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Preface 

The content of this book was developed over more than 15 years of teaching the course 

“Introduction to Systems Biology”, first at the University of Stuttgart and then mainly at 

the University of Luxembourg. This course aims to introduce key mathematical concepts 

of systems biology to students with mainly biology backgrounds. Easily accessible toy 

examples are used to illustrate these concepts in a straightforward way. Some of these 

examples, as well as some of the ideas in the book, come from colleagues, whom we 

would like to thank very much for sharing their work. 

Over the years, the course style changed from traditional classroom 

teaching―with lectures on the concepts and demonstrations of exercise solutions―to 

more self-paced and interactive learning using the flipped-classroom method (see the 

Introduction of this book). This usually consisted of a short kick-off lecture emphasizing 

the key concepts briefly and answering some general questions of the class. The 

remainder of the day was then organized into flexible group work in class with the 

support of tutors, and independent study time (usually in the afternoons). This allowed 

the students to progress at their own pace and to support each other. Final exam results 

improved by around 2 points on a scale of 20 as a result of this new method. 

The course was complemented with talks about current research questions and 

examples of the lab or the field in general. These talks were either given by me (Thomas 

Sauter) or by the assisting postdoctoral and PhD students. Within the curriculum of the 

Master’s in Integrated Systems Biology at the University of Luxembourg, this course was 

followed by 2 practical computational courses, where the students applied the introduced 

mathematical concepts to self-designed and self-executed projects. These project-based 

learning courses focused on metabolic network modelling using constraint-based 

modelling (see Chapter 2 of this book) and on pharmacokinetic (PK) modelling using 

ordinary differential equations (see Chapter 3 of this book). The structure of these 

courses, along with some illustrative example projects, is detailed in the article “Project-

Based Learning Course on Metabolic Network Modelling in Computational Systems 

Biology” (Sauter et al., 2022)1. The combination of studying the theory at one’s own pace 

and applying it to self-designed projects has proven to be an effective way of learning. 

1 PLoS Comput Biol 2022 Jan 27; 18(1):e1009711, https://doi.org/10.1371/journal.pcbi.1009711. 
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Suggestions and corrections are very welcome (by email to: thomas.sauter@uni.lu) 

and will be considered for the next edition of this book. 

 

On a personal note, I would like to take this opportunity to express my 

thankfulness to my parents―your love and hard work have laid the foundation for my 

career―and to my family: Sabine, it is so precious to have you by my side. Josephine, it 

is great to see you growing up and shining. And Leonard, I am grateful for our days 

together. You were the first to see this book. 

 

Thomas Sauter, Nittel & Belval, October 2022 
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Introduction
Thomas Sauter, Marco Albrecht

Motivation
In this book, you will learn how mathematical models of biological networks are built and how the analysis of
such models help to understand the system-level properties of networks. The book will introduce you to the
language of systems biology which needs to be spoken among biologists, physicists, computer scientists, and
engineers in the interdisciplinary research environment of bio-medicine. Science is about what is; Engineering
is about what can be. Combining both will enrich your profile as an academic and enrich your view of the
world around us. We are on the brink of the era of network medicine. This novel approach has the potential to
revolutionize and personalize the treatment of patients. This book focuses on some of the fundamental concepts
which are essential to developing successful network medicine approaches in the upcoming years. We hope you
enjoy reading this book as much as we enjoyed writing it.
Keywords
Systems biology — Flipped-classroom teaching
Contact: thomas.sauter@uni.lu. Licence: CC BY-NC
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1. Authors
Thomas Sauter has been pro-
fessor for Systems Biology
and study director of the
Master in Integrated Sys-
tems Biology and the In-
ternational Master in Bio-
Medicine at the University
of Luxembourg since 2008.
He studied Technical Biol-
ogy at the University of
Stuttgart and at the Max Planck Institute for Dynamics
of Complex Technical Systems in Magdeburg, Germany.
He received a PhD in Engineering for modeling of the
metabolism of Escherichia coli. His research group de-
velops tools for molecular network reconstruction and

network-based drug discovery, with applications mainly
in cancer biology. He has more than 20 years of experi-
ence in educating and supporting students.

Marco Albrecht is an engineer,
trained in system theory, control
engineering, modeling, and molec-
ular biology. He studied bio-
systems engineering at the Otto-
von-Guericke University in Magde-
burg and did a PhD at the Uni-
versity of Luxembourg on “Math-
ematical histopathology and sys-
tems pharmacology of melanoma” in the context of the
MELPLEX ITN training program supported by the Eu-
ropean HORIZON 2020. He is now a research scientist
at esqLABS GmbH, Germany, with expertise in Quanti-
tative Systems Pharmacology.

2. Overview
Complex systems can be found in many fields, and re-
searchers in biology take ever more advantage of this
and related concepts shown in Figure 1. The concepts are
now reaching the realm of medicine and also raise sev-
eral challenges for data integration. We suggest reading
the paper on systems medicine [1] which is summarized
in Figure 2. Some of these concepts will be explained in
this book "Introduction to Systems Biology".

Many computational courses rely on linear algebra
and other mathematical concepts. Consequently, it will
be very important to pay sufficient attention to these
mathematical basics. We incorporated a good share of

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0                                                                               https://doi.org/10.11647/OBP.0291.06
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Figure 1. Complex systems organizational map. Created by H. Sayama, Collective Dynamics of Complex Systems
Research Group at Binghamton University, New York. Wikimedia. Licence: CC BY 4.0.

it in this book, as you will see in the following chapters.
But first we would like to make some remarks about
the design of the book and the respective course on "In-
troduction to Systems Biology". We therefore review
the research evidence for effective learning and reveal
pitfalls which might emerge within an interdisciplinary
study program. We also give you lists with small and
prioritized learning units, which you can tick off step by
step. This book contains several links to YouTube videos.
Check them out by clicking on the link:
YouTube: Systems Thinking

3. Planning
We divided this course into four parts with increasing
levels of modeling detail, shown in Figure 3.

The detailed content is specified in the learning check-
list on page 8. Here, we give here a rough overview of
what we want to achieve.

Course aims (what):

• Gain confidence in the step-wise calculation of
mathematical problems.

• Connect mathematical concepts to biological real-
world problems.

• Enable efficient communication between biology
and computational disciplines.

Course goals (how):

• We demonstrate the step-wise calculation in this
book and with the help of YouTube videos.

• We connect theoretical approaches with real-world
biology.

• We explain the geometrical intuition behind math-
ematical operations.

https://www.youtube.com/watch?v=ezwTPrQG9Nk&index=1&list=PLsJWgOB5mIMBinjH9ZAbiWiVxsizC5mU_
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DATA AVAILABILITY, ACCOUNTABILITY, QUALITY,

ANALYSIS, INTEGRATION AND INTERPRETATION

The more data sources are connected to a patient, the more
data provenance is of key interest. Not all data sources can
provide the highest data quality. There is always a trade off on
how much effort (and time) can be put into capturing data and
how high the data quality has to fulfill its purpose. For
example, clinical documentation, primarily used for capturing
the rationale of a certain treatment, might be less relevant for
research than reports from clinical trials. Likewise, data
collected from electronic patient records will inevitably contain
a lot of ‘noise’ and have to be cleaned before being used for
research purposes.

Data provenance embraces high quality data sources. Stan-
dards for data provenance like ‘W3C Prov’ (https://www.w3.
org/TR/prov-overview/) can be very helpful, but are rarely used
by the biomedical community yet. There is already consider-
able investment into IT solutions for improved data prove-
nance. However, medical informatics, without a systems
medicine approach, is like building a house without the
installation of switches to turn the light on. The need of data
analysis, integration and interpretation, as well as the construc-
tion of reproducible workflows and validated methodologies, is
increasing with data diversity, generated by an expanding
arsenal of technologies. There still is a big gap in the availability
of methods and software tools to perform such sophisticated
analysis. Methods that allow analysis of high-dimensional data
sets and multi-scale data integration have to be developed.

Likewise, benchmark data sets need to be developed and made
available in open source software.

‘MACROSCOPES’ TO EXPLAIN PRINCIPLES OF TISSUE

ORGANIZATION

One goal of systems medicine is to explain the emergence and
progression of disease phenotypes with the help of molecular,
cellular, physiological and environmental data. We are dealing
with a multilevel and multiscale system. Diseases occur across a
wide range of interlinked temporal and spatial scales (from the
seconds and minutes of molecular reactions to the weeks and
years during which diseases progress). By focusing on well-
defined clinical questions, it is possible to develop context-
specific models, which are not generic, but nevertheless
predictive. In ecology, physics, meteorology and engineering
we already rely entirely on predictive models for decision
making and understanding of underlying causal mechanisms.
Despite the challenges posed by biological complexity, advances
in high-throughput technologies and data integration provide
tremendous opportunities for data-driven modeling, which
have yet to be realized.20,21 To understand the emergence,
progression and prevention of diseases, we must make infer-
ences across multiple levels of structural and functional
organization (for example, from molecules to cells and organs,
from molecular reactions to tissue physiology, from molecules
to MRI scans). How this can be achieved in a rational and
practical way, remains an open scientific challenge.
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Figure 1 Systems medicine as an integrative approach, combining technologies, data, methodologies and expertise. Brown: Conventional
analysis of patient data. Green: Data flow. Blue: Information flow, linked to the disciplinary expertise involved.

Whither systems medicine?
R Apweiler et al

3

Experimental & Molecular Medicine

Figure 2. Systems medicine: Brown: conventional approach. Green: data flow. Blue: information flow. Source: [1].
Licence: CC BY 4.0.

This book has been developed for a full-time two-week
course following the flipped-classroom approach which
we will introduce in the next section.

4. Learning
The following insights come from educational studies
[2]. Social scientists compare between-group differences
and within-group differences with the measure Cohens
d. A Cohens d = 0.5 means that the difference between
groups is half the difference within groups. Social scien-
tists interpret d as follows:
d ≈ 0.2 : small effect
d ≈ 0.5 : medium effect

Part 1

steady state 

network models

linear algebra

Part 2

steady state 

metabolic networks 
stoichiometric matrix

Part 3

dynamic change of the system 
elements

systems science

control, hysteresis

Part 4

nonlinear reaction terms 

quantity calculus 

bioreactor

enzyme kinetics

Figure 3. Advance organizer of this book.

d ≈ 0.8 : strong effect

with the hint that evenminor effects can become relevant
in combination with others.

Self-efficacy belief and regulation of effort
The most effective attitude is the self-efficacy belief (d =
1.81). Accordingly, we have organized the course in a
way that ensures you have the most flexibility in tackling
the problems on your own, and we will try to support
you. We have tried to give clear objectives, prioritize
the different tasks and optimize the course structure
to help you progress fast without losing time. These
precautions also complement your ability to regulate the
effort by yourself (d = 0.75). Your positive energy and
willingness to master this ambitious course will make
the biggest impact beyond anything we can do. Passing
this course gives you a great feeling of accomplishment
and a new view of biology. With the right practice and
the belief that you can make the most difference, you
have the key to success in your own hands. This effect
size is very strong and compensates for differences in
talent, intelligence, and unchangeable traits to a large
extent. Personality, intelligence, gender, time of year and
working hours (for an office-based job) are altogether
minor effects (−0.24 < d < 0.32). Intelligence explains
4% of the exam results. Joy, pride, and hope (−0.24 <
d < 0.32) are more productive attitudes than anger, fear,
and charm (−0.8 < d <−0.28).
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Effective practice in an interdisciplinary environment

The success of teaching various learning strategies de-
clines from elementary school (d = 0.92) to university
(d = 0.28), which can be explained by the supposition
that students learn which strategy is best for achieving
results over time. However, learning strategies are highly
subject dependent and can hardly ever be transferred to
other disciplines. Studying concepts in biology requires
the memorization of many facts to achieve a sufficient
knowledge base. A huge amount of initially unrelated
facts have to be learnt in order to interpret new obser-
vations, design experiments, and understand relation-
ships. Mathematics and engineering, however, require
the memorization of a few and simple basic concepts
with which they construct their theories. Only axioms
and basic equations must be learned. The challenge is to
apply those concepts to different cases and tasks. Some
tasks seem simple but can be unsolvable problems, while
other, seemingly more complicated equation sets, can
turn out to be easy. Getting a feeling for the underlying
approaches in each discipline takes time. Biologists usu-
ally have tomake countless observations anddeconstruct
things in order to understand their origin. In contrast,
engineers combine different elements to build something
up and to achieve a certain behavior. Engineers combine
problem-dependent modules of equations together to
represent desired or natural systems and their behavior.
In contrast, physicists always search for a simple underly-
ing equation to help themunderstand nature itself. Com-
puter scientists, bio-informaticians etc structure, handle,
and store data by automating procedures according to
the wishes of a user without the inner motivation to
understand nature itself. A new problem can confront
computational scientists with the time-consuming need
to develop new software. Once this step is solved, the
computational running time for solving the actual prob-
lem might be low. Therefore, they always search for
pre-developed software modules and libraries. The gen-
eration of data in biology is much more incremental and
steady, partly because the problems and tasks are often
unique. Thus, the general thinking and research prac-
tices of different scientists can contrast. Synthetic biology
is a sub-discipline of biology which resembles the think-
ing in engineering the most. To engineers, it might be
helpful to say that they have to solve a so-called inverse
problem, which is the most frequent problem biologists
face. This is a very sharp separation of different think-
ing schools, and you will see that scientists can have a
mixture of those approaches but it might help to recog-
nize problems of misunderstanding. Neither of these
is wrong, nor better than the other. The problems they
tackle have simply moulded their way of thinking to the
optimal mode for the discipline, which would probably
fail if applied to another area.

Do not underestimate the amount of effort required
to learn mathematics. Concepts make up around 20-30%
of your learning time and 70-80% of your time will be
necessarily devoted to solving equations and tasks on
your own. This can be best compared with your lab
work. The more you can automatize isolated tasks like
media preparation and pipetting, the more capacity is
free to solve more comprehensive and complex working
schedules in the lab. Time set aside for practice is im-
portant (see Figure 4). In the beginning, you will work
through several subparts of a task, but one individual
subtask might still limiting your overall performance.
This can be frustrating—for example, if one learns a new
programming language. At first, it seems unfathomable,
but you can make more progress than you think. After
you have reached a certain level, you will progress very
fast. At the upper level, you will become so proficient
that the improvements seem to slow down as they are
not recognizable anymore. At this stage, expert feedback
is necessary to help you recognize flaws and find new
challenges to work on.
Additionally, having willingness to solve the given prob-
lem with different approaches, whatever it takes, is a
good trait to become a good computational scientist. We
provide you with the solutions directly to give you more
responsibility, but do not look at the solution immediately–
only if you get stuck for a long time. You have to improve
your skills, not just your knowledge. One also has to
frequently change between studying concepts and prac-
ticing in order to progress. Some formulations might be
circuitous at first glimpse, but become more understand-
able after solving tasks. But don’t worry, the purpose of
this course is an introduction to computational problem-
solving and many difficulties remain even in physics,
mathematics, and engineering schools, where years are
dedicated to solving such tasks. Much of what you learn
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in the course is comparable with learning a sequence of
activities not far from following a cooking recipe. You
will manage it! Because we integrate active learning
sessions, we will likely reduce the failure rate. Tradi-
tional lecturing would increase the failure rate by 55%
in science, engineering, and mathematics [4].

How to study engineering, math, and physics
We have some tips for studying courses with many equa-
tions. Our book will be somewhat between a classical
biology and typical engineering text.
About understanding and learning
It is quite favorable to tackle the material before the lec-
ture. Concepts inmathematics, engineering, and physics
are more or less always the same and do not change as
fast as some concepts in biology. They are also not as
comprehensive as in biology. But they are not so eas-
ily accessible, because mathematical terms are made up
of highly compressed knowledge. Lecturers in biology
more often use PowerPoint presentations to transmit
the knowledge, while lecturers in engineering use the
blackboard to slow the knowledge transfer down. It is
essential to see how things evolve. It will also be on an
entirely different level than what you are used to from
high school. In an engineering class, you have to plan
more time for digesting and understanding the material
before moving on to new topics. Most engineering stu-
dents prefer to see the concepts first in order to be able to
better follow the lecture content. Engineering students
spend hours trying to understand the material at home.
You will also need weeks and months of occasional re-
visiting until the material is sufficiently digested. This is
the reason for the late final exam. Understanding is the
biggest problem, and after you understand the material,
you have to learn little by heart. Remember, you learn a
lot in biology, and then you understand it. You have to
understand and practice a lot in engineering, and then
you learn a bit by heart.
Problem-solving
The major time-consumer will be problem-solving. You
will be confronted with many tasks and problems. The
more problems you solve, the better you will understand
how to apply the information you have learnt and the
better your grade will be. Solve the tasks we have given
you! If that is not sufficient, search for more tasks in
textbooks. Also solve the problems set out in past ex-
ams. It is important not to give up and to embrace the
intellectual challenge. Try as many methods and strate-
gies as possible and always look for possible calculation
mistakes or typos. Messing up the minus-sign and plus-
sign is quite common. Only if you get completely stuck
and consultation of the theory no longer helps, then you
should look up the solution.
Study groups
Everyone has times when they get stuck, and the desire
to give up is strong. Establish study groups of 3-5 peo-

ple to explain the issue to each other. More or fewer
students than this is ineffective. Group members should
have more or less the same ability level. Share insights,
knowledge, and understanding of theories, formulas,
and equations. Collaborative learning is beneficial, and
you do not stand in competition with each other. How-
ever, do the work by yourself first to figure out how to
get started. In groups, some students might be very fast,
and then you do not learn how to tackle engineering
problems on your own. Moreover, never end a group
meeting when one member has still not understood the
issue. This is a great opportunity to learn and solidify
your knowledge by teaching. Findways to achieve under-
standing. Maybe one has to figure out gaps in previous
knowledge and then explain this. Each student should
explain at the end what the problem was and how the
solution has been obtained.
Be flexible and chill a bit
The general recommended sequence is:

1. Read lecture notes
2. Read books
3. Understand sample questions
4. Do the homework

Well, not many engineering students do this. Go jovially
through the script and if you get stuck for more than
5 minutes, just go on. Forcing yourself to go through
the script and trying to understand everything step for
step has disadvantages. You might read too much, sleep
away, and at the end the questions still confuse you—and
time runs out. A better strategy might be to first read
the questions in the exercise and try to solve them.

1. Go through lecture notes calmly
2. Look at the exercise questions and look at what

you can solve already
3. Understand sample questions in the manuscript
4. Understand themanuscript explanations and search

out textbooks
5. Iterate! Go back and forth
6. At the end, try to understand everything including

the manuscript
If you do tasks at an earlier point in this sequence, you
will get stuck for sure. One expects this without under-
standing the lecture notes. But now, you have a question
in mind, and it will be easier for you to understand the
lecture notes. After you have tried the examples, look at
the sample questions, and if you struggle there, look at
the lecture notes and books. Only at the end, and when
you have tried everything, look at the solutions. Wait
at least one day before you look up solutions. What we
want to say is that you will have to use an iterative work-
ing style between example questions and theory. Do not
be too strict and harshwith yourself. But of course, in the
end, you should understand everything, the complete
handout. Also read textbooks or related papers to get
a consistent view on the issues and connect new knowl-
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edge with old. This will help you later in the following
courses and your career, in a way that only looking up
things related to solving tasks will not.
YouTube: Nine study techniques for engineering courses
Education corner: How to study engineering?
How to study medicine and biology
Medicine and biology are characterized by a massive
workload. As a former mathematics or physics student,
you might not be used to this enormous amount. You
might think it unnecessary to learn all this as long as
you understand the underlying laws—but this is not the
case. For example, immunology is so comprehensive and
complex that you genuinely need to learn all this stuff
before you really start to understand how the immune
systemworks. No biologist will ever take you seriously if
you do not catch up and show a decent knowledge base.
Moreover, your computational models will fail if you
do not know enough of all the issues and complexity
around them. Even if you do not model everything,
knowing the details is nevertheless crucial. Knowing
more information helps you to guide your modeling
better. You need excellent time management, reading
skills, and memorizing strategies to manage this. You
will have to read much more, and the biology books are
much thicker. In these disciplines, it is also helpful to
teach others. Watch the highly recommended advice
of a graduate of a medical school, and the organization
skills of a medical student. Their learning strategies are
impressive.
YouTube: Medical School: How to study, read, and learn
YouTube: Watch an organized medical student
How to watch educational videos
Watching educational videos is not like watching a Bol-
lywood movie.
Learning objectives: take one to two minutes to think

about what learning goals you have before starting
a video. Many videos, linked in this handout, help
you deepen your knowledge, but do not forget to
make progress. First go through the handout and
then use the possibility to go deeper. Plan your
learning.

Pause and ponder: if you were not concentrating for a
moment or you missed the point, rewind or push
the stop button.

Speed adjustment: if you can, speed up or slow down
the video for your convenience. Double-speed?
Why not?

Take notes: you cannot ask questions immediately. Jot
your thoughts down and keep them for the lecture
in the classroom. Apply the Cornell note-taking
system: the upper left column (1/3) of your sheet
is reserved for questions and keywords. The right

column (2/3) is used for your notes as usual. At the
bottom of your sheet is a summary section (5cm).
Fill the left column and the summary section in
within 24 hours of taking your notes. It will help
you reflect on the content.

Avoid distractions: keep distracting devices like iPods
and smartphones away.

Watch in small pieces: if you watch everything at once
for long periods, it is less efficient than spreading
the sessions over time. Watch a video every now
and then.

Enjoy with peers: youmight use the opportunity to dis-
cuss the content with others so you can learn from
each other.

YouTube: Cornell notes method
Self-directed learner and critical thinking
Learning habits are set out in stages, as shown by Grow’s
levels of self-directed learning [5].
Stage 1 (Dependent learner): Relies on instructor. No

self-direction. Task-oriented.
Stage 2 (Interested learner): Not always directed. Seeks

some opportunities and sets some goals.
Stage 3 (Involved learner): Ability to learn individu-

ally. Has learning goals and methods to achieve
those goals.

Stage 4 (Self-directed learner): Sets goals. Knowshow
to assess and how to self-motivate. Finds valid and
reliable resources.

YouTube: Self-directed learning (Part 1)
YouTube: Self-directed learning (Part 2)

To become a self-directed (self-regulated, lifelong) learner,
you must learn to assess the demands of the task, evalu-
ate your previous knowledge and skills, plan your ap-
proach, monitor the progress, and adjust the strategy
if needed [3]. Planning the learning process is a step
which is frequently ignored, and the time required for
learning to take place is often underestimated. Ponder
on why you take a certain approach and not another
one. Also think about what was ineffective last time
and how this can be improved in the future. Self-critical
evaluation is important to avoid directing yourself mean-
inglessly. Keep in mind what Karl Popper1 said: "If we
are uncritical we shall always find what we want: we
shall look for, and find, confirmations, and we shall look
away from, and not see, whatever might be dangerous to
our pet theories". Wisdom and the best approximation

1 Austrian and British philosopher Sir Karl Raimund Popper 1902—
1994.

https://www.youtube.com/watch?v=53A-3T5_2zE
https://www.educationcorner.com/engineering-study-skills-guide.html
https://www.youtube.com/watch?v=UBZfknwK56E
https://www.youtube.com/watch?v=e7LDcP4LsVM
https://www.youtube.com/watch?v=lsR-10piMp4
https://www.youtube.com/watch?v=kgfFCnBdSas
https://www.youtube.com/watch?v=zDimJQQySzA
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of truth come only if you are your most merciless but
constructive critic. It is the right but the hardest way.
Also watch the lecture series on critical thinking, which
will help you to become a better scientist.
YouTube: Critical thinking
In a book based on thework of the Foundation forCritical
Thinking we found the following definition by Francis
Brown2: "Critical thinking is a desire to seek, patience to
doubt, fondness to meditate, slowness to assert, readi-
ness to consider, carefulness to dispose and set in order;
and hatred for every kind of imposture."

Repetition or elaboration strategies
Repetition does not have a significant measurable impact
on learning. Repetition is the consolidation of something
but this does not mean you are consolidating something
useful or correct. Misconceptions can be consolidated as
well. Thus, feedback from peers and the teacher is im-
portant. Much more effective is deliberate practice which
directly targets self-identified weaknesses and requires
a healthy portion of self-criticizing and critical thinking.
Additionally, repeating easy tasks does not help you to
become better. Search for challenges and practice annoy-
ing or difficult tasks with attainable goals. Moreover, a
better strategy than repetition is elaboration. Elabora-
tion deals with the integration of new pieces of informa-
tion into your existing network of knowledge organiza-
tion. Elaboration is more effective with high self-activity
(d = 0.7) rather than letting the teacher do it for you
(d = 0.44). Make connections to your previous knowl-
edge instead of repeating facts alone and search for tasks
which challenge you.

Approach to dealing with mistakes
Learning something new opens up space for opportu-
nity, and if you dare to learn something new, mistakes
will happen. Themoremistakes youmake, the more you
will learn in the long term. Embracing new challenges
and thus taking the risk of failure will carry you farther
than avoiding challenges to avoid mistakes (d = 0.44).
This strategy might lead to problems in the learning pe-
riod (d =−0.15) but result in better performance after
the learning period (d = 0.56). This approach is effective
if the test is similar to the practice tasks (d = 0.2) and
superior in applying the learned facts to new problem
types (d = 0.8), which will help you to get even more
out of this course in the future. Inaccurate prior knowl-
edge or even misconceptions (the heart oxygenates the
blood, Pluto is a planet, objects of different masses fall at
different rates, blind people hear better) are difficult to
repair if the teacher is unaware of them before the exam.
Be considerate toward others making mistakes, and do
not fear embarrassingmoments yourself. Your only duty

2 English philosopher, scientist, jurist, statesman, and author Fran-
cis Brown 1561—1626. Seen as father of empiricism and scientific
methods.

is to learn from mistakes in order to improve your work.
Careless and deliberate sloppiness has nothing to do
with it and is not appreciated.

MASTERY

ACQUIRE

Component 

skills

KNOW WHEN TO APPLY

Skills
PRACTICE

Integrating skills

Figure 5. Elements of mastery. Source: [3]. Copyright ©
2010, John Wiley and Sons.

Knowledge and skill levels
Knowledge falls into several types [3]. Declarative knowl-
edge describes the knowledge of facts and concepts that
can be stated or declared. Procedural knowledge is
knowing how to apply various procedures, methods,
theories, and styles. Contextual knowledge describes
the ability to know when something has to be applied
and conceptual knowledge says why something is ap-
propriate in a particular situation. See also Figure 5 for
the stages of mastery and Bloom’s Taxonomy in the ap-
pendix [6] (Fair Use) for the classification of thinking
skills.
We not only have different knowledge types, but this
knowledge is also organized in differentways. Theknowl-
edge organization of beginners shows few connections
between elements and looks like separated knowledge is-
lands or a linear sequence of knowledge pieces, whereas
experts’ knowledge is densely connected—for example,
in a hierarchical or network form. History facts might be
memorized along a timeline, but if the question requires
knowledge organized along other criteria, or the chain of
knowledge is interrupted, the knowledge might be not
accessible. Mind maps might be a good possibility of
connecting pieces of knowledge in different ways. Com-
petence can also be classified into four different stages,
as shown in Figure 6. In the beginning, it is impossi-
ble to know what one has never learned before. After
a while, one recognizes knowledge gaps and fills them
until the acquisition process and origin get lost. Profes-
sors are frequently in the top competence level and may
find it difficult to identify the problems with which you

https://www.youtube.com/watch?v=A-jyF3ji38o&list=PLsJWgOB5mIMB3iyIqD0Z9huAIbdFV_tj_
http://www.criticalthinking.org/
http://www.criticalthinking.org/
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struggle. Participating during lectures and explaining
questions clearly can help your supervisor to help you
become better.

 

 

MASTERY 

 
 

AQUIRE 

Component 

skills 

KNOW WHEN TO APPLY 

Skills  

 
PRACTICE 

Integrating skills 

4

 

3

 

2 1 

Unconscious  

incompetence 

Conscious 

incompetence 

Conscious  

competence 

Unconscious  

competence 

Figure 6. Competence levels. Source: [3]. Copyright ©
2010, John Wiley and Sons.

Summary
Effect of educational strategies [2]
d = 1.81 Self-efficacy belief
d = 1.39 Preparation and planning by the lecturer
d = 1.35 Clear and understandable lecturer
d = 1.13 Deliberate practice objectives
d = 1.12 Clear learning objectives
d = 0.90−0.98 Attending courses regularly
d = 0.77 Openness to outsider opinions
d = 0.75 Student’s regulation of effort
d = 0.68 Group work
d = 0.68 Empathy and warm-heartedness of the teacher
d = 0.67 Previous skill level
d = 0.65 Teacher-student relationship quality
d = 0.64 Co-operative learning
d = 0.57 Teacher’s enthusiasm
d = 0.49 Diligence
d = 0.48 Motivation
d = 0.47 Supportive atmosphere in the classroom
d = 0.47 Encouragement of learning
d = 0.43 Solely making notes during oral presentations
d = 0.41 Addressing learning progress
d = 0.41 Organized learning
d = 0.41 Learning with fellow students
d = 0.41 Time management
d = 0.34 Disturbances during lessons
d = 0.32 Critical thinking
d = 0.32 Intrinsic motivation
d = 0.21 Class size
d = 0.21 Compulsory attendance
d = 0.19 Co-teaching
d =−0.02 Making notes during PowerPoint presenta-

tions
d =−0.43 Fear exams
Disturbing effects on exam results variability is minor
(n=403623 students, 911 effects investigated):
6 % Procrastination
5 % Diligence
4 % Fear of exams

4 % Intelligence
3 % Emotional intelligence
2 % Socio-economic status
<2 % Biological age
<2 % Gender
<2 % Extroversion
<2 % Self-esteem
<2 % Social support
<2 % Stress
<2 % Depression

5. Learning checklist
Check boxes if appropriate. It might help you not to
forget things and might inspire you to promote your
self-directed learning. Try to stay within the script and
do not lose too much time by finding answers. Use it
as an inspiration and organization tool. You should ask
yourself the following questions [7]:

• What is it and how is it defined? (declarative)
• How is this theory applied in the real world? (pro-

cedural)
• Could you provide an example of when this for-

mula might be used? (contextual)
• Could you sketch what that (solution, device, etc.)

might look like? (procedural)
• How is this equation applied in practice? (proce-

dural)
• Where did that formula come from? (conceptual)
• Do you understand when that formula is used?

(contextual)
Remember [3]: Declarative knowledge describes the
knowledge of facts and concepts that can be stated or de-
clared. Procedural knowledge is knowing how to apply
various procedures, methods, theories, and styles. Con-
textual knowledge describes the ability to know when
and in which context something has to be applied and
conceptual knowledge says why something is appropri-
ate in a particular situation. Does the concept fit your
application? Do you know the concept behind a certain
definition?
Another definition can be found (trainingindustry.com):
Definition 1. Conceptual knowledge refers to the knowl-
edge of, or understanding of concepts, principles, the-
ories, models, classifications, etc. We learn conceptual
knowledge through reading, viewing, listening, experi-
encing, or thoughtful, reflective mental activity.
Definition 2. Declarative knowledge refers to facts or
information stored in the memory, that is considered
static in nature. Declarative knowledge, also referred to
as conceptual, propositional or descriptive knowledge,
describes things, events, or processes, their attributes,
and their relation to each other. It is contrary to procedu-
ral, or implicit knowledge, which refers to the knowledge
of how to perform or operate.
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Definition 3. Procedural knowledge refers to the knowl-
edge of how to perform a specific skill or task, and is
considered knowledge related to methods, procedures,
or operation of equipment. Procedural knowledge is
also referred to as implicit knowledge, or know-how.

Definition 4. Implicit knowledge is knowledge that is
gained through incidental activities, or without aware-
ness that learning is occurring. Some examples of im-
plicit knowledge are knowing how to walk, run, ride a
bicycle, or swim.

Example:
The determinant of a 2-by-2 matrix is the area between
two linear independent vectors (declarative). It can be
computed in the following ways (procedural). The de-
terminant is useful to understand whether a matrix is
invertible (contextual) and only works if the matrix is a
square matrix (contextual). The determinant is based on
the geometric intuitions and concepts of linear algebra
in the following way (conceptual).

Part 0: Introduction and learning
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2 Systems medicine ✓
2 Network medicine
2 Self-efficacy belief
2 Regulation of effort
2 Performance gain-

practice
2 Self-directed learner
2 Critical thinking
2 Knowledge organization
2 Elaboration strategy
2 Skill level
2 Elements of mastery
2 Competence level

Part 1: Biochemical network in the matrix form
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1 Define systems biology ✓
2 Incidence matrix
2 Adjacency matrix & list
3 Graph notation (brack-

ets)
2 Hypergraph
1 PCA, PLSR, VIP
1 Turn linear equation set

to matrix form
1 Matrix indices
1 Augmented coefficient

matrix
2 Solve equations: Rule of

Cramer
1 Gauss and Gauss Jordan

form
3 Reduced row-echelon

form
3 LU decomposition
1 Rank
1 Identity matrix
1 Zero matrix
1 Trace
1 Matrix multiplication
1 Sum and subtract matri-

ces
1 Scalar multiplication
1 Transpose
1 Determinant of a 2-by-2

matrix
2 Determinant of a 3-by-3

matrix (Rule of Sarrus)
2 Determinant (Rule of

Cramer)
3 Laplace expansion
1 Inversion of a 2-by-2 ma-

trix
2 Inversion of a 3-by-3 ma-

trix
1 Eigenvalues
2 Eigenvectors
3 Eigenvalue via fast equa-

tion
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Part 2: Metabolic modeling

tasks steps knowledge
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1 Classify metabolic mod-
els

✓

1 Stoichiometric matrix
1 Steady state
1 Rouché–Capelli theorem
2 Elementary flux modes

(EFM)
2 Conservation relations
3 Left and right null space
1 Classify MFA according

dynamic and isotope
tracer

2 Metabolic flux analysis
(MFA)

1 Pros and cons of FBA
2 Flux balance analysis

(FBA)
2 Constrained optimization

cone

Part 3: The magic of change and how to find it

tasks steps knowledge
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1 Black box concept ✓
2 Hysteresis
1 Block diagram
2 Synthetic Biology vs. Sys-

tems Biology
1 ODE
2 What is the difference be-

tween ODE & PDE
2 Change one ODE to a sys-

tem of ODEs
1 General properties of a

system
2 Nonlinear dynamic
2 Open loop vs closed loop
1 Feed-forward loops

tasks steps knowledge

pr
io
ri
ty

fir
st
re
ad

se
co
nd

re
ad

wa
tch

ed
Yo

uT
ub

e
so
lve

d
ta
sk
s

so
lve

d
ex
tra

ta
sk
s

de
cla

ra
tiv

e
pr
oc
ed

ur
al

co
nt
ex
tu
al

co
nc

ep
tio

na
l

1 Feedback loops
1 State space representa-

tion
1 Classify system types
2 SISO vs MIMO
3 Laplace transform and

frequency domain
3 Fourier transform
2 Time domain vs fre-

quency domain
2 Controllability
2 Observability
2 Transfer function
1 Definition steady state
1 Stability
1 Damping
1 Characteristic polyno-

mial
1 Eigenvalues in the fre-

quency domain to stabil-
ity classification

2 Phase portrait
2 Definition trajectory
2 Slope field
2 Definition isoclines
2 Discrete in state and time
2 Difference equation
1 p-q equation
1 a-b-c equation
1 Complex numbers
1 Differentiation
1 Product rule
1 Quotient rule
1 Chain rule
1 Separation of variables
1 Integration factor
2 Linearization
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Part 4: Physical modeling and nonlinear enzyme kinet-
ics

tasks steps knowledge
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1 Reality and model ✓
1 Modeling cycle of Blum

and Leiß
1 Assumptions
1 Model building
f1 Distinguish variable, pa-

rameter, coefficient
3 Dimension analysis
3 Poorly posed problems
1 Sensitivity analysis
1 Model classification
2 Akaike information crite-

rion
2 1st law of thermodynam-

ics
2 2nd law of thermodynam-

ics
3 Noise
1 Extensive quantities
1 Intensive quantities
2 Read SI units
1 Quantity calculus
1 Balancing
1 Mass balance
3 Volume balance
1 Amount of substance bal-

ance
1 Law of mass-action
1 Reaction rate
1 Michaelis-Menten
3 Lineweaver-Burk plot
2 MM for reversible reac-

tions
2 MM for inhibition
2 Substrate inhibition
2 Cooperative enzymes
1 Hill kinetic
1 Mathematical analysis ap-

proaches (Wolkenhauer)
without equations

6. Further reading
We suggest reading the great article by Barabasi et al. to
familiarize yourself with the topic of network medicine
[8].
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Chapter 1: Biochemical networks in the matrix form
Thomas Sauter, Marco Albrecht

Motivation
The biochemistry of the cell is very complex and the available data might overwhelm the abilities of interpretation
[1]. Reductionist approaches, combined with some intuition, have brought us far, but we need rational approaches
to better understand the interplay of molecules at the system level. We have to check whether a hypothesis is in
itself logical and can be aligned with data. In this chapter, we—while reducing biochemical molecules to their
function—will learn how to interlink several players to acquire a mechanistic understanding of a pathway or a
complex system. Modeling thereby helps us in the following ways [2]:

1. Enhancing understanding of otherwise unintelligible systems
2. Requiring a way of thinking that can be beneficial to the design of experiments

While, by studying this chapter, you will not become a computational scientist, it will help you to communicate
with them. Nobody expects that you understand everything immediately. It will take time to digest and it requires
a lot of practicing to build the skills.
The mathematical principles introduced here will be applied to biological pathways and networks in the following
chapters. If you prefer, you could directly jump to Chapter 2 and 3 to see some applications first.
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Matrix — Graph — Metabolic network
Contact: thomas.sauter@uni.lu. Licence: CC BY-NC
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1. Lecture summary

1.1 ■ Biological networks and graph theory
Biological phenomena are very complex and systems
biology helps us to understand their system’s behavior.

Definition 1. Systems biology is the science that studies
how biological function emerges from the interactions
between the components of living systems andhow these
emergent properties enable and constrain the behaviour
of the components [2].

I1 I2

A
B

CD

E F

G

O1 O2

Input Layer

Output Layer

Intermediate 

Layer + + 

+ + 
+ 

+ 
+

+ 

+
+ 

+ 

- 

- 

Figure 1. The interaction graph of a signal transduction
pathway triggered by the inputs I1 and I2 with subse-
quent response in the output layer indicated by O1 and
O2.

Put in another way: we are not interested in dissect-
ing objects into ever smaller parts and details. Instead,
we look at the elements (nodes, states) we know and
focus on their interactions (edges, coefficients). The in-
terplay of a few elements can result in manifold different
phenomena and observations, depending on how the
elements activate or inhibit each other. The interactions
between the states in a system are often represented as a
matrix. But the type of matrix used can vary for different
systems.

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0                                                                               https://doi.org/10.11647/OBP.0291.01
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Example 1: Signal transduction

The example graph in Figure 1 can be written in
the form of an incidence matrix IIInnn

IIInnn =

+ − + + + + − + + + + + +

−1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0 0 0 0 0
1 0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 1 0 0 0 −1 0
0 0 0 0 0 1 −1 0 0 0 0 0 0
0 1 1 0 0 0 0 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 0
0 0 0 0 0 0 0 0 0 1 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1



I1
I2
A
B
C
D
E
F
G

O1
O2

with interactions as column entries and states as
row entries.

Example 1 mimics a signal transduction network
within a cell (Figure 1), where relevant molecules are
represented as nodes (states) and interactions as edges
(later resulting in mathematical terms in the balance
equations). The states represent the phosphorylation sta-
tus or the concentration of a particular molecule, while
the interactions represent binding affinities, regulatory
interactions, or metabolic fluxes etc. If molecule A is
directly responsible for a higher activity or abundance
of molecule B, we draw an arrow from A to B, which is
called a directed edge. Moreover, we write in the related
column of the incidence matrix IIInnn (see Example 1) the
number −1 for A and +1 for B. Molecule B, on the other
hand, has a positive impact on C. Molecule A would
thus indirectly lead to higher levels of activation of C,
but no direct interaction, so this is not represented in
the network. Edges can also represent inhibitory interac-
tions, which are drawn as a straight linewith a transverse
line at the inhibited molecule. The true interactions can
be figured out through experimental studies or via the
analysis of the overall behavior of a network. Biologi-
cal systems can also be represented in the form of an
adjacency matrix AAA or as an adjacency list LLL, tackled in
Case Box 1 and 2. The combination of elements and
interactions makes up a graph or network. Protein inter-
actions can be represented as undirected networks. One
valuable source for such networks is, for example, the
STRING database [3].
We want to compare a directed network with an undi-
rected network by reference to the cases in Figure 2. We
note down the related matrices in Case Box 1 and 2.
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Figure 2. Left: undirected graph. Right: directed graph.

Graphs are a special case of more general hypergraphs,
shown in Figure 3. In a graph, edges connect 2 nodes,
whereas in a hypergraph H = (V,E) there is a set of hy-
peredges E connecting a set of vertices V. In other words,
in a hypergraph, a hyperedge can connect any number
of vertices. Hypergraphs are used, for example, used to
represent metabolic networks where reactions can con-
nect multiple substrates and products and sometimes
involve cofactors. Undirected hypergraphs represent set
systems, as shown in Figure 4. Directed hypergraphs
have hyperedges e = (S,K) with vertices assigned to the
tail/start knot S and vertices assigned to the head/end
knot K. An example directed graph is shown in Figure 5.
One of the hyperedges points from the tail knots A and B
(S= {A,B}) to the head knots C andD (K= {C,D}) writ-
ten as e1 = ({A,B},{C,D}). Pay attention to the brackets.

Case 1: Undirected graph

An undirected graph is described by vertices V =
{A,B,C,D,E,F} and edges E = {a,b,c,d,e, f ,g} =
{(A,B), (B,C), (C,D), (D,E), (D,F), (C,F), (F,A)}.
The relevant matrices (see text) are:

AAA =

A B C D E F
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 0 0
1 0 1 1 0 0


A
B
C
D
E
F

, LLL =


B,F
A,C

B,D,F
C,E,F

D
A,C,D


A
B
C
D
E
F

,

IIInnn =

a b c d e f g
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 1 1 0 0 1 0
0 0 1 1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 1 1 1


A
B
C
D
E
F

whereby the adjacency matrix AAA is symmetric. It is
not symmetric for a directed graph.

https://string-db.org/
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Case 2: Directed graph

The directed graph is represented by vertices V =
{A,B,C, D,E,F} and by edges E = {a,b,c,d,e, f ,g}
= {(A,B), (B,C),(D,C),(D,E),(F,D),(C,F),(F,A)}.
The order of vertices in the edge description is rel-
evant now. The matrices are:

AAA =

A B C D E F
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0
0 0 0 0 0 0
1 0 0 1 0 0


A
B
C
D
E
F

, LLL =


B
C
F

C,E
−

A,D


A
B
C
D
E
F

,

IIInnn =

a b c d e f g
−1 0 0 0 0 0 1
1 −1 0 0 0 0 0
0 1 1 0 0 −1 0
0 0 −1 −1 1 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 1 −1


A
B
C
D
E
F
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Figure 3. A hypergraph can be translated into a substrate
graph or a bipartite graph. A substrate graph cannot
be converted back to the hypergraph because the infor-
mation whether A AND B are consumed by the same
reaction is lost in the substrate graph. It could also be
possible that A is converted into C and D, and that B is
transformed into C and D by independent reactions.

v1

e 1 v2 v3

v5

v6

v7

v4

e 2

e 4
e 3

Figure 4. Undirected hypergraph: V =
{v1,v2,v3,v4,v5,v6,v7} and E = {e1,e2,e3,e4} =
{{v1,v2,v3},{v2,v3},{v3,v5,v6},{v4}}. Source:
en.wikipedia.org/wiki/Hypergraph, Fair Use.
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Figure 5. Directed hypergraph V = {A,B,C,D,E},
E = {e1,e2,e3} = {({A,B},{C,D}),({C},{E}),
({E,D},{B})}.

Example 2: Simple hypergraph

The example in Figure 5 can be represented by the
incidence matrix:

IIInnn =

e1 e2 e3
−1 0 0
−1 0 1
1 −1 0
1 0 −1
0 1 −1


A
B
C
D
E

Another representation of the system in Figure 5
can be realized with chemical reaction equations:

A+B e1−−→ C+D

C e2−−→ E

D+E e3−−→ B

Directed hypergraphs, as mentioned previously, are
needed for an important field in systems biology: metabolic
network modeling. The only difference is that we have
additional stoichiometric information (coefficients) to
weight the edges.
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1.2 ■ Modeling of metabolic networks
Metabolic networks describe the flux ofmetaboliteswithin
a system. The fluxes are controlled by enzymes. A sim-
plified metabolic network is shown in Figure 6 and Ex-
ample 3. A more elaborate example is shown in Figure 7
and Example 4.

Example 3: Simple metabolic network

We see in Figure 6, that we have two possible path-
ways here, either via v2 or v3. All edges can be
weighted according to the stoichiometric coeffi-
cients so that we do not simply have an incidence
matrix (all the entries are 1s or 0s) but a stoichio-
metric matrix:

NNN =

v1 v2 v3 v4
1 −1 −1 0
0 1 1 −1
−1 0 0 0
0 0 0 1


Ain
Bin
Aout
Bout

.

where the reactions determine the columns and
the metabolite concentration determines the row
entries. Often we focus on intracellular metabolites
only, so that we can reduce the system in this case
to:

NNN =
v1 v2 v3 v4[
1 −1 −1 0
0 1 1 −1

]
A
B

This example has only unimolecular reactions.

 

 
 

𝑣1 A𝑜𝑢𝑡 B𝑖𝑛 B𝑜𝑢𝑡 A𝑖𝑛 
 

 

A𝑜𝑢𝑡 B𝑜𝑢𝑡 P𝑜𝑢𝑡 E𝑜𝑢𝑡 

A 

B 

C 

D 

P 

E 

A 

B 

C 

D 

A 

B 

C 

D 

A C 

B D 
R 

hypergraph                substrate graph                bipartite graph 

A 

B 

C 

D 

E 
e1 

e2 

e3 

𝑣2 
𝑣4 

𝑣3 

𝑣1 𝑣2 𝑣3 𝑣4 
𝑣5 

𝑣9 

𝑣6 
𝑣8 

𝑣10 
𝑣7 

A 

B 

𝑣1 

𝑣2 𝑣3 
A 

B 
0.5 0.5 

1 2 
A 

B 
1 1 

Figure 6. A simple model of a metabolic system. The gray
dotted line represents the system boundary. A molecule
comes from outside to inside and turns into internal
Molecule B via two possible reaction ways. Molecule B
is leaving the system.
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Figure 7. Ametabolic model with 2 inputs and 3 outputs,
whereby Molecule B is both. The system is controlled
by the transport reactions of the external Metabolites A
and B to the cell, which releases Product P but can also
release B and E.

Example 4: Larger metabolic network

Here, we see several possible routes (Figure 7) and
also a hyperedge v10. It is quite difficult without
mathematics to understand and predict the fluxes,
which we will learn in the next learning block. For
now we want to set up the stoichiometric matrix:

NNN =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1 0 0 0 −1 −1 −1 0 0 0
0 1 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 1 0 −1
0 0 0 0 0 0 1 0 0 −1
0 0 0 −1 0 0 0 0 0 1
0 0 −1 0 0 0 0 0 1 1


A
B
C
D
E
P

with the reversible reactions:
rev= {R2,R8}

and irreversible reactions:
irrev= {R1,R3,R4,R5,R6,R7,R9,R10}

After seeing some motivating examples of biological
networks and the possibility of representing these as
matrices, we will now revise some basic mathematical
concepts of linear algebra and matrix calculation.
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2. Basics of Mathematics
2.1 ■ Linear algebra
Linear algebra (Arabic: al-jabr) is one of the most funda-
mental and helpful topics from the realm ofmathematics.
We recommend watching the following YouTube videos
and more from that channel the channel the videos be-
long to, by clicking on the link below:
YouTube: The essence of linear algebra
YouTube: How to read math?

■ From a set of equations to a matrix
In science and technology, we frequently encounter sets
of linear equations. One equationmight be 3x1+x2 =−2,
whichwe canwrite in a general formwith a11x1+a12x2 =
b1 with coefficient a11 = 3, a12 = 1 and constant b1 =
−2. The variables, x, can represent molecule concentra-
tions, and coefficients can represent interactions between
molecules. If we add at least one other linear equation—
such as 2x1+1x2 = 0—with at least one common variable,
we have a linear equation set:

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2

You see that the first index m of coefficient amn increases
with the number in rows, while the second index n in-
creaseswith the number of the variables xm. The example
equation set can be solved for x2:

3x1 + x2 =−2 ↔ x2 =−2−3x1

2x1 + x2 = 0 ↔ x2 =−2x1

which can be geometrically interpreted as shown in Fig-
ure 8. The solution is the point x1 = −2 and x2 = −4,
where the vectors cross.You either get one solution, no
solution, or an infinite number of solutions for any linear
equation set. The general form, with m equations and n
variables, is then:

a11x1 +a12x2+ · · · +a1nxn = b1
a21x1 +a22x2+ · · · +a2nxn = b2

...
am1x1 +am2x2+ · · · +amnxn = bm

(2.1)

which can be written in a much denser form as:

AAAxxx = bbb

with a matrix in a bold capital letter:

AAA =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn



-4 -3 -2 -1 0 1 2

-8

-6

-4

-2

0

2

4

6

8

10

Figure 8. A linear equation system as vectors. The solu-
tion of the equation system is the cross-section of both
vectors.

and vectors in bold lowercase letters:

xxx =


x1
x2
...

xn

 and bbb =


b1
b2
...

bm

 .

This is very convenient and compact. The solution is
simply xxx = AAA−1bbb. The exponent −1 indicates the matrix
inverse and will be explained later. The matrix AAA basi-
cally describes n arrows with the arrow tail in the origin
(zero-point), and the arrowhead on m coordinates in a
space spanned by the coordinate system. The equation
set 2.1 describes an inhomogeneous system. It becomes
a homogeneous system if bbb = 000. If the system has a
solution we have a consistent system, otherwise it is
inconsistent. A linear equation system is also fully de-
termined by the augmented coefficient matrix:

(
AAA bbb

)
=


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
... ... . . . ...

am1 am2 · · · amn bm

 .

YouTube: From an equation set to a matrix

■ Simple matrix operations
Let’s say we have a matrix BBB and multiply it by a matrix
AAA from the left. What does it mean geometrically? It
means that we transform the system BBB in a way that can
be a rotation, a scaling, or any form of linear deformation
of the space, which is spanned by the coordinate system
of BBB. If the matrix BBB has p arrows pointing toward n
coordinates within a n dimensional space, the multipli-
cation of BBB by AAA from the left transforms the coordinate
system from n dimensions to m dimensions. The final
matrix CCC represents p arrows pointing to the new coor-
dinates in a m dimensional space. Have in mind that the

https://www.youtube.com/watch?v=kjBOesZCoqc&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
https://www.youtube.com/watch?v=Kp2bYWRQylk
https://www.youtube.com/watch?v=NNmiOoWt86M
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order of matrix multiplication matters in contrast to the
multiplication with numbers. Because AAA transforms the
coordinates of BBB from one space to another, the number
of columns in AAA must equal the number of rows in BBB in
order to have sufficient coupling of two spaces for the
transformation or multiplication AAABBB =CCC.

n
m

p

n =

p
m

Division by a matrix does not exist, but division of a
matrix by a scalar is possible.
YouTube: Multiplying matrices

Example 1: Multiply matrices

A more detailed scheme is:
4×2 matrix
a11 a12
· ·

a31 a32
· ·


2×3 matrix[

· b12 b13
· b22 b23

]
=

4×3 matrix
· c12 c13
· · ·
· c32 c33
· · ·


where two c elements are calculated as follows:

c12 = a11b12 +a12b22

c33 = a31b13 +a32b23

What is the sum of two matrices geometrically? The
matrix AAA has n arrows originating from the coordinate
origin point to the m coordinates. If we sum up with
matrix BBB, the n arrows of BBB start from the coordinates of
AAA and land on the coordinates AAA+BBB. This is equivalent
to having n arrows starting from the coordinate system
origin and pointing to the coordinates described by AAA+
BBB.
YouTube: Sum up matrices and scalar multiplication

Example 2: Sum and subtract matrices

The sum or subtraction of matrices with identical
size is calculated entry-wise:[

1 3 1
1 0 0

]
+

[
0 0 5
7 5 0

]
=

[
1+0 3+0 1+5
1+7 0+5 0+0

]
=

[
1 3 6
8 5 0

]
.

The scalar multiplication is also a transformation of the
matrix. If you multiply a matrix by a number, you scale

the matrix by this number without skewing or rotating it.
The scalar multiplication by two doubles all coordinate
values the arrows point to. Do not confuse this with
scalar product, which is a form of inner product!
YouTube: Scalar multiplication

Example 3: Scalar multiplication

2 ·
[

1 8 −3
4 −2 5

]
=

[
2 ·1 2 ·8 2 · (−3)
2 ·4 2 · (−2) 2 ·5

]
=

[
2 16 −6
8 −4 10

]

Another important operation is transposition (to inter-
change columns with rows).
YouTube: Transpose a matrix

Example 4: Transpose

M =


1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20



MT =


1 6 11 16
2 7 12 17
3 8 13 18
4 9 14 19
5 10 15 20



■ Square matrices
Square matrices have as many rows as columns. Some
square matrices are especially secure. One example is
the matrix in diagonal Jordan form, which was the aim
of the Gauss-Jordan method:

AAA =

a11 . . . 0
... ...
0 . . . ann


Multiplying a diagonal matrix multiple times from the
left is the same as using the number of multiplications
as exponents of the diagonal elements:

AAA3BBB =

a11 . . . 0
... ...
0 . . . ann


a11 . . . 0

... ...
0 . . . ann


a11 . . . 0

... ...
0 . . . ann

BBB

=

a3
11 . . . 0
... ...
0 . . . a3

nn

BBB

This is much better than multiplying non-diagonal ma-
trices, which can be very frustrating after a while. A

https://www.youtube.com/watch?v=sYlOjyPyX3g
https://www.youtube.com/watch?v=EFApWAl3NJw
https://www.youtube.com/watch?v=4lHyTQH1iS8
https://www.youtube.com/watch?v=g_Rz94DXvNo
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very important special form of the diagonal matrix is the
identity matrix, with which has 1s as diagonal elements:

III =:

1 . . . 0
... ...
0 . . . 1

 .

YouTube: Identity matrix
Also frequently mentioned is the zero matrix:

000 =:

0 . . . 0
... ...
0 . . . 0

 .

One characteristic specifically of a square matrix is the
trace. The trace is the sum of the diagonal elements:

tr(A) =
n

∑
i=1

aii = a11 +a22 + · · ·+ann

YouTube: See also the symmetric matrix

■ Determinant
The determinant gives the area in a 2-by-2 matrix and
the volume in a 3-by-3 matrix. What does it mean when
the determinant is equal to zero for a 2-by-2 matrix? It
means that the area of the matrix is equal to zero and
therefore the vectors that compose the matrix are linear-
dependent. In other words, it means that the vectors
have parallel directions. From high school, we know that
we can describe the position of any point y of a line in a
function as an Origin O and a constant (c) that multiples
a non-zero vector v (y = c · v+0). For a plane and space,
any point can be described as a linear combination of two
independent vectors, respectively. Consequently, if the
two vectors are linear-dependent, we are no longer able
to describe any point in the plane, but only the points
that are situated on a line that is parallel to the vectors.
For 3-by-3, a determinant of zero indicates that at least 2
of the 3 vectors are linearly dependent and therefore only
the point located on a plane can be described by this set
of vectors. More generally, a matrix with a determinant
of zero describes a transformation of the system that
reduces its dimensions by 1. It is possible to collapse
a system to lower the number of dimensions, but the
opposite is not possible. Therefore, the inverse of matrix
A with the determinant of A equals zero, which would
geometrically result in an expansion of the system to a
higher number of dimensions. This is not possible.

det(AAA) =
∣∣∣∣a b
c d

∣∣∣∣= ad −bc.

One possibility for calculating a determinant is via the
initial reduction of the matrix. Larger matrices can be

split into smaller matrices with the Laplace expansion:∣∣∣∣∣∣∣∣
a b c d
e f g h
i j k l
m n o p

∣∣∣∣∣∣∣∣
=+a ·

∣∣∣∣∣∣
f g h
j k l
n o p

∣∣∣∣∣∣−b ·

∣∣∣∣∣∣
e g h
i k l
m o p

∣∣∣∣∣∣
+ c ·

∣∣∣∣∣∣
e f h
i j l
m n p

∣∣∣∣∣∣−d ·

∣∣∣∣∣∣
e f g
i j k
m n o

∣∣∣∣∣∣
Please pay attention to the alternating signs (+/-).
YouTube: Laplace expansion or cofactor expansion
Laplace expansion can be coupledwith theGaussmethod,
as shown in Example 5.

https://www.youtube.com/watch?v=iks8wCfPerU
https://www.youtube.com/watch?v=IBgXO5qvbrg
https://www.youtube.com/watch?v=C6fqwDGN0R0
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Figure 9. Geometrical interpretation of the matrix inverse and determinant impact. Left: |AAA|= 1. Right: |AAA|= 3 [4].
Copyright © 2021, Stack Exchange Inc, Licence: CC BY SA.

Example 5: Determinant after reduction with Gauss

det(AAA) =

I)
II− I)

III−2I)
IV−2I)

∣∣∣∣∣∣∣∣
1 3 2 −6
1 2 −2 −5
2 4 −2 −9
2 4 −6 −9

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣
1 3 2 −6
0 −1 −4 1
0 −2 −6 3
0 −2 −10 3

∣∣∣∣∣∣∣∣
The second row minus Row I, and Row III and IV
minus 2 times the first row, gives the right matrix.
Laplace expansion (see later) gives us the lower
right matrix block. Further reduction and an ad-
ditional isolation of the lower right block result in:

−I)
II−2I)
III−2I)

∣∣∣∣∣∣
−1 −4 1
−2 −6 3
−2 −10 3

∣∣∣∣∣∣=
∣∣∣∣∣∣
1 4 −1
0 2 1
0 −2 1

∣∣∣∣∣∣=
∣∣∣∣ 2 1
−2 1

∣∣∣∣
= 2 ·1−1 · (−2) = 4

A reduction is not always possible. The determinant
of a 3-by-3 matrix can be obtained with the the rule of
Sarrus,1 where the first two columns can be written be-
side the determinant to facilitate the optical assessment
of the diagonal product:∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣
a b
d e
g h

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣
a b
d e
g h∣∣∣∣∣∣

a b c
d e f
g h i

∣∣∣∣∣∣=+(a· e ·i+b· f ·g+c·d ·h)
−(c· e ·g+a· f ·h+b·d ·i)

Determinants can also be solved efficiently with the LU
decomposition explained in Example 10.
YouTube: The determinant

1 French mathematician: Pierre Frédéric Sarrus (1798—1861).

■ Inversion
An invertible matrix AAA has linear-independent rows and
columns. A matrix BBB is uniquely determined by AAA, if one
has the symmetric and invertible matrix:

AAABBB = BBBAAA = III

with identity matrix III.
Example 6: Inverse interpreted geometrically

Geometrically one can interpret the matrix [4]

AAA=

[
2 1
1 1

]
with related vectors

a1 =
[
2 1

]
a2 =

[
1 1

]
as an area in a 2-dimensional (2D) coordinate sys-
tem shown in Figure 9 left in red. The shape of the
inverse in blue is rotated by 90 degrees and is small
in the directions where AAA is large. The vector a2 is
at right angles to a1, and a1 is at a right angle to a2.
The determinant |A| describes the area in 2D and
the volume in 3D. Here, the determinant |A|= 1 is
one, and the area is preserved. If we change the
matrix

AAA=

[
2 1
1 2

]
with related vectors

a1 =
[
2 1

]
a2 =

[
1 2

]
to get another determinant |A|= 3, we see that the
area is changed.

We use Cramer’s rule:

xi =
det(AAAi)

det(AAA)
=

|AAAi|
|AAA|

i = 1, . . . ,n

with the site determinant |AAAi| to find the inverse analyt-
ically. The cofactors of the Laplace expansion can be

https://www.youtube.com/watch?v=Ip3X9LOh2dk
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saved in the so-called matrix of cofactors or comatrix CCC.
Its transposed version CCCT is the adjugate matrix:

AAA−1 =
1
|AAA|

CCCT =
1
|AAA|

adj(A) =
1
|AAA|


C11 C21 . . . Cn1
C12 C22 . . . Cn2
... ... . . . ...

C1n C2n . . . Cnn


Inversion of a 2 x 2 matrix

AAA−1 =

[
a b
c d

]−1

=
1

det(AAA)

[
d −b
−c a

]
=

1
ad −bc

[
d −b
−c a

]
Inversion of a 3 x 3 matrix

AAA =

 a b c
d e f
g h i

 AAA−1 =
1
|AAA|

CCCT

CCC =



+

∣∣∣∣e f
h i

∣∣∣∣ −
∣∣∣∣d f
g i

∣∣∣∣ +

∣∣∣∣d e
g h

∣∣∣∣
−
∣∣∣∣b c
h i

∣∣∣∣ +

∣∣∣∣a c
g i

∣∣∣∣ −
∣∣∣∣a b
g h

∣∣∣∣
+

∣∣∣∣b c
e f

∣∣∣∣ −
∣∣∣∣a c
d f

∣∣∣∣ +

∣∣∣∣a b
d e

∣∣∣∣



CCC =

+(ei− f h) −(di− f g) +(dh− eg)
−(bi− ch) +(ai− cg) −(ah−bg)
+(b f − ce) −(a f − cd) +(ae−bd)


CCCT =

+(ei− f h) −(bi− ch) +(b f − ce)
−(di− f g) +(ai− cg) −(a f − cd)
+(dh− eg) −(ah−bg) +(ae−bd)



YouTube: Inverse of a matrix
YouTube: Solve a linear equation set with the inverse of
a Matrix

■ The rank
Often, matrices derived from linear equation sets can be
reduced, as not all equations are necessary to describe
the system. We often search for the minimal matrix,
which is described by the number of linear-independent
rows or columns. Linear- independent rows and columns
are sets of rows or columns where none of the rows or
columns is a linear combination of the others (example
of linear dependency: Row 1 equals to the sum of Rows
2, and Row 3 or Column 3 is three times Column 1. The
number of linear-independent rows or columns is the
rank of a matrix:

rank(AAA) = rank(AAAT ) = rk(AAA)

This equation states that the rank computed on the rows
is equal to the rank obtained on the columns and there-
fore, by definition, the rank of a matrix cannot be greater
than the number of rows and columns in this matrix. In
other words, if a matrix B has 6 rows and 2 columns, we
can deduce that the rank is smaller than or equal to 2 as
the rank cannot be greater than the number of columns.
Consequently, a non-square matrix has by definition at
least one linear-dependent column or row. For our ma-
trix B, we know that we have at least 4 linear- dependent
rows as we have 6 rows and the rank is smaller or equal
to 2. The Gauss elimination is used determine the rank
of amatrix by producing asmany zeros as possible in the
hope of removing as many rows or columns as possible,
which results in the reduction of dimensions.
YouTube: Rank

■ Solving a set of linear equation sets
Naive solving of a linear equation set can be very time-
consuming.
YouTube: Naive solving of a linear equation set
We should start to check whether an equation set is solv-
able. The set of linear equations is solvable if the rank of
the coefficientmatrix AAA equals the rank of the augmented
coefficient matrix (AAA|bbb).

Example 7: Trivial solution only

2x1 + x2 = 0 I
x1 − x2 = 0 II

gives:

II : x1 = x2

in I : 2x2 +x2 = 0
x1 = x2 = 0

This is a trivial solution. Did we have a chance to
find this out earlier?
Wehave a homogeneous systemwith asmany equa-
tions m as variables n.

rk
[

2 1
1 −1

]
= 2 = n

which indicates that we only have trivial solutions
according to the Rouché-Capelli theorem. Because
the determinant is also non-zero:

det
[

2 1
1 −1

]
=−2−1 =−3 ̸= 0

we would also not expect that the system is going
to lose a dimension. Consequently, we expect only
trivial solutions.

https://www.youtube.com/watch?v=AMLUikdDQGk
https://www.youtube.com/watch?v=a2z7sZ4MSqo
https://www.youtube.com/watch?v=a2z7sZ4MSqo
https://www.youtube.com/watch?v=JUgrBkPteTg
https://www.youtube.com/watch?v=T-b9GbfO9Eg
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rank(AAA) = rank(AAA|bbb)

If the matrix is quadratic with m = n and the determinant
is not zero, then the set of linear equations is solvable.
In a homogeneous system AAAxxx = 000, it only leads to trivial
solutions a11 = a12 . . .amn = 0 or x1 = x2 . . .xn = 0. In an in-
homogeneous system we get a unique solution. If m < n
the the rows or columns are linear-dependent. Thus,
the related homogeneous system AAAxxx = 000 has non-trivial
solutions, which is good. If m < n, the inhomogeneous
system has many non-unique solutions. The rules are
summarized in the Rouché-Campelli theorem. We illus-
trate this with two examples, 7 & 8.

Example 8: Non-trivial solution

2x1 +2x2 = 0 I
−x1 − x2 = 0 II

gives:

II x1 =−x2

in I −2x2 +2x2 = 0

choose x2 = λ to get the solution:(
x1
x2

)
=

(
−λ

λ

)
What would we expect? According to the Rouché-
Capelli theorem we have many non-trivial solu-
tions because we have a homogeneous systemwith
fewer equations m than variables n:

rk
[

2 2
−1 −1

]
= 1 < n

and the determinant also indicates a loss of one
dimension:

det
[

2 2
−1 −1

]
=−2+2 = 0

A set of linear equations can be solved with the Rule of
Cramer:

xi =
det(AAAi)

det(AAA)
=

|AAAi|
|AAA|

i = 1, . . . ,n

using the site determinant |AAAi|. The side determinant |AAAi|
is the determinant |AAA|where the ith column is replaced
by column vector bbb.
YouTube: Cramer’s Rule — 2x2 and 3x3 matrices

Example 9: Cramer’s Rule 2x2 matrix

Consider the linear system:

a11x1 +a12x2 = b1

a21x1 +a22x2 = b2

which in matrix format is:[
a11 a12
a21 a22

][
x1
x2

]
=

[
b1
b2

]
.

The Cramer Rule is then:

x1 =

∣∣∣∣b1 a12
b2 a22

∣∣∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
b1a22 −a12b2

a11a22 −a12a21
,

x2 =

∣∣∣∣a11 b1
a21 b2

∣∣∣∣∣∣∣∣a11 a12
a21 a22

∣∣∣∣ =
a11b2 −b1a21

a11a22 −a12a21

The denominator (fraction below) is not allowed to
become zero which explains why the determinant
of AAA must be non-zero.

The Cramer Rule visualizes the resolvability but it takes
too much effort to get the solution. The solving process
is faster when one subtracts rows stepwise from each
other to bring the augmented coefficient matrix into a
certain form. Either in the Gauss form (row-echelon
form):

(
AAA bbb

)
=


• • • • •
0 • • • •
0 0 0 • •
0 0 0 • •

 .

with as many zeros as possible in the lower left-corner,
or in the Gauss-Jordan form:

(
AAA bbb

)
=


• 0 0 0 •
0 • • 0 •
0 0 0 • •
0 0 0 • •

 .

with as many zeros as possible in the lower-left and
upper-right corner. If one eliminates the elements with
the largest absolute value first, one reduces rounding
mistakes. This is called pivoting. The row-echelon form
becomes a reduced row-echelon form if every leading
coefficient is 1 and is the only non-zero entry in its col-
umn:

(
AAA bbb

)
=


1 ̸= 1 ̸= 1 ̸= 1 •
0 1 ̸= 1 ̸= 1 •
0 0 0 1 •
0 0 0 1 •

 .

https://www.youtube.com/watch?v=qmjapjGxf2s
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We have three types of elementary row (column) opera-
tions:

• Interchanging two rows (columns)
• Multiplying a row (column) by a real number
• Adding a multiple of one row (column) to another

row (column).
If we bring the Gauss form back to the equation set form,
we get:

a11x1 +a12x2+ · · · +a1nxn = b1
a22x2+ · · · +a2nxn = b2

...
amnxn = bm

where we can get our x values by working from the bot-
tom to the top. If it is in the Gauss-Jordan form, we can
directly read the solution.
YouTube: Gauss and Gauss-Jordan elimination

Additional reading

In practice, software usually uses more efficient
algorithms like the LU decomposition.a The LU
decomposition dissects a matrix AAA into two fac-
tors: a lower triangular matrix LLL and an upper
triangular matrix UUU :

AAA = LLLUUUa11 a12 a13
a21 a22 a23
a31 a32 a33

=

l11 0 0
l21 l22 0
l31 l32 l33

u11 u12 u13
0 u22 u23
0 0 u33


It resembles the Gauss elimination, whereby the
upper triangular matrix can be compared with
the Gauss form and the lower triangular ma-
trix collects the steps necessary to get the Gauss
form. The diagonal elements are usually set to
one l11 = l22 = l33 = 1 for convenience and because
we have more unknowns than equations. As you
already saw in the Gauss elimination, it is practi-
cal to change row and column entries. Therefore,
algorithms use a permutation matrix PPP to change
the rows of matrix AAA and the permutation ma-
trix QQQ to change the columns of matrix AAA. AAA is
multiplied by PPP from the left and by QQQ from the
right. A permutation matrix has n 1s and other-
wise zero entries. Each row and each column has
only a single 1. It could look like:

PPP =

0 1 0
1 0 0
0 0 1

 or QQQ =

1 0 0
0 0 1
0 1 0


The LU decomposition is then:

PPPAAAQQQ = LLLUUU

The solution of the system with linear equations
can be obtained with setting the LU decomposi-
tion into the general equation set form:

AAAxxx = bbb ⇒ LLLUUUxxx = bbb ⇒ LLLyyy = bbb and UUUxxx = yyy

Solving first LLLyyy = bbb and then UUUxxx = yyy gives us xxx
as shown in the following Example 10 and the
video:
YouTube: LU decomposition

a Polish mathematician: Tadeusz Banachiewicz (1882—
1954).

https://www.youtube.com/watch?v=AhUyh-2aPEc
https://www.youtube.com/watch?v=m3EojSAgIao
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Example 10: LU decomposition of 2-by-2 matrix

We have the system:[
6 1
4 2

][
x1
x2

]
=

[
1
2

]
We dissect the matrix AAA into the lower and upper
triangular matrix:[

6 1
4 2

]
=

[
l11 0
l21 l22

][
u11 u12
0 u22

]
.

We obtain the original matrix if we multiply the
lowerwith the uppermatrix. We obtain 4 equations
with 6 unknowns:

l11 ·u11 +0 ·0 = 6
l11 ·u12 +0 ·u22 = 1
l21 ·u11 + l22 ·0 = 4

l21 ·u12 + l22 ·u22 = 2

This underdetermined system allows us to set 2
variables to arbitrary non-zero values such as 1 for
the diagonal elements of the lower matrix: l11 =
l22 = 1. This is up to you to decide. We would
get infinitely many ways as there are also many
ways to perform aGauss elimination. We need only
1 convenient LU decomposition. The following
matrix entries are then:

u11 = 6, u12 = 1, l21 =
2
3
, u22 =

4
3
.

Substituting these values into the LU decomposi-
tion above yields:[

6 1
4 2

]
=

[
1 0
2
3 1

][
6 1
0 4

3

]
= LLLUUU .

Solving LLLyyy = bbb gives:[
1 0
2
3 1

][
y1
y2

]
=

[
1
2

]
and thus y1 = 1 and y2 =

4
3 . Solving UUUxxx = yyy[

6 1
0 4

3

][
x1
x2

]
=

[
1
4
3

]
gives us the solution x2 = 1 and x1 = 0. Let’s check
whether the solution is correct:[

6 1
4 2

][
0
1

]
=

[
1
2

]

Yes, it works.
Extra:
In the Gauss elimination, we would multiply the
first row by 2

3 (from LLL) and subtract this from the
second row:[

6 1
4− 2

3 ·6 2− 2
3 ·1

]
=UUU =

[
6 1
0 4

3

]
Determinant:
The determinant is easier to solve with the LU de-
composition because it depends only on the diago-
nal elements. The determinant is det(AAA)= det(LLL)det(UUU).
The determinant of thematrix det(AAA)= (1 ·1)·(l11l22)·
(u11u22) = 1 ·1 · ( 4

3 ·6) = 8 is only dependent on the
diagonal entries.

The storage demand for the lower and upper coef-
ficient matrix can be huge. Thus one can make use of
many zero values and use iterative procedures with esti-
mators. An example is the Gauss–Seidel method,2 which
needs much less storage but cannot be used for paral-
lel computing. For matrices larger than n = 1000, the
Strassen algorithm3 might be faster with lower numeric
stability. Only the Coppersmith–Winograd algorithm4

is even faster but only for matrices too big for modern
computers.

■ Eigenvectors and Eigenvalues
Modeling complicated systems can result in very ugly
mathematical problems. Instead of solving these kinds
of problems, mathematicians transform the space until
the problem becomes easier to solve. The solution of
the nice, beautiful system can then be transformed back
to the original space. Imagine, you are sitting in your
room, and you damn the authors of this script, the ex-
pectations, and math in general. Now, you squeeze and
stretch the dimensions of your room until this sheet of
paper becomes infinitely small and your head so big that
you master its challenges without any problem. After
you are done, you multiply your entire existence with
the inverse of the transformation matrix and find a fully
understood and solved script in front of you. How com-
plicated a problem is also depends on psychology. Forget
everything around you; allow yourself to make mistakes
and to be a child on discovery. The exam is not impor-
tant, but the excitement to learn and the willingness to
improve is. This is my favorite psychologic transforma-
tion matrix. Give it a try. So why is this imagination
important for the Eigenvectors? Eigenvectors are the
directions in space, which are not deformed during
transformation. Imagine, everything gets squeezed and

2 Germanmathematician: Philipp Ludwig von Seidel (1821—1896).
3 German mathematician Volker Strassen (1936—today).
4 Israeli American computer scientist Shmuel Winograd (1936—

today) and American mathematician Don Coppersmith (1950—
today).
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changes—just not in the directions of these Eigenvectors.
The directions along the Eigenvectors become merely
scaled by the Eigenvalue. Would it not be wonderful to
see a problem related to these vectors, compared to an
original unfavorable coordinate system? But how canwe
find out which directions are not influenced by a trans-
formation? Let’s say we have a transformation matrix AAA
and look for a vector vvv that can only be scaled by a factor
but not deformed by a matrix. Then we could just say
that the matrix is only like a factor. Let us call it λ and
imagine the Eigenspace:

AAAvvv = λvvv

The idea is not bad, but the right side does not have the
same structure as the left one. The identity matrix helps:

(AAA−λ III)vvv = 000

The matrix (AAA−λ III) should now be singular, to get non-
zero solutions for the Eigenvector vvv. The Eigenvector
vvv = 000 would be trivial and useless. A matrix is singular
if its determinant is zero:

det(AAA−λ III) = 0,

which alsomeans that thematrix is not invertible. We are
interested in vectors, which are scaled but not deformed
by a transformation matrix AAA multiplied by the left. We
calculate first the Eigenvalues and than the Eigenvectors.

Example 11: First Eigenvalues than Eigenvectors

We take the matrix:(
3 6
1 4

)
and get the Eigenvalues by:

AAA−λ III =
[

3−λ 6
1 4−λ

]
det(AAA−λ III) = 0 = (3−λ )(4−λ )−6

0 = λ
2 −7λ +6

0 = λ
2 + pλ +q (p-q-equation)

λ1,2 =− p
2
±
√( p

2

)2
−q

λ1,2 =
7
2
±

√(
−7
2

)2

−6

λ1,2 =
7
2
± 5

2
x1 = 1
x2 = 6

0 = (λ −6)(λ −1).

The term det(AAA−λ III) creates a polynomial which
we call a characteristic polynomialwithmaximal n
solutions for a nxn matrix. Setting it to zero causes
it be renamed a characteristic equation. Now we
have the Eigenvalues λ1 = 6 and λ2 = 1 and search
the related Eigenvectors starting with λ1 = 6:

(AAA−λ III)vvv = 000([
3 6
1 4

]
−
[

6 0
0 6

])
vvv = 000[

−3 6
1 −2

]
vvv = 000

to obtain the Eigenvector vvv1 =

[
2
1

]
directly. We can

also write it in more detail:

−3va +6vb = 0
va −2vb = 0

resulting in va = 2vb for the first equation. The
second equation gives 2vb −2vb = 0 which means
that vb can be everything but the equation set is
still solved. We have infinitely many solutions. So
we can set va = 2 with which we know that vb must
be one vb = 1. We obtain the non-unique solution
vvv1 =

[
2
1

]
. The reason is that we can only stretch the

Eigenvectors.
We proceed with the second Eigenvalue λ2 = 1:

(AAA−λ III)vvv = 000([
3 6
1 4

]
−
[

1 0
0 1

])
vvv = 000[

2 6
1 3

]
vvv = 000

to obtain Eigenvector vvv2 =

[
−3
1

]
.

Summary:

1 Use the determinant of (AAA−λ III) to get a polynomial
of degree n.

2 Find the Eigenvalues by identifying the roots of
the characteristic equation with det(AAA−λ III) = 0.

3 Find to each Eigenvalue the associated Eigenvector
via (AAA−λ III)vvv = 0.

If all Eigenvalues have another value, we call them sim-
ple and the associated Eigenvectors are independent. If
an Eigenvalue appears several times, we say that the
Eigenvalue hasmultiplicity k. Software programs like
MATLAB return normalizedEigenvectorswith unit length.
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YouTube: Eigenvalues and Eigenvectors
Fast equation for 2-by-2 matrix
For the dimension 2 to 4, we have fast equations to solve
the Eigenvalues. From the matrix:[

a b
c d

]
we obtain the characteristic polynomial:

det
[

λ −a −b
−c λ −d

]
= λ

2 − (a+d)λ + (ad −bc)

= λ
2 − λ tr(AAA) + det(AAA)

from which we get the Eigenvalues with the equation:

λ =
tr(AAA)±

√
tr2(AAA)−4det(AAA)

2
.

with the distance between Eigenvalues:

∆ =:
√

tr2(AAA)−4det(AAA)

which will play a role in the stability theory in Block 3.
Additional information: for a matrix of higher dimen-
sion, it already seems to be more complicated.

det(αIII −AAA) = 0

= α
3 −α

2 tr(AAA)−α
1
2
(
tr(AAA2)− tr2(AAA)

)
−det(AAA)

and for Dimension 4 it is not considered overly useful.

Example 12: Get Eigenvalue via fast equations

AAA =

[
4 3
−2 −3

]
gives tr(AAA)= 4−3= 1, det(AAA)= 4(−3)−3(−2)=−6
and the characteristic equation:

0 = λ
2 −λ −6 = (λ −3)(λ +2)

with Eigenvalues 3 and -2. The Eigenvectors are
worked out using:

AAA−3III =
[

1 3
−2 −6

]
, AAA+2III =

[
6 3
−2 −1

]
(3,−1) for Eigenvalue 3 and (1,−2) for Eigenvalue
-2.
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Figure 10. PCA plot of cell lines. Location and sphere size
indicate which cell lines behavemore similar than others.
Cell lines which are close behave similarly. Source: [5].
Copyright © 2013, Macmillan Publishers Limited.

■More on biological data as a matrix
Often, the network topology is unknown (but of course
existent). Detected molecules change with time, and
their behavior depends on their connection to other ele-
ments. Among them, interlinked elements correlate or
anti-correlate with each other. The more different pertur-
bations are applied, the more likely a valid connection
can be detected. This is a property which can be used
for, e.g., reconstruction of networks and for data-driven
modeling. The simultaneous observation of more than
one outcome variable is the definition of multivariate
statistics. Related data-tables with multiple variables
are actually nothing other than matrices with molecular
features as rows and experimental datasets, conditions,
or organisms as columns:

M
icr

oa
rra

y1
M
icr

oa
rra

y2

. . .
Gene 1
Gene 2

...

• • •
• • •
• • •



Ce
ll
lin

e1
Ce

ll
lin

e2
. . .

Protein 1
Protein 2

...

• • •
• • •
• • •


The columns represent the dimensions or coordinate
axes of the data and the rows contain coordinate val-
ues on the given coordinate system. Consequently, each
gene is a vector in a coordinate system spanned by the
matrix columns.
To illustrate the application of matrix calculation, we
will briefly discuss here the statistical method of Prin-
cipal Component Analysis (PCA): sometimes, we want
to know whether the columns, with all the row entries
projecting to them, have subsets that are more similar to
one another than to other data points. Now, imagine a
dataset with 40 coordinate axes representing 40 microar-
rays, and then try to place tens of thousands of points

https://www.youtube.com/watch?v=PFDu9oVAE-g&t=11s
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representing genes into this coordinate system. Horri-
ble! But maybe we can find another coordinate system
which is visually more inviting and more informative.
Let’s say 40 data points representing microarrays in a
3-dimensional coordinate system, where the biggest dif-
ferences between the microarrays are selected and are
thus pronounced. The variability in each row causes the
differences between the microarrays. Data analysts use
Principal Component Analysis (PCA) to do exactly this.
One starts with 1 additional coordinate axis which ex-
plains the most variability in the old dataset. This is the
first principal component. The algorithm then searches
for another coordinate axis which is orthogonal (90◦)
to the first principal component and again describes as
much variability as possible. This procedure goes on
until all genes project to the new coordinate system. Af-
ter one has all these principle components, one neglects
stepwise the components representing the lowest vari-
ability until 2 to 4 remain. Ideally, the remaining princi-
pal components explain more than 80% of the variability.
Principal Component Analysis is used, e.g., as standard
quality control for microarrays. Are the treated and the
untreated samples in two separate groups? Is one repli-
cate completely different from the others and might it
represent an outlier? As an example, PCA also helps us
to understand the microbiome better. Are different bac-
teria types more closely related to others and how does
it change if they are exposed to drugs or another diet?
A collection of micro-organisms might build one cluster.
After the diet is changed, the micro-organisms might be
found in another cluster. Micro-organisms which have
not changed might not be affected by the diet change. In
Figure 10, you see an example with different cell lines
and their response to TNF-related apoptosis-inducing
ligand (TRAIL) [5]. The dataset contains the base level
of 17 core apoptosis proteins in 11 melanoma cell lines
under different conditions with 612 measurements in
total. The authors used network information to group
proteins to functional network motifs, which allowed
a higher accuracy in estimating the apoptosis-inducing
impact of drugs.
YouTube: PCA step for step

Additional reading

The PCA is related to the partial least square
regression (PLSR). Here, we separate our data
matrix in two parts, whereby the upper part rep-
resents phenomenological readouts such as via-
bility:

co
nd

iti
on

1
co
nd

iti
on

2

. . .
Viability
Cell death
Protein 1
Protein 2

...


• • •
• • •
• • •
• • •
• • •


Both blocks are subject to a dimension reduction
approach but now with the aim to maximize
the co-variance between both blocks. PCA uses
the variance and PLSR uses co-variance. Such
an approach is, e.g., used for systematic drug
testing and for initial hints for network modeling.
An example is shown in Figure 11. The authors
created an high-dimensional data block with 5
different RAF/MEK inhibitors, 7 doses, 5 time
points, 21 protein levels, and 10 other cell lines
[6]. Here, drug dose is the first and drug type is
the second principal component. The adjusted
variable importance in the projection (VIP)
explains which protein had the most prominent
negative or positive impact on the cell viability
at which time. This led to the identification of
a consistent down-regulation of the JNK/c-Jun
pathway upon RAF/MEK inhibitor treatment at
early time points, but an up-regulation of 6 cell
lines at later time points. In 4 out of 10 cell lines,
JNK/c-Jun up-regulation caused a subset of cells
to become quiescent and apoptosis-resistant [6].

We have learned that matrices are used in several
applications in biology. Matrices can represent biochem-
ical networks and data caused by them. In the following
section, we will learn how to work with matrices. These
basics are fundamental for the remainder of the book and
very useful for your career, independent of whether you
want to mainly work with the keyboard or the pipette
in the future. It will help us to analyze and understand
what we do.

https://www.youtube.com/watch?v=FgakZw6K1QQ
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(Spearman’s q = 0.47, P = 0.02; see below; Supplementary Fig

S2P). We conclude that the combination of RAF and JNK inhibition

(or JUN depletion) increases apoptosis in some vemurafenib-

resistant cell lines to a level normally observed in sensitive cells,

implying that the up-regulation of JNK/c-Jun in melanoma cells

following vemurafenib exposure decreases cell killing and that the

combination of RAF and JNK inhibitors may have therapeutic

potential.

A network perspective on adaptive responses

Mapping VIP values onto a schematic of immediate-early signaling

(Fig 4A) reveals the diversity of adaptive responses to RAF and

MEK inhibition with respect to magnitude and timing (Fig 4A). In

nearly all cell lines, the quiescence marker p27 and apoptosis mark-

ers cPARP and Bim were up-regulated and mitotic marker pH3

down-regulated 24–48 h after drug exposure. Whereas exposure of
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Figure 2. Variability in the magnitude, direction, and timing of signaling changes in response to RAF/MEK inhibition.

A PLSR-derived variable importance in the projection (VIP) scores predicting viability for each of the ten studied cell lines. VIP scores are shown for each cell line-specific
model, each signal and measurement time point. The direction of the bars (left or right) shows whether the changes in signal correlated negatively or positively with
relative viability. VIP scores of larger than one indicate important variables (signals and time points) that predict the responses (viability).

B Unsupervised clustering of melanoma cell lines based on the VIP scores >1 from each individual cell line model (excluding pMEK and pERK). Prior to clustering, VIP
scores of between 0 and 1 were set to zero and a minus sign was added to VIP scores associated with signals that negatively correlated with viability. Average
relative resistance of the cell lines to the five tested RAF/MEK inhibitors (on the right) is computed based on area under the time–dose–response curve plotted for
non-apoptotic viability measured by single-cell imaging across seven doses and two time points (48 and 72 h) following treatment. The data for the cell line K2 are
not shown because clumping made it difficult to score single-cell phenotypes in this cell line after 72 h.

Source data are available online for this figure.
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(Spearman’s q = 0.47, P = 0.02; see below; Supplementary Fig

S2P). We conclude that the combination of RAF and JNK inhibition

(or JUN depletion) increases apoptosis in some vemurafenib-

resistant cell lines to a level normally observed in sensitive cells,

implying that the up-regulation of JNK/c-Jun in melanoma cells

following vemurafenib exposure decreases cell killing and that the

combination of RAF and JNK inhibitors may have therapeutic

potential.

A network perspective on adaptive responses

Mapping VIP values onto a schematic of immediate-early signaling

(Fig 4A) reveals the diversity of adaptive responses to RAF and

MEK inhibition with respect to magnitude and timing (Fig 4A). In

nearly all cell lines, the quiescence marker p27 and apoptosis mark-

ers cPARP and Bim were up-regulated and mitotic marker pH3
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Figure 2. Variability in the magnitude, direction, and timing of signaling changes in response to RAF/MEK inhibition.

A PLSR-derived variable importance in the projection (VIP) scores predicting viability for each of the ten studied cell lines. VIP scores are shown for each cell line-specific
model, each signal and measurement time point. The direction of the bars (left or right) shows whether the changes in signal correlated negatively or positively with
relative viability. VIP scores of larger than one indicate important variables (signals and time points) that predict the responses (viability).

B Unsupervised clustering of melanoma cell lines based on the VIP scores >1 from each individual cell line model (excluding pMEK and pERK). Prior to clustering, VIP
scores of between 0 and 1 were set to zero and a minus sign was added to VIP scores associated with signals that negatively correlated with viability. Average
relative resistance of the cell lines to the five tested RAF/MEK inhibitors (on the right) is computed based on area under the time–dose–response curve plotted for
non-apoptotic viability measured by single-cell imaging across seven doses and two time points (48 and 72 h) following treatment. The data for the cell line K2 are
not shown because clumping made it difficult to score single-cell phenotypes in this cell line after 72 h.

Source data are available online for this figure.
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Figure 11. After the perturbation of the systemwith differ-
ent conditions, we seewhich protein on the left correlates
positively or negatively with the cell variability in differ-
ent cell lines such as LOXIMVI or SKMEL28. The cell
lines behave quite differently. The importance of each
player depends on the time, so phosphorylated Histone
H3 is first correlated with the cell viability after 24h or
48h. Figure source (cropped): [6], Licence: CC BY 4.0.
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3. Exercises
■ Representation
Write the following systems of equation in matrix form:

y1 = 2x1 +3x2

y2 = x2 −5x1 (3.1)

ẋ = 1− x− y

ẏ = 1+ x− y (3.2)

ẏ1 = δ11x1 +δ12x2 +δ13x3

ẏ2 = δ22x2 +δ21x1 +δ23x3 (3.3)
ẏ3 = δ33x3 +δ32x2 +δ31x1

Write the following matrix equation as a system of dif-
ferential equations:

d
dt

(
x1
x2

)
=

(
3 −2
1 5

)(
x1
x2

)
+

(
1
0

)
u (3.4)

■ Basic operations on matrices
Perform the following calculations:(

3 −2
1 5

)
+

(
4 −4
3 0

)
= (3.5)

(
3 −2
1 5

)
−
(

4 −4
3 0

)
= (3.6)

5
(

3 −2
1 5

)
= (3.7)

(
3 −2
1 5

)(
4 −4
3 0

)
= (3.8)

(
4 −4
3 0

)(
3 −2
1 5

)
= (3.9)

Transpose the following matrices:(
3 −2
1 5

)T

= (3.10)

3 −2 1
1 5 0
2 −1 7

T

= (3.11)

■ Determinant
Find the determinants of the following matrices:(

3 −2
1 5

)
(3.12)

3 −2 1
1 5 0
2 −1 7

 (3.13)

3 −2 2
1 5 0
2 −1 0

 (3.14)


3 −2 2 2
1 5 1 2
2 −1 −1 −2
1 2 3 1

 (3.15)

■ Rank and inversion
Determine the rank of:(

3 −2
−6 4

)
(3.16)

(
3 −2
6 −3

)
(3.17)

3 −2 1
1 5 0
1 2 3

 (3.18)

1 1 −3
1 −1 2
2 0 −1

 (3.19)

Invert the following matrix:(
3 −2
6 3

)
(3.20)

2 1 −1
0 2 1
5 2 −3

 (3.21)



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching 18/24

■ Linear systems of equations
Solve the following systems of equations (AAAxxx = bbb). Con-
sider thereby the rank of the coefficient matrix AAA and of
the augmented coefficient matrix (AAA|bbb).

2x1 + x2 − x3 = 0
x2 + x3 = 0

(3.22)

2x1 + x2 = 0
x1 − x2 = 0

(3.23)

x1 +2x2 = 1
x1 +2x2 = 2

(3.24)

5x1 + x2 = 2
x1 −2x2 = 7

(3.25)

2x1 + x2 − x3 =−5
x2 + x3 = 1

(3.26)



Notes
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4. Solutions
Do not betray yourself!

Exercises
■ Representation
Task 3.1

y1 = 2x1 +3x2

y2 = x2 −5x1
↔

2x1 +3x2 = y1

−5x1 + x2 = y2(
2 3
−5 1

)(
x1
x2

)
=

(
y1
y2

)
Task 3.2

ẋ = 1− x− y

ẏ = 1+ x− y
↔

(
−1 −1
1 −1

)(
x
y

)
+

(
1
1

)
=

(
ẋ
ẏ

)
Task 3.3

ẏ1 = δ11x1 +δ12x2 +δ13x3

ẏ2 = δ22x2 +δ21x1 +δ23x3

ẏ3 = δ33x3 +δ32x2 +δ31x1ẏ1
ẏ2
ẏ3

=

δ11 δ12 δ13
δ21 δ22 δ23
δ31 δ32 δ33

x1
x2
x3


Task 3.4

d
dt

(
x1
x2

)
=

(
3 −2
1 5

)(
x1
x2

)
+

(
1
0

)
u

dx1

dt
= 3x1 −2x2 +u

dx2

dt
= x1 +5x2

■ Basic operations on matrices
Task 3.5(

3 −2
1 5

)
+

(
4 −4
3 0

)
=

(
7 −6
4 5

)
Task 3.6(

3 −2
1 5

)
−
(

4 −4
3 0

)
=

(
−1 2
−2 5

)
Task 3.7

5
(

3 −2
1 5

)
=

(
15 −10
5 25

)
Task 3.8(

3 −2
1 5

)(
4 −4
3 0

)
=(

(3 ·4)+(−2 ·3) (3 · (−4))+(−2 ·0)
(1 ·4)+(5 ·3) (1 · (−4))+(5 ·0)

)
=

(
6 −12

19 −4

)

Task 3.9(
4 −4
3 0

)(
3 −2
1 5

)
=(

12−4 −8−20
9+0 −6+0

)
=

(
8 −28
9 −6

)
Task 3.10(

3 −2
1 5

)T

=

(
3 1
−2 5

)
Task 3.113 −2 1

1 5 0
2 −1 7

T

=

 3 1 2
−2 5 −1
1 0 7


■ Determinant
Task 3.12

det
(

3 −2
1 5

)
=

∣∣∣∣3 −2
1 5

∣∣∣∣= (3 ·5)− (1 · (−2)) = 17

Task 3.13

det

3 −2 1
1 5 0
2 −1 7

= (3 ·5 ·7)+(−2 ·0 ·2)+(1 ·1 · (−1))

− (2 ·5 ·1)− (−1 ·0 ·3)− (7 ·1 · (−2))
= 108

Task 3.14

det

3 −2 2
1 5 0
2 −1 0

= 0+0−2−20−0−0 =−22 (4.1)

Task 3.15∣∣∣∣∣∣∣∣
3 −2 2 2
1 5 1 2
2 −1 −1 −2
1 2 3 1

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣
5 1 2
−1 −1 −2
2 3 1

∣∣∣∣∣∣− (−2)

∣∣∣∣∣∣
1 1 2
2 −1 −2
1 3 1

∣∣∣∣∣∣
+2

∣∣∣∣∣∣
1 5 2
2 −1 −2
1 2 1

∣∣∣∣∣∣−2

∣∣∣∣∣∣
1 5 1
2 −1 −1
1 2 3

∣∣∣∣∣∣
= 3(−5−4−6+4+30+1)
+2(−1−2+12+2+6−2)
+2(−1−10+8+2+4−10)
−2(−3−5+4+1+2−30)
= 138
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■ Rank and inversion
Task 3.16(

3 −2
−6 4

)
II+2 · I

=

(
3 −2
0 0

)
→ Rank is 1

Task 3.17(
3 −2
6 −3

)
II−2 · I

=

(
3 −2
0 1

)
→ Rank is 2

Task 3.183 −2 1
1 5 0
1 2 3

 I−3 · II
=

III− II

0 −17 1
1 5 0
0 −3 3

→ Rank is 3

Task 3.191 1 −3
1 −1 2
2 0 −1

 II− I
=

III−2 · I

1 1 −3
0 −2 5
0 −2 5


III− II
=

1 1 −3
0 −2 5
0 0 0

→ Rank is 2

Task 3.20∣∣∣∣3 −2
6 3

∣∣∣∣= 9+12 = 21

(
3 −2
6 3

)−1

=
1
21

(
3 2
−6 3

)
Task 3.21∣∣∣∣∣∣

2 1 −1
0 2 1
5 2 −3

∣∣∣∣∣∣=−12+5+10−4 =−1

2 1 −1
0 2 1
5 2 −3

−1

=

−

 +[2 · (−3)− (1 ·2)] −[0 · (−3)− (1 ·5)] +[0 ·2−2 ·5]
−[1 · (−3)− (−1 ·2)] +[2 · (−3)− (−1 ·5)] −[2 ·2−1 ·5]
+[1 ·1− (−1 ·2)] −[2 ·1− (−1 ·0)] +[2 ·2−1 ·0]

T

=−

−8 5 −10
1 −1 1
3 −2 4

T

=−

 −8 1 3
5 −1 −2

−10 1 4


=

 8 −1 −3
−5 1 2
10 −1 −4



Task 3.22

2x1 + x2 − x3 = 0
x2 + x3 = 0

We start with the first equation:

I− II : 2x1 −2x3 = 0

x1 = λ : 2λ −2x3 = 0

x3 = λ

and use the parametric λ . Then we solve the second
equation:

x3 = λ in II : x2 +λ = 0

x2 =−λ .

and get the parametric solution or general solution (x1,x2,x3)=
(λ ,−λ ,λ ). The matrices are:

AAA =

(
2 1 −1
0 1 1

)
→ Rank is 2

(
AAA bbb

)
=

(
2 1 −1 0
0 1 1 0

)
→ Rank is 2.

We have 3 variables but only 2 equations. One of the
variables has to be chosen (or treated as a parameter)
and the solution for the 2 other variables will depend on
this choice or the parameter. Because we have infinite
different choices for this parameter (often called lambda
λ), we have infinite solutions.
Task 3.23

2x1 + x2 = 0
x1 − x2 = 0

I+ II : 3x1 = 0
x1 = 0

x1 = 0 in II : 0−x2 = 0
x2 = 0

The matrices are:

AAA =

(
2 1
1 −1

)
→ Rank is 2

(
AAA bbb

)
=

(
2 1 0
1 −1 0

)
→ Rank is 2.

We have 2 equations and 2 variables with exactly 1 solu-
tion.
Task 3.24

x1 +2x2 = 1
x1 +2x2 = 2
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I− II : 0 =−1  

The equation set is inconsistent. The matrices are:

AAA =

(
1 2
1 2

)
→ Rank is 1

(
AAA bbb

)
=

(
1 2 1
1 2 2

)
→ Rank is 2.

Task 3.25

5x1 + x2 = 2
x1 −2x2 = 7

Alternative 1:

2 · I+ II : 11x1 = 11
x1 = 1

x1 = 1 in II : 1−2x2 = 7
x2 =−3

The matrices are:

AAA =

(
5 1
1 −2

)
→ Rank is 2

(
AAA bbb

)
=

(
5 1 2
1 −2 7

)
→ Rank is 2.

We have 2 equations and 2 variables with exactly 1 solu-
tion.
Alternative 2:
We use Cramer’s Rule now with the determinants:

det(AAA) =
∣∣∣∣5 1
1 −2

∣∣∣∣=−10−1 =−11

det(AAA1) =

∣∣∣∣2 1
7 −2

∣∣∣∣=−4−7 =−11

det(AAA2) =

∣∣∣∣5 2
1 7

∣∣∣∣= 35−2 = 33

which finally give:

x1 =
det(AAA1)

det(AAA)
=

−11
−11

= 1

x1 =
det(AAA2)

det(AAA)
=

33
−11

=−3

Task 3.26

2x1 + x2 − x3 =−5
x2 + x3 = 1

Alternative 1:
We start with the first equation:

I+ II : 2x1 +2x2 =−4

x1 = λ : 2λ +2x2 =−4

x2 =−2−λ

and then we solve the second equation:

x2 =−2−λ in II : −2−λ +x3 = 1

x3 = 3+λ .

Alternative 2:
2 equations with 3 unknowns. 1 is flexible. Choose
x3 = λ .

I− II : 2x1 −2x3 =−6

x1 =−3+λ

II : x2 +x3 = 1

x2 = 1−λ

The matrices are:

AAA =

(
2 1 −1
0 1 1

)
→ Rank is 2

(
AAA bbb

)
=

(
2 1 −1 5
0 1 1 1

)
→ Rank is 2.

More variables than equations. Thus, we have infi-
nite solutions.

The number of solutions of linear equation sets can also
be determined with the Rouché–Capelli theorem5 sum-
marized in Table 1.

5 French mathematician: Eugène Rouché (1832—1910).
Italian mathematician: Alfredo Capelli (1855—1910).
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Table 1. Overview: Solutions of linear equation systems
(Rouché–Capelli theorem)

homogeneity
AAAxxx = bbb AAAxxx = 000

m equations (homogeneous system)
n variables

Rk(AAA|bbb) ̸= Rk(AAA) system unsolvable not possible for bbb = 000
Task 3.24 homogeneous systems

always solvable
Rk(AAA|bbb) = Rk(AAA) system solvable

unique solution trivial solution
m = n (xxx = 000)

Task 3.25 Task 3.23
non-unique solution non-trivial solutions

m < n
Task 3.26 Task 3.22



Notes



Chapter 2: Metabolic modeling
Thomas Sauter, Marco Albrecht

Motivation
Metabolism is a mirror of many biological processes and extracellular metabolites can be accessed with relatively
robust measurements. Moreover, basic analysis with a stoichiometric matrix (representing a metabolic network)
can be adopted bymany researchers because it ismainly based on linear algebra. However, well-trained experts are
needed for the analysis of dynamic behavior, contextualization, and advanced research questions. Metabolism can
also be analyzed on a large scale, e.g. with graph-theoretical approaches or in more detail with deep, mechanistic,
and dynamical insights. In this chapter, we introduce Stoichiometric Network Analysis (SNA) which is an
approach that is somewhere between detailed and large scale. SNA helps to exclude biologically unrealistic
scenarios and, instead, gives us a variety of possible flux distributions. To thereof identify the biologically
meaningful solutions, we need to constrain the solution space further, e.g. with measurements. We have two
possible methods at hand. Either we impose known fluxes and maximize, e.g. the growth rate in a constrained
model with Flux Balance Analysis (FBA), or we impose measured fluxes andminimize residuals during numeric
matrix manipulations with Metabolic Flux Analysis (MFA). FBA also helps us to solve genome-wide problems,
while MFA scrutinizes smaller models and allows the integration of isotope-labelled metabolites. Either way, the
insight we obtain is crucial to understand the biology of metabolism.
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Contact: thomas.sauter@uni.lu. Licence: CC BY-NC
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1. Lecture summary
We learned about the essentials of graph theory and de-
rived the first stoichiometric matrix (Chapter 1). Nodes
and the interaction between them represent the topol-
ogy of networks. Such networks can be written in matrix
form. The introduction to linear algebra was of great
importance to entering the field of metabolic modeling.
Metabolic networks mainly describe enzyme-controlled
fluxes of metabolites within a system. We can now study
different methods for the modeling of metabolic net-
works except for dynamical mechanistic models (to be

introduced in Chapter 3). Metabolic models can be built
with different levels of detail and in various ways. We
start with the following simple classification, in which
the capital letters in the reactions are the concentrations
of substances and the reaction arrows or edges define
the reactions, which can symbolize enzymes, fluxes, and
other transport systems. Principles of mechanism-based
models and dynamic analysis will be addressed in Chap-
ters 3 and 4 of this book.

Table 1. Bottom-up approaches:

interaction-based graph theory
methods

(topology)

stoichiometry-based stoichiometric network
analysis

A + B−−⇀↽−− C

mechanism-based dynamic analysis
A + B k1−−⇀↽−−

k−1
C +D

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0                                                                               https://doi.org/10.11647/OBP.0291.02
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1.1 ■ Stoichiometric Network Analysis
The stoichiometric matrix

For balancing, we need:

m . . . number of substances

r . . . number of reactions

n . . . stoichiometric coefficients

v j . . . rate of reaction j

ni j . . . stoichiometric coefficient (conversion) of metabo-
lite i in reaction j

Si . . . concentration of metabolite i (also: ci)

These are elements of the following general equation
that describes the change of substrate concentration Si
over time:

dSi

dt
= Ṡi =

r

∑
j=1

ni jv j i = 1, . . . ,m

= ni1v1 +ni2v2 + . . .+nirvr

The change of substrate concentrations is a consequence
related to both the general stoichiometry of the reac-
tion network—as indicated in the stoichiometric matrix
NNN—and the given flux vector vvv. The respective matrix
representation is:

ṠSS = NNNvvv
SSS = (S1,S2, . . . ,Sn)
vvv = (v1,v2, . . . ,vr)

and the stoichiometric matrix is:

NNN = {ni j}
i = 1 . . .m
j = 1 . . .r .

The columns of the stoichiometric matrix represent the
reactions and the rows represent the metabolite concen-
trations.
For example, a reconstruction of a "genome-scale net-
work" for E. coli encompasses 1136 unique metabolites
and 2251 reactions. This results in a stoichiometric ma-
trix NNN with 1136 rows and 2251 columns resulting in
2557136 entries. However, the matrix is usually sparse
and only >25000 entries are actually non-zero [1].
The stoichiometric matrix:

• does not change over time (invariant)

• usually has many zero entries

• contains pseudo-reactions (uptake, excretion, trans-
port, growth)

• is crucial for structural analysis with linear algebra.

Concentrations are usually written with brackets [], but
in the context of this chapter we always assume con-
centrations when using a given molecule name in an
equation, and thus write concentrations without brack-
ets if not stated differently. E.g. we write G6P for the
concentration of glucose-6-phosphate instead of [G6P].
Also note that some reactions can be reversible. In this
case, we can only consider the net reaction rate v f − vb
(from left to right) to create the stoichiometric matrix.
Thus, some fluxes can be negative, if the backward re-
action vb is larger than the forward reaction v f . Alterna-
tively, we can split a reversible reaction into two elemen-
tary reactions (see Example 1).

Example 1: Glucose to fructose

PGI reaction: G6P−−⇀↽−− F6P
Two metabolites m = 2
Case 1: two elementary reactions (r=2):
PGI reaction: G6P

v1−−⇀↽−−v2
F6P v=const.

n11 =−1; n21 = 1; n12 = 1; n22 =−1

NNN =

(
−1 1
1 −1

)

⇒ Ṡ1 = ˙G6P = n11v1 +n12v2 =−v1 + v2

Ṡ2 = ˙F6P = n21v1 +n22v2 =+v1 − v2

Case 2: one net reaction (r=1):
PGI: G6P v−−⇀↽−− F6P v=const.
n11 =−1; n21 = 1

NNN =

(
−1
1

)

⇒ Ṡ1 = ˙G6P = n11v =−v

Ṡ2 = ˙F6P = n21v =+v

Example 2: Oxohydrogen reaction

Reaction: 2H2 +O2
v1−−⇀↽−− 2H2O

m = 3; r = 1; n11 =−2; n21 =−1; n31 =+2

⇒
Ṡ1 = Ḣ2 = (−2v f +2vb) =−2v1
Ṡ2 = Ȯ2 = (− v f + vb) =−v1
Ṡ3 = ˙H2O = (+2v f −2vb) = +2v1
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The stoichiometric matrix is:

NNN =

reactions︷︸︸︷
v1−2
−1
2

 H2
O2

H2O

metabolites

with the final representation in matrix and equa-
tion set form:

˙ H2
O2

H2O

=

−2
−1
2

(
v1
)

⇔
Ḣ2 =−2v1
Ȯ2 =−v1

˙H2O =+2v1
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Figure 1. A simple metabolic system. The grey dotted
line represents the system boundary. The A Molecule
is transported from outside to inside and is then con-
verted to Molecule B via two possible reactions. Finally,
Molecule B is leaving the system.

Example 3: Simple metabolic network

As shown in Figure 1, there are two possible ways
to produce Metabolite B, either via v2 or v3. All net-
work edges can be weighted so that we do not have
an incidence matrix, but a stoichiometric matrix:

NNN =

v1 v2 v3 v4
1 −1 −1 0
0 1 1 −1
−1 0 0 0
0 0 0 1


Ain
Bin
Aout
Bout

where the reactions determine the columns and
the metabolite concentration determines the row
entries. External metabolites are not balanced in
this approach because the steady state of external
metabolites (in our example Aout and Bout) cannot
be assumed. Consequently, we can reduce the sys-
tem to:

NNN =
v1 v2 v3 v4[
1 −1 −1 0
0 1 1 −1

]
A
B

Example 4: Enzyme kinetics

Balancing: E + S v1
v−1

ES v2 E+P
Resulting in:

˙
S
E

ES
P


(4x1)

=


−1 1 0
−1 1 1
1 −1 −1
0 0 1


(4x3)

 v1
v−1
v2


(3x1)
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Figure 2. Another metabolic network/system with two
inputs and three outputs. The transport of Molecule B is
bi-directional. The system is controlled by the transport
of the external concentration of A and B and produces
Product P but can also produce B and E.

Example 5: Larger metabolic network

A slightly larger metabolic network is shown in
Figure 2 with the reversible reactions:

rev= {R2,R8}

and irreversible reactions:

irrev= {R1,R3,R4,R5,R6,R7,R9,R10}

Note that the forward reactions (v2 : Bout → B and
v8 : B →C) were considered in order to create the
stoichiometric matrix N:

NNN =

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
1 0 0 0 −1 −1 −1 0 0 0
0 1 0 0 1 0 0 −1 −1 0
0 0 0 0 0 1 0 1 0 −1
0 0 0 0 0 0 1 0 0 −1
0 0 0 −1 0 0 0 0 0 1
0 0 −1 0 0 0 0 0 1 1


A
B
C
D
E
P
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Example 6: Branched metabolic network

v1 S1

v3

S3

v2 2S2
v4

What does the stoichiometric matrix NNN and the bal-
ance equation look like?
The stoichiometric matrix is:

NNN =

reactions︷ ︸︸ ︷
v1 v2 v3 v41 −1 −1 0
0 2 0 −2
0 0 1 0

S1
S2
S3



m
etabolites

The balance equation of the system in the matrix
form is:

˙S1
S2
S3


(3x1)

=

1 −1 −1 0
0 2 0 −2
0 0 1 0


(4x4)


v1
v2
v3
v4


(4x1)

and in the equation set form is:

Ṡ1 = v1 − v2 − v3

Ṡ2 = 2v2 −2v4

Ṡ3 = v3.

System in steady state
Usually we would like to look closer at our system and
see what happens if:

• fluxes are constant and do not change over time

• metabolite concentrations are constant and do not
change over time (ṠSS = 000).

Therefore, we look at the steady-state solution:

NNNvvv = 000

The steady-state solution is available and appropriate as
soon as the states of the system no longer change and
thus time dynamics are not taking place.
See Example 7 with Figure 3. Here, we have the sit-
uation as described in the motivation: we have many
non-trivial solutions but we do not yet know which so-
lution is biologically meaningful. Therefore, we need
to constrain the system further by integrating experi-
mental data. In the practical work, one rate might be
measured, e.g. v1 = 1 and then the other fluxes (v2,v3)
can be calculated accordingly.
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Figure 3. Flux distributions of Example 7. The balance
of input flux v1 and output flux v3 requires a detour via
Metabolite B with flux v2.

Example 7: Flux in steady state

The system in Figure 3 can be written as a system
of elementary reactions:

/0
v1−−⇀↽−− A

A
v2−−⇀↽−− B

A+B
v3−−⇀↽−− /0

and the related equation set:

Ȧ = v1 − v2 − v3 = 0 (1)
Ḃ = v2 − v3 = 0 (2)

which can be written in the matrix form:[
1 −1 −1
0 1 −1

]
︸ ︷︷ ︸

NNN

v1
v2
v3


︸ ︷︷ ︸

vvv

= 000 rk(NNN) = 2< 3= r

Because the rank of NNN is smaller than the number of
reactions, we have to deal with an infinite number
of non-trivial solutions.
Solution: Assume: v1 = a.
Beginning with Equation 1:

a− v2 − v3 = 0
v2 = a− v3

which is then put in Equation 2:

a− v3 − v3 = 0
a = 2v3

v3 =
a
2

which in turn gives the solution if it is put into the
previous equation⇒ v2 = a− a

2 = a
2 . The solution

is: v1
v2
v3

= a

 1
0.5
0.5

 ;a ∈ R
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Elementary flux modes (EFM)
If we cannot determine a unique solution of the flux
network due to toomany unknown rates (see also rank of
the stoichiometricmatrix), thenwe can study elementary
flux modes and the kernel matrix, both of which allow
us to describe all possible solutions. Some applications
thereof are:

• testing a set of enzymes for the production of a
desired product

• detecting non-redundant pathways
• analyzing effects of enzyme deficiency
• identifying drug targets.

Fluxmodes describe possible pathways fromonemetabo-
lite to another if the system is in steady state. Elementary
flux modes (EFM) are a set of non-unique and linear-
independent basis vectors vvvk, which can be summarized
in the kernel matrix KKK. The kernel matrix also fulfils the
steady-state relationship:

NNNKKK = 000

Example 3 delivers for the molecules A and B the follow-
ing stoichiometric matrix:

NNN =

[
1 −1 −1 0
0 1 1 −1

]
︸ ︷︷ ︸

r−rk(NNN)=4−2=2

→ KKK =


1 2
1 1
0 1
1 2


The kernel matrix KKK has as many columns as the stoichio-
metric matrix NNN has linear-dependent columns (number
of columns/reactions r minus the rank of NNN). The de-
termination of the kernel matrix is shown in Case Box 1.
The EFMs in the kernel matrix are non-unique and can
thus consist of all vectors which:

• fulfil the steady-state condition
• are linear-independent of each other.

Non-uniquemeans that the kernel matrix can havemany
different solutions which fulfil the steady-state relation-
ship NK = 0. Often, we are just interested in getting one
of these possible solutions. Now, you could say, you find
more flux modes than the indicated basis vectors (EFM)
in the kernel matrix KKK. Well, the flux modes vvv can be
reconstructed by the non-unique basis vectors (EFM) in
the kernel matrix vvvk:

vvvk :

I
1
1
0
1

&

II
2
1
1
2


︸ ︷︷ ︸
independent

vvv :

II− I
1
0
1
1

 ;

−I
−1
−1
0
−1

;

5II
10
5
5

10

;

I−2II
−3
−1
−2
−3

; . . .

︸ ︷︷ ︸
dependent

In our example, another possible kernel matrix would
be:

KKK ===


1 1
1 0
0 1
1 1


The kernelmatrix can provide information about blocked
reactions. Blocked reactions are pathways without a
metabolic flux. Rows in the kernel matrix which have
only zero entries, e.g.:

KKK =

. . . . . . . . .
0 ·0· 0
. . . . . . . . .

→ blocked.

indicate blocked reactions and two examples can be
found in Figure 4a and 4b.
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(b) Coupled reactions reduced (left) and null-space analysis
via the kernel matrix (right).

The kernel matrix also refers to coupled reactions. Cou-
pled reactions are reactions which always appear to-
gether in the same ratio. Their rows only differ—if at
all—in a scalar factor:

KKK =


1 0
0 −1
1 1
1 0


Blocked reactions could be removed and coupled reac-
tions could be simplified, which would reduce the num-
ber of columns r in the stoichiometric matrix so that we
reach another network representation with the property
r− rkNNN = 0. Remember that, depending on the rank of
the stoichiometric matrix, we have two possibilities for a
solvable homogeneous system according to Table 2.
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Table 2. Overview: Resolvability of linear equation sys-
tems for metabolic models (Rouché–Capelli theorem).

homogeneity
NNN has NNNvvv = bbb NNNvvv = 000
m metabolites (inhomogeneous system) (homogeneous system)
r reactions
rk(NNN|bbb) ̸= rk(NNN) system unsolvable not possible for bbb = 000

homogeneous systems
always solvable

rk(NNN|bbb) = rk(NNN) system solvable
unique solution trivial solution

m = r (vvv = 000)

non-unique solution non-trivial solutions
m < r

We either have the trivial solution or the non-trivial so-
lution:
Trivial solution: thermodynamic equilibrium with all

fluxes equal to zero vvv = 000.
Non-trivial solution: under-determined systemwith rk(NNN)< r.

Case 1: Calculate the kernel matrix

A kernel matrix only contains a linear-independent
subset of flux modes, not all. Thus it is a non-
unique matrix. Let’s start with the example:

NNN =

[
1 −1 −1 0
0 1 1 −1

]
Nullity = Number of necessary basis vectors:

r− rk(NNN) = 4−2 = 2

We want to know how many of the reactions r are
not fully determined by the stoichiometric matrix
with rank rk(NNN).

1. Basis vector:

NNNkkk1 = 000

[
1 −1 −1 0
0 1 1 −1

]
k11
k12
k13
k14

= 000

which is as an equation set:

⇒ k11 − k12 − k13 = 0 I
k12 + k13 − k14 = 0 II

We have 4 unknowns and 2 equations. So, we can
set 2 to arbitrary values, e.g.:

k11 = 1; k12 = 1

whereby the value 1 is the most frequently used
number to simplify followup calculations. The sim-
plification and cleanliness of calculation reduces
the risk of errors and is thus a smarter choice. We
get, for the remaining unknowns, the values:

⇒ k13 = 0
⇒ k14 = 1

and the basis vector:

⇒ kkk1 =


1
1
0
1


2. Basis vector:

NNNkkk2 = 000

[
1 −1 −1 0
0 1 1 −1

]
k21
k22
k23
k24

= 000

which is as an equation set:

⇒ k21 − k22 − k23 = 0 I
k22 + k23 − k24 = 0 II

We have 4 unknowns and 2 equations. So, we can
set two unknowns to arbitrary values, e.g.:

k21 = 2; k22 = 1

With this choice, we get for the remaining unknowns:

⇒ k23 = 1
⇒ k24 = 2

and a second basis vector:

⇒ kkk2 =


2
1
1
2


Building a kernel matrix:

⇒ KKK = (kkk111,kkk222) =




1
1
0
1




2
1
1
2


=


1 2
1 1
0 1
1 2
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Conservation relations for metabolites
If the number of balanced metabolites exceeds the rank
of the stoichiometric matrix, we can identify conserva-
tion relations such as:[NADH]+ [NAD] = const[ATP] + [ADP] = const

This means that some of the metabolites are dependent
on other metabolites and do not act independently. Such
conservation relations can be identified by calculating:

NNNTYYY = 0

A linear-independent subset of the conservation rela-
tions build basis vectors in the matrix YYY . The construc-
tion is shown in Case Box 2.

Case 2: Calculate the Y matrix

A given stoichiometric matrix is:

NNN =


−1
−1
1
1


Nullity = Number of necessary basis vectors:

m− rk(NNN) = 4−1 = 3

Wewant to know which metabolites can be seen as
dependent on other metabolites in our system. In
our case, we have only 1 reaction but 4 metabolites.
Thus, we have only 1 independent metabolite. The
remaining 3 metabolites depend on the selected
independent metabolite.

1. Basis vector:

NNNT yyy1 = 000

[
−1 −1 1 1

]
y11
y12
y13
y14

= 000

is the same as the equation:

⇒ −y11 − y12 + y13 + y14 = 0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

y11 = 1; y12 =−1; y13 = 0

With this choice, we get for the remaining variable:

⇒ y14 = 0

and the non-unique elementary flux mode:

⇒ yyy1 =


1
−1
0
0


2. Basis vector:

NNNT yyy2 = 000

[
−1 −1 1 1

]
y21
y22
y23
y24

= 000

is the same as the equation:

⇒ −y21 − y22 + y23 + y24 = 0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

y21 = 1; y22 = 0; y23 = 1

With this choice, we get:

⇒ y24 = 0

and the non-unique elementary flux mode:

⇒ yyy2 =


1
0
1
0


3. Basis vector:

NNNT yyy3 = 000

[
−1 −1 1 1

]
y31
y32
y33
y34

= 000

is the same as the equation:

⇒ −y31 − y32 + y33 + y34 = 0

We have 4 unknowns and 1 equation. So, we can
set 3 to arbitrary values, e.g.:

y31 = 0; y32 = 1; y33 = 0
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With this choice, we get:

⇒ y34 = 0

and the non-unique elementary flux mode:

⇒ yyy3 =


0
1
0
1


Building a conservation relation matrix:

⇒YYY =




1
−1
0
0




1
0
1
0




0
1
0
1


=


1 1 0
−1 0 1
0 1 0
0 0 1


Each non-unique but independent conservation relation
in matrixYYY refers to one linear-dependent row of NNN. Two
applications can be studied in the Examples 8 and 9.

Example 8: Conservation relations

From the simple hypergraph:
A + B−−⇀↽−− C +D
we can create the stoichiometric matrix NNN:

NNN =


−1
−1
1
1


We have 3 linear-independent basis vectors (m−
rk(NNN)) because the stoichiometric matrix NNN has 4
species (rows) and one reaction (rank 1).
In order to find the conservation relations, we cal-
culate the conservation relation matrix using the
transposition of NNN, denoted NNNT . The approach to
calculating YYY was shown in a previous section.

NNNTYYY = 000 =
[
−1 −1 1 1

]
YYY = 0

−→︸︷︷︸
(4−1)=3

YYY =

y1 y2 y3
1 1 0
−1 0 1
0 1 0
0 0 1


A
B
C
D

The constraint matrix does not only constrain the
network behavior, it also tells us whether a dataset
is of good quality. The constraint matrix multiplied
with the metabolite concentrations c(t) is always
the same:

YYY T c(t = 0) = const= YYY T c(t)

even if compared to the initial concentration c(0).
This is useful when we want to perform a consis-
tency check, scrutinized in detail in Example 9.

Example 9: Consistency check

We have a system with 4 metabolites and 2 reac-
tions:
D → A and 2A + B → C.
The initial concentrations are:
cA(t = 0) = cB(0) = cC(0) = cD(0) = 2.
Two hard-working experimental biologists mea-
sure (independently of each other) the concentra-
tions at the same time point, t:

Exp1: cA(t) = cB(t) = cD(t) = 1 and cC(t) = 3.
Exp2: cA(t) = cB(t) = 3 and cC(t) = cD(t) = 1.

Can they be right?

1) Stoichiometric matrix:

NNN =


1 −2
0 −1
0 1
−1 0


If we apply the calculation of conservation rela-
tions:

NNNTYYY = 000 =

[
1 0 0 −1
−2 −1 1 0

]
YYY =

[
0
0

]
You have two possibilities. You can either setYYY = 0,
which is the trivial solution no one is interested
in, or you find non-zero values for this matrix. Af-
ter Gaussian elimination, we obtain the non-trivial
solution:

NNNTYYY =

[
1 0 0 −1
−2 −1 1 0

]
y1

y2 = λ2
y3

y4 = λ1

=

[
0
0

]

We can set two unknowns to the arbitrary values
y4 = λ1, y2 = λ2. Consequently, we obtain for the
remaining unknowns:

y1 = λ1

y3 = 2λ1 +λ2

yyy=


λ1
λ2

2λ1 +λ2
λ1

= λ1

y1
1
0
2
1

+λ2

y2
0
1
1
0

 λ1,2=1
→ YYY =


1 0
0 1
2 1
1 0


After we obtain the YYY matrix, we can perform the
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consistency check with:

YYY T c(t) = const

[
1 0 2 1
0 1 1 0

] t=
0

Ex
p1

Ex
p2

2 1 3
2 1 3
2 3 1
2 1 1

 = t=
0

Ex
p1

Ex
p2[

8 8 6
4 4 4

]

or written differently:

t0 :y1 = 2+0+2 ·2+2 = 8; y2 = 0+2+2+0 = 4

Exp1 :y1 = 1+0+2 ·3+1 = 8; y2 = 0+1+3+0 = 4

Exp2 :y1 = 3+0+2 ·1+1 = 6; y2 = 0+3+1+0 = 4

This indicates that Experimental Biologist 2 had a
bad day and made a mistake.
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Figure 5. Nullspace scheme. If the column space is larger
than the rank, we can obtain elementary flux modes.
If the row space is larger than the rank, we can relate
some metabolites to the metabolites being considered
independent.

Nullspace to identify conserved metabolites or coupled and
blocked reactions:
The nullspace represents linear-dependent vectors that
fall into the origin of the independent vectors, as shown
in Figure 5. An excess of metabolites can be described
as dependent on the core metabolites and then the left
nullspace disappears. An excess of reactions can contain
either blocked reactions, which can be ignored, or cou-
pled reactions, which can be pooled. In both cases, the
column space can be reduced after the identification of
the elementary flux modes.
We learned that a linear-independent subset of elemen-
tary flux modes is in the right nullspace NNNKKK, and that a

linear-independent subset of the conservation relations
is in the left nullspace:

YYY T NNN = 0T ⇔ NNNTYYY = 0.

Both matrices contain basis vectors, from which in-
finite many vectors can be generated. The matrix NNN is
either multiplied by the kernel KKK from the right or by the
matrix YYY from the left, as shown in Figure 6. This makes
sense because we know that the stoichiometric matrix NNN
contains the information of the reactions/fluxes in the
columns and the metabolites in the rows. During matrix
multiplication, matrices from the left conserve the row
space of NNN representing metabolites (conservation rela-
tions) and matrices from the right conserve the column
space of NNN, representing reactions (stationary fluxes).
Remember that the number of columns of the left matrix
must equal the number of the rows of the right matrix:

β

α

γ

β =

γ

α

with α,β , and γ representing the number of columns
and rows.

Example 10: Demonstration of equivalence

Show that:

NNNTYYY = 0 ⇔ YYY T NNN = 0T

is true for Example 9:
The stoichiometric matrix N:

N =


−1
−1
1
1


and the conservation relation matrix Y are:

1 1 0
−1 0 1
0 1 0
0 0 1


Case 1: NNNTYYY = 0

[
−1 −1 1 1

]
1 1 0
−1 0 1
0 1 0
0 0 1


=
[
−1+1+0+0 −1−0+1+0 0−1+0+1

]
=
[
0 0 0

]
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Figure 6. Nullspace scheme: The stoichiometric matrix is either multiplied by the left to obtain the conservation of
metabolites or multiplied by the right to obtain conserved reactions.

Case 2: YYY T NNN = 0T

1 −1 0 0
1 0 1 0
0 1 0 1



−1
−1
1
1


=

(1 ·−1)+(−1 ·−1)+(0 ·1)+(0 ·1)
(1 ·−1)+(0 ·−1)+(1 ·1)+(0 ·1)
(0 ·−1)+(1 ·−1)+(0 ·1)+(1 ·1)


=

−1+1+0+0
−1+0+1+0
0−1+0+1


=

0
0
0
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1.2 ■ Integration of experimental data
The balance equation NNNvvv = 000 is frequently underdeter-
mined and rates have to be measured. A smart idea to
separate the balance equation into a measured part and
an unknown part:

NNNvvv = 000

NNN
(

vvvu
vvvm

)
= 000

NNNuvvvu +NNNmvvvm = 000
NNNuvvvu =−NNNmvvvm

vvvu = NNN−1
u (−NNNmvvvm)

to obtain an inhomogeneous linear equation set.
As you can see, we are interested in vvvu and need the
inverse of the stoichiometric matrix. The inverse NNN−1

u is
often not available, and the measured matrix entries are
hardly exact in reality due to measurement noise, which
leads to inconsistencies.
The basic integration of data can be studied in a well-
posed Example 11 with Figure 7, and more generally in
Example 12 with four typical scenarios.
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Figure 7. Reduced network of glycolysis from glucose
to phosphoenolpyruvate with measured and unknown
rates.

Example 11: Glucose to phosphoenolpyruvic acid

For this small metabolic network and model (Fig-
ure 7), we assume that all components outside the
system boundary can be neglected. The system
boundary can be freely chosen and might, in this
case, be the double-lipid layer of the cell membrane.
We are interested in the steady-state concentration
of glucose-6-phosphate (G6P), dihydroxyacetone-
phosphate (DHAP) andphosphoenolpyruvate (PEP).
The balance equation for thosemetabolites in steady
state is:

˙ G6P
DHAP
PEP

= 000

⇔

1 −1 −1 0 0
0 0 2 −1 0
0 0 0 1 −1




v1
v2
v3
v4
v5

= 000

If we insert the measured values from Figure 7, we
obtain:

⇔

1 −1 −1 0 0
0 0 2 −1 0
0 0 0 1 −1




1
v2
v3
v4
1.4

= 000

Now we can calculate:

1 −1 −1 0 0
0 0 2 −1 0
0 0 0 1 −1




1
v2
v3
v4
1.4

= 000.

⇔

−1 −1 0
0 2 −1
0 0 1

v2
v3
v4

=−

1 0
0 0
0 −1

(
1

1.4

)

⇔

−1 −1 0
0 2 −1
0 0 1

v2
v3
v4

=

−1
0

1.4


We now multiply each side by the inverse from the
left to obtain the identity matrix:

NNN−1NNN = III1 0 0
0 1 0
0 0 1

v2
v3
v4

=

−1 −1 0
0 2 −1
0 0 1

−1−1
0

1.4


v2

v3
v4

=

−1 − 1
2 − 1

2
0 1

2
1
2

0 0 1

−1
0

1.4


v2

v3
v4

=

0.3
0.7
1.4


and now we know that the fluxes in Figure 7 are
v2 = 0.3, v3 = 0.7, and v4 = 1.4.
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Measurement scenarios
Stoichiometric Network Analysis delivers physiological
snapshots and is good for testing "if-then" scenarios. It
also helps us to see how measured flux rates influence
other rates via sensitivity analysis. However, the mea-
sured rates are often not sufficient, and loops and alter-
native pathways might cause problems.
The dissection of our stoichiometric matrix into mea-
sured and unknown parts reveals the problem of calcu-
lating with an inverse matrix:

vvvu = NNN−1
u (−NNNmvvvm)

As the inverse NNN−1
u is often not available and measure-

ments are never perfectly correct, we use an approxi-
mated matrix. The Moore–Penrose pseudo-inverse123
NNN#

u is available for all matrices. Any mathematicians
or physicists among you might enjoy a review of this
method [2]; all others might just use the MATLAB com-
mand B = pinv(A). Moreover, we use the kernel matrix
KKKu with related arbitrary vector aaa so that KKKuaaa = vvv.
The final equation might be:

vvvu =−NNN#
uNNNmvvvm +KKKuaaa

whereby we have 4 cases, which depend on the number
of unknown reactions x and the number of metabolites
m. The 4 cases are:

• determined: rk(NNNu) = x. All rates can be deter-
mined.

• underdetermined: rk(NNNu)< x. Not all rates can be
determined.

• not redundant: rk(NNNu) = m.
• redundant: rk(NNNu)< m. Inconsistencies likely.

and are presented in the following matrix as an example:

NNN =
v1 v2 v3 v4[
1 −1 −1 0
0 1 1 −1

]
A
B

Example 12: Principal measurement scenarios

Here are four different cases for stoichiometric net-
work analysis. Red fluxes are measured.
a)Thefirst case describes a determined, non-redundant
system. We know that the input of the systems
needs to be equal to its output, thus v1 = v4 = 2.
As v2 = 0, and v2 + v3 = v1 = v4 = 2, we can easily
calculate v3 = 2.

1 American mathematician Eliakim Hastings Moore (1862—1932).
2 Swedish geodesist Arne Bjerhammar (1917—2011).
3 English mathematical physicist Roger Penrose (1931—today).
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b) The second case describes an underdetermined,
non-redundant system. We know that the input of
the systems needs to be equal to its output, thus
v1 = v4 = 2. The fluxes v2 and v3 do not correspond
to a single solution but the sumof their fluxes needs
to be equal to v2 + v3 = v1 = v4 = 2.
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c)The third case describes a determined and redun-
dant system, in which v1 and v4 are inconsistent.
The input v1 = 2 does not correspond to the output
v4 = 3.
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d) The last case describes an underdetermined and
redundant system, in which v1 and v4 are inconsis-
tent.
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Case 1: determined, not redundant (Ex. 12a)

-given:

vvvm =

[
v1
v2

]
=

[
2
0

]
; x = 2

NNNm =

v1 v2[
1 −1
0 1

]
; NNNu =

v3 v4[
−1 0
1 −1

]
-check: rk(NNNu) = x = m = 2 → determined, not re-
dundant
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-result:

KKKu =

[
0
0

]
; NNN#

u = NNN−1
u =

[
−1 0
−1 −1

]
;

vvvu =

[
v3
v4

]
=−NNN#

uNNNmvvvm +KKKuaaa =

[
2
2

]

Case 2: underdetermined, not redundant (Ex. 12b)

-given:

vvvm =
[
v1
]
=
[
2
]

; x = 3

NNNm =

v1[
1
0

]
; NNNu =

v2 v3 v4[
−1 −1 0
1 1 −1

]
-check: rk(NNNu)=m= 2< 3= x→underdetermined,
not redundant
-result:

KKKu =

 1
−1
0

 ; NNN#
u =

−0.5 0
−0.5 0
−1 −1

 ;

vvvu =

v2
v3
v4

=−NNN#
uNNNmvvvm +KKKuaaa =

1
1
2

+

 1
−1
0

aaa

Case 3: determined, redundant (Ex. 12c)

-given:

vvvm =

v1
v2
v4

=

2
0
3

 ; x = 1

NNNm =

v1 v2 v4[
1 −1 0
0 1 −1

]
; NNNu =

v3[
−1
1

]
-check: rk(NNNu) = 1 = x < 2 = m → determined, re-
dundant
-result:

KKKu =
[
0
]

; NNN#
u =

[
−0.5 0.5

]
;

Inconsistent and redundant scenarios might be
forced to consistency with v̂1 = v̂4 = 2.5 (SSR, com-

promise between 2 and 3):

vvvu =
[
v3
]
=−NNN#

uNNNmv̂vvm +KKKuaaa

=−
[
−0.5 0.5

][1 −1 0
0 1 −1

]2.5
0

2.5

+
[
0
]

aaa

= 2.5

Withweighted estimator processes, one could thereby
consider the variance (measurement error).

Case 4: underdetermined, redundant (Ex.12d)

-given:

vvvm =

[
v1
v4

]
=

[
2
3

]
; x = 2

NNNm =

v1 v4[
1 0
0 −1

]
; NNNu =

v2 v3[
−1 −1
1 1

]
-check: rk(NNNu)= 1<m= x= 2→underdetermined,
redundant
-result:

KKKu =

[
1
−1

]
; NNN#

u =

[
−0.25 0.25
−0.25 0.25

]
→ get no rate;

Inconsistent, redundant scenarios might be forced
to consistency with v̂1 = v̂4 = 2.5 (SSR):

vvvu =

[
v2
v3

]
=−NNN#

uNNNmv̂vvm +KKKuaaa

=−
[
−0.25 0.25
−0.25 0.25

][
1 0
0 −1

][
2.5
2.5

]
+

[
1
−1

]
aaa

=

[
1.25
1.25

]
+

[
1
−1

]
aaa

An underdetermined and redundant system can
also have rates, which we can calculate. An exam-
ple is rate v5.
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1.3 ■ Constraint-Based Modeling
Flux BalanceAnalysis (FBA) [3] is awidely usedmethod
within Stoichiometric Network Analysis to determine
possible flux distributions. It can be conducted with
a more general Constraint-Based Modeling approach
(CBM), thereby allowing the integration of more infor-
mation beyond the steady-state assumption. Possible
applications are:

• Prediction of phenotypes
• Prediction of mutant behavior.

We will now step-by-step introduce FBA and CBM. In
the beginning, the solution space can be considered un-
constrained, meaning that any reaction can carry any
flux. Then, we apply constraints, such as the mass bal-
ance constraints imposed by the stoichiometric matrix S.
YouTube: FBA

The basic idea: start from all possible fluxes and incor-
porate further constraints to limit network behavior to a
smaller and thus more informative solution space.
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The lower vmin and upper vmax bounds of a reaction are
thereby also taken into account.

Main applied constraints
- Mass conservation: (NNNvvv = 000)
The material that is entering via the influx does not get
lost or accumulate (steady-state assumption). The out-
going fluxes need to balance the incoming fluxes for each
balancedmetabolite. However, the fluxes are often given
in mole per time. Metabolites might be split during bio-
chemical reactions and thus the respective molar fluxes
multiply accordingly. But the mass remains the same.

 

 

(
0
1
−1

) 

1

1

𝑣3 

𝑣2 

𝑣𝑗 

𝑣𝑖 

Constraint 1

Constraint 2

Real solution

Solution space          not unique

Flux space

𝑣 

𝑆 

1

10.5

0.5

𝑣𝑖 

𝑣𝑗 

1

1

𝑣3 

𝑣2 

𝑣3 

𝑣2 1

Optimal solution

𝑣3 

𝑣2 

Lecture 10 https://pdfresizer.com/crop

Exercise 10

𝑣6 

𝑣1 

𝑣1 ≥ 0 𝑣1 ≤ 1 

𝑣6 ≤ 𝑣1 𝑣6 ≥ 𝑣1 − 𝐷 

𝑣6 

𝑣6 𝑣6 

𝑣1 

𝑣1 

𝑣1 

𝐷 

𝐷 𝐷 

−𝐷 

𝐷 𝐷 

J6,𝑚𝑎𝑥 

−J6,𝑚𝑎𝑥 

J1 

J6 

J2 

(
0
1
0
) 

(
1
0
1
) 

(
1
0
0
) 

1

1

1

0
0

0

J1 

J4 
J3 = 𝐷 

S1 

S2 

𝐶 𝑋 

𝐵 

𝐴 

J6 

J5 

Lecture10_1 
𝑣1 

𝑣3 

𝑣2 
A 

Lecture10_2 

Le
ct

u
re

1
0

_3
 

Le
ct

u
re

1
0

_4
 

Le
ct

u
re

1
0

_5
 

Le
ct

u
re

1
0

_6
 

Lecture10_7 

Lecture10_8 

Exercise10_1 

Exercise10_2 

Exercise10_3 

Exercise10_4 

Ȧ = v1 − v2 − v3
!
= 0

⇒ v2 + v3 = v1

e.g. v1 = 1:
Case 1: v2 = 0 → v3 = 1 →mark point:(v2 = 0;v3 = 1)

Case 2: v3 = 0 → v2 = 1 →mark point:(v2 = 1;v3 = 0)
Case 3: v3 =

1
2 → v2 =

1
2 →mark point:(v2 =

1
2 ;v3 =

1
2 ) 
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- Reaction reversibility:
Irreversible: v j ≥ 0
Reversible: − inf < v j < inf

e.g. v2,v3 ≥ 0 (irreversible) 
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- Boundary conditions:
imposed by experimental setup or measurements, e.g.,
stationary continuous cultivation:

µ = D (e.g.= 0.1h−1)

v j = v̂ j = const.

- Enzyme capacities:
e.g. v j ≤ v j,max (maximal catalysis rate):
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- Thermodynamic constraints: based on chemical poten-
tials:

v j,min ≤ v j ≤ v j,max

e.g. with:

0.5 ≤ v1 ≤ 1

https://www.youtube.com/watch?v=eNo7NeQPA2c
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The constraint-based model:
We end up with a constraint-based model for which
we can use an optimization algorithm—such as linear
programming—to find the best possible flux combina-
tion to maximize (or minimize) a given objective func-
tion F =CCCT vvv. The coefficient matrix CCC thereby defines
which flux(es) shall be optimized. This optimization is
constrained by the system in the steady state itself NNNvvv= 000
but also by all incorporated equality and inequality con-
straints:

maximize
vaim

CCCT vvv = c1v1 + c2v2 + . . .+ crvr

subject to NNNvvv = 000
000 ≤ v j ; some j

v j = v̂ j = const. ; some j

v j,min ≤ v j ≤ v j,max ; some j

We obtain a system of linear equality and inequality
constraints. This also defines a cone in the v-space, as
shown in Figure 8.

Example 13: Apply the constraints and optimize

We have the simple system:
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with:
• mass constraint: v1 = v2 + v3

• reaction irreversible: v2 ≥ 0,v3 ≥ 0

• enzyme capacity: v1 ≤ 1

Solutions space? Unique solution?

 

 

(
0
1
−1

) 

1

1

𝑣3 

𝑣2 

𝑣𝑗 

𝑣𝑖 

Constraint 1

Constraint 2

Real solution

Solution space          not unique

Flux space

𝑣 

𝑆 

1

10.5

0.5

𝑣𝑖 

𝑣𝑗 

1

1

𝑣3 

𝑣2 

𝑣3 

𝑣2 1

Optimal solution

𝑣3 

𝑣2 

Lecture 10 https://pdfresizer.com/crop

Exercise 10

𝑣6 

𝑣1 

𝑣1 ≥ 0 𝑣1 ≤ 1 

𝑣6 ≤ 𝑣1 𝑣6 ≥ 𝑣1 − 𝐷 

𝑣6 

𝑣6 𝑣6 

𝑣1 

𝑣1 

𝑣1 

𝐷 

𝐷 𝐷 

−𝐷 

𝐷 𝐷 

J6,𝑚𝑎𝑥 

−J6,𝑚𝑎𝑥 

J1 

J6 

J2 

(
0
1
0
) 

(
1
0
1
) 

(
1
0
0
) 

1

1

1

0
0

0

J1 

J4 
J3 = 𝐷 

S1 

S2 

𝐶 𝑋 

𝐵 

𝐴 

J6 

J5 

Lecture10_1 
𝑣1 

𝑣3 

𝑣2 
A 

Lecture10_2 

Le
ct

u
re

1
0

_3
 

Le
ct

u
re

1
0

_4
 

Le
ct

u
re

1
0

_5
 

Le
ct

u
re

1
0

_6
 

Lecture10_7 

Lecture10_8 

Exercise10_1 

Exercise10_2 

Exercise10_3 

Exercise10_4 

The idea behind this is that biological systems are
evolutionarily optimized to maximize a certain be-
havior such as:

• maximal growth yield (microorganism)
• maximal growth rate (microorganism)
• maximal energy production (mitochondria)
• maximal yield of product (genetic manipula-

tion by human).
We optimize the objective function F with:

F =CCCT · vvv →max

e.g. F =
[
0 1 0

]v1
v2
v3

→max

F = v2 →max 
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The solution is obtained by linear optimization,
which is fast and reliable. We use software for it,
although we have the problem that the algorithms
usually compute only 1 optimal solution. Other
equally optimal solutions might exist and need to
be determined by corresponding algorithms (like
flux variability analysis or random sampling).
We could now also include an enzyme capacity e.g.
v2 ≤ 0.6:
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Then, the optimization does not result in a single
solution. Instead all values 0 ≤ v3 ≤ 0.4 are possi-
ble.
What would happen if we impose v3 = 0.5?

⇒ v1 = v2 + v3 = 0.6+0.5 = 1.1 ≤ 1 �
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v3 v3 

v1 

unconstrained 
solution space 

  constrained 
solution space 

Constraints 

Sv = 0 

vi,min < vi < v i,max 

v3 

 

maximise  

 

 

v1 v1 

optimal solution 

constrain 
 
optimise 
max 

v2 v2 v2 

v3 v3 

S v2 

 
v2 

v2 + v3 = v1= 1 
1 

1 

max v2  

v3,max 

max catalysis rate 
of the enzyme 

v3 

v3,max 

v3 

Figure 8. FBA and constraint-based modeling.
Top: Stoichiometric Network Analysis might leave a large solution space. Due to the mass balance constraints
imposed by the stoichiometric matrix S and the upper and lower bounds of a reaction, one obtains a constrained
solution space (red). This space is used by optimization algorithms to find one optimal solution for biomass (for
example).
Bottom: One constraint captures the maximum turnover velocity of an enzyme v3,max < 1, which is combined with
another constraint v1 = 1 from measuring this rate. We know then that the sum of the v2 and v3 fluxes must be 1 as
well (dark lines). The red area shows the constrained solution space for an alternative v1 constraint: 0 ≤ v1 ≤ 1 .
After maximizing v2, it becomes clear that the enzyme responsible for v3 has to be inactive in order to maximize v2.
Adapted from [3]. Copyright © 1969, Nature Publishing Group.

Example 14: FBA example

Given a simple network:
v1

S

v3

v2

with mass conservation NNNvvv = 000 leading to:

Ṡ = v1 − v2 − v3
!
= 0

v1 = v2 + v3.

We assume that all reactions are irreversible and
the respective rates are thus positive:

v2,v3 ≥ 0

We can introduce boundary conditions, such as

that the influx is fixed:

v1 = 1

We can further assume that some fluxes depend
on enzymes with limited capacity v3 ≤ v3,max and
assume that one flux such as through the biomass
reaction has to be maximized:

maxF =CCCT vvv =
[
0 1 0

]v1
v2
v3

= v2

The optimal solution is v2 = 1.
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Figure 9. Flux solutions for Example 15. From left to right: The original pathway model has been modified to
maximize Pout with fixed Aout and no Bout. We obtain two extreme linear-independent solutions: the first solution
with direct flux from A to B and the second solution indirect via C. The last scheme represents infinite solutions
with different ratios of the two extreme pathways from A to B.

Example 15: Opt. flux balance for Pext without Bext

We use the metabolic network shown in Example
5 and Figure 2. We search for the optimal flux
distribution for blocked Bext and maximized Pext
as shown in Figure 9 with objective function F =
CCCT vvv:

maximize CCCT vvv = (0,0,1,0,0,0,0,0,0,0)vvv = v3

With constraints:
• NNNvvv = 000, according to Example 5.
• Set fluxes v1 = 1 (uptake) and v2 = 0 (no up-

take) according to the availablemeasurement
information.

• Lower bounds vvvmin =(1,0,0,0,0,0,0,− inf,0,0)
Upper bounds vvvmax = (1,0, inf, . . . , inf).

The resulting infinite solutions (linear combina-
tions from the first two solutions) are illustrated in
Figure 9.
Always check uniqueness.

Optimization after knockout:
Another optimization example is shown in Figure 10.
The central metabolism across different related organ-
isms is especially well-conserved while pathways with
less evolutionary pressure might be less optimized. One
can also assume that organisms optimize their program
after knockout experiments, as shown in Figure 11 and
studied e.g. by Segre et. al. [4].

v1 

v2 

null space 

0=Nv 

max v1 

max v2 
max v1 + v2 

feasible  

space 

Figure 10. FBA constrains the solution space. If we only
consider fluxes v1 and v2, we can either optimize for v1
or v2 alone, or we can optimize for the sum of the fluxes
of v1 + v2.
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knockout 
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wildtype 

FBA of wild type 

(optimal) 

FBA of knockout 

(optimal) 

Objective function 

 max  𝐂𝐓𝐯 = 𝑐1𝑣1 + 𝑐2𝑣2 

a 
b 

FBA of knockout 

(suboptimal) 

𝑣1 

𝑣2 

Figure 11. Evolutionary adjustment after knockout of
a gene and its respective reactions. After a knockout,
the feasible space is reduced and a suboptimal solution
might be present. With time, the evolutionary optimiza-
tion step b results in a new optimal flux distribution in
the reduced solution space. Figure guided by [4].
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1.4 ■ Problems & discussion
False positive and false negative prediction of gene/reaction
knockouts
False positive prediction (the organism does not live in
reality after the knockout although the model states that
it should):

• Kinetics / regulation not considered in the model

• Neglected side-effects, e.g. toxic intermediates.

False negative prediction (the organism does live in re-
ality although the model states that it should not):

• Proof for incorrect network structure → Quality
control & iterative model refinement possible.

Limited applicability

• Steady-state assumption → no dynamics consid-
ered, e.g. accumulation of metabolites

• Focus on mass transfer → barely applicable to cel-
lular information processing.

Objective function

• Strong dependence of results on choice of objective
function

• Use of ’natural’ objective functions such as growth:

– Not applicable to all organisms (e.g. cells in
multicellular organisms → cancer)

– Not applicable under all conditions (e.g. after
perturbation of an organism)

• Alternative/ conflicting numerical approaches for
optimization

• Alternative approach for fluxes: principles of flux
minimization (∼ effort for establishing a network).

Alternative optima

• Linear programming problem: finding a solution
can be guaranteed

– Unique value of the objective function (’growth’)
– Existence of infinitely many optimal solutions
with optimal value of objective possible.

• Without incorporating further constraints often
poor performance in predicting flux distributions.
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1.5 ■Metabolic Flux Analysis
Metabolic flux analysis (MFA), togetherwith 13C-labelled
isotope experiments, improves the characterization of
fluxes and is called isotope-based flux analysis. Different
experiments using labelled isotopes are summarized in
Figure 12 together with the two possibilities of stoichio-
metric network analysis without isotopes. We do not go
into detail but you are encouraged to study Figure 13
and the referenced paper.

Metabolic flux analysis gives us deeper insights into
metabolic processes. See also the following reviews
[5, 6]. The models remain small. See also Figure 14
for a comparison with the previously described Flux
Balance Analysis (FBA). FBA returns a larger solution
space, which is more helpful for large metabolic net-
works. However, these solutions might contain different
flux distributions that can all maximize the assumed cel-
lular objective, i.e. growth or biomass production [5].
The different principles of MFA and FBA are reflected
by two major optimization strategies in computational
biology shown in Figure 15. Either one imposes the mea-
surements and either tries to reduce the sum of squared
residuals, or one defines boundaries in which the func-
tion is forced to stay.
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methods are (1) whether metabolic steady-state is assumed 
for the system, or not; (2) whether stable-isotope tracers 
are applied, or not; and (3) whether isotopic steady-state is 
assumed for the system, or not.

Flux analysis at metabolic steady-state: MFA

The key to calculating metabolic fluxes in living cells with 
stationary (or stoichiometric) MFA (Fig. 1a) is to analyze 
the biological system as an integrated biochemical network 
model. MFA relies on balancing fluxes around intracellular 
metabolites within an assumed metabolic network model. 
The first step in the analysis is to express the biochemical 
network model as a stoichiometric matrix in which rows 
represent balanced intracellular metabolites and columns 
represent metabolic fluxes in the model. The stoichiomet-
ric model also includes a “biomass reaction” that describes 
the drain of precursor metabolites needed for cell growth, 
which is constructed based on the measured biomass com-
position [45]. By assuming metabolic (pseudo) steady-state 
for intracellular metabolites, metabolic fluxes (v) are con-
strained by the stoichiometry matrix (S):

To estimate metabolic fluxes, the stoichiometric con-
straints are complemented with measured external meta-
bolic rates (r), such as growth rate, substrate uptake, and 
product accumulation rates:

The combined system of Eqs. 1 and 2 is then solved by 
least squares regression:

(1)S × v = 0

(2)R × v = r

Using this approach metabolic fluxes can be esti-
mated in systems that are fully determined (i.e., con-
taining all the necessary external rate measurements), 
and overdetermined (i.e., containing a redundant set 
of external rate measurements). The main advantage 
of MFA is that it is easy to apply and thus accessible 
to many researchers, since it only requires simple lin-
ear algebra and relies on relatively robust measure-
ments of extracellular metabolites [52]. A limitation of 
MFA for analysis of many biological systems is, how-
ever, that the number of constraints (i.e., stoichiometric 
and rate measurements) is often insufficient to observe 
all important intracellular metabolic pathways. To make 
the system fully observable, additional assumptions are 
needed, for example, leaving out specific pathways that 
are assumed to carry little or no flux, or including cofac-
tor balances (e.g., NADH, NADPH, and ATP balances) 
as additional constraints. However, the use of cofac-
tor balances is generally not encouraged. The presence 
of isoenzymes with alternative cofactor specificities, 
e.g., NADH- and NADPH-dependent malic enzyme or 
isocitrate dehydrogenase, and uncertainties regarding 
transhydrogenase activity and other futile cycles ren-
ders cofactor balances often uninformative. In some 
studies, NADH and NADPH were lumped together [15, 
59], and external rates of NH3, CO2, and O2 were used 

(3)min SSR =

∑
(r − rm)2/σ 2

r

s.t. R × v = r

S × v = 0

Fig. 1  Classification of differ-
ent methods for metabolic flux 
analysis. The main distinguish-
ing characteristics between the 
different metabolic flux analysis 
methods are whether stable-
isotope tracers (such as 13C) are 
applied, and whether metabolic 
steady state is assumed. a 
MFA at metabolic steady state 
(without isotopic tracers); b 
13C-MFA at metabolic and iso-
topic steady state; c 13C-NMFA 
at metabolic steady state and 
isotopic non-steady state; d 
DMFA at metabolic non-steady 
state (without isotopic tracers); 
and e 13C-DMFA at metabolic 
and isotopic non-steady state

Figure 12. Isotope experiments for dynamic and steady-
state MFA. The blue line represents metabolites and not
fluxes. Source [5]. Copyright © 2015, Oxford University
Press.

Figure 13. Isotope tracing and 13C-metabolic flux analy-
sis. "In simple metabolic networks, each pathway pro-
duces a unique labeling pattern in the final product, and
the resulting mass isotopomer distribution provides a
direct measure of relative flux in the network. Mass iso-
topomers are molecules with the same chemical formula
but different molecular weights due to varying incorpo-
ration of heavy isotopes. They are denoted M0, M1, M2,
etc., in order of increasing weight. In complex networks,
a computational model is applied to determine fluxes
by minimizing the lack of fit between simulated and
measured labeling patterns at multiple pathway nodes.
The flux parameters in the model are iteratively adjusted
until the optimization converges". Direct quotation: [7].
Licence: CC BY-NC-SA 3.0.
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as additional constraints to make the system observable 
[59, 96]. Alternatively, flux balance analysis (FBA) can 
be applied to quantify fluxes in underdetermined sys-
tems (Fig. 2) [60]. Here, in addition to applying con-
straints from measured extracellular rates, inequality 
constraints such as upper and lower bounds on fluxes are 
used, and an assumed biological objective is imposed on 
the model, for example, maximum growth rate or maxi-
mum ATP production [27]. In practice, however, FBA 
returns a large solution space consisting of many flux 
distributions that can all maximize the assumed cellular 
objective.

Flux analysis at metabolic and isotopic steady state: 
13C-MFA

13C-based metabolic flux analysis (13C-MFA) is a more 
advanced technique for estimating metabolic fluxes in sys-
tems that are at metabolic steady state (Fig. 1b) [82, 93]. 
This technique makes use of 13C-labeled tracers, combined 
with isotopomer balancing, metabolite balancing, and iso-
topic labeling measurements through techniques such as 
NMR [48, 72], mass spectrometry [9, 11, 12, 19, 26, 30, 
35], and tandem mass spectrometry [7, 17, 18, 31, 34], to 
estimate fluxes. In a 13C-MFA study, cells are cultured for 

Fig. 2  Three classes of flux analysis approaches: (1) flux balance 
analysis (FBA) is an optimization-based approach that uses a large-
scale model (e.g., genome-scale) and produces a flux solution space 
that satisfies an assumed cellular objective function (e.g., maximum 
cell growth). (2) Stoichiometric flux analysis is a set of data-driven 
approaches that use small-scale network models and external rate 

measurements to quantify fluxes in the simplified models. (3) Iso-
tope-based flux analysis is a set of advanced data-driven approaches 
that use medium-scale network models and isotopic labeling meas-
urements (e.g., GC-MS or NMR) to quantify highly precise metabolic 
fluxes in central carbon metabolism

Figure 14. Overview on methods. Each of these methods uses mathematical optimization to approach the measured
data. S x v = 0 corresponds here with NNNvvv = 000 and R x v = r corresponds here with NNNuvvvu =−NNNmvvvm. FBA: fluxes are
balanced until they remain between defined lower (LB) and upper (UB) boundaries. MFA: numeric adjustment
to minimize sum of square residuals. DMFA: dynamic metabolic flux analysis. SSR: sum of squared errors of
prediction, either without isotopes (Stoichiometric Network Analysis) or with isotopes (isotope-based flux analysis).
Source: [5]. Copyright © 2015, Oxford University Press.
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Minimize SSR

Measurement-based fit (MFA)

Maximize gain

Constraint-based fit (FBA)

Minimize SSR

Figure 15. Conceptual illustration of fitting a function
to measurement data vs. constraining it: Functions can
be fitted in at least two ways. The most frequent is the
measurement-based fit. Mean values (red dots) are im-
posed and a function (blue line) shall come close enough
to the function in order to fit, usually by minimizing the
sum of squared residuals (SSR). The second possibility
is the imposing of constraints. The function has to stay
within the bounds. The latter can also be based on mea-
surements, e.g. by using mean +/ standard deviation as
the maximum and minimum values.
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2. Exercises
■ Stoichiometric matrix NNN

a) Formulate NNN for the following biochemical system:

v1 : E +S ⇌ ES

v2 : ES → E +P

b) Formulate NNN for the following biochemical system:

v1 : E +S ⇌ ES

v2 : ES → E +P

v3 : E + I ⇌ EI

v4 : ES+ I ⇌ ESI

v5 : EI +S ⇌ ESI

c) FormulateNNN for the following biochemical reaction
chain:

A
v1
⇌ B

v2
⇌C

v3
⇌ D

v4
⇌ E

v5
⇌ A

d) Extract the biochemical reaction of metabolites S1
to S5 from the following stoichiometric matrix N:

NNN =


1 −1 0 0
0 −2 0 0
0 1 −1 0
0 3 −1 0
0 0 2 −1


■ Flux Balance Analysis (FBA)
The following biochemical equation system is given:

v1 : ∅→ A

v2 : ∅→ B

v3 : A →C

v4 : B →C

v5 : B → D

v6 : C →∅
v7 : D →∅

 

J6,𝑚𝑎𝑥 > 𝐷 J6,𝑚𝑎𝑥 < 𝐷 

𝐷 

−𝐷 

J1 ≥ 0 

J1 ≤ 0 

0 

J6,𝑚𝑎𝑥 

−J6,𝑚𝑎𝑥 

J1 

J6 J6 

0 

A B 

D C 

e1 

 

e2 

e4 e5 

e6 e7 

1 1 

0.5 

1 
0.5 

0.5 

1.5 

measured 

calculated 

1 1 

A B 

D C 
0.5 

Exercise10_5 

Exercise09_1 
Exercise09_2 

Under the steady-state condition, the following rates
were measured: v1 = 1, v2 = 1, and v7 = 0.5. Calculate
the remaining rates v3 to v6, applying the methodology
of Flux Balance Analysis (via NNN and by dividing the
balance equation into known and unknown parts)! To
make your life easier:


−1 0 0 0
0 −1 −1 0
1 1 0 −1
0 0 1 0


−1

=


−1 0 0 0
0 −1 0 −1
0 0 0 1
−1 −1 −1 −1



■ The kernel matrix KKK
a) Calculate the kernel matrix KKK of the following stoi-

chiometric matrix NNN =
(
1 1 −2.

)
b) Determine dead ends and unbranched reactions

pathways, given the following kernel matrix KKK:

KKK =



−1 1 0 0
0 0 −1 2
−1 1 0 0
0 0 0 0
1 2 −1 0
0 0 −1 2
−1 1 0 0
−2 0 0 1


■ Constraint-Based Modeling of an example network
An example network is composed of substrates (S1, S2),
intracellular metabolites (A, B, C), and the biomass (X).

• The following reactions v1 to v6 take place:

v1 : S1 → A

v2 : S2 → B

v3 : C → X

v4 : A →C

v5 : B →C

v6 : A ⇌ B

• Reactions v1,v2,v3,v4,v5 are irreversible.

• For v6, a maximal enzyme capacity is given: v6 ⩽
v6,max.

• Due to the experimental setting, v3 is fixes to v3 =D.

Questions:

a) Draw the biochemical network based on v1 to v6
and the irreversibility information.

b) Formulate the balance equations for the intracellu-
lar metabolites A, B, and C in steady state.

c) Replace v3 by D in the resulting equations. Keep
v1 and v6 as variables and solve for v2, v4, and v5.

d) Apply the irreversibility information of v1 to v5 and
extract therefore (several) inequality constraints
for the remaining variables v1 and v6.

e) Mark the possible solution space using a v6 over v1
plot using the obtained inequality constraints and
the enzyme capacity v6,max. Distinguish thereby
two cases:
1) v6,max ≥ D
2) v6,max < D
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f) Give the (unique) solution for the case v6 ≥Dwhile
optimizing for v6 → max (Remember that when
not otherwise indicated, the maximization of a re-
versible reaction implies the maximization of the
production of the metabolites on the right side of
the equation).



Notes
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3. Solutions
Do not betray yourself!

■ The stoichiometric matrix N
Task a) Formulate NNN for the following biochemical sys-
tem:

v1 : E +S ⇌ ES

v2 : ES → E +P

The solution is:

NNN =

v1 v2
−1 1
−1 0
1 −1
0 1


E
S

ES
P

Task b) Formulate NNN for the following biochemical sys-
tem:

v1 : E +S ⇌ ES

v2 : ES → E +P

v3 : E + I ⇌ EI

v4 : ES+ I ⇌ ESI

v5 : EI +S ⇌ ESI

The solution is:

NNN =

v1 v2 v3 v4 v5

−1 1 −1 0 0
−1 0 0 0 −1
1 −1 0 −1 0
0 1 0 0 0
0 0 −1 −1 0
0 0 1 0 −1
0 0 0 1 1



E
S

ES
P
I

EI
ESI

Task c) Formulate NNN for the following biochemical re-
action chain:

A ⇌ B ⇌C ⇌ D ⇌ E ⇌ A

The solution is:

NNN =

v1 v2 v3 v4 v5
−1 0 0 0 1
1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1


A
B
C
D
E

Task d) Extract the biochemical reaction of metabolites
S1 to S5 from the following stoichiometric matrix NNN:

NNN =

v1 v2 v3 v4
1 −1 0 0
0 −2 0 0
0 1 −1 0
0 3 −1 0
0 0 2 −1


S1
S2
S3
S4
S5

The solution is:

v1 : ∅→ S1

v2 : S1 +2S2 → S3 +3S4

v3 : S3 +S4 → 2S5

v4 : S5 →

■ Flux Balance Analysis (FBA)
The following biochemical equation system is given:

v1 : ∅→ A

v2 : ∅→ B

v3 : A →C

v4 : B →C

v5 : B → D

v6 : C →∅
v7 : D →∅

 

J6,𝑚𝑎𝑥 > 𝐷 J6,𝑚𝑎𝑥 < 𝐷 

𝐷 

−𝐷 

J1 ≥ 0 

J1 ≤ 0 

0 

J6,𝑚𝑎𝑥 

−J6,𝑚𝑎𝑥 

J1 

J6 J6 

0 

A B 

D C 

e1 

 

e2 

e4 e5 

e6 e7 

1 1 

0.5 

1 
0.5 

0.5 

1.5 

measured 

calculated 

1 1 

A B 

D C 
0.5 

Exercise10_5 

Exercise09_1 
Exercise09_2 

Under the steady-state condition, the following rates
were measured: v1 = 1, v2 = 1, and v7 = 0.5. Calculate
the remaining rates v3 to v6, applying themethodology of
flux balance analysis (via NNN and by dividing the balance
equation into known and unknown parts)! To make
your life easier:


−1 0 0 0
0 −1 −1 0
1 1 0 −1
0 0 1 0


−1

=


−1 0 0 0
0 −1 0 −1
0 0 0 1
−1 −1 −1 −1


The solution is:
From the biochemical equation system we get:

NNN =

v1 v2 v3 v4 v5 v6 v7
1 0 −1 0 0 0 0
0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0
0 0 0 0 1 0 −1


A
B
C
D

Assuming steady state: NNN · v = 0


1 0 −1 0 0 0 0
0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0
0 0 0 0 1 0 −1





1
1
v3
v4
v5
v6
0.5


=


0
0
0
0



Removing columns that corresponds to v1, v2, and v7:
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−1 0 0 0
0 −1 −1 0
1 1 0 −1
0 0 1 0




v3
v4
v5
v6

=−


1 0 0
0 1 0
0 0 0
0 0 −1


 1

1
0.5



=−


1
1
0

−0.5


Let us bring the flux vector to the right and solve the
system for v3, v4, v5, and v6:

v3
v4
v5
v6

=


−1 0 0 0
0 −1 −1 0
1 1 0 −1
0 0 1 0


−1

−1
−1
0

0.5



=


−1 0 0 0
0 −1 0 −1
0 0 0 1
−1 −1 −1 −1



−1
−1
0

0.5



=


1

+1−0.5
0.5

+1+1−0.5



=


1

0.5
0.5
1.5


Drawing:

 

J6,𝑚𝑎𝑥 > 𝐷 J6,𝑚𝑎𝑥 < 𝐷 

𝐷 

−𝐷 

J1 ≥ 0 

J1 ≤ 0 

0 

J6,𝑚𝑎𝑥 

−J6,𝑚𝑎𝑥 

J1 

J6 J6 

0 

A B 

D C 

e1 

 

e2 

e4 e5 

e6 e7 

1 1 

0.5 

1 
0.5 

0.5 

1.5 

measured 

calculated 

1 1 

A B 

D C 
0.5 

Exercise10_5 

Exercise09_1 
Exercise09_2 

e3 

■ The kernel matrix KKK
Task a) Calculate the kernel matrix KKK of the following
stoichiometric matrix NNN:

NNN =
(
1 1 −2

)
The solution is:
With

NNN · ki = 0

we calculate:

(
1 1 −2

)ki1
ki2
ki3

= 0

⇔ 1ki1 +1ki2 −2ki3 = 0

In order to solve the system, we first need to determine
the nullity:

r− rk(NNN) = 3−1 = 2

We have an underdetermined system and 2 kernel vector
are necessary to solve the system:
2 assumptions are necessary, ki2 = c2 and ki3 = c3:

ki1 +1c2 −2c3 = 0
↔ ki1 = 2c3 − c2

↔ ki1 =

2c3 − c2
c2
c3


Let us choose 2 non-identical values for c2 and c3: e.g.
c2 = 1; c3 = 0

ki =

−1
1
0


e.g. c2 = 0; c3 = 1

ki =

2
0
1


thus,

KKK =

−1 2
1 0
0 1


Task b) Determine dead ends and unbranched reac-
tions pathways, given the following Kernel matrix KKK:

KKK =



−1 1 0 0
0 0 −1 2
−1 1 0 0
0 0 0 0
1 2 −1 0
0 0 −1 2
−1 1 0 0
−2 0 0 1


The solution is:
Dead ends: v4
Unbranched reaction pathways:

• v1, v3, v7

• v2, v6
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■ Constraint-Based Modeling of an example network
An example network is composed of substrates (S1, S2),
intracellular metabolites (A, B, C) and the biomass (X).

• The following reactions v1 to v6 take place:

v1 : S1 → A

v2 : S2 → B

v3 : C → X

v4 : A →C

v5 : B →C

v6 : A ⇌ B

• Reactions v1,v2,v3,v4,v5 are irreversible

• For v6, a maximal enzyme capacity is given: v6 ⩽
v6,max

• Due to the experimental setting, v3 is fixed to v3 =D

Questions:

Task a) Draw the biochemical network based on v1 to
v6 and the irreversibility information.
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Task b) Formulate the balance equations for the intra-
cellular metabolites A, B and C in steady state:

Ȧ = v1 − v4 − v6 = 0
Ḃ = v2 − v5 + v6 = 0

Ċ = v4 + v5 − v3 = 0

Task c) Replace v3 by D in the resulting equations. Keep
v1 and v6 as variables and solve for v2, v4, and v5:

A : v4 = v1 − v6

C : v4 + v5 −D = 0
⇔ v1 − v6 + v5 −D = 0
⇔ v5 = D+ v6 − v1

B : v2 −D− v6 + v1 + v6 = 0
⇔ v2 = D− v1

Task d) Apply the irreversibility information of v1 to v5
and extract from there (several) inequality constraints

for the remaining variables v1 and v6:

v1 ≥ 0
v2 = D− v1 ≥ 0

→ v1 ≤ D

v3 = D

v4 = v1 − v6 ≥ 0
→ v6 ≤ v1

v5 = D+ v6 − v1 ≥ 0
→ v6 ≥ v1 −D

Task e) Mark the possible solution space using a v6 over
v1 plot using the obtained inequality constraints and the
enzyme capacity v6,max. Thereby distinguishing thereby
two cases:
Task e.1) v6,max ≥ D
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Task f) Give the (unique) solution for the case v6 ≥ D
while optimizing for v6 → max.

 

 

(
0
1
−1

) 

1

1

𝑣3 

𝑣2 

𝑣𝑗 

𝑣𝑖 

Constraint 1

Constraint 2

Real solution

Solution space          not unique

Flux space

𝑣 

𝑆 

1

10.5

0.5

𝑣𝑖 

𝑣𝑗 

1

1

𝑣3 

𝑣2 

𝑣3 

𝑣2 1

Optimal solution

𝑣3 

𝑣2 

Lecture 10 https://pdfresizer.com/crop

Exercise 10

𝑣6 

𝑣1 

𝑣1 ≥ 0 𝑣1 ≤ 𝐷 

𝑣6 ≤ 𝑣1 𝑣6 ≥ 𝑣1 − 𝐷 

𝑣6 

𝑣6 𝑣6 

𝑣1 

𝑣1 

𝑣1 

𝐷 

𝐷 𝐷 

−𝐷 

𝐷 𝐷 

v6,𝑚𝑎𝑥 

−v6,𝑚𝑎𝑥 

𝑣1 

𝑣6 

𝑣2 

(
0
1
0
) 

(
1
0
1
) 

(
1
0
0
) 

1

1

1

0
0

0

𝑣1 

𝑣4 
𝑣3 = 𝐷 

S1 

S2 

𝐶 𝑋 

𝐵 

𝐴 

𝑣6 

𝑣5 

Lecture10_1 
𝑣1 

𝑣3 

𝑣2 
A 

Lecture10_2 

Le
ct

u
re

1
0

_3
 

Le
ct

u
re

1
0

_4
 

Le
ct

u
re

1
0

_5
 

Le
ct

u
re

1
0

_6
 

Lecture10_7 

Lecture10_8 

Exercise10_1 

Exercise10_2 

Exercise10_3b 

Exercise10_4 

1

1

𝑣3 

𝑣2 

Lecture10_3b 

v1 = v3 = v5 = v6 = D

v2 = v4 = 0

Flux cone of an example network
From the previous system, we know that:

1. v1 to 5 are irreversible

2. | v6 ≤ v6,max

3. v3 = D

v1 ≥ 0
v2 ≥ 0
v3 ≥ 0
v4 ≥ 0
v5 ≥ 0

=⇒

v1 ≥ 0
v2 ≥ 0

v1 + v2 ≥ 0
v1 − v5 ≥ 0
v2 + v5 ≥ 0

ċA
ċB
ċC

=

1 0 0 −1 0 −1
0 1 0 0 −1 1
0 0 −1 1 1 0




v1
v2
v3
v4
v5
v6


with quasi-steady-state assumption for A, B, and C (0 =
Nv): 

v1
v2
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=


1 0 0
0 1 0
1 1 0
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0 1 1
0 0 1
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Chapter 3: The magic of change and how to find it
Thomas Sauter, Marco Albrecht

Motivation
The world around us is connected and changes all the time. But do we know where things are going? Are they
on a path to endless infinity or do they find a condition where they are in balance with all their neighbors? In
reality, we often see mysterious black boxes, and it is not clear why we get a particular outcome for a specific
input. Sometimes the result depends on the history of movements. If this is the case, we see different final results
for the same condition. In this block, we strive for answers in the realm of systems science. We will learn to
model so-called systems in time, and we will ponder on how to bring them to desired states as quickly and
precisely as possible. Likewise, we will learn how organisms develop an effective control of various regulatory
biochemical processes forged by the forces of evolution. On this journey, we will also understand the beauty
of connected things and what they teach us when we address biological problems, a perspective that make us
better experimental biologists too.
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1. Lecture summary
In the previous two chapters, we studied systems in
equilibrium and learned about powerful tools for the
modeling of metabolic networks. However, the process

Figure 1. Example where the measurement seems myste-
rious. The GFP signal depends on the non-metabolizable
lactose analogue thiomethyl-galactoside (TMG), but
whether we increase TMG or decrease TMG remarkably
changes the outcome, also referred to as hysteresis or
multistability. What is behind this? See Figure 2. Source:
[1]. Copyright © 2004, Macmillan Magazines Ltd.

of coming to a steady state has been assumed heretofore.
In this chapter we will introduce some of the theoretical
basics to treating and understanding biological systems
which are dynamically changing over time and thus are
no longer in steady state.

1.1 ■ Examples of non-linear dynamics
Let us start with a dynamic experiment on the popula-
tions of cells in Figure 1, which also shows that reality
cannot always be described with basic linear tools. In
this example, we see that the expression of genes relevant
for the lactose metabolism (GFP signal) does not merely

© 2023 Thomas Sauter and Marco Albrecht, CC BY-NC 4.0                                                                               https://doi.org/10.11647/OBP.0291.03
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depend on the availability of the non-metabolizable lac-
tate analogue (TMG). It also depends on the previous
amount of TMG in the cellular environment. If 30 µg
TMG were present at the beginning and this concen-
tration was further decreased, gene expression for the
lactose metabolism is measurable down to 5 µg TMG.
But if, instead, the TMG concentration was increased
starting with a low value of 2 µg TMG, gene expression
will not set in until 15 µg TMG. Whether there will be
lactose metabolism or not in the range from 5 to 15 µg
TMG consequently depends on the history of the system,
a phenomena known as hysteresis. Hysteresis can also
be seen as a bistable state which can result in discrete
switch-like outputs from continuous inputs.
Hysteresis increases the resistance to noise as it requires
higher values of the input in order to switch to a par-
ticular state, as compared to the input needed to stay
in a state. The switch also means that a transition is
not continuously reversible after it has been triggered.
The behavior is often hidden and encoded in unknown
connections of biological elements. Here, the regulatory
principles behind the observation in Figure 1 are well
understood and illustrated in Figure 2.

Other examples of hysteresis can be studied in Figure
3 and 4, where the regulatory network structure (mu-
tual molecule dependency) and the time behavior are
depicted side by side. Take some time to understand
how these schemes relate to each other. In Figure 4 we
have an example from stem cell biology with the home-
obox protein Nanog. Regulatory interconnections are
not restricted to molecular biology. We might also have
physiological and anatomical systemswith regulatory in-
terconnections. One example is the control of the blood
sugar level by the liver and pancreas, illustrated in Figure
5. Another anatomical example can be found in Figure 6
on the adaptation of the eye. The restriction of the pupil
compensates for disturbances with different light inten-
sities. The control of this system can be drawn as a block
diagram (see next section and Figure 7). Such regulatory
circuits are also used in synthetic biology, within which
scientist constructs or re-design existing biological sys-
tems for useful purposes. Let us explore the impact of
some basic network motifs on the dynamics of a system
next.
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Figure 2. Underlying the hysteresis in Figure
1 is the specific regulatory network of the Lac
operon model. LacY fascilitates the influx of
TMG,which in turn inhibits the repressor. This
again increases again the production of LacY,
leading to a positive feedback loop and thus
enabling bistability. Reproduced from: [1].
Copyright © 2004, Macmillan Magazines Ltd.

expression state, which is characterised by high Oct4 and Nanog
expression, towards a region of low Nanog and variable Oct4
expression. As no second (attracting) stable state exists, cells rapidly
return to their origin and, thus, exhibit pulsing Nanog dynamics
(Fig. 3A, bottom). This model predicted that excursions from the NH
state are transient, providing a very short window of opportunity in
which perturbations can become consolidated into a lineage
commitment decision (Chambers et al., 2007).
Exploring the same topic, Glauche et al. suggested two alternative

SDE models (Glauche et al., 2010). In the first model (model 1 in
Fig. 3B) mESCs are bistable with respect to Nanog expression
(compare with Fig. 2B, grey shaded region). State transitions are

induced by a transcriptional noise (see ‘multiplicative noise’ under
the entry ‘Transcriptional noise’ in the Glossary, Box 1) leading to
stochastic fluctuations. In the second model (model 2 in Fig. 3B), a
hypothetical factor X has been integrated such that Nanog is part of
an activator-repressor system. The resulting negative feedback can
generate a cyclic attractor and thus oscillations between high and low
Nanog expression levels (Fig. 3B, bottom). Replacing the previously
suggested direct activation of Oct4-Sox2 by Nanog with an indirect,
double-negative feedback, Glauche et al. suggested a mechanistic
explanation for the gatekeeper function of Nanog in the control of
mESCdifferentiation (Silva and Smith, 2008). Indeed, assuming that
Nanog prevents the effects of differentiation signals (represented
by Y), only mESCs in the NL state can differentiate. Meanwhile,
Muñoz-Descalzo et al. provided an alternative explanation, showing
that Nanog buffers the differentiation-inducing activity of Oct4
through the formation of stable complexes (Muñoz-Descalzo et al.,
2013) (see section below on lineage specification).

Recently, Herberg et al. put forward the fluctuation model to study
whether different intensities of Fgf4/Erk signalling can account for
culture-dependent differences in Nanog expression (Herberg et al.,
2014). mESCs exposed to serum-free medium containing MEK/Erk
and Gsk3β inhibitors, termed 2i, are captured in a pluripotent ground
state characterised by a single, homogenous NH peak (Ying et al.,
2008; Wray et al., 2010). Applying the model illustrated in Fig. 3C,
the authors demonstrated that Fgf4/Erk signalling can regulate the
existence of stable Nanog expression patterns by ‘shifting’ cells from
amonostable high into a bistable regime as described above (compare
with Fig. 2B, with signal B assumed to represent Fgf4/Erk). In
particular, if Fgf4/Erk signalling is efficiently blocked (as in 2i), there
is onlyone stable expression state at highNanog levels. In this ground
state, network-inherent stochasticity or (external) perturbations only
induce micro-heterogeneity within an apparently uniform cell
population. However, if Fgf4/Erk signalling is active, two stable
expression states coexist (bistability), such that stochastic fluctuations
generate functionally different subpopulations (macro-heterogeneity,
Fig. 3C, bottom) (Huang, 2009; Herberg et al., 2014).

Although all three models consistently describe a stable, albeit
dynamic, bimodal distribution of Nanog expression within a
population of mESCs (compare with insets in Fig. 3, bottom
row), they generate different hypotheses about the underlying
mechanism and its dynamic outcome. These hypotheses guided
experimental strategies to distinguish between the mechanisms
(Box 2). For example, Glauche et al. demonstrated that stochastic
fluctuations and deterministic oscillations are distinguishable based
on the dynamics of the (re-)establishment of heterogeneity after cell
sorting (Glauche et al., 2010). Furthermore, comparing the models
revealed that measurements of the residence times of single cells in
the NH and the NL state would allow the discrimination of mono-
from bistable fluctuations. In a bistable system, residence times for
both Nanog expression states would be prolonged, exceeding
typical cell cycle times as predicted by Herberg et al. (2014),
whereas a monostable system implies that unstable NL cells rapidly
revert back into the stable NH state (Kalmar et al., 2009).
Intriguingly, Singer et al. recently analysed single-cell expression
dynamics, demonstrating that Nanog heterogeneity arises from
a combination of stochastic transitions between coexisting
gene expression states (i.e. macro-heterogeneity, bistability) and
burst-like transcription within each state (i.e. micro-heterogeneity,
noise) (Singer et al., 2014). They also showed that single mESCs
remain in either one of the two Nanog states for multiple cell cycles.
These findings clearly favour the fluctuation model suggested and
described by Glauche et al. (2010) and Herberg et al. (2014).

Box 3. The state space formalism: a model to
quantitatively describe cell fate decisions
The gene expression state S of a cell is defined by the expression values
of a set of genes at a certain time point. This state is a point in an abstract
space composed of all possible expression states, termed state space.
As gene expression changes due to stochastic fluctuations or
developmental processes, the position of state S in the state space
changes. The particular path that is taken is denoted as a trajectory.
Because of regulatory interactions between genes, not all expression
states are actually reachable.

Differential equations can be used to describe mathematically how
gene expression evolves over time. Thus, the solutions of a system of
equations describe corresponding trajectories. States, to which
trajectories move over time, are termed stable fixed points (or steady
states), because once these points have been reached, the state does
not change anymore without external stimulation. Unstable fixed points,
by contrast, are transient, because infinitesimally small perturbations
lead to a movement away from these points. Alterations in gene
regulation can change stable expression patterns (fixed points)
quantitatively and qualitatively. Qualitative changes, termed
bifurcations, occur when fixed points emerge, disappear or change
their stability.

If two or more stable fixed points coexist at a given time, the system is
termed bistable or multistable, respectively. In a deterministic situation,
the initial conditions, i.e. the starting point of the trajectory, determine to
which stable state the trajectory moves. Changes between stable states
are termed state transitions and are associated with changes in the fate
or the developmental potential of a cell. State transitions can be
continuous or, given a multi-stable system, switch-like in response to
external perturbations or stochastic fluctuations.
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Fig. 2. Core network of pluripotency regulation. (A) Scheme of the network
structure suggested by Chickarmane et al. (2006). Oct4 and Sox2 form a
heterodimer (dotted lines) that activates Oct4, Sox2 and Nanog transcription.
Nanog regulates its own transcription and activates Oct4 and Sox2. An
external signal, termed B, suppresses Nanog expression. (B) Corresponding
bifurcation diagram of Nanog expression as a function of the levels of
signal B. Solid lines represent stable states, dashed lines unstable states. The
bistable region is shaded in grey. Bifurcations occur at signal intensities
c1 and c2.
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Figure 3. Stem cell differentiation network. Bifurcation diagram
of transcription factor Nanog expression as a function of the
levels of signal B. Solid lines represent stable states, dashed lines
represent unstable states. The bistable region is shaded in gray.
Bifurcations occur at signal intensities c1 and c2. Source: [2].
Copyright © 2015, The Company of Biologists Ltd.

Fgf4 signalling, which is induced by cells that express Nanog
(Yamanaka et al., 2010; Frankenberg et al., 2011).
To reveal a potential mechanism for the establishment of the salt-

and-pepper pattern, Bessonnard et al. developed an ODE model
describing the interactions between Nanog, Gata6 and the Fgf4/Erk
signalling (Fig. 5A) (Bessonnard et al., 2014). First, they
demonstrated that the model can account for the coexistence of
three stable expression states within a small range of Fgf4 activity
(Fig. 5B). These stable states correspond to an ICM-like state
(co-expression of Nanog and Gata6), an Epi-like state (Nanog
expression) and a PrE-like cell state (Gata6 expression, Fig. 5C).
Subsequently, 25 ‘cells’ (i.e. GRNs) were arranged in silico on a
squared grid to specify neighbour relationships between individual
cells. Cell-cell communication was modelled by averaging the
concentrations of Fgf4 produced by a cell itself and by its
closest neighbours. This average concentration determined the
intracellular activity of Erk signalling. The model assumes an
initial heterogeneous distribution of Fgf4, and this leads to a
random Nanog versus Gata6 expression pattern, consistent with
experimental findings (Chazaud et al., 2006; Plusa et al., 2008).
Thus, the model provides one potential mechanistic explanation for
the salt-and-pepper cell pattern observed in the ICM. However, it
involves a rather large number of arbitrary parameters that had to be
confined to a specific range in order to capture the presented
dynamics (i.e. tristability) (the so-called ‘over-fitting problem’,
discussed further below). Another issue comes with the static nature
of the spatial dimension. The ICM is subject to dynamic changes
and re-arrangements (e.g. due to cell proliferation or mechanical
forces), which impact the emergent pattern. However, these changes
have been neglected in this study. Krupinski et al. considered these
dynamic properties and combined a three-dimensional (3D) cell-
based model with GRNs to simulate both the spatial structure and
gene expression levels of a growing blastocyst (Krupinski et al.,
2011). Herein, each cell is represented by an incompressible
ellipsoid that interacts with its local environment through elastic
adhesion forces. Furthermore, each cell is characterised by TF
concentrations [determined according to the GRN developed by
Chickarmane and Peterson (2008), described above], cell cycle and
polarity. By coupling the intrinsic properties of ICM cells with the
mechanical forces present in their environment, this model
framework allows us to address general, but very important,
questions, such as: Does cell position determine gene expression?
Do geometric constraints affect spatial expression patterns? Are
differential adhesion strengths sufficient to facilitate cell sorting?
The ability to assess these questions in silico is particularly
significant, as this type of question is still challenging to address

experimentally although technologies for in vivo imaging and
quantification are constantly improving. This is partly due to the
inaccessibility of emerging embryonic structures but also due to the
lack of quantitative measures of single-cell properties and spatial
patterns.

Multi-scale modelling reveals functional links between GRNs and
cellular properties
Recent findings on the impact of cell density and clustering on the
self-renewal and differentiation of mESCs (Peerani et al., 2009;
van den Brink et al., 2014; Warmflash et al., 2014) emphasise
once more that gene expression levels, cellular properties and
spatial effects have to be considered in order to achieve a true
systemic understanding of stem cell fate decisions. To link these
different regulatory layers and to comprehensively analyse the
emergent dynamic behaviour, multi-scale mathematical modelling
is needed.

At present, live-cell imaging of fluorescently labelled cells is the
most suitable method to acquire structural and transcriptional
information of cells within an ‘undisturbed’ environment. However,
not all cell properties influencing inter- and intracellular regulatory
processes, e.g. cell adhesions or mechanics, can be measured or
derived directly from imaging data. In this case, multi-scale models
can be used to explore systematically the consequences that functional
changes at the cellular level might have at the population level. For
example, the multi-scale blastocyst-model of Krupinski et al.
demonstrates how gene expression, cell proliferation and mechanical
properties jointly structure an early embryo. In particular, it revealed
that the formation of TE is most robust when assuming a position-
based regulation of Cdx2 expression, and that differential adhesion
strengths are crucial for the sorting of Epi and PrE cells (Krupinski
et al., 2011). Similar relationships between cell position and TF
expression have been reported by Herberg et al. (2015). Comparing
spatial gene expression patterns of in vitro and in silicomESCcolonies
on the basis of quantitative measures revealed that cells with a high
self-renewing capacity are located in the interior of a colony structure
due to TF-related differences in proliferation and adhesion (Herberg
et al., 2015). By simulating spatio-temporal patterns of Oct4
expression in EBs, White et al. showed that competing influences
between Oct4+ and Oct4– neighbours can account for experimentally
observed clusters during pluripotency loss, independently of EB
structure, size or cell division (White et al., 2013).

Although there are currently only very few multi-scale models of
mESC differentiation available, their insights already indicate the
importance of considering not only transcriptional but also cellular
interactions in the regulation of pluripotency.
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studies on mESC differentiation, which we will cover in the
following section.

Towards a quantitative description of cell differentiation
dynamics
Mimicking the first lineage specification observed in the embryo,
mESCs can differentiate into epiblast cells (Epi; giving rise to
embryo proper), primitive endoderm (PrE; generating extra-
embryonic membranes) and trophectoderm (TE; giving rise to
extra-embryonic tissues), depending on the culture environment.
The differentiation into PrE and TE can be forced by ectopic

expression of the lineage determinants Gata6 for PrE (Fujikura
et al., 2002) and Cdx2 for TE (Beck et al., 1995; Strumpf et al.,
2005), but also through changes in the expression of Oct4. Whereas
an acute repression of Oct4 leads to differentiation into TE, an
increase causes differentiation into PrE (Niwa et al., 2000).
Therefore, Oct4 exerts a dose-dependent dual function as both a
key factor for pluripotency and a signal driving cells toward lineage
specification. However, how these dual functions of Oct4 are
regulated remains to be elucidated.
To describe the dose-dependent function of Oct4, Chickarmane

and Peterson extended their bistable core network (ODE model; see
above) by integrating two mutual antagonisms: one between Oct4
and Cdx2, and one between Nanog and Gata6 (Chickarmane and
Peterson, 2008). The simplified GRN, outlined in Fig. 4A, is based
on a set of experimental findings reviewed by Niwa (2007).
Additionally, the authors suggested a novel motif to account for the
non-linear (‘bell-shaped’) relation between stable Nanog states and
expression of Oct4, as illustrated in Fig. 4B and described by
Matoba et al. (2006). In this motif, Oct4 activates Gata6, and both
factors cooperatively suppress Nanog transcription (dashed lines
in Fig. 4A). With this assumption, the network model can give rise
to three different dynamics, depending on Oct4 expression, which
is assumed to be controlled by an external signal A (e.g. Bmp or
Wnt/β-catenin or signalling). If Oct4 expression is low, the stem cell
switch including Nanog is off and Cdx2 is constantly expressed at
high levels (TE-like state; Fig. 4B). Enhanced Oct4 expression
initially leads to an increase of Nanog and, thus, to a stable stem cell
state. However, at a certain threshold, Oct4 induces a low-level
expression of Gata6 and both factors cooperatively repress Nanog
transcription, leading to bistability (Fig. 4B, region shaded in grey).
In this range, the fate of a cell is determined by the initial
concentrations of the pluripotency factors. If Oct4 is further
increased or overexpressed, the autoregulatory capacity of Gata6
is switched on and Nanog transcription is efficiently suppressed
(PrE-like state; Fig. 4B,C). According to the model prediction that

the stem cell state is most ‘stable’ for an intermediate range of Oct4,
cellular reprogramming has also been suggested to be most efficient
when Oct4 is ‘overexpressed’within a specific range (Chickarmane
et al., 2012). Otherwise, Oct4 expression is either too low to
reactivate the pluripotency network or sufficiently high to activate
Gata6, which, in both cases, leads to a stable differentiation state.
Consequently, the question arises as to how the concentration range
of Oct4 is or can be narrowed to efficiently promote pluripotency.

Combining quantitative single-cell analysis and mathematical
modelling, Muñoz-Descalzo et al. pointed out that post-translational
interactions allow the buffering of the differentiation-inducing
activity of Oct4 (Muñoz-Descalzo et al., 2013). They demonstrated
that, under self-renewing conditions, Nanog and β-catenin proteins
form stable complexes with Oct4, and, thus, restrict its levels to a
range that facilitates pluripotency. However, under LIF/serum
conditions, Oct4 levels are high enough to cause Nanog bistability,
potentially due to the activation of Fgf4/Erk or Gata6. According to
the authors, Nanog fluctuations impact the amount of unbound
(‘active’) Oct4 proteins that trigger differentiation. In line with this,
lowering Oct4 levels in pluripotent mESCs has been shown to
reduce Nanog heterogeneity and to establish a more robust
pluripotency state (Karwacki-Neisius et al., 2013).

Modelling the mutual transcriptional and post-transcriptional
regulation of pluripotency and lineage factors provided possible
mechanistic explanations for the dose-dependent activity of Oct4
and its association with the instability of the pluripotent cell state
when Nanog expression is low.

From temporal to spatio-temporal dynamics
So far, we have focused on the analysis of temporal dynamics of
intracellular GRNs. However, mESCs do not exist in isolation.
Similar to their in vivo counterparts, they self-organise as spheroid
aggregates, termed embryoid bodies (EBs), or arrange in colony
structures. Embedded in these structures, cells send and receive
signals which might affect gene expression and, thus, establish
spatial patterns or cell type arrangements.

Spatio-temporal patterns in embryonic development
One example of spatio-temporal patterning can be found in the early
phases of mouse development when the inner cell mass (ICM)
segregates into Nanog+ epiblast cells (Epi) and Gata6+ PrE cells
[reviewed by Artus and Hadjantonakis (2012)]. After an initial
phase of co-expression, both TFs display a mutually exclusive salt-
and-pepper pattern (Chazaud et al., 2006) and finally arrange into
two layers, with PrE cells occupying the outer layer that faces the
blastocoel (Rossant and Tam, 2009). This patterning depends on
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Fig. 4. Mutual antagonisms can direct lineage specification in vitro. (A) Scheme of the GRN suggested by Chickarmane and Peterson (2008). The
interactions between Oct4, Gata6 and Nanog lead to the ‘bell-shaped’ activation of Nanog shown in B. An external signal, termed A, positively regulates Oct4
expression. (B) Schematic bifurcation diagramof Nanog states as a function of Oct4. Solid lines represent stable states, dashed lines unstable states. The bistable
region is shaded in grey. (C) Schematic time course for PrE differentiation adapted from Chickarmane and Peterson (2008).
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Figure 4. Stem cell differentiation network. A progenitor cell can differentiate into an epiblast cell (Epi), primitive
endoderm (PrE; generating extra-embryonic membranes) and trophectoderm (TE; giving rise to extra-embryonic
tissues), depending on the culture environment. This is a bifurcation diagram of transcription factor Nanog
expression as a function of the levels of Fgf4 or Oct4 with different network motifs. Solid lines represent stable states,
dashed lines represent unstable states. The bistable region is shaded in gray. TE-like state: stem cell switch with
Nanog is off. PrE-like state: Gata6 expression is present but Nanog transcription is efficiently suppressed. ICM-like
state: co-expression of Nanog and Gata6. Epi-like state: Nanog expression. Source: [2]. Copyright © 2015, The
Company of Biologists Ltd.
Think about the following question: Could one use a linear regression approach between Nanog and Fgf4 or Oct4?
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Figure 5. Blood sugar regulation. If the sugar concen-
tration is too high in the blood, the pancreas releases
insulin. Insulin makes tissue cells and the liver store
or consume more sugar. If the sugar concentration is
too low in the blood, the pancreas releases glucagon to
cleave glycogen with subsequent up-regulation of blood
sugar. Licence: CC BY-NC-ND 4.0 (Fair Use).
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intensities. The light source disturbs the retina. The
retina detects the light intensity and gives the actual
value to the brain. The brain compares this value with
the setpoint. If the light intensity is higher than accept-
able, the brain gives the signal to reduce the light. If the
light intensity is too low, the brain provides the signal
to increase the light intensity. The actual adjustment is
achieved via the pupil constriction by the iris muscle.
Credit to Greyson Orlando, wikimedia. Fair Use.
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1.2 ■ The impact of network motifs
We distinguish two main types of loops in networks: the
feedback loop and the feed-forward loop (FFL).

Definition 1. Feedback: Processes which influence their
own cause or input.

Feedback is a type of closed loop regulatory unit, as
shown in Figure 7. Such control structures are widely
used in engineering in many applications too—for ex-
ample, to keep the output y at the desired level.
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Figure 7. Block diagram of control loop (negative feed-
back).

A controller C uses the error e, which is the difference
between the desired steady state r (set point) and the
system output y, to adjust the control u. The control u
acts on the system states x.
The feedback loop can encode negative and positive feed-
back, and occurs often in biology, as shown in Figure
10 with some examples. Negative feedback occurs fre-
quently among repressors, which repress their own tran-
scription. This allows a strong maximal promoter activ-
ity with a fast response, but at the same time strong
repression once the desired product’s steady state is
achieved.

A variety of examples of network motifs have been iden-
tified in biological systems and analyzed. We can distin-
guish motifs with 1, 2, 3 and more than 3 nodes.
One node: In the E. coli. transcriptional network, 85% of
the auto-regulative self-edges are negative and 10% are
positive [3]. There are many cases where all edges start
and come back to the same node.
Two-node networks with feedback occur in e.g. develop-
mental networks and can be seen as memory elements.
Once this motif is triggered, a mutual inhibition or acti-
vation is conserved and remains independent of further
input under certain circumstances. A decision for the
subsequent development has been made. For an exam-
ple, see Figure 26 at the top with the toggle-switch motif.
Coming to three-node network motifs, feed-forward loops
are more than 30-fold enriched in the E. coli transcription
network than random networks. Feed-forward loops can
be split into coherent FFL, where the indirect path has
the same overall sign as the direct path, and incoherent
FFL, where the indirect path sign is the opposite to the
sign of the direct path, shown in Figure 8.

Type I of both coherent and incoherent FFL are much
more enriched in the E. coli network than the other types.
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Figure 8. Feed-forward loops (FFL) split from one node
and fall together at another node. Thereby information
is transmitted in the forward direction via two parallel
branches (pathways). The multiplication of the signs
along the interactions of each branch gives the overall
sign of a specific branch. A coherent FFL results in an
end node which receives either only positive or only
negative signals. An incoherent FFL end node receives
both sign types. Source: [4]. Copyright © 1969, Nature
Publishing Group.

The dynamic consequence of the Type 1 feed-forward
loop with AND gate is shown in Figure 9 and Example
1. The output Z requires both activated X and activated
Y. Once X is activated, Y begins to increase and is consid-
ered active as soon as it trespasses a certain threshold.
If Y is active, it does not mean that Z is activated, as
it requires maintained activation of X at the same time.
This motif can be seen as a noise reducer in fluctuating
environments. Only a signal that is present over a longer
period can trigger a response, which arises then after a
certain delay. An interruption of the input leads to in-
stantaneous shutdown of the signal without delay. The
Type 1 coherent FFL with an OR gate would activate
Z instantaneously, and Y would have no relevance for
the activation. Instead, the OR gate would make Y into a
sustained activator of Z until it falls below the threshold.
This motif would activate Z immediately and keep the
response activation longer even if the original input was
removed. The Type 1 incoherent FFL with AND gate
would create a peak. We would see short activation of Z
during long time-input activation. Once the level of Y
trespasses the threshold, it inhibits the activation with
different levels of strength, determined by the repression
coefficient. The Type 1 incoherent FFL with OR gate
would be activated instantaneously, but would acceler-
ate the off-signal in Y. The acceleration increases with an
increased repression coefficient.
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Reminder: Logical operators such as OR and AND
help us to define rules:

A B A AND B A OR B
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1
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Figure 9. The coherent Type 1 feed-forward loop. The
output Z shows delay after Sx addition in the input, but
no delay after Sx removal. The network motif is a sign-
sensitive filter, which responds only to persistent stim-
uli. Source: [4]. Copyright © 1969, Nature Publishing
Group.

Example 1: Simulation of coherent Type 1 FFL

Referring to the dynamic feed-forward loop with
AND gate and its dynamic behavior shown in Fig-
ure 9, we show here the underlying computational
model which allows us to obtain such time course
plots. This requires the formulation of balance
equations for each of the modeled molecule con-
centrations (states), which include mathematical
terms describing how the different effects change
that specific concentration. This concept of balance
equationswill be explained inmore detail andwith
more examples later in this chapter (Section 1.4,
page 9) and in Chapter 4. So consider coming back
to this example after reading more about balance
equations.
This balance equation can then either be solved
analytically—which we will discuss later in this
chapter—or with the help of computer simulations.
But these equations can also be solvedwith the help
of computer simulations. Such simulations are usu-
ally used if the equation system is too complex to
be solved analytically. Below, we give the com-
puter model in the IQM toolbox format [5]. Other
tools use similar but slightly different formats. This
model is used within computational frameworks
for numerical integration. This allows us to obtain
usually very accurate approximations of the sys-
tem behavior for a specific set of initial conditions
and parameters. The parameters in this example

were arbitrarily chosen. The activation cutoff for Y
matches the dashed line in Figure 9. Only above
this threshold, Y transmits a positive signal (Yeff).
The chosen initial conditions are matching the val-
ues of the states at t = 0.

********** MODEL NAME
FFL

********** MODEL STATES
d/dt(X) = k1*Sx - k1*X
d/dt(Y) = k2*X - k2*Y
d/dt(Z) = k3*Yeff*X - k3*Z

X(0) = 0
Y(0) = 0
Z(0) = 0

********** MODEL PARAMETERS
Sx = 0
k1 = 1
k2 = 1
k3 = 1
thrY = 0.5

********** MODEL VARIABLES
Yeff = piecewiseIQM(Y-thrY,Y>thrY,0)

All motifs are possible considering networks with
more than 3 nodes. It is imaginable that one element
in a signaling branch might inhibit the first element of
that branch in a negative feedback loop. This section
builds upon the work of Uri Alon. His book is a classic
in systems biology and highly recommended to help you
understand regulatory network motifs [3].
We will revisit feedbacks again within this Chapter (Ex-
ample 9 & Figures 23/24/25 and the respective text),
once we have learned about characteristics of systems
and useful mathematical approaches which will help us
to formally analyze such motif structures.

For further deepening of knowledge around this topic
we also recommend:
YouTube: Network motifs

Summary: Mode of action of network motifs
positive feedback = self-potentiating

→ (often) destabilizing
→ bifurcations
→ bistabilities
→ switching behavior
→ hysteresis

negative feedback = self-degrading
→ stabilizing
→ oscillating
→ regulating

https://www.youtube.com/watch?v=1sTFWS0Py80
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(a) Naturally occurring bistable system: The p42 MAPK
cascade of a frog oocyte depends on the progesterone stim-
ulation. The more progesterone, the more the cells shift
to MAPK active differentiation. Source: [6]. Copyright ©
2002, Elsevier Science Ltd.

liberates the DNase (CAD) to digest chromosomal DNA and

cause cell death. So-called ‘‘type I’’ apoptosis, which comprises

a direct pathway of receptor/initiator caspases/effector cas-

pases/death, is thought to be sufficient for death in certain cell

types, but in most cell types apoptosis occurs by a ‘‘type II’’

pathway in which mitochondrial outer membrane permeabiliza-

tion (MOMP) is a necessary precursor to effector caspase activa-

tion (Scaffidi et al., 1998). MOMP is triggered by the formation of

pores in the mitochondrial membrane. Pore formation is

controlled by the�20members of the Bcl-2 protein family, which

can be roughly divided into four types: the ‘‘effectors’’ Bax and

Bak whose oligomerization creates pores; ‘‘inhibitors’’ of Bax

and Bak association such as Bcl-2, Mcl1, and BclxL; ‘‘activa-

tors’’ of Bax and Bak such as Bid and Bim; and ‘‘sensitizers’’

such as Bad, Bik, and Noxa that antagonize antiapoptotic Bcl-

2-like proteins (Letai, 2008). In extrinsic apoptosis, initiator cas-

pases that have been activated at the DISC cleave Bid into tBid,

which in turn promotes a conformational change in Bax and Bak

leading to oligomerization. Bax or Bak oligomers create pores in

the mitochondrial outer membrane and promote cytoplasmic

translocation of critical apoptosis regulators such as cytochrome

c and Smac/Diablo, which normally reside in the space between

the outer and inner mitochondrial membranes. MOMP does not

occur until proapoptotic pore-forming proteins overwhelm antia-

poptotic Bcl-2-like proteins (the so-called rheostat model) (Kors-

meyer et al., 1993). Under most circumstances, MOMP is

a sudden process that lasts a few minutes and marks the point

of no return in the commitment to cell death (Chipuk et al.,

2006; Tait et al., 2010). Once translocated to the cytosol, cyto-

chrome c combines with Apaf-1 and caspase-9 to form the

apoptosome, which cleaves and activates effector procaspases

(Fuentes-Prior and Salvesen, 2004). XIAP associates with the

catalytic pocket of active effector caspases-3 and -7 blocking

protease activity and promoting their ubiquitin-dependent

degradation. Binding of Smac to XIAP relieves this inhibition, al-

lowing effector caspases to cleave their substrates and cause

cell death (Fuentes-Prior and Salvesen, 2004).

In this Review, we describe how combining theoretical and

computational approaches with live-cell imaging and quantita-

tive biochemical analysis has provided new insight into mecha-

nisms controlling the dynamics of extrinsic apoptosis. We start

with a brief description of modeling concepts and methods rele-

vant to apoptosis research. Next, we survey the recent literature.

Modeling apoptosis, like quantitative analysis of mammalian

signal transduction in general, is a field in its infancy fraught

with many technical and conceptual challenges. Thus, only

a subset of the known biochemistry of extrinsic apoptosis has

been subjected to computational analysis, and this analysis

has been performed only in a few cell lines. Key questions,

such as differences between normal and transformed cells,

have not yet been addressed in terms amenable to modeling.

This Review, therefore, focuses on the subset of questions for

which modeling has provided new insight (Figure 2). These

include: (1) How is all-or-none control over effector caspase

activity achieved? (2) How are activated effector caspases in-

hibited during the pre-MOMP delay while initiator caspase

activity rises? (3) How do prosurvival and prodeath signals

interact to determine if and when MOMP occurs? (4) What

Figure 1. Modeling Receptor-Mediated Apoptosis
(A) Simplified schematic of receptor-mediated apoptosis signaling, with
fluorescent reporters for initiator caspases (IC FRET) and effector caspases
(EC FRET) indicated. The MOMP reporter measures mitochondrial outer
membrane permeablization.
(B) Steps involved in converting a biochemical cartoon into a reaction diagram
and ordinary differential equations. C8* indicates active caspase-8.
Lower panels show a model-based 12 hr simulation of the increase in tBid
relative to the time of MOMP and analysis of the sensitivity of MOMP time to
Bid levels. The simulation in (B) was adapted from Albeck et al. (2008b).

Cell 144, March 18, 2011 ª2011 Elsevier Inc. 927

(b) Switch-like activation and bistability in the apoptosis
signaling network. Source: [7]. Copyright© 2011, Elsevier
Inc.

chorismate synthesis did not change significantly. Thus,
according to our flux analysis, the main improvement in
the tryptophan overproducing strain NST 100 is the
successful channeling of all chorismate to tryptophan, as
well as avoiding feedback phenomena due to product
accumulation.

3.2. Effects of changes in flux distribution on control

hierarchy

The control of enzyme activities in the network on the
tryptophan production flux has been quantified by
means of flux control coefficients. These are compared
in Fig. 2 for the different flux distributions from the
previous section.

Flux control is distributed. PTS, PFK, PDH,
DAHPS, Trp, and supply with serine and PRPP are
carrying high positive control on tryptophan biosynth-
esis in the wild-type models. Among the enzymes that
are exerting negative control, GAPDH, PK, G6PDH,
PEPCxylase, and consumption of the intermediates
serine, PRPP, and chorismate are noteworthy. Thus,
high control can be associated with

(1) glucose transport: Not only the transport system PTS
itself comes into focus, but also the supply with the
co-substrate phosphoenolpyruvate (negative control
by PK and PEPCxylase), as well as removal of the
products of glucose transport (PFK removing G6P
via the very fast reaction of PGI, PDH removing
pyruvate).

(2) tryptophan biosynthesis: Especially branch point
reactions (DAHPS, Trp) exert high control, whereas
control by the reaction Cho is negligible in all
models.

(3) precursor availability: Both synthesis and consump-
tion in side reactions have to be considered.
However, side reactions that are leading to biomass
synthesis should not be reduced in order to ensure
sufficient growth.

Flux control also points at effects that are not as
easily to be explained, or even surprising, such as the
considerable negative control by GAPDH and G6PDH.

The main difference between models A and B in flux
control can be traced back to the difference in flux
distribution. Consistent with the low flux through the
oxidative part of pentose phosphate pathway, the

ARTICLE IN PRESS

Fig. 1. Metabolic network of tryptophan biosynthesis from glucose as carbon source. Molar fluxes are given as numbers next to the enzyme symbols.

They are normalized to glucose uptake flux (100). The first number results from the assumption that isocitrate dehydrogenase (ICD) uses NAD as

cofactor (Model A), for the second number NADP is assumed to be the cofactor of ICD (Model B). The third number results from flux analysis for

the strain NST100 (Tribe and Pittard, 1979) assuming NADP as cofactor of ICD (Model C). Colored metabolites represent important internal links

of the reaction network. Except for E4P and DAHP, these metabolites are displayed more than once to allow for a clearer arrangement.

J.W. Schmid et al. / Metabolic Engineering 6 (2004) 364–377 369

(c) Negative tryptophan feedback: Numbers indicate molar fluxes normal-
ized to the glucose uptake flux (100). Each of the 3 numbers belong to another
model variant. Source: [8]. Copyright © 2004, Elsevier Inc.

Figure 10. Naturally occurring feedback in biology: (a) Positive feedback on the genetic level. (b) Positive feedback
on the protein level.(c) Negative feedback on the metabolic level.
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1.3 ■ What is a system?
Next, we are moving into the formal description of such
networks as systems.
Definition 2. System: A system is a group of interde-
pendent items which are interacting with each other in
a way that forms an integrated whole.

One can also say: a system is a set of interrelated ob-
jects (elements, parts) which all have certain general
properties [9].

1. The system fulfils a certain function, i.e. it can be
defined by a system purpose recognizable by an
observer.

2. It has a characteristic constellation of (essential)
system elements and an (essential) system struc-
turewhich determines its function, purpose, and
identity.

3. It loses its identity if its integrity is destroyed. A
system is therefore not divisible, i.e. the system
purpose can no longer be fulfilled if one or several
(essential) elements are removed.
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Figure 11. A system consists of system elements and the
connections between them [9].

As a side note, the system structure might be (par-
tially) hidden, i.e. we do not know what is underlying
the observed system dynamic. We might refer to the sys-
tem, then, as a black box—and we could try to decipher
the system behavior by analysis of the relationship of
inputs u and outputs y, as illustrated in Figure 12.
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Figure 12. The black box concept. We know little about
the system, but we can learn about its behavior from the
input u to the output y.

Let us look at some examples. A sand pile is not
a system, as after the removal of a sub-part it is still a

sand pile. One grain of sand is also not a system, as it
is only one element. A chair or a building is a system
because the removal of one particular element destroys
its integrity. These are static systems. Dynamic sys-
tems show changes over time. We do not have to restrict
ourselves to observable behaviors. Relevant state vari-
ables are of functional importance but not necessarily
observable. Furthermore, the non-linearity of biological
systems (non-additivity) is prevalent.
Linear: v[S1]+ v[S2] = v[S1 +S2]

Non-linear: v[S1]+ v[S2] ̸= v[S1 +S2]
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As we have seen so far already, non-linear dynamics
can lead to a variety of phenomena like:

• oscillations
• amplification
• adaptation (see Figure 13)
• switching, bistability, hysteresis (see Figures 1,3,4).
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A and B were being synthesized and

degraded rather than activated and inacti-

vated (Tyson et al., 2003). The resulting

model adapts perfectly to any step in stim-

ulus, irrespective of parameter choice.

Incoherent feedforward regulation is

important for adaptation in receptor tyro-

sine kinase (RTK) signaling. The relevant

proteins are the famous Ras, Sos, and

GAPproteins (Figure1).ActivatedEGFRdi-

mers autophosphorylate to produce dock-

ing sites for the guanine nucleotide

exchange factor Sos via the intermediacy

of the Grb2 adaptor protein. The docking

of the Grb2-Sos complexes at the phos-

phorylated EGFR brings Sos into proximity

of its target, the plasma membrane-bound

Ras protein, allowingRas to drop its bound

GDP, pick up a GTP, and become acti-

vated.EGFR–>Grb2-Sos–>Ras represents

the positive leg of the incoherent feedfor-

ward system. Autophosphorylated recep-

tors also recruit the GTPase activating

protein GAP; EGFR–>GAP–jRas consti-

tutes the negative leg of the feedforward

system. The recruitment of GAP appears

to be delayed relative to the recruitment of

Grb2-Sos (Sasagawaetal., 2005), resulting

in a sharp pulse of Ras activation and a

return to basal levels of activity in minutes.

The importance of the feedforward

Ras-Sos-GAP system is underscored by

the fact that Ras mutations that render

Ras resistant to GAP, compromising the

negative leg of the incoherent feedfor-

ward system, result in oncogenic transfor-

mation (Trahey and McCormick, 1987).

Evidently the various negative feedbacks

described above are not sufficient to

allow RTK signaling to be terminated nor-

mally without an intact Ras-Sos-GAP

incoherent feedforward system.

State-Dependent Inactivation
As mentioned, Ma et al. identified hun-

dreds of circuits that could generate

adaptive pulsatile responses. However,

all of these generally more complicated

circuits turned out to be elaborations of

either a negative feedback loop or an

incoherent feedforward system. This sug-

gested that the two motifs might be the

only simple mechanisms for generating

near perfect adaptation (Artyukhin et al.,

2009; Ma et al., 2009).

This proved not to be the case. Shortly

after the publication of the comprehen-

siveMa et al. study, Friedlander and Bren-

ner proposed an even simpler way of

achieving perfect adaptation inspired by

the biophysics of the voltage-dependent

sodium channel (Catterall, 2014), which

they called ‘‘state-dependent inactiva-

tion’’ (Friedlander and Brenner, 2009).

Voltage-gatedsodiumchannelsbecome

activated in response to depolarization,

and then auto-inactivate and only slowly

return to their original responsive state.

Similar principles govern the activation

followed by desensitization of G protein

coupled receptors (Kang et al., 2014) and

the activation followed by internalization

of receptor tyrosine kinases (Goh andSor-

kin, 2013).

To model this process, Friedlander and

Brenner assumed that signal transduction

protein A can exist in three states: an initial

off state (Aoff), which is ready to receive a

stimulus; an on state (Aon), where it pro-

duces an output; and an inactivated state

(Ain) that is incapable of responding to a

stimulus (Figure 4A). The inactivation is

assumed to be either intrinsic to the acti-

vatedprotein (as is the case for the sodium

channel) or to depend only upon constitu-

tively active downregulators (which in

some cases is true in GPCR desensitiza-

tion and RTK internalization).

Initially, we assume that the conversion

back to the Aoff form is relatively slow

compared to the activation and inactiva-

tion reactions, and we assume simple

mass action kinetics for the activation

and inactivation reactions (Figure 4B)

(Friedlander and Brenner, 2009). The

result is a 2-ODE model that exhibits per-

fect adaptation (Figure 4C), irrespective of

parameter choice. The peak height and

the time course of the adaptation depend

upon the ratio of k1 to k2, but in all cases

the response is a pulse of activity with a

return to the initial Aon = 0 state. Like the

Tyson sniffer model, here the process of

perfect adaptation is robust with respect

to changes in the model’s parameters.

The perfect adaptation is even robust

with respect to the functions used to

describe the kinetics of the two reactions.

Here, for simplicity, we assumed mass

action kinetics, but the system adapts

equally well if Michaelis-Menten kinetics

Figure 2. Near-Perfect Adaptation from Negative Feedback
(A) A simple negative feedback system capable of generating near-perfect adaptation.
(B) Rate equations and parameters for the system. Note thatMa and co-workers (2009) usedMichaelis-Menten terms for all four rate terms. For simplicity we have
assumed mass action kinetics for the first rate equation.
(C) The response of the system to steps up and down in the input level. The negative feedback (middle panel, green curve) lags behind the input stimulus (top
panel, blue curve), allowing the output (bottompanel, red curve) to go up and then come back down. Note that the return toward baseline is not alwaysmonotonic;
the system sometimes exhibits damped oscillations as it is adapting.

64 Cell Systems 2, February 24, 2016 ª2016 Elsevier Inc.

Cell Systems

Commentary

Figure 13. Near-perfect adaptation to varying input levels
obtained from negative feedback. Other examples and
source: [10]. Copyright © 2016, Elsevier Inc.

See also
YouTube: The beauty of a chaotic double pendulum

We will explore these important behaviors on the next
pages, starting with the introduction of a mathematical
approach for describing dynamics over time.

https://www.youtube.com/watch?v=d0Z8wLLPNE0
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1.4 ■ How to describe change mathematically
The change of a variable is described by a derivative—a
concept from calculus. The most widely used mathe-
matical approach to capture such changes in models
is done with Ordinary Differential Equations (ODE).
Such ODEs have a dependent variable y which is a func-
tion y(t) of 1 independent variable such as time t. The
derivatives of the dependent variable are found with re-
spect to the independent variable dy

dt . If the independent
variable is time, we can use the dot above the dependent
variable dy

dt = ẏ to indicate derivatives, otherwise we use
a prime symbol: y′. The dependent and independent
variable appear in the explicit:

ẏ = f (t,y)

or implicit equation form:

f (t,y, ẏ) = 0.

Important: In the context of models of biological sys-
tems, often only 1st order ODEs are applied, as illus-
trated in Example 2. We have therefore included an in-
troduction to these cases only. ODEs might also contain
higher derivatives, i.e. derivatives of derivatives. Fur-
thermore, Partial Differential Equations (PDE) have
a dependent variable y, which is a function y(z1, z2, . . . ,
zn) of at least 2 independent variables zi, such as time
(e.g.: z1 = t) and 3 room coordinates (e.g.: z2,z3, & z4).
While an ODE is frequently used for processes over time,
a PDE is often used to describe processes over time and
space. These advanced cases are not discussed here but
are the subject of further reading if you are interested.

A simple ODE model can be studied in Example 2 to-
gether with Figure 14.

Example 2: Simple ODE for biomass growth

Another example of what x and its time derivative
ẋ might represent is biomass and its growth.
x . . . population size
ẋ . . . growth rate
µ = ẋ

x . . . specific growth rate
With the assumption µ = const, we can write the
following ODE:

ẋ = µx

with initial condition x(t = 0) = x0 and
µ > 0: exponential growth
µ < 0: asymptotic decay

visualized in Figure 14. The calculation of the time
response x(t) is:

dx
dt

= µx | ·dt : x

1
x

dx = µdt |
∫

∫ x

x0

1
x

dx = µ

∫ t

0
1dt

[ln(x)]xx0
= µ(t −0)

ln(x)− ln(x0) = µt

ln(
x
x0
) = µt |e to both sides

x
x0

= eµt

x(t) = x0eµt

 

 

 

 

 

 

 

 

 

𝑥 + ℎ 𝑥 

ℎ 

𝑓(𝑥 + ℎ) 

𝑓(𝑥) 

𝑥0 μ = 0 

μ > 0 

μ < 0 

𝑡 

𝑥 

Figure 14. Population growth x depending on time and
the specific growth rate µ . See Example 2.

A set of non-linear ODEs of n-th order can be written
as:

dxi

dt
= ẋi = fi(x1, . . . ,xn, p1, . . . , pn, t) , i = 1 . . .n

and in vector notation as:
dxxx
dt

= ẋxx = f(xxx, ppp, t)

with the independent variable t, the time-dependent
states xxx = (x1, . . . ,xn)

T , mostly time-invariant parame-
ters ppp = (p1, . . . , pn)

T , and the functions fff = ( f1, . . . , fn)
T .

Although the system states are time-dependent, they
should still be linearly independent of each other. The
order of an ODE equals the number states within the
set of 1st order ODEs.

Reactions depend on changing substrate concentrations
In the last chapter, we considered constant substrate
concentration in the steady state:

ṠSS = NNN · vvv = 000

and we looked mainly at the fluxes vvv, which can also
be dissected into forward v f and backward vb reaction
fluxes. If the substrate concentrations are constant, it is
possible to combine these with the constant parameters
to a flux value for a given reaction.
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With the study of the time behavior of each substrate’s
concentrations in our system with:

ṠSS = NNN · vvv

we cannot do this anymore. We have to dissect the flux
vectors into constant parameters k and now variable
substrate concentrations Si. Therefore, we usually use
the very important Law of Mass Action formulated by
Waage1 and Guldberg2 in 1864 [11]. For each reaction
j, we can define the concentrations of substrates Si and
products Pi:

∑
α

m jα S jα
k j−−⇀↽−−

k− j
∑
β

m jβ Pjβ

with indexes α and β being subsets of the metabolite in-
dexes i= 1, . . . ,m andmolecularities m jα ,m jβ for reaction
j and participating substances α,β ∈ i. The molecularity
is often 1 or 2.
We can say that the reaction rate is proportional to the
probability of collision of the reactants. The probability
of collision, in turn, is proportional to the concentration
of reactants to the power of molecularity (stoichiometric
coefficient). The general mass action kinetics for chemi-
cal reaction networks is:

v j = v j, f − v j,b = k+ j ∏
α

S
m jα
jα − k− j ∏

β

P
m jβ
jβ

with the product of sequence operator ∏ which indicates
that the following elements are multiplied (same princi-
ple as for the operator ∑ to sum up the following terms).
The equilibrium constant:

⇒ K j,eq =
k+ j

k− j
=

∏β PPP
m jβ
jβ ,eq

∏α SSS
m jα
jα,eq

for reaction j can be obtained if the substances are in
equilibrium v j, f = v j,b. In contrast to Chapter 2, here
we do not have a dynamic equilibrium of metabolites’
production and consumption.
For the biochemical reaction:

S1 +S2
k1−−⇀↽−−

k−1
2P

we get the net reaction rate:

v = v f − vb = k1 ·S1 ·S2 − k−1 ·P2

with S1, S2 and P denoting the respective concentrations
and k1 and k−1 being the rate constants of the forward
and backward reactions.

1 Norwegian chemist Peter Waage (1833–1900).
2 Norwegian mathematician and chemist Cato Maximilian Guld-

berg (1836—1902).

One can also derive the equations directly from the
reaction schemes without using the stoichiometric ma-
trix. This might be error-prone for larger biochemical
systems and molecularities of 2 and above. For the given
scheme, the ODE system is:

Ṡ1 =−k1S1S2 + k−1P2

Ṡ2 =−k1S1S2 + k−1P2

Ṗ = 2k1S1S2 −2k−1P2

= 2︸︷︷︸
NNN

·(k1S1S2 − k−1P2)︸ ︷︷ ︸
vvv

This modeling principle can equivalently by applied for
protein-binding reactions where the parameters k repre-
sent the affinity between proteins—for example, between
ligand and receptor:

L+R
k1−−⇀↽−−

k−1
LR

with the net reaction rate (from left to right):

v = vbind − vunbind = k1 ·L ·R− k−1 ·LR

We could, for example, use this equation to see how
much ligand-receptor complex LR will be present for
certain initial concentrations of ligand L and receptor R.
High affinity with a large constant Ka = k1/k−1 shifts the
equilibrium towards the complex, and low affinity shifts
this equilibrium to the monomers. After we have mod-
eled a reaction network, an equilibrium can be found
for the whole system. Trying to derive such an equi-
librium for many coupled reactions by intuition alone
might be too challenging. Thus, we need mathematical
models. TheODEmodeling framework gives the highest
quality of mechanistic insight among all tools in systems
biology—but only if we have enough data to adjust this
kind of model properly.
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1.5 ■What is a steady state?
A steady state is characterized by the absence of change
in the variable values while time progresses.
Definition 3. Steady state: In systems theory, a system
or a process is in a steady state if the variables (called
state variables) which define the behavior of the system
or the process are not changing over time.

This definition is referring to macro-scale changes over
time. Back reactions equal forward reactions at themolec-
ular scale in a closed system. In an open system, a dy-
namic equilibrium occurs in which fluxes and reactions
are constant. We have a steady state if all derivatives of
all state variables xi become zero:

ẋi = ẍi =
...x i = . . .= 0

for all i. Moreover, specifically for the 1st-order systems
we consider in this chapter, we have a steady state if the
(1st-order) derivatives of all state variables xi become
zero:

ẋi = 0

for all i.
Consider the following Examples 3, 4, and 5:

Example 3: Balance equation in steady state

dΦ

dt
= Φ̇ = J−P

Steady state?

Φ̇ = J−P = 0
⇒ J = P

Example 4: One steady state of a linear system

The derivatives of all states shall be zero:

ẋ = y+2x−2 = 0
ẏ = y− x+2 = 0

Subsequently, we mark all state values with a star
∗ to indicate that these are steady-state values and
re-order the equations above as follows:

y∗ = 2−2x∗

y∗ = x∗−2

Eliminating y∗ by setting both of the right-hand
sides to be equal delivers:

2−2x∗ = x∗−2

which gives the steady-state solution:

x∗ =
4
3
, y∗ =−2

3

Example 5: Steady states of a non-linear system

We work on a non-linear system and will thereby
often obtain multiple steady states, like in this ex-
ample:

ẋ = (y+2x−2)x = 0
ẏ = (y− x+2)y = 0

This set of equations is already in the factored form.
1 of the 2 factors in each single equation must be
zero so that the whole term is zero. We have 2
equations with 2 factors each. Thus, we expect 4
steady states, whereby a subset can be the same.
To simplify our approach, we will look at different
cases.
Case 1
Let’s say the first variable x∗ shall be zero:

ẋ = (y+2x−2)

x∗1,2=0︷︸︸︷
x = 0

ẏ = (y− x+2)︸ ︷︷ ︸
y∗2

y︸︷︷︸
y∗1

= 0

Then Equation 1 is zero as well. The second equa-
tion is then:

0 = (y∗+2)y∗

which results in two allocated y∗ values:

y∗1 = 0, y∗2 =−2

with which we get our first 2 steady states (0,0)
and (0,-2).
Case 2
We now take the other factor (y+2x−2) in the first
equation and set it to zero:

ẋ =

!
=0 → y∗3,4︷ ︸︸ ︷

(y+2x−2) x = 0
ẏ = (y− x+2)y︸ ︷︷ ︸

x∗1,2

= 0

Therefore, y∗ has to be:

y∗ = 2(1− x∗)
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with which the second equation becomes:

0 = 2(1− x∗)(4−3x∗)

which results in:

x∗3 = 1, x∗4 =
4
3

and two allocated y∗ values with which we get our
last 2 steady states (1,0) and ( 4

3 ,−
2
3 ).

Case 3 (redundant)
Ansatz: y∗ = 0
with the solutions (1,0) and (0,0).
Case 4 (redundant)
Ansatz: y∗ = x∗−2
with the solutions (0,-2) and ( 4

3 ,−
2
3 ).
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1.6 ■ Stability theory: Idle state or explosion
Stability is a system-intrinsic property and is character-
ized without external input uuu = 000. A non-linear system
can have several steady states. The system’s steady state
might be slightly deflected by δxxx:

xxx0 = xxx∗+δxxx

and the subsequent behavior indicates whether a system
is stable, unstable, or metastable—as illustrated in Figure
15.

 

x1 

x2 

x1
∗ 

x2
∗  

[x1(0), x2(0)] 

stable steady state 

trajectory 

unstable 

(system leaves 

steady state) 

stable 

(system returns 

to steady state) 

metastable 

(behavior is 

indifferent) 

Figure 15. To get an initial intuition, imagine a ball on
different surfaces. If you poke it a bit, what will happen?

To test this, we linearize around the steady state of the ex-
ample system ẋ = mx and can see by the slope m whether
the steady state is stable or not. Linearization is scruti-
nized in the mathematics section. Ponder on Figure 16.
The linearization:

∆ẋ = JJJ∆x

with the Jacobian matrix JJJ is explained in the mathemat-
ics section. The formal approach employs the exponen-
tial function starting from the system equation:

ẋ = mx

with the ansatz x(t) = est and its derivative ẋ(t) = s ·
est , and consequently we transform the system into the
Laplace Domain. It results in:

sest = mest ⇒ s = m

with s being the Eigenvalue of system ẋ = mx. See also
Figure 17.
The characteristic polynomial and Eigenvalues for higher
order systems
In general, the characteristic polynomial allows us to
determine the Eigenvalues of the system and thereof the
stability of the steady states.
An ordinary differential equation in the non-matrix rep-
resentation

(4)
x + . . .+a2ẍ+a1ẋ+a0x = b0u

is the base for the characteristic polynomial without con-
sideration of the control (u !

= 0). We use the Laplace

Figure 16. Assessing stability with an ẋ over x plot. For
the unstable steady state, if x is deviating in the positive
direction from steady state, the resulting derivative will
also be positive and thus make x even more positive—
and vice versa for negative deviations. Contrarily, for
the stable steady state the derivative (change) will be
negative if x is positive and positive if x is negative. This
will outbalance deviations and stabilize the steady state.

 

x1 

x2 

x1
∗ 

x2
∗  

[x1(0), x2(0)] 
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      𝑥 < 0|𝑥∗ 

�̇� > 0 

      𝑥 < 0|𝑥∗ 

�̇� > 0 

unstable 

 

�̇� = 𝑚𝑥 

𝑚 < 0 𝑚 > 0 

𝑥(𝑡) 

𝑡 

𝑠, 𝑚 > 0 

𝑒𝑠𝑡 → ∞ 
 

𝑡 

𝑥(𝑡) 𝑠, 𝑚 < 0 

𝑒𝑠𝑡 → 0 

unstable 

 

meta stable  

(type 1 system) 

 

𝑠 = 𝑚 = 0 

𝑒0𝑡 = 1 
 

𝑥(𝑡) 

𝑡 

1 

stable  

(type 0 system) 

 Figure 17. Behavior over time for the unstable, metastable,
and stable system of the form ẋ = mx with different pa-
rameter values m.

ansatz:

x = est

ẋ = sest

ẍ = s2est

...x = s3est

(4)
x = s4est

to transform our problem into the frequency domain
and get:

sn + . . .+a2s2 +a1s+a0 = 0
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Example 6: 2nd-order system

ẍ+a1ẋ+a0x = 0

ansatz:

x = est

ẋ = sest

ẍ = s2est

s2est +a1sest +a0est = 0 | : est (̸= 0)

s2 + a1︸︷︷︸
tr

s+ a0︸︷︷︸
det

= 0

⇒ s1,2 =
−a1 ±

√
a2

1 −4a0

2

The linear ẋxx = AAAxxx or linearized system ẋxx = JJJxxx in the
matrix form can also be treated with the same ansatz:

xxx = IIIest

ẋxx = sIIIest

and the identity matrix III to get:
sIIIest = AAAIIIest = AAAest

(sIII −AAA)est = 000
(sIII −AAA)xxx = 000

We only obtain non-trivial solutions (xxx ̸= 000) of the homo-
geneous system if we look for:

det(sIII −AAA) = 000,

which is another form of the characteristic polynomial.
However, if the system matrix is a square matrix, and
the rank equals the number of variables (rk(AAA) = n), we
only obtain the trivial solutions (xxx = 000).
Eigenvalues of the 2x2 matrix (fast equation)
The characteristic polynomial of a 2nd-order system (n =
2) is introduced in Example 7 and can be obtained by
the following procedure:

ẋ1 = a11x1 +a12x2

ẋ2 = a21x1 +a22x2

⇒(
ẋ1
ẋ2

)
︸ ︷︷ ︸

ẋxx

=

(
a11 a12
a21 a22

)
︸ ︷︷ ︸

AAA

(
x1
x2

)
︸ ︷︷ ︸

xxx

= 0

with:
xxx = IIIest

ẋxx = sIIIest

we get:

sx1 = a11x1 +a12x2

sx2 = a21x1 +a22x2

⇒

s
(

x1
x2

)
︸ ︷︷ ︸

ẋxx

=

(
a11 a12
a21 a22

)
︸ ︷︷ ︸

AAA

(
x1
x2

)
︸ ︷︷ ︸

xxx

= 0

(
s
(

1 0
0 1

)
−
(

a11 a12
a21 a22

))
︸ ︷︷ ︸

=0

(
x1
x2

)
︸ ︷︷ ︸
̸=0

= 0

∣∣sIII −AAA
∣∣= ∣∣∣∣s[1 0

0 1

]
−
[

a11 a12
a21 a22

]∣∣∣∣
=

∣∣∣∣[s 0
0 s

]
−
[

a11 a12
a21 a22

]∣∣∣∣
=

∣∣∣∣s−a11 −a12
−a21 s−a22

∣∣∣∣= 0

(s−a11)(s−a22)−a12a21 = 0

s2 −a11s−a22s+a11a22 −a12a21 = 0

s2 − (a11 +a22)︸ ︷︷ ︸
tr(AAA)

s+a11a22 −a12a21︸ ︷︷ ︸
detAAA

= 0

s2 − tr(AAA)s+detAAA = 0

s1,2 =
tr(AAA)±

√
tr2(AAA)−4det(AAA)

2
.

s1,s2 can be real numbers but also complex numbers of
the form s=Re(s)+ iIm(s)with i=

√
−1. If the number is

complex, the system has oscillating behavior. See Figure
18 for different Eigenvalue pairings and the consequen-
tial systems behavior. Additionally, we can also classify
the systems according to the Final Value Theorem (FVT).
Eigenvalues on the imaginary axis and the right half of
the plane indicate that the system does not converge to a
value and is thus not classified with the FVT. We classify
the system type according to the number of Eigenval-
ues in the origin. If the real part of the Eigenvalues is
on the left-hand side, we have a Type 0 system. If one
Eigenvalue is on the origin and the rest is in the left-half
plane, we have a Type 1 system that is going to have a
real finite number, as shown in Figure 17 middle. With
each additional Eigenvalue at the origin, we increase the
system type order and get unstable behavior.
YouTube: Final Value Theorem (up to 8:17).

https://www.youtube.com/watch?v=PXxveGoNRUw&list=PLUMWjy5jgHK1NC52DXXrriwihVrYZKqjk&index=15
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Im(s)

Re(s)

stable ( ype 0)
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T

T , no 

oscillations � stable node
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conserved oscillations 

� limit cycle

stable ( ype 0), 

oscillations � stable focus

unstable, oscillations 

� unstable focus

Im(s)

Re(s)

Im(s)

Im(s)

Im(s)

Im(s)

Im(s)

Re(s)

Re(s)
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Re(s)

Re(s)
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� unstable node

unstable, no oscillations 

� saddle point

unstable ( ype 2 and higher) metastable ( ype 1) 

Im(s)

Re(s)

Figure 18. Eigenvalues in the frequency domain are
shown in the s-plane. Each Eigenvalue has a real and
imaginary part: s=σ + iω with Im(s)= iω , andRe(s)=σ

Example 7: Eigenvalues and stability

a) (
ẋ1
ẋ2

)
=

(
3 −2
1 5

)(
x1
x2

)
+

(
1
0

)
u

We search for the Eigenvalues with:

det(AAA− sIII) = 0

det
(

3− s −2
1 5− s

)
= 0

(3− s)(5− s)+2 = 0

s2 −8s+17 = 0

s1,2 =−−8
2

±

√(
−8
2

)2

−17

⇒ s1,2 = 4± i → unstable focus

b) (
ẋ1
ẋ2

)
=

(
−1 4
0 −3

)(
x1
x2

)
⇒ s1 =−1;s2 =−3 → stable node

c) (
ẋ1
ẋ2

)
=

(
3 8
1 1

)(
x1
x2

)
⇒ s1 = 5;s2 =−1 → unstable saddle

d) (
ẋ1
ẋ2

)
=

(
−1 3
−1 1

)(
x1
x2

)
⇒ s1,2 = 0±

√
2i →metastable limit cycle

Stability classification
We can classify the stability properties via the Eigenval-
ues, as summarized in Figure 18. For 2x2 matrices, we
can also use the trace and the determinant of the system
matrix as shown in the Poincaré diagram in Figure 21:

λ =
tr(AAA)±

√
tr2(AAA)−4det(AAA)

2
.

with the distance between Eigenvalues:

∆ =:
√

tr2(AAA)−4det(AAA) = 0

det(AAA) =
1
4

tr2(AAA)

to get the threshold above which we gain imaginary
numbers.

• λ1,λ2 < 0 then det(AAA)> 0, tr(AAA)< 0 → stable node
• λ1,λ2 > 0 then det(AAA) > 0, tr(AAA) > 0 → unstable

node
• λ1 < 0,λ2 > 0 then det(AAA)< 0 → saddle node with

one stable and one unstable direction
• Re(λ1) = Re(λ2)< 0 with no vanishing imaginary

part. Then det(AAA)> 0, tr(AAA)< 0, tr2(AAA)< 4det(AAA) →stable
spiral

• Re(λ1) = Re(λ2)> 0 with no vanishing imaginary
part. then det(AAA)> 0, tr(AAA)> 0, tr2(AAA)< 4det(AAA) →unstable
spiral

Slopefield
A slopefield describes the slope at each point in the phase
plot and thereby is an informative visual representation
of the system dynamics.
YouTube: Slope fields

https://www.youtube.com/watch?v=24pxJ1DuWR8
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Figure 19. An ODE system can show various behavior de-
pending on the damping ratio. The higher the damping
ratio is, the more the oscillatory behaviour is reduced.
See Example 8.

Example 8: Damping

For a deeper understanding of the origin of real
and imaginary Eigenvalues and the respective sys-
tem behavior, it is beneficial to look at damping, as
shown in Figure 19. Damping reduces the impact
of the oscillatory behavior. In physical systems it
is achieved by the dissipation of energy stored in
the oscillatory system. Let’s assume a system has
the following characteristic equation:

s2 +2s+ζ = 0.

The quadratic equation can be solved with the p-q-
equation:

s1,2 =−1±
√

1−ζ

We see that the first term indicates negative Eigen-
values at the first glimpse. This remains the case
as long 0 ≤ ζ ≤ 1. If we have ζ < 0 we have one
positive Eigenvalue and thus an unstable saddle. If
ζ > 1, we obtain a negative value below the square
root and the term turns into the imaginary part
±αi of the complex number s. Consequently, we
have oscillatory behaviour. Thus ζ has a damping
function with:
0 ≤ ζ ≤ 1 overdamped
ζ = 1 critically damped
ζ > 1 underdamped
The smooth transition within the p-q equation and
the symbol ± explains why the imaginary parts of
the complex Eigenvalues arise pairwise with the
same real part in Figure 18. This only applies to
simple systems with a 2x2 system matrix AAA.
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1.7 ■Phase portrait: Howelements relate to each other
Let’s assume we have a stable system with two elements
x1 and x2.

ẋ1(t) = f1(x1(t),x2(t))

ẋ2(t) = f2(x1(t),x2(t))

We do not only want to know how the elements change
over time. We also want to know how the elements relate
to each other:

dx2(t)
dx1(t)

=
f2(x1(t),x2(t))
f1(x1(t),x2(t))

by making use of the relationship:

ẋ2(t)
ẋ1(t)

=
dx2
dt

dx1
dt

=
dx2 dt
dt dx1

=
dx2

dx1
.

Put in simple terms, the time derivative has been can-
celled out and we have no time axis anymore, as illus-
trated in Figure 20. But time is still present, because
at each time point and for each state magnitude x2 has
an allocated state magnitude x1. For the whole time, it
could be that the system has passed different magni-
tudes of x2 at a particular magnitude of x1. Moreover,
there might be several different values for x1 at the mag-
nitude x2. But let us go back to the start. You can now
choose which initial values you would like to start with
[x1(t = 0),x2(t = 0)]. From this point on, the system will
move in the phase plot until it reaches a stable state
where it will remain forever [x1(t → ∞),x2(t → ∞)]. The
path which the system takes until it arrives a stable point
is called a trajectory. 

x1 

x2 

x1
∗ 

x2
∗  

[x1(0), x2(0)] 

stable steady state 

trajectory 

Figure 20. Phase portrait. The axes represent the mag-
nitude of the elements x1,x2. The trajectories start from
[x1(t = 0),x2(t = 0)] andmove over time to a stable steady
state [x1(t → ∞),x2(t → ∞)]. In this way, we can plot our
system as the change of element x2 over the change of
the element x1. One could also decide to show the rela-
tionship the other way around, e.g., the phase plot as the
change of x1 over the change of x2.

Definition 4. Trajectory: Set of all state points (x1,x2) in
the state plane starting from t0 or t = 0.

Interestingly, not all initial points might lead to the
same steady state. Depending on your initial point, the
trajectories might be shaped differently and might land
at different steady states, given that you have multiple
stable points. Thus, it is interesting to look at several
trajectories which start at different initial points.
If we want to draw a phase plot by hand, we would
greatly benefit from orientation lines. Therefore, we
determine asymptotes with the most simple cases as
being:

• Vertical asymptotes (vertical tangents)
• Horizontal asymptotes (horizontal tangents)
• Oblique asymptotes.

What horizontal and vertical means depends on which
element you want to study in dependence on the other.
We remain in the general equations shown above (see
also Figure 20). We obtain the horizontal and vertical
tangents with the following ansatz:

• Horizontal tangent ("no change in the x2-direction"):

f2(x1,x2) = 0 (1.1)

• Vertical tangent ("no change in the x1-direction"):

f1(x1,x2) = 0 (1.2)

For the oblique asymptote, we introduce the general
linear equation into our phase plot equation:

d(x2 = mx1)

dx1
= m =

f2(x1,(x2 = mx1))

f1(x1,(x2 = mx1))
.

The obtained values for m are set back in the linear equa-
tion x2 = mx1 and represent the oblique asymptotes. For
a deeper discussion of this topic, please refer to the exer-
cises at the end of this chapter.
Definition 5. Nullclines: Curves on which the trajecto-
ries have the derivative 0.
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Poincaré Diagram: Classification of Phase Portaits in the (det(A), tr(A))-plane

tr(A)

det(A)
∆=0

∆=0:
det(A)= 1

4 (tr(A))2

saddle

centeruniform
motion

sink source

line of stable fixed points line of unstable fixed points

spiral sink spiral source

degenerate sink degenerate source

Figure 21. Poincaré diagram for 2x2 matrices: Classification of phase portraits in the (det(AAA), tr(AAA)) plane. Credit to
Gernot Salzer, No rights reserved.
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1.8 ■ Feedback revisited
In the next step we will use the introducedmathematical
concepts and analyze the systemic properties of some
network motifs discussed earlier. We will thereby see
how and when these motifs give rise to characteristic
non-linear dynamic phenomena.

Sequential 

 

Positive feedback 

 

 

Negative feedback 

 

A B 

A B 

A B 

𝑘1 𝑘2 𝑘3 

𝑘4 > 0 

𝑘4 < 0 

𝑘1 

𝑘1 

𝑘2 

𝑘2 

𝑘3 

𝑘3 

Figure 22. Network structures of the feedback examples
as analyzed in Example 9.

Example 9: Feedback

In this example we will perform a detailed, mathe-
matical analysis of the effects of negative and posi-
tive feedback in a simple metabolic pathway (Fig-
ure 22). We start with the general stoichiometric
matrix:

NNN =
v1 v2 v3 v4[
1 −1 0 1
0 1 −1 0

]
A
B

Wehave 2 equations (m= 2) and 4 reactions (r = 4).
The rank is 2 (rk(NNN) = 2). This means, we can set
2 unknowns k to arbitrary numbers to find 1 of
the many possible solutions. We decide to take
the influx k1 as control u and to set k4 to different
values:
k4 < 0: negative feedback
k4 = 0: sequential (no feedback)
k4 > 0: positive feedback
We use mass action kinetics to set up an ODE sys-

tem for the concentrations of A and B:

˙(A
B

)
︸︷︷ ︸

ṠSS

=

(
1 −1 0 1
0 1 −1 0

)
︸ ︷︷ ︸

NNN


u

k2A
k3B
k4B


︸ ︷︷ ︸

vvv

=

(
−1 0 1
1 −1 0

)k2A
k3B
k4B

+

(
1
0

)
u

=

(
−k2 0 k4
k2 −k3 0

)A
B
B

+

(
1
0

)
u

˙(A
B

)
︸︷︷ ︸

ẋxx

=

(
−k2 k4
k2 −k3

)
︸ ︷︷ ︸

AAA

(
A
B

)
︸︷︷ ︸

xxx

+

(
1
0

)
u︸ ︷︷ ︸

uuu

which is the ODE system:

Ȧ =−k2A+ k4B+u

Ḃ = k2A− k3B

Let’s interpret these equations: We have an influx
u, which positively influences the change of A. A
part of the substance A turns into B with reaction
rate k2. If term k2A is subtracted from the first equa-
tion, it negatively influences the change of A. The
same term appears in the equation for the change
of B. This ensures that no mass is lost. Thus, the
term k2A positively influences the change of B as it
negatively influences the change of A, whichmakes
sense becausewewant to turn substance A into sub-
stance B. The substance B leaves the system with
rate k3. One can see that the loss of substance of B
increases with the abundance of B. The feedback
via k4B influences A depending on the abundance
of B. This interaction is modeled as signaling flow.
B "only" transmits a signal but is not converted.
This means that it does not preserve the mass con-
servation at this point and it does not reduce B by
k4B.
This is a fundamental and important difference:

• Preserve mass conservation→ substrate flow
• Not preserve mass conservation→ informa-

tion flow.
We will now look at the stability of system matrix
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AAA via the Eigenvalues:∣∣∣∣(−k2 k4
k2 −k3

)
−
(

s 0
0 s

)∣∣∣∣= ∣∣∣∣−(k2 + s) k4
k2 −(k3 + s)

∣∣∣∣= 0

(k2 + s)(k3 + s)− k2k4 = 0

s2 +(k2 + k3)s+ k2(k3 − k4) = 0

We study the case k2 = k3 = 1:

s2 +2s+(1− k4) = 0

The related p-q equation is:

s1,2 =−1±
√

1− (1− k4) =−1±
√

k4

Sequential setting k4 = 0:
Both Eigenvalues are negative
⇒ s1 =−1;s2 =−1 stable (Type 0)
Positive feedback (k4 = 2):
⇒ S1 = 0.4142; S2 =−2.41 unstable saddle
Positive feedback (k4 = 1):
⇒ S1 = 0; S2 =−2 metastable (Type
1)
Negative feedback (k4 =−1):
⇒ S1,2 =−1± i
Damped oscillations, stable (Type 0)

The following video show the simulation of the
dynamic behavior of this pathway with different
strengths of negative or positive feedback:
YouTube: Example simulated

https://www.youtube.com/watch?v=SXV2DY1LhLg
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1.9 ■ Bifurcation: Split it baby!
Adding to Example 9, we will now tackle the mathemat-
ical analysis of another example model of feedback. We
will, in addition, analyze how the obtained steady states
and dynamic properties depend on the value of a system
parameter. Simple feedback can also be modeled as:

ẋ =−kneg · x kneg > 0, x(t = 0) = 1

which turns out to be a stable steady state, as shown in
Figure 16.
The time-course is:

x(t) = x0 · e−kneg·t

as shown in Figure 23 left. Positive feedback, however,
might destabilize a system. Let’s have a look at combined
negative and positive feedback

ẋ =−kneg ·x+kpos ·x kneg, kpos > 0; x(0) = 1

whereby the variable x is the cause and the change ẋ is
the consequence within the feedback loop. The related
solution of this differential equation is:

x(t) = x0 · e(kpos−kneg)·t

As you see in Figure 23 right below, the system becomes
unstable if the parameter exceeds certain values. How-
ever, healthy biological systems are never globally un-
stable, because they run into saturation. Malignancies
like cancer and virus production, however, can be seen
as biological systems that might lead to global system
failure, if outbalancing feedback (medicament, immune
system) are too weak to control the disease.
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Figure 23. Feedback: On the left-hand side the behavior
of simple negative feedback is shown. On the right-hand
side the behavior of a system with fixed negative feed-
back kneg = 3 is shownwith different strengths of positive
feedback.

 

𝑘𝑝𝑜𝑠 = 1 

overdamped 

critically damped 

underdamped 

time 

am
p

lit
u

d
e 

𝑒−𝑖𝜔𝑡 

Fourier transform 

Laplace transform 

𝑒−𝜎𝑡 

𝑒−𝜎𝑡𝑒−𝑖𝜔𝑡 = 𝑒−(𝜎+𝑖𝜔)𝑡 = 𝑒−𝑠𝑡  

time time time 

s-plane 
Imaginary (frequency) 

Real (exponential) 

𝑖𝜔 

𝜎 

  frequency domain   time domain 

𝑥(𝑡) = 𝑥0 ∙ 𝑒
−𝑘𝑛𝑒𝑔∙𝑡 

𝑥 𝑥   oscillation   decay 

  original 

𝑥 
𝑘𝑛𝑒𝑔 = 0 

1 
3 

5 

𝑡 
𝑥∗ 

𝑘𝑛𝑒𝑔 

𝑡 

𝑘𝑝𝑜𝑠 

𝑥∗ 

𝑥 
𝑘𝑝𝑜𝑠 = 3 

0 

2 

5 

3 

𝑥(𝑡) = 𝑥0 ∙ 𝑒
(𝑘𝑝𝑜𝑠−𝑘𝑛𝑒𝑔)∙𝑡 

𝑘𝑛𝑒𝑔 = 3 𝑘𝑝𝑜𝑠 = 0 

stable unstable

 

stable 0 0 

0.5 

0 

𝑘𝑝𝑜𝑠 

𝑥∗ 

unstable stable 

𝑥2
∗ 𝑘𝑝𝑜𝑠 

0.25       -2 

0.5          0 

1             1 

2             1.5 

 

       

𝑥 

𝑡 

2 

1.5 

0.75 
0 

steady 

states 

𝑥 

𝑓(𝑥) 

6 
Michaelis-Menten 

𝑡 

𝑥 

𝑥∗ 

𝑘𝑝𝑜𝑠 1 4 

stable 

stable 

0.5 

1 

2 
5.5 

1.5 

1 

 

 

 

 

0.5 

0 

 

5.5 

 

 

 

0, 0.5, 1, 1.5 

 

 

1, 1.5, 5.5 

 

 

 

 

 

 

 

0, 0.5 

 

 

Figure 24. Feedback with saturation: The Michaelis-
Menten equation stabilizes the system, so that we get a
stable state for each kpos. Compare with Figure 23.
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Figure 25. Feedback with complex behavior: Here we
get several stable states, but also hysteresis. Compare
with Figure 23 and 24.

We can use the Michaelis-Menten function to mimic a
saturation for the positive feedback:

ẋ =−kneg · x+6
kpos · x

kpos · x+1

=−kneg · x+

vmax︷︸︸︷
6 ·x

x+ 1/kpos︸︷︷︸
Km

The solution for the steady state(s) is:

−kneg · kpos(x∗)2 − kneg · x∗+6kpos · x∗ = 0
x∗(−kneg · kpos · x∗− kneg +6kpos) = 0
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Steady states:

Case 1) x∗1 = 0

Case 2) − knegkposx∗+6kpos − kneg = 0

⇒ x∗2 =
6kpos − kneg

kpos · kneg

For kneg = 3 : x∗2 =
6kpos −3

3kpos
=

2kpos −1
kpos

= 2− 1
kpos

Stability: Linearization

ẋ =−kneg · x+6 ·
kpos · x

kpos · x+1

⇒ ∆ẋ =−kneg ·∆x+6
kpos(kposx∗+1)− kpos(kposX∗)

(kposx∗−1)2 ∆x

Which roughly gives the steady state x∗1 = 0

∆ẋ =−kneg∆x+6kpos∆x = (6kpos − kneg)∆x

For kneg = 3:

∆ẋ = (6kpos −3)∆x

< 0 for kpos < 1/2

> 0 for kpos > 1/2

Stability of this steady state?

s = 6kpos −3
x∗1 unstable for kpos > 1/2

stable for kpos < 1/2

For an illustration of how the steady state(s) and their
stability depends on parameter value kpos (bifurcation
plot), see Figure 24. The system is not simply unstable
beyond a parameter threshold. It changes to the closest
stable steady state.
When combining negative feedback and positive feed-
backwith saturation and some basal activation, a bistable
system can be obtained (Figure 25). Here, which steady
state is reached depends on the parameter value kpos as
well as on the initial conditions:

ẋ= 0.2︸︷︷︸
basal level

−knegx+6 ·
(kposx)5

(kposx)5 +1︸ ︷︷ ︸
fpos(x)

x(t = 0) = x0 = 1

Summary of key points here:
• Two stable steady states ⇒ bistability
• Increase of steady state with kpos not continuous

anymore, but step-like. (See next section on bifur-
cation for more details.)

Neg. feedback → stabilizing
→ oscillating (not shown here)

Pos. feedback → (often) destabilizing
→ bifurcations
→ bistability, switching behavior
→ hysteresis

• Contains no information about how long the sys-
tem needs to reach steady states

• Hysteresis: influence of history. Consequence per-
sists after cause vanishes.

The plot at the bottom of Figure 23 shows the change
of a system’s steady state depending on parameter value.
In the bottom right part of the figure, we see that the
system suddenly changes to an unstable steady state,
although the previous behavior was approaching an
equilibrium. This unstable steady state can lead to differ-
ent directions—the trajectories split up. The trajectories
could split up several times until we, with certain param-
eter sets, reach chaotic system behavior (not shown).
Definition 6. Bifurcation: Qualitative change of system
behavior with parameter displacement.

This is relevant if:
• parameter unknown (welcome to Systems Biol-

ogy)
• parameter is influenceable (drug target?)

A double negative feedback loop, the toggle switch, is
a common motif in differentiation biology, as shown in
Figure 26. Waddington’s3 epigenetic landscape is a visu-
alization of the bifurcation valleys and laid a cornerstone
of systems biology, epigenetics, and developmental bi-
ology. A change of parameters changes the landscape
shape. Look back also to Figures 3 and 4 where a dotted
line marks the unstable regions. The individual trajec-
tories might go to the adjacent stable stem cell states. If
you are as excited and curious as we are, read this paper
about bistability, bifurcations, and Waddington’s epige-
netic landscape [12].

Mathematically, a local bifurcation (x0,λ0) appears
to be a continuous dynamic system:

ẋ = f (x,λ )

is linearized around a certain fixed point, and the ob-
tained Jacobian reveals an Eigenvalue with a zero real

3 British biologist and philosopher ConradHalWaddington (1905—
1975).
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unstable

al

Figure 26. Bifurcation example: (A) depending on the initial values of the protein level states in the toggle switch
motif, we can have a stable or unstable situation. An unstable state can fall into the one or the other direction. (B)
Developmental trajectories follow the imaginary epigenetic landscape of Conrad Waddington. Adapted from [13].
Copyright © 2009, Elsevier Ltd.
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part. If you get stuck here, do not worry. Come back
later after you have worked through the rest of the doc-
ument. The Poincaré–Andronov–Hopf bifurcation,456
or (in short) Hopf bifurcation, is an interesting case
because, beyond this point, the solution becomes os-
cillatory (complex Eigenvalues). Biological examples
are the Lotka–Volterra model for the interplay of preda-
tors and prey, the Hodgkin– Huxley model of neuro-
electrophysiology, and the Selkov model of glycolysis
[14].
Also check out the time profiles and bifurcations as oc-
curring in a cancer-signaling network (Figure 27).

4 Austrian-Hungarian mathematician and astronomer Eberhard
Frederich Ferdinand Hopf (1902—1983).

5 Frenchmathematician, theoretical physicist, engineer, and philoso-
pher Henri Poincaré (1854—1912).

6 Soviet physicist Aleksandr Aleksandrovich Andronov (1901—
1952).
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feedback regulation plays important roles for both oscil-
lation as well as switch-like activation of CDKs which
accounts for the threshold [6,7]. As for cancers, onco-
genes such as CycD and CycE, and tumor suppressor
genes such as p16, retinoblastoma (Rb) and p53 also
participate in the cell cycle network to make the system
behaviors more complex and robust [8,9]. Mathematical
models of cell cycle have mainly been focused on the

restriction point or G1/S transition, at which cells commit
to entering S phase and completing the cell cycle. Such
regulation is lost in cancer cells, resulting in abnormal cell
proliferation [10]. Studies using theory-based models

have identified key regulators for cell cycle entry at the
restriction point, e.g., the CycE-CDK2 complex and the
CDK inhibitor p27, and further found that network-level
features such as self-organization of the CDK network
and a bistable switch of the Rb-E2F pathway tightly
regulate the G1/S transition [11e13]. Recently, mathe-
matical modeling in conjunction with high-throughput
single cell imaging revealed that the switch-like G1/S

transition is driven by double negative feedback loops
between Cyc-CDK2 and the CDK inhibitor p27 in which
increasing the level of early mitotic inhibitor (Emi) 1,
which regulates mitosis by inhibiting the anaphase

Figure 1

Intracellular signaling regulating cancer associated phenotypes and dynamic properties of key signaling proteins. The main signaling cascades regulating
cancer hallmarks focused on in this review are depicted. Key signaling proteins in each signaling pathway have various dynamic properties. Cell cycle
drivers such as CycD/CDK4 and CycE/CDK2 show oscillatory dynamics, whereas Rb, which is involved in entry for S phase, shows switch-like response.
Caspase 3, which mediates programmed cell death (also known as apoptosis), also shows switch-like activation. The tumor suppressor gene p53
displays various dynamics, e.g., oscillation, in response to DNA damage (Details are shown in Figure 2). Rac1 and RhoA, which are involved in
epithelial–mesenchymal transition (EMT) and cell motility show bistability. Akt and ERK, which play a key role in multiple cellular processes such as
proliferation, differentiation and cell death display sustained and transient dynamics, respectively.

40 Cancer and systemic diseases (2017)

Current Opinion in Systems Biology 2017, 2:39–48 www.sciencedirect.com

Figure 27. Time profiles in cancer: "Intracellular signaling regulating cancer associated phenotypes and dynamic
properties of key signaling proteins. The main signaling cascades regulating cancer hallmarks focused on in this
review are depicted. Key signaling proteins in each signaling pathway have various dynamic properties. Cell cycle
drivers such as CycD/CDK4 and CycE/CDK2 show oscillatory dynamics, whereas Rb, which is involved in entry for
S phase, shows switch-like response. Caspase 3, which mediates programmed cell death (also known as apoptosis),
also shows switch-like activation. The tumor suppressor gene p53 displays various dynamics, e.g., oscillation, in
response to DNA damage [...]. Rac1 and RhoA, which are involved in epithelial–mesenchymal transition (EMT) and
cell motility show bistability. Akt and ERK, which play a key role in multiple cellular processes such as proliferation,
differentiation and cell death display sustained and transient dynamics, respectively". Direct quote and source: [15].
Copyright © 2017, Elsevier Ltd.
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1.10 ■ Simulation-based analysis of motifs
As mentioned earlier in Example 1 to 6, computer simu-
lation is the method of choice to analyze large or com-
plex dynamical systems. For such systems, analytical
solutions cannot usually be obtained anymore. For the
simulation within a computational framework, the set
of balance equations (ODEs) has to be supplied in a
specific form. These equations will then be numerically
integrated and the time-course behavior for a given set of
initial conditions and parameters will be approximated.
By repeatedly simulating a system with different initial
conditions and parameters, an overview on the overall
system behavior can be obtained. We will not introduce
more advanced methods like Parameter Identification or
Sensitivity Analysis here (further reading e.g. [16]), but
will illustrate the basic simulation approach with two
examples:

Figure 28. Network structure of the Sniffermotif. Stimu-
lus S activates the production of proteins P and R which
both also get degraded. The degradation of P also de-
pends on P. The respective parameter names are given
in italics.

Example 10: Change detection & adaptation

The Sniffer motif as depicted in Figure 28 is a small
motif consisting of two proteins and an activat-
ing input stimulus [17]. The respective balance
equations are incorporated in the computer model
which is given below in the IQM toolbox format
[5]. Other tools use similar but slightly different
formats. This model allows to simulate the system
behavior, i.e. the behavior of the output as a func-
tion of the input (Figure 29). From this we can see
that the response shows perfect adaptation to vary-
ing inputs, signaling that there is change but then
resettling at the same steady state and being ready
to newly respond to another change. Understand-
ing this function of the motif is on a different level
compared to just drawing the network interactions.
For further reading we recommend the full paper
that this extract comes from [17].

********** MODEL NAME
Sniffer

********** MODEL STATES
d/dt(P) = k1p*S - k1d*P
d/dt(R) = k2p*S - k2d*R - k2dp*R*P

P(0) = 0
R(0) = 0

********** MODEL PARAMETERS
S = 0
k1p = 1
k1d = 1
k2p = 1
k2d = 0
k2dp = 1

Figure 29. Dynamics of the Sniffer motif. The time
course of output R is depicted (right) as a consequence
of the varying input S (left).

Example 11: Toggle switch

The toggle switch motif is depicted in Figure 26
and consists of two proteins which are mutually re-
pressing each other’s activity, resulting in a double-
negative feedback loop. This motif was nicely an-
alyzed by Huang et al. [18] and we recommend
reading the paper. One of the variants of the motifs
is modeled with the following ODEs:

ẋ1 = a1 ·
xn

1
than

1 + xn
1
+b1 ·

thbn
1

thbn
1 + xn

2
− k1 · x1

ẋ2 = a2 ·
xn

2
than

2 + xn
2
+b2 ·

thbn
2

thbn
2 + xn

2
− k2 · x2
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With theMATLAB code below, using thismodel
and analyzing (with repeated simulations) the ef-
fect of the degradation parameter value k = k1 = k2
on the number and exact value of the steady states,
one obtains the bifurcation plot as shown in Fig-
ure 30. The system is bistable for parameter values
k < 1.8. This results in a phase plot with two stable
steady states and one unstable steady state (Figure
31). The slopefield indicates the regions of attrac-
tion towards one or the other stable steady state.
For parameter values k > 1.8 the bistability disap-
pears and the system has only one stable steady
state (Figure 32). The respective phase plot shows
only that steady state with all the slopefields point-
ing towards it. This motif plays an important role
in many developmental processes (see Figure 26
and [18]).

Figure 30. Toggle switch motif. Bifurcation plot for the
toggle switch motif (Example 11). The dependency of
the steady state(s) for X2 as a function of parameter
k = k1 = k2 is depicted. Stable steady states are plotted
in blue and unstable in red.

Figure 31. Toggle switch motif. Phase plot for the tog-
gle switch motif (Example 11) with slopefield. For pa-
rameter values k = k1 = k2 = 1 the system is showing a
bistability. Stable steady states are plotted in blue and
unstable in red.

Figure 32. Toggle switch motif. Phase plot for the toggle
switch motif (Example 11) with slopefield. For parame-
ter values k = k1 = k2 = 2 the system is having only one
(stable) steady state (indicated in blue).

1 %% Toggle switch motif
2 %Thomas Sauter, University of Luxembourg
3 clear all
4 syms X1 X2
5 syms a1 a2 tha1 tha2 n b1 b2 thb1 thb2 k1 k2
6 eqX1_gen=a1*X1^n/(tha1^n+X1^n) + ...

b1*thb1^n/(thb1^n+X2^n) - k1*X1
7 eqX2_gen=a2*X2^n/(tha2^n+X2^n) + ...

b2*thb2^n/(thb2^n+X1^n) - k2*X2
8 % parameters for model A
9 n=4

10 k1=1 %1 %2
11 k2=1 %1 %2
12 tha1=0.5
13 tha2=0.5
14 thb1=0.5
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15 thb2=0.5
16 a1=0 %2de: 1
17 a2=0 %2de: 1
18 b1=1 %4a: 0.5
19 b2=1 %4a: 0.5
20 eqX1=eval(eqX1_gen)
21 eqX2=eval(eqX2_gen)
22 pretty(eqX1)
23 pretty(eqX2)
24 %% step 3
25 [X1_ss_sym,X2_ss_sym]=vpasolve(eqX1,eqX2,X1,X2);
26 X1_ss_tmp=X1_ss_sym; %eval(X1_ss_sym)
27 X2_ss_tmp=X2_ss_sym; %eval(X2_ss_sym)
28 X1_ss=[]; X2_ss=[];
29 for k=1:numel(X1_ss_tmp) %remove complex roots
30 if (imag(X1_ss_tmp(k))==0) && ...

(imag(X2_ss_tmp(k))==0)
31 X1_ss=[X1_ss; X1_ss_tmp(k)];
32 X2_ss=[X2_ss; X2_ss_tmp(k)];
33 end
34 end
35 X1_ss
36 X2_ss
37 %% step 4 using a for loop
38 syms X1 X2
39 %general linearization
40 Lin = jacobian([eqX1; eqX2],[X1 X2])
41 %around steady states: using for loop
42 for i=1:size(X1_ss)
43 X1=X1_ss(i)
44 X2=X2_ss(i)
45 eval([['Lin' num2str(i)] '= eval(Lin);'])
46 eval([['eig' num2str(i)] '= ...

eig(eval(Lin))'])
47 end
48 %% ht and vt tangents
49 syms X1 X2
50 [X1_ht,X2_ht,params_ht,conditions_ht] ...
51 =solve(eqX2,X1,X2,'MaxDegree',5,...
52 'ReturnConditions',true)
53 [X1_vt,X2_vt,params_vt,conditions_vt] ...
54 =solve(eqX1,X1,X2,'MaxDegree',5,...
55 'ReturnConditions',true)
56 %% plotting the phase portrait + numerical ...

simulation of vector field
57 figure; hold on
58 axis([-0.1 1.5 -0.1 1.5]) %Plot range
59 X1_range=linspace(0,1.5,50); %Evaluate all ...

results in the same range
60 X2_range=linspace(0,1.5,50);
61 % plot steady states
62 for k=1:numel(X1_ss)
63 ss_plot = plot(X1_ss(k),X2_ss(k),'*',...
64 'MarkerSize',20,'LineWidth',4);
65 eig_check=['eig' num2str(k)]; %check ...

stability
66 if max(real(eval(eig_check)))≥0
67 set(ss_plot,'Color','r') %red for ...

unstable (≥0)
68 else
69 set(ss_plot,'Color','b') %blue for ...

stable (<0)
70 end
71 end
72 % plot vertical and horizontal tangents
73 for i=1:size(X1_vt)
74 for k=1:numel(X2_range)
75 z=X2_range(k);
76 % for l=1:numel(X2_range)
77 % X2=z;

78 if (imag(eval(X1_vt(i)))==0) && ...
(imag(eval(X2_vt(i)))==0)

79 plot(eval(X1_vt(i)),eval(X2_vt...
80 (i)),'r.','MarkerSize',10)
81 % end
82 end
83 end
84 end
85 for i=1:size(X1_ht)
86 for k=1:numel(X2_range)
87 z=X2_range(k);
88 % for l=1:numel(X2_range)
89 % X2=X2_range(l);
90 if (imag(eval(X1_ht(i)))==0) && ...

(imag(eval(X2_ht(i)))==0)
91 plot(eval(X1_ht(i)),eval(X2_ht(i))...
92 ,'g.','MarkerSize',10)
93 end
94 end
95 end
96
97 % numerical computation of example ...

trajectories
98 X1_ic=[0:0.1:1.5]' %initial conditions on ...

the x-axis (X1)
99 X2_ic=[0:0.1:1.5]' %initial conditions on ...

the y-axis (X2)
100
101 syms X1 X2
102 eqX1=subs(eqX1,X1,str2sym('x(1)'));
103 eqX1=subs(eqX1,X2,str2sym('x(2)'))
104 eqX2=subs(eqX2,X1,str2sym('x(1)'));
105 eqX2=subs(eqX2,X2,str2sym('x(2)'))
106 eval(['dxdt=@(t,x,tmp) ([' char(eqX1) ';' ...

char(eqX2) '])'])
107 t_int=[0 .1] %vectorfield tend=0.1 %full ...

trajectories tend=1
108 options=[]; % =tmp
109 for i=1:size(X1_ic)
110 for k=1:size(X2_ic)
111 [t, x] = ...

ode45(dxdt,t_int,[X1_ic(i); ...
X2_ic(k)],options);

112 plot(x(:,1),x(:,2),'k')
113 plot(X1_ic(i),X2_ic(k),'k.',...
114 'MarkerSize',5)
115 end
116 end
117 hold off
118 title({'phase portrait: X2(t) = ...

f(X1(t))','blue,red: ...
119 stable & unstable steady states, dotted ...

lines: ...
120 horizontal & vertical tangents'})
121 xlabel('X1(t)')
122 ylabel('X2(t)')
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1.11 ■ Additional reading: Cybernetics—The art of
creating equilibrium in a world of constraints and
possibilities

Cybernetics or control engineering enables us to under-
stand systems and to design the optimal control. The
optimal control brings and keeps the system in a favor-
able state. We can assume that the evolutionary pressure
forced living systems to develop elegant control systems.

Let’s start with the general state-space representation
with a multi-input multi-output (MIMO) system with
the block diagram in Figure 33. We are not only inter-
ested in the actual system ẋxx = AAAxxx itself, but also in how
to control and how to observe our system. Often we do
not know the real state values of our system. We have to
measure the states and get an observed output yyy, such
as the pERK level change in a cell culture experiment.
Measurements, e.g. with western blot, can bias the real
data of an untouched system. The observation matrix CCC
describes which real states are pooled to our output and
how the experimental analysis modifies the information
of the true state values. Besides the analysis, we also
know that it is very hard to precisely perform an experi-
ment e.g. in cell culture. The pipette might have not been
calibrated for a while and who knows what the clumsy
intern from the computational department did with it.
Thus, all the bias related to the control uuu is accounted
for in the input matrix BBB. Additionally, not everything
that we put into the cell culture (fetal calf serum, DMSO,
stains) influences our system ẋxx = AAAxxx, but might directly
influence the observed output. Such bias is considered
with the feedthrough matrix DDD. After we have explained
the principle ideas behind the state-space representation,
we can look at the equations for a simpler single-input
single-output (SISO) system of Order Two:

linear system non-linear system
ẋxx︷︸︸︷

ẋ1
ẋ2

=
=

AAAxxx︷ ︸︸ ︷
a11x1 +a12x2
a21x1 +a22x2

+
+

bbbuuu︷︸︸︷
b1u
b2u

y = c1x1 + c2x2︸ ︷︷ ︸
cccTTT xxx

+ du

ẋxx︷︸︸︷
ẋ1
ẋ2

=
=

f (xxx,u)︷ ︸︸ ︷
f1(x1,x2,u)
f2(x1,x2,u)

y = g(x1,x2,u)︸ ︷︷ ︸
g(xxx,u)

ẋxx = AAAxxx+bbbu
y = cccT xxx+du

ẋxx = f(xxx,u)
y = g(xxx,u)

with the matrices and vectors:

AAA =

(
a11 a12
a21 a22

)
; bbb =

(
b1
b2

)
; ccc =

(
c1
c2

)
x(·) is called the "state vector", x(t) ∈ Rn;

y(·) is called the "output vector", y(t) ∈ Rq;

u(·) is called the "input (or control) vector", u(t) ∈ Rp;

AAA(·) is the "state (or system) matrix", dim[A(·)] = n×n,

BBB(·) is the "input matrix", dim[B(·)] = n× p,

CCC(·) is the "output matrix", dim[C(·)] = q×n,

DDD(·) is the "feedthrough (or feedforward) matrix" (in
cases where the system model does not have a di-
rect feedthrough,D(·) is the zeromatrix), dim[D(·)]=
q× p,

and the vector function:

f(xxx,u) =
(

f1(xxx,u)
f2(xxx,u)

)
YouTube: State-space representation (all relevant)

Systems often show oscillations and subsiding behav-
iors over time as shown in Figure 19. The calculation
is very difficult as we have to deal with complex inte-
gral convolutions. As discussed in linear algebra, we
might facilitate our problem by changing the coordinate
system. The transfer to a frequency-based coordinate
system is indeed a very good idea and has become the
main tool of cybernetics. The transfer from the time do-
main to the frequency domain allows us to treat control
problems, for the most part, with simple algebraic oper-
ations. The Laplace transform7 splits our function into
harmonic sinusoids and exponential decay terms, and is
an extension of the Fourier transform,8 which dissects
periodic functions into harmonic sinusoids only, as ani-
mated in Figure 34. The sinusoid can either occur with
different phase shifts or in combination with the cosines.
The Laplace transform transfers our mathematical prob-
lem from the time-dependent space into the frequency-
dependent space (Figure 35) with the complex variable
s = σ + iω , as shown in Figure 36. The easily obtained so-
lution in the frequency domain can be transformed back
into the time domain by the inverse Laplace transform,
as shown in Figure 35. The discrete time equivalent of
the Laplace transform is the Z-transform.

Some other important concepts in control theory are:

Definition 7. Controllability describes the ability of an
external input u to shift the internal state of a system
from any initial state x0 to any other final state x in a
finite time interval.

Definition 8. Observability is a measure of howwell in-
ternal states of a system can be inferred from knowledge
of its external outputs.

7 French astronomer and mathematician Pierre-Simon Laplace
(1749—1827).

8 French mathematician and physicist Jean-Baptiste Joseph Fourier
(1768—1830).

https://www.youtube.com/watch?v=Ufcv_WLuKo4
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Figure 33. Block diagram of a multi-input multi-output (MIMO) system with associations to experimental cell
biology. The operation 1

S is an integral in the frequency space (Laplace transform) that turns the state derivatives
into state values. See text for explanation.

Definition 9. Transfer function: A transfer function is
a mathematical function which gives for each possible
input value the corresponding output value.

Two types of principal design can be distinguished: open
loop and a closed loop. An open loop design requires
a complete understanding of all physics involved. An
open loop system approaches the desired state after a
certain time, but might not exactly reach it due to dis-
turbances. A closed system compares the system output
with a set point and permanently tries to reduce the
error. A closed system reaches the set point despite dis-
turbances and can reach the desired state faster with
oscillations around the target. A good control system
brings our system into the desired state in a short time
with high precision despite possible disturbances. Watch
the first five videos on control theory here:
YouTube: Control theory lectures (videos 1-5).

https://www.youtube.com/watch?v=oBc_BHxw78s&list=PLUMWjy5jgHK1NC52DXXrriwihVrYZKqjk
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Figure 34. Fourier transform: a periodic func-
tion in the time domain ( f , red, magnitude
over time) can be split into several sinus and co-
sinus functions or several sinus functions with
phase shift. These are peaks in the frequency
domain ( f̂ , blue, amplitude over frequency).
Credit to Lucas V Barbosa,Wikimedia, Licence:
Public Domain Dedication.

Frequency domain

Time domain

LaplaceLaplace Inverse
Laplace

Figure 35. Time and frequency domain. In-
put x(t), impulse-response h(t), and output
y(t) in the time domain, and their analogues
(X(s),H(s),Y (s)) in the frequency domain. We
have complicated convolution operations (∗)
in the time domain, and we have simple alge-
braic operations (·) in the frequency domain.
Picture source: Wikimedia, Licence: CC0 1.0
Universal Public Domain Dedication. 
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but if we represent the original ODE as a sum of sinusoids and exponential decay functions, it is sufficient. This
process is called the Laplace transform, which allow us to work in the s-plane and frequency domain.
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2. Basics of mathematics
Before you go through the following chapter, consider
watching this series of YouTube videos on calculus (3
h):
YouTube: Essence of calculus

■ Solving quadratic equations
p-q formula
The solution of:

x2 + px+q = 0

is:

x1,2 =− p
2
±
√( p

2

)2
−q .

a-b-c formula
The solution of

ax2 +bx+ c = 0

is:

x1,2 =
−b±

√
b2 −4ac

2a

■ Complex numbers
Scientists had huge difficulties calculating the roots of
negative numbers for a long time. The situation im-
proved after defining i as the solution of the equation
x2 =−1 resulting in i2 =−1 and i =

√
−1. We get a com-

plex number:

z = a+bi

with a real part a and an imaginary part b. This is needed
in this course, when you apply the p-q-equation. More-
over, it is important to know that the imaginary part is
directly linked to the sine function via Euler’s formula
eiφ = cos(φ)+ i · sin(φ):

z = reiφ

= r(cos(φ)+ i · sin(φ))

est = e[Re(s)t+iIm(s)t]

= eRe(s)t · eiIm(s)t]

= eRe(s)t [cos(Im(s)t)+ i · sin(Im(s)t)]

Watch Part 1 to 10 of this series on imaginary numbers
to get a feeling:
YouTube: Series on imaginary numbers

■ Derivative
The derivative is defined as:

f ′(a) = lim
h→0

f (a+h)− f (a)
h

.

where the distance h becomes infinitesimally small. The
derivative symbolizes the tangent at a function, as shown
in Figure 37.

 

 

𝑥 + ℎ 𝑥 

ℎ 

𝑓(𝑥 + ℎ) 

𝑓(𝑥) 

Figure 37. Derivative. Illustration of the derivative of a
function is obtained.

Differentiation

y = xn

dy
dx

= y′ = n · xn−1

Example 1: Differentiation

y = x3 y = 4x4

ẏ = 3x2 ẏ = 16x3

Product rule

y = u(x) · v(x)
y′ = u′(x) · v(x)+u(x) · v′(x)

Example 2: Product rule

y = x2ex

ẏ = 2x · ex + x2 · ex

Quotient rule

y =
u(x)
v(x)

=
numerator

denominator

y′ =
u′(x) · v(x)−u(x) · v′(x)

v(x)2

https://www.youtube.com/watch?v=WUvTyaaNkzM&list=PLZHQObOWTQDMsr9K-rj53DwVRMYO3t5Yr
https://www.youtube.com/watch?v=T647CGsuOVU&list=PLiaHhY2iBX9g6KIvZ_703G3KJXapKkNaF&index=1 


Chapter 3: The magic of change and how to find it — 33/56

Example 3: Quotient rule

d
dx

ex

x2 =

( d
dx ex

)
(x2)− (ex)

( d
dx x2

)
(x2)2

=
(ex)(x2)− (ex)(2x)

x4

=
ex(x−2)

x3 .

(Source: Wikipedia)

Chain rule

y = u(v(x))

with y = u(z) and z = v(x)

dy
dx

= y′ =
dy
dz

· dz
dx

= u′(z)v′(x) = f ′(v(x))v′(x).

Example 4: Chain rule

y = (2x+1)2

ẏ = 2(2x+1) ·2 = 4(2x+1)

■ Basic integrals
An integral is basically the area under the curve (AUC).
The term AUC is often used, e.g., in pharmarcokinetics.∫

xn dx =
1

n+1
xn+1, forn ̸=−1∫

u dv = uv−
∫

vdu∫
ex dx = ex∫
ax dx =

1
lna

ax∫ 1
x

dx = ln |x|∫
lnx dx = x lnx− x

■Transform one ODE of nth order into n ODEs
of 1st order
Approach
1. Introduce n new variables:

x1 = x

x2 = ẋ

x3 = ẍ
...

xn =
(n)
x

 

𝑥 

𝑘 

𝑡 = 𝑇 𝑡 

Ca.  63%  ሺ1 − 𝑒−1ሻ = 0.63  

Figure 38. Time course behavior of an inhomogeneous
ODE, given as T ẋ+x = u. The Euler number is e = 2.718.

2. Write (n−1) equations of the form:

ẋi = xi+1 ; i = 1 . . .(n−1)

3. Transform original ODE into 1 ODE of 1st-order by
replacing the derivatives with xi.

Example 5: Converting an ODE of nth to n 1st order

The equation of 2nd order is:

ẍ+4ẋ+5x = 0 (n = 2)

With the ansatz

x ≡ x1

ẋ ≡ x2 = ẋ1

ẍ ≡ x3 = ẋ2

we obtain for our system:

ẋ1 = x2

ẋ2 =−4x2 −5x1

with the matrix form:(
ẋ1
ẋ2

)
=

(
0 1
−5 −4

)(
x1
x2

)

■Transform two ODEs of 1st order into one ODE
of 2nd order
Approach: 1. Solve one ODE for the other state variable:

ẋ1 = f (x1,x2,u)→ solve for x2

2. Differentiate the solution.
3. Insert into other ODEs.
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Example 6: Converting ODEs from 1st to 2nd order

We begin with the equation set:

ẋ1 = a11x1 +a12x2 +b1u

ẋ2 = a21x1 +a22x2 +b2u

The first equation is differentiated with respect to
time t:

x2 =
1

a12
(ẋ1 −a11x1 −b1u)

ẋ2 =
1

a12
(ẍ1 −a11ẋ1 −b1u̇)

Transfer of the functions x2(x1,u) and ẋ2(x1,u) to
the second equation delivers:

1
a12

(ẍ1 −a11ẋ1 −b1u̇) =a21x1 +b2u

+
a22

a12
(ẋ1 −a11x1 −b1u)

which in a nicer form gives:

ẍ1 = (a11 +a22)ẋ1 − (a11a22 −a12a21)x1

+b1u̇+(a12b2 −a22b1)u

■ Linearization
Biological systems are usually non-linear and the mea-
sured effects rarely follow the law of additivity (Figure
39). Still, the linearization of equations helps us for the
following reasons:

• Linear equations aremathematically easier to solve/
treat

• Linear system properties are transferable to non-
linear systems around the approximated area

• A unique steady-state exists
• They have a simple controller design
• The response to a variety of simuli can be separated

into linear combinations of the system down to
individual stimuli.

• Additivity f (x1,x2) = f (x1)+ f (x2) (Figure 39)
• Scalability c · f (x1) = f (c · x1) (Figure 39)

For the linearization, we can use the Taylor approxima-
tion:

f (x) =g(x∗)+
g′(x∗)

1!
(x− x∗)

+
g′′(x∗)

2!
(x− x∗)2 +

g′′′(x∗)
3!

(x− x∗)3 + · · ·︸ ︷︷ ︸
higher order terms often neglected

around a point of interest x∗, which can be written as

f (x)−g(x∗) = ∆̇x = g′(x∗)∆x

whereby the difference between original function g(x∗)
and its approximation f (x∗) is emphasized. A set of
non-linear equations:

ẋ = g(xxx) =


g1(xxx)
g2(xxx)
...

gn(xxx)


can be approximated by the general form:

f(xxx) = g(xxx∗)+
∂ fg(xxx)

∂xxx

∣∣∣∣
x∗
·∆xxx

with the Jacobian matrix:

JJJ =
∂g(xxx)

∂xxx

∣∣∣∣
x∗
=


∂g1

∂x1
· · · ∂g1

∂xn... . . . ...
∂gm

∂x1
· · · ∂gm

∂xn


A linearized system in the general form is then:

ẋxx = JJJ∆xxx.

The Taylor approximation is a very important concept.
It delivers a function that, with increasing terms, aligns
with any continuous, smooth function around a certain
point. However, if onemoves too far away from the point
of interest, the differences can be extreme.
YouTube: Taylor series explained

Because we are only interested in a linear tangent at
a steady state x∗, we neglect all higher order terms and
look only at the function value plus the first term of the
Taylor approximation:

f (x) = g(x∗)+(x− x∗)g′(x∗)

of x = x∗+∆x with ∆x = (x− x∗).

https://www.youtube.com/watch?v=3d6DsjIBzJ4
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𝑥 

𝑓(𝑥) 

𝑓(𝑥1 + 𝑥2) 

𝑓(𝑥2) 

𝑓(𝑥1) 

(𝑥1 + 𝑥2) 𝑥1 𝑥2 𝑥 

𝑓(𝑥) 

𝑥2 𝑥1 

𝑓(𝑥1) 

𝑓(𝑥2) 

𝒇(𝒙𝟏 + 𝒙𝟐) = 𝒇(𝒙𝟏) + 𝒇(𝒙𝟐) 𝒇(𝒙𝟏 + 𝒙𝟐) ≠ 𝒇(𝒙𝟏) + 𝒇(𝒙𝟐) 

linear non-linear 

𝑓(𝑥) 

𝑥 

𝑓(𝑥1) 

3𝑓(𝑥1) 

𝑥1 3𝑥1 

𝑓(𝑥) 

𝑥 𝑥∗ 

𝑓(𝑥∗) 

linear 
𝟑𝒇(𝒙𝟏) = 𝒇(𝟑𝒙𝟏) 

linearisation 

Figure 39. Linear vs non-linear behavior. Linear systems
show additivity and scalability.

Figure 40. Linearization of a multi-dimensional equation
at one point with a plane. Source: LibreTexts Library for
mathematics. If the point is an equilibrium point, the
plane is horizontal. Source: LibreTexts Library. Licence:
CC BY-NC-SA 4.0 (Fair Use).

Example 7: Linearization 1

First, we determine the steady state:

g(x) = ẋ = 2x−1
g(x)′ = ẍ = 2

ẋ = 2x∗−1 = 0 ⇒ x∗ =
1
2

Second, we approximate the function g(x) with a

linear function f (x) at this point:

f (x) = ẋ = (2x∗−1)+2∆x

= ẋ = (2
1
2
−1)+2∆x = 2∆x

Example 8: Linearization 2

First, we determine the steady state:

g(x) = ẋ = x2 +2x−1
g(x)′ = ẍ = 2x+2

ẋ = (x∗)2 +2x∗−1 !
= 0 ⇒

x∗1,2 =
−b±

√
b2 −4ac

2a
=

−2±
√

4+4
2

=−1±
√

2

Second, we approximate the function g(x) with a
linear function f (x) at this point:

f (x) = ẋ =((x∗)2 +2x∗−1)+(2x∗+2)∆x

For x∗1 =−1+
√

2:

= ẋ =((−1+
√

2)2 +2(−1+
√

2)−1)

+(2(−1+
√

2)+2)∆x

=2
√

2∆x

For x∗2 =−1−
√

2:

= ẋ =((−1−
√

2)2 +2(−1−
√

2)−1)

+(2(−1−
√

2)+2)∆x

=−2
√

2∆x

The steady state at x∗1 =−1+
√

2 is unstable and at
x∗2 =−1−

√
2 is stable. See Figure 16.

Example 9: Linearization 3

First, we determine the steady state

g(x) = ẋ = 2x2 −2x−12
g(x)′ = ẍ = 4x−2

ẋ = 2(x∗)2 −2x∗−12 !
= 0

x∗1,2 =
−b±

√
b2 −4ac

2a
=

2±
√

4+96
4

=
1
2
± 5

2

and obtain the steady states at: x∗1 = 3 ; x∗2 =−2
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Second, we approximate the function g(x) with a
linear function f (x) at this point:

f (x) = ẋ =(2(x∗)2 −2x∗−12)+(4x∗−2)∆x

= ẋ =0+(4x∗−2)∆x

For x∗1 = 3:

=10∆x

For x∗2 =−2:

=−10∆x

The steady state at x∗1 = 3 is unstable and at x∗2 =−2
is stable. See Figure 16.

 

𝒈(𝒙∗, 𝒚∗) 

𝒚∗ 𝒙∗ 

Slope 𝒈𝒚
′  

𝒚  

𝒙  
∆𝒙  

∆𝒚  

Slope 𝒈𝒙
′  

𝒈(𝒙, 𝒚) 

𝑷  

Figure 41. Linearization of a function (hanging carpet)
in respect to two directions. The blue plane is horizontal
at the steady state of function f . The red plane gives the
slopes if shifted slightly moving away from the steady
state point P.

Example 10: Linearization 4

If we linearize a system with two non-linear equa-
tions:

g1(x,y) = ẋ = (1− x− y)x

=−x2 +(1− y)x

=−x2 + x− xy

g1(x,y)x =−2x+1− y

g1(x,y)y =−x

g2(x,y) = ẏ = (1− x− y)y

=−y2 +(1− x)y

=−y2 + y− xy

g2(x,y)x =−y

g2(x,y)y =−2y+1− x

we approximate it with a plane at a particular point

f (x,y) = g(x∗,y∗)+g′x(x
∗,y∗) ·∆x+g′y(x

∗,y∗) ·∆y

such as shown in Figure 40. But our points of inter-
est are, as usual, steady-state solutions. For these
steady-state solutions, the linearized system is:

f1(x,y) = ẋ = 0+(1−2x∗− y∗)∆x− x∗∆y

f2(x,y) = ẋ = 0+(1−2y∗− x∗)∆y− y∗∆x

Example 11: Linearization 5

We want a linear approximation on a higher-order
ODE

ẍ+ ẋ+ x = 1

on the steady state x∗ = 1. The equation is rewrit-
ten:

g(x, ẋ, ẍ) = ẍ+ ẋ+ x−1 = 0,

and we treat any derivative as an independent vari-
able. For:

f (x, ẋ, ẍ)= g(x∗)+g′x(x
∗) ·∆x+g′ẋ(x

∗) ·∆ẋ+g′ẍ(x
∗) ·∆ẍ

with

g′x(x
∗) = 1

g′ẋ(x
∗) = 1

g′ẍ(x
∗) = 1
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we simply get:

f (x, ẋ, ẍ) = ∆x+∆ẋ+∆ẍ = 0

Example 12: Linearization 6

We aim for a linear approximation of a higher order
non-linear ODE:

g(x, ẋ, ẍ) = ẍ+ ẋ+ x2 +5 = 0

With

f (x, ẋ, ẍ)= g(x∗)+g′x(x
∗) ·∆x+g′ẋ(x

∗) ·∆ẋ+g′ẍ(x
∗) ·∆ẍ

and with

g′x(x
∗) = 2x

g′ẋ(x
∗) = 1

g′ẍ(x
∗) = 1

we get:

f (x, ẋ, ẍ) = ẍ∗+ ẋ∗+(x∗)2 +5︸ ︷︷ ︸
=0

+2∆x+∆ẋ+∆ẍ = 0
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3. Exercises
■ Steady states
Calculate the steady states for systems (3.1) to (3.8):

ẋ = 2x−1 (3.1)
ẋ = x2 +2x−1 (3.2)
ẋ = sin(x) (3.3)

ẍ+ ẋ+ x = 1 (3.4)
ẍ+2ẋ+ x2 −5x+6 = 0 (3.5)

d
dt

(
x1
x2

)
=

(
3 −2
1 5

)(
x1
x2

)
+

(
1
0

)
u (3.6)

ẋ = (1− x− y)x

ẏ = (1− x− y)y
(3.7)

u̇ = a− (b+1)u+u2v

v̇ = bu−u2v
(3.8)

■ Stability
Test the following systems for the stability of their steady
state(s). Draw, therefore, ẋ over x.

ẋ = 3x (3.9)
ẋ =−5x (3.10)
ẋ =−x2 +0.5 (3.11)
ẋ =−x3 +

x
2

(3.12)

■ Eigenvalues and stability of the steady state
Determine the Eigenvalues and the stability of steady
states of following tasks:

d
dt

(
x1
x2

)
=

(
−1 4
0 −3

)(
x1
x2

)
(3.13)

d
dt

(
x1
x2

)
=

(
3 8
1 1

)(
x1
x2

)
(3.14)

d
dt

(
x1
x2

)
=

(
−1 3
−1 1

)(
x1
x2

)
(3.15)

■Population growth
The growth of a specific population is described with
the following model:
dX
dt

=(2−X)(X−1)(X−k) (with k> 0 and X(0)=X0)

a) Derive the steady states of the system.
b) Linearize the differential equation around the steady

states.

c) Calculate the Eigenvalues of the linearized system
in the steady states and determine thereof the sta-
bility of the individual steady states. For which
values of k do you get stable steady states?

In the following, k = 5 holds:

d) Markwithin aX-over-t diagram the domainswhere
dX
dt

is positive, then respectively negative.

e) Draw X(t) in a diagram using the results of parts
a)-d) for different initial conditions of X .

■ 1st-order system
The growth of a specific population is described with
the following model:

dN
dt

= rN(2−N)(N−1) (with r > 0 and N(0) =N0)

a) Derive the steady states of the system.

b) Linearize the differential equation around the steady
states.

c) Calculate the Eigenvalues of the linearized system
in the steady states and test for stability of the in-
dividual steady states.

d) Mark within a t, N diagram the domains where
dN
dt

is positive, then respectively negative.

e) Draw N(t) in a diagram using the results of parts
a)-d) for different initial conditions of N. Also
Calculate the position of the inflection points.

■ Characteristic equation of a 2nd-order system
The following characteristic equation of a 2nd-order sys-
tem is given:

(s−a+T )(s−1+aT ) = 0 (a,T are real)

a) What is the corresponding homogeneous differen-
tial equation?

b) For which values of the parameters a and T do we
have one single Eigenvalue on the stability bound?

c) For which values of the parameters a and T is the
system stable, metastable, or unstable?

d) Draw the results of c) in a stability diagram with
abscissa T and ordinate a.
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■ Biomass growth in a bioreactor
A batch fermentation is carried out in an ideally mixed
tank reactor. At the beginning, substrate and biomass
is provided with concentrations S0 = S(t = 0) and X0 =
X(t = 0).
The reaction volume of the reactor (VR) is considered
to be constant. The specific growth rate of the microor-
ganisms shall be µ . The yield coefficient9 shall be YXS.
The biomass is linearly proportional to the decline in
substrate Ẋ =−YXSṠ and this anti-correlating behavior
is thus a measurement of efficiency.

a) Set up balance equations for biomass (X) and sub-
strate (S) concentrations.

b) Derive S(t) as a function of X(t), X0 und S0.
c) Derive a differential equation for X which does not

depend on the substrate concentration anymore
[Ẋ = f (X)] using the assumption µ = cS.

d) Repeat this while assuming a logistic growth rate
µ = a−bX with (a, b > 0).

e) Compare the differential equations obtained for X
in c) and d). What would a and b have to be in
order to obtain identical differential equations?

f) Calculate the steady states (X∗,S∗) of system d)
g) Show that the following ansatz is a solution for X(t):

X(t) =
X∗

1+ c1e−c2t (3.16)

How do you have to choose c1 and c2 (c1,c2 ̸= 0)?

■ Prey-Predator Model 1
We have two versions of the Prey-Predator Model of
Lotka and Volterra. Prey X grows independently of
PredatorY and is depleted by interactingwithY . Thereby
Predator Y grows and, in turn, is depleted by a natural
death rate. The most simple differential equation model
reflecting these relations is:

Ẋ = X(1−Y ) I
Ẏ = Y (X −1) II

a) Assign the facts described above to the individual
model terms in the system.

b) Calculate the steady states of the system.
c) How can the behavior in vicinity of the steady

states be approximated (without calculations)?
9 "Yield based on substrate (Yx/s) or oxygen consumption (Yx/o)

is a very important parameter. This parameter indicates how efficient
a fermentation is. At the same time it is very closely related with
the maintenance coefficient (m). By means of yield and maintenance
coefficient it is possible to estimate the proportion of energy that cells
consume in biomass and metabolites synthesis and the proportion
of energy that allows the cells to maintain their capability for their
biological performance." Direct quote [?].

■ Prey-Predator Model 2
In the following, a more complex Lotka-Voltera model
shall be investigated. The growth rate of the prey is in-
cludedwith a parameter µ > 0 and the predator’s growth
rate is modeled with a yield coefficient α > 0. Further-
more an influx of predators into the system is assumed.
The resulting model description is:

Ẋ = X(µ −Y ) I
Ẏ = Y (αX −1)+1 II

a) Assign the facts described above to the individual
model terms in this system.

b) Calculate the steady states of system as a function
of parameters α and µ .

c) Which condition has to be fulfilled for parame-
ter µ to obtain only biologically reasonable steady
states?

d) Draw the steady states for µ = 2 andα = [1/5; 1/4; 1/3; 1/2;1]
in a diagram (x-axis: X , y-axis: Y).

■ Prey-Predator Model 3 (fish)
Small and big fishes are living in a lake. The small fishes
(X) depend on plankton which is available in excess. Big
fishes (Y) feed on the small ones. If only small fishes
were present, it would grow exponentially, i.e. their num-
ber grows with a constant specific growth rate α (α > 0).
In the absence of small fishes, the big fishes would die
out with a decay rate β (β > 0). The following sim-
ple equations describe these facts using the parameters
α,β ,γ,δ > 0:

d
dt

X = (α − γY )X I

d
dt

Y =−(β −δX)Y II

a) Determine the steady states of this simple ecologi-
cal model.

b) Linearize the differential equations around the steady
states and transform the linearized equations into
state-space description (states, inputs, outputs in
matrix/vector representation).

c) Determine for every steady state the Eigenvalues of
the linearized system and deduce from that the sta-
bility of the system in the vicinity of the respective
steady state.

■ Prey-Predator Model 4 (fish)
The previously introduced fish populationmodel ismod-
ified as follows: it is assumed that the small fishes (X) are
furthermore depleted via social attrition effects within
their own population. This depletion depends on the
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probability that two small fishes meet. It is therefore
modeled proportional to X2. The extended population
model reads as follows with α = β = γ = δ = 1;ε = 0.5:

d
dt

X = (α − γY )X − εX2 I

d
dt

Y =−(β −δX)Y II

a) Determine the steady states of the system.
b) Linearize the differential equations around the steady

state and transform them into state-space descrip-
tion (states, inputs, outputs in matrix/vector rep-
resentation).

c) Calculate the Eigenvalues of the linearized system
at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady
states.

d) Determine the equations of the vertical and hori-
zontal tangents.

e) Optional: Determine the rectilinear trajectories.
f) Sketch the phase portrait.

■ Reaction system
The following reaction system is given:

A+X
k1−→ 2X

X +Y
k2−→ 2Y

2Y
k3−→ B

The concentration of substance A shall be constant. The
reactions take place in an ideally mixed enclosed reactor
with constant volume.

a) Give the balance equations for the amount of sub-
stance (mol) of the reaction partners X and Y .

One obtains the following differential equation system
by specifically choosing the reaction constants k1,k2,k3:

dcX

dt
= cX (1− cY )

dcY

dt
= cY (cX − cY )

b) Determine the steady states of the system.
c) Linearize the differential equations around the steady

state and transform them into state-space descrip-
tion (states, inputs, outputs in matrix/vector rep-
resentation).

d) Calculate the Eigenvalues of the linearized system
at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady
states.

e) Determine the equations of the vertical and hori-
zontal tangents.

f) Optional: Determine the rectilinear trajectories.
g) Sketch the phase portrait.



Notes
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4. Solutions
Do not betray yourself!

Exercises
■ Steady states
Calculate the steady states for systems 3.1 to 3.8:

Task 3.1

ẋ = 2x−1
0 = 2x−1

x∗ =
1
2

Task 3.2

ẋ = x2 +2x−1

0 = x2 +2x−1

You need the p-q equation (learn it by heart!) and then
you get:

x∗1,2 =−2
2
±

√(
2
2

)2

+1 =−1±
√

2

Task 3.3

ẋ = sin(x)
0 = sin(x)

x∗ = nπ for: n ∈ Z Z= {. . . ;−2;−1;0;1;2; . . .}

Works for integers Z.

Task 3.4

ẍ+ ẋ+ x = 1
x∗ = 1

Task 3.5

ẍ+2ẋ+ x2 −5x+6 = 0

x2 −5x+6 = 0
(x−2)(x−3) = 0

x∗1 = 3
x∗2 = 2

Alternatively, with p-q equation:

x∗1,2 =
5
2
±

√(
5
2

)2

−6

=
5
2
± 1

2

Task 3.6

d
dt

(
x1
x2

)
=

(
3 −2
1 5

)(
x1
x2

)
+

(
1
0

)
u

is:

3x1 −2x2 +u = 0 I
x1 +5x2 = 0 II

II : ⇒ x1 =−5x2

in I:

−15x2 −2x2 +u = 0
−17x2 =−u

x∗2 =
1
17

u

Back in II:

x1 +
5

17
u = 0

x1 =− 5
17

u

Thus, we have:[
x∗1
x∗2

]
=

(
−5/17

1/17

)
u

or the steady state (−5/12u,−1/17u).
Task 3.7

ẋ = (1− x− y)x I
ẏ = (1− x− y)y II

I : ⇒ 0 = (1−x−y)x

Case 1:

⇒ x∗1 = 0

in II :

(1− y)y = 0 ⇒ Y ∗
1 = 0 and Y ∗

2 = 1

The steady states are (0;0) & (0;1).

Case 2:

(1− x− y) = 0
x = 1− y

y = 1− x
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in II :
(1−1+ y− y)y = 0

0 · y = 0 → always true
y∗ = c any desired value

With this we have the steady states (1− y;c) & (c;1− x)
which includes the steady state (0;1).
Task 3.8

u̇ = a− (b+1)u+u2v

v̇ = bu−u2v

becomes:

u̇ = vu2 − (b+1)u+a = 0 I
v̇ = u(vu−b) = 0 II

Case 1:

II if u = 0

in I ⇒ a = 0 � if a ̸= 0

Case 2:

II if u ̸= 0

⇒ v =
b
u

⇒ bu−u−bu+a = 0

with the two solutions:

u∗ = a

v∗ =
b
a

■ Stability
Test the following systems for stability of their steady
state(s). Draw, therefore, ẋ over x. See Figure 42.
Case 1: Stable

if x > x∗

then ẋ < 0

or

if x < x∗

than ẋ > 0

-1 -0.5 0 0.5 1

-5

0

5

unstable

-1 -0.5 0 0.5 1

-5

0

5

stable

�̇� �̇� 

𝒙 𝒙 

1 1 0.5 

0.5 0.5 

−0.5 −0.5 −0.5 −0.5 0.5 0 0 

0 0 

�̇� =  − 𝒙𝟐 +  𝟏𝟐 �̇� =  − 𝒙𝟑 +  𝒙𝟐 

Figure 42. Plot of change of ẋ over state x. Stable: if the
state x is positive, the change ẋ makes it more negative.
Unstable: if the state x is positive, the change ẋ makes it
even more positive.

Case 2: Unstable

if x > x∗

then ẋ > 0

or

if x < x∗

then ẋ < 0

■ Eigenvalues and stability of the steady state
Task 3.13

d
dt

(
x1
x2

)
=

(
−1 4
0 −3

)(
x1
x2

)
s1 =−1; s2 =−3: stable
Task 3.14

d
dt

(
x1
x2

)
=

(
3 8
1 1

)(
x1
x2

)
s1 =−1; s2 = 5: unstable
Task 3.15

d
dt

(
x1
x2

)
=

(
−1 3
−1 1

)(
x1
x2

)
s1 = i

√
2; s2 =−i

√
2: metastable oscillations

■Population growth
The growth of a specific population is described with
the following model:
dX
dt

=(2−X)(X−1)(X−k) (with k> 0 and X(0)=X0)
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Task a) Derive the steady states of the system.

(2−X∗)(X∗−1)(X∗− k) = 0

⇒ X∗
1 = 1 , X∗

2 = 2 , X∗
3 = k

Task b) Linearize the differential equation around the
steady states.

Ẋ = (2X −2−X2 +X)(X − k)

= (3X −2−X2)(X − k)

= (3X2 −3kX −2X +2k−X3 + kX2)

=−X3 +X2(3+ k)+X(−3k−2)+2k

∆Ẋ =
[
−3(X∗)2 +2X∗(3+ k)−3k−2

]
·∆X

Task c) Calculate the Eigenvalues of the linearized sys-
tem in the steady states and determine thereof the sta-
bility of the individual steady states. For which values
of k do you get stable steady states?

Steady State 1 (X∗ = 1):

⇒ s =−3+2(3+ k)−3k−2
=−3+6+2k−3k−2 = 1− k

⇒ stable for k > 1.
Steady State 2 (X∗ = 2):

⇒ s =−12+4(3+ k)−3k−2
= k−2

⇒ stable for k < 2.
Steady State 3 (X∗ = k):

⇒ s =−3k2 +2k(3+ k)−3k−2

=−3k2 +6k+2k2 −3k−2

=−k2 +3k−2

⇒ stable

s =−k2 +3k−2 < 0

k2 −3k+2 > 0
(k−1)(k−2)> 0

Solution 1: k−1 > 0 OR k−2 > 0
⇒ k > 2

Solution 2: k−1 < 0 OR k−2 < 0
⇒ k < 1

Task d) and Task e) Mark within a X-over-t diagram the
domains where dX

dt
is positive, then respectively nega-

tive. One parameter is fixed k = 5. Draw X(t) in a dia-
gram using the results of parts a)-d) for different initial
conditions of X . One parameter is fixed k = 5.

 

𝑋 

 

t 

1 

2 

5 

�̇� < 0 

 

�̇� < 0 

 

�̇� > 0 

 

�̇� > 0 

 

𝑋 

    �̇� 

 

0.5                1.5               2.5               5.5      

> 0                < 0               > 0                < 0      

■ 1st-order system
The growth of a specific population is described with
the following model:

dN
dt

= rN(2−N)(N−1) (with r > 0 and N(0) =N0)

Task a) Derive the steady states of the system.
dN
dt

= rN(2−N)(N−1) !
= 0⇒ N∗

1 = 0 ; N∗
2 = 1 ; N∗

3 = 2

Task b) Linearize the differential equation around the
steady states.
The equation can also be written in the following form:

Ṅ = rN(2N −2−N2 +N)

= rN(−N2 +3N −2)

=−rN3 +3rN2 −2rN.

With only small deflections n, one can linearize ODEs
around the steady states:

N = N∗
i +n for i = 1,2,3

According to Taylor:
d
dt
(N∗+n) = f (N) |N∗

i︸ ︷︷ ︸
=0

+
∂ f (N)

∂N
|N∗

i
·n+ . . .

After the implementation of the non-linear equation into
the Taylor equation, one obtains:

d
dt
(N∗+n) =−r(N∗)3 +3r(N∗)2 −2rN∗︸ ︷︷ ︸

0

+((−3(N∗)2 +6N∗−2)r) ·n
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d
dt

n = (−3(N∗)2 +6N∗−2)rn

Steady State 1: N∗
1 = 0 → d

dt
n =−2rn

Steady State 2: N∗
2 = 1 → d

dt
n = rn

Steady State 3: N∗
3 = 2 → d

dt
n =−2rn

Task c) Calculate the Eigenvalues of the linearized sys-
tem in the steady states and test for stability of the indi-
vidual steady states.

Steady State 1: The Eigenvalue is s=-2r and is negative
because r > 0. The Steady State 1 is thus asymptot-
ically stable.

Steady State 2: Because the Eigenvalue s=r is always
positive, the Steady State 2 is unstable.

Steady State 3: Similar to Steady State 1 and thus asymp-
totically stable.

Task d) Mark within a t − N−diagram the domains
where dN

dt
is positive, then respectively negative.

 

0 

1 

2 

𝑵(𝒕) 

�̇� < 𝟎 

�̇� > 𝟎 

�̇� < 𝟎 

𝒕 

0 

1 
𝑵 

�̇� 

𝒕 0 

1 

2 

𝑵(𝒕) 

�̈� = 𝟎 

�̈� = 𝟎 

2 

In the second plot (Ṅ over N) one can see very well
where the derivative becomes negative or positive.

Task e) Draw N(t) in a diagram using the results of
parts a)-d) for different initial conditions of N. Calculate
also the position of the turning points.
For the turning points, we need the second derivative:

d2

dt2 N =
d

dN
f (N) · d

dt
N

= r [(2−N)(N −1)−N(N −1)+N(2−N)] Ṅ = 0

This solution of the equation gives us only trivial solu-
tions Ṅ = 0. This does not mean that the steady states
are inflection points at the same time, because the third

derivative is zero for equilibrium points. To sketch the
curves we are only interested in the solutions:

r [(2−N)(N −1)−N(N −1)+N(2−N)]
!
= 0

−3N2 +6N −2 = 0

N2 −2rN + 2/3r = 0

N2 −2N + 2/3 = 0

With:

⇒ N1,2 =
2±
√

4− 8/3

2
= 1±

√
3

3
⇒ n1 = 1.58, n2 = 0.42

we obtain the solution:

N = 1±
√

3
3

Now one can sketch some solutions for the time-course
behavior with N(t) over t.

 

0 

1 

2 

𝑵(𝒕) 

�̇� < 𝟎 

�̇� > 𝟎 

�̇� < 𝟎 

𝒕 

0 

1 
𝑵 

�̇� 

𝒕 0 

1 

2 

𝑵(𝒕) 

�̈� = 𝟎 

�̈� = 𝟎 

2 

■ Characteristic equation of a 2nd-order system
The following characteristic equation of a 2nd-order sys-
tem is given:

(s−a+T )(s−1+aT ) = 0 (a,T are real) I

Task a) What is the corresponding homogeneous dif-
ferential equation? Characteristic equation with formal
ansatz:

y(t) = est

ẏ(t) = sest = sy(t)

s2 +(T −a+aT −1)s+(T −a)(aT −1) = 0

s2 +(T −1)(1+a)s+(T −a)(aT −1) = 0

Homogeneous ODE:

ẍ+(T −1)(1+a)ẋ+(T −a)(aT −1)x = 0
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Task b) For which values of the parameters a and T do
we have one single Eigenvalue on the stability bound?

From Equation I we get:
s1 = a−T

s2 = 1−aT

An Eigenvalue lays on the stability margin, if:

1.) a = T → s1 = 0, s2 = 1−T 2 ̸= 0 ⇒ T ̸=±1

2.) a =
1
T

→ s2 = 0, s1 =
1
T

̸= 0 ⇒ T ̸=±1

Task c) For which values of the parameters a and T is
the system stable, metastable, or unstable?

1.) Asymptotic stability exists for s1 < 0 and s2 < 0.
a−T < 0 and 1−aT < 0 → aT > 1

a < T Case 1: a >
1
T

AND T > 0

Case 2: a <
1
T

AND T < 0

2.) Metastability exists if one Eigenvalue lies on the
stability margin and the rest is negative.

α) a = T and T 2 > 1 → T <−1 OR T > 1

β ) a =
1
T

and 1
T
−T < 0 → aT > 1

Case 1: T > 0 AND T > 1

Case 2: T < 0 AND T >−1

3.) In the remaining cases we have no stability.
Task d) Draw the results of c) in a stability diagram
with abscissa T and ordinate a.

 

stable 

stable 

unstable 

unstable 

meta stable 

𝑎 

𝑇 

𝑎 = 𝑇 

1 

1 

0 

■ Biomass growth in a bioreactor
Task a) Set up balance equations for biomass (X) and
substrate (S) concentrations.

Ẋ = µX I

Ṡ =− 1
YXS

Ẋ

Ṡ =− 1
YXS

µX II

Task b) Derive S(t) as a function of X(t), X0, and S0.

Equation I ⇒
∫ X

X0

dX
X

=
∫ t

0
µdt

[ln(X)]XX0
= [µ · t]t0

ln(X)− ln(X0) = [µ · t]t0
ln(X/X0) = µt

X = X0 · eµt

Equation II ⇒ dS
dt

=− 1
YXS

·µX0 · eµt

dS =− 1
YXS

·µX0 · eµt ·dt∫ S

S0

dS =−µX0

YXS
·
∫ t

0
eµt ·dt

[S]SS0
=−µX0

YXS
· 1

µ

[
eµt]t

0

S−S0 =− X0

YXS

(
eµt −1

)
S = S0 −

1
YXS

[X(t)−X0]

or simply:

dS
dt

=− 1
YXS

·µX

=− 1
YXS

· dX
dt

dS =− 1
YXS

·dX∫ S(t)

S0

=− 1
YXS

·
∫ X(t)

X0

dX

[S]S(t)S0
=− 1

YXS
· [X ]

X(t)
X0

S(t)−S0 =− 1
YXS

· [X(t)−X0]

⇒ S(t) = S0 −
1

YXS
· [X(t)−X0]

Task c) Derive a differential equation for X which does
not depend on the substrate concentration anymore [Ẋ =
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f (X)] using the assumption µ = cS.

dX
dt

= µX = cSX

= c[S0 −
1

YXS
[X(t)−X0]]X

Task d) Repeat this while assuming a logistic growth
rate µ = a−bX with (a, b > 0).

dX
dt

= µX = X(a−bX) = aX −bX2 (4.1)
dS
dt

=− 1
YXS

·X(a−bX) (4.2)

Task e) Compare the differential equations obtained for
X in c) and d). What valueswould you have to choose for
a and b in order to obtain identical differential equations?

dX
dt

= c
[

S0 −
X

YXS
+

X0

YXS

]
X︸ ︷︷ ︸

Task c)

= aX −bX2︸ ︷︷ ︸
Task d)

!
= 0

0 = X
[

cS0 +
cX0

YXS
− cX

YXS

]
= X [a−bX ]

A comparison of coefficients delivers:

⇒ a = c
(

S0 +
X0

YXS

)
⇒ b =

c
YXS

Task f) Calculate the steady states (X∗,S∗) in task d).

0 = (a−bX)X (4.3)

0 =−a−bX
YXS

X (4.4)

Equation 4.3 delivers two solutions:

X∗
1 = 0 X∗

2 =
a
b

Inserting into Equation 4.4

0 =−a−b0
YXS

0 and 0 =−
a−b a

b
YXS

a
b
=− 0

YXS

a
b

shows that the substrate does not matter and that the
steady-state values for X are valid for any substrate con-
centration. The solution does not say anything about the
dynamic until the steady state. One could say that either
the reactor content is dead at the end or the growth and
death rate balances the amount of individuals. Have
in mind that the logistic growth equation does not de-
pend on the "substrate" and it is the responsibility of the
modeler to set up realistic but still simple equations.

Task g) Show that the following ansatz is a solution for
X(t):

X(t) =
X∗

1+ c1e−c2t

What values would you have to choose for c1 and c2?

The equation:
dX
dt

= (a−bX)X

has X itself and its derivative. We do not have the deriva-
tive of the ansatz yet. Let’s do it! Therefore, we need the
quotient rule:(

f
g

)′
=

f ′g− f g′

g2

which is applied on our ansatz:

dX(t)
dt

=

(
0 · X∗

1+c1e−c2t

)
− (X∗(0+ c1c2e−c2t))

(1+ c1e−c2t)2

=
X∗c1c2e−c2t

(1+ c1e−c2t)2

Nowwe have an equation for X and Ẋ . We can insert the
ansatz into Equation 4.1.

dX
dt

= (a−bX)X

X∗c1c2e−c2t

(1+ c1e−c2t)2 =

(
a−b

X∗

1+ c1e−c2t

)
X∗

1+ c1e−c2t

and multiply with (1+ c1e−c2t)2:

X∗c1c2e−c2t =

(
a−b

X∗

1+ c1e−c2t

)
X∗(1+ c1e−c2t)�2

�����1+ c1e−c2t

X∗c1c2e−c2t = (a(1+ c1e−c2t)−b)X∗

0 = (a(1+ c1e−c2t)−bX∗− c1c2e−c2t)X∗

=
(
a−bX∗+(a− c2)c1e−c2t)X∗

Check the steady states
Let’s test the first steady state X∗ = 0 :

0 =
(
a−b ·0+(a− c2)c1e−c2t) ·0

Well, this equation is always true. But we are rather
interested in the time response.

 

𝑋∗ = 0 

𝑋∗ =
𝑎

𝑏
 

𝑋0 
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We could try to get more out of the ansatz by checking
what happens at time point zero t = 0.

X(t = 0) = X0 =
X∗

1+ c1e−c20 =
X∗

1+ c1
(4.5)

which tells us that with the steady state X∗ = 0:

X0 =
0

1+ c1

the equation is only valid if X0 = 0: So it means that
if we do not have any micro-organisms in the tank at
the beginning, we will also have no micro-organisms at
the end and stay in the steady state X∗ = 0. Not really
interesting, is it? Remark: this steady state is unstable.
Let’s do something useful by checking the second steady
state.
We introduce X∗ =

a
b
:

0 =
(
��

��a−b · a
b
+(a− c2)c1e−c2t

)
· a

b

with which we know that:

c2 = a

We insert this into Equation 4.5:

X0 =
a
b

1+ c1

1+ c1 =
a
b

X0

c1 =
a

bX0
−1

Inserting this into our ansatz

X(t) =
X∗

1+ c1e−c2t

we obtain a final solution:

X(t) =
a/b

1+
(

a
bX0

−1
)

e−at

Isn’t this beautiful?

■ Prey-Predator Model
We have 2 versions of the Prey-Predator Model of Lotka
and Volterra. Prey X grows independently of Predator Y
and is depleted by interacting with Y . Thereby Predator
Y grows and, in turn, is depleted by a natural death rate.
The most simple differential equation model reflecting
these relations is:

Ẋ = X(1−Y ) I
Ẏ = Y (X −1) II

Task a) Assign the facts described above to the individ-
ual model terms in the system.

Prey number change: Ẋ =
birth
X

Predator eats prey
−Y X

Predator number change: Ẏ = Y X
growth on prey

−Y
death

Task b) Calculate the steady states of the system.

Ẋ = X∗(1−Y ∗)
!
= 0 I

Ẏ = Y ∗(X∗−1) !
= 0 II

Case differentiation:
Equation I ⇒ X∗

1 = 0

in Eq. II: Y ∗(0−1) = 0 ⇒ Y ∗
1 = 0

Equation I ⇒ Y ∗
2 = 1

in Eq. II: 1 · (X∗−1) = 0 ⇒ X∗ = 1

Task c) How can the behavior in vicinity of the steady
states be approximated (without calculations)? Calcu-

Cases 0 < Y < 1 Y > 1
0 < X < 1 Ẋ > 0 Ẋ < 0

Ẏ < 0 Ẏ < 0
X > 1 Ẋ > 0 Ẋ < 0

Ẏ > 0 Ẏ > 0

lation close to the steady state at the zero point: (0.1 |
0.1):

⇒ Ẋ = 0.1(1−0.1) = 0.09
Ẏ = 0.1(0.1−1) =−0.09

Phase plot with oscillating system

 

 

Y 

X 1 

1 

0 

unstable 

stable 
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■ Prey-Predator Model 2
In the following, a more complex Lotka-Voltera model
shall be investigated. The growth rate of the prey is in-
cludedwith a parameter µ > 0 and the predator’s growth
rate is modeled with a yield coefficient α > 0. Further-
more, an influx of predators into the system is assumed.
The resulting model description is:

Ẋ = X(µ −Y ) (4.6)
Ẏ = Y (αX −1)+1 (4.7)

Task a) Assign the facts described above to the individ-
ual model terms in this system.

Prey number change: Ẋ =
birth
µX

predation
−Y X

Predator number change: Ẏ = αY X
growth on prey

−Y
death

+1
immigration

Task b) Calculate the steady states of system as a func-
tion of parameters α and µ .

Ẋ = X∗(µ −Y ∗)
!
= 0 I

Ẏ = Y ∗(αX∗−1)+1 !
= 0 II

Case differentiation:

Equation I ⇒ X∗
1 = 0

in Eq. II: Y ∗(0−1)+1 = 0 ⇒ Y ∗
1 = 1

Equation I ⇒(µ −Y ∗) = 0 ⇒ Y ∗
2 = µ

in Eq. II: µ · (αX∗−1)+1 = 0
µαX∗−µ +1 = 0

⇒ X∗ =
µ −1
αµ

Task c) Which condition has to be fulfilled for parame-
ter µ to obtain only biologically reasonable steady states?
We assume it is reasonable to always have enough of each
species in in the system X∗,Y ∗ !

≥ 0 then:

Y ∗ ≥ 0 ⇒ µ ≥ 0

X∗ ≥ 0 ⇒ µ −1
α ·µ

≥ 0

µ −1 ≥ 0

µ ≥ 1

Task d) Draw the steady states for µ = 2 and α = [1/5;
1/4; 1/3; 1/2;1] in a diagram (x-axis: X , y-axis: Y).

α = X∗ = µ−1
α·µ = 1

2α
Y ∗ = µ

1
5

5/2 2
1
4 2 2
1
3

3/2 2
1
2 1 2
1 1/2 2

Plot with parameter-dependent shift of the steady state:
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■ Prey-Predator Model 3 (fish)
Small and big fishes are living in a lake. The small fishes
(X) depend on plankton which is available in excess. Big
fishes (Y) feed on the small ones. If only small fishes
would be present, it would grow exponentially, i.e. their
number grows with a constant specific growth rate α

(α > 0). In the absence of small fishes, the big fishes
would die out with a decay rate β (β > 0). The following
simple equations describe these facts using the parame-
ters α,β ,γ,δ > 0:

d
dt

X = (α − γY )X !
= 0 I

d
dt

Y =−(β −δX)Y !
= 0 II

Task a) Determine the steady states of this simple eco-
logical model.

Equation I ⇒ X∗
1 = 0

in Eq. II: − (β −δ0)Y = 0 ⇒ Y ∗
1 = 0

Equation I ⇒(α − γY ) = 0 ⇒ Y ∗
2 =

α

γ

in Eq. II: − (β −δX)
α

γ
= 0

δX
α

γ
= β

α

γ

⇒ X∗ =
β

δ

Task b) Linearize the differential equations around the
steady states and transform the linearized equations into
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state-space description (states, inputs, outputs in ma-
trix/vector representation).
We assume:

X = X∗+ x

Y = Y ∗+ y

The right-hand side of the non-linear equation system
will be linearized around the steady states. If one de-
notes the right-hand side of the first ordinary differential
equation (ODE) as function of X and Y, one can use the
Taylor approximation:
d
dt

X =
d
dt
(X∗+ x)

= g(X∗,Y ∗)+
∂g(X ,Y )

∂X
|XS · x+

∂g(X ,Y )
∂Y

|YS · y+ . . .

Applied on our system, we obtain:
d
dt

x = (α − γY ∗) · x− γX∗ · y

d
dt

y = δY ∗ · x− (β −δX∗) · y

The related state-space representation is:(
ẋ
ẏ

)
=

(
α − γY ∗ −γX∗

δY ∗ −β +δX∗

)(
x
y

)
Steady State 1: X∗

1 = 0,Y ∗
1 = 0. The steady-state values

are inserted into the state-space representation:(
ẋ
ẏ

)
=

(
α 0
0 −β

)(
x
y

)
(4.8)

Steady State 1: X∗
2 = β

δ
,Y ∗

2 = α

γ(
ẋ
ẏ

)
=

(
0 −γ

β

δ

−δ
α

γ
0

)(
x
y

)
(4.9)

Task c) Determine for every steady state the Eigenval-
ues of the linearized system and deduce from that the
stability of the system in the vicinity of the respective
steady state.
Steady State 1:
Eigenvalues directly from the related state-space repre-
sentation 4.8: s1 = α,s2 =−β → steady state is unstable
Steady State 2:
We use the state-space representation 4.9 to get the char-
acteristic equation:

∣∣sIII −AAA
∣∣= ∣∣∣∣∣ 0 −γ

β

δ

−δ
α

γ
0

∣∣∣∣∣= s2 +αβ = 0

Thus, we obtain the complex Eigenvalues:
s1,2 =±

√
−αβ =±i

√
αβ

Thus, we have a metastable steady state with conserved
oscillations, also known as a limit cycle.

■ Prey-Predator Model 4 (fish)

g1(x,y) = ẋ = (1− y)x− 1
2

x2 = x− xy− 1
2

x2 !
= 0 I

g2(x,y) = ẏ = (x−1)y =−y+ xy !
= 0 II

Task a) Determine the steady state.
From II:

(x−1)y = 0 → y∗1 = 0

x∗2 = 1

y∗1 = 0 in I:

x(1− 1
2

x) = 0 → x∗1 = 0

x∗3 = 2 → y∗3 = 0

x∗2 = 1 in I:

1− y− 1
2
= 0 → y∗2 =

1
2

Taskb) Linearize around the steady statewith the equa-
tion

f (x,y) = g(x∗,y∗)+g′x(x
∗,y∗)∆x+g′y(x

∗,y∗)∆y

using x = x∗+∆x with ∆x = (x− x∗).

ẋ = f1(x∗,y∗) = (x∗− x∗y∗− 1
2
(x∗)2)+(1− y∗− x∗)∆x+(−x∗)∆y

ẏ = f2(x∗,y∗) = (−y∗+ x∗y∗)+(y∗)∆x+(x∗−1)∆y

which is in the general state-space representation:(
ẋ
ẏ

)
=

(
1− y∗− x∗ −x∗

y∗ x∗−1

)
︸ ︷︷ ︸

JJJ= ∂g(xxx)
∂xxx

(
∆x
∆y

)
+

(
x∗− x∗y∗− 1

2 (x
∗)2

−y∗+ x∗y∗

)

and for Steady State 1 (x = 0|y = 0)→ (0|0):(
ẋ
ẏ

)
=

(
1 0
0 −1

)(
∆x
∆y

)
,

Steady State 2 (1| 1
2 ):(

ẋ
ẏ

)
=

(
− 1

2 −1
1
2 0

)(
∆x
∆y

)
,

Steady State 3 (2|0):(
ẋ
ẏ

)
=

(
−1 −2
0 1

)(
∆x
∆y

)
,
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Task c) Determine the stability with the Eigenvalues:

∣∣sI−A
∣∣= ∣∣∣∣s−a11 a12

a21 s−a22

∣∣∣∣
= (s−a11)(s−a22)−a12a21

!
= 0

For Steady State 1 (0|0):

(s−1)(s+1) !
= 0

This characteristic polynomial delivers s1 = 1, s2 = −1,
which indicates an unstable saddle point.
Asymptote:
We start with the equation in the state plane:

ẏ
ẋ
=

dy
dx

=
−y
x

and introduce the linear equation y = mx and obtain a
equation

m =
−mx

x

that only works for m = 0

Steady State 2 (1| 1
2 ) delivers the characteristic equation:

(s+
1
2
) · s+ 1

2
= s2 +

1
2

s− 1
2
= 0

2s2 + s+1 = 0

s1/2 =
−1±

√
1−8

4
=−1

4
± i

√
7

4

which indicates a stable focus.
Asymptote:
We start with the equation in the state plane

ẏ
ẋ
=

dy
dx

=
1
2 x

− 1
2 x− y

and introduce the linear equation y = mx and obtain the
equation

m =
1
2 x

− 1
2 x−mx

−1
2

mx−m2x =
1
2

x

0 = m2 +
1
2

m+
1
2

m1,2 =−1
4
±
√

1
16

− 1
2
=

−1±
√
−7

4

which delivers imaginary slope values.
Steady State 3 (2|0) result in the characteristic equation

(s+1)(s−1)−0 !
= 0 ⇒ s1 = 1;s2 =−1

and consequently is an unstable saddle.
Asymptote:
We start with the equation in the state plane

ẏ
ẋ
=

dy
dx

=
y

−x−2y

and introduce the linear equation y = mx and obtain a
equation

m =
mx

−x−2mx
−mx−2m2x = mx

−2mx−2m2x = 0
2mx(1+m) = 0

which result in the slope values m1 = 0 and m2 =−1

Task d) Tangents
To draw our phase plot, we calculate horizontal and
vertical asymptotes with:

• horizontal tangents: ẏ !
= 0 in Equation II:

→ x = 1, y = 0

• vertical tangents: ẋ !
= 0 in Equation I:

→ x = 0, y =− 1
2 x+1

Task e) Rectilinear tangents
Ansatz10 11: y = mx+b

dy
dx

= m =
−y+ xy

x− xy− 1
2 x2

=
−mx−b+mx2 +bx
x−mx2 −bx− 1

2 x2
(4.10)

10 Ansatz: x = my+b

dx
dy

= m =
x− xy− 1

2 x2

−y+ xy

=
my+b−my2 −by− 1

2 [m
2y2 +2mby+b2]

−y+my2 +by

⇒−my+m2y2 +mby−my−b+my2 +by+
1
2

m2y2 +mby+
1
2

b2 = 0

⇒ (m2 +m+
1
2

m2)︸ ︷︷ ︸
0!

y2 + (b)︸︷︷︸
0!

y+(
1
2

b2 −b)︸ ︷︷ ︸
0!

= 0

Coefficients:
b1 = 0 → m1 = 0 → x = 0

b2 = 2 → m2 = 1 → 3
2
+1 =

5
2
̸= 0 �.

11 Ansatz: x = b

x = b

ẋ = 0

⇒ ẋ = (1− y)x− 1
2

x2 = x(1− y− x
2
)

!
= 0

⇒ b(1− y− b
2
) = 0 ⇒ b = 0 (for all y) ⇒ x = 0 .
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⇒mx−m2x2 −bmx− 1
2

mx2 =−mx−b+mx2 +bx

⇒−m2x2 − 1
2

mx2 −mx2 +mx−bmx+mx−bx+b = 0

⇒(−3
2

m−m2)︸ ︷︷ ︸
0!

x2 +(2m−bm−b)︸ ︷︷ ︸
0!

x+ b︸︷︷︸
0!

= 0

Coefficients:

⇒ b = 0

⇒2m−0 ·m−0 = 0 → 2m = 0 → m = 0

⇒m(m+
3
2
) = 0 → m1 = 0; m2 =−3

2

Inserted in Equation 4.10:

for m1 = 0 ⇒ y = 0

for m1 =−3
2

−3
2
=

3
2 x− 3

2 x2

x+ x2

−3
2
=

3
2

�

Task f) Draw the phase plot.
The phase plot can be seen in Figure 43.
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Figure 43. Phase plot: Red dots are steady states of
the system. Dotted lines are the vertical and horizon-
tal tangents. Initial values are: (x = 0.2,y = 2) and
(x = 2,y = 0.2).

■ Reaction system
Task a) Balance equations for X and Y.
The balance equation can be written directly

Ȧ = 0
Ẋ =−k1AX +2k1AX − k2XY = X(k1A− k2Y )

Ẏ =−k2XY +2k2XY −2k3Y 2 = Y (k2X −2k3Y )

Ḃ =+k3Y 2

whereby one has to carefully pay attention to the coeffi-
cients. Or one uses the network approach learned in the
previous section:

NNN =

v1 v2 v3
−1 → 0 0 0
−1+2 −1 0

0 −1+2 −2
0 0 1


A
X
Y
B

which results in:
Ȧ
Ẋ
Ẏ
Ḃ

= ṠSS = NNNvvv =


0 0 0
1 −1 0
0 1 −2
0 0 1


k1AX

k2XY
k3Y 2

 .
This way might be less error prone in praxis. In both
cases we obtain:

Ẋ = X(k1A− k2Y )

Ẏ = Y (k2X −2k3Y )

where A is kept constant, and B does not influence the
behavior of X or Y . Because A is constant, we could also
combine it with k1 to another constant k1A = C. Also
k3 could be updated 2k3 = k′3. In the following we do
not want to drag the parameters on and only study the
system:

Ẋ = X(1−Y )

Ẏ = Y (X −Y )

Task b) Determine the steady states of the system.

g1(X ,Y ) = Ẋ = X(1− k2Y ) !
= 0 I

g2(X ,Y ) = Ẏ = Y (X −Y ) !
= 0 II

Steady State 1:

x∗1 = 0 ⇒ y∗1 = 0

Steady State 2:

y∗2 = 1

in II
1(x−1) !

= 0 ⇒ x∗2 = 1
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Task c) Linearize the differential equations around the
steady state and transform them into state-space descrip-
tions (states, inputs, outputs in matrix/vector represen-
tation).
The general form is:

f (X ,Y ) = g(X∗,Y ∗)+g′x(X
∗,Y ∗)∆X +g′y(X

∗,Y ∗)∆Y

sometimes also written as:

∆̇X = f1(X ,Y )−g1(X∗,Y ∗)

= g′1x(X
∗,Y ∗)∆X +g′1y(X

∗,Y ∗)∆Y

∆̇Y = f2(X ,Y )−g2(X∗,Y ∗)

= g′2x(X
∗,Y ∗)∆X +g′2y(X

∗,Y ∗)∆Y

using X = X∗+∆X with ∆X = (X −X∗). In our example,
we obtain:

Ẋ = f1(X∗,Y ∗) = X∗(1−Y ∗)+(1−Y ∗)∆x+(−X∗)∆y

Ẏ = f2(X∗,Y ∗) = Y ∗(X∗−Y ∗)+(Y ∗)∆x+(X∗−2Y ∗)∆y

which is in the general state-space representation:(
ẋ
ẏ

)
=

(
1−Y ∗ −X∗

Y ∗ X∗−2Y ∗

)
︸ ︷︷ ︸

JJJ= ∂g(xxx)
∂xxx

(
∆x
∆y

)
+

(
X∗(1−Y ∗)

Y ∗(X∗−Y ∗)

)

Steady State 1 (X∗ = 0,Y ∗ = 0):(
Ẋ
Ẏ

)
=

(
1 0
0 0

)(
∆x
∆y

)
Steady State 2 (X∗ = 1,Y ∗ = 1):(

Ẋ
Ẏ

)
=

(
0 −1
1 −1

)(
∆x
∆y

)

Task d) Calculate the Eigenvalues of the linearized sys-
tem at the steady states and determine thereof the be-
havior of the system in the vicinity of the steady states.

∣∣sI−A
∣∣= ∣∣∣∣s−a11 a12

a21 s−a22

∣∣∣∣
= (s−a11)(s−a22)−a12a21

!
= 0

Steady State 1:

∣∣sI−A
∣∣= ∣∣∣∣s−1 0

0 s

∣∣∣∣
= (s−1)s !

= 0

with the Eigenvalues:

s1 = 1
s2 = 0

The positive Eigenvalue indicates an unstable steady
state. Steady State 2:

∣∣sI−A
∣∣= ∣∣∣∣ s 1

−1 s+1

∣∣∣∣
= s(s+1)+1 !

= 0

= s2 + s+1

The quadratic equation is solved:

s1,2 =
1±

√
1−4

2
=−1

2
± i

2

√
3

and results in 2 complex numbers with negative real part.
Thus, we have a stable focus.

Task e) Determine the equations of the vertical and
horizontal tangents.

Horizontal tangent:

Ẏ = Y (X −Y ) !
= 0

⇒ Y = 0 ; X = Y

Vertical tangent:

Ẋ = X(1−Y ) !
= 0

⇒ X = 0 ; Y = 1

Task f) Optional: Determine the rectilinear trajectories.
Ansatz1213: y = mx+b

12 Ansatz: X = mY +b

dX
dY

= m =
mY +b− (mY +b)Y
(mY +b)Y −Y 2

=
mY +b−mY 2 −bY

mY 2 +bY −Y 2

⇒ m2Y 2 +bmY −mY 2 −mY −b+mY 2 +bY = 0

Y 2(m2 −m+m)+Y (bm−m+b)−b = 0

⇒ b = 0 , m = 0 , X = 0 .

13 Ansatz: X = b

Ẋ = 0

Ẋ = 0 = X(1−Y ) = b(1−Y )

⇒ b = 0, X = 0 .
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Figure 44. Phase plot: Red dots are steady states of
the system. Dotted lines are the vertical and horizon-
tal tangents. Initial values are: (x = 0.2,y = 2) and
(x = 2.5,y = 2).

dY
dX

= m =
X(mX +b)− (mX +b)2

X −X(mX +b)

mX2 +bX −m2X2 −2bmX −b2

X −mX2 −bX

⇒ mX −m2X2 −bmX −mX2 −bX +m2X2 +2bmX +b2 = 0

X2(−m2 −m+m2)+X(m−bm−b+2bm)+b2 = 0

⇒ b = 0 , m = 0 , Y = 0

Task g) Sketch the phase portrait.
We try to help our drawing with additional point tests:

Test at (X = 2,Y = 1):

Ẋ = 2(1−1) = 0
Ẏ = 1(2−1) = 1

Test at (X = 1,Y = 2):

Ẋ = 1(1−2) =−1
Ẏ = 2(1−2) =−2

The phase plot can be seen in Figure 44 and the corre-
sponding MATLAB code is shown below:

1 function PhasePlot2
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Title: phase plot
4 % Author: Marco Albrecht
5 % Licence: EUPL v1.2
6 % Last change: 01.09.2018
7 clear global ;close all ; clc ;
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 %% Parameters
10 p.a= 1;%
11 p.b= 1;%
12 %% Trajectories
13 %Trajectory 1
14 tspan=0:0.01:150;%[t_start t_end]
15 c0=[0.2; 2];%[initial conditions]
16 [¬,c1] = ode15s(@system,tspan,c0,[],p);
17 %Trajectory 2
18 tspan=0:0.01:150;%[t_start t_end]
19 c0=[2.5;2];%[initial conditions]
20 [¬,c2] = ode15s(@system,tspan,c0,[],p);
21
22 %% Plot
23 figure(1)
24 set(gcf,'color','w');
25 hold on
26 % trajectories
27 plot(c1(:,1),c1(:,2),'Color', [0.4 ...

0.75 0.75],'Linewidth',2)
28 plot(c2(:,1),c2(:,2),'Color', [0.85 ...

0.6 0.85],'Linewidth',2)
29 % Asymptotes
30 plot([0 2.5],[0 2.5],'k--')
31 plot([0 2.5],[1 1],'k--')
32 % steady states
33 plot(0,0,'ro','MarkerSize',3,'LineWidth',5)
34 plot(1,1,'ro','MarkerSize',3,'LineWidth',5)
35 % arrows
36 annotation('arrow',[0.54/2.5 ...

0.52/2.5],[1.8/2.5 ...
1.6/2.5],'Color', [0.4 0.75 ...
0.75],'Linewidth',2)

37 annotation('arrow',[1.2/2.5 ...
1.3/2.5],[0.8/2.5 ...
0.87/2.5],'Color', [0.4 0.75 ...
0.75],'Linewidth',2)

38 annotation('arrow',[1.5/2.5 ...
1.3/2.5],[1.9/2.5 ...
1.78/2.5],'Color', [0.85 0.6 ...
0.85],'Linewidth',2)

39 % etc
40 ylabel('Y')
41 xlabel('X')
42 end
43 function dcdt=system(¬,c,p)
44 %% Load parameters
45 % p.a=1
46 % p.b=1
47 %% System dxdt=A*x
48 dcdt(1) = p.a*c(1)*(1-c(2)) ;% x
49 dcdt(2) = p.b*c(2)*(c(1)-c(2)) ;% y
50 dcdt = dcdt'; % important! - transposes ...

the solution vector
51 end



Notes



Notes



Chapter 4: Physical modeling and non-linear enzyme
kinetics
Thomas Sauter, Marco Albrecht

Motivation
Reality can be difficult to grasp. Philosophers puzzle their heads over the true nature of reality and our image of
it. Accordingly, modeling is the art of coming close enough to reality to give valuable insights, without actually
being reality. Sometimes we have to include more details. The reaction rates v, with which you are already
familiar, can be replaced by more complicated non-linear enzyme kinetics under certain circumstances. Moreover,
mathematical equations might be too flexible initially because they are entirely virtual. We have to actively
include physical constraints to let the model behave more like reality and to force the model behavior into realistic
paths. Different modeling techniques can require the application of different physical laws. But instead of making
our models more and more complicated, we have to ask ourselves: what is essential and thus has to be included
in a model and what only distracts us from the real kernel? But what is the real kernel? Which criterion can help
us to choose an appropriate approximation of our problem? We can neither ignore reality nor can we ever fully
represent it. Join us in finding a healthy distance from reality and in exploring the fascinating and comprehensive
field of enzyme kinetics. Modeling is a wonderful tool for thinking deeply about the origin of all these superficial
observations which we encounter in private life and our professional existence. Let’s make this tool sharp!
Keywords
Model classification —Model building — Assumptions — SI units — Akaike information criterion — Balance
equation — Enzyme kinetics
Contact: thomas.sauter@uni.lu. Licence: CC BY-NC
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1. Lecture summary
We learned in the previous chapters how to set up system
equations and understand their dynamics. This is espe-
cially helpful for Metabolic Network Analysis. There,

already, the graph alone can give us insight. However,
we have notmodeled physical systems. In order tomodel
physical systems, we need to think about physical laws
in thermodynamics, include physical relevant param-
eters, think about reaction laws, and get familiar with
unit calculus. However, we begin with the question of
what distinguishes reality from its approximation.
If you prefer, you could also jump directly to balancing
(page 10)—an approach which enables us to formulate
mathematical models of physical and biological systems.

1.1 ■What is a model?
"Un cercle n’est pas absurde,[..] Mais aussi un cercle
n’existe pas" / "A circle is not absurd; it is clearly ex-
plained by the rotation of a straight segment around one
of its extremities. But neither does a circle exist." This
citation is from the work La Nausée written by Jean-Paul
Sartre1 [1, 2]. Sartre was desperate because whenever he
had a word for or a model of something, it would never
be the reality he wanted to describe. Because we are
unable to name something appropriately, the real things
remain nameless. The difference between the beauty of
abstract description and the imperfection of real-world

1 French philosopher, novelist, political activist, playwright, literary
critic, and biographer Jean-Paul Charles Aymard Sartre (1905—1980).
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phenomena nauseated himbecause it revealed to him the
uselessness of existence. In the world of mathematics, ev-
erything seems to be perfect and pure—like a circle. But
youwill never find a perfect circle in reality. Thus, the va-
riety of human existence might suggest that something
perfect—or a higher power which leads us—cannot exist.
Instead, it is up to us to turn our existence into essence.
Independent of our opinion of the European movement
of existentialism, this movement urges us to get a bal-
anced feeling for what models are. We have to bring
them close enough to reality to be useful, but one has to
stop the refinement if this stops helping us answering
real-world questions. George Box2 once wrote: "Remem-
ber that all models are wrong; the practical question
is how wrong do they have to be to not be useful" [3].
This pragmatic view helps us navigate the process of
understanding reality with useful models, but it spares
us depression caused by exaggerated perfectionism.
Mechanistic models have the following advantages [3]:

• They contribute to our scientific understanding of
the phenomena under study.

• They usually provide a better basis for extrapola-
tion (at least to conditions worthy of further ex-
perimental investigation, if not through the entire
range of all input variables).

• They tend to be parsimonious (i.e. frugal) in the
use of parameters and provide better estimates of
the response.

Wewant to addresswhat the reality is in our specific case.
Biologists know that experimental models in biology
should resemble—but usually do not fully represent—
real-world phenomena in vivo. However, the biologist
does not really need to think about characteristics he or
she does not care about. We biologists have enough trou-
ble ensuring that one’s experimental setting allows one’s
living system to operate in the desired states and that
the observations (measurements) indeed showwhat the
real system states look like in principle. It is also the
pragmatic realization that it is just impossible to mea-
sure all possible players at any time under any condition.
But, many things in biologists’ system of interest are al-
ready true because they work on a real system. If they
model something, they work on an entirely virtual sys-
tem which they think represents what they care about.
This does not mean it is true. It is an abstraction. One
has to actively ensure that one’s mathematical model
is physically correct, to figure out which elements one
can neglect and which not, and to iteratively compare
one’s simulation result with experimental data. Which
constraints one must take into account depends on one’s
chosen modeling framework, its inherent mathematical

2 British statistician George Edward Pelham Box (1919—2013).

characteristics, and the underlying assumptions. Con-
sequentially, the interpretation of the model’s result de-
pends on one’s modeling strategy and the considered
assumptions, and is restricted to the considered concep-
tualization. This applies to the modeling framework
itself and to the content of the model. Modeling helps us
to dive into a deeper understanding of what we observe
and to find out what does not work or maybe why our
conception of reality fails. Modeling is not a tool to con-
firm our premature beliefs about what is helpful in order
to seem successful. The less we know, the more careful
we should be with interpretation. Modeling is a tool
to helps us understand biology, but it does not replace
experiments. Bottom-up modeling helps us to develop
a consistent theory on what we observe and top-down
modeling help us to extract the most likely relationships,
but modeling cannot magically generate new data from
nothing. Never fall in love with your model and always
be sceptical and aware of its shortages. Moreover, it is
not an excuse to oversimplify a model until it shows the
obvious and thus becomes useless. Useful modeling is
the art of representing reality to a degree that goes be-
yond what you can understand on your own and find
the limits of what the mathematical framework can han-
dle with given data. Therefore, you need to master the
mathematical framework, its physical interpretation, and
the biology of what your model represents. You need
the knowledge on how experimental data has been de-
rived, how data can be interpreted, and whether you can
use this data in the context of your model. The general
modeling approach is part of the next section.

1.2 ■Modeling procedure
Amathematical model uses mathematical descriptions
and computer simulations. A model can be defined as:
Definition 1. Model: Amodel is the representation of
the essential aspects of a systemwhich represents knowl-
edge of that system in usable form (Eykhoff, 1974) [4].

The modeling procedure is an iterative approach and fol-
lows a cycle such as that shown in Figure 1 and usually
requires an iterative procedure of computational and ex-
perimental analysis (Figure 2). The next section is based
on a textbook in German language [5].
Specify the question of interest
The question of interest is of utmost importance. It will
hardly ever be the case that you have a universal model
with which you can explain all kind of questions. With
the main question in mind, you can start with the sim-
plest model that can roughly represent your system. As
soon as it works, you can refine it iteratively. Modeling
scopes can be:

• Scientific understanding
• Validation or falsification
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Figure 1. Modeling cycle of Blum and Leiß. 1: under-
standing 2: simplifying/structuring 3: mathematizing
4: working mathematically 5: interpreting 6: validating
[6]. Copyright © 2007 Authors (Blum, Leiß), Fair Use.

• Prediction
• Decision-making, strategy planning
• Design of a controller
• Virtual prototype or material simulation
• Pattern recognition.

The modeling scope determines the level of detail of
the model. An experienced modeler can plan the mod-
eling strategy with the mathematical implementation
and numerical issues in mind. Numerical analysis3 is a
mathematical discipline which tends to solve problems
approximately. Thereby, errors can occur which have to
beminimized. Not all numerical methods can be applied
to any problem, and sometimes the solving process can
go completely wrong.

Assumptions
Assumptions about reality help us to make the real-
world problem abstract and solvable. There are, for
example, assumptions for simplifying the description
of inter-dependencies or assumptions for constraining
the number of states to investigate. Assumptions should
not contain the obvious, should enable a useful model,
and should not lead to infeasible models. Assumptions
build the foundation of the model and determine the
interpretation of the outcome. Each assumption has to
be justified and checked for the qualitative and quan-
titative impact on the model. The assumptions should
not contradict one another. Assumptions might change
during the modeling process. The following questions
help us to identify appropriate assumptions:

• Which effects can be neglected?
• Which scenario might be a good starting case?
• Which parts of a system are necessary and which

are not relevant?
• Can a part of the system be prescribed?

3 Earliest mathematical writings from Babylon 1800—1600 BC
(Iraq).

Model building
The modeling procedure starts with a verbal model
which is the initial model concept. It helps us to de-
termine what belongs to the model and what does not,
and is specified by the expert of the system. Defining
the system’s purpose is a part of this process. The verbal
model is written in the everyday language of the mod-
eler and the experts. It is also the starting point for the
influential structure of a given system. The following
steps are necessary to build a model in order to answer
the question of interest:

• Specify model and system parameters
• Specify model variables and system states
• Specify the interdependencies between the states

with auxiliary conditions and physical laws
• Formulate the mathematical procedures, such as

optimization, sensitivity analysis etc.
The system variables represent the states which change
during the simulation. The system variables span the
phase space and should fulfil the following criteria:

• Independence: No systemvariable can be described
as a function of another.

• Completeness: The state of the system is fully ex-
plained by all state variables.

The auxiliary conditions describe the interdependencies
between the system variables and are adjusted by the
system parameter. Modelers use concept maps to draw
potential cause-effect relationships and to reason about
what has to be modeled and how. Engineers are, like
biologists, very visual scientists and need drawings for
fruitful communication.
A system parameter is a number that does not change
with time. In the previous chapters, we mainly talked
about rates. These rate terms represent equations by
themselves and include parameters. Only in the most
simple case are rates represented by a single parameter.
A typical procedure in modeling is the search for param-
eters which are able to let the model behave comparably
to reality.
A good procedure to get good models is to ensure that
one has as many equations as variables (remember the
Rouché–Capelli theorem).

1.3 ■Mathematical analysis of models
Mathematical methods can be used to make models fea-
sible, to solve them and to understand their properties.
This section is based on the same textbook in German
language [5].
Dimension analysis
The model variables might have physical meaning and
units. A reformulation can be helpful to get rid of the
units with a proper unit calculus. This process is called
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behaviours in new environments (BOX 3). 
Given the context-dependent dynamics of 
biological responses, careful and control-
led experiments are needed to provide 
accurate data to model the system46. 
experimental and in silico testing of sys-
tems-generated hypotheses resolves incon-
sistencies and feeds new information into 
model revisions. Although this is similar to 
the synthetic biology approach, the global 
measurements and modelling approaches 
used in the iterative cycle of systems biol-
ogy (especially the top-down approach) can 
delineate principles governing assembly of 
complex biological circuits, including most 
of the cellular components3,4.

In general, the top-down approach is 
regarded as the paradigm for systems biol-
ogy. This methodology has roots in whole 
genome sequencing, microarray technol-
ogy, proteomics and other high-through-
put methods that can be used to observe 
numerous system elements simultaneously 
(BOX 2). Although the varying limitations of 
these technologies yield data with differ-
ent levels of uncertainty, these often tend 
to be systematic and specific to a given 
approach. By integrating the various global 
data using a cross-validation procedure 
(for example, by using a gold standard data 
set, such as membership in gene ontology 
function categories or an objective func-
tion that evaluates a metric of relatedness, 
such as co-expression), it is possible to find 
meaningful information that is supported 
by multiple sources of evidence. This is 
illustrated by the integration of expression 
data, comparative genomics and physi-
cal interactions to discover conditionally 
co-regulated genes that are co-expressed, 
share promoter motif signatures, are func-
tionally associated and/or physically inter-
act47. Therefore, although the richness and 
depth of the data are initially overwhelm-
ing, the top-down approach is equally 
useful and can be integrated with the bot-
tom-up approach. even well studied model 
organisms and macromolecular processes 
benefit from the merger of holistic and 
reductionist scientific approaches. Notable 
examples include the study of cell cycle 
regulation in Caulobacter crescentus44, bac-
terial chemotaxis48 and subcellular organi-
zation of proteins and DNA in bacterial 
cells49. To date, the study of transcriptional 
regulatory networks (TRNs) are examples 
of the best-characterized systems with 
genome-scale predictive models. even the 
most studied prokaryotic model organism, 
E. coli, has benefited from systems analysis 
of these networks. Curated resources, such 

as RegulonDB50 (see Further information), 
house many experimental and in silico data 
that are common entry points for further 
biological exploration of this organism. 
This has enabled rapid development and 

verification of predictive global models 
that integrate known and novel regulatory 
interactions to broaden our view of tran-
scriptional regulation of diverse biological 
processes4.

Box 3 | network models for systems biology

Network models101 that integrate a myriad of information have been developed to describe and 
predict properties of complex biological systems. The balance between data availability and the 
complexity of the model is an important factor to be considered102: the choice of model must fit 
with the parameters and generating predictions. Once the validation step is performed, the model 
can be improved iteratively and interactively. All these steps can be a combination of approaches; 
for example, simultaneously using gene expression levels (continuous) and discretized 
protein–protein interaction information. Three examples of successful modelling approaches are 
provided in the figure and the table. Other diverse models have been used in eukaryotic 
organisms58 and can be adapted for the system of interest.

P e r s P e c t i v e s

NATURe RevIeWS | Microbiology  vOlUMe 7 | ApRIl 2009 | 301

© 2009 Macmillan Publishers Limited. All rights reserved

Figure 2. The principle of iteration in modeling. We usually start with a hypothesis and choose an appropriate
modeling strategy (graph, discrete, continuous, static, stochastic, deterministic). We integrate data and adjust the
model until it fits. Then we perform a prediction and see whether the model is qualitatively and quantitatively good
enough. If not, the cycle is repeated until we sufficiently understand the system. More information and source: [7].
Copyright © 2009, Nature Publishing Group.

non-dimensionalization. Moreover, relevant lengths or
magnitude ranges of the variable values might be de-
fined to determine what relevant influences are. Ques-
tions of scale are relevant. Multi-scale models can con-
tain different relevant magnitude orders of interest.

Inverse and poorly posed problems
One might perform certain steps to check whether the
model is mathematically well-posed in itself. If not,
mathematical procedures might perform poorly. A well-
posed problem has a unique solution. This solution
changes continuously with continuously changing pa-
rameters. A system matrix which is not invertible can
cause numerical problems. Matrices with a high condi-
tion number are ill-conditioned. A condition number
measures howmuch an output value changes with small
changes of the input number.

Investigate special problems
One might first solve special cases before investigating
the more complicated general case.

Simplification and linearization
One might neglect terms with minor impact to see if the
simplified model behaves similarly to the original model.
The neglected terms are called small disturbances of the

simplified model (perturbation theory). Karl Popper 4

once said: "Science may be described as the art of sys-
tematic over-simplification—the art of discerning what
we may with advantage omit."
Linearization around specific points might help inves-
tigate the model’s behaviour and acquire information
about the non-linear model at specific points.
Check qualitative properties
One runs the model and gets conclusions on asymptotic
behavior, system stability, and if oscillations can occur,
among other qualitative properties.
Sensitivity analysis
After one has found a solution with a given set of opti-
mal parameters, one wants to know how small changes
of parameter values influence the solution. This is an
important type of analysis to carry out.
Interpretation and validation
The interpretation of the results might happen in light
of previous expectations and requires the consideration
of all assumptions. The simulation might give us a pre-
diction which is then subjected to a validation process.
If experimental data can be generated, one has to deter-
mine how tolerant one is ready to be. How well does

4 Austrian and British philosopher Sir Karl Raimund Popper (1902—
1994).
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the model fit the new data? Sometimes no data can be
generated. In this case, check the plausibility with the
experts of the given system. Surprising simulation re-
sults might lead to a deeper investigation of subsystems
or checking whether parameters and variables remained
in physically meaningful ranges after the previous opti-
mization. One cannot prove the ’correctness’ of a model,
and a model cannot be ’verified’. Correct settings in a
simulation cannot constitute proof of accurate behavior
under all possible circumstances. The only thing it can
do is falsify the theories and models, e.g. if observations
and simulations disagree. Consequently, we always say
that we validate a model in light of the model’s purpose
and in the following aspects:
Structural validity: The model has an influence struc-

ture which resembles the influence structure of
the original. The number of essential states and
the feedback structures have counterparts in the
original system.

Behavioral validity: The model shows qualitatively the
same dynamic behavior, e.g., oscillations or not.

Empirical validity: Within the model’s constraints, the
simulation result follows experimental data and,
if no observable data is available, the results are at
least consistent and plausible, and the parameter
ranges are empirically justified.

Application validity: The model fulfils its purpose and
can be applied to make decisions, to control pro-
cesses etc.

1.4 ■Model classification
Usually you do not have to reinvent a modeling strategy.
Often you can use previous procedures and apply these
to your problem of interest. How often which method
type is used can be seen in Figure 3. The spectrum of
some methods in systems biology can be seen in Figure
4. Mathematical approaches are listed in Figure 16 in
the section on mathematical basics. Here, we give an
overview on model types. This section is based on the
same textbook [5].
Mathematical structure
We can distinguish the following contrasting pairs:
Static or dynamic models: Dynamic models change over
time. Static models are time-independent or are in the
steady state of a dynamic model. The time can be con-
tinuous or discrete.
Discrete or continuous models: If the variable values can
be counted, one is dealing with a discrete model. See
Figure 5 for an illustration of continuous and discrete sig-
nals in time and state. Each class requires fundamentally
different modeling strategies. Discrete models require
methods of graph theory and the theory of finite-state
machines. Continuous models require higher mathe-
matical models of calculus. However, it is possible to

discretize continuous models to obtain and handle a
simpler and reduced discrete model in the hope it suffi-
ciently resembles the original continuous model.
Deterministic or stochasticmodels: Adeterministicmodel
always comes to the same solution with given parame-
ters and initial variable values. Stochastic models oper-
ate with random events and are used for models with
certain likelihoods. Stochastic models are also used for
very complex models where the structure is not fully
understood.

Sometimes we have models with mixed elements; how-
ever, it helps to understand the character of each in or-
der to make wise choices and to be aware of the conse-
quences.
Level of description
1st-principle models, white-box models Models can be
assembled from known laws or well-understood 1st prin-
ciples.
Heuristicmodels, gray-boxmodels Models based onmore
or less justified assumptions for the cause and effect
inter-relationships. Often for complicated systems with-
out stringent rules, such as ecologic systems and the
Predator-Prey Model.
Descriptive models, black-box models Models generated
on the basis of datawithout systemknowledge. Typically
input-output relationships, as illustrated in Figure 6.
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1.5 ■ Akaike Information Criterion
"Whenever a theory appears to you as the only possible
one, take this as a sign that you have neither understood
the theory nor the problem which it was intended to
solve," said Karl Popper. Therefore, we usually have
several candidatemodels and ask ourselveswhichmodel
might be the best. A scheme is shown in Figure 7.

data. Under these conditions, the ratio of the maximum

log likelihoods of the models is approximately distributed

as a chi-squared distribution,

�2log
lðu�1; yÞ
lðu�2; yÞ
� �

� x2
n2�n1

; (1)

with degrees of freedom n2 � n1, where n1 and n2 are the

number of free parameters and u�1; u�2 are the maximum

likelihood parameter estimates for models 1 and 2,

respectively. For two nested models the more complex

model will always be able to better explain the observed

data, so a statistical test is required to determine if the

improvement is significant. By calculating p-values under

the appropriate chi-squared distribution it is then possible

to use classical hypothesis testing to determine if the null

model can be rejected.

This approach becomes fragile or clumsy when consider-

ing multiple, and especially non-nested models,

IM = {M1, . . ., Mn}. Then one possible approach is to

compare them by assessing the amount of information

lost in approximating the true data generating mechanism

with each model, using methods from information theory.

Of course we do not typically know the true model

768 Systems biology
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Model selection in systems and synthetic biology. The first step in any modelling task is to generate hypotheses (which might be informed by a set of

observations, or derived from fundamental biophysical principles) in an attempt to explain a given biological process. These are then formalised and

represented as a set of candidate mathematical models, fMign
i¼1. The different models may be of varying complexities, and the process of model

selection requires us to find models that are of sufficient complexity to explain the observed behaviour, while avoiding over-fitting. There are a variety

of ways of ranking models, and in the present article we consider likelihood based approaches and Bayesian methods, as well as touching upon a

variety of model (in)validation and checking procedures that can be used to assess whether a model is good (rather than better than a given

competitor). On the strength of a ranking, it might be possible to select a single best candidate, which may then be further tested and refined.

Current Opinion in Biotechnology 2013, 24:767–774 www.sciencedirect.com

Figure 7. Model selection: Wegenerate different hypothe-
ses and select the best-balanced model. Model M1 is too
simple tomimic reality (not enough parameters). Model
M3 fits the noise rather than the underlying system and
is thus not robust (too many parameters, overfitting).
Model M2 represents a good fit. Source: [10]. Copyright
© 2013, Elsevier Ltd.

A commonly used decision tool for the model selec-
tion is the Akaike Information Criterion (AIC), amongst
other similar criteria. The AIC takes into consideration
the goodness of fit L̂ and the number of parameters k:

AICi = 2k−2ln(L̂).

The model with the minimal AIC should be preferred.
This criterion says nothing about whether a model is
good or bad. It simply says that a model is capable
of generating behavior in line with data. The relative
likelihood of a subordinatemodel i to theminimalmodel
AICi can be calculated with:

exp((AICmin−AICi)/2)

For small models, the AIC might point to models with
too many parameters. The model is overfitting then. It
means that you fit noise instead of the model dynamic,
which increases the likelihood of giving false predictions.

With the following correction:

AICc = AIC+
2k2 +2k
n− k−1

you increase the impact of the parameters. A large sam-
ple size n can reduce the impact of this correction factor.
For those of youwhowant to learnmore, there is also the
Bayesian Information Criterion (BIC), the Takeu-chi’s
Information Criterion (TIC), and the Widely Applicable
Information Criterion (WAIC) [10]. The model selec-
tion can thereby depend on the experimental design [11].
Minimizing the AIC is effectively equivalent to maximiz-
ing entropy in a thermodynamic system according to the
second law of thermodynamics.

1.6 ■ Extensive properties & SI units
Besides continuous macro-scale and stochastic micro-
scale thermodynamics, we have to differentiate between
extensive quantities5 and intensive quantities, if it comes
to transporting from one system to another. Intensive
quantities such as temperature, concentration, pressure,
anddensity are independent of the system size or amount
of material. Thus they cannot be physically transported
through a system boundary. Extensive quantities, how-
ever, are defined quantities whose magnitude is additive
for subsystems, according to the International Union
of Pure and Applied Chemistry IUPEC. Around 30 ex-
tensive quantities are listed in Table 1 and are grouped
according to their relationship to mass.

The old SI units (International System of Units) in Figure
8 are currently under reformulation. We mention the
newest proposals:
Definition 2. Second: The second, symbol s, is the SI
unit of time. It is defined by taking the fixed numerical
value of the caesium frequency ∆νCs, the unperturbed
ground-state hyperfine transition frequency of the cae-
sium 133 atom, to be 9192631770 when expressed in the
unit Hz6, which is equal to s−1.
Definition 3. Meter: The meter, symbol m, is the SI unit
of length. It is defined by taking the fixed numerical
value of the speed of light in vacuum c to be 299792458
when expressed in the unit m · s−1, where the second is
defined in terms of the caesium frequency ∆νCs.
Definition 4. Kilogram: The kilogram, symbol kg, is the
SI unit ofmass. It is defined by taking the fixed numerical
value of the Planck7 constant h to be 6.62607015 ·10−34

5 Most textbooks use the term "extensive properties"; however, this
term is impure in this context because properties like color are not
quantitative, and some extensive quantities such as heat and work are
not properties [12].

6 German physicist Heinrich Rudolf Hertz (1857—1894).
7 German theoretical physicist Max Karl Ernst Ludwig Planck

(1858—1947).



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching 8/36

Table 1. Extensive properties: This table gives you a feeling for different extensive properties. You do not need
to learn this by heart—you simply need to understand the principle. Z: extensive property. m: mass. z: intensive
property.
Symbol Quantity Unit Conditions Formula Notes

(Z/m = )
Z1 proportional to mass

m mass kg nonea m/m = 1
Fgb weight J m−1 g constant Fg/m = g g = 9.81 m s–2

Z2 proportional to mass under constant composition (Z/m = k), else Z2 = Z3,c

Cp heat capacity J K−1 ni constant Cp/m = cp cp = specif c heat cap.
n amount of substance mol ni constant n/m = 1/M M =molar mass
VSL volume (solid, liquid) m3 ni constant VSL/m = ρ ρ= density
N number of particles – ni constant

Z3 mass is constant of proportionality, or conditional proportional (Z/m = z)
Ek kinetic energy J Ek/m = 1

2v
2 v = velocity

Eg gravitational J Eg/m = gh h = height,
energy g = 9.81m/s2

p momentum kg ·m s−1 p/m = v v = velocity
Fb force J m−1 F/m = a a = accelaration
U internal energy J U/m = u(T) T = temperature
G free enthalpy J G/m = g(T,p) g = specif c free

enthalpy
H enthalpy J H/m = h h = specif c enthalpy
S entropy J K−1 S/m = s s = specif c entropy
VG volume (gas) m3 VG/m =M.vG(T,p) vG =molar volume
V volume m3 V =VSL +VG

(all phases)

Z4 extensive quantities independent of mass

A area (interface) m2 –
Eel electric energy J –
Esp spring energy J Esp = 1

2 k.x
2 k = spring constant

Epv displacement energy J Epv = p.V p = ambient pressure
Esur surface energy J Esur = γ.A γ = surface tension
i current (electric-) C s−1 –
P power (most forms) J s−1 – –
Q t J – –
q charge (electric) C –
W work J – –
ξ extent of reaction eqd – conjugate to aff nity
dξ/dt reaction rate eq s–1 d –

f ow (f uid) kg s−1 –

total quantities = 29 total

heat

when expressed in the unit J · s, which is equal to kg ·
m2 · s−1, where the meter and the second are defined in
terms of c and ∆νCs.
Definition 5. Ampere: The ampere,8 symbol A, is the
SI unit of electric current. It is defined by taking the

8 French physicist andmathematicianAndré-Marie Ampère (1775—

fixed numerical value of the elementary charge e to be
1.602176634 ·10−19 when expressed in the unit C, which
is equal to A · s, where the second is defined in terms of
∆νCs.

1836).
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Source: Wikipedia, Emilio Pisanty, 2016, Licence: CC
BY-SA 4.0.
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Figure 9. Proposed SI units: s: second, kg: kilogram,
mol: mole, cd: candela, K: kelvin, A: ampere. m: meter.
Source: Wikipedia, Emilio Pisanty, 2016, Licence: CC
BY-SA 4.0.

Definition 6. Mole: The mole, symbol mol, is the SI
unit of amount of substance. One mole contains exactly
6.02214076 ·1023 elementary entities. This number is the
fixed numerical value of the Avogadro constant,9 NA,
when expressed in mol−1, and is called the Avogadro
number (IUPEC, 2018, [13]).
Definition 7. Amount of substance: The amount of
substance, symbol n, of a system is a measure of the
number of specified elementary entities. An elementary
entity may be an atom, a molecule, an ion, an electron, or
any other particle or specified group of particles (IUPEC,
2018, [13]).
Definition 8. Dalton: The 1971 definition of the mole
implies that the Avogadro number equals the ratio of the
gram to theDalton10 (mu= 1 u= 1Da), with the value of
the Dalton (Da) expressed in grams. The historical conti-
nuity of the present definition preserves this relation, not
exactly, but to within an uncertainty 10−10 negligible for
practical purposes (IUPEC, 2018, [13]). The relationship
of Dalton to the Avogadro constant might be redefined
to a scaling factor NA = g

Da ·mol−1.
Definition 9. Kelvin: The kelvin,11 symbol K, is the
SI unit of thermodynamic temperature. It is defined
by taking the fixed numerical value of the Boltzmann12
constant K to be 1.380649 ·10−23 when expressed in the

9 Italian scientist Amedeo Carlo Avogadro (1776—1856).
10 English chemist, physicist, and meteorologist John Dalton (1766—

1844).
11 Scots-Irishmathematical physicist and engineerWilliam Thomson

Kelvin (1824—1907).
12 Austrian physicist and philosopher Ludwig Eduard Boltzmann

(1844—1906).

unit J ·K−1, which is equal to kg ·m2 · s−2 ·K−1, where the
kilogram, meter, and second are defined in terms of h, c
and ∆νCs.
Definition 10. Candela: The candela,13, symbol cd, is
the SI unit of luminous intensity in a given direction.
It is defined by taking the fixed numerical value of the
luminous efficacy of monochromatic radiation of fre-
quency 540 · 1012 Hz, Kcd, to be 683 when expressed in
the unit lm · W−1, which is equal to14 cd · sr · W−1, or
cd · sr · kg−1 · m−2 · s3, where the kilogram, meter, and
second are defined in terms of h, c and ∆νCs.

With this new SI set, the relationships between the SI
units might change according to the scheme in Figure 9.

13 From candle.
14 sr: The steradian or square radian is the SI unit of solid angle.
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1.7 ■ Balancing
After this detailed introduction to modeling concepts
and other relevant background information, we are now
coming back to the question on how to formulate mathe-
matical models of biological systems. We will introduce
the approach of balancing here, which is an extension of
the ODE equations derived for biochemical reactions in
the previous chapters. The general concept of balancing
for describing system behavior over time is:

temporal change
of state variables = + inflow - outflow + source

- sink

Inflows and outflows are exchanges across the system
boundary. In contrast, sources and sinks are system
internal processes.
Continuous changes are describedwith differential equa-
tions.

dΦ

dt
= Φ̇ = J+P︸ ︷︷ ︸

Rates of change

In a (time) discrete form this would be:

∆Φ = Φ(t +1)−Φ(t) = J+P︸ ︷︷ ︸
Changes

⇒ Φ(t +1) = Φ(t)+ J+P

Example 1: Population balance

A continuous population balance with population
size N [−].

Ṅ = + immigration
rate - emigration

rate + birth
rate -

death
rate

 

𝑚 [𝑘𝑔] 

𝑞𝑖𝑛  [
𝑚3

𝑠
] ; 𝜌𝑖𝑛  [

𝑘𝑔

𝑚3
] 

𝑞𝑜𝑢𝑡  [
𝑚3

𝑠
] ; 𝜌𝑜𝑢𝑡  [

𝑘𝑔

𝑚3
] 

Figure 10. Mass balance of a liquid container.

Example 2: Mass balance

The mass balance of a liquid container is as shown
in Figure 10:

ṁ = qin ·ρin −qex ·ρex

[
kg
s

]

Example 3: Volume balance

The volume balance can be derived from the mass
balance:

ṁ = ˙(ρ ·V ) = ρ ·V̇ + ρ̇ ·V = ρ ·V̇

with the product rule, and with the assumption
that the density is constant and does not change
ρ = const.

ρ̇ = 0

Example 4: Amount of substance balance

The amount of substance balance is a type of mass
balancewhich is especially suited for chemical reac-
tions. It is also known as mole balance. The change
of the amount of substance is ṅ with the unit [mol

s

].
The rate constant is k and can have different units.
Let us look at the following reaction:
A + B k−−→ P
with the balance equation:

−ṅA =−ṅB = ṅP = k ·CA ·CB ·V

The unit calculus is[
mol

s

]
= X ·

[
mol

l

]
·
[

mol
l

]
· l
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The missing unit X for the rate constant k is there-
fore [ l

s·mol

]. Remember: nA =CA ·V

⇒ ṅA = ˙(CAV ) = ĊAV +CAV̇ = ĊAV

with the product rule and constant volume V =
const:

V̇ = 0

We moreover obtain the following relationships:

⇒−ṅA =−ĊA ·V = k ·CA ·CB ·V

⇒ ĊA =−k ·CA ·CB

.
We might also point to the rate of mole change:

ṅi = q · ci[
mol

s

]
=

[
m3

s

]
·
[

mol
m3

]

Some useful equations
Themolar mass is:

Mi =
mi

ni
=

ρi

ci
⇝ mi = Mi ·ni

Themass flow ṁi

[
kg
s

]
is:

ṁi = q ·ρi

with volume flow rate q
[

m3

s

]
and mass density ρ

[
kg
m3

]
.

Themolar flow ṅi
[mol

s

] is:
ṅi = q · ci

with volume flow rate q
[

m3

s

]
and molar concentration

ci

[
mol
m3

]
. The conversion is:

mol
m3 = 10−3 mol

L
= 10−3M = 1mM

with the unit molar M and millimolar mM.

Reactions
We repeat some reactions and their respective balance
equations:
A k1−−→ P − dnA

dt = dnP
dt

dnA
dt =−k · cA ·V

A k1−−⇀↽−−k–1
P dnA

dt =−k1 · cA ·V + k−1 · cP ·V

A+ B k1−−⇀↽−−k–1
P dnA

dt =−k1 · cA · cB ·V + k−1 · cP ·V

A+B k1−−⇀↽−−k–1
P+ S dnA

dt =−k1 ·cA ·cB ·V +k−1 ·cP ·cS ·V
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1.8 ■ Enzyme kinetics
Enzymes are very important proteins and good drug
targets. For example, the BRAF kinase15 can be inhib-
ited by the drug dabrafenib. Dabrafenib in turn can be
degraded by another enzyme class named cytochrome
P450. The CYP450 enzyme class accounts for 75% of
drug metabolism and five of the 57 human CYPP450s
are involved in 95% of these reactions [14]. Enzymes
are sometimes very unspecific and share similar targets.
Thus when an enzyme is inhibited, this can result in
undesired off-target effects also on other enzymes. Have
a look at the phylogenetic tree of the human kinome in
Figure 11.
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Figure 11. Kinase tree: The maps shows the phylogenetic
tree of the human kinome using the KinMap software.
Sky-blue annotations are kinases which are melanoma-
specific. Red dots indicate kinases for which drugs are
available. Source: [15], Licence: CC BY-SA 4.0.

Chemoinformatics can analyze the molecular struc-
ture of both enzyme pockets and drugs together. 3D
pockets of key targets and off-target kinases thereby al-
low the design of more specific drugs [16]. This helps us
to predict off-target effects, enzyme-drug affinities, and
support the improvement of drug structures. We will

15 Kinases catalyses the transfer of the phosphate group to specific
substrates. The opponent is the phosphatase.

concentrate on the enzyme kinetic for biochemical net-
works. In Systems Biology, we are often more interested
in the interplay of an enzyme with other molecules and
the role of an enzyme in a network. We might thereby
ignore the chemical complexity as well as the structural
geometry of the enzymes and ask e.g. only the following
questions:

• Which molecules can bind the enzyme?
• Which molecules will be released?
• Which molecule-enzyme affinities appear?
• Is the binding reversible?
• Does the molecule inhibit or activate the enzyme

function?
• Does the molecule bind the catalytic side or an

allosteric side?
• Is the enzyme specific?

YouTube: Enzyme kinetics series (7 videos by Khan
Academy)

The reaction from substrate to product is usually pro-
moted by enzymes. Enzymes split the reaction into less
energy-intensive subreactions and thereby have a bind-
ing phase and a catalytic phase, as shown in Figure 12.
You learned in Chapter 2 that we can model biochemical
networks with the stoichiometric matrix:

ṠSS = NNN · vvv

which we often scrutinize in the steady state (dynamic
equilibrium) with:

000 = NNN · vvv

The non-trivial solution gave us the fluxes and interest-
ing properties such as dead ends, linear paths, and the
kernel matrix KKK. We repeat the balancing of a biochemi-
cal reaction in Example 5. In this section we will focus
on the reaction vector vvv.

https://www.khanacademy.org/test-prep/mcat/biomolecules/enzyme-kinetics/v/an-introduction-to-enzyme-kinetics
https://www.khanacademy.org/test-prep/mcat/biomolecules/enzyme-kinetics/v/an-introduction-to-enzyme-kinetics
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Figure 12. Energy profile during an enzymatic reaction:
The bigger the energy difference, the lower the probabil-
ity of transformation to the products. Consequently, the
reaction rate is lower as well. Source: Thomas Shafee
& Smokefoot, Wikimedia, Licence: CC BY 4.0 (upper
figure) & CC0 1.0 Universal Public Domain Dedication
(lower).

Example 5: Balancing a biochemical reaction

The substrates are catalyzed to form 2 product
molecules:
S1 + S2

vf−−⇀↽−−vb
2P

The overall (net) reaction rate is calculated by the
forward reaction rate v f minus the backward reac-
tion rate vb. The ODE equation set is:

Ṡ1 = Ṡ2 =−k1 ·S1 ·S2︸ ︷︷ ︸
v f

+k−1 ·P2︸ ︷︷ ︸
vb

Ṗ = 2k1 ·S1 ·S2︸ ︷︷ ︸
v f

−2k−1 ·P2︸ ︷︷ ︸
vb

The reaction coefficients v f and vb are based on the
Law of Mass Action formulated by Waage16 and Guld-
berg17 in 1864 [17]. We say that the reaction rate is pro-
portional to theprobability of a collision of the reactants.
The probability of a collision in turn is proportional to

16 Norwegian chemist Peter Waage (1833—1900).
17 Norwegian mathematician and chemist Cato Maximilian Guld-

berg (1836—1902).

the concentration of reactants to the power of molecu-
larity (stoichiometric coefficient). Refer once again to
Example 5. The net rate of the product is:

v = v f − vb = k1 ·S1 ·S2 − k−1 ·P2

with the related unit calculus:[
mol
L · s

]
︸ ︷︷ ︸

v

=

[
L

mol · s

]
︸ ︷︷ ︸

k1

[
mol
L

]
︸ ︷︷ ︸

S1

[
mol
L

]
︸ ︷︷ ︸

S2

−
[

L
mol · s

]
︸ ︷︷ ︸

k−1

[
mol
L

]2

︸ ︷︷ ︸
P2

The unit of the kinetic parameters ki, in the reaction
rate v, depends on the number of reaction partners. This
unit changes from reaction to reaction.
The general mass action rate law for a single reaction is:

v = v f − vb = k+1 ∏
i

Smi
i − k−1 ∏

j
P

m j
j

mi . . . molecularities of substrates

m j . . . molecularities of products

Reactions in equilibrium =̂ concentrations in equilibrium
(SSSeq,PPPeq).

v f = vb

⇒ Kea =
k+1

k−1
=

∏ j PPP
m j
eq

∏i SSSmi
eq

The free energy difference of a reaction:

∆G =−RT lnKeq

depends on the temperature T and the gas constant
R = 8.314 J

mol·K . The free energy is indicated in Figure 12.

The Law ofMass Actionmight result in a lot of equations,
and simplifications are often used. These are based on
certain assumptions, such as those illustrated in the fol-
lowing for the kinetic rate law of, e.g., Michaelis-Menten.
One standard textbook on enzymekinetics is fromCornish-
Bowden18 [18]. We will derive some of the kinetics and
will provide, at the end a summary in Table 2.

Michaelis-Menten kinetics
The Michaelis-Menten kinetic [19] is based on the most
common known enzyme reaction scheme:

E + S k1−−⇀↽−−k–1
ES k2−−→ E + P

An enzyme E binds a substrate S to form an enzyme sub-
strate product ES. This enzyme substrate complex can
break down either back to the substrate or into the prod-
uct. In both cases the enzyme is recovered, as expected

18 British biochemist Athelstan John Cornish-Bowden (1943—
today).
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Figure 13. Michaelis-Menten kinetic.

for a catalyst. The balance equations of the reaction net-
work are:

dS
dt

=−k1 ·E ·S+ k−1 ·ES

dES
dt

= k1 ·E ·S− (k−1 + k2) ·ES

dE
dt

=−k1 ·E ·S+(k−1 + k2) ·ES

dP
dt

= k2 ·ES

The overall reaction rate is:

v =−dS
dt

=
dP
dt

The substrate decrease is equal to the product increase.
The enzyme is recovered. Because our equation set can-
not be solved analytically, we will make some assump-
tions:

1.) Quasi-equilibrium assumption
Michaelis19 and Menten20 stated that the forward and
backward reactions between the substrate and the en-
zyme substrate complex are much faster than the final
reaction to the product:

k1,k−1 ≫ k2

2.) Quasi-steady-state assumption
Briggs21 and Haldane 22 stated that if and only if the
substrate is in much higher abundance than the enzyme
S(t = 0)≫ E, then the ES complex has constant concen-
tration levels, or more generally:

dES
dt

= 0

19 German biochemist, physical chemist, and physician Leonor
Michaelis (1875—1949).

20 Female Canadian physician and scientist Maud Leonora Menten
(1879—1960).

21 English scientist John Burdon Sanderson Haldane (1892—1964).
22 English professor for Botany George Edward Briggs (1893—1985).

with which:
dE
dt

= 0

is obtained. But if neither enzyme levels nor the levels of
enzyme substrate change, there must be a total amount
of enzyme which we can consider as a constant:

Etotal = E+ES ⇒ E = Etotal−ES

Putting everything together
Reformulation of the differential equation of the enzyme
substrate complex gives:

dES
dt

= k1 ·E ·S− (k−1 + k2) ·ES !
= 0

k1 · (Etotal−ES∗) ·S− (k−1 + k2) ·ES∗ = 0
k1 ·Etotal ·S− k1 ·ES∗ ·S− (k−1 + k2) ·ES∗ = 0

and:

ES∗ =
k1 ·Etotal ·S

k1 ·S+(k−1 + k2)
=

Etotal ·S
S+ k−1+k2

k1

We are interested in the generation rate of the product
depending on the substrate availability:

v =
dP
dt

= k2 ·ES∗

which is finally:

v =
k2 ·Etotal ·S
k−1+k2

k1
+S

=
vmax ·S
Km +S

with the Michaelis-Menten parameter Km and the max-
imal catalysis velocity vmax. The Michaelis-Menten pa-
rameter indicates the substrate concentrationwithwhich
one can obtain the half-maximal reaction velocity. You
will need to be able to distinguish between the parameter
types!

Mechanistic parameters: k1,k−1, . . . (based on mecha-
nisms)

⇔
Phenomenological parameters: vmax,Km, . . . (based on
systemic behavior)

Lineweaver–Burk plot
Lineweaver23 and Burk24 established a linear represen-
tation of the function in Figure 14 to more easily access
the parameters. This was of great importance before the
appearance of appropriate computer programs. How-

23 American physical chemist Hans Lineweaver (1907—2009).
24 American biochemist Dean Burk (1904—1988).
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Figure 14. Lineweaver–Burk plot. Source: Wikimedia,
Licence: CC BY SA 3.0.

ever, modern methods are available to experimentally
determine more physical parameters without the quasi-
steady-state assumption [20]. The research is still on-
going (for example, taking substrate inhibition into ac-
count [21]). Unfortunately, many publications use the
kinetic laws although their underlying assumptions are
violated—e.g. drugs might lead to enzyme induction
of the CYP450 class leading to a changing total enzyme
concentration Etotal.

Michaelis-Menten kinetic for reversible reaction
The reaction scheme for the reversible Michalis-Menten
kinetic is:

E + S k1−−⇀↽−−k–1
ES k2−−⇀↽−−k–2

E + P

where the product concentration changes accordingly:

v =
dP
dt

= k2ES− k−2P ·E.

The rate equation is:

v =Etotal
q ·S−P

Sk1
k−1k−2

+ 1
k−2

+ k2
k−1k−2

+ P
k−1

;q =
k1k2

k−1k−2

v =
v f
max

KmS
S− vbmax

KmP
P

1+ S
KmS

+ P
KmP

The phenomenological parameters are related in the fol-
lowing way:

Keq =
v f
maxKmP

vbmaxKmS

according to Haldene (1930).

General Michaelis-Menten kinetic for inhibition
We look at the general reaction scheme:

E + S k1

k−1
ES k2 E + P

+
I
k3k−3

EI + S

+
I
k4k−4

ESI k6 E + P + Ik5

k−5

We distinguish the following cases considering the re-
lated reaction numbers 1-6:
1,2 Michaelis-Menten

1,2,3 Competitive inhibition
1,2,4 Uncompetitive inhibition
1-5 Noncompetitive inhibition
1-6 Partial inhibition

We can assume the following binding equilibria between
the entities and the complexes:

Km ∼=
k−1

k1
=

E ·S
ES

KI,3 =
k−3

k3
=

E · I
EI

KI,4 =
k−4

k4
=

ES · I
ESI

KI,5 =
k−5

k5
=

EI ·S
ESI

The respective reaction kinetics are listed in Table 2.

Substrate inhibition
The reaction network for substrate inhibition is:

E + S ES E + P
+
S

ESS
which leads to the kinetic:

v = k2ES =
vmaxS

Km +S
(

1+ S
KI

) ;KI =
k−I

kI
=

ES ·S
ESS

with the optimal substrate concentration:
S =

√
KmKI

and the optimal velocity:

vopt =
vmax

1+2
√

Km/KI
.

An example for substrate inhibition of CYP1A2 (CYP450
enzyme class) can be found e.g. here [23]. The CYP450
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enzyme class is unspecific and thus sensitive to substrate
inhibition. Another consequence might be a drug-drug
interaction where another drug is processed by the same
enzyme as the main drug. This is why we talk about
perpetrator and victim drugs—because of the influence
of the pharmacokinetics over the other drug.
Cooperative enzymes
Regulatory enzymes often have more complicated ki-
netics and their sub-units display cooperative behavior.
Cooperativity is the property whereby an enzyme can
have a steep dependence on the substrate or inhibitor
[18]. The positive25 homotropic26 cooperativity can be
formulated on the following base for a dimeric enzyme
E2 [22]:

E2 + S−−→slow E2S
E2S + S−−→fast E2S2

Because the second reaction is faster, one can assume
that we have complete cooperativity. This means that
the dimeric enzyme is either empty or full:

E2 + 2S−−→ E2S2
The binding constant:

KB =
E2S2

E2 ·S2

represents the equilibrium of concentration levels, and
the fractional saturation of the enzyme is:

Y =
2E2S2

2E2,total
=

KBS2

1+KBS2

However, this Hill27 equation should be written with the
parameter h (no integer) instead of n

h < 1 First ligand reduces affinity for the second ligand
h = 1 Quasi Michaelis-Menten
h > 1 First ligand increases affinity for the second ligand
It is incorrect to treat h as an estimate of the number of
substrate-binding sites on the enzyme, though for some
models it does provide a lower limit for this number [18].
Hemoglobin has 4 sub-units with a lower Hill coefficient,
h = 2.7. Thus we reformulate our equation to:

Y =
KBSh

1+KBSh

We assume that the fractional enzyme saturation scales
with the substrate turnover:

v = vmax
KBSh

1+KBSh

25 Ligand facilitates binding of the next ligand. h > 1.
26 Homotropic means that the allosteric modulator is the substrate.

When the modulator is not the substrate it is called heterotropic.
27 English physiologist Archibald Vivian Hill (1886—1977). Nobel

Prize in medicine for his work on physical properties of muscles in
1922.

Table 3. Calmodulin model. Different approaches to
model cooperativity with and without simplifying as-
sumptions. Source: [24]. Copyright © 2014, Elsevier
B.V.

deconvoluting the contribution of each site. For these reasons, different
approaches in modeling calmodulin coexist (Table 1). The first ap-
proach is the cooperative model developed by Crouch and Klee [22],
the second is the sequential approach by Haiech [18] and finally the
third approach is the allosteric one from Stefan et al. [23]. We demon-
strate in the present section that our approach can be used to unify all
threemodels. In addition, a link between theHill's equation andpolyno-
mial approximation is also given. We have covered this type of analysis
in several previous reports [1,18,24–30].

In this section,wewill show that this toolbox eases the simulation of
the calmodulin system, considered as a protein able to bind four calcium
ions, under different a priori hypothesis.

To model induced fit, we use the MATLAB toolbox by specifying cal-
modulin as the macromolecule, Ca2+ as ligand and 4 binding sites for
this single ligand. This leads to the following 4th-order polynomial
with 15 parameters to extract:

P xð Þ ¼ 1þ k1 þ k2 þ k3 þ k4ð Þ � xþ ðc1;1;0;0 � k1 � k2 þ c1;0;1;0 � k1 � k3 þ c1;0;0;1 � k1 � k4

þ c0;1;1;0 � k2 � k3 þ c0;1;0;1 � k2 � k4 þ c0;0;1;1 � k3 � k4Þ � x2 þ ðc1;1;1;0 � k1 � k2 � k3

þ c1;1;0;1 � k1 � k2 � k4 þ c1;0;1;1 � k1 � k3 � k4 þ c0;1;1;1 � k2 � k3 � k4Þ � x3 þ c1;1;1;1 � k1

� k2 � k3 � k4 � x4

ð24Þ

where c and k match the definition given in Section 3 and x is the free
concentration of calcium ions. If the molar signal is equal to 1 for each
bound calcium ion, the observable signal is:

S xð Þ ¼ 1
P xð Þ �

dP
dx

: ð25Þ

S(x) exhibits a sigmoid shape between 0 and 4whatever the parame-
ters. Parameter extraction consists in finding the set of c and k that mini-
mize the error between the model and experimental dose–response
curve which is extracted from [22]. Such experimental dose–response
curve may be fitted by an Adair–Klotz equation with four parameters.
Therefore, any model implying more than four parameters is obviously
an underdetermined system and some assumptions have to be made on
parameters.

For the cooperative model used by Crouch and Klee, the number of
degrees of freedom is reduced by assuming that calmodulin has two
strong sites with a high binding affinity for the calcium ions and two
weak sites with a low affinity. The affinity of the two latter sites increase

due to positive cooperativity when strong sites are occupied. To meet
Crouch and Klee assumption, the following rules are set: 1) ratio be-
tween binding affinity for strong and weak sites is at least in a 1:10
ratio; and 2) coupling factors are set to 1 except the c1,1,x,x coupling fac-
tors that are over 10. Fitting is realizedmanually using rootmean square
error (RMSE) and R-square computation as likelihood functions be-
tween model and experimental data. Results are given in Fig. 5-A.
Strong coupling values are required to obtain a good fitting, validating
Crouch and Klee assumption (Table 2).

In the sequential model proposed by Haiech [16], calcium ions bind to
calmodulin in a sequential way (site #1 first, then site #2 if site #1 in oc-
cupied, etc.). Assumptionsmade on the parameters of themodel (26) are
now the following: k1= 10 ∙k2= 100 ∙k3= 1000 ∙k4 and coupling factors
are set to 1 except for c1,1,0,0, c1,1,1,0 and c1,1,1,1. Results are given in Fig. 5-B
and Table 1.

The allosteric model is also approached using our generic frame-
work. (Section 3.2). A fifth binding site for a water molecule is added
and the binding polynomial is generated again [18]. Assumptions on
model parameters are the same than for Crouch and Klee's approach.
New binding constants for calcium ion ki are weaker than for the first
approach, but cx,x,x,x,1 coupling factor (coupling factor when a water
molecule is bound) are boosted. By this way, the binding of calcium
ions is greatly favored in relaxed conformation. Results are given in
Fig. 5-C and Table 1.

The last point is to check if the polynomial can be approximate
directly by a rough mathematical model, ie Hill's equation in order to
reduce the number of parameters required to fit the model. According
to Section 3.3, Hill's equation corresponding to the observed signal is
given by

S xð Þ ¼ 4

1þ Kx
x

� �n ð26Þ

with n varying from1 to 4 according to the cooperativity strength andKx

being an apparent binding affinity which should be lower but of the
same order ofmagnitude than the highest ki value obtainedwith the in-
duced fit model. In our case, the best fitting is obtained with n = 1.25
(cooperativity exists but is not so strong) and Kx = 24.96 μM.

5. Conclusion and prospective

Taking calmodulin as an example, we show here that our generic
framework may unify well-established historical models with compara-
ble quality adjustments [28]. The formalism always leads to
underdetermined models and assumptions have to be done in order to
obtain a parameter set that has a biological meaning. In our example, at
least 15 parameters (31 for the allosteric approach) are required for the
generic formalism but this number can be reduced to 4 or less, which cor-
responds to the number of parameters of the macroscopic approach and
to the theoretical maximum number of parameters that may be obtained
for such a problem (Table 3). However, in this case, phenomenological
models, like Hill's equation, seem to be a good tradeoff between model
complexity and accuracy. However, this conclusion should not be gener-
alized and may not be sufficient in most cases [13,31]. Model parameter
extraction is still technically demanding. However, as thedifferentmodels
can be unified, standard extraction procedures might be established as
well as a global analysiswhen several read-outs exist for a givenbiological
system. Integration of such automated procedures is under construction
for the second version of the toolbox. By perturbing the biological system
under study, it is possible to get insight into themicroscopic parameters.
Such perturbationsmay be brought bymediumperturbation (ion,water
concentration …) or by selected mutations in order to bring specific
reporter groups as we have shown since 1981 [1,6,18,31–33].

In all cases, the framework presented in this paper covers the vast
majority of biological systems and may emerge as a standard for

Table 2
Parameters extracted from the fitting of Crouch and Klee
experimental data with Hill's equation.

Hill's parameters Extracted value

Kx 24.96
n 1.208
R-square 0.9769
RMSE 0.2100

Table 3
Comparison of actual and effective (after assumptions) number of parameters for the
different approaches modeling calcium binding to calmodulin.

Model Actual number
of parameters
(generated by framework)

Effective number
of parameters
(after assumptions)

Induced fit (generic) 15 15
Cooperative model
(strong and weak sites)

15 5

Sequential 15 4
Allosteric 31 7
Macroscopic 4 4
Hill's equation 2 2

2354 J. Haiech et al. / Biochimica et Biophysica Acta 1843 (2014) 2348–2355

The kinetic dependence on the Hill coefficient is visual-
ized in Figure 15.
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Figure 15. Hill kinetic. Factural saturation Y with KB =
0.3 and different Hill coefficients.

TheHill equation is a pseudo-mechanistic equationwhich
Hill himself saw as purely empirical. However, the use
of the cooperativity index Ra of Taketa and Pogell is more
empiric (experimentally meaningful) as it focusses on
the 10-90% range of full activity. A mechanistic formu-
lation is the Adair28 equation, which is most often used
for positive cooperativity in practice. Moreover, we have
the allosteric model or symmetric model293031 with the
assumption that the subunits of cooperative oligomeric
proteins are independent of the ligand and all sub-units
are in the same conformation at any time, while the se-

28 British protein scientist Gilbert Smithson Adair (1896—1979).
29 French biochemist Jacques Lucien Monod (1910—1976). Nobel

Prize in Medicine for genetic control of enzyme and virus synthesis.
Lac-operon-model.

30 American biologist and biophysicist JeffriesWyman (1901—1995).
31 French neuroscientist Jean-Pierre Changeux (1936—today).



Introduction to Systems Biology: Workbook for Flipped-Classroom Teaching 18/36

quential model32 considers ligand-induced changes in
a sub-unit with possible consequences to others. Thus,
the sequential model assumes that sub-units show in-
dependent conformations in contrast to the allosteric
MWC33 model. Monomeric enzyme can show kinetic
cooperativity if the different conformational states relax
slowly. The section is based on the textbook found in
[18]. Table 3might give an impression of themodel sizes
for reflecting cooperativity.

32 American biochemist Daniel Edward Koshland Jr. (1920—2007).
Together with G. Némethy and D. Filmer in 1966.

33 Author names: Monod-Wyman-Changeux.
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2. Basics of Mathematics
We have a collection of mathematical methods to help us tackle biological questions. They are listed in Figure 16.

We recommend this review for further reading [25].

Wolkenhauer Why model?

FIGURE 1 | Answering biological questions through mathematical

analyses. The table illustrates a selection of approaches available in
systems biology. In practice, the vast majority of questions in
experimental biology concern “differences.” Given that experimental
observations vary, statistical testing will establish the significance of a
difference. The experiments for this type of question are easy to conduct

but little more than establishing a difference is possible. At the other end
of the spectrum models of dynamical systems allow investigations about
causal mechanisms underlying complex interaction networks. These very
powerful explanatory models do however require sufficiently rich
quantitative time course experiments, which in many cases are
time-consuming, expensive and technically more challenging.

Frontiers in Physiology | Systems Biology January 2014 | Volume 5 | Article 21 | 4

Figure 16. Mathematical analysis approaches. More information and source: [25]. Copyright © Frontiers Physiol,
Licence: CC BY-SA 4.0.
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3. Exercises
■ Balance equations
Set up balance equations for the volume and for the
amount of substance (in mol) of every reaction partner
for the systems depicted below. The reactions take place
in an ideally mixed and closed reactor.

■ CSTR
In the following, a Continuous Stirred Tank Reactor
(CSTR) is investigated. A substance A with concentra-
tion cin

A and temperature T in is pumped into the reactor
with the volume flow rate qin. A 1st-order reaction takes
place, duringwhich Substance A is converted irreversibly
into Substance B with a reaction rate constant k1. To in-
crease the conversion rate, heat flow Q̇heat is fed into the
CSTR. The change in reaction enthalpy is neglectable.
The volume flow rate qout (temperature T out ; concentra-
tions cout

A ,cout
B ) is removed from the CSTR.

a) Set up the balance equations for the amounts of
Substance A and Substance B.

For the questions below, the following simplifying as-
sumptions shall apply: q = qin = qout and V =const.
b) Which simplified amount of substance balances

can you achieve? Which variable are you balancing
now?

c) Which concentrations c∗A,c
∗
B do you obtain in steady

state?

■ Balancing a CSTR
Cell-free medium (substrate S, influx concentration cin

S ,
volume flow rate q) is added to a Continuous Stirred
Tank Reactor (CSTR) in continuous cultivation mode.
The reaction volume within the reactor (VR) is kept con-
stant. Micro-organisms are growing on the substrate
within the CSTR. The specific growth rate µ of the micro-
organisms is approximated with a Michaelis-Menten
kinetic. The yield coefficient shall be YXS.

a) Set up mass balance equations for the concentra-
tions of the biomass (X) and the substrate (S).

b) Derive the steady-state concentration values (c∗S,c
∗
X)

as a function of the dilution rate D = D∗ =
q

VR
.

■ Intracellular reaction
We will now focus on enzyme-catalyzed reactions in the
interior of a bacterial cell with a constant cell volume VC.
Thereby a substrate S is converted into Product P:

S+E
k1−−⇀↽−−

k−1
ES

ES k2−−→ P+E
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The reaction is regulated via a feedback repression of the
enzyme synthesis. A simplified mechanism is assumed
as follows:

C+D k3−−→ E+D enzyme synthesis

D+P
k4−−⇀↽−−

k−4
DP repression of enzyme synthesis

E k5−−→ F enzyme degradation

Within the cell, ideal mixing is assumed. Reaction orders
are according to the stoichiometric coefficients.

a) Set up balance equations for the concentrations of
reaction partners E, ES, S, P, D, and DP in the form
d
dt (V c). The bacterial cell is thereby considered as
a closed system.

b) Show that the overall concentration of substance
D is constant, i.e. cD + cDP =const= cD0

c) Determine α , β and γ in:

dcS

dt
=−α · cS · cE

dcE

dt
=

β

1+ γ · cP
− k5 · cE

using the result of part b) and applying the follow-
ing assumptions:

1. The concentration of the enzyme substrate
complex cES is considered to be constant, i.e.
d
dt

cES = 0.
2. Reaction 4 is considered to be in equilibrium

(quasi-steady state).
3. Concentration cC is constant (cC = c∗C).

Remark: The results of points a) to c) are not
needed for us to solve the following parts. For the
remaining parts of this exercise, it is assumed that
a constant substrate concentration c∗S is achieved
within the cell via regulation of the substrate trans-
port:

cS(t) = c∗S

d) Which concentrations c∗E and c∗P doyouget in steady
state, if Product P is further converted with rate
rP(t) = r∗P? This conversion results in the following
equations:

dcE

dt
=

β

1+ γ · cP
− k5 · cE I

dcP

dt
= α · cS · cE − rP II

e) Derive a single 2nd-order differential equation for
the product concentration cP from Equation I and
II while applying the assumption cS = c∗S and con-
sidering a time variable rate rP(t).

f) Linearize this differential equation around the steady
state (c∗P,r

∗
P) with ∆cP = cP − c∗P and ∆rP = rP − r∗P.

■Mixed population
In the following we will focus on a mixed population in
a CSTR in continuous cultivation. The reaction volume
V is kept constant. The mixed population consists of
two species of micro-organisms: prey (P) and predator
(R). Prey grows with a specific growth rate µ and de-
creases proportionally with the number of predator and
the number of prey. (The more prey is available, the
more will be depredated). Ideal mixing and a constant
growth rate µ (with µ ̸= dilution rate D = q

V ) is assumed.

a) Describe the occurring processes in the population.

b) Assign the individual terms within the following
equations to the occurring population processes:

d
dt

cP = µcP − k1cPcR −DcP

d
dt

cR = k2cRcP −DcR

c) Determine the steady state(s) and characterize it
(them) qualitatively.

d) Linearize the system around the steady state(s).

e) Calculate the Eigenvalues for the cases:
1. D = 2µ

2. D =
1
2

µ

f) What can generally be stated on the stability of the
steady states? Focus therefore on 3 cases (µ > D,
µ = D and µ < D) for every steady state.

■ Deriving rate parameters from biological data
A cartoon model for gene regulation via an extracellular
signaling molecule (also called a ligand) is given as fol-
lows:
L is the signaling molecule, R the membrane receptor,
A an adaptor protein, and TF the transcription factor
involved in the regulation.

From the cartoon model, one derives the biochemical
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reaction network as follows:

L+R
k1−−⇀↽−−

k−1
Ri I

Ri +A
k2−−⇀↽−−

k−2
Ra II

Ra +TF k3−−→ TFn III

TF
k4−−⇀↽−−

k−4
TFn IV

TFn k5−−→ TFn+A V

A k6−−→ VI

The following information is known from biological mea-
surements:

• Experiments are done with 2 mL of medium and
6 ·105 cells, using a ligand concentration of 1 nM.

• The volume of a cell is 1 ·10−12L, with the nucleus
taking 1/5 of the total volume.

• The concentration of the transcription factor in
whole cell extracts (TF + TFn) was measured as
0.1µM.

• The concentration of the transcription factor with-
out stimulus in nuclear extracts was measured as
5nM.

• The concentration of the adaptor protein without
stimulus in whole cell extracts is 1µM.

• The adaptor protein has a half-life time of 1 h.
• A cell has a total of 10000 membrane receptors.
• The associated constant Ka for the ligand-receptor

binding is 0.01 1
nM . Hint:

k1[L][R] = k−1[Ri]

⇒ k1

k−1
=

[Ri]
[L][R]

= Ka

• The associated constant for the receptor-adaptor
protein binding is 0.01 1

µM .

• The parameter k3 has been measured directly as
k3 = 0.01 1

nM·s .
The following assumptions, done by the modeler, are
needed to determine all parameter values uniquely: k−1 =
0.01 1

s , k−2 = 1 ·10−3 1
s , and k4 = 1 ·10−5 1

s .

a) Convert the unit molar M to molecules per cell for
ligand and transcription factor states TF and TFn.

b) Calculate the degradation rate constant (k6) from
the half-life time T1/2.

c) Construct an ODE model for the sub-network in-
volving the reactions IV - VI, i.e., the unstimulated
case. Use, therefore, the law of mass action.

d) Use the biological measurements in the unstimu-
lated case (steady-state condition) and the assump-
tions to determine all parameters in reactions IV -
VI. Use units such that state variables are given as
numbers of molecules per cell.

e) Determine the parameters for reactions I - III from
the biological measurements and the assumptions,
using the same units as before.



Notes
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4. Solutions
Do not betray yourself!

Exercises
■ Balance equations
Concentrations in the extraction pipe are assumed to
correspond to the concentrations within the tank. Thus,
we have omitted the specific indication with the indices
out.

Reactor 1

dV
dt

= qin −qout

dnA

dt
= nin

A −nout
A

= qincin
A −qoutcA

Reactor 2

dV
dt

= qin −qout

dnA

dt
= qincin

A −qoutcA − k1cAV

dnB

dt
=−qoutcB + k1cAV

Reactor 3

dV
dt

= qin −qout

dnA

dt
= qincin

A −qoutcA − k1cAV + k−1cBV

dnB

dt
=−qoutcB + k1cAV − k−1cBV

Reactor 4

dV
dt

= qin −qout

dnA

dt
=−qoutcA −2k1c2

AV +2k−1cBV

dnB

dt
= qincin

B −qoutcB + k1c2
AV − k−1cBV

Reactor 5

dV
dt

= qin −qout

dnA

dt
= qincin

A −qoutcA −2k1c2
AV

dnB

dt
=−qabcB + k1c2

AV − k2cBV

dnC

dt
=−qoutcC +3k2cBV

Reactor 6

dV
dt

=qin −qout

dnA

dt
=qincin

A −qoutcA −2k1c2
AV +2k−1cBV + k2cBV

− k−2c2
CcAV

dnB

dt
=−qoutcB + k1c2

AV − k−1cBV − k2cBV + k−2c2
CcAV

dnC

dt
=−qoutcC +2k2cBV −2k−2c2

CcAV
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■ CSTR
Task a) Amount of substance balances:

dnA

dt
= qincin

A −qoutcA − k1cAV

dnB

dt
= 0−qoutcB + k1cAV

Taskb) Applying the simplifying assumptions q= qin =
qout und V = const.:

dnA

dt
=

d
dt

(cA ·V ) = V̇ cA +V ċA = 0+V ċA

Applying the product rule and assume that a CSTR does
not change the volume in the tank during the process
(derivative of constant V is zero):

⇝V · ċA = qcin
A −qcA − k1cAV

ċA =
q
V
· (cin

A − cA)− k1 · cA (4.1)

ċB =− q
V
· cB + k1cA (4.2)

Task c) From the equation (4.1) with ċA = 0:
q
V
(cin

A − c∗A)− k1c∗A
!
= 0

q
V

cin
A − q

V
c∗A)− k1c∗A = 0

⇒ c∗A =
q
V (c

in
A

k1 +
q
V

c∗A =
q

q+ k1V
cin

A

and for Substance B based on the equation (4.2) with
ċB = 0:

ċB =− q
V
· c∗B + k1c∗A

!
= 0

q
V
· c∗B = k1c∗A

c∗B =
k1V

q
c∗A

c∗B =
k1V

q
· q

q+ k1V
cin

A

c∗B =
k1V cin

A
(q+ k1V )

■ Balancing a CSTR
Cell-free medium (substrate S, influx concentration cin

S ,
volume flow rate q) is added to a Continuous Stirred
Tank Reactor (CSTR) in continuous cultivation mode.
The reaction volume within the reactor (VR) is kept con-
stant. Micro-organisms are growing on the substrate
within the CSTR. The specific growth rate µ of the micro-
organisms is approximated with a Michaelis-Menten
kinetics. The yield coefficient shall be YXS.
Task a) Set up mass balance equations for the biomass
(X) and the substrate (S) concentrations.

[mol
h ]︷ ︸︸ ︷

d(cXVR)

dt
=

[ l
h ][

mol
l ]︷ ︸︸ ︷

−qcX +

[ 1
h ][

mol
l ][l]︷ ︸︸ ︷

µcXVR =−qcX +µmax
cS

KS +CS
cXVR

d(cSVR)

dt
= q

(
czu

S −Cs
)
− 1

YXS
µcXVR

With VR = const. we get
dcX

dt
= cX (µ − q

V
) = cX (µ −D) I

dcS

dt
=

q
V
(czu

S − cS)−
1

YXS
µcX = D(czu

S − cS)−
1

YXS
µcX II

Task b) Derive the steady-state concentration values
(c∗S,c

∗
X) as a function of the dilution rate D = D∗ =

q
VR

.

Eq. I :
dcX

dt
= cX (µ −D)

!
= 0

Case 1: ⇒ c∗X = 0

→ in II: D∗(c∗S − c∗S)
!
= 0 ⇒ c∗S = czu

S

Case 2: µ
∗ = µmax

c∗s
c∗S +KS

= D∗

c∗Sµmax = D∗c∗S +KSD∗

⇒ c∗S =
KSD∗

µmax −D∗ III

→ in II: D∗
(

czu
S − KSD∗

µmax −D

)

− 1
YXS

µmax

KSD∗

µmax−D∗

KS +
KSD∗

µmax−D∗
c∗X

!
= 0

��D∗
(

czu
S − KSD∗

µmax −D

)
− ���µmax

YXS

��KS��D∗

��KS���µmax
c∗X = 0

⇒ c∗X = YXS

(
czu

S − KSD∗

µmax −D∗

)
IV

Conditions:
The substrate concentration cannot be negative (C∗

S ≥ 0),
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so that Equation III tells us that:

⇒ µmax > D∗ V

If µmax < D∗ we get a wash-out of the biomass, which is
usually not desired in a CSTR.
Biomass should also be positive (c∗X > 0):

⇒ czu
s − KSD∗

µmax −D∗ > 0

with µmax > D∗:

czu
S µmax − czu

S D−KSD∗ > 0

⇒µmax >
czu

S +KS

czu
S

D∗ VI

whereby Equation V is contained in Equation VI, be-
cause:

czu
S +KS

czu
S

> 1. (4.3)

for practical considerations one uses µmax > D.
In summary:

Case 1: µmax >
Czu

S +KS

Czu
S

D∗

⇒ Two steady states

Case 2: µmax =
Czu

S +KS

Czu
S

D∗

⇒ C∗
S =

KSD∗

czu
S +KS

czu
S

D∗−D∗

=
KSD∗Czu

S
(czu

S +KS)D∗−D∗czu
S

=Czu
S

⇒ cX = 0
⇒ Both steady states are equal.

Case 3: µmax <
Czu

S +KS

Czu
S

D∗

⇒ It exists only the first steady state
c∗X = 0;cS∗= czu

S

■ Intracellular reaction
We will now focus on enzyme-catalyzed reactions in the
interior of a bacterial cell with a constant cell volume VC.
Thereby a substrate S is converted into Product P:

S+E
k1−−⇀↽−−

k−1
ES

ES k2−−→ P+E

The reaction is regulated via a feedback repression of the
enzyme synthesis. A simplified mechanism is assumed
as follows:

C+D k3−−→ E+D enzyme synthesis

D+P
k4−−⇀↽−−

k−4
DP repression of enzyme synthesis

E k5−−→ F enzyme degradation
Within the cell, ideal mixing is assumed. Reaction orders
are according to the stoichiometric coefficients.
1st Part

Task a) Set up balance equations for the concentrations
of reaction partners E, ES, S, P, D, and DP in the form
d
dt (V · c). The bacterial cell is thereby considered as a
closed system.
d
dt
(VC · cE) = (−k1cEcS + k−1cES + k2cES + k3cDcC − k5cE)VC

d
dt
(VC · cES) = (k1cEcS − k−1cES − k2cES)VC

d
dt
(VC · cS) = (−k1cEcS + k−1cES)VC

d
dt
(VC · cP) = (k2cES − k4cDcp + k−4cDP)VC

d
dt
(VC · cD) = (−k4cDcP + k−4cDP)VC

d
dt
(VC · cDP) = (k4cDcP − k−4cDP)VC

with:
dn
dt

=
d(cV )

dt
=VC

dc
dt

+c
dVC

dt
=VC

dc
dt

with VC = const.

Thus we get:
d
dt

cE =−k1cEcS + k−1cES + k2cES + k3cDcC − k5cE I

d
dt

cES = k1cEcS − k−1cES − k2cES II

d
dt

cS =−k1cEcS + k−1cES III

d
dt

cP = k2cES − k4cDcp + k−4cDP IV

d
dt

cD =−k4cDcP + k−4cDP V

d
dt

cDP = k4cDcP − k−4cDP VI

which works only if the volume remains constant.
Task b) Show that the overall concentration of Sub-
stance D is constant, i.e. cD + cDP =const= cD0
If you look at the balances of cD and cDP, you see that
the sum is zero:
d
dt

cD+
d
dt

cDP =−k4cDcP+k−4cDP+k4cDcP−k−4cDcP = 0.
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By integrating this equation, one obtains:

cD + cDP = const.

Task c) Determine α , β , and γ in:

dcS

dt
=−α · cS · cE VII

dcE

dt
=

β

1+ γ · cP
− k5 · cE VIII

using the result of part b) and applying the following
assumptions:

1. The concentration of the enzyme substrate complex
cES is considered to be constant, i.e. d

dt
cES = 0:

d
dt

cES = k1cE · cS − k−1cES − k2cES
!
= 0

cES =
k1

k−1 + k2
cEcS IX

in Equation III:

dS
dt

=−k1cEcS +
k−1k1

k−1 + k2
cEcS

=
−k1k−1 − k1k2 + k−1k1

k−1 + k2
cEcS

⇔ dS
dt

=− k1k2

k−1 + k2
cEcS

⇒ α =
k1k2

k−1 + k2

2. Reaction IV is considered to be in equilibrium (quasi-
steady state).
We already have α and still need γ and β . These 2
parameters can be found in Equation VIII, because
this equation contains the derivative of cE . We
might tinker something together that looks similar.
Let’s use Reaction I:

dcE

dt
=−k1cEcS +(k−1 +k2)cES +k3cDcC −k5cE

Now, we have the problem that we have the terms
cE and cS, and cES (which we do not want). If we
put Equation IX in we get:

dcE

dt
=− k1cEcS +

k1�����(k−1 + k2)

����k−1 + k2
cEcS

+ k3cDcC − k5cE

dcE

dt
=k3cDcC − k5cE

Well, that is some progress. Now, we take care of
cD,cC and therefore we have another hint in the

task description. Let’s use the equilibrium equa-
tion (IV):

d
dt

cP = k2cES − k4cDcP + k−4cDP
!
= 0

k4cDcP = k−4cDP + k2cES

We got another hint from task b) where we define
a total concentration of enzyme-regulating protein
cD0 with cD + cDP = cD0 = const. Using this gives:

k4cDcP = k−4(cD0 − cD)+ k2cES

(k4cP + k−4)cD = k−4cD0 + k2cES

cD =
k−4cD0 + k2cES

(k4cP + k−4)

=
cD0 +

k2
k−4

cES

( k4
k−4

cP +1)

cDP =
k4

k−4
cDcP

3. Concentration cC is constant (cC = c∗C).

Finally, we obtain the parameters:

α =
k1k2

k−1 + k2

γ =
k4

k−4

β = k3c∗CcD0

2nd Part
We assume now that we give as much substrate as the
cells consume so that:

cS(t) = c∗S.

Task d) Which concentrations c∗E and c∗P do you get
in steady state, if Product P is further converted with
rate rP(t) = r∗P? This conversion results in the following
equations:

dcE

dt
=

β

1+ γ · cP
− k5 · cE I

dcP

dt
= α · cS · cE − rP II
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In the stationary case:

dcP

dt
= α · cS · cE − rP

!
= 0 ⇒ c∗E =

r∗P
α · c∗S

dcE

dt
=

β

1+ γ · cP
− k5 · cE

!
= 0

β

1+ γ · c∗P
= k5 · c∗E = k5 ·

r∗P
α · c∗S

1+ γ · c∗P =
αβc∗S
k5 · r∗P

⇒ c∗P =
αβc∗S

γk5 · r∗P
− 1

γ
=

αβc∗S − k5 · r∗P
γk5 · r∗P

Task e) Derive a single 2nd-order differential equation
for the product concentration cP from Equation I and II
while applying the assumption cS = c∗S and considering
a time variable rate rP(t). Assume cS(t) = c∗S.

From the system equations I and II we get:
d
dt

cE + k5cE =
β

1+ γcP

cE =
1

αc∗S

(
d
dt

cp + rp

)
We use this to obtain:

1
αc∗S

(
d2

dt2 cP +
d
dt

rP

)
+

k5

αc∗S

(
d
dt

cP + rP

)
=

β

1+ γcP

or
d2

dt2 cP + k5
d
dt

cP −
αc∗Sβ

1+ γcP
=− d

dt
rP − k5rP .

Task f) Linearize this differential equation around the
steady state (c∗P,r

∗
P) with ∆cP = cP −c∗P and ∆rP = rP − r∗P.

Assume cS(t) = c∗S.

The linearization of f = 1
1+γcP

delivers:

f (c∗P)+
∂ f
∂cP

∣∣
c∗P

∆cP =
1

1+ γc∗P
+

∂ f
∂cP

∣∣
c∗P

∆cP

=
1

1+ γc∗P
− 1

(1+ γc∗P)2 · γ ·δcP . . . ,

with which we get:
d2

dt2 ∆cP + k5
d
dt

∆cP − k5r∗P +
(k5 · r∗P)2γ

αβc∗S
∆cP

=− d
dt

∆rP − k5(r∗P +∆rP),

and finally:

d2

dt2 ∆cP + k5
d
dt

∆cP +
(k5 · r∗P)2γ

αβc∗S
∆cP =− d

dt
∆rP − k5∆rP .

■Mixed population
In the following we will focus on a mixed population in
a CSTR in continuous cultivation. The reaction volume
V is kept constant. The mixed population consists of
two species of micro-organisms: prey (P) and predator
(R). Prey grows with a specific growth rate µ and de-
creases proportionally with the number of predator and
the number of prey. (The more prey is available, the
more will be depredated). Ideal mixing and a constant
growth rate µ (with µ ̸= dilution rate D = q

V ) is assumed.
Task a) Describe the occurring processes in the popu-
lation.

Birth, prey-predator interaction, extraction
Task b) Assign the individual terms within the follow-
ing equations to the occurring population processes:

prey concentration: d
dt

cP =
birth
µcP

predation
−k1cRcP

extraction
−DcP

predator concentration: d
dt

cR = k2cPcR
growth on prey

−DcR
extraction

Task c) Determine the steady state(s) and characterize
it (them) qualitatively.

0 = (µ − k1c∗R −D)c∗P I
0 = (k2c∗B −D)c∗R II

Steady State 1:→ c∗P1 = 0,c∗R1 = 0

Steady State 2:→ c∗P2 =
D
k2
,c∗R1 =

µ −D
k1

Steady State 1 basically says that neither prey nor preda-
tors are present because they are washed out.
Steady State 2 exists only if c∗R2 ≥ 0 is. Therefore, the
growth rate has to compensate at least the dilution rate
µ ≥ D. If µ ≤ D, we have Steady state 1.
Taskd) Linearize the systemaround the steady state(s).

From Equation I:

ċP = µcB − k1cPcR −DcP

we get:

ċ∗P︸︷︷︸
0

+∆ċP = f (c∗B,c
2
R)︸ ︷︷ ︸

0(ss)

+(µ −D) ·∆cP − k1c∗P ·∆cR − k1c∗R ·∆cP

∆ċP = (µ − k1c∗R −D) ·∆cP − k1c∗P ·∆cR

with cP = c∗P +∆cB and cR = c∗R +∆cR.

From Equation II:

ċR = k2cPcR −DcR
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we get:

∆ċR =−D ·∆cR + k2c∗R ·∆cP + k2c∗P ·∆cR

∆ċR = k2c∗R ·∆cP +(k2c∗P −D) ·∆cR

Steady State 1 (0,0):

∆ċP = (µ −D) ·∆cP

∆ċR =−D ·∆cR(
∆ċP
∆ċR

)
=

(
µ −D 0

0 −D

)(
∆cP
∆cR

)
Steady State 2

(
D
k2
, µ−D

k1

)
:

∆ċP = (µ −µ +D−D) ·∆cP −
k1

k2
D∆cR =−k1

k2
D∆cR

∆ċR =
k2

k1
(µ −D)∆cP +(D−D) ·∆cR =

k2

k1
(µ −D) ·∆cP(

∆ċP
∆ċR

)
=

(
µ0 − k1

k2
D

k2
k1
(µ −D) 0

)(
∆cP
∆cR

)
Task e) Calculate the Eigenvalues for the cases:
1. D = 2µ

2. D =
1
2

µ

Steady State 1 (0,0):

|sIII −AAA|= 0

[s− (µ −D)](s+D) = 0 ⇒ s1 = µ −D;s2 =−D

1.) D = 2µ

s1 =−µ

s2 =−2µ

⇒ stable
2.) D =

1
2

µ

s1 =
1
2

µ

s2 =−1
2

µ

⇒ unstable saddle

Steady State 2
(

D
k2
, µ−D

k1

)
:

|sIII −AAA|= |
[

s 0
0 s

]
−

[
0 − k1

k2
D

k2
µ−D

k1
0

]
| !
= 0

s2 +D(µ −D) = 0

s1,2 =±
√
−D(µ −D)

1.) D = 2µ Because the growth rate is just the half of the
dilution rate we will have a wash-out. See task c).
2.) D =

1
2

µ

s1 =
1
2

µ

s2 =−1
2

µ

⇒ unstable saddle
Steady State 2

(
D
k2
, µ−D

k1

)
:

⇒ s1,2 =±
√

−1
2

µ · 1
2

µ =±i · 1
2
·µ

⇒ metastable circle (limit circle).

Task f) What can generally be stated on the stability
of the steady states? Focus therefore on 3 cases (µ > D,
µ = D and µ < D) for every steady state.

Steady State 1 µ > D µ = D µ < D
unstable X
stable X

metastable X
Steady State 2 µ > D µ = D µ < D

unstable X not exists
stable not exists

metastable X not exists

■ Deriving rate parameters from biological data
A cartoon model for gene regulation via an extracellular
signaling molecule (also called a ligand) is given as fol-
lows:

 

A 

A 

TF 
TF 

Ø 

 
1 

 
6  

2 

 
3 

 
4 

 
5 

Cytosol 
Nucleus 

L 

R 

L is the signaling molecule, R the membrane receptor,
A an adaptor protein, and TF the transcription factor
involved in the regulation.

From the cartoon model, one derives the biochemical
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reaction network:

L+R
k1−−⇀↽−−

k−1
Ri I

Ri +A
k2−−⇀↽−−

k−2
Ra II

Ra +TF k3−−→ TFn III

TF
k4−−⇀↽−−

k−4
TFn IV

TFn k5−−→ TFn+A V

A k6−−→ VI

The following information is known from biological mea-
surements:

• Experiments are done with 2 mL of medium and
6 ·105 cells, using a ligand concentration of 1 nM.

• The volume of a cell is 1 ·10−12L, with the nucleus
taking 1/5 of the total volume.

• The concentration of the transcription factor in
whole cell extracts (TF + TFn) was measured as
0.1µM.

• The concentration of the transcription factor with-
out stimulus in nuclear extracts was measured as
5nM.

• The concentration of the adaptor protein without
stimulus in whole cell extracts is 1µM.

• The adaptor protein has a half-life time of 1 h.

• A cell has a total of 10000 membrane receptors.

• The associated constant Ka for the ligand-receptor
binding is 0.01 1

nM . Hint:

k1[L][R] = k−1[Ri]

⇒ k1

k−1
=

[Ri]
[L][R]

= Ka

• The associated constant for the receptor-adaptor
protein binding is 0.01 1

µM .

• The parameter k3 has been measured directly as:
k3 = 0.01 1

nM·s

The following assumptions, done by the modeler, are
needed to determine all parameter values uniquely: k−1 =
0.01 1

s , k−2 = 1 ·10−3 1
s , k4 = 1 ·10−5 1

s

Task a) Convert the unit molar M to molecules per cell
for ligand and transcription factor TF and TFn.
Ligand:

[L] = 1nM = 10−9 mol
L

= 6 ·1014 molecules
L

⇒ nL = c ·V = 6 ·1014 molecules
L

·2 ·10−3L

= 1.2 ·1012 molecules in 2 mL

⇒1.2 ·1012molecules
6 ·105cells

= 2 ·106 molecules
cell

Transcription factor:

[T Fn] = 5nM = 5
nmol

L
= 5 ·10−9 mol

L

⇒ 5 ·10−9 mol
L

·NA ·V

= 5 ·10−9 mol
L

·6.022 ·1023 molecules
mol

·0.2 ·10−12L

= 602
molecules

cell

Task b) Calculate the degradation rate constant k6 from
the half-life time T1/2:

Ȧ =−k6 ·A
⇒ A(t) = A0 · e−k6·t

T1,2 : A(t) !
= A0/2

⇒ A0

2
= A0 · e−k6·T1/2

1
2
= e−k6·T1/2

ln
(

1
2

)
=−k6 ·T1/2

ln(1)︸ ︷︷ ︸
0

−ln(2) =−k6 ·T1/2

⇒ k6 =
ln(2)
T1/2

Task c) Construct an ODE model for the sub-network
involving the reactions IV - VI, i.e. the unstimulated case.
Use, therefore, the law of mass action.

ċL =−k1cLcR + k−1cRi I
ċR =−k1cLcR + k−1cRi II
ċRi =+k1cLcR − k−1cRi − k2cRicA + k−2cRa III
ċRa =+k2cRicA − k−2cRa − k3cRacT F IV
ċA =−k2cRicA + k−2cRa + k5cT Fn − k6cA V

ċT F =−k3cRacT F − k4cT F + k−4cT Fn VI
ċT Fn =+k3cRacT F + k4cT F − k−4cT Fn VII
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Task d) Use the biological measurements in the unstim-
ulated case (steady-state condition) and the assumptions
to determine all parameters in reactions IV - VI. Use
units such that state variables are given as numbers of
molecules per cell.

I = II : −k1 ·0 · c∗R +k−1c∗Ri = 0

⇒ c∗Ri = 0

III : k1 ·0 · c∗R −k−1 ·0−k2 ·0+k−2 · c∗Ra = 0

⇒ c∗Ra = 0

IV : k2 ·0 · cA −k−2 ·0−k3 ·0 · cTF = 0
V.2 : ċA =−k2cRicA +k−2cRa +k5cTFn −k6cA = 0
VI.2 : ċTF =−k3cRacTF −k4cTF +k−4cTFn = 0
VII.2 : ċTFn =+k3cRacTF +k4cTF −k−4cTFn = 0

Volume:
given: VCell = 10−12L

⇒ Vnucl =
1
5
·10−12L = 0.2 ·10−12L

⇒ Vcyto =
4
5
·10−12L = 0.8 ·10−12L

Concentrations:

given: cT F + cT Fn = 0.1µM

⇒︸︷︷︸
cT F+cT Fn

= 0.1 ·10−6 mol
L

·NA ·Vcell

= 0.1 ·10−6 mol
L

·6.022 ·1023 molecules
cell

·10−12L

= 60220
molecules

cell
given: cT Fn = 5nM

⇒= 5 ·10−9 mol
L

·NA ·Vnucl

= 5 ·10−9 mol
L

·6.022 ·1023 molecules
cell

·0.2 ·10−12L

= 602
molecules

cell

⇒ cT F = 60220−602 = 59618
molecules

cell
given: cA = 1µM

⇒ cA = 1 ·10−6 mol
L

·NA ·Vcell = 602200
molecules

cell

given: k4 = 10−5 1
s

VI.2 :⇒ k−4 = k4 ·
cT F

cT Fn

= 10−5 1
s
· 59618

602
= 9.9 ·10−4 1

s

given: T1/2(A) = 1h = 3600s

⇒ k6 =
ln(2)

T1/2(A)
=

ln(2)
3600s

= 1.9 ·10−4 1
s

given: k4 = 10−5 1
s

V.2 :⇒ k5 = k6 ·
cA

cT Fn

= 1.9 ·10−4 1
s
· 602000

602
= 0.19

1
s

Task e) Determine the parameters for reactions I - III
from the biological measurements and the assumptions,
using the same units as before.

given: ka(L−R) = 0.01 1
nM , k−1 = 0.01 1

s

⇒ Ka =
k1

k−1
= 0.01

1
nM

(
Lig.:1nM=̂2 ·106 molec.

cell

)
Ka =

k1

k−1
= 5 ·10−9 cell

molecules

k1 = k−1 ·5 ·10−9 cell
molecules

= 0.01
1
s
·5 ·10−9 cell

molecules

= 5 ·10−11 cell
molecules

given: Ka(Ri −A) = 0.1 1
µM considerd only in the cyto-

plasma Vcyto. k−2 = 10−3 1
s .

⇒ Ka =
k2

k−2
= 0.1

L
10−6mol

· 1
NA ·Vcyto

= 0.1 ·106 1
6.022 ·1023 ·0.8 ·10−12 · L

mol
· mol

molecules
· cell

L

= 2.1 ·10−7 cell
molecules

⇒ k2 = Ka · k−2 = 2.1 ·10−7 cell
molecules

·10−3 1
s

= 2.1 ·10−10 cell
s ·molecules

given: k3 = 0.01 1
nM·s considered only in the cytoplasma.

⇒ k3 = 0.01
L

10−9mol · s
· mol

6.022 ·1023molecules
· cell

0.8 ·10−12L

= 2.1 ·10−5 cell
molecules · s
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Parameter Value Unit
Ka 2.1 ·10−7 cell/molecules

k1 5 ·10−11 cell/s·molec

k−1 0.01 1/s

k2 2.1 ·10−10 cell/s·molec

k−2 10−3 1/s

k3 2.1 ·10−5 cell/s·molec

k4 10−5 1/s

k−4 10−3 1/s

k5 0.19 1/s

k6 1.9 ·10−4 1/s
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