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Preface

It is a great privilege to present the proceedings of the 30th Irish Conference on Arti-

ficial Intelligence and Cognitive Science (AICS 2022). This book is a collection of
the best contributions received in AICS 2022. With regular conferences dating back
to 1988, the AICS conference is Ireland’s premier forum for researchers active in the
fields of Artificial Intelligence and Cognitive Science. AICS provides researchers in our
community the opportunity to present their exciting advances in data analytics, infor-
mation retrieval, machine learning, knowledge representation and extraction, logic and
reasoning, computer vision and natural language processing.

This book presents recent developments in the context of theoretical models of
Artificial Intelligence and practical, intelligent applications. From the content of these
research contributions, it is evident that artificial intelligence is at the forefront of society
today, with many novel theoretical contributions and practical applications.

AICS 2022 received a record of 102 articles from researchers, academics and doc-
toral scholars from a large number of Irish universities, national companies and interna-
tional institutions. This book comprises a selection of the best 41 articles presented at
the conference, selected through a strict, single-blind peer-review process. Each article
received at least three reviews from scholars in academia and industry. Each reviewer
held a PhD in Computer Science, Cognitive Science or a relevant cognate discipline.
The general chairs of the conference performed the role of programme committee chairs,
and carefully selected the top contributions by ranking articles across several criteria and
evaluating the qualitative feedback given by the reviewers.

The event was supported by an organising committee consisting of members of
Munster Technological University, Technological University Dublin and University Col-
lege Cork. The event was hosted by the Department of Computer Science of Munster
Technological University (MTU) in Cork, Ireland, on December 8-9, 2022.

We thank everyone who helped in the organising committee for the 30th Irish Confer-
ence of Artificial Intelligence and Cognitive Science (AICS 2022). A special thankyou
goes to the local chair, Alison O’Shea, and the publicity chairs, Begiim Gen¢ and Andrea
Balogh. An appreciation is due to the sponsors that contributed to the event’s suc-
cess, including Qualcomm, Keelvar, Collins Aerospace, LERO, the Science Foundation
Ireland Research Centre for Software and INSIGHT, the Science Foundation Ireland
Research Centre for Data Analytics. Additionally, we would like to thank the staff from
MTU'’s research office, Department of Computer Science and Department of Mathe-
matics for their contributions and help — without which we would not have been able to
organise this great meeting.
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A special thank you goes to the researchers and practitioners who submitted their
work and committed to attending the event and turning it into an opportunity to meet
and share findings and new avenues of research.

December 2023 Luca Longo
Ruairi O’Reilly
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Abstract. Psychophysiology investigates the causal relationship of
physiological changes resulting from psychological states. There are sig-
nificant challenges with machine learning-based momentary assessments
of physiology due to varying data collection methods, physiological differ-
ences, data availability and the requirement for expertly annotated data.
Advances in wearable technology have significantly increased the scale,
sensitivity and accuracy of devices for recording physiological signals,
enabling large-scale unobtrusive physiological data gathering. This work
contributes an empirical evaluation of signal variances acquired from
wearables and their associated impact on the classification of affective
states by (i) assessing differences occurring in features representative of
affective states extracted from electrocardiograms and photoplethysmog-
raphy, (ii) investigating the disparity in feature importance between sig-
nals to determine signal-specific features, and (iii) investigating the dis-
parity in feature importance between affective states to determine affect-
specific features. Results demonstrate that the degree of feature variance
between ECG and PPG in a dataset is reflected in the classification
performance of that dataset. Additionally, beats-per-minute, inter-beat-
interval and breathing rate are identified as common best-performing
features across both signals. Finally feature variance per-affective state
identifies hard-to-distinguish affective states requiring one-versus-rest or
additional features to enable accurate classification.

Keywords: Machine learning - Classification - Psychophysiology -
Electrocardiogram - Photoplethysmography - Affective states

1 Introduction

A significant goal of Affective Computing is to improve human-to-computer
interaction by providing a system with a level of emotional intelligence that

This publication has emanated from research supported in part by a Grant from Science
Foundation Ireland under Grant number 18/CRT/6222.
© The Author(s) 2023

L. Longo and R. O’Reilly (Eds.): AICS 2022, CCIS 1662, pp. 3—-17, 2023.
https://doi.org/10.1007/978-3-031-26438-2_1
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aids natural communications and is capable of including emotional components
[27]. This has commonly been approached by deriving emotional states from
speech, facial expressions, gestures and body posture analysis. However, utilis-
ing physiological signals to communicate psychological information is a recent
exploration in the domain, likely due to the increased accessibility of signals from
wearables.

A physiological signal represents an individual’s biological processes derived
from core aspects of human biology. These signals can enable diagnostics, for
instance, analysing heart rate (HR) to detect arrhythmia [29]. Psychological
analysis can also be enabled as mental states originating from unconscious effort
typically present a noticeable physiological change in the relevant human system
[16]. The combined analysis enables a richer understanding of individuals in
terms of their mental and physical health [8].

Psychological states are complex processes comprised of several components,
including feelings, cognitive reactions, behaviour and thoughts [1]. Mapping psy-
chological states to individual experience provides valuable information regard-
ing well-being, health (physical and mental), social contexts, experiences and
emotions [7].

Electrocardiograms (ECG) are physiological signals that measure the electri-
cal activity of the heart. Typically recorded in a clinical setting using multiple
electrodes attached to the individual. Photoplethysmography (PPG) is a phys-
iological signal used to measure heart activity through variations in the blood
volume of the skin, using a light-emitting-diode and photodetector. Wearable
devices predominately utilise PPG to monitor heart activity. However, recently
advanced wearables have included ECG capabilities for a limited number of
commercial off-the-shelf (COTS) devices.

Data variances occur when recording ECG and PPG due to differing sensor
placement and signal granularity [8,22]. A lower sampling frequency is commonly
used in PPG compared to ECG to reduce battery consumption in COTS devices.
Such variances are under-recognised in the field of psychophysiology.

This work investigates the impact of signal variances occurring in ECG and
PPG signals acquired from wearable devices for classifying affective states by
addressing the following research aims: (i) To assess differences in features repre-
sentative of affective states on a per signal basis, (ii) To investigate the disparity
in precedence ordering of feature importance per signal, and (iii) To investigate
the disparity precedence ordering of feature importance per affective state.

These aims inform the development of machine learning (ML) pipelines for
classifying affective states. Utilising feature variance per signal to identify abnor-
mal signal activity or similar affective states which are causing reduced classifica-
tion accuracy. In conjunction, feature importance is utilised to provide insights
into feature selection, aiding performance in tailored signal- or affect-specific
approaches.
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2 Related Work

2.1 Heart-Related Physiological Signals

The prevalence of heart-related data in wearable devices stems from a desire to
monitor health through arrhythmia detection and HR as a measure of fitness
[29]. As the heart is controlled involuntarily through the autonomic nervous
system (ANS), it facilitates identifying relationships between involuntary phys-
iological changes in heart activity and psychological states such as emotions or
behaviour. Multiple psychophysiological theories aim to explain this relation-
ship, such as Polyvagal Theory [30], which proposes that the ANS provides the
neurophysiological substrates for adaptive behavioural strategies [28].

Heart activity is complex to capture. In medicine, the gold standard utilises a
12-lead ECG, resulting in comprehensive data recorded from multiple electrodes
on the human body. However, in ambulatory research and daily life, this method
is not feasible. Typically research-grade (RG) equipment uses several electrodes,
commonly 3-lead ECG, and occasionally includes PPG as an additional measure.
COTS devices tend to rely solely on PPG to monitor heart activity. However,
with recent advances, top-of-the-range smart-watches (Apple Watch 4-9, Galaxy
Active 2; Fitbit) include a 1-lead ECG, which is promising for portable ECG
analysis [25].

Additional physiological signals such as electrodermal activity (EDA), respi-
ration, skin temperature, electromyogram (EMG), and electrooculogram (EOG)
have demonstrated potential for affective state detection [8,20]; however, due to
additional sensor requirements they are excluded from this work.

Numerous studies of affective states conduct custom data collection, provid-
ing precise control over the psychological domain explored. Varied stimuli have
aided the elicitation of psychological states, for example, images, movie clips,
music, and dedicated tasks to elucidate stress, such as the Trier Social Stress
Test [2,33]. As denoted in Table 1, several open-access or on-request datasets con-
taining ECG and PPG are available. The distinct lack of emotionally labelled
ECG signals from COTS devices is likely due to the recent inclusion of ECG
monitoring capabilities [25].

2.2 Affective ECG Analysis

ECG signals contain noise introduced by motion artefacts, biological differences
and sensor de-attachment. Signal processing techniques such as Butterworth
Bandpass, Notch filters and Empirical Mode Decomposition (EMD) are utilised
to reduce the signal noise levels [1]. Subsequently, features suitable for affective
state classification can be extracted from the pre-processed signals.

An overview of features derivable from ECG and PPG is denoted in Table 2,
grouped by extraction method. Performant ECG-based approaches typically
utilise handcrafted features, particularly time-based HRV features, such as R-
R intervals (RR) which are the intervals between heartbeats, successive dif-
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Table 1. Datasets containing affectively labelled ECG, PPG or both

Dataset ECG PPG Participants Label
CASE [34] v (1000 Hz) | v (1000 Hz) 30 Aro./Val.
WESAD [33] | v (700Hz) | v (64Hz) 15 B,S, A, M
DREAMER [15] | v (256 Hz) x 23 Aro./Val./Dom.
SWELL [18] | v (2048 Hz) X 25 S, Aro./Val./Dom.
DEAP [17] X v (256 Hz) 32 Aro./Val

B: Baseline, S: Stress, A: Amusement, M: Meditation Aro: Arousal, Val: Valence,
Dom: Dominance

ferences (SD) and frequency-based features, such as relative, peak and absolute
power of various frequency bands. Automated feature extraction is less frequently
adopted, with only three of the reviewed approaches utilising deep learning or
signal-processing feature extraction methods.

Recent approaches have favoured deep learning methodologies [31], achiev-
ing significant accuracies on multi-class classifications. However, older studies
focusing on linear and quadratic discriminant analysis (LDA, QDA) [1,5,26]
and support vector machines (SVM) [12] remain highly relevant, achieving high
accuracy for their respective classifications. Combinations of ML classifiers form-
ing ensembles have demonstrated potential for binary classifications in emotion
detection [6]. In comparison to other studies, [31] achieved the highest accuracy
for multiple emotion detection from ECG data utilising a CNN and reported
setting the new state of the art for ECG emotion detection. Despite the high
performance of deep learning approaches in the literature, this work focuses on
classifiers using handcrafted features.

2.3 Affective PPG Analysis

PPG analysis provided by COTS devices has typically focused on tracking med-
ical conditions, physical activity, and stress. The detrimental effects of stress on
human health are a significant motivator for physiological analysis and preven-
tative healthcare research [3]. However, instances of PPG have demonstrated
similar noise levels to ECG, with the addition of skin tone and environmental
light effects impacting signal quality, requiring signal cleaning techniques.

There is no consensus on the most frequently used features from the reviewed
PPG-based approaches, see Table2. The most performant approach [11] lever-
ages handcrafted non-linear entropy features, followed by [24] using an autoen-
coder method for automatic feature extraction. Importantly, both handcrafted
and automatically extracted features aid in achieving a high classification accu-
racy above 90% [10,11,14,24].
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Table 2. Handcrafted, automated and statistical features utilised for affective state
classification. Note the divergence between features used by PPG and ECG.

ECG PPG Combined
B | [ [ sl | ) | (26 | 2 |6 | (320 | (1) | (24 | (0] | (4] | 21] | (o) [ (321 | 4] | [o)
HRV Time:
HR X X x v X v x v X x X ' X X ' X X
IBI X X X b'S X b'S X v X x N X N X v v X
RR x x X s v v v v x X X X X x s x v
SD x x v v v v v v x x x x x x v x v
P-QRS-T X X v X X X v v X X X X X X v X X
HRV Frequency:
Low Freq X X v v v v v v X X X v X X v X v
High Freq x ' v v v v v x

Freq. Ratios | x X b'e v v v v v X b'e X v X X v v v
Non-Linear:

Poin X X X X v v v X X X v X X X X X X

Entr X X X X v v X v v X X X X X
Deep Learning:

Model v X X b X X X X X X X X ' v X X X

AE X X X X X X X X x v X X X x X X X
Additional Features:

BR X X X X X v X X X X X bY X X X X v

Sig. Amp X X X X X X X v X X X X X X v X v

EMD X v X X X X v X X X X X X X X v
Classifier CNN | LDA | KNN |LDA | QDC | SVM" | Ens | SVM | PNN | SVM | SVM | DNN | CNN | CNN | SVM | SVMP | FNN
No. Classes 4 2 2 3 4 2 4 2 14* | 4% 2 5 2 2 2 2 4
Accuracy 95% | 89% | 85% | 85% | 84% | 82% | 80% | 69% |100% | 99% | 96% | 91% | 83% | 76% | 65% | 93% | T0%
Datasets [33] | Priv | Priv | Priv | Priv | Priv | Priv| Priv | [17] | [33] | [17] | Priv | [33] | [17] | Priv | Priv | Priv

HRV: Heart Rate Variability, IBI: Inter-beat Interval, RR: R-R Intervals, SD: Successive
Differences, Freq: Frequency, Poin: Poincare, Entr: Entropy, AE: Auto-Encoder, BR: Breathing
Rate, Ens: Ensemble, Sig. Amp: Signal Amplitude, EMD: Empirical Mode Decomposition,
LDA: Linear Discriminant Analysis, (C/D/F)NN: Convolutional/Deep/Feed-Forward Neural
Network, QDC: Quadratic Discriminant Classifier, SVM: Support Vector Machine,

KNN: K-Nearest Neighbours, *One Vs Rest, PLeast-Squares SVM

These affective state classifications are conducted by variations of neural net-
works [11,14,19,21] and SVMs [10,24,32], which demonstrates great potential for
both binary and multi-class affective state detection using PPG solely. Notably,
these approaches leverage extensive signal processing to reduce signal noise and
contribute to the high performances achieved.

3 Methodology

The proposed methodology provides an approach for investigating ECG and
PPG variances and the subsequent impact on affective state classification. The
baseline performance of affective state classification is achieved using multiple
ML classifiers per signal. The inter-signal performance variances are investigated
by analysing the disparity in features between temporally aligned ECG and
PPG, where the degree of feature variance is an indicator of signal quality.
Inter-affective state feature variance is analysed using statistical measures to
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provide insights into the distribution and similarity of affective states. Feature
importance is employed to identify commonalities among the best-performing
features across both signals and evaluate each feature’s utility for affect-specific
approaches. Finally, a one-versus-rest (OVR) classification is adopted to improve
performance when classifying similar affective states.

3.1 Datasets

For the purposes of this work, the focus was narrowed to RG physiological sig-
nals due to a lack of publicly available data for COTS devices. “The Dataset
of Continuous Affect Annotations and Physical Signals for Emotion Analysis”
(CASE) [34] and “The Wearable Stress and Affect Detection Dataset” (WESAD)
[33], see Table1, were utilised in this work. The datasets were selected due to
their inclusion of temporally aligned ECG and PPG with psychological annota-
tions. Additionally, these signals were recorded using RG devices in a laboratory
environment. CASE incorporates Arousal and Valence annotations, achieved by
collecting joystick movement resulting from emotionally stimulating video clips.
WESAD focuses on stress detection with limited affective states: a baseline state
elicited from “neutral reading”, amusement caused by comedic video clips, a
Trier Social Stress Test [2] to provoke stress, and a meditation stage aimed at
“de-exciting” the individual following the amusement and stress stages.

3.2 Pre-processing

ECG and PPG signals recorded per subject within these datasets span the dura-
tion of the experiment resulting in approx 91/40 min for WESAD/CASE. Each
signal is pre-processed into 10-second windows to facilitate analysis, accom-
plished using a sliding window technique with a 1-second overlap. A 10-second
duration was selected due to efficient performance demonstrated in [31]; addition-
ally, this duration enables low latency as classification occurs every 10-seconds
and contains adequate data for feature computation.

A Butterworth-Bandpass filter is used to reduce signal noise, facilitating the
extraction of selected features while maintaining a degree of “rawness” in the
signal. This filter was adopted as it is frequently adopted in the literature and
more closely aligns with COTS devices and their reduced computational power.

Once filtered and windowed, the data is aligned with the psychological anno-
tations. For WESAD, annotations were numeric values sampled 700 Hz. Each
value from 0—4 is associated with the psychological states: Transient, Baseline,
Stress, Amusement and Meditation. Annotations 5-7 and Transient data are
omitted as per the author’s instructions [33]. Certain windows may include mul-
tiple emotive annotations; hence to identify the most pertinent emotion, the
mean of all annotation values per window is calculated and rounded to the near-
est annotation (1-4) using Euclidean distance. Alternative approaches [6] omit
these windows and the neighbouring segments to prevent overlap.

A similar procedure is required for CASE; the raw annotation data is pro-
vided as values on an x and y-axis representing Arousal and Valence [34], these
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values are normalised to a range of 0.5 to 9.5, and subsequently converted to
discrete representations, resulting in low (0.5-5) and high (5.01-9.5) Arousal and
Valence for each window.

Both signals provide capabilities to derive a wide array of handcrafted fea-
tures useful for identifying affective information. This work utilises a python
toolkit HeartPy [35] to enable extraction of HRV features from each window of
data, summarised in accompanying table of Fig. 4.

3.3 HRYV Feature Variance

The feature variance approach proposed is to statistically evaluate any disparity
occurring in derived features from ECG and PPG under multiple conditions.
Inter-signal variance is evaluated by computing the absolute difference between
an ECG-derived feature and its PPG counterpart from temporally aligned sig-
nals. This is assessed using the same window of heart activity and provides a
granular analysis to aid in identifying noisy, erratic or abnormal signal activ-
ity, causing unreliable computations of features. This variance is depicted by a
significant absolute difference of a feature between the two signals.

Analysing the inter-affective state variance in features enables the identifi-
cation of the degree of change between states, as investigated in [10,12]. The
proposed methodology computes the minimum, maximum, mean and standard
deviation of each feature value per affective state. Additionally outliers are iden-
tified, these are observations found in the upper and lower quartiles. This method
identifies states which are complex to distinguish due to a similar feature dis-
tribution, such as meditation and relaxation. An OVR approach is adopted to
convert a multi-class problem into multiple binary classifications. Using OVR,
a classifier aims to identify an affective state individually from the remaining
states, which increases the degree of distinction between classes.

3.4 HRYV Feature Importance

This work adopts a game theory approach for feature importance known as
“Shapley Additive exPlanations” [23]. This method computes SHAP values rep-
resenting the degree of change on the classifier output caused by each individual
feature, the magnitude of change and number of samples affected indicate the
impact factor of a given feature.

Feature importance has enabled the identification of signal-specific features
in [32]. However, their approach utilised different features for ECG and PPG, as
such, an intra-signal comparison could not be conducted, which would provide
insights into the commonality of features between ECG and PPG, motivating
the intra-signal feature importance analysis provided in this work.

Feature importance can also provide insights into the variance of features per
affective state, valuable for the creation of tailored emotion-specific approaches.
In [9], a neural network is used for classification, and the most important features
were identified from the first layer’s weights. These features were then evaluated
to identify a statistical difference between affective states.
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3.5 ML Based Classification of Affective State

A range of classifiers was selected to provide a holistic view of the classification
performance using different architectures and the suitability of ECG and PPG
for automated affective state detection.

Each classifier conducts a per-signal classification on each dataset, where 20%
of the data acts as a hold-out test set, which is unseen data used to evaluate
the final classifier. To ensure generalisability, five-fold cross-validation is utilised,
transforming the remaining 80% of data into “folds”, enabling a per-fold classi-
fication. Subsequently, comparing the per-fold and average performance across
the five folds enables the identification of the most robust and performant clas-
sifier. Finally, the most performant classifier is trained on the entire training set
and evaluated against the hold-out set to assess expected performance in real-life
4 Results and Discussion

classifications.

Log. Reg. Perceptron LDA Qbpc SVM Extra Trees Rand For. Decision Tree AdaBoost ExtraTrees-Holdout

07 mmm WESAD-ECG (4 Classes)
BN WESAD-PPG (4 Classes)
N CASE-ECG (4 Classes)
NN CASE-PPG (4 Classes)

Accuracy

Fig. 1. Mean cross-validation accuracy classifying affective states for model selection,
and the performance on the holdout test set from the best performing classifier. The
performance variance in ExtraTrees classifier between ECG and PPG reflects the degree
of feature variance identified per dataset.

4.1 HRV Feature Variance

The wearables’ sample rate disparity (See Table 1) is evident in the inter-signal
feature variance results depicted in Fig. 2. The reduced sample rates in WESAD
result in slightly decreased granularity of ECG data and significantly in PPG
data compared to CASE. A higher fluctuation in feature variance occurs in
WESAD in terms of magnitude and frequency, stemming from the high sample
rate disparity.
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Fig. 2. Absolute difference between ECG and PPG features: BPM, IBI and BR, for
CASE and WESAD. High variance demonstrates unreliable feature computation in
one of the signals due to signal noise or sensor differences.

In CASE, beats per-minute (BPM) and inter-beat interval (IBI) contain a
small variance with substantial spikes relative to the average. These variances
occur in isolated data segments and are likely caused by electrode disconnection,
movement, or subject-specific factors, visible in Fig. 2 at approximately window
numbers 250, 550 and 900. Such occurrences may benefit from additional signal
processing to reduce noise and improve feature computation accuracy.

Interestingly, the breathing rate (BR) feature exhibits a high deviation
between signals in both datasets. This deviation indicates that at least one of the
signals is unreliably computing BR, likely due to the wrist and finger placement
of the PPG sensors.

A low degree of inter-affective state feature variance was identified between
WESAD baseline, amusement, and meditation states for all features indicating
these states are difficult to distinguish as depicted in Fig. 3. Statistically similar
features negatively impact automated classification, as the classifier struggles to
differentiate between the classes. This impact is demonstrated by the reduced
performance in multi-class classifications (58%-69%) as compared to the OVR
performance depicted by the ROC curves (ROC Area: 0.70-0.95) in Fig. 5. This
performance increase validates the utility of OVR classifications when classifying
affective states that are difficult to differentiate due to statistical similarities.

4.2 HRV Feature Importance

Analysing the SHAP values per feature indicates that BPM, IBI, and BR have
the most significant impact on classification for both signals, as demonstrated in
Fig. 4. The remaining features exhibit inconsistent influence between the signals.
Most notably, standard deviation 1 divided by standard deviation 2 (SD1/SD2)
and room-mean-square of successive differences (RMSSD) exhibit higher impact
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Fig. 3. Inter-signal and inter-affective state variance for BPM in WESAD, including
and excluding outliers. Note in (a) the presence of outliers with a BPM of over 300
occurring in ECG indicating abnormal signal activity. Additionally, in (a, b), a visible
overlap in neutral, amusement, and meditation occur, demonstrating the degree of
similarity in these states.

in PPG as opposed to ECG. This demonstrates the need for assessing feature
importance on a per-signal basis to identify which features are most informative
for use in tailored signal-specific classification approaches.

Certain features demonstrate varying impacts across affective states, indicat-
ing the presence of affect-specific features. For example, BPM and IBI exhibit
high impacts on the class “stress”, indicating their suitability for stress detec-
tion approaches. Assessing feature importance per-affective state provides an
informative analysis of feature utility for affect-specific approaches.

The high feature importance of BPM for “stress” is due to statistical distinc-
tion to the other affective states in the inter-affective state feature variance, as
depicted in Fig. 3. This demonstrates the benefit of assessing inter-affective state
feature variance and feature importance to gain insights to aid the creation of
affect-specific approaches.

4.3 Automated Affective State Classification Variance

Finally, the selected classifier is trained on the initial 80% of data and classifies
the hold-out set to assess expected performance in real-life classifications. The
ExtraTrees classifier (ET) was selected as the most performant classifier from
the model selection, where it was trained on 80% of the training data and eval-
uated on the remaining 20%. Notably, ET exhibits an increased performance
when evaluated on the hold-out set as it was trained on all available training
data. The full model comparison and ET hold-out performance is depicted in
Fig. 1. Interestingly, the classifier performance variance between ECG and PPG
is similar to the degree of the inter-signal feature variance identified per dataset.



Inter and Intra Signal Variance in Feature Extraction and Classification 13

bl 7777777
B i

OR e
7777227772
[—— ]
- SOVSD2 I,
Feature Abbryv. conn T —
Beats Per Minute BPM "
Interbeat Interval IBI . 77777277/
Std dev. of RR Intervals SDNN sp1
Std dev. of successive diff. SDSD ——
RMSE of successive diff. RMSSD PNNSO ittt
Proportion of diff. < 20ms pNN20 - I
Proportion of diff. < 50ms pNN50 %m m—
Median absolute dev. of RR intervals MAD MAD y.z77 ) e Neutral
Estimated breathing rate BR pNNzo_ w7 Stress
Poincare analysis SD1, SD2, % - Amu'ser‘nent
S, SD1/SD2 SDSD it w777 Meditation

0.00 0.05 0.10 0.15 0.20 0.25

Dev: Deviation, Diff: Difference mean(|SHAP value|) (average impact on model output magnitude)

Fig. 4. Shapley Additive exPlanations (SHAP) Feature Importance from ExtraTrees
classifying WESAD signals.

In contrast with the state-of-the-art [11,31], the performance achieved is
lower for ECG and PPG; however, this work focuses on the analysis and under-
standing of variances between the signals for affective analysis rather than achiev-
ing high classification accuracy. Analysing the ROC curves from ET demon-
strates the true and false positive rates per signal for each affective state, see
Fig. 5. On average, ECG demonstrates increased capabilities for affective clas-
sification by achieving a higher ROC area than PPG, varying with a range of
0.02-0.11. The increased performance via OVR demonstrates the benefit of iden-
tifying and overcoming the effects of similar affective states to achieve greater
classification performance.

True Positive Rate
True Positive Rate

-7 ECG PPG el ECG PPG
/2 7 Neutral (0:86) (075) L LALY ““072) (0.70)
02 e Stress  ——(0.95) (0.90) 02 e LAHV ——(0.75) (0.73)
. ’,/ Amusement ——(0.84) ---+(0.75) /,’ HALV —(074) ----(0.72)
4 Meditation  ——(0.88) (080) . HAHV ——(075) (0.72)

08 10 00 02 08 10

04 06
False Positive Rate

(a) WESAD (b) CASE

04 06
False Positive Rate

Fig. 5. ROC Curves from ExtraTrees representing the OVR classification variance
between ECG and PPG
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5 Conclusions

The inter-signal classification performance disparity mirrors the degree of feature
variance between signals from both datasets. Specifically, WESAD exhibited a
high feature variance, which explains the higher disparity in classification accu-
racy and ROC area per signal. Conversely, a lower inter-signal feature variance
and a lower disparity in the performance measures occurred for CASE. This
demonstrates the utility of inter-signal feature variance in identifying inconsis-
tent computations of features stemming from sensor differences or abnormal
signal activity, which negatively impact classification performance. These occur-
rences are likely to be more frequent in the ambulatory analysis due to motion
artefacts and uncontrolled usage of wearables.

Furthermore, inter-affective state feature variance enables the identification
of affective states that contain a similar distribution of features, which causes
classification confusion. To counter this, the similar states are aggregated into
an OVR classification problem, leading to increased performance, demonstrated
by the ROC area per affective state.

Feature importance identifies BPM, IBI, and BR as the most impactful fea-
tures for affective classification across ECG and PPG. Notably, the remaining
features exhibit inconsistent impacts, specifically SD1/SD2 and RMSSD, which
demonstrate a greater impact in PPG, warranting the exploration of signal-
specific features. Analysing statistical measures to understand the inter-affective
state feature variance indicates that certain features provide a greater degree of
affect-specific information beneficial for tailored applications.

This work contributes an empirical analysis of data variances in ECG and
PPG acquired using wearables and the impact on affective state classification.
Therefore, enabling practitioners to make informed decisions when creating ML
pipelines for affective state classification. The code-base will be made open access
on Github (https://github.com/ZacDair/Emo-Phys-Eval), enabling automated
feature variance analysis from each of these perspectives in a combined manner,
regardless of data acquisition methods. While this approach analyses handcrafted
features, it can also be utilised with automatically extracted features.

Future work will expand the analysis by utilising additional datasets to pro-
vide greater insights into the variances stemming from data collection devices,
affective states, and population differences. In addition, an extended analysis
will be conducted using additional features and methods to further inform the
development of ML pipelines for affective state detection.
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Abstract. Imbalanced image datasets are commonly available in the
domain of biomedical image analysis. Biomedical images contain diver-
sified features that are significant in predicting targeted diseases. Gen-
erative Adversarial Networks (GANs) are utilized to address the data
limitation problem via the generation of synthetic images. Training chal-
lenges such as mode collapse, non-convergence, and instability degrade a
GAN'’s performance in synthesizing diversified and high-quality images.
In this work, MSG-SAGAN, an attention-guided multi-scale gradient
GAN architecture is proposed to model the relationship between long-
range dependencies of biomedical image features and improves the train-
ing performance using a flow of multi-scale gradients at multiple reso-
lutions in the layers of generator and discriminator models. The intent
is to reduce the impact of mode collapse and stabilize the training of
GAN using an attention mechanism with multi-scale gradient learning for
diversified X-ray image synthesis. Multi-scale Structural Similarity Index
Measure (MS-SSIM) and Frechet Inception Distance (FID) are used to
identify the occurrence of mode collapse and evaluate the diversity of
synthetic images generated. The proposed architecture is compared with
the multi-scale gradient GAN (MSG-GAN) to assess the diversity of gen-
erated synthetic images. Results indicate that the MSG-SAGAN outper-
forms MSG-GAN in synthesizing diversified images as evidenced by the
MS-SSIM and FID scores.

Keywords: GANs - Self-attention - Multi-scale gradients - Mode
collapse - Diversity - X-ray images * Synthesis + MS-SSIM - FID

1 Introduction

Generative adversarial networks (GANs) are generative models used for image
synthesis in the computer vision domain [1]. GANs are composed of genera-
tor and discriminator models. The generator takes a random vector input and
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generates a noisy image. This image is passed to the discriminator model. The
discriminator model classifies the generated images from the real images and
provides gradient feedback to the generator. The generator model updates its
learning of the feature distribution of real images through feedback provided
by the discriminator. GANs work with adversarial training where the generator
and the discriminator try to improve their performance based on each other’s
feedback [2].

GANs face difficulty in synthesizing images with complex and diverse fea-
tures. This problem arises due to technical challenges that occur during the train-
ing of GANSs. Training challenges include mode collapse, non-convergence, and
instability [3]. Mode collapse refers to the generation of identical synthetic images
by the generator regardless of diverse real images while the non-convergence and
instability problem imbalanced the training due to the vanishing gradient prob-
lem. These problems limit the utility of GANs for image datasets with a diverse
range of salient image features [4]. In general, GANs are designed with con-
volutional neural networks (CNNs) that fail to capture image features such as
texture, geometry, position, and color of the objects. One of the reasons could
be that the CNNs mostly utilize convolutional features in modeling the depen-
dencies over diverse image regions [5].

In the domain of biomedical imaging, the diverse features of biomedical
images are important to consider in disease recognition or computer-based diag-
nosis tasks [6]. These diverse features contain significant information about the
disease being diagnosed and analyzed. GANs have been utilized for biomedical
image synthesis. Several imaging modalities such as X-rays, Computed Tomog-
raphy (CT), Magnetic Resonance (MR), Ultrasound, and Positron Emission
Tomography (PET) have utilized GANSs to generate synthetic samples [7]. The
generation of diversified synthetic images is a significant barrier for GANs that
limits their utility in the biomedical imaging domain.

X-ray images are widely utilized to diagnose diseases in the human body. X-
ray images contain a wide spectrum of disease features that help physicians to
monitor diseases more accurately [8]. Publicly available X-ray image datasets are
limited and imbalanced [9]. Image synthesis is a potential means of augmenting
and balancing these X-ray images. In image synthesis, synthetic images are pro-
duced by replicating the actual distributions of image features. Therefore, this
method is significant as compared to the traditional augmentation approaches
such as geometrical transformations [10]. GANs have demonstrated remarkable
advancements in image synthesis in the biomedical imaging domain [11].

State-of-the-art GANs such as ProGAN [12], StyleGAN [13], and MSG-GAN
[14] have been used for biomedical image synthesis. These GAN architectures
have demonstrated significant performance in generating diverse images [15].
Minibatch discrimination, PixNorm, progressive growth of GAN layers, and
Spectral normalization techniques have also been utilized to enhance the diver-
sity of synthetic images. The multi-scale gradient technique enables the discrim-
inator learning more robust for the classification of real and synthetic images
[16]. Biomedical images contain salient disease features such as the location,
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size, color, and structure of the disease region of interest. These features are
susceptible and important to predict and analysis of the disease. GANs learn
images through convolutional features without giving attention to these salient
features when generating synthetic images. However, it is important for a GAN
to learn these biomedical image features during the training process.

In the domain of image recognition, self-attention is considered the best app-
roach to focusing on diverse features of the images [17]. The self-attention mea-
sures relative information of features based on their feature maps and combines
them globally with a weighted scoring function. Consequently, it helps to focus
on the significant features for the specific application tasks [5].

To address the training challenges of GANs, several GAN variants based on
the attention mechanisms have attempted to improve the training performance
of GANs for natural and biomedical images [17]. Self-attention improves the
learning of generator and discriminator models in generating diversified biomed-
ical images [18].

In order to balance and stabilize the training of a GAN, the loss function has
also a great impact on the GAN’s training performance for generating realis-
tic synthetic images. Loss functions such as WGAN-GP, Hinge, and relativistic
hinge losses have shown a reasonable improvement in generating diversified syn-
thetic images [19]. However, the hinge loss has shown a great capacity to improve
the GAN’s learning to generate diverse biomedical images [20)].

The occurrence of mode collapse and diversity of synthetic images is assessed
by the Multi-scale Structural Similarity Index Measure (MS-SSIM) and Frechet
Inception Distance (FID). The MS-SSIM score can detect the lack of diversity
using perceptual similarity measures in synthetic images while the FID score
provides a distance between the feature distributions of real and synthetic images
[21].

This work contributes a novel GAN architecture for diversified X-ray image
synthesis. The generator and discriminator models use multi-scale gradient learn-
ing to learn the gradient information at intermediate layers of the generator and
discriminator models using multi-scale image resolutions during the training of
GAN. A self-attention layer is proposed in the generator and discriminator mod-
els to learn the long-range dependencies of X-ray image features during training
through a multi-scale gradient approach. The relativistic-hinge loss is used to
stabilize the training and generate diverse synthetic images. The MS-SSIM and
FID scores are used to evaluate the diversity of generated images.

2 Related Work

Several GAN models with modified architectures and loss functions have been
proposed to improve the generation of diverse synthetic images. GAN architec-
tures have been proposed with novel discriminators and generators based on the
application domains. The performance of GANs has improved by embedding new
convolutional layers, normalization, and regularization techniques in the genera-
tor and discriminator models [29-31]. Several loss functions have been proposed
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Table 1. Attention mechanisms integrated into GANs for biomedical image analysis

Year GAN_Variant | Attention_Type Embedding | Image_Type | Application_Type
2022 [22] | MtAA-NET | Multi-task Attention | Generator cT Segmentation
2022 [23] | CycleGAN Channel Attention Generator PET Reconstruction
2021 [24] | AUGAN Pixel-aware Attention | Generator Ultrasound | Reconstruction
2021 [25] | AMGAN Dual Attention Generator MRIs Segmentation
2021 [26] | P2PGAN Residual Attention Generator MRIs Segmentation
2021 [18] | SPGGAN Self Attention Both Dermoscopic | Synthesis

2021 [27] | MAGAN Mask Attention Both cT Synthesis

2020 [28] | A-CycleGAN | Self Attention Discriminator | MR-CT Translation

to stabilize the training of GANs [32]. These advancements demonstrate signifi-
cant improvements in GANs but have a limited scope for synthesizing improved
diversified and high-quality images for different application domains.

In the domain of biomedical imaging, despite of above contributions, vari-
ants of attention mechanisms are proposed in GAN architectures to enhance the
capacity of GANs to generate diversified and high-quality images as detailed in
Table 1. Several attention mechanisms with GANs have been proposed for differ-
ent applications such as image segmentation, image reconstruction, image syn-
thesis, and image-image translation as detailed in Table 1. The attention mech-
anisms embedded in the generator, discriminator, or both models can improve
the diversity and quality of generated images. These GANs utilize conditional
information for the segmentation and reconstruction of biomedical images using
different attention mechanisms. For image synthesis, self-attention with progres-
sively growing GAN is proposed to generate diversified dermoscopic images.
The authors succeed to alleviate partial mode collapse in their GAN architec-
ture. Similarly, a mask-attention is proposed to generate high-quality Computed
Tomography (CT) images with a conditional GAN. The authors utilize addi-
tional information on attention maps of targeted diseases to improve the quality
of generated images. This approach also requires additional effort for mapping
the attention masks of the diseases.

Generally, conditional masks of diseases are not available publicly in the
domain of biomedical imaging. It requires an additional effort from physicians
to annotate the disease masks. This problem limits the scope of GANs to only
annotated biomedical image datasets. However, unconditional biomedical images
require more work in the context of GANs to address this limitation. Therefore,
this work investigates the utility of self-attention feature maps to guide a GAN
using multi-scale gradient learning for synthesizing diversified biomedical images.

3 Methodology

The workflow of the proposed approach has been depicted in Fig. 1. The MSG-
SAGAN generates synthetic X-ray images using multi-scale gradient learning
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between the intermediate layers of the generator and discriminator models. The
generator and discriminator models are developed with the convolutional and
self-attention layers to enable the relationships among long-range dependencies
of image features for stabilizing the training and generating diversified X-ray
images. Self-attention utilizes feature attention maps to improve the learning of
the generator and discriminator models as depicted in Fig. 2.

3.1 Dataset

In this work, the publicly available dataset of Corona Virus Disease (COVID-19)
chest X-ray images is utilized [33]. The dataset contains 3616 X-ray images. The
images were resized into 64 x 64 resolution. The X-ray images were preprocessed
using a horizontal flipping to augment the data size.

3.2 GAN Architecture

The Multi-scale Gradient Self-attention GAN (MSG-SAGAN) architecture uti-
lizes a multi-scale gradient [16] learning approach between the generator and
discriminator models. In MSG-SAGAN, the discriminator analyzes the output
of the intermediate layers of the generator instead of looking only at the final
layer output. The discriminator sends gradient feedback to multiple scales of the
generator that helps a generator to create realistic diversified images. The train-
ing stabilizing techniques such as PixNorm and Mini-batch standard deviation
are implemented within the GAN architecture. The PixNorm is embedded in
the generator model to normalize the feature vectors. The Mini-batch standard
layer is embedded into the discriminator of the GAN architecture to improve the
diversity of generated image samples. The MSG-SAGAN architecture is trained
with 500 epochs with a batch size of 16. As a baseline, the MSG-GAN [16] is
reimplemented and trained on the CelebA dataset using the same parameters
such as WGAN-GP loss, RMSprop optimizer, and 0.003 learning rates for the
generator and discriminator models.

Hyperparameters: The hyperparameters have a huge impact on the train-
ing performance of MSG-SAGAN architecture. The selection of efficient hyper-
parameters can improve the stability of GANs and their capacity to generate
diversified synthetic images. In this work, the proposed MSG-SAGAN is trained
with an Adam optimizer. The generator and discriminator models are fine-tuned
using different learning rates such as 0.003, 0.0003, 0.0002, and 0.0001 to evalu-
ate the MSG-SAGAN for diverse image synthesis. The equalized learning rates
are used for both generator and discriminator models to balance the training of
MSG-SAGAN.

Spectral Normalization: Spectral normalization is used in the generator and
discriminator models of the MSG-SAGAN. It helps the MSG-SAGAN avoid
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Fig. 1. The proposed architecture of MSG-SAGAN. The MSG-SAGAN is trained using
multi-scale gradient learning at intermediate layers of the generator and discrimina-
tor models to generate X-ray images. The embedding of the self-attention mechanism
in each block of the generator and discriminator models helps to generate improved
diversified images through learning long-range dependencies of image features.
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Fig. 2. Self-attention mechanism of MSG-SAGAN. The attention score is measured
using different feature maps extracted from convolutional layers of the generator and
discriminator models.
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noisy gradients and enables fewer discriminator updates per generator, reduc-
ing the computational cost of training and improving the diversity of synthetic
images.
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Loss Function: The experiments were conducted using a relativistic-hinge loss
function as defined in Eq. 1 and 2. Relativism in the hinge loss helps the discrim-
inator to improve its learning by making predictions of the real images as half
of the images are fake on average instead of taking them all as real. This prior
training information helps the discriminator to classify and predict the real and
fake images more accurately [19].

LgingeGAN =E, p [max (0’ 1—-D (a:r))} + ]E;cg~@ [max (O, 1+D ($g))} (1)

LgingeGAN =E,,p {max (0, 1-D (ch)ﬂ + Eqz,~0 [max (0’ 1+D (xr))} @)

D () =C (2,) — EngQC (mg)
D (xg) = C (2g) — By, npC (2)

In Eq. 1 and 2 as reported in [19], discriminator and generator losses are defined
for real and generated images. The real image samples are defined with x,. and the
generated samples are defined with xz, where P and Q refer to the distributions
of real and generated data respectively. The non-transformed layer is denoted
by C (x) while D (x) denotes the transformed layer.

Self-attention Mechanism: The self-attention is embedded in the generator
and discriminator models of the MSG-SAGAN. The self-attention has a signif-
icant capacity for modeling relationships between diverse features in images.
These diverse features include different spatial regions, channels, and pixels of
images [17]. The self-attention utilizes two feature spaces f and g transformed
by previous hidden layer z € RE*¥ to calculate the attention [5] shown in Fig. 2.
The attention function is calculated using the following equation where feature
spaces f and g are f(z) = Wiz, g(z) = Wya:

exp (si5)

Z]-\Ll o (sij)7 where s;; = f (acl)T g (xj) (3)

Bji =

In Eq. 3, 8;,; indicates the range of attention where the model computes mapping
of j*™ location of the j* feature regions. Moreover, C denotes the number of
channels while N denotes the number of feature locations of features transformed
by the prior hidden layer. The output of the overall attention layer is formulated
[5] as follows:

N
0 =V <Z ﬂjﬂ'h (ZL’Z)> ,h (SL’Z) = WhCEi, v (l‘l) = Wvl'i (4)
i=1

In Eq. 4, the output o is unrolled as 0 = (01,02,...,05,...,0N) € REXN while
W, € RCXC,Wf € RE*C W, € RE*C and W, € RE*C are learned weight
metrics. These weight metrics are implemented as 1 x 1 convolutions within



A Self-attention Guided Multi-scale Gradient GAN 25

the attention mechanism. The channel count is reduced as ¢/k to improve the
memory efficiency where k is set to 8 as suggested in [5].

Furthermore, the output of the attention layer is multiplied by a scale param-
eter and appended back to the input feature map [5]. So, the final output of the
self-attention layer will be:

Yi =70;i + (5)

In Eq. 5, 7 is a learnable scale parameter that is initialized at zero.

3.3 Identification of Mode Collapse Problem

The occurrence of mode collapse is identified by the MS-SSIM. The MS-SSIM
computes the similarity score between two images using contrast, structure, and
luminance features. MS-SSIM score is measured using randomly selected image
pairs from the dataset to asses the diversity of synthetic images. The diversity of
images is compared by measuring the MS-SSIM score from the real dataset and
synthetic image dataset generated by GANs. A higher MS-SSIM score of the
synthetic dataset indicates the occurrence of mode collapse in GANs. MS-SSIM
can be computed between two image samples a and b as defined in Eq. 6 [34].

MS — SSIM(a, b) = Ins(a,0)*¥ [T}L; C;(a,b)? S;(a, b)7s 6)

Contrast (C) and structural (S) features of images are computed at scale j as
denoted in Eq. 6. Luminance (I) is calculated at the coarsest scale (M). The «,
3, and v are the weight parameters as detailed in [35]. In this work, 3616 real
and 3616 synthetic X-ray images are used to compute the MS-SSSIM scores of
real and synthetic image datasets.

3.4 Evaluation of the Diversity and Quality of Synthetic X-ray
Images

The diversity and quality of generated images are evaluated using the FID scores.
FID computes the Wasserstein-2 distance between synthetic images and real
images using feature activations [36]. It captures the multivariate Gaussian acti-
vations by calculating the mean and covariance of the images (real and synthetic)
using the last pooling layer of an Inception-V3 model. The FID score is calcu-
lated as shown in Eq. 7, [34].

FID(r,s) = |ur — psl3 + Tr <2T+ZS_Q(ETES)%> X

In Eq.7, r and s denote real and synthetic images while (u,, 2,) and (ps, Xs)
denote the mean and covariances of real and synthetic images. The FID score
ranges from 0.0 to +oo. The higher FID score shows a larger distance between
synthetic and real data distributions that indicates the occurrence of mode col-
lapse [34]. A lower FID score shows a smaller distance between synthetic and real
data distributions that indicates a higher degree of diversity. This work measures
FID using 3616 real and 3616 generated images.
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Table 2. Analysis of the MS-SSIM and FID scores for the proposed MSG-SAGAN
architecture and the MSG-GAN architecture to evaluate the diversity of generated
synthetic X-ray images. Best scores are highlighted in bold values.

GANs PN |SN|MBD | AM | FA | Opt LR Loss Data |FID |MR | MG
MSG-GAN [16] | v |x |V x |v' |RMSprop |0.003 | WGAN-GP |CelebA |8.86 | — |—

MSG-GAN; (Re) | v |x |V x |v' |RMSprop |0.003 | WGAN-GP |CelebA |18.5 | — -

MSG-GAN, vV oix |V X v" | RMSprop [ 0.003 | WGAN-GP | X-ray |380 0.50 | 0.74
MSG-GAN3 violx |V x |x |RMSprop|0.003 | WGAN-GP X-ray |310.2 | 0.50 0.51
MSG-GANy violx |V x | v |Adam 0.003 | WGAN-GP | X-ray |330.33|0.50 | 0.66
MSG-GANs violix |V x |v' |RMSprop|0.003 |RLHinge |X-ray |200 0.50 | 0.50
MSG-GANg vVioix |V X v’ | Adam 0.003 RLHinge |X-ray |167.1 0.50|0.47
MSG-GAN~, vioix |V X x | Adam 0.003 | RLHinge X-ray |194.85|0.50|0.51
MSG-SAGAN; vVioix |V v |x | Adam 0.003 | RLHinge X-ray | 557.280.50|0.99
MSG-GANg vVioix |V X x | Adam 0.0003 | RLHinge X-ray |217.3 |0.50|0.54
MSG-GANg violx |V x |x |Adam 0.0002 | RLHinge X-ray [272.02]0.50|0.53
MSG-GAN;g vVioix |V X x | Adam 0.0001 | RLHinge X-ray |254.0 | 0.50]0.58
MSG-GAN1; v v X x | Adam 0.003 | RLHinge X-ray |413.8 [0.50 1.0

MSG-SAGAN; v v v |x |Adam 0.003 RLHinge X-ray |413.8 [0.50 1.0

MSG-SAGAN3 vV v v |x | Adam 0.0003 | RLHinge X-ray |387.2 |0.50|0.55
MSG-SAGAN, v v v |x | Adam 0.0002 | RLHinge X-ray |198.8 |0.50|0.55
MSG-SAGAN; v |V |V v |x | Adam 0.0001 | RLHinge X-ray [282.2 |0.50|0.54
MSG-SAGANg | v |V |V v v | Adam 0.0003 | RLHinge X-ray |243.0 |0.50|0.47
MSG-SAGAN; v |V |V v v | Adam 0.0002 | RLHinge X-ray [366.2 |0.50|0.53
MSG-SAGANg v v v v | Adam 0.0001 | RLHinge |X-ray |139.6 |0.50|0.50
Re: Reimplemented; PN: Pixel Norm; SN: Spectral Norm; MBD: Minibatch Std Dev

AM: Attention Mechanism; FA: Flip Augment; Opt: Optimizer; LR: Learning Rate
MR: MS-SSIM Real; MG: MS-SSIM Generated; RLHinge: Relativistic Hinge

4 Results and Discussion

The MSG-SAGAN is proposed to alleviate the mode collapse in the MSG-GAN
and improve the diversity of generated synthetic images in the context of X-ray
images. MSG-SAGAN is a variant of MSG-GAN that utilizes an attention mech-
anism with multi-scale gradient learning to enhance the efficacy of synthesizing
improved diversified X-ray images. The MS-SSIM score is used to identify the
occurrence of mode collapse while the FID scores are used for the evaluation of
the diversity in synthetic images. Resultant MS-SSIM and FID scores of MSG-
GAN and MSG-SAGAN architectures are compared under a range of parameter
settings as denoted in Table 2.

The reimplementation of the MSG-GAN as detailed in [16] resulted in a
higher FID score than the original work when evaluated against the CelebA
dataset. This was likely due to the number of real and synthetic images used in
the calculation of FID. These details are omitted from [16] while in this work
10,000 real and 10,000 synthetic images were used in calculating the FID.

In the context of diverse synthetic X-ray images, the MSG-GAN; is trained
using the same parameter settings including the loss, optimizer, learning rate,
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and horizontal flipping data augmentation. MSG-GAN underperformed in syn-
thesizing diversified X-ray images as indicated by the degraded MS-SSIM and
FID scores.

The WGAN-GP loss is used to stabilize the training of GANs by avoiding the
vanishing gradient problem. However, the RMSprop optimizer does not converge
the training using the WGAN-GP loss for X-ray images because the RMSprop
only relies on the second-order moment of gradients which leads to unstable
training. Therefore, this parameter setting of MSG-GAN was not efficient to
alleviate the mode collapse, stabilize the training, and generate diversified X-ray
images.

The X-ray images contain salient features such as the spine, heart, and lungs
with their visual signatures like ribs, aortic arch, and distinct curvature of lower
lungs. All these features are important to learn by the discriminator so that it can
provide constructive feedback to the generator model. So, a GAN should focus
on these X-ray image features when generating synthetic images. The proposed
architecture of MSG-SAGAN has the capacity to learn these X-ray features using
the attention feature maps as depicted in Fig. 2.

Firstly, the effect of data augmentation is analyzed. The MSG-GANj3 does
not utilize the horizontal flipping and the results of MS-SSIM and FID are
slightly improved but no significant improvement was seen as the higher MS-
SSIM score of synthetic X-ray images than the MS-SSIM score of real images
indicates the occurrence of mode collapse. The MSG-GAN7; with Adam optimizer
and relativistic hinge loss is trained without horizontal flipping but the results
were degraded as compared to MSG-GANg with flipping. Furthermore, the MSG-
SAGANg_g utilizes the horizontal flipping and alleviated mode collapse, and
improved the diversity of synthetic images as compared to the MSG-SAGAN;3_5
that does not utilize the horizontal flipping.

Secondly, the MSG-GANy is trained with an Adam optimizer and WGAN-
GP loss that degrade the results. Moreover, the MSG-GANg_1; and MSG-
SAGAN;_g are trained with the Adam optimizer and the relativistic hinge loss
that alleviates the mode collapse and improves the diversity of generated images.
The degraded results are evident from the other parameters such as spectral
norm and attention mechanism. The Adam optimizer outperformed RMSprop
due to the fact that it has the capacity to stabilize the training and converge
faster because it uses both first and second-order moments of the gradients.

Thirdly, the relativistic hinge loss is used with the Adam and RMSprop
optimizer in the MSG-GANg_1; and MSG-SAGAN;_g. The relativistic hinge
loss indicates significant improvement to alleviate the mode collapse and improve
the diversity of synthetic images because relativism in the hinge loss helps a
discriminator to provide constructive feedback to the generator.

The learning rate has a huge impact on the training of the GAN architectures.
The most performant learning rate for MSG-GAN was 0.003 while 0.0001 for
MSG-SAGAN. This happens because the multi-scale gradient learning stabilizes
the training with a learning rate of 0.003 while the self-attention mechanism
balances the training with a learning rate of 0.0001 as indicated in Table 2.
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Results indicate that spectral normalization degrades the training of the
MSG-GAN while improving the training of the MSG-SAGAN as indicated in
Table 2. In the MSG-GAN, spectral normalization degrades the significant gra-
dients that are flowing between the generator and the discriminator models (See
MSG-GAN;1). Whereas, spectral normalization helps to avoid noisy gradients
that are produced during the training of MSG-SAGAN due to the attention
mechanism.

MSG-SAGANg outperforms the MSG-GANjg in terms of synthesizing diver-
sified images and stabilizing the training process. Integrating the self-attention
mechanism improves the flow of multi-scale gradients between the generator and
discriminator models with small learning rates while degrading with large ones.
The multi-scale gradients help improve the generator’s learning capacity and
discriminator models by propagating the gradients between the intermediate
layers of the generator to the discriminator and vice versa. Consequently, the
feature attention maps help a GAN to make relationships between long-range
dependencies of the diverse image features.

The most performant MSG-GANg instance results in an improved MS-SSIM
of 0.474 for synthetic X-ray images as compared to real images and an FID
of 167.1. However, the most performant MSG-SAGANyg instance results in an
improved MS-SSIM of 0.50 for synthetic X-ray images as compared to real images
and an improved FID of 139.6. The MS-SSIM and FID scores for MSG-SAGANg
indicate a stable training period and a reduction in the impact of mode collapse
while synthesizing improved diversified X-ray images as compared to the alter-
nate instances evaluated.

5 Conclusion

In this work, MSG-SAGAN was proposed to reduce the impact of mode col-
lapse and training instability for generating synthetic X-ray images. The MSG-
SAGAN demonstrated an improved capacity for the synthesis of diversified X-
ray images using the attention mechanism as compared to the MSG-GAN. The
MSG-SAGAN was evaluated under different settings to quantify their impact
on the diversity of synthetic images generated. Results were evaluated using
the MS-SSIM and FID scores. The most performant MS-SSIM (0.50) and FID
(139.6) were produced by MSG-SAGAN.

The MS-SSIM and FID scores indicate that the multi-scale gradients app-
roach in a GAN is performant with a learning rate of 0.003 for X-ray images.
However, an attention mechanism with multi-scale gradient learning is the most
performant with a learning rate of 0.0001. These results of MS-SSIM and FID
demonstrate the impact of learning rates in the training of GANs to synthesize
diversified X-ray images. A learning rate of 0.0001 utilizes small training steps
to update the gradient weights for each iteration to converge the MSG-SAGAN
training to balance and stabilized training.

Spectral normalization degrades the training stability of MSG-GAN while
improving the training stability of MSG-SAGAN. Adam was the most perfor-
mant optimizer in both MSG-GAN and MSG-SAGAN. Relativistic hinge loss
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stabilizes the training and improves the generation of diversified X-ray images.
The data augmentation of horizontal flipping indicates a significant improve-
ment in stabilizing the training of MSG-SAGAN to synthesize diversified X-ray
images. Horizontal flipping provides mirror copies of X-ray images that improve
the learning of MSG-SAGAN with training more on salient features of X-ray
images.

In future work, different variants of attention mechanisms will be investigated
with a multi-scale gradient approach in the GAN architecture for synthesizing
X-ray images. The self-attention will be integrated with different positions in the
generator and discriminator models or only with the generator or discriminator
model in the MSG-SAGAN. Different learning rates will also be investigated to
synthesize the improved diversified X-ray images. This work will be extended
with the integration of self-attention and its variants into state-of-the-art GANs
such as StyleGAN V3, and Projected GANS.
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Abstract. Generative models are becoming popular for the synthesis
of medical images. Recently, neural diffusion models have demonstrated
the potential to generate photo-realistic images of objects. However, their
potential to generate medical images is not explored yet. We explore the
possibilities of synthesizing medical images using neural diffusion models.
First, we use a pre-trained DALLE2 model to generate lungs X-Ray and
CT images from an input text prompt. Second, we train a stable diffu-
sion model with 3165 X-Ray images and generate synthetic images. We
evaluate the synthetic image data through a qualitative analysis where
two independent radiologists label randomly chosen samples from the
generated data as real, fake, or unsure. Results demonstrate that images
generated with the diffusion model can translate characteristics that are
otherwise very specific to certain medical conditions in chest X-Ray or
CT images. Careful tuning of the model can be very promising. To the
best of our knowledge, this is the first attempt to generate lungs X-
Ray and CT images using neural diffusion models. This work aims to
introduce a new dimension in artificial intelligence for medical imaging.
Given that this is a new topic, the paper will serve as an introduction and
motivation for the research community to explore the potential of diffu-
sion models for medical image synthesis. We have released the synthetic
images on https://www.kaggle.com/datasets/hazrat/awesomelungs.

Keywords: Diffusion models - Generative models - Artificial
intelligence + Medical imaging + Lungs - CT -