
Modelling as Research Methodology was written for the scientist and student 
researching the (expected) functioning of systems under specified conditions. 
As such, it represents an introduction to the use of modelling in natural, human 
and economical sciences. The book is divided into two sections.

The first section illustrates the universal nature of modelling as aid to the 
researcher. More specifically, this section focuses on the following:

The principles of mathematical and scale modelling.•	

A model for the design and development of physical devices comprising •	
of elements of different engineering disciplines.

The need for data acquisition facilities - especially in those cases where •	
physical modelling is utilised.

In the second section of the book, several typical examples of modelling are 
described. These include a variety of studies such as:

Modelling of the performance of an industrial freezer.•	

Human-environmental dynamics with respect to a hydrological model.•	

The prediction of short-term electrical load demand.•	
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PREFACE

There are a few research methodologies that can be used in all disciplines and 
sciences, both natural and human. Modelling – both scale and mathematical 
modelling – is an example of this important, universal commonality in research. 

To study a small segment of a large natural phenomenon in a controlled 
manner is typical of research in natural sciences. Hence, for practical reasons, 
a representative model of the actual phenomenon is studied rather than 
the complete phenomenon per se. Results obtained from such can then be 
extrapolated so as to enable a better understanding of the phenomenon and its 
expected behaviour under certain conditions.

Alternatively, a mathematical representation of a system can be developed, 
and its functioning studied indirectly through the solution of the mathematical 
model for specified conditions. Although this technique is particularly common in 
engineering-related studies, social and economic matters also lend themselves to 
this particular methodology through the development of suitable mathematical 
models that describe the functioning of a system.

Modelling can be utilised in virtually any discipline, and can also fulfil different 
functions. The most typical use of models is to try and understand or study the 
(probable) operational characteristics of a physical system under predefined 
conditions, or to assist with the design and development of a new system, meeting 
specified operational characteristics.

The increasing complexity of society, together with the devices that it utilises, has 
resulted in a situation where procedural models are even used to describe the 
optimal way in which a new system is to be designed, developed, and eventually its 
functioning assessed.

Especially in engineering-related research, it is common to design, build and assess 
the functioning of scale models of physical structures and functional units. These 
techniques facilitate the determination of the expected functioning of the actual 
structures or systems under investigation.

An important stage in the modelling process is verification of the validity and 
accuracy of a model. This is often done by accessing measured values on the actual 
system as developed and built, and comparing them with the modelled values of 
the same system. A data acquisition system is usually required to access such data 
and save it in a computer’s memory for processing and interrogation.

This book is a modest attempt at introducing the basic principles of modelling 
and its associated practices, as well as illustrating this research technique by 
means of a few practical examples of its use in a variety of disciplines. It is 
hoped that this will contribute to an improved understanding of the underlying 
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principles of (potentially) one of the most important, yet often neglected, 
research methodologies.

Jorrie Jordaan & Laetus O.K. Lategan 
(Editors)



SECTION 1
General Principles of Modelling



3

CHAPTER 1

Principles of Modelling in Research and Design

Gerrit Jordaan

1. MODELLING
The principles of modelling, within the context of this book, involve several 
categories of systems of representation of a functional system or phenomenon. 
In particular, mathematical and physical (e.g. scale modelling) of prototypes 
(the planned, final product, structure or phenomenon under consideration) are 
important research practices in both natural and human sciences.

Modelling is also often referred to as simulation, where it describes the 
representation of an actual situation by a mathematical model, or alternatively by 
laboratory apparatus in the case of a physical model [3]. The term “modelling” is 
also used to describe the practice of functionally dividing an operational unit into a 
number of different sub-units, the operational parameters of each of which can be 
defined as an element of the whole unit.

Even though modelling inevitably facilitates a better understanding of the 
expected functional characteristics and limitations of a real-life system, many 
researchers still do not use these research techniques optimally in the study 
of phenomena that could be modelled successfully. For a long period, there 
was a tendency to use mathematical modelling predominantly for the study of 
engineering-related problems. Fortunately, this is no longer the case, and it is 
increasingly being used to model phenomena that occur in other natural science 
disciplines, as well as in the human and economic sciences.

2. MATHEMATICAL MODELLING
Mathematical modelling is the process of describing the behaviour of an element 
of a physical system, or a comprehensive system or phenomenon, by means of a 
mathematical expression, or a series of mathematical expressions. This can only be 
done after the identification, definition and quantification of the interrelationship 
of those variables with a substantial effect on the functioning of the system to be 
modelled. Thus, the effects of these variables on the performance of the system 
should be determined and represented mathematically to enable mathematical 
modelling of the system.
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Figure 1.1 is a representation of the practice of modelling, indicating the process of:

 � construction of a model of a phenomenon that occurs in the real world and 
needs to be studied;

 � using mathematical theory to analyse the model; and
 � acquiring results of the analysis and interpretation thereof in order to interpret 

the phenomenon that is being studied.

Mathematical
Theory

Mathematical Analysis Mathematical
Results

Real world 
phenomenon

Construction

of m
odel In

te
rp

re
ta

tio
n

of
 re

su
lts

Figure 1.1: The principles of mathematical modelling

A system is usually a set of interacting and/or independent elements, real or 
abstract, forming an integrated whole and functioning collaboratively and 
interdependently. The functioning of the system under specified conditions 
depends on the characteristics of each of its constituent elements. It is common 
to identify and describe the different elements of a system and to express the 
operation of each mathematically. By sequentially varying the values of one input 
variable between predetermined limits, whilst monitoring the effect of this on the 
functioning of the complete system (the output), it is possible to investigate the 
effect of the particular input condition on the functioning of the system. In this 
way, a better understanding of the different elements, and its expected effect on 
the functioning of the complete system, is developed.

With reference to Table 1.1, an outcome of this type of simulation could be a 
graphical representation of the output power of a wind generator with an increase 
in wind speed from, say, 10 to 50 kilometres per hour.

Figure 1.2(a) below shows a particularly accurate simulated response of an 
electric motor under certain, specified input conditions [5]. It depicts the 
expected (predicted) speed and torque of the motor under certain conditions, 
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whilst Figure 1.2(b) shows a set of measured values for the motor when it was 
actually exposed to the same input conditions [5]. From this, it is evident that 
the mathematical model of the expected torque and speed characteristics of 
the motor was such that the characteristics of the motor could be predicted 
very accurately.

Figure 1.2(a): Simulated functioning of an electric induction motor under specified 
conditions

Figure 1.2(b): Measured performance of the simulated induction motor under the same 
specified conditions

Careful inspection of Figure 1.2(b) reveals substantial electrical noise on the 
measured characteristic. This does not necessarily detract from the validity of the 
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simulation, but illustrates the need for experience and background knowledge on 
the part of the researcher for the accurate assessment of such results.

To facilitate easier modelling of a problem, the system is often simplified by 
limiting the number of variables modelled to those most critical to a description 
of the functioning of the system. Obviously this can only be done if there is a 
thorough understanding of the underlying functional principles of the system, 
otherwise variables critical to the functioning of the system may be ignored with 
a consequent fatal decrease in the accuracy of the developed model. In this way, 
very complex systems can be described and studied as combinations of relatively 
uncomplicated, understandable subsystems (elements) – for each of which there 
is an approximate analytical solution available.

With increasing evidence that an accurate model successfully describes the 
behaviour of a modelled system, the confidence of the modeller in his model will 
increase and it will usually be used increasingly.

The modelling of mechatronic systems, including a combination of both electronic 
and mechanical parts, dynamic and static components with hysteretic effects, 
flip-flops, and sensors, as well as effects like inertia, elasticity and friction – thus 
a hybrid combination of continuous and discrete state elements - is particularly 
difficult. This typically necessitates the use of special system formulations [1].

2.1 Availability of analytical solutions
Any system for which an approximate analytical solution for its behaviour is 
available – or can be derived – can be modelled mathematically and its functioning 
simulated numerically. This is normally done by considering the system as a 
combination of interactive elements as referred to in paragraph 2 above. Table 1.1 
shows a number of typical examples of physical phenomena that can be modelled 
successfully.

Table 1.1: Typical phenomena to be modelled

Modelled phenomena Description of possible modelled characteristics
Prevalence of ailments The prevalence of a certain ailment in the population 

of a particular community under specified conditions.
The effect of the population 
size of certain kinds of game

The effect of an expected change in the number of 
lions on the presence of a particular kind of antelope 
in a specified area over a specified period of time.

The flight path of an aircraft The expected flight path of a specific aircraft with 
a defined load under a complete loss of power 
condition.
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Modelled phenomena Description of possible modelled characteristics
The functioning of physical 
structures with varying loads

�� The behaviour of a bridge under different 
conditions of dynamic loading.

�� The effect of an increase in wind on the 
performance of a wind generator.

The growth of a tumour The effect of certain drugs on the rate of growth of a 
tumour.

The operating characteristics 
of an electrical system

�� The effect of bandwidth limitations of a 
transmission line on the recoverability of 
transmitted signals with specified characteristics.

�� The expected speed and torque characteristics 
of an electrical motor under specified electrical 
supply conditions.

The effect of a particular 
change in the environment on 
an insect population

The relative population growth of a certain species 
of insect if subjected to a specified change in 
environmental conditions.

The expected behaviour of the system under consideration can be predicted 
by means of mathematical modelling, whilst the accuracy of the predictions is a 
function of the correctness of the mathematical formula(e) used to describe the 
system, as well as that of the boundary conditions and the initial conditions in the 
case of unsteady or time-dependent phenomena.

It is obvious that mathematical modelling is an extremely useful tool that can be 
used in a very wide variety of applications, and is only limited by the mathematical 
abilities and understanding of the modeller of the system under investigation, 
rather than the discipline in which he or she is working.

2.2 Monte Carlo simulations
In some cases, the modeller would like to determine the effect on the system if 
several variables should vary simultaneously and independently – normally within 
a fixed range for each variable. In such a case a so-called Monte Carlo simulation 
would be executed where the defined set of mathematical expressions are 
solved repeatedly whilst several relevant variables are adjusted randomly within 
predefined ranges [2]. In this manner, it would be possible to determine, for 
example, the sensitivity of a system to possible tolerances of the components 
used in the construction of the system.

2.3 Simulation software
The programming ability of the modeller, and availability of dedicated simulation 
software, normally determines the manner in which the modeller would do the 
actual simulation.
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Mathematical simulations are often executed using a standard mathematical 
software package such as Matlab, Mathcad, Mathematica or Maple. Alternatively, 
application-specific software with good graphic interfacing or a custom-written 
programme can be used for this purpose. However, good graphic interfacing is 
an imperative since the evaluation of a simulation is often easier if the results are 
provided in a graphical format.

A number of special-purpose computer languages for system simulation have 
been developed – where the use of any of these languages can eliminate a large 
amount of effort compared with starting with a general-purpose language such as 
C++. The General Purpose Simulation System (GPSS) is an example of a specialised 
simulation language, orientated towards engineering situations and is used for 
production-flow problems and inventory analysis [2].

A finite element model of a problem gives a piecewise approximation to the 
governing equations of a structure response. This technique facilitates the detailed 
modelling of extremely complex shapes [4]. With the recent increase in the 
availability of good, user-friendly finite element analysis (FEA) software and the 
exponential growth in the computing power of modern computers, FEA software 
is increasingly being used to determine the expected dynamic behaviour of 
complex systems and structures. With this type of software, it is relatively common 
to accurately determine the expected performance of a complex system at more 
than, say, a million points of calculation – which, even with today’s extremely 
powerful computers, may take hours of computing to simulate.

3. PHYSICAL MODELLING
Although physical modelling is used predominantly in engineering applications, 
it can also be used for the execution of controlled experiments in other natural 
science disciplines.

Aerodynamics plays a vital role in many engineering fields, such as aerospace, 
architectural, automotive and marine engineering. These phenomena are usually 
modelled physically in either wind or water tunnels [4].

To some extent, mathematical modelling superseded scale modelling, and 
facilitates a shorter reaction time in terms of possible changes in the design of a 
modelled system. However, the use of physical modelling is still very much the 
order of the day – particularly in terms of the modelling of hydrodynamic and 
geographical phenomena. In these cases, there is often no analytical solution 
available and scale modelling is the only viable method to accurately investigate 
the characteristics of the prototype.

Physical models are often used to visualise a planned construction and can also 
be used to investigate possible assembly procedures of the eventual product. 
However, the main application of physical modelling is probably to measure 



9

1. Principles of Modelling in Research and Design

the expected functioning of a system under a specified range of varying (load) 
conditions. Typical examples of cases where such measurements are made include:

�� the effect of an increase in wind speed on the performance of a wind generator;
�� the effect of a rise or fall in water level on the deflection of a dam wall;
�� the aeronautical characteristics of a system; and
�� the vibration of structures due to varying loads.

A physical model of a system typically consists of a scaled down (or in some cases 
scaled up) version of the complete system, or specific portions thereof. Often the 
system is simplified by limiting the accuracy to which some, non-critical elements of 
the system, are modelled. However, a thorough understanding of the underlying 
functional principles of the system is required to ensure the safe identification of 
non-critical variables. 

As with mathematical simulation, the performance of scale models is often 
ascertained with one varying variable – such as the functioning of the system 
over a range of temperatures – whilst the other variables are kept constant. The 
design of the experimental apparatus and procedure must take into account the 
preferred degree of automation appropriate for the experiment [3].

4. ADVANTAGES OF MODELLING
The ever-increasing use of mathematical and physical modelling techniques is 
ample proof of the immense value of these practices for modern day researchers 
and practicing engineers and technologists. The following examples are indicative 
of the advantages that normally flow from modelling and simulation in research 
activities:

�� The resultant ease of performing controlled pseudo-experiments.
�� The determination of the anticipated effect of any change in the operating 

conditions of that will influence the functioning of the eventual system – man-
made or otherwise.

�� Time compression in the sense that a simulated experiment can take a small 
fraction of time compared to an actual system under test.

�� Sensitivity analysis for observation of the behaviour limits of a system.
�� Experimentation without requiring the financial outlay for the real system.
�� Usually, modelling is an effective training tool.

5. SUMMARY
Modelling involves a repeated switching between the functional and physical 
characteristics of a system, i.e. the determination of the expected change in the 
functioning of a physical system if a specific physical characteristic is changed to 
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a certain extent. Or, alternatively, a determination of what would be the required 
change in the physical characteristics of a system in order to cause a predetermined 
change in its functioning.

It is frequently required to ascertain the expected performance of a system or 
structure under development. This would normally be done in one of the following 
two ways:

�� A physical model of the system, with its size normally scaled up or down and 
with the main physical features that should impact on its performance being 
prepared in great detail, is built. Its functional characteristics are measured in 
physical conditions that approach those in which the prototype will be expected 
to function. From these measured results the expected functioning of the actual 
prototype is derived or predicted.

�� A mathematical model of the system under consideration is developed and 
its expected functioning is simulated mathematically. From these calculated 
results, the expected functioning of the actual prototype is derived or predicted.

Either of these methods of investigation can be used, depending on circumstances, 
to validate a new design or the expected performance of a system. After 
construction of the prototype it would be normal to validate the accuracy of the 
modelling that took place by evaluating the performance thereof experimentally. 
These alternatives are shown schematically in Figure 1.3.

Model Prototype

Mathematical
model

Physical
model

Simulate
(acquire data)

Measure
(acquire data)

Process data
(evaluate)

Figure 1.3: Alternative methods to determine the expected functioning of a system or 
structure under development
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Mathematical, physical and functional modelling (and contributions thereof) 
are well-respected research techniques frequently used by researchers in 
almost all fields of study to determine the expected performance of a system 
under development. It is imperative that researchers who are serious about the 
development and optimisation of new designs should be au fait with the relevant 
principles governing the use of these techniques.

6. REFERENCES
1. Adli, M.A. and Dogruel, M. ‘Modelling and Analysis of Mechatronic Systems Using 
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CHAPTER 2

Models and Modelling for Science

Ulrich D Holzbaur

Science – even applied science – is not concerned with solving individual problems 
but with describing structures and giving statements in a general setting. To 
derive a general statement from observations and individual solutions, one needs 
abstraction and generalisation. This is the essential use of modelling: a model 
describes only the relevant general aspects and leaves out all individual aspects. 
In most cases, identifying the relevant and irrelevant aspects and determining 
adequate models is the most important part of scientific work.

Mathematical models for science are described in this chapter, starting with the 
fundamental ideas of modelling and a definition of models and systems. To model 
reality successfully, we have to consider model classification and types from 
informal to formal mathematical models, the modelling process from the mental 
model to formal solutions, and from generic models to model instances. Several 
examples for models in science, especially for dynamic models, are also given.

1. SCIENCE AND KNOWLEDGE
First the relation between science, research and models are clarified. For this, we 
refer to [2, 3 and 5].

1.1 Knowledge
Research activities are undertaken to gain knowledge. To know something 
does not mean to own some information, but rather to allow integration of this 
information into a system of knowledge. For an individual person, this is the 
cognitive function of the mind.

To represent knowledge within the scientific community, we need some 
representation of information and knowledge. This representation can be done 
implicitly, e.g. in the unspoken basics and traditions of culture, or explicitly, e.g. in 
models with more or less formal syntax and semantics.

1.2 Models and systems
One preliminary remark with respect to the philosophical aspects of modelling is 
that although models are as real as any part of the “real world”, the “real world” 
concerns those items that exist independently from the envisaged modelling 



14

Modelling as Research Methodology

process. As long as modelling itself is not seen as the object of the modelling 
process, this does not cause any confusion. For the purpose of natural and social 
science, economy and technology, this differentiation does not cause any paradox 
and gives a short notation to refer to models as the images, and the “real world” 
as the pre-image.

�� A system is any – real or mental – part of the real world that is identified by 
considering either the individual parts together with the relations between 
them, or its boundaries and relevant aspects. A system is often also something 
abstract since it is not something that can be identified in reality and the 
consideration of parts of reality is an idealisation in itself.

�� A model is a representation of a system that is used for a dedicated purpose. 
This means that the model itself is a – more or less abstract – system that has 
some purpose (pragmatics) and some relation to another system (semantics).

�� A formal model is a model that obeys some formal rules (syntax) with respect 
to the components of the modelled system.

�� A mathematical system is a mathematical structure (e.g. a set of equations 
or relations) that can be used as a mathematical model for a class of systems. 
From a mathematical system, very general results can be obtained – e.g. on the 
stability of the system – that will be valid for all kinds of models and systems for 
which this mathematical system is a valid model.

�� A mathematical model is a mathematical description that is used as a model 
for any complete and consistent set of mathematical equations and which 
corresponds to some entity, its prototype.

�� In the theory of logic, the notion of a model is also used for a system that fulfils 
(makes true) all statements of a system of mathematical axioms. For example, 
the surface of a sphere is a model for a non-Euclidian geometry in that it fulfils 
all axioms except the parallel postulate (on a sphere, any two straight lines 
meet in two points). The existence of a model shows that the system of axioms 
is not contradictory.

1.3 Example: From optimal control to linear feedback systems
As an example of a set of mathematical systems that can be used as mathematical 
models, we consider a continuous time dynamic system. The following descriptions 
are intended as an indication of the variety in abstraction and complexity of 
mathematical systems and can of course not serve as an introduction to systems 
and control theory.

In a rather general setting, a dynamic system is ruled by a systems equation [1, 
4]. To this, we can add concepts of control, uncertainty, stochastics, optimality or 
even game theory. The resulting mathematical system could serve as a model of 
almost any process – from physics to macroeconomics. To allow a mathematical 
treatment of the model and a self-contained analytical solution, we have to add 
assumptions, e.g. linearity. One possible model that can be handled analytically is 
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the linear finite dimensional optimal feedback control system that is well known in 
engineering and economics.

Starting from basic principles on deterministic memory-less dynamic systems, 
the system is modelled by a state x that evolves in the course of time. The future 
evolution of the system from some time t1 depends only on the state x at time t1. In 
the formalism of systems theory, the transition law is given by  x(t2) = T(x(t1), t1,t2). 
Note that finding an adequate state (space) that contains all necessary information 
is one of the important steps in modelling. For example, to describe the dynamics 
of a mass point in space, we have to consider the six-dimensional state vector 
consisting of position and velocity.

The transition function for the controlled system would depend on the values of 
the control input on the interval [t1,t2]. We can write this as x(t2) = (x(t1),t1,t2,u[t1;t2]). 
Next, we assume the very special case that the system is linear and governed by a 
differential equation.

 

dx = Ax
dt

 (1)

where A is a square matrix that describes the system’s dynamics. The 
(uncontrolled) transformation function T is now given by the solution of the 
differential equation.

 T(x(t1),t1,t2) = E(x(t1)t2 - t1) with E(x,τ) = eAτx (2)

The dynamic behaviour of the system, explicit solutions, and stability can be 
analysed mainly by considering the eigenvalues of the systems matrix A. The linear 
control system is given by the differential equation.

 

dx = Ax + Bu ,u = C(x - x0),
dt

 (1´)

and describes the dynamic control aspects of a vast range of systems from 
engineering (control of a power plant, speed control, target tracking), economics 
and management (all types of control), and cybernetic systems in social, natural 
and life sciences. It describes a very generic system with a huge variety of potential 
instances. From this mathematical system, we can start to model the real world 
system.

A mathematical system becomes a model when the variables are given a (general 
or special) meaning. Hence, we can define generic mathematical models, such as 
the model of technical control systems, by saying that x is a physical variable; more 
special models, such as the speed control in a car, by defining x to be the speed of 
the car; and model instances that describe the cruise control of a special (type of) 
car considering the dynamics of this car.

To determine the optimal control function or optimal control law, we need 
a criterion for the quality of the dynamic behaviour. This can be modelled by 
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combining three criteria: the deviation (magnitude) of x over time and at the end 
of the control period, and the efforts for influencing the system. We could also 
integrate other criteria and, for example, explicitly consider the time T to reach a 
state x = 0. In the linear-quadratic case, the cost model can be described by:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )TxMTxduMuxMxQ F

T

RS ´´´
0

∫
=

++=
τ

τττττττ

Here, the x´Mx are quadratic forms which in the one-dimensional case just give a 
product x2M. M weights the states (S) and resources (R) over time and final results 
(F). Applying the quality criterion to the linear feedback system, we find criteria for 
the optimal control law u, for the existence of a linear optimal feedback control 
law u(t) = C(t) . x(t) and for the optimal feedback matrix C.
The time-discrete approach can be used to derive a similar type of optimal control 
problem. Time-discrete stochastic models with finite state can be modelled via 
Markovian decision models that can be handled algebraically. Also, these discrete 
time finite state models can be used for a wide variety of real world problems – 
such as for optimal resource deployment.

1.4 A model of modelling
The following are very formal considerations on modelling, which show the 
essentials of model-based reasoning.

A formal model

We can model the model criteria in the following way: The result from an action 
(analysis, transformation, measurement) in the model must be the model of the 
result from the action. This can be represented as in Figure 2.1.

Real world
action

Real world
result

Model
action

Model
result

Figure 2.1: Criteria for a valid model

Defining formally the mapping for modelling m and for the effect e of an action, we 
have e(m(x)) = m(e(x)) or m o e = e o m which means that the diagram commutes. In 
fact, the mappings for the effects in the real system and in the model are different 
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since they are defined on quite different structures: m o eR = eM o m. We also have to 
take into consideration that neither m nor eR can be modelled formally.

An example: maps

Let us consider a geographical map as a simple example. A map depicts some 
part of reality for some purpose. A roadmap should show the road from a place p 
(city, building) to another place q. For navigation or artillery, we need the direction 
(bearing) and the distance from p to q. A geological map should show specific 
subterranean details at a point, say p. Depending on the intended use and the 
necessary accuracy we have different scales and different projections to allow us 
to determine these results from the map.

World

q

q

p

p

Map

Figure 2.2: Projection as a means of mapping

Several mapping techniques have been developed to model the globe as a 
two-dimensional map - with most of them being projections. The criterion 
which we have for the distance d between a pair of points (p,q), would be that 
dM(m(p),m(q))=m(dG(p,q)) where dM and dG(p,q) are the distances measured on 
the map and globe respectively while m denotes the mapping (left hand side) with 
respect to the scale (right hand side). This is possible for larger scales, e.g. on a 
hiking map, while for larger distances, there is a difference in distance between a 
flat map and the (approximately) spherical surface of the earth.

The semantics of maps also differ widely with the intended use. For instance, a 
line may mean a road, a power line, a border, a geographical fault, a contour line 
or some line of a coordinate grid or search grid. Also, the geographical symbols 
have some semantics which should be explained by the caption. Depending on the 
scale, a lot of abstraction and generalisation is used in maps.

A model view on measurement 

As seen in the example on maps, measurement is a special case of an action for 
which models can be used. A model should provide the result of a measurement by 
manipulation within the model.
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The simplest model of measurement is that of comparison: To measure a length 
in space or in time, you compare the object to be measured with a standard 
scale. More complex measurement involves the concept of inverse mapping and 
stochastics:

Let x be the phenomenon we want to describe and e an experiment with outcome 
e(x). Then we can describe the relation between modelling and measurement as 
follows:

The effect e should fulfil the following requirements:

�� The value e(x) can be measured more easily;
�� The relation between x and e is given by a model.

To measure x, means to perform several experiments and to determine the 
outcomes e(x) and from that to estimate the “best” value for x.

2. USE OF MODELS IN SCIENCE
Due to the benefits that result from the utilisation of models, there is a huge 
amount of literature about models and (examples of) modelling.

2.1 Models in the knowledge process
In science, we can identify tasks that may be more concrete (based on examples) 
or more abstract (indicating the integration of knowledge). Models are used in 
inductive reasoning (from special cases to the general law) as well as in deduction 
(from the general law to the individual case).

General

Scientific 
result

Idea

Special

induction

deduction

deduction

induction

Develop a 
general model

Empirical studies, 
special model 

application

Validate 
the model

Generalise 
the model

Figure 2.3: Induction and deduction in the knowledge process
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Real world
question

Real world
answer

Model
question

Model
answer

Figure 2.4: Deductive reasoning

Real world
observation

Model of the
observation

New
model

New
results

Interpretation
of new model

Figure 2.5: Inductive reasoning

2.2 Models in the research cycle
The research cycle begins and ends with the research problem, where the research 
hypothesis is formulated in an abstract setting and within the relevant discipline. 
Hence, it uses the notions and notations of the relevant discipline. The research 
strategy and the analysis and interpretation of collected data link the model-based 
hypothesis to the real world.
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Collected data
(experiment)

Design a
research

Formulating the
research problem

Analysis and
interpretation

Figure 2.6: Models in the research cycle

2.3 Model-based problem solving
The paradigm of applied science can be described as starting from (possibly, 
collections of) individual problems, describing structures and giving statements in 
a general setting. From the models derived, other problems can be solved.

Real world
problem

Real world
solution

Problem
model

Solution
model plan

Figure 2.7: Model-based problem solving

Problem-solving methods can be:

�� Mathematical solutions: From the equations that describe the problem, 
a mathematical solution can be derived either in the form of another 
mathematical equation (e.g. the equation of motion (equation 2) as a solution 
to the differential equation (equation 1)) or as an algorithm (e.g. the Simplex 
Algorithm on Linear Programming).

�� Computer solutions, especially simulations: for a discrete time finite state 
deterministic dynamic system: In principle, the transition function can be 
implemented on the computer and a simulation can be run. For other system 
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models, and for a lot of static problems (e.g. FEM), the problem has to be re-
modelled.

�� Reasoning, communication and discussions: Qualitative results and improved 
insight by using more or less formal models that can be shared among the 
problem-solving team. This also relates to the motto of “modelling for insight 
not numbers”. Of course, formal solutions and simulations can and should be 
the basis for this.

3. TYPES OF MODELS
One of the most important steps in modelling – although very often discarded and 
done implicitly – is the selection of the model type. If you only know one type of 
model, it is easy (“for a man who has a hammer, everything looks like a nail”) and 
problems are adjusted to the available models like the travellers by Procrustes in 
Greek mythology.

3.1 Model criteria
The following is an overview of the criteria that can be applied to models and the 
resulting model classes.

Level of abstraction

In the course of modelling, we go from informal models to more formal models. 
It is also possible to adapt general models to our individual problem. The different 
levels of models can be described by three aspects:

�� Abstraction: How abstract are the objects and relations?
�� Formalisation: How exact are the semiotics of the model definition (syntax and 

semantics)?
�� Generalisation: For how many real life situations can the model be used?

Intuitively understandable

Formally clear, exact
and well defined

Figure 2.8: Trade-off in model classes
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With respect to abstraction, we can consider several model classes with several 
means of defining the meaning (semantics) of the model:

�� Analogue model and scale models;
�� Iconic models and pre-models: intuitively; 
�� Abstract-symbolic models, especially formal models.

The semantics can be defined by intuitive analogy or by formal model semantics. 
Differentiating material and immaterial models go with the question of whether 
the content and meaning of the model depends on the materials which the model 
is made of.

�� Material models, which can be classified according to the materials used. These 
are physical objects such as scale models, analogue models or symbolic-iconic 
models.

�� Immaterial models are independent from the materials they are made of (this 
may be paper or some electronic representation). They are not defined by the 
media but by formalism and can be informal models such as texts or graphics, 
or formal models – especially models from mathematics and logic.

3.2 Model focus and structure 
The focus of a model describes the aspects (system-oriented) and perspectives 
(user-oriented) that are considered within the model. The main focus of a model 
can be:

�� Behaviour: input-output-models, black box models; 
�� State and event-oriented: dynamic models;
�� Structure-oriented: hierarchical models, mechanical models;
�� Flow-oriented: mechanical flow models, information flow diagrams.

With respect to structure, a model can be flat or can consist of a hierarchy 
of models.

3.3 Representation of Time
With respect to time, we discern between static and dynamic models. A dynamic 
model can be just descriptive (kinematic) or can model the causes of changes (law 
of motion). In the latter case, we usually have a short-term description (law of 
motion) and a long-term description (trajectory).

Like any other quantity, time can be modelled to be discrete (steps, events) or 
continuous. While continuous time is modelled via real numbers, discrete time can 
be modelled via integers (counting the steps) or real number in the case of discrete 
events that occur in continuous time.
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3.4 Representation of Uncertainty
Uncertainty is inherent in any system – from the influences of quantum mechanics 
to the unpredictability of human behaviour. Uncertainty can be modelled in 
different ways:

�� Deterministic: By ignoring uncertainty and replacing uncertain values by 
“certainty equivalents”.

�� Stochastic: By using the well-elaborated theory of probability to describe 
uncertainty.

�� Fuzzy: Using linguistic variables and similar concepts to define uncertainty.

3.5 Representation of Numbers and Quantities
Numbers and quantities can be modelled to be either discrete or continuous. This 
applies to variables such as:

�� Time, duration, events (even discrete events can be modelled using continuous 
time).

�� Space, distances, size, movement, speed (although the concept of speed 
requires continuity).

�� States, properties, flows etc. 
�� Numbers of objects: Especially huge amounts of individual objects (e.g. atoms, 

products, people, and creatures) can be approximately modelled by using a 
continuous model and the set of real-valued numbers. This enables the use of 
calculus and statistics.

3.6 Usage and pragmatics
The utilisation of a model is the most important aspect since it is the reason for 
modelling and a criterion for the model to be a model. The usage of the model 
influences all other aspects. Some important model classes, according to the 
(intended) type of use, are:

�� Descriptive models
�� Causal models
�� Forecasting models
�� Decision models
�� Optimisation models
�� Normative models

4. EXAMPLES OF MODEL CLASSES
To show the variety of models and model use, two examples for model use in 
various areas of science are given.
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4.1 Flow models
Flows are modelled by network graphs. There is a wide variety of flow models, 
not only for matter or energy, but also for people, information, money, and value. 
Though using the same formalism, flows must be clearly discerned from transition 
diagrams or dynamic systems models. Some important aspects of (static or 
stationary) flow models are:

�� Magnitude and dimension: What do the numbers mean? 
�� Temporal issues: Which time (point in time), and duration (interval), is used as a 

reference? 
�� Consistency and conservation: In flows, we often have a law of conservation (not 

for information) or consistency requirements for different hierarchical levels.

Example: The global water flow

The following flow model tries to describe the total flow of water on earth. We use 
it as a basis to illustrate model criteria.

370 100

400 30 80

Figure 2.9: Representation of global water flow

To make this model useable, several pieces of information must be added:

�� Magnitude and dimension: What do the numbers mean? In the example, the 
numbers refer to the water flows measured in volume per time. The right scale 
can be calculated from a gross estimate for the earth surface of 40 000 km 
times 10 000 km, and an annual rainfall of 1 m. From this, a total of 400 000 km³ 
or 400 000 000 000 000 m³ is estimated for the annual rainfall. Hence, the 
numbers above stand for 1012 m³/Y or 1000 km³/Y.

�� Meaning: The two numbers in the upper row stand for the atmosphere; the two 
lower ones for the earth’s surface. The rainfall and evaporation from/to land is 
shown on the right and from/to ocean on the left of Figure 2.9. The arrow in the 
middle of the lower row indicates the runoff from land to sea.

�� Consistency: the conservation of matter is not adhered to: we have a total 
precipitation of 470 compared to an evaporation of 480. Smaller deviations can 
be due to rounding (e.g. if the numbers were given in 1014 m³/Y) or measuring 



25

2. Models and Modelling for Science

errors, but this difference is not acceptable. This problem typically occurs when 
multiple sources, measurements and truncations are involved.

�� Display: As the numbers do not refer to a status but to a flow, they should be 
displayed by means of arrows. As the last digit is not significant, it should be 
truncated by using 10 000 km³/Y as a scale.

Considering the lack of consistency above, Figure 2.10 appears to be a more 
accurate representation of global water flow.

Atmosphere

40 37 11 8

Sea 4 Land

water flow in 10 000 km3/Y

Figure 2.10: Water flow in the global system

Example: Energy flows

As a second example, we consider the analysis of energy flow in a region. With 
an informal discussion and even balances, we have the problem of properly 
accounting for feedback loops and heat. Hence, long before we measure flows, 
we have to clarify what the most important flows are, and where the boundaries 
of measurement are. The following chart is incomplete but it shows different levels 
from area to primary and secondary energy to the benefit taken from that benefit. 
With that basis, we can not only determine the energy flows but also analyse 
the optimisation of the system (e.g. using surplus heat from combined heat and 
power-plants to improve the energy efficiency of wet biomaterial) and the impacts 
of efficiency and sufficiency on the system.

When analysing the material flows of biomass and energy carriers and the energy 
flows generated from them, circular flows and different levels of energy must be 
considered. A flow chart helps to keep track of all flows and loops, and makes sure 
that any summary is done in a consistent manner.
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Total
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Bio-mass burning

drying

electricity

heat

Figure 2.11: A small section of the overall system, modelling the transformation from 
area to energy flow to human benefit

4.2 Dynamic models
Dynamic models have already been considered in the discussion about 
mathematical systems. Here we concentrate on the relation between models and 
solutions.

A kinematic model describes the temporal behaviour of a system, whilst a dynamic 
model describes the behaviour of a system by means of the laws of motion. Here 
we have to go from a local description to a global solution.
dx = f(x,t)
dt is equivalent to the integral equation x(t) = 

t
∫f(u(τ),τ)dτ

This way of describing the dynamics also allows consideration of stochastic 
differential equations, whilst a second approach is given by a discrete time model.
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Control System
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Figure 2.12: Schematic of a control system described above

The above mentioned feedback control system describes the dynamic control 
aspects of a vast range of systems, from engineering (control of a power plant, 
speed control), economics and management (all types of control) and cybernetic 
systems in social, natural and life sciences. From a mathematical system, very 
general results can be obtained – e.g. on the stability of the system – that will be 
valid for all kinds of models and systems for which the mathematical system is a 
model. Note that dynamic systems can also be modelled via dynamic flow models.

5. THE MODELLING PROCESS
For a scientist, models have several important types of usage:

�� Models developed by other scientists can be used to do research on the objects 
that have been described. This is the only case where no modelling process 
is involved.

�� Generic models are used to describe own findings (especially by creating a 
unique model from empirical findings). This only involves developing a modelled 
situation through determining model parameters, facts and figures.

�� Generic models developed by other scientists can be used to do general research 
or to adapt these models to develop and use dedicated model instances. This 
involves some modelling activities on the part of the researcher.

�� New generic models or model types are developed as a generalisation of 
empirical or model-based findings, either as a consequence of combining 
several models and findings, or as a specialisation of more generic models. This 
involves the whole modelling process.

According to this, we have several concepts of the process of modelling in 
science. In general, we can use a linear model of modelling phases, but we have 
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to superimpose a cyclic model for the ongoing process of testing (verification, 
validation), adaptation and continuous improvement.

5.1 Phases
The modelling process can be executed in several ways. For a linear phase model 
the following can be used:

 � Pre-modelling, information gathering, problem analysis, system analysis, systems 
definition: This phase starts with a real world problem and the modeller gains 
insight into and information about the problem. The structure and components 
of the system are identified. By means of abstraction and simplification, an 
informal model of the relevant real world aspects is created.

 � Model selection: Starting from the knowledge about a real world system and the 
problem to be solved (research question), the relevant aspects are determined 
and an adequate model class is selected. From this, the model is coined by 
adaptation or created by specialisation. This very generic model is then a more 
or less formal model, eventually described by mathematical formulae.

 � Modelling, working out structure, notions and parameters: The structure and the 
variables of the model are now determined. The parameters of the model are 
determined by counting or by measurements, or determined as estimates (see 
the remarks on the measuring process).

 � Analysis, adaptation, refinement and improvement: The model is now adapted 
to the real world system by comparing outcomes from the model with real 
world experiences. Often this leads to an adaptation of the structure and the 
parameters of the model. 

 � Testing, verification and validation: The final model is now tested against reality 
to ensure usability. Although a model can only be proven wrong (disproved) by 
counter examples, the concept is to use a match between a model’s outcome 
and real world observation as a proof for the verification (syntax) and validation 
(semantics) to ensure usability (pragmatics) of a model.

5.2 The range of models
Especially in complex systems, there is not a single model that can cover all 
relevant aspects of reality and simultaneously be a basis for problem solving. The 
concept of essential and physical models leads to different classes of models: while 
an essential model is rather abstract and can be handled formally, the physical 
model is much closer to a real world system and contains all relevant facts.

The optimal trade-off (level of formality and abstraction) depends not only on the 
real world system but also on the intended model usage and on the tools available 
for analysis or problem solving. 
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Formalism 
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Figure 2.13: Deriving the optimal benefit from models

5.3 The modelling cycle
In addition to the linear model, there is a cyclic process of using, testing and 
changing the model. Adaptations apply to the parameters or structure, model 
semantics and syntax and even on the level of generating a new model type. 
Adaptation may also require integration of aspects of non-linearity, dynamics, 
stochastics or interfaces (human behaviour) into a model – making it increasingly 
complex – or to approximate models in order to allow problem solving.

5.4 Modelling aids
In the following section, some practical hints for deriving mathematical models for 
a problem or system are given.

�� Structure: A sketch denoting the structure of the research question, and 
secondly, the objects considered are a good starting point for any problem-
solving process.

�� Variables: When starting modelling, it is important to determine the essential 
variables with an effect on the outcome of the model. For this, it is helpful to 
sketch some informal networks – “what is connected to what” – and to ask 
which variables are pre-defined and which vary within the problem considered. 
The criteria and decision variables of the system, or simply the question “what 
do we want to know?” can be used as a starting point in this process.

�� Invariants: A good approach towards determining relations and structures 
is to consider what remains constant. These invariants help to identify the 
important model aspects and variables and also the governing laws. It might 
assist to consider what differentiates this problem from another similar one, or 
alternatively, what remains the same.
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�� Hierarchical modelling and structuring: If the system becomes too complex, it 
can often be divided into smaller sub-systems. This policy of “divide and rule” 
requires thorough consideration since the relation between the different 
components or hierarchical levels of the model must also be modelled 
adequately.

�� Simplicity: Another important criterion for models is simplicity. Occam’s razor: 
“entitia non sunt multiplicanda praeter necessitatem” means that a simpler 
model should be preferred. This implies that within the modelling process, the 
modeller should never cease searching for simpler alternative models.

6. SUMMARY
Modelling is an important research methodology that increasingly finds 
application in all academic disciplines. Hence, it is a tool that is imperative for all 
serious researchers with the intention of improving their understanding of any 
phenomena they are studying.
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CHAPTER 3

Using Mathematical Modelling in Human and 
Economic Sciences

PG le Roux

1. INTRODUCTION
The usage of mathematical modelling is no longer limited to traditional 
mathematical related research areas like finance and computing, but it has 
become a common trend to use this kind of technology in the broader spectrum 
of the social sciences as well. Mathematicians have had the tools and the ability to 
perform predictive modelling since the nineteenth century. 

An important reason for the creation of mathematical models is vested in the 
ability to build theoretical models on how an organism, a piece of technology, 
a group of people, or any other “system”, may behave under predetermined, 
specified circumstances [1].

The recent adoption of mathematical modelling in other diverse areas is the result 
of society’s increasing familiarity with computers. Computer programming in 
nearly all spheres of life, from chess games and stock price analysis to the most 
sophisticated medical analysis, contributes to the claim that the world’s been hit 
by a storm of mathematical modelling [2]. From the so-called new world order in 
the application of models (in the broader sense of the word), modelling forms an 
integral part and the basis of applied and operations research in the total spectrum 
of disciplines.

Mathematical modelling in human sciences can include a wide variety of research 
areas in modern society. The following examples are worth mentioning:

�� Population growth: Tendencies and influences of population growth on natural 
resources, the environment, economical and political stability.

�� Economics: Supply and demand of goods and services, distribution of wealth, 
pricing, consumer behaviour and fluctuation of the total international financial 
environment.

�� Politics and social challenges: The management of conflict, disasters, unstable 
governments and health and environmental crises.
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2. THE IMPACT OF TECHNOLOGY ON RESEARCH IN 
HUMANITIES

Mathematical modelling, as a tool or mechanism in the operations research 
process, is designed to explore and understand how social research can contribute 
to the conceptualisation and implementation of technology in satisfying human 
needs for the possible prediction situations that may develop, and to assist people/
researchers in reaching their goals.

Management and business environments are becoming increasingly more 
complex and therefore it has become imperative to use all available methods and 
techniques in the decision-making process. Technological thinking can be regarded 
as an absolute necessity in the challenging world dominated by the creation of 
new knowledge – with a focus on the accelerating development of innovative 
designs in the research process.

3. WHAT IS A MODEL AND THE PROCESS OF MODELLING?
Harper defines a model as follows: “A model is essentially a device that reflects the 
workings of the real world” [3] while modelling refers to the process of generating 
a model as a conceptual representation of some phenomenon. Typically a model 
will refer only to some aspects of the phenomenon in question and two models of 
the same phenomenon essentially may be different, that is in which the difference 
is more than just a simple renaming. This may be due to differing requirements of 
the model’s end users or to conceptual or aesthetic differences by the modellers 
and decisions made during the modelling process [4]. In short, modelling is the 
art and science of constructing models. Models can be classified in two major 
categories:

�� Physical, as in a model airplane or architect’s model of a building, or
�� Symbolic, as in a natural language, a computer programme, or a set of 

mathematical equations.
According to Harper, the type of model most frequently used in operations 
research is, however, a mathematical model [3]. That is a model that reflects 
the working of the real world by means of mathematical symbols and formulae. 
Mathematical modelling refers to the use of consequential mathematical formulae 
to create a numerical model of the possible events in a system. Introduction of 
a series of values for individual variables makes it possible to produce a series of 
results that mirror the outcome of practical experiments [5].

The figure below illustrates the process of observing the system, collecting the 
consequent data, feeding that data into the mathematical model and possibly 
using analysis of the model to adjust the data collection [6] and the interpretation 
thereof.
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Figure 3.1: Collecting data from an observed system, feeding it into a mathematical 
model, adjusting the data and the interpretation thereof

4. PROCESS APPROACH AND MATHEMATICAL MODELLING IN 
BUSINESS AND HUMAN SCIENCES

Operations research involves “research on operations” – so to speak operations 
research is applied to problems that concern how to conduct and coordinate the 
operations/activities within a given structure. The primary purpose of operations 
research is obviously to see if it is possible to identify the best way of operating in 
a particular context. In a nutshell: operations research (terminology used in USA, 
Canada, South Africa and Australia while Operational Research is used in Europe) 
is the discipline of applying advanced analytical methods to help make better 
decisions. In some cases it is defined as the science of decision making.

This interdisciplinary branch of applied mathematics and formal science uses 
methods such as mathematical modelling, statistics and algorithms to arrive at 
optimal or near optimal solutions to complex problems. The process of scientific 
modelling (in general) normally consists of generation of an abstract, the 
conceptual phase, and graphical and mathematical model building. The boundaries 
between the different steps or phases are often blurred, which can impact 
negatively on the scientific outcomes of the project.

The following process analysis is an attempt to standardise the procedure for the 
application of a typical mathematical model in an operations research exercise [7].
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4.1 Define the problem of interest and gather relevant data
Problems that are vague and imprecise should be avoided. Clear identification of 
the problem, and the objectives of the study and relevant and accurate data about 
it, is regarded as a prerequisite for success.

The use of appropriate computer-based management information systems (MIS) 
will assist to improve the precision of the data.

4.2 Formulate a mathematical model to represent the problem
The development of a symbolic representation of the real situation is the first 
creative step in selecting a “correct” model or the best appropriate model 
representing the system.

The application of mathematical models and the use of high-powered mathematical 
techniques are much more reliable and concise than verbal descriptions. Ideally, 
there should be a high correlation between the prediction by the selected model 
and what would actually happen in the real world.

The dynamic nature of the process should allow model enrichment as long as the 
model remains tractable.

4.3 Develop a computer-based procedure for deriving solutions to the problem
Well-designed mathematical models aligned with mathematical procedures 
are important in finding proper solutions. Software packages are available for 
standardisation of the procedures and calculations which are normally too 
expensive to be done by hand.

A well-structured computer-based procedure also allows the researcher to set 
certain goals in order to establish minimum satisfactory levels of performance. In 
the search for the optimal solution (“science of the ultimate”) the computer-based 
process can be regarded as the most cost-effective method.

4.4 Test the model and refine it as needed
Check and test the model for sufficient and accurate representation of the real 
problem. The two most relevant questions at hand are: does the model provide 
reasonable solutions, and: are the solutions provided applicable?

Model validation (the check for obvious errors, oversights and if mathematical 
expressions are dimensionally consistent) could be regarded as the most important 
link in the quality assurance process.

4.5 Apply the model to analyse the problem with recommendations
Verified data as output from the Management Information Sysytem (MIS) provide 
various versions of the model and permutations of the so-called decision support 
system to support the decision-making process.
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4.6 Implementation of the model
The final stage is the implementation of the model with recommendations and 
modifications as approved, and the monitoring of the initial experience with the 
newly created system [8].

The theoretical process explained above is often fast-tracked by a more practical 
approach in a real problem-solving situation. The flow chart shown in Figure 3.2 
illustrates the process.

5. ESSENTIAL CHARACTERISTICS OF GOOD MATHEMATICAL 
MODELS IN THE MANAGEMENT SCIENCES

The goal of the scientific method is to simplify and explain the complexity and 
confusion of an identified problem. The researcher then uses the model of science 
to predict, analyse and solve the problem.

For mathematical models to be useful in the application of operations research 
within the human and business sciences, the following characteristics are essential.

5.1 Simple
Simple models are more easily understood by the problem owner or decision-
makers, who are often mathematically untrained. It is often not possible to avoid 
complicated mathematical models, but easier to follow the logic of a spreadsheet. 
The ultimate goal of the researcher is to create simple models that have a great 
deal of explanatory power.

In most cases, simple and powerful models are not yet available to the researchers 
in the social sciences. A trade-off occurs between the power (impact) of the model 
and the number of simplifying assumptions made about the research problem. 
A researcher in the social sciences must decide at what point the gain in the 
explanatory power of the model no longer warrants the additional complexity of 
the model.
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Identify the decisions situation

Determine objectives

Identify alternatives

Decompose and model the problem
Model the problem structure
Model uncertainty
Model preferences

Choose the best alternative

Perform sensitivity analysis

Yes No
Is further
analysis
needed?

Implement
the chosen
alternative

Figure 3.2: Development and implementation of a mathematical model to assist with 
decision-making – as shown in [9]

5.2 Complete
A model is necessarily incomplete because it is a representation of reality. The 
model should reflect all (as far as possible) significant aspects of the problem 
statement. The key issue here is to know, before the model is designed, whether 
all aspects are likely to affect the optimal solution in a significant way.

5.3 Easy to manipulate
It should be possible to obtain answers from the model with a reasonable amount 
of computational inputs. The best solutions flowing from the model should be 



37

3. Using Mathematical Modelling in Human and Economic Sciences

achievable in an acceptable time frame. Changing or manipulating symbolic models 
is generally much easier than changing physical models.

5.4 Adaptive
If change in the structure of the problem situation invalidates the model, it 
should be possible to adapt to the new situation with relatively minor model 
modifications.

5.5 Easy to communicate with
Interactive user-friendly computer programmes and software, with good 
representation of the results of the modelling process, are preferable for use by 
mathematical modellers. The model owner is therefore looking for confidence and 
credibility in the model and the modelling process. The first prize would be to talk 
about desirable properties of the modelling process.

5.6 Appropriate for the situation (problem) studied
In essence, the model must deliver the relevant outputs at the lowest possible cost 
and in the appropriate time frame required for effective decision-making.

5.7 Produce information that is relevant and appropriate for objective 
decision-making

This means that the output of the model has to facilitate a direct influence on the 
decision-making process without any further extensive translation or manipulation. 
The information should lead to insights and conclusions that the decision maker 
could not easily obtain by other means [10, 11].

6. SCIENTIFIC AND MATHEMATICAL MODELLING IN THE 
SOCIAL SCIENCES

The field of research in the social sciences concerns the broad question of “the 
human” as the subject of inquiry. Anthropologists, sociologists, economists 
etc. define its contours as a specialty in the exploration of a variety of topics in 
the characterisation of human nature. Mathematics offers the technical tools 
for students of the above-mentioned disciplines to make models of phenomena 
of interest. Mathematical models in anthropology, physics and economics are 
familiar – if not in detail then at least for their important role in establishing some 
predictive power and thereby credibility and status for the discipline.

Models in social sciences are sometimes regarded as stepping stones or mediators 
between the world (practice) and theory. Predictive power is not necessarily 
explanatory power. The application of model/mathematical models in human 
science research is often accompanied by the telling of an informal “story” 
concerning the context, mechanisms and consequences of the problem under 
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investigation. It is about discover, invent and learn in a language that offers a 
precise, clear representation of a problem situation [12].

7. MODELLING IN THE ECONOMICS – A CONSTRUCT FOR 
DECISION-MAKING

Economics is the social science that studies the production, distribution and 
consumption of goods and services. Economic methodology is the study of 
methods, usually scientific methods, in relation to economics, including principles 
underlying economic reasoning [13].

In economics, a model is a theoretical construct that represents economic 
processes by a set of variables and a set of logical and/or quantitative relationships 
between them. An economic model is therefore a relatively simple representation 
of a set of complex real world relationships. It is “a logical representation of the 
essence of a situation” which eliminates insignificant or inconsequential detail, 
leaving the core of the problem exposed for analysis.

Generally speaking, economic models have two functions:

�� Firstly, as a simplification of, and abstraction from, observed data. Overly 
complex models are often of little practical use. The more complex the model, 
the more difficult it is to communicate the results. The skill in model formulation 
is to be able to achieve the right balance between practicality and complexity.

�� Secondly, as a means of selection of data based on a paradigm of econometric 
study. Selection is important because the nature of an economic model will 
often determine what facts will be looked at. Effective models capture the 
essence of the economic issue without drilling down in minor detail.

In the economic modelling process (normally), the relationship amongst economic 
variables, implied by theoretical arguments, is expressed by mathematical 
symbols and equations. This form of representation is very popular as a technique 
of modelling in industry and business, since a mathematical model describes 
a problem concisely and forms a bridge to use high-powered mathematical 
techniques and computers to analyse a problem.

The application of mathematical modelling in an economic environment is normally 
used for:

�� Business insight: Providing quantitative and business insight into complex 
problems.

�� Business performance: Improving business performance by embedding model-
driven intelligence into an organisation’s information systems to improve 
decision-making.

�� Cost reduction: Finding new opportunities to decrease cost or investment.
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�� Decision-making: Assessing the likely outcomes of decision alternatives and 
uncovering better alternatives.

�� Forecasting: Providing a better basis for more accurate forecasting and planning.
�� Improved scheduling: Efficiently scheduling staff, equipment, events, and more.
�� Planning: Applying quantitative techniques to support operations, tactical 

planning, and strategic planning.
�� Pricing: Dynamically pricing products and services.
�� Productivity: Helping organisations find ways to make processes and people 

more productive.
�� Profits: Increasing revenue or return on investment; increasing market share.
�� Quality: Improving quality as well as quantifying and balancing qualitative 

considerations.
�� Recovery: Gaining greater control and achieving turn-around.
�� Resources: Gaining greater utilisation from limited equipment, facilities, money, 

and personnel.
�� Risk: Measuring risk quantitatively and uncovering factors critical to managing 

and reducing risk.
�� Throughput: Increasing speed or throughput and decreasing delays [14-16].

8. MATHEMATICAL MODELLING – A PRACTICAL APPLICATION 
TO A REAL PROBLEM IN THE SOCIAL AND ECONOMIC 
ENVIRONMENT

The use of mathematical modelling is no longer limited to traditional mathematical-
related research areas like physics and engineering. It has also spread to areas like 
finance and computing and it has finally become common practice to use this kind 
of technology in the broader spectrum of the social sciences as well.

The following describes a practical application of a mathematical model that was 
used to resolve a typical economic problem, namely the optimal utilization of 
passenger seats on an aircraft.1 The study was done by Dr. Christine Currie as part 
of the Millennium Mathematics Project of the University of Cambridge - see [17].

8.1 Differentiated Pricing
Any business has the challenge of trying to optimize its income. In the case of an 
airline, it strives to sell all the seats available on any flight at the highest possible 
price per seat. However, since the importance of being on a particular flight, as 
well as the individual financial situation of potential customers, differs from one 
individual to the next, there is not a uniform amount that all potential travellers 
are willing to pay for tickets on a particular flight. Hence, over a period of time 

1  This section illustrates a typical application of modeling as referred to in Chapter 2.
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airlines developed a system of differentiated pricing where the maximum number 
of tickets is sold at the highest possible price, whilst the remaining tickets are sold 
at a reduced price. These discounted tickets are sold subject to certain, specified 
restrictions. In this manner an attempt is made to fill the maximum number of 
seats at the higher price and all remaining seats at the discounted price. Obviously 
if too many seats are sold at the lower price, there would not be enough seats 
available for all those who would have been prepared to pay more – hence, the 
airline’s income would not be maximised. A similar situation would arise if too 
few less-expensive seats are sold since this would result in a situation where the 
available number of available more-expensive seats would exceed the need for 
such.

8.2 Understanding the customer’s needs
In order to successfully optimise its income from ticket sales, airlines need to be 
well-informed about the travelling needs and financial means of its potential 
customers. Theoretically every potential traveller has a reserve price for a 
particular flight. This is the maximum amount the customer is prepared to pay for a 
ticket. However, airlines are not informed about the reserve price of any individual, 
it has to determine from historical data on similar flights what customers might 
be willing to pay to make a trip. In this manner the airlines may develop a better 
understanding of the preferences and needs of passengers.

The less-informed an airline is about the reserve price of travellers, the greater 
the likelihood of either not all tickets being sold at the maximum possible price, 
or some tickets are not sold at all. Both these scenarios would result in the 
situation where the airline could have earned more. The only way in which this can 
be avoided is for the airline to try and determine a general reserve price – since 
each individual has a particular reserve price, the process invariably leads to a 
generalised approximation the actual reserve price - as accurately as possible.

Airplane ticket sales are very cyclic with certain flights being very popular and 
others relatively unpopular. The nature of this tendency depends on several 
different phenomena such as the time of day – with business men who travel 
to a certain destination in the morning and would prefer to return home the 
same evening. Similarly, business trips often last for approximately a week, with 
people departing late Sunday afternoon or Monday morning and returning Friday 
afternoon. Obviously there is also a huge increase in travellers over long weekends 
or during the holiday season. Hence forecasts of the number of potential travellers 
and their relative reserve prices need to be determined from previous flights 
under similar circumstances long before any particular flight and as accurately as 
possible. 

8.3 The Problem of Maximising Revenue
Any aircraft has a limited seating capacity, the primary constrain that has to be 
taken into account in the optimisation of the of airline’s income from a specific 
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flight. This has got to be aligned with the potential customer’s reserve price for 
the flight. The following is a simplified example to study the kind of problem that 
airlines face on a daily basis.

In practice there are typically more than two prices that customers would be 
expected to pay, depending on their individual situations. Yet, for the sake of 
simplicity the scenario will be created for a hypothetical flight where only two 
fare rates are available. It is further assumed that the airline has a good estimate 
of what the expected demand for the two types of tickets will be and that the 
demand is deterministic. It would now be possible to solve the problem exactly by 
writing the optimal revenue problem in the form of a number of linear equations.

The total revenue would equal the sum of the income from the higher-paying 
customers and that of the lower-paying customers. This can be written as:

a = plsl + phsh

where pl and ph indicate the price of the lower- and higher-priced tickets 
respectively. Similarly sl and sh represent the number of seats sold at lower and 
higher prices respectively.

The sale of seats should comply with the following set of constraints [17]:

 � “We cannot sell more tickets than we have seats on the plane (actually airlines 
do sometimes ignore this constraint – a technique called overbooking …), 
therefore, sl + sh ≤ C, where C is the number of seats on the aircraft.

 � The number of low-cost seats sold must be less than or equal to the demand for 
low-cost seats: sl ≤ dl.

 � The number of high-cost seats sold must be less than or equal to the demand 
for high-cost seats: sh ≤ dh.”

In short, as many as possible seats should be sold at the higher price, whilst all the 
remaining seats must be sold at the lower price.

The respective number of seats in the different categories, sl and sh, are called 
decision variables and can be controlled by the airline. By using linear programming 
the optimal values for these variables can be determined whilst ensuring that all of 
the above constraints are obeyed. For the present example, a diagram as shown in 
figure 3.3 can be drawn. This shows the implementation of all constraints.

From figure 3.3 it is obvious that to maximise the revenue, sh should be determined 
such that all the available high-fare paying customers are accommodated in high-
cost seats. All the remaining seats should be filled up with passengers paying low-
cost fares.
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Figure 3.3: Plotting of different variables to assist in decision making [17].

8.4 Adding More Complexity
Actually the airline not only has to decide on the ratio between lower- and higher-
priced tickets, but also on the actual fare to charge for each category. However, 
the actual value of none of these four variables - two sets of two variables each - is 
not known precisely. Hence expected values have to be determined using actual 
situations that happened in the past under similar circumstances and probability 
distributions. This is not a simplistic matter and ideal solutions are often not 
reached.

In practice the above describes a very much simplified approach to the problem. 
Typically airlines would rather consider their preferred price for each individual 
seat as belonging to one of, say, ten groups, rather than simply creating two 
categories of seats with different prices. Hence a wide variety of different prices 
is normally applicable on any flight for both economy and more expensive classes 
of travellers. In an effort to motivate customers to purchase the most expensive 
category of seat possible, each of these categories will have slightly different 
conditions applicable to it – the cheaper to more constrained. In turn, the airline 
has to decide on the actual price and number of tickets reserved for each of the 
categories of tickets. The cyclic principles referred to above are used to regulate 
the extent to which the different prices are determined.

As indicated most airlines generally make use of a system of overbooking whereby 
more tickets are sold than what are actually available on the particular aircraft. 
The reason for this is that it is very common for some potential travellers not to 
turn up for a flight. This may be due to factors such as passengers falling sick, 
meetings that run over time or problems with traffic on the way to the airport. An 
obvious consequence of this system is that occasionally more travellers may turn 
up for a flight than the number of available seats, causing a lot of inconvenience 
and possible payment of some compensation by the airline to these passengers. 
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Even though it creates some tension and unhappy passengers, the system of 
overbooking is fully entrenched in the booking system of modern airlines in an 
effort to maximise the revenue of airlines.

One of the newest developments in modern passenger aviation is the 
establishment of low-cost airlines. These entities provide a very inexpensive service 
at the cost of additional luxuries such as meals and reservation of specific seats. 
This simplifies the problem of price determination drastically since normally the 
only factor determining the price of a particular ticket now is the period between 
the purchase of the ticket and the flight. However, especially in some countries, 
the tendency is for airports to limit the timeslots for take-off and landing for these 
airlines to less acceptable times.

8.5 Hub-and-Spoke System
Increasingly the number of flights landing at any airport, or departing from such, 
is limited by the limited availability of runways rather than the number of potential 
passengers. The tremendous growth in air travel was accompanied by increasingly 
complex flight preferences of passengers where an increasing number of smaller 
venues must be serviced regularly. This created a situation where increasingly 
use is made of the so-called hub-and-spoke system with an extremely complex 
system of interconnecting routes. Hence it is now common for travellers to fly 
on a connecting flight from a smaller airport to a major airport, and from there 
onwards to the passenger’s actual destination, or perhaps even after only another 
connecting flight. This type of service is often shared between airlines working 
collaboratively. Hence it is no longer only different airlines servicing the same 
routes, but also an increasing number of formal alliances between groups of 
airlines that are able to provide the fastest, most convenient service to customers.

Understandably the hub-and-spoke system add more complications to the revenue 
optimisation problem – a critically important problem for airlines that are often 
financially challenged due to many operational parameters which are beyond their 
control, such as rising oil prices.

8.6 Not Just Airlines
The practice of a mathematical approach to the determination of the pricing of 
products is not confined to airlines only. All of the principles discussed above are as 
applicable to any highly competitive industry operating on fast turn-around times 
such as hotel rooms, car rentals, airport parking, etc. Even the sale of perishables 
such as beef and vegetables can be optimised using the specialised income 
management processes. In fact, the sale of any set of identical products with an 
expiry date and limited capacity could be optimised using income management 
[17]. However, it is appreciated that due to the relative complexity of such a system 
it would be most unusual to find it implemented in a relative small commercial 
enterprise or to manage the sale of less-critical products.
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9. SUMMARY
In recent years, there has been an increasing demand by researchers to apply 
the technique of mathematical modelling in business and management related 
research projects. Recent developments in computer technology and related 
software have provided the necessary tools to assist researchers from the social 
sciences with their decision making processes. The expensive traditional method 
of trial and error experimentation has now been replaced with a more flexible and 
cost effective approach through the use of mathematical modelling and computer 
simulation.

The major weakness of mathematical modelling is the fact that this approach does 
not have intuition or feeling, but this is also the strength of this research method. 
Using technology (to assess all the options fast) instead of human decision making 
might be the best way to take a well informed decision. The total elimination of 
the human factor specifically in the human sciences is beyond the point of debate. 
Mathematical modelling is a great support for decision making and planning, as 
long as the emotional intelligence component of the researcher has been added.
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CHAPTER 4

Models in the mechatronic design process

Peter Hehenberger

1. INTRODUCTION
Especially in today’s economic environment with its global competition and high 
dynamics, a superior design concept for a product is crucial as it pre-determines 
the main element of success of the product. For any new product, the question 
is less how to realise it, than to find a promising superior product concept. In 
the traditional linear model of design, the process flows from synthesis through 
analysis to evaluation. Design methodology at the conceptual level includes the 
creation of innovative concepts, comprising a description in low detail but with 
sufficient relevance for evaluation of their essential properties in comparison to 
other concepts. The main properties (parameters, costs, etc.) of the product are 
fixed during the conceptual design phase in the product development process.

When a totally new system (an overall system, sub-system or component) is 
designed, the conceptual design process leading to the design concept for the 
system is usually a mentally intensive and challenging activity. As this step fixes the 
main element of success of the new product, it should be done by expert engineers. 
Due to mechatronics, the toolbox of solution principles is widely extended; hence, 
the variety of different solution concepts is drastically increased. This is the reason 
why conceptual design of mechatronic systems will be investigated in more detail.

Amongst the spread of information available to the designer, standards, directives 
and supplier data generally provide specifications and specific aspects of products 
and their requirements. At the same time, the engineer has to follow several design 
rules representing general information. Both aspects require a more detailed 
knowledge of the structure of the product to be developed, of its functions and 
production in order to make reliable predictions regarding the properties and cost 
of the product. Although the characteristics of the product are influenced to the 
greatest extent during its design, the information for design, as a general rule, is 
mainly derived from experience that can only be gained from the phases of the 
product life cycle following design.
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2. CHARACTERISTICS OF MECHATRONIC SYSTEMS

2.1 Definition of mechatronics
Mechatronics can be considered to be an integrative discipline utilising the 
technologies of mechanical engineering, electrical/electronic engineering and 
information technology in order to provide enhanced products, processes 
and systems. The role of mechatronic subsystems will increase dramatically 
in future product development processes. Two of the main driving forces for 
this development are the improved functionality of mechatronic products with 
increased complexity and the resulting demand for modularisation [2, 3 and 7].

The high integration in design allows the realisation of a great variety of required 
functions in a single mechatronic system - which often results in an ideal tailor-
made design with respect to the given requirements - but it has disadvantages 
when this system should be reused for other design tasks. There is a demand for 
modularity in product design, which means that a mechatronic module should 
preferably be exploitable repeatedly for many different tasks. 

In a mechatronic design process especially the phase of conceptual design is 
crucial. Here the functional interactions between domain-specific subsystems 
are determined and have to be investigated carefully. This implies that during 
the phases of conceptual and preliminary design the designer should be able to 
quickly and accurately evaluate the system’s potential performance due to design 
changes in the mechanical part as well as in the other parts (electronics, software 
etc.). With a mechatronic approach, mechanics and control aspects are studied 
simultaneously.

2.2 Mechatronic design
Mechatronics design is the competence of integration between mechanics, 
electronics and software.

As new functionality in products is realised to a large extent through integration 
of mechanics, electronics, and software the need for knowledge integration 
between these disciplines becomes central. Design of embedded systems such as 
intelligent sensors, communication and power systems needs to be integrated into 
mechanical design, and also be developed to be maintained and recycled. Software 
and hardware platforms change due to new technology and new technical 
interfaces emerge which lead to new challenges for the research and development 
function. The interactions between product developers from the different 
disciplines are hindered by insufficient understanding between the disciplines and 
by missing common platforms for modelling of complex systems. As many sub-
systems are delivered by suppliers, there is a need for both a horizontal integration 
within organisations and a need for a vertical integration between the sub-system 
suppliers and the suppliers of full systems [1, 4].
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The increasing use of computers and electronics, as well as their continuous 
enhancement, has led to an increase in the complexity of the product design 
process itself. Due to the different disciplines involved, the mechatronic design 
process may become very complex. Hence, a new approach to the design and 
engineering of products can be considered as a key point to optimise the design 
process.

Specific design tools are required to support the engineer in solving mechatronic 
design tasks, with their specific properties being in particular:

 � the functional interaction between domain-specific (discipline-specific) 
components, which is the key to any mechatronic solution;

 � the selection or alteration of a solution in one domain which may affect the 
solutions in other domains; and

 � the prediction and evaluation of the system performance of a particular solution, 
which implies the investigation of the system components from other domains 
(disciplines) as well as their interactions. This makes it difficult to guarantee the 
specific performance of a new mechatronic system in advance.

One of the key issues in the development of modern mechatronic systems is the 
strict integration of mechanical, control, electrical and electronic aspects from the 
beginning of the earliest design phases on, as can be seen in Figure 4.1.

Figure 4.1: Comparison between the traditional and mechatronic design approach
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The key to an integrated mechatronic design methodology is modelling and 
simulation. In this context design models and their inter-changeability between 
different design tools are very important during the design process. From the 
mechatronic design process viewpoint, models are containers of the knowledge 
of the product during its total life cycle. Simulations produce information on the 
design problem. This may improve product knowledge and potentially also the 
quality of many analyses and decisions. The presented approach relies on modular 
model architecture and enables innovative design, flexibility, speed and assistance 
in non-routine design questions.

A particular design methodology has been introduced by the Association of 
German Engineers - the VDI - for mechatronic systems and suggests the carrying 
out of the development process of mechatronic systems according to the so-called 
V-model (Figure 4.2) [10].

After analysing all requirements of the total system, the sub-functions and sub-
systems are defined (left branch of the V-model). They are to be developed 
simultaneously by several cooperating development teams. After verifying the 
sub-functions and testing the sub-systems, they are integrated step by step (right 
branch of the V-model).

Figure 4.2: The V-model for the design of mechatronic systems
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2.3 Organisation of mechatronic design processes
Many researchers have carefully analysed the different steps during the design 
process [8, 9 and 11]. The development / design process is usually structured into 
four sub-processes [8], namely the phases of Problem Definition, Conceptual 
Design, Preliminary Design and Detailed Design.

The explosion of information technologies in the recent past has also 
revolutionised the design process. The information technologies provide new 
tools for communication in the development process. Databases and CAD systems 
provide reproducible, “error-free” archives and design baselines of the product 
instantly accessible for all authorised design engineers. Information technologies 
also provide a useful window into the team and design process for analysis and 
tuning of the design activities. These new technologies, of course, require specific 
training.

Another important aspect is the consideration of technical and social interaction 
in design teams. For mechatronic projects, experience in the interdisciplinary 
nature of the design process plays an important role. Conceptual Design is one of 
the most important phases during product development, as the main parameters, 
properties and costs of the solution - and consequently also the main elements 
of success of the new product - are fixed here. When a completely new system 
(overall system, sub-system or component) is designed, the conceptual design 
process leading to the design concept for the system is usually a mentally intensive 
and challenging task. As this step fixes the main portion of success of the new 
product, it should be done by expert engineers.

The determination of the product’s overall function and of its most important sub-
functions (main functions) and their interaction, leads to a functional structure. 
During this design phase, principal solutions with a structure of realisable modules 
should be established.

In this stage cooperation between the different design engineers is of vital 
importance for the success of the design process. Typically, the mechatronic 
design team consists of several engineers, possibly organised in domain-specific 
teams. Each engineer is an expert for some of the subsystems or disciplines that 
make up the system design, with responsibilities for all the design aspects related 
to the subsystems under consideration.

2.4 Design models
During all phases of the design process there is a need to create models which may 
be seen as simplified representations of the real world. During different phases, 
these design models serve different purposes. During the conceptual design phase, 
physical principles, functions, structures, etc. have to be evaluated by building 
models. In most cases, analytical and virtual models are less expensive and less 
time-consuming than physical prototypes. Virtual models can be implemented - and 
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even integrated - and used to simulate and evaluate (significant representations 
of) reality with the help of computers.

A model is a conceptual description of ideas, facts and processes that together 
represent (describe) the operational model of a designed product [12, 13]. A design 
object may be an assembly, subassembly or a single component, represented by 
the product structure model. In general, a mechatronic design model is devoted 
to the task of mapping reality onto a significant representation of reality, in order 
to make valid predictions about reality. It should include the relevant effects of 
interest (“views of the object”) such as geometry, dynamics, stability, materials, 
electro-dynamics, controllability, cycle time, maintenance etc.

Design models may be used for the evaluation of different solutions during the 
design process. At least for this step, quantitative models are indispensable, 
parameters being the decisive elements to provide an adequate quantification of 
design models.

Mechatronic models are very important tools for complex activities such as 
engineering design. For high performance of the engineering of design tasks, 
numerical modelling and simulation, i.e. experimenting with computer-based 
models, are increasingly important problem-solving techniques. The preliminary 
design phase is often characterised by a cascading series of what-if questions. 
Some of these questions reflecting requirements may be of controversial 
character by their nature, and are related to complex dependencies between 
shape, topological structure, strength, performance, physical behaviour, etc. The 
complex nature of engineering design, as well as the time- and cost-constraints on 
the process, requires highly efficient and flexible procedures to configure system 
models.

3. MODELLING OF MECHATRONIC SYSTEMS

3.1 Requirements and characteristics
Today´s products of mechanical engineering (machine tools, vehicles, aircraft 
plants, industrial plants, etc.) consist of multiple systems, aggregates, modules 
and components. They include power over general systems engineering, electrical, 
hydraulic and pneumatic drive systems, automation equipment including sensors, 
actuators and regulatory bodies and are often very complex mechatronic systems. 
Crucial to the success of such a product is the behaviour of an integrated whole, 
as customer requirements and desires essentially always focus on the whole 
system, rather than relate to subsystems or even individual components. To assess 
the characteristics of any system it is appropriate to use models. For modelling 
and the description of a mechatronic system, it is necessary to limit the system’s 
complexity by considering suitable subsystems, because this describes the 
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boundary of the considered mechatronic system to its system environment (e.g. 
conditions).

Their functions are distinguished from other systems, enabling a clear definition 
of interfaces and areas of responsibility. It must therefore be clarified in what way 
it interacts with the system environment (e.g. chemical, energy, information). 
The system limits are reasonable so as to define that the pairings for the system 
environment are much weaker than the pairings in the interior of the system.

Ideally, the whole system is in the form of a cross-domain model, but the problem 
is that the integration of models of different disciplines, different modelling 
approaches and models or model descriptions, still leaves a lot to be desired. 
Moreover, within the individual disciplines, information and highly detailed data 
that are only partially required in other disciplines, are needed. The objective 
now is a system model to create information that depicts the various domains, 
which are important for other domains. The challenge is that the knowledge of 
the entire system does not equal the sum of knowledge from the corresponding 
domains. The domain knowledge must therefore be generalised (abstracted) and 
integrated.

3.2 Definition of a system
The system environment is everything that will not be involved in the system. The 
system boundary describes the limit of the system to its system environment, with 
which it has interfaces (e.g. energy or information as well as inputs). The system 
boundary is often not identical to the physical limits of a system or its components. 
Its function is distinguished from other systems and hence the clear definition of 
interfaces and areas of responsibility is necessary. Conversely, by changing the 
system, limited visibility of a problem can be expanded.

A subsystem is an element of a system (system element), where a system consists 
of several elements. System elements are thus one component (a building block) 
of an overlying system and other systems. The decomposition of a system into 
the system elements and defining relations between them and with the system 
environment creates a hierarchical structure of the system. 

Inputs to a system can be defined as the external relations of the system. Output 
parameters are the ratios of the system environment and can be measurements, 
observations of the system, or the activation of physical actions by the system.
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Figure 4.3: Components of a system

A system structure includes the set of system elements as well as a number of 
relations amongst them and with the system environment. Especially for complex 
systems, it is useful to define different viewpoints of a system (aspects such as 
geometry, location, material flow, energy, etc.).

3.3 Modelling of systems
Since the uncertainties in a detailed model of a product under development may 
be so great that the benefits compared to those of a simpler model are insufficient, 
very accurate modelling is often not necessary. Models have to be clearly defined 
and described in a consistent manner and must be manageable so that they are 
suitable for serving a specific purpose.

There are different ways of modelling a system. However, the principles of model 
efficiency dictate that the simplest model which will suffice should be preferred. 
For the building and usage of a simple, efficient and valid model, there are no 
formal rules, hence previous experience plays a major role. Some building criteria 
for model structures are as follows:

Design phases

For different phases of the product life cycle, models with different objectives 
and detail are required. The need for some models is particularly high in certain, 
very specific stages of the product life cycle (e.g. requirement models, design 
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sketches, models for simulation). In the concept phase, very rough models are 
typically useful, as they are still based on incomplete information; however, during 
the design and development phase, the models become increasingly detailed and 
refined - thereby increasing their information content.

Integration and modularisation

It is appropriate to divide complex machines into installation sections, spaces, 
design and processing zones, assemblies, subassemblies, structured individual 
components, etc., where relationships exist between them. In complex systems 
the modularisation facilitates a systemic overview and more transparency, whilst 
allowing for parallelisation of the work throughout the product development 
process. The decomposition of the system into modules and its representation by 
models also leads to a modular structure of the overall model. For the investigation 
of systems and system elements, it is always necessary to “virtually” interconnect 
sub-models so as to portray the operational characteristics of the interfaced sub-
systems.

Disciplines(domains)

The investigation of systems requires the treatment of different, very specific 
views of the system (system aspects) arising from different needs of the different 
professional disciplines (domains).

3.4 Hierarchy of parameters
It is very useful, if not imperative, to determine some important parameters at 
an early stage of the design process. A series of design decisions bring a system 
from the initial design stage, through several intermediate design stages, to the 
output of the design process, viz. the complete final documentation defining 
the product comprehensively. The initial design, as well as the design goals, is 
generally described in vague terms and not definitive. This is one of the reasons 
why, in many applications, the number of model parameters (MPs) to be fixed is 
much higher than the number of well defined requirements. Some of the initial, 
“superfluous” parameters are indeed not essential for the solution (e.g. the height 
of a shaft’s shoulder), but others give rise to optimisation potential of the solution 
(see Figure 4.4).

The process of defining hierarchical levels must be repeated until elementary 
solutions (preferably standard components) with their associated, well-known 
MPs are achieved. This means that we have to switch between the functional 
and the physical approach during the product development process. The model 
parameters at any one level can be classified into two categories, where one 
subset comprises the external parameters representing requirement parameters 
for the next level. The other parameters are exclusively local at the active level for 
dimensioning the component at this level (internal design parameters).
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Figure 4.4: Parameter hierarchy

4. APPLICATION OF MECHATRONIC SYSTEM DESIGN
Figure 4.5 illustrates the concept of mechatronic system design by means of 
an example. The example presents a clamping device. The positioning and 
configuration of clamping devices, used in various machines or stations of a 
production line for car bodies, is a recurring question from automotive engineering. 
Clamping devices are used to fix different sheet metal components quickly to one 
another in an exact position and with a pre-defined clamping force. After the parts 
are positioned and clamped, they are joined together (e.g. by welding). Important 
design requirements for such fixing units are closing speed, compact physical size, 
and reliability.

When most of the relevant knowledge regarding the new clamping device has 
been acquired, it is unstructured and needs to be organised and structured, 
using representations that both computers and humans can understand. Such 
representations are named “knowledge worksheets”. For the mechatronic 
ontology, we define six concepts, such as “mechatronic device”, “environment”, 
“material”, “property”, “function” and “manufacturing process”. In general, each 
of these concepts is connected with the other relevant concepts through specific 
relationships.

For instance, a mechatronic device concept (e.g. a gripper) is related to the 
environment concept (e.g. its connection to a robot arm). The name of the relation 
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is “interaction-with”. The definitions of the relationships that are being used are 
given as “has-part”, “interaction-with”, “has-material”, “has-function”, and “has-
process”. The concepts and their relationships describe the relevant knowledge of 
a new design concept.

Figure 4.5: Application gripper: system description

Figure 4.6 shows the gripper in more detail. According to the mechatronic pillar 
model principle, which helps the engineer to analyse and evaluate functional 
requirements and design parameters of possible solutions [5, 6], we decompose 
this design problem into three domain-specific components and their hierarchical 
levels. One pillar characterises the mechanical components, such as material, 
geometric dimensions and the kinematics of parts. At the different levels of 
detailing, requirements for assembling, manufacturing, etc. are specified. The 
second pillar represents the drive unit (e.g. electric, pneumatic or hydraulic) with 
its supply unit. The third and last pillar is dedicated to measurement techniques.

At the mechatronic interconnecting level, all specific design parameters (e.g. type 
of drive, length of clamping lever, clamping and holding torque), describing the 
coupling between the different domains, are collected. The requirements of the 
mechatronic design problem are issues such as the desired clamping and holding 
forces. If – due to a new requirement – the clamping force should be controlled, we 
can simply extend the mechatronic pillar model with a domain-specific component 
for suitable controllers.

In order to clamp complex sheet metal parts, it is necessary to use several 
clamping devices. All of them represent mechatronic modules, which are 
combined through their positions on the parts. Naturally, it is impossible to 
produce a welded structure of good quality, in agreement with the geometrical 
tolerances for the welded assembly, if one or more of the clamping devices are 
displaced from their correct positions, or the geometric deviations of the incoming 
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sheet metal parts are too high. This dilemma can be identified through detection 
of geometric deviations by measuring the clamping forces at each clamping device 
and evaluating them in an integrated software module.

Figure 4.6: Application gripper: parameter hierarchy 

5. CONCLUSION
In this contribution, the application of mechatronic system design principles is 
examined. As a result of this approach, two important advantages arise. Firstly, 
alternative, possible system structures may be established and evaluated and, 
secondly, it is possible to define a hierarchy of model parameters. Hierarchical 
models are very important tools to handle the increased complexity of such 
integrated design tasks. According to the increasing degree of detailing during 
the design process, the models become more and more detailed, leading to a 
hierarchy of models as well as their describing parameters. The author believes 
that this point especially has contributed a major portion to the success of modern 
mechatronic products on the market.
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CHAPTER 5

Mathematical Modelling as a Research Methodology

Zhongjie Huan

1. INTRODUCTION
Mathematical modelling is a process of creating a mathematical representation 
of some phenomenon in order to gain a better understanding of the expected 
functional characteristics and limitations of the phenomenon. It is a process that 
attempts to match observation with symbolic statement. During the process of 
building a mathematical model, the modeller will decide what factors (variables) 
are relevant to the problem and what factors can be de-emphasised – or even 
ignored – and can determine the relative effect of each input variable on the 
expected functioning (output) of the system under investigation. Once a model 
has been developed and used to answer questions about the phenomenon, it 
should be examined critically and, if necessary, modified to obtain a more accurate 
reflection of the observed reality. [1]

Thus, mathematical modelling is an evolutionary process and as new insight 
into the problem is gained, the process is optimised. The success of a model is 
determined by the ease of its use and the accuracy of its predictions. 

With the development of powerful computer technology and numerical 
simulation technology, mathematical modelling is increasingly being applied to 
a wide spectrum of areas, not only in the areas of natural science, technology 
and engineering, but also in the areas of society, humanity, economics, and 
management. 

For example, a biscuit company may wish to increase the throughput at a 
distribution depot. [2] Suppose the biscuits arrive at the depot on large articulated 
trucks, are unloaded, and transferred onto storage racks by fork trucks. When 
required, the biscuits are removed from the racks and loaded onto small delivery 
vans for dispatch to particular retail customers. To increase the throughput, a 
number of options might present themselves to the management. These include:

 � increasing the number of loading or unloading bays;
 � increasing the number of fork trucks; and
 � using new systems for handling the goods; etc.
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It would be possible to experiment on the real depot by varying some of these 
factors and evaluating the outcomes, but such trials would be expensive and 
time consuming.

The simulation approach to those problems involves the development of a model 
of the depot. The model is simply an unambiguous statement of the way in which 
the various components of the system (for example fork trucks and loading 
bays) interact to produce the behaviour of the system. Once the model has been 
translated into a computer programme, the high speed of the computer allows 
a simulation of, say, six months, in a few moments. The simulation could also be 
repeated with the various factors at different levels to see the effect of more 
loading bays, for example. In this way, the programmed model is used as the basis 
for experimentation. By doing so, many more options can be examined than would 
be possible in the real depot, and any disruption is avoided.

2. FEATURES OF MATHEMATICAL MODELLING
Compared to experimental research, mathematical modelling has the following 
characteristics:

2.1 Time saving
Admittedly, depending on the complexity of the system under investigation, 
mathematical modelling may require a significant amount of time to convert the 
practical project into an abstract mathematical model and to produce working 
computer programmes for simulation models. However, once these have been 
written, an attractive opportunity presents itself, namely, that it is possible to 
simulate weeks, months or even years in seconds of computer time. Hence, a 
whole range of possible alternatives may be properly compared simply by varying 
the appropriate variables.

2.2 Cost saving
Though simulation can be time consuming, and therefore expensive in 
terms of skilled manpower, real experiments may turn out to be even more 
expensive – particularly if something goes wrong! Experience shows that the 
cost of mathematical modelling is invariably and substantially cheaper than an 
experimental procedure of a similar value to the researcher. With the development 
of increasingly powerful computers with high data processing speeds, this cost-
saving feature is even more evident and attractive.

2.3 Sufficient information
It is often difficult, or even impossible, to obtain specific, important information 
from physical experiments. In such cases, simulation of the system may prove 
to be the best way to access the necessary information. For example, suppose 
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a metal rotor with the diameter of 200 mm rotates at the speed of 78000 RPM. 
Since it would be impossible to measure the airflow in the rotor and the rotor’s 
temperature distribution experimentally due to the high speed, the only way to 
determine them would be by means of mathematical simulation.

Another example for consideration is in terms of spin casting. Suppose the time 
taken for the casting material to pass the solidification (melting) point is required. 
While it is impossible to measure this phenomenon, it is possible to mathematically 
model it.

2.4 Prediction
Mathematical models are being used widely to predict incidents as a function of 
time. Examples of successful predictions based on mathematical principles are, 
the weather forecast and disaster predictions such as hurricanes, tsunamis and 
typhoons. Prediction by means of mathematical modelling is often used to save 
lives and prevent human suffering. It can also be used in economics, finance, 
management and social science – such as for the prediction of economic growth 
and stock analysis and prediction.

2.5 Intuitive result display
Mathematical modelling can provide immense quantities of data that can be used 
for analysis. Such data may include 3-dimensional spatial coordinates and the 
relevant time coordinates. Consequently, intuitive (visual) results can be obtained 
to ease an understanding of the nature of the project (see Figure 5.1).

Figure 5.1: Streamlines of unsteady flow about a two-dimensional airfoil [4]

For transient problems, an animation of the results is also possible for investigation.

2.6 Replication
Unfortunately, in the experimental world, it is rarely possible to exactly produce 
a precise replication of an experiment. One of the important skills of physical 
scientists is the design of experiments which are repeatable by other scientists. 
However, in some disciplines, this is rarely possible. For example, it seems unlikely 
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that an organisation’s competitors will sit idly by whilst a variety of pricing policies 
are attempted in a bid to find the best. It is even less likely that a military adversary 
will allow a replay of a battle. In contrast, mathematical modelling is exactly 
repeatable.

2.7 Safety
One of the objectives of a simulation study may be to estimate the effect of 
extreme conditions, and to do this in real life may be dangerous or even illegal. It 
might not be permitted to carry out an experimental nuclear explosion and thus, 
modelling may be the only feasible way to study such dangerous events. Similarly, 
even though it is often impossible to physically study real hurricanes, tsunamis and 
typhoons, mathematical modelling of such phenomena can be carried out safely.

3. PROCEDURE OF MATHEMATICAL MODELLING
Mathematical modelling is the process of creating a mathematical representation 
of a phenomenon. It is a process that attempts to match observation with symbolic 
statement or a bridge linking the physical world with the mathematical world. 

Mathematical modelling entails the following two components, namely physical 
issues and mathematical issues (see Figure 5.2):

 � The physical issue is to establish the physical model based on a practical problem 
and the research targets, and to derive the new practical knowledge from the 
mathematical results through analysis.

 � The mathematical issue includes the establishment of the mathematical model 
based on the established physical model – normally expressed as equation sets 
– and solving the mathematical equations to obtain the mathematical results.

The mathematical modelling procedure is shown in Figure 5.3.

The process starts with an analysis of a practical problem. At this stage of the 
study, some assumptions and simplifications have to be made to simplify the 
practical problem, after which the physical model can be defined mathematically. 
This is an important stage with an impact on the accuracy of the model.

Based on the physical model, the mathematical model can be written in the form of 
mathematical equation(s), which have to be solved using mathematical methods.
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Figure 5.2: The principles of mathematical modelling

The next critical step is the verification of the correctness of the model. Only a 
model reflecting the true status of the phenomenon should be used for further 
analysis. It is often not possible to numerically verify the accuracy of the results. 
Thus, the previous knowledge, intuition and experience of the modeller are 
normally very important during this phase of the research.

Mathematical modelling normally is an evolving or iterative process. The initial 
model is refined by sequential mathematical processes and careful evaluation of 
the results obtained. Thus, it is conceivable that some physical processes can never 
be solved exactly and refinement of their models might be carried out over several 
generations of researchers.

4. SPECIFIC ISSUES OF MATHEMATICAL MODELLING
Building a mathematical model for your project can be a challenging, yet 
interesting, task. A thorough understanding of the underlying scientific concepts 
is required.

Although different problems may require very different methods of modelling, the 
following issues are always important.
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4.1 Establishment of the physical model

1. Identifying the problem

The terms of the problem are defined and diagrams drawn where appropriate. For 
example, when a dynamic thermo fluid problem is to be solved, general concerns 
of the problem include the pressure distribution, temperature distribution, flow 
velocity of the fluid, etc. Factors influencing the system, such as the kinds of fluid, 
the compressibility of the fluids, the viscosity of the fluid, the state of liquid, the 
geometry of the objects, steady or unsteady state, etc. should also be considered.

During the analysis, the target function or the output variables and the influencing 
factors must be identified. For example, when the cooling process of spin-casting 
manufacture is investigated, heat transfer characteristics and fluid mechanics 
are to be considered. Factors influencing the process include the mould halves, 
the casting material and temperature, the flow of the material in the cavity, the 
contact thermal resistance between the two halves, the rotation of the mould 
and the environmental conditions. The temperature distribution and solidification 
process of the part in the mould is to be determined. 

2. Simplification of the problem (physical model)

It is usually good to begin with a simple model and to state the assumptions that 
are made whilst focusing on particular aspects of the phenomenon.
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Any assumptions may cause errors in the result obtained for the problem. Thus, 
absolutely accurate results can be expected only in the case of no assumptions 
in the definition of the mathematical description of the problem. However, in 
practice, due to the complexity of physical systems, it is usually impossible to 
obtain exact results using modelling, whilst a fair approximation of the system 
is acceptable for modelling purposes. Thus, reasonable assumptions are usually 
acceptable. 

General assumptions and simplifications include:

A. State assumption: from transient problem to steady state problem

Strictly speaking, no process and state are in a steady state, but in order to simplify 
the analysis, some states can be regarded as steady. Examples of systems that 
are considered as being in a steady state are a normal functioning cold store or air 
conditioning system, and a vehicle travelling at a constant speed.

Such assumptions are also dependent on the context of the investigation. For 
example, whilst studying the production process of a plastic injection moulding 
machine, if you are concerned about the micro process from the moment of filling 
of the mould with molten plastic to the eventual delivery of the final solidified 
product, the process of one shot cannot be regarded as steady – it is time-
dependent. However, if your attention is the long-term operational features of 
the complete production line, the same activity can be regarded as a steady state 
process.

B. Geometry assumption: from three-dimensional to two-dimensional or one-
dimensional

All physical objects are three-dimensional (3-D) in shape, but in most cases they 
can be simplified to be represented as a 2-D or 1-D model, whilst retaining high 
accuracy in the prediction of the operating parameters thereof.

For example, a long, thin rod can be simplified as a 1-D model, whilst a thin plate can 
be regarded as an equivalent 2-D or even 1-D model. Similarly, axial-asymmetrical 
objects, like a rotating cylinder, can be regarded as 2-D problems. Figure 5.4 shows 
a 3-D spin-casting model, simplified to a 2-D model.

C. Physical assumption: Ignore unimportant factors pertaining to the problem

During mathematical modelling, some unimportant factors can be ignored in order 
to simplify the modelling process. For example, in the cooling process of spin-
casting, the factors influencing the heat transfer of the part and mould include: 

�� conduction heat transfer of the mould,
�� conduction heat transfer of the part after the solidification,
�� phase change process of the casting material,
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(a) 3-Dimensional original spin-casting machine set-up

(b) Full-sized simplified 2-Dimensional model



69

5. Mathematical Modelling as a Research Methodology

(c) Half-sized simplified 2-Dimensional model

Figure 5.4: Demonstration of geometry simplification [5]

�� flow of the casting material (the filling of the mould with the material),
�� convection heat transfer in the liquefied material,
�� contact heat transfer between the casting material and the cavity,
�� contact heat transfer between the mould halves,
�� convection heat transfer of the mould surface,
�� radiation heat transfer between the mould surface and the environment,
�� airflow of the surrounding space, etc.

This is obviously a complicated phenomenon which is hardly possible to solve 
taking into account all the above characteristics. In practice, however, several 
of these variables are negligible. Consequently, the flow of the material, the 
convection heat transfer of the liquefied material, the contact heat transfer 
between the material and the cavity as well as between the mould halves, the 
radiation heat transfer, and the airflow of the surrounding space can all be ignored 
without seriously compromising the accuracy of the resultant mathematical model.

D. Specific simplification of the physical properties

Sometimes, in order to simplify the mathematical model and to solve the model 
easily, some physical properties need to be simplified in a specific way. 
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Figure 5.5: The conversion of latent heat to specific heat [5]

For example, the latent heat dissipated during the phase change, as in the above-
mentioned example, can be regarded as a part of the specific heat (Figure 5.5), 
then the governing equation can be converted from 

ρC = ∇  . (k ∇ T) + q(T)∂T
∂t

to

ρC(T) = ∇  . (k ∇ T)
∂T
∂t

and, consequently, the computer programme used for the simulation will be much 
simpler.

4.2 Establishment of a mathematical model

Identify important variables and constants or parameters 

Mathematical models typically contain three distinct types of quantities: input 
variables, output variables and parameters (constants). Output variables represent 
the model solution. The choice of what to specify as input variables and what to 
specify as parameters is somewhat arbitrary and often model-dependent. Each 
input variable characterises a single physical problem while parameters determine 
the context or setting of the physical problem. 
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For example, in modelling the decay of a radioactive material, the initial amount of 
material and the time interval allowed for decay could be input variables, while the 
decay constant for the material could be a parameter. The output variable for this 
model is the amount of material remaining after the specified time interval. 

Continuous-in-time vs. discrete-in-time models

Mathematical models of time-dependent processes can be split into two 
categories depending on how the time variable is to be treated. A continuous-in-
time mathematical model is based on a set of equations that are valid for any value 
of the time variable. The solution of a continuous-in-time mathematical model 
provides information about the physical phenomenon at every possible time value. 

A discrete-in-time mathematical model is designed to provide information about 
the state of the physical system only at a selected set of distinct times. The solution 
of a discrete-in-time mathematical model provides information about the physical 
system at a finite number of time values only. 

Continuous-in-time models have two advantages over discrete-in-time models:

 � They provide information at all times, and
 � They show the qualitative effects that can be expected when a parameter or an 

input variable is changed more clearly.

On the other hand, discrete-in-time models have two advantages over continuous-
in-time models:

 � They are less demanding with respect to the required skills levels in algebra, 
trigonometry, calculus, differential equations, etc., and

 � They are better suited for implementation on a computer. 

Develop the equation(s) that expresses the relationships between the variables and 
constants 

In this process, which is often the most demanding of the entire modelling 
process, the natural laws are normally used to relate the variables, constants and 
properties. 

4.3 Solving the mathematical model
Generally, there are three methods of solving the equations as defined:

Exact solution

Some equation(s) can be solved analytically and an exact solution can be obtained. 
These kinds of solutions are mostly found not to be very accurate when applied in 
practice, although they are clear and the researchers find it easy to understand the 
modelled phenomenon. The results are continuous.
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Semi-exact simulation

Some mathematical equations can be solved by a combination of analytical 
and numerical methods. In this case, the output variables can be expressed as 
mathematical equations which are still difficult to understand. They can usually not 
be directly applied to the application, and exact results can only be obtained by 
virtue of numerical techniques. The results are discrete.

Numerical simulation

For most engineering projects, numerical methods are required to obtain discrete 
solutions.

Numerical methods generally adopted are Finite Differential Methods (FDM), 
Finite Element Methods (FEM) and Boundary Element Methods (BEM). Different 
methods have different features and are used in different applications. It is easy 
to use FDM to discretise the equations but this is not suitable for complicated 
geometry and non-linear problems, whilst FEM is suitable for complicated 
geometrical boundary and non-linear problems.

In the mathematical representation of a physical phenomenon, some assumptions 
are applied to the physical model. Sometimes, further simplification is required 
during the solution of the mathematical equations. For example, the order 
of magnitude for different terms of equations can be used to neglect some 
unimportant terms in order to simplify the equations.

The selective laser sintering (SLS) melting process [3] may be taken as an example 
where, before melting, there are gases in the pore space between particles of 
the powder to be sintered. It is straightforward to express the density and heat 
capacity of the unsintered powder bed as:

ρs = (1 - εs)ρp + εsρg

(ρcp)s = (1 - εs)(ρcp)p + εs(ρcp)g

where ρ and (ρcp) are the density and heat capacity respectively, the subscripts 
p and g denote particle and gases. εs is the volume fraction of the gases in the 
unsintered power bed. This coincides with porosity for the unsintered bed, i.e. εs = 
    Vg

Vg + Vs

, where Vg and Vs and are the volumes of gases and solid particles.

The order of magnitude of the typical metal powder and gas thermal properties 
are as follows:

ρs ~ 103kgm-3, (cp)s ~ 102Jkg-1K-1

ρg ~ 1kgm-3, (cp)s ~ 1Jkg-1K-1
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Thus, the contribution of gases to the density and heat capacity of the powder 
bed is negligible. The thermal properties of the powder bed before sintering can, 
therefore, be expressed as:

ρs = (1 - εs)ρp

(ρcp)s = (1 - εs)(ρcp)p

4.4 Verification of the model
Once the model has been developed and applied to the problem, the resultant 
solution must be analysed and interpreted with respect to the problem. The 
interpretations and conclusions should be checked for accuracy by asking the 
following questions: 

�� Is the information produced reasonable? 
�� Are the assumptions made while developing the model reasonable?
�� Are there any factors that were not considered that could affect the outcome 

substantially?
�� How do the results compare with real data, if available?

In answering these questions, it may be needed to modify the model. This refining 
process should continue until a model is obtained that agrees as closely as possible 
with the real world observations of the phenomenon that is modelled. 

There are three practical approaches to verify the accuracy of mathematical 
modelling. 

Verification by the extreme case

The model can be narrowed to the case of an extreme condition, and its value can 
be verified by the results.

For example, the dimensionless solid-liquid interface location with time in the SLS 
process [3] can be deduced as:

dS
dτ

( )
( ) ( ) S

ScKS
erfc

d
dS S

ml

s

s −∆
−











−−
−

−
=

2

12

1

1
1

ττε
ε

ετ
2KSSc
∆ - S

Where S and τ are the non-dimensional interface location and time, ε is the volume 
fraction of the gases or liquids in the unsintered power bed; subscripts s and l 
denote solid and liquid; KS, Sc, and ∆ are constant parameters.

It should be noted that if εS = εl = Sc = 0, the equation above is reduced to
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which is identical to the proven result of El-Genk and Cronenberg [7].
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Verification by basic governing principles

Reasonable assumptions and simplifications made during the modelling process 
must not violate any laws of nature, and the basic governing principles must be 
observed. Examples of important natural laws are the conservation of mass, 
momentum and energy. 

Once the modelling results have been obtained, it must be investigated whether 
the results violate any natural laws or not. If the results are in contradiction with 
any of the natural laws, a vital error must have been made during the modelling. 
Errors must be identified as such and corrected, no matter how promising the 
results appear to be. 

A situation is described in [8] where the simulation of a particular phenomenon 
resulted in invalid results. The 3-dimensional airflow and temperature field of 
a compact cold storage facility was simulated numerically.  It was assumed that 
there was a steady state of airflow and a non-sliding flow over insulating bodies; 
the outlet of the cooler was set as the first condition for the airflow field.  The 
store was assumed to be empty.

One of the simulated results is shown in Figure 5.6, in which the temperature with 
negative values is reasonable and the curves and figures look beautiful.

However, from the simulation results, it is obvious that the temperature in the 
central area is higher than that of the surrounding areas, which means that there 
is a temperature gradient to the outside.  This implies that heat flows from the 
central area to the surrounding areas, and it is obvious that there must be a heat 
source in the central area.

Streamline in the cold storage Temperature distribution in the cold storage

Figure 5.6: Incorrect simulated results of the airflow in a cold storage

However, according to the assumption the cold storage is empty and a steady 
state is assumed.  That means there is no heat generation in the cold storage. 
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Consequently, the simulation result is in conflict with the physical model and the 
simulation is wrong.  Thus, it is not necessary to review any other results and in 
conclusion, the results are, beyond any doubt, unreliable.

Experimental verification 

Experimental verification is the general – and often preferred – method to confirm 
a mathematical model. Of course not all the simulated results can be tested but 
some experimental results, which are important and feasible to obtain, are used 
to verify the simulation model under identical conditions. If the simulated results 
approach the experimental results to an acceptable degree, the mathematical 
model would not be accepted as proven wrong – even if, also, we cannot say the 
modelling is perfect.

For example [5], zinc alloy was used as casting material to verify simulation 
results for the spin-casting process. The mould surface temperature and the 
bottom temperature at the central point were measured 10 minutes after the 
casting material (at a temperature of 420°C) was poured into the casting cavity. 
The measured temperature of the top surface at a point 1.8 cm from the central 
point, were in the range of 62-68°C, whilst the calculated result was 67.2°C. A 
typical temperature of the bottom surface of the casting part at the central 
point was measured as 268.7°C, with a calculated value of 274.6°C. Therefore, in 
both instances, the calculated values corresponded well with the experimental 
results (see Table 5.1) and the model was regarded as a valid approximation of the 
experimental situation.

Table 5.1: Comparison between measured and calculated values [5]

Temperature on top 
surface

Temperature on bottom 
surface

Measured values 62.0-68.0°C 268.9°C

Calculated values 67.2°C 274.6°C
Relative error 1.2-8.4% 2.2%

Another example is an experimental verification of computational results for the 
freezing process of quick-frozen foods. 

The freezing process of a slab of beef with a thickness of 40 mm was measured 
and calculated (Figure 5.7) [9]. The experimental freezing time was 3.57 hours 
from an initial temperature of 15°C to the final central temperature of -15°C, whilst 
the calculated result was 3.88 hours. The freezing curve from the calculated results 
agrees closely with the curve from the experimental results, and the model could 
be accepted as reliable.
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After the verification of the mathematical model, the simulation can be carried out 
under different conditions and, consequently, new knowledge can be derived from 
the numerical results.

5. CONCLUSION
Mathematical modelling, as an important research approach, is applied widely in 
research. With modelling, practical projects are converted into pure mathematical 
problems. During the conversion process, the physical model must be described as 
mathematical equations, based on the physical model and natural laws, as well as 
on reasonable assumptions and simplifications. 

After the relevant equations have been solved, the accuracy of the models must 
be verified before the models can be applied to practices in a wider range. 

Mathematical modelling cannot be completed in one cycle, but models normally 
need to be refined in subsequent cycles of refinement.

Figure 5.7: Experimental verification of the modelling of quick-frozen foods
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CHAPTER 6

Physical Modelling of Terrains and Structures

Sanat Agrawal and Gerrit Jordaan

1. USE OF SCALE MODELLING
Physical models are normally used in any of the following circumstances:

�� When no, or only extremely complex, mathematical equations are available 
by means of which analytical solutions of the system under investigation can 
be obtained; 

�� When physical structures with very complex geometries are to be studied; 
�� If any structure is to be exposed to very complex external stimulations. 

Examples of situations that lend themselves to physical modelling are:

�� offshore structures;
�� turbine blades;
�� rocket engines;
�� jet airliners and missiles; and
�� hydraulic transmission.

The expected performance of a system may be required in unattainable situations 
– e.g. prohibitive size or expense, unfriendly environments, high speeds or 
dangerous situations – in which case physical modelling may be the only way in 
which it may be possible to acquire the required information. 

Current design philosophy of structures necessitates seismic testing of structures 
using pseudo-dynamic tests in those cases where forces and displacements to 
which structures are expected to be exposed are large. Typically, due to limitations 
of the testing equipment and the costs involved, such tests are likely to be 
executed by means of scaled models.

As the complexity of a system under development increases, the designer’s 
confidence in its theoretical design would decrease, and physical modelling would 
typically be used to verify the accuracy of design formulae or mathematical models 
used to study the expected performance of the system. This would increase 
confidence in the design and may impact on the eventual decision on whether to 
proceed with the construction of the actual prototype.
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2. HISTORY OF SCALE MODELLING
The use of scale models is almost as old as engineering itself. It is known that 
even Galileo was aware of many important criteria and limitations of scale models. 
However, it became a well-respected scientific discipline during the mid-nineteenth 
century with the upsurge in engineering-related problems – especially with 
reference to the increasing use of trains and increasing levels of industrialisation. 

During this time, there was growing concern in the minds of some designers of 
bridges and other structures regarding the safety of their designs. This situation 
largely came to a head as a consequence of a bridge near the English town of 
Chester that broke on 24 May 1847, with a resultant loss of life. This caused unease 
about the continued satisfactory functioning of cast iron bridges and a renewed 
effort was made to quantify and optimise the practice of scale-modelling. In 
particular, the effect of vibration on such structures was studied – with mixed 
success. 

This led to serious efforts by, inter alia, Eaton Hodgkinson, to accurately physically 
model the cast-iron Britannia train bridge. It was modelled to a length of four feet 
and with a dynamic load of less than 3kg. However, initially some experts said that 
the modelling was “...of little value on account of their having been tried on too 
small a scale”.

G P Bidder, a well-known railway engineer of the time, believed the effect of 
vibration “...to be a mere ghost raised by mathematicians to frighten engineers 
as to strengthen their structures”, whilst it has since been proven as a most 
important loading characteristic of any structure.

The even more sceptical Scott Russell said the following about a series of efforts to 
render scale modelling as a science:

“You will have on the small scale a series of beautiful, interesting little experiments, 
which I am sure will afford you infinite pleasure in making them, and will afford 

you infinite pleasure in the hearing of them; but which are quite remote from any 
practical results upon the large scale.”

Subsequently, accuracies in the predicted performance of structures of between 
0.2% and 19% were attained, and eventually this research resulted in a clear 
demonstration that scale models could be used to predict prototype behaviour on 
a systematic basis, and it became common practice.

3. WIND AND WATER TUNNELS
Aerodynamics plays a vital role in many fields of engineering. Testing of the 
aerodynamic characteristics of a system can take place in wind or water tunnels, 
depending on the available facilities and the information required. It is used to 
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examine the streamlines and to determine the behaviour of aerodynamic forces on 
the model, and enables the modelling of new shapes in controlled environments.

4. SCALE MODELLING OF PHYSICAL STRUCTURES
Scale modelling is frequently used to investigate the expected operation of 
physical structures if they should be exposed to specified external loading. Of 
particular interest are those cases where artefacts are expected to move at a 
relatively high velocity through a medium such as air or water. In these cases, it is 
common to model this operation in wind or water tunnels.

It is often difficult to model particular phenomena accurately using mathematical 
techniques. It is then common to revert to the development of a physical model 
representing the system under investigation and to measure the effect of the 
expected external stimulation impacting on the system – utilising suitable 
instrumentation built into the model. Such measurements are subsequently scaled 
in terms of the design parameters of the physical model.

However, if possible, the modeller would try and verify the validity of those 
elements of the scale model for which mathematical modelling is a viable 
proposition. In this manner, the value of the model is dramatically increased, 
with a resultant increase in the confidence level of the designer. For example, 
computational fluid simulation techniques can be utilised to derive the expected 
performance of a model under particular conditions, in order to ascertain the 
validity of measurements made during testing with the relevant scale model.

Similarly, mathematical analysis of wind tunnel data is used during the evaluation 
of results obtained whilst testing a physical model.

A tunnel in this context consists of:

�� a contoured duct to control direct fluid flow,
�� a drive system to move a fluid, 
�� a model to be tested, and
�� instrumentation to measure forces on the model.

The use of such tunnels is very common and used extensively to determine the 
quantifiable parameters of the scale model. Velocity, time, stress, force and power 
are typical examples of parameters that are normally measured. To enable an 
accurate prediction of the expected functional behaviour of the prototype, these 
values are then scaled in proportion to the relative size of the model compared to 
that of the prototype (see paragraph 5.1).

The development and scale modelling of modern, high-speed aircraft and missiles 
often necessitates that such testing be done in wind tunnels with extremely fast 
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airflows. Thus, the use of wind tunnels with even supersonic wind speeds is no 
longer the exception, but common practice.

4.1 System simplification in physical modelling
The development of a successful model requires knowledge of the system to be 
modelled, including the relevant variables, interactions and dynamic behaviour 
of the different elements. Considering these, the optimum model is developed 
by consideration of the model validity – in terms of measurability, accuracy, 
repeatability and executability. If possible, the accuracy of collected data is 
normally verified against measurements taken on the actual system. 

As with mathematical modelling, scale models are often designed to simulate 
only particular characteristics of the prototype, such as vibration, heat-transfer, 
wind resistance, etc. In the interests of cost-saving, often only the most essential 
features are modelled. Minute details of a design are often not critical to the 
functioning of the prototype and are not modelled in such cases. 

4.2 Physical modelling of the effect of water and waves
From the middle of the nineteenth century, physical scale modelling was used 
extensively to study the expected behaviour of boats whilst afloat. In particular, 
the resistance of a ship to the flow of water against its sides at different speeds, 
and its expected rolling in the water, have been studied extensively using physical 
models. The rolling of a ship is often studied as a function of the ship’s isochronism 
with the waves that the prototype is expected to encounter. For this, a controllable 
wave-maker and a suitable model of the ship are used.

Even though substantial resistance was experienced initially, with regard to scale 
modelling of ships, clear evidence was gradually gathered to demonstrate that 
scale models could be used to predict the behaviour of ships on a systematic basis. 
Very specific formulae were developed over a period of time to interpret results 
obtained in this manner. 

The use of hydrodynamic scaled models of offshore structures is often used to 
verify numerical or analytical predictions of global and local hydrodynamic loads 
on the prototype. In this manner, the effect of wave loading on these models is 
studied. Examples of global loads are shear and overturning moment at the base of 
the structure, whilst local loads include wave impact and run-up. These phenomena 
are usually modelled using relatively large scale models (for example, 1:40).

Particular constraints of such structures are their geometry (related to the 
hydrodynamic scaling of the model), load measurement accuracy over a specified 
range, and specific wave parameters. The models are usually mounted in a suitable 
wave basin.

Such systems normally meet specified criteria, such as:

�� water depth,
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�� ranges of wave heights and periods, as well as wave spectra of irregular waves,
�� the dimensions of the model, and
�� the hydrodynamic scale.

5. SIMILARITY LAWS IN MODEL TESTING
To predict the actual behaviour of the prototype with measurements made on a 
scale model, there must be similitude between the model and the prototype. 
Similitude is used to establish a set of scaling factors between the model and 
the prototype. The most important types of similitude are geometric, kinematic 
and dynamic.

5.1 Geometric similarity
The model and prototype are assumed to be geometrically similar only if all the 
pairs of points on the model and prototype have the same ratio of distances in all 
three coordinates. Thus, there is a fixed, linear relationship between the relative 
positions on the model and prototype. This is called the (length) scale factor. For 
models satisfying this characteristic, the value of any parameter measured at any 
point with respect to the model is related to the value at the homologous point 
(i.e. a point having the same location relative to the prototype) through the 
corresponding scale factor.

However, it is often impossible or not feasible to scale a system by the same margin 
in all coordinates. This practice is particularly common in the study of geographic 
structures, dams, etc. This requires particular expertise in assessing any measured 
values.

5.2 Kinematic similarity 
The motions of the model and prototype are kinematically the same, if the relative 
velocities in the flow fields are the same. An example of this would be that the ratio 
of wind speed to revolutions per minute of a windmill, or wind-powered electrical 
power generating system, should be the same for the model as for the prototype, 
to enable effective transfer of data from the model to the prototype. 

5.3 Dynamic similarity
This requires geometric similarity and ensures kinematic similarity between the 
model and the prototype. It occurs when the prototype and model force and 
pressure coefficients are identical. It usually requires a tenfold increase in the 
speed of the fluid to evaluate a model, one-tenth the size of the prototype. 
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6. PHYSICAL MODELS OF TERRAINS
Scale modelling is a term primarily used in Fluid Mechanics. Dimensions and other 
physical variables are scaled as required. However, the dimensions along the three 
coordinate axes are normally scaled uniformly. To ensure geometric similarity, the 
ratios of all corresponding dimensions in the model and prototype are equal.

However, there are applications where the dimensions are scaled non-uniformly 
as well. For example, the physical models of terrains are sometimes made with 
a non-uniform scale. This is different from typical scale modelling in mechanical 
engineering. Terrain models are given non-uniform scales for better visualisation 
of features. A physical model of a terrain is a very effective communication tool. 
It helps in studying possible dam structures and in improving insight into the 
expected terrain to be flooded if a prospective new dam fills. Similarly, it can be 
exceptionally useful for the design of roads in mountainous areas. 

The following are examples of terrain models, prepared using digital elevation 
model (DEM) data. The data, obtained from a GIS vendor, was converted into .STL 
files and fabricated using a laser sintering process.

Figure 6.1 shows a schematic diagram of Table Mountain, as seen from the south-
east – with the coast shown furthest in the figure. This diagram was derived from 
geographic data.

Figure 6.1: Table Mountain from the south-east

A physical model was subsequently built with polyamide (nylon) using a Laser 
Sintering (LS) process, resulting in a model as shown in Figure 6.2. 
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Figure 6.2: A polyamide model of Table Mountain as seen from the north-west

Figure 6.3 represents a scale model of an area of the Modder River sub-catchment. 
However, as is obvious from the figure, use of a uniform scale in all dimensions 
sometimes renders models with little or no practical value. Thus, it is common to 
enhance the characteristics in the vertical direction by using a different scale in 
that direction.

Figure 6.3: A region of the Modder River sub-catchment

This would result in a situation such as shown in Figure 6.4. Here the scales in the 
x and y-directions are equal to 1:45000 relative to the raw data, whilst a scale of 
1:4500 is used in the z-direction. Thus, the elevation is given a scale of 10 relative 
to plan. Any changes in the vertical direction are now much more pronounced and 
their probable effects predictable. Considering that the regions shown in Figures 
6.3 and 6.4 are quite similar, this practice created a huge difference between the 
two representations of the relevant areas – adding significant value to the model.
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Figure 6.4: Another region of the Modder River sub-catchment (utm2628_32)

Obviously, in areas with large variations in the z-direction, differential scaling is 
often not required. An example of this is shown in Figure 6.5, where a physical 
model of the Amphitheatre in the Drakensberg Mountains is shown with a uniform 
scale. In this case, a uniform scale is a viable proposition since the terrain has a 
change in vertical height of over 300m over a very short distance.

Figure 6.5: A model of the Amphitheatre with a uniform scale

7. MATERIALS USED IN THE CONSTRUCTION OF A SCALE 
MODEL

The materials used in a model are of particular importance and their functioning 
under the simulated conditions should approach that of the final material under 
normal operating conditions. This often necessitates the use of materials in the 
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model of which the characteristics approach that of the ideal, but are not equal 
to it. An important example of this is the surface characteristics of the modelling 
material in a study of wind resistance and water flow, in the case of a model of a 
dam and its surrounding area.

8. SUMMARY
With the continuous development of new mathematical techniques, scale 
modelling has, to some extent, been superseded by mathematical modelling. 
However, it still forms an integral component of the normal design and 
development process used in modern engineering – and is expected to maintain 
its importance in the foreseeable future.

It is particularly valuable in contributing to a better understanding of the underlying 
principles governing the functioning of a system under investigation, as well as in 
improving the system designer’s confidence in the design.

Scale modelling is a very complex field of study and this chapter is only an 
attempt at sensitising researchers to it as an important research and development 
methodology. It is inconceivable that any student of fluid mechanics would ignore 
the possible benefits that could be realised from using it, in trying to determine 
the expected performance of a new system under development, in verifying the 
accuracy of its design.
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Data Acquisition as a Research Procedure

Herman Vermaak

Objectivity is a fundamental prerequisite of scientific investigation. It is not easy, 
even for people with the best intentions, to interrogate a process and report data 
in an unbiased way, but this is a primary goal to which scientists should aspire. Skill 
at avoiding bias comes with experience, but depends mainly on understanding the 
goal of an investigation and carefully considering how to achieve it. Objectivity 
on the part of the researcher is a fundamental need for any data acquisition, 
interrogation and reporting process. 

1. WHAT IS DATA ACQUISITION?
Data acquisition is the process of obtaining and recording primary experimental 
information. It involves collecting signals from measurement sources and (usually) 
digitising the signal for storage, analysis, and presentation on a personal computer 
– although dedicated data acquisition equipment is also available for this purpose. 

Proper data acquisition and record keeping is an essential feature of experimental 
science and technology. It provides the foundation information on which 
subsequent data analysis and generalisations are based.

2. WHAT IS RECOGNISED AS DATA?
Data can belong to any of the following categories:

�� Quantitative: Recorded numbers, graphs and charts of raw, numerical 
experimental results, and instrument output including photographs and digital 
images from which quantitative data can be derived.

�� Qualitative: Notes of any type, some types of instrument output, photos, movies 
and digital images.

�� Original samples in unanalysed form: e.g. biological specimens.
�� Research tools: Protocols; computer software.
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3. CLASSIFYING DATA
Data is classified according to the following framework:

�� Raw data: Information obtained directly from experiments, surveys, etc. It 
includes information in laboratory notebooks and instrument output; may 
include information in computers.

�� Processed data: Graphs, equations, tables, descriptions, summaries, and 
conclusions derived from raw data but not yet released to the public.

�� Published data: Information distributed to people beyond those involved in the 
acquisition of the data and project administration. Theses and dissertations are 
published and become available to the public in a library. 

4. A DATA ACQUISITION SYSTEM
Most modern industrial processing systems, factories, machinery, test facilities 
and vehicles, incorporate hardware components and computer software, the 
behaviour of which follows the laws of physics. Such systems often contain 
thousands of mechanical and electrical phenomena that are continuously 
changing; these phenomena are not in a steady state. The measurable quantities 
that represent the characteristics of a system are called variables. The proper 
functioning of a particular system depends on certain events taking place and 
the values of certain variables at a certain moment in time. When studying such a 
system, researchers are interested in the values of the variables, such as location, 
magnitude and speed, and use a variety of instruments to measure and record 
them. The variables are assigned units of measurement, such as volts, kilograms 
and metres per second, to name but a few.

Most variables must be measured with a device that converts the phenomena into 
a form that a human can perceive and interpret, such as a visual display, sound, 
or vibrations, to stimulate physical sensations. The conversion devices are called 
transducers or sensors, and they normally translate the physical phenomena to 
electrical signals (or vice versa) to be measured with electronic instruments. These 
instruments have traditionally been ammeters, voltmeters, and various other 
gauges, and the variables can be observed in real time. However, an increasing 
need (and the ability) to record and preserve these phenomena and analyse them 
at a later stage, has forced engineers to develop modern data acquisition systems.

4.1 System setup
The first step in any data acquisition experiment, after parameter identification,  is 
to install and connect the required hardware and software to the system under 
observation. Hardware installation usually consists of plugging a board into a 
computer or installing measuring modules into an external chassis. Software 
installation consists of loading hardware drivers and application software onto 
a computer. After installation of the hardware and software, the sensors can be 
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attached to the system being tested, whereafter the data acquisition hardware 
should be calibrated. Calibration consists of providing a series of known inputs to 
the system and recording the corresponding outputs. For most data acquisition 
devices, calibration can be easily accomplished with software provided by 
the vendor.

After the hardware has been set up and calibrated, data acquisition can 
commence. It is normal to anticipate that successful data acquisition will take 
place if the characteristics of the signal to be measured are fully understood by 
the operator of the measuring system. However, in a practical application, a sensor 
and its connections might be picking up unacceptable noise levels and may require 
shielding. Alternatively, it may be necessary to use the measuring system at a 
higher rate, or perhaps to add an anti-alias filter to remove unwanted frequency 
components. These effects act as obstacles to precise, accurate measurements and 
to overcome them, it may be necessary to experiment with different hardware and 
software configurations. In other words, multiple data acquisition trials may have 
to be run in order to ensure the optimal functioning of the data acquisition system.

Figure 7.1: Basic configuration of a data acquisition system

Data is normally acquired by an analogue-to-digital converter (ADC) using a 
process called sampling. Sampling of an analogue signal involves taking a sample 
(determining the instantaneous value) of the signal at discrete times. The rate 
at which the signal is sampled is known as the sampling frequency. The process 
of sampling generates a series of values of the measured signal at definite time 
intervals, as shown in the following figures.
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Figure 7.2: Process of sampling

The sampling frequency impacts on the quality of the converted analogue signal. 
Higher sampling frequencies normally achieve better conversion of the analogue 
signals. Conversely, the higher the sampling rate, the larger the amount of data, 
to be stored and processed for eventual interrogation of the accessed data, will 
be. However, the minimum sampling frequency required to represent the signal 
should be at least twice the maximum frequency of the analogue signal under test 
– this is called the Nyquist rate.

The resolution of the converted signal, and thus the precision with which the 
analogue signal is converted, is a function of the number of bits the ADC uses to 
represent the digital data. The higher the number of divisions the voltage range is 
broken into, the higher the resolution and, therefore, the smaller the detectable 
voltage changes. The resolution is an important characteristic of a data acquisition 
(DAQ) board.

The sampling frequency and resolution are very important factors in determining 
the performance of a DAQ system. Together with these factors, it is important 
to consider the environmental influences on the DAQ system. Susceptibility to 
electrical noise and extremes of ambient temperature, shock, and vibration are 
important characteristics of such a unit. 

Most modern data acquisition systems will record extremely accurate, repeatable, 
reliable, and error-free data, provided the system is connected and operated 
according to recommended practices.

It must be noted that the quality of captured data is normally related to the 
operator’s knowledge of the characteristics of the measured signals and the 
DAQ system utilised. Thus, there must be clarity of what is to be captured and, 
consequently, at what position in a system such a signal should be measured.

5. DAQ SYSTEM COMPONENTS
Data acquisition (DAQ) systems come in many different personal computer (PC) 
technology forms, offering great flexibility when selecting a particular system.
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The following five components are to be considered when developing or selecting 
a basic DAQ system:

�� Transducers and sensors
�� Signals
�� Signal conditioning
�� DAQ hardware
�� Driver and application software

5.1 Transducers and sensors
A transducer is a device that converts a physical phenomenon into an equivalent, 
measurable electrical signal, such as voltage or current. The ability of a DAQ 
system to measure different phenomena largely depends on the transducers that 
are available to convert the physical phenomena into signals measurable by the 
DAQ hardware.

Table 7.1: Typical measured phenomena and transducers used

Phenomena Transducer
Temperature - Thermocouples

- Resistive temperature devices
- Thermistors

Light - Vacuum tube
- Photo sensors

Sound - Microphones
Force and Pressure - Strain gauges

- Piezoelectric transducers
Position and displacement - Potentiometers

- Linear variable differential transformers
- Optical Encoders

Fluid - Head meters
- Rotational Flow meters

pH - pH Electrodes

An example of a physical characteristic to be assessed is the amount of strain 
on a body. Strain is the amount of deformation of a body caused by an applied 
force. More specifically, strain (e) is defined as the fractional change in length (see 
Figure 7.3).
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Figure 7.3: Strain on a body

While there are several methods of measuring strain, the most common is with 
a strain gauge, a device whose electrical resistance varies in proportion to the 
amount of strain in the device. The most widely used gauge is the bonded metallic 
strain gauge.

alignment marks

active grid
length

carrier

solder tabs

Figure 7.4: Physical parameters of a strain gauge

5.2 Signals
The transducer converts the relevant physical phenomena into measurable 
signals. Different signals need to be measured in different ways. For this reason, it 
is important to understand the different types of signals and their corresponding 
attributes. Signals can be categorised into two groups:

�� Analogue
�� Digital

5.3 Analogue signals
An analogue signal can assume any value with respect to time. A few examples of 
analogue characteristics include voltage, temperature, pressure, sound level and 
load. These characteristics are then converted by a transducer into an equivalent 
electrical signal. The three primary characteristics of an analogue signal include 
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level, shape and frequency. These three characteristics will now be discussed in 
more detail.

Level

Since analogue signals can take on any value, the level gives vital information about 
the measured analogue signal. The intensity of a light source, the temperature 
in a room, and the pressure inside a chamber are all examples that demonstrate 
the importance of the level of a signal. When measuring the level of a signal, the 
signal generally does not change quickly with respect to time. The accuracy of the 
measurement, however, is very important. A DAQ system that yields maximum 
accuracy should be chosen to aid in analogue level measurements.

Shape

Some signals are named after their specific shape – e.g. sine, square, sawtooth, and 
triangle waves. The shape of an analogue signal can be as important as the level, 
because measuring the shape of an analogue signal allows further analysis of the 
signal, including peak values and slope. Signals where shape is of interest generally 
change rapidly with respect to time, but system accuracy is still important. The 
analysis of heartbeats, video signals, sounds, vibrations, and circuit responses are 
some applications involving shape measurements.

Frequency

All analogue signals can be categorised according to their frequency. Unlike the 
level or shape of the signal, frequency normally cannot be directly measured with 
a typical data acquisition system. The signal must be analysed using software 
to determine the frequency information. This analysis is usually done using an 
algorithm known as the Fourier Transform. 

Figure 7.5: An analogue signal with its important characteristics
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5.4 Digital signals
A digital signal cannot take on any value with respect to time. Instead, an extended 
digital signal normally consists of a number of digits (referred to as bits), each of 
which can take on either of two possible levels: high and low – in the same way 
that a decimal digit can have one of ten values. Thus, multiple bit digital signals 
can represent any of a finite number of values, which is a function of the number 
of bits.

Digital signals generally conform to certain specifications that define characteristics 
of the measured signal. The useful information that can be measured from a digital 
signal includes the state and the rate.

State

The shortest digital signal comprises only one digit, having only one of two possible 
values – referred to as the state of the bit. The state of a digital signal is essentially 
the level of the signal – on or off; high or low. Monitoring the state of a switch – 
open or closed – is a common application showing the importance of knowing the 
state of a digital signal.

Rate

The rate of a digital signal defines how the digital signal changes state with respect 
to time. An example of measuring the rate of a digital signal is the determination 
of how fast a motor shaft spins. Unlike frequency, the rate of a digital signal 
measures how often a signal assumes a specific value. 

Figure 7.6: A digital signal with its important characteristics
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5.5 Signal conditioning
Sometimes, transducers generate signals too difficult or too dangerous to measure 
directly with a DAQ device; for instance, when dealing with high voltages, noisy 
environments or extreme high and low (small) signals. Thus, concurrent with 
signal measurement, signal conditioning is essential for an effective DAQ system. 
Signal conditioning maximises the accuracy of a system, allows sensors to operate 
properly, and guarantees the safety of the operator and measuring system.

It is important to select the right hardware for signal conditioning. Signal 
conditioning is offered in both modular and integrated forms. Signal conditioning 
accessories can be used in a variety of applications including amplification, 
attenuation, isolation, simultaneous sampling, sensor excitation, and multiplexing, 
to name but a few.

VMEAS

+

-

VCJ Cold Junction

Thermocouple

Signal Conditioner Signal Connector

+
-

VCJ

Figure 7.7: A practical signal conditioning setup

5.6 Data acquisition hardware
The DAQ hardware acts as the interface between the computer and the outside 
world. It primarily functions as a device that digitises incoming analogue signals 
so that the computer can interpret them. Other data acquisition functionality 
includes: 

�� analogue input/output 
�� digital input/output 
�� counter/timers 
�� multifunction – a combination of analogue, digital, counter and timing 

operations on a single device 

The DAQ hardware can be part of different configurations. The most popular 
configurations are:
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�� Distributed: In this configuration, the sensor and/or actuators are a distance 
from the PC. The signals are fed via a bus system from the distributed input/
output module to the PC.

�� Desktop: The DAQ hardware (card) is in the desktop computer and signals are 
fed from the sensor/actuators to the PC via the DAQ card.

�� Portable: Nowadays, equipment like notebook computers and personal digital 
assistants (PDA) are used to capture the data – especially when capturing must 
be done in the field or in an industrial environment far from available DAQ 
infrastructure.

5.7 Driver and application software
Software transforms the PC and the DAQ hardware into a complete data 
acquisition, analysis and presentation tool. Without software to control or drive 
the hardware, the DAQ device will not work properly. Driver software is the layer 
of software that allows easy communication with the hardware. It forms the 
middle layer between the application software and the hardware. Driver software 
also prevents a programmer from having to do register-level programming or 
complicated commands in order to access the hardware functions.

Data can be acquired and then saved in various different formats. A few of the 
most commonly used formats are: 

�� Text
�� Spreadsheet
�� Excel
�� Matlab
�� BMP
�� JPEG

6. EXAMPLES OF DATA ACQUISITION SYSTEMS
The following are a few examples of DAQ systems that are used to capture data 
for research projects.

6.1 A flexible control and analysis tool for automatic blood pressure 
measurement

The challenge: to develop a flexible system that performs experiments and blood 
pressure measurement analysis using the oscillometric method for research and 
didactical purposes. 

�� Creation of the mechanical unit of the device by assembling an occlusive cuff, 
two pressure sensors, an air pump and an on/off pneumatic valve to control the 
law of deflation. 
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�� A finger pletismograph and photopletismograph were added to the 
experimental setup for redundant systolic pressure and arterial pulse wave 
velocity measurement. 

�� Development of an application-specific, microcontroller-controlled electronic 
measurement and display system.

6.2 Structural condition-monitoring system for cable-stayed bridge 
The challenge: to develop a system to acquire and log data from critical areas of a 
1.8 km long cable-stayed bridge. 

�� Development of a system to measure the output of 100 vibrating wire strain 
gauges laid on the concrete along the length of the bridge.

�� Development of a system to access the vibration of the cable stays in three 
dimensions using accelerometers.

�� Development of an automated, electronic measuring and storing device to 
acquire and store the measured parameters.

6.3 Racing car performance measurements on a race track
The challenge: the integration of measured data from various sources in a racing car. 
The results are to be used in the simulation of particular models of vehicles and tracks 
to predict performance.

�� Identification of suitable transducers and the placement thereof on all critical 
positions of the racing car engine and chassis.

�� The provision of a suitable radio transmission system for communication with 
the DAQ system next to the race track.

�� The development of a purpose-specific display and recording system as a man-
machine interface.

6.4 Measuring the electrical signals of beating heart cells in a culture
The challenge: measuring the electrical signals from a grid of electrodes in contact 
with a single layer of beating heart cells in a culture.

Electrophysiology researchers at Westmead Hospital in Sydney required a system 
to acquire and analyse signals measured using a microelectrode array. During this 
study, researchers grew a single layer of heart cells in a culture on an electrode 
array. As the living cells beat, the researchers obtained valuable information 
related to heart rhythm disorders from the electrical signals measured in the cell 
culture. The basic hardware requirements for the system included:

�� simultaneous sampling of 64 channels at data rates of up to 70 kHz;
�� data storage to a hard disk at the same time as display; and
�� high quality graphics for data visualisation.



100

Modelling as Research Methodology

As biomedical researchers strive to obtain groundbreaking results, they require 
new analysis tools. In this application, LabVIEW saved considerable software 
development time in the creation of a new measurement and assessment tool. The 
hardware provided a platform for researchers to expand upon in the future, thus 
making the best use of sought-after research funding.

6.5 Testing vehicle temperatures
The challenge: a motor manufacturing company needed a compact, portable system 
to test vehicle temperatures to assure that they do not exceed design limitations in 
extreme conditions.

The In Vehicle Data Acquisition System (IVDAS) thermal monitoring system 
was developed to address the data logging needs of the motor manufacturer. 
The power of the modern PC coupled with the power of open architecture 
instrumentation buses opened the door for a powerful and flexible solution. A 
driver panel allows the test driver to start data logging and alarm processing with 
the touch of a button. 

The software is first set up by defining the channels. This is accomplished in one of 
three ways:

�� A user interface panel allows the user to define channel count, names, scaling, 
conditioning and alarming.

�� A text file can be created and imported with a separate software package, such 
as MS Excel.

�� A company-specific file type can be read into the system to generate a 
channel list.

Specific setup files can be saved to disk in order to recall them for similar tests at 
a later stage. After setup, the user can test run the software to look for open or 
short-circuited sensor circuits. Once setup and initial checkout are complete, the 
system is ready to be used by the driver. The driver panel allows the test driver to 
start the data logging and alarm processing with the touch of a button. For safety 
reasons, no mouse interaction is necessary for the driver. While the driver can 
pause data acquisition during the test, alarm processing will always be running.

6.6 Displacement measurement
The challenge: to measure the displacement of a motorcar tyre when the wheel hits a 
pothole in the road.1

The measurement was done on the front wheel of a light delivery vehicle.

1 This measurement has been made with respect to the case study described in Chapter 
8.
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Experimental DAQ System

�� Sensor: The needle of a stereo record player was used to capture the displacement 
of the tyre during simulated action of hitting a pothole in the road.

�� Signal conditioning: A pre-amplifier was constructed to amplify the signal from 
the needle. This was required because the signal from the needle was too small 
to be captured by the DAQ system. 

�� Data acquisition hardware: A standard data acquisition card from National 
Instruments was used to capture the data signal from the pre-amplifier.

�� Application software: LabVIEW data acquisition software from National 
Instruments was used for the processing and display of the measured 
parameters. 

Since the same manufacturer, National Instruments, provided both the hardware 
and software, the interfacing between these elements was not a problem. This 
also had the added advantage that the hardware could be utilised to its full 
potential and all software features to enhance the data capturing and analysis 
could be used.

6.7 Using captured data
Normally the captured data can be used with different types of application 
software to analyse it and to be able to present it in graphical, tabular, or the most 
suitable form for the researcher. It is for the researcher to decide in what form it 
will be best suited for analysis and representation. Two different forms of data are 
shown below in Figure 7.8.

  

 (a) (b)

Figure 7.8: (a) Raw data and (b) Data represented in a graph

A question arises as to what to do if one or two measurements are completely 
out according to the rest of the data that were captured. The first option will 
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be to repeat the capturing process ensuring that no faults exist within the DAQ 
System. If the problem still remains, a decision must be made either to ignore that 
specific data word or to try to determine and explain the possible reasons for the 
inconsistent data.

7. NEW DATA ACQUISITION TECHNOLOGIES AND ABILITIES
Data acquisition technology provides the link between the data-generating 
sensors and data-recording and storing devices. DAQ can also provide the means 
for driving external actuators from a computer by the generation of external 
excitation signals. DAQ technology includes both hardware and software. 

Thanks to recent advancements in processor technology, the low cost personal 
computer is now the most important carrier for data acquisition cards. The high 
clock speeds of modern central processing units (CPUs), such as Pentium and 
PowerPC, enable very high sampling rates. This, along with high performance bus 
architectures such as PCI, cheap RAM and fast, voluminous hard disks, make long-
term continuous measurements possible. 

Traditionally, the clock speed of the computer CPU can significantly affect the 
performance of a DAQ system. However, newer direct memory access (DMA) 
transfer technology speeds up the system by using dedicated hardware to transfer 
data directly into system memory. Thus, the CPU is not burdened with moving data 
and is therefore free to engage in more complex processing tasks. In addition, if 
an application requires real-time processing of high-frequency signals, a dedicated 
digital signal processing (DSP) chip can be built in on the DAQ board to share the 
workload of the main processor.

Another important development is portable data acquisition based on laptop 
computers with PCMCIA cards. This configuration allows more convenient field 
measurements that used to be troublesome for practicing engineers.

Emerging broadband Internet and broadband cellular phones outperform 
traditional modem hook-ups using RS-232 or RS-485 serial communication ports. 
These emerging communication technologies will make remote monitoring and 
access measurements more achievable. 

In short, the current level of data acquisition technology, although still not 
perfect, is far more effective and efficient than it was a decade ago. In future, one 
can expect even more affordable and accurate measurement instruments, some 
that could be fitted into computers as small as modern hand-held calculators or 
personal digital assistants.
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8. SUMMARY
Data acquisition is an important component of modern research procedures, 
and researchers need to be au fait with the use thereof. This is the way in which 
huge amounts of data can be acquired over a long or very short period of time, 
depending on the nature of the project. The data can then be processed and 
results displayed or interrogated in different ways by the researcher.

There are many different types of high quality data acquisition equipment and 
associated software available, meeting a wide variety of possible needs of 
the researcher. However, due to the specialised nature of the selection and 
implementation of such technology, it is not uncommon to access the services of a 
specialist for this purpose. Such an individual would typically have a background in 
electronics and/or computing and should be able to provide invaluable support to 
the researcher and enable much quicker progress with this phase of research.
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CHAPTER 8

Data Acquisition and Mathematical Modelling

Anna CM Bekker

1. INTRODUCTION
Mathematical modelling is the use of mathematics to describe and predict 
phenomena and, although an acceptable procedure in (especially) engineering 
design, usually requires experimental validation of the ability of the model to 
predict the behaviour of the system under investigation. This involves the setting 
up of experimental apparatus and the measuring of the functioning of the system 
under a set of predefined conditions. Proper assessment of the results obtained in 
this way assists the researcher in evaluating the quality of the mathematical model 
used, as well as the appropriateness of the experimental set-up and the external 
excitation of the system.

The process of modelling is a constant oscillation between various levels of 
abstraction. This can be divided into the following phases:

�� Getting a grip on the problem (define key questions);
�� Formulating a mathematical model;
�� Generating solutions from the mathematical model;
�� Validating the model (and if necessary re-formulating the model until it fits with 

the real world context).

Whenever possible, the next step in the research process is validation of 
the mathematical model, by assessing the functioning of the system under 
investigation by a process of data acquisition and processing. Data acquisition 
is the process of obtaining and recording primary information from physical 
experiments, and provides the foundation information on which subsequent data 
analysis and conclusions are based. The data obtained from physical models helps 
the researcher to understand the problem under investigation, the model it is 
represented by, and to verify the validity of the mathematical model.

Being able to utilise ordinary differential equations is essential for professionals in 
many areas of science and technology. Many useful and interesting phenomena 
in engineering and life sciences that continuously evolve in time can be modelled 
by ordinary differential equations, or by a variety of different mathematical 
procedures [1].
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The following describes at length the method employed to study the behaviour 
of an inflatable car tyre when stimulated externally in a particular way, whilst 
attempting to minimise the mathematical content of the description.

2. MATHEMATICAL MODELS
While considering a strategy to design tyres to minimise the formation of dirt road 
corrugations, the following model was considered:

When a vehicle is travelling on a dirt road with uneven surfaces, the contact 
between tyres and road will not be perfect, and at times the drive wheels will 
bounce. Before contact of the tyres with the road is lost, the tyres will be under 
tension (assuming that the vehicle is under power). At the instant of contact 
loss, the tension is released and the tread surface begins to oscillate tangentially 
(parallel to the wheel rim) [2]. The elasticity of the tyre will cause the tread 
surface to be compressed, owing to a tangential force that is acting on the tread 
surface of the tyre. The elasticity of the tyre then tends to restore the shape of 
the compressed tyre. This gives rise to a common tangentially oscillating system 
relating the tread surface of the tyre, which can be compared to an oscillating 
system, with the tangential force as the restoring force.

A mathematical model that describes the angular motion of the tread surface 
of the tyre can be described as a second order differential equation with 
constant coefficients. The solution to this differential equation gives the angular 
displacement with respect to time of the tread surface of the tyre. To find the 
tangential displacement of the tyre’s tread surface, the angular displacement (in 
radians) was multiplied by the effective radius (in metres) of the wheel of the tyre.

The development of the mathematical model describing the phenomena under 
investigation included practical experimentation – as a consequence of which 
some constants in the relevant differential equation could be ascertained. The 
determination of these constants were a primary purpose of the investigation, 
and the description that follows shows how data captured experimentally can be 
linked to a mathematical model.

Although the purpose of the shock absorber in a motor vehicle is to cause rapid 
die-off of vibrations, encountered either randomly or periodically from the natural 
frequency of the suspension system, the tyre and therefore the tread surface will 
damp the tangential oscillations that are under investigation. 

The value of this damping coefficient (λ) can be determined experimentally by 
measuring the rate of decay of unforced oscillations or unconstrained motion. 
The logarithmic method, which is the natural log of the ratio of any two successive 
amplitudes, could be used to determine the damping coefficient of the tyre [3].
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A sequence of actions was taken to measure and assess different characteristics 
of a tyre, having been exposed to an artificial stimulation similar to what can be 
expected to take place whilst travelling on a dirt road.

2.1 Case study
It was found that the displacement varies sinusoidally with time, as in the case of 

simple harmonic motion (SHM), with a frequency 'ω  and its amplitude, A, being 
modified by the exponential term e-λt, a term which decays with time (t) and the 
damping coefficient (λ) of the rubber tyre.

Figure 8.1 shows the behaviour of the displacement θ  with time – the oscillations 
gradually decaying with the envelope of the maximum amplitudes following the 
dotted curve e-λt. The constant, A, is obviously the value to which the amplitude 
would have risen at the first maximum if no damping were present.

Displacement

A

0
Timeτ 2τ

e-x

Figure 8.1: Damped oscillatory motion

The presence of a force term in the equation of motion introduces a loss of energy, 
which causes the amplitude of oscillation to decay logarithmically.

3. LOGARITHMIC DECREMENT
Logarithmic decrement (δ) measures the rate at which the amplitude dies away. 
Suppose in the expression: 

( )φωθ λ += − tSineA t '  
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we choose 

2
πφ =

then 
tCoseA t '

0 ωθ λ−=

With 0;0 == tAθ , the behaviour of the displacement will follow the curve, as 
depicted in Figure 8.2.
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If the period of oscillation is 'τ  where '
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πω = , then the ratio between two 

adjacent amplitudes can be calculated any number of periods later. Therefore, 
it is anticipated that a waveform of a similar shape to that in Figure 8.2 will be 
measured, if a tyre is stimulated in the way described. 

3.1 Obtaining data from an experimental physical setup
To find a value for the damping coefficient (λ) of the vehicle’s rubber tyre in 
units of s-1, the following practical experiment was conducted. The experimental 
method used a typical vinyl record player stylus, a signal conditioning circuit, a data 
acquisition system and a vehicle. The experiment was done on the front wheel of 
an Opel Corsa 170i diesel truck.
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The vehicle was jacked up to suspend the tyre freely in the air. A typical record 
player stereo stylus was fastened to a rigid bracket fixed in position so that the 
stylus touched the tyre’s tread surface. The stylus was attached in such a way 
that its motion was restricted to the horizontal level only. A tangential strike was 
subsequently delivered to the tyre (approximating an impulse), and the output of 
the record player stylus via the pre-amplifying circuit captured on a computer with 
a data acquisition card [4] (see explanatory Figure 8.3 and Figure 8.4).

Stereo record
player stylus

Tangential
strike

Ground surface
Data acquisition
system or DAQ

Figure 8.3: Setup of physical experiment

The stylus is shown in Figure 8.4, in a position touching the tread surface of the 
rubber tyre.

The data that was captured experimentally was imported into Excel to facilitate 
easy processing and graphical representation. The following graph represents the 
two channels of the stereo record player stylus as measured:

Figure 8.4: Record player stylus fastened to a rigid bracket, touching the tread surface 
of the tyre
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Output of oscilloscope of tyre motion recorded by a record 
player needle
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Figure 8.5: Signals captured from a stereo stylus with DAQ when a freely moving tyre 
was struck by a tangential strike

A stereo stylus was used in order to capture the oscillations of the tread surface of 
the rubber tyre. This means that the horizontal oscillation of the rubber tyre was 
captured in two directions, indicated as channel 1 and 2 in Figures 8.5 and 8.6, each 
forming a 45-degree angle with respect to the horizontal.

Figure 8.6: Resultant motion of the tread surface of the tyre

The resultant motion is the vector sum of the two channels. Figure 8.6 
illustrates the resultant motion of only one sample captured in the experiment 
(approximately 70 000 samples were taken).
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Tangential oscillation of rubber of tyre
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Figure 8.7: Tangential oscillation of the rubber of the tyre when struck by a tangential 
strike

If this resultant motion is projected onto the horizontal, the horizontal component 
represents the tangential oscillation of the rubber of the tyre. The horizontal 
component was now calculated for each sample (MathCad was used for this 
purpose). Figure 8.7 represents the tangential oscillation of the rubber tyre when 
struck by a tangential strike.

4. RESULTS
The first maximum amplitude of the impulse is A0 = 1.913 units. The frequency at 
which samples were taken was every 50 μs = (50)(10-6) seconds. 

Because 202 samples were taken every 50 μs, the fundamental period of oscillation 
was p = (202)(50)(10-6)

 = 0.0101s

The second maximum amplitude is A1 = 0.742 units. 

The exponential rate of decay δ and hence a value for the damping coefficient (λ) 
can now be calculated as follows:
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Calculation:
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Therefore the damping coefficient was found to be: λ = 1.88 x 102 s-1.

Thus, it was possible to experimentally verify the validity of the mathematical 
model of the system, as well as to subsequently calculate the value of important 
characters thereof.

5. SUMMARY
The following observations were made in determining the damping coefficient of 
the rubber of the tread surface of the tyre:

�� A vibration was induced by a small tangential stroke.
�� The vibration energy was dissipated by the material (rubber of the tyre).
�� This induced vibration was expressed as a damped sine curve.
�� The induced vibration has a frequency spectrum, according to its resonant 

frequencies, which is dependent on the:
-  elastic properties of the material,
-  geometry,
-  density, and
-  micro and macroscopic structure of the material.

�� Each frequency will damp according to the energy absorption of the material.
�� The specific damping coefficient is dependent on the dimensions of the 

specimen.

6. CONCLUSION
The above represents a description of the research procedure used to verify a 
mathematical model with certain physical characteristics of a system (a rubber 
tyre in the case under investigation) under specified conditions. The accuracy and 
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validity of the mathematical model was validated experimentally by a process 
of data acquisition and evaluation, using electronic measuring and recording 
apparatus.

This study shows that a mathematical model can be a powerful tool in 
understanding and assessing the operation of complex systems. Data obtained 
from physical models helps one to understand the model and to verify the 
validity of the mathematical model. This is a representative example of the use of 
mathematical modelling as a formal research procedure.
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CHAPTER 9

Numerical Modelling of the Performance of an 
Industrial Freezer

Tiyamike Ngonda

1. INTRODUCTION
Frost formation is a serious problem in refrigeration equipment such as commercial 
and industrial freezers. Flat and corrugated-finned tube cooling coils are commonly 
used in such equipment. If the coil surface temperature is below both the dew 
point and the freezing point of moist air in the vicinity, frost will form on the coils. 
Frost growth on the surfaces of cooling coils degrades their performance by 
blocking the air flow and insulating the surfaces. The state of the air in the vicinity 
of the coil surface influences both the rate and the nature of the frost that forms. 
Thus, temperature and humidity ratio are major determinants of frost growth. 
Many researchers have investigated the effects of these factors on various heat 
exchanger configurations.

Researchers experimentally investigated the effects of configuration on the 
performance of flat-finned tube heat exchangers under frosting conditions [1, 9], 
whilst tests of coils of varying fin pitch and number of rows under subsaturated 
conditions, with the relative humidity ranging from 40% to 90%, was described in 
[1]. In this investigation, the air flow was maintained at a constant rate. The results 
indicate that air flow rate affects frost formation and that the effect of fin pitch is 
not significant after a certain pitch. Most of the experimental research gives only 
qualitative indications of the critical factors in heat exchanger performance.

Recently, researchers have focused on the development of semi-empirical and 
numerical models to predict heat exchanger performance. The models can be 
divided into steady-state and transient models. Some researchers, such as Seker 
et al. [5] and Xia et al. [8], have focused on steady or quasi-steady-state models 
based on modifications to the standard equations for computing heat exchanger 
duty. Others have focused on transient modelling of heat exchanger performance. 
They divided transient models into black-box, one-zone, two-zone and distributed 
models, whilst some have focused on distributed models and lumped-property 
models of the performance of heat exchangers under frosting conditions.

In commercial and industrial freezers, coil processes and the inflow of warm 
outside air result in the development of supersaturated air, a mixture of saturated 
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air and suspended ice crystals or water droplets. Limited work has been done on 
frost growth under supersaturated conditions, except for the models of Mago and 
Sherif [2] and Ngonda and Sheer [4] on frost formation on flat plates. None of the 
previous researchers have modelled frost growth on a complete heat exchanger 
under supersaturated conditions.

2. MODELLING THE PERFORMANCE OF AN INDUSTRIAL 
REFRIGERATOR

The physical system of an industrial refrigerator is complex. It comprises sub-
systems that provide various functions: mechanical sub-systems that provide the 
refrigeration, and electrical and control sub-systems that regulate the functioning 
of components such as the compressors and valves. Analysis of the entire 
refrigeration system would be both complicated and/or even undesired. Hence, 
the analysis was limited to a manageable, representative size. This technique of 
system simplification is a standard procedure in modelling.

2.1 Definition of the domain of interest
In a refrigerator, frost first forms on the coldest surfaces which in most cases are 
the cooling coil surfaces. The cooling coil surfaces form part of the heat transfer 
path. The frost results in an increase in the resistance to heat flow and the added 
resistance reduces the refrigerator performance. Thus, the spatial domain for the 
model can be reduced to the cooling coil.

As frost builds up on the coil surface, the frost surface temperature increases 
with an increase in frost thickness, until the surface temperature reaches the 
freezing point of water. When the surface temperature exceeds the freezing 
point of water, the surface frost melts and seeps into the frost layer. As it seeps 
down, it freezes within the frost layer, causing densification of the frost layer. The 
melting and refreezing of ice is a complex physical phenomenon that still has not 
been fully modelled. Consequently, the time domain is limited by the frost surface 
temperature, and the model terminates when the frost surface temperature 
reaches the freezing point of water.

Like most physical phenomena, modelling the effects of frost growth in industrial 
refrigerators is a transient, three-dimensional problem. The spatial domain is 
limited to the cooling coil whereas the time domain is restricted by the frost 
surface temperature.

2.2 Development of governing equations
Having established that the cooling coil is the domain of interest, the thermal 
behaviour of the refrigerator can be modelled by applying the conservation laws 
to the coil to develop a numerical model. The model is made up of two sub-models, 
the frost formation model and the heat exchanger model. Although the heat and 
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mass transfer mechanisms are multidimensional and multifaceted, the complex 
mechanisms can be simplified using the following assumptions:

 � The refrigerant is a single-phase liquid.
 � A section of the flat-finned tube can be replaced by a pipe with radial fins of 

rectangular profile based on the procedure laid out in [3].
 � Although frost properties vary with frost depth, they can be replaced with layer 

averaged quantities.
 � The thermal resistance of the heat exchanger pipes is very low.

The cooling coil model

The cooling coil can be divided into several control volumes, each comprising 
refrigerant, tube and fin, and air outside the tube, as shown in Figure 9.1. The 
governing equations for each of the components of the control volume were 
then generated.

(a) (b)

Figure 9.1: Diagram of a heat exchanger and a single control volume

Energy equation for the refrigerant is given by:
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Energy equation for the pipe is given by:
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The fin efficiency, ηf, is defined by the one-term approximation of Sommers and 
Jacobi [6]. The approximation accounts for both frost conduction resistance and 
latent heat effects.

Energy balance for the air side gives equation (3):
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 (3)

Mass conservation on the air side gives equation (4):

 (4)

The heat transfer coefficient was calculated using a correlation for the Colburn 
factor, for a flat-finned tube heat exchanger given in [7]. Pressure drop through 
the coil was calculated using equation (14-48) in [3], whilst the friction factor was 
evaluated using the equation provided by Wang et al. [7] on p.2699. The entrance, 
Kc, and exit, Ke, pressure loss coefficients were calculated using correlations based 
on Figure 14.17 in [7].

The frost model

The frost model can be divided into two main segments:

 � The flow on the air side of the frost layer and the heat and mass transfer on the 
frost-air interface, and

 � The process within the frost layer.

On the air side, flow under supersaturated conditions is basically multiphase 
flow that can be modelled based on principles of particle-laden flow, as outlined 
in [4]. The air-side model is solved independently of the frost-side model and 
produces two outputs: the heat transfer coefficient at the frost interface, and the 
ice accretion rate for supersaturated conditions. The mass transfer coefficient 
is derived from the heat transfer coefficient, using the heat and mass transfer 
analogy, as outlined in equation (5). The mass that is transported to the frost 
interface is then given by equation (6).

 (5)

 (6)

The frost layer is modelled by coupling the mass conservation equation and the 
energy equation. As a result of layer averaging, the mass diffusion into the frost 
layer is given by equation (7). Since the water vapour that is transported to the 
frost interface either diffuses into the frost layer or deposits on the frost surface, 
the rate of increase of frost thickness is given by equation (8).

 (7)
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 (8)

Heat is transported through the frost layer by conduction, and through the water 
vapour as it diffuses and sublimes into ice within the frost layer, thereby liberating 
heat. As a result of this internal heat generation, the temperature profile within 
the frost layer is not uniform. Despite the non-linear temperature profile, the heat 
that is transported past the cold surface is given by equation (9).

 (9)

Grid layout and discretisation of the governing equations

The nodes are laid out on the inlet and exits for the control volume as shown in 
Figure 9.2. Equations (1) and (2) are expanded, using Taylor series expansion, to 
equations (10) and (11) respectively.

Figure 9.2: Location of nodes in the control volume
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 (10)

 (11)

Development of the algorithm

Solution of the numerical scheme was executed as follows:

 � Input initial values
 � Calculate property values
 � Solve equations 10 and 11
 � If Tw < 0°C, then solve equations 7, 8 and 9, else go to 6
 � Update equations 10 and 11
 � If Tw1 – Tw0 > 0.001, go to 4
 � Solve equations 3 and 4
 � Use the exit condition for the first control volume as the inlet conditions for the 

next control volume
 � Go to 2.

Development of a computer programme to implement the algorithm on a computer

The algorithm was implemented in Matlab. The algorithm generated a lot of data 
and, consequently, the main issue in the code development was data storage.

3. RESULTS FROM THE NUMERICAL MODELLING
Figures 9.3 and 9.4 show the variation of coil duty, with time for various super 
saturation ratios. They all indicate that coil duty decreases with time. As frost 
builds up on the coil surfaces, two problems arise. Frost blocks the air passages in 
the coil and, consequently, increases the pressure drop with time. The increase in 
pressure drop causes the air flow rate to decrease, which in turn results in reduced 
capacity for the coil. Frost on the coil surface also results in an increased heat flow 
resistance, thus reduced capacity.
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Figure 9.3: Coil duty [W] for supply air at 0°C and S = 32%
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Figure 9.4: Coil duty [W] for supply air at -4°C and S = 8%
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Inspection of Figures 9.3 and 9.4 indicates that coil duty reduces by about 15% in 
30 minutes, and then evens out slightly. Designers of refrigeration equipment 
usually oversize cooling coils by as much as 50%. A reduction of 15% is well within 
this range. As indicated in literature, the frost that initially forms on the coil 
surfaces is less dense, and can be defrosted in a few minutes. The frost which 
forms after numerous cycles of melting and refreezing of the frost layer is dense 
and difficult to defrost. The numerical results seem to indicate that a defrost cycle 
of 30 minutes or more would be appropriate, as the reduction in coil performance 
is within the design limits and cycling melting and refreezing has not set in.

More work is, however, required before design guidelines for defrost cycles 
can be laid out. There seems to be an indication from other literature that short 
cycles would enable a decrease in the overdesign of cooling coils to less than the 
current 50%.

The model presented here is based on distributed principles for the heat exchanger 
model and layer-averaged properties for the frost model, and proposes a short 
defrost cycle.

4. CONCLUSION
From the above, it is apparent that the operational characteristics of a physical 
device, such as a sub-system of an industrial refrigerator, could be modelled 
mathematically, rendering an improved understanding of the functioning of 
the system. 

Using such techniques, it is possible to identify (potential) deficiencies in the 
design of a particular system, or general design practices of systems of similar 
characteristics. Likewise, modelling can also be used for the optimisation of 
designs, as well as the prediction of the expected functioning of new designs.
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6. NOMENCLATURE

Cp Specific heat capacity (J/kgK)
D Diffusion coefficient (m/s)
h Heat transfer coefficient (W/m2K)
I Enthalpy (J/kg)
m Mass of pipe (kg/m)
q Heat flow rate (W)
r Radius (m)
S Supersaturation = (W - Wsat)/Wsat (%)
T Temperature (K)
U Overall heat transfer coefficient (W/m2K)
V Velocity (m/s)
W Humidity ratio (kgwater/kgair)
Greek:
ε Porosity
ηf Fin efficiency
ρ Density (kg/m3)
Subscripts:
a Air
eff Effective
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f Fin
fr Frost
i Inside
m Mass
o Outside
r Refrigerant
s Surface
sat Saturation
sub Sublimation
T Total
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CHAPTER 10

Coupled Hydrological and Agent-based Modelling for 
the Understanding of Human-Environment Dynamics

Y.E. Woyessa and W.A. Welderufael

1. INTRODUCTION
The planning and management of water resources at a catchment level is 
becoming a widely adopted approach [5]. This approach enables monitoring of the 
water balance of a hydrologically isolated catchment [5]. The delineated surface 
environment helps to reconcile the input and output of water in the system. In 
addition, the different biophysical and social interactions and processes that are 
taking place and that have a significant effect on water resources can be spatially 
identified [11].

In a given catchment, the natural resource in general and the water resource in 
particular can be affected by several factors, such as biophysical (precipitation, 
temperature, ground water flow, vegetation, soil type and topography) and socio-
economic factors (institutions, technological developments, markets, etc.). These, 
in turn, have a combined effect on land use and impact on the water resource. 
The change in land use takes place as a result of decisions by land users, which 
in themselves are a consequence of the interactions between the socio-economic 
and biophysical factors.

Different land types and associated contrasting soils contribute to differences in 
runoff, surface evaporation, and recharge that take place on a catchment scale. 
The direct response of a rainfall event which is runoff may route the natural canal 
system and discharge at the outlet of a catchment, or be harnessed by a reservoir 
for different uses.

Individual land owners operating in a catchment undertake complex processes of 
interaction between the natural environment and the socio-economic situation. 
The biophysical input largely relates to the climate and soil properties; and these 
are largely beyond human control. Thus, the final decision to change land use can 
only be reached after a complex interaction of socio-economic and environmental 
factors have been considered. For a given catchment, the detailed process of these 
interactions can be rationally conceptualised in a multidisciplinary way.
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The new paradigm in land use decision-making requires greater consideration of 
the complex human (agents) and environment interactions. In the broader sense, 
land use and cover change is a result of a human decision that emerges from the 
interactions of agents, biophysical inputs and the environment [6]. Hence, human 
decision-making plays a major role in land use change. Land use change can bring 
about a significant effect on a catchment water resource. For instance, it has been 
demonstrated, using an empirical model, that a decrease in runoff contribution of 
25.3% would occur if all suitable lands for Rain Water Harvesting (RWH) were put 
under cultivation in C52A (one of the quaternary catchments in the Modder River 
basin), which would most likely affect the downstream water supply [11].

2. AGENT-BASED MODELLING
Over the past few decades, numerous researchers have improved measurements 
of land use change using predictive models that can describe significantly 
more complex processes of land use and their impact on water resources [3, 
6]. Understanding the causes of land use change has moved from simplistic 
representations of a few driving forces to a much more profound understanding 
that involves situation-specific interactions among a large number of factors at 
different spatial and temporal scales. These models have modules for the socio-
economic as well as for the biophysical inputs [3]. Agent-based models developed 
for land use/cover change are equipped with two important key components: the 
cellular model that represents the landscape under study; and an agent-based 
model (ABM) that represents human decision-making and interactions [1].

According to Berger et al. [1], ABM consists of autonomous decision-making 
entities (agents), an environment through which agents interact, rules that define 
the relationship between agents and their environment, and rules that determine 
a sequence of actions in the model. Furthermore, three classes of models that deal 
with Common Pool Resources (CPR) are identified as [3]: 

 � physical models centred on the dynamics of resources and that consider 
demand as a given parameter; 

 � agronomic, economic or agro-economic models centred on demand and that 
attempt to adapt water demand to a fixed amount of resource; and 

 � mixed models that represent interaction between the functioning of physical 
and socio-economic systems through a single mathematical language.

This is done through the coupling of several models or through multi-agent 
systems (MAS). ABMs integrate the first two models and are represented by the 
third type of model.

Several researchers have constructed land use scenarios and estimated discharge 
from a catchment by using hydrological or agro-economic models [7, 9]. In an ABM 
perspective, different scenarios of land use and land use change decisions are 
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made by the agents (farm managers) in the virtual laboratory of the ABM model 
that mimics the actual situation through the rules and communication system 
conceptualised by multidisciplinary scientists, based on the real situation of the 
environment.

Figure 10.1: Conceptual model of land use decision and its impact on water resources: 
(a) upstream, and (b) downstream of Rustfontein dam [10]
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Figure 10.1 (continued): Conceptual model of land use decision and its impact on water 
resources: (a) upstream, and (b) downstream of Rustfontein 
dam [10]

3. HYDROLOGICAL MODELLING
The impact of land use changes on ecosystems and biodiversity have received 
considerable attention from ecologists, and evidently, land use changes in a 
catchment can impact on water supply by altering hydrological processes such as 
infiltration, groundwater recharge, base flow and runoff [8]. 
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One of the water supply sources in a river basin is stream flow, which plays 
an important role in establishing the critical interactions that occur between 
biophysical, ecological, and socio-economic processes. Socio-economic processes 
including population dynamics, land use transformation, migration, transportation, 
and agricultural practices closely interact with and greatly affect ecological 
processes, such as vegetative growth, ecological succession, and habitat formation 
and maintenance [2].

Hydrological dynamics can be used as a medium of understanding the conditions 
for interactions to take place and the consequences that arise from such 
interactions. One of the most important socio-economic processes for establishing 
far-reaching and long-term environmental effects is land use transformation, 
especially the human-induced variety termed ‘urbanisation’. The far-reaching 
effects of urbanisation can best be described by its enormous impacts on basin 
hydrology and water quality. Understanding these complex socio-hydrological 
dynamics is imperative for planning a more sustainable future. For instance, 
covering large watershed areas with impervious surfaces frequently results in 
increased surface runoff and reduced local surface erosion rates. Moreover, 
watershed development changes land use patterns and reduces base flow by 
changing groundwater flow pathways to surface water bodies [8].

Numerous modelling approaches have been developed to simulate the impact 
and consequences of land use changes on the environment in general, and 
water resources in particular. One of these models is called the Soil and Water 
Assessment Tool (SWAT), and is used in the assessment of impact of land use and 
land-cover changes on water resources.

SWAT is a basin scale model that operates on a continuous daily time step and 
is designed to predict the impact of management on water, sediment and 
agricultural chemical yields in ungauged catchments. The model is physically based 
and capable of continuous simulation over long time periods. Major components 
of the SWAT model include weather, hydrology, soil properties, plant growth, 
and land management. In the SWAT model, a catchment is divided into multiple 
sub-catchments, which are then further subdivided into hydrologic response 
units (HRUs) that consist of homogeneous land use, management, and soil 
characteristics. The HRUs represent percentages of the sub-catchment area and 
are not identified spatially within a SWAT simulation. Alternatively, a catchment 
can be subdivided into sub-catchments that are characterised by dominant land 
use, soil type, and management [4].

Example of SWAT application
The SWAT model was applied to the Modder River basin of Central South Africa 
to evaluate the impact of land use change on water resources, with particular 
emphasis on the flow of water into Rustfontein Dam. According to the drainage 
classification of South Africa, the Modder River basin falls within the tertiary 
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catchment called C52. This is further divided into quaternary catchments, such as 
C52A, C52B, etc. Rustfontein Dam is located in the upper part of the Modder River 
basin (see Figure 10.2) with a contributing area of 92 761 ha, which is the area of 
C52A. 

As indicated above, the inputs to the SWAT model are land use types (such as 
agriculture, both irrigated and dry land), forest, rangeland (improved and non-
improved, pasture, grass land, shrubs, etc); topography in the form of a Digital 
Elevation Model (DEM); soil characteristics (such as hydrological soil groups, 
maximum root zone depth, soil bulk density, soil saturated hydraulic conductivity, 
and soil available water capacity); and weather data (such as daily rainfall and 
temperature). Two sets of land use data for the years 1994 and 2000 were obtained 
from the Institute for Soil, Climate and Water of the Agricultural Research Council. 
The preparation of input data for the model was one of the most demanding, but 
important, aspects of the overall task.

Keeping all the parameters, such as soil, topography, and climate, constant, the 
impact of land use change on water resources was evaluated using the SWAT 
model. The comparison of land use data for both years and the percentage of 
change in land use type and/or cover are given in Table 10.1.

Table 10.1: Land use types during the year 1994 and 2000, and percentage of change during 
this time 1

Land Use 1994 (Ha) 2000 (Ha) Difference (Ha) %
Pasture (PAST) 70 854 78 044 7 190 10
Range-Brush (RNGB) 9 446 4 175 -5 271 -56
Agricultural land row crops 10 261 7 214 -3 047 -30
Evergreen forest (FRSE) 31 223 192 619
Wet land (WETN) 200 1 379 1 179 589
Water (WATR) 1 752 1 048 -704 -40

Urban (URBN) 138 599 461 334
Sum 92 682 92 682

1 Note: The land use types are prepared and classified according to the input requirement 
of the SWAT model.
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Figure 10.2: Location of the Modder River basin and the study area (C52A)

The model was used to simulate several parameters, among which the surface flow 
(SURQ), the base flow (GWQ), and the water yield were selected for evaluation 
purposes. Table 10.2 and Figure 10.3 show the variation of these parameters for the 
two land use data sets. 
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Table 10.2: Simulated parameters based on land use data sets of 1994 and 2000

(a) Using land use data of 1994

Year Precipitation 
(mm)

Direct surface 
flow (mm)

Groundwater 
flow (mm)

Water yield 
(mm)

1999 433.5 84.89 11.22 95.44
2000 677.0 141.46 122.50 263.06
2001 1021.7 265.80 167.96 432.31
2002 689.0 144.42 141.19 284.80
2003 433.4 99.04 66.94 165.58
2004 541.0 88.31 59.00 146.51
2005 677.7 119.73 105.29 223.70
2006 1218.9 405.30 223.55 627.15
2007 522.3 76.58 48.66 124.51

(b) Using land use data of 2000

Year Precipitation 
(mm)

Direct surface 
flow (mm)

Groundwater 
flow (mm)

Water yield 
(mm)

1999 433.5 101.70 11.52 112.43
2000 677.0 169.94 132.75 301.59
2001 1021.7 316.81 182.78 497.84
2002 689.0 173.50 153.39 325.93
2003 433.4 118.28 72.48 190.28
2004 541.0 106.72 63.82 169.61
2005 677.7 145.32 113.15 256.87
2006 1218.9 478.67 244.55 721.18
2007 522.3 93.56 51.57 144.27

The results showed that there was an average increase in water yield by about 15% 
over a period of nine years (1999-2007), when land use data of 1994 was compared 
to the land use data of 2000. The increase in water yield was accompanied by a 
slight increase in settlement areas, an increasing trend in grass land areas (77% to 
84%), and a decrease in agricultural areas (11% to 8%).

The difference in water yield given in millimetres per year seems very small. But 
due to the large area of the catchment (92 761 hectare), a millimetre difference 
in water yield brings about a volume difference of 927 610 m3 of water per year, 
which is a significant amount. The graphical representation of the water yield 
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during these two periods (1994 and 2000) is given in Figure 10.3. The parameter 
values in general, and water yield in particular, which are given above and in the 
figure below, are simple simulation values obtained for a model setup and for 
relative comparative purposes.

The next step in the ongoing modelling exercise is to run the sensitivity analysis in 
order to identify those parameters that are highly sensitive in affecting the output 
values. Once the sensitivity analysis is done, then the model needs to be calibrated 
using observed values, during which sensitive parameter values are obtained for 
hydrological simulation.
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Figure 10.3: Comparison of the simulated annual water yield for the year 1999- 2007 
based on the two land use data sets

4. LINKING ABM WITH A HYDROLOGICAL MODEL
In the study of land use changes and their impact on water resources, there are 
several agents who have a direct and indirect impact on land use decision-making 
processes. As the number of agents increases, the level of model complexity also 
increases. However, in order to get the first glimpse of the dynamics of human-
environment interaction, the number and type of agents will be limited to farmers, 
land owners or farm managers, who are directly involved in the use of land in a 
catchment.

In a given time, a farmer’s land use decision is subject to environmental conditions, 
which in this study are grouped under three categories, namely biophysical, social 
and economic environments. It is hypothesised that, based on the perception 
about the environment, individual farmers will take action according to their goals. 
This action will also be supplemented with interactions and communications with 
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other farmers, in order to arrive at a decision on land use. The outcome of this land 
use decision will then be linked to a hydrological model to assess the impact of a 
given land use scenario on water resources. It is planned that the land use scenario 
results from the ABM will be dynamically incorporated into the hydrological model. 
The schematic representation of the ABM and its linkage with the hydrological 
model is shown in Figure 10.4.
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5. CONCLUSION
Individual land owners or managers operating in a catchment interact with the 
natural environment and the socio-economic situation. The biophysical inputs 
relating to the climate, soil and topography are largely beyond human control. 
The final decision to change land use by a land owner can only be reached 
after a complex interaction of socio-economic and environmental factors have 
been considered. The detailed process of these interactions can be rationally 
conceptualised by a multidisciplinary approach. A conceptual model of the 
consequence of land use decisions on water resources, such as the one presented 
in this paper, is a step towards an understanding of the dynamics of human-
environment interaction.

It is important to note that land use and land cover changes in a catchment 
impact on water supply by altering hydrological processes such as infiltration, 
groundwater recharge, base flow, and runoff, which have direct and indirect effects 
on stream flow in a river basin. Stream flow in a river basin plays an important role 
in establishing the critical interactions that occur between biophysical, ecological, 
and socio-economic processes. In such cases, hydrological dynamics can be used 
as a medium to understand the conditions for interactions to take place and the 
consequences that arise from such interactions. 

Numerous modelling approaches have been developed to simulate such 
interactions and their impact on water resources. One of the approaches could be 
the use of a coupled agent-based model with a suitable hydrological model, which 
can be used to simulate “real world” scenarios of land use change and its impact on 
water resources on a real time basis. The latter approach is still in a developmental 
stage and if successful, it could contribute towards a better understanding of the 
human-environment dynamics and their impact on water resources.
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CHAPTER 11

Neural Network Model Prediction of Short-term 
Electrical Load Demand

Lucas Nigrini

1. INTRODUCTION
Electric load forecasting is one of the principal functions in power systems 
operations. The inspiration for accurate forecasting lies in the nature of electricity 
as a service and trading article, since it cannot be stored. For any electric utility, an 
estimate of the future demand is necessary to manage the electricity production 
in an economically reasonable way, so as to meet peak demands without 
unnecessary load shedding or power cuts [4].

A variety of different statistical load forecasting models have been developed. 
Practically, there is a subtle difference in conditions and needs of every situation 
where there is a need for electric load demand forecasting. This has a significant 
influence on the choice of the appropriate forecasting model.

The majority of the recently reported forecasting approaches are based on neural 
network techniques, and many researchers have presented good results. The 
attraction of these methods lies in the assumption that neural networks are able 
to learn properties of the load which, to discover this otherwise, would require 
careful analysis by the researcher.

However, research on the neural applications is not complete, and the lack of 
relative results on different model variations is a problem. To make use of the 
techniques in a real application (e.g. Bloemfontein City), a comparative analysis of 
the properties of different neural models seemed necessary.

The system’s electric load to be forecast is a random, non-stationary process 
composed of thousands of individual components. Usually, the only possibility of 
predicting the future load is to take a macroscopic view on the problem, and try 
to model the future load as a reflection of earlier behaviour of the system (e.g. 
“time series prediction”), using an appropriate statistical tool. This still leaves the 
field open to a number of diverse solutions. Because of the nature of the load, 
the only objective method to evaluate the approaches is through experimental 
confirmation. 
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Extra Short-Term Load Forecasting (ESTLF) can be used to address this problem. 
One reason is that recent scientific innovations have brought in new approaches 
to solve the problem. Recent developments in computer software and technology 
have broadened the possibilities for solutions, working in a real-time environment. 
Genetic algorithms, neural networks, expert systems, and fuzzy logic are some of 
the software tools used to find possible solutions in predicting the electric load 
“up front” [2].

Objective of study
The objective of the study to be described was to investigate the accuracy of a 
robust neural tool that can be used to estimate the future electric loads, based on 
the historical electric load data patterns available from previous statistics.

This study was conducted using historical power load data from the Mangaung area.

2. NEURAL NETWORKS IN LOAD FORECASTING

2.1 Artificial neural network structure
An artificial neural network consists of a number of very simple processors, 
also called neurons, which are analogous to the biological neurons in the brain. 
The neurons are connected by weighted links passing signals from one neuron 
to another.

The output signal is transmitted through the neuron’s outgoing connection. The 
outgoing connection splits into a number of branches that transmit the same 
signal. The outgoing branches terminate at the incoming connections of other 
neurons in the network. The neuron inputs may consist of a batch (vector) of 
binary, continuous, or real numbers [5].

2.2 The perceptron
Now a specific synthetic neuron, the perceptron, is considered, based on the 
Mcculloch and Pitts model. The perceptron is the simplest form of a neural 
network and consists of a single neuron with adjustable synaptic weights and an 
activation function called a hard limiter or threshold function.

The neuron computes the weighted sum of the input signals and compares 
the result with a threshold value, θ. If the net input is less than the threshold or 
bias value, the neuron output is -1. But if the net input is greater than or equal to 
the threshold, the neuron becomes activated and its output value becomes +1. 
This situation is referred to as the neuron having “fired”. This type of activation 
function is called a sign or threshold function.
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The neuron in Figure 11.1 uses the following output or activation function:

Figure 11.1: Single layer, two input linear threshold perceptron

2.3 Basic activation functions
Many different types of linear or non-linear activation functions (or limiters) can be 
designed [6]. Choosing the correct function depends on the particular problem to 
be solved. A basic reference model for the presentation of activation functions is 
shown in Figure 11.2 [5].

Sigmoid functions, shown in Figure 11.2, are the most commonly used functions 
in the construction of artificial neural networks [7]. They are also known as 
“squashing functions”, thought of as slowly softening the Sign function [8]. This 
type of function is non-linear and differentiable everywhere, causing greater 
weight change activity to take place for neurons where the output is less certain 
(i.e. close to 0.5 where the slope is the steepest) than those in which it is more 
certain (i.e. close to 0 or 1) [9].

This type of non-linearity is very important, because otherwise the input-output 
relationship of the network will be reduced to that of a single layer perceptron 
network [7]. Interestingly, artificial neurons containing sigmoidal functions 
resemble a type of biological neuron found in the brain [10].

3. NETWORK ARCHITECTURES
A single perceptron is not very useful because of its limited mapping ability. No 
matter what activation function is used, the perceptron is only able to represent 
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an orientated ridge-like function. Multiple perceptrons can be connected as 
building blocks of a larger, much more practical, structure called an artificial neural 
network. Neural networks are complex, non-linear mapping tools. The exciting 
feature is that a neural net can deal with complex non-linearities in a fairly general 
way [10, p. 2].

Figure 11.2: Four basic types of activation functions

Many kinds of neural networks exist today, and variations of older structures are 
invented regularly [11].

Neural network structures range widely in type. The selection or design of a 
particular network depends on the characteristics of the intended application. One 
of the well-known connection structures is discussed below [7].

4. MULTILAYER FEED-FORWARD NETWORKS
This class of layered network differentiates itself by the presence of one or more 
hidden layers shown in the three-layer net, as shown in Figure 11.3. This network 
structure is referred to as a 3-3-2 network because it has 3 source nodes, 3 hidden 
neurons and 2 output neurons. The network shown in Figure 11.3 is said to be fully 
connected, in the sense that every neuron in each layer is connected to every other 
neuron in the next forward layer. If some of the communication links between the 
neurons are not part of the designed network, then it is referred to as partially 
connected.

The “hidden layers” communicate with the input and output layer in some 
purposeful manner. By adding a hidden layer or two, the neural net can 
handle some highly non-linear problems that would be complex to describe 
mathematically.



143

11. Neural Network Model Prediction of Short-term Electrical Load Demand

The best number of hidden layers depends on:

�� the number of input and output units;
�� the number of training cases;
�� the amount of noise in the targets;
�� the complexity of the function or classification to be learned;
�� the architecture;
�� the type of hidden layers activation function;
�� the training algorithm; and
�� regularisation.

Figure 11.3: Fully connected feed-forward network with one hidden layer

If too few hidden layers are used, a higher training error and higher generalisation 
error will result due to under-fitting and high statistical bias. If too many hidden 
layers are utilised, a lower training error may be experienced, but with a higher 
generalisation error due to over-fitting and high variance [11].

However, from practical experience, it is known that little is gained by adding 
more than one hidden layer to a network, or if the net is too large, it will memorise 
rather than learn. 

5. TRAINING A NEURAL NETWORK
An important task for a neural network is to learn a model of the application in 
which it will be operating, and to maintain the model adequately and reliably 
with the action of the real application, so as to achieve the particular goals of the 
application of interest [7].

So we see that training is as essential for a neural network as programming is for 
a computer to function properly. The correct choice of a learning algorithm is an 
important issue in network development. “Learning” means that the individual 
neuron’s input/output behaviour changes as a result of changes in its local 
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environment. The activation function of a neuron is fixed when the network 
is set up and the set of signals to which it is supposed to react is fixed; the only 
adjustment that can be made is to its weights and bias corresponding to the input 
vectors [13].

For different network structures, different training algorithms have been 
developed. Neural nets are classified according to their corresponding training 
algorithms: fixed weight networks, supervised networks and unsupervised 
networks. No learning is required for a fixed weight network, so common learning 
modes are supervised and unsupervised learning. 

Supervised learning
The mainstream of artificial neural network development has been supervised 
learning networks. To commence learning, data needs to be gathered and consists 
of many pairs of input/output training sets. The sets of data are presented to the 
network, and through comparison at the output stage, adjustments of the weights 
and biases of the whole parameter space are made. In this way, learning or proper 
classification is facilitated with the help of a teacher, as shown in Figure 11.4.

Typically, simple perceptrons, feed-forward networks, need a teacher to tell the 
network what the desired output should be [14]. 

Preferred
data Teacher

Training
data

Learning
system

Actual
response

Desired
response

Error signal

-
+

Figure 11.4: Block diagram of learning with a teacher

6. GENERALISATION
Once a number of training sets have been presented to the neural network, it is 
usually tested by feeding the neural network inputs that are not in the training 
set. In this way, it can be seen if the same output values in the training sets are 
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approached when new, unknown input values are given. In this way, it can be seen 
how well the network will classify new, but not unrelated, input vectors or data 
sets.

A neural network can generalise when it correctly classifies input values that 
are not in its training data sets. A neural network can generalise well when the 
accuracy of classification is high, and vice versa. 

An example of what generalisation might be is to compare it to curve fitting 
in statistics. When one attempts to fit a straight line to a fairly large amount of 
random data, and the data is well captured, there is confidence that an underlying 
relationship is captured in that data. Values of new data points not worked with in 
the fitting process can now be estimated using the fitted curve. If the straight line 
does not fit the data well, then another approach has to be taken (for example by 
using other new data sets or perhaps another statistical method).

Neural networks work in a comparable way. A complex, non-linear function is 
programmed by the neural network from its inputs. If the training data is fitted 
well by the trained neural network, and it classifies its data rather accurately, 
then there is probably some well-established mathematical relationship between 
the input/output vectors. Estimating outputs from new inputs would probably be 
more accurate now and it will be said that the neural net is generalising quite well.

For good generalisation:

�� the number of training input vectors must be larger than the number of variable 
weights [15]; and

�� the size of the weights rather than the number of weights determines the 
proper generalisation of the network [7, p. 111].

7. METHODOLOGY
The prediction of local electrical load at a source voltage of 132 kV is significantly 
more difficult than the prediction of bulk load at higher voltages, which exhibits a 
stronger statistical pattern due to an averaging effect. Most published papers on 
load forecasting usually deal with bulk load and can therefore give a fairly accurate 
prediction report.

For this study, electric load data was obtained from the 132kV voltage source 
at Harvard substation. This was used to develop an artificial neural model to 
accurately predict power demand with lead times ranging from half an hour to a 
week. This was required for planning of local load management in order to meet 
the expected demand.

A data range of local half-hourly power demand from which to train, test, and 
validate the different neural models was obtained to identify the historical period 
to be used [1]. Due to the rapid economic growth of the Mangaung Municipal 
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area, older power demand data is of decreasing relevance as it does not accurately 
reflect the changes in the composition of the current load demand. 

7.1 Gathering, processing and analysis of historical data
Historical load demand data for the years 2004 to 2007 from Parkwest Feeder 1 & 2 
at Harvard 132 kV substation was obtained from Eskom, Bloemfontein.
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7.2 Data pre-processing
Data pre-processing was done in three phases:

 � Selected data was transformed to files in the EXCEL format to make importing 
and exporting the data to Matlab more efficient.

 � Outliers and missing data were identified and discarded or rectified using 
statistical methods.

 � Data entering the Matlab environment was normalised to the range [-1; +1] 
for the Artificial Neural Network (ANN) to facilitate training and prevent 
“squashing” by the activation function [2].

7.3 Designing the ANN architecture
The ANN architecture was designed using the following criteria:

�� Number of INPUT nodes 
�� Number of HIDDEN nodes
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�� Number of HIDDEN layers
�� Number of OUTPUT nodes
�� Interconnection of nodes
�� Activation functions used in each layer

7.4 Training the neural network
A neural network model was constructed and trained for the four weeks of each 
month of the year for two previous years, as shown in Figure 11.5.
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Figure 11.5: Segmentation of the forecasting model
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Training of the neural network would involve the following actions:

�� Different training algorithms would be tested for optimal speed and accuracy.
�� The training parameters would be evaluated.
�� Regularisation or “early stopping” was used to generalise the training model. 

7.5 Application of the neural network model

7.5.1 Time series prediction with artificial neural networks
Time series methods are based on the notion that the data have an internal 
composition, such as autocorrelation or seasonal variation. A time series can be 
described as a chronological set of data measured over time, such as hourly, daily 
or weekly available data. The structure of this data set is then explored using a 
time series prediction method.

Artificial neural networks have been extensively used as time series predictors: 
these are usually feed-forward networks which make use of a sliding window over 
the input data sequence. The number of simultaneous data points taken, generally 
dictates the maximum resolution of the mathematical model. It is not always the 
case that the model with the highest resolution has the best predictive power.

This time series prediction is done using the half-hourly load data (discrete data 
points) as the only input parameters.

As an example, Figure 11.6 shows a back propagation neural network using four 
equally time spaced discrete data points to predict the next output data value on 
the graph. 

Figure 11.6: Time series prediction using the “sliding window” approach
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A 4 to 36 step ahead time series predictor ANN model was developed, tested, and 
validated, using the Mangaung-Bloemfontein real load data for certain months of 
the years 2004 to 2007 [12]. The accuracy of the predicted results produced by the 
neural network’s outputs and targets was to be compared with actual, measured 
values, using statistical methods of regression analysis.

This would enable the use of future load data – to be obtained from Eskom – for 
the verification of the correctness of the modelled predictor.

8. RESULTS
A concatenating forward neural network was trained for week 1 to week 4 in June 
2006, using the Levenberg-Marquart training algorithm. This network was then 
used to predict the half-hour ahead load in week 1 to week 4 in June 2008. Figure 
11.7 shows the actual and predicted results of week 3 in June 2008.

The time horizon used was half-hour intervals. Twelve data points were used in the 
input representation and the logarithmic sigmoid function was used in the hidden 
layer. 
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Figure 11.7: Actual and predicted load values using the neural forecaster

9. CONCLUSION
An extra short-term load forecasting model was developed, using a suitable 
artificial neural network with an appropriate back propagation training algorithm. 
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This model produced an extra short-term forecast of the load in 168 hours of any 
given week of the year, provided that it was trained and tested correctly. The 
technique was tested and validated on data provided by the Eskom power utility 
for the municipality of Mangaung, during 1994 to 1998. The predicted results, 
obtained through the application, showed that the ANN approach produced an 
efficient estimator.

Artificial neural networks are possible solutions and important approaches to 
short-term load forecasting. The functioning of sliding window feed-forward neural 
network predictors might be improved using theoretically observed heuristics.
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CHAPTER 12

Examples of Modelling Used in Modern Research

Ulrich D Holzbaur and Gerrit Jordaan

Modelling is an essential tool in scientific work, and is important for all disciplines 
in both the natural and human sciences. The following is an overview of the use of 
mathematical modelling in a variety of fields of study.

1. MATHEMATICS AND STATISTICS
Mathematics is concerned with the formal aspects of mathematical models, on 
formalising the models, and on deriving methods for problem solving. Despite 
the saying that, “Engineers think that their equations are an approximation of 
reality, physicists think that reality is an approximation of the equations, and 
mathematicians don’t care”, mathematicians are also considering the applications 
of their theory – mainly in terms of generic models.

The success of mathematical models lies in their applicability to all kinds of real 
world phenomena: The question by Albert Einstein, “Wie ist es möglich, daß die 
Mathematik, letztlich doch ein Produkt menschlichen Denkens unabhängig von 
der Erfahrung, den wirklichen Gegebenheiten so wunderbar entspricht?” (freely 
translated as: “How is it possible that mathematics, being a product of human 
thought independent from any experience, so perfectly describes the facts of 
the real world?”), can in part be explained by the fact that a lot of mathematical 
structures (e.g. geometry, algebra, analysis, topology) have been developed 
starting from real world problems.

Stochastics is – like mathematics – not only a science in itself, but also an important 
and mighty tool for research in various areas of science. Stochastic models can be 
mathematical models with a very sophisticated underlying theory or analogue, 
or iconic models with some intuitive (but sometimes misleading) understanding 
of probability, such as the model of Brownian motion. For potential pitfalls and 
failures in interpreting statistical results and probabilities, readers are referred to 
the Monty Hall Problem or books about “how to lie with statistics”. These aspects 
are very important for research, and at all times care should be taken to prevent 
biased interpretation of test results.
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2. NATURAL SCIENCE, ECOLOGY AND ENGINEERING
Best known are the mathematical models of physics. From elementary mechanics 
to quantum theory and relativity, physics and mathematics have influenced and 
stimulated each other. Dimensional analysis is a classic example of rather simple 
models. Any book on physics is concerned with models.

Models in ecology face rather similar challenges to those in economy and in 
geology. Some examples are given in [10].

In engineering, models serve as a description of the environment and the 
intended future use of the system in requirements analysis, and as a description 
of a possible future system. Product development can be seen as a series of model 
transformations from a requirement analysis through systems specification, 
design, drafts, and production models [4]. As computer programmes can 
themselves be seen as models in different ways (e.g. a model that can be executed 
by a computer, a model of what goes on in the computer, a model of some real 
world effects that have to be calculated, a model of the information a user is 
dealing with), the modelling process and the aspects of model transformation 
are even more important in computer science. An exemplary analysis of the 
importance of modelling and semantics in computer science is given in [3]. In the 
field of Artificial Intelligence, knowledge-based systems are explicitly based on 
models and their semantics. 

3. ECONOMICS AND MANAGEMENT, AND SOCIAL SCIENCES
Models are a basis of economic theories and of operations research. Dynamic 
optimal decision models, or optimal control models, can be applied in any context 
that involves decisions, dynamics, and optimality criteria (e.g. the principle of 
economy). This applies to macro and micro-economics as well as to decision making 
in administration and military decisions on strategic, tactical, and operational 
level [7].

In economics and social science, we deal with very complex models that involve 
interactions between (groups of) human beings. Modelling processes, such as 
those for controlling behaviour, have to consider rebound effects from measures 
taken. As in quantum mechanics, the observation itself is changing the system, but 
unlike in physics, experiments in social science can hardly ever be repeated in a 
similar setting.

4. HISTORY AND GEOLOGY
With respect to modelling, history and geology have a lot in common. A 
challenging task for modelling is to display the four-dimensional movement of 
objects in a wide range of scales. In history, we consider the long-term migration 
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of nations or short-term interactions between politicians or armies. In geology, we 
consider the movement of continents and tectonic plates, as well as the diffusion 
processes generating minerals or meteorite impacts. In addition, the objects 
(nations, continents) themselves vary in time and have a fractal or fuzzy structure. 
Here, as in physics, we have an easily modelled descriptive (kinematic) view or an 
explanative (dynamic) view that needs to consider a lot of interaction, forces and 
stochastics. As in economics, there is no experiment that can determine several 
alternative outcomes and strictly validate general “laws”.

The difference in the models used in these two disciplines can be attributed to the 
difference in people and approaches between the humanities and natural sciences. 

5. MODELLING OF MEDICAL CONDITIONS
Mathematical modelling also finds application in the study of medical situations.

MJ Blaser, a professor of Microbiology at the New York University School of 
Medicine, said: “We did not make the laws of nature. Even though we may not like 
them, we need to understand them to better control infectious diseases.” This 
sentiment resulted in the development of a mathematical model – using game 
theory as developed by Nobel prize-winning mathematician John Nash – to study 
the interaction of microbes with humans, by Blaser and Denise Kirchner [10]. 

In summary, the results of the comprehensive modelling of the rules that govern 
the transmission of microbes indicate the probable evolution of particularly 
virulent microbes in future. This will be as a consequence of the increasing 
prevalence of HIV infection and an ageing world population, as well the growth 
in the world population. These results are the outcome of the scientific modelling 
of the laws of nature – as referred to by Blaser – as applied to a particular field 
of expertise, and it is now incumbent on the relevant authorities to monitor and 
manage the situation as it develops in future.

Collender described the use of mathematical modelling in the preparation for a 
possible influenza pandemic [2]. In particular, the cost of influenza for a modern 
economy has been studied, taking into consideration that 3000-4000 deaths occur 
every year in the UK due to flu, whilst it accounts for approximately 10% of sick 
leave in the USA with an estimated annual cost to the US economy of $10 billion. 
Therefore, it is clear that the incidence of influenza is a very costly and serious 
matter for any country, necessitating careful study and even, if possible, modelling 
of the phenomenon – especially of more serious strains such as bird flu.

A mathematical model has been developed correlating the UK’s supply of antiviral 
drugs available – enough to treat 25% of the population – and the optimal way in 
which they can be utilised should such a pandemic actually occur. Several possible 
pandemic scenarios, with the appropriate drugs used at different rates, were 
modelled. It was found that the most effective strategy in mitigating the pandemic 
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would be the quickest usage of the available stockpile – although it could lead to a 
depletion of the available resources.

Modelling always addresses the behaviour of a system as a consequence of the 
status of certain variables which have an effect on the system – the availability of 
a particular type of antiviral drug in the case above. However, such a study would 
normally include matters such as the availability of suitable national surveillance 
systems, levels of funding, quality of the health workforce, and the availability and 
implementation of appropriate health policies [6].

A further example of the use of mathematical modelling of medical conditions is 
that of the human cardiovascular system in the presence of stenosis [8]. Sud et 
al. modelled the entire system, represented by a large number of interconnected 
segments, based on the finite element method. Model parameters were based 
on published data on the physiological and rheological properties of blood. 
Computational results showed the way in which blood flow is affected through 
various parts of the cardiovascular system by stenosis in different blood vessels. 
In this manner, an improved understanding of such a critical phenomenon was 
arrived at.

6. MODELLING IN EDUCATION FOR SCIENCE AND RESEARCH
Models and modelling can be used as a means of education on any level (see, e.g. 
Blum et al. [1]). Moreover, modelling itself is a competence that must be studied 
over the course of an academic career. The modelling skills acquired during 
the course of (academic) education can be structured along the general skills 
development of researchers [5]. Such skills include, but are not limited to:

�� the use of notations and connecting such to real world phenomena;
�� the analysis and use of notions for various concepts; 
�� the interpretation and use of available models;
�� reflection on the relation between model and reality;
�� determination of the parameters of a given model;
�� integration of the notations from several similar models;
�� the creation of new models as instances of a given generic model;
�� the creation of new models from a given model class or by integrating existing 

models;
�� reflecting on the modelling process and on the impact of model semiotics;
�� deriving own models and comparing model classes; and
�� derive own model types, classes or modelling methods.
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Modelling as Research Methodology was written for the scientist and student 
researching the (expected) functioning of systems under specified conditions. 
As such, it represents an introduction to the use of modelling in natural, human 
and economical sciences. The book is divided into two sections.

The first section illustrates the universal nature of modelling as aid to the 
researcher. More specifically, this section focuses on the following:

The principles of mathematical and scale modelling.• 

A model for the design and development of physical devices comprising • 
of elements of different engineering disciplines.

The need for data acquisition facilities - especially in those cases where • 
physical modelling is utilised.

In the second section of the book, several typical examples of modelling are 
described. These include a variety of studies such as:

Modelling of the performance of an industrial freezer.• 

Human-environmental dynamics with respect to a hydrological model.• 

The prediction of short-term electrical load demand.• 
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