
and highly skilled workforces are joining multidisciplinary teams that work
with tools that improve communication and remote work. Offices are also
transforming into open spaces that encourage creativity, ideas exchange and
places where different teams work together in order to create innovative prod-
ucts and services. Organizations create internal structures to satisfy demands
of new generation of users who make heavy use of smart devices in their
everyday lives.

To elaborate the mentioned products and services, and to attract tal-
ent from other sectors, manufacturing industries need to take into account
a number of points that are developed in following subsections, namely:
User Experience, Privacy, Scalability, Technical Debt, Skills, Organizational
structure, Technology.

8.2.1.1 User experience
UX encompasses all aspects of the end-user’s interaction with the company’s
services and products. UX is a broad term and should not be confused with
User Interface (UI).

UX is how a person feels when interacting with a product. These feel-
ings include usability, accessibility, performance, design/aesthetics, utility,
ergonomics, overall human interaction and marketing.

Companies with highly effective UX have increased their revenue and the
business benefits can be summed up into three categories:

• Increased productivity: helping users to solve tasks faster and easier;
• Reduced costs: less training and support for the end-users;
• Increased sales: providing superior experience, and thus, market

differentiation.
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Table 8.1 Predictive maintenance solutions to client and vendor [IBM, 2013]

Key Metric Business Benefit
How Advanced Analytics enables
Value

Maximize Revenue
Competitive Advantage

• Products and services
• High availability
• Lower Start-up costs

• New products and services, Up
Sell opportunities, Higher
product quality

• Better asset utilization, more
production cycles

• Fewer reworks, fewer installation
repairs

Cost Savings
Increased Reliability

• Less Unplanned downtime
• Better productivity
• Better quality

• Fewer failures, faster problem
identification, better process
throughput

• Issues cost avoidance, faster root
cause, higher equipment
utilization

• Proactive monitoring, predictive
performance, identification of
factors likely to result in
diminished quality

O&M Costs
Increased Efficiency

• Non-production costs
• Shorter maintenance
• Lower warranty costs

• Fewer failures, fewer
emergencies, less need for excess
MRO inventory

• Predictive maintenance, better
planning

• Fewer Part failures, shorten issue
resolution

Customer Experience
Increased Satisfaction

• Proactive management
• Individual experience
• Better collaboration

• Fewer surprises, proactive
communication

• Focused communication, holistic
view

• Information integrated across
industries, better insight across
silos

8.2.1.2 Privacy
With the emergence of Cloud-based software solutions that leverage under-
lying Big Data and Analytics power, concerns have risen regarding data
privacy.

8.2.1.3 Scalability
Successful product-market fit requires building platforms with strong scala-
bility capacities. In addition, a correct balance between the different business
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models, full-service provider vs IoT platform vendor, as being successful in
both is extremely difficult.

Platform based scalability can be achieved by strong IT infrastructures.
Efforts that promote simplicity over complexity are preferable, as well as
good usability design techniques.

8.2.1.4 Technical debt
The surrounding infrastructure and platforms needed to support the system
are vast and complex. A summary of the most relevant debts inherited from
smart solutions follows:

• CPS Complexity. The implementation of intelligent CPS systems
implies massive ongoing maintenance costs due to inherited-incidental
and accidental-complexity;

• Data Dependencies. Data dependencies are not necessary causalities.
Some data are unstable due to their changing behaviour over time and/or
are underutilized/unneeded. This creates noise in the system so actions
should be regularly put in place to identify and remove unnecessary data
dependencies;

• Glue Code. Using general purpose libraries, third party open-source or
proprietary packages, or cloud based solutions in the system results in
glue code pattern;

• Configuration Debt. Systems allow to configure different options: fea-
tures, data-mining techniques, data verification methods, etc. All this
messiness makes configuration hard to modify correctly, hard to reason
about and can lead to production issues;

• Data Testing Debt. Production issues are often caused by code bugs but
also by data related issues, so some amount of data testing is critical to
a robust and stable system;

• Reproducibility Debt. Re-running a process should return the same
result but this is often not the case due to randomized algorithms,
interactions with a changing physical world or similar causes. This adds
complexity to the work of engineering teams;

• Process Management Debt. Real systems have various models running
simultaneously. This raises many type of management problems that can
cause production incidents;

• Cultural Debt. There is always a tension within a group of hetero-
geneous people (R&D, engineering, support,..) but it is mandatory
to create a working culture that promotes reduction of complexity,
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improvements in reproducibility, stability, and experience shows that
strong multidisciplinary teams achieve better results.

8.2.1.5 Skills
Smart Factories in general and PM in particular demand new labour skills.
The identification of these future skill-sets and competencies is a key factor
and can determine the success or failure of the project.

Strong emphasis on IT related skills is clear: UI/UX design, mathematics,
data-science, Front and Back-End development, AI, Machine Learning, etc.
In summary, a hybrid approach where engineers and researchers are working
together on the same teams.

In these knowledge-based factories work-related training becomes critical
for both, employees and customers.

8.2.1.6 Organizational structure
A major factor of successful organizations will be the ability to create
a “learning organization”. The new digital paradigm demands continuous
attitude to learn and share knowledge (Figure 8.11).

According to Capgemini consulting (Capgemini Consulting, 2014),
“Agility” (Figure 8.12) in manufacturing can be defined as a company’s
ability to thrive in a competitive environment of continuous and unanticipated
change. Customers will demand constant changes and technological innova-
tions that have arisen need agile organizations in order to gain competitive
advantage. In short, the only constant is change.

8.2.1.7 Technology
Using software terminology, it is being said that anyone slower than you
is over-engineering, while anyone faster is introducing the above mentioned
technical debt. Balance is not easy and building robust, scalable, user-friendly
and smart prediction systems is not a trivial task.

Pivotal digital technologies are greatly affecting manufacturers, so organi-
zations must master these technology ecosystems. Below, some technologies
that are transforming the industry.

Cloud Computing
Cloud-based platforms are on-demand infrastructures that provide shared
processing resources and data to computers and other devices. Business
leaders like Amazon and Microsoft offer -compelling- public clouds that
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Figure 8.11 Dimension of managing change in digital transformation.

Figure 8.12 Essential characteristics of an Agile operating model.
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guarantee scalability and fast-and-easy deployments of applications, with less
maintenance in a “pay-as-you-go” model.

There are also many software platforms (Open or Proprietary) for creating
public or private clouds that can be run on a set of privately owned servers.
As a title of example, one of the most growing Open Source solutions is
Openstack.

Advanced analytics
These are techniques and tools that simulate the future, predict possible
outcomes and understand data with the help of powerful dashboards, charts
and graphs.

This is a hot topic due to the emergence of data-mining and AI techniques
that have got huge popularity in the software industry in recent years.

The basic idea is to transform raw data structured (easily entered, stored,
queried and analyzed) or unstructured (refers to content without underlying
predefined model that are difficult to understand, whose knowledge to rep-
resent, using traditional approaches) into meaningful and useful information,
and this information into knowledge that helps in decision making. Currently,
sophisticated software systems that are being developed have human-like
“memory” so they can time travel to the past and simulate (and predict) the
future.

User-friendly dashboards that display the mentioned analytics in any
device (smartphone, tablet, desktop) and smart graphs and charts are also
very popular for monitoring.

In summary, advanced analytics provide insights and actionable events to
improve operational efficiencies, extend asset life and reduce costs.

Big data
Massive data sets that traditional databases and software applications are
unable to store, process and analyze. Gartner’s Magic Quadrant for Opera-
tional Database Management Systems used to be dominated by SAP, Oracle,
IBM and Microsoft with their traditional databases. In contrast, we now see
Amazon’s DynamoDB, MongoDB and many more NoSQL companies in that
report.

Apache Spark is the Big Data platform of choice for many enterprises
as it provides dramatically increased data processing speed compared to
competitors, and currently is the largest Big Data open source project.
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IoT
IoT is basically connecting devices with the Internet and/or with each other.

Gartner predicted that by 2020 there were going to be over 26 billion con-
nected devices [GARTNER, 2013]. The IoT is a giant network of connected
“things”: people-people, people-things, and things-things.

Sensors
Devices that respond to physical stimuli (such as light, heat, pressure, mag-
netism, sound, etc.) and transmit a resulting impulse as a measurement
or control. The corresponding output detect conditions that may affect the
functioning of the machine and send the data to applications or clouds.

Message broker
Responsible for taking input data or “messages” from physical or application
layers, it performs some actions (transformations, aggregations, etc.) before
sending the messages to destination (i.e.,: a database).

Thanks to message brokers, it is possible to integrate applications with-
out enforcing a common interface and each application can also initiate
interactions with other systems.

One very popular and heavily used open source library is Apache Kafka
(Figure 8.13).

Legacy systems
Existing technologies, applications and databases that companies have been
using (and want to keep) need connecting (as data source, reporting, etc.) to
new advanced solutions.

Figure 8.13 Message broker Apache Kakfka, by LinkedIn.
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The integrations with these legacy systems are important so great efforts
have to be done to achieve smooth interoperability. Ideally integrations are
done using web services (of REST type, for example) but due to old or
proprietary technologies this is not always the case.

8.3 Proactive Maintenance Business Model

For PM to bring to the next level its contribution to profits, productivity, and
quality, it must be recognized as an integral part of the business strategy,
taking into account the clients necessities as the production targets where the
whole business model is affected.

The main advantages of the PM business model are explained in the
present chapter, based on the structure provided by the nine dimensions of the
canvas (see Tables 8.2–8.4). As a general overview, four of the nine dimen-
sions are analyzed: value proposition, key activities, customer relationship
and revenue streams. The five missing dimensions depend on the internal
specifications of the companies related to the use case. For example, in some
of the analyzed use cases, they were Key Partners, Key Resources, Customer
Segments, Marketing Channels, and Cost Structure.

The targeted proactive maintenance in the MANTIS project takes into
account assets such as manufacturing, wind energy production, special pur-
pose vehicles, health imaging systems, etc. The eleven use-cases considered
in the MANTIS projects, which comprise the 9 use cases described in
Chapter 7, can be divided and classified into three main categories:

• Asset manufacturers: machinery/equipment manufacturer, in many
sectors being the same entities providing maintenance services and
supplying spare parts;

• Asset service providers: entity in charge of building services upon
production assets. Due to the transversality of data-based condition
monitoring, often these entities cope with assets from very diverse
vendors;

• Asset end users: exploiting assets capabilities. They have been tradi-
tionally the direct customers of the after-sales services. However, many
of end users have adopted almost all preventive maintenance activities
(even implementing some predictive features) of the equipment.

The competitive advantage of applying the PM process to each of the value
chain segments are analyzed below.
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8.3.1 Competitive Advantage for Asset Manufacturers

Providing advanced services upon asset maintenance has been identified by
the VDMA (Mechanical Engineering Industry Association of Germany) as
one of the most relevant strategic themes for European asset manufacturers
growth, impacting on their digitization process and organizational structure.
According to their report, companies expect to grow sales from digital
business models from about 3% (2015) to 10% in 2020. Moreover, the
development of advanced after sales services (such as predictive mainte-
nance) has a huge growth potential: the previously named report states that
it may impact on business profitability in a range from 1 to 4% (the aver-
age business profitability EBITDA margin is 6% within the European asset
manufacturing industry). This is especially relevant for asset manufacturing
SMEs, whose profitability barely reaches the average of 6%. Considering
all factors, the implementation of PMM technologies will generate addi-
tional revenue sources (20% of revenue coming from services) as well as
increase asset manufacturers business profitability (1 to 4% of EBITDA
margin).

8.3.2 Competitive Advantage for Asset Service Providers

Even though this role has been traditionally played by asset manufacturers,
within the transition towards a digitized European industry, ICT oriented
companies have entered the market to answer the data management and
analytics technological challenge. This kind of entities operates either in
collaboration with the asset manufacturer or directly with the production
asset end-user. According to the report Manufacturing Analytics Market, this
market is estimated to grow from 3 billion (2016) to 8,1 billion by 2021, at
a growth rate of 21,9%. Overcoming one of the biggest challenges, MANTIS
will link the OT & IT worlds, by putting together production asset behaviour
(mainly mechanical engineering knowledge) with failure data analysis knowl-
edge, hence enabling data-driven maintenance business models. Tackling
this problematic from a holistic point of view, MANTIS technologies will
increase agility to respond to heterogeneous industrial shopfloors, enable
cooperation with asset manufacturers to complement their value proposition,
and provide better service to the production asset owners through adjacent
predictive maintenance service.



8.3 Proactive Maintenance Business Model 523

8.3.3 Competitive Advantage for Asset End Users

As stated by the Manufacturer IT Applications Study conducted by Indus-
try Week, manufacturers in average have to deal with up to 800 hours
of downtime annually. Besides, 30% of the facilities experienced incidents
within the first four months of 2013. The end users are willing to offer
their facilities to test the innovative framework, which could give response
to their specific needs. Besides, they will be able to replicate the experience
in other production facilities. This will enhance MANTIS replication in a
wide range of industries, coping with different production assets, MES, ERPs,
CMMS, etc.

8.3.4 Value Chains

Depending on the business model archetype, it can be identified a series of
value chains that can access or implement a PM business model on three
stages of a company path: growth, digitization and organizational change,
with reference to the framework defined by the business model archetypes
designed by the VDMA in their [McKinsey&Company, and VDMA, 2016],
and explained in Table 8.5.

8.3.5 Main Technological and Non-technological
Barriers/Obstacles for the Implementation

Proactive maintenance implements safety in processes as the key element,
needing a safety environment for every associated object and procedure
involved. A function that is designed and developed to maintain safety is
dependent on frequent maintenance in order to preserve its functionality and
capability.

Barriers are often defined as an obstacle or function to prevent any form of
risk to penetrate at an unwanted situation or process. The present situation in
the industry indicates deviations in the common understanding and usage of
barriers, and there are several areas of potential improvement [Moen, 2014].

For the Mantis project, several technological and non-technological
barriers were identified, and are described below.

8.3.5.1 Technological barriers
• Trust in prognostics results. Predicting failure of production assets

(except isolated sectors, such as some defence applications) still remains
a research field. This is mainly due to the fact that asset failure modes
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in industrial applications depend on a wide range of factors (often not
monitored), and those assets (for obvious cost reasons) in most cases
cannot be run to failure. That results in a lack of trust not only by asset
end-users, but also by equipment and asset manufacturers;

• Ability to support a mix of large-scale, heterogeneous assets. A
typical production plant employs multiple types of equipment identi-
fied as critical for production. Thus, predictive maintenance systems
must be able to cope with a broad, complex and heterogeneous set
of assets;

• Interoperability with a wide range of production management sys-
tems (mes, erp, scada, etc.). Each company has attained a different
status regarding industrial digitization, which has a strong impact within
predictive maintenance implementation (e.g., existence of a CMMS
or not);

• Ability to function under dynamic operating conditions. Most of
currently deployed manufacturing assets tend to operate with many
product references, which imply highly dynamic operating conditions;

• Relyability. System robustness needs to be ensured with trial and error
function. Model validation requires machines running to failure, which
leads to high costs;

• Connectivity. The distributed sensors on machinery or other production
assets need good wireless communication capabilities, which usually
lack in industrial environments.

8.3.5.2 Non-technological barriers
• Conservative maintenance management culture. As clear example of

Industrial Internet of Things (IIoT) application, maintenance activities
of manufacturing companies (identified as Operational Technology - OT
organizations) are usually change and risk averse;

• Need of training. The implementation of predictive maintenance tech-
nologies, besides from the obvious technological challenges, directly
impacts on workers (maintenance and other departments) daily tasks.
Operators from different ages, abilities, experience levels, will pro-
voke resistances to PM implementation, which can prove difficult to
overcome;

• Lack of resources. Specialized resources, such as data scientists, are
needed for the evaluation and implementation process. These resources
are on high demand and in some cases cannot be found or are too
expensive;
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• Legal. In the case of providing a PM service, it is necessary to have
access to the machine’s data, which is owned by the customer.

8.4 From Business Model to Financial Projections

Many services have been proposed to transform product-oriented into
service-oriented businesses in industrial sector as can be seen in [Neely,
2007] and [Baines et al., 2009]. Besides, to systematically design and
communicate ideas for new service business models, the SBMC has been pro-
posed by [Zolnowski, 2015]. Another approach is the framework for service
and maintenance business model development in 4 levels and 6 dimensions
by [Kans and Ingwald, 2016] and [Kans 2016]. One of the key characteristics
of component-based business model representations, such as BMC or the
SBMC, is their qualitative nature, which is very suitable for developing and
characterizing the business proposal [Zott et al., 2010]. However, to justify
internal funding of service business developed, an assessment of the financial
projection is required.

The use of “services” implies a connotation inside of BMC that in future
PMM Business Model is implicit. The most relevant change in industrial
sector is to incorporate and use ICT in all of life-cycle of product in industrial
sector. Thanks to ICT the term “service” can be used to address more
concrete opportunities and options inside of BMC. In case of industry and
manufacturing sector, it is possible to establish processes and options, which
were surveyed by [Zolnowski et al., 2011]:

• Data collected in machines and products is analyzed for machine/product-
related after-sales services, to increase internal knowledge, and improve
performance/design or maintenance process;

• Remote services give manufacturer direct access to its machines.
Furthermore, it permits repairs and adjustments without geographical
constraints;

• Remote services help to improve internal processes via automation
and parallelization in the whole life-cycle, to improve efficiency (cost
reduction), and quality;

• Collection and analysis of customer data are automated and help to
receive customer knowledge and perform new products and services
taking into account better understanding of specific customers needs;

• Remote services and personalized offers facilitate relationship and send
competitors to a situation of disadvantage;
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• Remote services improve performance maintenance. Therefore, mainte-
nance costs and time requirements decrease;

• Portfolio comprises entire chain, including plant layout, construction
as general contractor, integration of inventory software, and after-sales
services;

• After-sales services can be improved by leveraging remote services e.g.,
plant monitoring, operator support, and software management;

• Remote services allow for the development and provisioning of innova-
tive services.

All of the options listed above, to a greater or lesser extent, are analyzed in
the MANTIS PMM Business Model and the consequence in the maintenance
process can be summarized as per BMC [Zolnowski et al., 2011].

Introducing a service business model directly affect economic evaluation
and projection of a company, as seen in the Table 8.6. Moreover, in the
characterization of SBMC it is necessary to not only take into account tra-
ditional cost structure in manufacturing but also consider the “service costs”
to apply to the service model. As a consequence, investment on ICT such as
specialized software and hardware are mandatory to allow for both savings
through process improvements and revenues by additional services offered
to customers. This leads to the first step to be taken in order to develop and
quantify the potential impact on a business:

To make the decision if to invest in a project, a Cost-Benefit-
Analysis (CBA) has to be performed [Zolnowski et al., 2017;
Boardman et al., 2017]

A CBA is an established tool for evaluating the economic benefit of an
investment. As such, it can point out whether a SBMC could be implemented
or by the contrary a different BMC definition is required. Although a ser-
vice business model can be complex because of affected factors, systematic
capture and analysis of CBA-related nuisances is a desirable objective. The
next step for companies is to make the effort to evolve from a qualitative per-
spective of component-based business model representations to a quantitative
information enriching and completing the business plan cycle.

There are different models to implement a CBA; [Anke and Krenge,
2016] describes a method called meta-model for “Smart Services”, which was
proposed for assessing data-driven services for connected products. The busi-
ness case for smart services is associated with previous modelling processes.
In their work, “smart services” are related to the process of digitalization and
monitoring, leading to the result of a product/service with “connected smart
connectivity”.
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Table 8.6 Impact of remote service technology on service business models in manufacturing
[Zolnowski et al., 2011]

Key Partners
Key Activities
Key Resources Value Proposition

Customer
Relationships
Channels

Customer
Segments

• Helps reducing
the number of
service orders
placed with the
partners of a
company

• Requires the
integration of
new partners

• Collaboration
with key
partners allow
the
configuration of
new advanced
services

• Increases
process
automation of a
company

• Improve the
product
development
process

• New research
activities

• Increase the
quality of the
products and
services

• Requires IT
integration
between shop
floor, office and
life cycle

• Increase
efficacy and
performance
indicators

• Increase the
level of skills to
advanced tasks

• Facilitates the
introduction to
the market

• Accumulates
valuable
information to
offer better
products and
services

• Strengthen
existing
customer
collaboration to
have more
knowledge and
enable proactive
service

• Helps to
intensity the
direct contact to
the customer

• New
relationships
through
software or IT

• Helps to
increase
satisfaction

• Increases the
use of advanced
technology in
specific area

• Advanced
Services can
help to initiate
new
relationships to
concrete
possible
customers

Cost Structure Revenue Streams
• Reducemaintenance and services costs
• New costs related to advanced services

• Increase the revenues for new products and
services

• New prices strategic for services
• New revenue streams due to new services make

the company less dependent on the
unpredictability of product sale and even out
the cashflow.

While the meta-model of [Anke and Krenge, 2016] is not directly related
to a business model, it provides an interrelation between the service proposal
and its financial evaluation. Figure 8.14 shows the business model diagram
and financial diagram.

[de Jesus, 2012] explaines how to proceed from BMCs to financial
projection. Since in a company the earnings and revenues projections play
a crucial role, the most relevant analysis aims to understand:
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Figure 8.14 Service and cost class diagram for the business case model [Anke and Krenge,
2016].

“if the future company will be successful or not”.
Hence, it proposes to merge the BMCs framework with P&L concepts.

The P&L establishes in a specified period of time the results of the business
performance and is able to specify the Cost Structure and Revenues Streams
building blocks of the canvas in a more tangible way.

P&L is composed by the following items [de Jesus, 2012]:

• Cost of sales: expected direct cost of developing and performing the
product and/or service that a company carries out;
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• Gross margin: revenues less cost of sales. This is a key indicator to
know the earnings of the company;

• Operating expenses: expenses the company needs to operate and
manufacture;

• Operating earnings/loss: gross margin minus operating expenses. This
indicator is closer to reality;

• Income taxes: taxes that a company needs to pay. This item depends on
which country the company establishes their activity in.

The principal objective seeks that the revenue streams and the cost struc-
ture information are directly identified from the others seven blocks of the
BMCs apart from specified cost and revenues blocks. In order to achieve it,
[de Jesus, 2012] estimates the economic quantification of each element added
in BMCs in terms of costs or revenues.

Finally, to complete the financial projections to the P&L analysis, the
calculations of financial indicators could be provided as an overview of
the business. The calculated indicators are the following ones [de Jesus,
2012]:

• EBITDA: gives an overall idea about the potential capacity of the
business to generate cash. It is a measure of a company’s operating
performance;

• Break even point: it is the point from which the company begins to have
positive operating results. Typical question to address this indicator is,
how much needs to be sold in order to cover all fixed costs?;

• Quantity critical point: represents the minimum amount that the firm
should sell in order to have positive results;

• Security margin: expresses the distance on the level of activity achieved
by the company for the critical point;

• Sales cost coefficient: gives part of sales after that the variable cost is
paid, which will be left to pay for fixed costs.

Aiming at supporting a better understanding by means of examples, in
[de Jesus, 2012] there are 6 demonstrations of 6 different BMCs. For exam-
ple, Portal dos Serviços is a startup that aims to be a trusty intermediary
between health care service providers and private clients. Table 8.7 shows
P&L in BMCs.

All of the parameters discussed above, namely EBITDA, break event
point, quantity critical point, security margin and sales, cost coefficient,
evolution and critical point, are shown in Figure 8.15:
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Table 8.7 Portal de Serviços cost Business Model [de Jesus, 2012]

Key Partners
Key Activities
Key Resources Value Proposition

Customer
Relationships
Channels

Customer
Segments

• Web providers
• Advertising

companies
5.000

• Platform
Analysis and
Design 40.000

• Specific and
advanced
profiles 20.000

• Logistics
30.000

• Platform
Development
70.000

• Events 4.000
• Social Media

10.000
• Service center
• Press 2.000
• CRM 10.000

• Private and
liberal
professional
3000

Cost Structure Revenue Streams
• Platform maintenance and development • Product sells 300.000

• Services sels 80.000

Wurzbach [2000] performs a web based cost benefit analysis method for
predictive maintenance through two principal points:

• Direct cost savings;
• Indirect cost savings.

Direct cost savings are the principal group of costs to get benefit within
a predictive maintenance program. These costs are recurring and usually
established as annual direct cost reduction. Sometimes it can be new budgeted
design and changes depending on information generated by the predictive
maintenance program. Overall, these are one-time reductions but the savings
can be relevant.

Indirect costs savings affect manufacturing and maintenance process
but with ups and downs. Since productive lines and products can have
different values of OEMs, indirect costs savings could be increased if fail-
ures are detected before development ends. Even in some cases with less
differences between predicted and an unanticipated failure there could be sig-
nificant savings in maintenance within the scheduling environment. Indeed,
advanced maintenance program get the most benefit due to associated costs of
unanticipated or “emergent” maintenance repair activities. Finally, advanced
maintenance program provides overtime and parts procurement reductions as
well as impact to facility operations as indirect cost savings.

Zolnowski et al. [2017] explains the principal items to take into account
inside of:

• Cost;
• Revenues;
• Cost Savings from BMCs to financial projections.
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RESUME
EBITDA 9.000
Gross Margin -70.000
Break even point 100.000
Quan�ty cri�cal point 9.000 units

2014 2015 2016
Incomes 30.000 75.000 300.000
Fixed Costs 100.000 110.000 180.000
Variable Costs 10 10 10
Gross Margin -70.010 -35.010 119.990

0

100,000

200,000

300,000

400,000

2014 2015 2016

Evolu�on

Incomes Fixed Costs Variable Costs

Figure 8.15 Portal de Serviços financial analysis [de Jesus, 2012].

In case of Costs, [Zolnowski et al., 2017] references a variety of costs that
are directly related to the development and management of a Data-Driven
Business Model (DDBM). The costs are associated with the implemen-
tation of data-as-a-service or analytics-as-a-service technology and as a
consequence close to the development of future PMM Business Model, some
of the possible costs are listed below:

• Monitoring and analysis of data system;
• Extension of sensors in the key activities and use and allocation of data

and systems;
• Sensors, gadgets, data, and systems;
• Use of data and systems in the key resources.
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A development phase is referenced, where the improvement or imple-
mentation of hardware infrastructure is an important cost factor as well as an
industrial use case in MANTIS project. In manufacturing, customers have to
implement:

• Hardware such as embedded system and sensors in their machines to
collect data;

• Connectivity between customers machines and cloud servers.

Another factor to reference cost is Software. Software can be developed,
purchased or leased in ad-hoc, on-demand or Software as a service way.
Any case individualized and specified algorithms are needed for companies.
Moreover, these algorithms need to be maintained as well as the infrastructure
to give continuity of Business Model.

Hence, [Zolnowski et al., 2017] highlights the items of infrastruc-
ture (sensor and systems), software (algorithms and processing,
monitoring viewing data) and connectivity input as Costs.

In case of revenues, these can be enabled for any actor. From a company
perspective, revenues can be generated as [Zolnowski et al., 2017] highlights:

• Sales of new services;
• Sales of data to third parties;
• Sales of machine because of more competitive product.

Some of the types of revenues analysed in the MANTIS use-cases high-
light the sales of a new services and sales of the machines as the most
representative returns.

While [Wurzbach, 2000] describes indirect costs, [Zolnowski et al., 2017]
describes the importance of savings, especially for optimization of processes
that lead to lower costs by the reduction of inventory (key resources) failures,
personnel, and goods. These costs of operational processes are optimized for
analysing data remotely, or to be replaced by automatized processes.

8.5 Economic Tool to Evaluate Current and Future PMM
Business Model

Once it has been identified the most important characteristics from “Business
Model” to “Financial Projections”, the next step is to know the earnings,
incomes or revenue streams and costs.
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The current Business Model shows the actual business and results of
a company performances during the last year with traditional activities in
maintenance. On the other hand, future PMM Business Model shows the
number of projections over the following five years with advanced services
in maintenance.

At this point, the key question to ask is:

Which are the items that you have to take into account in earnings,
incomes or revenue streams and costs?

[Burke, 2017; Pauceanu, 2016] or [Tanev et al., 2016] describes the principal
elements to take into account related with earning, incomes or revenues
streams and costs. In order to have a specific answer to the question above,
the future business model must be considered as composed by two principal
sections: (1) The Business and (2) Financial Data.

In the Business section, it is necessary to develop a detailed plan that
clarifies why the business is existing; the aims for the existence, client groups,
products and services, and how it intends to develop and deliver those services
and/or products. It acts as a road map for the organization and shows clearly
the destination it seeks and the path to follow to get there.

This should also be accompanied by a description of the resources
required to complete the Business journey.

Hence, you would describe and take into account the following items
among others (Figure 8.16):

• Description of business;
• Product and services;
• Market analysis;
• Marketing plan;
• Operational plan:

• Production;
• Location and infrastructure;
• Technology;
• Human resources plan;
• Spare parts/inventory/suppliers;
• Competition.

In Financial Data section, projected financial statements with revenues
and costs would be indicated. Moreover, cash flow, balance sheets etc. should
be taken into account. The financial data section is built over the Business
section, and it is a critical section to verify that the evolution of the business
is viable, useful and maintainable over time.
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Figure 8.16 General components of business plan [Pauceanu, 2016].

Companies should present their own values in such a way that it shows
that the business will grow during time and there is a successful strategy at the
horizon where they can make profits. The rule of thumb is to be realistic and
credible, represent the growth trajectory in an understandable and detailed
manner, and to figures into components by target market segment or by sales
channels and provide realistic estimates for revenue and sales.

8.5.1 Incomes Items

This section refers to elements pertaining to revenue streams, earnings and
benefits. More concrete, companies should analyse market, product, defined
services either current and future PMM Business Model or detailed model.
Moreover, it considers how to reach the market through the marketing plan.
All of these elements concur to determine the incomes. So, companies should
know:

• Unit sales: this is done by determining the number of products sold
yearly;

• Price: this is the price of products and services that are sold during
a year. The first consideration in pricing a product is the value that it
represents to the customer. If, on the checklist of features, the product
is truly ahead of the competition, it is possible to command a premium
price, but in that case, it is better to offer some extra functionalities as
companies performed in future PMM Business Model.
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In case of doubt, the market can set the price. Anyway, there are cases
when the selling price does not exceed costs and expenses by the margin
necessary to maintain your business robust. This leads to the utmost necessity
to know competitors pricing policies.

To define the revenues, the type of company is a key aspect. In case of
industrial use-case companies should indicate the incomes from product or
service and also maintenance. At this point, companies should differentiate
between traditional maintenance defined in current Business Models and
advanced maintenance defined in future PMM Business Model (PMM BM).

• In the first case (current Business Models), companies will provide infor-
mation of the last year and probably have some maintenance contract
and call service to find out solutions from issues during the life of the
product;

• In the second case (PMM BM), companies could offer some new
services along with product. These services are probably related to
data maintenance. As consequence, companies could have benefits from
some applications that use this data such as desktop or mobile APP,
dashboard HMI, Virtual or Augmented reality application, remote anal-
ysis etc. Companies can specify others if they consider. The values for
the next five years are projections that could be accomplished or not at
the end of the fifth year.

Thereby, companies have used a template in excel to provide economic
information. Table 8.8 summarizes how to provide the information.

One more time, to provide this information industrial companies can
rely on previous year profit and loss statement. Product represents the
industrial asset that companies sell. In case of maintenance, table represents
the principal items as contract or call service but they can specify others.

In an industrial use case and future PMM Business Model Table 8.9
indicates 5 year projections and new services maintenance.

Table 8.8 Revenue streams template for current business model and industrial use case
REVENUE STREAMS LAST YEAR
PRODUCT
MAINTENANCE

Contract
Call service
Others (specify)

TOTAL
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Table 8.9 Revenue stream projections template for future PMM Business Model and
industrial use case
REVENUE STREAMS
PROJECTION YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5
PRODUCT
MAINTENANCE SERVICE

Tele-analysis
Mobile APP
VR/AR application
Dashboard HMI
Others (specify)

TOTAL

Maintenance service shows the new services that companies offer along
with product. Table 8.9 enumerates some of possible items that companies
could offer. Businesses need to plan the price and the number of clients to
implant. Additionally, companies describe the principal keys of the current
Business Model and future PMM Business Model, such as type or product,
market, maintenance, KPIs, etc., in order to explains the future projections.

Overall, each year sales will be higher and incomes increase that would
depend on an specific percentage to be decided depending on the market,
commercial interests, commercial workers skills and added value of the
product.

Regarding technological providers, a new Business Model will offer new
software either ad-hoc or SaaS model. As a consequence, companies would
estimate the revenues for 5 years in terms of consultancy, product license,
customized etc. A unit price for each item should be set in order to concrete
a technological revenue.

8.5.2 Cost Items

According to [Pauceanu, 2016] and [Featherstone, 2015] it is better to cal-
culate costs before incomes because it is easier. Both of them agree about
including costs related to operational and marketing plan.

The operational plan is related to design, and it controls the process of
production. Companies have the responsibility of ensuring that operations
and production are efficient and effective in terms of meeting customer
requirements. Therefore, companies should include the cost of manpower to
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be engaged in production. This section includes the amortization of machines
and spare parts to build the product as well as technology needs by man-
power. Computers, laptops, mobiles, data center, servers, software licenses
are examples about what companies can include.

Companies should also include Infrastructure expenses such as stationar-
ies, office utilities, office rent, power and industrial warehouse among others.
To complete all of the expenses, companies should not forget marketing,
travel, and accommodation issues. Product or service could need its own
marketing strategy. The purpose of advertising is to inform, persuade, and
remind customers about your companys products.

Other issue is that some companies can decide in order not to invest
in marketing. Travel and accommodation issues are costs to attribute when
commercial workers are selling out of company office.

Eventually, companies should add maintenance cost. The principal
common items could be:

• Travel expenses and accommodation;
• Maintenance workforce;
• Warranty repairs;
• Spare parts;
• Call centre.

Furthermore, companies should include costs related to develop-
ment advanced maintenance applications and associated services in the
incomes area. Hardware items such as IoT sensors to analyse maintenance
information should also be added.

Costs projections for the future PMM Business Model tables includes
five projection years and software and hardware costs associated to advanced
maintenance.

Tables 8.10 to 8.12 allow to provide the description of costs for different
kinds of companies focused on future PMM Business Models. The only
two differences between the table of structure cost for current Business
Model and the future PMM Business Model are the five year projections and
hardware/software investments in maintenance.

In natural evolution of future PMM Business Model, the costs could be
higher at least for the first or second year due to hardware and software
investment. As a consequence for following years other costs associated in
maintenance should decrease.
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Table 8.10 Structure cost template for technological provider business model projection
REVENUE UNIT PRICE
STREAMS (Per
PROJECTION Client/Asset) YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5
Product license
Consultancy
Customization
Others(specify)
TOTAL

Table 8.11 Structure costs Template for current business model and industrial use case
COST STRUCTURE LAST YEAR
MANPOWER

Factory workers
Engineering and design
Commercial workers

TECHNOLOGY
Hardware inside the product
Software inside the product
Data centre, server
IT Support
Computers, laptops, mobiles
Software licensing

TRAVEL EXPENSES AND ACCOMODATION
To Sell

INFRASTRUCTURE
Industrial warehouse, business office
Power, water, stationery,
Administration

MARKETING
LOGISTICS

Logistics and distribution
AMORTIZATION
PURCHASING

Spare parts - products
MAINTENANCE

Travel expenses and accommodation
Spare parts
Warranty repairs
Maintenance workers
Call centre
Others (specify)

TOTAL
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Table 8.12 Structure costs template for future PMM Business Model and industrial use case
COST STRUCTURE YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5
MANPOWER

Factory workers
Engineering and design
Commercial workers

TECHNOLOGY
Hardware
Software
Data centre, server
IT Support
Computers, laptops,

mobiles
Software licensing

TRAVEL EXPENSES AND
ACCOMODATION

To sell
INFRAESTRUCTURE

Industrial warehouse,
business office

Power, water, stationery,
Administration

MARKETING
LOGISTICS

Logistics and
distribution
AMORTIZATION
PURCHASING

Spare parts - Products
MAINTENANCE
Software Development

Sensor and hardware
Warranty repairs
Maintenance workers
Spare Parts
Travel expenses and

accommodation
Others (specify)

TOTAL

This is because there is a product with additional maintenance services,
especially predictive maintenance, which implies a reduction of overhead
costs on it. There will probably be a decrease in repairs, spare parts,
travels etc.
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Table 8.13 Structure costs template for technological provider use case
COST STRUCTURE YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5
Software development
Hardware
Platform maintenance
Fixed costs
Others(specify)
TOTAL

Finally, a sustainable business should have less costs than incomes.
Depending on the type of business this should be true somewhere during the
five years projection.

Cost Structure for technological provider use case cannot take into
account the same structure cost of the industrial provider. A typical software
development company needs to have a new product:

• Manpower with programmig and consultancy knowledge;
• Platform maintenance costs;
• Hardware as sensor to obtain data from machines;
• Marketing expenses;
• Other costs.

Once companies filled the revenue streams and costs, either the current
Business Model or the future PMM Business Model for an industrial use case
or technological provider, it is time to address a detailed report. Next section
describes the report schema to address.

8.5.3 Schema of Economic Evaluation and Projection Report

Regardless of the type of company, industrial or technological provider, the
schema to address is:

• Introduction
In this section each company will give a short description about their
profile, the product and services they offer. Even, they could add some
figures about annual turnover, market segmentation and objectives to
address in MANTIS.
This section it is useful to put some key information to help understand
the sequential sections;
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• Value Proposition
Companies have the oportunity to explain in more details their use case
associated with maintenance and the MANTIS project as well as the
PMM value proposition for a 5 five years projection.
The description of current and future value proposition incorporates new
assets such as tecnology, services etc. which help to know deeply the
business plan to address economic evaluation

• Economic Evaluation and Projection
This is the most important and relevant section. Companies will show
and describe numbers, figures, and some indicators associated with
current Business Model and future PMM Business Model. Regarding
current Business Model will be numbers only for one year, specially
closed last year and the next 5 years in case of PMM Business Models.
After filling the revenue streams and costs with tables in a spreadsheet
described in the previous sections, companies will summarize economic
information in Table 8.14.

Technological provider companies will show only 5 years projections
because the aim is to offer new service through software as service and
consultancy. Therefore, it is a new business that companies will describe in
the BMCs tool and summarize the economic information in Table 8.15.

Table 8.14 Economic evaluation and projection template for industrial use case

 

Current 
Business 

Model Year 0 

PMM BM 
Year 1 

PMM BM 
Year 2 

PMM BM 
Year 3 

PMM BM 
Year 4 

PMM BM 
Year 5 

REVENUES  
Product  

Maintenance  

TOTAL REVENUE (1)  

COSTS  

Costs  

Maintenance  

TOTAL COSTS (2)  

(1)-(2)  
INDICATORS  

% Maintenance incomes   
% Maintenance costs   
Others (specify)  
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Table 8.15 Economic evaluation and projection template for technological provider use case

BM Year 1 BM Year 2 BM Year 3 BM Year 4 BM Year 5

REVENUES
Product license

Consultancy

Others (specify)

TOTAL REVENUE (1)

COSTS
So�ware/Hardware
development
Marke�ng and sales

Others (specify)

TOTAL COSTS (2)

PROFIT (1)-(2)

ACC PROFIT

INDICATORS

Nº of clients/licences

Ra�o revenues / costs

Others (Specify)

6,000,000 6,400,000

7,900,000
9,000,000

12,000,000 12,500,000

4,000,000 4,410,000
5,465,000

6,290,000

8,180,000 8,400,000

16.67% 18.75%
17.72%

22.22%
25.00% 24.80%

17.50% 19.27% 16.47% 14.31%
14.67% 15.48%

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

C BUSINESS
MODEL YEAR 0

PMM BUSINESS
MODEL YEAR 1

PMM BUSINESS
MODEL YEAR 2

PMM BUSINESS
MODEL YEAR 3

PMM BUSINESS
MODEL YEAR 4

PMM BUSINESS
MODEL YEAR 5

Example Economic Projec�on

INCOMES COSTS MAINTENANCE INCOMES MAINTENANCE COSTS

Figure 8.17 Example economic evaluation projection.

Apart from the economic evaluation and description of most relevant
figures and indicators (Table 8.14), the industrial use case companies will
include a graphic to see the evolution in an easy and suitable format as can be
seen in Figure 8.17.
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8.6 Railways Use-Case Financial Business Model

Nowadays, the railway industry is in a position to exploit the opportu-
nities associated to IIoT, enabling technologies under the paradigm of
Industry 4.0.

According to [Roland Berger Study, 2017], railway sector supply, like
other industries, sees four main levers driving the digital revolution as well as
transforming existing business models: Interconnectivity [Fraga-Lamas et al.,
2017], Digital Data [MARKETandMARKETS, 2016], Automation [Roland
Berger Study, 2017] and Customer Interface.

The efforts in railway industry are concentrated on digitization of train
control and maintenance, with a focus on CBM-based PM. The sector focuses
in the definition of the root cause of failures, limit view on asset health,
all of them leading to taking decisions based on facts instead of the expe-
rience and gut feeling of senior technical experts. Moreover, infrastructure
development and maintenance costs represent a large part of the entire rail
company budget. For all, the railway sector pretends to add new services,
such as integrated security, asset management, and predictive maintenance
to improve timely decision-making for issues like safety, railway assets,
productivity, scheduling, and system capacity.

For carrying out a strategy associated with smart maintenance, key
enablers comprise CBM, data integration and asset management with the
use of advanced technology such as IoT, Sensors, Big Data Analytics, and
advanced visualization services (Figure 8.18).

Figure 8.18 Smart maintenance approach in Railway Sector.
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PM models and approaches help to eliminate preventive and corrective
interventions. The key intuition is suggesting the ideal time and measure
for maintenance work using all the data. This way, diagnostic data are not
only used as a control function, but also as a driver for maintenance activities
shifting a paradigm and giving several advantages:

• Change from a reactive maintenance mode to a proactive one;
• Visibility on the health of the asset;
• Delivering support to intervention teams, helping them take the right

decisions (grind, stuff, mill or change a rail);
• Reduce high costs by optimizing maintenance interventions;
• Determining the root cause of failures;
• Better usage of warranty recoveries;
• Financial forecasting;
• Create new services business models associated with new maintenance

service approach.

According with [MARKETandMARKETS, 2016] study the global smart
railway market is estimated to grow from $10.50 bn of year 2016 to $20.58
bn by 2021, at a CAGR of 14.4%. In addition, according to the International
Transport Forum of the Organisation for Economic Co-operation and Devel-
opment (OECD), by 2050, passenger mobility will increase by 200–300%
and freight activity by as much as 150–250% with respect to 2010 [Fraga-
Lamas et al., 2017]. These figures show the impact for every component of
the value chain of the railway industry.

Due to investing significantly into railway digitalization, according to
[Roland Berger Study, 2017] 89% of the rail industry executives expect
changes of their business model. The incorporation of digital competitive
strategies allow for new advanced services such as digital products, remote
train maintenance, mobile app, etc. Therefore, the railway industry has to
adapt to new market situation.

8.6.1 Financial Business Benefits Within a Specific Railway
Maintenance Solution

In order to point out specific benefits in economic terms of Proactive Mon-
itoring Maintenance, a railway use-case is used as an example. On first
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instance, the company has to define its short to long-term objectives. In
the particular case of railways, the company wants to address a reliability
test strategy, based on a mathematical and theoretical assumption, in order
to validate the MTBF value (coming from predictive analysis) with a fixed
confidence interval. The maintenance service cost could be optimized to save
costs in work force with service intervals. On the other hand, exploitation
results are mandatory to have new revenue streams in terms of advanced
services.

To carry out these objectives the railway use-case had to change its actual
maintenance business model. Generally, the typical maintenance service
is reactive and the revenues are associated with maintenance contract. To
implement the new strategy, the railway use-case implemented proactive and
monitoring maintenance solutions as well as new advanced services. The
requirements to implement were:

• Data acquisition: besides current diagnostic parameters (voltage, cur-
rent, position at the end of manoeuvre and completion time of the
last manoeuvre), the following key variables are monitored in addi-
tion to those mentioned above: distance between the point blades
and thrust/load exerted by the point blades environmental condition
(environmental temperature, humidity, temperature of the rail) and
mechanical behaviour;

• Data processing: enabled by a failure preventive model, the system
generates a set of alarms (sent to the maintenance staff) in order to avoid
availability problems;

• Maintenance strategy optimization: based on data generated by the mon-
itoring system, the system sends a set of recommendations to the
maintenance responsible to facilitate maintenance operations and reduce
down-times of the whole interlocking system.

The implementation of this strategy influences the revenue streams and
costs. The principal revenues are:

• Increased total revenue regarding after sales services;
• Optimized maintenance in service efficiency;
• Saving costs in work force and maintenance service.
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Regarding cost structure:

• Modular data acquisition system;
• Monitoring system: IT infrastructure costs;
• Maintenance staff costs;
• Monitoring centre maintenance costs (call and data centre).

Translating the revenues to economic terms, the traditional railway
maintenance task involves 10% of the total costs, divided in the following
items:

• Maintenance workers – 50%;
• Services – 14%;
• Spare parts – 13%;
• Capital asset replacement plan – 8%;
• Warranty repairs – 8%;
• Administration costs – 4%;
• Call center – 2%;
• Shipment – 1%.

Thus, the highest value concerns labour costs. Labour force covers
the costs of specialized technicians in charge of carrying out maintenance
operations to the customer premises in accordance with the maintenance
contract.

The services item include costs of supporting maintenance interventions,
in particular: the field testing operations, potential remote support and train-
ing of the technicians. The third item covers the costs of the spare parts and
related procurement costs.

As data disclose, the most relevant cost is manpower followed by services
and spare parts associated with maintenance.

Therefore, over the following 5 years in future Proactive Monitoring
Maintenance Business Model the principal aim is to reduce above all the
cost of manpower with the improvements performed with the special data
acquisition, data processing and maintenance strategy optimization.

The Table 8.16 shows a theoretical saving in maintenance costs of 25% at
year 5.

This projection could be achievable due to the decrease of the labour costs
(see maintenance workers) that impact less and less on overall maintenance
costs thanks to the new solution developed: avoidance of false calls for rail-
way equipment and optimisation of maintenance through increased efficiency
of related intervention times.
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Table 8.16 Economic Projection related to current and future PMM Business Model

BUSINESS
MODEL 

Current 
Business 
Model 

Proactive Monitoring Maintenance Business Model 

YEAR YEAR 0 YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 

MAINTENANCE
SERVICE
REVENUES 

N.A% N.A% N.A% N.A% N.A% N.A% 

MAINTENANCE
COST 

10,0% 10,0% 9,5% 9,0% 8,0% 7,5% 

Maintenance
Workers 

50% 50% 45% 40% 30% 25%

Saving costs 0% 0% 5% 10% 20% 25% 

The maintenance cost reduction progression and the remarkable indica-
tors are shown in Figure 8.19.

Hardware and software investment have been estimated around 2%,
including industrialization costs of the prototype solution.

This may be considered a negligible value compared to the cost of
maintenance workers (around 50% of the maintenance costs).

Therefore, taking into account the estimated investment costs and related
financial commitment, the projection of labour costs may be reconsidered,
reaching 25% at year 5.

10.00% 10.00%
9.47%

8.97%

7.97%
7.47%

5.03% 5.03%
4.26%

3.59%

2.39%

1.87%

0.00% 0.00% 0.53%
1.03%

2.03%

2.53%

CBM YEAR 0 PMM YEAR 1 PMM YEAR 2 PMM YEAR 3 PMM YEAR 4 PMM YEAR 5

N
U

M
BE

RS

MAINTENANCE AREA COSTS Maintenance Workers Costs Saving Costs

Figure 8.19 Maintenance saving cost projection.
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Table 8.17 Advanced maintenance service program economic projection

Year 1  Year 2 Year 3 Year 4 Year 5 

Nº of Licenses 4 10 25 40 70 

Revenues 40.000€ 100.000€ 250.000€ 400.000€ 700.000€ 

Development 
Costs 65.000€ 40.000€ 40.000€ 45.000€ 65.000€ 

Profit -15.000€ 60.000€ 210.000€ 395.000€ 635.000€ 

PMM BM  PMM BM PMM BM PMM BM PMM BM 

Regarding new revenue streams, advanced services can be defined. New
maintenance software is able to monitor the railway assets and know in real-
time the status and perform possible correction actions. The services would
have the numbers in Table 8.17 for 5 years, depending on client and market
of each particular situation.

Railway industries as other industrial sectors have to adapt their business
model to digitizing manufacturing and management processes, especially
maintenance, to change from a reactive maintenance model to a proactive one.

This new strategy has some benefits such as visibility of health of assets,
reducing costs by optimizing maintenance interventions, determining the root
cause of failures, improving usage of warranty recoveries, etc.

The railway use case that was analyzed, has the objective to reduce the
cost of maintenance manpower with the improvements performed, especially
with regards to data acquisition, data processing and maintenance strategy
optimization, under the rationale that it is the most important cost in mainte-
nance (50%), with the next two items being maintenance services and spare
parts, with 14% and 13% respectively. The 5 year projection considers a
reduction of 25% costs in manpower.

Once the reduction of maintenance costs is achieved, in case of revenue
streams, the objective would be to offer advanced services such as industrial
asset monitoring to know in real-time the status of them and to perform possi-
ble corrections before downtime assets. The 5 year projections would include
70 assets to monitor with a profit of more than 600.000 by the end of year 5.

8.7 Conclusions

Ever since asset failures have caused downtimes and extra costs, accidents
or inefficiencies, businesses have supplied material and human resources
to minimize their impact and avoid their re-occurrence. Current approaches
try to preserve function and operability, optimize performance and increase
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asset lifespan with optimal investments. The current technical development
in industry regarding information handling and digitalization leads to new
ways of producing goods. The industry demands flexible, safe, environmental
friendly and available production processes.

PMM in the industrial sector is key to improve competitiveness, produc-
tivity, reduction of downtime machine, interventions for remote machines
and travels among others. Proactive maintenance solutions are common in
processing industries like Oil and Gas, Wind, Utilities, and aerospace. Across
the new PMM paradigm, industrial companies and technological providers
can offer new services associated with smart products. With aims to establish
proactive monitoring and maintenance, companies should address a new strat-
egy based on servitization and service business model adding new technology
and services related to industrial internet of thing.

The new PMM strategy should be analysed through 9 blocks related to
the well-known BMCs as well as economic evaluations in order to project the
future benefits of the business model. Thus, the value proposition with the
introduction of integrated IT solution to monitor industrial assets with some
different characteristics depending on the sector. Customer segments, rela-
tionships and channels are the business models blocks are the most relevants
to reinforce and relate the companies activities with the end-user for sharing
asset data and new revenue streams. Key activities, resources and partners
blocks help the development of the principal IT-OT system with predic-
tive advanced algorithms, sensors, cloud system, middleware or research,
allowing future competitive advantages. Finally, cost structure and revenue
streams blocks to recognise the traditional and new type of payment as
software ad-hoc or as a service or for asset availability, among other features.

Throughout the execution of the MANTIS project, current and future
PMM Business Models Canvases were analysed by industrial partners
in production asset maintenance, vehicle management, energy production
and health equipment maintenance. In addition, economic evaluations and
projections have also been analysed.

In the transition from traditional to PMM business models, a finan-
cial tool is applied in MANTIS project. The principal items to take into
account on behalf of the financial tool are revenue streams, costs and
cost savings. Each item impacts on a segment of the company’s strat-
egy, referring, for example, revenue streams to more competitive product
sales, maintenance contract sales, consultancy or new maintenance software
services. On the other hand, the financial tool should reflect the costs
and investments, such as specialized manpower, new technologies, new
infrastructure, new marketing strategies, even amortizations, travel expenses
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and logistics. All the maintenance changes on the business model should
translate to a reduction of operational costs and incremental revenues.

Economic evaluation and projection was developed in the MANTIS
project, resulting in economic data from last year and 5 year projections
comparing current and future PMM Business Models for industrial busi-
ness cases. For technological providers, new business model with advanced
maintenance software as value proposition and 5 years projections were
analysed.

The present chapter also described the railway use-case for traditional
to PMM business model. Its main objective is to reduce the cost of main-
tenance manpower by means of improvements such as implementing tools
as data acquisition, data processing and maintenance strategy optimiza-
tion. As it was seen, maintenance cost is the most important one, with
an impact of around 50%, followed by maintenance services and spare
parts with 14% and 13% respectively. With the incorporation of new PMM
strategy, in the 5-year projection the railway use-case would have a reduction
of 25% costs in manpower. Other use-cases analyzed within the MANTIS
project, achieved an impact between 15% to 25% on machine downtime,
warranty repairs, intervention costs, manpower, among others.

Once the reduction of maintenance costs is achieved, in case of revenue
streams, the objective would be to offer advanced services such as industrial
asset monitoring to know in real-time the status of them and to perform
possible corrections before downtime assets. The railway use-case, during the
5 year projection, would include 70 assets to monitor with a profit of more
than 600.000 by the end of year 5. Due to techniques such as the servization
of maintenance, the railway use-case, as well as others analyzed in MANTIS
project, would imply an increase of income between 10% to 20 % .

In conclusion, PMM is key to improve maintenance processes applied
in industrial companies, which can be either production asset maintenance,
vehicle management, energy production or health equipment companies. New
service business models should carry out monitoring industrial asset with
sensors and predictive technology. As a consequence, new smart products
with advanced services could be offered to achieve the impact to reduce
around 25% in maintenance costs and increase 20% of revenue streams.
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In this book, a number of perspectives on predictive and proactive main-
tenance have been presented that were developed during the course of
EU/ECSEL project MANTIS in the years 2015–2018. At the start of the
project, a number of developments heralded things to come: The Big Data
and data science revolution, internet of things (IoT), advances in machine
learning, improvements in wireless connectivity, sensor technologies and
available computing power. At the level of software, cloud computing,
software services, semantic interoperability and multi-tiered architectures
all displayed a fast-moving field. This final chapter takes a step back and
presents some views towards the future. Whether one deals with PM on
a manufacturing process or a fleet of machines, in logistics or construc-
tion, the potential gains from improving the maintenance policies can be
substantial. With a daily yield of 30% of a particular production process,
an improvement of only 3 percentage points due to improved maintenance
policies constitutes an improvement of 10% on the status quo. In mainte-
nance services for customers of a leased fleet of machines, the statistical
analysis of customer usage patterns allows a company to design services,
adapted to the wear & tear patterns that are typical for different customer
groups and provide economically attractive solutions (e.g., ‘bronze, silver
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and gold’ maintenance service levels). With this in mind, it is surprising
that maintenance is sometimes considered as a liability. In the biological
world, the praying mantis will clean its body and sensors, autonomously.
For cyber-physical systems of the near future, one would hope that at least
part of such behaviors is controlled on the basis of intrinsic feedback loops.
This should ideally be realized in a cost-effective manner, i.e., with minimal
human intervention at all levels of control, ranging from analytics to decision
making, corrective interventions and preventive actions at the physical level.
Only an integrated design of primary and secondary system functions of
cyber-physical system will lead to efficient and resilient systems. When
NASA rovers were sent to Mars, it quickly became clear that in spite of
the impressive technological advances, a ‘minor’ aspect was overlooked:
Dust was accumulating on the solar panels, the camera lenses and the color-
calibration disk for true-color adjustments [KinchMarsDust, 2007]. Unlike
its biological counterparts on earth, e.g., insects, the Mars rover did not have
actuators, neither for cleaning its essential photovoltaic energy-harvesting
system, nor its sensors (Figure 9.1).

Today, companies will need to decide what their basic policy is with
regards to maintenance, a.k.a. that secondary but nevertheless essential
process in working systems. Production tools and consumer products are
increasingly designed on the basis of appearance and perceived simplicity.
According to this philosophy, large components are often replaced as a whole
and no attempt is made at maintenance ‘below the hood’. It is questionable
whether this is sustainable in the long term, due to limited global resources.
As an example, take a large data center. If the storage and server units are
purchased and installed at one concentrated point in time, the sub systems
will statistically fail after a few years and the total quality of service is
jeopardized. Users of that data center will expect a reliable operation without
interruptions. Should the company aim at a gross replacement of large groups

Figure 9.1 Unexpected dust accumulation on the color calibrator of a Mars rover. Without
actuators for autonomous self maintenance, only the wind can help out [KinchMarsDust,
2007].
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of racks at the end of their life cycle, coincident with a long off-line period?
Should one, alternatively, aim at gradual replacement of servers at the level
of blade-server modules? Or should the investment be aimed at a solid frame
architecture offering uninterrupted operations? The latter approach would
entail a continuous robotic replacement of small disk units in a manner that is
similar to a biological metabolic process, with an input buffer of spare disks
and an output stream of defunct units. Is there a cost-effective combination
of these different approaches? In order to make rational choices concerning
the level of granularity and in order to learn effective operating policies
as a company, the quantitative approach to maintenance as sketched out in
this book is essential. In the remainder of the chapter, we will focus on the
following provocative questions:

• Is it cybernetic or is it human?
• Real-time communication in maintenance?
• How to determine granularity in space and time?
• Open or closed maintainability?
• Insourcing or outsourcing?
• Explicit modeling or data-driven pragmatics?
• How to apply Virtual Reality and Augmented Reality?
• Service robotics for maintenance?

9.1 Is it Cybernetic or Is it Human?

From the experiences in the project, it is clear that current practice is still lag-
ging today’s maintenance control capabilities. Although the amount of logged
data can be quite impressive in the use cases, it is clear that the exploitation of
the available information is limited. Maintenance-related decision processes
are slow. They often require human-to-human interaction concerning the
selection of relevant data from legacy data bases, sometimes with a compli-
cated access-clearance procedure. As a result of preliminary analyses, usually
more data are needed, requiring ever more human-to-human communication
and negotiation. This predicament is exacerbated if the analytics is not
performed by in-house data scientists but by external companies providing
analytics services. The necessary data will usually exist, somewhere in a
huge storage repository. However, even after it has been collected there will
be a labor-intensive process of data cleaning, normalization and repackaging
before it can be used by traditional statistics or modern machine learning off-
the-shelf tools. In this process, additional human-to-human communication is
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needed ranging from database administrators to operators on the shop floor in
order to actually understand the data and the underlying physical processes.
In order to really close the maintenance-oriented feedback loop of a CPS, a
number of steps need to be made:

• A transition needs to be realized, from isolated ad-hoc problem analysis
to continuous measurement processes and effective control policies, at a
pace that fits the underlying process and is economically viable;
• The connection between the target process itself and the analytics mod-

ules needs to be an information highway in itself, not an improvised
ad-hoc connection. Standardisation is therefore a necessity at all levels,
from network I/O to semantic interoperability. The Explanator con-
cept for adding specific signal metadata to a .csv spreadsheet column
(Chapter 3) is just one example of the additional scaffolding that is
necessary;
• The standardized data can be easily presented to in-house and external

analytics consultants, allowing for selecting the best predictions or pol-
icy suggestions from several opinions or perspectives. If the packaging
of analytics results is also standardized, even the selection process of
finding the best solution can be automated.

Closing this feedback loop into a fully autonomous cyber-physical system
is not desirable at this stage, but a substantial reduction in human labor and
an improvement in the quality of the decisions can be expected as a result of
following these suggestions.

9.2 Real-time Communication in Maintenance?

An effective condition maintenance procedure requires the acquisition of
dozens of signals, some of which are related with the normal operation of
the system, while other are very specific to the maintenance requirements.
Some of these acquisitions are performed at very high rates (e.g., with an
interval of 10 ms). Achieving these timing requirements in low-performance
wireless networks like Zigbee or Bluetooth is a challenge that has to be faced
when designing any maintenance-based processing system. Additionally, if
we have several sources with the same requirements, the networks supporting
them might be occupied close to their operating limit. Condition-based main-
tenance will in some cases also require true real-time detection of physical
problems. This can be the case, for example, in cars, trains or industrial man-
ufacturing machines. In such cases, malfunctions have to be detected within
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a tightly limited time frame in order either to avoid the problem, or put the
system into a safe state. For different types of malfunctions, a characteristic
limited deadline for reporting must be specified. Possible solutions to achieve
these capabilities concern the use of multi-core computing platforms together
with real-time operating systems that are also tightly integrated with the anal-
ysis tools. While finding an adequate real-time operating system can be an
easy task, adapting and connecting data-analysis tools is still a challenge that
needs to be addressed, both in relation to parallelization and to the technical
details of the integration with such a real-time operating system. The work
performed during the MANTIS project allowed the identification of two main
challenges for future research: i) The realization of maintenance-related real-
time communication capabilities, and ii) attaining real-time guarantees for
(close to) real-time data analysis at the level of analytics.

9.3 How to Determine Granularity in Space and Time?

Large, disruptive transformations in a system architecture are expensive,
risky and time consuming. On the contrary, a system that is designed for
maintenance and maintenance-related processes will allow for incremental
improvements that do not disturb ongoing processes. Going back to the
example of the data centers: If it holds a maintenance criterion such as
‘duration of a disk hot swap should not take more than 2 minutes’, this
requirement may have a domino effect on the temporal granularity of other
interventions. If other maintenance operations have a duration in the same
order of magnitude, the total process is much easier to manage. In the current
practice of data centers, users will often not even notice that maintenance on
RAID disk systems is going on. In addition to the granularity in time, the
scale of replaced system components (‘just a disk’ versus ‘a complete rack’)
plays a role too. It is possible to design good systems with maintainability
in mind, thus avoiding operating costs that can be foreseen and prevented.
This can be realized by choosing the proper granularity for component
replacement.

9.4 Open or Closed Maintainability?

Depending on the application area, maintenance in manufacturing or main-
tenance of consumer products, there will be different company goals. The
increased digitization has allowed some companies to create customer



560 The Future of Maintenance

‘lock-in’ by means of specialized electronic tools for maintenance diagnos-
tics. Sometimes there are contracts where a user is allowed to operate, but
not maintain a particular product. Currently a countermovement is emerging
in the United States under the ‘Right to Repair Act’ in several states, for
automobiles and agricultural equipment.

Rather than pursuing a conflict model, companies can create goodwill and
customer involvement in maintenance issues by the proper use of big data on
wear & tear for different usage patterns and by offering customized mainte-
nance services for individual users. In this manner, predictive maintenance
is beneficial for both parties and companies keep a strong position thanks to
their information advantage.

9.5 Insourcing or Outsourcing?

The increased availability of analytics consultants with a statistical or
machine learning background poses new dilemmas for companies. In recent
years, there was a trend to outsource a number of activities and ICT services
to external companies. It is debatable whether maintenance-related informa-
tion processing is ‘just ICT’. The involved knowledge is highly sensitive and
is the intellectual property of a particular company. Decisions will have to be
made concerning the employment of external parties because maintenance-
related topics are directly connected to the reputation of a product and the
profit model that is in action. Evidently, legal mechanisms can be applied
to mitigate the risk of allowing third parties access to a core process. On
the other hand, predictive maintenance is so knowledge intensive and tightly
coupled to the center of a company’s activities that outsourcing should be
avoided in some cases. Replacing a body part with an extraneous replacement
may be acceptable in some areas, but would we outsource the brain, too? The
amount of knowledge that needs to be shared with external analytics partners
is usually also detailed and still requires substantial time investments, by both
parties. Whereas the company sees an opportunity for success with limited
loss of time, the analytics company expects to find low-hanging fruit: Both
expectations are overly optimistic. There is no free lunch: Modern machine
learning only works with enough high-quality data from the problem owner.
At the same time, companies may have worked for decades on a particular
maintenance problem such that it may be very difficult for newcomers to
improve existing results.
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9.6 Explicit Modeling or Data-driven Pragmatics?

The project unrolled in a period where there are tremendous advances in
artificial intelligence and machine learning. Almost every month there was a
breakthrough in deep learning, considering hard, nonlinear problems, such as
the game of Go. Although most advances have been made in the area of image
processing, or problems where a 2D array of cells is given at the input, there
are also advances in time-series processing using recurrent neural networks,
such as the LSTMs. On the other end of the spectrum are the traditional
modeling approaches, such as hidden-Markov models or regression statistics
for modeling aspects of maintenance processes. In the traditional approach,
modeling from interpretable models (white box modeling) is used to obtain
a detailed insight in complex processes and the underlying causalities. In
the relevant communities there is considerable mutual scepticism, not so
say animosity, concerning ‘the other’ (black box modeling) approach. The
easy answer would be to say that time will tell. However, it is already
becoming clear in what direction future developments may go. The new
machine-learning tools allow to discuss regarding the existence of a particular
I/O mapping with sufficient accuracy and reliability. From that point on, it
depends on the actual goal of the analytics exercise. If a prediction with an
acceptable error margin is at stake, it may not always be necessary – for
a company – to understand all minute details and causes of this particular
I/O relationship. Human-based analysis is costly and the traditional explicit-
modeling approach is not always perfect, either. On the other hand, if a
thorough understanding of an important and costly maintenance issue is
needed, the investment in human-based research may be warranted. The new
wave of machine learning has taught us at least one powerful lesson: Each
model (including the handcrafted ones) can be viewed as just a stochastic
sample from a universe H of possible model designs [Valiant, 1984]. There
may exist several alternative models with similar accuracies and reliabilities:
“All models are wrong, but some of them are more useful than others”. The
challenge for a company then is to make effective use of these available
variants for a particular problem. After all, the ultimate goal may be the
economic yield, not the scientific understanding, per se.

9.7 How to Apply Virtual Reality and Augmented Reality?

Current industry is one of the key domains where virtual, augmented and
mixed reality can create a huge added value.
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The most commonly known applications of Virtual Reality (VR) in con-
dition monitoring and maintenance are training, actual maintenance, remote
maintenance/condition monitoring and maintenance assembly. Virtual Real-
ity generates a computerized environment of the real system to be used in the
previously mentioned aspects (see Figure 9.2).

VR could, for example, help the maintainer identify where exactly the
problem is, from a whole system down to single component level, in a
virtualized system so that the maintainer can reduce the asset’s downtime.

Maintenance training has been used in several applications including air-
crafts, automobiles, power plants and other process industry applications. In
actual maintenance, VR has been used mostly in aircraft maintenance appli-
cations like military fighter planes because of the complexity of the mainte-
nance process. Some other examples of remote maintenance applications for
process industry and rotating machinery can also be found.

Figure 9.2 Virtual Reality system for maintenance.
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Augmented reality (AR) is a blend between VR and actual reality. AR
applications contain basically the same repertoire than general VR solu-
tions. AR allows for maintenance training, actual maintenance, service based
mobile maintenance tools, remote maintenance, maintenance assembly and
e-maintenance solutions. Some applications contain even simple diagnostics
and utilization of the user’s speech.

Maintenance training has been used in similar applications as in VR.
Current maintenance covers solutions like aeroplanes, armoured military
vehicles and different industrial solutions. Remote maintenance solutions are
targeted mainly for small and medium size enterprises. Some examples can
be found from service based mobile maintenance tools and e-maintenance
solutions. More sophisticated solutions utilize even simple diagnostics and
the user’s speech to make decisions.

9.8 Service Robotics for Maintenance?

Rapid developments are taking place not just in the area of machine learning.
Robot technology is also advancing at a fast pace. There is a diversification
of the application areas. Whereas in the eighties and nineties the focus was
on statically located robot arms with strong force, high speed and accuracy,
today’s robots span a wider spectrum of implementations. Convenience of
programming, man-machine collaboration and improved sensing are needed
in the work place. In the Robocup@Home benchmark competition, the par-
ticipants only hear a day in advance what the actual testing scenario will
be (given a number of constraints on the robot design, in advance). Stan-
dardisation on the basis of ROS (Robot Operating System), and the Python
programming ecosystem, have allowed fast prototyping. In light of these
recent developments, it is amazing to see that current industrial robotics is
still mechatronics based, very accurate but difficult and expensive to program.
However, if one observes human operator activities along a production line,
it is clear that part of this work also lends itself to possible robotisation.
Evidently, the replacement of complex modules and tools in a manufacturing
production line will still be a job for human operators. On the other hand,
some tasks are repetetive and menial, involving visual or other types of
inspection on known places along a production line, such as the occasional
removal of dirt and providing oil in locations where friction starts to become a
problem. The mean time between failure can be fairly short, for complicated
production lines, while the human-based corrective actions sometimes are
surprisingly trivial: A push here, a removal of a small obstruction, or simply
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cleaning an area with compressed air. Current robotics technology is well
able to fulfill at least a part of these tasks, notably on a ‘24/7’ basis. This
prevents the buildup of large problems as a consequence of accumulated
small problems. Under conditions of variable operating conditions, it would
be too expensive to install dedicated hardware to solve a wide variety of
the aforementioned problems. On the contrary, the solutions provided by
service robotics are not hardware but behavior based, i.e., relying on trainable
software. If service robots will be employed in a manufacturing setting, this
will change but not obliterate the necessity of human interventions. Operators
will become the robot trainers, providing the robots with a library of correc-
tive behaviors for different problem locations along a production line. An
important advantage is that such pragmatic knowledge is then shared among
the members of a team of maintenance robots. The presence of such robots
also provides an incentive for making the maintenance-related knowledge
more explicit within the company. Interesting new research topics will evolve
at the level of dynamic tool use by robots, using standard clip-on tools. An
image emerges of large cyber-physical facilities with mobile maintenance
robots supporting static production robots and maintaining active legacy
production machines of a different era that are not yet at their end-of-life
state from an economical point of view.

9.9 How will the Maintenance Practices Change

Most of the maintenance strategies that are followed today to some extent
have existed for a long time e.g., the first edition of Maintenance Engi-
neering Handbook was printed in 1957 [Higgings, 1987], the first edition
of Moubray’s Reliablity-centred Maintenance [Moubray, 2007] was pub-
lished in 1991, Jardine & Tsang came up with Maintenance, Replacement,
and Reliability [Jardine, 2006], Theory and Applications in 2006, Crespo’s
The Maintenance Management Framework [Crespo, 2007] was published
in 2007, and E-maintenance came out in 2010 [Holmberg, 2010]. Also, the
key standards have existed for a long time. In spite of the existence of these
theories and methods, the everyday maintenance practices vary a lot. The so
called corrective maintenance is still used to a great extent although it has
been proven to be in many cases costly and ineffective. The main reasons for
this situation are the lack of data that would help to understand the need for
maintenance, and the lack of ways to define what would be the best practice
from financial point of view.
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The book in hand discusses widely the first aspect i.e., how to get data and
how to turn that data into meaningful information about the current state of
the machine i.e., is maintenance needed and when should that action be taken
when considered from technical point of view. It is clearly shown what the
Cyber-Physical Systems are capable of and how they can help in the definition
of the condition of machinery and thus basically enable Condition-Based
Maintenance i.e., enable maintenance based on need and not e.g., calendar.
The dramatic reduction of cost of sensors and the dramatic development
of processing power and wireless communication are the key elements in
enabling IoT 4.0 and thus Maintenance 4.0 [Jantunen, 2018].

The second aspect i.e., the lack of ways to define what would be the best
practices is not covered quite to the same extent. However, the increase of
reliable data will enable the full use of the maintenance strategies named in
the beginning of this section. For example Reliability-centred Maintenance
(RCM) has been considered very hard to use due to the enormous manual
work in collecting meaningful data. Even when the studies have been made
in cases where it has been considered financially justified, the results have
been criticized or at least doubted due the number of assumptions that have
been made and the limitations in the amount of the data. Now this will change
dramatically as the data will be available and, assuming it is managed in
proper ways as discussed in chapter 3 of this book, and the basis for following
the above described strategies exists. In fact it can be claimed that the most
dramatic change will take place when the above described data will be used
by Computerized Maintenance Management Systems (CMMS) to answer the
what if question i.e., make comparisons between choices on strategic level
and on practical level. The point is that collected data make it possible to
run numerous scenarios comparing the financial results of different kind of
approaches, e.g., conservative maintenance where maintenance actions are
carried out early in order to guarantee high availability or more risky approach
where maintenance actions are carried out closer to the end of the life of the
components. In theory this means that in the future maintenance policies can
be based purely on financial issues and not feelings, opinions, and partial
information.

In a futuristic scenario, the maintenance can be automatic and without
human intervention, managed by the CMMS that manages work orders and
spare parts and at the same time, much of the practical work is actually
carried out by robots as described earlier in this chapter. The reality today is
that we are very far from the above described scenario. Today manufacturing
companies are very keen on developing maintenance service businesses for
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the equipment they have sold. The main idea behind this is that it is realized
that providing maintenance services to customers can stabilize the business
against the variation of sales that are varying depending on local and world
economy. Another scenario for manufacturing companies is that they would
sell not the production machinery but the capability to produce at certain
level. Even though there was a boom in providing maintenance services,
quite a lot of work is needed in order to reach the scenario described above.
Unfortunately, today the level from where the manufacturing companies start
their development for the development of maintenance services varies a lot.
Consequently, it can be expected that there will be great success stories when
the development will follow efficient maintenance strategies, but there is also
the risk that someone might have too high hopes regarding how quick and
easy the development can be.

9.10 Conclusion

The evolution from human-paced, ad-hoc, intuition-based maintenance to
integrated, quantitative and autonomous maintenance in cyber-physical sys-
tems will still require considerable effort in the coming years. The MANTIS
project is an important step in this direction, which could not have been
realized by a single organization.
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