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Zusammenfassung

Aufgrund ihrer Kombination aus Festigkeit und Zähigkeit werden poly-
kristalline Metalle oft für Strukturbauteile verwendet, welche anspruchs-
vollen Betriebsbedingungen, z. B. zyklischen mechanischen Belastungen,
ausgesetzt sind. Wegen der hohen Sicherheitsvorgaben sowie der ökolo-
gischen und wirtschaftlichen Anforderungen ist es unerlässlich für eine
sichere und kosteneffiziente Konstruktion, die eingesetzten Werkstoffe
für die jeweiligen Belastungsbedingungen zu optimieren. Insbesondere
bei zyklischer mechanischer Beanspruchung werden die Eigenschaf-
ten des Werkstoffes stark durch die zugrunde liegende Mikrostruktur
beeinflusst. Darum muss diese Wechselwirkung bei der Gestaltung
einer Komponente berücksichtigt werden. Die numerische Homoge-
nisierung bietet eine Möglichkeit den Einfluss der Mikrostruktur auf
die makroskopischen mechanischen Eigenschaften von polykristallinen
Werkstoffen abzubilden. Die vorliegende Arbeit beschäftigt sich mit der
Erzeugung von Abbildungen polykristalliner Mikrostrukturen welche
als Eingangsgröße für die numerische Homogenisierung dienen können.
Des Weiteren wird für die robuste und effiziente Parametrisierung des
zugrunde liegenden mikromechanischen Modells anhand makroskopi-
scher Experimente ein Optimierungsansatz vorgeschlagen, welcher auf
Methoden des maschinellen Lernens beruht.
Die Abbildung der Mikrostruktur, auch synthetische Mikrostruktur
genannt, muss relevante Eigenschaften, wie zum Beispiel die Korn-
größenverteilung und kristallografische Textur des realen Polykristalls
widerspiegeln. Hierfür werden in dieser Arbeit sogenannte Laguerre-
Tessellierungen verwendet, welche die Domäne der Mikrostruktur in
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Zusammenfassung

einzelnen Zellen zerlegt. Die Unterteilung erfolgt auf Basis von Nu-
klei, welche zuvor in der Domäne zufällig verteilt wurden und den
Tessellierungsgewichten. Durch das Lösen eines konvexen Optimie-
rungsproblems können die Gewichte so bestimmt werden, dass die
Zellen eine vorgeschriebene Größe haben. Hierdurch können syntheti-
sche Mikrostrukturen erzeugt werden, welche experimentell bestimmte
Korngrößenverteilungen abbilden. Ebenso können mehrphasige synthe-
tische Polykristalle mit vorgegebenen Volumenanteilen erzeugt werden.
Moderne, gradientenbasierte Löser werden im Hinblick auf die Anzahl
der Iteration und die Gesamtlaufzeit, welche sie zur Lösung des Opti-
mierungsproblems benötigen, miteinander verglichen.
Im nächsten Schritt wird eine Methodik entwickelt um den berechneten
Laguerre-Zellen kristallografische Orientierungen zuzuweisen. Hierzu
wird eine Kostenfunktion definiert, welche den Unterschied zwischen
vorgegebenen und aus der synthetischen Mikrostruktur berechneten
Koeffizienten einer Fourier-Reihenentwicklung der kristallographischen
Orientierungsverteilungsfunktion beschreibt. Zur Minimierung des Un-
terschiedes zwischen diesen sogenannten Texturkoeffizienten wird ein
Gradientenabstiegsverfahren verwendet, welches iterativ die kristallo-
graphischen Orientierungen der synthetischen Mikrostrukturen anpasst.
Mit diesem Ansatz wird die Möglichkeit untersucht, isotropes sowie
anisotropes mechanisches Verhalten zu reproduzieren, sowohl bei zu-
grundeliegenden gleich- als auch log-normal-verteilten Korngrößen.
Aufgrund der optimierten Orientierungen reproduziert die synthetische
Mikrostruktur das gewünschte mechanische Verhalten mit vergleichs-
weise wenigen Körnern, d.h. kleinen Volumenelementen.
Um auf Basis der zuvor generierten synthetischen Mikrostrukturen das
mechanische Verhalten vorherzusagen, muss das verwendete mikrome-
chanische Materialmodell parametrisiert werden. Es wird vorgeschlagen
mithilfe von makroskopischen polykristallinen Experimenten die mikro-
mechanischen Parameter zu identifizieren. Hieraus ergibt sich ein inver-
ses Optimierungsproblem, wobei die Auswertung der sich daraus erge-
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bende Zielfunktion ressourcenintensiv ist. Zur Minimierung der nötigen
Funktionsaufrufe wird die Bayes’sche Optimierungsstrategie vorgeschla-
gen, welche ein statistisch informiertes Ersatzmodell der Kostenfunktion
aufbaut und mithilfe geeigneter Erfassungsfunktionen die Erforschung
und Ausnutzung ausbalanciert. Die Leistungsfähigkeit und Robustheit
der Bayes’schen Strategie wird untersucht und mit anderen, für ähnliche
Probleme verwendete, Optimierungsalgorithmen verglichen.
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Summary

Due to their combination of strength and toughness, polycrystalline
metals are often used for structural components that are subjected to
demanding operating conditions, e.g. cyclic mechanical loads. Owing
to the high safety requirements as well as environmental and economic
restrictions, tailoring these materials to their respective loading condi-
tions for a safe and cost-efficient design seems imperative. Especially
in the case of cyclic mechanical loading, the behavior of the material
is strongly influenced by the underlying microstructure. Thus, this
interaction must be taken into account when designing a component.
Computational homogenization offers a way to capture the influence of
the microstructure on the macroscopic mechanical properties of poly-
crystalline materials. In this work we address generating representa-
tions of polycrystalline microstructures which can be used as input for
computational homogenization. Furthermore, we propose using an
optimization approach based on machine-learning, for a robust and
efficient parameterization of the underlying micromechanical model,
based on macroscopic experiments.
The representation of the microstructure, also called synthetic microstruc-
ture, must reflect relevant properties, e.g., grain size distribution and
crystallographic texture, of the real polycrystal. For this purpose we
use so-called Laguerre tessellations, which decomposes the synthetic
microstructure domain into individual cells. This decomposition uses,
previously in the domain randomly distributed, nuclei and tessellation
weights. By solving a convex optimization problem, the weights can be
determined so that the cells have a predefined size. This allows generat-
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Summary

ing synthetic microstructures, that reproduce experimentally observed
grain size distributions. Similarly, multi-phase synthetic polycrystals
with given volume fractions can be generated. We compare different
modern gradient-based solvers in terms of the number of iterations and
overall run time they need to solve the optimization problem.
In a next step, we develop a methodology to assign crystallographic
orientations to the Laguerre cells. For this purpose, we define a cost
function, describing the difference between given and from the synthetic
microstructure computed coefficients of a Fourier series expansion of
the crystallographic orientation distribution function. For minimizing
the difference between these, so-called texture coefficients, we use a
gradient descent method, which iteratively adjusts the crystallographic
orientations of the synthetic microstructures. We investigate the ca-
pability of the method to reproduce isotropic as well as anistropic
mechanical behavior, both with underlying uniform and log-normal
grain size distributions. Due to the optimized orientations, the synthetic
microstructure reproduces the desired mechanical behavior with few
grains, i.e., small volume elements.
To predict the mechanical behavior based on the previously generated
synthetic microstructures, the micromechanical material model must
be parameterized. We propose using macroscopic polycrystalline ex-
periments to identify the micromechanical parameters. This results in
an inverse optimization problem with an objective function, which is
resource intensive to evaluate. We propose to use a Bayesian optimiza-
tion strategy in order to minimize the necessary function evaluations,
which builds a statistically informed surrogate model of the cost function
and uses appropriate acquisition functions to balance exploration and
exploitation. We investigate the performance and robustness of the
Bayesian optimization approach and compare it to other optimization
algorithms used for similar problems.
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Chapter 1

Introduction

1.1 Motivation

Meeting the high safety, environmental and customer demands in the
automotive industry can be quite challenging. Especially, since the
loading conditions can be complex and environmental restrictions re-
quire a light-weight design in order to reduce energy consumption.
To construct components fulfilling these restrictions, suitable materials
have to be identified.
Low-alloyed, high-strength carbon steels are often employed because
of their high strength and toughness while being cost-effective, see Hor-
vath (2021) for an overview on applications in the automotive sector.
Designing components made from these materials in a safe way, while
taking into account the need for weight reduction, requires considering
the loading conditions which the component has to face. Approximately
90% of metallic components fail due to fatigue (Richard et al., 2014),
which describes failure under cyclic loading conditions below the static
failure limit. To prevent fatigue upon everyday use, it is necessary to
assess the cyclic mechanical behavior, including the fatigue limit, of the
component under consideration.
Typically, the fatigue limit is determined via mechanical experiments.
A pertinent engineering tool to assess the fatigue properties of a com-
ponent are Wöhler diagrams, which show the applied strain or stress
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1 Introduction

amplitude over the endured cycles. For the same design and material of
a component, there is a stochastic influence on lifetimes, i.e., for the same
loading conditions, the cycles to failure scatter in the Wöhler diagram.
The cause for this scattering lies in the inhomogeneous microstructure
of a component’s material, which dictates the deformation behavior
under given loading conditions, see Sec. 2.2 for a discussion about
polycrystalline metals and François (1989) as well as Krupp (2007) for
further insights.
Thus, designing metallic components to endure cyclic loading conditions
requires taking the underlying microstructure into account. Fig. 1.1
shows an image of a ferritic microstructure (Arnaudov et al., 2020),
obtained by Electron Back Scatter Diffraction (EBSD) methods.

Figure 1.1: Image of a polycrystalline microstructure obtained by Electron Backscatter
Diffraction (EBSD) (Arnaudov et al., 2020) and postprocessed by MTex (Nolze and
Hielscher, 2016).

Each crystallite is colored according to its orientation with respect to
the laboratory system. We observe, even for a single phase polycrys-
tal, a spatial distribution of crystallographic orientations within the
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1.1 Motivation

microstructure. As the mechanical properties depend on the crystallite
orientation, there is a spatial distribution of mechanical properties within
the polycrystal, i.e., a spatial variation of the deformation behavior.
This heterogeneity in the microstructure leads to the scatter typically
observed in fatigue tests (Krupp, 2007).
To reduce time- and cost-intensive experiments, required to capture the
stochastic influence on fatigue caused by the microstructure, analytical
and computational homogenization techniques may be used. These
methods allow determining the effective mechanical behavior based
on available microstructure data. Whereas being computational more
demanding than analytical approaches, numerical full-field homoge-
nization schemes provide access to local fields, e.g., stresses and strains
as well as plastic deformations, forming in the microstructure. These
fields serve as input to predict the fatigue behavior of a material under
given loading (Schäfer et al., 2019a;b; Natkowski et al., 2021a;b).
The above methods require input data in terms of a computational
domain, representing the microstructure, as well as a material model,
describing the deformation behavior on the microscale. This thesis
provides novel tools to supply this input for polycrystalline materi-
als to computational homogenization software, i.e., methods to create
computational cells and identify parameters for the micromechanical
material model.

3



1 Introduction

1.2 Outline

In Chap. 2 we introduce the foundations of this work. Starting from the
basics of continuum mechanics, we introduce a pertinent material model
to capture the described deformation behavior. Additionally we provide
an overview of the basics of homogenization and the necessary input
for computational homogenization. Throughout Chap. 3 to Chap. 5 we
introduce the novelties forming the basis of this work.
In Chap. 3 we build upon the work by Bourne et al. (2020). They enabled
the fast computation of Laguerre tessellations with cells of prescribed
volume fraction by solving a convex optimization problem. We harness
the potential of modern gradient-type-solvers to speed up solving this
convex problem and compare them for a variety of applications. In
addition, we use Anderson acceleration to reduce the computation
time when generating so-called centroidal tessellations, i.e., tessellations
where the seed of a cell coincides with its centroid. The combination
of modern solvers and Anderson acceleration enables the generation
of (centroidal) polycrystalline microstructures of industrial complexity
within seconds up to a few minutes, improving upon other reported
polycrystalline microstructure generators. Indeed, we show that with
this method it is possible to generate a polycrystalline morphology which
matches experimentally observed statistics, e.g., grain size distribution,
with little computational effort.
Extending the previously proposed method to generate tessellations, rep-
resenting polycrystalline microstructures, we propose a novel method
to equip the resulting cells with suitable crystallographic orientations in
Chap. 4. Using the texture coefficients, i.e., the tensorial coefficients
of a Fourier series expansion of the crystallite orientation distribution
function, we formulate a cost function which computes the difference
between prescribed and realized texture coefficients. To minimize this
difference, we use a gradient descent scheme, iteratively adjusting the
crystallographic orientations within the synthetic microstructure. We
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1.2 Outline

compare the proposed "Texture coefficient Optimization for Prescribing
orientations" (TOP) method to state-of-the-art approaches. To do so, we
compare the effective linear-elastic and the non-linear plastic behavior
for a number of realizations and a varying number of grains as well as
for the uniform and a textured case. Last but not least we investigate the
capability of the proposed method to reproduce a desired mechanical
behavior with an additional underlying grain size distribution.
Chap. 5 applies the Bayesian optimization approach, typically used in
machine learning, to the problem of identifying the crystal plasticity
parameters based on polycrystalline experiments. Because extending
the homogenization software by automatic differentiation strategies
is difficult (or close to impossible when using commercial software),
solving this inverse optimization problem requires minimizing a black-
box function. The Bayesian optimization framework iteratively builds
up a statistically informed surrogate model of the underlying function
and uses this information to drive the optimization procedure. Test-
ing this approach on different search spaces, we gain insight into the
performance of Bayesian optimization and the energy landscape of the
underlying black-box function. By comparing the Bayesian approach to
commonly used algorithms in materials science as well as performant
derivative-free algorithms, we show the efficiency and robustness of the
Bayesian optimization when identifying crystal plasticity parameters.
The methods and main results are summarized in Chap. 6 with a brief
overview of possible applications. As a closing point, future potential
fields of research are discussed.
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Chapter 2

Fundamental concepts

2.1 Basics of continuum mechanics

2.1.1 Objectives

To predict the cyclic behavior of metallic components we need a suitable
tool set, enabling the description of deformation under arbitrary loading
conditions. The framework of continuum mechanics provides exactly
these tools, allowing the rigorous description of body movement, defor-
mation behavior and their thermodynamic basis. This section is based
on Sect. 1 and 2 of (Šilhavý, 1997; Haupt, 2013), Sect. 2 and 3 in (Bertram,
2012) and the work by Truesdell and Noll (2004), without any claim of
originality or completeness.

2.1.2 Kinematics

Kinematics refers to the smooth movement of a material body ℬ ⊂ R𝑑 in
time through a 𝑑-dimensional Euclidean space (in this thesis we consider
𝑑 = 3). We parameterize the current position of a body ℬ𝑡 at time 𝑡 by
the function 𝜒 : ℬ0 × [0, 𝑇 ]→ R𝑑

𝑥 = 𝜒(𝑋, 𝑡), (2.1)

7



2 Fundamental concepts

where 𝑋 ∈ R𝑑 denotes an arbitrary material point position in reference
configuration ℬ0. Using the spatial inverse mapping 𝜒−1

𝑋 = 𝜒−1(𝑥, 𝑡) (2.2)

allows identifying the reference position 𝑋 based on the current place-
ment. The displacement field 𝑢 : ℬ0 × [0, 𝑇 ]→ R𝑑, defined by

𝑢(𝑋, 𝑡) = 𝜒(𝑋, 𝑡)−𝑋 (2.3)

describes the difference between the current and the reference placement,
see Fig. 2.1.

e1

e2

e3

u(X, t)

B0

Bt

F (X, t)

X
χ(X, t)

Figure 2.1: Motion and displacement of a continuum body ℬ.

Describing a field quantity Λ in terms of the current placement, denoted
by Λ𝐸(𝑥, 𝑡), is called the Eulerian description. Using the reference
configuration to describe the same quantity, i.e., Λ𝐿(𝑋, 𝑡), is known
as the Lagrangian description.
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2.1 Basics of continuum mechanics

These are connected through (Haupt, 2013)

Λ𝐸(𝑥, 𝑡) = Λ𝐿(𝜒−1(𝑥, 𝑡), 𝑡), (2.4)

Λ𝐿(𝑋, 𝑡) = Λ𝐸(𝜒(𝑋, 𝑡), 𝑡). (2.5)

Following Truesdell and Noll (2004), the derivative of Λ with respect to
time 𝑡 yields, for the Lagrangian description,

Λ̇𝐿(𝑋, 𝑡) = 𝜕Λ𝐿

𝜕𝑡
(𝑋, 𝑡), (2.6)

and, in the Eulerian description,

Λ̇𝐸(𝑥, 𝑡) = 𝜕Λ𝐸

𝜕𝑡
(𝑥, 𝑡) + 𝜕Λ𝐸

𝜕𝑥
(𝑥, 𝑡) · �̇�, (2.7)

where �̇� = 𝑣(𝑥, 𝑡) denotes the velocity of the material point. For
the reader’s convenience we will drop the subscripts 𝐸 and 𝐿 in
the following and indicate the description by the arguments (𝑥, 𝑡)
and (𝑋, 𝑡), respectively.
The deformation gradient 𝐹 : ℬ0 × [0, 𝑇 ]→ R𝑑×𝑑, defined by

𝐹 (𝑋, 𝑡) = 𝜕𝜒

𝜕𝑋
(𝑋, 𝑡), (2.8)

is a tensorial field quantity, which describes the variation of deforma-
tion in the neighborhood of a material point from reference to current
configuration. Thus, it maps the infinitesimal line elements 𝑑𝑋 in the
reference placement ℬ0 to the corresponding line elements 𝑑𝑥 in the
current configuration ℬ𝑡

𝑑𝑥 = 𝐹 · 𝑑𝑋. (2.9)

9



2 Fundamental concepts

Analogous explicit formulas for the conversion of both area 𝑑𝑎 and
volume 𝑑𝑣 elements undergoing the deformation are available

𝑑𝑎 = det(𝐹 )𝐹 −𝑇 · 𝑑𝐴 (2.10)

𝑑𝑣 = det(𝐹 )𝑑𝑉. (2.11)

For a rigid body movement in three dimensions without rotation, the
corresponding deformation gradient computes to 𝐹 = Id, where Id
denotes the identity on rank two tensors.
We quantify the deformation in an infinitesimal neighborhood around
a material point 𝑋 , e.g., the change of length and angles between line
elements, by the Green’s strain (Haupt, 2013)

𝐸𝐺 = 1
2

(︀
𝐹 𝑇 𝐹 − Id

)︀
. (2.12)

Using the displacement gradient 𝐻 : ℬ0 × [0, 𝑇 ]→ R𝑑×𝑑, defined by

𝐻(𝑋, 𝑡) = 𝜕𝑢

𝜕𝑋
(𝑋, 𝑡), (2.13)

Green’s strain reads

𝐸𝐺 = 1
2

(︀
𝐻 + 𝐻𝑇 + 𝐻𝑇 𝐻

)︀
. (2.14)

If the displacements are small w.r.t. the typical dimensions in the
continuum, i.e.,

ℬ𝑡 ≈ ℬ0 (2.15)

the material and spatial coordinates 𝑥 and 𝑋 are approximately equal,
i.e., 𝑥 ≈ 𝑋 . Thus, it is not necessary to distinguish between the La-
grangian and Eulerian description, i.e.,

Λ(𝑋, 𝑡) ≈ Λ(𝑥, 𝑡). (2.16)

10



2.1 Basics of continuum mechanics

For this case, the Frobenius norm ||·|| for all 𝐻 = 𝐻(𝑋, 𝑡) is
small (Bertram, 2012)

||𝐻|| =
√︁

tr(𝐻𝐻𝑇 )≪ 1. (2.17)

Linearizing the Green’s strain around the rest state 𝐻 = 0 gives rise to
the infinitesimal strain tensor (Haupt, 2013)

𝜀 = 1
2(𝐻 + 𝐻𝑇 ). (2.18)

2.1.3 Balance equations

With suitable tools to describe the motion of a continuous body at
hand, we turn our attention to the physical principles governing the
(thermo)mechanical behavior of continuum bodies. These principles
are formulated in the form of balance equations of the (tensor) quanti-
ties under consideration. To give an overview of the most relevant
equations, we formulate the general notation of a balance equation and
subsequently use this framework to provide specific formulations for the
relevant fields. For the case of singular surfaces, we refer the interested
reader to the work by Šilhavý (1997). We assume in the following that
there are no singular surfaces in the material body.
It is assumed that the change of a field quantity Λ is the sum of a
production term 𝑝Λ and a supply term 𝑠Λ of Λ in the volume 𝑉 of
the body ℬ𝑡 and the flux 𝑞Λ of Λ across the boundary 𝜕ℬ, see Bertram
(2012); Truesdell and Noll (2004) for more details. This relation can be
expressed in integral form (Truesdell and Noll, 2004)

𝑑

𝑑𝑡

∫︁
ℬ𝑡

Λ 𝑑𝑣 =
∫︁

ℬ𝑡

(𝑝Λ + 𝑠Λ) 𝑑𝑣 +
∫︁

𝜕ℬ𝑡

𝑞Λ · 𝑛 𝑑𝑎. (2.19)

Here 𝑞Λ, 𝑝Λ and 𝑠Λ denote tensor fields. 𝑝Λ and 𝑠Λ have the identical
rank as Λ, whereas, for 𝑞Λ the rank is increased by one. Using
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2 Fundamental concepts

the divergence theorem in combination with Reynold’s transport
theorem enables to transform the integral form into a local form
in regular points (Bertram, 2012)

𝜕Λ
𝜕𝑡

+ div(Λ𝑣) = div(𝑞Λ) + 𝑝Λ + 𝑠Λ. (2.20)

Mass balance The balance of mass emerges in local form by consider-
ing the density 𝜌 : ℬ𝑡 × [0, 𝑇 ]→ R. Thus, the balance of mass reads

�̇� + 𝜌 div(𝑣) = 0, (2.21)

as the production 𝑝𝜌, supply 𝑠𝜌 and flux 𝑞𝜌 are zero for closed systems.
For small strain deformations, it is typically assumed that the relation
𝜌 = 𝜌0 holds, i.e., the balance of mass is fulfilled for trivial reasons.

Linear and angular momentum For the linear momentum density 𝜌𝑣,
the supply term is given by the volume force density 𝑏 : ℬ𝑡× [0, 𝑇 ]→ R𝑑.
The flux consists of the Cauchy stress tensor 𝜎 : ℬ𝑡× [0, 𝑇 ]→ R𝑑×𝑑. Thus,
the local form of the linear momentum balance reads (Šilhavý, 1997)

𝜌𝑎 = div(𝜎) + 𝑏, (2.22)

where 𝑎 = �̈� denotes the acceleration, which, in the quasi-static setting
considered in this work, is zero. The stress tensor 𝜎 describes the stress
state in any material point. The symmetry of the stress tensor

𝜎 = 𝜎𝑇 (2.23)

is equivalent to the balance of angular momentum (Haupt, 2013).

Energy and entropy The sum of internal energy density 𝑒 : ℬ𝑡 ×
[0, 𝑇 ] → R and kinetic energy density 1/2𝜌𝑣 · 𝑣 is referred to as the
total energy density. Thus, with the supply of internal heat sources
𝜔 : ℬ𝑡 × [0, 𝑇 ] → R, the power of volume forces 𝑏 · 𝑣, the negative
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heat flux −𝑞 and the mechanical power 𝑣 · 𝜎 · 𝑛, the second law of
thermodynamics, i.e., the balance of total energy, reads in the local form

�̇� + 1
2𝜌(𝑣 · 𝑣) = 𝑏 · 𝑣 + 𝜔 + div(𝜎𝑇 · 𝑣)− div(𝑞). (2.24)

The balance of internal energy results from subtracting the balance
of linear momentum (2.22) multiplied by the velocity 𝑣 from equa-
tion (2.24) (Truesdell and Noll, 2004)

�̇� = −div(𝑞) + 𝑤 + 𝜎 : �̇�. (2.25)

We use the entropy density 𝑠 : ℬ𝑡 × [0, 𝑇 ] → R to formulate the local
form of the entropy balance (Haupt, 2013)

�̇� = div(𝑞𝑠) + 𝑝𝑠 + 𝑠𝑠, (2.26)

where 𝑞𝑠, 𝑝𝑠 and 𝑠𝑠 denote the flux, production and supply of entropy,
respectively. According to the second law of thermodynamics, the
entropy production is non-negative, i.e.,

𝑝𝑠 ≥ 0. (2.27)

This conditions restricts the directions of thermodynamic processes (Cole-
man and Noll, 1974).
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2 Fundamental concepts

2.2 Deformation behavior of
polycrystalline metals

2.2.1 Crystal structure and deformation mechanisms

With suitable tools to describe the motion of a continuum at hand,
we focus on the material which is of primary interest in this work,
i.e., the class of polycrystalline metals. They can be interpreted as an
agglomerate of crystals or grains, see Fig.1.1. Each one of these crystals
has a highly ordered and repetitive atomic lattice (Gottstein, 2013).
Categorizing the different possible periodic arrangements of crystals
results in the 14 different Bravais lattice types (Bravais, 1850). Due to its
importance for industrial applications, we focus on the body-centered
cubic (bcc) lattice, whose underlying unit cell is a cubic system with
eight corner atoms and an additional center atom, i.e., in total two atoms
per unit cell.
If a load is applied to the crystal lattice, at first it deforms elastically, i.e.,
the deformation is reversible, see Fig. 2.2b for a schematic drawing of an
elastic deformation. When the load vanishes, the crystal lattice returns
to its initial configuration, see Fig. 2.2a. It is experimentally observed
that, if the applied load exceeds a material-specific limit, the structure
deforms plastically, i.e., the deformation is irreversible. This process is
depicted in Fig. 2.2, where the applied shear stress 𝜏 exceeds the limit
𝜏∞ resulting in a shift of atoms along a so-called glide plane by one
inter-atomic distance.
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2.2 Deformation behavior of polycrystalline metals

(a)

τ

τ

(b)

τ

τ

(c) (d)

Figure 2.2: Plastic deformation as the result of shifting the whole upper part at once by
one atom. (a) 𝜏 = 0, (b) 𝜏 < 𝜏∞, (c) 𝜏 > 𝜏∞, (d) 𝜏 = 0.
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Using the analogy of a crystal consisting of bubbles, Cottrell (1954)
estimated the theoretical barrier for this deformation to be

𝜏∞ = 𝜇

30 , (2.28)

where 𝜇 denotes the material’s shear modulus. According to Hull and
Bacon (2001) this theoretical limit for plastic deformation is, in general,
several orders of magnitude higher than the experimentally observed
yield strength.
An explanation for this striking difference was simultaneously proposed
by Orowan (1934), Polanyi (1934) and Taylor (1934). Based on the pres-
ence of one-dimensional defects, so-called dislocations, their movement
in the lattice, see Fig. 2.3a, is interpreted as the cause of plastic deforma-
tion. By breaking the atomic bonds of the inserted half plane with one
of the neighboring planes and bonding again with the following edge,
see Fig. 2.3b, the dislocation can move in the lattice. This movement
facilitates the continuous plastic deformation of the crystal lattice and
explains the reduced resistance against plastic deformation compared to
equation (2.28). Peierls (1940) and Nabarro (1947) give a discussion of
the resistance of a crystal lattice against dislocation movement.
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(a)

τ

τ
(b) (c)

Figure 2.3: Plastic deformation as a result of dislocation movement. (a) Initial configuration,
(b) Moving dislocation, (c) Final configuration.

Dislocations generally do not move on planes with arbitrary normal, but
on predefined systems depending on the crystal lattice (Hull and Bacon,
2001). The accumulation of dislocation movement on these systems is
called slip. Those systems which permit dislocation movement are called
slip systems (Hull and Bacon, 2001). For the body-centered cubic crystal
there exist 12 primarily activated slip systems. Dislocation movement
on other systems is only observed in some materials under certain
temperature conditions (Courtney, 2005), which are not considered in
this work. Within the crystal, a slip system 𝜂 is characterized by two
orthogonal vectors, the slip plane direction 𝑚𝜂 and the normal 𝑛𝜂 .
For uniaxial tension 𝜎𝑛 applied to a crystal with slip systems 𝜂, the
driving force for dislocation movement, i.e., the shear stress, on the slip
system follows Schmid’s law (Gottstein, 2013)

𝜏𝜂 = 𝜎𝑛 cos𝜑𝜂 cos𝜆𝜂, (2.29)

where 𝜑𝜂 and 𝜆𝜂 denote the angles between the direction of applied
stress and the slip plane normal and the slip direction, respectively.
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For uniaxial tension, the shear stress becomes maximal for a slip system
𝜂 with 𝜑𝜂 = 𝜆𝜂 = 45∘.

2.2.2 Single crystal plasticity1

To use the powerful computational homogenization methods outlined in
Sec. 2.3, it is necessary to encapsulate the knowledge of the deformation
behavior, see Sec. 2.2.1, into a suitable material model. In the case of
polycrystalline materials, the crystal plasticity model offers a dedicated
framework to describe the deformation behavior of polycrystalline
materials accounting for the movements of dislocations. Based on the
pioneering work by Asaro and Rice (1977), Asaro and Needleman (1985)
and Peirce et al. (1983), many crystal plasticity models were developed,
see Roters et al. (2010) for an overview.
Phenomenological crystal plasticity models use a small number of pa-
rameters to describe the observed deformation behavior of the crystal-
lites. Nevertheless, they proved to be able to provide results which, for
relevant features, agree well with experimental observations (Schäfer
et al., 2019b; Natkowski et al., 2021b). For fatigue behavior, the defor-
mations are typically small. Thus, we use a crystal plasticity model at
small-strains, closely following Schäfer et al. (2019a). We assume the
total strain tensor 𝜀 to be decomposed additively

𝜀 = 𝜀𝑒 + 𝜀𝑝 (2.30)

into an elastic and a plastic contribution, denoted by 𝜀𝑒 and 𝜀𝑝, respec-
tively. We refer to (Simo and Hughes, 2006, Cha. 1) for details. The
Cauchy stress tensor 𝜎, which is symmetric by conservation of angular
momentum (Haupt, 2013), is assumed to be linear in the elastic strain,

1 This subsection is based on excerpts from the publications by Kuhn et al. (2021; 2022)
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2.2 Deformation behavior of polycrystalline metals

i.e., Hooke’s law
𝜎 = C : 𝜀𝑒 ≡ C : (𝜀− 𝜀𝑝), (2.31)

involving the fourth-order stiffness tensor C, is assumed to hold. For
elasto-viscoplasticity, the evolution of plastic strain 𝜀𝑝 is typically gov-
erned by a flow rule of the form

�̇�𝑝 = 𝑓(𝜎, 𝑧), (2.32)

where 𝑧 denotes a vector of additional internal variables, see Chap. 2
in Simo and Hughes (2006).
In the framework of crystal plasticity, it is assumed that plastic defor-
mation, i.e., �̇�𝑝 ̸= 0, is caused by the movement of dislocations on
the corresponding crystallographic slip systems. We consider volume-
preserving slip mechanisms, i.e., conservative glide. An arbitrary slip
system 𝜂 is activated when the resolved shear stress

𝜏𝜂 = 𝜎 ·𝑀𝜂 (2.33)

exceeds a critical value 𝜏𝑐. Here, 𝑀𝜂 denotes the symmetrized Schmid
tensor of the slip system 𝜂

𝑀𝜂 = 1
2 (𝑚𝜂 ⊗ 𝑛𝜂 + 𝑛𝜂 ⊗𝑚𝜂) . (2.34)

Following Bishop (1953) and Hutchinson (1976), the flow rule (2.32) is
formulated as the superposition of crystallographic slip rates on the
individual slip systems 𝑁𝑆

�̇�𝑝 =
𝑁𝑆∑︁
𝜂=1

�̇�𝜂𝑀𝜂, (2.35)

where �̇�𝜂 denotes the plastic slip rate for the 𝜂-th system. To determine
the amount of plastic slip on a slip system 𝜂, the theory of elasto-
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viscoplasticity assumes the plastic slip rate �̇�𝜂 to be a function of the
resolved shear stress. The flow rule is designed in such a way that it
captures, both, the Bauschinger effect and the ratcheting behavior, which
are necessary for describing the cyclic behavior of metals accurately. The
Bauschinger effect concerns a decreased resistance to plastic deformation
also when a change of loading directions (e.g., from tension to compres-
sion) occurs. Ratcheting refers to a consistent accumulation of plastic
slip under stress-driven cyclic loading conditions. Please note that the
loading levels which lead to ratcheting under repeated loading will not
induce a plastic flow of the material under static loading conditions,
in general. For ratcheting and strain-driven loading, the mean stress
will decrease for increasing number of cycles, see Farooq et al. (2020)
and Cruzado et al. (2020) for recent discussions of ratcheting and the
Bauschinger effect, respectively.
In this work, the flow rule proposed by Hutchinson (1976)

�̇�𝜂 = �̇�0 sgn(𝜏𝜂 −𝒳 𝜂
𝑏 )

⃒⃒⃒⃒
𝜏𝜂 −𝒳 𝜂

𝑏

𝜏𝜂
𝑐

⃒⃒⃒⃒𝑐

(2.36)

is used. The symbol 𝜏𝜂
𝑐 denotes the critical resolved shear stress and 𝑐

refers to the stress exponent. To capture both the Bauschinger effect and
ratcheting behavior, the original flow rule is augmented by the backstress
𝒳 𝜂

𝑏 , as proposed by Cailletaud (1992). Alternative approaches for model-
ing these effects are discussed by Harder (2001) with special focus on the
coupling of the backstress evolution on different slip systems and the
existence of the backstress tensor. Please note that the vector 𝑧 of internal
variables in equation (2.32) collects the different backstresses 𝒳 𝜂

𝑏 .
To close the model, the flow rule needs to be complemented by an
evolution equation for the backstress 𝒳 𝜂

𝑏 . The Armstrong-Frederick (AF)
model (Frederick and Armstrong, 2007) is a nonlinear extension of the
model by Prager (1949) and involves a recall term. The model describes
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the evolution of the backstress by the equation

𝒳 𝜂
𝑏 = 𝐴 �̇�𝜂 −𝐵 𝒳 𝜂

𝑏 |�̇�
𝜂| , (2.37)

where 𝐴 and 𝐵 are material parameters with dimensions MPa and
1, respectively. These parameters represent the direct hardening as
formulated in the Prager model and the recovery modulus present in
the extended model, respectively. Bari and Hassan (2000) showed that
the AF model may overestimate ratcheting encountered in experiments.
Furthermore, they attribute this shortcoming to the constant ratcheting
associated to the model.
Extending a formulation by Chaboche, which is based on a decompo-
sition of the AF model, Ohno and Wang (1993) proposed a kinematic
hardening model that reads, in the context of crystal plasticity,

𝒳 𝜂
𝑏 = 𝐴 �̇�𝜂 −𝐵

(︂
|𝒳 𝜂

𝑏 |
𝐴/𝐵

)︂𝑀

𝒳 𝜂
𝑏 |�̇�

𝜂| . (2.38)

In the Ohno-Wang (OW) model, the dynamic recovery term is mod-
ified by a power law with exponent 𝑀 , which controls the degree
of non-linearity, to improve the prediction of ratcheting and mean
stress relaxation.
According to Schäfer et al. (2019a;b) and Natkowski et al. (2021a;b)
the above model captures relevant aspects of fatigue. Thus, in the
following it serves as our model for the deformation behavior of
polycrystalline microstructure.
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2.3 Homogenization methods

2.3.1 Mechanical properties of microstructured materials

The deformation mechanisms on the microscopic scale, e.g., outlined in
Sec. 2.2.1 for polycrystalline metals, influence the overall macroscopic
behavior of the material. Thus, within many applied materials, we
face different scales when investigating mechanical properties. Let
us consider the component shown in Fig. 2.4 as an example. On the
component, or macroscopic, scale, the metallic material is assumed to
be homogeneous. On the microscopic scale, see Fig. 2.4 for a example
of the components microstructure, we observe that this not the case.
Owing to the spatial distribution of crystallographic orientations and the
direction-dependent mechanical properties of crystallites, the microstruc-
ture is heterogeneous. These microstructural heterogeneities influence the
macroscopic mechanical properties and can be crucial for failure of the
component, see François (1989) and Krupp (2007) for an overview in the
context of fatigue failure.
Deriving macroscopic properties based on information on the microscale
is called homogenization whereas localization refers to deducing mi-
crostructural behavior from macroscopic quantities, e.g., strains and
stresses. To determine the effective properties of a microstructure,
we have to consider a domain which is characteristic for the whole
microstructure. This representative volume element (RVE) (Hill, 1952;
1963) needs to be sufficiently large to capture all relevant statistics
of the microstructure, while being sufficiently small compared to the
overall size of the specimen. We show this concept of scale separation
schematically in Fig. 2.4. The component scale ℓmacro is much larger
than the microstructural scale ℓmicro, which is larger than scale of one
constituent, ℓconstituent, e.g., the size of one grain in polycrystalline metals.
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2.3 Homogenization methods

Figure 2.4: Schematic illustration of different lengths on the micro and macroscopic scale.

Concluding that the mechanical behavior of the RVE is representative
for the whole material allows determining effective macroscopic fields,
e.g., strains 𝜀 and stresses �̄�, from averaging the fluctuating micro stress
and strain fields, 𝜎(𝑥) and 𝜀(𝑥) over the RVE volume 𝑉 , i.e.,

�̄� = 1
𝑉

∫︁
𝑉

𝜎(𝑥) 𝑑𝑉 (2.39)

𝜀 = 1
𝑉

∫︁
𝑉

𝜀(𝑥) 𝑑𝑉. (2.40)

To keep this section focused on the main aspects in this work, we
discuss analytical and computational homogenization methods with
their respective requirements as well as a advantages and disadvantages
in the following. For more details regarding micromechanics and homog-
enization methods we refer to Nemat-Nasser and Hori (1993), Torquato
(2002) and Gross and Seelig (2017).
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2.3.2 Analytical approaches

The works of Voigt (1889) and Reuss (1929) describe the first analytical
approaches to homogenization. Both authors approximate the effective
elastic moduli of a polycrystal by volume averaging the elastic constants
of single phases.
Eshelby (1957) provided an analytical solution for the strain and stress
fields of an eigenstrained ellipsoidal inclusion in an infinite homoge-
neous matrix, for which the strains and stresses inside the inclusion
are homogeneous. Based on this solution, the mean-field theory pro-
vides many different homogenization approaches. These methods have
successfully been applied to determine effective properties of fiber
reinforced composites (Schemmann et al., 2018; Kehrer et al., 2020) and
polycrystalline materials (Rieger and Böhlke, 2015). For the linear elastic
effective behavior of polycrystals, the self-consistent method, proposed
by Hershey (1954) and Kröner (1958), is used frequently. There exist
many different extensions to apply this method for non-linear behavior
as well, e.g., (Hill, 1965; Molinari et al., 1987). In their article, Lebensohn
et al. (2007) give an overview over various material classes they study
using the self-consistent approach. Applying a variational framework,
Hashin and Shtrikman developed bounds on the effective properties of
heterogeneous microstructures (Hashin and Shtrikman, 1962a;b). These
bounds are used in a variety of applications, e.g., Fernández and Böhlke
(2019) applied the Hashin-Shtrikman bounds to the effective elastic
properties of textured polycrystals. We refer the interested reader to
Chap. 8 in Gross and Seelig (2017) for a more detailed overview over
analytical homogenization methods.
Although some restrictions apply to these techniques, e.g., in terms
of the possible inclusion geometries considered in Eshelbys solution,
they are capable of predicting the effective mechanical properties of
various material classes. Additionally, they are efficient both in terms of

24



2.3 Homogenization methods

computing time and memory requirements, making them attractive for
industrial applications.

2.3.3 Computational homogenization

To circumvent the simplifying assumptions of analytical approaches,
e.g., regarding the inclusion geometry, computational homogenization
approaches use spatially resolved microstructures as computational
cells. In addition to the effective behavior, numerically solving the
so-called cell problem on the resolved microstructure, delivers the full
fields of stresses and strains, which emerge. Furthermore, it is possible
to compute the resulting plastic deformations developing within the
microstructure on an intracrystalline resolution which can be used as
input, e.g., to predict crack initiation and propagation in polycrystalline
metals (Schäfer et al., 2019a;b; Natkowski et al., 2021a;b).
To derive the emerging fields and thus the effective properties of a
microstructure, the finite element method (FEM) might be used to solve
the discretized weak form of the governing equations (Matouš et al.,
2017). This method predicts the effective properties, e.g., of compos-
ites (Nakamura and Suresh, 1993; Kouznetsova et al., 2001; Borbely et al.,
2001), microstructures with pores (Zhuang et al., 2015) and polycrystals
(Miehe et al., 1999; Shenoy et al., 2008; Vajragupta et al., 2014).
In this work we use a method based on the work by Moulinec and
Suquet (1994; 1998) to numerically determine the effective properties of
polycrystalline microstructures. This approach is based on the reformu-
lation of the cell problem into a Lippmann-Schwinger equation and uses
the fast Fourier transforms (FFT) for its computational resolution. Due
to its low memory footprint, the efficient FFT implementations and the
straightforward realization, the method became increasingly popular
over the past decade. This fueled the development of new algorithms,
see Schneider (2021) for a recent review on supported discretization
methods and available solution schemes. Applications of this method
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include, but are not limited to, damage and fracture mechanics (Chen
et al., 2019; Ernesti et al., 2020), homogenization of piezoelectricity (Bren-
ner, 2009; Göküzüm et al., 2019), computing the deformation behavior
of polycrystalline materials (Lebensohn and Rollett, 2020; Rovinelli et al.,
2020) and composites (Müller et al., 2015; Görthofer et al., 2020).
We rely on FeelMath (Fraunhofer ITWM, 2021), a commercial FFT based
micromechanics solver, to determine a solution of our cell problem.
Fig. 2.5 shows one example for the resulting von Mises stress field in a
polycrystalline microstructure computed by FeelMath. Nevertheless we
still need to supply computational cells, i.e., RVEs of the considered poly-
crystalline microstructure. Additionally we need to identify parameters
for the material model described in Sec. 2.2.2 to describe the deformation
behavior on a microscopic scale accurately.

(a) (b)

Figure 2.5: Example for computational homogenization. (a) Spatially resolved polycrys-
talline microstructure, (b) Resulting von Mises stress field at 0.1% macroscopic strain.
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2.4 Prerequisites for computational homogenization of polycrystalline metals

2.4 Prerequisites for computational
homogenization of polycrystalline metals

2.4.1 Polycrystalline computational cells for
micromechanical simulations

The morphology of polycrystalline microstructures can be determined
by dedicated experimental methods, like serial sectioning (Spowart
et al., 2003; Kubis et al., 2004) and FIB-SEM (Bansal et al., 2006; Groeber
et al., 2006; Zaefferer et al., 2008)). By combining these with Electron
Backscatter Diffraction (EBSD) methods (Adams and Olson, 1998; Korte
et al., 2011) the local orientation of each grain can be resolved. Fig. 1.1
and Fig. 2.4 show two examples of images obtained by EBSD.
Directly using these images as an input for computational homoge-
nization might seem like the most natural approach. However, the
experimental procedures are quite time and cost intensive (Bargmann
et al., 2018) and, in addtion, determining a representative image for the
whole microstructure can be challenging. Due to size limitations of one
image, it might not be large enough to capture statistical fluctuations
of the relevant microstructure features. It might even distort these.
Using the (generally) non-periodic experimental images can lead to
large required computational cells, e.g., in terms of grain number within
the image, to accurately predict the effective behavior (Kanit et al., 2003;
Yang et al., 2019; Schneider, 2021).
As an alternative, synthetically generated computational cells gained
popularity, see Fig. 2.6 for a polycrystalline example. These synthetic
microstructures aim at reproducing statistical features of the real mi-
crostructure, e.g., grain size and aspect ratio distribution (Gillner and
Münstermann, 2017; Prasad et al., 2019; Henrich et al., 2020). They
offer the benefit of direct control over the microstructural parameters,
yielding the possibility to tailor the microstructure to certain loading
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conditions and to capture the statistical influence of fluctuations in the
microstructural descriptors (Tallman et al., 2020; Tran and Wildey, 2021).

Figure 2.6: Example of a polycrystalline computational cell.

There exists a variety of methods to generate synthetic microstructures,
each tailored to the material class under investigation. In the following
we focus on polycrystalline metals and refer the interested reader to the
review article by Bargmann et al. (2018) for a general overview.
One possible approach is simulating the solidification and grain growth
occurring during the manufacturing process of a metal. Examples
include techniques based on Vertex methods (Kawasaki et al., 1989;
Weygand et al., 1999), cellular automata (Janssens, 2010; Saluja et al., 2012;
Kühlbach et al., 2016) and Monte Carlo methods (Anderson et al., 1989;
Radakrishnan and Zacharia, 1995). Using the phase field method (Krill
III and Chen, 2002; Nestler, 2005; Hoetzer et al., 2016) allows considering
physical principles when simulating the forming process of metals. This
comes at the cost of increased computing time and having to identify
physically reasonable model parameters. Examples for polycrystalline
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materials using the phase field approach can be found in the work
by Graf et al. (2021a;b), simulating the formation of martensite from a
prior austenite phase for an industrial application.
Describing the grains as geometric objects dispenses with the computa-
tional demanding simulation of solidification and grain growth. These
objects form a tessellation of the computational domain, i.e., there are
no voids and the objects do not overlap. Assuming the grains to be
convex polyhedrons, Voronoi tessellations (Aurenhammer, 1991) can be
used to generate representations of polycrystalline microstructures. This
approach uses a distinct set of points, called seeds, in the computational
domain to define a cell by all the points lying closer to one seed than to
any other seed, see Fig. 2.7 for a two dimensional example.

(a) (b)

Figure 2.7: Schematic drawing of a Voronoi tessellation process, following
Aurenhammer (1991). (a) Seeds in the computational domain, (b) Resulting tessellation.

For seed positions following a Poisson process, a so-called Poisson-
Voronoi tessellation, the generated microstructures often do not capture
relevant properties of the real microstructure, e.g., grain size distribution
or number of neighboring grains (Döbrich et al., 2004; Luther and Könke,
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2009). Choosing the seeds based on a precomputed sphere packing
increases the synthetic microstructures realism (Fritzen et al., 2009; Quey
et al., 2011). Laguerre tessellations extend the Voronoi tessellations by
one additional degree of freedom per cell. This so-called tessellation
weight controls the size of each cell, enabling the generation of polycrys-
talline microstructures with prescribed volume fractions (Bourne et al.,
2020). For generating synthetic microstructures with non-convex geomet-
ric models, several approaches are available, e.g., fitting experimental
data (Alpers et al., 2015; Teferra and Rowenhorst, 2018) or optimization
procedures to match the shape distributions (Groeber and Jackson, 2014;
Prasad et al., 2019; Henrich et al., 2020).
The heterogeneity of a polycrystalline microstructure is not only influ-
enced by the shape of its grains, but especially by the distribution of
crystallographic orientations (Adams and Olson, 1998; Kocks et al., 2000).
Thus, the geometric modeling approaches require an additional step,
the assignment of crystallographic orientations to each grain model. For
polycrystalline materials it is important to distinguish between two cases:
The uniformly distributed orientations and the textured case where
certain orientations are more likely to be encountered than others. The
former case results in mechanically isotropic effective properties (Krawi-
etz, 1999; Bertram et al., 2000; Böhlke and Bertram, 2001), whereas the
elastic and elasto-plastic behavior in the latter case might, in general, be
anisotropic. Besides randomly assigning orientations, e.g., see (Gillner
and Münstermann, 2017; Tu et al., 2019), some dedicated algorithms exist.
Examples include approaches discretizing the one-point correlation
function, i.e., the crystallite orientation distribution function (CODF),
which describes the orientation state of a polycrystal (Tóth and Van
Houtte, 1970; Melchior and Delannay, 2006). Following their respective
discrete CODF values, crystallographic orientations are selected and
assigned to cells in the synthetic microstructure (Chunlei et al., 2000;
Deka et al., 2006). Building upon this discretization, Eisenlohr and Roters
(2008) use a combination of stochastic and deterministic approaches
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to increase sampling efficiency. Biswas et al. (2020) and Prasad et al.
(2019) iteratively adjust the discretization of the CODF to improve the
sampling results, whereas Liu et al. (2020a) adjust the parameters
of the microstructure generator. Quey and Renversade (2018) match
the special case of a uniform orientation distribution using uniformly
distributed unit quaternions. Approximating the CODF by superposing
so-called texture components (Helming, 1996; Wassermann and Grewen,
2013) allows sampling these components and assigning orientations
accordingly (Hielscher and Schaeben, 2008).

2.4.2 Determination of single crystal
plasticity parameters

To describe the deformation behavior of polycrystalline metals on a mi-
crostructural level, we use the crystal plasticity model outlined in Sec. 2.2.
However, this model still needs to be equipped with suitable parameters.
If the model parameters cannot be derived using physical principles, we
will need to determine the parameters so that the model output matches
experimental observations. Thus, we need to minimize a function which
describes the difference between experiment and simulation.
For crystalline metals, ultrasonic testing on a single crystal (Hunting-
ton, 1947), microtensile testing (Gianola and Eberl, 2009) as well as
experiments using milled micropillars (Cruzado et al., 2015) and nano-
indentation tests (Chakraborty and Eisenlohr, 2017; Engels et al., 2019;
Liu et al., 2020b) give insight into the deformation behavior on a micro-
scopic scale. Comparing the experimental observations with simulations
on single crystals, in combination with suitable optimization methods,
allows determining the crystal plasticity parameters (Chakraborty and
Eisenlohr, 2017; Engels et al., 2019).
Using data from polycrystalline experiments allows reducing the experi-
mental effort associated with single crystal tests. Comparing the macro-
scopic data with the effective behavior, determined from simulations
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on polycrystalline RVEs, allows calibrating crystal plasticity parameters,
see Herrera-Solaz et al. (2014). Schäfer et al. (2019a) define a cost
function based on the difference between experimental and simulated
stress-strain hysteresis, leading to an optimization problem where the
objective function is expensive to compute and gradient information is
not available. Because automatic differentiation (Griewank and Walther,
2008) might be difficult to integrate into existing homogenization tools,
derivative free approaches are frequently used in this setting, see Rios
and Sahinidis (2013) for an overview. However, care has to be taken
when considering industrial applications, as determining suitable pa-
rameters are a regular task (Schäfer et al., 2019a;b; Natkowski et al.,
2021b; Arnaudov et al., 2020). Indeed, as evaluating the cost function
requires a full-field simulation it is desirable to minimize the number of
function evaluations.
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Chapter 3

Fast methods for computing
centroidal Laguerre tessellations
for prescribed volume fractions
with applications to
microstructure generation of
polycrystalline materials 1

3.1 Introduction

In a recent article, Bourne et al. (2020) used a convex variational
principle for generating Laguerre tessellations modeling polycrys-
talline microstructures with prescribed volume fractions per grain, see
Fig. 3.1 for an overview. Their insights led to the development of
fast techniques for generating polycrystalline microstructures which
are orders of magnitude faster than other approaches in the litera-
ture, for instance based on derivative-free optimization (Quey and
Renversade, 2018), statistical methods (Lautensack, 2008) or cross-
entropy approaches (Petrich et al., 2019), and more accurate than

1 This chapter is based on the publication by Kuhn et al. (2020) whereas minor
typographical and formatting changes have been made for cohesion of the manuscript
and the readers convenience
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

heuristic approaches (Lyckegaard et al., 2011).
In this chapter we improve upon the proposed method by Bourne et al.
(2020), as they essentially rely upon black-box optimization methods.
They use the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method (Nocedal, 1980) with backtracking for solving the convex
optimization problem. The backtracking is used to avoid generating
empty cells during the iterative process, and is also used for the
corresponding Newton-type methods (Kitagawa et al., 2019).
In section 3.2, we set up our notation for computing periodic Laguerre
tessellations and the resulting convex optimization problem. We discuss
pertinent solvers in section 3.3. Of particular interest here are modern
non-monotone gradient-type solvers, i.e., the methods of Malitsky and
Mishchenko (2019) and Barzilai and Borwein (1988), whose application
to optimal-transport problems appears to be novel. Compared to more
traditional solvers of (Quasi-)Newton type, they combine low cost per
iteration with non-monotone convergence behavior, which turns out to
be beneficial for the overall run-time. Indeed, non-monotone methods
have gained popularity in recent years (Nesterov, 2004), as the user
is mostly interested in minimizing the time to solution, and ensuring
a monotone convergence of the algorithm in question is typically of
secondary importance.
For computing centroidal Laguerre tessellations, we review the classical
Lloyd’s algorithm in subsection 3.2.2. Subsequently, we apply Anderson
acceleration to Lloyd’s algorithm. Anderson acceleration (Anderson,
1965) is a dedicated technique for improving the convergence behavior
of general fixed-point iterations. Its mathematical analysis is more recent,
establishing it as a particular Quasi-Newton method of multi-secant
type (Fang and Saad, 2009) and establishing the improved convergence
behavior also rigorously (Toth and Kelley, 2015; Evans et al., 2020).
In section 3.4, we study the numerical effectiveness of the proposed
algorithms for selected problems of increasing complexity. We study the
dependence of the algorithms on the number of grains and the prescribed
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grain-size distribution, with and without centering. Furthermore, we
exhibit their capabilities for polycrystalline materials of industrial
relevance.

Input: unit-cell dimensions, number of grains, grain-size distribution (GSD)

Determine target volumes of the individual cells according to GSD

Initialize seed positions for Laguerre tessellation

Compute Laguerre weights realizing the desired grain volumes
by solving a convex optimization problem

Centroids
≈ seeds?

Output: Polyhedral cells of the polycrystalline microstructure

Update seed position

yes

no

Figure 3.1: General flowchart for computing Laguerre-type models of polycrystalline
microstructures, Bourne et al. (2020).

3.2 Periodic Laguerre tessellations
and centering

3.2.1 Periodic Laguerre tessellations

Let 𝑌 be a rectangular domain in R𝑑, which we fix as 𝑌 = [0, 𝐿1) ×
[0, 𝐿2) × . . . × [0, 𝐿𝑑) for positive lengths 𝐿𝑖. 𝑌 shall serve as our unit
cell of interest, and we furnish it with periodic boundary conditions. We
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

denote the corresponding periodic distance function by 𝑑 : 𝑌 ×𝑌 → R≥0.
For a sequence (𝑥1, 𝑥2, . . . , 𝑥𝐾) ∈ 𝑌 𝐾 of distinct points lying inside 𝑌

and a given set of real weights 𝑤 ∈ R𝐾 , we denote by 𝐷1, 𝐷2, . . . 𝐷𝐾

the periodic Laguerre tessellation (Aurenhammer, 1991) of 𝑌 with seeds
(𝑥1, 𝑥2, . . . , 𝑥𝐾) and weights (𝑤1, 𝑤2, . . . , 𝑤𝐾). Each cell 𝐷𝑖 is a subset of
𝑌 defined via

𝐷𝑖 =
{︀

𝑥 ∈ 𝑌
⃒⃒
𝑑(𝑥, 𝑥𝑖)2 − 𝑤𝑖 ≤ 𝑑(𝑥, 𝑥𝑗)2 − 𝑤𝑗 for 𝑗 ∈ {1, 2, . . . , 𝐾}

}︀
.

(3.1)
The interiors of the Laguerre cells are mutually disjoint, and the Laguerre
cells cover the original volume 𝑌 . Clearly, adding a constant to each
single weight does not change the associated Laguerre cells. Notice
that the seed 𝑥𝑖 does not need to lie in the corresponding Laguerre cell
𝐷𝑖. Also, the Laguerre cell may be empty. This becomes clear when
imagining the weight 𝑤𝑖 as a "price". Loosely speaking, if the price
is excessive, the turnover, which is related to the volume of the cell,
will be zero.
For the special case of identical weights, 𝑤1 = 𝑤2 = . . . = 𝑤𝐾 , a Laguerre
tessellation is called a Voronoi tessellation, see Aurenhammer (1991). For
this special case, the seeds are always contained in the corresponding
cell. However, the kinds of tessellations which may be generated as
Voronoi tessellations are rather limited, for instance in terms of the
achievable volume-fraction distributions, see section 2.1.1 in Quey and
Renversade (2018). In contrast, Laguerre tessellations may generate any
normal tessellation with convex cells in R𝑑 for 𝑑 ≥ 3, see Lautensack
and Zuyev (2008). In this context, normal means that if the seeds are in
general position, each 𝑘-face of the tessellation arises as the intersection
of exactly 𝑑− 𝑘 + 1 cells for 𝑘 = 0, 1, . . . , 𝑑− 1.
For this article, Laguerre tessellations serve as simple geometrical models
for polycrystalline microstructures, e.g., of metallic materials, alloys,
ceramics or polycrystalline ice. We refer to section 2.1 in Bargmann et al.
(2018) for a recent overview.
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For a given sequence (𝑥1, 𝑥2, . . . , 𝑥𝐾) ∈ 𝑌 𝐾 of distinct points of lying in-
side 𝑌 and a given set of volume fractions (𝜑1, 𝜑2, . . . , 𝜑𝐾) ∈ R𝐾 , each of
which is non-negative, and which sum to unity, there is a corresponding
set of weights (𝑤1, 𝑤2, . . . , 𝑤𝐾) ∈ R𝐾 , s.t. the corresponding Laguerre
cells realize the prescribed volume fractions, i.e.,

|𝐷𝑖|
𝐿1𝐿2 · · ·𝐿𝑑

= 𝜑𝑖, (3.2)

see Aurenhammer et al. (1998), where |𝐷𝑖| denotes the volume of cell 𝐷𝑖.
The proof of this result is interesting in its own right, as it immediately
gives rise to a computational technique for computing the associated
weight vector 𝑤. As noted earlier, the component-wise addition of a
constant to the weight vector does not change the associated Laguerre
cells. Thus, we define

𝑊𝐾 =
{︃

𝑤 ∈ R𝐾

⃒⃒⃒⃒
⃒

𝐾∑︁
𝑖=1

𝑤𝑖 = 0
}︃

, (3.3)

the (𝐾 − 1)-dimensional subspace of R𝐾 with vanishing mean. For
a fixed sequence (𝑥1, 𝑥2, . . . , 𝑥𝐾) ∈ 𝑌 𝐾 of distinct points lying in-
side 𝑌 and a given set of volume fractions (𝜑1, 𝜑2, . . . , 𝜑𝐾) ∈ R𝐾 ,
define the function

𝑔 : 𝑊𝐾 → R,

𝑤 ↦→
𝐾∑︁

𝑖=1
(𝜑𝑖 · 𝐿1𝐿2 · · ·𝐿𝑑 − |𝐷𝑖|) 𝑤𝑖 +

𝐾∑︁
𝑖=1

∫︁
𝐷𝑖

𝑑(𝑥, 𝑥𝑖)2 𝑑𝑥, (3.4)

where 𝐷𝑖 denotes the 𝑖-th associated Laguerre cell (3.1). Aurenhammer-
Hoffmann-Aronov (Aurenhammer et al., 1998) have shown that the
function 𝑔 (3.4) is a concave function which admits maximizers. Fur-
thermore, each critical point (which is a maximum by concavity of 𝑔)
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satisfies the first order optimality condition

0 = 𝐷𝑔(𝑤)[𝑣]

in terms of the directional derivative of 𝑔 at 𝑤 ∈𝑊𝐾 in direction 𝑣 ∈𝑊𝐾 .
More explicitly,

𝐷𝑔(𝑤)[𝑣] ≡ 𝑑

𝑑𝑠
𝑔(𝑤 + 𝑠𝑣)

⃒⃒
𝑠=0 =

𝐾∑︁
𝑖=1

(𝜑𝑖 · 𝐿1𝐿2 · · ·𝐿𝑑 − |𝐷𝑖|) 𝑣𝑖, (3.5)

i.e., any critical point of 𝑔 satisfies equation (3.2). Furthermore, it can be
shown that 𝑔 is even strictly concave on the set

{𝑤 ∈𝑊𝐾 | |𝐷𝑖| > 0 for all 𝑖 = 1, 2, . . . , 𝐾} , (3.6)

see Kitagawa et al. (2019). It is clear that 𝑔 is not strictly concave outside
of the set (3.6). Indeed, suppose that we have 𝑤 ∈ 𝑊𝐾 , s.t. the 𝑖-the
Laguerre cell is empty. Then, the Laguerre cells remain unchanged if we
increase the 𝑖-th weight 𝑤𝑖. In particular, the function 𝑔 is constant along
the ray

𝑤 + 𝑠

[︂
𝑒𝑖 −

1
𝐾

(1, 1, . . . , 1)
]︂

, 𝑠 ≥ 0,

where 𝑒𝑖 is the 𝑖-th unit vector in R𝐾 . For completeness, notice that the
𝑖-th component of the gradient of 𝑔 on 𝑊𝐾 computes as

∇𝑖𝑔(𝑤) = 𝜑𝑖 · 𝐿1𝐿2 · · ·𝐿𝑑 − |𝐷𝑖|, (3.7)

see (3.5). Notice that∇𝑔(𝑤) ∈𝑊𝐾 automatically, i.e., its mean vanishes.
The concavity of 𝑔 (or, equivalently, the convexity of −𝑔) permits using
established convex optimization techniques as in Nocedal and Wright
(1999) to be applied, see section 3.3 for details. To finish this paragraph,
we report on a result in Bourne and Roper (2015). The function 𝑔 (3.4) is

38
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even twice differentiable on 𝑊𝑘 with second derivative

𝐷2𝑔(𝑤)[𝑣, 𝑣] = 𝑣𝑇 𝐻(𝑤)𝑣, 𝑤, 𝑣 ∈𝑊𝐾 ,

in terms of the Hessian matrix 𝐻(𝑤) ∈ R𝐾×𝐾 with entries

𝐻𝑖𝑗(𝑤) = 𝐴𝑖𝑗

2 𝑑(𝑥𝑖, 𝑥𝑗) (3.8)

for 𝑖 ̸= 𝑗, where 𝐴𝑖𝑗 denotes the area of the face between the 𝑖-th and
𝑗-th cell (which is formally set to zero if the cells do not share a face),
and 𝐻𝑖𝑖 = −

∑︀
𝑗 ̸=𝑖 𝐻𝑖𝑗 for 𝑖 = 1, 2, . . . , 𝐾.

As 𝑔 is concave and twice differentiable, the Hessian matrix 𝐻(𝑤) is
negative semidefinite. However, 𝐻(𝑤) does not have full rank, as all
rows and columns have zero mean, leading to a zero eigenvalue. In
particular, it is not invertible. As a countermeasure, we introduce the
matrix

�̃�(𝑤) = 𝐻 + tr(𝐻(𝑤))
𝐾2 1 1𝑇 (3.9)

with the vector 1 = (1, 1, . . . , 1) ∈ R𝐾 of all ones. The latter modification
makes sure that

1. If the system
�̃�(𝑤)𝑤 = 𝑣

is solved for Δ𝑤 ∈ R𝐾 with 𝑣 ∈𝑊𝐾 , then Δ𝑤 ∈𝑊𝐾 automatically.

2. If the eigenvalues of 𝐻(𝑤), considered as an operator on 𝑊𝐾 , are con-
tained in [𝜆−, 𝜆+], the eigenvalues of �̃�(𝑤) are contained in [𝜆−, 𝜆+]
as well. Furthermore, if |𝐷𝑖| > 0 for all 𝑖 = 1, 2, . . . , 𝐾, the function 𝑔

is even strictly convex, and, thus, the eigenvalues of 𝐻(𝑤) on 𝑊𝐾 are
strictly negative, i.e., 𝜆+ < 0. As a consequence, also the eigenvalues
of �̃�(𝑤) are strictly negative, ensuring invertibility of �̃�(𝑤).
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These two properties are useful when implementing Newton’s method,
see section 3.3.4. Item 1 means that we may essentially forget about the
space 𝑊𝐾 , and work in R𝐾 without second thoughts. The second item
makes sure that our modification does not lead to an ill-conditioning of
the linear system determining (3.24) the Newton increment. Indeed, for
any 𝜆 > 0, the matrix

𝐻 − 𝜆1 1𝑇

is negative semi-definite. If 𝜆 is not chosen carefully, it may deteriorate
the conditioning of the matrix in question. We know that

tr(𝐻(𝑤))
𝐾

∈ [𝜆−, 𝜆+],

as it corresponds to the mean of the eigenvalues. Furthermore, the unit
vector 1/

√
𝐾 1 spans the kernel of 𝐻(𝑤) (at least on the set where 𝑔

is strictly concave), and 1/𝐾 1 1𝑇 is the orthogonal projector onto this
kernel. Combining these observations leads to item 2.

3.2.2 Generating centroidal Laguerre tessellations

For a tessellation {𝐷𝑖} of 𝑌 denote by 𝑐𝑖 ∈ 𝑌 a centroid of 𝐷𝑖, i.e., a
minimizer of ∫︁

𝐷𝑖

𝑑(𝑐, 𝑥)2 𝑑𝑥 −→ min
𝑐∈𝑌

.

The periodic boundary conditions may give rise to special situations if
the cells 𝐷𝑖 "wrap around 𝑌 ". As a simple example, for the single cell 𝑌 ,
any 𝑐 ∈ 𝑌 will be a centroid.
However, if the Laguerre cell 𝐷𝑖 is sufficiently small, i.e., it may be
displaced in 𝑌 to a configuration not touching the boundary 𝜕𝑌 ⊆ R𝑑,
the classical representation as the center of mass

𝑐𝑖 = 1
|𝐷𝑖|

∫︁
𝐷𝑖

𝑥 𝑑𝑥 (3.10)
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(relative to a suitable local coordinate system) may be used. We shall
rely upon the latter expression for practical purposes.
A Laguerre tessellation is called centroidal (Brieden and Gritzmann,
2012) if each seed is a centroid of its corresponding cell. Although,
when looking at solidification of polycrystalline materials, there does
not seem to be any requirement that the nucleation site corresponds to
the grain centroid, it has been observed, see Bourne et al. (2020), that
centroidal Laguerre tessellations exhibit a better shape regularity than
general Laguerre tessellations.
Suppose a set of (mutually different) seeds (𝑥1, 𝑥2, . . . , 𝑥𝐾) ∈ 𝑌 𝐾 and
volume fractions 𝜑 ∈ R𝐾 with 𝜑𝑖 > 0 and

∑︀𝐾
𝑖=1 𝜑𝑖 = 1 are given. By

the reasoning of the previous section, we find a set of weights 𝑤 ∈
R𝐾 whose associated Laguerre tessellation with seeds (𝑥1, 𝑥2, . . . , 𝑥𝐾)
has cells with volume fractions 𝜑. Denote by (𝑐1, 𝑐2, . . . , 𝑐𝐾) ∈ 𝑌 𝐾

the centroids of the respective Laguerre cells. A simple method for
iteratively approaching a centroidal Laguerre tessellation with volume
fractions 𝜑 as above is to use the centroids as new seeds. A pseudo-code
of this classical Lloyd-type algorithm (Bourne and Roper, 2015) is shown
in Alg. 1.

Algorithm 1 Lloyd-type centering (𝜑, maxit, tol)

1: Determine initial guess (𝑥0
1, 𝑥0

2, . . . , 𝑥0
𝐾) of seeds

2: 𝑘 ← 0
3: residual← +∞
4: while 𝑘 < maxit and residual > tol do
5: compute Laguerre tessellation with seeds (𝑥𝑘

1 , 𝑥𝑘
2 , . . . , 𝑥𝑘

𝐾)
for volume fractions 𝜑

6: compute centroids (𝑐𝑘
1 , 𝑐𝑘

2 , . . . , 𝑐𝑘
𝐾) by (3.10)

7: (𝑥𝑘+1
1 , 𝑥𝑘+1

2 , . . . , 𝑥𝑘+1
𝐾 )← (𝑐𝑘

1 , 𝑐𝑘
2 , . . . , 𝑐𝑘

𝐾)
8: 𝑘 ← 𝑘 + 1
9: update residual, see equation (3.11)

10: end while
11: return 𝜀, residual
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

Several remarks are in order:

1. The initial guess of seeds may be determined by pseudo- or quasi-
random number generators.

2. For computing the weights of the Laguerre tessellation for given
seeds and target volume-fractions, any of the algorithms described in
section 3.3 may be used.

3. For assessing convergence at the 𝑘-th iteration, we use the residual

residual =

√︃∑︀𝐾
𝑖=1 𝜑𝑖 𝑑(𝑥𝑘

𝑖 , 𝑐𝑘
𝑖 )2

(max 𝐿𝑖)2 , (3.11)

i.e., the 𝐿2-norm of the difference between seeds and centroids,
weighted by volume-fraction and normalized by the maximum edge
length of the unit cell. A typical value for tol is 10−1.

4. The Lloyd-type algorithm presented can be shown to converge by
using a monotonicity argument (Bourne and Roper, 2015).

The problem of obtaining a centroidal Laguerre tessellation may also
be written as an energy-minimization problem, see Liu et al. (2016).
However, the resulting optimization problem admits a multitude of
minimizers, i.e., we face a non-convex optimization problem, in general,
and it is difficult to design powerful computational strategies. For
instance, there are examples where the BFGS method does not converge,
even with exact line search, see Dai (2012).
As an alternative, we investigate Anderson acceleration (Anderson,
1965), which is a technique for accelerating general fixed point iterations

𝑥𝑘+1 = 𝐹 (𝑥𝑘),
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3.2 Periodic Laguerre tessellations and centering

where, in our context, 𝑥𝑘 ∈ 𝑌 𝐾 and the mapping

𝐹 : 𝑌 𝐾 → 𝑌 𝐾 (3.12)

is given by computing the 𝐾 centroids of the Laguerre tessellation,
see Alg. 1.
More precisely, the Anderson-accelerated version of the fixed point
iteration (3.12) with depth 𝑚 > 0 stores the last 𝑚 iterates

𝑥𝑘, 𝑥𝑘−1, . . . 𝑥𝑘−𝑚+1

and their images w.r.t. 𝐹

𝐹 (𝑥𝑘), 𝐹 (𝑥𝑘−1), . . . , 𝐹 (𝑥𝑘−𝑚+1),

computes 𝛼𝑘 ∈ R𝑚 as the minimizer of the problem⃦⃦⃦⃦
⃦

𝑚∑︁
𝑖=1

𝛼𝑖(𝐹 (𝑥𝑘+1−𝑖)− 𝑥𝑘+1−𝑖)

⃦⃦⃦⃦
⃦

2

−→ min∑︀𝑚

𝑖=1
𝛼𝑖=1

(3.13)

and proposes the next iterate as

𝑥𝑘+1 =
𝑚∑︁

𝑖=1
𝛼𝑖𝐹 (𝑥𝑘+1−𝑖). (3.14)

Several remarks are in order.

1. Problem (3.13) is a quadratic problem with linear constraint. In
particular, its KKT conditions are described by an (𝑚 + 1)× (𝑚 + 1)
linear system. As 𝑚 is typically small (not exceeding 10), this problem
can solved directly with negligible computational overhead.

2. Recall that we are using periodic boundary conditions for the cell
𝑌 = [0, 𝐿1) × [0, 𝐿2) × . . . × [0, 𝐿𝑑). Thus, for any 𝑦 ∈ 𝑌 and 𝑧 ∈ 𝑍,
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

there are countably many vectors 𝜉 ∈ R𝑑 with

𝑦𝑖 = 𝑧𝑖 + 𝜉𝑖 mod 𝐿𝑖 (𝑖 = 1, 2, . . . , 𝑑). (3.15)

Indeed, for any such 𝜉, and any 𝑑-tuple (𝑘1, 𝑘2, . . . , 𝑘𝑑) of integers, we
may form the vector

𝜉 = 𝜉 +
𝑑∑︁

𝑖=1
𝑘𝑖𝐿𝑖𝑒𝑖, (3.16)

which also satisfies (3.15) with 𝜉𝑖 replaced by 𝜉𝑖. In turn, any two
vectors 𝜉 and 𝜉 satisfying equation (3.15) are related by (3.16) by a
suitable tuple (𝑘1, 𝑘2, . . . , 𝑘𝑑) of integers. Thus, we define 𝑦 − 𝑧 as
the vector 𝜉 satisfying (3.15) with minimal length (which is well-
defined if 𝑦 and 𝑧 are sufficiently close in the periodic distance).
Using this definition 𝐾-times clarifies how the difference vectors
𝐹 (𝑥𝑘+1−𝑖)− 𝑥𝑘+1−𝑖 in (3.13) have to be understood.

3. The system matrix for the KKT-system of problem (3.13) may be
updated at each iteration by computing 𝑚 inner products.

4. For the first steps, i.e., where 𝑘 < 𝑚, �̃� = 𝑘− 1 is used for the current
depth. We implement this by forcing the last few components of 𝛼𝑘

to zero.

5. For linear equations, Anderson acceleration of depth 𝑚 is "essentially
equivalent" to GMRES(𝑚) (Saad and Schultz, 1986), see Toth and
Kelley (2015).

6. For general nonlinear equations, Anderson acceleration may be in-
terpreted as a Quasi-Newton method, see Fang and Saad (2009).
More precisely, it builds up an approximate Hessian from the last 𝑚

secants. Under a suitable non-degeneracy condition it can be shown
rigorously that Anderson acceleration improves the convergence
rate of linearly converging fixed point iterations (Evans et al., 2020).
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3.3 Optimization methods

For degenerate problems, safeguarding strategies are necessary for
improving convergence (Fu et al., 2020).

7. The Anderson-accelerated Lloyd-type centering generalizes the re-
laxed (or damped) Lloyd method for 𝑚 = 1 with variable relaxation.

The resulting algorithm is summarized in Alg. 2. For 𝑚 = 0, we
(formally) recover the original algorithm Alg. 1. For our numerical
experiments, we set 𝑚 = 4.

Algorithm 2 Anderson-accelerated Lloyd-type centering
(𝜑, 𝑚, maxit, tol)

1: Determine initial guess (𝑥0
1, 𝑥0

2, . . . , 𝑥0
𝐾) of seeds

2: 𝑘 ← 0
3: residual← +∞
4: while 𝑘 < maxit and residual > tol do
5: compute Laguerre tessellation with seeds (𝑥𝑘

1 , 𝑥𝑘
2 , . . . , 𝑥𝑘

𝐾)
for volume fractions 𝜑

6: compute centroids (𝑐𝑘
1 , 𝑐𝑘

2 , . . . , 𝑐𝑘
𝐾) by (3.10)

7: update the linear system for solving (3.13)
8: determine the vector 𝛼𝑘 by solving (3.13)
9: update 𝑥𝑘+1

𝑖 ←
∑︀𝑚

𝑖=1 𝛼𝑖𝐹 (𝑥𝑘+1−𝑖)
10: 𝑘 ← 𝑘 + 1
11: update residual, see equation (3.11)
12: end while
13: return 𝜀, residual

3.3 Optimization methods

In this section, we describe pertinent optimization algorithms used for
solving the concave optimization problem (3.4)

𝑔(𝑤) −→ max
𝑤∈𝑊𝐾
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

for the unknown weight vector, and given seeds and volume fractions
(which we assume to be fixed throughout this entire section). To bring
it into a more convenient form, we shall equivalently rewrite the latter
problem as a minimization problem via

𝑓(𝑤) −→ min
𝑤∈𝑊𝐾

(3.17)

with 𝑓(𝑤) = −𝑔(𝑤), i.e., in terms of the convex function 𝑓 . In particular,
we shall use descent methods instead of ascent algorithms, for instance.

3.3.1 The gradient descent method

Recall that the gradient of the function 𝑓 (3.17) is given, see equation
(3.7), component-wise by

∇𝑖𝑓(𝑤) = |𝐷𝑖| − 𝜑𝑖 · 𝐿1𝐿2 · · ·𝐿𝑑 (3.18)

Thus, a simple gradient descent method

𝑤𝑛+1 = 𝑤𝑛 − 𝛼𝑛∇𝑓(𝑤𝑛), (3.19)

involving a positive sequence of step sizes 𝛼𝑛, may be used for solving
(3.17), as pioneered by Aurenhammer et al. (1998). If the (local) Lipschitz
constant of the gradient of 𝑓 is known to be 𝑀 , the iterative scheme
(3.19) can be shown to converge for the choice 𝛼𝑛 = 1/𝑀 , see Nesterov
(2004). However, for convex 𝑓 , the convergence rate is only logarithmic,
in general. If, in addition, 𝑓 is 𝑚-strongly convex in the vicinity of the
minimizer, the convergence rate improves to be linear, and the choice
𝛼𝑛 = 2/(𝑀 + 𝑚) optimizes the convergence rate (estimate). Notice that
the required iteration count is proportional to 𝑀/𝑚.
Unfortunately, for the problem (3.17) both the Lipschitz constant and the
strong convexity constant are not easily available. Of course, both may be
obtained as the minimum and maximum eigenvalue of the Hessian (3.8).
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3.3 Optimization methods

However, even computing the entries of the Hessian matrix (not even
accounting for extracting the extremal eigenvalues) leads to significant
computational overhead.
We are only interested in the qualitative performance of the gradient
scheme (3.19) in order to comparing it asymptotically to more elaborate
minimization schemes. Thus, taking into account the necessary dimen-
sion of the step-size (the weights have dimensions length2, the gradient
has dimension 𝑑), we simply use

𝛼𝑛 = 0.1 (𝐿1𝐿2 · · ·𝐿𝑑) 2
𝑑 −1. (3.20)

Aurenhammer et al. (1998) propose using a step-size of Polyak-type
(Polyak, 1987). However, the latter requires a good estimate of the opti-
mal objective-value (which is not available, in general) to be competitive.
Thus, we stick to the simple choice (3.20).

3.3.2 The Malitsky-Mishchenko solver

Malitsky and Mishchenko (2019) designed an adaptive strategy for
choosing the step size in gradient methods which is globally convergent
for general convex continuously differentiable functions (not necessarily
with globally Lipschitz-continuous gradient) that automatically exploits
strong convexity. The method is non-monotone, but significantly outper-
forms gradient descent methods with fixed step-size, in general.
The Malitsky-Mishchenko method involves, in addition to the step-size
𝛼𝑛, another sequence {𝜃𝑛} which is (formally) initialized by 𝜃0 = +∞.
Then, the scheme proceeds by updating a running estimate of the inverse
Lipschitz constant of the gradient as the step-size

𝛼𝑛 = min
(︂√︀

1 + 𝜃𝑛−1𝛼𝑛−1,
‖𝑤𝑛 − 𝑤𝑛−1‖

2 ‖∇𝑓(𝑤𝑛)−∇𝑓(𝑤𝑛−1)‖

)︂
(3.21)
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

and gradient descent steps (3.19), see Alg. 1 in Malitsky and Mishchenko
(2019). The sequence 𝜃𝑛 is updated in each step using the step-size
𝜃𝑛 = 𝛼𝑛/𝛼𝑛−1. The method requires an initial step size 𝛼0, which we
take as for the gradient descent scheme (3.20).

3.3.3 The Barzilai-Borwein method

Originally devised as a special type of Quasi-Newton method, the
scheme proposed by Barzilai and Borwein (1988) may also be interpreted
as an adaptive gradient descent method using the step size

𝛼𝑛 = ‖𝑤𝑛 − 𝑤𝑛−1‖2

(∇𝑓(𝑤𝑛)−∇𝑓(𝑤𝑛−1))𝑇 (𝑤𝑛 − 𝑤𝑛−1) . (3.22)

For the Barzilai-Borwein method also take the step-size of the gradient
descent scheme (3.20) as 𝛼0.
The Barzilai-Borwein (3.22) leads to 𝑟-linear convergence when ap-
plied to strongly convex quadratic objective functions (Dai and Liao,
2002). By a perturbation argument (Liu and Dai, 2001), the method
can also be shown to be locally 𝑞-linearly convergent when applied to
general strongly convex and twice differentiable objective functions.
However, there are counter-examples to global convergence for the
latter class, leading to the development of non-monotone backtracking
techniques (Fletcher, 2005) and step-size limiting approaches (Burdakov
et al., 2019), for instance. When applying the Barzilai-Borwein method
to computational micromechanics (Schneider, 2019), these globalization
techniques were not necessary for the computational examples consid-
ered. On the contrary, in most cases they decreased the performance
profile. For computing Laguerre tessellations, we made a similar observa-
tion, i.e., we did not encounter a single case where the Barzilai-Borwein
method diverged, see section 3.4 below. Thus, we shall rely upon the
Barzilai-Borwein prescription (3.22) without globalization, although we
are not aware of a mathematical justification for this choice.
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3.3.4 Newton’s method

For finding a critical point of a twice continuously differentiable function
𝑓 , Newton’s method iteratively updates

𝑤𝑛+1 = 𝑤𝑛 + 𝛼𝑛𝜉𝑛, (3.23)

where the Newton increment 𝜉𝑛 solves the equation

∇2𝑓(𝑤𝑛) 𝜉𝑛 = −∇𝑓(𝑤𝑛). (3.24)

𝛼𝑛 ∈ (0, 1] is a damping factor (similar to the step-size of the gradient
method). If 𝑤* is a critical point of 𝑓 with non-degenerate Hessian
∇2𝑓(𝑤*) and∇2𝑓 satisfies a Lipschitz condition close to 𝑤*, Newton’s
method with 𝛼𝑛 ≡ 1 can be shown to be quadratically convergent in
the vicinity of 𝑤* (Kantorovich, 1948). However, global convergence is
not achievable that way. Among the various globalization techniques
for Newton methods (Nocedal and Wright, 1999), the damped Newton
method (3.23) is particular popular. Far away from a critical point,
𝛼𝑛 < 1 may be necessary to ensure global convergence. However,
in the vicinity of a critical point, no damping is necessary (𝛼𝑛 ≡ 1
for 𝑛 ≥ 𝑛0). In this way, the local convergence speed of Newton’s
method is preserved.
If 𝑓 is (strictly) convex, 𝜉𝑛 determined by (3.24) is always a descent
direction for 𝑓 at 𝑤𝑛. Thus, a proper backtracking strategy allows us to
determine a suitable step size 𝛼𝑛. More precisely, given a backtracking
factor 𝜌 ∈ (0, 1), starting from 𝛼0

𝑛 = 1, the step size is iteratively shrunk,
i.e., 𝛼𝑘+1

𝑛 = 𝜌𝛼𝑘
𝑛, until actual descent is observed, either in function value

𝑓(𝑤𝑛 + 𝛼𝑘
𝑛𝜉𝑛) < 𝑓(𝑤𝑛)
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or in its gradient

‖∇𝑓(𝑤𝑛 + 𝛼𝑘
𝑛𝜉𝑛)‖ < ‖∇𝑓(𝑤𝑛)‖.

For the problem at hand (3.17), we shall rely upon the latter criterion,
as ∇𝑓 is cheaper to compute than 𝑓 . Under suitable conditions, this
backtracking strategy can be shown to be globally convergent under
technical conditions, see Boyd and Vandenberghe (2004). We take
𝜌 = 1/2 as our backtracking factor.
In the context of Laguerre tessellations with prescribed volumes, a
further issue needs to be addressed. For computing the Newton in-
crement 𝜉𝑛, the equation (3.24) needs to be solvable. In section 3.2.1, we
pointed out that constant vectors are in the kernel of ∇2𝑓(𝑤) for any
𝑤 ∈ R𝐾 . However, this is no problem if equation (3.24) is interpreted as
an equation on 𝑊𝐾 , i.e., ∇𝑓(𝑤𝑛) ∈𝑊𝐾 is given and 𝜉𝑛 ∈𝑊𝐾 is sought.
A simple remedy consists in adding the (suitably scaled) projector onto
the kernel onto∇2𝑓(𝑤𝑛), see equation (3.9).
Even restricted to 𝑊𝐾 , the function 𝑓 is not globally strictly convex. At
such a point 𝑤, also the Hessian will be degenerate (even when restricted
to 𝑊𝐾). More precisely, taking a look at the Hessian of 𝑔, we see that
an empty Laguerre cell 𝐷𝑖 implies that both the 𝑖-th row and the 𝑖-th
column only contain zeros.
A workaround has been proposed by Lévy (2015) by adding the con-
straint of non-empty cells to the backtracking strategy of Newton’s
scheme. This approach has been analyzed in Kitagawa et al. (2019) and
shown to be globally convergent when started at a feasible point (i.e.,
with non-empty Laguerre cells).
However, for grain-size distributions with large variation, we found
this cautious backtracking strategy to be computationally inefficient.
Although the method is quadratically convergent locally, the first few
steps may require extensive backtracking. As a simple alternative, we
add - in case of vanishing 𝑖-th cell - a suitably scaled 1 on the 𝑖-th diagonal
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entry of the Hessian. In this way, we ensure obtaining a descent direction
and avoid the extensive backtracking.

3.3.5 BFGS

For large number 𝐾 of grains, the computationally most demanding
step of Newton’s method (3.23) is solving the linear system (3.24) which
determines the Newton increment. If a direct solver is used, on the order
of 𝐾3 floating point operations are required, which may be excessive for
large 𝐾.
To reduce the effort, Quasi-Newton methods approximate the inverse
of the Hessian ∇𝑓(𝑥)−1 directly, see Nocedal and Wright (1999). The
most popular Quasi-Newton method is the Broyden-Fletcher-Goldfarb-
Shanno method (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), or BFGS, in short. In a nutshell, for every 𝑛, the next iterate is
computed as for Newton’s method (3.23)

𝑤𝑛+1 = 𝑤𝑛 + 𝛼𝑛𝜉𝑛,

but the increment is determined by

𝜉𝑛 = −𝐻𝑛∇𝑓(𝑤𝑛),

where 𝐻𝑛 ∈ R𝐾×𝐾 is a sequence of approximations to the inverse
Hessian, which is, for BFGS, updated via

𝐻𝑛+1 = 𝐻𝑛 + 𝑠𝑇
𝑛 𝑦𝑛 + 𝑦𝑇

𝑛 𝐻𝑛𝑦𝑛

(𝑠𝑇
𝑛 𝑦𝑛)2 𝑠𝑛𝑠𝑇

𝑛 −
1

𝑠𝑇
𝑛 𝑦𝑛

(︀
𝐻𝑛𝑦𝑛𝑠𝑇

𝑛 + 𝑠𝑛𝑦𝑇
𝑛 𝐻𝑛

)︀
(3.25)

where 𝑦𝑛 = ∇𝑓(𝑤𝑛+1) − ∇𝑓(𝑤𝑛) and 𝑠𝑛 = 𝑤𝑛+1 − 𝑤𝑛 . For strictly
convex objective function 𝑓 , the BFGS update (3.25) preserves symmetry
and positive definiteness of the Hessian approximation, see Nocedal and

51



3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

Wright (1999). Thus, if the initial approximation 𝐻0 is symmetric positive
definite, all further 𝐻𝑛 will remain symmetric and positive definite.
The effectiveness of BFGS crucially depends on the initial choice 𝐻0. A
common choice (Nocedal and Wright, 1999) is to use the Barzilai-Borwein
step size (3.22), i.e.,

𝐻0 = ‖𝑤0 − 𝑤−1‖2

(∇𝑓(𝑤0)−∇𝑓(𝑤−1))𝑇 (𝑤0 − 𝑤−1) Id,

provided some inital gradient step has been taken, as for the Barzilai-
Borwein method. When enriched by a backtracking strategy for
determining the step size 𝛼𝑛 in (3.23), BFGS can be shown to converge
for strongly convex functions (and further technical conditions) with a
superlinear rate (Nocedal and Wright, 1999).
Notice that we do not need to pay specific attention to the kernel of
∇2𝑓 consisting of component-wise equal weights. This is a result of 𝐻𝑛

approximating the inverse of ∇2𝑓 on 𝑊𝐾 . Indeed, 𝐻0 is a multiple of
the identity (with a proper scaling) and the BFGS update (3.25) only
modifies 𝑊𝐾 .
The BFGS method reduces the complexity required for the New-
ton step from 𝑂(𝐾3) to 𝑂(𝐾2) (due to the update of 𝐻𝑛 and the
matrix-vector product required for computing 𝜉𝑛). To further re-
duce the complexity to 𝑂(𝐾), limited-memory BFGS (𝐿 − 𝐵𝐹𝐺𝑆),
see Nocedal (1980), may be used. In general, however, the super-
linear convergence is lost. Also, 𝐿 − 𝐵𝐹𝐺𝑆 is often inferior to the
Barzilai-Borwein method, as the latter scheme’s non-monotonicity
can be advantageous (Schneider, 2019; Wicht et al., 2020b).
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3.4 Numerical demonstrations

3.4.1 Setup and used hardware

The algorithms described in sections 3.2.2 and 3.3 were implemented in
Python 3.7 with Cython extensions. For computing Laguerre tessella-
tions, we rely upon the Voro++ (Rycroft, 2009) code which we exposed
to Python via Cython bindings using an OpenMP parallelization.
To reduce the stochastic influence, we use the Sobol low-discrepancy
sequence (Sobol, 1967) for drawing log-normal grain-size distribu-
tions (Johnson et al., 1994). The numerical experiments were conducted
on desktop computer with 6 3.7 GHz CPUs and 32 GB RAM.
For solving the linear system for the Newton increment (3.24), we rely
upon NumPy’s linalg.solve routine, which wraps LAPACK (Anderson
et al., 1999). The "higher-level" vector and matrix operations are realized
by NumPy, for instance the BFGS update (3.25).
For all convex optimization methods of section 3.3, we initialize the
weights to zero. Using the estimate of Lyckegaard et al. Lyckegaard
et al. (2011), as suggested in Bourne et al. Bourne et al. (2020), did not
decrease the run-time, on average.
To ensure comparability between different solvers, all experiments are
initialized with identical seeds. We realize this by using the 3D Sobol
sequence on the (scaled) unit cube. The first few elements of the 3D Sobol
sequence are a little pathological, as they correspond to the corners of the
cell and some other very regularly positioned spots, leading to extremely
regular Laguerre tessellations. Therefore, we skip a few elements of the
Sobol sequence. To ensure comparability, we fix the number of elements
to be skipped as 1234 (for no specific reason).
At this point, we wish to draw attention to the convergence criteria
and tolerances used. For the convex optimization solvers, we test
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convergence by
‖∇𝑓(𝑤)‖
min𝐾

𝑖=1 𝜑𝑖

≤ tol (3.26)

with tol = 10−2. This choice ensures that the volume fraction of the
smallest grain is accurate to two significant digits (which we assume
sufficient for materials-science purposes). For centering, we use equation
(3.11), i.e., √︃∑︀𝐾

𝑖=1 𝜑𝑖 𝑑(𝑥𝑘
𝑖 , 𝑐𝑘

𝑖 )2

(max 𝐿𝑖)2 ≤ tol

with tol is 10−1. As Bourne et al. (2020), we noticed no visible improve-
ment of the tessellation quality for lower values of tol. In contrast, the
increase in computation times became quite visible.
We abbreviate grain-size distribution as GSD throughout section 3.4. For
all the experiments in this section, we use cubical cells, i.e., 𝐿1 = 𝐿2 = 𝐿3.
The prescribed algorithms work for anisotropic unit cells ("bricks")
as well.

3.4.2 Computing the weights of a Laguerre tessellation
with prescribed volume fractions

The overall goal of this section is to evaluate the solvers introduced in
section 3.3. For that purpose, we evaluate their iteration counts and
run-times for problems of different complexity and grain count.
As our first example, we seek Laguerre tessellations with a mono-sized
GSD, i.e., for 𝐾 grains, each grain should have a volume fraction 1/𝐾.
As our smallest number of grains, we choose 𝐾 = 250. For smaller
grain count, the run-times become even more negligible and a sensible
evaluation is difficult. Starting from 𝐾 = 250, we subsequently double
the grain count up to 16000 cells.
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Larger numbers are possible (and computationally feasible), but prob-
ably limited in terms of applicability to computational homogeniza-
tion (Shantraj et al., 2015; Wicht et al., 2020a).
The iteration counts of the investigated solvers are listed in Tab. 3.1. The
gradient method (3.19) serves as our basic reference. Even for 𝐾 = 250,
more than 300 iterations are required. For higher 𝐾, the iteration counts
are proportional to 𝐾, i.e., they roughly double when doubling the
number of grains.
For the Malitsky-Mishchenko method (3.21), the iteration counts are
significantly lower than for the gradient method, roughly by one or
two orders of magnitude. Still, we see a dependence of the iteration
count on the grain number. More precisely, the iteration count depends
approximately linearly on 𝐾, but with a non-trivial offset at 𝐾 = 0.
The Barzilai-Borwein method leads to a consistently lower iteration
count than the Malitsky-Mishchenko method, except for 𝐾 = 250, but
no more than a factor of 2. BFGS (3.25) outperforms the Barzilai-Borwein
scheme consistently in terms of iteration counts, also by no more than a
factor of two.
Newton’s method, see section 3.3.4, operates on a completely different
level in terms of iteration counts, requiring 2− 3 iterations for all grain
counts considered. In particular, we see quadratic convergence in action.

number of grains 𝐾 250 500 1000 2000 4000 8000 16000
Gradient method 352 628 1017 1817 3275 5411 9758
Malitsky-Mishchenko 16 28 37 40 62 87 124
Barzilai-Borwein 18 20 31 32 39 59 66
BFGS 11 15 18 19 22 32 38
Newton 2 3 3 3 3 3 3

Table 3.1: Iteration counts for different solvers for mono-sized GSD.
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When evaluating computational methods, apart from the iteration
counts, also the run-times are of particular importance, see Tab. 3.2.
Even at first glance we see that the gradient method is not competitive
in terms of run-time, which is certainly not surprising. The other four
solvers perform quite well in terms of run-time for the majority of
problems, requiring only a few seconds.
The Malitsky-Mishchenko and the Barzilai-Borwein method are both
gradient methods of similar type, i.e., the computational expense of their
individual steps are comparative (see also Tab. 3.3). For 𝐾 ≤ 2000, both
of their run-times are similar (and similarly negligible). Only starting at
𝐾 = 4000, differences are visible. For 𝐾 = 16000, the Barzilai-Borwein
method is about twice faster than Malitsky-Mishchenko.
Jumping ahead to Newton’s scheme for the time being, we see that
for small 𝐾 (up to 𝐾 = 2000), Newton’s method is the fastest method
investigated. For larger number of grains, Newton’s scheme falls back
behind the Barzilai-Borwein method in terms of run-time.
BFGS appears to be in between Barzilai-Borwein and Newton. For small
grain count, it is slower than Newton’s method, and for large 𝐾, it is
slower than the Barzilai-Borwein scheme.

number of grains 𝐾 250 500 1000 2000 4000 8000 16000
Gradient method 1.59 3.98 9.63 30.54 100.73 325.34 1155.00
Malitsky-Mishchenko 0.18 0.28 0.47 0.77 2.02 5.35 14.69
Barzilai-Borwein 0.19 0.27 0.54 0.65 1.30 3.69 8.21
BFGS 0.16 0.27 0.50 1.29 5.31 26.93 103.64
Newton 0.14 0.16 0.20 0.45 1.52 5.41 32.67

Table 3.2: run-time in s for different solvers for mono-sized GSD.

More insight into these observations may be gained by investigating
the run-time per iteration of the different solvers under consideration,
see Tab. 3.3. Remarkably, the three gradient-type methods require
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roughly the same computational effort per iteration. The expense is
slightly higher for the Barzilai-Borwein method than for the other two
gradient-type methods because the Python overhead plays a more
distinct role, essentially due to the lower number of iterations required
for Barzilai-Borwein method. Recall that we exposed the C++ - library
Voro++ (Rycroft, 2009) to Python via Cython, and the major computa-
tional workload of the gradient-type methods amounts to computing
Laguerre tessellations via Voro++. This library computes the Laguerre
cells individually (and sequentially), using cell-linked lists (Allen and
Tildesley, 1987). As our initial seeds are more or less equally distributed,
and - for mono-sized GSD - we look for cells of equal volume, the effort
for computing a single Laguerre cell is effectively independent of the cell
count. In turn, the total computational expense for computing the entire
Laguerre tessellation is proportional to 𝐾. We see this trend quite clearly
in Tab. 3.3 for the gradient-type solvers, highlighting the quality of the
Voro++ - implementation. Notice the non-perfect scaling of the run-times,
which is a result of the Python overhead and becomes less pronounced
for large 𝐾. A close look at the run-time per iteration for BFGS reveals
a quadratic dependence on 𝐾. In contrast, the effort required for a
Newton step grows cubically in 𝐾. These observations also clarify why
the overall run-times of BFGS lag behind those of Newton’s method for
large 𝐾. BFGS has a lower effort per iteration than Newton’s method, but
the overall iteration count is also significantly larger than for Newton’s
method, tipping the overall scale towards Newton.

number of grains 𝐾 250 500 1000 2000 4000 8000 16000
Gradient method 0.45 0.63 0.95 1.68 3.08 6.01 11.84
Malitsky-Mishchenko 1.12 0.99 1.27 1.93 3.27 6.15 11.84
Barzilai-Borwein 1.06 1.35 1.75 2.02 3.34 6.26 12.45
BFGS 1.48 1.79 2.78 6.79 24.15 84.14 272.73
Newton 6.92 5.17 6.80 14.86 50.58 180.18 1088.62

Table 3.3: run-time per iteration in 10−2s for different solvers and a mono-sized GSD.
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To finish this first example, we closer examined the convergence behavior
of the solvers under consideration. For that purpose, for 𝐾 = 1000
grains, we solve equation (3.2) up to a precision of tol = 10−10. This
level of accuracy is certainly beyond what is necessary for applications,
but gives interesting insights into the internal mechanisms of the solvers.
The residual (3.26), is plotted vs. the iteration count in Fig. 3.2. We
did not include Newton’s method due to its quadratic convergence. It
appears that all shown solvers converge linearly. The gradient method
converges slowly, but in a steady and monotonic fashion. Both the
Malitsky-Mishchenko (MM) and the Barzilai-Borwein (BB) method do
not exhibit monotone convergence behavior but lead to an oscillation
of the residual by one or two orders of magnitude. Overall, both
schemes converge 𝑟-linearly. This complies with theoretical estimates,
see section 3.3. Overall, the convergence speed of BB is higher than
for MM. BFGS also converges linearly, but in a monotonic fashion.
Put differently, we have 𝑞-linear convergence. BFGS exhibits a higher
convergence rate than the other solvers shown. However, no superlinear
convergence is observed. This is consistent to theory, as to enable
superlinear convergence, the approximation to the inverse Hessian needs
to be close, as well, see section 8.4 in Nocedal and Wright (1999). As
the Hessian is a 1000× 1000-matrix, the less than 100 iterations (and in
turn, the corresponding matrix updates (3.25)) are simply insufficient to
match the true inverse Hessian closely.
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Figure 3.2: Convergence behavior of different inner solvers for the mono-sized GSD and
𝐾 = 250 grains.

As our next computational setup we consider a grain-size distribution
with exactly two (distinct) volume fractions, each of which is equally
probable. This may be viewed as a simplified bimodal grain-size distribu-
tion (Flipon et al., 2020a). Following Bourne et al. (2020), we use a factor
of 5 between the two respective volume fractions. Thus, we consider 𝐾

grains with volume fraction 1/3𝐾 and 𝐾 grains with volume fraction
5/3𝐾, each. To keep consistency to the mono-sized GSD, the total
number of grains 2𝐾 is varied between 250 and 16000, incrementally by
factors of 2. Due to its lack of competitiveness for the mono-sized GSD,
we did not consider the gradient descent scheme any further.

number of grains 𝐾 per phase 125 250 500 1000 2000 4000 8000
Malitsky-Mishchenko 34 41 86 83 110 203 295
Barzilai-Borwein 25 32 40 48 63 71 114
BFGS 19 20 29 28 32 41 59
Newton 3 5 6 4 4 5 7

Table 3.4: Iteration counts for different solvers and the two-sized GSD.
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The iteration counts for the four investigated solution methods are listed
in Tab. 3.4. Both for Malitsky-Mishchenko and for Barzilai-Borwein,
the iteration count increases monotonically with 𝐾. A similar trend
may be observed for Newton’s method and BFGS. However, there are
exceptions between 𝐾 = 250 and 𝐾 = 1000. It is also evident that the
iterations counts for the two-sized GSD are consistently higher than for
the mono-sized GSD, see Tab. 3.1.
Comparing the iteration counts of Malitsky-Mishchenko and Barzilai-
Borwein, we see that for increasing 𝐾, the discrepancy between the
two solvers, in terms of iteration count, is increasing. For 𝐾 =
8000, Malitsky-Mishchenko requires about three times the iteration
count of Barzilai-Borwein.
As for the mono-sized GSD, BFGS requires less iterations than Barzilai-
Borwein, roughly by a factor of two for the larger 𝐾.
For Newton’s method, no quadratic convergence behavior can be
observed for the two-sized GSD. Indeed, up to 7 Newton iterations are
necessary to trigger the convergence criterion. Intuitively, this appears
clear. Newton’s method exhibits its strength close to the minimum.
However, the seeds are evenly distributed, and the weights are equal
initially. Thus, initially, the computed Laguerre cells will have roughly
equal volume. In particular, they do not appear to serve as a promising
starting value for Newton’s method. Therefore, a few preliminary
descent steps are necessary to bring the iterates into the domain of
quadratic convergence.

number of grains 𝐾 per phase 125 250 500 1000 2000 4000 8000
Malitsky-Mishchenko 0.25 0.37 0.97 1.52 3.51 12.73 36.55
Barzilai-Borwein 0.24 0.32 0.53 0.93 2.08 4.44 14.51
BFGS 0.22 0.29 0.90 1.96 7.86 34.08 171.39
Newton 0.14 0.19 0.27 0.52 1.85 8.71 92.74

Table 3.5: run-time in s for different solvers and the two-sized GSD.
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The required run-times are listed in Tab. 3.5. In general, the run-times
exceed those of the mono-sized problem, see Tab. 3.2. The Malitsky-
Mishchenko method consistently lags behind the Barzilai-Borwein solver
in terms of run-time. Newton’s method is very strong except for the
highest grain size considered. More precisely, up to 𝐾 = 2000, Newton’s
method outperforms all other solvers considered. For 𝐾 = 4000 and
𝐾 = 8000, the Barzilai-Borwein method is fastest. Again for the two-
sized scenario, BFGS does not perform admirably.
Notice that up to 𝐾 = 2000, the run-times of Barzilai-Borwein and
Newton’s method are minimal (up to about 2s). Also, for the highest
grain count considered, 16000 grains, the Barzilai-Borwein solver needs
less than 15s. Compared to the mono-sized problem, see Tab. 3.2, this
amounts to an overall increase by a factor less than two.
For further analysis, we discard BFGS.
To model more realistic grain-size distributions, we use a log-normal
distribution for the equivalent radius of the grains. To be more precise,
for a grain of volume 𝑉 , we associate the radius 𝑟 of a sphere with
precisely this volume to it

𝑉 = 4𝜋

3 𝑟3, ie, 𝑟 = 3

√︂
3𝑉

4𝜋
.

It is empirically known (Spettl et al., 2014) that the distribution of this
equivalent radius follows a log-normal distribution with probability
density function (Johnson et al., 1994)

𝜌(𝑟) = 1
𝑟
· 1

𝜎
√

2𝜋
exp

(︂
− (ln (𝑟)− 𝜇)2

2𝜎2

)︂
, (3.27)

depending on the two real parameters 𝜇 and 𝜎. The mean and standard
deviation compute as (Johnson et al., 1994)

mean = 𝑒𝜇+ 1
2 𝜎2

and stdev = 𝑒𝜇+ 1
2 𝜎2√︀

𝑒𝜎2 − 1.
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As the mean equivalent radius plays no role in the geometry generation,
we set it equal to unity. In turn, we obtain the relation 𝜇 = −1/2 𝜎2,
reducing the original two parameters to the single parameter 𝜎. In turn,
the expression for the standard deviation simplifies to

stdev =
√︀

𝑒𝜎2 − 1. (3.28)

Thus, for given standard deviation stdev, we may determine the
parameter 𝜎 characterizing the log-normal distribution (3.27) with
mean 1 explicitly

𝜎 =
√︁

log(1 + stdev2).

Thus, we may parameterize grain-size distributions by the standard
deviation. For vanishing standard deviation, we recover the mono-sized
distribution. Spettl et al. (2014) report stdev = 0.35 as typical for a
polycrystalline material that underwent grain-boundary migration by
capillary effects.
To sum up, we prescribe the unit cell size (𝐿1, 𝐿2, 𝐿3), the number 𝐾 of
grains and the standard deviation stdev of the log-normal distribution.
Then, we sample radii 𝑟1, 𝑟2, . . . , 𝑟𝐾 according to the log-normal distri-
bution by use of the Sobol sequence (Sobol, 1967). Then, we compute
the appropriate volume fractions by

𝜑𝑖 = 𝑟3
𝑖∑︀𝐾

𝑗=1 𝑟3
𝑗

,

which serves as input for our optimization routines.
For the experiment at hand, we fix the grain count to 𝐾 = 1000 and
vary the standard deviation from 0 to 0.5 in 0.05-steps. Fig. 3.3 contains
images for microstructures generated for varying standard deviation.
The seeds are identical for all structures. We see that some grains
grow, whereas others shrink, for increasing standard deviation. Please
note that the colors appearing in the figures of this article showing
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polycrystalline microstructures are chosen randomly. Their sole purpose
is to distinguish the individual cells. In particular, they are devoid of
any physical meaning.

(a) (b) (c)

(d) (e) (f)

Figure 3.3: Influence of increasing standard deviation for polycrystalline microstructures
with log-normally distributed equivalent radii and 1000 grains. The seed locations are
fixed and the plots show different draws from the log-normal distribution. (a) stdev = 0.00,
(b) stdev = 0.10, (c) stdev = 0.20, (d) stdev = 0.30, (e) stdev = 0.40, (f) stdev = 0.50.

The iteration counts and run-times for increasing standard deviation
and the Malitsky-Mishchenko and the Barzilai-Borwein scheme as well
as Newton’s method are listed in Tab. 3.6.
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MM BB Newton MM BB Newton
0.00 37 31 3 0.35 0.30 0.11
0.05 94 60 3 0.99 0.60 0.12
0.10 134 69 3 1.41 0.75 0.13
0.15 162 99 4 1.83 1.17 0.14
0.20 215 115 5 2.61 1.39 0.32
0.25 272 137 9 3.48 1.74 0.58
0.30 343 176 5 4.62 2.37 0.19
0.35 460 168 5 7.03 2.42 0.19
0.40 628 250 11 9.74 3.95 0.75
0.45 934 359 25 15.07 5.96 2.93
0.50 1742 499 48 29.77 8.85 6.05

Table 3.6: Iteration counts and run-times for different solvers and varying standard
deviation for 𝐾 = 1000 cells.

Apparently, as a general rule of thumb, increasing standard deviation
also leads to an increase in iteration count and run-time for all solvers
considered. This is not only caused by the increased difficulty, but
also by the convergence criterion (3.26) in use. Indeed, the smallest
among the volume fractions enters the convergence criterion. As the
smallest volume fraction decreases for increasing standard deviation,
the convergence criterion becomes stricter, as well. At this point, we may
question the convergence criterion we use. However, this convergence
criterion is standard, see, for instance, Lévy (2015).
Taking a closer look at the iteration counts in Tab. 3.6, we see that the
Malitsky-Mishchenko method consistently requires more iterations than
the Barzilai-Borwein method. For stdev = 0.5, it even requires more than
thrice the iteration count of Barzilai-Borwein. The required iterations
for the Barzilai-Borwein method increases superlinearly in the standard
deviation. It appears that the iteration count roughly doubles every
0.1-step in standard deviation.
For increasing standard deviation, Newton’s method is still superior, but
with a smaller margin, because it can profit less from its local quadratic
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convergence behavior. For low standard deviation (below 0.15), three
iterations suffice. For intermediate standard deviation (less than 0.4),
only a few Newton steps need to be taken before entering the domain
of quadratic convergence. For larger standard deviation, the iteration
counts increase significantly, rising up to 48 for stdev = 0.5.
Recall that we used 𝐾 = 1000 grains. For stdev = 0, we recover the
mono-sized experiment. The run-times for this case lie well below one
second. For Malitsky-Mishchenko, compared to the mono-sized case,
for stdev = 0.5 the run-time is increased by a factor of 100. For the
other two solvers, the increase is less severe, but still noticeable. Overall,
for standard deviations up to 0.4, Newton’s method is extremely fast,
with run-times below one second. Only for higher standard deviation,
a significant increase in run-time is observed. The run-times for the
Barzilai-Borwein method increase more steadily with increasing stan-
dard deviation, and are only slightly above those of Newton’s method.
Recall, from the previous experiments, that the optimal solver strongly
depends on the number of grains present in the tessellation. For 𝐾 =
1000 grains, Newton’s method always proved the fastest. For the last
experiment, we saw that the standard deviation of the grain-size distri-
bution also plays a significant role when evaluating the performance of
the solvers in question.

3.4.3 Computing centroidal Laguerre tessellations for
prescribed volume fractions

In the previous section 3.4.2, we computed periodic Laguerre tessella-
tions for prescribed volume fractions and fixed seeds. In this section,
we wish to determine centroidal Laguerre tessellations for prescribed
volume fractions, and add the centering algorithms of section 3.2.2 on top
of the optimization algorithms of section 3.3. We have seen that either
Newton’s method or the Barzilai Borwein scheme proved computation-
ally most efficient for the problems in section 3.4.2. Thus, we restrict
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to these two solvers for the subsequent investigations. For the entire
section, we use the convergence criterion (3.11) with tolerance tol = 10−1.
Recall that we check convergence for the convex optimization solvers by
condition (3.26) with tol = 10−2.
Consistent to section 3.4.2, we first investigate a mono-sized GSD with
increasing number of grains.
The number of centering iteration counts is listed in Tab. 3.7. We see
that the number of centering iterations depends only on the "outer"
algorithm used, and is independent on the "inner" algorithm. This
fact appears clear at first, but becomes more interesting as we chose
the tolerance for inner residual (3.26) comparatively large. Indeed,
for inexact Newton methods (Dembo et al., 1982), the choice of the
inner tolerance has a strong influence on the overall performance of the
scheme, see Dembo et al. (1982). However, this seems not to be the case
for the problem at hand.

number of grains 𝐾 250 500 1000 2000 4000 8000 16000
BB + Alg. 1 23 19 16 12 10 7 6
Newton + Alg. 1 23 19 16 12 10 7 6
BB + Alg. 2 13 11 10 8 7 6 5
Newton + Alg. 2 13 11 10 8 7 6 5

Table 3.7: Centering iteration counts for different optimization solvers, combined with
the Lloyd-type algorithm Alg. 1 and its Anderson-accelerated version Alg. 2, and the
mono-sized GSD.

Comparing the Lloyd-type algorithm Alg. 1 and its Anderson-accelerated
version Alg. 2, we see Anderson acceleration decreases the iteration
count in any case. However, for high grain count, the improvement is
not large. The associated run-times are listed in Tab. 3.8. Up to 𝐾 = 2000
grains, Newton’s method is faster. For higher grain count, the Barzilai-
Borwein method leads to a lower run-time. Comparing the centering
algorithms, Anderson acceleration consistently lowers the run-times.
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number of grains 𝐾 250 500 1000 2000 4000 8000 16000
BB + Alg. 1 0.59 0.81 1.33 2.25 4.49 9.61 19.27
Newton + Alg. 1 0.32 0.42 0.73 1.85 7.51 23.81 140.84
BB + Alg. 2 0.49 0.72 1.24 1.98 3.90 9.06 18.03
Newton + Alg. 2 0.28 0.33 0.55 1.39 6.48 23.66 131.66

Table 3.8: Run-time in s for different optimization solvers, combined with the Lloyd-type
algorithm Alg. 1 and its Anderson-accelerated version Alg. 2, and the mono-sized GSD.

More insight might be gained from Fig. 3.4, where the number of inner
iterations is shown vs. the current centering iteration for 𝐾 = 250. For
Lloyd’s method, see Alg. 1, the inner iteration count decreases monoton-
ically for increasing centering iteration. This property is preserved by
Anderson acceleration (except for a single centering iteration).
To sum up, for large grain counts, i.e., 𝐾 ≥ 4000, combining the Barzilai-
Borwein method with Alg. 2 performs best, requiring less than 20s for
the largest problem considered.
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Figure 3.4: Inner iterations vs centering iterations for the outer solvers for the mono-sized
GSD and 𝐾 = 250 grains.

As our next example, as in section 3.4.2, we consider a two-sized grain-
size distribution with a ratio of 5 between the volume fractions of the
two "phases", each of which has 𝐾 grains.
The centering iteration counts are listed in Tab. 3.9. Compared to the
mono-sized GSD, the iteration counts are slightly higher, on average.
Still, the observations for the mono-sized GSD also apply for this two-
sized case.

number of grains 𝐾 per phase 125 250 500 1000 2000 4000 8000
BB + Alg. 1 31 20 17 13 9 7 6
Newton + Alg. 1 31 20 17 13 9 7 6
BB + Alg. 2 18 13 12 10 7 6 5
Newton + Alg. 2 18 13 12 10 7 6 5

Table 3.9: Iteration counts for different optimization solvers, combined with the Lloyd-type
algorithm Alg. 1 and its Anderson-accelerated version Alg. 2, and the two-sized GSD.
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As already observed in Bourne et al. (2020), the time per centering
iteration decreases. Therefore, we investigate the corresponding run-
times, contained in Tab. 3.10. Already for 𝐾 = 4000, Barzilai-Borwein
combined with Alg. 2 outperforms all other variants. For the highest
grain count considered, the latter combination converges in about half a
minute, which is about 33% higher than for the mono-sized GSD.

number of grains 𝐾 per phase 125 250 500 1000 2000 4000 8000
BB + Alg. 1 1.40 1.57 2.42 4.04 6.42 12.45 33.41
Newton + Alg. 1 0.51 0.63 1.34 3.05 16.01 55.08 406.16
BB + Alg. 2 1.08 1.20 2.05 3.44 5.84 11.84 31.01
Newton + Alg. 2 0.35 0.49 1.39 3.00 14.74 51.67 389.14

Table 3.10: run-time in s for different optimization solvers, combined with the Lloyd-type
algorithm Alg. 1 and its Anderson-accelerated version Alg. 2, and the two-sized GSD.

As our last example in this paragraph, we consider the problem of
computing a centroidal periodic Laguerre tessellation with 𝐾 = 1000
grains with log-normally distributed GSD, cf equation (3.27), and vary-
ing standard deviation.
The number of centering iterations, see Tab. 3.11, is almost independent
of the inner solver (different only by 1, at most). We see that the
number of centering iterations increases monotonically with increasing
standard deviation (except for Anderson and the transition from 0.45
to 0.5). However, in contrast to the inner iterations, see Tab. 3.6, the
increase is modest. For both centering algorithms, the run-times are
comparable, and thus mainly determined by the inner solver. Taking
a closer look at the run-times for Lloyd-type centering, we see that
Newton’s method serves as the faster inner solver up to a standard
deviation of 0.2. However, Barzilai-Borwein is only slightly faster.
Indeed, for stdev = 0.5, both inner solvers lead to an overall run-time
less than half a minute.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

BB Newton BB Newton BB Newton BB Newton
Alg. 1 Alg. 1 Alg. 2 Alg. 2 Alg. 1 Alg. 1 Alg. 2 Alg. 2

0.00 16 16 10 10 1.37 0.59 1.06 0.45
0.05 16 16 10 10 1.87 0.59 1.62 0.55
0.10 16 16 10 10 2.35 0.69 1.99 0.48
0.15 16 16 10 10 3.23 1.15 2.75 1.13
0.20 16 16 10 10 4.09 3.35 3.41 3.47
0.25 17 17 11 11 4.92 8.07 4.37 8.36
0.30 18 18 12 12 6.87 8.30 6.32 8.22
0.35 18 18 12 13 8.68 9.67 7.63 10.12
0.40 20 20 15 15 12.70 20.74 11.38 19.62
0.45 21 21 17 17 18.53 25.66 17.61 27.22
0.50 22 22 16 16 25.15 29.56 23.44 29.91

Table 3.11: Centering iteration counts and run-times for different optimization solvers,
combined with the Lloyd-type algorithm Alg. 1 and its Anderson-accelerated version
Alg. 2, and varying standard deviation. * means that the method did not converge in a
reasonable amount of time.

The generated centroidal polycrystalline microstructures, for different
values of the standard deviation, are shown in Fig. 3.5. For comparison,
the non-centroidal versions may be of interest, see Fig. 3.3. Recall that we
used identical seeds for all cases, i.e., independent of standard deviation
and whether centering is applied or not. Also, the coloring schemes
are kept consistent. Thus, it is possible to match the various grains
for all cases considered. Apparently, the centroidal tessellations in
Fig. 3.5 exhibit a much higher shape regularity than the non-centered
tessellations of Fig. 3.3. Also, the sphericity of the large grains becomes
more pronounced for increasing standard deviation.
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3.4 Numerical demonstrations

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Influence of increasing standard deviation for centered polycrystalline
microstructures with log-normally distributed equivalent radii and 1000 grains.
(a) stdev = 0.00, (b) stdev = 0.10, (c) stdev = 0.20, (d) stdev = 0.30, (e) stdev = 0.40,
(f) stdev = 0.50.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

3.5 Examples with a higher
level of complexity

After thoroughly assessing the performance of the convex-problem
solvers and the centering, we shall investigate examples with a higher
degree of complexity.
We used the Barzilai-Borwein method to generate a microstructure with
100000 = 106 grains of identical volume, up to an accuracy of 10−2, as
before. For quasirandom initial positions, the Barzilai-Borwein method
needed 282.85s, i.e., less than 5 minutes. The resulting microstructure
is shown in Fig. 3.6a. Coupled to the Anderson-accelerated Lloyd
algorithm, solved up to an accuracy of 10−4, took 338.32s, i.e., less
than six minutes. The resulting microstructure is shown in Fig. 3.6b
and may be compared to its non-centered cousin, cf Fig. 3.6a. Even
without the multi-level strategies of Mérigot (2011) and Lévy (2015), we
are able to generate microstructures with high complexity to be used in
crystal-plasticity FEM (Becker, 1991; Barbe et al., 2001; Roters et al., 2010)
or FFT (Lebensohn and Rollett, 2020; Shantraj et al., 2015; Wicht et al.,
2020a) frameworks in a matter of seconds to a few minutes.
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3.5 Examples with a higher level of complexity

(a) (b)

Figure 3.6: Generated microstructure with 100000 grains of identical volume. (a) Non-
centroidal Laguerre tessellation, (b) Centroidal Laguerre tessellation.

The framework presented may also be used for generating microstruc-
tures with a morphological texture, i.e., a prescribed spatial gradient
in the grain sizes. Such microstructures may be the result of high
temperature gradients that may occur inside of polycrystalline metals,
for example during welding (Lehto et al., 2016).
We follow the ideas of Bourne et al. (2020) and restrict the initial positions
of the seeds to particular subsets. Of course, the resulting grains need not
be entirely contained in the pre-selected areas, in particular if coupled to
the centering methods. Still, interesting microstructure emerge, as we
shall demonstrate by an explicit example.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

We consider a cubical cell [0, 𝐿] × [0, 𝐿] × [0, 𝐿]. We shall divide the
grains into three classes:

1. 1024 grains with initial positions restricted to
[︀
0, 𝐿

4
]︀
× [0, 𝐿] × [0, 𝐿]

accounting for 1/3 of the volume fraction.

2. 256 grains with initial positions restricted to
[︀

𝐿
4 , 𝐿

2
]︀
× [0, 𝐿] × [0, 𝐿]

accounting for 1/3 of the volume fraction.

3. 64 grains with initial positions restricted to
[︀

𝐿
2 , 𝐿

]︀
× [0, 𝐿] × [0, 𝐿]

accounting for 1/3 of the volume fraction.

Thus, we have three types of grains. Each type has the same total volume.
However, the grain volume of class one is four times smaller than for the
second class, and sixteen times smaller than the third class. Also, the first
class is restricted to the first quarter of the 𝑥-face, whereas the second
class is restricted to the second quarter, and the third phase makes up
the last half of the 𝑥-axes.
Generating the microstructure with Barzilai-Borwein and Anderson-
Lloyd (with accuracy as above) took 2.0s. The resulting microstruc-
ture is shown in Fig. 3.7b. The first class is shown in red-to-black,
the second class in yellow, whereas the third class is characterized
by a grayish coloring.
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3.5 Examples with a higher level of complexity

(a) (b)

Figure 3.7: Generated polycrystalline microstructure with spatial size-gradient. (a) Slice
through the center, (b) Volumetric view.

As discussed in the introduction of this article, modern image-based
characterization techniques enable measuring grains-size distributions
of polycrystalline materials empirically. Although analytically given
grains-size distributions have their merits, relying upon empirically
given GSDs permits a close comparison to real-world specimens, in
particular concerning their inherent imperfections and deviations from
theoretical GSDs.
To demonstrate the capabilities of the proposed methodology, we use
the emprical GSDs determined by Döbrich et al. (2004) as our target
GSDs for generating synthetic microstructures. More precisely, we use
histogram bins for describing the desired GSD, see Fig. 3.8.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

target values simulation results
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Figure 3.8: Comparison of targeted and reached bin frequencies for the GSD of Döbrich
et al. (2004). (a) 250 grains, (b) 500 grains, (c) 1000 grains.
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3.5 Examples with a higher level of complexity

Different centroidal periodic Laguerre tessellations were generated with
an increasing number of grains using Barzilai-Borwein in combination
with the Anderson-Lloyd method. The resulting microstructures are
shown in Fig. 3.9, and the run-times are collected in Tab. 3.12. We see
that even the largest structure with 8000 grains required only slightly
more than two minutes to compute.

(a) (b) (c)

(d) (e) (f)

Figure 3.9: Generated microstructures with empirical GSD of Döbrich et al. (2004).
(a) 250 grains, (b) 500 grains, (c) 1000 grains, (d) 2000 grains, (e) 4000 grains,
(f) 8000 grains.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

Number of grains 250 500 1000 2000 4000 8000
run-time in s 0.53 1.62 3.04 10.57 33.15 133.51

Table 3.12: Run-times for different numbers of grains and the empirical GSDs of Döbrich
et al. (2004) using BB and Alg. 2.

Of particular importance to us is the ability of the methodology to match
any prescribed empirical GSD. For this reason, we take a look at Fig. 3.8,
where both the target and the realized histograms are shown for 250,
500 and 1000 grains. For 250 and 500 grains, differences between the
histograms are visible, although on a level probably within engineering
accuracy. For 1000 grains, the target and the realized histograms are
difficult to distinguish by eye.
To gain more insight, we plotted the absolute errors (in %) between
the desired and targeted frequencies per bin, cf Fig. 3.10. We see a
maximum error of about 0.5% for 250 grains, 0.3% for 500 grains and
below 0.15% for 1000 grains. For a higher grain count, the error decreases
further. More precisely, we see that the error decreases as 1/𝐾, where
𝐾 denotes the number of grains, i.e., the error reduces roughly by 50%
when doubling the number of grains. This is no surprise, but a result
of our quasirandom sampling of the grain sizes, which theoretically
predicts a 1/𝐾 decrease of error upon sampling (Asmussen and Glynn,
2007). In contrast, a purely random sampling only reduces the expected
error by a factor of 1/

√
𝐾. To gain some intuition into this difference,

essentially to arrive at the same error for random sampling that we
obtained with quasirandom sampling and 1000 grains would require
10002, i.e., one million, grains, on average. Last but not least let us
remark that the maximum error decreases linearly, but the bin-wise error
might not. Indeed, taking a look at the second-smallest bin, the error
only decreases for 2000 grains compared to 250 grains. However, the
corresponding error is already small for 250 grains.
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Figure 3.10: Absolute frequency error of the microstructure realizations of Fig. 3.9, as
a result of the quasi-random sampling, compared to the target values of Döbrich et al.
(2004). (a) 250 grains, (b) 500 grains, (c) 1000 grains, (d) 2000 grains, (e) 4000 grains,
(f) 8000 grains.
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

3.6 Conclusion

This work has been devoted to generating geometry-based microstruc-
ture models for polycrystalline materials in terms of Laguerre tessella-
tions. According to Ball and Carstensen (2015) Laguerre tessellations
describe polycrystalline microstructures with convex grains. Put differ-
ently, in order to describe a geometrically more complex polycrystalline
microstructure, non-convex grains have to be considered.
In a recent work, Bourne et al. (2020) have shown that, for any given set
of seed points and prescribed volume fractions, a corresponding set of
Laguerre weights realizing a Laguerre tessellation with the prescribed
volume fractions may be determined by solving a convex program. As
a consequence, using block-box optimization methods, Bourne et al.
(2020) were able to generate polycrystalline microstructures of industrial
complexity in the order of minutes.
In this article, we retained the basic algorithmic framework of Bourne
et al. (2020) for computing the weights of a periodic Laguerre tessellation
for prescribed seed locations and volume fractions, and exploited the
benefits of modern non-monotone methods of gradient type, i.e., the
Malitsky-Mishchenko method and the Barzilai-Borwein scheme, in the
context of semi-discrete optimal transport.
In the numerical experiments we saw that, for small to moderate grain
count and low standard deviation of the grain-size distribution, New-
ton’s method outperforms all other methods considered. For larger
number of grains or for larger spread of the grain sizes, the Barzilai-
Borwein method proved superior in terms of run-time. As the run-time
for small- to medium-sized problems is small anyway, the Barzilai-
Borwein method may serve as a general-purpose method for computing
the weights of Laguerre tessellations.
To increase the physical realism, we also contributed to computing cen-
troidal Laguerre diagrams of prescribed volume fractions by suggesting
to combine the classical Lloyd’s algorithm to Anderson acceleration, a
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3.6 Conclusion

general-purpose acceleration scheme for fixed-point methods. For all
problems considered, the Anderson-accelerated Lloyd’s method proved
superior to the classical Lloyd’s method. Anderson acceleration might
also prove more powerful if higher accuracy for centering is required,
in particular when compared to BFGS-type centering (Liu et al., 2016;
Hateley et al., 2015). However, in the context of polycrystalline mi-
crostructures, such a high level of accuracy appears not to be necessary.
All in all, combining the improved convex optimization solver, the cen-
tering and an OpenMP-parallel implementation permits generating poly-
crystalline microstructures of industrial complexity and relevance in a
matter of seconds to minutes, at most, reducing the run-time and increas-
ing the number of grains compared to the work of Bourne et al. (2020).
In particular, for grain-size distribution with large standard deviation
of the grain sizes, it appears imperative to accept iterates with van-
ishing Laguerre cells. Classically, backtracking methods are used to
avoid empty Laguerre cells during the iterative process. The proposed
gradient methods avoid such backtracking - in fact, their performance
decreases when backtracking is used. Furthermore, we also proposed
a simple regularization strategy for Newton’s method in case of van-
ishing Laguerre cell volume which leads to a robust and competitive
computational scheme.
Our solution schemes may be further improved by using multi-level
strategies, as pioneered by Mérigot (2011) and Lévy (2015). However,
for applications to micromechanics, the number of grains to consider
typically does not exceed a few thousand.
Notice that we describe the morphological texture of a polycrystalline
aggregate in terms of the seed locations and the volume fractions, taking
into account only one-point statistics (Torquato, 2002). We have shown,
by example, that microstructures with a spatial gradient in the grain-size
distribution may be generated. Also, experimentally determined grain-
size distributions may be reproduced with high accuracy, provided the
equivalent radii are drawn in a pseudo-random fashion. Still, it might
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3 Fast methods for computing Laguerre tessellations with prescribed volume fractions

be interesting to see whether the algorithms could be extended to more
general morphological features, e.g., sphericity.
Last but not least it is clear that, in order to conduct computational
experiments, the generated polycrystalline microstructures need to be
furnished with crystal orientations per grain, leading to possible crys-
tallographic texture of the material under consideration. However, the
latter is typically realized by a post-processing procedure, see, e.g., Quey
et al. (2018), and is thus complementary to the approach presented.

82



Chapter 4

Generating polycrystalline
microstructures with prescribed
texture coefficients 1

4.1 Introduction

The methods proposed in Chap. 3 enable the generation of polycrys-
talline microstructures of industrial complexity within several seconds
up to a few minutes. As outlined in Sec. 2.4 the next step in the gener-
ation of synthetic polycrystalline microstructure is assigning crystallo-
graphic orientations to each grain.
In this chapter, we propose a method based on condensing the informa-
tion carried by the crystallite orientation distribution function (CODF)
via the coefficients of a tensorial series expansion (Guidi et al., 1970;
Adams et al., 1992). As these tensorial coefficients are easy to compute
from experimental data, directly linked to the bounds of mechanical
properties (Böhlke and Bertram, 2003; Böhlke and Lobos, 2014) and easily
applied in microstructural sensitive design (Fullwood et al., 2010; Lobos
and Böhlke, 2015), we prefer them to an approach involving spherical
harmonics (Roe, 1965; Bunge, 1982). Moreover, Böhlke (2005) introduced

1 This chapter is based on the publication by Kuhn et al. (2022) whereas minor
typographical and formatting changes have been made for cohesion of the manuscript
and the readers convenience
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

a method for estimating the crystallite orientation distribution function
for a finite number of given texture coefficients and Junk et al. (2012)
analyzed this approach in the context of maximum entropy moment
problems. Böhlke (2006) derived a hierarchy of evolution equations for
the texture coefficients under the Taylor-Voigt assumption of vanishing
strain fluctuations on the microscale. Motivated by these observations,
we propose to use a limited set of tensorial texture coefficients as the
input of a microstructure generator, with the goal to obtain crystallo-
graphic orientations for each crystallite matching the prescribed texture
coefficients. We follow a two-step procedure. First, the orientations are
sampled randomly. In a second step, these orientations are corrected
in terms of a gradient-based optimization technique, which ensures
that the resulting texture coefficients match the prescribed ones up to
a given tolerance. To introduce the Texture coefficient Optimization for
Prescribing orientations (TOP) method, we briefly revisit the notation of
rotations in Sec. 4.2.1. In Sec. 4.2.2, we outline the problem formulation
and the solution scheme. We investigate the capabilities of the proposed
method, by comparing it to state-of-the-art algorithms in Sec. 4.3.

4.2 Background on modeling
and optimization

4.2.1 Representing the texture

Describing the deformation behavior of a polycrystal, i.e., an agglomer-
ate of crystals, by crystal plasticity requires taking the distinct orientation
of each crystallite into account. For instance the stiffness tensor C in
Hooke’s law (2.31) depends on the crystal orientation. To describe the
orientations in a polycrystalline material, for each crystallite we use a
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4.2 Background on modeling and optimization

proper orthogonal tensor

𝑄 =
3∑︁

𝑖=1
𝑔𝑖 ⊗ 𝑒𝑖, (4.1)

where (𝑒1, 𝑒2, 𝑒3) and (𝑔1, 𝑔2, 𝑔3) represent the fixed orthonormal basis
of the sample and the crystallite, respectively. Thus, the orientation
of a crystallite is encoded by the rotation from the crystal coordinate
system into the sample coordinate system. All orientation tensors 𝑄

are elements of the group of proper rotations in three dimensions, i.e.,
𝑄 ∈ 𝑆𝑂(3). In the following, we use the expressions rotation and
orientation interchangeably.
For a given polycrystal, the orientation may be succinctly described in
terms of the crystallite orientation distribution function (CODF) 𝑓 , a
probability distribution on 𝑆𝑂(3) w.r.t. the Haar Measure 𝑑𝑄 (normal-
ized to unity). More precisely, the CODF 𝑓 is non-negative,

𝑓(𝑄) ≥ 0 ∀ 𝑄 ∈ 𝑆𝑂(3), (4.2)

and normalized ∫︁
𝑆𝑂(3)

𝑓(𝑄) 𝑑𝑄 = 1. (4.3)

For a (measurable) subset 𝑆 ⊆ 𝑆𝑂(3) of orientations, the expression∫︀
𝑆

𝑓(𝑄) 𝑑𝑄 computes the probability to find orientations contained in
the set 𝑆. Due to the invariance properties of the Haar measure (Gel’fand
et al., 2018), the invariance property∫︁

𝑆𝑂(3)
𝑓(𝑄) 𝑑𝑄 =

∫︁
𝑆𝑂(3)

𝑓(𝑄𝑄0) 𝑑𝑄 holds for all 𝑄0 ∈ 𝑆𝑂(3).

(4.4)
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

Moreover, the CODF reflects the underlying symmetries of the crystals
forming the aggregate, i.e.,

𝑓(𝑄) = 𝑓(𝑄𝐻𝐶) holds for all 𝐻𝐶 ∈ 𝑆𝐶 ⊆ 𝑆𝑂(3), (4.5)

where 𝑆𝐶 denotes the (discrete) symmetry group of the crystals, as the
orientation states 𝑄 and 𝑄𝐻𝐶 correspond to the same physical orienta-
tion state of the crystallite. As a result of from a forming process, the
sample itself may possess a certain symmetry, encoded by a symmetry
group 𝑆𝑆 . This is reflected by the CODF in terms of the condition

𝑓(𝑄) = 𝑓(𝐻𝑆𝑄) ∀ 𝐻𝑆 ∈ 𝑆𝑆 ⊆ 𝑆𝑂(3), (4.6)

where 𝑆𝑆 denotes the symmetry group of the sample. For the sake
of readability, we will only consider the case of cubic crystals and
triclinic sample symmetry in the following (Morawiec, 2003, Ch. 3). Our
approach permits a straightforward extension to the general case with
arbitrary crystal and sample symmetries, see Zheng and Zou (2001a;b).
If the CODF is not uniform, i.e., 𝑓(𝑄) ̸= 1 for some 𝑄 ∈ 𝑆𝑂(3), then the
material will be said to possess a crystallographic texture.
Working with the full CODF is oftentimes impractical. Guidi et al. (1970)
proposed a way to condense the encoded information. More precisely,
any square integrable function 𝑓 may be expressed in terms of a tensorial
Fourier series (Guidi et al., 1970; Adams et al., 1992)

𝑓(𝑄) = 1 +
∞∑︁

𝑖=1
V′

⟨𝛼𝑖⟩ · F
′
⟨𝛼𝑖⟩(𝑄), (4.7)

involving the tensorial Fourier, or texture, coefficients V′
⟨𝛼𝑖⟩ and the

tensor functions F′
⟨𝛼𝑖⟩ (Böhlke, 2005; Fernández and Böhlke, 2019). The

subscript 𝑖 denotes the number of linear independent harmonic cubic
tensors of rank 𝛼. Harmonic tensors, denoted by a prime (·)′, are
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completely symmetric and traceless, i.e., the relations

𝐴′
𝑖𝑗𝑘𝑙 = 𝐴′

𝑗𝑖𝑘𝑙 = 𝐴′
𝑗𝑖𝑙𝑘 = · · · ,

3∑︁
𝑖=1

𝐴′
𝑖𝑖𝑘𝑙 = 0 (4.8)

reduce the number of degrees of freedom to 2𝛼 + 1 (Böhlke, 2005).
The tensor functions F′

⟨𝛼𝑖⟩(𝑄) in equation (4.7) arise by rotating suitable
reference tensors T′

⟨𝛼𝑖⟩ (Guidi et al., 1970)

F′
⟨𝛼𝑖⟩(𝑄) = 𝑄 ⋆ T′

⟨𝛼𝑖⟩, (4.9)

where
𝑄 ⋆ T = 𝑇𝑖𝑗...𝑝(𝑄𝑒𝑖)⊗ (𝑄𝑒𝑗)⊗ . . . (𝑄𝑒𝑝) (4.10)

denotes the Rayleigh product, i.e., the rotation of a tensor by 𝑄. Without
loss of generality and following Böhlke et al. (2010) and Dyck and Böhlke
(2020), we normalize the Frobenius norm of the reference tensors to

‖T′
⟨𝛼𝑖⟩‖ = 2𝛼 + 1 (4.11)

instead of ‖T′
⟨𝛼𝑖⟩‖ = 1 (as done by Guidi et al. (1970)). Interpreting

the texture coefficients V′
⟨𝛼𝑖⟩ as a convex combination of normalized

reference tensors of single crystal states (Fernández and Böhlke, 2019),
we compute the tensorial texture coefficients in the case of discrete
(experimental) orientation data as (Böhlke, 2006)

V′
⟨𝛼𝑖⟩(𝑄1, . . . , 𝑄𝐾) = 1

2𝛼𝑖 + 1

𝐾∑︁
𝑘=1

𝑐𝑘 𝑄𝑘 ⋆ T′
⟨𝛼𝑖⟩, (4.12)

where 𝑐𝑘 denotes the volume fraction of orientation 𝑄𝑘 among 𝐾 orien-
tations. From equations (4.11) and (4.12) it follows that the Frobenius
norm of all texture coefficients V′

⟨𝛼𝑖⟩ lies within the interval [0, 1]. Böhlke
(2006) and Böhlke and Lobos (2014) use the norm to measure the degree
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

of anisotropy. For a completely uniform CODF, all texture coefficients
vanish, whereas for the case of single crystals the norm of all texture
coefficients is equal to one.
As we seek a compact representation of the CODF in the following,
we will restrict to the texture coefficients up to rank six. As the cubic
reference tensor of rank two is zero and, because of the cubic crystal
symmetry, odd-rank reference tensors up to a rank of eight vanish (Guidi
et al., 1970), we focus on the texture coefficients of rank four and six. For
a precise overview and thorough discussion of texture coefficients in a
more general context, the reader is referred to the work of Fernández
and Böhlke (2019).

4.2.2 Texture coefficient optimization
for prescribing orientations (TOP)

To create digital representations of polycrystalline microstructures, it
is not sufficient to solely match the grain morphology. In addition, we
have to take the orientation state, i.e., the CODF, into account (Kocks
et al., 2000). Many tools either rely on simple model CODFs to generate
orientations (Quey et al., 2011; 2018), need (possibly vast) experimental
data (Groeber and Jackson, 2014) or at least a representation of the
complete CODF (Eisenlohr and Roters, 2008) to generate orientations for
digital microstructures. In this section, we propose a method to generate
orientations based on tensorial texture coefficients. For a given unit cell,
subdivided into individual grains, our goal is to prescribe the orientation
per grain in such a way that the resulting texture coefficients V′

⟨𝛼⟩ of
the unit cell match the prescribed ones V̄′

⟨𝛼⟩ up to a given tolerance tol,
thus approximating the underlying CODF. To this end, we formulate our
objective function as the difference in independent components between
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the current and the desired texture coefficients

ℓ(𝑄𝐺) =

⎯⎸⎸⎷𝛼max∑︁
𝛽=4
‖V̄′

⟨𝛽⟩ − V′
⟨𝛽⟩(𝑄𝐺)‖2, (4.13)

where 𝑄𝐺 = (𝑄1, . . . , 𝑄𝐾) is a vector of orientations (one for each of
the 𝐾 cells) and 𝛼max denotes the maximum rank of the considered
texture coefficients.
Starting from a randomly initialized set of orientations, we seek to
minimize the objective function ℓ(𝑄𝐺). The objective function ℓ is contin-
uously differentiable, and it natural to use gradient-based optimization
techniques. Indeed, the objective function ℓ is actually a polynomial in
the components of the individual grain orientations 𝑄𝑘. In particular,
the function ℓ is infinitely often differentiable.
The simplest conceivable approach proceeds via gradient descent, i.e.,
following the direction of steepest descent. Please keep in mind that
the objective function ℓ is defined (4.13) on the 𝐾-fold product of 𝑆𝑂(3).
The space of special orthogonal tensors 𝑆𝑂(3) forms a non-linear subset
of the space of second-order tensors. In particular, a simple explicit
Euler discretization of gradient descent does not work, as the next trial
point does not necessarily lead to vector whose components satisfy the
constraints of 𝑆𝑂(3) (Taylor and Kriegman, 1994; Mäkinen, 2008).
This is illustrated in Fig. 4.1a. On a curved space with Riemannian
metric, the natural extension of straight lines are so-called geodesics,
which emanate from a point in a specific (tangent) direction by par-
allel translation. On a (compact, matrix) Lie group with its natural
Riemannian metric (the Killing form), following the geodesics may
be computed in terms of the matrix exponential. In case of 𝑆𝑂(3),
this reduces to Rodrigues’ formula

exp (𝐽(𝜔)) = 𝐼𝑑 + sin(𝜃)
𝜃

𝐽(𝜔) + 1− cos(𝜃)
𝜃2 𝐽2(𝜔), (4.14)
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

describing a rotation around an axis 𝑢 by an angle 𝜃 and where we set
𝜔 = 𝜃 𝑢 as well as

𝐽(𝜔) =

⎛⎜⎝ 0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

⎞⎟⎠ . (4.15)

The gradient descent scheme works as follows, where a step size 𝑡 > 0 is
fixed beforehand. Suppose the 𝑖-th iterate 𝑄𝑖

𝐺 = (𝑄𝑖
1, . . . , 𝑄𝑖

𝐾) is given
(𝑖 = 0, 1, . . .). Then, we investigate the function

ℓ𝑖(𝜔) = ℓ(𝑄𝑖
1exp (𝐽(𝜔1)) , . . . , 𝑄𝑖

𝐾exp (𝐽(𝜔𝐾))), (4.16)

where 𝜔 ≡ (𝜔1, . . . , 𝜔𝐾) ∈ R3𝐾 . Computing∇ℓ𝑖(0) ∈ R3𝐾 by the chain
rule, gradient descent proceeds via

𝑄𝑖+1
𝐺 =

(︀
𝑄𝑖

1exp (𝐽(−𝑡 [∇ℓ𝑖(0)]1)) , . . . , 𝑄𝑖
𝐾exp (𝐽(−𝑡 [∇ℓ𝑖(0)]𝐾))

)︀
(4.17)
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Figure 4.1: (a) Gradient descent on a linear space vs. (b) descent along a geodesic (dashed
line) on the manifold 𝑆𝑂(3).
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4.3 Computational investigations

4.3.1 Setup

In the following sections, we wish to provide insights into the per-
formance of the proposed TOP method. As a first step, we consider
linear elastic material behavior, i.e., we investigate the effective stiffness.
Secondly, we study cyclic stress-strain hysteresis.
To create the morphology of the microstructures under investigation,
we use the algorithm described in Kuhn et al. (2020) to generate digital
polycrystalline microstructures with prescribed volume fractions. For
the morphology we consider two cases, a unique and log-normal grain
size distribution (GSD). The former means that all grains have the same
volume, i.e., 𝑉𝑔 = 1/𝐺, where 𝐺 denotes the total number of grains
in the volume element. Restricting to a unique grain size permits us
to study the influence of the individual grain orientations exclusively.
Due to their frequent occurrence in experiments (Spettl et al., 2014), we
also investigate microstructures with an equivalent diameter following
a log-normal grain size distribution with mean equal to unity and a
standard deviation of 0.15, see Kuhn et al. (2020).
For a fixed morphology, we furnish the grains with orientations, where
we investigate three different CODFs, namely a uniform, one with a
slight texture and one with an increased texture. For the former, we
compare the accuracy of TOP and the algorithm proposed by Quey et al.
(2011; 2018), integrated into the polycrystal generation software Neper.
In addition, we include a random orientation sampling (realized using
the scipy implementation for sampling the Haar distribution (Stewart,
1980)) as a benchmark. For the textured CODFs, we compare the TOP
method to random sampling from discrete orientation measurements,
which is a common practice (Gillner and Münstermann, 2017; Tu et al.,
2019). For the textured CODFs and a log-normal GSD, we additionally
consider the Texture Discretization Technique (TDT) algorithm proposed
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

by Melchior and Delannay (2006), which, in a first step, samples ori-
entations using the method proposed by Tóth and Van Houtte (1970).
In a subsequent clustering step, a binary look-up table is computed by
evaluating the misorientation of each pair of sampled orientations. If
this misorientation is below a chosen threshold value, the corresponding
entry in the look-up table is set to 1 otherwise to 0. To assign orientations
to grains, each grain is associated with a number of so-called elementary
volumes according to their size, which is used to find orientations in
the look-up table with at least this number of orientations having low
misorientation. The corresponding crystallographic grain orientation is
then the average of orientations with low misorientation to each other.
The parameters, i.e., the number of elementary volumes per grain and
the threshold value for the misorientation, have to be chosen judiciously.
The TOP method is implemented in Python with Cython extension
following the optimization procedure outlined in section 4.2.2. Unless
otherwise specified, we use a tolerance of tol = 10−8 to solve the
optimization problem and consider texture coefficients up to rank six.
The material model described in Sec. 2.2.2 is implemented in a user-
material-subroutine (UMAT). The coefficients of the elastic stiffness
tensor are taken from the literature (Wu et al., 2017; Schäfer et al., 2019a),
whereas the critical resolved shear stress, assumed to be identical for
all slip systems, and the parameters of the kinematic hardening model
were fitted to experimental stress-strain hysteresis of the steel C45 using
Bayesian optimization (Kuhn et al., 2021). The complete set of used
model parameters is summarized in Tab. 4.1.
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cubic stiffness (in Voigt notation) 𝐶11 = 231.4 GPa 𝐶12 = 134.7 GPa 𝐶44 = 116.4 GPa
flow rule �̇�0 = 0.001s−1 𝑚 = 100
Ohno-Wang model parameters 𝑀 = 8 𝜏𝑐 = 81.4 GPa

𝐴 = 6910.0 MPa 𝐵 = 6734.0
lattice type BCC
slip systems {110}⟨111⟩

Table 4.1: Parameters used for the crystal plasticity
model (Wu et al., 2017; Schäfer et al., 2019a).

To efficiently compute the effective stiffness as well as the macroscopic
stress-strain hysteresis, we use the FFT-based solver FeelMath (Fraun-
hofer ITWM, 2021; Wicht et al., 2020a;b). For the stiffness computa-
tions we rely on the conjugate gradient method (Zeman et al., 2010;
Brisard and Dormieux, 2010), whereas for the non-linear problem we
use a Newton-CG method (Gélébart and Mondon-Cancel, 2013; Ka-
bel et al., 2014). For both problems we use the Moulinec-Suquet dis-
cretization (Moulinec and Suquet, 1994; 1998). For a perspective of
solution schemes and discretizations, we refer to the recent review article
by Schneider (2021). By default, we carry out the computations on peri-
odic microstructures, discretized by 643 voxels. Please note that we apply
periodic boundary conditions to compute the stiffness and hysteresis.

4.3.2 Linear elastic stiffness

In this section, we study the effect of different orientation-sampling
techniques on the effective stiffness of polycrystalline microstructures.
In order to minimize the influence of the underlying microstructure
morphology, we use a fixed grain microstructure for each realization and
all orientation sampling methods. This is illustrated in Fig. 4.2, where
we show the results of different sampling techniques for a fixed grain
structure with grains of identical volume.
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(a) (b) (c)

Figure 4.2: Furnishing a grain microstructure with 128 grains of identical volume with
orientations sampled by three different methods. The colors correspond to the inverse-
pole-figure color key in 010 direction (Nolze and Hielscher, 2016). (a) TOP, (b) Neper,
(c) Random.

Uniform CODF We start with the case of a unique grain-size and a uni-
form orientation distribution, corresponding to mechanically isotropic
behavior (Krawietz, 1999; Bertram et al., 2000; Böhlke and Bertram, 2001).
For the results to be representative, it is necessary to determine the
number of grains which ensure an isotropic effective material response,
see for example Kanit et al. (2003) and Yang et al. (2019). In this spirit,
we investigate microstructures with an increasing number of grains and
study their effective stiffness.
As discussed in Sec. 4.2.1, for a uniform CODF, all texture coefficients
vanish, i.e.,

V̄′
⟨𝛽⟩ = 0 (4.18)

holds for all considered texture coefficients. To quantify the anisotropy
of the stiffness tensor we compare to the best approximation by an
isotropic tensor (see equation (4.22)), i.e., we project the computed
stiffness tensor onto the space of isotropic tensors of fourth order. For a
detailed discussion see the work by Fedorov (1968) and Arts (1993).
We compute the mean stiffness

C𝐺 = 1
𝑁

𝑁∑︁
𝑛=1

C𝐺,𝑛 (4.19)
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of 𝑁 = 10 realizations and extract the Lamé constants via

𝜇app = 1
3

(︀
𝐶𝐺,44 + 𝐶𝐺,55 + 𝐶𝐺,66

)︀
(4.20)

𝜆app = 1
6

(︀
𝐶𝐺,12 + 𝐶𝐺,13 + 𝐶𝐺,23 + 𝐶𝐺,21 + 𝐶𝐺,31 + 𝐶𝐺,32

)︀
, (4.21)

where 𝐶𝐺,𝑖𝑗 denotes the 𝑖𝑗-th entry of the stiffness tensor in Voigt
notation (Cavallini, 1999).
Using the best isotropic approximation Ciso (𝜇app, 𝜆app) based on the
extracted Lamé constants, we introduce the isotropy error 𝛿iso via

𝛿iso (C𝐺,1, . . . ,C𝐺,𝑁 ) = ‖C
iso (𝜇app, 𝜆app)− C𝐺‖

‖C𝐺‖
, (4.22)

measuring the degree of anisotropy present in the computed stiffness.
For an increasing number of grains

𝐺 ∈ {32, 64, 96, 128, 256, 384, 512, 768, 1024, 1536},

we show the resulting isotropy error for the three different orientation
sampling methods in Fig. 4.3a. We observe a decreasing isotropy error
for all methods with an increasing number of considered grains. All
methods decrease the isotropy error at a similar rate. However, they
differ in the initial error level. For instance, all sampling techniques reach
a low isotropy error for 1536 grains, namely 0.251%, 0.041% and 0.027%
for random sampling, the Neper and TOP methods, respectively. To
reach a mean error below 1%, the microstructure has to consist of more
than 64 grains if the orientations are sampled randomly or generated
by Neper. For all investigated grain counts, the TOP method produces
the lowest isotropy error. Neper starts with a substantially higher error
(by roughly one order of magnitude) at low grain counts and reaches
a similar performance to TOP for more than 300 grains. For the naive
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random sampling, the isotropy error has a quite large offset to the more
involved algorithms.

Neper TOP Random
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Figure 4.3: Isotropy and total error for effective stiffnesses computed from microstructures
with uniform orientations and unique grain size distribution. (a) Isotropy error,
(b) Total error.

In addition to evaluating the degree of isotropy, we investigate the
deviation from the effective, infinite-volume stiffness. As our ground
truth, we consider the mean of ten apparent stiffnesses, each computed
using volume elements consisting of 10 000 grains and discretized by
1283 voxels (see Fig. 4.4a).
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(a) (b)

Figure 4.4: One realization of microstructures with with TOP based orientations. The color
corresponds to the ipf color key in 100 direction. (a) 10 000 grains, (b) 1024 grains.

The orientations are sampled using the TOP method. The mean
stiffness and the 95% confidence intervals, computed via Student’s
t-distribution (Student, 1908), are given in Tab. 4.2. The isotropy error of
the mean stiffness is 𝛿iso = 0.012%.

276.90± 0.07 112.00± 0.08 112.00± 0.09 0.00± 0.10 0.00± 0.08 0.00± 0.08
− 276.90± 0.07 112.00± 0.06 0.00± 0.08 0.00± 0.05 0.00± 0.08
− − 276.90± 0.10 0.00± 0.07 0.00± 0.05 0.00± 0.05
− − − 82.50± 0.15 0.00± 0.06 0.00± 0.08
− − − − 82.50± 0.06 0.00± 0.07
− − − − − 82.50± 0.11

Table 4.2: Mean and 95% confidence intervals in GPa for the stiffness in Voigt’snotation
computed by averaging ten realizations of microstructures with 10 000 grains and
uniformly distributed TOP orientations.

We define the total error 𝛿tot as the mean relative error between the
stiffness of each realization and the one given in Tab. 4.2, i.e.,

𝛿tot = 1
𝑁

𝑁∑︁
𝑛=1

‖C− C𝐺,𝑛‖
‖C‖

. (4.23)
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For the total error, shown in Fig. 4.3b, we make similar observations as
for the isotropy error. All of the methods decrease the total error at a
similar rate, but differ initially. For the case of orientations generated by
Neper, the error for 32 grains is 𝛿tot = 1.17% and therefore roughly twice
as large compared to the TOP method with 𝛿tot = 0.521%. To reach a
similar error with randomly sampled orientations about 768 grains have
to be considered. Random sampling leads to a mean error of 0.677% for
1536 grains. The errors produced by the Neper and TOP method are
similar to each other with 0.073% and 0.078%, respectively.
To understand the similar rates of error decrease more thoroughly, it is
helpful to decompose the total error 𝛿tot into two contributions (Kanit
et al., 2003). The first part is the random error and quantifies the
inaccuracy associated with working on a reduced representation of the
ground truth. The second contribution quantifies artificial long-range
correlations introduced by working on periodic microstructures (Kanit
et al., 2003; Schneider et al., 2021). We attribute the visible offset in
Figs. 4.3 and 4.6 to the random error, as we use the same geometric
representations for each orientation sampling method. Thus, a smaller
random error is achieved by the TOP method and further reduction of
the total error 𝛿tot is attributed to increasing the cell-size, i.e., increasing
the number of grains.
Up to this point, our investigations were based on a polycrystal with
a unique GSD, i.e., a unique grain size. However, to account for the
influence of the grain size on the mechanical response, it may often be
necessary, and therefore desirable, to match more realistic grain size
distributions when generating synthetic polycrystalline microstructures.
Thus, we turn to polycrystals with a log-normal GSD, as typically ob-
served in real-world samples (Spettl et al., 2014), with a mean equivalent
diameter equal to unity and a standard deviation of 0.15. Fig. 4.5 shows
an example of a microstructure consisting of 128 grains, equipped with
orientations from the three different sampling techniques.
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(a) (b) (c)

Figure 4.5: Polycrystalline microstructure realizations with 128 grains following a log-
normal grain size distribution and orientations generated by three different methods. The
colors correspond to the ipf color key in 010 direction. (a) TOP, (b) Neper, (c) Random.

The isotropy as well as the total error for different sampling methods are
shown in Fig. 4.6. For the log-normal GSD, we register a notable decrease
in accuracy for the Neper sampling method compared to the unique
grain size. Considering the case of 32 grains, the isotropy error and total
error increase from 1.22% and 1.17% to 1.62% and 2.19%, respectively.
This loss of accuracy persists, even for larger grain counts, e.g., for
1536 the total error for the unique and log-normal GSD are 0.07% and
0.37%, respectively. For randomly sampling the Haar distribution, the
influence of a log-normal grain size distribution is smaller. For instance
the biggest difference in the isotropy error is 1.23% and 1.60% for the
unique and log-normal GSD and 32 grains, respectively. The proposed
TOP method takes the volume fraction of each grain into account in an
explicit way when optimizing the orientations. This results in strikingly
similar error levels for both the unique and the log-normal case. Whereas
the total error values realized by microstructures with 32 grains differ
slightly for the unique and log-normal case, the resulting isotropy error
is 𝛿iso = 0.16% for both GSDs.
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Figure 4.6: Isotropy and total error for the effective stiffnesses computed from microstruc-
tures with uniform orientations and log-normal grain size distribution. (a) Isotropy error,
(b) Total error.

We investigate the influence of the maximum rank of the texture coeffi-
cients considered in our optimization scheme in the case of a uniform
orientation distribution. For this purpose, we consider the case of ten
microstructures consisting of 1024 grains, see Fig. 4.4b for an example of
one realization. We study two different cases: Using solely the texture
coefficient of rank four to optimize the orientations and considering the
coefficients of rank four and six. For these two cases, the isotropy and
total error are shown in Fig. 4.7 for different values of the tolerance tol
used in the optimization procedure. Both errors show a decrease up to
a value of tol = 10−6, after which the resulting errors do not change.
Interestingly, considering only the texture coefficient of rank 4 appears
to be beneficial. As all total errors are below 0.1% and all isotropy errors
even below 0.03%, using texture coefficients of rank four and solving
the problem up to a tolerance of tol = 10−6 is sufficient for the case of
a uniform orientation distribution when considering 1024 grains and
solely the macroscopic stiffness is of interest.
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Figure 4.7: Comparison of the 𝛿tot and 𝛿iso for the stiffness computed for 1024 grains with
TOP orientations and different considered texture coefficients plotted on a finely resolved
𝑦-axis. (a) Isotropy error, (b) Total error.

Textured CODF To further investigate the capabilities of the TOP
method, we turn to a non-uniform CODF, i.e., a textured polycrystal.
The prescribed CODF was generated by MTex (Hielscher and Schaeben,
2008), taken from the MTex documentation (MTex, 2017), see Fig. 4.8
for the corresponding pole figures. As MTex allows the sampling of
CODFs, we draw 50 000 samples at random for computing the texture
coefficients, assuming the same weight for each sample.
As a ground truth we define the mean stiffness of ten realizations,
each with 10 000 grains. The resulting stiffness for TOP orientations
is given, with its respective 95% confidence intervals, in Tab. 4.3. The
isotropy error of this stiffness computes to 𝛿iso = 5.54%, i.e., a slight
anisotropy appears.
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Figure 4.8: Pole figures of the (generated) textured CODF (MTex, 2017).

269.70± 0.07 117.10± 0.06 113.90± 0.05 0.00± 0.07 −2.60± 0.11 0.10± 0.07
− 268.60± 0.08 115.00± 0.06 0.10± 0.08 −0.10± 0.06 −0.10± 0.05
− − 271.90± 0.07 −0.10± 0.09 2.70± 0.06 0.00± 0.07
− − − 85.80± 0.14 0.00± 0.10 −0.10± 0.08
− − − − 84.60± 0.16 0.00± 0.05
− − − − − 88.10± 0.16

Table 4.3: Mean and 95% confidence intervals in GPa for the stiffness in Voigt notation
computed by averaging ten realizations of microstructures with 10 000 grains and TOP
orientations for a synthetic CODF.

For this texture, we investigate the approximation quality of the stiffness
for a varying number of grains, each with identical volume. The total
error for randomly sampling from the generated orientations and using
texture coefficients is shown in Fig. 4.9a. Randomly sampling the
generated orientations gives a total error of 𝛿tot = 4.47% for 32 grains
and reaches an error below 1% for 936 orientations. The mean total error
achieved by the TOP method of 𝛿tot = 0.51% for 32 grains actually lies
below the error value achieved by randomly sampling 1536 orientations.
For the latter number of grains, TOP achieves an error 𝛿tot = 0.07%.
This difference is attributed to the notable offset between the random
sampling and TOP method, as both decrease 𝛿tot with the same rate.
Let us consider the case of a log-normal grain size distribution. For the
TDT algorithm we assign eight elementary volumes to the smallest grain
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and increase the number of elementary volumes for each grain according
to its size. We set the threshold misorientation value to 5∘. In Fig. 4.9, we
provide the total error 𝛿tot for ten realizations with a varying number of
grains. For the case of randomly sampling from given orientations, we
observe a slight increase in the error value induced by the underlying
log-normal grain size distribution. For instance, for a microstructures
with 32 grains, the mean error is 𝛿tot = 3.12% and 𝛿tot = 3.74% for the
unique and log-normal GSD, respectively. This effect decreases when a
larger number of grains is considered, as the effect of a single, large grain
with specific orientation on the overall response decreases. In contrast,
the TOP method is not adversely affected. Indeed, during optimization,
the volume fraction is explicitly taken into account when computing
the texture coefficients, see equation (4.12). Using the TDT algorithm
results in a lower total error than random sampling for all grain numbers
considered. For instance, for a 64-grain microstructure, the total error
is 𝛿tot = 3.75% and 𝛿tot = 2.77% for random sampling and the TDT,
respectively. For both algorithms the error decreases with a similar rate
as for the proposed TOP algorithm, whereas they both result in higher
total errors than using TOP.
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Figure 4.9: Total error 𝛿tot of the effective stiffness computed for microstructures with a
unique and log-normal grain size distribution and a synthetic CODF. (a) Unique grain size
distribution, (b) Log-normal grain size distribution.

Highly textured CODF In practical applications, e.g., cold rolled steel,
the intensities in the pole figure may reach values as high as ten. To
investigate this scenario, we next consider a case with an increased
texture in the CODF. We rely on synthetically generating a CODF us-
ing MTex (Hielscher and Schaeben, 2008) and show the resulting pole
figures in Fig. 4.10.
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Figure 4.10: Pole figures of the (generated) CODF with increased texture (MTex, 2017).

For the ground truth we proceed in the same way as for the slightly
textured CODF, using ten microstructures with 10 000 grains of equal vol-
ume, equipped with orientations from the TOP method to compute the
mean stiffness. For this case, the mean and the 95% confidence intervals
are given in Tab. 4.4. The isotropy error is 𝛿iso = 18.78% which is more
than three times the error of the slightly textured case, i.e., 𝛿iso = 5.54%.

257.10± 0.06 115.40± 0.07 128.30± 0.04 0.00± 0.06 −0.00± 0.03 −0.20± 0.03
− 260.60± 0.07 124.80± 0.04 0.00± 0.04 0.00± 0.03 0.20± 0.05
− − 247.60± 0.05 −0.00± 0.05 0.00± 0.04 −0.00± 0.04
− − − 98.40± 0.09 −0.10± 0.06 0.00± 0.10
− − − − 103.70± 0.09 −0.00± 0.07
− − − − − 85.60± 0.17

Table 4.4: Mean and 95% confidence intervals in GPa for the stiffness in Voigt notation
computed by averaging ten realizations of microstructures with 10 000 grains and TOP
orientations for a synthetic CODF.

First, we investigate the case of a unique grain size distribution and
show the resulting total error in Fig. 4.11a. For TOP and random
sampling, the error decreases with a similar rate, which is consistent
with our observations in the slightly textured case. For TOP as well as for
random sampling the total error is slightly lower than for the previously
investigated CODF, e.g., for 32 grains the total error is 𝛿tot = 3.62% and
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

𝛿tot = 0.40% for random sampling and TOP, respectively. This holds for
higher grain numbers as well. Indeed, for 1536-grain microstructures,
randomly sampling orientation data leads to a total error of 𝛿tot = 0.53%,
whereas using orientations generated by TOP results in an error of
𝛿tot = 0.06%. However, the relative difference between the total errors
for the two CODFs is lower for random sampling than for TOP.
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Figure 4.11: Total error 𝛿tot of the effective stiffness computed for microstructures with a
unique and log-normal grain size distribution and a highly textured CODF. (a) Unique
grain size distribution, (b) Log-normal grain size distribution.

For the case of a log-normal GSD, compared to microstructures with
grains of equal volume, the total error increases for both methods. For
microstructures with 64 grains equipped with orientations randomly
sampled from experimental data, the total error is 𝛿tot = 2.82% and
𝛿tot = 3.11% for a uniform and log-normal GSD, respectively. This
observation holds for the TOP method as well, e.g., using 64 grains leads
to an error increase from 𝛿tot = 0.40% for a unique GSD to 𝛿tot = 0.45% if
the grain sizes follow a log-normal distribution. For the TDT algorithm
and a grain count below 768, we set the number of elementary volumes
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for the smallest grain to eight. To account for the increased grain count,
we increase the number of elementary volumes to twelve for 1024 and
1536 grains in the microstructure, whereas we retain the threshold of
5∘ for the misorientation computations. For our choice of parameters
and grain numbers up to 256, we observe that the resulting error is
close to random sampling. For instance, the total error obtained using a
256-grain microstructure is 𝛿tot = 0.94% and 𝛿tot = 1.37% for orientations
from random sampling and the TDT algorithm, respectively. When
increasing the grain count, there seems to be a limiting accuracy that
the TDT algorithm can reach. Indeed, the total error does not decrease
below 1%. The source of this phenomenon needs to be investigated more
thoroughly, and is beyond the scope of this work.

4.3.3 Cyclic stress-strain hysteresis

We expand our investigation into the elasto-plastic regime, focusing on
the effect of the orientation sampling method on the cyclic stress-strain
hysteresis of the material. As boundary condition, we use a macroscopic
strain which follows a triangular path with an amplitude of 𝜀𝑎 = 0.7%
and a cycle time of four seconds. To ensure a stabilized cyclic stress-strain
hysteresis, we compute two cycles in total and use the last one as our
quantity of interest (Schäfer et al., 2019a).
Because of the increased computational cost, we restrict the investiga-
tions to grain counts

𝐺 ∈ {32, 64, 128, 256, 512, 1024}

and use five realizations per number of grains, i.e., 𝑁 = 5. We use the
material parameters specified in Tab. 4.1.

Uniform CODF For the uniformly distributed orientations, we asses
the isotropy of the results. For this purpose, and a single realization,
we compute three load cases to obtain the cyclic stress-strain hysteresis
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4 Generating polycrystalline microstructures with prescribed tensorial texture coefficients

in three different directions, i.e., 𝑋𝑋-, 𝑌 𝑌 - and 𝑍𝑍-direction. For a
perfectly isotropic response, the stress values would coincide for every
considered direction. Thus, to measure the deviation from this isotropic
result, we use the average stress values

�̄�𝑠 = 1
3(𝜎𝑋𝑋,𝑠 + 𝜎𝑌 𝑌,𝑠 + 𝜎𝑍𝑍,𝑠) (4.24)

of all directions at each time step 𝑠 as our reference. Then, for each
realization 𝑛, we compute the sum of the squared relative differences
between the stresses in every direction and the mean of all directions
weighted by the number of stress values 𝑆, i.e.,

𝛿hys,iso
𝑛 =

⎯⎸⎸⎷ 1
𝑆

𝑆∑︁
𝑠=1

(︂
𝜎𝑋𝑋,𝑠

�̄�𝑠
− 1

)︂2
+

(︂
𝜎𝑌 𝑌,𝑠

�̄�𝑠
− 1

)︂2
+

(︂
𝜎𝑍𝑍,𝑠

�̄�𝑠
− 1

)︂2
.

(4.25)

Equation (4.25) measures the mean relative deviation in all directions
from the mean stress value (4.24). The quantity 𝛿hys,iso extends the
isotropy error defined for the stiffness, see equation (4.22), where the
ideal isotropic case corresponds to the mean stress values in all directions.
We compute the mean error of all realizations 𝑁 = 5 by

𝛿hys,iso = 1
𝑁

𝑁∑︁
𝑛=1

𝛿hys,iso
𝑛 (4.26)

to get confidence in our results.
We use the microstructures from Sec. 4.3.2 with orientations prescribed
by Neper, TOP and random sampling. For an increasing number of
grains, we show the error 𝛿hys,iso in Fig. 4.12a. Neper and TOP behave
similar to each other, both lying below the error values achieved by
random sampling. For example, the mean errors obtained from mi-
crostructures with 32 grains are 𝛿hys,iso = 5.63%, 𝛿hys,iso = 5.97% and
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𝛿hys,iso = 1.10% for random sampling, Neper and TOP, respectively. For
an increasing number of grains in the microstructure and randomly
sampled orientations, the error decreases more slowly than for the
other methods. Also, random sampling results in the highest mean
error value of 𝛿hys,iso = 4.49% for 1024 grains. We observe a steeper
decrease in 𝛿hys,iso for an increasing number of grains for Neper and
TOP, both lying close to each other. For example, microstructures with
64 grains produce an error of 𝛿hys,iso = 1.19% and 𝛿hys,iso = 1.40%
for TOP and Neper orientations, respectively. For 1024 grains, the
error levels are 𝛿hys,iso = 0.27% and 𝛿hys,iso = 0.16% for Neper and
TOP orientations, respectively.
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Figure 4.12: Hysteresis isotropy error, equation (4.25) for a varying number of grains 𝐺.
(a) Different orientation generation methods, (b) Different considered texture coefficients
for TOP.

Following the procedure in Sec. 4.3.2, in addition to investigating the
degree of isotropy, we would like to assess the ability to reproduce
the effective mechanical response with a minimum number of grains.
In the case of non-linear mechanical behavior, we define our ground
truth as the stress-strain hysteresis computed for five realizations of
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a microstructure with 10 000 grains, discretized by 1283 voxels. From
these five realizations, we compute the mean stress-strain curve as

�̂�𝑟,𝑠 = 1
𝑁

𝑁∑︁
𝑛=1

𝜎𝑟,𝑠,𝑛, (4.27)

where 𝜎𝑟,𝑠,𝑛 denotes the macroscopic stress value in direction 𝑟 at a given
time step 𝑠 and 𝑁 refers to the number of realizations, i.e., 𝑁 = 5. For
the considered loading directions, the resulting stress-strain hysteresis
are shown in Fig. 4.13. We observe that the individual curves lie on top
of each other, i.e., there is no anisotropy present.
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Figure 4.13: Comparison of mean macroscopic stress-strain hysteresis in different loading
directions computed using five microstructures with 10 000 grains and uniformly
distributed TOP orientations. (a) 𝑋𝑋 and 𝑌 𝑌 , (b) 𝑋𝑋 and 𝑍𝑍, (c) 𝑌 𝑌 and 𝑍𝑍.

For each number of grains 𝐺 and each realization, we compute the root
of the mean squared relative error in each direction as

𝛿hys,gt
𝑛,𝑟 =

⎯⎸⎸⎷ 1
𝑆

𝑆∑︁
𝑠=1

(︂
𝜎𝑠,𝑟,𝑛

�̂�𝑠,𝑟
− 1

)︂2
, (4.28)
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where 𝑟 refers to the loading direction, i.e., 𝑟 ∈ {𝑋𝑋, 𝑌 𝑌, 𝑍𝑍} in our
case. Then, we compute the mean error over all considered directions

𝛿hys,gt = 1
𝑁

𝑁∑︁
𝑛=1

1
𝑅

𝑅∑︁
𝑟=1

𝛿hys,gt
𝑛,𝑟 , (4.29)

where 𝑅 denotes the number of considered directions, i.e., 𝑅 = 3
in this case.
Comparing 𝛿hys,gt for different orientation sampling methods in Fig. 4.14,
we observe similar trends as for the isotropy error 𝛿hys,iso. For all meth-
ods, the error decreases with an increasing number of grains in the
microstructure. For a small number of grains, the error resulting from
TOP orientations is smallest with 𝛿hys,gt = 1.80% and 𝛿hys,gt = 0.78% for
32 and 256 grains, respectively. The error from using Neper orientations
is higher, with 𝛿hys,gt = 3.93% and 𝛿hys,gt = 0.82%. Randomly sampling
the Haar distribution results in an error of 9.00% and 2.15% for the
same number of grains. The error for all three methods and 1024 grains
are 0.43%, 0.44% and 1.18% for TOP, Neper orientations and random
sampling, respectively.
The error 𝛿hys,gt for taking only the texture coefficient of rank four into
account, is shown in Fig. 4.14b together with the previously discussed
results for considering texture coefficients with rank four and six. We
observe that the error when accounting solely for rank four texture
coefficients is higher than the error produced when considering higher
ranks. The difference is less pronounced than for 𝛿hys,iso.
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Figure 4.14: Hysteresis total error, equation (4.29) for a varying number of grains 𝐺 with
uniform CODF and unique GSD. (a) Different orientation generation methods, (b) Different
considered texture coefficients for TOP.

To extend our studies to a non-unique grain size distribution, we use
microstructures with a log-normal grain size distribution. We fix the
mean and standard deviation to mean = 1 and stdev = 0.15, respectively.
To reduce the computational effort and because Neper and TOP provided
the most promising results, we only consider orientations generated by
Neper and TOP in the following.
Fig. 4.15a shows 𝛿hys,iso for an increasing number of grains 𝐺. For every
number of grains, the TOP methods provides a smaller error compared
to Neper. For instance, using 32 grains, the error for TOP and Neper is
𝛿hys,iso = 3.72% and 𝛿hys,iso = 12.02%, respectively. The influence of the
underlying GSD manifests. Indeed, for both cases, the values are larger
than for the unique grain size distribution.
Similar to the uniform GSD, the hysteresis error closely follows the trend
observed fo the isotropy error, see Fig. 4.15b.
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Neper TOP
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Figure 4.15: Comparison of 𝛿hys,gt and 𝛿hys,iso for varying number of grains 𝐺 with uniform
CODF and log-normal GSD. (a) Hysteresis isotropy error, equation (4.25), (b) Hysteresis
total error, equation (4.29)

Textured CODF For the case with mild anisotropy, we consider the
synthetic CODF described in Sec. 4.3.2. We compute the stress-strain hys-
teresis using five microstructures consisting of 10 000 grains discretized
by 1283 voxels, see Fig. 4.4a. In accordance with the case of a uniform
orientation distribution, we use the mean stress values of these five
realizations as our ground truth. The resulting stress-strain hysteresis
are shown in Fig. 4.16 for all three considered loading directions. We
observe a slight anisotropy in 𝑌 𝑌 -direction, whereas the stress-strain
curves in 𝑋𝑋- and 𝑍𝑍-direction coincide.
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Figure 4.16: Comparison of mean macroscopic stress-strain hysteresis in different
directions computed for a microstructure with 10 000 grains and a slightly textured CODF.
(a) 𝑋𝑋 and 𝑌 𝑌 , (b) 𝑋𝑋 and 𝑍𝑍, (c) 𝑌 𝑌 and 𝑍𝑍.

We show the total error to the mean stress values, i.e., equation (4.29), in
Fig. 4.17a for the TOP method as well as for randomly sampling from
given orientations.
Using random orientation sampling produces a larger error for all grain
numbers considered. Especially for a small number of grains, the TOP
method results in a visibly smaller error than for random sampling
the experimental data. For 32 grains, the hysteresis total error 𝛿hys, tot

is 3.60% and 1.28% for random sampling and TOP, respectively. For
random sampling, the error reduces to 0.76% for 1024 grains, which is
close to the value achieved by TOP, with 𝛿hys,gt = 0.52%.

114



4.3 Computational investigations

Random TDT TOP

100 1,000

1

5

number of grains

δh
y
s,
g
t
in

%

(a)

100 1,000

1

5

number of grains
δh

y
s,
g
t
in

%
(b)

Figure 4.17: 𝛿hys,gt for varying number of grains 𝐺 with a slightly textured CODF.
(a) Unique GSD, (b) Log-normal GSD.

We observe similar behavior for the case of a log-normal grain size
distribution with mean = 1 and stdev = 0.15 in Fig. 4.17b. The error
for 32 grains increases for both kinds of orientations sampling methods,
namely to 3.84% and 1.41% for random and TOP sampling, respectively.
For both the unique and log-normal case, similar errors of 0.85% and
0.44% are achieved for randomly sampling experimental orientations
and using 1024 grains. Interestingly, the error for a log-normal GSD is
actually smaller than for the unique GSD. For instance using the TOP
method and 512 grains, we observe an error of 𝛿hys,gt = 0.66% and
𝛿hys,gt = 0.49% for the unique and log-normal distributions, respectively.
For the TDT algorithm, we observe a lower error than for random sam-
pling when an intermediate number of grains is considered, i.e., for grain
counts of 64, 128 and 256. For instance, the error for a microstructure
consisting of 64 grains equipped with orientations of the TDT algorithm
is 𝛿hys,gt = 2.23% and 𝛿hys,gt = 2.22% for 128 grains. With 64 and 128
grains, the random sampling leads to an error of 𝛿hys,gt = 3.84% and
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𝛿hys,gt = 2.80%, respectively. For a larger number of grains, above 256,
the error computed for the TDT algorithm exceeds the error of the
randomly sampled orientations from given data. For 1024 grains, the
error for random sampling is 𝛿hys,gt = 0.85% and 𝛿hys,gt = 1.00% for the
TDT algorithm. All of the observed error values are above the errors
obtained by TOP, e.g., using 32 grains, the error for the TOP method is
𝛿hys,gt = 1.42% whereas the TDT algorithm and random sampling lead
to an error of 𝛿hys,gt = 4.37% and 𝛿hys,gt = 3.84%, respectively.

Highly textured CODF Last but not least, we consider the GSD out-
lined in Sec. 4.3.2 with an increased degree of anisotropy. Similar to
the case of a slight anisotropy, we compute the stress-strain hysteresis
for five microstructures consisting of 10 000 grains and a discretization
of 1283 voxels. As our ground truth we use the mean stress of these
five realizations.
For microstructures with grains having a unique grain size distribution
and orientations from TOP or randomly sampling experimental data,
we show the total error in Fig. 4.18a. We observe that, for all grain
counts considered, using the TOP method results in lower error values
compared to randomly sampling from given orientation data. For
instance, using microstructures with 32 grains leads to a total error
of 𝛿hys,gt = 7.54% and 𝛿hys,gt = 17.44% for TOP and random sampling,
respectively. Thus, we observe an increase in the total error in com-
parison to the slightly textured CODF for both sampling methods and
all microstructures. Indeed, for a 1024-grain microstructure equipped
with orientations from TOP, the error increases from 𝛿hys,gt = 1.42%
for the slightly textured case to 𝛿hys,gt = 5.24% for the case of higher
texture. This observation holds for randomly selecting orientations from
given orientation data, e.g., for a microstructure consisting of 256 grains
the error for the highly textured CODF is 𝛿hys,gt = 10.1% whereas it is
𝛿hys,gt = 1.82% for the slightly textured case.
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Figure 4.18: 𝛿hys,gt for varying number of grains 𝐺 with a highly textured CODF. (a) Unique
GSD, (b) Log-normal GSD.

Fig. 4.18b shows the total error for the case of a log-normal GSD
equipped with orientations from TOP, TDT and random sampling. We
make similar observations to the slightly textured CODF, i.e., an increase
in the total error compared to the results for the unique GSD. For instance,
a 64-grain microstructure with TOP orientations leads to an increase in
the total error from 𝛿hys,gt = 5.36% for a unique GSD to 𝛿hys,gt = 9.62%
for a log-normal GSD. Comparing the same microstructures equipped
with orientations from randomly sampled orientation data, the error
increases from 𝛿hys,gt = 13.2% to 𝛿hys,gt = 16.3% for a unique and a
log-normal GSD, respectively. For lower grain counts, i.e., below 256,
using the TDT algorithm results in similar error values as randomly
sampling orientation data. An exception is the 32-grain microstructure,
for which the total error value 𝛿hys,gt = 11.7% is close to the value
obtained using TOP, i.e., 𝛿hys,gt = 8.02%. For higher grain counts, i.e.,
above 256, the TDT algorithm does not decrease the total error but
instead we observe an increase in the error values obtained, in line with
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observations made investigating the performance for the linear elastic
properties in Sec. 4.3.2.

4.4 Conclusion

In this work, we proposed to use the coefficients of a tensorial Fourier
expansion of the crystallite orientation distribution function (Guidi et al.,
1970) to equip digital polycrystalline microstructures with crystallo-
graphic orientations for micromechanical simulations. Our proposed
method is based on minimizing the difference between the current
and the prescribed tensorial Fourier, or texture, coefficients and uses a
gradient descent scheme on the Lie group 𝑆𝑂(3).
We compared the proposed texture optimization for prescribing orien-
tations (TOP) method to different state-of-the-art methods, e.g., imple-
mented in the sophisticated microstructure generation tool Neper (Quey
et al., 2011; 2018). In a first step, we investigated the homogenized
stiffnesses of polycrystals for the case of a uniform and two textured
crystallite orientation distribution functions (CODF). Subsequently, we
extended our studies to the non-linear case, where we investigated the
macroscopic cyclic stress-strain hysteresis of the microstructures. For
both, the linear elastic and the non-linear plastic case, we considered
a unique as well as a log-normal grain size distribution (GSD). By
introducing suitable error measures we investigated and compared the
performance of the proposed method.
In the isotropic, linear elastic case, TOP provided better results compared
to the Neper method and random sampling of orientations. Using TOP,
an isotropic effective stiffness could already be achieved for small grain
numbers. Owing to the fact that the volume fraction of each individual
grain is explicitly accounted for, the advantage becomes more pro-
nounced when dealing with microstructures having a log-normal grain
size distribution. Additionally, with TOP it is possible to reproduce the
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linear-elastic behavior of polycrystals with a unique GSD and a textured
CODF more accurately and efficiently than via a random sampling from
experimental orientation data. This holds as well for the case of a log-
normal grain size distribution. Comparing to the Texture Discretization
Technique (TDT) algorithm proposed by Melchior and Delannay (2006),
which also considers grain size during orientation assignment, the TOP
method performed better for both CODFs considered. Our intensive
numerical studies revealed that the performance of the TDT algorithm,
in our setting, critically depends on the choice of parameters, i.e., the
misorientation value and the number of elementary volumes per grain.
For the non-linear plastic behavior, the results of the Neper method were
very similar to the ones provided by TOP, showing the capabilities of
the dedicated algorithm. Although the effect was less pronounced than
for the case of linear-elastic behavior, we observed that a underlying log-
normal GSD results in a decreased performance for the Neper method.
TOP, on the other hand, was able to produce similar results as for the
unique GSD. In addition, microstructures with orientations provided
by the TOP method allow to accurately compute the effective, non-
linear behavior of polycrystals with an underlying texture. For both
textured CODFs considered in this work, the defined error measures
were lower compared to randomly sampling orientation data. The
errors for a log-normal GSD obtained by TOP were below the ones
obtained with random sampling or the algorithm of Melchior and
Delannay (2006), even for a small number of grains. Investigating a
highly textured CODF and physically non-linear visco-plastic behavior,
we observed higher error values compared to the slightly textured
CODF for all algorithms considered. This contrasts with the linear
elastic case where we observed a smaller error for the highly textured
CODF. However, using orientations generated by the TOP method
leads to significantly smaller errors than using the other two algorithms.
Concerning the maximum number of texture coefficients which should
be taken into consideration, we observed that, for the linear elastic case,
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a low tolerance and only the texture coefficient of rank four a sufficient.
For the non-linear behavior, we observed that accounting for the texture
coefficient of rank six is beneficial.
As the computational effort of micromechanical studies is mainly domi-
nated by computing the effective behavior we omitted a comparison of
the computational performance of TOP to the other methods.
To conclude, we showed that extracting relevant data from the CODF
in terms of tensorial texture coefficients leads to the most flexible and
performing method for generating crystallite orientations for digital
representations of polycrystalline microstructures. As orientation as-
signment is typically treated as a post-processing step in microstruc-
ture generation, it is possible to couple the proposed algorithm with
well-established microstructure generators (Groeber and Jackson, 2014;
Prasad et al., 2019; Henrich et al., 2020). With this modular structure, it
is possible to use TOP for generating polycrystalline representations for
a variety of applications (Flipon et al., 2020b; Vajragupta et al., 2020).
As an additional benefit, for generating orientations, the TOP method
requires only nine (or 22 variables, depending on the highest texture
coefficient rank considered) to be stored, contrasting with methods that
rely on the entire experimental database. Because of this low number
of parameters, it is possible to fuel data driven methods (Pütz et al.,
2020; Gajek et al., 2021). Additionally, as experimental data is always
afflicted with some degree of measurement uncertainty, investigating
the influence of the texture on the overall macroscopic response might be
an interesting topic, i.e., via uncertainty quantification (Bandyopadhyay
et al., 2019; Kasemer et al., 2020).
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Chapter 5

Identifying material parameters
in crystal plasticity by
Bayesian optimization 1

5.1 Introduction

Using suitable methods to generate representations of polycrystalline
microstructures, see Chap. 3 and Chap. 4, we still need a compliment
material model to predict the cyclic behavior of polycrystalline metals.
The crystal plasticity method, outlined in Sec. 2.2.2, proves to be a
powerful method but needs suitable model parameters to capture the
relevant features of the cyclic deformation behavior.
Within this chapter we propose using Bayesian optimization with
Gaussian processes for calibrating single crystal parameters inversely
based on polycrystalline experiments. We improve upon related
research (Schäfer et al., 2019a) by assessing the capabilities of our
proposed framework by comparing it to a number of extremely powerful
methods, including a genetic algorithm and modern derivative-free
optimization schemes. This chapter is structured as follows. We
recall Gaussian-process based Bayesian optimization in section 5.2.

1 This chapter is based on the publication by Kuhn et al. (2021) whereas minor
typographical and formatting changes have been made for cohesion of the manuscript
and the readers convenience
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We investigate the performance of the proposed approach in section
5.3, carefully studying the optimal algorithmic parameters, comparing
to state-of-the-art genetic algorithms (Schäfer et al., 2019a) as well as
powerful derivative-free optimization methods (Rios and Sahinidis, 2013;
Huyer and Neumaier, 1999; 2008) and demonstrating the applicability of
the method to large-scale polycrystalline microstructures in section 5.3.6.

5.2 Bayesian optimization

Bayesian optimization (BO) is an approach for solving optimization
problems where the objective function is expensive to compute and the
gradient of the objective function is not available. Such optimization
problems occur, for instance, when evaluating the function corresponds
to running a (possibly large-scale) simulation, as is common in virtual
crash tests (Raponi et al., 2019) or for complex chemical reactions (Häse
et al., 2018). Such problems might also be approached by automatic
differentiation (Griewank and Walther, 2008), which might prove dif-
ficult to integrate into an existing simulation code, or by evolutionary
algorithms, like particle swarm algorithms (Blum and Merkle, 2008).
However, the latter are typically limited to small spatial dimensions and
inexpensive function evaluations.
In contrast, Bayesian optimization constructs a surrogate model of
the optimization problem based on probabilistic ideas, accounting for
uncertainty by Bayesian statistics. We restrict to GAUSSIAN PROCESS

REGRESSION as our uncertainty model. For other approaches we refer
to Shah et al. (2014) and Kushner (1964).
Suppose that we are concerned with the optimization problem

𝑓(𝑥) −→ min
𝑥∈𝐴

, (5.1)
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5.2 Bayesian optimization

where 𝐴 ⊆ R𝑑 is a non-empty set in 𝑑 spatial dimensions whose
membership is easily tested (for instance, a box). For (Gaussian process
based) Bayesian optimization, we need to specify:

1. A mean function 𝑚 : 𝐴→ R.

2. A kernel (or covariance) function 𝐾 : 𝐴×𝐴→ R.

3. An ACQUISITION FUNCTION 𝑢𝑓*,𝜇,𝜎 : 𝐴→ R, depending on a value
𝑓* ∈ R and two functions

𝜇 : 𝐴→ R and 𝜎 : 𝐴→ R≥0,

which we will refer to as (the local estimates of) the mean and stan-
dard deviations of the function values at each 𝑥 ∈ 𝐴.

There are specific prerequisites for sensible kernel functions. We refer
to section 4 in Rasmussen-Williams Williams and Rasmussen (2006) for
details, and will discuss our choice below.
For given 𝑚, 𝐾 and 𝑢, Bayesian optimization proceeds as follows. Sup-
pose that the objective function 𝑓 was evaluated at 𝑛 points 𝑥1, . . . , 𝑥𝑛

in 𝐴 already, i.e., the values 𝑓(𝑥1), . . . , 𝑓(𝑥𝑛) are known. In the Bayesian
approach, it is assumed that the vector

𝑓𝑛 = [𝑓(𝑥1), . . . , 𝑓(𝑥𝑛)]𝑇 ∈ R𝑛

was drawn at random from a probability distribution. In Gaussian
process regression (Mockus, 1994), the latter vector is assumed to follow
a multivariate normal distribution with mean 𝜇𝑛 ∈ R𝑛 and Σ𝑛 ∈ R𝑛×𝑛
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

given by

𝜇𝑛 = [𝑚(𝑥1), . . . , 𝑚(𝑥𝑛)]𝑇 and

Σ𝑛 =

⎡⎢⎢⎢⎢⎣
𝐾(𝑥1, 𝑥1) 𝐾(𝑥1, 𝑥2) . . . 𝐾(𝑥1, 𝑥𝑛)
𝐾(𝑥2, 𝑥1) 𝐾(𝑥2, 𝑥2) . . . 𝐾(𝑥2, 𝑥𝑛)

...
...

. . .
...

𝐾(𝑥𝑛, 𝑥1) 𝐾(𝑥𝑛, 𝑥2) . . . 𝐾(𝑥𝑛, 𝑥𝑛)

⎤⎥⎥⎥⎥⎦ .
(5.2)

To infer the value 𝑓(𝑥) at some new point we assume that the joint
distribution of the values of 𝑓 over (𝑥1, . . . , 𝑥𝑛, 𝑥) is also governed by a
multivariate normal distribution with mean 𝜇𝑛+1 and Σ𝑛+1 for 𝑥𝑛+1 =
𝑥, as prescribed in equation (5.2). Using Bayes’ rule, the conditional
distribution of 𝑓(𝑥) is also Gaussian with mean

𝜇(𝑥) = 𝑚(𝑥) + 𝐾𝑛(𝑥)𝑇 Σ−1
𝑛 (𝑓𝑛 − 𝜇𝑛) (5.3)

and variance

𝜎(𝑥)2 = 𝐾(𝑥, 𝑥) + 𝐾𝑛(𝑥)𝑇 Σ−1
𝑛 𝐾𝑛(𝑥), (5.4)

where

𝐾𝑛 : 𝐴→ R𝑑, 𝑥 ↦→ [𝐾(𝑥, 𝑥1), 𝐾(𝑥, 𝑥2), . . . , 𝐾(𝑥, 𝑥𝑛)]𝑇 ,

see section 2 in Williams and Rasmussen (2006). Provided Σ𝑛 is non-
degenerate, and as 𝐾𝑛(𝑥𝑖) corresponds to the 𝑖-th row of Σ𝑛 for 𝑖 =
1, . . . , 𝑛, we immediately see that

𝜇(𝑥𝑖) = 𝑓(𝑥𝑖) and 𝜎(𝑥𝑖) = 0

hold, i.e., the function 𝜇 interpolates the known values 𝑓(𝑥𝑖), and the
corresponding standard deviation 𝜎(𝑥𝑖) vanishes.
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5.2 Bayesian optimization

Furthermore, 𝜇(𝑥) serves as an estimate for the function value 𝑓(𝑥) at
any potentially newly sampled point 𝑥 ∈ 𝐴.
In this work, we set the mean function identical to zero, 𝑚(𝑥) ≡ 0. As
kernel function we consider the anisotropic "Matern5/2" kernel (Matérn,
2013)

𝐾 (𝑥, 𝑥) = 𝜎2
𝑘

(︂
1 +
√

5 𝛿 (𝑥, 𝑥) + 5
3 𝛿 (𝑥, 𝑥)2

)︂
exp

(︁
−
√

5 𝛿 (𝑥, 𝑥)
)︁

(5.5)

in terms of a positive parameter 𝜎2
𝑘 and an anisotropic distance function

𝛿 (𝑥𝑖, 𝑥𝑗) =

⎯⎸⎸⎷ 𝐷∑︁
𝑑=1

(𝑥𝑖,𝑑 − 𝑥𝑗,𝑑)2

ℓ2
𝑑

with 𝑖, 𝑗 = 1 . . . 𝑛 + 1 (5.6)

involving dilation parameters ℓ𝑑 for each of the dimensions 𝑑 = 1 . . . 𝐷

of the vector 𝑥. Indeed, we cannot justify using the squared exponential
kernel (Stein, 2012) due to the lack of sufficient smoothness of our
objective function 𝑓 . For an overview of alternative kernel functions,
we refer to chapter 4 in Williams and Rasmussen (2006). The dilation
parameters of the distance function 𝛿 may be interpreted as prefactors
used for a nondimensionalization of the variables. To determine the
dilation parameters and 𝜎2

𝑘, a maximum likelihood estimation may
be used, see chapter 6 in Bishop (2006). For each new observation
the Gaussian process regression is updated, i.e., the parameters of the
kernel function (5.5) are determined with respect to all previously made
observations, continuously improving the model of 𝑓 .
We restricted to discussing Gaussian processes for our noiseless appli-
cation of Bayesian optimization and refer to Williams and Rasmussen
(2006) and Bishop (2006) for a more general discussion.
As the next step, BO searches for an improved guess for the solution
𝑥 of the optimization problem (5.1). A possible approach would be
to ignore the estimated statistics and to minimize 𝜇, exploiting the
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

currently estimated objective values. However, this approach disregards
the uncertainty. Indeed, it might happen that the optimum 𝑥* is located
in regions of high uncertainty. Thus, it might be better to explore first.
Acquisition functions provide a suitable exploration-exploitation trade-
off by combining the currently known means and variances into a single
function to be optimized.
Denote by 𝑓*

𝑛 the lowest objective value observed so far

𝑓*
𝑛 =

𝑛
min
𝑖=1

𝑓(𝑥𝑖).

Plugging 𝑓*
𝑛 and the functions 𝜇 and 𝜎 above into the acquisition function

gives rise to the surrogate optimization problem

𝑢𝑓*
𝑛,𝜇,𝜎(𝑥) −→ max

𝑥∈𝐴
.

In contrast to the original optimization problem (5.1), the acquisition
function is cheap to evaluate and gradient information is available. Also,
the acquisition function provides a trade-off between exploration, i.e.,
decreasing the uncertainty, and exploitation, i.e., searching in the vicinity
of sites with small objective values. Thus, the next point to investigate is
selected by maximizing the acquisition function

𝑥𝑛+1 = arg max
𝑥∈𝐴

𝑢𝑓*
𝑛,𝜇,𝜎.

Recall that confidence intervals of a normally distributed random vari-
able with mean 𝜇 and standard deviation 𝜎 have the form

[𝜇− 𝜉 𝜎, 𝜇 + 𝜉 𝜎] ,

where 𝜉 is a parameter which determines the probability that a measure-
ment lies in this confidence interval. For instance, a two-sided confidence
interval with 95% probability is obtained for 𝜉 ≈ 1.96.
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5.2 Bayesian optimization

For the lower confidence-bound acquisition-function (𝑢𝐿𝐶𝐵) (Cox and
John, 1992), the lower bound of the confidence interval is chosen as the
proxy for the objective function 𝑓 , i.e.,

𝑢𝐿𝐶𝐵(𝑥) = −𝜇(𝑥) + 𝜉 𝜎(𝑥) (5.7)

is considered with 𝜇(𝑥) and 𝜎(𝑥) given by equations (5.3) and (5.4),
respectively. This acquisition function tries to improve the currently
known least lower bound on 𝑓 .
The quantity 𝜉 may be chosen as a tuneable parameter. Indeed, for small
𝜉, the acquisition function tends to select points with low mean 𝜇(𝑥).
In contrast, high values of 𝜉 encourage the algorithm to choose points
where the variance, i.e., the uncertainty, is high. We restrict to a fixed
value for 𝜉 and refer to Srinivas et al. (2010) for an adaptive choice of 𝜉.
An alternative strategy, proposed by Mockus et al. (1978) and made
popular by Jones et al. (1998), considers the improvement

ℐ𝑛 : R→ R, 𝑓 ↦→ ⟨𝑓*
𝑛 − 𝑓⟩+ , (5.8)

where ⟨·⟩+ = max(0, ·) denotes the Macaulay bracket. If 𝑓 ≥ 𝑓*
𝑛, there

will be no improvement. For lower values of 𝑓 , the improvement ℐ(𝑓)
increases linearly. Taking the expectation of the improvement (5.8) w.r.t.
the normal distribution determined from 𝜇(𝑥) and 𝜎(𝑥) gives rise to the
expected improvement 𝑢𝐸𝐼(𝑥), which may be expressed analytically in
the form

𝑢𝐸𝐼(𝑥) = ⟨Δ𝑛(𝑥)⟩+ + 𝜎(𝑥)𝜑
(︂

Δ𝑛(𝑥)
𝜎(𝑥)

)︂
− |Δ𝑛(𝑥)|Φ

(︂
Δ𝑛(𝑥)
𝜎(𝑥)

)︂
, (5.9)

where Δ𝑛(𝑥) = 𝑓*
𝑛−𝜇(𝑥) and 𝜑 as well as Φ denote the standard normal

density and distribution function with mean 𝜇(𝑥) and standard deviation
𝜎(𝑥), see Jones et al. (1998).
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

Lizotte (2008) proposed a shift of equation (5.9)

Δ𝑛(𝑥) = 𝑓*
𝑛 − 𝜇(𝑥)− 𝜉 (5.10)

by a parameter 𝜉. This enables controlling the trade-off between ex-
ploitation and exploration and is similar to the parameter used in 𝑢𝐿𝐶𝐵 ,
see equation (5.7).
The discussed acquisition functions are inexpensive to evaluate, and
gradient data is available. Thus, in addition to zeroth order optimization
methods, for instance Monte Carlo methods (Wilson et al., 2018) or
DIRECT (Brochu et al., 2010), gradient-based solvers like BFGS (Frazier
and Wang, 2016; Wang et al., 2018; Picheny et al., 2016) may be used.
Still, finding the global optimum of the acquisition function may be
non-trivial. Indeed, even if the original function 𝑓 was convex, the
surrogate problem need not be concave. For instance, the expected im-
provement acquisition function (5.9) has local maxima at all previously
explored points 𝑥1, . . . , 𝑥𝑛.
Our workflow for maximizing the acquisition function works as follows.
First, we sample the acquisition function 𝑢𝑓*

𝑛,𝜇,𝜎 at 300 points. As our
domain of interest is a box, we rely upon the first 300 points of the
corresponding Sobol sequence (Sobol, 1967). Then, we select those ten
points with the highest acquisition function values, and run BFGS with
the selected point as initial point. Finally, we select the maximum value
obtained during those BFGS runs.
The employed Bayesian optimization workflow is summarized in Fig. 5.1.
Please note that we rely upon a preliminary Latin-hypercube sam-
pling (McKay et al., 2000) to sample the first ten points within the domain
of interest 𝐴.
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Input: Parameter bounds, Maximum number of iterations,
Inital observations

Determine kernel function parameters

Compute the maximum of acquisition function

Evaluate objective function

Iteration
=

Maximum
number of
iterations

Output: Optimal parameter set

no

yes

Figure 5.1: Bayesian optimization flowchart.

5.3 Computational investigations

5.3.1 Setup

We wish to identify material parameters for the quenched and tempered
high-strength steel 50CrMo4, as investigated by Schäfer et al. (2019a).
The material features a martensitic microstructure and a hardness of
39 HRC. To determine the crystal plasticity parameters of this material,
macroscopic strain-driven low-cycle fatigue (LCF) experiments at differ-
ent strain amplitudes 𝜀𝑎 were performed, see Schäfer et al. (2019a) for
details on the experimental procedure.
The constitutive material model described in Section 2.2.2 was imple-
mented into a user defined material subroutine (UMAT) within the com-
mercial finite element solver Dassault Systèmes (2018). To thoroughly
test the optimization framework, we restrict to the simple microstructure
shown in Fig. 5.2, consisting of 8× 8× 8 grains, each discretized by 23

elements. The different colors in Fig. 5.2 represent distinct, randomly
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

sampled, orientations. Periodic boundary conditions were used, follow-
ing the procedure proposed by Smit et al. (1998).

Figure 5.2: Simplified volume element used to compute the macroscopic stress strain
hysteresis.

The microscopic material parameters we wish to identify are the
following:

1. The critical resolved shear stress 𝜏𝑐 (2.36), which we assume to be
identical for all slip systems, i.e., 𝜏𝜂

𝑐 = 𝜏𝑐 holds for all 𝜂.

2. The parameters of the Armstrong-Frederick or the Ohno-Wang kine-
matic hardening model 𝐴 and 𝐵, see formulas (2.37) and (2.38).

The remaining model parameters are taken from the literature according
to Schäfer et al. (2019a), see Tab. 5.1. Please note that we restrict to slip
systems in the lath-plane, as these are primarily activated according
to Michiuchi et al. (2009).
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5.3 Computational investigations

cubic stiffness 𝐶11 = 253.1 GPa 𝐶12 = 132.4 GPa 𝐶44 = 75.8 GPa
flow rule �̇�0 = 0.001s−1 𝑐 = 100
Ohno-Wang power law exponent 𝑀 = 8
lattice type BCC
slip systems {110}⟨111⟩

Table 5.1: Parameters used for the crystal plasticity model, see Schäfer et al. (2019a).

We collect the three parameters we wish to determine into a single
three-component vector

𝑥 = [𝜏𝑐, 𝐴, 𝐵]𝑇 ∈ R3, (5.11)

which we would like to identify.
Following Herrera-Solaz et al. (2014) and Schäfer et al. (2019a), we
consider the objective function

𝑓ℎ(𝑥) =

⎯⎸⎸⎷ 1
𝑆

𝑆∑︁
𝑠=1

(︀
𝜎

exp
𝑦,𝑠 − 𝜎sim

𝑦,𝑠

)︀2
, (5.12)

quantifying the difference between a stress-strain hysteresis of low-cycle
fatigue (LCF) experiments and the corresponding macroscopic stress-
strain hysteresis of a micromechanical simulation. Here, 𝑆 denotes
the number of time steps, 𝜎

exp
𝑦 refers to the experimentally measured

stress in loading direction and 𝜎sim
𝑦 stands for the homogenized stress in

loading direction.
Following the experiments, we prescribe the macroscopic loading for
the simulations to follow a triangular waveform in y-direction, see
Fig. 5.2. In total, we simulate two cycles, where the each cycle lasts
four seconds, and the second cycle serves as our simulation output. We
use time increments of 0.01 seconds for computing the homogenized
stress response, i.e., 𝑁 = 400 is used in this work.
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

Please note that we disregard strain-rate dependency of the considered
material due to the cyclic stable behavior, see Schäfer et al. (2019a).
In this work, we wish to minimize the mean of the error for 𝐻 different
hysteresis, i.e., we consider

𝑓(𝑥) = 1
𝐻

𝐻∑︁
ℎ=1

𝑓ℎ(𝑥). (5.13)

Here, the term 𝑓ℎ(𝑥) corresponds to equation (5.12) and a fixed strain
amplitude. In this article, we use the experimental data for the strain
amplitudes 𝜀𝑎 = 0.35%, 𝜀𝑎 = 0.60% and 𝜀𝑎 = 0.90%, i.e., 𝐻 = 3. The
corresponding hysteresis at half of the lifetime are shown in Fig. 5.3.
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Figure 5.3: Polycrystalline stress-strain hysteresis of the martensitic 50CrMo4 steel at half
of the lifetime used for the inverse optimization problem obtained by Schäfer et al. (2019a).
(a) 𝜀𝑎 = 0.35%, (b) 𝜀𝑎 = 0.6%, (c) 𝜀𝑎 = 0.9%.

For a start, we study the necessary time-step size △𝑡. Indeed, exceed-
ingly small time steps increase the computational cost, whereas too
large time steps distort the computational results. We consider a very
small time step of △𝑡 = 0.0001 s as our reference, and investigate the
relative deviation of the error function (5.13) for time steps of increasing
size, see Tab. 5.2. All simulations were carried out for the Armstrong-
Frederick kinematic hardening model with the material parameters
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found by Schäfer et al. (2019a). Based on these results, we select the time
step△𝑡 = 0.01 s, as we consider the associated deviation of 1.26% in the
error function negligible.

time step△𝑡 in s 0.0001 0.0005 0.001 0.005 0.01 0.05
𝑓 in MPa (5.13) 52.97 52.93 52.88 52.57 52.30 51.53
Relative deviation in % − 0.08 0.17 0.76 1.26 2.70

Table 5.2: Resulting error values 𝑓 for different time steps △𝑡.

For the parameter identification in a Bayesian optimization framework,
diagrammatically represented in Fig. 5.1, we consider a two-stage pro-
cess. First, we start with running BO on a large box in parameter
space, to obtain a rough estimate for the parameters. Based on these
results, a second optimization with tighter boundaries is carried out for
fine-tuning the parameters. Both steps are described in further detail in
the following subsections.
We use the GPy implementation (GPy, 2012) as a Gaussian-process
regressor for the method described in Section 5.2. For the acquisition
functions and the associated optimization we used an implementation
by the Bosch Center for Artificial Intelligence (BCAI) based on Python
3.7, numpy (van der Walt et al., 2011) and scipy (Virtanen et al., 2020).
We use the maximum number of function evaluations as a stopping
criterion within the BO framework. We set this value to 160, involving
ten random initialization points and 150 BO steps, unless otherwise
specified. For the evolutionary algorithms, included as a benchmark, we
use the commercial software (Dynardo, 2019).
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5 Identifying material parameters in crystal plasticity by Bayesian optimization

5.3.2 Parameter identification with a reasonably large
search space

For this setting, the search space is given by the parameter bounds listed
in Tab. 5.3. We initialize Bayesian optimization with ten points from
a Latin-Hypercube sampling. The "Matern5/2" kernel (5.5) is chosen
as a kernel function. The lower confidence-bound acquisition-function
𝑢𝐿𝐶𝐵 (5.7) is employed with an exploration margin of 𝜉 = 2.0. Thus,
over-exploitation and getting stuck in a local maximum are avoided. The
rationale for choosing this specific acquisition function and exploration
margin, is discussed in Section 5.3.3.

Parameter 𝜏𝑐 in MPa 𝐴 in MPa 𝐵
Lower bound 120. 1000. 0.
Upper bound 220. 500000. 5000.

Table 5.3: Permissible parameter space for the large search space problem.

First, we investigate the parameter optimization for the AF model and
investigate the smallest error, i.e., the smallest value of 𝑓 ,

𝑓* : 𝑁 ↦→
𝑁

min
𝑖=1

𝑓(𝑥𝑖), (5.14)

versus function evaluations 𝑁 . Fig. 5.4a shows this quantity for a single
BO run using a maximum number of function evaluations set to 400. Ob-
jective values above 80.0 MPa were cut off, as these are obtained during
the first ten function evaluations in the Latin-Hypercube sampling.
Within this single run, BO reaches a minimum value of 48.80 MPa after
171 function evaluations. However, a comparable error of 49.9 MPa is
reached after 81 evaluations.
BO reaches a strictly positive objective value. This indicates that the

134



5.3 Computational investigations

material model described in Section 2.2.2 may only approximate the
experimentally determined stress-strain hysteresis with a non-vanishing
error. This effect may be systematic or result from stochastic fluctuations
certainly present for the different experimentally determined hysteresis.
The Bayesian optimization framework relies upon randomness both
for the initialization and the optimization of the acquisition function.
To evaluate the influence of this randomness, we restarted Bayesian
optimization ten times. Fig. 5.4b shows the mean of ten BO runs in terms
of the best error encountered versus number of function evaluations. Ad-
ditionally, we computed the 95% confidence interval (95% CI) using an
unbiased population formula for the standard deviation and Student’s
𝑡-distribution (Student, 1908). The bounds of the confidence interval are
indicated by shaded areas centered at the mean value.
Please note that the number of evaluations used by BO is limited to 160,
including those used for the initialization.
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Figure 5.4: Best error versus function evaluations for the AF model using BO. (a) Single
run, (b) Ten runs.

BO reaches a mean error of 47.83 MPa after the allowed 160 function
evaluations with a 95% confidence interval of [46.40 MPa, 48.74 MPa].
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A comparable mean error of 48.78 MPa and a 95% confidence interval
[47.10, MPa, 48.76 MPa] is reached after 121 function evaluations, corre-
sponding to 111 BO steps excluding evaluations used for initialization.
Thus, we observe that repeating the BO process leads, after a sufficient
number of iterations, to rather similar results as for a single run.
In addition to the AF model, we investigate the Ohno-Wang model
in this work to demonstrate the general robustness and reliability of
Bayesian optimization in this setting. The result for one BO run with a
maximum number of 400 evaluations is shown in Fig. 5.5a.
Qualitatively, similar conclusions may be drawn as for the AF model.
To address the issue of randomness we use ten BO runs with different
initialization and evaluate the results, see Fig. 5.5b.
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Figure 5.5: Best error versus function evaluations for the AF model using BO. (a) Single
run, (b) Ten runs.

The observed behavior parallels the optimization for the AF model,
where the mean error improves significantly within the first 100 function
evaluations and stagnates afterwards. An important difference to the AF
model are the final mean and the confidence bounds. For all considered
optimization runs the mean best error is 43.94 MPa, which is lower than
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the mean reached using AF. The 95% confidence interval is computed
as [42.71 MPa, 45.17 MPa]. The broader 95% confidence interval for the
OW model compared to the one obtained for the AF-model optimization
indicates a higher dispersion of BO for the OW model, i.e., a higher
influence of the initial sampling.
To gain insight into the shape of the energy landscape for the considered
black-box function, we compute the difference between two consecutive
minimum values of 𝑓* at the 𝑗-th function evaluation

Δ𝑓*
𝑗 = 𝑓*

𝑗 − 𝑓*
𝑖 with 𝑖, 𝑗 = 1 . . . 𝑁, (5.15)

as well as the Euclidean distance between a parameter set 𝑥𝑖 (see equa-
tion (5.11)) and the previous vector 𝑥𝑖−1. For proper dimensioning, we
normalize each distance parameter-wise by the parameters 𝑥*

𝑗 , for which
a minimum objective value was found, see Tab. 5.4, via

||𝑥𝑖 − 𝑥𝑖−1|| =

⎯⎸⎸⎷ 𝐷∑︁
𝑑=1

(︂
𝑥𝑖,𝑑 − 𝑥𝑖−1,𝑑

𝑥*
𝑑

)︂2
. (5.16)

Here, 𝐷 denotes the number of dimensions of the input vector (5.11),
i.e., 𝐷 = 3 for this work. Let us denote by

Δ𝑓*
𝑗 = 1

𝑅

𝑅∑︁
𝑟=1

Δ𝑓*
𝑗,𝑟 (5.17)

𝑑𝑗 = 1
𝑅

𝑅∑︁
𝑟=1

⃒⃒⃒⃒
𝑥𝑟

𝑗 − 𝑥𝑟
𝑗−1

⃒⃒⃒⃒
(5.18)

the averaged objective values and mean distances over 𝑅 total optimiza-
tion runs at the 𝑗-th function evaluation.
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Parameter 𝜏*
𝑐 in MPa 𝐴* in MPa 𝐵*

Armstrong-Frederick 207.54 41928.27 147.83
Ohno-Wang 173.53 77953.37 473.07

Table 5.4: Parameters used for normalization within the large search space setting.

First, we consider the Armstrong-Frederick kinematic hardening model,
see Fig. 5.6a. The first ten function evaluations, corresponding to sam-
pling of the given parameter space, allow the algorithm to find a promis-
ing starting point. Similar to Fig. 5.4b, for the first ten steps, the mean
change in best error (encountered so far) is very high. After these
initial steps, BO reduces the mean parameter distance while navigating
towards a smaller error, i.e., the already gained knowledge about 𝑓

in the vicinity of an encountered (local) minimum is exploited and the
uncertainty associated to this region is reduced in the process. Thereafter,
it becomes more attractive to sample points with a higher degree of
uncertainty, encoded by a higher variance. This exploration phase is
indicated by the mean parameter distance oscillating around a fixed
value at about 50 -112 function evaluations. The error is reduced fre-
quently by small margins, up to about 112 function evaluations. After
that, both the mean parameter distance and the mean difference in best
error decrease further, as no further improvement of the objective value
is made, see also Fig. 5.4b.
After about 120 function evaluations, corresponding to 110 BO steps, the
exploitation tendency of the considered acquisition function is apparent.
Despite decreasing the mean parameter distance,i.e., exploiting the
already gained knowledge about the function, the best error is not
decreased significantly. Indeed, the used acquisition function 𝑢𝐿𝐶𝐵

comes with an intrinsic trade-off between exploration and exploitation
by sampling the point where the negative mean minus the variance
(multiplied by 𝜉) is largest.
For the Ohno-Wang kinematic hardening model, the considered metrics
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are shown in Fig. 5.6b. Sampling the parameter space reduces the
encountered best error significantly, as we have seen for the Armstrong-
Frederick model. Compared to the AF model, shown in 5.6a, is the mean
relative parameter distance is smaller. This indicates a higher degree of
smoothness in the objective function.
After the initialization phase, the error is reduced, exploiting the already
gained knowledge of the objective function 𝑓 . The mean parameter
distance decreases, i.e., neighboring points are being evaluated. After
50 function evaluations, the improvement of the best error gets less
pronounced, resulting in the plateau apparent in Fig. 5.5b. After about 80
evaluations, a step with large mean parameter distance occurs, resulting
in a subsequent decrease of the best error.
Interpreted in terms of the energy landscape of the objective 𝑓 , BO
investigates a neighborhood with promising points first. After exploiting
this area (up to about 64 iterations), the exploitation-exploration trade-off
favors reducing the uncertainty. This results in a large mean parameter
distance at about 80 function evaluations, allowing the algorithm to find
a new area where the objective 𝑓 may be decreased further.
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Figure 5.6: Comparison of the mean best error difference and parameter distance found
by Bayesian optimization for the different kinematic hardening models. (a) Armstrong-
Frederick, (b) Ohno-Wang.

For both single optimization runs shown in Fig. 5.4a and Fig. 5.5a, the
resulting stress-strain hysteresis is shown in Fig. 5.7 besides their exper-
imental counterparts. The results for, both, the Armstrong-Frederick
and Ohno-Wang model, show good agreement with the experiments
at medium and high strain amplitudes, i.e., 𝜀 = 0.6% and 𝜀 = 0.9%.
These observations may be quantified when normalizing the root of
the mean squared distance between experiment and simulation, i.e.,
equation (5.12), by to the root of the mean squared experimental values

𝑓ℎ√︁
1
𝑁

∑︀𝑁
𝑖=1 𝜎

exp
𝑦,𝑖

. (5.19)

For the Armstrong-Frederick model, the relative difference is 4.29% and
6.81% for 𝜀 = 0.6% and 𝜀 = 0.9%, respectively. We obtain similar values
for the Ohno-Wang model, namely 3.56% and 6.48%. For the smallest
strain amplitude considered, i.e., 𝜀 = 0.35%, the relative error is larger,
with 22.60% and 20.41% for the Armstrong-Frederick and Ohno-Wang
model, respectively. These errors may be reduced either by considering
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a more complex microstructure or by working with more advanced
models. For the work at hand, we focus on the optimization method
used for the parameter identification.
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Figure 5.7: A comparison of stress-strain hysteresis at different loading amplitudes with
parameters identified by BO to experimental results. (a) 𝜀𝑎 = 0.35%, (b) 𝜀𝑎 = 0.6%,
(c) 𝜀𝑎 = 0.9%.

5.3.3 On the choice of acquisition function

In this section, we elaborate on our choice of acquisition function and
exploration margin. For the large search-space problem, we compare
two different exploration margins for each of the considered acquisition
functions 𝑢𝐸𝐼 and 𝑢𝐿𝐶𝐵 . For these four combinations, the mean best
error of ten BO runs is shown in Fig. 5.8a. Except for 𝑢𝐿𝐶𝐵 with 𝜉 = 1.0,
all combinations lead to a comparable minimum value.
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Figure 5.8: Comparison of the mean best error using BO with different acquisition functions
and exploration margins. (a) Entire range of evaluations, (b) Last 100 evaluations.

Additionally, we look at the maximum best error (i.e., the worst case)
for all ten optimization runs versus the number of function evaluations,
shown in Fig. 5.9a. As for the behavior of the mean best error, shown
in Fig. 5.8 for 𝑢𝐿𝐶𝐵 with 𝜉 = 1.0, the maximum best error does not
decrease to a comparable level. The other three considered cases behave
similarly. To examine these cases in more detail, we investigate at the
last 100 evaluations in Fig. 5.9b. BO using 𝑢𝐿𝐶𝐵 with an exploration
margin of two reaches its minimum objective value of 49.45 MPa after
119 function evaluations for the considered case. The worst case for
expected improvement 𝑢𝐸𝐼 and 𝜉 = 0.1, a stationary value of 51.36
MPa, is reached after 106 function evaluations. The reached value is
not improved using more function evaluations. For an exploration
margin of 0.05, a stationary value of 49.31 MPa is reached for the worst
case considered. This is slightly smaller than the error obtained using
𝑢𝐿𝐶𝐵 and 𝜉 = 2.0, but requires 26 additional evaluations, which is
why we chose 𝑢𝐿𝐶𝐵 with 𝜉 = 2.0 as our acquisition function and
exploration margin.
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Figure 5.9: Comparison of the worst case obtained best error using BO with different
acquisition functions and exploration margins. (a) Entire range of evaluations, (b) Last 100
evaluations.

5.3.4 Fine-tuning material parameters with small
parameter space

In section 5.3.2, we were concerned with optimizing parameters when
little is known about the optimum. We may work on a smaller parameter
space if additional information is known, for instance based on expert
knowledge or a previous optimization run for a similar problem. For
determining the crystal plasticity parameters of the single crystal, we
will use the bounds of Tab. 5.5, which we chose to be tighter than the
previously considered bounds. Again, we choose our acquisition func-
tion to be 𝑢𝐿𝐶𝐵 with an exploration margin of 𝜉 = 2.0, as conclusions
very similar to those in section 5.3.3 may be drawn the fine-tuning case,
as well.
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Parameter 𝜏𝑐 in MPa 𝐴 in MPa 𝐵
Lower bound 120. 1000. 0.
Upper bound 220. 200000. 1200.

Table 5.5: Permissible parameter space for the fine-tuning problem.

The BO workflow is initialized by ten points obtained from a Latin-
Hypercube sampling. Then, BO is run for a fixed set of 150 function
evaluations, summing up to a total of 160. The results of ten optimization
runs are shown in Fig. 5.10a and 5.10b for the Armstrong-Frederick and
Ohno-Wang model, respectively.
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Figure 5.10: Mean best error and corresponding 95% confidence interval versus function
evaluations of the Bayesian optimization in the fine-tuning setting. (a) Armstrong-
Frederick, (b) Ohno-Wang.

BO reaches a mean minimum error-value of 46.72 MPa for the AF
model. The 95% confidence interval at end of optimization is given
by [45.66 MPa, 47.78 MPa], which is tighter than for the results of
the large search-space problem. After 80 evaluations, BO reaches a
comparable mean error of 46.92 MPa with a 95% confidence interval
of [45.76 MPa, 48.08 MPa].
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For the optimization of the OW kinematic hardening model, Fig. 5.10b
shows the mean and the 95% confidence interval of the smallest error
versus function evaluations. The mean minimum-value of 41.69 MPa
is reached after 136 evaluations and a comparable mean error of 41.695
MPa is reached after 73 evaluations. Furthermore, each of the optimiza-
tion runs arrives at almost the same error, emphasized by the narrow
95% confidence interval s, [41.6851 MPa, 41.6854 MPa] and [41.52 MPa,
42.17 MPa] for 136 and 73 function evaluations, respectively.
As we did for the large search-space problem, we look at, both, the mean
difference between two consecutive best encountered values of 𝑓 , and,
the mean normed parameter distance (see equations (5.17) and (5.18)).
As normalization, we use those parameters for which the minimum
function value was found, see Tab. 5.6.

Parameter 𝜏*
𝑐 in MPa 𝐴* in MPa 𝐵*

Armstron-Frederick 203.0 44484.21 176.0
Ohno-Wang 186.52 63853.35 403.67

Table 5.6: Parameters used for normalization for the fine-tuning setting.

These metrics are shown for the AF model in Fig. 5.11a. BO system-
atically reduces the step size, with the main change made between
0 and 60 function evaluations. This corresponds to the observations
made in Fig. 5.10a, where after about 60 function evaluations there is no
substantial change in the mean best error encountered as well as for the
95% confidence interval . Fig. 5.11a also shows the trade-off between
exploration and exploitation. This is indicated by peaks in parameter
distance after about 80 function evaluations without decreasing 𝑓 . The
mean distance between parameters is smaller within the more restrained
boundaries of Tab. 5.5. This explains why a comparable or even better
solution is achieved in shorter time than when optimizing with the
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(larger) bounds given in Tab. 5.3.
For the fine-tuning of the OW model, see Fig. 5.11b, similar observations
can be made. In contrast to optimizing the AF model, the mean change
in best error, shown in Fig. 5.10b, is almost zero after 80 function evalua-
tions. As for the large-space problem, the mean parameter distance is
smaller than for the case of optimizing the Armstrong-Frederick model.
However, for the case at hand, this difference is less pronounced.
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Figure 5.11: Comparison of mean error and parameter distance obtained with BO for
(a) the Armstrong-Frederick and (b) the Ohno-Wang kinematic hardening models within
the fine-tuning setting.

5.3.5 Comparison to the state-of-the-art

In this section, we compare the proposed Bayesian approach to alter-
native optimization algorithms which demonstrated their power for
similar tasks, in particular inversely identifying material parameters. In
addition to the evolutionary approach used by Schäfer et al. (2019a), we
investigate the Multilevel Coordinate Search (MCS) (Huyer and Neu-
maier, 1999) and Stable Noisy Optimization by Branch and FIT (SNOB-
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FIT) (Huyer and Neumaier, 2008). The latter two derivative-free op-
timization methods turned out to be particularly powerful for low-
dimensional problems in the expressive review article of Rios and Sahini-
dis (2013). The workflow used by Schäfer et al. (2019a) proceeds as
follows. First, a Latin-Hypercube-Sampling, consisting of 200 points in
the proposed parameter space, is performed. Subsequently, an evolution-
ary algorithm is run on the parameter space, initialized using the most
promising results from the sampling step. MCS and SNOBFIT do not
require an additional initialization, and we use the recommended default
parameters (Huyer and Neumaier, 2008; 1999) for both algorithms.
We compare the smallest error encountered versus function evaluations
for a single optimization run of the AF model in the large-search-space
setting, see Fig. 5.12a, where we constrain the maximum number of
function evaluations to 400. For a start, we observe that all algorithms
reach a non-zero function value, in agreement to previous observations.
The minimum error obtained by the evolutionary approach of 48.20
MPa is reached after 332 function evaluations. A comparable value
of 49.15 MPa is encountered after 270 evaluations. Please note that
the sampling provides a suitable initialization, and, for the first 100
function evaluations, there is a steady decrease in the objective value 𝑓 .
MCS reaches a similar error of 48.69 MPa after 400 evaluations, with an
error of 49.16 MPa reached after evaluating the cost function 237 times.
Among all considered optimization algorithms, SNOBFIT reaches the
lowest error value of 43.72 MPa after 201 function evaluations.
All considered algorithms, except for MCS, rely to some degree on a
random initialization (Huyer and Neumaier, 2008; Brochu et al., 2010).
Therefore, we wish to asses the influence of randomness on the overall
optimization results. In Fig. 5.12b, the mean value of ten optimization
runs is shown. Additionally, we visualize the computed 95% confidence
interval via shaded areas, centered at the mean. For the SNOBFIT
algorithm and these multiple runs, we set the maximum number of
function evaluations to 160, as for the proposed Bayesian strategy. As
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MCS is a deterministic algorithm, in all of the following we will only
show the results of a single optimization run.

Bayesian Optimization Evolutionary approach SNOBFIT MCS
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Figure 5.12: Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT
and MCS for the Armstrong-Frederick kinematic hardening model in the large search
space setting. (a) Single run, (b) Ten runs.

After 100 evaluations, the evolutionary approach reaches a mean
minimum function value of 56.31 MPa with a 95% confidence interval
of [52.73 MPa, 59.90 MPa], and, after 160 evaluations arrives at a mean
and 95% confidence interval of 53.42 MPa and [50.61 MPa, 56.23 MPa],
respectively. The smallest mean value of 48.71 MPa is reached after
evaluating the cost function 394 times, with a comparable value of
49.97 MPa reached after 376 evaluations. Using the SNOBFIT algorithm
results in a smaller mean error of 52.66 MPa at 100 function evaluations,
but a larger 95% confidence interval of [47.14 MPa, 58.19 MPa]. The
mean best error after 160 function evaluations is lower for SNOBFIT
than for BO and the evolutionary algorithm, namely 47.47 MPa while
the 95% confidence interval of [44.15 MPa, 50.78 MPa], obtained by
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using SNOBFIT, is larger than for the other two methods.
As our next step, we compare BO to the evolutionary approach, MCS and
SNOBFIT for optimizing the unknown parameters of the OW kinematic
hardening model in the large-space setting. In Fig. 5.13a, we plot the
best error vs. iterations for each algorithm and a single optimization
run. Bayesian optimization, the evolutionary approach and SNOBFIT
reach similar error values of 44.21 MPa, 45.74 MPa and 43.72 MPa,
respectively. Comparable error values are obtained by BO, SNOBFIT
and the evolutionary framework after evaluating the cost function about
120, 290 and 340 times, respectively. Using Multilevel Coordinate Search
leads to a minimum best error of 48.69 MPa, which is reached after 392
function evaluations.
To investigate the influence of the random initialization on optimizing
the OW model, we use the mean of ten optimization runs and visualize
the results, with the corresponding 95% confidence interval as shaded
areas, in Fig. 5.13b for BO, SNOBFIT and the evolutionary approach.
Combining Latin-Hypercube sampling and the evolutionary algorithm
produces, after 400 function evaluations, a mean error of 51.10 MPa,
and a 95% confidence interval of [47.76 MPa, 54.40 MPa]. After
evaluating the function 160 times, the mean best error using the
evolutionary approach is 55.30 MPa with 95% confidence interval
[53.19 MPa, 57.40 MPa].
For SNOBFIT, the mean best error of 49.77 MPa after 160 function
evaluations lies between the results of BO and the evolutionary approach,
whereas the 95% confidence interval of [44.73 MPa, 54.81 MPa] is larger
than for the two other methods.
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Bayesian Optimization Evolutionary approach SNOBFIT MCS
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Figure 5.13: Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT
and MCS for the Armstrong-Frederick kinematic hardening model in the large search
space setting. (a) Single run, (b) Ten runs.

In Fig. 5.14, we compare the considered algorithms for the refined
bounds given in Tab. 5.5, for both kinematic hardening models.
For optimizing the parameters of the AF model, SNOBFIT provides
the lowest mean error of 44.16 MPa with [42.99 MPa, 45.34 MPa] as
a 95% confidence interval after 160 function evaluations. We observe
comparable values after letting SNOBFIT evaluate the function 98 times,
e.g., 44.53 MPa for the mean error with a 95% confidence interval of
[43.32 MPa, 45.74 MPa]. Using an evolutionary algorithm to optimize
the AF parameters leads to a mean minimum error of 47.29 MPa, which
is close to the mean value reached by BO. The 95% confidence interval
at 160 function calls of the evolutionary algorithm computes to [45.47
MPa and 49.10 MPa], which is larger than for BO or SNOBFIT. To reach
similar mean error values of 47.50 MPa and 46.85 MPa, the evolutionary
algorithm and BO need 153 and 87 function evaluations, respectively.
Among the considered algorithms, MCS reaches the lowest best error,
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already in the first 13 iterations with 50.807 MPa. This error level is
reached within the first function evaluations. Yet, MCS falls short of
reducing the error significantly for subsequent function evaluations.
Indeed, after evaluating the function 160 times, the error is 48.70 MPa.
Next, we compare the mean best error encountered when optimizing
the parameters for the Ohno-Wang kinematic hardening model using
the evolutionary approach, BO or SNOBFIT, see Fig. 5.14b, together with
best error over iterations for the MCS method. Similar conclusions for
the behavior of SNOBFIT may be drawn as for the BO approach, see
Sec. 5.3.4. The mean best error and 95% confidence interval after 160
function evaluations are 43.10 MPa and [42.60 MPa, 43.60 MPa], respec-
tively. Using the evolutionary algorithm produces a mean minimum
error of 49.31 MPa after 133 function evaluations with a 95% confidence
interval of [48.78 MPa, 49.84 MPa]. Almost the same mean best error
of 50.71 MPa with a 95% confidence interval of [48.79 MPa, 52.64 MPa]
is reached after 13 function evaluations and not improving up to 109
evaluations. For MCS, the error is, similar to optimizing the AF model,
the lowest in the first 10 optimization steps. After evaluating the cost
function 160 times, the error reaches a similar value as reached by BO
with 42.29 MPa.
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Bayesian Optimization Evolutionary approach SNOBFIT MCS
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Figure 5.14: Comparison of the evolutionary approach, Bayesian optimization, SNOBFIT
and MCS for both kinematic hardening model in the fine-tuning setting. (a) Armstrong-
Frederick model, (b) Ohno-Wang model.

Let us summarize the findings of this section for each algorithm indi-
vidually. The evolutionary algorithm consistently required the highest
number of function evaluation among the considered algorithms to
reach a specific error level. For the OW model and both the large and
the small search space, the evolutionary algorithm lacked significantly
behind the other algorithms. With the exception of the large search
space and the AF model, MCS provided a similar error value as BO
and the evolutionary algorithm. MCS showed inferior performance for
the OW model and the large search space. In the case of fine tuning,
MCS turned out to be worst for the Armstrong-Frederick model, but
second best for Ohno-Wang. Still, there are practical benefits of the MCS
method. First and foremost, it is a deterministic algorithm, dispensing
with the influence of randomness. Secondly, in the fine-tuning setting
MCS provided very good results already for the first few iterations. Thus,
when the number of evaluations is small and prescribed beforehand,
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MCS is the method of choice.
SNOBFIT is good for the fine-tuning case, in particular for the AF model.
In this case, SNOBFIT produces a similar dispersion as BO. However,
for the large search space, the values produced by SNOBFIT are charac-
terized by a rather large dispersion. Directly comparing SNOBFIT and
BO, the former consistently requires more function evaluations to reach
the same error level.
The proposed Bayesian optimization framework produces a mean which
is comparable to SNOBFIT in the setting of the large search space.
However, BO is both consistently faster and characterized by a smaller
dispersion. Only for fine-tuning AF, BO is a little worse than SNOBFIT
in terms of the reached best error. For fine-tuning the more complex
Ohno-Wang model, BO is fastest and leads to the best error.
To conclude, the presented BO framework provides a strongly competi-
tive solution, independent of the problem. Thus, it turns out to be the
algorithm of choice for industrial applications, in particular parameter
identification for an unknown material.

5.3.6 Industrial-scale polycrystalline microstructure

Previously, we determined the optimum parameters for a simplified
volume element, see Fig. 5.2, which was selected with extensive studies
of the proposed Bayesian optimization approach in mind. In this sec-
tion, we investigate a more complex microstructure to demonstrate the
capabilities of the approach. For this we use a synthetic microstructure,
generated by the method discussed in Kuhn et al. (2020), consisting
of 100 grains (with equal volume). Furthermore, each grain is ran-
domly assigned a crystalline orientation, s.t. the overall orientation is
isotropic, see Fig. 5.16a, where the coloring indicates the corresponding
orientation. We furnish this volume element with periodic boundary
conditions, discretize it by 643 voxels and use the FFT-based solver
FeelMath (Fraunhofer ITWM, 2021; Wicht et al., 2020a;b) to speed up
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computations (Rovinelli et al., 2020). Both, the Armstrong-Frederick and
the Ohno-Wang kinematic hardening model will be considered.
Following Sedighiani et al. (2020), we define the bounds of the feasible
parameter space in terms of the previously found optima, with a range
of 1.5× 𝑥* and 0.5× 𝑥*, see Tab. 5.7 and Tab. 5.8. We retain our choice of
acquisition function and exploration margin. To keep the computational
cost reasonable, we restrict the maximum number of iterations to 50.

Parameter 𝜏𝑐 in MPa 𝐴 in MPa 𝐵
Lower bound 103. 20964. 74.
Upper bound 310. 62892. 222.

Table 5.7: Parameter space for the AF model following Sedighiani et al. (2020).

Parameter 𝜏𝑐 in MPa 𝐴 in MPa 𝐵
Lower bound 93. 31927. 202.
Upper bound 280. 95780. 806.

Table 5.8: Parameter space for the OW model following Sedighiani et al. (2020).

The best error versus number of evaluations is shown in Fig. 5.15a
for the Armstrong-Fredrick model. Guided by a Latin-Hypercube-
Sampling, the first ten function evaluations result in an error of 44.10
MPa. This error is further reduced to 43.68 MPa after 20 additional
function evaluations. The minimum error of 41.20 MPa is reached after
evaluating the function 33 times. The obtained error is smaller than in
Section 5.3.4. This may be a result of the increased complexity of the
microstructure, which is closer to the experimental setup encompassing
a large number of grains. Furthermore, the obtained parameter values,
shown in Tab. 5.9 lie outside of the bounds considered in the previous
sections, see Tab. 5.3 and Tab. 5.5.
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Figure 5.15: Smallest error versus iterations for the optimization of kinematic hardening
parameters and critical resolved shear stress using the microstructure with increased
complexity. (a) Armstrong-Frederick model, (b) Ohno-Wang model.

Similar conclusions may be drawn for the Ohno-Wang kinematic hard-
ening model, where the smallest error versus number of function evalu-
ations is shown in Fig 5.15b. After ten function evaluations following a
Latin-Hypercube-Sampling, the smallest error is 62.05 MPa. After taking
one BO step, this error is reduced to 41.35 MPa. The final minimum
error of 38.21 MPa is reached after 27 function evaluations, i.e., after 17
steps proposed by Bayesian optimization.

Parameter 𝜏𝑐 in MPa 𝐴 in MPa 𝐵
Armstrong-Frederick 226.55 42758.98 116.34
Ohno-Wang 239.50 37166.05 219.87

Table 5.9: Resulting parameter sets for the optimization with a more complex microstruc-
ture model.

To ensure that the smaller error for the complex microstructure is not
a consequence of the different parameter bounds, we return to the
simplified microstructure, see Fig. 5.2, and run Bayesian optimization
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on the constrained parameter spaces, see Tab. 5.7 and Tab. 5.8. For the
Armstrong-Frederick model, BO reaches a mean error of 44.69 MPa
an a [44.69 MPa, 44.70 MPa] 95% confidence interval after 50 function
evaluations. After the same number of evaluations, the resulting mean
error and 95% confidence interval are 41.78 MPa and [41.59 MPa, 41.97
MPa], respectively. Thus, even for the constrained bounds, the error
corresponding to the more complex microstructure shown in Fig. 5.16a
improves upon the error obtained for the simplified structure.
Concerning the computational cost, the simulation with a time step of
△𝑡 = 0.01s and 16 CPUs takes roughly 40 minutes for the largest strain
amplitude of 𝜀𝑎 = 0.9%. Thus, for the chosen maximum number of 50
function evaluations, the total Bayesian parameter identification takes
33 hours. The minimum error of 38.21 MPa is found after a computation
time of 18 hours in total for the Ohno-Wang kinematic hardening model.
As for the Armstrong-Frederick model a total computation time of 22
hours is needed to find a solution with error 41.20 MPa.
Using a more complex synthetic microstructure, the error is further
reduced, at the expense of an increased computational effort. Still, the
Bayesian-optimization approach limits the required total time to less
than a day. Using a more complex representation of the microstruc-
ture offers also permits us to gain deeper insights into the deforma-
tion behavior of the microstructure, for instance in terms of the accu-
mulated plastic slip, a mesoscopic indicator for the plastic deforma-
tion. Furthermore, the obtained optimum parameter set may enter
further microstructure simulations.
For 𝜀𝑎 = 0.9% and 𝑡 = 8.0s, the distribution of accumulated plastic slip,
see Wulfinghoff et al. (2013),

�̇� =
𝑁𝑆∑︁
𝜂=1
|�̇�𝜂| , (5.20)
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is shown in Fig. 5.16b and Fig. 5.16c for the Armstrong-Frederick and
Ohno-Wang kinematic hardening model, respectively. In both cases, the
accumulated plastic slip is concentrated in specific grains.

(a) (b) (c)

Figure 5.16: Resulting distribution of the accumulated plastic �̇� slip for 𝜀𝑎 = 0.9% at the
end of simulation. (a) Morphology, (b) AF model, (c) OW model.

As we used the same geometric microstructure for each of the harden-
ing models, we observe that, independent of the employed kinematic
hardening model, the orientation of each grain plays a crucial role in
determining the deformation behavior. Apparently, grains with higher
accumulated plastic slip �̇� are oriented in such a way that the applied
macroscopic load has maximum effect, thus resulting in a higher amount
of plastic deformation.
Moreover, the distribution of accumulated plastic slip provides some
insight into the advantages of the OW model over the AF model in
producing smaller errors which is not apparent from the resulting hys-
teresis shown in Fig. 5.17. For the Ohno-Wang kinematic hardening
model, there are more regions with high accumulated plastic slip �̇� in
Fig. 5.16c than for the Armstrong-Frederick model in Fig. 5.16b. This
more pronounced plasticity seems to match the experimental behavior
better than the results computed using the Armstrong-Frederick kine-
matic hardening model. The relative error defined in equation (5.19) is
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considerably lower for the small strain amplitude 𝜀 = 0.35% for both
kinematic hardening models with 11.65% and 8.65% for the Armstrong-
Frederick and Ohno-Wang model, respectively. The relative errors for
the medium strain amplitude are increased to 11.20% for the Armstrong-
Frederick and 11.08% for the Ohno-Wang model, whereas the error
for 𝜀 = 0.9% is also reduced to 4.59% and 5.16% for the respective
models. As the small strain amplitude 𝜀 = 0.35% is most interesting for
fatigue applications, the benefits of using the more complex structure,
see Fig. 5.16a, sinstead of the simplified microstructure, see Fig 5.2,
become apparent.

Experiment AF OW
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Figure 5.17: Comparison of stress-strain hysteresis determined by BO to experimental
results at different loading amplitudes. (a) 𝜀𝑎 = 0.35%, (b) 𝜀𝑎 = 0.6%, (c) 𝜀𝑎 = 0.9%.

5.4 Conclusion

This work was dedicated to identifying constitutive parameters for a
small strain crystal plasticity constitutive law incorporating a kinematic
hardening model to capture the behavior under cyclic loading condi-
tions, a topic which received attention recently from, both, a scientific
and applied perspective (Sedighiani et al., 2020; Shahmardani et al.,
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2020; Shenoy et al., 2008; Prithivirajan and Sangid, 2018; Guery et al.,
2016; Hochhalter et al., 2020; Kapoor et al., 2021; Pagan et al., 2017;
Bandyopadhyay et al., 2020; 2019; Rovinelli et al., 2018).
We investigated a Bayesian optimization approach for the rapid and
flexible calibration of the single-crystal constitutive parameters entering
micromechanical simulations. The methodology is data-driven and
compares the predicted stress-strain hysteresis to given polycrystalline
experimental data. More precisely, we proposed using Bayesian
optimization with Gaussian processes to build up a surrogate model of
the optimization problem at hand and employed the upper confidence
bound using an exploration margin of two for selecting the next iterate.
Our numerical investigations demonstrated that the proposed optimiza-
tion framework reliably and efficiently determines suitable material
parameters for our purposes. For instance, these moduli may enter a
simulation predicting the initiation of fatigue cracks, see Schäfer et al.
(2019a). We investigated both a large and a comparatively small space
of admissible parameters, simulating whether prior knowledge on the
optimum is available or not. The proposed framework is able to handle
the challenges of the large search space, and is sped up for the smaller
admissible set.
By investigating both the changes in parameter vector and in the
objective value, we could gain an intuitive understanding for the
selection strategy of Bayesian optimization, providing a suitable trade-
off between exploitation and exploration. Furthermore, we could
get an insight into the general energy landscape and the effects of
using different acquisition functions.
We compared the proposed Bayesian optimization framework to a
representative Schäfer et al. (2019a) of the powerful class of genetic algo-
rithms (Kapoor et al., 2021; Bandyopadhyay et al., 2020; Rovinelli et al.,
2018) as well as two derivative-free optimization schemes recommended
in the review article by Rios and Sahinidis (2013) for low-dimensional
problems. The computational findings of section 5.3.5 demonstrated the
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capabilities of the Bayesian optimization framework. Compared to the
investigated evolutionary algorithm, BO turned out to be consistently
faster, and featured a smaller dispersion. BO outperforms MCS mainly in
the case of the large search space, whereas, for fine tuning, BO produces a
smaller minimum achieved error for all cases, but requires more function
evaluations to reach a comparable error level. Compared to SNOBFIT,
BO produces a considerably smaller dispersion when considering a large
search-space. BO requires fewer function evaluations, and provides
similar or better results in case of fine-tuning.
We observed that, for fitting computed stress-strain hysteresis to their
experimental counterparts accurately, using more complex microstruc-
tures is necessary. In particular, the hysteresis at a low strain amplitude,
the one most relevant to fatigue applications, using a volume element
with 100 complex grains led to more accurate results than the simplified
volume element with 64 cubic grains.
To further improve the fitting quality, it appears wise to investigate
whether increasing the complexity of the underlying material model
or tweaking the parameters used for microstructure generation has a
higher effects. Especially in the context of industrial applications and
the digital twin paradigm (Tuegel et al., 2011), accurate computational
representations of components and their microstructure are needed.
Further research might be invested into optimizing the microstructure
descriptors, which are used as input for synthetic microstructure
generation (Quey and Renversade, 2018; Bourne et al., 2020; Kuhn
et al., 2020). In particular, it may be possible to determine a set of
minimal, thus most efficient, characteristics a microstructure has to
possess in order to produce the desired macroscopic material behavior.
Complementing research dedicated to microstructure representations,
the proposed optimization scheme could be improved. Despite the
power and flexibility we experienced in the applied context, decreasing
the number of necessary simulation runs (via fewer function calls)
would be very much appreciated, in particular combined with a clever
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stopping criterion. Furthermore, research could be devoted to dedicated
transfer strategies, i.e., building upon previous experience with simi-
lar microstructures, material models or experimental data (Golovin
et al., 2017). Last but not least, it appears worthwhile to extend
the Bayesian optimization framework to uncertainty quantification,
see Bandyopadhyay et al. (2019).
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Chapter 6

Summary and conclusions

To ensure the safety of industrial components made from polycrystalline
metals, it is imperative to assess their reliability with respect to cyclic
loading conditions, as fatigue is still one of the major root cause of failure.
Heterogeneities on the microscale are sources of fatigue crack initiation.
Thus, the material’s microstructure strongly impacts the fatigue behavior
of a component. Typically, these influences are investigated by means
of experiments. However, fatigue experiments are time and cost inten-
sive. Simulating the mechanical behavior on a microscopic scale allows
predicting fatigue lifetimes, taking the microstructures influence into
account and reducing experimental effort.
In this work we adressed two topics required for micromechanical
simulations of polycrystalline metals: Providing representative volume
elements (RVEs) and identifying parameters of the crystal plasticity
model in use. With the goal of reducing the overall runtime of the
micromechanical simulations, we proposed two methods to create syn-
thetic polycrystalline microstructures which reduce the required RVE
size. We used a Bayesian optimization approach to inversely identify
the model parameters based on polycrystalline experiments, reducing
the required simulations by about a factor of two.
We considered Laguerre tessellations as models for polycrystalline mi-
crostructures in Chap. 3. Based on the formulation as an convex optimiza-
tion problem, Bourne et al. (2020) proposed a method to quickly compute
the weights of Laguerre tessellations, so that the computed cells have
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prescribed volume fractions. We showed that using modern gradient-
type solvers enables computing the weights within a few seconds. For
all numerical examples considered, the non-monotone Barzilai-Borwein
scheme provided the lowest run-times and therefore may serve as a
general-purpose method. For the sake of shape regularity, it might be
beneficial that the cells are centroidal, i.e., their seeds coincide with their
centroids. We applied Anderson acceleration to Lloyd’s algorithm used
by Bourne et al. (2020), which considerably speeds up the computations.
With the algorithm at hand we were able to compute shape regular
Laguerre tessellations which reproduced an experimentally observed
grain size distribution. Additionally, computational cells consisting of
multiple phases can be generated, e.g., accounting for different phase
compositions due to a heat treatment of the metal. Extending the method
to other features of the microstructure, e.g., sphericity of the grains,
might be an interesting step to increase the physical realism of the
generated synthetic microstructures.
As a next step, in Chap. 4, we developed a method for prescribing
crystallographic orientations to individual grains of the polycrystalline
microstructures. We used the coefficients of a Fourier series expansion of
the crystallite orientation distribution function, to formulate an iterative
update procedure for the crystallographic orientations in the volume
element. The cost function was formulated as the difference between
prescribed and realized so-called texture coefficients. We compared
the proposed method to other state-of-the-art approaches in terms of
required volume element size to reproduce prescribed effective behav-
ior. We considered, both, a uniform as well as a textured orientation
distribution and investigated linear as well as non-linear behavior. For a
unique grain size distribution, we observed the proposed optimization
method to require a smaller number of grains in the volume element,
thus, reducing the size of the RVE. Extending our investigations to the
case of a log-normal grain size distribution, we found the proposed
"Texture coefficient Optimization for Prescribing orientations" (TOP)
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method shows little sensitivity to the underlying grain sizes, in contrast
to the other considered methods. To further improve the proposed
method, it would be interesting if faster optimization schemes, e.g., a
Newton method, could be applied.
With a framework, enabling the creation of high-fidelity microstructures
at hand, we proposed a Bayesian optimization approach to determine
suitable material model parameters in Chap. 5. More precisely, using
an inverse optimization approach and Gaussian processes as surrogate
models, we were able to determine single crystal plasticity parameter
from polycrystalline experiments quickly and efficiently. Compared to the
state-of-the-art and powerful derivative-free approaches, the Bayesian
optimization proved to be the most robust and the fastest. Applying
transfer-learning approaches could further improve the efficiency of
the optimization, especially when facing new, but similar, materials for
which the parameters are to be determined. Additionally, it might be
interesting to investigate whether the approach can be used to determine
single phase parameters using experimental results from a multiphase
specimen, e.g., when it is not possible to manufacture specimens with a
single phase.
Taking all the described results into account, this thesis supplied novel
methods to create microstructural representations of polycrystalline
materials and provided a fast and reliable optimization method to param-
eterize the underlying material model. The promoted methods in this
thesis are expected to accelerate the development of digital twins to drive
the digitalization of the manufacturing process of metallic components.
In order to predict the lifetime of components under various loading
conditions using a digital twin, suitable methods for predicting the
mechanical behavior have to be used. The methods developed in this
thesis enable creating micromechanical models, which might be used
either in FE2/FE-FFT approaches (Spahn et al., 2014; Kochmann et al.,
2016) or modern, Machine Learning based methods (Gajek et al., 2021).
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To capture the influence of the microstructure on the cyclic mechanical be-
havior of polycrystalline metals in a resource-efficient way, computational 
homogenization methods solve equations on computational cells. These reflect 
the essential characteristics of the microstructure. In this work we propose to 
use modern solvers to compute representations of polycrystalline materials in 
terms of Laguerre tessellations with prescribed volume fractions. We assess the 
performance of these solvers in terms of the number of iterations and overall 
run-time needed to compute the Laguerre cells. To assign a crystallographic 
orientation to each cell, we propose an optimization scheme based on tensorial 
texture coefficients, a measure used to quantify the anisotropy of polycrys-
tals. We investigate the capability of the method to reproduce isotropic and 
anisotropic mechanical behavior with microstructures featuring different grain 
size distributions. Describing the deformation behavior on a microscopic scale 
requires identifying suitable parameters for the material model at hand, i.e., 
single crystal plasticity. As the ground truth we use macroscopic experiments 
and compare them with computational results, leading to an inverse optimiza-
tion problem. We propose to use a Bayesian optimization strategy, investigate 
its performance as well as its robustness and compare it to other algorithms.
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