


 Occupant-  Centric  Simulation-  Aided 
Building Design

 Occupant-  Centric  Simulation-  Aided Building Design promotes occupants as a 
focal point for the design process. This resource for established and emerging 
building designers and researchers provides theoretical and practical means 
to restore occupants and their needs to the heart of the design process.

Helmed by leaders of the International Energy Agency Annex 79, this 
edited volume features contributions from a  multi-  disciplinary, globally 
recognized team of scholars and practitioners. Chapters on the indoor en-
vironment and human factors introduce the principles of  occupant-  centric 
design while chapters on selecting and applying models provide a thorough 
grounding in  simulation-  aided building design practice. A final chapter as-
sembling detailed case studies puts the lessons of the preceding chapters 
into  real-  world context. In fulfillment of the International Energy Agency’s 
mission of disseminating research on secure and sustainable energy to all, 
 Occupant-  Centric  Simulation-  Aided Building Design is available as an Open 
Access Gold title.

With a balance of fundamentals and design process guidelines,  Occupant- 
 Centric  Simulation-  Aided Building Design reorients the building design com-
munity toward buildings that recognize and serve diverse occupant needs, 
while aiming for superior environmental performance, based on the latest 
science and methods.
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Foreword

Numerous studies and experience from practice have shown that occupants 
can have a decisive influence on the performance and energy consumption 
of buildings. On the one hand, energy consumption depends on the use of 
equipment ( e.g., household appliances, IT equipment) and technical systems 
( e.g., elevators), but there are also  comfort-  related actions of users which 
can significantly influence energy performance in both residential and com-
mercial buildings. The latter share depends to a large extent on the needs 
and expectations of the occupants, the available adaptive opportunities to 
influence their comfort, and their resulting behavior in terms of any kind of 
space conditioning.

Despite these factors, occupants are still inadequately represented in 
building design. It is therefore entirely welcome and, even more, of utmost 
importance that the authors of this book broached the topic with the aim 
of promoting a paradigm shift toward considering occupants as active and 
dynamic participants in buildings and their performance. By presenting 
and discussing various aspects in this context, the authors provide a highly 
valuable basis for  occupant-  centric,  performance-  based design. This book 
serves not only as a scientific textbook for graduate students and researchers 
but also as an  application-  oriented guidebook for building designers and 
planners. Much of the content represents the outcome of international re-
search on occupant behavior in buildings over the last 10 years, organized 
through the International Energy  Agency –   Energy in Buildings and Com-
munities Annexes 66 and 79.

The book draws a broad picture, from occupant needs with regard to 
indoor environmental quality and human factors, to methods for planning 
how to incorporate these needs into the design process, and finally to sim-
ulation strategies with ways to choose the most appropriate occupant mod-
eling approach. The book also focuses on building interfaces which play a 
critical role in  human-  building interaction for a successful use of adaptive 
opportunities. And finally, the presented case studies show that  occupant- 
 centric,  performance-  based design does work if implemented properly 
among the shareholders involved.
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Glossary

Term Definition Chapter #

Action An interaction event between an occupant 
and a building system or other system that 
causes a change in state

6

Adaptive behaviors Occupant behaviors that are triggered by 
 IEQ-  related phenomena

6

 Agent-  based model A modeling technique to represent 
occupants as autonomous agents who 
interact with other occupants, building 
systems, and the building

6

American National 
Standards Institute 
( ANSI)

An organization responsible for establishing 
and publishing technical standards 
spanning a wide range of products, 
systems, processes, and services

9

American Society 
of Heating, 
Refrigerating and 
 Air-  Conditioning 
Engineers ( ASHRAE)

A professional association responsible for 
research, standards, and best practices 
regarding building mechanical systems 
and more broadly building performance, 
design, and controls

5

Architecture, 
engineering, and 
construction ( AEC)

The industry responsible for delivering 
 buildings –   from design and occupancy

9

ASHRAE Guideline 36 A standard describing  best-  practice 
sequences of operation for HVAC systems 
including certain  occupant-  centric 
controls

10

Asset management 
standards

Standards that define the ontology, 
requirements ( of the organization, 
leadership, planning, support, 
operation, performance evaluation, and 
improvement) and management of a built 
asset

3

Aural comfort A measure of the objective and subjective 
elements of the satisfaction of the acoustic 
environment of space

2

Binomial model A common statistical model, also referred 
to as logistic regression, that is used to 
predict binary outcomes

6



Glossary xv

Term Definition Chapter #

Boundary condition Condition defining how a system ( such as a 
building) interacts with the environment

7

Building Automation 
System ( BAS)

The system of hardware and software used 
to control electrical and mechanical 
systems in a building

5

Building information 
modeling ( BIM)

The process of creating and managing the 
digital federate model that contains all 
the information of a project structured 
according to information containers 
mirroring the different disciplines 
involved in the project

3

Building operator The person( s) responsible for the electrical, 
plumbing, and mechanical operations of a 
building or facility

9

Building Performance A measure of a building’s efficiency or how 
well it functions; in this context, usually 
with regard to energy use

9

Building performance 
simulation ( BPS)

A software system that employs 
mathematical models representing 
buildings to predict various aspects 
of building performance ( energy use, 
comfort, indoor air quality, etc.)

5

Building physics Application of the principles of physics to 
the built environment ( e.g., acoustics, air 
movement, thermodynamics)

9

Building Research 
Establishment 
Environmental 
Assessment Method 
( BREEAM)

A sustainability assessment method for 
 master-  planning projects, infrastructure, 
and buildings

5

Building Services 
Research and 
Information 
Association ( BSRIA)

A  UK-  based testing, instrumentation, 
research, and consultancy organization, 
providing specialist services in 
construction and building services 
engineering

5

Cognitive load The amount of effort required to reason 
and/ or process information

9

Computational model A  computer-  generated model used to 
simulate and study complex systems using 
mathematics, physics, and computer 
science

7

 Controls-  oriented 
occupant data

Data acquired from sensors or through 
interactions with control interfaces about 
a group of occupants’ presence, count, 
identities, and activities

10

Cooling degree days 
( CDD)

A measure of the magnitude and duration of 
outdoor air temperatures that can be used 
as an indication of the expected building 
cooling load

5

 Data-  driven model A model that is trained or otherwise 
constructed using measured data

6
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Term Definition Chapter #

 Degree-    occupant-  hour Sum of occupied hours multiplied by the 
number of occupants and derivation of a 
measurement exceeding a threshold

5

Design aims The set of goals or objectives a given design 
needs to achieve as specified by the client 
and all other involved stakeholders

3

Design decisions Any technical decision made by a designer 
( architect, mechanical engineer, civil 
engineer, etc.) during the design process

3

Design parameter ( DP) A variable used to define an aspect or 
characteristic of a building or building 
system

11

Design pattern An abstract design  problem-  solution pair 
which appears repeatedly in design 
contexts and which can be clearly 
identified and recorded

3

Design requirements The set of requirements established by the 
project team, with or without the client 
and other stakeholders, that a given 
design needs to fulfill

3

Design stages Different stages of project delivery with 
milestones for information preparation 
and exchange, client approval, and 
payments as specified in plans of work 
from a given accreditation body

3

Design workflow A process for laying out all tasks and 
processes in a visual map, in order to give 
team members and stakeholders a  high- 
 level overview of each task involved in a 
particular process

7

Deterministic model A mathematical model that yields the same 
results, with no randomness, each time it 
is simulated

6

Distributed energy 
resources ( DER)

An electrical power source sited close to 
customers that can provide all or some 
of their immediate needs and/ or can be 
used by the utility system to either reduce 
demand or provide supply to satisfy the 
energy, capacity, or ancillary service 
needs of the grid

5

Diversity schedule A series of values ( typically ranging from 
0 to 1) to indicate the relative intensity 
of  occupant-  related phenomena ( e.g., 
occupancy, plug loads)

6

Double hermeneutic A characterization of social science research 
that acknowledges interactions between 
researcher and research subject, and the 
subjectivity inherent in performing such 
research

4

Energy conservation 
measure ( ECM)

A building upgrade designed to save energy 11
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Term Definition Chapter #

Energy efficiency ( EE) A measure of the ability for a building to use 
energy effectively compared to the service 
it provides

5

Energy management 
system ( EMS)

A building tool used to analyze and process 
building energy data to monitor energy 
use and efficiency

9

Energy modeling The process of building computer models of 
energy systems to analyze and predict a 
building’s energy use over time

9

EnergyPlus A comprehensive building performance 
simulation tool

5

Epistemology The study of knowledge; that is, how we 
know what we claim to know

4

eQuest A building performance simulation tool 9
Factor, contextual A circumstance in a building that influences 

occupancy or behavior; this factor can 
be categorized as physical environment, 
psychological, social, or physiological

2

Factor, personal A factor related to the personal 
characteristics of the occupant, like age, 
weight, and personality.

2

Factor, physical 
environmental

The physical circumstances of a space, such 
as the building envelope and availability 
of adaptive opportunities, that affect an 
occupant’s behavior

2

Factor, physiological The physical circumstances of an occupant 
that affect behavior and comfort such as 
their demographics and level of health

2

Factor, psychological The mental circumstances of an occupant 
that affect behavior and comfort, such as 
preferences, expectations, and perceived 
control.

2

Factor, social The influence of other people ( e.g., in 
a shared room) on one’s behavior or 
presence

2

 Fit-    for-  purpose model A model that generates the required results 
to the necessary level of accuracy within a 
manageable amount of time and effort

7

Formative evaluation Evaluation activities designed to specify 
directional targets, monitor progress, and 
provide ongoing feedback

4

 Grid-  interactive 
efficient building 
( GEB)

An  energy-  efficient building that uses smart 
technologies and  on-  site DERs to provide 
demand flexibility while  co-  optimizing for 
energy cost, grid services, and occupant 
needs and preferences, in a continuous 
and integrated way

5

Haptics Electronically or mechanically generated 
movement or vibration, often felt through 
the sense of touch

9
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Term Definition Chapter #

Heat index ( HI) The temperature feels like to the human 
body when relative humidity is combined 
with the air temperature ( AKA apparent 
temperature)

5

Heating degree days 
( HDD)

A measure of the magnitude and duration of 
outdoor air temperatures that can be used 
as an indication of the expected building 
heating load

5

Hidden Markov model 
( HMM)

A statistical model to predict a series 
of events, based in part on indirect 
observations

6

 Human–  building 
interactions ( HBI)

The study of the interactions between 
occupants and a building’s physical space 
and the interfaces within it

9

Human Factors and 
Ergonomics Society 
( HFES)

A society representing professionals who 
work in the field of human factors and 
ergonomics

9

Human information 
processing ( HIP)

A model that describes how people receive, 
use, and act upon information provided 
to them based on attentional resources 
and inputs

9

Indoor environmental 
quality (IEQ)

A holistic measure of comfort and 
healthiness of an indoor space for human 
occupants, which comprises four main 
components: thermal comfort, visual 
comfort, aural comfort, and indoor air 
quality

2

Information delivery 
plans

The information deliverables for each task 
in a project, including their format and 
who is responsible for delivering them

3

Information 
management

The process of producing, collecting, 
storing, curating, distributing, using, 
archiving, etc. all the information related 
to a design project

3

Information 
management 
standards

Standards which define information 
management concepts, principles, 
organization, functions, delivery cycles 
and planning, team capability and 
capacity, common data environments, 
and workflows for built projects

3

Information 
management systems

Processes designed to store, organize, 
retrieve, and distribute information to be 
used in  decision-  making

3

Institute of Electrical 
and Electronics 
Engineers ( IEEE)

A professional organization representing 
electrical and electronics engineers

9
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Integrated design 
process ( IDP)

A design approach which involves all 
stakeholders of a project from the early 
design stages ( i.e., from the specification 
of design requirements and objectives) 
so that integrated and optimum design 
solutions are developed through common 
agreement and interdisciplinary methods

3

Integrated Project 
Delivery ( IPD)

A project delivery model that embraces 
a collaboration between stakeholders 
to distribute the risk and reward of the 
project

3

International 
Electrotechnical 
Commission ( IEC)

An international organization that publishes 
standards for electrical and electronic 
equipment

9

International 
Organization for 
Standardization ( ISO)

International Organization for 
Standardization

9

Leadership in Energy 
and Environmental 
Design ( LEED)

A green building certification program 
with a set of rating systems for the 
design, construction, operation, and 
maintenance of green buildings, homes, 
and neighborhoods

5

Lighting load The installed power of the luminaires in a 
building

9

Markov chain model A stochastic model to predict a series of 
events, whereby the transition of state 
probability only depends on the previous 
state

6

Model complexity Level of detail in a model, which in turn 
depends on its size and resolution

7

Model resolution Number of variables in the model and their 
precision or granularity 

7

Model size Number of components in a coupled model 7
NABERS Building 

Standard
A rating system that measures the 

operational environmental performance 
of buildings and tenancies, e.g., the 
energy efficiency, water usage, waste 
management, and indoor environment 
quality of a building or tenancy and its 
impact on the environment

7

 Non-  adaptive behaviors Occupant behaviors that are related to 
habits, tasks, and other phenomena 
that are not triggered by  IEQ-  related 
phenomena

6

Objective data Data that is directly observable by reliable 
instruments or people

4

Objective function A mathematical construct of building 
performance metrics in a design 
optimization problem that is to be 
maximized or minimized

8
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Term Definition Chapter #

 Object-  oriented 
structures

Structures composed of clearly defined and 
identifiable objects or building blocks

3

Observational measure Measure that provides an objective view 
of occupant behavior in a space, such as 
behavior tracking, mapping,  instrument- 
 based data collection, photography, and 
videography

4

Occupancy The presence of occupants, which can be 
defined as a binary state ( occupied or 
unoccupied/ vacant), number of occupants 
present, and/ or details on present 
occupants ( e.g., demographics)

1

Occupant behavior The actions or resulting states caused by 
the interactions between occupants and 
buildings/ building systems

1

Occupant discomfort 
hours ( ODH)

The sum of the product of the number of 
occupants present and the number of 
hours that they suffer from discomfort

11

Occupant preference 
learning

Inferring occupant preferences through 
algorithms assimilating occupant activity 
data concerning adaptive behaviors

10

 Occupant-  centric 
control ( OCC) 
variables

 Occupant-  related variables defined within 
a building controller which are used in 
control sequences. An example of an 
 occupant-  centric control variable is the 
latest expected arrival time. It can be 
used in a sequence to switch an HVAC 
zone’s mode of operation to unoccupied, 
when the current time exceeds the latest 
expected arrival time in a vacant space

10

 Occupant-  centric 
controls ( OCC)

 Occupant-  centric controls ( OCC) is an 
indoor climate control approach whereby 
occupancy and occupant comfort 
information are used in the sequence of 
operation of building energy systems

10

 Occupant-  centric 
metrics

Building performance metrics that capture 
the quality of services occupants receive 
and the degree of buildings’ flexibility to 
accommodate occupants’ interactions 
with building systems which influence 
building operations and thus resource 
usage and environmental performance

5

 Occupant-  hour Sum of hours multiplied by the number of 
occupants in corresponding hours

5

Occupants Human inhabitants of buildings 1
Occupants distribution 

scenarios ( ODS)
Set of assumptions about how occupants are 

distributed within a building
11

Offline learning for 
OCC variables

Algorithms used to transform occupant 
data from sensors or control interfaces to 
OCC variables using archived historical 
data

10
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Term Definition Chapter #

Olfactory The sense of smell of occupants, referring to 
their ability to perceive odor of indoor air

2

Online learning for 
OCC variables

Algorithms used to transform occupant 
data from sensors or control interfaces to 
OCC variables in an online fashion. It is 
broadly categorized as recursive or batch 
online learning algorithms

10

OpenStudio A  cross-  platform collection of software 
tools to support whole building energy 
modeling using EnergyPlus and advanced 
daylight analysis using Radiance

5

Parallel coordinates plot A graph used in parametric simulation 
to illustrate the performance of an 
individual or multiple design variants 
in terms of multiple metrics, whereby 
each metric is represented by a separate 
axis and the axes are equally spaced and 
parallel to each other

8

Participatory measure A method that allows occupants to 
participate directly in research, such as a 
design charrette or  crowd-  sourced data 
collection effort

4

Perceived control Level of subjectively perceived control 
over one or more of the IEQ factors 
via building systems or other adaptive 
opportunities. This may differ from 
objectively available control, e.g. when 
a person is not aware of a control 
opportunity or considers it ineffective

2

Performance indicator In the context of building simulation, a 
quantitative measurement by which the 
performance, efficiency, etc. of a building 
can be assessed,  stand-  alone or by 
comparison with a defined target

7

Persona A fictional or nonfictional set of 
characteristics that define a representative 
occupant for design and modeling 
purposes

6

Personalized control A control strategy that provides individual 
control opportunities to an occupant to 
control the IEQ factors of its immediate 
personal surrounding without affecting 
the IEQ factors of other occupants in the 
same room

2

Plan of work Document issued by professional 
accreditation body to provide a road 
map for the building industry on design 
process management

3

Post occupancy 
evaluation ( POE)

The process of objectively or subjectively 
measuring the comfort level of a building 
after users have begun occupying it

5
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Term Definition Chapter #

Practitioners Professionals who apply skills and 
knowledge to one or more phases of the 
building life cycle ( design, operations, 
management, etc.)

1

Project information 
requirements

The information required by each party at 
key decision points throughout the life of 
a building project ( from building design 
to building in use)

3

Reversal function In the context of occupant behavior 
modeling, a function indicating the 
returning of a building component in the 
position prior to the action ( e.g., closing a 
window or opening a shading system)

7

 Self-  report measure A method that allows researchers and 
designers to understand how users 
perceive a space and their own needs, 
such as questionnaires, interviews, focus 
groups, and diaries

4

Sequences of operation A specification defining how each building 
system, subsystem, and device shall 
interact with each other to deliver 
building services

10

 Simulation-  aided 
building design

An approach to building design in which 
the design process is informed by building 
performance simulation and analysis

8

State The resulting condition after an occupant 
has acted or a building system has 
changed ( e.g., window is open, light is on)

6

Stochastic model A model that introduces randomness such 
that the output varies each time it is 
simulated

6

Subjective data Data that is not directly observable in the 
same way by all instruments and people

4

Summative evaluation Evaluation activities designed to measure 
how well the building works

4

Task illuminance The total amount of light falling on a 
surface, in this case, the amount of light 
needed to perform a task such as reading 
and writing.

9

Technology acceptance 
model ( TAM)

A model that illustrates how users accept 
and use new technologies

9

 Test-  Reference Year 
( TRY)

Datasets with a sequence of 8,670 hourly 
data values of typical meteorological 
variables for a specified location

5

Theory of planned 
behavior ( TPB)

A psychological theory that attempts 
to predict human behavior based on 
expressed intentions, attitudes, beliefs, 
given perceived controllability of 
environmental features

4
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Term Definition Chapter #

Thermal comfort A measure of occupants’ satisfaction with 
thermal conditions, which is frequently 
defined as “ That condition of mind that 
expresses satisfaction with the thermal 
environment and is assessed by subjective 
evaluation.” according to ANSI/ ASHRAE 
Standard  55-  2020

2

Triangulation Use of multiple sources of data to see 
whether results point in the same 
direction, thereby increasing confidence 
in the validity of outcomes.

4

Trigger External event or circumstance that causes 
an occupant to initiate an action or 
relocate

6

User experience ( UX) An area of research and industry that 
focuses on how people interact with 
devices, controls, or products

9

User journey A technique mimicking a person’s 
experience during one session of using 
a building, consisting of the series of 
actions performed to achieve a particular 
goal ( e.g., typical day of a facility manager 
in an office building)

7

Variable air  volume –  
 air handling unit 
( VAV AHU) system

A widely used  air-  based HVAC approach in 
commercial and institutional buildings 
whereby the  centrally-  supplied air supply 
rate is varied at the zone level to control 
the heating and cooling rate

10

Visual comfort A measure of the objective and subjective 
elements of the satisfaction of the 
luminance from electric lighting and 
daylight in space

2

WELL Building 
Standard

A  performance-  based system for measuring, 
certifying, and monitoring features of 
the built environment that impact human 
health and  well-  being, through air, water, 
nourishment, light, fitness, comfort, and 
mind

5

 Window-    to-  wall ratio 
( WWR)

The fraction of a building’s facade area that 
comprises windows

9
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We shape our buildings; thereafter they shape us.
—   Sir Winston Churchill.

Building designers have a responsibility to ensure that people are provided 
with safe, comfortable, and healthy buildings. At one extreme, designers 
are liable if their buildings endanger the lives of occupants; however, there 
are in fact many scales of impact that buildings and their design can have 
on occupants, from appropriate illuminance and thermal neutrality to the 
psychological benefits of pleasant views and soundscapes. While extreme 
risks to human occupants are tightly regulated and carefully designed for 
fear of liability, indoor environmental quality and occupant  well-  being are 
often overlooked and misunderstood. In particular, the  wide-  ranging role 
of building designers and operators in addressing occupants’ needs came 
to light in the recent context of  COVID-  19, where conversations about such 
topics as indoor air quality, aerosols, and ventilation became commonplace, 
even among laypeople.

In this book, we guide building design practitioners and researchers on 
how to elevate occupants as a major consideration in the building design 
process, from conception to operation. In principle, buildings are designed 
to provide safe, healthy, comfortable, and functional spaces for human occu-
pants to live, work, play, learn, and sleep. One might assume that occupants’ 
physiological, psychological, and behavioral needs would be examined and 
then translated into design decisions. Yet, this primary purpose of build-
ings ( i.e., to meet occupant needs) is too often taken for granted, forgotten, 
or neglected. Practitioners and researchers often describe making buildings 
healthy and comfortable ( in very coarse terms, such as temperature set-
points), while forgetting that the real goal is to promote occupants’ health 
and comfort ( O’Brien et al., 2020).

In building design and research, occupants are often presented as a barrier 
to high performance. After all, occupants are a major source of uncertainty 
and often behave in unexpected and complicated ways that contradict the 
expectations or aspirations of designers and researchers ( Day and O’Brien, 
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2017; Janda, 2011). During the building design process, it is rarely known 
who will occupy the space in the first year, let alone in the next decade ( Van 
Dronkelaar et  al., 2016). Unlike the weather, which is imposed on build-
ings without the designer’s control, building design can be used to positively 
influence occupants and improve the occupant experience ( O’Brien and 
Gunay, 2015). Consider the likelihood that an occupant chooses to take the 
stairs instead of the elevator in the following scenarios: ( 1) the stairwell is 
hidden away, dimly lit, and filled with stale air; or ( 2) the stairwell is open 
to a brightly lit,  multi-  story atrium with tropical plants. Ultimately, design-
ers’ decisions can greatly affect occupant comfort, health, and  behavior— 
 despite the temptation to sidestep this responsibility.

Indoor environmental quality ( IEQ), which is largely a function of build-
ing design and operations, can have a profound impact on occupants’ health 
and productivity ( Fisk and Rosenfeld, 1997; Newsham et al., 2009; Wyon 
and Wargocki, 2013). In commercial buildings, the cost of occupant sala-
ries can average approximately two orders of magnitude higher than energy 
costs and an order of magnitude higher than rent ( Yudelson, 2010). In other 
words, the value of a 1% decrease in worker productivity can rival energy 
costs. Moreover, the spillover effect of IEQ cannot be understated. For 
example, lighting and daylighting quality at work can affect sleep quality 
( Figueiro and Rea, 2016), while student learning and hospital patient recov-
ery have been found to be profoundly affected by IEQ ( Hsu et al., 2012; Issa 
et al., 2011; Joarder and Price, 2013; Ryan and Mendel, 2010; Wargocki et al., 
2020). IEQ is not only an objective measure, but also a subjective one that 
should be evaluated by the occupants themselves. Subtle aspects of building 
design, such as interface accessibility and feedback, can contribute greatly 
to the way occupants perceive and control IEQ ( Ackerly and Brager, 2013; 
Brager et al., 2004; Karjalainen, 2009).

It is by now widespread knowledge that buildings impact occupants and 
building design can positively affect occupants’ behavior and empower 
them to improve their personal comfort. Still, many buildings significantly 
underperform in these regards ( Bordass et al., 2001; Leaman and Bordass, 
2001; Tamas et al., 2020). This book is motivated by the need to rethink the 
way buildings are designed for occupants, with a focus on quantitative and 
 simulation-  based methods. Consider the following statements that are im-
plied by building standards, codes, and rating systems ( note: the references 
below provide evidence against these common assumptions):

• The best way to deal with uncertain occupancy is to make conservative, 
 worst-  case assumptions ( Gilani et al., 2016; Hoes et al., 2009; O’Brien 
et  al., 2019). ( It is often building codes that lead designers down this 
path).

• Building occupancy has regular,  clockwork-  like schedules and nominal, 
 near-  capacity occupancy ( D’Oca and Hong, 2015; Duarte et al., 2013).
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• Occupants are merely recipients of the indoor environmental conditions 
and do not actively respond to improve these conditions for their benefit 
( Brager et al., 2004).

• IEQ is a purely physical and physiological phenomenon such that we 
can accurately predict occupant comfort from direct measurements of 
indoor environmental parameters ( Schweiker and Wagner, 2015).

• If standard recommended indoor environmental conditions are pro-
vided to occupants, there is no need to provide them with affordances 
to improve their comfort ( Heerwagen and Diamond, 1992; Kim et al., 
2018; Li et al., 2017).

• The four domains of  IEQ—  indoor air quality and thermal, visual, and 
aural  comfort—  are independent from each other and have equal roles 
in occupant comfort and  well-  being ( Kim and de Dear, 2012; Schweiker 
et al., 2020).

• Occupants do not understand how buildings work and will often waste 
energy relative to design intent, and so their control over the indoor 
environment and building systems should be restricted ( Gilani and 
O’Brien, 2018; Gunay et al., 2018).

• Automating building systems and eliminating the possibility of occu-
pant overrides can ultimately minimize the negative impact that oc-
cupants have on buildings ( Boerstra et al., 2013; Bordass et al., 1993; 
Hellwig, 2015).

By and large, the leading literature and we, the authors of this book, hold that 
the above statements are either incorrect or at least counterproductive when 
thinking about  occupant-  centric design. With this book, we aim to equip 
designers with  state-    of-    the-  art knowledge about occupants and occupant 
modeling and simulation practices so they can design superior buildings.

While there are existing books focused on IEQ and healthy buildings 
( Allen and Macomber, 2020; Bluyssen, 2013; Bluyssen et  al., 2011; Hes-
chong, 1979; Sternberg, 2010), human factors ( Stanton et al., 2017), occupant 
research methods ( Wagner et  al., 2017), building simulation (  Beausoleil- 
 Morrison, 2020; Hensen and Lamberts, 2012), and  high-  performance build-
ing design processes ( Athienitis and O’Brien, 2015; DeKay and Brown 2013; 
Grant, 2017), this book is the first to our knowledge to connect occupant 
needs to the building design process via  simulation-  based design methods 
and workflows.

Our chapters largely focus on IEQ and   energy-  related occupant needs, 
although there are many more that are beyond the scope of this book. 
 Table 1.1 provides a comprehensive list of building occupant needs that are 
within designers’ control. While some of these needs are highly quantifiable 
and covered by building codes and standards, others are emerging and may 
only be included in best practices guidelines and certification programs, 
such as WELL ( Delos Living, 2018).
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This book was primarily written and coordinated by participants of the 
International Energy Agency’s ( IEA) Energy in Buildings and Communi-
ties ( EBC) Annex 79:  Occupant-  Centric Building Design and Operations. The 
 five-  year (  2018–  2023),  researcher-  led project includes over 100 researchers 
from 20 countries with the common goal to pursue fundamental and ap-
plied research and development to improve the way buildings are designed 
and operated for occupants. The goals of Annex 79 are outlined in O’Brien 
et al. ( 2020).

In the ten chapters that follow ( and as outlined in  Figure 1.1), we pro-
vide insights and methods to incorporate occupants into the building design 

 Table 1.1  A  high-  level summary of occupant needs that are within the control of 
designers

IEQ
• Healthy indoor air quality
• Satisfactory thermal, visual, and acoustic/ aural comfort
• Absence of  low-  frequency vibration
Control over environment
• Individual and effective control to improve personal comfort without adversely 

affecting others
• Effective and usable building and system interfaces
Security and safety
• Secure spaces for people and their possessions without fear of intruders
• Lines of sight to nearby spaces
• Safe passage to evacuate or move to safe spaces in the event of emergencies 

( e.g., fire) or natural disasters
• Protection and comfort/ health during periods of failed energy supply or 

systems ( HVAC, lighting, water supply)
Space
• Adequate space to conduct activities without major constraints or interfering 

with a sense of  well-  being
• Ability to relocate to more comfortable locations or orientations
Ergonomics
• Comfortable spaces and furnishings ( e.g., workstations, beds, food preparation 

areas) that allow occupants to maintain their productivity,  well-  being, and 
health

Mobility and accessibility
• Safe access to all needed spaces in the building, ideally with opportunities for 

physical exercise ( e.g., stairs instead of elevator)
• Clear signage and wayfinding to assist navigation in unfamiliar spaces
• Mobility and accessibility for people with disabilities
Social  well-  being
• Ability to obtain privacy ( visual, auditory) or companionship, as appropriate
Outdoors
• Access to views ( ideally with nature)
• Access to outdoor space with pleasant environmental quality
Nourishment
• Availability of clean and safe drinking water
• Availability of food preparation/ storage facilities
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process. Given the importance of building performance, spanning occupant 
 well-  being and environmental aspects, we focus largely on quantitative and 
 evidence-  based design. The chapters are not sequential according to de-
sign stages, but rather move from building IEQ and design fundamentals 
to modeling and simulation fundamentals and, finally, to applications. We 
start with the fundamentals of IEQ, occupant behavior, and behavioral the-
ories. We then progress to design process considerations, including solicit-
ing or otherwise collecting information about occupants. Next, we discuss 
 occupant-  centric ways of quantifying building performance. In the second 
half of the book, we turn our attention to occupant and building modeling. 
We open with occupant modeling fundamentals and move toward recom-
mendations and best practices for incorporating occupants into building 
performance simulation. We provide more advanced discussion on the role 
of building interfaces and controls in the building design process. Finally, 
we present case studies conducted on seven buildings around the world to 
demonstrate the methods and techniques described in this book.

The target audience of this book is advanced design practitioners ( e.g., 
architects, engineers, product designers) and researchers ( e.g., graduate 

1. Introduction

2. Fundamentals 
of IEQ and 

occupant needs

3. Occupants in 
the building 

design decision-
making process 

4. Obtaining the 
occupant 

perspective

5. Occupant-
centric 

performance 
metrics and 
performance 

targets

7. Fit-for-purpose 
occupant 
modeling: 

choosing the right 
approach

8. Advanced 
simulation 

methods for 
occupant-centric 
building design

9. Building 
interfaces: Design 

and 
considerations for 

simulation

10. Design of 
sequences of 
operation for 

occupant-centric 
controls

11. Detailed case studies

12. Conclusion

Sim
ulation and design

slatne
madnuF

6. Introduction to 
occupant 
modeling

 Figure 1.1  Chapter structure of this book.
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students, academics, government researchers). The first half of the book 
(  Chapters  2–  5) and the case studies (  Chapter 11) will be broadly useful to 
this entire audience, while the second half of the book (  Chapters  6–  10) is pri-
marily aimed at readers with an interest in occupant modeling and building 
simulation.

 Chapter 1, this chapter, introduces the central principles and arguments 
of the book and lays out the structure of the chapters.

 Chapter 2 provides a foundation for the rest of the book by reviewing the-
ories that define building occupant needs in terms of indoor environment, 
health,  well-  being, and so on.

 Chapter 3 focuses on the building design process and, most importantly, 
how to incorporate occupant needs at each phase of the design process.

 Chapter 4 describes ways to obtain occupant information ( data) for build-
ing designers to integrate into the  decision-  making process. This chapter 
provides a framework for collecting and structuring such data and outlines 
a wide variety of methods, with supporting examples from  post-  occupancy 
evaluation to virtual reality.

 Chapter 5 makes the argument that building performance should be quan-
tified from an occupant perspective. This chapter provides a framework for 
developing and applying  occupant-  centric metrics throughout the building 
life cycle.

 Chapter 6 introduces occupant modeling, from current practice to leading 
research. This chapter is the first to explicitly address occupant modeling 
and simulation. It provides theory for both simple and advanced occupant 
modeling  methods—  a departure from occupant schedules to  agent-  based 
occupant models. It also describes methods to implement occupant models 
in various simulation tools and communicate the results.

 Chapter 7 presents theory and a framework for selecting appropriate meth-
ods to model occupants according to a  fit-    for-  purpose approach. Building 
on  Chapter 6, this chapter focuses on empowering the users of simulation 
tools to make decisions about the most appropriate approach for a given 
application.

 Chapter 8 builds on  Chapter 7 by providing theory and supporting exam-
ples of how occupant modeling in simulation can support design. Methods 
explored in this chapter range from simple parametric analysis to  multi- 
 optimization with the objective of robust design. A single shoebox office 
model is systematically modeled to illustrate the different design methods.

 Chapter 9 addresses the importance of the interface between occupants 
and buildings and focuses on the design and modeling of building inter-
faces and how occupants use them. This chapter covers theories of  human- 
 building interaction and provides examples and insights about how building 
interfaces could be a more central part of future  simulation-  aided design.

 Chapter 10 focuses on  occupant-  centric controls, arguing that the  often- 
 opaque domain of building controls is critical to occupant satisfaction and 
building performance. This chapter focuses on a particular type of building 
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 controls—    occupant-  centric  controls—  which are defined as controls that 
learn and adapt to occupancy patterns and occupant preferences, behav-
iors, and habits.

 Chapter 11 includes a set of detailed case study buildings that exemplify 
 occupant-  centric design. The case studies are intended to make the theories 
in the above chapters more concrete and practical. They are diverse in cli-
mate, typology, and  life cycle phase.

 Chapter  12 concludes the book with a retrospective summary and dis-
cussion of concrete actions that can be taken to improve building design 
practice. This final chapter closes with a discussion of future research needs 
on the topic of  occupant-  centric building design.
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Summary

In this chapter, we will introduce the link between occupant needs and ele-
ments of the indoor built environment, between sensory inputs and percep-
tion, and between perception and behavior. We will then review common 
practices in standards and guidelines. We will close the chapter with a dis-
cussion of three topics with open questions that require ongoing work.

2.1 Introduction

The first step toward  occupant-  centric building design and operation is a 
fundamental understanding of the relationship between the built environ-
ment and occupants’ needs for health,  well-  being, and productivity. We be-
gin this chapter with a brief overview in Section 2.2 of occupant needs and 
theories related to people’s perception of indoor spaces and their behavior. 
Thereby, we introduce the four main domains of indoor environmental qual-
ity ( IEQ)—  namely, thermal, visual, acoustic, and indoor air quality ( IAQ). 
This description of theoretical foundations is contrasted by Section 2.3,  
where we reflect on common  compliance-  checking methods based on codes, 
standards, and rating systems and the way the large body of scientific 
knowledge introduced in Section 2.2 is reflected in these forms of guidance. 
We conclude this chapter with a discussion in Section 2.4 of several critical 
factors that reflect the complexity of occupants’ perception and behavior 
in indoor environments, bridging factors typically considered in research 
looking at occupants’ needs and variables included in occupant behavioral 
models.

2.2  The Human Being in a Built Environment: Fundamentals 
and Theories

The objective of this section is to introduce the relationship between human 
needs and the indoor built environment, starting with human needs and 
reflecting on human perception and behavior.

2 Fundamentals of IEQ and 
Occupant Needs
Marcel Schweiker, Christiane Berger, Julia Day 
and Ardeshir Mahdavi
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2.2.1  Human Needs and the Indoor Built Environment

A basic understanding of human needs is fundamental in  occupant-  centric 
building design. While there are various definitions and categorizations of 
human needs in the literature, their presentation and discussion are beyond 
the scope of this book. On a very high level, human needs are referred to as 
the “ drivers of people’s actions, the motives behind behaviour” (  Guillen- 
 Royo, 2014). One of the most prominent categorizations of human needs 
still widely referred to these days is that by Abraham Maslow ( Maslow, 
1943, 1954). He distinguishes, in his early work, between deficiency needs 
( physiological, safety, love and belongings, esteem) and growth needs (  self- 
 actualization).1 His framework offers a suitable structure to discuss human 
needs and to reflect on their relationship to design elements of the indoor 
built environment, aiming at  occupant-  centric building design.  Figure 2.1 
gives an overview of the mapping between human needs and design elements.

Occupant needs

Secondary influences

Requirements for
indoor built environment

Building elements 
affecting requirements

Place and situation based
Activity
Building type
Seasonal differences
Circadian differences

Person based
Aspirations, Expectations, ...
Personality, Attitudes, ...
Physiological and health
   status

Physiological needs
Air
Warmth
Shelter

Safety
Emotional security
Health
Well-being

Esteem and 
   self-actualization
Status
Productivity

Ergonomics and regeneration
Safety against injuries

Indoor environmental 
   quality (IEQ)
Control opportunities
Support of circadian rhythm

Thermal
Temperature, Humidity, 
Air velocity

Indoor air quality (IAQ)
CO2-concentration, VOC, 
VVOC, SVOC, ...

Visual
Daylight accessibility, Glare,
Illuminance, Light color, ...

Aural
Acoustics, Noise protection,
Speech transmission,
Soundscape

Social environment
Privacy, Social interactions

Representativness

Static building system
Building envelope
Window size
Window operation
Passive design strategies
Shading

Building structure
Building static
Room size
Thermal mass
Sound insulation
Interior design
Space organization

Interfaces

Active building system
Heating system
Cooling system
Natural ventilation concept
Mechanical ventilation 
   system
Lighting ystem

 Figure 2.1  Framework reflecting the design flow from human needs in relation to 
requirements for the indoor built environment to related design elements 
affecting the performance of buildings as related to the requirements. In 
reality, this is an iterative process and, once built, a building’s elements 
will affect occupants’ needs. Note that elements and connections are 
only examples for graphical reasons.
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Physiological needs are related to biological requirements for human sur-
vival. These include air, warmth, and shelter against environmental hazards. 
While the vast majority of existing buildings meets these requirements, re-
cent events partly related to climate change emphasize the need to assure 
that the building design provides conditions for survival. Floods, hurri-
canes, and other natural disasters have led to the destruction of buildings 
and corresponding fatalities. The combination of e.g., heat waves, power 
outages, and building designs relying on active conditioning while ignoring 
passive design strategies can lead to conditions beyond the limits for human 
survival.

Under normal circumstances, the building envelope  itself—  consisting of 
wall, roof, and floor elements, which may include opaque, transparent, in-
sulating, ventilating, and shading  elements—  provides shelter and serves as 
a buffer against natural and  man-  made outdoor environmental conditions, 
such as low temperatures, high wind speeds, sunburn, or traffic noise. At the 
same time, the provision of sufficient fresh air needs to be assured. These ex-
amples all relate to the four dimensions of IEQ. The thermal dimension in-
cludes temperature, humidity, and air velocity levels.2 The visual dimension 
considers illuminance levels, glare effects, color temperature, and color ren-
dering index, among others. IAQ considers the freshness of the air, odors, 
particles within the air, and the concentration of CO2 and volatile organic 
compounds ( VOC). The acoustic dimension includes room acoustics, noise 
insulation, speech transmission, and others.

Depending on weather conditions, the type of envelope, and the activi-
ties within the building, the building envelope alone may not be sufficient 
to meet all the physiological needs required for survival. In these circum-
stances, the active building system needs to be designed to provide these 
conditions. If designers consider physiological needs and disregard the need 
for  well-  being ( as described below), design requirements can remain mini-
mal; for example, when clothing is available, the human body can survive 
for prolonged periods in a range of temperatures far beyond those occurring 
in modern buildings.

Safety needs as described by Maslow include financial security, social 
stability, and law and order, which have not been directly linked to the in-
door built environment. Yet, safety needs can also include emotional secu-
rity, health, and  well-  being, which have been directly mapped onto design 
elements of the building. Emotional security is linked to both privacy and 
interactions with others, which are either enabled or complicated by the 
organization of space and the interior design. The  above-  mentioned four 
dimensions of the IEQ and their respective requirements relate to health, 
 well-  being, and the concept of indoor environmental comfort ( see Rohde 
et al., 2019) for an extended discussion of the differences between the terms 
health,  well-  being, and comfort within the indoor environment). Require-
ments related to the IAQ domain are often aimed at a reduction of poten-
tial health implications, such as increased risk of cancer due to asbestos or 
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polychlorinated biphenyls ( PCBs), or reduced productivity due to reduced 
IAQ, such as increased CO2 concentration levels.3 The basis for most  IEQ- 
 related standards associated with the other three domains is often subjec-
tive level of comfort ( see Section 2.3 of this chapter). Respective limits are 
based on a large amount of research following  psycho-  physical approaches 
to quantitatively investigating the relationship between physical stimuli and 
the sensations and perceptions they produce ( see also Section 2.2.2 of this 
chapter). Thereby, the goal is to minimize IEQ conditions that lead to dis-
comfort or dissatisfaction when the building is occupied. These conditions 
include, among others, temperatures that are too high or too low, glare, 
darkness, noise, or bad smells. Following the discussion by Rohde et  al. 
( 2019),  well-  being is distinct from comfort and includes: ( 1) positive emo-
tional responses, including delight ( Heschong, 1979), due to specific stimuli 
such as pleasant sounds, smells, or views; ( 2) varied and dynamic environ-
ments offering the potential for moments of alliesthesia, a feeling of very 
high satisfaction; and ( 3) environments that potentially reduce stress, offer 
a high level of controllability and contact with nature, and facilitate unre-
strained activities. Related requirements for  well-  being would go beyond 
the restriction of IEQ conditions in the four domains and promote dynamic 
environments with conditions outside traditional comfort limits, e.g., set by 
ASHRAE 55 or ISO 7730.

Additional requirements for the indoor built environment related to 
health include those related to safety against injuries and harmful condi-
tions. The duration of exposure to different conditions and individual con-
stitution influence the magnitude of these effects. For example, the intent of 
some IEQ requirements is to limit, minimize, or avoid occupants’ exposure 
to specific IAQ contaminants, which are harmful after  short-   or  long-  term 
exposures and for which effects have been directly assigned to the cause, like 
asbestos and cancer.

Safety needs related to comfort,  well-  being, and health also include the 
need for regeneration, growth, and repair, especially at night. Research on 
circadian rhythm suggests that a high sleep quality starts with the provision 
of sufficient daylight required for melatonin suppression during the daytime 
( Boubekri et al., 2014). A further condition is limited exposure to lighting 
with reduced blue wavelengths in the evening, which is related to occupants’ 
behavior and the lighting emission design of the lighting system and appli-
ances such as televisions or smartphones ( Wahl et al., 2019). Furthermore, 
access to silent, dark, and  well-  tempered conditions during the  night-  time 
that allows for increased sleep quality ( Chepesiuk, 2009) is a further require-
ment for building design and operation following human needs.

While not immediately apparent, there is a relationship between esteem 
and  self-  actualization needs and the indoor built environment. Esteem needs 
include aspects of respect, status, and recognition, while  self-  actualization 
is related to the realization of personal potential. All these aspects can, to 
some extent, and depending on their exact operationalization, be promoted 
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or impeded by the indoor built environment. For example, reaching respect, 
status, or recognition is associated with success in professional life ( Ormel 
et al., 1997). In addition to health  status—  influenced partly by IEQ condi-
tions as discussed  before—  one’s ability to perform the tasks required for 
professional life partly depends on IEQ conditions. Success in viewing and 
completing tasks may depend on several aspects of the visual environment, 
such as luminance, illuminance, spectrum, color temperature, direction, 
color rendering, and contrast. Listening tasks and communication with 
customers, peers, or superiors, for instance, may be inhibited by excessive 
and unprotected background noise or poor acoustic properties of an indoor 
space. At the same time, IEQ conditions can also be designed to manipulate 
occupants and  clients—  for example, adjusting light settings to make fruits 
looking fresher and tastier than they are. The design of a space will likely 
need to consider the needs of different types of occupants, such as those 
working in a setting and those visiting, e.g., for shopping or leisure.

In this section, we have outlined a multitude of connections between 
human needs and the indoor built environment and could describe many 
more. Before moving forward, however, we should note that there are chal-
lenges involved in defining requirements for indoor spaces. For instance, 
human needs within the indoor built environment vary depending on the 
intended activities as well as the attitudes and personality of the human 
itself ( Schweiker, Huebner et  al., 2018). Likewise, the requirements vary 
when aiming for an  occupant-  centric building design. There are seasonal 
and circadian differences; some needs are more likely at specific times of 
the day ( e.g., sleeping) or year ( e.g., the desire for cooling), but in general, 
most activities may occur anytime. Needs are also related to or can form 
the basis of occupants’ aspirations, which can either be fulfilled or lead to 
disappointment when they are not met ( Schweiker, Rissetto et  al., 2020). 
Some of these needs may be readily evident to human consciousness, such 
as fresh air to combat bad odors or a certain threshold luminance level, and 
can therefore be communicated with others. Yet, other needs may remain 
at the subconscious  level—  for example, the introduction of fresh air to re-
duce  non-  odorous but harmful components of the indoor air, which can be 
measured but not sensed by the human being.  Occupant-  centric building 
design should consider both perspectives to provide satisfying and healthy 
conditions.

2.2.2  Sensory Input and Perception

This section briefly touches upon the pathway from sensory inputs to 
perception/ sensation and evaluation ( satisfaction, comfort) of  IEQ-  related 
stimuli. The next section will describe the process from perception to  human- 
 building interaction. The whole process is schematized in  Figure 2.2. A basic 
understanding of these pathways and related terminology is fundamental to 
evaluating key aspects of the literature about the relationship between IEQ 
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and human behavior. Readers interested in the details of these processes are 
referred to corresponding literature ( Bluyssen, 2009), as these are beyond 
the scope of this book.

The human body cannot directly measure parameters of IEQ in absolute 
terms as, for example, a thermometer might do. The human body can only 
detect changes to stimuli of our sensory systems. Distinctions are commonly 
made between the six sensory systems: vision, hearing, touch, taste, smell, 
and balance. Except for taste, all these factors are related to aspects of the 
indoor environment, and each of the four domains of the IEQ is related to at 
least one of them.  Balance—  often overlooked and taken for  granted—  is less 
required for typical plane floors, but can lead to sensory stimuli and train-
ing, e.g., as promoted by Hundertwasser in his treatise on the advantages of 
the uneven floor ( Hundertwasser and Schmied, 1985).

Each of the sensory systems consists of sensory receptor cells, neural 
pathways, and dedicated parts of the brain. Examples of sensory receptor 
cells are the cold and warm thermoreceptors in our skin ( part of the sensory 
system touch), which react to varying temperatures. The neural pathways 
carry the corresponding nerve impulses from the receptor to the brainstem 
and up to specific areas of the brain ( Bluyssen, 2009). Except for direct re-
flexes, such as removing a hand immediately from a hot plate, the infor-
mation regarding the stimuli is interpreted in various brain regions. Such 
interpretations can lead to a conscious or subconscious perception. When 
asking participants in a study or occupants in buildings about their percep-
tion of IEQ variables, they are forced to find a conscious representation. 
Depending on the type of question, they can then report their  sensory- 
 discriminative,  affective-  motivational, or cognitive perception ( Schweiker 
et al., 2017). As Schweiker et al. ( 2017) outlined,  sensory-  discriminative per-
ceptions include perceived intensity, e.g., a statement between hot and cold 
in response to the question “ How do you feel right now?” or an evaluation in 
terms of acceptability.  Affective-  motivational perceptions include aspects 

Environmen-
tal condition 
(e.g. room air 
temperature)

Interpretation of signals‘
- intensity (e.g. expressed  
  as thermal sensation)
- affective emotional  
  evaluation (e.g. expres-
  sed as thermal (dis-) 
  comfort, or (dis-)pleasure)

Human-building 
interaction
(e.g. keeping or 
changing ther-
mostat)

Sensory information 
(e.g. excitement of 
warmth receptor and 
signalling to respecti-
ve brain region)

State of sensory 
system (e.g. arousal
perceptibility, potential 
impairments)

Personal factors (e.g. experiences, expecta-
tions, preferences, perceived control)
Contextual factors (e.g. activity, buidling type, 
control opportunities)

 Figure 2.2  Schematic flow from environmental stimuli to  human-  building interaction.
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such as pleasantness or the motivation to change the conditions. Cognitive 
perceptions include comparisons of perceptions of previous experiences, 
perceived controllability of conditions, or the ability to cope ( mental or be-
haviorally) with perceived conditions.

Three points are important to note. Firstly, the type of question influ-
ences the type of perception assessed, and a perception of intensity ( e.g., the 
commonly used thermal sensation scale) is, in general, not suitable to assess 
whether a condition is perceived as comfortable, acceptable, or even stim-
ulating emotions like pleasantness ( see also Schweiker,  Abdul-  Zahra et al., 
2020). Secondly, the same physical stimuli can elicit different perceptions of 
pleasure or dissatisfaction for the same person depending on their internal 
state ( e.g., level of acclimatization, preferences, expectations, experiences), 
the external conditions ( e.g.,  socio-  cultural aspects, relation to source of 
noise), or the current task or activity. Thirdly, all parts of the sensory sys-
tem may vary between and within individuals. One example is when a per-
son’s visual sensory system changes with age. Age is associated with reduced 
transmission of light through eye media, a reduction of the width of the 
pupil, and further processes that, in turn, lead to the average  65-    year-  old re-
ceiving only half the light at the retina as a  25-    year-  old ( Schierz, 2008). Thus, 
it is important to be explicit in methods that assess occupant needs, not rely 
on small samples, and strive for variety in the occupants being approached. 
At the same time, designers and researchers should be careful in following 
advice based on studies that do not follow these points.

2.2.3  From Perception to  Human-  Building Interaction

Once the sensory stimuli from the sensory nerve cells are  interpreted— 
 again, excluding  reflexes—  a subconscious or conscious reaction is followed. 
Reactions related to IEQ have been grouped in various ways. Schweiker 
et al. ( 2018) distinguished between ( 1) physiological adjustments done un-
consciously, ( 2) individual adjustments like changing body posture or cloth-
ing, ( 3) environmental adjustments, including interactions with the building 
interfaces, and ( 4) spatial adjustments such as leaving a room. Taking no 
action and leaving everything ( internal and external settings) as it is, is also 
considered a reaction. The type and degree of reaction are influenced by the 
evaluation of the stimuli together along with additional variables related to 
preferences, attitudes, experiences, norms, and others.

Subconscious reactions, such as the narrowing of blood vessels ( called va-
soconstriction) to reduce heat loss through the extremities in cold environ-
ments, happen immediately. In contrast, conscious reactions, such as opening 
a window to improve the IAQ, may begin with a behavioral intention but 
many factors will impact whether an action is pursued or not ( for an over-
view of related theories see, e.g., Heydarian et al., 2020). It is important to 
note that  human-  building interactions do not end the moment an occupant 
has completed the action, but rather may continue iteratively with further 
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evaluation of subsequent sensory stimulation. The changes detected through 
the sensory systems impact whether the reaction or interaction will be evalu-
ated as a successful or failed intervention. Repeated failure or the perception 
of lack of control can lead to dissatisfaction, learned helplessness, and acute 
or  long-  term stress reactions that can potentially affect  well-  being and/ or 
health. Therefore,  occupant-  centric design demands careful consideration of 
human needs in addition to the design and selection of the interfaces that are 
provided to occupants to alter their respective IEQ conditions ( see  Chapter 4 
for methods to collect occupant data, needs, and interface usability).

In any given building, there are many controls or interfaces such as win-
dows, doors, and lights, that occupants can interact with to maintain their 
comfort, preferences, and so on. These interactions can impact the build-
ing’s energy use and occupants’ IEQ and comfort outcomes, both at the 
room and individual levels. Hence, due to the  above-  mentioned individ-
ual differences, what is beneficial for one occupant may be annoying for 
another sharing the same room. Building controls and interfaces lie on a 
spectrum ranging from fully manual control (  human-  driven action) to fully 
automated ( machine or technology driven; see  Chapter 9 for more details). 
In between this spectrum, there are also solutions such as human/  occupant-  
  in-    the-  loop control strategies ( OCC). For example, with  demand-  controlled 
ventilation ( DCV) strategies, ventilation rates are adjusted based on indoor 
air contaminant concentrations ( e.g., CO2) or occupant counts.  Chapter 10 
of this book covers a wide range of OCC solutions and case studies.

Many factors encourage ( or discourage) occupant interactions with 
a given building, such as comfort, personal habits or preferences, health 
( e.g., a migraine), or privacy ( Schweiker, Carlucci et  al., 2018). Different 
building interfaces offer varying forms of feedback and degrees of control 
to occupants. Understanding how occupants engage with  interfaces—  and 
their respective feedback mechanisms and  controls—  has important impli-
cations for meeting both occupant needs and energy savings design goals 
( see  Chapters 3 and 9). If occupant interface needs are not carefully con-
sidered, designers risk not meeting energy goals and occupant comfort and 
IEQ needs. For instance, while keeping all occupants satisfied and comfort-
able at the same time is an impossibility, one solution to maximize comfort 
and satisfaction is to offer occupants local controls to maintain their per-
sonal comfort and satisfaction ( Day and Heschong, 2016). Based on studies 
of occupants’ heating and cooling behaviors, personal comfort models can 
predict individuals’ thermal preference and lead to improved comfort, sat-
isfaction, and energy use outcomes ( Kim, Schiavon et al., 2018; Kim, Zhou 
et al., 2018). At the same time, we believe that the explanatory capacity of 
machine learning approaches is still questionable, as observed earlier else-
where ( de Dear et al., 2020). As with other approaches, they may fail when 
applied to contexts other than those for which they were trained.

The types of controls occupants interact with in their environment 
vary based on building type, climate, and so on. The nature of occupant 
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interactions with building interfaces will continue to evolve as building tech-
nologies and controls as well as occupant preferences continue to advance. 
Therefore, while there are many interesting hybrid and automated solutions 
to guide ( or prevent) occupant interactions with interfaces, there are also in-
herent challenges to maintaining occupant comfort, IEQ, satisfaction, pro-
ductivity, and so on. These challenges and possible solutions will be further 
outlined in Section 2.4. Additional details of building interface characteris-
tics that influence occupants’ interactions are detailed in  Chapter 9.

The following section contrasts the above overview related to occupant 
needs with the content of common compliance checking methods based on 
codes, standards, and rating systems for the four main domains of IEQ.

2.3  Common Practices Regarding Specification of IEQ

Given the wide variety of human needs in the built environment discussed 
in the previous section, multiple quality requirements must be considered in 
the design, construction, and operation of buildings, including building in-
tegrity as well as safe and secure building operation. Thereby, requirements 
regarding IEQ must directly address occupants’ needs ( see  Figure 2.1). A 
general classification of criteria concerning occupants’ requirements could 
be listed as follows, starting from most evident ( basic) to less tangible:

1  Avoid major or irreversible damage to organism due to extreme expo-
sure situations.

2  Avoid  long-  term health issues due to, for instance, sustained stressful 
situations.

3  Provide IEQ conditions compliant with requirements pertaining to oc-
cupants’ comfort and productivity.

4  Provide conditions that are subjectively perceived as pleasant.

It is commonly assumed that scientific disciplines such as biology, physiol-
ogy, medicine, psychology, and ergonomics provide the evidentiary basis 
for criteria and mandates tied to IEQ standards. Whereas risks in category 
1 above must be avoided at all costs, category 2 risks may be tolerated under 
certain limited term exposure situations. This means that, in most indoor 
settings ( residential, commercial), the focus is on categories 3 and 4. Note 
that while the conditions that constitute a comfortable environment ulti-
mately depend on occupants’ subjective judgment, the same does not neces-
sarily apply to physical health considerations. Adverse health implications 
of indoor environmental factors are not always consciously perceived. For 
example, there are  well-  known cases of dwellings with dangerously high car-
bon monoxide and radon concentrations, both of which are imperceptible 
by humans.

Codes, standards, and guidelines that specify IEQ requirements represent 
the main reference sources for professionals and stakeholders. Specifically, 
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building designers and engineers are expected to abide by the provisions in 
these documents. Responsible parties for building construction and oper-
ation may need to provide proof of compliance with regard to applicable 
mandates. More recently, various building quality assessment and rating 
schemes have been introduced to encourage more holistic building evalua-
tion processes. The intention is to promote better performing and more sus-
tainable building practices. However, actual code compliance processes and 
adoption of rating systems do not appear to involve, as a matter of course, 
critical reflection concerning the source, uncertainty, and applicability of 
the entailed mandates and recommendations. This can lead to a perfunc-
tory attitude of demonstrating compliance with the minimum criteria or 
pro forma acquisition of some quality label, rather than seeking a genuine 
understanding of what constitutes a  high-  quality indoor environment. It 
would be thus useful to critically examine the content of standards for ex-
plicit and implicit references to their underlying theoretical reasoning and 
the scientific evidence for their prescriptions.

As alluded to previously, the presumed primary purpose of  IEQ-  related 
performance mandates in standards is to define conditions that are condu-
cive to building occupants’ health, comfort, and  well-  being ( Mahdavi et al., 
2020). The assumption might be that the recommendations in such docu-
ments have been issued not by edict but based on theoretically sound and 
empirically derived evidence pertaining to the processes by which indoor 
environmental conditions influence occupants’ health, comfort, and  well- 
 being. Unfortunately, the validity of this assumption, as obvious as it may 
seem, cannot be taken on faith. Past research efforts have significantly con-
tributed to our understanding of  IEQ-  related human requirements. How-
ever, they have also demonstrated that the definition and operationalization 
of occupants’ requirements are rather  non-  trivial endeavors, given the im-
precise and at times overlapping concepts such as health and comfort. It 
would be thus beneficial to query if typical instances of  IEQ-  related evalua-
tion schemes and standards bolster their requirements through the explicit 
inclusion of their theoretical and empirical underpinnings.

To identify such instances, one can begin with frequently deployed build-
ing rating and certification systems. A previous review of such systems 
( Mahdavi et al., 2020) clearly revealed that they do not independently set 
the  IEQ-  related criteria but refer to thematically relevant national and in-
ternational standards. For instance, the certification system LEED ( 2021) 
refers to various ISO, EN, and ANSI standards ( 2021) regarding thermal, 
IAQ, and acoustic criteria. Likewise, DGNB ( 2021) includes references to 
EN, ISO, ANSI, and DIN standards. As the intention of this section is not 
to conduct an exhaustive review of such documents, the focus is on a num-
ber of typical and frequently referenced instances that specifically address 
the IEQ domains of interest to the present discussion, that is, thermal ( e.g., 
ISO  17772-  1), visual ( e.g., DIN EN  12464-  1), acoustic ( e.g., DIN 18041), and 
indoor air quality ( e.g., DIN ISO  16000-  1). The study of such resources can 
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reveal if they use content counting as the basis for and reasoning behind 
the adapted criteria and target values of relevant  occupant-  centric indoor 
environmental performance indicators.

2.3.1  Limits, Thresholds, Ranges, and Zones

From a practitioner’s point of view, the main elements of interest in stand-
ards are likely to be the explicitly mandated values of  IEQ-  relevant variables 
and their specifications, usually in terms of minimum or maximum values, 
recommended ranges, and zones. The numeric nature of the variables’ values 
and the fact that they are, at least in principle, measurable, implies certain 
practical advantages in terms of rationalizing and streamlining the quality 
assurance and compliance processes, and contributing to the clarification 
of liability issues. Mandates may be specified in various formats, including, 
for example, maximum permissible values ( e.g., CO2 concentration, glare 
level, noise level), minimum required values ( e.g., illuminance level, venti-
lation rate), recommended or “ optimal” values ( e.g., comfort temperature, 
reverberation time), a range of acceptable values ( e.g., daylight factors), and 
 multi-  variable “ comfort” zones ( e.g., combination of ambient air tempera-
ture and humidity level).

The conceptual graphs of  Figure 2.3 illustrate for the thermal comfort 
domain typical instances of mandated values of recommended operative 
temperature and maximum permissible air flow speed. When looking for 
the underlying logic of these types of  IEQ-  related prescriptions, it helps to 
think of common  code-  based regulations in building design and construc-
tion domains. Consider, for instance, the prescribed minimum dimensions 
of basic architectural elements such as doors, corridors, and stairs in com-
mon universal design standards. In all these cases, features of various de-
sign elements are prescribed, the designs are expected to incorporate those 

 Figure 2.3  Conceptual graphs showing comfort ( operative) temperature as a func-
tion of the outdoor temperature ( left) as well as maximum permissible 
air flow speed as a function of air temperature and turbulence inten-
sity ( ranging from 20% to 60%, right; based on standards EN 16798 and 
ISO 7730).
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features, and they can be checked during  post-  construction inspections. 
The assumption is that, as the prescribed minimum width of a door may 
be inferred from the dimensions of a wheelchair or the dimensions of stairs 
from basic anatomic features of the human body, it should be possible to 
infer the mandated values of  IEQ-  related variables from a relevant, scientif-
ically established knowledge base. However, attempts to directly map from 
basic facts to specific performance requirements are not at all straightfor-
ward. Thereby, two questions are of special interest. First, given the inherent 
complexity of  IEQ-  related requirements, can the corresponding standards 
rely on a comparably objective scientific knowledge base? Second, do  IEQ- 
 related standards provide clear and traceable references to whatever scien-
tific foundation they refer to? These questions are further explored in the 
following section.

2.3.2  Scientific Foundations versus Engineering Guidance

To start with a key observation,  IEQ-  related standards include much in 
terms of explicit and specific performance mandates and requirements ( see 
the previous section), but relatively little in terms of direct and explicitly 
stated underlying  science-  based reasoning and evidence. The aforemen-
tioned rating system instances seldom spell out the details of the  IEQ-  related 
mandates, let  alone provide explicit reasoning behind them. Rather, they 
refer to various international and national standards. These, in turn, fre-
quently refer to other standards. Occasionally, references are made to tech-
nical papers that are suggested to provide some reasoning. However, such 
references are not always directly linked to the specific sets of requirements 
in the standards. Rather, they appear to be included as elements of themati-
cally relevant bibliographies. At least three reasons for the paucity of direct 
explanations and evidence in common IEQ standards can be identified:

• There is a basic difference between scientific inquiry, which is mainly 
geared toward understanding phenomena, and engineering, which 
typically targets practical solutions. Standards and codes are mostly 
consulted by professionals looking for applicable prescriptions and con-
straints, not necessarily for the purpose of deep understanding.

• In contrast to “ classical” engineering domains such as building con-
struction and structural design, IEQ standards and guidelines regard-
ing human requirements cannot only rely on natural sciences but must 
also consider insights from life and human sciences ( e.g., physiology and 
psychology). The considerable role of qualitative and subjective factors 
in such fields can render the definition of standard requirements more 
challenging.

• The genesis of IEQ standards does not always occur through a com-
pletely transparent and thoroughly organized process with human 
health and comfort requirements as the sole focus. Rather, it can also 
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involve other factors, including economic considerations ( e.g., return 
on investment) and special group interests. The processes leading to 
the formulation and publication of standards often require consent and 
comprise from a diverse set of participants from government, industry, 
and academic institutions. It is possible that not all content in and all 
aspects of standards are strictly objective and the direct result of scien-
tific reasoning.

However, even if IEQ standards referred to frequently by professionals do 
not provide direct and explicit reasoning behind their recommendations, 
they do include features that point to implicit underlying principles and 
methods. These features allow for at least a partial backtracking or reverse 
engineering from standards to theory. A look at the syntax, terms, and 
formal logic of IEQ standards may thus yield some interesting and useful 
insights.

2.3.3  Measurements and Constructs

Recommendations in thermal and visual comfort standards are typically 
based on relationships referred to as comfort equations (  Figure 2.4). A com-
fort equation maps the values of a set of independent variables meant to 
capture salient indoor environmental conditions to the value of a dependent 
variable meant to indicate the occupants’ level of comfort ( Mahdavi, 2020). 
The former comprises a number of physical parameters that can be meas-
ured. The latter is a construct, resulting from methods that make occupants’ 
typically subjective perception ( and evaluation) of the indoor environmental 
conditions measurable ( see  Table 2.1).

In regulations concerning thermal comfort, measurable independent var-
iables of the indoor environment that are considered relevant include air 
and radiant temperatures, together with ambient concentration of water 
vapor and air movement velocity. Occupants’ evaluation of thermal condi-
tions is represented via constructs such as estimated voting tendencies, as 
expressed through qualitative scales common in psychological studies. The 
inference rules ( i.e., the logic of mapping operations in the comfort equa-
tion) are often based on two sources. One source relies on physiologically 

Candidate physical 
(independent) 
variables of indoor 
environment

Construct (dependent 
variables) to capture 
subjective evaluations

Inference based on
• Underlying physiolo-

gical mechanisms
• Experimental para-

metric studies with 
participants

 Figure 2.4  Schematic illustration of the elements of indoor environmental comfort 
equations.
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based insights. In case of thermal comfort, this is mainly the heat balance 
of the human body and its significant role in the  thermo-  regulatory process 
that maintains, among other things, the human body’s core temperature 
( Mahdavi, 2017). The other source includes experimental studies with hu-
man participants who evaluate parametrically varied ambient conditions 
using the aforementioned subjective scales. The relative contribution of 
these two sources on the derivation of the comfort equations’ mapping rules 
may be very different. The knowledge of humans’ thermoregulatory sys-
tem plays a significant role in the initial formulations of thermal comfort 
models. However, experiments with human participants provide key data 
relating physiologically relevant variables to subjective evaluation processes 
( see also Section 2.2.2). In the visual performance domain, the physiological 
basis of the  so-  called disability glare and the main responsible physiological 
mechanism ( light scatter in the eye) are well understood. Visual discomfort, 
however, is mainly assessed based on people’s subjective complaints.

2.3.4  About the Limits of Limits

Standards and codes typically include very specific requirements ( including 
numeric limits for and ranges of various variables deemed relevant), but they 
rarely disclose directly and explicitly the corresponding reasoning. Some of 
the reasons for this circumstance have been alluded to previously, includ-
ing: ( 1) the challenges of operationalizing the  occupant-  centric concepts of 
health, comfort, and  well-  being; ( 2) the identification and measurement of 
appropriate IEQ proxies; ( 3) the  multi-  aspect nature of indoor environmen-
tal exposure situations; ( 4) the diversity and dynamic nature of occupants’ 
dispositions and needs; and ( 5) the  real-  life complexities of practical stand-
ardization procedures.

 Table 2.1  Illustrative instances of independent variables ( thermal and visual 
 indoor-  environmental parameters) and dependent variables ( constructs 
assumed to represent subjective evaluations of thermal comfort and 
visual discomfort) in respective comfort equations

Thermal comfort Visual discomfort

Independent variables: 
assumed relevant 
indoor environmental 
parameters

Air and mean radiant 
temperature, air 
humidity, air speed

Luminance of the glare 
source, luminance of the 
background

Dependent variables: 
comfort constructs 
representing occupants’ 
subjective assessment 
of comfort conditions 

PMV ( predicted mean 
vote), PPD ( predicted 
percentage of 
dissatisfied)

UGR ( unified glare rating), 
VCP ( visual comfort 
probability)
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The intention of this chapter is not to identify and lay bare IEQ standard-
ization’s implicit logic based on unreasonable expectations. Obviously, it is 
unlikely that the underlying theoretical and evidentiary basis of the multi-
tude of relevant indoor environmental regulatory systems and documents 
could be reduced to a single scheme or formula. Nonetheless, there is a re-
current pattern, familiar from fields such as physiology, medicine, and psy-
chology. This pattern can be characterized as follows. The values of selected 
variables thought to represent salient features of the indoor environment 
are mapped to the values of selected indicators of occupants’ health and 
comfort. The mapping operation is typically based on a mix of two com-
plementary ingredients, namely ( a) some physiologically or psychologically 
grounded theory and ( b) available experimental data from research involv-
ing human participants. Whereas in cases involving explicit comfort equa-
tions ( e.g., thermal comfort, visual discomfort), the codes include concrete 
constructs representing occupant health and comfort ( together with their 
mandated value ranges), in other cases such constructs may not be explicitly 
present. The de facto assumption in such cases appears to be that by virtue 
of keeping the relevant indoor environmental variables ( e.g., carbon dioxide 
concentration in the ambient air) within certain ranges, the terms relevant 
to occupants’ health and comfort are met.

There are three notable implications of the preceding discussion about 
standards and their future development. First, notwithstanding the need 
for a differentiated stance, the path from standards to their underlying ev-
identiary basis should be recognized as at times intractable. This bears 
the risk of reducing standards and their mandates to inscrutable instruc-
tions that are followed unreflectively, rather than viewing them as sources 
of deep guidance for enlightened practitioners. This is not to suggest that 
standards must reproduce the entire theoretical foundation and scientific 
data they rely on. As regulatory instruments, they justifiably need to fo-
cus on operational matters and concrete instructions. Still, it would not 
be unreasonable to expect that standards could ideally represent a link 
between objective, scientifically based sources, and practical instructions. 
For example, within the German medical field, guidelines clearly acknowl-
edge the procedure to summarize available knowledge, the resulting con-
sequences, and the level of confidence or agreement regarding these points 
( e.g., Sammito et al., 2014).

Second, in tracing back the standards to their explicitly specified or im-
plicitly indicated sources in theories and data, various limitations stand out. 
Looking at the  state-    of-    the-  art in research on human health, comfort, and 
 well-  being issues reveals a continuously evolving field confronted with vari-
ous challenges and uncertainties. Whereas respectable scientists in this area 
habitually abstain from doctrinal standpoints and absolute truth claims, 
regulatory bodies are obliged to boil down what is known to what is man-
datory. In other words, to avoid a chaotic situation in the building design, 
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construction, and operation processes, IEQ standards tend to adopt con-
crete thresholds and specific limits, even if the underlying science is not en-
tirely conclusive. The concern appears to be that the compliance verification 
processes would become difficult otherwise, if not unfeasible.

Third, the diagnosed challenges of the  IEQ-  related regulatory frame-
works, particularly the paucity of explicit theoretical reasoning, reflect also, 
at least to a certain degree, the gaps in scientific understanding in this area. 
There are uncertainties about what physical features of the indoor environ-
ment are the “ right” variables for health and comfort evaluation processes. 
There are even more challenges concerning the definition and robustness of 
the constructs for health and comfort, which insufficiently address the in-
terdependence of physiological, psychological, and even social dimensions 
of occupants’ perception and evaluation of indoor environments. Datasets 
used for testing and validating perceptual and behavioral theories are lim-
ited. The pragmatic dissection of IEQ into distinct domains may fall short 
of capturing the realistic and inherently  multi-  domain nature of indoor en-
vironmental exposure situations. The current understanding of the extent 
of occupants’ diversity and the dynamics of their requirements has been im-
proving, but perhaps not enough to consider their reflections in the current 
IEQ standards as sufficient.

The implication of these observations may come across as a truism, but it 
is a critical one: the study of  IEQ-  related regulatory frameworks not only re-
veals their limitations, but also points to gaps in the current state of scientific 
understanding regarding occupants’ needs and preferences in indoor envi-
ronments. There is a need for a more transparent, traceable, and objective 
process when translating the current state of scientific knowledge, limited 
as it may be, into IEQ codes and standards. At the same time, there is also 
a need to advance and enrich understanding of how human health, com-
fort, and  well-  being are influenced by conditions in indoor environments. A 
number of knowledge gaps in the theoretical understanding of occupants’ 
perceptions of IEQ, as well as related behaviors and interactions with indoor 
environments are further addressed in the following section.

2.4  Ongoing Work and Open Questions

There is a complex relationship between occupants and the buildings they 
inhabit, as outlined in Section 2.2. As previously mentioned, IEQ factors 
such as glare and thermal comfort may impact or drive behaviors, and these 
building interactions, whether misguided or not fully considered, may im-
pact IEQ factors for other occupants ( e.g., comfort) or building outcomes 
( e.g., energy performance). This section discusses select challenges related 
to the above topics, as well as viable solutions. Many of the presented con-
cepts are less studied or understood and/ or less firmly established or agreed 
upon when compared to many of the scientific theories presented earlier in 
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the chapter; still, they are all extremely important factors in the design and 
operation of buildings and are not intended to be downplayed.

2.4.1  Adaptive Thermal Comfort, Perceived Control, and 
Personalized Control

One challenge in the domain of IEQ and occupant needs relates to occupant 
control ( real or perceived) of building interfaces. A problem may occur when 
designers perceive building automation as an  all-    or-  nothing situation, or a 
0/ 1 decision where “ 1” is fully automated ( no occupant control) and “ 0” is 
no automation ( full occupant control). As a solution to this dilemma, there 
may be a blend of automation and manual control that is most beneficial for 
IEQ and energy outcomes. These types of solutions are addressed through, 
for example, hybrid ventilation ( Parkinson et al., 2020) and OCC, which are 
further discussed in  Chapter 10. The best solutions may seek a balance of 
control to best accommodate occupant health, IEQ needs, and energy goals. 
For example, adaptive thermal comfort, perceived control, and personal-
ized control may all be solutions, in no particular order. Another problem 
occurs when the level of automation is set in direct relation with the level of 
energy efficiency ( as done in, e.g., EN 15232) in a way that higher automation 
is unconditionally related to higher energy efficiency.

There have been many models and theories of perceived control, and ulti-
mately, most research has found that occupant satisfaction and perceptions 
of IEQ are higher when occupants perceive that they have control over their 
environment ( real or perceived). There is agreement that perceived control 
may lead to positive outcomes ( Hellwig, 2015; O’Brien and Gunay, 2014; 
Yun, 2018) and that designers should be encouraged to consider and im-
plement perceived control strategies. However, perceived control may only 
be a  short-  term solution. An even better solution is to encourage designers 
to give occupants actual control of building interfaces that are not hidden, 
easily accessible, and intuitive to understand ( see  Chapter 9). For example, 
in one study ( Brager et al., 2004), occupants were provided with differing 
degrees of personal control over their windows ( with four stages ranging 
from direct control to no control). Participants showed significant differ-
ences in thermal responses, where those with a higher level of control also 
had higher ratings of personal comfort, even under the same conditions 
( thermal environment, clothing, and activity levels). Findings from this 
study illustrate clear support for the adaptive model of thermal comfort 
( Brager et al., 2004). While most engineers can agree for instance, that per-
sonalized controls are beneficial to occupant outcomes, there is still more 
work to do in terms of how access to controls really impacts people’s de-
cisions, perceptions, and behaviors and how all these factors may be im-
pacted by  multi-  domain aspects and drivers. Some research has begun to 
address these ( e.g., Mahdavi et al., 2020), but more work is needed to iden-
tify clear parameters and solutions, especially in  real-  world scenarios and 
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conditions. In addition, this topic appears to be close to absent in existing 
standards and guidelines.

2.4.2  Energy, IEQ, and the  Human-  Building Interactions

While some designers choose to remove control, as addressed above, in most 
cases, occupants are typically expected to adjust their interior environment 
to maintain personal thermal and/ or visual comfort, environmental satis-
faction, and so on. However, issues may emerge when occupants control or 
manipulate the building in ways that designers did not intend and/ or fore-
see. For example, if controls are not well thought out, or if occupants do 
not understand how to use their building effectively to achieve or main-
tain comfort, occupants may disable or override building  interfaces-  related 
IEQ factors such as windows and lighting. For instance, an occupant may 
duct tape over or cover an air vent, block a sensor, and more ( see Day and 
O’Brien, 2017). At the same time, occupants may have needs not anticipated 
by the designer. Uninformed occupant behaviors can compromise  energy- 
 saving goals, building operation costs, worker productivity, and occupant 
health, especially when occupants do not always understand how to oper-
ate building interfaces ( Day and Heschong, 2016; Day and O’Brien, 2017). 
See  Chapter  9 for interface characteristics that better facilitate adaptive 
opportunities.

To maximize occupant comfort and minimize costs associated with 
productivity and energy use, at times, occupants may need education on 
building control interfaces and expected behaviors. Many current occupant 
behavior change programs implement feedback, motivation, and gamifi-
cation ( Jain et al., 2012; Papaioannou et al., 2018; Vassileva and Campillo, 
2014), but studies have found that occupants may still not fully understand 
how their actions may impact others or the conditions within their space. A 
better scenario is to design the building interfaces in a way that is thoughtful 
and intuitive and enables occupants to fulfill their needs so that occupants 
do not require “ training.”

Although many “  human-    in-    the-  loop” approaches do indeed consider 
humans and behaviors, these methods are often about machines learning 
from humans and their behavioral patterns as opposed to humans learning 
the “ right”  behaviors—  an important distinction. Behaviors and preferences 
may and should vary; however, there are ways in which designers can strive 
to design to enhance occupant outcomes and minimize unintended occu-
pant interactions ( e.g., occupants taping over sensors, tricking thermostats 
with popsicles [Day and O’Brien, 2017]).

Therefore, there is a critical research need to better understand: ( 1) how 
occupant interactions with building controls affect associated building 
energy use in a real test bed building scenario; and ( 2) how to best design 
buildings and interfaces to create and foster informed interactions, while 
also educating and engaging occupants as needed. The fundamental role of 
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building interfaces and their associated characteristics on occupant interac-
tions have not yet been thoroughly addressed in building or social science 
research. More importantly, existing occupant behavior models do not con-
sider multiple layers of comfort ( e.g., thermal, visual, acoustic, and IAQ) or 
other drivers/ triggers of behavior ( e.g., privacy, lack of understanding) that 
may affect occupant interactions with  human-  building interfaces.  Chapter 9 
further discusses specific characteristics, design recommendations, and solu-
tions related to some of these issues related to building interfaces that might 
further encourage beneficial actions or deter counterproductive interactions.

2.4.3  Interaction among IEQ Domains and Other Factors

Many technical and design solutions rely heavily on solving one primary 
IEQ solution, and these are often founded on strong scientific foundations. 
However, some existing technical solutions do not necessarily translate into 
practice, or perhaps they were founded in a laboratory or experimental set-
tings and are not fully applicable to  real-  life scenarios where other uncon-
trolled variables are present. This interaction among other IEQ domains, or 
lack of testing in field settings, may create unintended consequences or lack 
of understanding during design. For example, theories in the visual comfort 
domain often cite glare as a determining factor for blind use patterns ( e.g., 
Day et al., 2019; Reinhart and Voss, 2003). Glare is indeed one key indica-
tor of blind use; however, additional factors may also come into play that 
are difficult to predict and/ or model, such as privacy, job type or needs, 
inaccessible controls ( Day et  al., 2012), as well as other IEQ or  comfort- 
 related driving factors, such as thermal comfort ( Frontini and Kuhn, 2012). 
In these cases, there are certain factors and relationships among IEQ vari-
ables (  multi-  domain) that have not yet translated into  practice—  primarily 
because research is not conclusive regarding how IEQ factors impact one 
another or the occupant’s experience or behaviors.

The challenge is thus the complex relationship between  multi-  domain 
aspects of IEQ. For instance, as cited in the example above, opening the 
blinds to allow for increased illuminance or visual comfort might also lead 
to a great deal of thermal discomfort. Other features that may improve day-
lighting, such as low partitions, open spaces, reflective and hard surfaces, 
and narrow floor plates may also increase instances of acoustic discomfort 
for occupants. There is much to learn, research, and further understand in 
terms of how these IEQ factors interact with one another, and how these 
interactions impact occupant behaviors. More research is needed to address 
an  ever-  growing list of questions, such as: How should occupant needs be 
related to one another? In design ( and operation), which form of IEQ should 
get priority? How is a designer to navigate the various IEQ calculations and 
standards for a given design decision?

Some of these questions have been swirling around in the minds of re-
searchers for years, and there have been a few efforts to better understand 
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these  multi-  domain interactions ( Bourikas et al., 2021; Mahdavi et al., 2020; 
Schweiker, Ampatzi et al., 2020), yet there is still more to do.

2.5  Conclusions and Outlook

In this chapter, we first explored the relationship between human needs and 
the elements of the indoor built environment. Using Maslow’s characteriza-
tion of needs, we explored examples of their interaction with IEQ and other 
design elements to set the basis for  occupant-  centric design. We followed 
the examples with a brief introduction of the pathway from sensory stim-
uli to  human-  building interaction via human perception. Next, we explored 
the status of standardization with respect to available scientific evidence 
and discussed the role of standardization for  occupant-  centric design. This 
discussion was important because standards and guidelines give guidance 
to designers and engineers, and yet their scientific evidence is often hard 
to grasp and their formulation a result of interactions between  evidence- 
 based recommendations and additional considerations. The challenges and 
solutions we presented in the third and final part of this chapter included 
aspects related to perceived and personalized control, levels of automation, 
energy use, and interactions between the individual sensory domains. These 
ongoing works and open questions we proposed are certainly not exhaus-
tive, and understanding the right balance of manual vs. automated building 
interfaces, perceived vs. actual control, occupant expectations,  multi-    IEQ- 
 domain influences, and other factors that contribute to  occupant-  building 
interactions is key to designing for both IEQ and energy outcomes within 
the context of  occupant-  centric design.

2.6  Closing Remarks

The first step toward  occupant-  centric building design and operation is a 
fundamental understanding of the relationship between the built environ-
ment, IEQ, and occupant needs. This chapter started with an overview of 
occupant needs from physiological needs to  self-  esteem. Individual needs 
were linked to the indoor built environment, including the four main do-
mains of IEQ parameters: thermal, visual, acoustic, and indoor air quality. 
Next was a brief summary of mechanisms, from sensory input to human 
perception, and from human perception to occupant behavior. The second 
part of this chapter looked at existing standards and how they incorporate 
the large body of scientific evidence presented in the first part of this chapter. 
The third part addressed three topics still being discussed that need further 
work before conclusions can be drawn. The topics were: perceived control, 
the relationship between IEQ and energy, and the interaction between in-
dividual sensory domains. As such, this chapter laid the foundation for the 
following  Chapter 3, which reflects on how to incorporate the occupant per-
spective into the building design process, and  Chapter 4, which identifies 
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ways to obtain the occupant perspective and needs to inform design. The 
topic of control and interfaces is further detailed in  Chapter 9.

Notes
1  Despite many scholars presenting these needs in the form of a pyramid, the or-

der of needs is not fixed; the order depends on external circumstances and indi-
vidual preferences. Still, it is reasonable to consider them as different levels, and 
we will discuss them in order, starting from the most basic level. In addition, it 
is not required that the needs in one level are completely fulfilled before another 
one is activated or met ( Maslow, 1954).

2  Note that air movement is typically referred to as wind speed outdoors and as air 
velocity indoors.

3  While CO2 concentration is often used as an indicator for ventilation perfor-
mance and overall IAQ, other direct effects of increased CO2 concentration in-
clude decreased performance, e.g.,  decision-  making ( Satish et al., 2012).
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Summary

In this chapter, we will discuss the challenges of integrating considerations 
of building occupants and occupant behavior into the  decision-  making pro-
cess of building designers. We acknowledge the complexities of  occupant- 
 centric design within newly deployed information management systems and 
will propose a framework that integrates occupant considerations into these 
systems so that these considerations are robustly transferred from design to 
buildings in use while informing best practice.

3.1 Introduction

Building design practice is a complex scenario full of unknowns and per-
meated by liabilities. Contractual documents provide clarity on the infor-
mation required by and for various members of the design team to enable 
ongoing design discussions and procurement. By framing design processes 
as the timely exchange of information between team members and differ-
ent disciplines, in this chapter, we provide clarity on how occupants fit into 
these processes and how their needs can potentially be accommodated.

We open the chapter with a discussion of how recent changes in design 
practice that aim to facilitate performance and risk assessment in relation 
to legislation, regulations, and clients’ portfolios can affect building occu-
pants. We then examine the role of information management in coordinating 
these changes to propose how information and decisions about occupants 
could flow throughout the design process in a coherent and coordinated 
way. Next, we consider the impact of design decisions on occupants within 
built spaces, and then we provide an overview of design considerations af-
fecting and affected by occupants, with a particular focus on the different 
types of interactions that occupants have within and with buildings as well 
as with the environment surrounding them. We close the chapter with a pro-
posal for the construction of  occupant-  centric design patterns ( OCDPs) that 
record and support information transfer regarding occupancy and occu-
pant behavior throughout the design  decision-  making process and that can 
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fit within and support current industry tools such as building information 
modeling ( BIM) and building performance simulation ( BPS).

3.2 Recent Changes in Design Practices

The occupants of a building will affect how the building performs; it is also 
the case that the way in which a building is designed, built, and eventually 
occupied will influence the behavior of its occupants. More specifically, how 
a building performs when in use will depend on how the building design 
responds to what the occupants need, the amount of control the building 
designers have afforded occupants, and how well the design team antici-
pated how occupants will want to use the building and its systems in the 
future. The way and extent to which occupants are considered throughout 
the  decision-  making process of any building design project depends on how 
design decisions are balanced to achieve overarching project targets, negoti-
ated among project team members, propagated into the information flow of 
the design process, and subsequently revised as the project develops. Several 
stakeholders play a role and influence each other in this process, which is 
primarily shaped by the interests of the client ( who may or may not be the 
occupant) and the procurement process put in place to design and deliver 
the project. In the following section, we examine the role of the client in 
shaping information about the likely occupants and the way in which this 
information propagates throughout different delivery design stages. The cli-
ent’s role is examined in the context of the most recent standards1 and docu-
ments issued by professional accreditation bodies2 ( i.e., deployed in practice 
between 2018 and 2020) that push the construction industry to implement 
building information management systems as a true record of the design 
process from design and construction to buildings in use.

3.2.1 Occupant Information for Clients and Design Teams

The client is the “ entity, individual or organization commissioning and 
funding the project, directly or indirectly” ( CIOB, 2014:315) and therefore 
the ultimate  decision-  maker in the project. Clients might occupy the build-
ing, or they might own the building and let or lease the building to occu-
pants ( de Wilde, 2018). When the latter is the case, clients are very likely to 
see “ buildings [as] financial assets that figure in forms of market exchange, 
the operation of which often revolves around shared conventions and agreed 
forms of standardized description, measurement and provision” ( Cass and 
Shove, 2018:277). This perspective will be particularly true if building occu-
pancy is anticipated to have a large turnover.

A project’s ultimate goals always reflect the client’s objectives. If the client 
is the occupant, the client’s objectives align with the occupants’ objectives; 
if the client is not the occupant, however, different scenarios are possible. 
It is always easier to obtain information about occupancy when the client 
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is the occupant, as the client is consulted at different points throughout the 
design process to ensure the design objectives are aligned with the client’s 
objectives. However, when the client and occupants are distinct, consulta-
tion with occupants rarely occurs, as they are either unknown or out of the 
scope of the client’s objectives for various reasons ( capital costs, operational 
costs, etc.).

Different types of information about occupants are used throughout the 
design process.  Table 3.1 illustrates the types of information, their source, 
examples, their role in practice with regard to their relevance to projects, 
and their respective impact in contractual arrangements and responsibili-
ties. Mandatory information about occupants ( e.g., from building regula-
tions) is always required and considered an important milestone for project 
approval. Projects also commonly use normative information ( i.e., evalua-
tive standards) about occupants, as, for instance, energy performance and 
comfort standards ( e.g., ASHRAE 90.1) are generally used to set project 
targets, and ergonomics information forms part of the vast majority of pro-
ject layout proposals. Parts of normative information may be overwritten by 
 business-  oriented information ( e.g., client’s operational targets) and/ or les-
sons learned ( e.g., metering, monitoring, post occupancy evaluation ( POE)) 
and/ or information from consultations with occupants, especially in cases 
where the client is the occupant. However, overwriting based on lessons 
learned and/ or consultations with occupants is unlikely to happen if the 
client is not the occupant, as this process requires special contractual and 
project management arrangements in which risks and liabilities are shared. 
 Chapter 2 of this book discusses the origins of occupant data in normative 
information in more detail, while  Chapter 4 discusses several methods use-
ful for consulting occupants.  Chapters 6 and 7 explore in depth how lessons 
learned can be generalized and used in new design projects from an engi-
neering perspective through the development and applications of occupant 
behavior ( OB) models.

 Performance-  based legislation and regulations are starting to more em-
phatically promote the use of lessons learned in new projects toward de-
veloping  fit-    for-  purpose design, as occupants play a key role in influencing 
operational efficiencies. The phases from design to buildings in use are now 
being seen as a continuum ( BSRIA, 2018), with targets set up during the de-
sign process and verified through monitoring during the operational phase, 
which places joint responsibility on the client and the design team in terms 
of their needs and aspirations for the occupants.

In an attempt to ensure information transfer from design to buildings in 
use, plans of work are being modified to include information management 
standards related to building design and construction ( EN ISO 19650-1, 
2018; EN ISO 19650-2, 2018; EN ISO  12006-  2, 2020) as well as asset man-
agement standards ( EN ISO 55002, 2018; EN ISO 19650-3, 2020). These 
changes are further supplemented by documents such as BSRIA Soft Land-
ings ( BSRIA, 2018), which was written specifically to support construction 
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clients to incorporate core principles in procurement. However, little is 
prescribed in terms of how information should be transferred from design 
to operation, and no methods are yet available to record such information 
transfer. Currently, it is up to contracts and the client to set roles and re-
sponsibilities so that operational phase activities and performance targets 
can be agreed upon realistically and in consonance with design objectives 
and desired operational outcomes.

These changes, once fully implemented, will have a significant impact on 
the construction industry. They will not necessarily ensure better buildings, 
as their aim is to increase the client’s power in  decision-  making and affect 
decisions related to project targets from inception to project delivery. Still, 
these changes will demand robust coordination of information throughout 
a project’s life and form an important record for project quality control for 
future auditing for liability purposes, thus enabling decisions to be clearly 
traced back to the project team.

3.2.2  Information Flow on Occupants throughout  
Project Delivery Stages

Information verification, validation, and quality control methods should be 
established within project documentation, together with risk management 
( EN ISO 19650-2, 2018; EN ISO 19650-3, 2020). Project information require-
ments should include demand management and customer expectation policy, 
energy efficiency and environmental aspects, plus performance monitoring, 
safety, health, and environmental management.  Table 3.2 illustrates where 
and how the different types of information identified in  Table 3.1 inform the 
different design stages using documents from two different countries ( the 
UK and USA) as examples. Only the stages related to design are shown and 
since they vary country by country as a function of when planning applica-
tion and building regulation approval is needed, they are generically defined 
according to ( EN ISO  12006-  2, 2020) as  pre-  design and design.

As shown in  Table 3.2, plans of work are fluid with regard to the gran-
ularity of information to be provided at each design stage. This fluidity is 
because information delivery is closely related to procurement routes and 
contracts, which are the legal instruments used to set roles and responsibil-
ities and that specify project deliverables ( milestones, strategies, data, etc.), 
information approval and authorizations, and information exchange at dif-
ferent design stages. Information delivery plans contained in contracts de-
scribe the breakdown of tasks, roles, and responsibilities throughout project 
teams in addition to where information about occupants should be provided 
throughout the design process.

Procurement strategies affect information requirements,  high-  level objec-
tives for the project and future building operation, information exchange, 
how the design team will be appointed, and the technical design stage and 
how it overlaps with the construction stage. In this context, information 
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management systems are defined by the market and for the market, and per-
formance targets are a function of asset management rather than a response 
to environmental concerns. However, information management does bring 
benefits, especially in the context of integrated design process ( IDP) guide-
lines ( Sustainability Solutions Group, 2010) and integrated project delivery 
( IPD) roadmaps ( AIA, 2007), which inform management strategies and 
steps to better integrate project goals related to social, ecological, econom-
ical, and sustainability performance. IDP and IPD can be connected to 
contractual documents to justify the implementation of shared risks and 
liabilities which would, in theory, facilitate and promote the use of lessons 
learned and consultation with occupants. There are clear opportunities to 
promote better design in this new reality, but uptake in practice is still very 
low ( Piroozfar et al., 2019), which potentially calls for stronger governmen-
tal intervention.

Lately, practitioners are under pressure to document their decisions, 
as building information management systems are increasingly framed as 
reflections of a true record of the design process and gradually being im-
plemented into performance legislation and building codes. However, infor-
mation management frameworks, procurement routes, project management 
approaches, and guidelines to practitioners do not provide methods to 
support the transfer of information about occupants in integration with 
performance management throughout building projects. Records of these 
decisions are normally found within project documentation, but they could 
be better linked with the tools used in design, particularly BPS and BIM. To 
the best of our knowledge, there is no recognized method for documenting 
information about occupants and occupant behavior that enables it to be 
properly inserted into BIM models and coherently transferred to BPS mod-
els. This gap increases risks in  decision-  making for project teams while at 
the same time hindering the implementation of integrated project delivery 
toward producing better buildings.

3.3  Methodology: A Place for Occupants in  Information- 
 Centric Frameworks

Design decisions related to occupants and occupancy must be considered 
within the context of information management. Documents issued by pro-
fessional accreditation bodies have been revised (  Table 3.2) and amended 
to include the deployment of information management systems throughout 
plans of work to bridge fundamental gaps in information exchange between 
the design and construction phases of a project. These revisions and amend-
ments establish that information exchange needs to happen in a compre-
hensive digital model that, in theory, facilitates design for manufacturing 
assembly and allows for constant refinement until it becomes an asset man-
agement model. This digital model, also called a federated model ( BIM), is 
structured to mirror the different disciplines involved in a building project. 
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This structure enables information exchange and design  decision-  making 
to be better controlled and coordinated by the design team. To this end, 
an efficient way to transfer information about occupants throughout the 
design team is to connect them with the objects of this federated model. 
Objects can contain information that is required on almost all projects ( e.g., 
construction assemblages, room usages). Tucker and Bleil de Souza ( 2016) 
proposed that objects can also incorporate descriptions of repeatedly used 
simulation methods ( see  Chapter 8 for example), occupancy profiles, design 
requirements, design aims, design decisions, and so on. Often, these objects 
are used repeatedly on different projects and so could be recorded and held 
in a library to be retrieved ( and possibly modified) by the design team when 
needed. BIM uses a specific  object-  oriented structure ( EN ISO  12006-  2, 
2020) consisting of the following objects, all of which can be related to occu-
pant considerations ( see Section 3.5):

• Construction entities are basic units in the built environment with 
boundaries clearly defined by a characteristic form and spatial struc-
ture and hosting several functions and user activities; in other words, 
they are the building being designed.

• Built spaces are spaces clearly defined by the built environment to host 
specific user activities and/ or equipment and can be classified as spaces 
for human activity ( e.g., living, work, production), storage ( e.g., materi-
als, equipment), infrastructure ( e.g., routing, transportation), or techni-
cal systems ( e.g., operational technique, production equipment).

• Construction elements are the different components of a construction 
entity with distinguishable function, form, or position ( e.g., wall con-
struction system, furniture system, cooling supply system).

• Construction properties are attributes of a construction element, built 
space, or construction entity and can be classified according to func-
tional ( e.g., thermal performance, structural performance), spatial ( e.g., 
shape, size), temporal ( e.g., duration), compositional ( e.g., assembly, be-
havior), experiential ( e.g., color, comfort), symbolic ( e.g., meaning), and 
administrative ( e.g., price, style) properties.

Expanding on these four objects, the following two sections examine, gener-
ically and through examples, different types of design aims, requirements, 
considerations, and  decisions—  more specifically, how occupants affect and 
are affected by them when interacting within and with the construction en-
tity as well as with the environment ( natural and built) of the wider site. 
Two levels of information are provided: coarser information for decisions 
related to construction entities and built spaces, followed by more refined 
information related to construction elements with their respective con-
struction properties. Section 3.6 presents a template to produce  occupant- 
 centric design information that captures decisions and objects in context 
and in connection with BPS tools. The rationale behind the template is that 
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information about occupants can be deployed into practice in connection 
with building performance assessment methods using an  object-  oriented 
structure.

3.4  The Impact of Design Decisions on Occupants  
within Built Spaces

The overall impact of design decisions on the occupants of built spaces de-
pends largely on how the client and the design team translate their needs and 
aspirations for the occupants throughout the design process. Mandatory, 
normative, and  business-  oriented information about occupants, potentially 
combined with lessons learned and consultations with occupants, is inter-
preted by designers and translated to built spaces, thereby constraining 
and persuading occupants to use buildings or interact with them in specific 
ways, but also framing affordances and opportunities for these occupants.

Designers impose constraints ( either consciously or unconsciously) on 
occupants. Constraints can vary from, for example, the control of environ-
mental systems to the lack of flexibility or adaptability of how occupants 
can use spaces. Several restrictions in controls come from mandatory and 
normative requirements together with  business-  oriented requirements and 
make use of lessons learned to constrain occupants’ use of the building to 
the way clients intended it to be used. These constraints often result in re-
moving personal control from occupants in favor of  automated-  only con-
trols supported by energy efficiency standards ( EN 15232, 2017).

Persuasive strategies are also starting to become part of design agendas, 
especially with the wider implementation of automation and smart controls 
that impose conditions without allowing for occupant override. These strat-
egies, potentially heavily influenced by  business-  oriented information ( e.g., 
client expectations for occupancy behavior) and supported by normative 
energy efficient guidelines ( e.g., predicted energy use), might give designers 
the false impression that occupants can be persuaded or directed toward 
specific behaviors. They neglect the fact that occupants’ adaptive needs 
are driven by behavioral needs ( mainly motivated by internal stimuli, see 
 Chapter 2) and change with context and time varying among different peo-
ple. An iconic example is the known rebound effect in which energy effi-
ciency measures are less effective than predicted because occupants keep 
energy consumption constant by increasing temperatures and/ or the num-
ber of appliances in the household ( Guerra Santin, 2013).

Affordances are what the building offers its occupants, including the envi-
ronment the occupants inhabit as well as the way of life or actions possible 
within this environment ( Gibson, 2015). Affordances are directly perceived 
by the occupants and should therefore require minimal cognitive effort and 
no explicit instructions, as they are dynamic and open to multiple interpre-
tations ( Kannengiesser and Gero, 2012). Affordances include the intended 
effects a design has on building usage as well as the unintended effects it has 
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on how occupants use the building. Sometimes the intended effects do not 
cover all areas of interpretation by occupants, and sometimes they contain 
misconceptions of how the occupant will interact with the building, espe-
cially when occupants are not consulted in the design process.

Therefore, designing a building that is significantly shaped by the way 
people live ( Alexander, 2002) can only be achieved if designers put them-
selves in the position of the occupants ( Gibson, 2015) and are able to predict 
expectations and adaptive needs that might occur within the spaces ( e.g., 
feelings, perceived options). These adaptive needs trigger behavioral needs, 
which will be shaped by what is afforded from the built and the social envi-
ronments. Consequently, when designing for the occupant, designers need 
to keep adaptive opportunities in mind (  Figure 3.1).

The term adaptive opportunities, first coined by Baker and Standeven 
( 1997), became a key concept in comprehensive thermal comfort ( de Dear 
and Brager, 1998; Humphreys and Nicol, 1998) and its manifestation in 
practice is in line with what is defined by Alexander ( 1979) as the ‘ quality 
without a name’. The adaptive opportunities design process ( Hellwig et al., 
2022) proposes to establish the occupants with their adaptive needs in the 
building’s context ( local climate, building type, human context, and local 
constraints) so that designers can put themselves in the occupants’ position. 
Lessons learned and consultations with occupants can provide valuable in-
formation to design adaptive opportunities, especially in speculative build-
ings; still, far more is needed to increase their uptake in practice, as they 
require risks and liabilities to be shared in contracts.

3.5 Decisions Affecting or Affected by Occupants

Decisions affecting or affected by occupants are at the core of the design 
process and mainly depend on overarching strategies set up by the client 

Building affordances Adaptive opportunities

Building
concept

Envelope,
construction

Building
services

Occupant
interfaces

Organisational,
operational

Social
interaction Individual

Form/ area/
height/ orientation
of spaces,
Thermal/
acoustic/ visual
olfactory material
properties,
Thermal inertia...

Lighting/ heating/
ventilation
cooling/ hot
water systems,
Zoning/ spatial
conditioning,
Control type...

Windows/ doors,
Blinds, Switches/
handles/ displays
and their
controllability/
operability
Furniture, Personal
comfort systems...

Facility manager's
response, Complain,
Relax dress code,
Adjust work task,
Manage expec-
tations, Provide
informa- tion...

Follow cultural
habits, Reduce
interaction,
Relationships,
Share space/
privacy...

Activity level,
Adjust clothing,
Change posture,
Ingest food/
beverages,
Adjust
expectations...

Building/room
layout, Building
organi- zation,
Conditioning con-
cept (free-running,
mechanical, low-/
high-tech)...

Social environmentBuilt environment

 Figure 3.1  Building affordances and adaptive opportunities in the built and social 
environments.
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and design team for the construction entity ( i.e., the building). These strat-
egies result in further decisions that define affordances, adaptive opportu-
nities, and constraints and persuade occupants to interact within and with 
a building and its spaces. Thus, once the climate, site, building type, and 
overall conditioning strategy for the building are understood and defined, 
the design team must make a series of decisions related to how occupants 
will interact within and with the construction entity as well as with the envi-
ronment ( natural and built) of the wider site. These interactions are complex 
and  context-  based, but design decisions about the building can be thought 
of as “ typical,” as the design team has a finite number of construction ele-
ments and construction properties to manipulate toward achieving the pro-
ject goals ( Bleil de Souza and Tucker, 2015).

 Table 3.3 presents a list of construction entities and built spaces about 
which design decisions are made by design teams.  Table 3.4 refers to con-
struction elements and their respective construction properties. Both tables 
are generic with regard to clients’ overarching targets, constraints and re-
quirements, procurement routes, and project management approach, and 
they both illustrate how design decisions related to the building, its spaces, 
and its elements can affect occupants. The tables are not exhaustive and 
contain design decisions expanded from Bleil de Souza and Tucker ( 2015) 
with the support of activities listed in BIM Forum ( 2019), RIBA ( 2020), and 
Yan and Hong ( 2018;  Tables 8.2.4 and 8.5).

Some of the examples presented in  Tables 3.3 and 3.4 are common across 
all buildings, whereas others are clearly  context-  based. They presuppose that 
designers have good information on how the building will be used, regard-
less of any direct involvement with its occupants, and they are  non-  specific 
in terms of what type of construction entity, built space, or construction 
element is being specified. They highlight the richness of the building de-
sign process and how design decisions are thoroughly interwoven with oc-
cupant interactions, thus showing that the integration of occupant behavior 
in design decisions is a  non-  trivial proposition and can be heavily  context- 
 dependent, requiring concerted decisions across different disciplines to ad-
dress intangible and unquantifiable objectives.

 Table 3.4 shows that once construction elements and their respective con-
struction properties are examined in relation to the same types of inter-
actions as explored in  Table 3.3, design decisions gradually become more 
specific and detailed. Therefore, if consideration of occupants is to be inte-
grated into design practice, then design teams need to be prepared to record 
information about occupants throughout the design process in a structured 
way so this information can be easily recalled as design progresses.

For example, when designing an art gallery, a designer has passive heat-
ing and cooling as the overarching strategy set up by the client, they will 
need to ensure that the appropriate internal conditions can be met as the 
design progresses. This strategy needs to be recorded as part of project in-
formation in an easily retrievable format so it can be referred to by other 
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 Table 3.3  Examples of decisions related to construction entities and built spaces 
with examples of design aims/ requirements/ considerations/ decisions that 
affect or are affected by occupants

Decisions 
undertaken 
in relation to 
construction entities 
and built spaces

Examples of design aims/ requirements/ considerations/ decisions

Effects on occupants 
within the 
building

Occupants’ 
interaction with 
the building

Occupants’ 
interaction with the 
environment of the 
wider site, through 
the building

Building form and 
volume

Convey a sense of 
place; Display 
the status of the 
building owner

Create exhilarating 
spaces; Ensure 
a feeling of 
‘ coziness’; 
Minimize 
heating/ cooling 
costs of the 
building

Help shape the street; 
Configure outdoor 
courtyards; 
Integrate with 
landscape

Building footprint 
on site and 
orientation

Provide places for 
children to play 
in the sun; Shape 
secluded spaces 
for people to 
interact outdoors 
and with each 
other

Provide clarity of 
access; Create 
useful outdoor 
spaces integrated 
with the street

Minimize 
environmental 
impact on the 
site; Protect from 
solar overheating; 
Lower impact on 
neighbors’ right 
to light and sun; 
Take advantage of 
cooling breezes

Program 
distribution and 
orientation

Allow for flexibility 
in separating 
or joining 
rooms; Consider 
public/ private 
interactions

Determine the 
relationship of 
noisy/ quiet, 
day/ night spaces 
( e.g., isolate the 
bedrooms from 
the living area); 
Orientate spaces 
with regard to 
heating and 
cooling needs 

Provide daylight, 
natural ventilation, 
and view to the 
outside for the 
main living spaces; 
Enable patients 
to see the day go 
by; Enable visual 
contact with 
nature

Form and area of 
building spaces

Provide office 
workers 
appropriate 
visual/ aural 
contact with each 
other ( e.g., open 
plan cellular/ 
offices); Consider 
a mix of functions 
( e.g., bar, dance 
space, seating)

Provide an efficient 
and clear 
circulation inside 
the building ( e.g., 
functionality, 
escape, and 
evacuation 
routes); Ensure 
that spaces 
support functions

Provide a sense 
of connection 
to the outside 
( e.g., shallow 
office spaces); 
Let sunlight into 
bedrooms in the 
mornings 

(Continued)
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Decisions 
undertaken 
in relation to 
construction entities 
and built spaces

Examples of design aims/ requirements/ considerations/ decisions

Fire and evacuation 
routes

Provide for safe 
evacuation 
of building 
occupants

Provide safe routes 
to the outside; 
Ensure clarity on 
emergency access

Provide the required 
access to external 
services ( e.g., 
emergency 
vehicles, hydrants)

Floor to ceiling 
heights

Convey status; 
Provide views 
from the top 
( mezzanine)

Improve sound 
dispersion; 
Manage 
overheating 
( stratification)

Improve daylighting 
and sky views 
( e.g., large 
glazing); Facilitate 
segregated natural 
ventilation 
( e.g., above the 
occupant) 

Heating and cooling 
system choice

Consider running 
costs for the 
client; Charge 
energy bills at 
room level ( e.g., 
care homes)

Position systems 
to minimize 
furniture 
disruption; 
Reduce 
response time 
on conditioning 
the building; 
Consider 
passive heating 
and cooling 
strategies; Shift 
peak demand in 
relation to energy 
tariff

Minimize greenhouse 
gas emissions; 
Consider 
low energy 
technologies ( e.g., 
heat pumps); 
Consider heat 
release and 
noise affecting 
pedestrians or 
outdoor recreation 
areas

Heating and cooling 
system demand

Ensure thermal 
comfort for the 
expected range 
of occupants 
( e.g., doctors 
and patients in 
hospital) 

Ensure that 
temperatures 
and humidity 
are suitable 
for building 
contents; Provide 
‘ thermal delight’

Minimize demands 
by taking 
advantage of the 
climate

Cooking system 
choice

Ensure that systems 
are appropriate 
to occupant’s 
lifestyle ( e.g., 
food type)

Provide appropriate 
ventilation 
system and 
cooking facility 

Consider the 
environmental 
impact of fuel

Hot water system 
choice

Ensure that systems 
are appropriate 
to occupant’s 
lifestyle ( e.g., run 
a bath and do 
the dishes at the 
same time)

Ensure correct 
system sizing

Consider low energy 
technologies ( e.g., 
solar hot water) 

 Table 3.3 Continued
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members of the design team when decisions about passive heating and/ or 
cooling are made. Since these decisions would often be made by using BPS 
to test potential design options ( e.g., addition of shading, ventilation, insu-
lation, thermal mass), they might be undertaken by a third party, meaning 
not only results and design modifications but also changes in occupancy 
assumptions need to be properly documented when information is handed 
back to the designer. This documentation is especially important when de-
signing for adaptive opportunities, which are particularly useful in improv-
ing the performance of passive design.

 Tables 3.3 and 3.4 show that  occupancy-  related information can poten-
tially be linked to objects, which themselves can carry information back 
and forth to the design team. The level of detail embedded in each object 
increases as the project progresses, meaning information about occupants 
can be added to such objects at a number of appropriate levels and become 
written or read by different team members at different times. This process 
can be particularly useful when simultaneous decisions requiring differ-
ent levels of detail are needed from different design team members; for 
example, when building designers are defining room internal layout and 
building service engineers are calculating bulk energy consumption to size 
equipment rooms. However, more research is needed to establish how these 

Decisions 
undertaken 
in relation to 
construction entities 
and built spaces

Examples of design aims/ requirements/ considerations/ decisions

Ventilation system 
choice and 
demand

Consider 
different types 
of activities; 
Consider the 
number of 
occupants 
and type of 
occupancy

Consider occupant 
preferences 
( e.g., opening 
windows, 
HVAC, ceiling 
fans)

Consider 
natural/ hybrid 
ventilation; Avoid 
outdoor noise; 
Filter outdoor air 
pollutants

Heating, cooling, 
and ventilation 
control type

Consider provision 
of shared and/ or 
individual 
control

Consider provision 
of ‘ intelligent’ 
controls; Ensure 
that controls are 
appropriate to 
occupants ( e.g., 
elderly, children) 
and system 
type; Ensure 
that control are 
customized to 
activity

Provide climate 
responsive/ 
efficient controls 
( e.g., temperature 
sensors, Daylight 
responsive 
control)

 Table 3.3 Continued
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Table 3.4  Examples of decisions related to construction elements and their 
respective construction properties with examples of design aims/
requirements/considerations/decisions that affect or are affected by 
occupants

Decisions 
undertaken 
in relation to 
construction 
elements and 
construction 
properties

Examples of design aims/ requirements/ 
 considerations/ decisions

Effects on 
occupants within 
the building

Occupants’ 
interaction with 
the building

Occupants’ 
interaction with 
the environment 
of the wider 
site, through the 
building

Room layout/ 
furniture layout

Facilitate watching 
the children 
while having 
coffee ( café); 
Create intimate 
sitting area ( bar)

Create a ‘ sitting 
wall’; Increase 
the number 
of office bays; 
Guarantee 
sufficient 
privacy to 
undertake an 
activity

Avoid direct 
sunlight on 
sensitive artefacts 
( e.g., artwork, 
books)

Appliance layout Provide a cooking 
island for people 
to gather around

Optimize the 
cooking 
processes

Ventilate to the 
outside

Interior finishes 
and colors

Ensure that the 
acoustics are 
appropriate to 
function ( e.g., 
concert hall, call 
center, office) 

Increase the ease 
and reduce 
the costs of 
cleaning; 
Consider the 
interior sound 
reverberation, 
absorption and 
reflection

Increase or decrease 
the daylight 
reflection

Transparent 
element 
orientation, 
placement/ 
dimensions/ 
properties

Facilitate sitting 
together in the 
sun; Provide a 
quiet space in 
the sun; Provide 
an area to watch 
the world go 
by; Display 
merchandise 
to  passers-  by; 
Display the 
activities of the 
building

Provide a reading 
area under a 
window; Enable 
occupant to 
sit close to a 
window without 
feeling cold; 
Ensure that the 
type of light 
does not disturb 
the human 
circadian 
rhythm

Frame an outdoor 
view; Increase 
the solar intake; 
Consider 
incoming light 
properties 
( e.g., spectrum, 
diffusion, direct/ 
indirect, color); 
Consider the 
inside/ outside 
relationship
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Decisions 
undertaken 
in relation to 
construction 
elements and 
construction 
properties

Examples of design aims/ requirements/ 
 considerations/ decisions

Transparent 
element 
operation

Enable the sitting 
area to be part 
of the street; 
provide an 
opening window 
to talk to 
someone in the 
street

Consider window 
operation 
( fixed/ openable); 
Provide 
operation 
appropriate 
to occupants 
( e.g., the elderly, 
children)

Consider the inside/ 
outside boundary 
( e.g., sliding glass 
wall)

Opaque elements 
construction and 
properties

( floors, walls, roofs)

Segregate 
circulation using 
physical barriers 
to ensure  on- 
 way systems

Provide sufficient 
thermal mass 
in a room 
for comfort; 
Consider radiant 
temperature 
of surfaces to 
improve comfort

Protect cavities 
against pests; 
Consider required 
integrity of 
building envelope

Shading device 
type, dimensions, 
and areas

Enable sitting 
in shade on a 
sunny day

Consider possible 
interaction of 
shading with 
indoor climate 
control ( e.g., 
internal shading 
devices and 
operability of 
window)

Avoid direct 
sunlight on 
sensitive artefacts 
( e.g., art works, 
books); Consider 
obstruction of 
outside views

Control of shading 
device

Consider 
individual/ 
group/ no 
control; 
Consider 
combination 
of automatic 
control with 
override

Ensure ease 
of shading 
use; Ensure 
accessible 
control

Ensure operation 
is suitable for 
all sunlight 
conditions

Glare protection 
and control

Enable occupants 
to see each other 
( e.g., children to 
see the teacher 
and board)

Protect sensitive 
areas ( e.g., 
computer 
workspaces; 
museum 
displays

Obstruct views 
prone to glare 
( e.g. outdoor 
pavement, 
reflective 
glazing/ surfaces)

(Continued)

 Table 3.4 Continued
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Decisions 
undertaken 
in relation to 
construction 
elements and 
construction 
properties

Examples of design aims/ requirements/ 
 considerations/ decisions

Artificial lighting 
type and layout

Enhance jewelry 
shining; Use 
best daylight 
spectrum to 
display food 
( e.g., enhance 
the yellow in the 
cheese ( pizzeria) 
and the red 
in the meat 
( butcher))

Spotlight a work 
of art; Reinforce 
the circulation 
path; Provide 
task lighting; 
Ensure visual 
comfort

Complement 
daylight 
illuminance; 
Replace daylight 
when needed; 
Mimic daylight at 
night

Artificial lighting 
system control

Enable individual 
lighting control 
( task lighting)

Use presence 
detector sensors 

Provide dimming 
according to 
daylighting

Ventilation system 
equipment zoning 
and layout 

Remove food 
smells; Remove 
excessive sweat 
from the gym

Remove chlorine 
from the 
swimming 
area; Remove 
VOCs; Avoid 
discomfort ( e.g., 
in sitting areas)

Coordinate 
perimeter 
ventilation 
( natural) with 
mechanical 
ventilation

Heating and 
cooling system 
equipment zoning 
and layout 

Reconcile gender 
and cultural 
requirements 
( e.g., in offices); 
Reconcile age 
requirements 
( e.g., in nursery, 
care homes)

Ensure thermal 
comfort; 
Consider 
internal gains

Consider perimeter 
heating ( e.g., if 
windows can 
open)

links can happen, especially considering BIM and BPS have different ontolo-
gies. In any case, if decisions affecting or affected by occupants are recorded 
and manipulated in an  object-  oriented environment, information about oc-
cupants and their behavior can be documented through links between these 
objects. Pathways with these links can therefore be traceable and provide 
 evidence-  based information to clients and design teams in future projects.

3.6  Occupant-  Centric Decisions in Context

This section presents a template for producing  occupant-  centric design in-
formation that captures decisions and objects in their design contexts. The 

 Table 3.4 Continued
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purpose of the information is to demonstrate to designers how a design 
problem ( and its solution) can affect or be affected by occupants. This in-
formation could be attached to or associated with the relevant construction 
entity or built space, but it could also be linked to relevant construction 
elements and construction properties. The information is presented to the 
designer in the form of a design pattern, following the initial concept devel-
oped by Alexander, Ishikawa, and Silverstein ( 1977) and Alexander ( 1979) 
and further adapted by Bleil de Souza and Tucker ( 2016) and Tucker and 
Bleil de Souza ( 2016). When the template is instantiated with information 
relevant to a particular design problem and context, it becomes a design 
pattern.

 Occupant-  centric design patterns ( OCDPs) describe common situations 
where design decisions will affect occupants and describe design solutions 
that will take occupants’ needs into account. Alexander and colleagues’ 
original set of patterns ( Alexander et al., 1977) described abstract solutions 
to common abstract problems that designers encounter in the built environ-
ment. These  problem-  solution pairs are a powerful way to transfer and share 
knowledge as well as provide quality control for design solutions. They ena-
ble expert knowledge that is normally deployed in a tacit form to be formal-
ized, stored, and accessed by novice designers or  non-  experts.

This way of recording information has been highly influential in com-
puter science, where proven solutions have been developed for common cod-
ing problems, and there is a need to make these solutions available to novice 
programmers to reduce coding time and maintain quality. Design patterns 
have also inspired developments in  object-  oriented programming by treat-
ing programs as a number of  self-  contained objects that are linked to other 
objects ( Gamma et al., 1994; Buschmann et al., 1996; Fowler, 2002), and they 
continue to be used in computer science ( e.g., Lakshmanan, 2020) to capture 
best practice. We propose that design patterns are used to better integrate 
consideration of occupants’ needs into design processes.

Each design pattern describes one  problem-  solution pair with instructions 
for how to use it, examples of its use, descriptions of the contexts in which 
it is used, and links to other related patterns. For any particular building 
project, a number of appropriate patterns are selected. They can be adapted 
into an  object-  oriented model, as the pair  problem-  solution is structured 
in a consistent and reproducible way and can be linked through the BIM 
system to a building model.

The structure of patterns was developed by Bleil de Souza and Tucker 
( 2015) to encapsulate expert knowledge for BPS. This structure is further 
developed to integrate relevant  occupant-  related information ( e.g., mod-
els to be used, analytical processes) and make them available to building 
designers in a  user-  friendly way. There are already strong connections be-
tween simulation and occupant profiling; for instance, Hong et  al. ( 2016) 
recorded occupants’ interactions with buildings and considered the types of 
action undertaken with the potential drivers behind them. They propose an 



52 Clarice Bleil de Souza et al.

obXML3 schema connected to simulation software environments to provide 
highly detailed schedules and  data-  based models of occupants’ interactions 
with a building’s systems, including probabilistic  functions—  for instance, 
statistical schedules for window operation in specific building types and cli-
mates to be used in thermal comfort and energy simulations ( Haldi and 
Robinson, 2009).

 Table 3.5  Template adapted from Tucker and Bleil de Souza ( 2016) for the content 
specification of an OCDP

Index Index or code to store the proposed pattern in a 
database for retrieval into a BIM environment. 
Index could refer to building type, design actions, 
analytical methods, climate, type of human/ building/ 
environment relationship, etc.

OCDP name Name should clearly reflect the abstract  problem- 
 solution pair and can refer to building typology, 
specific design actions, design goals to be addressed, 
analytical methods, outputs required, type of human/ 
building/ environment relationship, etc.

Introduction Situates the pattern in its design context and describes 
how it is related to occupants. The introduction is 
written in  non-  technical language and describes how 
the OCDP is intended to be used. It also describes 
how it is related to other OCDP’s.

Problem A brief outline of the problem addressed by the pattern, 
including the aims of the design decision( s) to be 
undertaken.

Context and examples Situates the use of the pattern in relation to occupancy, 
simulation, and design practice and explains the 
context of the decision( s) to be undertaken by 
designers and provides examples. Information ( e.g., 
on theory or practice) is provided to justify the advice 
given by the pattern.

Solution A description of the occupancy models and simulation 
methods that will produce the information required 
by the designers with an indication of what BIM 
objects can affect or be affected by it.

Pattern elements Describes the simulation details ( e.g., aim of simulation, 
model settings ( simulation and occupancy), processing 
and analysis methods, simulation outputs, required 
user interaction with outputs).

Further modeling details Further notes on modeling.
Interpretation and 

quality assurance 
Instructs the designers on how to interpret results, what 

to expect from results and why, and which quality 
assurance patterns to use.

Further patterns Information on other patterns that may potentially be 
relevant.

Comments and further 
development

Further comments and observations for pattern 
development.
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Capturing the correct and meaningful use of successful  occupant-  related 
analytic models together with the context in which they work enables the 
construction of a library of OCDPs that better connect design decisions 
with different types of performance to be simulated and assessed. Each 
 problem-  solution pair contains on its problem side the context in which the 
decision is made ( e.g., the aims of the decision to be made and type of prob-
lem at hand). On the solution side, each pair contains a list of relevant and 
useful information for BPS tools and occupant behavior models to be used 
in a specific context. The template includes a description of model and sim-
ulation settings, types of analysis to be made, recommended output  post- 
 processing, and quality assurance procedures.  Table 3.5 shows the template 
for the information contained in an OCDP ( adapted from Tucker and Bleil 
de Souza 2016).

OCDPs focused on performance would help to better provide comfort-
able conditions and healthy environments, test effects of uncertainty on 
equipment and system sizing, and achieve economical operation of the 
building and its systems ( see examples in  Tables 3.3 and 3.4). The example 
OCDP given in Section 3.7 below concerns the use of BPS to provide per-
formance information, therefore linking occupant information to building 
performance assessment.

3.7 Example of an OCDP

 Table 3.6 shows an example OCDP that depicts information from the  Eco- 
 Housing case study in  Chapter 11 in which consultations with occupants 
were undertaken to build occupancy schedules and test their impact on en-
ergy use. This OCDP contains a combination of technical details, notes, hy-
perlinks to other patterns, and engineering details. It focuses on the energy 
performance aspects of building occupancy, as these relate clearly to the 
use of simulation. That is not to say that an OCDP cannot be more broadly 
related to  non-  simulation design aspects of occupants;  Tables  3.3 and  
3. 4—  particularly the interactions within the construction entity  column— 
 suggest many examples that could be developed into patterns.

Further examples of how patterns can be presented to the designer and 
linked to design stages are discussed in Tucker and Bleil de Souza ( 2015), 
including hierarchies or classification of patterns ( e.g., based on RIBA work 
stage, climate, building type), automatic linking between patterns based on 
their outputs to create a network, and the possibility of simply selecting 
patterns from a list. The development of an OCDP involves a process of con-
sensus among experts and can also be done through using combinations of 
different information types described in  Table 3.1, which vary from record-
ing mandatory information about occupants to information coming from 
consultation with occupants. The activity of generating patterns leads to 
ideas for new ones, improvements to existing ones, or indeed the deletion of 
those not found to be useful, so that information on how design can affect 
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 Table 3.6  Example OCDP for testing building energy use following consultation 
with occupants to develop  custom-  build schedules as described in 
 Chapter 11

Index # 

OCDP name Effect on building energy use of occupants in low energy  co-  housing 
apartment building

Introduction Low energy  co-  housing can provide a sustainable solution 
for affordable housing for  low-  income occupants. The 
requirements of this building type are low running costs and 
some shared rooms and facilities. A participatory design 
process is used to inform details of occupancy schedules 
for the project at hand as well as obtaining feedback on 
the design from its future occupants. This OCDP is used 
to reduce energy demand and energy costs to occupants. 
It is used to test the effects on the thermal performance 
of a range of building occupation schedules that can 
result from the variety of employment conditions that 
typical inhabitants may expect to encounter. It provides 
simulation output information that should more accurately 
reflect actual heating, cooling, and ancillary energy use 
and therefore help address the performance gap between 
simulation results and buildings in use, which in turn can 
support  decision-  making on heating, cooling, and renewable 
energy system sizing. This OCDP also affords custom inputs 
to schedules based on the availability of survey data. Such 
data can also be used to inform design decisions on shared 
building facilities.

This OCDP is intended to be used at a detailed design stage 
when the construction and form of the building are known.

Problem The problem is to provide a range of occupancy schedules that 
describe the effect on thermal loads of differing occupancy 
patterns, represent levels of uncertainty in the results, and to 
allow data input of survey results where available.

Context and 
examples

Example 1: Apartment building in Budapest, Hungary. This 
research examined the effect of different occupancy profiles 
on heating and cooling loads ( details in  Chapter 11).

Solution ASHRAE, UK NMC, and French  Th-  BCE 2012 schedules plus 
 co-  design informed ( active, passive, and weighted average) 
schedules are used in the simulations to provide information 
on magnitude and variance of heating, cooling, and plug 
loads in each apartment or zone. Model variants are 
simulated using the appropriate full hourly weather file.

Pattern elements Aims – To inform the designer of the effect on 
performance metrics of uncertainty in 
occupancy schedules. This information 
contributes to a robust design.

– To be able to compare performance 
metrics for heating and cooling energy 
use for different occupancy schedules 
that are automatically run and/ or defined 
by the designer.
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Index # 

Model settings – Construction entity = Whole building.
– Construction elements and Construction 

properties ( discrete) = combination of 
designer defined and defaults for built 
spaces and their respective services ( e.g., 
plant ideal load in early stages with 
detailed plant in later stages).

– Climate file: full year ( hourly).
– Operation parameters = designer defined 

+ defaults.
– Occupancy schedules: ASHRAE, UK 

NMC, French  Th-  BCE 2012, and custom 
 co-  design.

Processing and 
analysis

– Full-  year simulation.
– Comparative assessment of each metric 

across models.
– Metric 1: heating loads ( kW).
– Metric 2: cooling loads ( kW).
– Metric 3: heating energy ( kWh).
– Metric 4: cooling energy ( kWh).

Outputs Overview:
– Time series: occupant heat loads all 

profiles ( W/ person).
– Bar chart: annual heat energy all profiles 

( kWh).
– Bar chart: annual cooling energy all 

profiles ( kWh).
– Time series: typical summer day 

occupant heat loads ( all profiles), cooling 
loads ( all profiles).

Interaction 
with model 
and outputs

Interaction afforded: Zoom in location and 
time.

Designer can select: Individual space, occupant 
profile.

Outputs afforded: As for Overview ( see above).
Further 

modeling 
details

– Surrounding buildings should be modeled.

Interpretation 
and quality 
assurance

– Advice on heating and cooling load interpretation.
– Record of operational model settings ( ventilation rates, 

internal gains, occupancy profiles).
Further patterns  Follow-  up patterns include detailed design patterns for 

HVAC design and/ or specific obXML model of occupant 
interaction with the building or its systems.

Comments 
and further 
development

An early design stage version of this pattern could use 
a massing model and small range of default building 
constructions and parameters to give indicative figures on 
heating and cooling load variance.

 Table 3.6 Continued
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building occupants can be constantly revised, updated, and integrated into 
the various stages of a building project.

In sum, the proposed template and OCDPs are an attempt to develop a 
way to record and trace design decisions related to occupants in a single 
environment that is compatible with BIM federated models and BPS tools 
so that multiple assessment points can be scheduled throughout the de-
sign process and design  decision-  making can be  evidence-  based and better 
integrated with performance in use. The advantage of supporting design 
decisions using an  object-  oriented information system is that the discus-
sion is not tied to project stages, but rather to a network of generic objects 
detached from  country-  specific systems or contracts. Different levels of 
detail can be set to a single object and recalled as design progresses, which 
would make it possible to develop and record  context-  specific entities in 
a centralized environment, which would open the door for future work 
to implement this structure within common BIM tools to facilitate agil-
ity and distributivity in  decision-  making. In addition, this framework can 
be used to record best practice and therefore clearly connect information 
management with performance targets needed to design better buildings 
that benefit occupants and the environment, thus filling a current gap in 
practice.

3.8 Closing Remarks

In this chapter, we argued that information about occupants should be 
properly documented throughout the design process such that it is linked 
not only with BPS but also with BIM in order to fit within the information 
exchange between team members of different disciplinary backgrounds and 
thus support collaborative initiatives from a technical perspective.

The framework we proposed in Sections 3.6 and illustrated in 3.7 would 
enable practitioners to record and store sequences of  problem-  solutions for 
future retrieval and develop blueprints for how occupant information flows 
through design projects. The framework would also enable practitioners to 
identify how similar problems and issues concerning occupants reappear 
across projects, which would promote the creation of corporate object li-
braries that link BIM, BPS, and occupant behavior modeling tools to in-
form performance assessment. In this library, decisions could be recorded in 
context by the agreement of all involved stakeholders to avoid misalignment 
between design goals and intentions and occupant expectations through-
out all stages of the design process. The process would be transparent and 
traceable, thus making information on potential solutions and best prac-
tice easily accessible to design teams, promoting a shared understanding by 
combining pattern recognition with context knowledge developed through 
consensus among practitioners. The following chapters of this book discuss 
different components of this framework.



Occupants in the Building Design  Decision- Making Process 57

Notes
1  EN ISO  12006-  3 ( 2016), EN ISO 19650-1 ( 2018), EN ISO 19650-2 ( 2018), EN ISO 

55002 ( 2018), EN ISO 19650-3 ( 2020).
2  AIA ( 2019, 2020), RIBA ( 2020).
3  obXML is an occupant behavior XML data exchange format developed by 

Lawrence Berkeley National Laboratory. https:// behavior.lbl.gov/?q=obXML 
download.
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Summary

In this chapter, we will critically examine methods for learning about the 
occupant’s perspective regarding the design of buildings. We will discuss 
the nature of occupant data; the strengths and weaknesses of  self-  report, 
observational, and simulation methods; and the need to represent occu-
pants prudently during the design process. These methods help make an 
 occupant-  centric approach to building design feasible.

4.1  Introduction

Building designers necessarily make significant assumptions about occu-
pant needs and comfort because during the design process, the occupants 
are usually not yet present. Thus, the project developer’s or the client’s pri-
orities, governmental regulations, industry norms and standards, and the 
designer’s prior experience serve as proxies for the occupants’ interests. This 
is a satisfactory situation when the developer or client will occupy the build-
ing, regulations and standards are  well-  crafted and current, and the de-
signer has substantial and relevant prior experience. Unfortunately, this is 
not always the case. For example, clients that develop buildings on a specu-
lative basis may prioritize  short-  term financial returns, or large institutional 
owners may mandate regulatory minimums due to capital constraints. Such 
circumstances can lead occupants to experience uncomfortable and even 
unusable buildings.

The previous chapter,  Chapter 3, provided a valuable perspective on oc-
cupant needs from the designer’s point of view. It highlighted the designer’s 
information needs at different points in the design process and the impor-
tance of client and design team interactions, while also identifying formal 
and informal constraints on design possibilities.  Chapter  3 closed with a 
proposal for  occupant-  centric design patterns that link typical problems 
and solutions to guide design practice. In this chapter, we offer a counter-
point to  Chapter 3 by highlighting the potential direct roles of occupants 
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in the design process. There is a visionary aspect to this proposal because 
today,  non-  client occupants rarely play a direct role in the design process. 
Enhancing their role would require overcoming practical barriers. For ex-
ample, occupants are diverse and have varied needs, and some occupants 
may have difficulty articulating their needs if they have limited literacy in 
building systems and construction. In this chapter, we consider practical 
ways to bring in the occupant to inform the design of new buildings.

Our proposal is significant. Buildings are meant to provide shelter to peo-
ple and the things they care about, and so designers should inherently be 
concerned about occupants. Traditionally, design practitioners have done 
their work on behalf of occupants, applying their expertise to achieve out-
comes that satisfy what designers assume to be the occupants’ needs and 
wants. To guide these decisions, designers have developed standard mod-
els of occupants’ functional requirements and behaviors ( as discussed in 
 Chapters  2 and 3). Unfortunately, some models ignore the variability of 
occupants’ needs, capabilities, and perceptions, or fail to consider the oc-
cupant as an active participant in building performance outcomes. This tra-
ditional design approach can result in buildings that perform poorly and do 
not satisfy their occupants. Adverse examples include divergence between 
intended and actual building operational schedules, air temperature and 
illuminance levels, or usability of control interfaces by different types of 
occupants ( Stazi et al., 2017).

The emerging paradigm of  occupant-  centric design reframes the design 
process by stipulating that practitioners do more of their work with occu-
pants. At every stage in the building life cycle, design practitioners should 
seek to interact directly with occupants to hear what they like and dislike, 
what creative ideas they may have, and what is working or not. This democ-
ratization of the design process is philosophically satisfying, but how is 
it done?

In this chapter, we argue that there are multiple opportunities to integrate 
 occupant-  centric elements into traditional design processes. Traditional 
building design processes are conceptually relatively linear, progressing 
from the owner’s abstract program to a final refined design that gets built 
and occupied. In contrast,  occupant-  centered design processes involve 
much iteration, invoking what Lindblom ( 1959) called mutual incremental 
adjustment. For example, if the user is known, a  pre-  intervention study to 
identify their needs can augment the linear design process. Likewise, a cir-
cular design process considers building design, construction, operation, 
and adaptive renovation to be ongoing and iterative activities ( Cobaleda 
Cordero et al., 2017). As we move through this chapter, we consider design-
ers’ and operators’ need for information about occupants, the nature of 
occupant data, methods for acquiring occupant data, how to manage the 
 occupant–  practitioner relationship, and how to engage occupants through-
out the building life cycle.
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4.2  Designers’ and Operators’ Informational Needs 
throughout the Building Life Cycle

Practitioners need to know and understand different things about occu-
pants as a project advances through the building life cycle. Professional spe-
cialties and the associated toolkits lead programmers, architects, engineers, 
constructors, and operators to seek distinct types of data.

In the  pre-  design stage, architectural and engineering programs need ba-
sic information, such as the number of people who will use the building and 
for what general purposes. Residential building programs necessarily focus 
on households or other social units, and they allow occupants to perform 
a relatively standard set of activities, including sleeping, hygiene, nourish-
ment, and recreation. Commercial building programs allow groups of many 
sizes to enact myriad production or consumption activities.  Chapters  2 
and 3 provide relevant details on occupant needs and the relevant design 
decisions.

An integrated design process proceeds through stages of increasing de-
tail, from schematics to shop drawings, where at each stage there is a need 
for information  about—  and ideally  from—  occupants. The process begins 
with identifying occupants’ functional needs and translating those to de-
sign requirements. For example, questions of how many people doing what 
and where dictate the sizes and adjacencies of spaces. Questions of occu-
pant capability, responsibility, and motivation translate to levels of building 
automation. Questions of occupancy levels and schedules guide equipment 
specification and estimates of building performance. Occupants’ desired 
levels of thermal comfort, indoor air quality, lighting, and noise guide de-
sign targets. The range of expected occupant behaviors anticipates risk 
management and usability strategies. Designers and their clients may start 
with assumed answers to all these questions, but the outcome likely will 
be better if occupants or their proxies weigh in because occupants exhibit 
much variability ( Belazi et al., 2018).

Except in cases where the design project is a renovation, or the client is also 
the occupant, methods for acquiring occupant data draw on evidence from 
existing buildings to inform a new building’s design. This practice raises im-
portant questions about the transferability of insights from one building to 
another and the limits of extrapolation from collected evidence to hypothet-
ical future circumstances. The reproducibility, validity, and representative-
ness of data collected using the methods discussed below become important 
dimensions for assessing the data’s value. These dimensions extend beyond 
the data to include the models that use the data. To illustrate, is the trans-
ferable item a “ typical” value, such as the average floor area per person 
needed in an office environment; an inferential statistical relationship, such 
as a multivariate regression model linking observed indoor air temperature 
to subjective thermal comfort sensations; or a  rule-  based dynamic relation-
ship, such as a parameterized  agent-  based model of occupants’ adaptive 
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responses to changing lighting conditions? Each type of transfer bundles 
different assumptions with the transferred data ( Andrews et al., 2016).

Once a building is constructed, occupant behavior moves from hypothet-
ical to observable.  Post-  occupancy evaluation of the building and its oper-
ations allows assessment of its  as-  built performance, identifies issues that 
need resolution, and extracts lessons for future building designs. Seeking 
ongoing feedback from occupants allows operators to respond in real time 
to changing building conditions and allows occupants to participate in im-
proving the building’s performance. The nature of these interactions differs 
between commercial buildings, which may have building automation sys-
tems that operate without occupant involvement, and residential buildings, 
which may have a  consumer-  grade digital assistant that interacts frequently 
with occupants.

4.3  The Nature of Occupant Data

Occupants can be counted, tracked, timed, observed, and queried to yield 
useful data for designing and operating buildings. These many types of oc-
cupant data have properties that vary widely and may limit what can be 
done with the data.

Some occupant data is objective, meaning that it is directly observable 
by reliable instruments or people. Two observers should be able to agree on 
the number of people occupying a room, for example, and on the occupancy 
schedule, these people follow. Instruments such as  infrared-    beam-  breaker 
people counters placed in doorways, or more advanced overhead counters 
that rely on computer vision algorithms to interpret video feeds, will vary in 
their level of accuracy and reliability, but they all seek to measure something 
objectively quantifiable.

Other occupant data is subjective, meaning that it is not directly observa-
ble in the same way by all instruments and people. For instance, two reason-
able observers may perceive things differently because of personal beliefs or 
feelings that color their observation. An occupant’s thoughts are inherently 
subjective because outside observers cannot see them; hence, the observers 
must ask the subject what they are thinking. Although professional observers 
use standardized surveys and interview instruments that have been previ-
ously tested and shown to perform reliably, the subjective element remains.

Psychological models of behavior attempt to explain and predict behav-
ioral outcomes based on models that include both objective and subjective 
input data. This spectrum spans values, beliefs, attitudes, preferences, per-
ceptions, norms, intentions, habitual behaviors, reactive behaviors, rea-
soned behaviors, social behaviors, and more. For example, Ajzen’s ( 1985) 
Theory of Planned Behavior attempts to predict behavior based in part on 
expressed intentions, which are in turn based on subjectively measured atti-
tudes and driven by subjectively measured beliefs.  Wide-  ranging empirical 
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tests of this model have found that subjective data on beliefs and attitudes 
can be reasonably good predictors of subjectively measured intentions, but 
intentions accurately predict objectively measured behavior only about  one- 
 third of the time ( Armitage and Conner, 2001).

Underlying the occupant behavior modeling challenge is a serious episte-
mological problem in the social and behavioral sciences. Recall that episte-
mology refers to theories of knowledge, or the study of how we know what 
we claim to know. When studying phenomena in physics and chemistry, 
for example, scientists develop theories and evidence to understand better 
how the natural world works. The roles of the subject ( actor) and object 
( recipient of action) are clear: scientists are studying nature, although some-
times ( such as in quantum mechanics) there is an observer effect that af-
fects measurements. When studying human behavior, action goes in both 
directions: while social scientists study the behavior of other humans, those 
humans are reacting to being studied. Worse, both sets of humans share so-
cial circumstances that add subjectivity to their interpretations of the data 
collected. Hence, the social and behavioral sciences are afflicted by what 
Giddens ( 1987) calls the double hermeneutic, which acknowledges the inter-
actions between subject and object, the inherent subjectivity of research in 
this domain, and the possibility that everything we claim to know depends 
on who is doing the interpretation.

There are two ways out of this intellectual dilemma: first, practice in-
tellectual humility regarding what experts assume they know about people 
( Andrews, 2002); and second, acknowledge some objective agreement on the 
material facts of the physical world ( Sayer, 1992/ 1984). Thus, a key practice 
of good occupant behavior research is to let people speak for themselves, 
i.e., ask people directly what they perceive. A second key practice of good 
occupant behavior research is to study people in their physical context, i.e., 
study occupants as part of a coupled  building-  occupant system.

4.4  Methods for Acquiring Occupant Data

Traditionally, the information used to make spatial design decisions has 
been based on standards, building codes, the personal experience and train-
ing of designers, and input from  clients—  all documented with an eye on 
considerations of legal liability, as discussed in  Chapter 3. Often left out of 
this process are the end users, i.e., those who live, work, shop, or otherwise 
regularly use a space, even though they are the most affected and often the 
most knowledgeable about space needs. This oversight is especially relevant 
in buildings meant to be energy efficient, since user behaviors can play a 
significant role in energy use ( Sonderegger, 1977;  Guerra-  Santin and Itard, 
2010; Majcen et al., 2016).  Design-  behavior research has begun to address 
this gap by providing empirical,  user-  based information about user behav-
ior, perception, and needs for spatial design ( Zeisel, 2006; Wener, 2008; Hor-
ayangkura, 2012).
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There are various social science methods for collecting data on user spa-
tial behavior, needs, and perceptions. Since each method has strengths and 
sources of bias, whenever possible it helps to use multiple data sources to 
enable triangulation of findings. Multiple data sources pointing to similar 
results increases confidence in the validity of the outcomes. A mixed meth-
ods approach that uses both quantitative and qualitative  measures—  for 
instance, a combination of questionnaires, interviews, diaries, and virtual 
 reality-  based  exercises—  may provide more data and deeper insights ( Jin 
et al., 2019). Mixed methods designs differ depending on whether the data 
collection is exploratory ( early stage), explanatory (  later-  stage), or conver-
gent ( for robust design guidance). As shown in  Figure 4.1, an exploratory 
design uses quantitative methods to confirm qualitative insights, an explan-
atory design uses qualitative methods to clarify quantitative results, and a 
convergent design compares qualitative and quantitative results to triangu-
late across methods ( Bergman, 2008).

In the following sections, we expand on two types of qualitative and quan-
titative data collection methods for building design researchers to better 
understand occupant needs: ( 1) participatory,  self-  reported or  self-  engaged 
measures collected through methods such as questionnaires, interviews, fo-
cus groups, and diaries; and ( 2) less participatory and often unobtrusive ob-
servational methods such as behavior tracking, mapping,  instrument-  based 
data collection, photography, and videography ( Wener, 2008). A third type 
of method, simulation, creates synthetic data based on patterns detected in 
primary data.

 Self-  report measures allow researchers and designers to understand how 
users perceive a space and their own needs. Information can include, for 
instance, what users consider the key characteristics of a space that helps 
them engage in better and more productive work, or how they feel about 
adjusting thermostats or lighting ( as per the example shown in  Figure 4.2). 

 Figure 4.1  Mixed methods data collection designs.
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As stated previously, the simplest way to get information on how people 
behave in a space and what they want and need is to ask them. At the same 
time, informants may not always be fully aware of what they do, where they 
do it, or how these behaviors fit into broader patterns of spatial behavior. 
They may forget, misremember, or give biased answers reflecting, for ex-
ample, socially desirable responses ( Fowler Jr, 2013; Hine et al., 2016; Moy 
and Murphy, 2016). Triangulation using mixed methods can help overcome 
 self-  reporting bias.

 Self-  report techniques can include  open-  ended questions ( questions that 
allow  free-  form responses from the subject) and  closed-  ended questions 
( those with a discrete number of  fixed-  choice response items). Careful sam-
pling and survey design can reduce potential biases. In the best cases, re-
searchers will make use of survey scales that have been developed and tested 
in previous studies, providing obvious advantages in terms of reliability, 
validity, and comparability of data.

Participatory techniques are especially important for  occupant-  centric 
design practice. There are many such techniques, ranging from design char-
rettes to  crowd-  sourced data collection. As part of design, these techniques 
can be simple and direct, as illustrated by the temporary display inviting oc-
cupant participation shown in  Figure 4.3. They can also be quite elaborate 
and involve a substantial information infrastructure, as shown in  Figure 4.4.

Behavior observation offers another approach to gathering occupant 
data and has the potential to show broader patterns of group behavior that 
go beyond individual activity. This approach provides an objective view of 
placement, patterns, and flow of behavior in a space, often directly linking 
these to physical features. The choice of which observational methods to use 
and how to use them depends on the kinds of data needed and the time and 
resources that are available. Formal observations, such as behavioral maps 

 Figure 4.2  Example of collecting  self-  reported information from occupants via 
wireless voting devices ( Berquist et al., 2019).
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 Figure 4.3  Example of folk labeling, which can be used as an indicator for opportu-
nities to improve design.

 Figure 4.4  Example of  smartphone-  based survey that asks participants to upload 
photos of building features from a seated position at their workplace.
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( i.e.,  time-  sampled snapshots of who is where and doing what) or behavior 
tracking ( i.e., following the movement of one person at a time through a 
space; Ittelson et al., 1967), can be used to obtain a more complete and less 
biased picture of how and where users spend their time than  self-  reports 
provide. Mapping and tracking can be time consuming, but their use has 
been much aided by the development of portable telecommunication de-
vices ( Dalton et al., 2012, 2013).  Sensor-  equipped buildings can greatly facil-
itate such data collection, as shown in the example in  Figure 4.5.

Still and  time-  lapse photography and videography are other useful sources 
of observational data on space use, though these methods must consider the 
ethical bounds of consideration of the privacy of the occupant. White ( 1980) 
used a  time-  lapse film of people using public plazas in New York City and 
elsewhere to demonstrate the impact of design on activity, which led to crit-
ical changes in the city’s zoning laws governing the design of such spaces. 
More than a  half-  century after White’s pioneering work, photography and 
videography are mainstream techniques, now supplemented with computer 
vision tools for extracting occupant behavior patterns ( Tomé et al., 2015).

 Crowd-  sourced photographic evidence using tools such as smartphone 
apps ( see example in  Figure 4.4) is gaining popularity in occupant behavior 
research ( Day et al., 2020).  Crowd-  sourced observational evidence combines 
the strengths and weaknesses of  self-  reported and observational data and 
illustrates how methods continue to evolve.

An emerging method synthesizes new data from simulation models based 
on primary occupant behavior data. It allows  model-  based interpolation 
and extrapolation from a limited number of direct observations or  self- 
 reports. The validity of this approach is enhanced by its ability to adjust for 
behavioral context but is constrained by the model’s limitations.

Interface design for building systems, such as light switches and thermo-
stats, is an important special category in the study of occupant behavior. It 
is iterative by nature, and its success depends on the input of reliable data 
about occupants’ perceptions of the interface’s  user-  friendliness in a spe-
cific application context. There are numerous methods that provide relevant 
data, such as qualitative affinity diagramming and cognitive  walk-  throughs, 
and quantitative ergonomic analysis and  eye-  tracking studies ( Agee et al., 
2021). These specialized methods will not be discussed further in this chap-
ter. For reasons explained in  Chapter 9, it is sensible to view each method as 
providing only part of the information desired, and the contingency of the 
social and behavioral sciences suggests that triangulation and mixed meth-
ods approaches can help build confidence in the insights such evidence can 
provide to the design process.

The methods discussed in this chapter can generate vast quantities of 
qualitative and quantitative  time-  series data. Examples include individual 
occupant beliefs, attitudes, intentions, and perceptions; observed occupant 
presence and actions, local indoor environmental conditions, building sys-
tem status, and other variables; and system measures such as  building-  wide 
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 Figure 4.5  Example of a building suite equipped with sensors for monitoring indoor 
conditions and resulting data on occupant presence.

energy consumption. Some methods track change by the millisecond and oth-
ers by the year. Wrangling these heterogeneous data is a significant challenge.

 Table  4.1 summarizes the characteristics, strengths, and weaknesses 
of methods for occupant behavior data collection methods and provides 
pointers to published examples of their use. Regardless of method, most 
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researchers who seek to publish work based on these methods will be re-
quired by their employer or sponsor to submit their research protocols for 
approval by an institutional review board ( IRB) that works to protect hu-
man subjects from harm during the research process ( Chen et  al., 2018). 
Practitioners using these methods may face fewer such requirements but 
should still acknowledge their responsibility to respect occupant privacy.

4.5  Managing the  Occupant-  Practitioner Relationship

Many different relationships between occupants and building practition-
ers are possible, and understanding how they differ is important for suc-
cessful design and operational outcomes. Arnstein ( 1969) proposes a 
 power-  based ladder of lay engagement with practitioners that ascends from 
 expert-  dominated  non-  participation by lay people, to tokenism and mere 
consultation, all the way to delegation of  decision-  making power to lay 
people. Renn, Webler, and Wiedemann ( 1995) suggest that it is beneficial 
to acknowledge tensions between the competing objectives of fairness ( to 
lay participants) and competence ( of lay participants) when choosing how 
to structure this relationship. In other words, practitioners should only re-
linquish  decision-  making authority in areas where occupants are likely to 
be equipped to make good decisions. This stance provides an aspirational, 
 occupant-  centric contrast with the assumed power asymmetry that is baked 
into many  owner–  tenant and  client–  contractor relationships.

Whereas occupants are likely to have some knowledge of their own needs 
and desires in terms of building design, building practitioners generally have 
substantial knowledge about both typical occupant needs and how building 
systems work ( as discussed in  Chapter 2). Ensuring fairness might mean that 
all  voices—  that is, both occupants’ and building practitioners’—  are heard, 
and ensuring competence might mean appropriately matching tasks to roles. 
However, the challenges of successfully managing the  occupant-   practitioner 
relationship are many, including ( at least) the following:

• Philosophy of control: Do designers and their building owner clients 
trust occupants enough to give them local control of key features? If 
occupants know their own comfort preferences best, it makes sense to 
build in local controllability of systems that provide occupant comfort, 
such as incorporating many small thermal zones and associated ther-
mostats into the HVAC system design. Designers who do not trust oc-
cupants, or clients who prioritize other considerations, may create large 
zones and no means of local control.

• Usability: Are the interfaces occupants use to control building sys-
tems comprehensible, efficient, and effective? However well designed 
the rest of the system is, if the interface is flawed then occupants will 
struggle to perform with competence. See the interface discussion in 
 Chapter 9.
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• Transferability: Designers do their work before the building is con-
structed, and so the actual occupants are not yet in place to be asked 
about their preferences and perceptions. Instead, designers seeking oc-
cupant input will need to ask occupants about existing buildings that 
are similar to the new building in terms of occupant characteristics, 
activity types, climate, and physical details. Alternatively, the designer 
will need to rely on the client developer or building owner, or a behav-
ioral consultant to speak for the future occupants, or they can turn to 
established design guides and standards.

• Data ownership: Building operations have been traditionally guided by 
data collected by building management systems or consultants hired by 
the client owner. However, it is increasingly common for occupants to 
install devices to monitor indoor environmental quality independently. 
These  consumer-  grade devices provide evidence that occupants can 
use to challenge factual claims made by owners about the building’s 
performance ( He et al., 2020). Some regulations and leases specify per-
formance requirements for tenanted spaces, making this a financially 
relevant development. Like the citizen science movement, data streams 
provided by occupants can disrupt traditional authority relationships 
and provide new insights about problems ( Kim et al., 2019). A construc-
tive role for practitioners is to help  citizen-  scientist occupants ensure 
quality control and to incentivize continued occupant engagement 
( Andrews, 2016).

The above challenges highlight that the  occupant–  practitioner rela-
tionship is  multi-  faceted and varies by building and occupant type. An 
 occupant-  centric design philosophy emphasizes local control, usability, 
direct communication with occupants, and openness to consideration of 
 occupant-  provided data.

4.6  Engaging Occupants along the Building Life Cycle

The relationship between occupants and practitioners will necessarily 
vary throughout the building life cycle. Broadly, in the earlier stages, from 
conceptual design through completion of construction, occupants can be 
engaged in formative evaluation activities designed to specify directional 
targets, monitor progress, and provide ongoing feedback to the design and 
construction processes. After the building is occupied, it becomes possible 
to conduct summative evaluations by occupants to determine how well the 
building works.

At the outset, the client developer or owner needs to decide where and 
when they are comfortable placing occupants within the design process, 
from no participation to putting occupants in charge of specific decisions. 
An  occupant-  centric design process seeks to be closer to the empowerment 
end of the spectrum. A common example is allowing tenants to choose the 
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color of interior paint. A more inspiring example is the redevelopment of 
public housing by the Charlottesville Redevelopment and Housing Author-
ity ( CRHA), where residents were directly involved in the initial needs as-
sessment and conceptual design as well as throughout the remainder of the 
design and acceptance process ( CRHA, 2021). The Budapest housing  co- 
 design case study in  Chapter 11 is another encouraging example.

Traditionally, each stage of the building life cycle requires different data 
from occupants. In  Figure 4.6, we illustrate the life cycle using stages defined 
by U.S. practitioners ( AIA, 2019), recognizing that these may differ in other 
countries. As shown in  Figure 4.6, occupant engagement at the conceptual 
design stage is focused on establishing occupant needs; at the schematic de-
sign stage, the focus shifts to selecting interfaces; during design develop-
ment, it is on defining engagement goals; during preparation of construction 
documents, it is on developing guidelines; during contract administration, it 
moves to managing expectations; and, finally, in  post-  occupancy, the focus 
is on occupant engagement.

 Agha-  Hussein ( 2018) offers prescriptive guidance for engaging occupants 
in the design process, including core principles such as sharing risk and re-
sponsibility, involving the end users and operators, using feedback to im-
prove design, and communicating and informing.

4.7  Using Personas to Integrate Occupants into the Design 
Process

Occupant data can become overwhelming in its detail, with ubiquitous sen-
sors collecting observations every few seconds, over many months, about 

Establish
Occupant Needs

Select
Interfaces

Define
Engagement Goals

Develop
Guidelines

Manage 
Expectations

Conceptual 
Design
Important to consider the types of 
occupants in the building. What are 
the major needs? Coordinate with 
team, early and often!

Schematic 
Design (SD)

In programming stage, think through how 
occupants will actually use the space. Are smart 

devices needed? Signaling systems? Passive or 
active systems, windows, lights, etc.  Careful 

interface selection based on needs and goals.

Design 
Development (DD)
Work with owner and occupants (if possible) 
to include them in tenant engagement 
strategy selection and design. Consider apps, 
and integration w/ BAS/BMS. Set clear goals. 

Construction 
Documents (CD)

Be clear in CD’s/specifications about 
expectations, goals, and strategies. For instance, 
if sustainability is a main goal, consider “green” 

cleaning specs. Continue to develop roll out plan 
and engagement strategies with owners/tenants.  

Contract 
Administration (CA)
Continue to set future occupant 
expectations for how they can engage 
with the building. What should they do 
(or not)? Coordinate with tenants. 

Tenant 
Engagement

Post-
Occupancy

Implement post occupancy evaluations (POE) + 
Tenant engagement strategies such as feedback, 

education, and motivation through competitions, 
games, brown bag lunch+learns, blog posts, 

onboarding training, social media, etc.  

 Figure 4.6  Diagram demonstrates ways in which to engage occupants throughout 
the design process.
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 Figure 4.7   Multi-  step, mixed methods approach to develop a persona for an energy 
use study.

perhaps hundreds of occupants in dozens of rooms in a  medium-  sized 
building. Such data can only provide insights if it is aggregated. Standard 
aggregation approaches focus primarily on characterizing the central ten-
dency of the probability  distribution—  i.e., the “ average”  occupant—  or the 
dispersion around the mean, such as the predicted mean vote/ predicted per-
cent dissatisfied construct used in thermal comfort surveys ( Andrews et al., 
2016). A different approach that fits well with the  occupant-  centric design 
perspective is to work with clusters of relatively homogeneous occupants 
that can be represented as archetypes or personas, as discussed below. Per-
sonas belong to a spectrum of approaches that use increasingly sophisti-
cated models to process occupant data, as discussed in  Chapter 6.

 Figure 4.7 summarizes the process of creating personas from a set of oc-
cupant data collected through a mixed methods approach. Data are applied 
toward the development of user personas in four discrete steps. First, the 
researcher collects energy use data and develops descriptive statistics. Sec-
ond, they deploy a behavioral survey. The survey might ask participants 
demographic questions as well as questions about preferred thermostat set 
points, adaptive comfort behaviors, dishwasher use, shower length, and 
other indoor environmental quality factors. Survey responses are initially 
categorized by demographics ( e.g., age). The researcher then generates de-
scriptive statistics of the survey responses. Third, the researcher interviews a 
small subset of users ( e.g.,  5–  10) to add richness and additional context to the 
persona. The interview script probes user attitudes, beliefs, and preferences 
for  human-  building interaction ( e.g., acceptance of automation). Fourth, the 
researcher codes the interview transcripts and develops affinity diagrams for 
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categorizing themes in the data. Employing the persona( s) during the design 
process provides a basis for  occupant-  centric  problem-  solving. For example, 
when faced with a decision regarding building systems or interfaces, the de-
signer would ask what would [Persona name] want or need in this system.

Personas also have particular value for constructing occupant indoor en-
vironmental quality ( IEQ) comfort profiles. Such profiles can help design-
ers and building developers to better appreciate individual differences and 
needs in the early design phase. Some recent examples in which personas 
provided analytical and design insights include the following:

• Hong et al. ( 2020) defined six  human-  building interactions behavior pro-
files: average, reserved, environmentally friendly, role model,  self-  centered, 
and mechanist.

• Kim and Bluyssen ( 2020) clustered office workers into the following cat-
egories: healthy and satisfied, moderately healthy, and  noise-  bothered, 
and unhealthy and air and temperature bothered.

• Despenic et al. ( 2017) identified four lighting preference profiles: active-
ness, tolerance, dominance, preference.

• Eijkelenboom and Bluyssen ( 2020) established IEQ clusters for outpa-
tient staff: uncomfortable with air and preference for control of venti-
lation, moderately comfortable and preference for fresh air, moderately 
thermally uncomfortable and preference for control of temperature, 
comfortable and preference for good acoustics, and uncomfortable and 
preference for not too cold or hot temperature.

There are several advantages of personas, including that teams often per-
form their work with no or limited knowledge of building occupants. Per-
sonas can help project teams have a more complete understanding of the 
system they are designing through the integration of human factors. Gen-
eralizing user needs, particularly behavior and attitudes, is helpful for re-
sisting  technology-  centered solutions ( Hannington and Martin, 2012). For 
example, with the proliferation of building management systems ( BMS), 
personas can assist simulators in making decisions regarding the likelihood 
of a user accepting the BMS. Further, personas can be used as a communi-
cation tool to communicate user needs across stakeholders as well as inform 
simulation inputs, as shown in  Chapter 8. Personas can serve as a guideline 
at various stages of design and construction; for instance, they can be ap-
plied for spatial design, building simulation, and automation. A significant 
advantage of personas is that designers can use them to evaluate  what-  if 
scenarios with diverse occupant behaviors.

At the same time, it is important to acknowledge the limitations of per-
sonas. First, some building uses may limit the efficacy of trying to develop 
a generalized user. Building uses also change, particularly commercial 
buildings. Some building simulators lack the skills needed to collect and 
analyze the mixed quantitative and qualitative data required to develop a 
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rich persona. Further, building simulation is often developed to understand 
compliance with energy standards, and so, while the integration of personas 
in the design and simulation workflow of a project may add value from an 
 occupant-  centric design perspective, it may not be valued by  compliance- 
 focused clients. Personas may be most realistic for retrofitting, as data can 
be collected from current occupants, but it may pose a challenge for new 
buildings when the users are unknown. Conducting surveys to create perso-
nas for different projects is also  time-  consuming and expensive for industry 
practitioners. A  final—  and  significant—  limitation is the lack of systematic 
processes and/ or set rules for integrating personas into simulation.

4.8  Closing Remarks

In this chapter, we presented three key arguments. First, building de-
signers and operators can learn much from occupants, and the  occupant- 
 practitioner relationship will vary according to the stages of the building’s 
life cycle. Second, the methods needed to engage occupants successfully 
draw upon traditional social and behavioral sciences methods, and new 
methods are emerging as sensing and computing technologies advance. 
Finally,  occupant-  centric design approaches that employ these methods can 
improve both the depth of insights generated during the design process and 
the likelihood of successful building and occupant outcomes. Metrics, dis-
cussed next in  Chapter 5, provide an  occupant-  centric perspective on how to 
link occupant data to building performance.
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Summary

In this chapter, we will describe  occupant-  centric performance metrics and 
their main use cases in the building life cycle. We will start with the back-
ground of occupant metrics in relation to occupant needs, and then describe 
a suite of occupant metrics within a classification framework. Next, we will 
present methods to quantify the occupant metrics. Finally, we will discuss 
the basis to set the energy and environmental performance targets.

5.1  Introduction

Building performance is mainly determined by six factors, as studied in the 
International Energy Agency’s ( IEA) Energy in Buildings and Communities 
Programme ( EBC) Annex 53 ( Yoshino et al., 2017): climate, building enve-
lope, building services and energy systems, building operation and mainte-
nance, occupants’ activities and behavior, and indoor environmental quality 
( IEQ). To quantify building performance, metrics have been developed and 
widely used to guide building design, code compliance, and performance 
benchmarking and rating. However, most building performance metrics 
adopted by current building standards ( e.g., ASHRAE 90.1, ASHRAE 
189.1, ISO 17772, ISO 52000) and certifications ( e.g., LEED, BREEAM, and 
DGNB) focus on either  whole-  building ( Coleman et al., 2015),  system-  level 
( Li et al., 2020), or  equipment-  level energy use, peak demand, or energy ef-
ficiency. They are usually normalized by the floor area of a building; for 
example, the energy use intensity ( EUI) in  kilowatt-  hours per square meter 
( kWh/ m2) or thousand Btu per square foot ( kBtu/ ft2) represents the annual 
 whole-  building energy use per building floor area. The peak demand inten-
sity, in watts per square meter or square foot ( W/ m2 or W/ ft2) represents the 
annual peak electricity demand per building floor area. Most existing met-
rics do not explicitly consider occupants, which can lead to significant bias 
in evaluating building performance ( O’Brien et al., 2017).

With increasing concerns over each building’s environmental perfor-
mance by building owners and occupants, it is critical to consider building 
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performance with regard to occupants rather than merely normalizing by 
floor area. Unlike normalizing by floor area, normalizing performance by 
occupants simultaneously credits buildings for both space utilization ef-
ficiency and energy performance. New space utilization models for occu-
pancy ( e.g.,  co-  working, Airbnb, hoteling,  post-    COVID-  19 pandemic hybrid 
working schedules) are challenging conventional assumptions upon which 
traditional metrics were developed.

More frequent extreme weather events and the increasing penetration of 
distributed energy resources ( DER)—  including renewable energy, storage, 
and electric  vehicles—  impose a need to quantify building energy flexibility 
and resilience to support research and development of  grid-  interactive ef-
ficient buildings ( GEBs) ( Neukomm et al., 2019).  Occupant-  centric perfor-
mance metrics are essential for evaluating how passive building designs and 
 demand-  flexible operations affect occupants in the GEB context.

Meanwhile, occupant needs ( described in  Chapter 2) in current building 
energy codes and standards ( e.g., ISO 7730, ASHRAE 62.1, ASHRAE 55) 
and design guidelines are usually represented as static and homogeneous 
criteria for IEQ. These include indoor air temperature and humidity within 
a narrow comfort zone, illuminance levels based on space type, maximal 
allowable carbon dioxide ( CO2) concentration based on activity type, and 
occupancy duration ( O’Brien et al., 2020). These metrics often miss usabil-
ity, individual comfort, exposure ( e.g., to viruses and light), and space uti-
lization. They are not designed specifically from an occupant perspective 
and do not consider occupants’ diverse and dynamic needs and interactions 
with building systems or the latest research ( e.g., see  Chapter 1 for a list of 
misconceptions about building occupants).

With major energy end uses such as lighting and heating, ventilation, 
and air conditioning ( HVAC) being continuously improved via efficiency 
measures,  occupant-  related performance is considered increasingly impor-
tant ( Coleman et al., 2015; D’Oca et al., 2018) to improve occupant wellness, 
comfort, and health ( e.g., via the WELL international standard, concerns 
for  COVID-  19). Not including occupant perspectives in most metrics down-
plays occupants’ importance during the design process and discussion, and 
it precludes opportunities to benchmark and diagnose building perfor-
mance from those perspectives.

 Occupant-  centric perspectives include: ( 1) use of resources, such as energy, 
water, and space; ( 2) environmental impacts, such as greenhouse gas ( GHG) 
emissions and solid waste management; ( 3) indoor environmental quality, 
including thermal, visual, acoustic, and indoor air quality ( IAQ); and ( 4) 
 human-  building interactions. The critical  human-  building interactions are 
represented as the degree and flexibility of adjustments that occupants can 
make to building systems ( e.g., operable windows, movable shades, thermo-
stats, dimmable lights, ceiling/ portable fans) for maintaining comfort and 
 health—  as well as means for providing feedback to building operators or 
managers on IEQ or other needs.
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The widely deployed sensors, meters, and Internet of Things ( IoT) de-
vices in buildings have been collecting a growing volume of data, including 
occupancy ( e.g., people count, presence), IEQ, energy end uses, building 
system operational parameters, and outdoor weather conditions. Those 
data enable quantification and tracking of  occupant-  centric metrics, which 
can enable performance goals to be achieved or maintained throughout the 
building life cycle. With the advancements in occupant modeling and simu-
lation ( see, for example,  Chapters  6–  8 of this book and Hong et al., 2016), it 
is feasible to calculate the  occupant-  centric performance metrics in building 
performance simulation to enable their use for informing building design 
options and technology evaluation. The new approach is in contrast to pre-
vious modeling approaches, which allowed fractional occupants and rarely 
considered individual behaviors, exposure to the environment, or presence.

In this chapter, we define  occupant-  centric performance metrics as those 
that capture the quality of services occupants receive and the degree of a 
building’s flexibility to accommodate occupants’ interactions with the build-
ing systems that influence building operations and, consequently, resource 
usage and environmental performance. It should be noted that the examples 
of  occupant-  centric performance metrics we present in this chapter are not 
intended to be exclusive. These metrics are intended to be used by building 
designers, architects, engineers, building owners, and occupants, and can 
be adopted in  post-  occupancy evaluation as well as in design charrettes.

This chapter builds on the occupant needs discussed in  Chapters   2–  4. 
In Section 5.2, we describe a framework to define and exemplify a suite of 
 occupant-  centric performance metrics. These metrics aim to cover the main 
use cases in the building life cycle representing performance of ( 1) resource 
uses to provide services for occupants and their environmental impacts; 
( 2) IEQ, ensuring a comfortable and healthy indoor environment for oc-
cupants; and ( 3)  human-  building interactions, which entails the degree of 
freedom for occupants to interact with buildings and systems and to provide 
feedback. In Section 5.3, we describe calculations or measurements to quan-
tify these metrics and corresponding visualization techniques used to fa-
cilitate communications with architects, building designers and engineers, 
occupants, building operators, and policymakers. In Section 5.4, we further 
discuss the basis of setting  occupant-  centric performance targets.

5.2   Occupant-  Centric Building Performance Metrics

In this section, we first introduce the key attributes of  occupant-  centric met-
rics, and then present a framework that covers their important aspects. We 
review building performance considerations in existing literature, building 
codes, and standards from the occupant perspective. The review includes 
current limitations and future improvement opportunities of  occupant- 
 centric building performance evaluations. Finally, we provide example use 
cases of  occupant-  centric metrics in the building design phase.
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5.2.1  Key Attributes of Building Performance Metrics

de Wilde ( 2018) describes a hierarchical structure of quality and informa-
tion for use in the analysis and quantification of building performance 
(  Figure 5.1). The term  occupant-  centric metric in this section is used to de-
scribe indicators.

Performance metrics translate raw data into actionable information that 
is easy to understand and can be incorporated into a clear performance 
evaluation target, such as energy use, IEQ, or space utilization. The follow-
ing are the key attributes of performance metrics:

• Accessibility/ reproducibility: Metrics should be easy to obtain repeat-
edly with existing infrastructure and technologies and reasonable effort 
and cost. Specifically, the sources of data and how they can be measured 
should be straightforward.

• Quantifiability: Metrics should have a clear definition of either direct meas-
urements or robust and straightforward formulas for calculating the values. 
For example, the metric definition should be clear about which sensor, meter, 
and building characteristics are needed for the calculation. Quantifiability 
is the foundation of performance tracking, verification, and benchmarking.

• Actionability: Metrics should be  target-  oriented. They should provide 
actionable information to inform solutions to specific problems; for ex-
ample, reducing lighting energy consumption per person by improving 
the lighting control.

• Comparability: Ideally, metrics should be easy to compare across dif-
ferent scales, countries, building types, and other settings, to maximize 
utility. A good metric should be generic and not  building-  specific.

• Unbiased: Metrics should be fair and objective. For example, perfor-
mance metrics normalized for  real-  time vs. designed occupant count 
may be misleading.

Indicators

Hierarchy                      Quality          information

Measurements

Data

 Figure 5.1  Hierarchy, quality, and information for building performance 
quantification.
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5.2.2  A Framework of  Occupant-  Centric Metrics

Occupants are the main recipients of building services. They interact with 
the building and its systems to ensure their needs are met. At the same time, 
buildings and their systems consume resources to provide the required ser-
vices, while byproducts such as waste and GHG emissions influence the 
environment. Therefore,  occupant-  centric building performance can be 
represented by three aspects ( Li et al., 2021): ( 1) resource use and environ-
mental impact, ( 2) IEQ and other services provided by the building and 
their influence on occupant comfort and health, and ( 3)  human-  building 
interactions.  Figure 5.2 depicts these three interlinked aspects. For resource 
use and environmental impact, examples are  building-   or  zone-  level energy 
consumption, peak power demand, water usage, and GHG emissions dur-
ing partial and full occupancy. For building services, we consider five cate-
gories, which include four key components of  IEQ—  thermal quality, visual 
quality, acoustic quality, and indoor air  quality—  as well as other services, 
such as the use of miscellaneous electric devices, service water, internet con-
nection, and space. For  human-  building interactions, we consider the build-
ing’s capability to accept occupant inputs and provide feedback and control 
system operations with respect to  occupant-  centric needs.

There are diverse factors to consider when defining or selecting  occupant- 
 centric metrics. For instance, there are different levels of granularity in 

 Figure 5.2  A framework of  occupant-  centric building performance metrics.
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terms of occupant and other related data. In the temporal dimension, the 
resolution ranges from the annual to the hourly or  sub-  hourly level. In the 
spatial dimension, the resolution ranges from the whole building to a spe-
cific point. In the occupant dimension, the resolution ranges from occupant 
count at the building or zone level to individual occupants and their activ-
ities. In addition to the three dimensions, other factors such as the perfor-
mance goal, quantifiability, normalization factors, and value types should 
be considered.  Figure 5.3 shows the dimensions and important factors to 
consider when choosing  occupant-  centric metrics.

5.2.3  Examples of  Occupant-  Centric Metrics

 Table 5.1 shows examples of metrics covering the three categories. A com-
prehensive list of  occupant-  centric metrics and factors is available in Li et al. 
( 2021). The example metrics are for demonstration purposes and may not be 
applicable to all scenarios.

In addition to the normal operating conditions,  occupant-  centric metrics 
can also cover extreme scenarios, such as when occupants are in extreme 

 Figure 5.3  Examples of dimensions and important factors of  occupant-  centric 
metrics.
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 Table 5.1 Examples of  occupant-  centric metrics

Category  Sub-  category Metric name Metric definition

Resource and 
environmental 
impact

Energy Use kWh/  
OccupantHour

Annual total site energy 
use ( kWh)/ annual total 
 occupant-  weighted hours 
for the whole building

Water Use kg water/ person Annual water use ( kg)/ 
number of maximum 
occupants

GHG  
Emissions

kg CO2e/ person Annual CO2 equivalent 
emission ( kg)/ number of 
maximum occupants

Building  
Services

Lighting Underlit 
Occupancy 
Hours

The hours when the indoor 
light level is below the 
adaptive setpoints for a 
particular occupant when 
the room is occupied

Thermal  Degree-  
  Occupant- 
 Hour Criterion 
( DOHC)

Sum of occupied hours 
multiplied by the number 
of occupants and 
operative temperature 
exceeding the 
corresponding comfort 
range

Air Quality Weighted CO2 
Exceedance 
× Occupant 
Hour

The sum of CO2 
concentration exceeding 
a reference level, 
multiplied by the number 
of occupants during each 
occupied hour, weighted 
by the range in which the 
CO2 concentration is in 
( e.g., higher weights when 
CO2 concentration is 
unhealthy)

Acoustic 
Quality

Global Index of 
the Acoustic 
Quality

A global index that is the 
weighted function of five 
partial indices, namely: 
reverberation index, 
intelligibility of speech 
index, uniformity of 
loudness index, external 
disturbance index, and 
music sound quality 
index

Other services Hoteling 
Potential

Minimum ratio of the 
required number of 
workstations to the 
number of employees if 
they relocate on a weekly 
or daily basis for 95% and 
99% of the time

(continued)
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Category  Sub-  category Metric name Metric definition

 Human-  Building 
Interaction

Controllability Controllability  
of HVAC

Percent of occupants who 
can adjust thermostat 
settings for their local 
environment

Controllability Accessibility 
of operable 
windows

Percent of occupants 
who can open/ close the 
operable windows

Occupant and 
Response

Accessibility 
to Building 
Information

Percent of occupants who 
have access to building 
information ( e.g., a 
dashboard to see energy 
use, demand, space use, 
and IAQ of their floor or 
space)

Occupant 
Feedback

Mechanism 
to provide 
feedback

Can occupants provide 
feedback about their IEQ 
needs? Is there a periodic 
survey of occupant 
satisfaction?

 Table 5.1 Continued

environments, e.g., very high or very low indoor air temperature during ex-
treme weather events such as heat waves or cold snaps due to power outages. 
In such cases, traditional thermal comfort metrics, such as predicted mean 
vote ( PMV) and predicted percentage of dissatisfied ( PPD) are not suffi-
cient; other metrics may be more appropriate to represent the thermal haz-
ard ( Sun et al., 2020). For example, heat index ( HI) considers both indoor air 
temperature and relative humidity to measure the  human-  perceived equiv-
alent temperature. It is widely used for assessing outdoor thermal comfort 
and thermal resilience in the United States. There are five levels of risk 
based on the heat index: ( 1) Safe ( HI ≤ 26.7°C); ( 2) Caution ( 26.7°C < HI ≤ 
32.2°C, fatigue possible); ( 3) Extreme Caution ( 32.2°C < HI ≤ 39.4°C, muscle 
cramps and/ or heat exhaustion possible); ( 4) Danger ( 39.4°C < HI ≤ 51.7°C, 
muscle cramps and/ or heat exhaustion likely); and ( 5) Extreme Danger ( HI 
> 51.7°C, heat stroke highly likely).

5.3  Methods to Quantify Occupant Metrics

This section describes methods to quantify the occupant metrics using 
measurements or simulations, taking into account fundamental differ-
ences between users ( e.g., age, gender) to properly reflect their conditions 
and preferences, as well as to address potential inequities. Several examples 
are provided to demonstrate how occupant metrics can be calculated using 
building automation system ( BAS) and IoT data, and from simulations.
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5.3.1  Methods based on Measured Data

 Occupant-  centric metrics can be either directly measured or calculated using 
measured data for existing buildings. As per the framework in  Figure 5.2, 
the data needed for calculating  occupant-  centric metrics have multidimen-
sional traits ( i.e., temporal, spatial, and occupant) and can have a range of 
resolutions. Depending on the selected metrics, the types of data and exam-
ples at various temporal resolutions ( from minutes to hourly to monthly to 
annual) shown in  Table 5.2 may be needed for measurements.

Occupancy information is essential for  occupant-  centric metric calcula-
tions. Numerous methods can be used to measure occupant presence or ab-
sence in a space. They are differentiated by whether occupants are counted 
implicitly or explicitly ( Dong et al., 2018). Implicit methods determine occu-
pancy indirectly, via a secondary signal. The most common example is meas-
urement of CO2 as an indication and variation of occupancy over time. Other 
measurements have also been suggested and used with varying degrees of 
success. For example, in  office-  work types of environments, plug loads can 
indicate operation of computers and thus, occupancy. Indirect methods need 
to be calibrated and often recalibrated to avoid drift and maintain accuracy.

Explicit methods link a measurement count directly to a person without the 
need for complex calibration. A common example is motion detectors, typi-
cally based on passive infrared ( PIR) sensing. PIR sensor data, however, are 
not usually logged in building management systems, but rather directly linked 
to, for example, lighting control. Recently, methods that use available IT in-
frastructure have emerged. Most notably, the use of  Wi-  Fi signals. Analyzing 
connected mobile phones ( or other  Wi-    Fi-  capable devices) gives an indirect 
count of the number of people in the vicinity of the wireless access point, 
which is linked to a certain space/ zone in the building ( Hobson et al., 2019).

 Table 5.2 Types of data needed for  occupant-  centric metrics calculations

Data type Example

Occupancy 
information

Occupant presence/ absence and/ or people count at the space or 
 whole-  building level

IEQ parameters Air temperature, humidity, CO2 concentration, volatile organic 
compounds, illuminance level, and acoustic level

Resource usage Energy use of the whole building or major end uses including 
lighting, HVAC,  plug-  in equipment, and service water 
heating. Water use for the whole building or broken down 
into HVAC ( cooling tower), drinking, and other uses 
( washing, flushing toilet, etc.)

Environmental 
impacts

GHG emissions and solid waste associated with building 
services

 Human-  building 
interaction 
measurements

Percent of occupants able to interact with building systems and 
components, e.g., open/ close windows, adjust thermostat 
settings, open/ close shades, turn on/ off or dim lights, turn 
on/ off  plug-  in equipment, occupant feedback system
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The study by Hahn et al. ( 2020) demonstrates the value and implemen-
tation of  occupant-  centric performance indicators and targets in energy 
analysis through a  post-  occupancy evaluation ( POE). The study examined 
 high-  efficiency residential buildings in the south of Germany within the 
context of the POE process, and included monitoring, occupant informa-
tion and training, and surveying. The objective was to draw a comparison 
between the calculated energy demand according to standards, such as in 
energy certificates, and the actual monitored consumption ( thermal energy 
for domestic hot water and space heating, electricity for appliances/ plug 
loads) over several years (  2013–  2016). The study was conducted annually 
from 2013 to 2016.

With the dimensions and factors (  Figure 5.4) in mind, traditional build-
ing energy performance metrics ( e.g., from current standards) usually only 
consider intensity normalized by floor area, which overlooks heterogeneous 
occupant density and variety of behavior. However, occupant factors are 
known to be among the most influential ones affecting building energy con-
sumption, and so they must be included. To keep the basis of comparison, 
the measured floor heating energy was normalized by heating degree days 
( HDD) and adapted to the  test-  reference year ( TRY). The individual units 
were considered. In addition, the number of permanent residents from POE 
in each unit was used to obtain an  occupant-  centric indicator. The inclu-
sion of  occupant-  centric indicators enables energy consumption and sub-
sequent emissions to be compared considering the occupant factors, which 
informs  decision-  making of building designers and energy modelers. It 
demonstrated that, for example, “ wasters” or “ savers” were not necessarily 
wasteful or saving when the number of inhabitants was taken into account. 
In addition, the observation over several years discovered “ personal finger-
prints,” as the normalized energy consumption remains relatively constant 
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 Figure 5.4  Thermal energy for space heating in the example building with eight 
units: kWh/( m2 × year) ( left) and kWh/ OccupantYear ( right). Both metrics are 
 weather-  normalized ( Hahn et al., 2020).
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with low variations (  Figure 5.5).  Figure 5.4 shows the annual space heating 
energy for the building with eight units and energy consumption scenarios 
with simulated profiles for “‘ families” and “  shift-  working.”

Further improvements regarding the indicators can be achieved by count-
ing the real occupancy hours. This can lead to a higher temporal resolution 
( kWh/ OccupantHour). Considering the topology of residents, these metrics 
can be grouped by life and work style to provide a more reasonable  peer-  
  to-  peer comparison. For example, working families’ and seniors’ houses 
should be considered in different groups.

5.3.2  Methods based on Building Performance and Occupant 
Modeling

Building performance simulation ( BPS) provides an approach to quantify-
ing different performance aspects such as energy demand and IEQ, which 
are important bases of comparing different design alternatives for new 
buildings and operation strategies for existing buildings ( Hong et al., 2018). 
Recent advancements in BPS ( Yan et al., 2017) have made it more feasible to 
calculate  occupant-  centric performance metrics.

Getting realistic  occupant-  related assumptions is essential for  occupant- 
 centric metrics. There are many ongoing efforts to improve  occupant-  related 
assumptions.  Table 5.3 summarizes recent advancements based on the oc-
cupants’ presence and actions ( OPA) framework ( Schweiker et al., 2018) in 
building occupant modeling, and how they benefit  occupant-  centric metrics 
calculations.

In addition to the occupant modeling assumptions, another necessary 
step to quantify  occupant-  centric metric is  post-  processing. This step in-
volves looking up the metric formulas, processing the simulation outputs, 
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and calculating the metrics, which can be tedious and  error-  prone for en-
ergy modelers. Therefore, easily accessible tools that provide automatic, 
standardized  occupant-  centric performance metric calculations could be 
very helpful.  Figure  5.6 shows how the occupant modeling assumption 
enhancement module and automatic  occupant-  centric metric calculation 
module could be integrated into the  five-  step process introduced previously 
( Li et  al., 2021). The occupant assumption enhancement module reads a 
 whole-  building energy model, generates more realistic  occupant-  related as-
sumptions that can consider climate and cultural differences, and injects 
the improved assumptions into the simulation. The  occupant-  centric metric 

 Figure 5.6  Calculation of  occupant-  centric metrics from simulations.

 Table 5.3  Advancements in occupancy estimation and occupant behavior 
modeling improvements

Occupant behavior 
modeling

Recent advancements Benefit

Presence/ Movement 1. Occupancy estimation and 
prediction with  easy-    to- 
 measure environmental 
parameters,  Wi-  Fi 
connections

2. Stochastic occupant 
movement modeling

Provides high temporal 
and spatial resolution of 
occupancy information 
and helps users 
convert them into 
occupancy schedules for 
simulations.

Actions Modeling of the adaptive 
behaviors

1. Window operation
2. Solar shading operation
3. Lighting operation
4. Thermostat adjustment
5. Appliance use
6. Clothing adjustment

Provides insight into 
occupants’ individual 
IEQ preferences and 
helps users calculate 
 occupant-  centric metrics 
with respect to realistic 
occupant demand



Occupant-Centric Performance Metrics and Performance Targets 95

calculation module adds required variables to the simulation, extracts the 
outputs after the simulation, calculates the metrics, and reports them in a 
 user-  friendly manner. This way, the occupant assumption enhancements 
and metric calculating and reporting are encapsulated, which helps to 
streamline and standardize the process.

Some tools have been developed recently following the paradigm de-
scribed above. For example, researchers at Lawrence Berkeley National 
Laboratory have developed an occupancy simulator ( Chen et al., 2018) that 
models stochastic occupant movements in office buildings and converts it 
into occupancy schedules. This tool is integrated into an OpenStudio meas-
ure ( Li and Hong, 2020) that could be easily adopted in the EnergyPlus and 
OpenStudio simulation processes. Following the same idea, an  occupant- 
 centric metric OpenStudio reporting measure was developed. This meas-
ure also can be adopted in EnergyPlus and OpenStudio simulations and 
automatically calculate and report the  occupant-  centric metrics in a stand-
ardized way. The improved occupant modeling and standardized  occupant- 
 centric performance metrics calculation measures allow building designers 
and modelers to evaluate how building and system designs influence occu-
pants, and vice versa.

5.4  Setting Targets of  Occupant-  Centric Performance Metrics

Traditionally, throughout the building life cycle, building performance tar-
gets have mostly avoided consideration of occupants out of convenience, tech-
nological limitations, and uncertainty about occupancy. For example, energy 
is primarily normalized by floor area through detailed design ( e.g., using sim-
ulation) and operations ( e.g., using meter data), given the ease of accessing 
floor area data. Meanwhile, comfort may be defined using some abstract met-
ric ( e.g., PMV or hours within a certain air temperature range) that focuses 
on the space rather than the occupants and their exposure to conditions. Pre-
viously, without the tools to accurately predict occupancy through the design 
process ( e.g., via simulation tools) and the ability to measure occupancy in 
an operating building ( e.g., via sensors),  occupant-  centric metrics have been 
difficult to quantify. Performance risks and user requirements should be as-
sessed at every stage, together with suggestions on how this should happen 
with regard to sustainability ( RIBA, 2019). For instance, the Plan of Works 
( RIBA, 2020) refers to the RIBA ( 2019) for numerical targets and implemen-
tation strategies and suggests the appointment of a sustainability champion to 
integrate sustainable strategies to client requirements and the business case, 
as well as to further develop the strategy as the project progresses.

In the context of the design process, traditional performance metrics such 
as EUI have several important limitations. For instance, focusing on energy 
performance per unit of floor area sidesteps the design strategy of improv-
ing space utilization to reduce energy use. Normalizing resource use by per-
son, in contrast, can provide a better indication of occupant needs together 
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with what the building affords. For example, how does the subject building 
compare in floor area per person to other buildings of that type? Are appro-
priate levels of outdoor air, water, and lighting provided to occupants once 
the real occupant utilization in a space has been considered? Moreover, 
 occupant-  centric metrics have the implicit benefit of reframing design dis-
cussions to be about occupants, who are the ultimate users of the building 
( see  Chapter 4 for further discussion). Such metrics are also more relatable 
and informative for occupants during a building’s operational stage since 
they are expressed at the occupant scale.

In the upcoming section, we argue and demonstrate how  occupant-  centric 
building performance metrics or other indicators can be set early in the de-
sign process and evaluated from design development through operations. 
These metrics can be used to benchmark a particular building ( or part of a 
building, such as a tenant or apartment) with respect to others or to detect 
and possibly address undesirable anomalies. Moreover, they may help to 
explain outliers that cannot be explained via traditional metrics. For exam-
ple, an  open-  plan office space that is converted to hoteling/ hot desking may 
experience a significant increase in plug loads, but this would be completely 
justifiable if the average occupancy is increased. Of course,  IEQ-  related 
 occupant-  centric metrics such as noise exposure also could be tracked to 
quantify the potential consequences of increased occupancy density. The 
following section is divided into two interrelated parts: the first part focuses 
on setting targets, while the second part discusses the application of targets 
through the building life cycle.

5.4.1  Approaches to Setting Targets for  Occupant-  Centric 
Performance Metrics

We consider two complementary approaches to quantifying  occupant- 
 centric performance methods:  top-  down and  bottom-  up. These terms are 
used in the engineering sense, where  top-  down means a disaggregation of 
the sum and  bottom-  up means aggregation of the parts.  Top-  down meth-
ods start with  high-  level metrics to derive  occupant-  centric performance 
metrics. For example, the annual energy use of a building can be divided 
by the number of nominal occupants or  occupant-  hours per year to obtain 
 occupant-  centric metrics. For a more specific example, Canada’s residential 
building sector consumes about 1,600 petajoules ( PJ) ( 1,600×1015 J) total, or 
about 42 gigajoules ( GJ) per person ( Government of Canada, 2020). This 
value could be used as a starting point for a target, e.g., 21 GJ per person ( or 
a 50% reduction from the current housing stock).

 Bottom-  up methods start with individual occupants and their needs and 
may aggregate these up to the building level. For instance, we might con-
sider the daily water needs for occupants and then use this information to 
estimate  building-  level water use ( e.g., 100 occupants times 50 liters ( L)/ day 
of water leads to expected water use of 5,000 L/ day).
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 Top-  down methods are generally easier to apply, as they stem from con-
ventional metrics that may be available using national statistics on building 
energy or existing targets, such as  net-  zero energy. For nearly all  occupant- 
 centric performance metrics of interest, occupancy is a needed input. Thus, 
estimates must still be made for real or designed occupancy ( e.g., by col-
lecting these data from real buildings or via occupancy schedules in simu-
lation). To set targets, we may aim for a building to be in the 10th percentile 
of existing buildings of that type ( e.g.,  Figure 5.7) or use  population-  level 
targets for guidance.

While  bottom-  up methods may be more challenging to generate, they 
more closely follow the intent of  occupant-  centric performance metrics. The 
 bottom-  up approach can be built up and aggregated from individual occupant 
needs. The targets may be obtained based on standards, such as normalizing 
lighting or ventilation by occupancy instead of floor area, and other availa-
ble data, such as the best available office equipment. For example, Coleman 
et  al. ( 2015) benchmarked their office equipment ( computer, monitor, task 
lamp, and phone) per occupant ( nominal power of 56 W) against more typical 
equipment ( 367 W). This target can be used through  simulation-  aided design, 
procurement, and eventually be measured once the building is occupied.

The  low-  level  bottom-  up metrics may or may not be directly additive, as 
has been previously done for energy and costs ( Hitchcock et al., 1998). Con-
sider the example of  Figure  5.8. A variety of occupant resource require-
ments are separated and quantified using a  bottom-  up approach. The values 
are obtained using measurements, statistics, or engineering judgment, and 
then summed to estimate a higher ( e.g., floor or building) level at different 
temporal scales ( e.g., annual).

In some cases, the resources are fixed ( e.g., the refrigerator is likely to run 
regardless of occupancy), whereas others vary with time of day and year 
( e.g., lighting or ventilation, if  occupancy-  controlled). Notably, in some 
cases, resources are required for building operations even if the building 
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 Figure 5.7  Example of a  top-  down approach, where an  occupant-  centric metric 
target is based on the distribution of energy use per person for existing 
buildings.
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is  vacant—  for example, overnight. These include systems such as HVAC to 
prevent freezing and to ensure conditions are comfortable when occupants 
return, as well as emergency/ security lighting. Moreover, some resources, 
such as heating, are difficult to allocate to individual occupants ( e.g., space 
heating supplied by a centralized HVAC system).

Another class of  bottom-  up  occupant-  centric metrics involves individual 
occupant exposure of environmental conditions. Rather than the classic ap-
proach of imposing targets or limits on spaces ( e.g., ventilation rate, noise 
dose limits), advanced occupant simulation and sensing allow us to quantify 
the exposure dose for individual occupants. For example, if we use an occu-
pant model that involves the occupant traveling between multiple rooms in 
a building, we can quantify their exposure to noise over the course of a day 
and compare it to standards. For buildings with hazardous exposures, occu-
pants may wear dosimeters to measure the severity and duration of exposure 
to conditions ( e.g., noise, radiation) that individuals encounter (  Figure 5.9)

In the future, we recommend that a database be developed to improve 
the ease of benchmarking and setting targets for  occupant-  centric building 

Occupant requirements

Water

Hand/dishwashing/
toilet/drinking: 
80 L/day

Lighting Plug loads

Office
10 m2 at 500 lux,
5 W/m2 = 500 W·h

Space

Office space: 10 m2 from
8 am to 6 pm on
weekdays + 10% of
30 m2 conference room
2 h/day Conference room

3 m2 at 500 lux,
5 W/m2 = 30 W·h

Personal equipment
• Computer monitor: 50 W for 10 hours
• Laptop computer: 30 W for 10 hours

Outdoor air: 2.5 L/s 
+ 0.3 L/s/m2 × 13 
m2 = average of
6.4 L/s

Shared equipment
• Centralized printer 10% share: 500 W 

for one hour, 10 W for 23 hours
• Refrigerator 5% share: 0.05 kWh/day
• Coffeemaker 25% share: 0.03 kWh/day

Parking: 1 space or
1 bicycle parking space

Ventilation

Desk fan: 10 W 
for 10 hours = 
100 W·h

Comfort

 Figure 5.8  Example of a  bottom-  up approach to establish occupant metrics and 
targets.

 Figure 5.9  Example of measuring  occupant-  level exposure using a wearable dosim-
eter ( see red device worn by the occupant on their belt).



Occupant-Centric Performance Metrics and Performance Targets 99

performance metrics, as has been done for energy performance and comfort 
( Chung, 2011). Ideal design situations should be made of several iterations 
between  top-  down and  bottom-  up approaches in which aggregations and 
disaggregation are negotiated among the design team until all design objec-
tives referring to occupancy and building performance are properly satisfied. 
This promotes transparency in setting up occupancy data for spaces, which 
are normally provided by architects to mechanical engineers, so that more 
realistic ranges of use can be agreed upon. Agreeing on ranges and tolerances 
within design teams is important when abiding by tight environmental tar-
gets. Architects will set up provisional building layouts based on a series of 
discussions with clients following principles of functionality and ergonomics 
( Neufert and Neufert, 2012), whereas engineers will need to attribute ranges 
and tolerances to these principles to account for heating and cooling risks.

5.4.2  Use of  Occupant-  Centric Performance Metric Targets through 
the Building Life Cycle

Using any of the approaches above,  occupant-  centric performance metric 
targets can be set early in design or in planning and then maintained and 
monitored throughout the building life cycle. At the start of the building 
design process, normally occupancy can only be estimated, and IEQ and 
usability can only be predicted based on the proposed building systems and 
design. Aspirational targets can be set, but they likely need to be refined 
as more information becomes available from BPS ( or other tools) and the 
design matures.  Designers—  and even  operators—  should be prepared to 
update assumptions about occupancy.

BPS tools are now at the stage where individual occupants can be mod-
eled and significant detail on IEQ can be obtained. BPS tool outputs are of 
sufficient resolution during design that they can be compared to measured 
data during the use stage. A sample of  occupant-  centric metrics through the 
building life cycle is summarized in  Table 5.4.

Subsequent design stages that follow the definition of the design brief ( i.e., 
the report with building design details) integrate these performance met-
ric targets into design solutions, thus increasing the level of detail as the 
project progresses. The stage in which spatial coordination is supposed to 
 happen—  and planning, certification, and building regulations applications 
are being prepared together with more detailed  costs—  is normally a point 
for assessment and feedback for sustainability outcomes, as well as for more 
detailed coordination of them with health and  well-  being of occupants. 
This stage normally happens at the end of the schematic/ conceptual design 
stage and the beginning of the detailed design/ specification stage. In the 
 pre-  construction design stage, targets are updated in accordance with final 
specifications, and risk assessments are undertaken with potential Plan Bs 
for contractors, so sustainable outputs and  well-  being targets can fit within 
updated specifications.
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When delivery guidance such as the BG 38/ 2018 Soft Landings core prin-
ciples are followed and design and occupied buildings are seen as a contin-
uum, a tangible procedure should be followed with regard to monitoring. For 
example, BSRIA’s Soft Landings ( BG 38/ 2018) guidance recommends that 
a Year 1 assessment should be designed for settling down adjustments until 
stable operation is achieved. Year 2 should be used for a  post-  occupancy 
evaluation ( POE). Year 3 should be used for responding to the POE and 
maintaining monitoring, using the POE to gauge energy performance, IEQ, 

 Table 5.4  Example available data and a comparison of conventional versus 
 occupant-  centric metrics

 Life-  cycle stage

Programming/ 
design brief

Schematic/ 
conceptual 
design

Detailed design/ 
specification

Use

Typical 
available 
data/ 
information

Planned 
occupancy, 
space uses, 
estimated 
floor area 

Early BPS 
results 
with simple 
HVAC and 
lighting 
systems

Detailed BPS 
outputs, 
including 
occupancy 
and IEQ 
predictions

Measured data 
for energy, 
IEQ, etc.; 
subjective 
 post- 
 occupancy 
evaluation

Conventional 
metrics

Floor area 
per activity; 
target EUI

Total energy 
use

Total energy 
use or energy 
use intensity; 
energy  end-  use 
breakdown; 
unmet hours; 
overheating 
hours; nominal 
lighting and 
plug load 
power density

Energy use 
intensity; 
 end-  use 
breakdown 
at the 
building level 
or submeter

Sample 
 occupant- 
 centric 
metrics

Energy use/ 
person 
( based on 
similar 
buildings 
or national 
statistics)

Total energy 
use 
normalized 
by nominal 
occupancy

Energy/  occupant- 
 hour ( including 
end uses); 
ventilation 
per person; 
lighting energy 
per person; 
IEQ exposure 
per  person— 
 all based on 
estimated 
occupancy; 
 plug-  in 
equipment 
power per 
occupant

Energy/ -
occupant- 
 hour 
( including 
end uses); 
ventilation 
per person; 
lighting 
energy per 
person; IEQ 
exposure at 
occupant 
resolution 
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 Figure 5.10  Building energy use vs. occupancy plotted as a means to track building 
performance throughout the building life cycle. Note the lines are not 
necessarily linear.

and occupant satisfaction against what was initially specified by the client, 
with the flexibility that “…performance targets should be revisited, checked 
and altered where necessary” ( BG 38/ 2018). Feedback loops should be in 
place so designers can be informed about the performance of earlier pro-
jects when designing subsequent ones, thus providing a reality check to de-
sign  decision-  making. Involvement by  end-  users is strongly recommended 
to inform the design team of their needs and expectations, especially if they 
are heavily involved in controlling indoor environmental conditions.

Metrics and their targets may include single values ( e.g., energy per 
 occupant-  hour) but may also include curves ( Hitchcock et al., 1998). For ex-
ample,  Figure 5.10 shows the relationship between occupancy and building 
energy use for a hypothetical building. By fitting hourly data to a line, the 
building can be characterized according to its ability to adapt to varying 
levels of occupancy. The  y-  intercept represents the average building energy 
use when the building is vacant, and the slope indicates the additional en-
ergy per occupant ( e.g., in kWh per occupied hour). Kim and Srebric ( 2017) 
used measured data to show that the slope and intercept values can differ 
by an order of magnitude due to building function and operations. In an 
ideal case, the  y-  intercept is 0 and the slope is minimized. However, as noted 
above, many buildings have base functionality during vacancy for the safety 
and security of the building. Nevertheless, the  y-  intercept should be mini-
mized via passive measures ( e.g.,  well-  insulated envelope) and active meas-
ures ( e.g.,  occupancy-  controlled lighting and ventilation).

5.5  Closing Remarks

In this chapter, we described the motivation and a framework to define 
 occupant-  centric performance metrics in three major categories: resource 
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use and environmental impact, indoor environmental quality, and  human- 
 building interaction. These metrics are intended to complement current 
practices of representing and evaluating building performance and can be 
adopted by stakeholders to quantify building performance from the occu-
pants’ perspectives, which can inform  decision-  making in the building life 
cycle. We described two  methods—  using measurement and using building 
performance  simulation—  to quantify these metrics. We also provided a 
suite of  occupant-  centric performance metrics as examples to illustrate their 
potential use. We closed the chapter with a discussion of the basis for set-
ting reasonable targets for these metrics and provided recommendations for 
stakeholder communication on building performance using these metrics. 
The next two chapters provide an overview of occupant modeling methods 
and discuss various aspects to consider in selecting the most appropriate 
occupant models for a specific application in the building life cycle.

References

Chen Y, Hong T, and Luo X ( 2018), An  agent-  based stochastic occupancy simulator, 
Building Simulation, 11( 1): 37–  49, URL https:// doi.org/ 10.1007/  s12273-    017-    0379-  7.

Chung W ( 2011), Review of building  energy-  use performance benchmarking 
methodologies, Applied Energy, 88( 5): 1470–  1479, URL https:// doi.org/ 10.1016/ j.
apenergy.2010.11.022.

Coleman P, Pless S, and Scheib J ( 2015), Realizing  High-  Performance Buildings, 
LBNL Report 1004320, URL https:// escholarship.org/ uc/ item/ 8vd4219j.

de Wilde P ( 2018), Building Performance Analysis, chapter Fundamentals of build-
ing performance, John Wiley  & Sons, Ltd., p p.   117–  170, URL https:// doi.org/ 
10.1002/ 9781119341901.ch4.

D’Oca S, Hong T, and Langevin J ( 2018), The human dimensions of energy use 
in buildings: a review, Renewable and Sustainable Energy Reviews, 81( January):  
731–  742, URL https:// doi.org/ 10.1016/ j.rser.2017.08.019.

Dong B et al. ( 2018), Exploring Occupant Behavior in Buildings: Methods and Chal-
lenges, chapter Sensing and data acquisition, edited by A. Wagner, W. O’Brien, 
and B. Dong, Springer International Publishing, Cham, p p.  77–  105, URL https:// 
doi.org/ 10.1007/  978-    3-    319-    61464-  9_4.

Government of Canada, Natural Resources Canada ( 2020), Residential secondary  
energy use ( Final Demand) by energy source and end use, URL https:// oee.nrcan.gc. 
ca/ corporate/ statistics/ neud/ dpa/ showTable.cfm?type=HB&sector=res&juris=00 
&rn=1&page=0.

Hahn J, Schumacher P, Lang W, and Jensch W ( 2020), Performance gap and oc-
cupant  behavior—  review and analysis of  high-  efficiency residential buildings in 
Germany, in ECOS  2020—  Proceedings of the 33rd International Conference on 
Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy 
Systems, p p.  2023–  2035. June 29 – July 3, 2020, Osaka, Japan.

Hitchcock RJ, Piette MA, and Selkowitz SE ( 1998), Performance Metrics and  Life- 
 Cycle Information Management for Building Performance Assurance,  LBNL- 
 41940, Lawrence Berkeley National Laboratory, Berkeley, CA, URL https:// www.
osti.gov/ biblio/ 8624.

https://doi.org/10.1007/s12273-017-0379-7
https://doi.org/10.1016/j.apenergy.2010.11.022
https://escholarship.org
http://8vd4219j.de
https://doi.org/10.1002/9781119341901.ch4
https://doi.org/10.1016/j.rser.2017.08.019
https://doi.org/10.1007/978-3-319-61464-9_4
http://www.osti.gov
http://www.osti.gov
https://oee.nrcan.gc.ca
https://oee.nrcan.gc.ca
https://oee.nrcan.gc.ca
https://doi.org/10.1016/j.apenergy.2010.11.022
https://doi.org/10.1002/9781119341901.ch4
https://doi.org/10.1007/978-3-319-61464-9_4


Occupant-Centric Performance Metrics and Performance Targets 103

Hobson BW, Lowcay D, Gunay HB, Ashouri A, and Newsham GR ( 2019), Oppor-
tunistic  occupancy-  count estimation using sensor fusion: a case study, Building 
and Environment, 159:106154, URL https:// doi.org/ 10.1016/ j.buildenv.2019.05.032.

Hong T,  Taylor-  Lange SC, D’Oca S, Yan D, and Corgnati S ( 2016), Advances in re-
search and applications of  energy-  related occupant behavior in buildings, Energy 
and Buildings, 116( 15 March): 694–  702.

Hong T, Langevin J, and Sun K ( 2018), Building simulation: ten challenges, Building 
Simulation, 11: 871–  898, URL https:// doi.org/ 10.1007/  s12273-    018-    0444-  x.

Kim  Y-  S and Srebric J ( 2017), Impact of occupancy rates on the building electric-
ity consumption in commercial buildings, Energy and Buildings, 138( March):  
591–  600, URL https:// doi.org/ 10.1016/ j.enbuild.2016.12.056.

Li H and Hong T ( 2020), OpenStudio  Occupant-  Centric KPIs Reporting Measure 
v1.0, Lawrence Berkeley National Laboratory ( LBNL), Berkeley, CA, URL 
https:// doi.org/ 10.11578/ DC.20210307.2.

Li H, Hong T, Lee SH, and Sofos M ( 2020),  System-  level key performance indicators 
for building performance evaluation, Energy and Buildings, 209( February):109703, 
URL https:// doi.org/ 10.1016/ j.enbuild.2019.109703.

Li H, Wang Z, and Hong T ( 2021),  Occupant-  centric key performance indicators to 
inform building design and operations, Journal of Building Performance Simula-
tion, 14( 6): 814–  842, URL https:// doi.org/ 10.1080/ 19401493.2021.1876771.

Neufert E and Neufert P ( 2012), Architects’ Data, John Wiley & Sons, Chichester, UK.
Neukomm M, Nubbe V, and Fares R ( 2019),  Grid-  Interactive Efficient Buildings 

Technical Report Series: Overview of Research Challenges and Gaps, NREL/  TP-  
  5500-  75470; DOE/  GO-    102019-  5227, National Renewable Energy Lab ( NREL), 
Golden, CO, URL https:// doi.org/ 10.2172/ 1577966.

O’Brien W, Gaetani I, Carlucci S, Hoes  P-  J, and HJLM ( 2017) On  occupant-  centric 
building performance metrics, Building and Environment, 122: 373–  385, URL 
https:// doi.org/ 10.1016/ j.buildenv.2017.06.028.

O’Brien W et al. ( 2020), An international review of  occupant-  related aspects of build-
ing energy codes and standards, Building and Environment, 179( 15 July):106906.

RIBA ( 2019), Sustainable Outcomes Guide, URL https:// www.architecture.com/   
knowledge-    and-  resources/  resources-    landing-  page/  sustainable-    outcomes-  guide.

RIBA ( 2020), RIBA Plan of Work, URL https:// www.architecture.com/  knowledge- 
    and-  resources/  resources-    landing-  page/  riba-    plan-    of-  work.

Schweiker M, Carlucci S, Andersen RK, Dong B, and O’Brien W ( 2018), Exploring 
Occupant Behavior in Buildings, chapter Occupancy and occupants’ actions, ed-
ited by A. Wagner, W. O’Brien, and B. Dong, Springer, Cham, p p.  7–  38.

Sun K, Specian M, and Hong T ( 2020), Nexus of thermal resilience and energy ef-
ficiency in buildings: a case study of a nursing home, Building and Environment, 
177( June):106842, URL https:// doi.org/ 10.1016/ j.buildenv.2020.106842.

Yan D, Hong T et al. ( 2017), IEA EBC Annex 66: definition and simulation of occu-
pant behavior in buildings, Energy and Buildings, 156, URL https:// doi.org/ 10.1016/ 
 j.enbuild.2017.09.084.

Yoshino H, Hong T, and Nord N ( 2017), IEA EBC Annex 53: total energy use in 
 buildings –   analysis and evaluation methods, Energy and Buildings, 152( 4), URL 
https:// doi.org/ 10.1016/ j.enbuild.2017.07.038.

https://doi.org/10.1016/j.buildenv.2019.05.032
https://doi.org/10.1007/s12273-018-0444-x
https://doi.org/10.1016/j.enbuild.2016.12.056
https://doi.org/10.11578/DC.20210307.2
https://doi.org/10.1016/j.enbuild.2019.109703
https://doi.org/10.1080/19401493.2021.1876771
https://doi.org/10.2172/1577966
https://doi.org/10.1016/j.buildenv.2017.06.028
http://www.architecture.com
http://www.architecture.com
https://doi.org/10.1016/j.buildenv.2020.106842
https://doi.org/10.1016/j.enbuild.2017.09.084
https://doi.org/10.1016/j.enbuild.2017.07.038
http://www.architecture.com
http://www.architecture.com
https://doi.org/10.1016/j.enbuild.2017.09.084


DOI: 10.1201/9781003176985-6

Summary

In this chapter, we will provide an overview of occupant modeling, begin-
ning with key definitions and a background on common occupant modeling 
approaches. Next, we will present more advanced modeling approaches, in-
cluding  data-  driven stochastic models,  agent-  based models, and personas. 
Finally, we will discuss methods to implement occupant models into build-
ing performance simulation tools and methods to communicate occupant 
model characteristics.

6.1  Introduction

Computational modeling and simulation are powerful techniques to cre-
ate a representation of buildings. In general, building performance mod-
eling and simulation provide a deeper understanding of a given system to 
inform  decision-  making at any or all phases of the building life cycle, from 
 early-  stage design to operations and management. In the past two decades, 
occupant modeling has gained significant traction by researchers and prac-
titioners due to the increasingly significant impact of occupants, interest in 
occupant  well-  being, and increased computational and simulation capabil-
ities. Occupant modeling is a mathematical approach to characterize how 
people occupy and act in buildings. When integrated into building perfor-
mance simulation ( BPS), occupant modeling can be used to estimate how 
occupants might behave in buildings for a year or longer, and how building 
design and operation might affect occupants.

Ultimately, occupants can profoundly affect building performance rela-
tive to predictions. This impact has been evidenced in studies of architectur-
ally similar spaces or buildings whose performance varies greatly as a result 
of their occupants ( Dong et  al., 2015; Iwashita and Akasaka, 1997). The 
 so-  called energy performance  gap—  the difference between predicted and 
measured energy  use—  tends to be even larger for  high-  performance build-
ings. For instance, as insulation levels and airtightness increase as a con-
sequence of stricter regulations, occupants’ control over building systems 
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and equipment will have higher relative effects on heat transfer and energy 
use ( Carpino et al., 2017; Guerra Santin et al., 2009). Occupant control of 
windows and blinds can also significantly impact energy flows across the 
envelope ( Hoes et al., 2009).

Failure to accurately characterize occupants in the building design pro-
cess caries two risks: first, it may lead to a performance gap; second, and 
perhaps more critically, it may lead to poor design decisions ( Gilani et al., 
2016). For example, optimistic assumptions about how occupants will be-
have ( e.g., in an  energy-  optimal way) or pessimistic assumptions about oc-
cupant density ( e.g., very high values for HVAC equipment sizing) may lead 
to design decisions that impact a building’s performance for life.

In the past decade, occupant modeling has been used extensively to sup-
port building design ( discussed further in  Chapter 8) and to close the gap 
between the predicted and actual energy performance ( e.g., Goubran et al., 
2021; Mahdavi et al., 2021). For example, occupant modeling can be used to 
assess the impact of occupant interactions with architectural features and 
technologies ( e.g., adaptive facades) ( Hong et al., 2017; O’Brien and Gunay, 
2015;  Luna-  Navarro et al., 2020; Stopps and Touchie, 2021; Yan et al., 2015). 
Occupant modeling can also be used to design more comfortable and 
 energy-  efficient spaces and to avoid oversizing or undersizing equipment 
and spaces ( e.g., O’Brien et al., 2019).

Aside from energy performance, occupant modeling can be used to better 
understand comfort and adaptive opportunities, such as adaptive facades, 
clothing, and thermostats ( Deng and Chen, 2021). It can also be used to help 
develop strategies toward healthy indoor spaces, e.g., to control the trans-
mission of  COVID-  19 and other pathogens ( Li et al., 2021). Building models, 
for example, can be used in combination with various occupant scenarios to 
create profiles of individual heat exposure ( Sailor et al., 2021) and analyses 
of occupant presence and behavior ( Yan et al., 2021).

This first section introduces basic occupant modeling concepts and defi-
nitions, and subsequent sections delve into more details and more complex 
methods.

6.1.1  Occupancy and Occupant Behaviors

In this chapter and throughout the book, we distinguish between two ma-
jor occupant characteristics: occupancy and behavior. Occupancy is used 
synonymously with presence and quantitatively defines the number of occu-
pants or density of occupants in spaces. It can be defined as a binary state: 
occupied ( at least one person present) or vacant ( no occupants in space or 
building). It can also be distinguished by occupant types and groups ( e.g., 
children, students, guests, staff). Accurate modeling of occupancy is impor-
tant for estimating latent and sensible heat gains and air contaminant loads 
and to understand schedules and logic for controls and operations. Yet, one 
of the primary reasons to try to predict occupancy is to predict occupant 
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behaviors and actions; except for cases of remote actions ( e.g.,  smartphone- 
 based thermostats), occupant presence is a necessary condition for actions 
to occur.

In contrast to occupancy, behaviors are actions that occupants take that 
affect building performance directly or indirectly ( e.g., energy, indoor envi-
ronmental conditions). In many instances, occupants are triggered to act by 
indoor environmental conditions ( e.g., open a window in response to stale 
air). These are known as adaptive triggers. In turn, these behaviors affect 
indoor environmental quality ( IEQ) and potentially building energy use. 
However, other behaviors ( e.g., use of office and entertainment equipment) 
affect building performance but are not related to IEQ. These are known as 
 non-  adaptive triggers and may be a result of habits or tasks ( e.g., occupant 
turns on computer when they arrive at work).

Occupant actions may be triggered by physical, physiological, psycholog-
ical, or social phenomena. The relationship between triggers and actions is 
often moderated by contextual factors ( e.g., office dress codes constrain oppor-
tunities to modify clothing levels) ( O’Brien and Gunay, 2014).  Figure 6.1 rep-
resents the relationships between actions, behaviors, and triggers ( Schweiker 
et al., 2018).

6.1.2  Occupant Modeling Approaches

Following the terminology of  Figure 6.1, occupants’ presence and behavior 
can be modeled as actions ( e.g., the action of turning on/ off the heating/ 
cooling system) and states ( e.g., the state of light switch, state of windows 
opening, thermostat setpoint). An action changes the state, which then nor-
mally remains constant until a new action is taken, though interventions 
from mechanical and electrical systems may occur ( e.g., overriding controls). 

Adaptive triggers (e.g., 
air temperature, sound 
level, illuminance)

Non-adaptive triggers
(e.g., habits, schedules, 
tasks)

Occupancy (e.g., 
occupancy state, number 
of occupants, 
demographics)

Action (e.g., turn on light, 
open window)

State (e.g., light is on, 
window is open)

Triggers

Contextual 
factors

Contextual 
factors

Actions Prerequisite for…*

Affects

Influences

*Occupancy is a necessary condition for actions 
unless a building system is controlled remotely

 Figure 6.1  Relationships between actions, behaviors, and triggers in buildings.
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A state can be defined by more than two levels and options, depending on 
the accuracy and targets of the modeling approach. For example, a window 
can have several states, including fully open/ closed or  half-  open, percent 
open/ closed, or lighting can be switched on/ off or can include dimming 
( Schweiker et al., 2018).

Ultimately, the objective of occupant behavior modeling is to predict 
either occupant actions/ interactions with building systems or the result-
ing state of the building systems. It is generally accepted that accurately 
predicting individual actions is difficult, but predicting  long-  term trends is 
feasible if enough data is available to make generalized models. Defining 
generalizable predictors and model coefficients is challenging due to the di-
versity of available studies and the fact that many actions are contextually 
sensitive ( e.g., climates, cultures, building types, systems) or differ for per-
sonal characteristics ( Carlucci et al., 2020; Schweiker and Shukuya, 2009). 
In addition, influencing variables for some domains, such as spatial move-
ments or changes in body posture, can be important yet difficult to define 
and measure ( Jakubiec and Reinhart, 2012; Schweiker et al., 2018). There-
fore, there is a strong need for researchers to collaborate on standard frame-
works; this was one of the main motivations of initiating IEA EBC Annex 
79 ( O’Brien et al., 2020).

While this book is broadly focused on buildings and building perfor-
mance simulation, it should be noted that there are many other applications 
and domains for occupant modeling in the built environment. For example, 
human mobility and behavior modeling is of primary interest in scientific 
disciplines that explore topics such as evacuation in emergencies, pedestrian 
flow in public transportation, and motion in vehicles. Such models have the 
advantage of capturing occupants at the individual level while attaining re-
alistic collective activities. For instance, people’s velocities and buildings’ 
structure ( Lizhong et al., 2003), occupants’ health status and social influence 
( Liu et al., 2020), and herd behaviors ( Yang et al., 2014) are some of the key 
factors affecting evacuation efficiency. Modeling frameworks to capture pe-
destrians’ walking behaviors use a combination of concepts from the social 
force model, behavioral heuristics, and materials science ( Porter et al., 2018). 
Aircraft boarding models are implemented considering individual proper-
ties to explore the dynamics of passengers’ motions ( Tang et al., 2012). With 
this background on occupant behavior and presence, the following section 
provides greater depth on traditional occupant modeling methods.

6.2  Traditional Occupant Modeling

To date, the dominant method to model occupants in building simulation 
is through relatively simple schedules, values, and simple rules. A survey of 
building simulation users indicated that the majority of them use occupant 
modeling approaches that are specified by building codes, in part to avoid 
the liability of making other assumptions that may prove to be incorrect 
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( O’Brien et al., 2016). In another study, practitioners were found to rely on 
default tool values, which also likely originated from codes and standards 
( Duarte et al., 2013). However, applying the same schedules and other val-
ues to all buildings neglects the impact of building design and people. This 
approach is akin to the way that weather files are imposed in building simu-
lation, i.e., as a boundary condition; however, it fails to recognize that build-
ing design influences occupant behavior ( O’Brien and Gunay, 2015).

It is relevant to precede our discussion of the  state-    of-    the-  art and future 
of occupant modeling by acknowledging why using schedules to represent 
occupants became a  long-  standing norm. The practice of assigning a single 
occupancy value to a modeled interior space for any simulated point in time 
dates back to at least the early 1980s and the first generations of building 
energy performance simulation tools, including but not limited to  DOE-  2 
( Clarke, 2001; Diamond and Hunn, 1981; Norford, 1984; Vine et al., 1982). 
This was a time where 3D  computer-  aided design had yet to be introduced to 
the buildings industry. Interior building volumes simulated in the BPS tools 
of the day were prescribed numerically, using simplified metrics for build-
ing geometry such as wall area, window area, and interior volume. With 
respect to building heat transfer modeling, these volumes were represented 
as perfectly mixed indoor air spaces, with only a single value representing 
the air temperature within an interior volume at any given time. Similarly, 
internal heat gains, including occupancy, were represented as single point 
source loads, nominally determined by a  user-  assigned schedule as per the 
engineering manuals of the time ( York and Cappiello, 1981). The location of 
an occupant in any simulated volume would be either fully  non-  spatial or 
located in an assumed fixed position of the floor space.

While the processing capabilities of computers today are worlds apart 
from the computers used in the early days of BPS, the legacy of this sim-
plified approach to representing occupants and building geometry lives 
on. The same numerical methods  DOE-  2 used to represent occupants in its 
original source code remains engrained in the engineering of established, 
 present-  day BPS tools, such as EnergyPlus ( the direct successor to  DOE-  2) 
( Crawley et al., 2001). Hence, it is common that users of BPS tools today 
specify similar  time-  based schedules and densities to represent building oc-
cupancy as would have been done by their predecessors 40 years ago. The 
term diversity is often used to describe these schedules, in recognition that 
peaks are unlikely to occur simultaneously ( e.g., an office might only have 
80% of occupants at a given time, compared to maximum or nominal ca-
pacity). To reinforce the simplicity of common occupant modeling practice, 
 Table 6.1 provides a summary of common methods to model different as-
pects of occupants based on the results of O’Brien et al. ( 2016) and O’Brien 
et al. ( 2020).

An example of a common modeling approach for occupancy is shown in 
 Figure 6.2, where the occupancy density and schedule for numerous coun-
tries’ energy code specifications are compared. These graphs show that 
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typical occupancy modeling approaches are remarkable similar across dif-
ferent regions. They also show the inconsistency among different countries, 
suggesting a need for a global effort to standardize the way occupants are 
considered in building simulation.

A common question about occupant modeling approaches is where values 
and rules originated. Unfortunately, to date, data to support the develop-
ment of  occupant-  related schedules has been obtained in a relatively dated 
and ad hoc way ( e.g., “ engineering judgment”) ( Abushakra et al., 2004; Deru 
et al., 2011; Duarte et al., 2013). O’Brien et al. ( 2020) reported that several 
building codes’ occupancy density values have roots in  non-  energy appli-
cations, such as fire codes, which may be intentionally conservative. In the 
case of fire codes, for example, the relative risk of human safety is consid-
ered over the accuracy of energy estimates.

Aside from the challenge and importance of selecting appropriate sched-
ule values to represent occupants, the  schedule-  based approach has funda-
mental problems. While these traditional occupant modeling methods are 
straightforward ( e.g., mathematically simple), consistent ( i.e., same results 
each run), and transparent ( to the BPS tool user and stakeholders alike), 
they also have some drawbacks:

• They lack recognition of  two-  way interactions between people and buildings. 
The models assume occupants behave the same regardless of building 

 Table 6.1  Summary of commonly considered  occupant-  related domains and the 
corresponding modeling methods

Domain Common modeling approaches/ assumptions

Occupancy ( presence) Daily diversity schedules ( hourly resolution) with 
a corresponding density ( e.g., m2 per occupant), 
usually specified for different building or space types

 Plug-  in equipment and 
appliances

Daily diversity schedules with a corresponding power 
density ( e.g., watts per m2)

Operable windows Windows are closed
Lighting Daily diversity schedules or  daylight-  controlled 

(otherwise turned on with occupancy) with a 
corresponding lighting power density ( e.g., watts 
per m2) 

Window blinds/ shades Always open/  non-  existent ( considered furnishing) or 
closed during glare events ( e.g., above 1,000 lux, as 
per IES LM 83 [IESNA, 2012])

Water appliances ( e.g., 
showers, toilets, sinks)

Hot water volume or energy per day per person or per 
floor area ( e.g., L/ person/ day)

Thermostats Daily setpoint schedules with the possibility to turn off 
systems or use a temperature setback for unoccupied 
and/ or overnight periods 

Clothing level Seasonal schedule ( e.g., 0.5 clo in summer and 1.0 clo in 
winter [ASHRAE, 2020])
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design. For example, they assume occupants control lights the same re-
gardless of window geometry.

• They are deterministic, which means that possible ranges of building per-
formance and occupant behavior are not modeled. They assume that every 
occupant behaves the exact same way for a given set of circumstances 
( e.g., all occupants turn on their light at a specific time of day).

Average: 15.4 m2/person
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 Figure 6.2  Example comparison of occupancy levels and schedules for office build-
ings in 15 different countries.
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• They separate each  occupant-  related domain separately, without consider-
ing interdependencies. For example,  schedule-  based models tend not to 
consider the linkages between occupant presence and adaptive actions 
( e.g., opening windows, turning on fans).

• They are rather coarse and abstract, thus allowing practitioners to avoid 
deeply considering occupants. Superficial occupant modeling does not 
require design practitioners to think about how building design can af-
fect behavior ( e.g., accessibility to and ease of opening windows).

These limitations have major implications for building design practice ( see 
 Chapters  8 and 11), and significantly limit the power of  simulation-  aided 
building design. Traditional methods are rooted in confirming or estimating 
building energy performance, rather than exploiting a better understanding 
of the  two-  way relationship between buildings and their occupants.

6.3  Advanced Occupant Modeling

In contrast to traditional methods of modeling occupants ( see Section 6.2), 
more advanced occupant models tend to have one or more of the following 
possible and desirable traits ( see  Chapters 7 and 8 for additional discussion):

• Stochastic: A randomness to consider the reality that occupants’ in-
dividual decisions are often diverse, unpredictable, and inconsistent. 
Stochastic modeling is used given that we cannot fully characterize, 
through any measurement, all the boundary conditions that might lead 
to a specific action. Moreover, there is unknown diversity among peo-
ple and how they respond to current conditions, which means there is 
uncertainty about the specific individual occupants who will occupy a 
building.

• Dynamic: The recognition that conditions ( e.g., air temperature) alter 
the way occupants behave and locate themselves within a space. In 
this way, the  two-  way relationship between occupants and buildings is 
characterized such that building design and operations can affect occu-
pants’  decision-  making.

•  Data-  driven: The trait that occupant models are generated based on 
measurements. While most existing occupant modeling approaches are 
based on some measurements or observations, more advanced occu-
pant models tend to use some form of model fitting ( e.g., regression to 
relate behavior to one or more other variables).

•  Agent-  based: The acknowledgement that occupants interact with build-
ings and/ or each other through a series of decisions that are likely a 
result of one or more conditions ( e.g., IEQ, presence or behavior of 
others). While any of the methods described in Section 6.3 could be 
considered  agent-  based, the term is normally reserved for particularly 
sophisticated models ( as discussed in Section 6.3.3).
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In the following section, we provide an overview and mathematical details of 
some of the most common advanced occupant modeling approaches that in-
clude some or all of the above traits. We aim to provide an overview, coupled 
with key technical and mathematical details, and references where readers 
can seek greater detail. At the end of the section, we highlight two more ad-
vanced occupant modeling methods:  agent-  based modeling and personas.

6.3.1  Deterministic Models

Deterministic or  non-  probabilistic models are based on fixed values ( e.g., 
an average and constant value for the internal gains in residential buildings) 
or schedules that are derived from assumptions or empirical observations, 
such as those described in Section 6.2. As argued in that section, such mod-
els offer ease of application, transparency, and reproducibility. However, 
they are independent of design and operations, and they typically do not 
capture uncertainty.

We should note that schedules and other  non-  probabilistic models could 
be made stochastic, though this is rare in practice. For example, schedules 
or densities could be stochastic ( e.g., shape parameters randomly chosen 
from distribution) and  data-  driven ( O’Brien et al., 2019). They could also 
be customized based on a particular building design ( Ouf et al., 2019), or 
several clusters of occupant types with stochastic weightings could be used.

6.3.2  Stochastic Models

Probabilistic, or stochastic, models make use of stochastic processes to re-
produce occupancy and a variety of behaviors, resulting in a probabilistic 
distribution of predicted results, from the timestep up to annual results. Sev-
eral stochastic models have been used to reproduce human actions within 
buildings; in this chapter, we focus on four such models ( described in each 
of the next four sections): binomial models, Markov chains models, hidden 
Markov chain models, and mixed effect models.  Table 6.2 provides a general 
summary of the purpose and potential application of each model type. We 
describe each of the models in more depth in the sections that follow, with 
a focus on the models’ application to the field of occupant modeling. For a 
more extensive explanation of the mathematics behind the different models, 
we recommend referring to more detailed sources ( D’Oca et al., 2019; Mah-
davi et al., 2017).

6.3.2.1  Binomial Model

A  well-  established statistical model used to both analyze and model binary 
dependent variables is the binomial model, often referred to as logistic re-
gression1 ( Hastie and Tibshirani, 2017) when using the logit function as a 
link function. It can be used to model, for example, the state of a window 
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( e.g., closed or open) or the change of state of a window ( e.g., from closed to 
open and vice versa) ( Andersen et al., 2013; Calì et al., 2016).

Binomial models can be used for both analysis and predictive modeling 
purposes. For the former, it can be used, for instance, to understand the 
drivers ( i.e., leading causes for change, e.g., Fabi et  al., 2012) leading oc-
cupants to take an action. The results can provide researchers with back-
ground about how occupants make decisions depending on the indoor 
environment, weather, time of the day or day of the week, and/ or any other 
measured entity. An illustrative example of binomial models is in Calì ( 2016), 
who applied binomial modeling with multiple explanatory variables to 300 
monitored windows to generate 300 different models. For each window, the 
author determined which of the measured explanatory variables had a ma-
jor influence on the probability of a change of window state and which did 
not. The variables were then classified depending on the number of times 
they appeared in the 300 models, where the more frequent the variable, the 
more important it was considered.

 Table 6.2 Summary of four common occupant modeling approaches

Model type Typical purpose Application

Binomial 
model

Data analysis ( e.g., to 
understand which factors 
influence occupants to 
execute an action) and 
stochastic modeling ( e.g., to 
simulate human operations 
in building performance 
simulation software)

A model for predicting binary 
outcomes ( e.g., yes/ no, awake/ 
asleep, open/ closed, opening 
action/ closing action)

Markov 
chains 

Stochastic modeling with 
time dependencies ( e.g., 
to model an event that is 
more likely to happen at a 
particular time of day, or a 
particular day of week)

A model for predicting outcomes 
with n states, where n can be 
an integer and  represent—  for 
example, specific locations in 
a building, occupant presence 
( e.g., present and awake, present 
and asleep, absent), or position 
of a window ( open, half opened, 
closed), e.g., at different times of 
the day

Hidden 
Markov 
chain 

Data analysis and stochastic 
modeling

A model for predicting outcomes 
with n unmeasured states, where 
the states are not measured but are 
deduced by related information 
( e.g., the presence of an occupant 
in a specific room, while only their 
activity is known)

Mixed 
effect 

Data analysis and stochastic 
modeling

A model for predicting binary 
outcomes ( see binomial model 
regression, above)
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For modeling purposes, the binomial model can be used to dynamically 
model occupants ( e.g., presence in a room, opening/ closing a window) within 
a building simulation model. The model can be called at each timestep or at 
some selection of timesteps ( e.g., only if an occupant is present in a room) 
and it reacts to the actual room conditions.

The binomial model using the logit function as a link function is based on 
the logistic function as expressed in Equation ( 6.1). )(p x  expresses the prob-
ability function for a certain event to happen ( e.g., a window state changes) 
depending on an explanatory variable x, and, by definition, [ ])( ∈ ∀0,1 ,   p x x.  
Equation ( 6.1) can be rewritten as in Equation ( 6.2).

=
+ α β( )− +p

e x

1

1
 ( 6.1)

α β
−







= +ln
p

p
x

1
   ( 6.2)

where α is the intercept, β is a coefficient, and x is the explanatory variable. 
Equation ( 6.1) describes the probability of a certain event ( e.g., opening a 
window, switching off the heating system) depending on one explanatory 
variable ( e.g., the outdoor temperature) and is therefore used for simple lin-
ear regression analysis. For regression analysis with n explanatory varia-
bles, the probability function p can be expressed as in Equation ( 6.3).
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Andersen et  al. ( 2013) suggested the inclusion of interaction terms in the 
probability function for some circumstances. That is, the probability of an 
action might depend on xi at one level of xj as compared to another level 
of xj. For example, the probability of opening ( or closing) a window, the 
coefficient βi of the xi explanatory variable at a certain period, e.g., in the 
morning, might differ from the coefficient βi at a different period, e.g., at 
night. Also, there might be cases where an increase in the room air temper-
ature might result in an increase in the probability of opening a window in 
the morning, and in a decrease in the probability of opening a window in 
the evening. Equation ( 6.4) can be used to include interaction terms ( γ). It is 
good practice to use only interaction terms between continuous and cate-
gorical  variables—  time of day can be represented, for instance, in categori-
cal variables such as morning, afternoon, evening, and night.
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As mentioned above, binomial models can be used to understand and 
model a state or a change of state. For occupants’ use of building systems, 
binomial models can be used to model the action rather than the state ( e.g., 
light switching action rather than on/ off state). As noted by Fabi et  al. 
( 2012), the status of the window itself influences the indoor environment 
( hence the explanatory variables used for the modeling) and therefore af-
fects the model.

Calì ( 2016) provides an example of the application of a binomial model 
for modeling occupant interactions with operable windows in a residential 
building.  Figure 6.3 shows sample plots of the analysis, with the probability 
of the opening action of a specific window from a specific living room of a 
specific apartment, which was found to vary by time of the day, the indoor 
CO2 concentration, and the indoor air temperature. The results suggest that 
window opening probability increases with indoor temperature and CO2 
concentration. Also, occupants are much more likely to open the window 
during the day than at night.

6.3.2.2  Markov Chain Models

This section describes  discrete-  time Markov chain models of the first 
 order—  henceforth, simply Markov chain models. Markov chain models are 
useful to model processes with two or more states, such as the position of 
a window ( e.g., closed, open, half open) or the state of a fan ( e.g., on or off, 
low flow, medium flow, high flow). When the state that has to be modeled is 
measured, a  discrete-  time Markov chain of the first order can be used ( e.g., 
Calì et al., 2018; Haldi and Robinson, 2009; McKenna et al., 2015; Page et al., 
2008). Alternatively, when the state that has to be modeled is measured in-
directly ( e.g., the position of a window is inferred by the CO2 concentration 
in the room, or the presence of occupants with one specific room is inferred 
based on a time use survey indicating only the activity of the occupants), 
hidden Markov models ( see next section) can be used.

The paragraphs that follow include a brief description of the principles 
of Markov chain, inverse function sampling, and the Markov chain Monte 
Carlo technique. A deeper illustration of the Markov chain technique can 
be found in Feller ( 1968). The Markov chain Monte Carlo method is well 
described in ( Gilks et al., 1995).

To begin, a Markov chain is a random process that, within a state space, 
undergoes a transition from one state to another. The Markov property, 
which characterizes the Markov chain ( illustrated in Equation ( 6.5)) states 
that the probability distribution of the next state ( Xn2) depends on the cur-
rent state ( Xn1) and not on the events that preceded it. This property is also 
known as the  memory-  less property since the Markov process does not keep 
previous states in memory.

{ } { }… =| ,  ,  ,  ,  |  1 2 3 4 5 1 2P X X X X X P X Xn n n n n n n  ( 6.5)
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 Figure 6.3  Probability of opening action of a window in a living room of a specific 
apartment ( Calì, 2016) at three different times of day, within the next 
minute.
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State changes in the process are called transitions; the probability of such 
transitions is stored in transition probability matrices ( TPMs). When the 
transition probability does not depend on the  time—  and hence, the tran-
sition probability does not vary with the  time—  the Markov chain is called 
 time-  stationary or  time-  homogeneous, and this property is expressed in 
Equation ( 6.6).

{ } { }=| |1 2 2 3P X X P X Xn n n n  ( 6.6)

Examples of  time-  homogeneous Markov chains include the “ random 
walk” or the number of successes on bets by flipping a coin. As mentioned 
above, the presence or absence of occupant( s) as well as the state of a win-
dow can be modeled through Markov chains. However, in those cases, the 
probability of a change of the state ( e.g., window opened/ closed, occupant 
present/ absent) varies over the time: in such cases, the Markov chain is  time- 
 inhomogeneous or simply inhomogeneous.

Equation ( 6.7) and  Figure 6.4 show a  two-  state TPM for the status of a 
window at a given point in time: the state “ 0” indicates a closed window, 
while the state “ 1” indicates an open window; Sn,00 indicates the probabil-
ity that a closed window ( first 0) stays closed ( second 0); Sn,01 indicates the  
probability that a closed window ( 0) will be opened ( 1); Sn,10 indicates 
the probability that an open window ( 1) will be closed ( 0); Sn,11 indicates 
the probability that an open window ( first 1) stays open ( second 1). For this 
particular example, at the given time n, there is a probability of Sn,00 = 0.95 
that the window remains closed if it was already closed at the preceding time 
n-  1; in the case of the window being open at time n ˗ 1, the probability that 
the window remains open is Sn,11 = 0.75. The numbers in red in the figure 
represent the probability of a state change: Sn,01 = 0.05 for a change from 
closed to open and Sn,10 = 0.25 for a change from open to closed. The two 
dimensions illustrated in the example are related to the change of status for 
the time interval [n ˗ 1, n].

Occupant behavior depends on time; for instance, occupants are more 
likely to sleep at night, windows are more likely to get opened in the morning, 

Window
closed

Window
open0.95 0.75

0.25

0.05

 Figure 6.4   Two-  state transition graphic for the TPM, at a given time instance, as 
shown in Equation ( 6.3) ( Calì, 2016).
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and so on. Thus, the TPM needs a third dimension that allows probabilities 
of state change that vary over time. For a  two-  state process with transitions 
changing each minute during an entire day, the TPM shape will be 2 × 2 × 
1,440 (  Figure 6.5).
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 ( 6.7)

There are cases where two states are not enough to model occupant behav-
ior, such as when the goal is to model the presence of a number N of oc-
cupants or the opening and closing of a window with two movable panes. 
In the latter case, for instance, if a distinction between the panels is not 
 necessary—  for example because the two panels are the same  size—  a  three- 
 state Markov chain can be used. In the case of the panels being different 
sizes, a  four-  state Markov chain is necessary. Equation ( 6.8) and  Figure 6.6 
demonstrate an example of a  three-  state TPM for the status of a  double- 
 paneled window ( with panels of equal size) at time n. In this example, “ 0” 

Figure 6.5 TPM over n states ( Calì, 2016).
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 Figure 6.6   Three-  state transition graphic for the TPM, at a given time instance, as 
given in Equation ( 6.4) ( Calì, 2016).
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indicates a completely closed window, “ 1” indicates that one panel of the 
window is open, and “ 2” indicates that both panels are open.

As for the  two-  state TPM, for the  three-  state TPM, the sum of the values 
of each row at each time is equal to 1. In this way, the Markov chain does not 
stop within the simulation process.
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The generation of the TPMs can be done separately for each window or 
together for all windows based on the observed status changes of those win-
dows at each measured time interval.

6.3.2.3  Hidden Markov Chain Models

Unlike the Markov chain model, the hidden Markov chain model ( HMM) 
consists of two components: an unobserved Markov chain { }Xt  and an ob-
served sequence { }Yt . Yt only depends on the current state Xt, and not on its 

own history Y ( t − 1), as expressed in Equation ( 6.9).

( ) ( )=( ) ( )− −Y XP Y X P Y Xt t
t t

t t| ,  ,  |1 1  ( 6.9)

The distribution of Yt|Xt is called response distribution. In an HMM, the pa-
rameters are given by the set { }{ }π,  , A B , where A corresponds to the TPM, 
B corresponds to the response distribution, and π corresponds to the distri-
bution of the unobserved state of X0 in the initial timestep. For the estima-
tions of the parameters, the  Baum-  Welch algorithm can be used ( Rabiner, 
1989; Zucchini and MacDonald, 2009). The  Baum-  Welch algorithm is based 
on the maximum likelihood estimation principle. When dealing within the 
context of HMM, the most likely sequence of unobserved states for a given 
sequence of observations can be of interest. This sequence, called global 
decoding, can be efficiently calculated through the Viterbi algorithm. An 
example of an application of a hidden Markov chain for the generation of 
occupants’ presence profiles within buildings based on a  time-  use survey is 
provided by Wolf et al. ( 2019).

6.3.2.4  Mixed Effect Models

We previously described a generalized linear model ( GLM; see Footnote 1), 
specifically a binomial model with the logit function as a link function, that 
describes the probability of an action for a specific window, in a specific liv-
ing room, and in a specific apartment. Thus, if the goal is to use the GLM for 
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simulating the performance of a building with a number X of apartments, 
each with a number Y of rooms, we will need to have X·Y models for the 
opening action and X·Y models for the closing action: one model for each 
window. Hence, within the simulation of the performance of a building, it 
will be difficult to choose among one of the many models, for each room 
and each apartment. Ideally, there would be a unique model able to address 
behavioral diversity.

A solution can be represented by the addition of a further predictor of 
random nature, xk ( McCulloch et al., 2003; Pinheiro and Bates, 2006), fol-
lowing the approach proposed by Haldi ( 2013) and resulting in a general-
ized linear mixed model ( GLMM), as demonstrated in Haldi et al. ( 2016) 
and O’Brien et al. ( 2017). An example of a mixed model is the  mixed-  effects 
logistic model defined as in Equation ( 6.10), where there is a fixed effect ( like 
in Equation ( 6.3)) and a mixed effect. An application of this model to the 
case of window action, applied to residential and  non-  residential buildings 
from Germany, Denmark, and the United Kingdom is illustrated in Haldi 
et al. ( 2016).

∑β β( )( ) = + + +
= …

p b x b x
k n

k k k klog it 0 0

1, , 

 ( 6.10)

In conclusion, binomial models are GLMs that can be used to analyze and 
predict the probability of specific binary events, such as opening or closing 
a window or switching on or off a device. Markov models are particularly 
useful to model the probability of an action that is observable, the state of 
a window, if this state has been observed, and that varies with time. Hid-
den Markov models are useful to analyze and model the probability of an 
action that has not been observed ( e.g., the state of the window) based on 
an observable variable ( e.g., the carbon dioxide concentration in the room). 
Finally, generalized linear mixed models can be used to model the probabil-
ity of a particular event, adding a mixed effect to represent the differences 
among the population ( e.g., different apartments, different occupants).

6.3.2.5  Selection of Explanatory Variables

When addressing a modeling case with different potential explanatory varia-
bles, it is important to decide which explanatory variables ( e.g., outdoor and 
indoor temperature and humidity, indoor carbon dioxide concentration) are 
relevant to evaluate and select the most appropriate model. Schweiker and 
Shukuya ( 2009) suggest using “ forward” and “ backward” selection of the 
variables for the regression models and scoring the models using the Akaike 
information criterion ( AIC). This process allows the selection of a “ best 
model” containing only the most important explanatory variables ( i.e., vari-
ables that have a consistent impact on the probability function). Besides the 
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AIC, other criteria can be used, such as the Bayesian information criteria 
( BIC) ( Schwarz, 1978).

The process for the selection of the best model can be executed by using 
the step function within the glm function in the statistical language R, with 
n explanatory variables. This process is described as follows:

1  Each coefficient of each variable is fitted by the regression model in a 
single variable model, and the related AIC is computed for each fit;

2  The variable with the lowest AIC is selected, and the model is fitted n-  1 
times with the selected variable and each of the n-  1 remaining variables;

3  The model based on two variables with the lowest AIC is selected. Then, 
the AIC of this model is compared to the AIC of the best  single-  variable 
model ( the  single-  variable model with the lowest AIC). Then:
a If the new model (  two-  variables model) had a consistently lower 

AIC, the process can go to step 4;
b Otherwise, the  single-  variable model is selected;

4  The previously excluded n—  2 variables are then used to fit the model 
together with the two variables of the “ two variables model” with the 
lowest AIC from step 3, in a “ three variables model” ( this is the  so- 
 called “ forward selection”). Hence, from the three variables model, 
three  two-  variables models, obtained by dropping each of the variables 
recursively, are fitted ( this is the  so-  called “ backward selection”). Then:
a In the case that none of the  three-  variable or “ new generated”  two- 

 variable models has a consistently lower AIC than the  two-  variables 
model with the lowest AIC from step 3, the model with the lowest 
AIC from step 3 is the final model,

b Otherwise, the process goes as in step 4, adding one more variable 
recursively.

6.3.2.6  Inverse Transform Sampling

The generated TPMs can be used to generate occupants’ profiles within 
a simulation process. Within this scope, the  so-  called inverse transform 
sampling ( ITS) or “ inverse function method” is utilized to sample random 
numbers in Page et al. ( 2008). Through this method, sample numbers can 
be randomly generated from any probability distribution given its cumu-
lative distribution function ( cdf). For the case of windows or occupancy, a 
uniform distribution can be used. The first step of the ITS is related to the 
generation of a random number from a uniform distribution, between zero 
and one. Thus, the generated random number p is compared to the cdf in 
order to define the next state of the Markov chain. Using the window case as 
an example, if the generated value p is smaller than the probability of a state 
change of the window Pn+1, XX, at the given time, the window remains in the 
same state; otherwise, the window changes its state.  Figure 6.7 is a flowchart 
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of the simulation process ( for the time instance “ n + 1”) of a  double-  paneled 
window, where both panels are closed at time n ( Calì, 2016).

6.3.2.7  Evaluation and Validation of Occupant Models

Previously, we described a procedure to develop a model with an optimal 
selection of explanatory variables. Yet, the generated model needs to be 
evaluated and validated. It is generally understood that an exact prediction 
of building performance or each  occupant-  related event is impractical and 
unrealistic ( e.g., timing of window opening actions). However, modelers can 
still strive for models that yield reasonable estimates and direct designers to 
 near-  optimal designs. This section briefly discusses occupant model evalua-
tion and validation. Interested readers are encouraged to consult additional 
resources ( Langevin et al., 2015; Mahdavi and Tahmasebi, 2017; Tahmasebi 
and Mahdavi; 2016).

The first quality of interest is that the model can reproduce the occupant 
actions or states for the building from which the data was first collected. In 
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 Figure 6.7  Inverse transform sampling Markov chain flow chart example ( Calì, 2016).
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other words, the validation process relates to the model at hand and how 
well it predicts the behavior of a particular process ( e.g., the act of open-
ing a window) in a particular space or building. This validation should not 
be confused with a generalization of the model to other situations. For in-
stance, this validation does not indicate the applicability of this model to 
other contexts ( e.g., buildings, climates, occupant types). The second qual-
ity of interest is that the occupant model can predict occupant actions or 
states in other contexts. This has been proven to be more difficult to achieve 
since behavior can be sensitive to building technologies, local customs, and 
climates ( Schweiker et al., 2012).

One technique for validating of a model for a single space or building 
is the  k-  fold  cross-  validation. To apply it, each data sample ( i.e., the set of 
data of the observed phenomenon that is being modeled and the potential 
explanatory variables) is partitioned into k-  ordered subsamples. If k=10, 
for example, nine subsamples are used for training a model following the 
method described above and one subsample is used to test the model. The 
test of the model is done by using the measured input variables of the 10th 
subsample ( i.e., the subsample that was not used for the training) as input 
to the model, thus comparing the model output with the actual, monitored 
change of window position. This operation is executed ten times in total; the 
ten combinations of nine out of ten subsamples are used to train the model, 
while the last subsamples is used each time as a validation subsample. The 
process is summarized in  Figure 6.8 and described further in Calì ( 2016).

When creating a model, a validation process of the model should be un-
dertaken to select the best possible model and ensure that the selected model 
is correctly representing the behaviors it is intended to portray. In the case 
of a model with a binary outcome ( e.g., the change of state of a window from 
closed to open or from open to closed) to infer the “ state change probabil-
ity” ( i.e., probability of opening or closing actions), the data sample should 
be partitioned into two subsamples:

1  Subsample A “ window closed”: This subsample is used to infer the 
probability that a window will change its status to open.

2  Subsample B “ window open”: This subsample is used to infer the prob-
ability that a window will change its status to closed.

The complete modeling process to achieve, as an example, a model describ-
ing the opening and closing operation of windows, is described in  Figure 6.8.

To evaluate the applicability of an occupant model to another building, 
the model can be simulated in another context ( e.g., climate, building design) 
to assess whether it accurately predicts occupant behavior in that building. 
The results may be compared on numerous metrics, such as a fraction of 
time when the state is correct and the number of actions per year ( Mahdavi 
and Tahmasebi, 2017).
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6.3.3   Agent-  based Models

Building upon the previous sections and modeling techniques,  agent-  based 
modeling ( ABM) is a technique capable of representing autonomous agents, 
their interactions with each other and their environment, and the resulting 
impact on the system as a whole ( Gilbert, 2019). Agents ( e.g., building occu-
pants, households, cars) are assigned attributes that govern their interaction 
with each other and their environment ( e.g., building space or geographi-
cal area). Each agent can evaluate the environment and the state of other 
agents and decide whether to take action ( or not) based on a set of rules. The 
global behavior of the system then emerges from the  micro-  actions and in-
teractions of these agents. The unique ability to simulate  decision-  making at 
the individual agent level enables ABM to simulate  real-  world systems with 
complex, nonlinear, and dynamic properties ( Bonabeau, 2002).

 Figure 6.9 shows the main steps to build an  agent-  based model, based on 
the work of Salgado and Gilbert ( 2013) and Sayama ( 2015). The core of the 
figure describes the ABM implementation stage following the specification 

Binomial model of the sub-sample, 
comparison and selection of best-model 

through a criterion, e.g., AIC or BIC, store
chosen model as “k-best-model“

Start k-fold cross validation, k=1

Partitioning the data sample into two 
sub-samples, depending on the state of 

the variable to be simulated

Partitioning each sub-sample into 10 sub-
samples for k-fold cross validation

k=10 ?
No

Yes
Comparison of the 10 k-best-models and 

choice of the k-best-model with best fitting

k=k+1

 Figure 6.8  Flowchart of the process to generate and obtain the best fitting binomial 
model ( Calì, 2016).
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and formalization of the problem to solve. The main implementation steps 
include the design of data structures for agents and the environment fol-
lowed by steps to describe the behavioral rules and interactions ( between 
agents and with the environment). Once the model is executed, calibration, 
verification, and validation efforts are performed with the model being 
 revised as needed.

In terms of the programming environment,  agent-  based models can be 
implemented using general programming languages ( e.g., Python, Java, 
C++) or software packages and toolkits created to help in the development 
and visualization of simulations ( e.g., RePast, NetLogo, Anylogic).

ABM shares attributes with other modeling techniques, such as the prob-
abilistic methods described in Section 6.3. For instance, it is common to 
define probabilistic rules that guide agents’ actions based on information 
collected from their environment or other agents. As an example, when en-
tering a shared office with uncomfortable thermal conditions, a “ person” 
agent might interact with other nearby persons in the area ( based on prob-
abilistic rules) and adjust thermostat settings based on the group’s prefer-
ences. Similarly, probabilistic rules could be used to model agents adapting 
their preferences ( and behavioral rules) following interactions with other 
agents. In general, Bonabeau ( 2002) recommends the use of ABM when the 
 real-  world system to model has one or more of the following characteristics:

1  When interactions between agents exist and are of a complex, nonlin-
ear, or discontinuous nature ( e.g., the behavior of an agent potentially 
being influenced by that of another agent)

2  When the topology of interactions is heterogeneous ( e.g., in social 
networks)

3  When space is an essential element of the problem with dynamic positions 
of agents ( e.g., agents moving and interacting within an environment)

4  When the population of agents is heterogeneous ( e.g., agents with differ-
ent characteristics and adaptive behaviors)

5  When agents show complex behaviors ( e.g., with learning and adapta-
tion features)

 Figure 6.9  Main steps to building an  agent-  based model, adapted from Salgado and 
Gilbert ( 2013) and Sayama ( 2015).
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ABM has been applied in numerous fields, including epidemiology ( Tracy 
et  al., 2018), population dynamics (  Pablo-  Martí et  al., 2015), econom-
ics ( Tesfatsion, 2002), transportation ( Bernhardt, 2007), electricity grids 
( Ringler et al., 2016), among others. In the past decade, ABM applications 
have been extended to cover the building science domain, particularly oc-
cupant behavior applications. Berger and Mahdavi ( 2020) reviewed schol-
arly articles that applied ABM to simulate building occupants for energy 
and  indoor-  environmental performance analysis. Papadopoulos and Azar 
( 2016) presented an ABM framework that captured different and changing 
energy use characteristics of agents while accounting for their level of con-
trol over building systems. Their ABM framework also featured surrogate 
models of building systems to translate the agents’ characteristics to build-
ing energy performance estimates. Lee and Malkawi ( 2014) proposed an 
ABM approach to mimic the behavior of  real-  world occupants of commer-
cial buildings in response to environmental stimuli. After evaluating their 
indoor conditions, agents could increase their comfort levels by adjusting 
their clothing and activity levels or controlling building systems, such as 
windows, blinds, fans, and space heaters. Other applications of ABM in-
clude occupants’ water consumption patterns ( Linkola et al., 2013), occu-
pants’ movements and shared activities ( Schaumann et al., 2017), and HVAC 
control optimization ( Gopika, 2015; Sangi et al., 2017).

Despite the many advancements in applying ABM to understanding and 
improving building performance, several limitations exist that motivate 
future work on the topic. First, most ABM applications in building stud-
ies are focused on understanding and improving building operation. Little 
research extends the scope of analysis to include  occupant-  centric design 
practice and applications. This gap is not limited to ABM studies but ex-
tends to  occupant-  centric building design research in general ( Azar et al., 
2020). Second, current ABM studies often fail to provide information on the 
implementation of their models, particularly on the level of detail and res-
olution at which they modeled occupants’ behaviors. More clarity and con-
sistency are needed to determine the level of complexity needed to achieve 
the models’ specific objectives. Finally, as highlighted by Berger and Mah-
davi ( 2020), ABM applications are rarely based on robust and validated hu-
man behavior theories, which are needed to increase the levels of confidence 
in the developed models and their solutions. Future ABM studies should 
consider stronger theoretical underpinnings for agent rules and behaviors, 
in parallel to extensive observation studies for validation purposes.

6.3.4  Personas

The final method for modeling occupants that is considered in this chap-
ter is personas. Personas are archetypal characters that are representative 
of the expected occupants. While the above mathematical formalisms in 
Section 6.3 are relatively abstract, the use of personas offers a promising 
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approach to modeling occupant behavior and beliefs and group behavior 
in a more tangible and understandable by a wide range of stakeholders. 
Personas are fictional, but representative, characters capturing occupant 
characteristics, behavior, and goals ( Cooper, 1999) for  user-  centered design. 
Personas can help designers and simulation users anchor their work in a 
user’s needs ( Takai and Ishii, 2010). Like the other modeling approaches 
described earlier in this chapter, personas can be either  data-  driven or de-
veloped by the designers’ judgment. Personas are somewhat analogous to 
clusters in machine learning, in that representative agents are extracted 
from a population.

Personas can be fictional ( Blythe and Wright, 2006),  goal-  oriented ( Cooper 
et al., 2014),  role-  based ( Pruitt and Adlin, 2010), or engaging ( Nielsen, 2013). 
Fictional personas may be imaginative or empirical.  Goal-  oriented perso-
nas focus on specific workflows, needs, motivations, and attitudes of the 
persona to accomplish their goals ( e.g., save energy or improve thermal 
comfort) ( Cooper et al., 2014).  Role-  based personas assume the role the us-
ers play in their context and environment ( Pruitt and Adlin, 2010). For ex-
ample, in a large building context, personas may be developed for occupants 
and building energy managers. Engaging personas consider characters and 
stories to “ produce involvement and insight” ( Nielsen, 2013).

6.3.4.1  Past Use of Personas in Building Design and Simulation

While personas are widely employed in fields like  human–  computer interac-
tion ( HCI) and  human-  centered product design to anchor design in human 
needs from the beginning to the end of product development, their use in 
building design to represent different types of occupants is a relatively un-
exploited opportunity. Only recently, have examples of the application of 
personas in building design and operation emerged. For example, personas 
have been used to design spaces for people with dementia ( McCracken et al., 
2019) and as a lens through which to evaluate the retrofit of buildings accord-
ing to different behaviors, motivations, and attitudes ( Haines and Mitchell, 
2014). Bennetts et al. ( 2020) used a  persona-  based approach to create thermal 
guidelines for older people in Australia using hierarchical cluster analysis 
( HCA) on data collected from the participants ( ideas, beliefs, knowledge, 
etc.). Unlike traditional comfort standards, the comfort guidelines were de-
veloped for six different thermal personalities ( Bennetts et al., 2020).

To date, personas have not been implemented as standard features 
in mainstream building simulation tools. Goldstein et  al. ( 2010) used the 
 schedule-  calibrated and weighting coefficients method to generate personas 
for office buildings. The model considered office parameters such as arrival, 
departure, desk meetings, team meetings, and onsite and offsite breaks. 
This method helped create diverse occupant profiles for office buildings, 
but they did not consider other parameters like comfort and  energy-  related 
parameters.
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6.3.4.2  Developing Personas for Building Simulation

Personas can be designed for particular building contexts ( e.g., police sta-
tions, schools), comfort issues, and user types ( e.g., older people, children). 
The data for these personas can be derived from literature, surveys, par-
ticipatory workshops, among others. For new buildings, information can 
be estimated by looking to a similar project type, obtaining details from 
the client, or considering extreme conditions. Here, we focus on  data-  driven 
personas. We note that care must be taken to avoid unconscious bias/ 
discrimination when creating personas, as the associated implications may 
influence design and neglect certain populations of occupants ( e.g., persons 
with disabilities).

For  data-  driven personas, the richer the data collection and analysis ( e.g., 
mixed methods, methods that capture  user-  system context), the more use-
ful the persona will be for designers and simulation users. An example of 
a  data-  driven persona is provided by Agee et al. ( 2021). Agee et al. ( 2021) 
collected both quantitative and qualitative data from 20 multifamily hous-
ing developments ( representing 239 units) in Virginia, USA. Data were col-
lected and analyzed in four steps, as summarized  in Chapter 4, to create the 
persona in  Figure 6.10.

Sadie
Senior Persona

 Figure 6.10   Data-  driven persona representing a 
senior occupant.

Source: Agee et al. ( 2021).

Physical Needs: safety,  easy-  
  to-  access and understand 
spaces and interfaces, level 
floor surfaces and transitions 
to avoid tripping hazards

Physiological Needs: her 
comfort is critical, she keeps 
thermostat between 72 and 
75°F (  22 and   24°C), she is 
keenly aware of drafts/ air 
movement

Psychological Needs: safety, 
connection with community 
and family, continuing to 
stay active and involved in 
her family and community

Attitude: uses only what she 
needs, prefers traditional 
communication ( e.g., 
talking face to face, writing 
letters), conserves energy to 
avoid wasting money, feels 
agnostic toward technology
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Sadie
Senior Persona

Sadie is a  78-    year-  old retiree and widow. She 
lives by alone, but keeps a full schedule of 
commitments ( e.g., with her church group, 
visiting with her grandkids, reading, and 
watching TV). She enjoys learning and keeping 
an active mind with a daily crossword puzzle 
and reading her Bible. She spends most of her 
day at home in her apartment. She lives alone, 
so feeling safe is important to her sense of  well- 
 being. She is  cold-  natured, and a cozy housing 
unit is one reason she is more satisfied with her 
current unit compared to her previous unit. 
She likes the heat pump in her apartment but is 
sensitive to direct air blowing on her. She sets 
her thermostat between 72 and 75°F (  22 and  
 24°C). She uses 88 kWh/ m2/ yr of energy. She 
has an Energy  Star-  rated dishwasher but 
cleans her daily dishes by hand. Sadie feels 
the old ways of life are better. She doesn’t like 
new technology and prefers the old ways of 
communicating. For example, she writes letters 
to her friends instead of email. She remembers 
when times were hard and you didn’t waste 
anything. She is intentional about conserving 
energy and money ( e.g., turning off the TV, 
lights, and coffee). She lives on a fixed income 
and cannot afford to be wasteful.

Behavior: turns off lights and 
plug loads when not in the 
room, cleans dishes by hand, 
takes short to medium length 
showers, uses space heater to 
adapt indoor environment

In closing, personas are a powerful tool to map observed or imagined oc-
cupant characteristics onto one or more representations of occupants. While 
they have not been extensively used in building design, we recommend their 
future research and implementation because of their desirable traits ( e.g., 
relatability and tangibility to all stakeholders, complexity, and richness in 
characteristics). Ultimately, for personas to be incorporated into BPS tools, 
their characteristics must be mapped to simulation inputs and models. There 
is strong potential for personas to be developed in conjunction with  agent- 
 based models and the advanced occupant models described in Section 6.3.  
For example, a persona could be developed based on a large number of 
 single-  behavior models; the model parameter could be varied depending on 
the persona characteristics ( e.g., very reactive to low illuminance levels).

6.4  Implementation of Occupant Models in Simulation Tools

Thus far, in this chapter, we have described a variety of occupant mode-
ling approaches. In this next section, we provide an overview and analysis 
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of common methods of implementing occupant models in simulation tools. 
Since the remainder of this book focuses on building simulation, this prelim-
inary overview of implementation is an essential step before occupant mod-
eling can be discussed in terms of supporting the design process (  Chapters 7 
and 8). This section describes current available methods to implement oc-
cupant models in BPS tools as well as offering discussion on limitations and 
future research and development needs.

6.4.1   Occupant-  Centric Simulation Tools and Approaches

While modeling occupants using schedules in BPS tools is commonplace 
( see Section 6.2), more advanced models require more sophisticated means 
for implementation. In general, BPS tools with a graphical  front-  end inter-
face are more restrictive, while  research-  grade tools with  open-  source ca-
pabilities have greater flexibility to implement advanced occupant models. 
Most BPS tools provide at least one of the following approaches to model 
occupants ( Hong et al., 2018). We hereby divide implementation methods 
into two categories: those which are integrated into BPS tools and those 
which generate inputs in advance of integrating them into BPS ( i.e., offline 
and  stand-  alone).  BPS-  integrated methods include:

• Schedules ( deterministic)—  These  built-  in or  user-  customized schedules 
generally represent  occupant-  related states as repeating  time-  varying 
parameters ( e.g., occupancy profiles, lighting/ equipment loads, temper-
ature setpoint). The level of schedule resolution varies among BPS tools, 
with some allowing  sub-  hourly resolution and others being restricted to 
hourly. Ideally, tools represent these schedules graphically to identify 
errors quickly.

• Rules ( deterministic/ stochastic)—  This method enables simulation users 
to use  built-  in rules or specify a set of rules for different building sys-
tems such as lighting, windows, and shading devices. For example, rules 
can be set to turn off lights when daylight illuminance reaches a certain 
threshold to simulation typical occupant behavior. The threshold can 
be probabilistic to simulate the variability of occupants’ manual inter-
actions with lights. While some BPS tools do not use such rules at all, 
others allow custom rules to be defined, such as User Function in  DOE- 
 2 and EMS in EnergyPlus ( Gunay et al., 2016). Moreover, models from 
external standardized languages can be integrated into the simulation 
tool, such as TRNSYS or  IDA-  ICE. Although  user-  customized controls 
allow more flexibility for the users to incorporate bespoke models, their 
implementation and debugging require a strong knowledge of the occu-
pant models and programming.

•  User-  defined source code ( deterministic/ stochastic)—  Some occupant 
models involve more than simple rules and may necessitate that the 
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source code modifications. However, advanced user knowledge is re-
quired for this approach.

•  Co-  simulation ( deterministic/ stochastic)—  Occupant models can also 
be implemented in BPS via  co-  simulation that allows the dynamic ex-
change of information between BPS tools. For example, the occupant 
behavior Functional Mockup Unit ( obFMU) is an example of a  co- 
 simulation method that supports reading the data in a standardized 
XML format through a new schema, titled ‘ occupant behavior XML’ 
( obXML). The initial repository of obXML contains 52 models ( Belafi 
et al., 2019). A more advanced and flexible interface is Building Control 
Virtual Test Bed ( BCVTB) which is based on a  stand-  alone interface 
( Ptolemy II) to host certain programs ( Wetter, 2011). Similar to  user- 
 customized source code, advanced knowledge is required. Moreover, 
 co-  simulation can significantly increase computation time.

6.4.1.1   Stand-  Alone ( Offline) Methods Include:

• Occupancy simulator (stochastic)—  This method is a  web-  based platform 
to provide hourly or  sub-  hourly occupant presence and movements 
based on stochastic models for an individual occupant in the form of 
CSV files ( Chen et al., 2017), which can then be used as an input for BPS 
tools such as EnergyPlus. Although this approach considers the diver-
sity and stochasticity of occupancy, it is limited to occupancy schedules 
without considering  two-  way interactions between occupants and the 
environment. Moreover, this approach typically neglects interdepend-
encies between different aspects of occupant behavior.

• Offline techniques ( deterministic/ stochastic)—  An alternative method is 
to conduct sequential simulations to integrate occupant interactions in 
a building. Programming languages such as Python or R have the capa-
bility of  high-  level programming functions using a wide range of librar-
ies and packages. The two main approaches are: ( 1) a  pre-  processing 
stage where  occupant-  centric control metrics are derived as inputs for 
further evaluation using BPS tools ( Hobson et al., 2021); or ( 2) a  post- 
 processing stage when a set of design alternatives are initially simu-
lated as datasets to program  occupant-  centric control functions ( Ouf 
et al., 2019). Both techniques can deliver deterministic ( e.g.,  rule-  based) 
or probabilistic ( e.g., supervised learning) controls to model occupant 
behavior. Further discussion on ways to simulate occupants to inform 
design is provided in  Chapter 8.

While  stand-  alone offline methods potentially offer greater transparency 
and versatility, they do not offer dynamic interaction with the simulation. 
As such, interactions between triggers ( e.g., IEQ) and occupant actions are 
not captured; thus, offline methods are more suitable for  non-  adaptive occu-
pant features such as occupancy and office equipment use.
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6.4.2  Current Limitations and Recommendations

Each of the major stages of building performance  simulation—  inputs, sim-
ulation, and  outputs—  have limitations with respect to occupant modeling 
that should be addressed in the future.

•  Inputs—  Generally speaking, increasing the number and complexity of 
 occupant-  related inputs will increase the level of occupant modeling 
detail in building simulation. These inputs can include occupant de-
mographics and diversity, details on  energy-  related occupant behavior, 
and relationships between occupants ( and the impact of these relation-
ships on behavior). Current methods to specify occupant behavior are 
often abstract and implicit ( e.g., refer to traditional occupant modeling 
approaches as in Section 6.2). Moreover, most tools treat occupants 
in much the way building systems are specified rather than as active 
participants in building performance. For example, in EnergyPlus, oc-
cupants’ actions regarding blinds control are categorized as window 
properties rather than people objects and there are missing quantitative 
metrics to control certain functions such as shading systems through 
vertical eye illuminance ( Tabadkani et al., 2020). We recommend that 
 occupant-  related inputs are reframed and increased in detail to parallel 
recent research developments ( e.g., more advanced models). Addition-
ally, given the significant uncertainty during the design stage about the 
occupants that will occupy a space, features to allow ranges of occupant 
traits is a beneficial feature ( Ouf et al., 2019).

•  Simulation—  Most common BPS tools have very limited capabilities re-
garding occupant modeling ( i.e., similar to those described in Section 6.2, 
rather than Section 6.3). Thus, for the reasons argued in Section 6.3, we 
strongly recommend an increase in the number and capability of occu-
pant models in  research-  grade and mainstream BPS tools. Common BPS 
tools can process only a single simulation at a time without defining a cor-
relation between occupants’ behavioral aspects ( e.g., occupancy profile 
and light switching) ( Ouf et al., 2018). However, more complex occupant 
models often necessitate multiple simulation runs, e.g., to quantify uncer-
tainty and stochastic model distributions. Thus, we recommend new BPS 
tool features to automate batch simulations. While  co-  simulation has 
shown significant flexibility for implementing and simulating occupant 
models, it is not compatible with many BPS tools and requires advanced 
modeling knowledge, which hinders industry adoption. To overcome 
existing limitations of common BPS tools in terms of linking different 
 occupant-  related variables together ( e.g., occupant density and lighting/ 
equipment loads), parametric design tools such as  open-  source Ladybug 
Tools can be used to allow the definition of correlations among inputs 
algorithmically.  Parametric-  based interfaces enable simulating a large 
number of iterations automatically to efficiently quantify the impact of 
different occupants or occupant models.
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•  Outputs—  Because BPS is rooted in annual energy use predictions, 
BPS tool outputs tend to focus on building performance rather than 
occupants ( e.g., discomfort hours of the building rather than discom-
fort hours of occupants). BPS tools should be more informative and 
use an  occupant-  centric approach such that results are output and 
presented them from an occupant experience perspective. Moreover, 
many  occupant-  related simulation outputs are not available for report-
ing ( e.g., number of light switching actions, view to outdoors). Future 
BPS tool should have features that support the output and visualiza-
tion of occupant uncertainty ( and other sources of uncertainty), such 
as probability distributions resulting from stochastic occupant models. 
Further discussion on simulation outputs and communicating results is 
presented in Section 6.5.

This section briefly summarized existing methods through which occupant 
models can be incorporated and implemented into BPS tools. It also pro-
vided recommendations on BPS tool inputs, simulation, and outputs to 
support occupant modeling. The next section explores the improvement of 
transparency of occupant modeling for practitioners and other users.

6.5  Communication and Practical Application

As the complexity of modeling approaches and their underlying statistical 
methods has increased, so has the number of variables taken into account 
when creating occupant behavioral models. Several researchers have at-
tempted to classify the growing number of data sources and modeling ap-
proaches. For example, Mahdavi and Taheri ( 2017) presented an ontology 
for the classification of building performance data ( e.g., air temperature, 
energy use), and others have discussed ways to select the most appropri-
ate model for a specific simulation task ( Gaetani et al., 2016; Mahdavi and 
Tahmasebi, 2017; Tahmasebi and Mahdavi, 2016) ( see also  Chapter 7). As 
discussed in Section 6.2, most current approaches focus on schedules, which 
are relatable and simple to interpret for practitioners. In contrast, more ad-
vanced modeling approaches presented in scientific literature ( and Section 
6.3) are not suitable to communicate model results such as schedules or, for 
stochastic models, the variance in behavioral patterns.

Accordingly, there is a need to communicate occupant model properties 
and results in a comprehensible way, especially for those who apply these 
models, such as building engineers, without expertise in statistics. This ar-
gument is emphasized by O’Brien et al. ( 2016) who conclude, based on data 
from a survey among practitioners, that time and understanding are major 
obstacles of using more advanced occupant modeling. Thus, increasing the 
comprehensibility of occupant models may be a prerequisite for their wide-
spread application in building performance simulation for design and oper-
ation of buildings. To date, there are only a few attempts to communicate to 
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simulation users the impact of occupant modeling choices ( e.g., Chen et al., 
2017; Gunay et al., 2016; Ouf et al., 2019; Schweiker et al., 2019).

Discussing all potential methods to communicate occupant models is be-
yond the scope of this chapter and still debated among researchers. The 
most important aspects of a model’s behavior to be communicated depend 
on the characteristics of interest and whether the practitioner is, for exam-
ple, an engineer applying a model in communication with the researcher 
who developed the model, or an architect or investor communicating with 
the simulation engineer. Basic characteristics need to be communicated to 
enable ( 1) the comparison between different models and ( 2) judgment of the 
suitability of a model, including the number and type of input and output 
variables, potential hidden values, the basis of model ( e.g., type of data col-
lection, type of building and occupants monitored, region, climate), and the 
validation status of the model together if available with validation results.

To ease the understanding of a models’ behavior, a breakdown of poten-
tially complex model behaviors into transferable and communicable pa-
rameters is desirable. Such parameters could be descriptive values, such as 
the predicted mean duration of the behavior, the number of actions, the 
sensitivity of model to variance in input parameters, or the effect of the pre-
dicted behavioral patterns on other outcome parameters ( Gunay et al., 2016; 
Schweiker et al., 2019). For example, Gunay et al. ( 2016) presented a method 
to compare a variety of occupant behavior models in terms of behavioral 
characteristics as well as energy use variations. Other ways to present the 
behavior of complex models is the generation of exemplary schedules result-
ing from their application. Such an approach is presented by Ouf et al. ( 2019) 
for stochastic models of lighting usage and by ( Schweiker et al., 2019) for 
window opening models’ behaviors. The latter presented a method to com-
pare model behaviors parametrically for combinations of different climates 
and building properties ( see also  Figure 6.11).

6.6  The Future of Occupant Modeling and Simulation

Major challenges and opportunities exist regarding occupant modeling, in 
the context of the methods proposed in Section 6.3. Care must be taken to 
balance accuracy gained by the relatively advanced statistical modeling of 
that section ( relative to the knowledge of most BPS practitioners) with the 
opaqueness and obscurity that results ( e.g., see Section 6.5). Ultimately, a sim-
ple model that is  fit-    for-  purpose ( see  Chapter 7) is better than an inappropri-
ately advanced model. With the Internet of Things ( IoT),  Internet-  connected 
building automation systems, and other smart building technologies, the 
availability of  occupant-  related data is improving and becoming less costly 
to collect. We expect this to greatly enhance the ability to develop robust, 
 data-  driven occupant profiles for a variety of domains, building types, cli-
mates, etc. However, centrally managed and coordinated efforts, such as 
ASHRAE’s Global Occupant Behavior Database ( Dong et al., 2021) are still 
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 Figure 6.11  Example visualization of the behavior of four different window opening 
behavior models for simulated summer and winter day depending on 
weather data file and building characteristics.
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required to maintain model quality, reliability, and consistency. Commensu-
rate with any  centrally-  managed occupant data and model repository should 
also be rigorous verification of the generalizability of occupant models, much 
like the early work of ( Schweiker et al., 2012).

We must also recognize that while the buildings industry will witness the 
emergence and widespread use of new occupant modeling techniques in the 
future, as summarized above and throughout this chapter, it is likely that 
the industry will simultaneously experience a widening or shifting of the 
disciplines that undertake the activity in practice.

Despite the many advances that have been made with respect to meth-
ods for generating occupancy schedules, the inherent simplification of occu-
pancy presence in existing BPS tools remains a research gap facing the future 
of occupancy modeling as a whole. Rooms within buildings, like an  open- 
 office space, are subject to thermal and occupant asymmetries. An occupant 
sitting near a window will face unique thermal conditions, and may respond 
uniquely to environmental control decisions compared to an occupant lo-
cated in a different position of the same modeled room ( Brager et al., 2004). 
Different HVAC concepts can also produce unique asymmetrical thermal 
environments, where the specific position and location of an occupant in an 
 HVAC-  conditioned space, including the extent to which one’s own limbs are 
exposed in that space, produces a unique regime of thermal sensation across 
the occupant’s body ( De Dear, 2011). These asymmetries are known to in-
crease uncertainty in predicting occupant control decisions and predicting 
building energy demand using existing BPS tools ( Halawa et al., 2014).

Accurately simulating spatial asymmetries between occupants and the 
built environment involves overcoming at least two challenges: ( 1) predict-
ing the specific location and orientation of an occupant with respect to 3D 
space and time; and ( 2) directly modeling the asymmetrical relationship 
between the occupant and the indoor environment. Established advances 
in coupling BPS with computational fluid dynamics ( CFD) have  long-  since 
illustrated how the latter challenge can be overcome ( Zhai et al., 2002). The 
first challenge persists, however, albeit with a number of emerging solutions 
in the research pipeline. Most interesting is that these solutions are originat-
ing from fields that have historically lagged behind BPS, namely, architec-
ture and  computer-  aided design.

Whereas decades ago, only a few architects were using computers for de-
sign, let alone simulation, the division of computer and simulation literacy 
between engineers and architects has narrowed considerably. Simulation 
and software programming has not only been introduced to architects, it is 
also fast becoming a standard skillset in the field ( Riekstins, 2018). Credit for 
this goes particularly to Grasshopper 3D, a visual programming language 
that was created in 2007 by Rutten and McNeel ( 2007) to enable parametric, 
programmable  computer-  aided design. Grasshopper is effectively a func-
tional  mock-  up environment which connects a programmable  computer- 
 aided design process with a growing suite of  third-  party simulation tools 
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and other  plug-  ins written natively for the Grasshopper environment. Like 
the coupling of BPS with CFD modeling, Grasshopper provides the oppor-
tunity to couple BPS with highly spatial, parametric design algorithms that 
can include the modeling of occupant movement, behavior, and thermal 
sensation in  fully-  resolved 3D spaces.

Several recent examples of  Grasshopper-  based occupancy modeling are 
relevant to acknowledge. Aviv et al. ( 2022) used Grasshopper to develop a 
 raytracing-  based radiant heat transfer model to resolve the radiant asym-
metries between occupants and the built environment. PedSim Pro, a pe-
destrian movement simulation tool developed for Grasshopper, was used 
by Pan et al. ( 2021) to generate  time-   and  space-  varying building occupancy 
profiles. Yi ( 2020) achieved a similar outcome by using Grasshopper to cou-
ple a BPS model with a hybrid  agent-  based model of occupant movement 
and behavior. As more  Grasshopper-  based BPS tools emerge and become 
popular, such as ClimateStudio ( Solemma Inc., 2022), we can expect the 
field of  highly-  spatial occupancy modeling to grow more capable, and com-
monplace, in the years to come. We can also expect to see more and more 
architects leading this charge in future practice.

6.7  Closing Remarks

In this chapter, we provided an overview of occupant modeling from tradi-
tional and current practices to advanced occupant modeling. We explained 
why we should model occupants and that representing occupants using fixed 
schedules has some major limitations in  simulation-  aided building design.

We also covered the major traits of occupant models ( stochastic, dy-
namic,  data-  driven, and  agent-  based) and their implications for simulation 
and building design. It explained how the different model types can be de-
veloped from various sources of occupant data. Next, we provided an over-
view of methods to implement occupant models into building performance 
simulation tools, ranging from schedules to  co-  simulation. We concluded 
the chapter with a discussion on how occupant models and their character-
istics can be better communicated to users as well as in future work.

While in this chapter we discussed model selection in the context of accu-
racy and strengths and weaknesses, the next two chapters delve into details 
on selecting the most appropriate occupant models for a given purpose and 
then methods to use occupant models to support building design.

Note
1  Both logistic and probit regression are generalized linear models ( GLM). In 

such models, instead of using the outcome Y, a link function is used, which is a 
function of the mean of Y. The difference between logit and probit models is in 
the link function: logit models make use of an inverse normal function, and the 
probit model makes use of a logit link function.
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Summary

The most appropriate approach to modeling occupants depends on the pur-
pose and the object of the simulation. In this chapter, we will offer con-
ceptual and practical guidance for choosing the most appropriate occupant 
behavior modeling approach, following a  fit-    for-  purpose rationale. The aim 
of the  fit-    for-  purpose approach is to achieve the most relevant possible rep-
resentation of occupant behavior for a specified simulation aim in an effi-
cient manner.

7.1  Introduction

Many different approaches exist to model occupants and their behavior ( see 
 Chapter 6). It is important to take a step back and reflect on how people 
are considered in today’s design practice. People are first and foremost the 
recipients of a design in terms of experience. Attention is directed toward 
the social and cultural context of a project from the very initial stages of the 
design process. Designers typically gather qualitative information about the 
future occupants of their buildings through user journeys and stakeholder 
workshops. However, often the future occupants are not yet known, and 
even if they were, building owners are naturally eager to keep the building 
functions as flexible as possible in order to cater to a wide range of potential 
tenants throughout the lifespan of a building.

When it comes to modeling, occupants are considered during building 
design and operation in terms of three main attributes: movement, presence, 
and behavior (  Figure 7.1).

The following applications of occupant modeling to the building design 
process have been identified ( Dong et al., 2018) (  Figure 7.2):

• Building performance analysis: Examples of building performance anal-
ysis include energy performance analysis ( from component to whole 
building), comfort performance analysis ( people presence and behav-
ior), and daylight performance simulation ( heavily influenced, among 
others, by behaviors such as blind/ shade operation);
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• Building architecture and engineering design: Circulation design ( people 
movement) and heating, ventilation, and  air-  conditioning ( HVAC) siz-
ing ( people presence and behavior);

• Building safety design: Crowd management and passenger flow analysis 
( especially relevant in public buildings), people movement, and struc-
ture vibration subjected to crowd loads ( Jones et al., 2011).

The modeling of people movement for circulation design, safety design, 
crowd management, and passenger flow analysis is  well-  established in ar-
chitecture and engineering practice ( Yan et al., 2017). In contrast, presence 
and behavior modeling falls short of implementation in the design workflow. 
This gap is the focus of this chapter.

Current occupant behavior ( OB) modeling practices are aligned with the 
tasks from building codes and standards, which tend to treat occupant be-
havior superficially, considering it in terms of either basic schedules or min-
imum requirements for personal control. This practice is likely to change 
as standards become increasingly focused on operational performance. For 
example, NABERS ( Residovic, 2017) is a building rating standard valid for 

BEHAVIORMOVEMENT

PRESENCE

 Figure 7.1  The three categories of people modeling.

Crowd management
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 Figure 7.2  Applications of people modeling during the building design phase.
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12 months only that places value on representing a building or workplace’s 
actual operational performance. Other standards also request a comparison 
of  in-  use measurements and model assumptions, e.g., WELL ( International 
WELL Building Institute, 2020). This shift in building standards toward 
operational performance is likely to drive the need for more realistic OB 
modeling practices.

Current OB modeling practices are illustrated by O’Brien et  al. ( 2017). 
When the authors asked practitioners to describe their overall assumptions 
about occupants in building performance simulation, most interviewees 
responded they used values derived from standards ( e.g., ASHRAE 90.1 
[ASHRAE, 2013]) or they modified the default settings based on personal 
experience and judgment. Assumptions notably varied according to the 
purpose of the simulation, yet there was no convergence or transparency re-
garding individual modeling practices. For example, when asked to describe 
their assumptions regarding plug loads use during detailed design and 
equipment sizing, a similar number of people responded with ‘ All equip-
ment is always on’, ‘ Based directly on occupancy schedules’, and ‘ Standard 
profiles from modeling standards’. These findings show that the current con-
sideration of occupants in design workflows is  sub-  optimal and lacks clarity, 
transparency, and awareness regarding the impact of assumptions on the 
design. Gaetani et al. ( 2020) also showed that the high number of models for 
occupant presence and behavior available in academic contexts seldom find 
application in practice.

It is important to mention that different OB models have different re-
quirements for their implementation in building performance simulation. 
Choosing the ‘ right’ approach also means using models within their ap-
plicability range. Lindner et al. ( 2017) as well as Mahdavi and Tahmasebi 
( 2016b) investigated the requirements of occupant behavior models for use 
in building performance simulation. These studies highlighted a number 
of challenges connected with more advanced models, such as: the fact that 
some models do not provide an output in a binary form ( i.e., a window is 
open or closed at a given simulation timestep, as required by the simulation 
software), which makes it necessary for the modeler to formulate further 
assumptions; the lack of reproducibility of simulation results employing sto-
chastic models ( see  Chapter 6); improper model behaviors leading to an ex-
aggerated frequency of occupant actions occurring in short timespans; and 
an absence of reversal functions. Regardless, if these challenges were to be 
addressed, there would still be a lack of guidance on actual model selection 
for practical purposes.

The above indicates a strong potential to improve current design work-
flows with regard to occupant behavior modeling. Generally, authors agree 
that the chosen modeling approach should depend on the purpose of the 
simulation ( Gaetani et al., 2020; Gilani et al., 2016; Mahdavi and Tahmasebi, 
2016b; Roetzel, 2015), which is the topic of this chapter. We begin with a con-
ceptual overview of a  fit-    for-  purpose modeling rationale in Section 7.2.
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7.2   Fit-    for-  Purpose Modeling: A Conceptual Overview

Models are used to explain and predict diverse phenomena in various 
domains. Once a reliable computational model of a phenomenon is con-
structed, the model can be seen as its virtual version. Models’ computa-
tional core ( including the implemented routines and algorithms) map inputs 
to outputs. As the statistician George Box put it, ‘ All models are wrong, 
but some are useful’ ( Box, 1979).  Fit-    for-  purpose models are, in short, mod-
els that are suitable and useful for the purpose for which they have been 
developed.

In the field of building simulation, model input variables and parameters 
are typically descriptors of  building-  related entities. Such entities can en-
compass building components and systems, whole buildings, or ensembles 
of buildings. Input variables also include external ( e.g., weather) and internal 
( e.g., use patterns) boundary conditions as well as information on  human– 
 building interaction. Frequently, the overall computational model includes 
 sub-  models for the generation of data related to boundary conditions and 
interaction. Instances of such  sub-  models include weather data generators 
and occupant data generators. Model output typically entails variable val-
ues relevant to entities’ behavior or performance. There are many facets to 
buildings’ performance, including, for instance, building integrity, energy 
efficiency, and indoor environmental quality. Certain aspects of perfor-
mance such as thermal and visual conditions, air quality, and acoustics are 
directly relevant to occupants’ requirements and needs; others, for example, 
energy and environmental performance, can be influenced by occupants’ 
behavior. Consequently, in these and similar instances of building perfor-
mance simulation utilization, information and models regarding occupants’ 
presence and behavior in buildings need to be included to achieve a com-
plete representation of the building and its use patterns.

Building performance simulation typically generates data that either en-
tails values of building performance indicators or is processed to arrive at 
such values.  Simulation-  based building performance assessment commonly 
involves the comparison of computed values of the performance indicator 
with desired or mandated benchmarks. Simulation models can be used to 
find answers to  what-  if types of questions. As such, models are used to find 
answers to two broad types of questions: direct and indirect. Direct ques-
tions ask, ‘ What output ( performance indicator value) do I get for a given 
input?’ Indirect questions ask, ‘ In order to have a certain output, what input 
do I need?’ To answer the second type of question, simulation is typically 
run iteratively. Iteration can be conducted manually or facilitated by com-
putational tools that either support parametric simulation or are coupled 
with optimization routines.

Given this background, building performance simulation can be viewed as 
an activity to derive the values of relevant performance indicators given spe-
cific model input assumptions ( building description, boundary conditions, 
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use patterns). Whereas in this chapter we focus on the present contribution 
to  occupant-  related matters, the simulation activity can serve a host of pur-
poses ( Chwif, Barretto, and Paul 2000; Dong et al. 2018; Mahdavi and Tah-
masebi 2016b). Several such purposes are listed in broad categories below:

a Building component design/ optimization ( e.g., heat transfer in building 
details)

b Building design support ( i.e.,  decision-  making regarding buildings’ 
modeling shape and geometry, construction, envelope)

c Building systems design support ( configuration and sizing of systems 
for heating, cooling, ventilation, and lighting)

d Building operation support ( e.g.,  model-  predictive control)
e  Urban-  scale performance assessment ( e.g., prediction of airflow and 

pollution migration patterns)
f Evidence of compliance ( with requirements formulated in codes, stand-

ards, certification, and ratings systems)
g Competition, promotion, education.

It seems reasonable to suggest that a simulation model must fit the purpose 
if it is to reliably answer the questions that are directed at it. As the answer 
provided by the model comes in the shape of a performance indicator value, 
the following is suggested to simplify the matter: in order to formulate a 
guiding principle for the selection of a proper simulation model ( and the 
choice of the occupant model included therein), the specifics of the build-
ing performance indicator under consideration must be considered. This 
statement can be reiterated in terms of two assertions: First, the nature and 
resolution of the selected simulation model must correspond to specifics of 
targeted performance indicator. Second, the occupant model embedded 
in the simulation model must be compatible with the selected simulation 
model. In other words, the nature of the building performance inquiry im-
plies a fitting building performance indicator, the target indicator implies a 
fitting general simulation model, and the general simulation model implies 
a fitting occupant model.

To tease out the practical ramifications of these observations, as a first 
step, a kind of classification or typology of performance indicators is needed. 
Detailed ontological treatments of  performance-  related data in general and 
building performance indicators in particular can be found in ( Mahdavi and 
Taheri, 2017, 2018; Mahdavi and Wolosiuk, 2019). For the sake of the present 
discussion, it may suffice to consider three main dimensions of building per-
formance indicators, namely topical domain, spatial attribute, and temporal 
attribute, where:

i  The topical domain specifies the field of performance inquiry. Queries 
may concern, for example, energy use, thermal comfort, noise exposure, 
or daylight availability.
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ii  The spatial attribute concerns the physical extent of the entity whose 
performance is being queried. For instance, radiant asymmetry can be 
computed for an office workstation, parameters of the acoustic field for 
a lecture room, energy use for a whole building, and temperature strat-
ification for an urban canyon.

iii The temporal attribute specifies the point in time or the duration of the 
interval for which the performance indicator value is obtained. For ex-
ample, task illuminance level may be simulated for a specific time of the 
day, and a building’s heating load may be specified on an hourly, daily, 
monthly, or annual basis.

Given sufficient computational means and resources, the values of perfor-
mance indicators can be obtained at very high levels of resolution. More-
over, in most cases, it would be a simple matter of aggregation to derive, 
from  high-  resolution arrays of data to  lower-  resolution values. This would 
suggest that through basic statistical operations of summation and averag-
ing, the annual heating load of a building or the mean annual illuminance 
of a room, for example, could be derived from respective hourly or even  sub- 
 hourly simulation results. The fact that this process inevitably involves a 
loss of information explains why the reverse process is problematic. In other 
words, the process of disaggregation, that is the derivation of  high-  resolution 
values from aggregate ones is  non-  trivial in principle, if not infeasible.

This observation may lead to the naïve assumption that there is a simple 
solution to the  fit-    for-  purpose problem: ideally, simulations should always 
be conducted at the highest possible spatial and temporal resolution and ap-
ply aggregation and averaging procedures to fit the resolution of the results 
to the level commensurate to the purpose, i.e., as represented by building 
performance indicator values with the right resolution. There are multiple 
reasons of practical and conceptual nature why this assumption is naïve. 
From a practical perspective,  high-  resolution simulation models come with 
a cost in terms of time, resources, expertise, difficulty in identifying model 
faults, and higher risk of errors due to the number of inputs. Moreover, it 
has been argued that, particularly in design support scenarios, there is often 
not sufficient information to generate  high-  resolution simulation models. 
Consequently, an early design stage simulation model would have to be fed 
a considerable amount of detailed but uncertain data. The corollary of this 
circumstance would be that simulation would generate results with higher 
levels of resolution, but also with higher levels of uncertainty.

These reflections seem to suggest that, conceptually speaking, higher 
resolution does not always mean higher accuracy or better suitability of a 
model to the task at hand. Model selection should target the right resolu-
tion, not necessarily the highest possible resolution. A common criterion 
with regard to the temporal adequacy of the simulation algorithms is re-
lated to the nature of the modeled processes. Specifically, in the thermal do-
main, proper consideration of thermal inertia, latency, and storage require 
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transient simulation and, depending on the nature of deployed numeric 
solutions, certain minimum levels of temporal resolution. This thermally 
relevant  interval-    to-  interval carryover of computational results is of lesser 
concern in the visual and acoustic simulation domains.

These observations seem to justify why conducting and interpreting 
 computer-  generated examinations via simulation models has occasionally 
been referred to as both an art and a science. In more prosaic terms, when it 
comes to competent use of simulation tools, experience is of crucial impor-
tance. Nonetheless, the preceding discussion does imply certain general di-
rections regarding the proper selection of simulation models and associated 
occupant models. Before engaging in a more detailed discussion of these 
directions, we need to address the representational options concerning oc-
cupants’ patterns of presence and behavior in buildings. Detailed treatment 
and classification of occupant models have been presented in previous pub-
lications ( Gaetani et al., 2016a, 2020; Lee and Malkawi, 2014; Page et al., 
2008); hence, we focus here on the broad classes of such models as relevant 
to the present discussion.

Taking thermal performance simulation as a case in point, we begin by 
considering what types of information need to be captured in an occupant 
model. Such a model must capture the basic state attributes of the occupants 
( e.g., presence, metabolic rate, clothing level) as well as their effects on the in-
door environment. The latter effects can be classified in terms of passive and 
active effects. Passive effects pertain to, for instance, occupants’ release of 
sensible heat, latent heat, CO2, and water vapor in the indoor environment. 
Active effects mainly pertain to occupants’ interactions with building control 
devices and systems ( e.g., windows, shades, fans, thermostats). The categori-
zation of models of occupants’ presence and behavior in buildings can be ap-
proached in a similar manner as the dimensions of performance indicators. 
Occupants’ passive and active effects could be assigned to specific domains. 
For instance, whereas occupants’ metabolic rate is relevant to the thermal 
domain, the sound absorption effect of their clothing is relevant to the room 
acoustics domain. The spatial attribute is relevant as well; occupants may be 
represented as a collective ( e.g., all people in a building, on a floor, in a room) 
or they may be assigned to individual locations ( e.g., a workstation, a  single- 
 occupancy office). Concerning the temporal attribute, changes in occupants’ 
presence state at a location can be expressed in intervals of various lengths. 
Likewise, their actions can be assumed to occur within such intervals, or, in 
the case of  event-  driven simulation runs, at specific points in time.

An additional dimension of occupant models relates to the question of 
whether occupants’ position and actions are expressed as fixed recurrent 
patterns or in probabilistic terms. As will be discussed later in this chapter, 
a probabilistic occupant model may be more appropriate than simple sched-
ules and rules in certain cases. We suggest that the variety of the occupant 
models can be categorized in terms of their respective loci within this  multi- 
 dimensional space. Taking the thermal domain as a case in point, simplified 
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spatially  single-  zone and temporally annual or monthly calculation models 
tend to reduce the occupant down to their share in internal gains ( typically 
lumped with other contributors, such as lights and equipment) and their 
fresh air requirements ( frequently expressed in terms of ventilation rates), 
both specified in terms of fixed daily schedules. At the other end of the spec-
trum, a simulation platform with integrated  agent-  based modeling routines 
can consider each occupant individually and model their impact on the 
spaces and their interactions with the systems in a dynamic,  high-  resolution, 
and probabilistic manner.

To provide a clearer understanding of these issues, we exemplify them us-
ing three related thematic foci: the code compliance use case, the temporal 
dimension of the performance indicators, and the potential of probabilistic 
modeling. Each is described in turn in the paragraphs that follow.

First, in the case of code compliance, the scope and dimensions of per-
formance indicators are typically predefined. In many instances, even the 
requirements regarding the deployed computational tools may already be 
predetermined. Moreover, in code compliance scenarios, the submitted 
performance indicator values are typically expected to be reproducible, at 
least in theory. The implications for the selection of the occupant model may 
be summarized as follows. The resolution of the occupant model should 
be, in principle, in line with that of the computational model. If a code or 
certification procedure requires an aggregate performance indicator ( such 
as monthly heating and cooling energy demands), it is not necessary per 
se to have a  high-  resolution simulation model or occupant model, unless 
the use of such models is mandated. In this context, it is perhaps useful to 
note that a number of rather simplified  code-  based performance assessment 
methods were actually introduced as replacements for earlier prescriptive 
codes and procedures. For example, in the domain of buildings’ thermal 
quality, the prescriptive codes focused on certain requirements concerning 
building fabric and envelope, with no relationship whatsoever to occupants 
and use patterns. As such, the shift to a  performance-  based approach, in 
terms of energy demand calculations was meant to  replace—  or at least 
 supplement—  the prescription of maximum thermal transmittance values 
of walls, windows, and roofs. The point is that the inclusion of  occupant- 
 related assumptions was not originally geared toward measuring buildings’ 
performance sensitivity to occupant behavior. Rather, such assumptions 
were indeed meant to provide a normalized basis for measuring the impact 
of other factors on buildings’ energy performance. Of course, the specifics 
and meaningfulness of specific  occupant-  related assumptions in simplified 
calculation methods could be questioned, but the reasoning behind their 
standardized format must be understood before they are criticized.

Second, decisions regarding model selection need to consider the tem-
poral dimension of the building performance indicator. As alluded to 
earlier, in contrast to visual and acoustic simulation, the modeling of build-
ings’ thermal behavior requires mapping of comparatively slow processes 
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attributable to buildings’ and systems’ inertia. Consequently, systematic 
thermal analysis of the dynamics of buildings’ behavior requires numeric 
simulation tools capable of modeling transient phenomena. The community 
has converged toward hourly simulations in basic simulations of energy per-
formance and thermal conditions. However, both  sub-  hourly intervals and 
even  event-  driven simulation procedures might be necessary and appropri-
ate, particularly when dealing with human interactions with and automated 
control of systems for shading and ventilation.

Third, it has been argued that both the patterns of occupants’ presence 
in buildings and their behavior ( specifically, their interactions of buildings’ 
control systems and devices) display probabilistic features. It may be thus 
more appropriate, at least for certain simulation use scenarios, to make use 
of probabilistic occupant models ( Mahdavi 2011; Mahdavi and Tahmasebi 
2016a). The application of probabilistic methods obviously does not result 
in single values of performance indicators, but distributions of values. This 
can indeed be useful, as probabilistic modeling can address, in theory, the 
uncertainty arising from  occupant-  related events and processes. However, it 
is important in this context to avoid a common fallacy: probabilistic occu-
pant models that are insufficiently or not at all validated may generate the 
look of realistic  occupant-  related processes but may not provide meaningful 
and reliable results. If a probabilistic model’s underlying empirical basis is 
limited or unreliable, so will be the data it generated. In such cases, it would 
be more meaningful to express the inherent uncertainty of simulation re-
sults via sensitivity analysis. Thereby, distributions of building performance 
indicator values simply express the implications of model input uncertainty, 
rather than pretending to generate more accurate predictions.

To summarize the above, consider the simple matrix of  Table 7.1. Therein, 
the basic requirements concerning occupant models ( i.e., their spatial 
and temporal resolution as well as presence of probabilistic features) are 
given for the general categories of simulation purpose ( i.e., code compli-
ance, building design support, building systems design support, and build-
ing  operation support). Spatial resolution is differentiated in terms of low  

 Table 7.1  Desirable features of occupant models ( concerning spatial and temporal 
resolution and in view of support for probabilistic modeling) for 
different purposes

Code 
compliance

Building design 
and retrofit 
support

Building 
systems design 
support

Building 
operation 
support

Spatial resolution Low/ medium Medium/ high Medium/ high High
Temporal resolution Low/ medium Medium/ high High High
Probabilistic 

modeling
NA Low Medium High
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( e.g., whole buildings, floors), medium ( e.g., rooms), and high ( e.g., individual 
workstations). Likewise, temporal resolution is denoted as low ( e.g., annual 
or monthly), medium ( hourly), and high (  sub-  hourly,  event-  driven). Assum-
ing the model is sufficiently tested and based on reliable and fitting empiri-
cal data, the relevance or appropriateness of probabilistic occupant models 
is again characterized as low, medium, or high. Note that this latter qualita-
tive classification of probabilistic methods is motivated by the fact that not 
all applications of probabilistic modeling are at the same ( presumably high) 
level of resolution. For instance, the application of occupancy patterns with 
more or less random fluctuation characteristics may occur at the aggregate 
level of a whole building or floor/ space in a building or at the level of individ-
ual occupants. At the other end of the spectrum,  agent-  based modeling ap-
plications routinely involve  high-  resolution and dynamic representations of 
individual occupants. In the case of building operation support, a key em-
ployment area of probabilistic methods pertains to  model-  predictive control 
applications. Whereas the predictive utility of such applications typically 
targets short future time horizons, the required resolution of the underlying 
data is high, whereby predictions could be required at the  micro-  interval 
level or even in  event-  based modus.

Needless to say, this table is not intended to provide a recipe for occupant 
model selection. Given the complexity and variability of building design and 
operation processes and their dependence on technical, typological, local, cli-
matic, economic, and cultural factors, such a recipe would be neither realistic 
nor useful. Rather, the intention is to communicate a general overview of the 
relevant factors and considerations. Ultimately, the expectation is that higher 
levels of awareness concerning such factors and considerations could trans-
late into more robust technical decisions concerning the choice of appropriate 
simulation tools and methods in general and occupant models in particular.

The next section provides an overview of how to translate these concepts 
into practice.

7.3  The  fit-    for-  Purpose Approach in Practice

In Section 7.2, the purposes of simulation and building performance indica-
tors and their relation to the appropriate model complexity were introduced. 
These topics are further developed in this section, which aims at providing 
practical steps to apply the  fit-    for-  purpose approach to modeling problems.

It is worth noting again that this approach is strictly dependent on the pur-
pose of the simulation and, hence, on the performance indicator. As a result, 
it is also important that demonstrative studies select sensible performance 
 indicators—  for example, the heating peak load of a building could appear 
to be heavily influenced by occupant behavior if such load is calculated as 
maximum yearly value, but it could turn out to be independent of occupant 
behavior if the load itself is calculated as 95% load duration curve instead.
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7.3.1  Why Should I Use a  Fit-    for-  Purpose Approach?

The first important point of consideration is why a  fit-    for-  purpose approach 
should be used.

The  state-    of-    the-  art of occupant behavior modeling in practice is to adopt 
fixed a priori schedules and other simple  rule-  based models to describe oc-
cupant presence and behaviors. The use of such models assumes a com-
pletely foreseeable and repetitive environment, where changes occur based 
on shifts in one or more variables ( such as time or environmental triggers). 
However, it has been argued that this oversimplified approach to occupant 
behavior modeling could lead to underperforming building designs and 
building controls that are not optimized for real occupants and their be-
haviors ( with negative consequences on both energy and comfort/  well-  being 
performance of the building), as well as potential for  over-   or  under-  sizing of 
building systems ( O’Brien et al., 2019). Especially during the design phase, a 
careful consideration of OB acknowledges that the building might be used 
in a variety of ways. The ability of a building to maintain the desired perfor-
mance under uncertainties in building  operation—  also known as ‘ building 
robustness’ ( Kotireddy et al., 2018)—  is an important criterion to consider 
when evaluating design alternatives.

For example, Gaetani et al. ( 2017a) showed how a  fit-    for-  purpose approach 
can aid in designing buildings that are optimized for ‘ real’ occupants. In the 
study, a simplified  south-  facing cubicle with varying thermal properties was 
chosen as a case study to determine whether manual blinds were prefera-
ble to a fixed 0.5 m overhang as a shading strategy to limit cooling loads. 
Without applying the  fit-    for-  purpose approach, the manual blind design 
outperformed the design with overhang in both fictitious buildings with low 
thermal insulation. In contrast, when using a  fit-    for-  purpose approach, the 
cubicle with overhang ( and 40%  window-    to-  wall ratio) outperformed the de-
sign with blinds. The design with overhang showed a similar median value 
of cooling energy demand to the design with manual blinds; however, it also 
showed to be more robust ( less sensitive) to occupant behavior.

As briefly explained in Section 7.2, a  fit-    for-  purpose approach does not 
advocate for the use of complex models at all costs. Simpler models might be 
preferable for two reasons: ( 1) the use of more complex models, which typ-
ically need a higher number of input parameters, might introduce errors if 
such input parameters are uncertain; and ( 2) the use of more complex mod-
els for occupant behavior aspects that do not affect the investigated building 
performance indicator is a waste of time and resources.

The first point is best explained by means of  Figure  7.3, which clearly 
shows the  trade-  off between abstraction error and input uncertainty at 
growing model complexity.

If the input parameters to a given model are uncertain and the degree of 
uncertainty cannot be reduced, then this uncertainty could have a larger 
effect on the prediction error for the higher model complexities compared 
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to the lower model complexities. The user is advised to perform a sensitivity 
analysis to ensure that the input uncertainty does not cause an unexpected 
propagation of errors in the prediction.

The second point implies the knowledge of those aspects of occupant be-
havior that affect the investigated performance indicators and the relation-
ship and  co-  dependencies among various aspects of OB. The latter is by no 
means  self-  evident, as explained in greater detail in the following section.

7.3.2  Which Aspects of Occupant Behavior Matter for My Case?

The building performance indicator that is investigated for a simulation 
might or might not show sensitivity to occupant behavior, or it might show 
sensitivity to only specific aspects of occupant behavior. Because buildings 
and their surroundings are complex systems, understanding whether the in-
vestigated case is sensitive to one or more aspects of OB without simulating 
it is not trivial.

A  fit-    for-  purpose approach implies gaining an understanding of the sen-
sitivity of the investigated performance indicators to various aspects of OB. 
This sensitivity depends on multiple factors, such as occupant behavior as-
pects themselves and degree of uncertainty, performance indicator,  time-   
and spatial scale of the performance indicator, scale of the object of the 
simulation ( e.g., single building vs. urban environment [Happle et al., 2018]), 
and so on.

A very first step is to assess which aspects of OB should be included ( i.e., 
are present) for a specific case. Take an educational building as an example. 
Any simulation attempting to optimize the energy performance of such a 
building would reasonably include the heat gains of students. Conversely, 
when considering the energy performance of a data center, it might be 

Fit-for-purpose model

MODEL COMPLEXITY

Sum

 Figure 7.3  Model complexity versus prediction error.
Adapted from Alonso ( 1968).
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unnecessary to add the heat gains of the few technicians that operate the 
data center to correctly predict the cooling load. Indeed, people’s presence 
and their degree of freedom are related to the building typology. For ex-
ample, nobody would expect to be able to open windows in a movie the-
atre, but everyone hopes to do so at home. The degree of influence that 
occupants and their behaviors have on building performance and occupant 
comfort are also related to the building concept. For example, occupants’ 
window opening and closing behavior very much affects the performance 
of naturally ventilated buildings. Likewise, the behaviors of turning on/ off 
personal devices and comfort needs are significant factors to consider in 
the design and performance evaluation of buildings with personalized con-
trolled workstations.

To apply a  fit-    for-  purpose approach, the following questions need to be 
addressed before assessing how to model the various aspects of OB:

1  Are one or more aspects of OB present? ( e.g., are people present in the 
building? Are blinds manually operated? Are blinds operated automat-
ically but people can still override?)

2  Are one or more aspects of OB uncertain? ( e.g., can occupants set the 
thermostat according to their preference or is it set by the facility man-
agement according to a known schedule?)

If an OB aspect is not present, then it is also not necessary to model it. Sim-
ilarly, if an OB aspect is not uncertain, then existing knowledge can be used 
to model it. Pupils entering a classroom every day at 8 am and leaving at 1 
pm is an example of an OB aspect that is present ( people are present), but 
not uncertain ( the bulk of the occupants follow a known, predetermined 
presence pattern).

If an OB aspect is present and uncertain, then it is worth investigating the 
most appropriate model for that particular OB aspect. However, assessing 
which OB aspects are relevant to the investigated building performance in-
dicator( s) is not trivial. Relevance can be interpreted as the sensitivity of a 
performance indicator for a certain OB aspect.

To assess which OB aspects are relevant to the investigated performance 
indicator( s), various types of sensitivity analysis can be used ( Hopfe, 2009; 
Hopfe and Hensen, 2011; Rezaee et al., 2015). A few methods that are used in 
the context of  fit-    for-  purpose OB modeling are discussed below.

The Impact Indices method ( Gaetani et al., 2018) is a sensitivity analysis 
based on the results of a single simulation run. By looking at the breakdown 
of heat gains and losses that make up the heat balance of a building, it is 
possible to derive simple indices that quantify the relative importance of 
the various heat flows. The indices’ definition is based on the building heat 
balance and borrows from the concept of skin  load-  dominated buildings 
versus internal  load-  dominated buildings. Simply put, the heat balance of 
skin  load-  dominated buildings is more likely to be highly affected by, e.g., 
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blind use, which directly affects the solar gains and ultimately the role of 
the façade as an interface between indoor and outdoor environment, while 
a variation in internal loads is expected to only have a marginal effect. 
Instead, the amount and distribution of internal loads are especially crit-
ical in internal  load-  dominated buildings. The concept can be better un-
derstood by considering the following analogy: shading devices are likely 
to be highly influential in a greenhouse, while the heat released by a person 
in the greenhouse is probably negligible because the indoor environment is 
primarily affected by the outdoor conditions. While this is intuitively evi-
dent at a qualitative level, the Impact Indices Method attempts to offer a 
quantitative base for this intuition.

Another method to test whether a building performance indicator is sen-
sitive to variations in one or more OB aspects is a scenario analysis. Con-
trary to typical sensitivity analyses, scenario analysis evaluates the effect 
of changing a number of variables at the same time. When using scenario 
analysis to evaluate the sensitivity of a building performance indicator to 
one or more OB aspects, the following remarks are relevant:

• The use of high/ low variations of OB aspects through scenarios is a use-
ful method to test their impact on the building performance indicators.

• As with every type of scenario analysis, the outcome is strictly depend-
ent on the formulated scenarios, which should be inclusive, extreme, yet 
plausible scenarios of OB and should possibly be agreed upon with the 
simulation client.

• While terms related to occupant attitudes such as ‘  energy-  conscious’, 
‘ austere’, ‘ wasteful’, or ‘ green’ are often seen in literature in relation to 
formulated scenarios that have an impact on the energy and comfort 
performance, such terms are better avoided. Depending on the building 
performance indicator and the OB aspect, a given variation in a behav-
ior can lead to saving or wasting energy. For example, a more intense 
use of the plug loads will increase the building’s electricity use but also 
decrease the need for heating through higher heat gains.

• Caution should be used when formulating scenarios ‘  one-    at-    a-  time’, i.e., 
that change only one aspect of OB while the others remain unchanged. 
While this method can be preferred due to its ease of implementation 
and low computational costs, the correlations and  co-  dependencies be-
tween various aspects of OB are such that any scenario that does not 
consider the combinations of behaviors is potentially erroneous.

As an example of scenario analysis, Gaetani, Hoes, and Hensen 
( 2017b) applied identical high/ low perturbations to presence, HVAC 
use, equipment use, light use, heating setpoint, cooling setpoint, blind 
use, and window operation ( for a total of 256 scenarios) to 16 fictious 
building variants located in Amsterdam ( Building ID  1–  8) and Rome 
( Building ID  9–  16). The investigated performance indicators were cool-
ing energy, heating energy, and weighted overheating hours.  Figure 7.4 



Fit-  for-Purpose Occupant Modeling 159

shows the simulated impact of occupant behavior on heating energy use. 
Depending on the building design, the impact of the OB scenarios was 
quite different ( consider the range between Building 1 and Building 4).  
For all building variants located in Rome ( Buildings  9–  16), the heating 
energy demand was lower than 10 kWh m–  2 a–  1 regardless of OB.

Whether such relative variation is important or not is a decision that 
should be made according to the purpose of the simulation. In this ex-
ample, the simulation user might decide that it is not important to take 
the OB aspects into account for heating energy demand calculations in 
Rome, but it is for Amsterdam.

Scenario analysis also allows for a preliminary understanding of the impact 
of one or more OB aspects on the building performance indicator. In some 
cases, the performance indicator distribution resulting from the scenario 
analysis might be enough to make a conclusive decision ( e.g., prefer one de-
sign over another). In this sense, the scenarios might be themselves consid-
ered as a first increase in the OB model complexity compared with the single 
schedule or  IF-  THEN models.

At times, however, the distribution of the performance indicator resulting 
from the scenario analysis does not clearly point to a conclusive decision. 
A method for discerning influential and  non-  influential OB aspects given a 
performance indicator distribution might be needed. Gaetani et al. ( 2020) 
advise using the  Mann-  Whitney U test to this end.

7.3.3  Which Model Should I Choose?

In the previous sections, we explored the need to first assess whether an OB 
aspect is present and uncertain for the case at hand, and second whether 
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the performance indicator( s) is ( are) sensitive to such an aspect. If a prelimi-
nary analysis shows that one or more OB aspects ( presence and/ or behavior) 
are present, uncertain, and influential, the simulation user could attempt 
to account for such impact and uncertainty within the model, arriving at 
the question ‘ Which model should I choose?’ The core of the  fit-    for-  purpose 
approach is the hypothesis that model complexity should only be increased 
for those OB aspects that are present, uncertain, and influential.

The choice of model is not trivial and several factors must be considered:

• Models need to be used within their application range. The application of a 
given model for a case other than the one it was validated for is question-
able. In practice, this means that the simulation user should first assess 
whether a model is available for the needed  application—  e.g., is there a 
model that quantifies the probability of occupant interaction with blinds 
in a  south-  facing, fully glazed office located in Melbourne, Australia, or 
a similar climate? If not, the simulation user could either create their own 
model or accept the scenario analysis as the next best option.

• Models need to be used appropriately. Using poorly documented models 
that overpromise should not be attempted. It is the research commu-
nity’s duty to improve the level of documentation of published models 
and clarity about their applications. The user ( as well as the developer) 
should be clear about model pitfalls and possible workarounds that can 
be adopted to reduce such pitfalls. For example, the nature of proba-
bilistic models ( hence, to be based on a probability curve) clashes with 
the very nature of building performance simulation software, where the 
exact same model outputs result from a given set of initial conditions. 
Often, this discrepancy is solved by comparing a generated random 
number to the probability of presence or of an action to be undertaken 
as described in the model; this means that the presence status or occur-
rence of behavior is questioned every simulation timestep ( as often as 
every five minutes). A typical workaround is to ‘ freeze’ a behavior for 
a reasonable amount of time to avoid action being triggered too often. 
The simulation user should only use models that they feel confident are 
being used as intended. If this is not the case, the simulation user should 
either go back to the model developer and seek further assistance or 
accept the scenario analysis as next best option.

• Less complex models should be preferred, and more complex models should 
be adopted only if needed. If several models that can be used appropriately 
and in their application range are available for the case at hand, the simu-
lation user should opt for models with fewer input parameters and lower 
resolution in order to avoid prediction errors due to input uncertainty.

• All input data to a model must be known; otherwise, a sensitivity analysis 
must be performed. If one or more of the input parameters to a model are 
not known, the simulation user should input a range of parameters and 
verify their effect on the results.
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As an example, let us consider the cooling energy use of a building for which 
the scenario analysis resulted in a high potential variation due to OB ( from 
roughly 10 up to 70 kWh m–  2 a–  1) ( Gaetani, Hoes, and Hensen 2016b). This 
particular building and performance indicator were shown by the authors 
via sensitivity analysis to be sensitive to light switch behavior but not sen-
sitive to blind and window operation. The authors show the distribution 
in cooling energy deriving from the scenario analysis (‘ Patterns’) with the 
performance indicator’s distribution obtained by applying higher complex-
ity models for various OB aspects ( light switch behavior, shading devices 
operation, and window operation) ( here reported in  Figure 7.5).

As expected, changing the model complexity for light switch  behavior— 
 in this case, by means of Reinhart’s  Lightswitch-  2002 model ( Reinhart, 
2004)—  causes the distribution in the results to change radically (  Figure 7.5). 
The predicted cooling energy use, which was simulated between 10 and 70 
kWh m–  2 a–  1 by means of the scenario analysis (‘ Patterns’) is now estimated 
to be in the range of  10–  45 kWh m–  2 a–  1. The model approach selected to 
mimic the light switch behavior had a very strong impact on the results.

Conversely, adding model complexity to the other considered aspects of 
OB, to which the performance indicator was previously identified as  non- 
 sensitive, led to negligible differences in the results.
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 Figure 7.5  Effect in cooling energy use distribution by changing the modeling ap-
proach for influential aspects of OB ( light switch behavior) and  non- 
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As this example shows, it is important to consider combinations of as-
pects to investigate the interactions among behavior; while some effect is 
noticeable, for the case investigated in the study, modeling the lights’ opera-
tion alone causes the greatest variation.

To conclude, it is important to carefully consider the effect of assumptions 
regarding occupant presence and behavior on the  decision-  making process 
based on simulation outputs. Most building simulation models require the 
simulation user to input a high number of  occupant-  related parameters simply 
to run correctly. But does the simulation user know where these assumptions 
come from? Are they realistic and appropriate to the purpose of the simulation 
( e.g., a maximum heat gain scenario may be appropriate for assessing overheat-
ing risks, but not necessarily to size the building system)? Does the simulation 
user understand the impact of such assumptions on the simulation outputs?

If the answer to any of these questions is no, a sensitivity analysis ( Section 
7.3.2) may be needed. Moreover, more refined models may have to be sought 
after ( Section 7.3.3) for those aspects of OB that are present, uncertain, and 
influential.

7.4  The Future of Building Performance Simulation and OB: 
Our Vision and How to Get There

As often the case, the advances in academia need to mature before they find 
their application in practice. In the field of OB modeling, we are now at a 
stage where ‘ we know we should do better’ but we still have several barriers 
to overcome.

Our vision for the next few years can be summarized as follows:

• Building performance simulation including OB modeling is fully embed-
ded in the design workflow, building performance prediction is part of the 
 decision-  making process that leads to a design proposal, and the perfor-
mance variations due to different potential behaviors are easily visualized.

• OB modeling is fully integrated into the building performance simula-
tion tools, with a database of models of varying complexity available to 
the simulation user ( such as Deme et al., 2019; Ouf et al., 2018) depend-
ing on the investigated building, the design stage, and input uncertainty.

• OB models are progressively replaced by actual data in the operational 
phase of the building when the building performance simulation model 
is used as a digital twin.

In order to fulfill this vision, efforts should be directed toward improving 
workflows, models and tools, information, education, and communication. 
Regarding workflow improvements, research work should be devoted to 
developing clear,  user-  friendly, and robust workflows and methodologies, 
so that OB modeling can become more intelligible for the design team and 
become part of an actual design tool, as opposed to being relegated to the 
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domain of specialists. Such workflows would ideally contain visualizations 
and be backed by building performance simulation engines. A change of 
culture in the way occupant ( and especially OB) modeling is perceived by ar-
chitects and designers is essential to embark the clients onto  people-  centric 
visions and feedback practices.

In terms of improving models and tools, for  fit-    for-  purpose occupant be-
havior modeling to become  state-    of-    the-  art, the available models and tools 
must support the design process in a seamless manner and without requir-
ing  OB-  modeling expertise. In particular, efforts ( Hong et al., 2015) must 
be directed toward making tools more  architect-  friendly. Attia et al. ( 2009, 
2012) explored whether building performance simulation tools are viewed as 
 architect-  friendly or not. While the authors did not specifically consider OB 
modeling, some of the findings may help map barriers to the wider imple-
mentation of OB modeling during the design stage. For example, Attia et al. 
found that for architects, the most important criterion concerning usability 
and graphical visualization of building performance simulation interfaces 
was the graphical representation of output results ( Attia et  al., 2012). In 
terms of information management, the creation of comparative and multi-
ple alternatives is of paramount importance.

In another  interview-  based study, Gaetani et  al. ( 2021) show that ar-
chitects want to have confidence in creating real sustainable designs and 
obtain a quick performance analysis that supports  decision-  making. The 
interoperability of the performance model with 3D  computer-  aided design 
tools ( Revit, Rhino, Maya, SketchUp, 3DS Max, etc.) was seen as essential. 
These findings are in agreement with ( Attia et al., 2012). When the authors 
asked architects to identify the most important features of a simulation tool, 
77 architects ( 31%) responded, ‘ integration of intelligent design knowledge 
base to assist  decision-  making’, followed by ‘ friendliness of the interface 
concerning usability and information management and interoperability’ ( 70 
architects, or 28%).

Ultimately, behaviors are complex, and so tackling occupant modeling 
is necessarily an interdisciplinary, collaborative effort. Current mode-
ling practices still include high levels of uncertainty, and it is questionable 
whether comprehensive models ( i.e., models that attempt to cover presence 
and all OB aspects at once) make sense. Validation and verification require 
a  high-  resolution dataset, whose collection has traditionally been very  time- 
 consuming. The widespread adoption of smart sensors in buildings is a 
significant opportunity to create and share OB datasets and databases in 
an  open-  source manner. Collaboration between researchers and industrial 
parties who have access to the data would ensure a fruitful use of such fun-
damental sources of knowledge. Guidelines for model implementation are 
emerging to guide the simulation user through the multitude of available 
models, such as the ASHRAE Global Occupant Database ( Dong, 2021), 
which aims to provide a diverse set of data on occupant presence, movement, 
and behavioral activities for various building types in multiple countries.
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An additional area of improvement is regarding information, education, 
and communication. The benefits of appropriate OB modeling and their de-
sign implications are still considered unclear by design teams. Clear exam-
ples and  real-  life case studies can help onboard designers, consultants, and 
their clients. O’Brien et al. ( 2017) illustrated that the second most impor-
tant reason not to include OB modeling as a standard practice in the design 
workflow was lack of understanding/ education. Researchers and scientist 
should work collaboratively with architecture and design firms to clarify 
the potential influence of OB on building performance and the implications 
of appropriate people modeling for building design. Finally, the language of 
OB modeling may still be too dry and technical for some clients and prac-
titioners; better communication may direct clients toward  people-  centric 
designs that include  post-  occupancy evaluations as a standard practice. A 
business case is required for agile POEs that are fed back to the design team 
to help improve their models and designs.

7.5  Closing Remarks

The modeling approach that is chosen to represent occupants and their be-
haviors can have an impact on the simulation results and, consequently, on 
the design choices that are based on those results. For this reason, it is worth 
for simulation users to investigate which modeling approach to adopt for 
the case at hand. In this chapter, we have advocated for the use of a  fit-    for- 
 purpose rationale, where the type of model and its complexity for each aspect 
of occupant behavior depends on the purpose and object of the simulation. 
Occupant behavior is still not fully integrated into the design workflow. Our 
hope is that the renewed interest in buildings’ actual operational performance 
will push the community toward a more appropriate consideration of oc-
cupant behavior modeling and its importance in achieving informed design 
 decision-  making and accurate building energy use predictions. Researchers 
are already showing a commitment to improving workflows, models and 
tools, and, in particular, enhanced information, education, and communi-
cation concerning the role of  human-  building interaction for building per-
formance. To further address this challenge,  Chapter 8 will specifically focus 
on the integration of occupant models in  simulation-  aided design methods.
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Summary

In this chapter, we will introduce a series of  simulation-  based design  methods 
that incorporate models of occupant behavior to achieve  occupant-  centric 
design objectives. To this end, we will first summarize the scenarios in which 
occupant behavior models can be integrated into  simulation-  aided design 
( Section 8.1). We will then explore a number of key  simulation-  aided  design 
methods and objectives with a focus on the role of occupants ( Sections 8.2 
and 8.3). Finally, we will demonstrate and test the  occupant-  centric 
 simulation-  aided design procedures on a carefully described prototypical 
building model ( Section 8.4).

8.1  Occupants in  Simulation-  Aided Design

Before we delve into the description and demonstration of  occupant-  centric 
 simulation-  aided design methods, this section provides a general framework 
to better understand different ways in which occupants can be incorporated 
into  simulation-  aided design methods. The framework is based on two key 
questions about modeling occupants in the design process:

1  Do the occupant models respond to iterative changes in the building 
design, i.e., are the occupant models static or dynamic in relation to the 
changes in building design?

2  Are the occupant models themselves subjected to iterative changes in 
the design process, i.e., are  occupant-  related assumptions among the 
design’s fixed or variable parameters?

We refer to the four possibilities resulting from the questions above (  static- 
 fixed,  static-  variable,  dynamic-  fixed,  dynamic-  variable) as occupant behav-
ior modeling approaches in  simulation-  aided design process and discuss 
them in the following.

8 Advanced Simulation Methods 
for  Occupant-  Centric Building 
Design
Farhang Tahmasebi, Mohamed Ouf,  
Tareq Abuimara, William O’Brien, Kaiyu Sun, 
Amir Tabadkani, Tianzhen Hong and  
Clarice Bleil de Souza

https://doi.org/10.1201/9781003176985-8


Advanced Simulation Methods for Occupant-Centric Building Design 169

It is important to note that this chapter does not intend to provide a defin-
itive answer as to which approach to model occupants is suitable for which 
type of building performance query thorough the design process. Rather, 
the aim is to review the key relevant considerations to help modelers/ 
designers make an informed decision with regard to incorporating occupant 
behavior models in a given design problem.  Chapter 3 ( see in particular Sec-
tions 3.4 and 3.5),  Chapter 5 ( which introduces  occupant-  centric metrics), 
and  Chapter  7 provide further insight into this challenge from different 
perspectives.

8.1.1  Static Occupant Behavior Models as Fixed Design Parameters

In the simplest approach, occupants can be incorporated into a  simulation- 
 based design process as static models that remain fixed throughout the 
iterative design evolution. Arguably, due to the relative ease of access to 
the required data for this modeling approach and its straightforward im-
plementation in building simulation tools, it has been widely adopted in 
 simulation-  based design efforts. As highlighted in  Chapter 6, many build-
ing energy standards recommend static assumptions for different types of 
buildings and spaces, such as maximum values and schedules of occupancy, 
lighting, and equipment use. As well, dynamic building thermal perfor-
mance simulation tools generally have native components for definition of 
this type of occupant model. However, adopting a static occupant modeling 
approach means turning a blind eye to  human–    human interaction within 
a building as well as  human–    building and  human–    environment interac-
tions ( see  Chapter 3). In particular, because of the disconnect between the 
design’s indoor environmental conditions and occupant operation of the 
environmental control systems, design performance is not fully captured. 
Moreover, this type of  simulation-  aided design investigation does not reveal 
whether the building performs as expected when occupied differently than 
intended. With these limitations in mind, the building performance model-
ers should consider whether this simplified occupant modeling approach is 
suitable for their specific design problem.

The following example clarifies the above approach and its key limita-
tions. In a  performance-  based design of a window, the designer/ modeler 
aims to find the optimum size of the window that minimizes the energy de-
mand of an office space in a typical year. The building thermal model used 
for energy demand estimation represents the room occupancy with specific 
assumptions, including the maximum number of occupants, lighting and 
equipment power density, and the corresponding schedules for weekdays 
and weekends. Thus, the building model captures the internal heat generated 
by the occupants, lights and equipment, and the optimization process finds 
a solution for window size that, for example, minimizes the sum of heating, 
cooling, and electrical energy use. However, in this optimization process, 
design iterations with larger windows are not favored by the optimization 
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algorithm, as the building energy model does not consider the relation be-
tween the provided daylight levels and the use of electrical lighting by occu-
pants. Moreover, since the  occupant-  related assumptions are not subjected 
to iterative changes through the optimization process, the modeler is not 
able to investigate if different patterns of occupancy or occupant behavior 
yield different window sizes as the optimum design solution.

8.1.2  Static Occupant Behavior Models as Design Variables

To some extent, the implications of different occupancy patterns for design 
performance can be studied while benefiting from the simplicity of static 
occupant models. Building on the example in Section 8.1.1, if the designer/ 
modeler has control over the number of occupants in the room, the maxi-
mum occupant density can be set as a continuous or discrete design variable 
to represent a reasonable range of occupancy density or different  pre- 
 defined occupancy scenarios. Similarly, different sets of  occupancy-  related 
schedules can be defined and assessed during the design process. In both 
cases, the  simulation-  aided design exploration may either find the fittest oc-
cupancy patterns to minimize the objective function or determine if differ-
ent patterns of occupancy yield different design solutions to be judged by 
the client. It is important to note that when using static occupant behavior 
schedules as design variables, the modeler should ensure that  occupancy- 
 related assumptions ( such as lighting and equipment use schedules) are tied 
to the changes in occupancy, so that the studied behavior not only includes 
the number of users but also reflects their interaction with appliances.

8.1.3  Dynamic Occupant Behavior Models as Fixed Design 
Parameters

Given the limitations of static occupant models in  simulation-  based design 
processes, it is worth considering a dynamic modeling approach to capture 
relevant interactions of occupants with building environmental control sys-
tems, such that the design process is informed by the  two-  way relationship 
between design performance and occupant behavior. While dynamic oc-
cupant behavior models can be deterministic or stochastic, arguably both 
types have the potential to enhance the representation of occupants in the 
design process. Stochastic models capture the probabilistic nature of occu-
pant environmental control actions. However, they come with a challenging 
computational cost, especially if the design process relies on numerous iter-
ative simulations. Deterministic dynamic occupant models are not compu-
tationally expensive, but the modeler should be aware that they mirror ideal 
theoretical or automated scenarios of adaptive actions ( see  Chapter 6).

To revisit the example from Section 8.1.1, the designer/ modeler could, for 
instance, incorporate a deterministic dynamic model of a light switch into 
the building model such that a number of the lights are switched off when 
the indoor daylight illuminance at a certain point exceeds a given threshold. 
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Although this model expresses a  building-  environment interaction not di-
rectly related to occupancy, it can be used to mimic a  human–  environment 
interaction using the building control system as a surrogate for an ideal sce-
nario of  occupant-  adaptive action. Of course, there are a number of  data- 
 driven stochastic light switch models available that the modeler could opt 
for. However, either way, the light switch model enables the optimization 
process to reward larger windows due to their potential for reducing electri-
cal lighting use.

It should be also noted that, once the libraries of occupant behavior are 
rich enough, dynamic occupant behavior models will also allow for investi-
gating the impact of environmental control interfaces on occupant behavior 
and building performance within the  simulation-  aided design process ( see 
 Chapter 9).

8.1.4  Dynamic Occupant Behavior Models as Design Variables

Inclusion of the new generation of occupant models ( as dynamic,  data- 
 driven, stochastic, and  agent-  based models) in the  simulation-  aided design 
process makes it possible to capture the occupant interactions with building 
environmental control systems, and provides further opportunities to test 
the design for different occupants and operation scenarios. As discussed 
in  Chapter 6, many studies of occupant adaptive behavior have observed 
large samples of occupants and documented a wide range of interactions 
with different environmental control systems in different types of buildings. 
A number of these studies have also established personas based on distinct 
types of environmental control behavior ( see  Chapter 4). Thus, with these 
occupant behavior models, the  simulation-  aided design process can, among 
other things, test the robustness of building design schemes in relation to 
different types of occupants and/ or finetune the design process for specific 
types of  occupants –   for instance, the elderly.

Returning to the example in Section 8.1.1,  data-  driven dynamic occupant 
models allow to study how different types of occupants ( for example, in 
terms of their readiness to switch lights on and off depending on daylight 
availability) yield different optimum window designs. This is, for example, 
particularly relevant when designing for people with limited mobility. Thus, 
applying occupant behavior models as design variables could inform the 
design process to develop environmental controls that better fit to specific 
types of users. Thereby, the design team can either target the most repre-
sentative type of occupants for a given project, accommodate specific “ edge 
cases”, or propose multiple design solutions based on different assumptions 
on future occupants to be discussed with the client.

8.2   Simulation-  Aided Design Methods

Having considered the approaches to integrate occupant models in de-
sign process, this section describes four common  simulation-  aided design 
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methods used by different members of design teams to make design deci-
sions factoring in occupancy behavior: uncertainty and risk assessment, 
sensitivity analysis, parametric design, and optimization.

Building designers need information to understand what is significant 
to the design challenge at hand and, at the same time, information that is 
useful to make design decisions ( Bleil de Souza and Tucker, 2015). In this 
context, designers are assumed to undertake building performance queries 
( i.e., investigate the performance of their design proposal) as well as seek 
design advice ( i.e., look for guidance to proceed from the performance of 
the building proposal to an improved design; Mahdavi, 2004). This type of 
interaction between designers and their work happens in most stages of the 
design process. Occupancy data is part of this wider exploration of design 
and building performance, where occupancy ( as discussed in Section 8.1) is 
either seen as a fixed design parameter or as a design variable, depending on 
the design stage and the type of performance query or design advice needed.

The methods discussed in this section are mainly normative, i.e., they are 
procedures that describe decisions to be made so that best choices are en-
sured ( de Wilde, 2018). Their use in practice is limited by the time available to 
undertake a project, knowledge of the design team, and resources available to 
make decisions. Thus, they may not always be followed “ as prescribed” ( e.g., 
toward achieving optima). The design team may settle for whatever is satis-
factory to fulfill a set of stakeholders’ needs, mainly specified by the client and 
the main contractor. However, despite still being bounded by  practice-  based 
constraints, the importance of these methods in design  decision-  making is 
growing as the industry is pushed toward  performance-  based design ( e.g., 
Directive ( EU) 2018/ 844, EPBD, 2018) and  occupant-  centric design ( e.g., EN 
ISO 55000, 2014), which means that methods are needed to not only substan-
tiate decisions but also enable tracing accountability and liabilities toward 
achieving tighter targets for carbon emissions and occupant health. This is 
primarily where uncertainty and risk assessment come into play.

Briefly, uncertainty is defined as a “ deficiency of information, related to 
understanding or knowledge of an event, its consequences, or likelihood” 
( EN ISO 55000, 2014). Risks are “ often expressed in terms of a combina-
tion of the consequences of an event ( including changes in circumstances) 
and the associated ‘ likelihood’... of occurrence” ( EN ISO 55000, 2014). Both 
uncertainty and risks are dealt with by project teams at the very early de-
sign stages before design briefs are developed, and they cascade down to all 
project stages, including commissioning. They are formulated initially by 
project managers with regard to meeting the client’s objectives and expecta-
tions, and then translated by the design team into design objectives to be im-
plemented throughout the design process. Uncertainty and risk assessment 
are further explored in Section 8.2.1.

A key normative method to gauge uncertainty in relation to occupancy 
and to make more informed design decisions is sensitivity analysis ( de Wit 
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and Augenbroe, 2002), which is described briefly here and in more detail 
in Section 8.2.2. Defined as a way “ to establish which of the input param-
eters have the most impact on experimental outcomes” ( de Wilde, 2018), 
sensitivity analysis is mainly used by engineers and consultants to make 
decisions related to building services and systems at spatial coordination 
and technical design stages. It can also be used by consultants to generate 
design alternatives that help building designers “ decide on the alternative 
that gives the highest chance of a desired outcome” ( de Wilde, 2018) related 
to building form, spatial distribution, materials choices, etc. in conceptual 
and technical design stages.

However, when building designers are exploring a universe of design solu-
tions, they often rely on parametric design to create and express ideas and 
make decisions related to building form and its relationships with differ-
ent aspects of performance ( structural, shading, daylight, etc.). More than 
a method, parametric design is a set of scripting tools that aid architects 
in manipulating relationships between different design elements by means 
of parameters, which provides fast feedback on performance to keep pace 
with the rapid design evolution that happens in conceptual design stages ( de 
Wilde, 2018). Parametric design is examined in more depth in Section 8.2.3.

Finally, Section 8.1.1 focuses on optimization, which is “ the process of 
finding the best [design] alternative” ( de Wilde, 2018) out of a range of alter-
natives to satisfy specific objective functions. Optimization has question-
able use for building designers who normally deal with multiple objective 
functions and simultaneously manipulate several design parameters that are 
not always quantifiable ( de Wilde, 2018). However, the method can be used 
by engineers and consultants in technical design stages when main design 
parameters are already defined and  fine-  tuning of best combinations of al-
ternatives is being investigated.

8.2.1  Uncertainty and Risk Assessment

In  simulation-  aided building design, uncertainty is the inability to accu-
rately predict the impact of assumptions, decisions, or, generally, the inputs 
on building performance. As a simple example, a lack of knowledge about 
building occupancy patterns when designing an office building increases 
uncertainty about the lighting or  plug-  in equipment energy use.

Uncertainty during  simulation-  aided building design can be attributed 
to several sources, including human error, weather data, accuracy of sim-
ulation tools, accuracy of materials’ physical and thermal properties, and 
accuracy of assumptions about occupants and their behaviors ( de Wit and 
Augenbroe, 2002). Additionally,  client-  driven design changes ( McGraw Hill 
Construction, 2014) and discrepancies between assumptions used during 
design ( Abuimara et  al., 2020) are also recognized as possible sources of 
uncertainty.
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8.2.1.1  Risks Associated with Uncertainty

Uncertainty in the outputs of  simulation-  aided building design is associated 
with several risks that undermine the credibility of design predictions. The 
widely recognized performance gap is typically attributed to uncertainty in 
design assumptions and predictions that mismatches  post-  occupancy con-
ditions. Uncertainty during design can also lead to the risk of making sub-
optimal design decisions that would compromise the energy and comfort 
performance of buildings. Examples of suboptimal design decisions include 
 over-  /  under-  sizing of HVAC equipment and flow rates, selecting inappropri-
ate window shading devices, overlooking adaptive technologies ( e.g., light-
ing controls, DCV), and  over-  /  under-  sizing windows ( O’Brien et al., 2019). 
These suboptimal or conservative design decisions lead to high operational 
costs throughout the building lifecycle.

8.2.1.2  Assessing and Managing Uncertainty during Design

A typical approach for mitigating risks that stem from uncertainty in the 
design process is to make conservative assumptions and follow conservative 
approaches. In other words, designers base their decisions on the  worst-  case 
scenario ( Djunaedy et al., 2011). This approach might work in some but not 
many situations, as it often leads to increased capital and running costs of 
the buildings ( Wang et al., 2018). It could also compromise the energy and 
comfort performance of the building. Therefore, assessing and handling un-
certainty during  simulation-  aided building design is of great importance for 
building cost, performance, and stakeholders’ expectations.

In order to manage uncertainty in a  simulation-  aided design process, first 
and foremost, the modelers need to acknowledge and communicate it in the 
performance predictions. Reporting a performance range instead of deter-
ministic values is an effective way of implying uncertainty ( Sun and Hong, 
2017). Aiming at robust design strategies is also considered a promising ap-
proach for mitigating uncertainty ( see Section 8.2.2).

There are various quantitative and qualitative techniques that can assist 
in determining uncertainty ( Burhenne et al., 2010; Smith, 2013). Examples 
of quantitative methods are sensitivity analysis, Monte Carlo simulation, 
and Bayesian statistical modeling ( de Wit and Augenbroe, 2002; Tian et al., 
2018). An example of a qualitative method is the confidence level test.

8.2.1.3  Occupants as a Source of Uncertainty

The nature of building occupants and their behavior makes them one of the 
major sources of uncertainty in building design. With regard to occupants’ 
presence in building, the inability to predict the actual number of occu-
pants and the changes that might occur throughout the building life cycle 
is considered a key source of uncertainty in assessing building performance 
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( see, for example, Doiron et al., 2011). Inevitably, the difficulty of predicting 
adaptive behavior of occupants means it might be assumed to act either 
in favor of or against the designer’s objectives, which ultimately informs 
decisions that affect building performance. For example, assuming that oc-
cupants will behave in favor of designer’s objectives might involve relying on 
them to turn off lights when not in use or opening window blinds when there 
is adequate daylight. A contrary example is assuming that occupants will 
misuse operable windows ( e.g., leave windows open during a cold winter’s 
day) and so fixed windows are designed.

The mismatch between what is assumed during design and what occurs 
 post-  occupancy has several implications for building performance and is 
linked to the  so-  called “ performance gap” in this field. Arguably,  energy- 
 intensive occupant behaviors can turn a building that is intended to be 
 energy-  efficient into a building that performs worse than a conventional 
building ( Norford et al., 1994).

Ongoing efforts have been undertaken to quantify and mitigate the  occupant- 
  related uncertainty in the design process. Most notably, as discussed in 
 Chapter 6, the development of  data-  driven occupant models has aimed to 
achieve a more reliable representation of occupants during building mod-
eling process. Additional efforts have been made to account for  occupant- 
 related uncertainty by testing variable occupant and occupant behavior 
scenarios to quantify their impact on energy and comfort performance ( see, 
for example, Abuimara et al., 2019; Sun and Hong, 2017).

8.2.2  Sensitivity Analysis

Sensitivity analysis ( SA) refers to analyses that explore the impact of inputs’ 
uncertainty on the outputs ( Saltelli, 2002). SA is a necessary step in model 
creation under any setting. SA in building design refers to the process of 
identifying the most important design parameters by quantifying their im-
pact on design performance ( Heiselberg et al., 2009). SA assists designers in 
shortlisting design parameters in the search for optimal design solutions.

8.2.2.1  Methods and Types of Sensitivity Analysis

SA can be categorized into screening, local, and global studies. Screening 
SA, also known as the  one-    parameter-    at-    a-  time ( OAT) method, is done by 
varying the value of each design parameter individually using the standard 
value of the parameter as a control. Typically, two extreme values of the 
design parameter on both sides of the standard value are tested. Then, the 
difference between the results obtained from standard and extreme values 
are compared to identify the design parameters that are highly influential on 
design outcomes ( Hayter et al., 2000).

Local SA is also conducted in an OAT manner, whereby the values of one 
design parameter are varied based on its probability density function while 
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keeping other design parameters unchanged ( Heiselberg et al., 2009). While 
OAT SA is a useful technique for eliminating  low-  impact design parameters, 
in many cases it is considered inadequate, as it neglects the interactions be-
tween design parameters.

In global SA, a wide range of values for multiple design parameters are 
tested and the outcomes are evaluated. A global SA considers the probabil-
ity density function of design parameters and accounts for the interactions 
between different design parameters and their impact on performance. The 
output of global SA is typically a distribution which is mapped to space of 
inputs using a random sampling technique ( Heiselberg et al., 2009). Global 
sensitivity analysis can be conducted using various techniques such as 
Sobol’s sensitivity estimates, the  Monte-    Carlo-  based  regression-  correlation 
indices, and the Fourier amplitude sensitivity test ( FAST) ( Zhou et al., 2008). 
Global SA, however, can be computationally demanding for assessing large 
numbers of variations.

8.2.2.2  Application in  Occupant-  Centric Design

As a widely used technique in  simulation-  aided building design, SA has 
been used frequently to study  occupant-  related parameters during the 
design process. For example, studies by Blight and Coley ( 2013), Sun and 
Hong ( 2017), and Abuimara et al. ( 2019) employed different SA methods to 
quantify the impact of occupants and occupant behaviors on building per-
formance and design  decision-  making. Sun and Hong ( 2017) implemented 
 occupant-  related measures such as lighting control,  plug-  in equipment 
control, HVAC control, and window use control, which yielded up to 23% 
reduction in energy consumption when implemented  one-    at-    a-  time and a 
potential 41% reduction in energy consumption in combination. Abuimara 
et al. ( 2019) conducted a sensitivity analysis to determine the extent to which 
the  energy-  saving potential and associated ranking of a number of design 
options ( e.g., improving envelope thermal insulation, window assemblies, 
and systems efficiency) were sensitive to the assumptions about occupants.

8.2.3  Parametric Design

Parametric design is a method that allows the designer to systematically ex-
plore the design alternatives by iteratively testing different combinations of 
design parameters. In a  performance-  based parametric design, the designer 
can assess the range of design performance resulting from the variations of 
geometric and  non-  geometric design parameters. To this end, building per-
formance simulation tools offer two workflows:

1  Manual workflows, where conventional simulation tools are deployed 
to initiate a design concept, and changing the modeling input involves 
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manual editing of the design parameters or repeating the model crea-
tion process until the resulting design performance is satisfactory. The 
manual method is typically applicable where a limited range of possi-
bilities, such as two ends of a spectrum (  best-   and  worst-  case scenarios), 
are explored ( Azar et al., 2020). Relying on this workflow might hinder 
the applicability of parametric analysis when a large number of design 
alternatives need to be tested ( Gilani et al., 2016).

2  Algorithmic workflows, where the model is defined by explicit definition 
of the design parameters and their dependencies to enable generation 
and examination of potentially a vast number of design alternatives in 
an automated or  semi-  automated manner. These workflows can elevate 
the iterative solution search to a more  in-  depth investigation of  trade- 
 offs, facilitate customization of specific design scenarios, and explore 
the impact of design uncertainties on performance.

8.2.3.1  Parametric Design Tools

The discourse of parametric design and its integration with building per-
formance simulation has resulted in developing tool sets that have been of 
great interest to researchers in recent years. In particular, typical building 
simulation tools such as EnergyPlus, OpenStudio, and TRNSYS, which 
were not originally developed for the purpose of parametric design or mod-
eling complex geometries, can now be deployed via  plug-  ins and interfaces 
such as ArchSim ( for EnergyPlus), DIVA ( for Radiance and EnergyPlus), 
 Ladybug-  tools ( for Radiance, EnergyPlus, and OpenStudio), and jEPlus ( for 
EnergyPlus and TRNSYS), which largely enhance their capabilities for par-
ametric design. These tools are equipped with algorithmic workflows to en-
able generation and simulation of a large number of design alternatives in a 
single environment to facilitate the exploration of  cause-    and-  effect relation-
ships. A commonly used interface for parametric modeling is Grasshopper 
( the visual scripting platform for Rhinoceros 3D modeling software), which 
allows users to program via different languages such as C#, Visual Basic, or 
Python. This scripting capability has facilitated the creation of applications 
such as DIVA and Ladybug Tools, which offer extensive parametric simula-
tion possibilities to  non-  programming users to explore both geometric and 
 non-  geometric aspects of their designs ( Roudsari and Pak, 2013).

8.2.3.2  Applications in Building Design

Deploying parametric design tools allows for evaluating individual, mul-
tiple and interrelated design variables, assessing  trade-  offs, and arriving 
at optimum design solutions. Parametric simulation platforms can also fa-
cilitate  multi-  disciplinary dialogue through visualization of the mapping 
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between the design variables and corresponding values of performance in-
dicators. To this end, commonly a  brute-  force ( or exhaustive search) ap-
proach is adopted, where the designer generates and simulates the entire 
 full-  factorial space of relevant design configurations using an automated 
algorithm. These can be then visualized and explored using, for example, 
parallel coordinates plots with tools such as Design Explorer (  Figure 8.1). 
Understandably, for complex parametric design simulations, generation 
and simulation of all design scenarios is computationally intensive, which 
may make  optimization-  based design methods more favorable ( see Section 
8.3.4). However, the evolution of  cloud-  based simulation platforms ( such as 
Pollination Cloud) allows building performance simulations to run much 
faster, thus expanding the applicability of parametric design to complex 
 performance-  based design explorations.

8.2.3.3  Occupants in the Process

Parametric design can integrate occupants in the process as design vari-
ables to generate a mapping between  occupant-  related design scenarios 
and building performance indicators. This method can inform the design 
process about the implications of different  occupant-  related scenarios for 
building design and operation and increase the design robustness against 
 occupant-  related uncertainties. As suggested in Section 8.1, this is best 
achieved if the design models consider occupants’ interactions with the 
environmental control systems. For example, if the window size changes 
substantially through iterative model generations without capturing the 
potential adaptive actions of occupants, the process may not lead to a re-
liable performance assessment or an acceptable design solution for occu-
pants. Additionally, while parametric design environments generally allow 
modelers to easily tie  inter-  dependent design parameters together, this 
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 Figure 8.1  An example parallel coordinates plot depicting the mapping between 
design parameters ( here, building aspect ratio, north and south façades 
 window-    to-  wall ratio, overhang depth) and performance indicators 
( here, heating demand, cooling demand, source energy use intensity).
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consideration of interdependencies should be also applied to  occupancy- 
 related design parameters. For instance, if variations in the number of occu-
pants do not change the use of equipment and lighting, then the parametric 
design exploration does not properly capture the implications of occupancy 
density for design performance.

8.2.4  Optimization

The use of optimization algorithms in  simulation-  aided design has grown 
in recent years thanks to advancements in computational and design tools 
( Attia et  al., 2015; Ouf et  al., 2020). Building performance optimization 
( BPO) allows designers to investigate millions of design alternatives with-
out running substantial parametric analyses that would otherwise require 
significant computational time ( Attia et al., 2013). This process relies on dif-
ferent types of algorithms to significantly reduce the solution space ( i.e., all 
possible design alternatives) and identify optimal design parameters that 
achieve specific performance objective( s), while considering the conflicting 
 system-  level design  trade-  offs ( Bucking, 2016).

Generally, mathematical optimization problems can be represented by 
)(∈    min   x X f X  where ∈   x X  is the vector of design variables, → : f X R 

is the objective function ( i.e., optimization goal, such as reducing energy 
use), and X ∈ Rn is the constraint set ( i.e., parameter constraints, such as 
allowable values for design parameters). If more than one objective function 
exists, then a  multi-  objective optimization problem arises. However, the de-
sign process is always  multi-  objective. Therefore, transferring actual build-
ing design problems into the mathematical domain has some limitations, 
including that commonly used optimization algorithms applied to building 
design problems are not comprehensive enough to account for all design 
objectives.

 Meta-  heuristic optimization algorithms provide a  higher-  level procedure 
that performs iterations on populations of representative building designs; 
thus, they are also known as  population-  based algorithms ( Evins, 2013). 
Due to their nature as partial search algorithms,  near-  optimal solutions 
can be obtained with comparatively less computational time, and issues 
such as discontinuity and  non-  linearity can be handled efficiently to avoid 
converging to local minima. However, running  meta-  heuristic search algo-
rithms may not always result in finding the same optimal solutions due to 
their stochastic nature. Despite this issue, Evolutionary Algorithms ( EA), 
which are  meta-  heuristic search algorithms, are the most commonly used 
optimization technique in the reviewed literature ( Hamdy et al., 2016). The 
most popular evolutionary algorithm used in  building-  related research is 
the Genetic Algorithm ( GA) ( Attia et al., 2015), which uses the principle of 
natural selection to evolve a set of solutions toward identifying an optimum 
design solution.
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8.2.4.1   Simulation-  Aided Design with Building Performance 
Optimization

BPO algorithms can be used to achieve various design objectives once they 
are formulated as an optimization objective function. Notably, energy use 
reduction is one of the most common design objectives that can be achieved 
using BPO, as it requires systematic evaluations of various design param-
eters that interact with each other, often resulting in very large solution 
spaces ( Bucking, 2016; Carlucci et al., 2015). In this case, using  brute-  force 
parametric simulations to evaluate all possible design alternatives may not 
be a viable solution, which highlights the need for BPO. Furthermore, BPO 
can be used to evaluate design robustness ( Hoes et al., 2011), which can be 
defined as the ability of a building to maintain the preferred performance 
objective despite different uncertainties ( Taguchi and Clausing, 1990).

When more than one design objective is being evaluated, BPO can be per-
formed using two main approaches. In the first approach, different design 
objectives can be combined into one objective function with variable weights, 
such that the optimization objective is to minimize this objective function 
( e.g., Gunay et al., 2019). In this case, an optimal design alternative that rep-
resents a compromise between competing design objectives is identified. In 
the second approach, a  multi-  objective optimization problem can be formu-
lated and then used to identify optimal design alternatives that lie on the 
 trade-  off curve, known as the Pareto Frontier. Improvements in any of these 
design alternatives to achieve one objective would typically negatively affect 
the other objective( s) ( Attia et al., 2013; Evins, 2013; Machairas et al., 2014).

8.2.4.2  Occupants in Building Performance Optimization

Capturing the  bi-  directional relationship between building design and occu-
pant behavior is one of the least studied aspects in BPO literature ( Bucking, 
2016). Previous studies have attempted to represent this relationship in BPO 
using three main approaches. The first approach relies on statistical meth-
ods such as  Monte-  Carlo simulations to randomly select building loads dis-
tributions that represent  occupant-  building interactions from  pre-  identified 
distributions ( see, for example, Bucking et al., 2011; Sun et al., 2015). The 
second approach focuses on defining several scenarios in which combina-
tions of  pre-  determined  occupant-  related variables are used ( e.g., occu-
pancy profiles, heating setpoints, light use profiles), and then each scenario 
is optimized independently. This approach was used by Kim ( 2013), Hoes 
et al. ( 2011), and Bucking et al. ( 2011) to investigate BPO results under prede-
fined occupant scenarios. However, the main limitation of both approaches 
is that they do not consider the effect of design choices on occupant behav-
ior within the simulation process. To address this issue, Ouf et  al. ( 2020) 
introduced a third approach in which dynamic and stochastic occupant 
behavior models were incorporated into the BPO process. This approach 
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accounted for the effect of design parameters on occupant behavior during 
every timestep of building simulation, which identified optimal design solu-
tions subject to dynamic and stochastic occupant behavior.

 Figure 8.2 provides an overview of the process used by Ouf et al. ( 2020) 
to integrate stochastic occupant behavior modeling within an optimization 
process using the GA algorithm. For each design alternative generated by 
the GA algorithm, stochastic models were implemented in building simula-
tion to predict occupants’ presence and arrival and departure times. Other 
models were also implemented to predict occupants’ interactions with lights 
and blinds based on indoor and outdoor illuminance at every timestep. 
These implementations can be extended to other  occupant-  building interac-
tions such as thermostat key presses depending on design and optimization 
objectives. Given the stochastic nature of these occupant behavior models, 
it is typically necessary to repeat the simulation multiple times to obtain 
results that represent an average and a range of performance under occu-
pant behavior. The exact number of repetitions ( X) should be  case-  specific 
depending on the models used in the simulation. The main outcomes of this 
workflow proved that the approach used to represent occupants can signif-
icantly influence the choice of optimal design parameters ( Ouf et al., 2020).

8.3   Simulation-  Aided Design Objectives

Regardless of whether they are undertaking design queries or seeking de-
sign advice during the design process, designers/ modelers normally have 
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clear objectives or goals in mind when structuring their simulations, i.e., 
they have clear ideas about using simulation to generate the necessary ev-
idence for them to make decisions. In the following sections, four such de-
sign objectives and their associated treatment of occupants are discussed, 
namely performance compliance checks, robustness to different occupancy 
and occupant behavior patterns, adaptiveness to different occupant behav-
ior patterns, and resilience to extreme weather conditions.

8.3.1   Performance-  Compliant Design

 Performance-  based building standards incorporate simulation tools to en-
able objective assessment of building performance while authorizing design 
flexibility and technological innovation to achieve energy and environmen-
tal targets ( CIBSE, 2015). The standards may target different stages in the 
project life cycle for compliance evaluation; this section, however, focuses 
on  as-  designed compliance methods.

In the context of building energy codes, the  simulation-  assisted compli-
ance checking process commonly involves modeling the proposed design in 
an authorized building simulation tool to compare its energy performance 
with that of the  so-  called notional ( or baseline) building. The notional build-
ing commonly has the same shape, size, orientation, zoning arrangements, 
usage scenario, and HVAC types as the proposed design, but the properties 
of building fabric and HVAC systems are defined based on the values given 
in the standard.

To provide practical, consistent, and replicable procedures, building per-
formance modeling for the purpose of compliance demonstration needs to 
rely on standard assumptions and simplified methods ( CIBSE, 2015; Tre-
genza and Wilson, 2011). As such, the standards provide reliable assumptions 
for designers in the absence of information. They are therefore important 
industry quality assurance mechanisms for “ assumed usage” that can be 
referred to in litigation cases and insurance claims.

However, the abovementioned characteristics of standards have made 
them particularly stringent in terms of innovations in  occupant-  centric de-
sign ( O’Brien et al., 2020). This inflexibility is in contrast to the freedom with 
which the designers can, for instance, explore building physical properties 
and HVAC setup and components in the process. Specifically, the stand-
ards not only require the same usage scenario in the proposed and notional 
buildings, but they also enforce specific types of occupancy models or as-
sumptions. For instance, ASHRAE 90.1 demands the use of schedules to 
model hourly variations in occupancy, lighting power, miscellaneous equip-
ment power, thermostat setpoints, and HVAC system operation, and recom-
mends specific schedules if actual schedules are not known. The National 
Calculation Methodology in the United Kingdom even mandates specific 
occupant behavior and system operation schedules from its database. As 
documented in an international review ( O’Brien et  al., 2020), the current 
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building energy codes mostly rely on overly simplistic assumptions about 
occupant adaptive actions ( such as modeling operable shades as constantly 
open).

Given the impact of regulations and building standards on the building 
design process and current limitations in terms of the representation of oc-
cupants in the process, compliance modeling is best seen as an initial stage 
in the  occupant-  centric design process. This stage needs to be followed by 
more explorative design modeling efforts that allow for more flexible and 
impactful consideration of occupants in the process. Examples of such 
 simulation-  aided design efforts are discussed in the next sections.

8.3.2  Robust Design

Building performance can be highly uncertain during the design process. 
This uncertainty is related to weather, construction quality, material prop-
erties, operational strategies, occupant behavior, and so on. This section fo-
cuses on occupants and how the uncertainty associated with their behavior 
can be addressed by a robust design.

In general, uncertainty is mostly addressed by making conservative as-
sumptions. Designing for weather, for example, considers 99% of condi-
tions. In the case of HVAC, equipment is sized large enough to maintain 
comfortable conditions in a building 99% of the time, and the temperature 
is too warm or too cold for the HVAC to meet all building needs just 1% of 
the time. The assumption is that the conditions during that 1% of time will 
not be too extreme compared to the 99% conditions; and even if they are, the 
duration will not be very long. Analogous approaches are commonly taken 
for occupancy, whereby cooling equipment is designed to be large enough to 
remove heat if the building is fully occupied.

Designing conservatively for ( near)  worst-  case scenarios is costly, how-
ever. It means sizing equipment and other systems to be large enough to 
address circumstances that will rarely be  encountered –   for example, sizing 
a chiller to cope with nearly all conditions ( O’Brien et al., 2019) or a PV array 
to be nearly certain that a  net-  zero energy building will produce as much 
 on-  site energy as it consumes over a year ( Abdelalim et al., 2019). Design 
conditions tend to be most extreme when there is great uncertainty about 
operating conditions. The operating conditions cannot necessarily be con-
trolled; however, they can  be –   or at least attempted to  be –   quantified and 
buildings designed accordingly.

Robust design is an established design method developed by Genichi 
Taguchi ( Phadke, 1995), whereby a system is optimized to reduce variation 
of performance under a range of operating conditions. In the context of this 
chapter, the goal is to reduce the uncertainty of building performance as a 
result of occupancy and occupant behavior. Graphically, this can be repre-
sented by probability distributions, where the objective of robust design is to 
reduce the variance of the distribution and ideally reduce/ increase the mean 
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( depending on the objective function). This is depicted in  Figure 8.3, which 
shows the probability distribution for two different building design options.

The relationship between the system, uncertainty, and performance is 
normally depicted with a  P-  diagram, as shown in  Figure 8.4. The descrip-
tion of the figure is premised on the assumption that simulation is used to 
perform robust design. Starting on the left side of the figure, the weather 
and other operating conditions are imposed on the model ( as normal). Two 
additional sets of variables are imposed on the model: occupant parameters 
and design parameters. The occupant parameters are described below and 
likely consist of one or more occupant traits with a distribution of values 
for each. The design parameters are the building features that are varied to 
understand the relationship between building design and the distribution of 
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 Figure 8.3  Probability distribution for two different design options. Robustness is 
indicated by the spread ( variance) of the distributions. In this case, the 
design depicted by the narrower distribution is preferable because it is 
not only less uncertain but also has a lower mean predicted performance.
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predicted building performance levels. Finally, the output of the simulation 
is a probability distribution of performance levels ( e.g., like those predicted 
in  Figure 8.3).

In practice, to perform robust design using simulation, a range of oc-
cupancy or occupant behaviors is required in the form of a distribution. 
They may be, for example, a Gaussian distribution of occupancy densities. 
It could also be as simple as a uniform distribution with a range from the 
lowest to highest foreseeable occupant densities. If a stochastic occupant 
model is used, then it has the inherent property of yielding different results 
each time it is run.

One or more occupant features can be evaluated simultaneously. For in-
stance, occupant density and schedules could be simultaneously considered 
with behaviors related to computer equipment, manual lighting, and oper-
able window use.

While a factorial approach could be used to assess an exhaustive set of 
occupant parameter combinations, a Monte Carlo approach is likely to be 
the most efficient. For instance, a building model may be run X times, each 
with randomized occupant parameters. With the simulations runs, a proba-
bility distribution of performance levels can be established for a given build-
ing design ( including the design parameter settings). While this distribution 
may be interpreted in absolute terms, it is typically more valuable to assess 
multiple designs against each other for their robustness.

8.3.3   Occupant-  Adaptive Design

Aiming for  occupant-  centric design, adaptability to changing occupant be-
havior is another key design objective. Building adaptability is defined as 
the ability of a building to adapt to varying conditions while satisfying its 
primary function in an efficient way. In the context of  occupant-  centric de-
sign and operation, it is the ability of a building and its components to adapt 
to varying occupancy ( Ouf et al., 2019).  Figure 8.5 illustrates a conceptual 
comparison between the optimal adaptability of a building and a building 
with traditional  non-  adaptive features.

Because buildings experience temporal and spatial variation of occu-
pancy ( Gilani et al., 2019; Newsham, 1992), including adaptive features in 
buildings and building systems is necessary to achieve energy efficiency 
and comfort ( O’Brien and Gunay, 2019). For example,  demand-  controlled 
ventilation ( DCV) is an adaptive ventilation technology that is proven to 
improve energy efficiency, especially in buildings with varying occupancy 
( Lawrence, 2004). DCV manages and adjusts the supply of outdoor air to 
building spaces according to actual occupancy (  occupancy-  based DCV) or 
CO2 concentration ( CO2-  based DCV) ( Fisk and De Almeida, 1998). Other 
examples of adaptive building technologies include: lighting controls that of-
fer the ability to provide lighting when and where needed, which suits varia-
ble occupancy in buildings ( Pandharipande and Caicedo, 2015); automated 
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window shading devices that can respond to weather variations and satisfy 
occupants’ comfort; and manual or  occupant-  controlled features, such as 
operable windows and manual window blinds. These technologies, how-
ever, can also have negative impacts on energy use and comfort if misused 
( e.g., leaving a window open during a cold night).

Designing buildings that adapt to common occupant behaviors can mit-
igate  occupant-  related uncertainty and have a positive impact on building 
energy and comfort performance. For instance, a common  energy-  intensive 
and wasteful practice in commercial buildings is supplying ventilation to 
building spaces based on a fixed schedule of fully occupied or vacant spaces. 
An alternative adaptive approach is to introduce outdoor air into the spaces 
as needed depending on the number of occupants. Another example is an oc-
cupant who closes the window shades to avoid glare but leaves them closed 
for days, relying instead on electrical lighting at that time. Technologies such 
as automated shading devices, which are controlled based on occupancy and 
solar irradiance, can mitigate this unnecessary lighting energy use.

8.3.4  Resilient Design

The concept of resilience has attracted increased attention in recent years. 
Extreme weather events, such as heatwaves, hurricanes, and wildfires, in-
flicted a record $210 billion in damages worldwide in 2020 ( Dure, 2021), 
and their frequency and intensity are projected to increase ( Mora et  al., 
2018). In particular, extreme temperature is one of the leading causes of 
 weather-  related deaths globally. During  2004–  2018, an average of 702  heat- 
 related deaths ( 415 with heat as the underlying cause and 287 as a contrib-
uting cause) occurred in the United States annually ( Vaidyanathan et al., 
2020). Extreme cold events, especially coupled with power outages, such as 
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 Figure 8.5  Conceptual representation of a building with adaptable features versus 
a building with traditional  non-  adaptive features.
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what happened in Texas in the winter of 2021, can be  life-  threatening, too 
( Weber and Stengle, 2021). Therefore, as a commitment to occupant health 
and comfort, it is critical to take thermal resilience into account during the 
building design process.

Resilient design aims to improve the building’s capability to prepare for 
and adapt to extreme weather events, resist their impacts, and recover rap-
idly from disruptions. This aim is different from robust design, which targets 
to reduce the uncertainty of building performance brought by occupancy 
and occupant behavior. The ultimate goal of resilient design is to keep oc-
cupants safe and comfortable throughout the extreme weather events. How-
ever, thermal resilience requirements have not been formally incorporated 
in current building energy codes and standards, such as ASHRAE 90.1, 
ASHRAE 189.1, or California Title 24. The LEED rating systems give cred-
its for passive survivability ( Wilson, 2015), which improves heat resilience, 
but is not mandatory. RELi is a rating system that provides a comprehensive 
certification for socially and environmentally resilient design and construc-
tion ( U.S. Green Building Council, 2018), but, similar to LEED, it is not 
mandatory either.

As advanced building control technologies continue to develop, build-
ings are increasingly designed to be more and more automatic, which leaves 
occupants with relatively fewer control possibilities. While this trend may 
benefit energy efficiency in general, it may also constrain occupants’ abili-
ties to improve the indoor environment during extreme weather conditions 
( e.g., open a window for free cooling), especially during a power outage 
when automatic controls cannot function. Therefore, resilient design should 
also include strategies to empower occupants to  self-  rescue during extreme 
conditions.

To evaluate resilient design strategies, extreme weather conditions should 
be defined and used in building performance simulation. For example, a 
heat wave can be characterized by three metrics: duration, intensity, and 
severity ( Laouadi et  al., 2020). The duration is measured in terms of the 
number of days of sustained heat events. The intensity is measured by the 
average elevation of outside air temperature above a reference temperature. 
The severity is the time integral of the elevation of outside air temperature 
above a reference temperature over the whole heat wave period. Historic 
weather data over the past few decades can be mined to find the most sig-
nificant extreme event. As extreme events are expected to happen more fre-
quently, designers may also use predicted extreme weather data for future 
scenarios to enhance safety. The weather data provided by CIBSE could be 
a good resource for future weather data ( CIBSE, 2016).

Various metrics are used to evaluate the thermal resilience of buildings to 
reflect the impacts of extreme events on human health. Broadly, there are two 
types of metrics: simplified biometeorological indices, such as the Heat Index, 
and  heat-  budget models, such as the Standard Effective Temperature ( SET; 
World Meteorological Organization and World Health Organization, 2015).  
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The Heat Index and SET are considered suitable metrics for quantitative 
analysis of extreme events and have been adopted by existing research on 
thermal resilience (  Opitz-  Stapleton et  al., 2016; Sun et  al., 2020; Wilson, 
2015).  Figure  8.6 defines four levels of heat hazards and their associated 
Heat Index ranges.

Two power availability scenarios are suggested for evaluating resilient de-
sign strategies:  grid-  on and  grid-  off. A  grid-  on scenario assumes that electric 
grid power is available and that the building is under normal operation sta-
tus during extreme events. As HVAC systems are sized based on design day 
weather conditions, they may not meet the cooling or heating needs during 
an extremely hot summer or cold winter. Therefore, in a  grid-  on scenario, 
the major concerns are whether the  air-  conditioning system has adequate 
capacity to meet the cooling/ heating loads during extreme weather, and if 
not, how many hours the occupants will experience thermal discomfort.

In contrast, a  grid-  off scenario assumes that electric grid power is not 
available due to a power outage. The overlapping of extreme weather con-
ditions and power outage could be  life-  threatening, particularly for vulner-
able populations such as the elderly ( Weber and Stengle, 2021). In this case, 
the major concerns are indoor temperature rise ( how long occupants will 
be overheated during a heatwave) and indoor temperature drop ( how long 
occupants will be uncomfortably cold during a cold snap). Regarding vul-
nerable populations specifically, the concept of resilience is also embedded 
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 Figure 8.6  Heat Index chart ( National Oceanic and Atmospheric Administration, 
2018).
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in universal design ( Buildings.com, 2021), a framework that emphasizes ac-
cessibility, inclusion, and equity in the design of environments ( Progressive 
AE, 2021).

Different metrics and thresholds apply in both of the power scenarios. 
For the purpose of resilience evaluation, each metric is defined with thresh-
olds, where exceeding the thresholds indicates that the indoor thermal con-
ditions are out of the comfort or safety zone. For the  grid-  on scenario, the 
indoor environment is less extreme because HVAC systems can still provide 
cooling/ heating, and so the metric thresholds are selected mainly to evalu-
ate the impact of the indoor environment on occupants’ thermal comfort. 
For the  grid-  off scenario, however, the indoor environment can become  life- 
 threatening, and so the metric thresholds are selected mainly to evaluate the 
impact of indoor environment on occupants’ health.

8.4  A Prototypical Testbed for  Simulation-  Aided Design

This section presents a series of exercises to demonstrate applications of 
the  simulation-  aided design methods and objectives described in Sections 
8.2 and 8.3. A prototype shoebox model representing a private office is used 
in these exercises ( with some modifications) to demonstrate the simulation 
objectives as described below.

8.4.1  Description of the Prototype Model

The shoebox office was modeled with dimensions W × L × H = 4.0 × 4.0 
× 3.0 m. A 3 by 2 m window was added on the south side, the dimensions 
of which could be modified depending on the simulation and design objec-
tives of each exercise. A version of this model is shown in  Figure 8.8. The 
shoebox office was located in Ottawa, Canada ( ASHRAE climate zone 6), 
and simulated in EnergyPlus V8.8 using the Canadian Weather for Energy 
Calculations ( CWEC) annual weather data file, which is based on average 
weather data measured between 1998 and 2014.

The  south-  facing wall was exposed to the outdoor environment, while all 
other surfaces of the room were assumed to be adjacent to spaces with the 
same thermal conditions. The  south-  facing window (  U-  factor = 1.2 W/ m2·K, 
solar heat gain coefficient = 0.55 and visible transmittance =0.6) was as-
sumed to be fixed with  thermally-  broken aluminum framing with a  U-  factor 
of 5.79 W/ m2·K and profile width of 6 cm. The outside wall insulation’s  U- 
 value was specified as 0.325 W/ m2·K which exceeds the performance path 
requirements of ASHRAE Standard 90. 1–  2016. The internal heat gains 
from occupants, lighting, and electric equipment were assumed to be 130 W,  
8.5 W/ m2, and 8.1 W/ m2, respectively, as specified in ASHRAE Standard 
90.1 2016. Fresh air was supplied into the office room at a rate of 7.3 L/ s 
based on ASHRAE Standard 62.1 during the occupied period. The infiltra-
tion rate into the office was assumed to be 0.3 air changes per hour ( ACH), 

http://Buildings.com
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which is a typical infiltration rate for office buildings ( Kim and Leibundgut, 
2015). The HVAC system was modeled as an  air-  based ideal load system 
with heating and cooling capacity of 1,500 W since this study focused on 
the use of occupant models to inform  early-  stage design decisions rather 
than modeling HVAC systems. This heating and cooling capacity was cho-
sen based on a preliminary sizing run. Heating and cooling setpoints were 
assumed to be 21°C and 24°C during occupied hours and 15.6°C and 26.7°C 
during unoccupied hours.

8.4.2  Occupant Modeling Approach

Two versions of the modeled shoebox office were created: the first version 
relied on ASHRAE Standard 90.1 fixed occupancy assumptions, and the 
second version used advanced occupant behavior models to represent occu-
pants’ presence, use of blinds, and manual switching of lights. For example, 
while the first version of the model uses a fixed occupancy schedule for of-
fice building occupants from ASHRAE 90.1, the second version deploys an 
occupancy model developed by Wang et al. ( 2005), which relies on random 
sampling of arrival and departure times from a normal distribution. The 
arrival and departure events were as follows: ( 1) arrival time at 9h00 ± 15 
min; ( 2) a coffee break at 10h30 ± 15 min; ( 3) a lunch break at 12h00 ± 15 
min; ( 4) a second coffee break at 15h00 ± 15 min; and ( 5) departure time at 
17h00 ± 15 min.  Figure 8.7 shows the ASHRAE Standard 90.1 occupancy 
schedule compared to the average weekday occupancy profile that resulted 
from applying Wang et al.’s ( 2005) occupancy model.

For lighting use, the first version used the ASHRAE Standard 90. 1-  2016 
schedule. The second model used predicted light switch behavior using the 
 Lightswitch-  2002 model ( Reinhart, 2004), which is based on occupancy 
status and work plane illuminance at each timestep. The lighting model 
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 Figure 8.7  Average weekday occupancy profile based on ASHRAE Standard 
90.1 schedule and Wang et al.’s occupancy model.
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assumes a higher probability of switching lights on upon arrival than during 
intermediate occupancy. Upon departure, the likelihood of switching lights 
off is predicted based on the expected duration of absence, which increases 
as the expected duration of absence increases.

ASHRAE Standard 90. 1-  2016 stipulates that manual fenestration shading 
devices, such as blinds, shall not be modeled ( which is effectively equivalent 
to modeling them as always open); thus, they were not included in the first 
version. In contrast, the second version included blinds, which were simu-
lated based on the Haldi and Robinson ( 2011) model. This model of blinds 
use predicts the probability of blinds being fully open, partially open, or 
closed, based on indoor and outdoor illuminance, occupancy state, and pre-
vious blind position at each timestep.

The occupant behavior models used in the second version represent the 
ability to account for occupants as dynamic, not as merely passive recipi-
ents of environmental conditions. These models consider how changes in 
daylight availability can trigger occupants to turn the lights on or open or 
close blinds, actions that also affect work plane illuminance and solar heat 
gains.  Table 8.1 shows the main differences between the occupant modeling 
approaches used in the two versions.

8.4.3  Test 1: Robust Design Optimization

In this robust design exercise, the premise is that fixed shading can be op-
timized to reduce the frequency of glare occurrence and corresponding 
 shade-  closing events. As we know from the literature ( e.g., O’Brien, 2013; 
O’Brien and Gunay, 2015), occupants often close shades as a result of glare, 
but then are likely to leave them closed for an extended period. It follows 
that occupants are more likely to turn on lights if indoor illuminance is 
reduced because of closed shades. Therefore, a brief instance of daylight 
glare can result in significant increases in lighting energy as well as affect 
solar gains. Aside from the desire to minimize lighting energy use, there is 
also value in minimizing the uncertainty of lighting energy use, as this un-
certainty translates to uncertainty for other components ( e.g., cooling loads) 
as well as reaching certain targets ( e.g., energy use intensity).

8.4.3.1  Methodology

For this exercise, the stochastic occupancy, lighting, and shade models are 
used ( see  Table 8.1). It is assumed that both lighting and shades are oper-
ated manually only ( i.e., no automation). Due to the stochastic nature of the 
occupant model, plus the interest in the variability of the lighting energy 
as a function of design, we ran the model 50 times for each design iteration 
to obtain the mean and standard deviation of performance. The number 
of simulations was determined by repeatedly running the model until the 
standard deviation did not significantly change.
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In this study, we optimized the fixed solar shading and window geometry 
( see  Figure  8.8) to minimize the mean and standard deviation of annual 
light use. While other energy end uses are important, we focused on lighting 
for the purpose of illustrating robust design.

A single and a  multi-  objective optimization process was then used to 
identify shading and window geometry. For the single-objective optimiza-
tion process, an objective function was set up to minimize the value of C as 
given by:

µ σ= +  1.28C Elight Elight

Table 8.1  Comparison between occupant modeling approaches used for each 
 occupant-  related domain in the two versions of the model

Domain First version: ASHRAE 
Standard 90.1 schedules

Second version: occupant behavior 
models

Occupancy Standard schedule for 
occupancy ( Appendix  G-  I)

Randomly sample five arrival and 
departure times each day from 
 pre-  defined normal distributions 
( Wang et al., 2005)

Lighting • Standard schedule for 
lighting ( Appendix  G-  I)

• Daylighting controls using 
continuous dimming 

Predict light switch behavior based 
on occupancy state and work plane 
illuminance ( Reinhart, 2004)

Blinds No blinds modeled Predict blinds use behavior 
based on occupancy state, 
work plane illuminance, and 
outdoor illuminance ( Haldi and 
Robinson, 2011)

Output One simulation 50 simulations 
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 Figure 8.8  Parametric office geometry with variables for robust design test. Note 
that the window is modeled as four windows for the purpose of simulat-
ing partially closed shades.
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where µElight and σ  Elight are the mean and standard deviation of lighting 
energy use obtained from 50 simulation runs for a given building design. 
The set of predicted lighting energy use results is assumed to be normally 
distributed. As such, the value 1.28 corresponds to the z-  score for a normal 
distribution so that we are 90% confident that the lighting energy use for a 
particular building design will not exceed the value C.

For the  multi-  objective optimization process, the first objective aimed to 
minimize the mean of 50 simulation runs for a given building design, while 
the second objective aimed to minimize the standard deviation of these sim-
ulation runs. Consequently, multiple design alternatives were identified on 
the  trade-  off curve, in which improvements to achieve the first objective 
would negatively affect the other. For both the single and  multi-  objective 
optimization, the ranges of allowed values for parameters were wide to max-
imize flexibility; however, constraints were imposed to prevent issues such 
as the window exceeding the façade boundaries.

The genetic algorithm ( GA) was implemented in MATLAB to call 
 EnergyPlus for both optimization processes. The optimization was allowed 
to run for 30 generations. Each generation had a population size of 15. As 
noted above, 50 repeated simulations were used to capture the distribution of 
predictions for a given design; as such, 22,500 simulations were required. The 
crossover fraction used was 0.5, elite count was set to 1, and mutation proba-
bility for each parent vector was randomly assigned from a Gaussian distribu-
tion with 0 as its mean. Refer to Ouf et al. ( 2020) for more details on a similar 
example for optimizing building design with stochastic occupant models.

8.4.3.2  Results

The results of the single-objective optimization are shown in  Figure  8.9, 
where an improvement of 18% of lighting energy is achieved between the 
first generation ( randomized) and the 20th. The optimal shading geometry 
is summarized in  Table 8.2, and the corresponding appearance of the façade 
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 Figure 8.10  Optimal fixed shading design corresponding to the lowest predicted 
lighting energy use.

with the optimal shading geometry is shown in  Figure 8.10. Note that the 
side fin surfaces above the overhang have no practical impact on indoor 
illuminance. Also note that while the resulting optimal design appears to 
be reasonable from a practical standpoint, many designs were  near-  optimal. 
Thus, we recommend that the  near-  optimal set of designs be manually ex-
plored to consider practical design implications.

While each simulation yielded different results,  Figure 8.11 illustrates the 
shade and light states over the course of a year for the optimal design and 
baseline ( no fixed solar shading). For the optimal design, the window shades 
are rarely closed except in the winter. This appears to result in a few days 
with lights on at all. In contrast, the shades are closed for significantly more 
time in the baseline, which results in the lights being on often throughout 
the year. Based on the simulations, the lights were on nearly twice as long 
( about 1,000 hours) for the baseline ( without any fixed shading) compared to 
the optimized shading ( about 500 hours).

The  multi-  objective optimization, on the other hand, resulted in three 
design alternatives that lie on the Pareto frontier ( i.e., in which decreasing 
the average light use would result in increasing the standard deviation), as 
shown in  Figure 8.12.

By analyzing these three design alternatives, we found that an overhang 
is necessary to decrease the average light use and standard deviation. A 
larger right fin was found to further decrease the average light use, but may 
slightly increase standard deviation ( i.e., the level of uncertainty). However, 
a smaller right fin and wider overhang were found to decrease such uncer-
tainty ( standard deviation) while slightly increasing average light use, as 
shown in  Figure 8.12. These results further highlight the need for manually 
exploring automatically generated design alternatives to consider practi-
cal implications and other contextual factors. Although this optimization 
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 Figure 8.11  Comparison of light and shade states for a single simulation for both 
the optimal and no fixed shading cases.
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process considers the effect of design choices on occupant behavior, other 
contextual factors as well as aesthetics would still necessitate designer 
judgment.

8.4.4  Test 2: Adaptive Design

An adaptive design exercise was performed to test DCV on the building 
model with both fixed and stochastic occupant models. The first set of sim-
ulations involved using the model with deterministic occupant models ( i.e., 
fixed schedules and occupant densities) with and without enabled DCV. 
 Figure 8.13 demonstrates a comparison of energy use by category between 
the model with and without DCV. It is evident from  Figure 8.13 that DCV 
was not very beneficial in terms of energy use savings when deterministic 
models are used. This is not a surprising outcome, as deterministic occu-
pant models assume constant and  near-  full occupancy throughout days and 
weeks, which leads to little difference when DCV is deployed. The modest 
savings in heating energy can be attributed to switching ventilation to per 
person when DCV is deployed instead of per floor area in the default settings.

However, much more significant  energy-  saving benefits were observed 
with the model with stochastic occupant models.  Figure 8.14 presents the 
results of simulating the model with and without DCV. The  end-  use com-
parison shown in  Figure 8.14 demonstrates the significant changes in heat-
ing and cooling energy uses when DCV was deployed. DCV is known for 
being more beneficial in terms of energy savings with changing occupancy 
( Lawrence, 2004) and the fluctuating nature of occupancy levels is only cap-
tured by the stochastic occupancy model.

These findings indicate that the use of building adaptive technologies/ 
solutions offers an opportunity for handling  occupant-  related uncertainty. 
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This study also provides a case for the discussion in Section 8.1, that the use 
of oversimplified static occupant models can conceal the potential benefits 
of specific design alternatives.

8.4.5  Test 3: Resilient Design

This study uses the prototypical testbed introduced in Section 8.4.1 to 
demonstrate how to evaluate the thermal resilience of a building design and 
its influence on occupants. To this end, we model the indoor environmental 
conditions during extreme weather conditions and evaluate the effectiveness 
of a number of measures to enhance the resilience of the design.

8.4.5.1  Methodology

For the purposes of the current test, we treated the prototypical building 
introduced in Section 8.4.1 as a residential unit, as during extreme weather 
conditions ( especially coupled with power outages) it is likely that people 
will not go to work but rather shelter at their home. We assumed the resi-
dential unit is occupied 24/ 7 throughout the extreme event. A heat wave was 
used as an example extreme weather event in this case study.

 Figure 8.15 illustrates an overall workflow of the resilient design modeling 
approach. First, a baseline model was developed, and its performance un-
der extreme weather conditions was evaluated under two power availability 
scenarios ( see Section 8.3.4 for details). Second, selected design options or 
measures were applied to the baseline model and their effectiveness in im-
proving thermal resilience was evaluated under the two power scenarios. 
Third, the models with resilient design features were simulated and analyzed 

Heating Cooling Lighting Equipment 

No DCV 
DCV 

 Figure 8.14  Energy use by category obtained from the building model with stochas-
tic occupant models. The results demonstrate the energy use benefits of 
deploying adaptive technologies such as DCV.
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with appropriate resilience metrics. As per Section 8.3.4, the Heat Index was 
used as the example resilience metric in this case study.

The key input assumptions of the baseline model were extreme weather 
conditions and power scenarios. We collected 30 years of historical weather 
data from Ottawa, Canada, identified all heat waves that lasted longer than 
five days (  Figure 8.16), and selected the most severe heat wave period ( in 
2001) as the extreme weather condition for the simulation ( upper right circle 
in  Figure 8.16). Predicted future weather data can be used in resilient design, 
too, but the associated uncertainty should be specified.

Baseline models Apply design
measures

Model development Resilience analysis

Resilience
modeling

Output

Resilience
metrics

Power scenarios:
• Grid on
• Grid off

Extreme
weather data

 Figure 8.15  Workflow of resilient design simulation.
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 Figure 8.16  Historical heat waves that lasted longer than five days in Ottawa. Note: 
The size of each bubble represents the global intensity of a heat wave. 
Global intensity is defined by the cumulative difference between the 
temperature and the Sdeb threshold during the event, divided by the 
difference between Spic and Sdeb. Spic is the daily mean temperature 
threshold beyond which an event is detected, and Sdeb is the daily mean 
temperature threshold that defines the beginning and the end of the 
heat wave ( Ouzeau et al., 2016).
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Two power scenarios were considered for resilience analysis:  grid-  on 
( electric grid power available) and  grid-  off ( electric grid power unavailable). 
For the  grid-  on scenario, we adopted the standard schedules for lighting and 
plug load from ASHRAE 90. 1-  2016 and assumed the air conditioners were 
available 24/ 7. For the  grid-  off scenario, the lighting, plug load, and air condi-
tioners were off. We assumed the blinds were not used for the baseline model. 
To test an extreme case, we assumed windows were closed throughout the 
heat wave in the baseline model, which is not common but may still happen in 
some situations, e.g., the windows are blocked for security or other reasons.

Four passive measures were selected as examples to demonstrate the work-
flow of resilient design evaluation. A measure was categorized as a passive 
measure if it still works when the power is off. The measures were as follows:

1  Add solar control window film. These window films help reduce solar 
heat gain and protect against glare and ultraviolet exposure. They are 
best used in climates with long cooling seasons because they also block 
the sun’s heat in the winter. The properties of the window film were as 
follows: thermal transmittance 4.94 W/ m2·K, solar transmittance 0.34, 
solar heat gain coefficient ( SHGC) 0.45, and visible transmittance 0.66.

2  Add an exterior overhang shade. This measure added an exterior over-
hang to the upper edge of the window. An exterior overhang can help 
block the solar irradiance when it is not desired.

3  Seal windows and doors to reduce infiltration. For conditioned build-
ings, reinforcing air sealing can reduce the amount of undesirable 
outdoor air flow into the building, thus generally reducing the HVAC 
system’s cooling and heating load.

4  Enable natural ventilation. Natural ventilation can provide free cooling 
when the outdoor environment is cooler than the indoors. This measure 
assumed that the windows in the building were operable, and that the 
occupants could and would open and close windows as needed. The 
windows were assumed to be opened only when the outdoor air tem-
perature was lower than indoor air temperature and the temperature 
difference was large enough to be noticeable by occupants, which was 
assumed to be 2°C in this case study. When grid power is available, 
windows and air conditioners are operated in concurrent  mixed-  mode. 
In this mode, natural ventilation has higher priority to provide cool-
ing, and air conditioners provide supplementary cooling when natural 
ventilation alone is not enough to meet cooling load. In other words, if 
natural ventilation can meet cooling loads, the air conditioners will be 
turned off.

8.4.5.2  Baseline Model Performance

The most severe heat wave identified in Ottawa in the past 30 years lasted 
ten days from August 1 to August 10, 2001. We began the simulation one 
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day before the extreme event and ended it one day after the event, to re-
flect not only the building’s response during extreme conditions, but also 
the variations from normal to extreme conditions and vice versa.  Figure 8.17 
shows the outdoor air temperature and baseline indoor air temperature, and 
 Figure 8.18 shows the baseline Heat Index variation, both under two power 
scenarios. With no air conditioning and no mitigation solutions, the indoor 
temperature could rise to as high as 49°C on the last day, with Heat Index 
entering an extreme danger level from the fifth day and rising as high as 
67°C on the last day. Such conditions could be extremely dangerous to the 

 Figure 8.17  Comparison of outdoor and indoor air temperature under  power-  on 
and  power-  off scenarios. The  greyed-  out periods are one day before 
and one day after the heat wave under normal operation to illustrate 
the impact of the heat wave.

 Figure 8.18  Hourly indoor Heat Index, with and without grid power. The  greyed- 
 out periods are one day before and one day after the heat wave under 
normal operation to illustrate the impact of the heat wave.
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occupants, especially vulnerable populations such as the elderly and young 
children.

However, with grid power available to run the cooling system, the indoor 
temperature could be maintained at lower than 28°C and the Heat Index kept 
at a safe level. This is because the cooling capacity was sized based on de-
sign day conditions that were developed using 1%  dry-  bulb and 1%  wet-  bulb 
cooling design temperatures, which had a maximum  dry-  bulb temperature 
of 28.9°C. Also, the outdoor temperature during the heat wave period was no 
higher than 35°C and had at least 10° C–  15°C variation between day and night. 
In this case study, the  grid-  off scenario was analyzed further and applied with 
passive measures to explore design strategies for improving thermal resilience.

It should be noted that, in cold climates like Ottawa, many residential 
buildings are not equipped with air conditioners and could still experience 
 life-  threatening conditions during heat waves even when grid power is avail-
able. If these passively operated buildings are designed properly, they can 
better cope with heat waves.

8.4.5.3  Impact of Design Measures on Thermal Resilience

After the baseline performance is established, the four selected passive 
measures listed in Section 8.4.5.1 were applied to the baseline model with-
out grid power, and the indoor environment was simulated to evaluate their 
effectiveness in improving thermal resilience.  Figure 8.19 illustrates the heat 
hazard occurrence distribution of the baseline and the passive measures 
without grid power. An occurrence was defined as a heat hazard level hap-
pening at one timestep. The total occurrence percentage of heat hazard lev-
els “ Danger” and “ Extreme Danger” during the selected heat wave period 
( in this case, August 1st to 10th) was adopted as the indicator to quantify the 
resilience improvement ( Sun et al., 2020).

Among the four example measures, natural ventilation performed the 
best, reducing “ Extreme Danger” from 70.5% to 8.3%. This result suggested 
that natural ventilation was able to leverage a large amount of free cooling 
because the indoor temperature exceeded the outdoor temperature for ma-
jority of the time, as shown in  Figure 8.17. Adding window film and exterior 
overhang shades was also considerably effective, reducing “ Extreme Dan-
ger” from 70.5% to 40.6% and 56.2%, respectively. The only passive measure 
that countered resilience was air sealing. In conditioned buildings, reinforc-
ing air sealing can help cut down heat gain through infiltration, which effec-
tively saves energy use of the HVAC systems. However, during extremely hot 
conditions with no grid power available, the outdoor environment can be 
cooler than the indoor environment, in which case reducing infiltration ends 
up being harmful for thermal resilience. On the other hand, if a building 
allows for natural ventilation, occupants do not need to rely on infiltration 
to counter the building overheating.
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It is worth noting that some measures are  occupant-  dependent, i.e., they 
need occupants’ active interactions to function well in reality. For example, 
natural ventilation can be very effective if occupants are alert and monitor 
the indoor and outdoor air temperature closely, and they open the windows 
only when the outdoor air temperature is lower than the indoor air tem-
perature and close the windows on the contrary condition. Although the 
results of this case study show that some passive measures can significantly 
reduce “ Extreme Danger”, they still cannot guarantee sufficient safety of 
occupants. When the buildings are occupied by vulnerable populations who 
are sensitive to heat, the designers should take active measures, such as  on- 
 site power generation via solar PV, electric battery, and/ or thermal storage 
into consideration to guarantee safety.

8.5  Closing Remarks

In this chapter, we focused on the role of occupants and occupant mod-
els in the building design process. We introduced a number of  simulation- 
 based design  methods –   namely, uncertainty and risk assessment, sensitivity 
analysis, parametric design, and optimization. We also presented examples 
of  simulation-  aided design  objectives –   namely, performance compliance, 
robustness, adaptiveness, and resilience. Finally, to promote a better un-
derstanding of  occupant-  centric design efforts, we tested three specific 
 simulation-  aided design procedures on a prototypical building model and 
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documented and discussed the findings. These  occupant-  centric design 
methods will be further discussed in  real-  world case studies provided in 
 Chapter 11.
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Summary

In this chapter, we will first present key  human-  building interaction ( HBI) 
research to provide a framework for understanding how humans process 
information and interact with buildings. Following this foundational dis-
cussion, we will define user needs and HBIs for simulation by presenting 
some of the current challenges of incorporating interfaces into simulation 
and then provide an illustrative case study of lighting in private offices. We 
will conclude the chapter with recommendations for future research.

9.1  An Introduction to  Human-  Building Interactions and 
Interfaces

Significant progress has been made in simulating occupant behavior in build-
ings, but more work is needed to expand the understanding of occupants 
and their role as dynamic users of buildings as well as their interactions with 
building controls and interfaces ( e.g., thermostats, lighting, windows). In 
general, buildings are unique, as are their occupants. Currently, simulation 
does not accurately reflect how people actually use buildings; in particular, 
simulation generally does not yet capture the wide range of behaviors in 
buildings, nor the dynamic nature of building interactions. If human inter-
actions in buildings can be better understood and represented, then they 
can be simulated and thus inform the design of better buildings that support 
real people and their needs.

To explore these issues, in this chapter, we first define building interfaces 
and present examples of interface characteristics. Then, we discuss HBIs, 
especially as they relate to the need for building simulation tools that ac-
curately predict HBIs. Next, we present a theoretical framework that better 
understands HBIs in the context of simulation and then a process that can 
be leveraged to translate user needs to better predict and define HBIs. We 
also discuss some of the challenges surrounding the incorporation of inter-
faces and HBIs into simulation as well as current occupant modeling and 
simulation tool capabilities. To offer a glimpse into how simulation methods 
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are emerging to address these challenges and gaps, we then present a case 
study example of lighting interface design and controls logic in private of-
fices. In the final section, we offer summary recommendations for further 
exploring and integrating HBIs into building performance simulation and 
future research needs. Throughout the chapter, “ occupant”, “ user”, and 
“ human” are used interchangeably to describe the people who inhabit  
and interact with buildings.

9.1.1  Defining Building Interfaces

Supporting both building energy goals and occupants ( e.g.,  well-  being, com-
fort, satisfaction, performance) is a challenging task. To effectively achieve 
the balance between building performance and positive occupant outcomes, 
intentional consideration of predicted occupants’ interactions with their 
built environment and the touch points for those interactions is required. 
Yet, a critical but often overlooked aspect of building design is the build-
ing interface ( Day and Heschong, 2016). For the purposes of this chapter, 
a building interface is defined as a system component( s) where intentional 
or unintentional interaction occurs between a human, a building, and its 
subsystems ( e.g., plumbing, electrical devices/ controls, mechanical systems 
or thermostats, windows, blinds). Building occupants interact daily with 
building interfaces, such as when they turn on a light in a room or enter and 
exit a building ( see  Figure 9.1).

Some interfaces are simple ( e.g., on/ off) and others are more complex 
( e.g., learning thermostats); this range of variability and the sheer number 
of touchpoints and opportunities for interactions make it difficult to un-
derstand and predict how occupants will behave in buildings with respect 
to specific building interfaces. On the one hand, a  well-  designed interface 
may not be used as predicted because of poor placement or unanticipated 
behavioral drivers. On the other hand, a poorly designed interface may be 
used ineffectively ( e.g., leading to decreased comfort or increased energy 
use) due to an occupant’s lack of understanding of the control. In the former 
example, a designer may alleviate some of these issues by carefully thinking 

 Figure 9.1  Examples of common building interfaces. ( a) Lighting controls, ( b) room 
entry, ( c) wayfinding for egress.
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through the use and placement while also collaborating closely with the 
occupants to better understand their needs. In the latter example, a better 
understanding of what makes a good interface and how to design and imple-
ment them for intended human interactions is needed.

Building system control interfaces have traditionally taken the form of 
fixed visual displays such as lighting controls and thermostats. Visual dis-
plays are the visual information link between humans and systems; thus, 
their system requirements are bound by the capabilities of the human visual 
system ( Hainich and Bimber, 2016). In other words, it is important to con-
sider display features such as shape, size, icons, target and background 
color( s), and clutter, as well as the anticipated distance and position of the 
user from the visual display.

Emergent interfaces move beyond fixed, visual displays toward mobile 
visual displays ( e.g., smartphone applications with push notifications), 
wearable visible displays with haptic response ( e.g., smart watches), and in-
tegrated auditory interfaces ( e.g., Alexa) ( see  Figure  9.2). These emergent 
interfaces support new and distinct types of HBIs, while challenging build-
ing designers and simulation users to consider the impact of interfaces on 
building performance and occupants’  well-  being and more.

As new interfaces and modalities of interaction are developed, moving 
beyond  technology-  centered approaches toward usable,  human-  centered 
approaches will be critical for optimizing both human experiences in 
buildings and building performance ( Agee et al., 2021). It is clear that there 
are many ways for occupants to interact with their buildings through many 
types of interfaces. There are also many reasons people choose to interact 
with their buildings. Many of these behavioral and  comfort-  based concepts 
and theories, such as thermal or visual or physiological/ psychological rea-
sons for interactions, are discussed in  Chapter 2. There are also established 
methods for collecting information about how occupants will interact with 

 Figure 9.2  Emergent interfaces: ( a) mobile applications, ( b) wearables, ( c) integrated 
auditory.
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the space and the associated building interfaces ( see  Chapter 4 for further 
discussion).

This chapter focuses less on behavioral or physiological reasons for HBIs 
( e.g., the drivers) and more on how humans process the information relayed 
to them by the interface, as well as the characteristics of the interfaces that 
facilitate those interactions. The following section presents a more  in-  depth 
discussion of HBIs.

9.1.2   Human-  Building Interactions

The study of HBIs with interfaces encompasses a broad, emerging research 
area and area of practice that draws upon human factors engineering, in-
terior design, and traditional architecture and engineering. To focus our 
efforts within this chapter, we provide examples of HBIs that impact com-
fort, environmental quality, and building energy use ( e.g., windows, blinds, 
thermostats, lighting).

To effectively understand human experiences in the built environment, it 
is critical to understand how HBIs impact building performance and the hu-
man experience within the built environment. There are common building 
interfaces that most users in industrialized societies interact with daily ( e.g., 
system controls for lighting, thermal controls, plumbing) ( see  Figure 9.3), 
but not all interfaces and/ or interface interactions are created equally. In 
particular, researchers have observed salient differences between commer-
cial and residential interface use in terms of automation, perceived control, 
accessibility, and more ( e.g., Day and O’Brien, 2017; Day et al., 2020).

While it is increasingly understood that occupants, interfaces, and the 
resulting interactions in a building vastly impact comfort and energy out-
comes, simulation tools used do not yet account for these factors. Building 
performance simulation ( BPS) tools, originally developed for the purpose 

 Figure 9.3  Examples of common building interfaces for: ( a) lighting, ( b) HVAC, ( c) 
toilet.
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of modeling static concepts, including occupants’ presence, have yet to inte-
grate HBIs as variables during simulation.

To illustrate, thermostats, a frequently studied building interface, account 
for nearly 9% of total energy use in the United States ( Peffer et al., 2011). 
Recognizing the role of user behavior in energy use, EnergyStar developed 
and implemented specifications for programmable thermostats, including 
several scheduling and  energy-  saving features ( Meier et al., 2011). However, 
in the years that followed the release of these specifications and subsequent 
installations, studies began to emerge that showed users were interacting 
with programmable thermostats in unanticipated ways. Some households 
were using more energy than those with simpler thermostats, seemingly 
because of complex features, poor design, and/ or lack of understanding. 
However, relatively low thermostat replacement rates ( Tamas et al., 2021) 
suggest many programmable thermostats remain in  place—  and will likely 
remain for many decades. If users’ interactions with thermostats were better 
understood ( e.g., using modeling and simulation) and the characteristics of 
those thermostats better considered, the unintended consequences resulting 
from this  large-  scale  roll-  out of programmable thermostats might have been 
avoided.

Consider  Figure  9.4, which shows a typical BPS input ( left image) and 
output ( center image) that represents the thermostat interface daily use, as 
well as a typical thermostat interface ( right image). On the thermostat on 
the far right, the user is confronted with over a dozen buttons with the abil-
ity to customize the setpoint schedule ( i.e., for the occupant to interact with 
the device physically), yet this ability to alter and change the thermostat and 
the reasons for those HBIs are not considered in the image on the left.

To expand on this example, in any given thermostat, the interface has 
numerous qualities that impact use and level of interactions such as inter-
face characteristics ( e.g., size, text type, color, contrast, labeling), important 
contextual details about placement and accessibility ( i.e., ease of access in 
this example), level of automation and control, and so on. Moreover, if a 
particular thermostat is  internet-  enabled, occupants can adjust it from afar, 
which presents even more opportunities for interaction. However, in the 

 Figure 9.4  Comparison of interfaces.
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simulation world, these complex variables, interface characteristics, and the 
frequency of interactions are not currently considered. Instead, typical BPS 
inputs are simple static schedules, such as the one depicted in the center of 
 Figure 9.4 and fixed temperature setpoints. Put simply, there is a disconnect 
between the model and reality.

To date, little work on BPS tool development has incorporated the impact 
of interface design and use. Several tools ( e.g., BEopt, Home Energy Saver) 
have taken a  top-  down approach whereby certain assumptions are made 
about the impact of interface selection. For example, BEopt allows energy 
modelers to choose a programmable thermostat that is automatically as-
sociated with a default setpoint schedule ( e.g., 22°C for cooling and 18°C 
for heating), but it uses constant setpoints otherwise. However, it has been 
documented that occupants frequently override schedules ( Huchuk et al., 
2021), which may not have been configured correctly in the first place. Ther-
mostats are an example of a building interface that typically has infrequent 
occupant interactions; yet, other interfaces with more frequent and complex 
interface interactions ( e.g., light switches, ceiling fan interfaces, water taps) 
are also treated simply and implicitly in simulation tools.

As stated above, there is a clear disconnect between how occupants use 
building interfaces and how their uses are simulated. This disconnect is em-
phasized if different players in a building perceive interfaces differently. For 
example, an energy modeler might view window blinds as a numerical fac-
tor or as on/ off, 0/ 1, time, automation yes/ no, etc. without considering the 
motivators or drivers behind their use. A building occupant might consider 
window blinds as a tool to block glare, control heat gain, increase privacy, 
or as decoration. In contrast, a building operator might consider manual 
blinds as something to fix or maintain and automated blinds as another 
thing to program, control, and commission.

Further adding to the complexity, there are also specific qualities of build-
ing interfaces themselves that might further facilitate or hinder occupant 
interactions. These qualities are described in the next section.

9.1.3  HBIs with Interfaces: A Missing Link in Building 
Performance Simulation

HBIs and the resulting user experience ( UX) of direct or indirect outcomes 
from those interactions are illustrated by the simplified framework depicted 
in  Figure 9.5 ( Day et al., 2020).

Feedback to the user may be immediate, such as when a light is turned 
on/ off, or it may be delayed or lagged, such as when someone changes the 
settings of a thermostat. Often, elements on the right side of the figure are 
considered in simulation, whereas those on the left are not. The integration 
of building automation systems ( BAS) into this loop adds further complex-
ity to HBIs and necessitates consideration for interface design and integra-
tion into BPS.
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For example, when a BAS operational scheme is used to manage lights, 
space conditioning systems, and/ or ventilation systems, the user( s) in the 
building lose control of their environment to a remote machine ( i.e., the 
BAS system). The integration of autonomous systems in the built environ-
ment should not only prioritize operational savings but also aim to achieve 
the joint optimization of humans and technology.  Figure 9.6 summarizes 
the relative strengths of humans and machines in the context of interactions 
with building interfaces. Design teams should consider human versus ma-
chine strengths throughout the design, construction, and operation phases 
of a project, as HBIs and outcomes may also vary based on the level of 
automation.

Current BPS oversimplifies BAS as a binary ( on/ off) input or  schedule- 
 based parameter. However, to more accurately reflect HBIs in buildings, 
it is necessary to characterize and allocate system functions across the 
 human–  system interface. It is often the case that an interaction across an 
interface is in fact somewhere along a spectrum from  human-  dominant ( H) 
to  technology-  dominant ( T), or a combination of the two (  H-  t,  H-  T,  h-  T) 
( see  Figure 9.7).

For example, in commercial buildings, a  technology-  dominant ( T) ap-
proach shifts building control to remote operators and/ or facility managers 
that may not even occupy the building. In this case, interfaces may be com-
pletely autonomous. In contrast, perhaps in a residential context, a  human- 
 dominant ( H) approach views automation as a tool to support human 
performance and needs ( Norman, 2013), and some or all interfaces might be 
manual and intended for use by the occupants. Interfaces may also take the 
form of a blend of  technology-  human control rather than fully manual or 
fully automated. In this case, designers and simulators could use the func-
tion allocation approach demonstrated in  Figure  9.8 to characterize and 

 Figure 9.5  Conceptual model for understanding HBIs with interfaces.
Adapted from Day et al. ( 2020).
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 Figure 9.6  Human and machine strengths.
Adapted from Fitts et al. ( 1951).

 Figure 9.7  Taxonomy for classifying  human-  technology interactions.  Technology- 
 dominated ( T) and  human-  dominated ( H) and combinations of the for-
mer as Ht, ht, hT.

Adapted from Agee ( 2019).

 Figure 9.8  Understanding thermostat levels of automation by using function 
allocation.
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better understand the  often-  invisible  human-  system relationships. Under-
standing these  human-  systems relationships is increasingly important with 
advancements in automated controls systems. Taking this view, operational 
savings are a byproduct of BAS, not the primary goal.

Once a designer or simulation user has allocated  human-  technology func-
tions to support human performance, the next step is to understand how 
the user will use and/ or accept the interface. In the section below, we offer a 
framework borrowed from UX and human factors research to help design-
ers and simulators develop this understanding.

9.2  A Framework for Understanding HBIs in Simulation

It is important to integrate interfaces into building simulation due to the 
dynamic nature of HBIs. Before these interactions can be fully quantified, 
however, three aspects must be understood: ( 1) how humans process and 
receive information from interfaces, ( 2) how or to what level they might in-
teract with buildings, and ( 3) what factors determine if a technology or in-
terface will be accepted by a user. In this section, we describe two models 
from human factors and UX  research—  the Human Information Processing 
model and the Technology Acceptance  Model—  that provide a contextual 
framework in which to better understand the above list of key aspects of 
HBI and how they might inform the integration of interface use into build-
ing simulation.

The first model is Wickens et  al.’s ( 2015) Human Information Process-
ing ( HIP) model, depicted in  Figure 9.9, based on human factors theories 
of information processing. The model shows that when interacting with 
interfaces, users must process and perceive multiple stimuli and navigate 
response selection based on  long-   and  short-  term memory before executing 
a response. The multiple sensory inputs and varied attentional resources 
impact human’s perceptions, decisions, input selections, and response( s).

The HIP model is helpful for understanding HBIs through the lens of 
human cognition. Notably, HIP is dynamic in that people have attentional 
resources that are  ever-  changing in response to stress, environmental con-
ditions, mental workload, etc. In turn, these attentional resources impact 
people’s ability to perceive and respond to environmental stimuli such as 
text or symbols on an interface. For example, a building user with adequate 
attentional resources will interact with an interface different than the same 
user with limited attentional resources due to stress or additional mental 
workload. In other words, people’s interactions with their buildings and in-
terfaces can be highly variable and not always predictable and thus difficult 
to accurately simulate. The dynamic nature of HIP is not currently repre-
sented in building performance simulation, and yet it must be considered 
by building designers and simulation users at the risk of designing building 
interfaces that are too complex ( i.e., sensory inputs requiring too many at-
tentional resources) and liable to being misused or not used at all.
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The second model that helps to better capture HBIs in simulation is the 
Technology Acceptance Model ( TAM) ( see  Figure 9.10). The TAM posits 
that users only accept a technology ( such as an interface) if the system is 
perceived to be ( 1) useful and ( 2) easy to use ( Davis et al., 1989). This  human- 
 computer interaction theory provides the foundation for usability and UX 
research and can be leveraged in the design and development of useful and 

 Figure 9.9  Human Information Processing ( HIP) model.
Adapted from Wickens et al. ( 2015).

 Figure 9.10  Technology Acceptance Model ( TAM).
Image adapted from Venkatesh and Davis ( 1996).
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usable building interfaces and their integration into more robust simula-
tion tools. For example, an  app-  based thermostat designed using the TAM 
would prioritize temperature control in the interface and would remove 
other visual clutter ( e.g., time of day, weather conditions) that distract from 
detection of the temperature setting.

Both the HIP model and the TAM can help frame both building design-
ers’ and simulation users’ understanding of human factors and UX in the 
built environment. This foundational knowledge is especially necessary to 
integrate HBIs into BPS. Integrating these models and lessons learned from 
other domains into the field of simulation can offer guidance to create more 
holistic and accurate simulations. If progress is not made in this regard, 
the current simulation gap will be compounded as ( 1) building automa-
tion becomes more ubiquitous and ( 2) stakeholders strive for higher levels 
of building performance. The BPS industry will no longer be able to focus 
exclusively on  technology-  centered outcomes ( e.g., equipment efficiency, 
lighting power density, automation schemes motivated only by operational 
savings); they will also need to understand HIP and how building users per-
ceive and interact with building interfaces. There is also a need to under-
stand the impact of BAS on HBIs and to integrate this knowledge into both 
design and simulation.

The next section provides several specific recommendations for how the 
HIP model and the TAM can be used to better predict and define human 
needs and HBIs for simulation.

9.3  Defining and Translating User Needs and HBIs for 
Simulation

The TAM explains that users will only use a technology ( e.g., an interface) 
that they perceive to be useful and easy to use; the HIP model reinforces this 
stance by stating that the more complicated the interface, the more atten-
tional resources and cognitive load are needed to use it. In the case of build-
ing interfaces, to optimize their use for users and accurately predict how 
they will be used, interfaces should serve a clear purpose ( i.e., be useful) and 
be designed well ( i.e., be easy to use and demand few attentional resources). 
To meet users’ needs, designers should follow a  user-  centered design process 
that facilitates the investigation, specification, and evaluation of interfaces 
in the context of users’ physical, physiological, and psychological limita-
tions. This shift is particularly important as some building designs are inte-
grating more passive systems ( in response to code requirements, occupant 
health, comfort, etc.) and requiring more active occupants. As buildings 
become more interactive,  user-  centered design processes will be critical to 
designing useful and usable building interfaces and to accurately capture 
user interactions with interfaces in building performance simulations.

The field of UX offers a design process for  user-  centered interface design to 
better understand the users, their needs, and the context of their interactions 
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so these can better integrate into simulation workflows. The process includes 
the following four steps, which are further detailed in  Figure 9.11:

• Step 1. Understand and specify the context of use.
• Step 2. Specify the user requirements.
• Step 3. Produce design solutions that meet use requirements.
• Step 4. Evaluate the designs against requirements.

It is critical for simulators to understand the context of use and users’ needs 
when attempting to predict behaviors and HBIs. Steps 1 and 2, understand-
ing and specifying the context of use and specifying user requirements, are 
particularly salient to some of the current gaps in BPS methods. Elements of 
Steps 1 and 2 are expanded below in relation to HBIs.

9.4  The Context of HBIs and User Requirements

As stated above, a  user-  centered interface design approach ( e.g., as shown 
in  Figure 9.11) emphasizes the importance of understanding the context of 
use for any given interface. In the case of simulation, the same sentiment 
applies; the context of HBI use and the environment must be understood to 
accurately predict use. The given setting, the types of signals available ( e.g., 
touch, visual, haptic), the human attentional resources required ( as per the 
HIP framework), and even the interface modality ( e.g., fixed,  wall-  mounted, 
 application-  based) all drive the level of interface interaction and the range 
of interface use. Currently, differing conditions may be represented in sim-
ulation as binary inputs ( on/ off, low/ high, present/ absent), but these inputs 
likely do not represent how buildings are actually used.

 Figure 9.11  Iterative design approach.
Adapted from ISO  9241-  210, Ergonomics of  human-  system interaction.
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Another important, but often overlooked aspect of HBIs, is the develop-
ment of system and user requirements. For example, in a typical commercial 
building simulation, lighting use might be predicted based on a simple and 
basic occupancy schedule (  9a-  5p). However, lighting use and requirements 
might vary widely based on the type of building ( school, office, weather 
station, etc.) and how the building is actually used. Other factors, such as 
plentiful windows and daylighting, or differing operation hours, might also 
impact lighting usage. In one study, occupants were frustrated when their 
night vision needs and  24-  hour building operation schedule were not con-
sidered during lighting design or simulation, both of which adversely im-
pacted their ability to do their jobs, and consequently, building energy use 
( Day and O’Brien, 2017).

System requirements distill the information collected in Step 1 of 
 Figure 9.11 ( i.e., interface context and use) into a list of interface require-
ments ( e.g., features, functionality). System requirements also serve as 
communication tools for  cross-  functional teams and should be bound by 
the HIP and TAM frameworks. The development of system requirements 
enhances  bi-  directional information flow between users and markets and 
interface developers ( Salvendy, 2012). There is no standard structure or out-
line for system requirements, but we the authors of this chapter suggest a 
 single-  page, weighted matrix of interface features and functionality that pri-
oritizes and communicates interface requirements.

 Figure  9.12 provides an example of system requirements for a  user- 
 centered interface for daylight controls. In the figure, a variety of daylight 
controls are noted, such as lighting switches, occupancy sensors, daylight 
apertures ( i.e., windows), and daylight sensors ( i.e., photocells).

 Figure 9.12  Example of interface system requirements from Integrated Design 
Laboratory, Daylight Demo Curriculum, 2013. Image has been recre-
ated and abbreviated.
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There are certain applications where interfaces require some level of 
occupant control and interaction, and others where full automation is ap-
propriate. The matrix in  Figure  9.12 allows the designer to select a more 
appropriate interface based on the space type and how occupants might use 
that space. Of course, more information is needed to make the best deci-
sions, and these selections might change based on specific projects, but tools 
like the one shown in  Figure 9.12 can help designers better meet the needs of 
occupants while also better predicting how interfaces might be used.

It is essential to understand these different programmatic elements dur-
ing the design and simulation of interfaces. Differences based on space 
type are just one aspect of the challenge of selecting the proper interface 
for buildings to best suit users’ needs and requirements. For example, what 
building service does the interface serve ( e.g., thermostat controls heating 
and cooling modes and temperature)? Are occupants expected to interact 
with the interface? What types of interactions will the occupant have with 
the interface and how often? Are the building design goals more focused on 
energy savings or occupant health and comfort, or both ( hopefully)? What 
interface selections support these goals? These questions can also apply to 
differing building typologies ( e.g., commercial, residential) and spaces ( e.g., 
office, kitchen) within those typologies.

While there is no building interface standard,  Table 9.1 provides an over-
view of relevant standards that may be consulted when designing and/ or 
integrating interfaces into BPS.

Taken together, the steps outlined in the UX interface design process in 
 Figure 9.11 and the standards in  Table 9.1 can provide perspective on how 
other industries have aligned best practices for  human-  system interaction 

 Table 9.1  Selected relevant standards for building interfaces and  occupant-  centric 
controls.

Standard Domain

ISO  9241-  10 Ergonomic Requirements for office work 
with visual display terminals ( VDTs)

Occupational

ISO 16982 Ergonomics of  human-  system interaction Consumer/ Occupational
ISO/ IEC 13251 Collective  Standard —   Graphical 

symbols for office equipment
Occupational

IEEE P1621 Standard for User Interface Elements in 
Power Control of Electronic Devices Employed in 
Office/ Consumer Environments

Consumer/ Occupational

ISO  22902-  6:2006 Road  vehicles—  Automotive 
multimedia  interface—  Part 6: Vehicle interface 
requirements

Consumer/ Occupational

ANSI/ HFES  100-  2007 Human Factors Engineering of 
Computer Workstations

Occupational

ANSI/ HFES  200-  2005 Ergonomic Requirements of 
Software User Interface

Consumer/ Occupational
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and integration. As the world of occupant behavioral modeling and simula-
tion evolves, it will be necessary and critical to learn from these and other 
domains to ensure that models reflect actual human behaviors in buildings. 
Other chapters in this book, such as  Chapter  4, offer methods for gath-
ering information about building occupants to better inform models and 
simulations.

Next, we present some of the challenges surrounding the incorporation of 
interfaces and HBIs into simulation as well as current occupant modeling 
and simulation tool capabilities.

9.5  Incorporation of Interfaces into Simulation and Current 
Challenges

There are many reasons why simulations might not ( yet) reflect reality. For 
instance, most building simulations use historical data to predict the im-
pacts of climate and weather on building performance rather than using 
data from observed and quantified HBIs. In heating/  cooling-  dominant  end- 
 uses, model predictions may be largely based on easily observable physical 
conditions, such as weather or building physics ( e.g., if the temperature is 
[X] degrees, and my building has [X] characteristics, then the heating/ cooling 
will behave in this way). This information is useful and needed, but it ne-
glects how the people in the building might act or interact with the build-
ing based on these physical conditions. Adjusting occupant controls within 
simulation interfaces requires integrated workflows and iteration to predict 
the energy performance along indoor/ outdoor environmental variations; 
however, existing BPS interfaces lack the ability to support such functions. 
Aside from the psychological and physiological aspects of human comfort 
( see  Chapter 2), which are dynamic in nature, many BPS users are not aware 
of  occupant-  related behavioral aspects since there is no consensus on which 
modeling and/ or simulation approach best represents in situ performance.

In addition, there is often a lack of knowledge of the actual user or user 
group( s) within the building and, therefore, in the building simulation. For 
example, a building owner or developer may design and build a building 
without having tenants lined up at the time of simulation or during the de-
sign phase. In these cases, building energy modelers often make assumptions 
about building use or occupancy without talking to or observing occupants. 
In cases where the tenants are known, information can be collected to better 
understand occupant needs ( see  Chapter 4).

Another reason that simulations may not reflect what is actually built 
and/ or how a building is used is that programs and codes may dictate 
thermostat setpoints or default assumptions ( e.g., ASHRAE Standard 140 
“ Standard Method of Test for Building Energy Simulation Computer Pro-
grams”), thereby bypassing actual use patterns, needs, etc.

Building interface design, context, and implementation are incredi-
bly important to building performance, and yet, for the reasons outlined 
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above ( i.e., use of historical data instead of observed data, lack of knowl-
edge about tenants, and/ or code or standard requirements), they are rarely 
captured within  simulation-  aided design, let  alone via other quantitative 
or  evidence-  based design methods ( Day et al., 2020). Accurate and realistic 
simulations of HBIs, across many interface modalities, will become impor-
tant for designers and engineers as energy and  health-  related building codes 
and standards become more rigid.

Although the complexities of HBIs are not fully reflected in simulation 
methods, some progress has been made. In the next section, we outline cur-
rent modeling and simulation tool capabilities, followed by a case study of 
private offices and lighting to illustrate how HBIs are being integrated into 
simulations.

9.5.1  Current Common Occupant Modeling Capabilities

As the previous sections have argued, understanding occupant behavior 
during  BPS-  aided design is essential for developing methods for modeling 
building interfaces. Currently, user behavior can be categorized into two 
types: ( 1)  self-  adaptive behavior, such as adjusting clothing level or changing 
positions in the space; and ( 2) interaction with various building interfaces to 
recover their comfort level, such as switching on/ off lights, opening/ closing 
windows, or adjusting thermostats setpoints, window shading, and water 
fixtures ( e.g., turning on a tap, flushing toilets).  Chapter 6 presents occupant 
modeling fundamentals, but it is not focused specifically on interactions 
with interfaces. Below we describe three types of occupant models in the 
interface context: ( 1) deterministic, ( 2) probabilistic, and ( 3)  agent-  based. 
We describe each approach in turn in the paragraphs that follow, though 
readers may opt to refer back to  Chapter 6 for further detail.

First, deterministic approaches to representing occupant behaviors are 
available in common simulation tools. For example, occupants’ interac-
tions with lighting ( turning on/ off lights) are represented by a static lighting 
schedule that shows the fraction of lights that are turned on/ off, the time 
when lights are turned on/ off, and the fraction of lights that are left on dur-
ing the unoccupied hours. Several BPS tools also have advanced lighting 
control scenarios, such as lighting control based on available daylight levels. 
Similarly, thermostats are typically represented by heating and cooling in-
door temperature setpoints schedules.

Interactions with window blinds/ shades are commonly neglected in the cur-
rent BPS practices and assumed to be always open during modeling ( O’Brien 
et al., 2020). However, some BPS tools offer multiple options for modeling 
interactions with window blinds/ shades, such as assuming that window 
blinds/ shades closing actions are triggered by high solar radiation or high 
glare levels. The presence of operable windows is treated as means of venti-
lation, and the action of opening the window and the fraction of opening are 
set based on temperature, wind speed, and atmospheric pressure setpoints.
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Second, probabilistic occupant behavior models are normally based on 
collected occupancy and operational data from existing sensing sensors in 
buildings. For example, Reinhart ( 2004) developed the  Lightswitch-  2002 
model that predicts switching on lights and closing window blinds according 
to the level of available illuminance in the space. In another example, Haldi 
and Robinson ( 2009) modeled the probability of window opening behaviors 
according to weather. The  data-  driven nature of these models brings some 
semblance of reality.

One hindrance to the field of occupant behavior modeling has been the 
availability of reliable and generalizable  occupant-  related data. This issue is 
being addressed by initiatives such as the ASHRAE Global Occupant Behav-
ior Database ( Dong et al., 2022). Although there have been remarkable re-
search advances regarding accurately modeling occupants’ presence and 
interactions with buildings, the uptake of these advances by BPS practitioners 
is almost nonexistent ( Abuimara et al., 2019; Ouf et al., 2018). Modeling practi-
tioners, as well as researchers, are still questioning the generalizability of these 
stochastic  data-  driven models as they were developed for single offices under 
certain conditions that do not apply elsewhere ( Schweiker and Shukuya, 2011).

Lastly,  agent-  based models ( ABM) allow each agent ( e.g., occupant) to 
make a decision in relation to their environment based on a set of rules. 
ABMs consist of three main steps that can be coupled with one of the pre-
vious approaches: ( 1) defining agents and their interactions, ( 2) setting the 
relationships between those interactions, and ( 3) simulating the building en-
vironment in which the interactions are happening.

The implementation of these three different modeling approaches in cur-
rent BPS tools is governed by the level of complexity required for each case 
and the resources and skills available to design practitioners ( as discussed 
in  Chapter  6). Given BPS practitioners’ time and budget limitations, the 
implementation of stochastic ( see  Chapter 6) and ABM models will not be 
favorable unless they are required by codes and standards.

In the next section, we discuss in more depth how simulation tools can 
account for user interactions with building interfaces.

9.5.2  Simulation Tool Capabilities

In simulation, user interactions with building interfaces consist of two main 
actions: ( 1) sending actions through the interface ( e.g., pushing a button) and 
( 2) receiving feedback to satisfy the request ( e.g., delivering sufficient light-
ing). This  back-    and-  forth mechanism can currently be integrated into BPS 
tools in three discrete categories that formulate a BPS’s inherent prediction 
capabilities:

1  User behaviors as inputs: Interfaces are used to deliver requests from 
users to building services that are acting as inputs to BPS tools. Often 
derived from standards ( e.g., ASHRAE 90.1), prescribed schedules 
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are capable of modeling deterministic occupants’ interaction with an 
interface as predefined values rather than  time-  varying interactions. 
However, there are methods to model occupants’ interactions stochas-
tically ( e.g.,  built-  in,  user-  customized controls), but these methods are 
limited to certain functions. For example, window interactions in Ener-
gyPlus are limited to certain fixed or probabilistic indoor temperature 
thresholds. However, there are other features, such as window type and 
position on façade, that might change the occupant’s interaction with 
interfaces to open/ close the windows ( Roetzel et al., 2010).

2  Interfaces as control logic: In BPS tools, to conceptualize the automated 
logic of an interface, implementing a control logic within a simulation 
workflow is necessary. This feature is feasible through  co-  simulation or 
 user-  customized controls such as Energy Management System ( EMS) 
in the EnergyPlus simulation tool, which allows the inputs to be passed 
through a set of conditional deterministic/ probabilistic assumptions 
of occupants’ behavior when dealing with an interface in reality ( e.g., 
thermostats) ( Gunay et al., 2016; Tabadkani et al., 2020). For example, 
window blinds controls in EnergyPlus have been widely used to auto-
mate a shading system based on occupants’ visual comfort ( e.g., glare), 
assuming they override an automated action or control it manually.

3  Feedback as outputs: BPS tools are capable of illustrating interface feed-
back as  time-  dependent outputs and quantifying occupants’ interac-
tions with the interface. Depending on what has been  controlled—  such 
as light on/ off switches based on an occupant’s arrival/ departure ( e.g., 
 wall-  mounted interface) or daylight level ( e.g., remote control)—  BPS 
tools can characterize the implications of interfaces on three levels: ( 1) 
occupant level ( e.g., task illuminance or light switching frequency), ( 2) 
space level ( e.g., blind adjustments per day), or ( 3) building level ( e.g., 
lighting load). Future  occupant-  centric developments in BPS should en-
able more reliable building performance predictions.

While much work is needed to more accurately reflect interfaces and inter-
actions with buildings in simulation, the current BPS tools and their capa-
bilities for understanding HBIs as outlined above ( i.e., user behaviors as 
inputs, interfaces as control logic, and feedback as outputs) are a starting 
point. In the next section, we describe a case study example of lighting in-
terface design and controls logic in private offices to offer insights into how 
simulation methods are emerging to begin to address the integration of in-
terfaces, HBIs, and occupant behavior into simulation.

9.6  The Impact of Lighting Interface Design and Controls 
Logic: A Simulation Case Study

As indicated throughout this chapter, occupant models are generally not 
adequately detailed to quantify the impact of building interface design on 



Building Interfaces 227

user interactions. However, there are some models that are reasonably capa-
ble of quantifying the impact of interface design on building performance, 
such as lighting use behavior models. In this section, we provide a brief case 
study of private offices to illustrate the impact of lighting interface design 
and controls logic.

The three different lighting interfaces and control schemes that were mod-
eled and explored in the case study ( i.e.,  manual-  on/  manual-  off,  manual- 
 on/  vacancy-  off,  occupancy-  on/  vacancy-  off) are compared in  Table 9.2.

A  south-  facing private ( single occupancy) office was modeled using the 
three schemes in EnergyPlus. The model is the same as that described in 
 Chapter 8. In brief, it measures 4 m by 4 m, with a ceiling height of 3 m. It 
was modeled with a 50%  window-    to-  wall area ratio, with the window cen-
tered on the wall. The  Lightswitch-  2002 ( Reinhart, 2004) and Haldi and 
Robinson’s ( 2010) model were implemented in EnergyPlus to predict the 
manual behaviors. These models predict whether occupants will turn on 
lights as a function of work plane illuminance and whether occupants will 
turn off lights at departure as a function of expected absence duration. The 
blind model predicts how occupants respond to daylight conditions. The 
Wang, Federspiel, and Rubinstein ( 2005) model was used to predict occu-
pancy, which provides some randomness to arrival, departure, and break 
times. Occupancy is an important part of the simulation, since the light-
ing and shades use models depend on  occupant-  related events ( e.g., arrival). 
 Daylight-  based control was not included, though the lighting and shades use 
models consider daylight.

Given that these models are stochastic, 50 simulations were repeated to 
quantify the distribution of predicted results. The reported output from 
the model is annual lighting energy and the number of times the lights 
were turned on by the occupant or by the automation system. The results 
(  Figure 9.13) show profound differences in annual lighting electricity use and 
number of times the light is turned on for relatively subtle changes in  human- 
 interface interactions and the impact of automation on these interactions.

For both explored performance metrics ( i.e., lighting electricity use 
and ratio of lighting on/ off), the manual on and automatic ( vacancy) off 

 Table 9.2 Three different lighting control schemes that were modeled and explored

Name Light on controls Light off controls

 Manual-  on/  manual- 
 off

Occupant may turn on 
light ( using Reinhart 
light use model)

Occupant may turn off light 
( using Reinhart light use 
model)

 Manual-  on/  vacancy- 
 off

( same as above) Lights turn off after 15 min. of 
no detected occupancy

 Occupancy-  on/ -
vacancy-  off

Lights turn on upon 
occupancy detection

( same as above)
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scheme performed best, likely because this perimeter office receives signif-
icant daylight, and the occupant often does not turn on the light upon ar-
rival. According to both metrics, the vacancy off feature is valuable, as the 
 Lightswitch-  2002 model predicts that occupants will often leave lights on 
upon departure, particularly for shorter absences. Reinhart ( 2004) noted 
that such a feature makes occupants less likely to manually turn off lights 
and thus, in the current configuration, they stay on for 15 minutes after de-
parture. However, the  vacancy-  off feature still appears to have a net benefit.

This short case study illustrates how relatively subtle interface and con-
trol design decisions can profoundly affect building performance. However, 
actual performance depended on validated occupant models that are based 
on  long-  term in situ measurement studies. A more detailed version of this 
case study, which includes a monitoring and model development phase, is 
presented in Gilani and O’Brien ( 2018).

In the final section, we offer summary recommendations for further ex-
ploring and integrating HBIs into building performance simulation and fu-
ture research needs.
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 Figure 9.13  Results of different interface design/ controls logic for lighting: annual 
energy use ( top) and number of times light is turned on ( bottom).
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9.7  Final Recommendations and Future Research Needs

In this chapter, we presented an introduction to building interface theory, 
design, and considerations for integration into building performance sim-
ulation. We emphasized the importance of recognizing that  user-  centered 
building interface research and practice is an emergent but critical area. 
There are significant opportunities to understand, design, simulate, inte-
grate, and evaluate building user needs into building interfaces and better 
understand the impact of interfaces on human and building performance 
( Day et al., 2020). With this in mind, we propose six steps to continue to 
advance knowledge regarding  user-  centered building interface research 
and practice to better provide accurate information and HBI inputs for 
simulations.

Step 1. Learn from  user-  interface simulation work in other domains/ industries. 
For example, the aerospace and automobile industries have fully de-
veloped  human–  interface simulators with varying levels of fidelity ( see 
 Figure 9.14).

Considerable interface research has also been published in occupational 
settings such as mining, military, farming, and construction. For example, 
Thompson ( 2020) simulated human auditory localization capabilities ( see 
 Figure 9.15) and then developed a mobile interface evaluation tool to vali-
date simulation findings in specific occupational settings.

Step 2: Develop higher fidelity approaches to modeling  occupant-  interface 
interactions. Higher fidelity modeling approaches will be necessary to 
better reflect emerging challenges related to  human-  building interac-
tion. For example, the emergence of multimodal interfaces will require 
advanced understanding of human factors as well as account for smart 
interfaces that are increasingly reliant on automation and capable of 
learning user preferences for interactions.

 Figure 9.14  Automobile interface research examples. ( a) Low fidelity driver simula-
tor, ( b) schematic for  head-  up display ( interface) simulator, ( c)  full-  scale 
 driver-  interface study.
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Step 3. Validate simulations with  data-  driven models. With the growth of 
 cost-  effective sensing technologies, the ability to measure, analyze, 
and integrate data into building performance simulations to improve 
simulation predictions has grown exponentially. Iteratively simulating 
to predict and measuring to validate ( and calibrate) should be the pre-
ferred approach to realize more  user-  centered outcomes. This is the cur-
rent approach, but it is important to note that  data-  driven models are 
still not truly representative of interfaces and HBI.

Step 4. Account for and differentiate between  high-  interaction,  low- 
 performance impact interfaces ( e.g., door handles) and  low-  interaction, 
 high-  performance impact interfaces ( e.g., water heater setpoints). HBIs 
are diverse and dynamic. How can interactions be prioritized to better 
understand and simulate them? For example, building users in indus-
trialized societies have four to 15 interactions with a toilet per day ( or 
1, 460–  5,475 interactions per year). The toilet interaction is an example 
of a high interaction, low energy performance impact interface. These 
interfaces and interactions matter for usability, but they do not signifi-
cantly impact building energy performance.

 Figure 9.16 represents two toilet interfaces: ( a) has a single flush lever ( top of 
left) and ( b) has a dual flush interface. The dual flush interface was designed 
to reduce water consumption but does require additional human informa-
tion processing ( e.g., cognitive burden) prior to the user responding with a 
flush choice.

Step 5. Develop and validate experimental designs to support interface inter-
action models. A consistent challenge with integrating  human-  interface 
interactions into BPS is the lack of experimental designs that would 

 Figure 9.15  ( a) Auditory interface being used for localization evaluation. ( b) User 
interface developed to validate localization simulation assumptions.

Source: Thompson ( 2020).
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provide BPS developers with confidence regarding the validity and reli-
ability of the  human-  interface assumptions. For example, increasingly, 
 smartphone-  based applications are accompanying building systems 
( e.g., smart thermostats, energy feedback displays). These applications 
integrate push notifications to send command and status signals. These 
push notifications increasingly inform  human-  building interactions, but 
they are not yet well understood in BPS.

Step 6. Explore experimental designs that build upon behavioral economics, 
specifically Thaler and Sunstein’s ( 2009) work in “ nudge” theory and 
choice architecture. For example, an  energy-  efficient system decision 
could be set as an interface default with other options presented to the 
user as well. The nudge, in this case, the  energy-  efficient default accept-
ance or rejection, could be studied as a true experiment ( random sam-
ple, manipulation of independent variable( s), etc.). This type of study 
could also be adapted to measure user response from the choice archi-
tecture as well as the mental workloads associated with interface push 
notifications ( see  Figure 9.17).

9.8  Closing Remarks

In this chapter, we presented key  human-  building interaction research to 
provide a framework for understanding how humans process information 
and interact with buildings. We discussed the importance of defining user 
needs due to the dynamic nature of HBIs in relation to both the challenges 
surrounding the incorporation of interfaces and HBIs into simulation as 
well as current occupant modeling and simulation tool capabilities. We pro-
vided a brief case study example of lighting interface design and controls 

 Figure 9.16  Toilets are  high-  interaction,  low-  performance impact  human-  building 
interactions. ( a)  Single-  flush interface. ( b) Dual flush interface ( increases 
user cognitive burden, compared to single flush).
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logic in private offices to illustrate how simulation methods are emerging to 
address current challenges and gaps in simulation tools. Finally, we made 
six recommendations for the further exploration and integration of HBIs 
into building performance simulation. Ultimately, there is still much to 
learn in terms of interface characteristics, drivers for use and behaviors, 
and how to accurately reflect those aspects in simulation.
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Summary

In this chapter, we will present basic classes of  occupant-  centric controls 
with illustrative examples developed using a  real-  world dataset. We will 
introduce workflows to study  occupant-  centric controls in building per-
formance simulation. We will also discuss challenges related to the use 
 occupant-  centric controls in conventional sequences of operation by syn-
thesizing findings from several field implementations.

10.1  Introduction

The development of sequences of operation is an essential phase in the de-
sign of a building since they detail how each building system, subsystem, and 
device will interact with each other to deliver building services efficiently 
( ASHRAE, 2018). This phase requires a  system-  level perspective that inte-
grates the design team’s vision of how individual pieces of equipment, solu-
tion, and technology will work together during the service life of a building.

If sequences of operation are not designed properly,  energy-  saving 
technologies and solutions may not work as intended; causing deviations 
in measured energy performance from the design intent by 30% or more 
( Wang et al., 2012; Zhang and Bannister, 2013; Gunay et al., 2019). How-
ever, the sheer number of interconnected systems, subsystems, and devices 
in a building makes the design of sequences of operation as one of the most 
challenging stages in the design process. For example, here, consider a vari-
able air volume ( VAV) terminal device’s damper and reheat coil responding 
to  zone-  level heating and cooling demand. In turn, an air handling unit’s 
( AHU) fan will respond to these changes in the terminal device dampers, 
AHU heating, and cooling coils will respond to heating/ cooling demand 
from the various zones it serves, secondary and primary pumps will react 
to the demand from AHUs and VAVs, and so on. During the construction 
phase, control engineers codify the sequences of operation that regulate 
these different systems and then implement them into the building auto-
mation system ( BAS). The outcome is a modern building with a network of 
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devices automatically responding to a collection of setpoints and schedules 
prescribed in the sequences of operation.

Traditionally many of these setpoints and schedules are defined as con-
stant or  steady-  periodic variables ( Gunay, 2016). As design codes often leave 
the decision about these setpoints and schedules to the discretion of the de-
sign team, they are often selected conservatively to cater to an unrealisti-
cally high design occupancy that assumes occupants arrive and depart each 
day same time like clockwork. A few common examples of these conserva-
tive setpoints and schedules from the literature are as follows:

• Constant 22°C temperature setpoint  year-  round without a seasonal or 
daily setback ( Gunay et al., 2019);

• AHUs in office buildings scheduled to operate much longer than the 
actual occupied hours ( Gunay et al., 2019);

• Excessive  over-  ventilation due to high VAV terminal minimum airflow 
setpoint and AHU outdoor air damper minimum position setpoint 
( Cho and Liu, 2009; Pang et al., 2017);

• Illuminance setpoints conservatively exceeding occupants’ preferred il-
luminance levels ( Gilani and O’Brien, 2018).

In reality, occupancy and occupant preferences of individuals using a build-
ing are diverse ( Haldi et  al., 2017; O’Brien, Gaetani et  al., 2017; O’Brien, 
Gunay et al., 2017). Any attempt to address this diversity with static and 
conservative setpoints and schedules means delivering building services 
blindly without knowing how many people are in a building, where they are 
in the building, what temperatures and illuminance levels they each prefer, 
and so on. Such attempts will inevitably waste energy and affect comfort as 
well as indoor environmental quality ( IEQ).

Research using  field-  scale occupant data revealed that while individual 
occupancy events and adaptive actions of an occupant can be described as 
stochastic, the aggregate of many occupancy events and adaptive actions 
by the same individual are predictable and thus can be accurately modeled 
( Nicol, 2001; Haldi and Robinson, 2011). Beginning in the early 2000s, this 
finding initiated the following line of inquiry ( Guillemin and Morel, 2002; 
Nagy et al., 2015; Gunay, 2016): can  data-  driven occupancy and occupant 
behavior models be used to estimate optimal setpoints and schedules for 
HVAC and lighting controls? Currently, there are over 35 published field 
investigations documenting the viability of learning occupancy and occu-
pant behavior patterns through occupant modeling to derive setpoints and 
schedules for HVAC and lighting controls ( Park, Dougherty et al., 2019). The 
approach has been termed  occupant-  centric controls ( OCC). A recent posi-
tion paper by the IEA EBC Annex 79 defined OCC as an indoor climate con-
trol paradigm whereby measured occupancy and occupant preference data 
are used in the sequence of operation of building energy systems ( O’Brien 
et al., 2020). In lieu of constant or  steady-  periodic conservative setpoints or 
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schedules, OCC algorithms input occupant data and adapt the sequences of 
operation to the occupancy and occupant preferences in a building.

With the advent of ubiquitous occupant sensing and  low-  cost data ar-
chiving technologies, emerging data mining tools and techniques, and case 
studies documenting the energy savings potential, controls practitioners’ in-
terest in OCC has grown. The 2019 edition of ASHRAE Handbook HVAC 
Applications incorporated a standalone chapter on OCCs ( ASHRAE, 2019). 
In parallel, commercial solutions tailored for OCC applications have begun 
to emerge. As the number of stakeholders in OCC research and development 
increases, so does the need for the present chapter that introduces a system 
of classification with  real-  world examples.

In this chapter, we first classify  controls-  oriented occupant data into dif-
ferent grades and provide examples for the most promising sensing tech-
nologies to acquire occupant data at these grades. Then, we describe and 
demonstrate  controls-  oriented occupant variables derived from occupant 
data with  real-  world examples. Next, we present the use of these variables 
inside a  zone-   and  system-  level controller. We then introduce approaches to 
integrate OCC algorithms into the building performance simulation ( BPS)- 
 based design process. Finally, we demonstrate the energy savings potential 
of OCCs through a  simulation-  based investigation.

10.2   Controls-  Oriented Occupant Data

 Controls-  oriented occupant data can be broadly grouped into six grades, 
as shown in  Figure 10.1. Occupant data grades ( 1) and ( 2) indicate absence 
or presence, grades ( 3) and ( 4) indicate occupant counts, and grades ( 5) and 
( 6) indicate occupant activities. Grades ( 1, 3, 5) are for occupant data at the 
system/ building resolution, and grades ( 2, 4, 6) are for occupant data at the 
zone/ room resolution.
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 Figure 10.1  Grades of occupant data and the most promising sensing technologies 
to acquire occupant data at these grades.
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Note that this categorization is adapted from Melfi et al. ( 2011). Melfi et al. 
grouped occupant data based on three dimensions: occupant, spatial, and 
temporal resolutions. Occupant resolution was grouped into four grades: 
presence, count, identity, and activity. Occupant resolution identity can be 
of practical use if an occupant’s work location inside a building frequently 
changes, as a building’s automation system can only learn a highly mobile 
occupant’s preferences by monitoring them individually. This logic does not 
apply to spaces with transient occupancy characteristics ( e.g., airports, ho-
tels, restaurants) unless a globally available automation system can track 
all occupant actions individually in all space types. For OCC applications 
offering personalized comfort conditions, the general assumption is that 
the same group of occupants continuously use the same space; thus, anony-
mously monitoring their actions would provide insights into the preferences 
of occupants using a space. Hence, occupant resolution identity is found not 
necessary for common controls applications and omitted from this chapter. 
Spatial resolution was grouped into three grades: room, floor, and building. 
We adapted this as room/ zone and system/  building-  level occupant data. As 
all  controls-  oriented occupant data must be generated at  sub-  hourly resolu-
tions, temporal resolution grades are also not included.

While the list of commercially available occupant sensing technologies 
is constantly growing,  Figure 10.1 presents the most promising and widely 
used: motion detectors,  Wi-  Fi, people counting cameras, and CO2 sensors. 
Motion detectors ( passive infrared and ultrasound) are the de facto stand-
ard in occupancy sensing, to the point that building codes and standards 
prescribe their use for lighting controls. Motion detectors output a binary 
present/ absent signal over a timeout period of typically 5 to 30 minutes. 
They are available in most commercial buildings, albeit their coverage is of-
ten limited to only a fraction of the spaces. Motion detectors placed at main 
entry points can provide data at grade ( 1) ( presence/ absence at the building 
level). To acquire data at grade ( 2) ( presence/ absence at the zone level), mo-
tion detector coverage needs to be extended to all occupiable spaces.

CO2 sensors are an implicit occupant count sensing solution. CO2 sensors 
have been a method of controlling ventilation for decades using  threshold- 
 based CO2 concentration to control outdoor air control ( Brandemuehl and 
Braun, 1999; Emmerich and Persily, 2001). This method has been part of the 
 performance-  based criteria within the ASHRAE Standard 62.1 focused on 
indoor ventilation ( Persily, 2015). CO2 sensors are widely used at the system/ 
building level, primarily to monitor AHU return air CO2 concentration to 
facilitate this control. A more recent use of these sensors has been as an im-
plicit occupant counting solution. CO2 sensors do not count people directly, 
but instead detect occupants’ impact on the CO2 concentration. While there 
are several commercial thermostats and zone sensor hubs with  built-  in CO2 
sensors,  zone-  level CO2 sensing is currently unavailable in all commercial 
buildings ( Dong et al., 2019).

 Wi-  Fi device count is a very promising proxy for occupancy. Hobson et al. 
( 2019) and Ashouri et al. ( 2019) demonstrate that  Wi-  Fi device counts exhibit 
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a strong linear correlation with ground truth occupant counts. Both studies 
reported that occupants carry ~1.2  Wi-    Fi-  enabled devices each on average. 
However, the number of  Wi-    Fi-  enabled devices per person is expected to 
exhibit some variation in different buildings depending on the building use 
case and occupant demographics. Therefore, if possible, ground truth occu-
pant count data should be collected for calibration to achieve high accuracy. 
Both ( Ashouri et al., 2019; Hobson et al., 2019) reported that two to three 
days of ground truth data are adequate for calibration. In a building with 
a centralized IT network, building/  system-  level  Wi-    Fi-  enabled device count 
data can be accessed, often without any additional software and hardware. 
In facilities without a centralized IT network, standalone  Wi-  Fi probing de-
vices deployed in the atria can be utilized for  building-  level occupant count 
estimation, albeit there will be some hardware and software costs.

Acquiring zone/  room-  level occupant counts from  Wi-  Fi requires redun-
dancy in the  Wi-  Fi coverage. Indoor localization at the zone/ room level re-
quires each zone to remain within the coverage of multiple  Wi-  Fi access 
points ( APs). Having this redundancy in  Wi-  Fi AP installations is needed 
to estimate the occupant counts at the zone/ room level by analyzing the 
received signal strength indicator ( RSSI) by each AP. Therefore, the use 
of  Wi-  Fi to estimate occupant counts at the zone/ room level ( grade ( 4) in 
 Figure 10.1) will likely require additional  Wi-  Fi APs and specialized soft-
ware for localization. Currently, there are several commercial solutions for 
 zone-  level occupancy sensing with  Wi-    Fi—  either  software-  based solutions 
connecting to an existing  Wi-  Fi network through its API or  hardware-  based 
solutions with  Wi-  Fi probing devices. However, in most buildings, using the 
existing  Wi-  Fi network for  zone-  level occupant count sensing requires addi-
tional APs, which will have cost implications.

People counting cameras can also be used in occupant sensing. In most 
cases, these devices are manufactured with  built-  in computer vision capa-
bilities. As such, they can count the number of occupants entering and leav-
ing from a door, without streaming the video footage to a centralized server. 
The fact that the number of occupants, not the video, can be stored anony-
mously may alleviate privacy concerns, at least at the building level. People 
counting cameras deployed at each entry point to a building can provide an 
accurate  low-  cost estimate of the  building-  level occupant counts ( grade ( 3)) 
and it can be a viable alternative to  Wi-    Fi-  based occupant count estima-
tion in commercial buildings without a centralized IT network. However, 
occupant count estimation at the zone/ room level with a camera network 
will require a significant investment and likely cause considerable privacy 
concerns, given that cameras need to be deployed above each zone/ room 
entry point.

Unlike occupancy sensing, occupant activity data require input from oc-
cupants. A common source of occupant activity data is the interactions with 
control and feedback interfaces such as thermostats and light switches. As 
adaptive actions ( e.g., thermostat adjustments) restore comfort, adaptive 
behavior models developed with concurrent IEQ data provide insights into 



240 Burak Gunay et al.

preferred temperature levels. These models can be used to identify  building-   
or  zone-  specific temperatures that minimize the need for adaptive actions. 
A shortcoming of relying on unsolicited feedback from behavior patterns to 
acquire preference data can be the infrequent nature of occupant actions. 
Some occupants may use their thermostats only a few times over a year, 
deeming it nearly impossible to learn their preferences through passive 
observation.

An emerging approach to acquiring occupant activity data at the zone/ 
room level is to solicit feedback with a higher frequency than can be captured 
from typical surveys. For example, smartwatch applications can facilitate 
the process for occupants to register preference feedback about their ther-
mal, visual, and aural comfort ( Jayathissa et al., 2020). Such applications 
collect occupant preferences and motivations with miniature surveys to ac-
celerate the occupant activity data collection process at the zone/ room level. 
These studies have shown that large amounts of subjective occupant feed-
back can be collected from an individual in a short period of time from a di-
versity of spaces and conditions across a building. These  smartwatch-  based 
methods collect large and diverse datasets to create personalized comfort 
models in a way that has less risk of survey fatigue. Personalized occupant 
comfort models, which enable a practical way to collect previously stated 
identity data, open up possibilities for future building controls strategies 
driven by recommendation engines that guide occupants to decisions that 
best suit their preferences ( Sood et al., 2020). Personalized comfort models 
will be more appropriate for work environments in which occupants do not 
have a dedicated workspace; hence, preference learning cannot be achieved 
by anonymously monitoring actions and would require monitoring occu-
pants individually.

10.3  Sequences of Operation Using Occupant Data

The grades of occupant data presented earlier are then used to compute 
OCC variables ( i.e., analog variables of a BACnet communication protocol) 
listed in  Figure 10.2. The earliest expected arrival and latest expected depar-
ture times (( a) and ( b) in  Figure 10.2) in a building are the two variables that 
can be computed from the lowest grade occupant data ( grade ( 1)). These 
two variables can be used in scheduling the start and stop times for the oc-
cupied mode in a building. The third OCC variable (( c) in  Figure 10.2) is the 
 building-  level occupant counts. At any time, only a fraction of the design 
occupancy is expected to be present in the building. This variable can be 
used to adapt the minimum outdoor airflow setpoint to occupant counts.

The four OCC variables that can be computed from grade ( 2) occupant 
data are the earliest expected arrival and latest expected departures times, 
the latest expected arrival times, and the longest expected duration of an in-
termediate break in a zone (( e)–  ( h) in  Figure 10.2).  Table 10.1 presents pseu-
docode summarizing how these variables can be used in the sequences of 
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operation. The earliest expected arrival and the latest expected departure 
times are intended for occupied weekdays, while the latest expected arrival 
time is intended for absent weekdays. For example, if the current time ex-
ceeds the latest expected arrival time of a zone/ room ( e.g., noon) and the 
zone/ room remains vacant, we can safely assume that the zone/ room will 
remain vacant until the end of the day. This simple midday setback logic can 
be quite effective in zones/ rooms with frequent vacant days. The longest ex-
pected duration of an intermediate break is intended for partially occupied 
weekdays. For example, if a zone/ room is occupied earlier in the day, but 
then vacated for longer than the longest expected break duration, the zone 
status unoccupied can be reinstated earlier. When a zone’s status is switched 
to unoccupied, the minimum VAV airflow setpoint can be set to zero and 
unoccupied mode temperature setpoints can be applied. Note that relying 
on instantaneous presence/ absence data to switch between the occupied and 
unoccupied states would not be appropriate considering the response time 
of the temperature of thermal mass. Thus, the control logic presented in 
 Table 10.1 maintains a  zone-  occupied status occasionally, even though the 
zone is empty, considering the likelihood of occupants’ arrival.

A fifth  zone-  level OCC variable can be computed with  zone-  level occu-
pant count data (( i) in  Figure 10.2). This variable is suitable for large  multi- 
 occupant thermal zones with VAV terminals. The minimum airflow setpoint 
of the zone can be adjusted with the number of occupants in the space. The 
ability to  fine-  tune ventilation based on occupant count data at the zone 
level, other than achieving energy savings, will improve the controllability 
of  occupant-  induced contaminants at the zone level ( e.g., infectious aero-
sols, odor, CO2).

The occupant activity data at the building and zone level ( grades ( 5) 
and ( 6)) with concurrent IEQ data ( e.g., indoor temperature, illuminance) 
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 Figure 10.2  Controls variables computed from the occupant data grades listed in 
 Figure 10.1.
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can be used to compute two other OCC variables: preferred temperature/ 
illuminance setpoints at the building and zone level, respectively (( d) and ( j) 
in  Figure 10.2). These variables can be used to determine optimal setpoints 
that minimize the risk of occupant adjustments or complaints.

10.4  Estimation of OCC Variables

The OCC variables listed in  Figure 10.2 can be estimated through online or 
offline learning approaches. The advantage of online learning is the abil-
ity to adapt to changes in occupancy and occupant preferences over time. 
Online learning can be executed in two different ways: batch learning or 

Table 10.1  Algorithm to integrate grade ( 2) occupant data into the sequences of 
operation to determine zone occupancy status

Input:
 motion detector

Variables:
 earliest expected arrival time
 latest expected arrival time
 latest expected departure time
 longest expected break

Process:
 if current time == midnight
  zone not yet occupied today = true
 end

 if motion detector = on
  zone not yet occupied today = false
  last time occupied today = current time
 end

 if current time > earliest expected arrival time
  zone status = occupied
 end
 if current time > latest expected arrival time and zone 
not yet occupied today = true

  zone status = unoccupied
 end
 if zone not yet occupied today = false
  if current  time -   last time occupied today > longest 
expected break

  zone status = unoccupied
  end end
 if current time > latest expected departure time
  zone status = unoccupied end
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recursive learning. In batch learning, a server would periodically read the 
most recent data over a  pre-  set time interval ( e.g., calling the most recent 
three months’ worth of data once a week), compute the OCC variables us-
ing the dataset, and write to the OCC variables to the BAS. The server is 
expected to have the computational and analytical capabilities to undertake 
this batch learning  task—  e.g., maximum likelihood estimation to train a 
logistic regression model ( Haldi and Robinson, 2011), reinforcement learn-
ing ( Park and Nagy, 2020), and neural nets ( Peng et al., 2019).

Recursive learning approaches compute OCC variables with lightweight 
parameter estimation techniques inside zone VAV controllers in a distrib-
uted fashion, instead of using a centralized server. There are a few success-
ful OCC field implementations with recursive learning of OCC variables 
by using stochastic gradient descend ( Gunay et  al., 2018), recursive least 
squares ( Nagy et al., 2016), extended Kalman filter ( Gunay, 2016), etc. For 
example, in Gunay ( 2016), during long absence periods ( e.g., long vacations), 
the earliest expected arrival times were set to increase and the latest ex-
pected arrival times were set to decrease slowly until these two variables 
become nearly identical. However, it can be challenging to set up the hyper-
parameters in recursive learning approaches, particularly how much weight 
should be given to the new observations ( e.g., new arrival events) in updating 
the OCC variables, and how fast distant information should be forgotten. 
As will be discussed in Section 10.6, BPS can play a vital role as a sandbox 
environment in the design of these learning algorithms.

In offline learning, the OCC variables are estimated with archived BAS 
data during retro/ ongoing commissioning. Based on this analysis, the OCC 
variables are updated in the BAS database and remain constant. The in-
volvement of a human analyst provides oversight on the data preparation 
( detection of outliers and data imputation) and parameter estimation pro-
cess. However, as it is not a continuous process, OCC variables can become 
inappropriate should there be abrupt changes in the occupancy.

10.5  Illustrative Examples for the OCC Variables

In this section, we discuss the effectiveness of the OCC sequences presented 
earlier by considering examples built upon data collected from  full-  time 
office occupants in Ottawa, Canada. The dataset contains a year’s worth 
of motion detector, temperature, and thermostat use data from 37 private 
offices at  15-  minute intervals. The offices were served by  multiple-  zone VAV 
AHU systems, and the zones were equipped with VAV terminals with re-
heat and  ceiling-  mounted hydronic heaters. The occupants could change the 
temperature setpoints until midnight up to ±2°C. While the building from 
which the data were collected contained sensors necessary to implement 
OCC algorithms, they were not used in the sequences of operation. The oc-
cupied mode followed a constant schedule from 6h00 to 20h00 on weekdays. 
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The outdoor airflow was constant and determined for full occupancy. The 
temperature setpoints were 22°C  year-  round.

 Figure 10.3 presents the  building-  level OCC variables on the weekday oc-
cupancy profiles. The 10th and 90th percentile occupancy profiles indicate 
the  day-    to-  day variation of occupancy. The results indicate that at least 20% 
of the 37 occupants were present as early as 6h00 and as late as 20h00 on 
10% of the days. These two values were treated as the first two  building-  level 
OCC variables, i.e., the earliest expected arrival and the latest expected de-
parture times in a building. The  14-  hour occupancy period between 6h00 
and 20h00 results from  inter-  occupant diversity and underlines the diffi-
culty of fitting everyone in an office building into a single operating sched-
ule. While these two OCC variables inform the start and stop times for the 
 AHU-  occupied mode, due to the diversity of individual arrival and depar-
ture patterns, tuning the start and stop times for the occupied mode will not 
be very effective in achieving energy savings.

Although it is detrimental to the scheduling of  AHU-  occupied mode 
start and stop times, the diversity of occupancy patterns makes  occupancy- 
 based ventilation strategies a compelling OCC option. Recall that these 
 occupancy-  based ventilation strategies rely on  building-   or  zone-  level oc-
cupant count data ( grades ( 3) and ( 4)). As shown in  Figure 10.3, the highest 
expected number of occupants ( with 90% confidence) did not exceed 68%. 
Particularly in extremely cold/ hot climates, tuning ventilation rates to occu-
pant counts can generate substantial energy savings, as will be discussed in 
the following section. Recall also that  building-  level occupant counts can be 
estimated from  Wi-    Fi-  enabled device counts in buildings with a centralized 
IT network,  Wi-  Fi probing sensors in the atria, or people counting security 
cameras monitoring the building entry points.
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 Figure 10.3   Building-  level OCC variables highlighted on the weekday occupancy 
profiles. Note that earliest arrival and latest departure times are anno-
tated where the 90th percentile profile intercepts with 20% occupancy.
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Even if the outlying occupants are neglected, the earliest expected arrival 
time and the latest expected departure time in this example’s small popu-
lation of 37 occupants were spread over a  two-  hour and  four-  hour period, 
respectively, as shown in  Figure 10.4a. The longest expected workday for 
individual occupants varied from 8 hours to 17 hours, with an average of 
11.5 hours ( see  Figure 10.4b). With only these two control variables ( earliest 
arrival and latest departure times), these zones can be maintained in the un-
occupied mode on average for an additional 2.5 hours ( 11.5 hours instead of 
14 hours), during which the unoccupied mode temperature setpoints can be 
applied and the minimum VAV airflow setpoints set to zero ( i.e., no air is de-
livered unless it is necessary to meet the unoccupied temperature setpoints).

Other than four outlying occupants, the latest arrival times in this exam-
ple’s sample population were between 8h00 and 11h00 ( see  Figure  10.5a). 
Notably, this variable exploits the absent workdays, which have become in-
creasingly common among office workers due to  work-    from-  home,  work- 
 related travel, sick days, meetings outside the office, and so on. In this 
example’s small sample of 37 occupants, on average, they spent one in every 
four workdays away from their offices ( see  Figure 10.5b). It is worth noting 
that the dataset used in this example was collected in  2017—  i.e., long before 
the  COVID-  19 pandemic. As indicated in  Table 10.1, this OCC variable is 
used to reinstate the unoccupied mode if occupants do not show up until 
their respective latest arrival times. This simple logic is estimated to reduce 
the average duration a zone needs to be maintained in the occupied mode by 
an additional three hours ( from 11.5 to 8.5 hours).

For all but three occupants, the longest intermediate break duration was 
between 1.5 and 3.5 hours ( see  Figure 10.6a). This variable exploits workdays 
with short occupancy  periods—  e.g., dropping by for a meeting or to pick up 
an item. The occupied periods were two hours or less on more than 20% of 
the workdays ( see  Figure 10.6b). As indicated in  Table 10.1, this OCC variable 

 Figure 10.4  The distribution of (a) two of the zone-level OCC variables (latest 
expected departure and earliest expected arrival times), and (b) the 
longest expected workday for the 37 occupants. The longest expected 
workday is computed by subtracting the latest expected departure time 
from each zone’s earliest expected arrival time.
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can be used to reinstate the unoccupied mode before the scheduled end time 
if occupants leave their office and do not return for longer than their longest 
expected intermediate break duration. In this dataset, this logic is estimated 
to reduce the average duration a zone needs to be maintained in the occu-
pied mode by two more hours ( from 8.5 to 6.5 hours). Simply put, the four 
 zone-  level OCC variables, derived from grade ( 2) occupant data ( only with 
motion detectors at the zone level), used as described in  Table 10.1 could re-
duce the average occupied mode duration by over 50% ( from 14 to 6.5 hours).

In this example’s dataset, there were only 231 setpoint decrease events 
and 281 setpoint increase events by all 37 occupants over one year. There 

Figure 10.5 The distribution among the 37 occupants of ( a) the  zone-  level OCC 
variable latest expected arrival time, and ( b) the fraction of absent 
weekdays.

   

 Figure 10.6  The distribution of ( a) the  zone-  level OCC variable longest expected 
break duration for each occupant, and ( b) duration of workday on oc-
cupied days. The duration of workday is the difference between the first 
arrival and the last departure on each occupied day.
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were not many thermostat adjustments for each occupant, and so personal-
ized occupant behavior models were not developed. Logistic regression ( see 
 Chapter 6), a common approach in occupant modeling, was employed to 
create two models for setpoint increase and decrease. When the two mod-
els were superimposed, the frequency of thermostat use was minimized be-
tween 21.5°C and 23.5°C for the 37 occupants ( see  Figure 10.7). These two 
values can be used to adapt the default temperature setpoints as 21.5°C and 
23.5°C for the heating and cooling seasons, respectively, for this building 
during occupied periods. Notably, hot/ cold complaints can be treated as 
a similar source of information about preferences at the building level. If 
occupant activity data are acquired frequently ( e.g., via mobile or web appli-
cations actively seeking for the user input), similar models can be developed 
at the zone level and enable personalized indoor conditions.

10.6  Integration of OCC in the  BPS-  based Design Process

BPS tools provide a rapid testing environment for the sequences of operation 
using OCC variables prior to field implementations.  Simulation-  based test-
ing of OCCs enables the assessment of the energy savings potential and the 
impact on indoor environmental quality prior to deployment. Aside from 
the sequences of operation, BPS offers an environment to study scenarios 
for different occupancy sensor deployment densities and configurations for 
use in OCCs. Early inclusion of this phase in the design process can also 
inform other design aspects that affect the OCC configuration, including 
HVAC and lighting zone sizing and interior design. For example, smaller 
HVAC zones with fewer occupants would make  zone-  level OCC algorithms 
relying on binary occupancy data ( presence/ absence) more favorable. In 
contrast, for large zones serving many occupants, the same types of OCCs 

 Figure 10.7  Univariate logistic regression models predicting the thermostat adjust-
ment frequency.
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may not be suitable. Simply put, some OCCs can make investments toward 
certain design decisions more favorable, should they be considered earlier in 
the  BPS-  based design process.

This section focuses on two different workflows to integrate OCCs into 
BPS. The first workflow is presented by Hobson et al. ( 2021) as a workflow 
in which OCC variables are estimated through functions implemented in R, 
and then the sequences using these OCC variables are incorporated within 
the EMS application of EnergyPlus ( see  Figure 10.8a).

The second workflow, by Ouf et  al. ( 2020), provides an opportunity to 
determine the hyperparameters of the learning agents ( i.e., estimators for 
OCC variables). The workflow includes an OCC variable learning agent, 
variables, and sequences, all implemented directly into a BPS  tool—  in this 
case, in terms of EMS programs in EnergyPlus. Occupancy and occupant 
behavior data can be generated in real time by stochastic occupant behavior 
models implemented into a BPS model; again, this can be through EMS 
programs ( Haldi and Robinson, 2011; Gunay et al., 2016). The OCC variable 
learning agent receives occupancy and occupant behavior data in real time 
from an EnergyPlus model and dynamically updates OCC variables such 

Occupant
Data

OCC 
Variables

OCC 
Sequences

EnergyPlus 

through occupancy
schedule files

through EMS
actuators

through R 
functions

through R  
functions

(a)

Stochastic 
occupant 
models

OCC 
Sequences

OCC 
Variables

OCC Variable 
Learning Agent

EnergyPlus 

through EMS 
sensors

through EMS 
sensors/actuators

through EMS 
actuators

(b)

 Figure 10.8  Example workflows to incorporate OCCs in BPS from the literature 
from ( a) Hobson et al. ( 2021) and ( b) Ouf et al. ( 2020).
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as preferred illuminance and temperature setpoints. These OCC variables 
are then incorporated into a BPS model by overriding traditionally static or 
steady periodic setpoints or schedules, as shown in  Figure 10.8b. Ouf et al.’s 
( 2020) workflow was demonstrated using existing online recursive learning 
algorithms for illuminance and temperature setpoints ( Nagy et  al., 2016; 
Gunay et al., 2018). The results highlighted the importance of hyperparam-
eter tuning and configuration of online recursive learning algorithms for 
OCC variables, especially given the diversity of occupant preferences. For 
example, Ouf et al. that the rate of changing temperature setpoints can vary 
significantly for occupants with a higher likelihood of adjusting thermostat 
setpoints than more tolerant occupants.

10.7  Energy Savings Potential of OCC and Impact on IEQ

The main goals of OCC are energy savings, occupant comfort, and IEQ. 
OCCs can improve the thermal and/ or lighting conditions of the indoor 
environment by tailoring directly to the occupants’ needs. OCCs can also 
improve indoor air quality ( IAQ) by directing ventilation to spaces with 
high contaminant concentrations and/ or are  over-  occupied. Other OCCs, 
such as those exploiting the earliest/ latest expected arrival/ departure times 
as described in Section 10.5, maximize energy savings in the absence of oc-
cupants; thus, the impact on IEQ should be negligible if implemented ap-
propriately. Therefore, while most OCCs improve occupant comfort or IEQ, 
these interventions should, at worst, provide the same level of IEQ as tra-
ditional building controls while reducing energy use. A review on the field 
implementation of OCCs identified that OCCs either improve or do not have 
a significant impact on the IEQ ( Park, Ouf et al., 2019).

The impact of OCC on building energy use is affected by numerous 
factors including occupancy type, location ( i.e., climate and orientation), 
building envelope properties, the number of occupants and their behaviors, 
as well as the meter data and sensing infrastructure available. In the latter 
case, BASs that are unhealthy ( e.g., multiple hard/ soft faults or inefficien-
cies) are poor candidates for OCC, as these faults may negate the benefits 
of any control interventions. For example, the minimum outdoor airflow 
setpoint of an AHU may never be achieved in the heating season if an ap-
propriate supply air temperature setpoint reset logic is not implemented, 
diminishing the energy savings from  occupancy-  based ventilation strategies 
in  heating-  dominated climates. Additionally, the granularity of the sensing 
and metering infrastructure will dictate the data grade available for OCC 
implementation. Generally, more granular interventions produce higher en-
ergy savings and can provide more granular environmental control to match 
occupants’ diverse preferences. For example, O’Brien and Gunay ( 2019) 
found that  occupancy-  based lighting controls could save 30% and 60% of 
lighting energy use when using single lighting control for 25 offices ( i.e., 
grade ( 5) data) versus individual lighting control for each office ( i.e., grade 
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( 6) data), respectively. This enhanced granularity has also been shown 
to improve occupant comfort in terms of lighting utilization and quality 
( O’Brien, Gaetani et al., 2017; O’Brien, Gunay et al., 2017; Park, Dougherty 
et al., 2019). Similarly, Gunay et al. ( 2015) found that using the earliest and 
latest expected arrival and departure times at the AHU level ( i.e., grade ( 1) 
data) versus the earliest and latest expected arrival and departure times at 
the VAV level ( i.e., grade ( 2) data) resulted in 7% and 27% HVAC energy 
savings, respectively. However, Gunay et al. ( 2017) found that this enhanced 
granularity had virtually no impact on occupant comfort. While granular 
controls generally result in higher energy savings at the building level, the 
energy use attributable to individual occupants is subject to wider variation 
based on occupants’ behaviors and tolerances. Ouf et al. ( 2020) found that 
occupants with a higher tolerance to changes in the indoor environment 
resulted in more significant energy savings by OCCs. In contrast, sensitive 
occupants diminished energy savings or even increased energy use by OCCs 
in some extreme cases.

Hobson et al. ( 2021) performed a  simulation-  based investigation of OCC 
energy savings potential using data from the same offices described in the 
example in Section 10.5. Ten different combinations of nine occupants were 
randomly selected from the available data to populate a generic  nine-  office 
testbed ( see  Figure 10.9). Each of the ten different occupancy scenarios was 
simulated with various combinations of OCCs ( see  Table 10.2) in ASHRAE 
climate zones 4, 5, 6, and 7 and with three building envelopes: wall  R-  SI 2.5, 
window  U-  SI 3, and air leakage rate of 0.75 L/ s·m2 ( poor); wall  R-  SI 3.3, 
window  U-  SI 2.5, and air leakage rate of 0.5 L/ s·m2 ( moderate); and wall 
 R-  SI 4.2, window  U-  SI 2, and air leakage rate of 0.25 L/ s·m2 ( good). The 

 Figure 10.9  Generic  nine-  office testbed used to evaluate OCC energy savings 
potential.
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study found that occupants had a more considerable impact on energy use 
in buildings with better envelopes, resulting in higher average savings for 
OCC in these buildings ( see  Figure 10.10a). However, it should be noted that 
the average savings potential in buildings with even the poorest of envelopes 
can still be considerable.

Generally, relative savings were found to be higher in warmer climate 
zones ( see  Figure 10.10b) in two specific instances: ( 1) lower latitudes and 
longer days increase opportunities for daylight harvesting, which can in-
crease the effectiveness of  lighting-  based OCC; and ( 2) tuning start and 
stop times for AHUs, which can increase equipment operating times due to 
 inter-  occupant diversity ( i.e., occupants arriving before and departing after 
typical operating hours, as discussed in Section 10.5), had less of an impact 
on moderate climates where the differential between the indoor and outdoor 
temperature is less than that of extremely hot or cold climates. However, 
tuning start/ stop times and temperature setbacks at the zone level ( OCC 
combination 3, see  Figure  10.10c) was found to reduce energy use across 
climate zones, and using  occupancy-  based ventilation at the system level 

Table 10.2  OCC interventions evaluated by Hobson et al. ( 2021) for energy savings 
potential

OCC 
combination

Spatial 
resolution OCC intervention Average EUI 

reduction (%)

1 Building  Occupancy-  based AHU start/ stop –  4%
2 Building  Occupancy-  based AHU minimum 

outdoor air fraction
10%

3 Zone  Occupancy-  based VAV start/ stop 
and setback

24%

4 Zone 3 + individual occupants’ preferred 
temperature setpoint

31% (+7%)

5 Zone 4 + individual occupants’ preferred 
illuminance setpoint

35% (+4%)

 Figure 10.10  EUI reductions from OCCs for a variety of ( a) envelopes, ( b) climates 
zones, and ( c) OCC combinations.
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to control outdoor airflow ( OCC combination 2, see  Figure 10.10c) signif-
icantly decreased energy use in colder climate zones ( i.e., 15%–  18%) com-
pared to warmer climate zones ( i.e., 3%–  5%).

In brief,  zone-  level  schedule-  based OCC variables can provide the highest 
savings potential across a diverse set of climates. In contrast, OCC variables 
involving ventilation are most beneficial in extremely hot or cold climates. 
 Lighting-  based OCC offers higher savings in warmer climates with lower 
latitudes. While buildings that are  well-  insulated and relatively airtight ben-
efit the most from OCC, buildings of all envelope quality in all climate zones 
can see significant energy savings from the introduction of OCC, especially 
those which use  zone-  level occupancy data grades ( 2, 4, 6).

In this section, we discussed the  energy-  saving potential of OCCs through 
examples involving office occupancy and using the data presented in Sec-
tion 10.5. While general principles of OCCs are applicable to other building 
types, the readers can refer to Ye et al. ( 2021) and Pang et al. ( 2021a, 2021b) 
for the saving potential of OCCs in primary schools, hotels, and  low-  rise 
residential buildings, respectively.

10.8  Discussion

In this chapter, we treated OCC variables and sequences in exclusion of 
other steps of developing the sequences of operation. In reality, the success 
of OCCs hinges on the quality of sequences of operation as a  whole—  i.e., 
free from hard and soft faults and following a standard metadata model. For 
example, there are  real-  world examples demonstrating that a faulty supply 
air temperature reset or a faulty economizer logic can deem OCC sequences 
completely ineffective ( Hobson, 2020). In brief, OCCs should be seen as an 
important piece of the puzzle and should be compatible with other aspects 
of the building design process.

ASHRAE Guideline 36 ( 2018) is one of the first formal efforts to stand-
ardize  best-  practice sequences of operation and has already been widely 
adopted by the HVAC controls industry. Integrating OCC algorithms into 
such industry guidelines, standards, and codes will enable rapid industry up-
take. However, the industry uptake requires defining a standard taxonomy 
for base OCC categories and using terminology consistent with the existing 
guidelines, standards, and codes. The OCCs need to be compatible with 
sequences defining the state and mode of operation for common HVAC sys-
tems, as defined in these documents. Beyond ensuring OCC compatibility to 
common HVAC sequences of operation, further research is needed to seam-
lessly integrate OCCs into the  model-  based predictive control framework.

Moreover, occupants have diverse schedules. Each occupant has unique 
arrival and departure time patterns. Occupants also spend many days away 
from their offices, especially due to the recent increase in teleworking. This 
diversity challenges traditional  schedule-  based HVAC scheduling with 
constant ventilation rates designed for full occupancy. Two OCC variables 
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in particular can contribute to achieving significant energy savings: occu-
pant counts and the latest expected arrival time in a zone. Sequences using 
occupant counts take advantage of  inter-  occupant diversity to adjust the 
ventilation rates. Sequences using the latest expected arrival time in a zone 
take advantage of absent weekdays at the zone level by reinstating the un-
occupied mode when a first arrival has yet to occur until a prescribed latest 
arrival time.

It is essential to consider the value of occupant data for controls, availa-
bility of data infrastructure in existing buildings, and the ability to generate 
occupant information without causing privacy concerns for the practical 
deployment of OCCs. Motion detectors at the zone level and  Wi-  Fi device 
count or people counting cameras at the building level appear to be the 
most promising occupant sensing technologies to achieve these objectives. 
If the project budget permits,  zone-  level people counting that relies on CO2 
sensors or  Wi-    Fi-  based localization should be considered, as they would be 
effective in improving the indoor air quality and provide higher energy sav-
ings. Evidently, societal and technological changes, public perception about 
occupant sensing, and changes in indoor environmental quality standards 
may lead to the development of new and more robust occupant sensing solu-
tions for the built environment.

Evidence from case studies involving OCCs with different OCC varia-
ble estimation/ learning methods accumulates from different climates and 
building archetypes. However, these studies reported that energy, cost, 
and comfort benefits vary considerably ( Park, Ouf et al. 2019). Methods to 
estimate/ learn OCC variables are still an active area of research. Research-
ers are exploring emerging machine learning techniques to improve the 
representativeness of OCC variables. In parallel, there is growing interest 
in user control and interface design ( Huchuk et al., 2019), which will likely 
increase the volume of occupant activity data and improve data quality.

10.9  Closing Remarks

In this chapter, we introduced  occupant-  centric controls as an indoor cli-
mate control approach whereby occupant information is directly used in op-
eration. We introduced six grades of occupant data representing three tiers 
for the resolution of occupant information ( i.e., presence/ absence, count, 
and action) and two tiers for spatial resolution ( i.e., at the zone/ room level 
vs. building/ system level). We presented different occupant sensing technol-
ogies to acquire occupant data at these resolutions and introduced OCC 
variables as calculated analog variables of a building controller. These OCC 
variables are the earliest and latest arrival, and latest departure times, occu-
pant counts, and preferred indoor temperature and illuminance setpoints. 
These variables can be learned online within a controller or estimated 
offline periodically by a supervisory energy management system. We de-
scribed base OCC sequences as controls programs using the OCC variables 
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and presented two alternative workflows to integrate OCCs into BPS tools. 
Finally, using a  real-  world dataset, we provided illustrative examples to dis-
cuss the efficacy of each OCC sequence.
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Summary

In this chapter, we will unite the theory and the practice of  occupant-  centric 
design through an analysis of seven unique case study buildings. The case 
studies are diverse in several ways, including geographic location, type, size, 
and project phase. We will offer our key insights drawn from qualitative and 
quantitative analysis in order to support researchers and industry practi-
tioners alike.

11.1  Introduction

In this chapter, we demonstrate the  real-  world application of the  occupant- 
 centric design methods and principles developed and presented in the previ-
ous chapters of this book. We provide an analysis of seven unique case study 
buildings that demonstrate how  occupant-  centric design can assist in devel-
oping better designs that suit occupants’ needs and preferences while meet-
ing clients’ needs and energy targets. The selected case studies demonstrate 
alternative methods and approaches for considering occupant behavior and 
 occupant-  related assumptions throughout the building design process. These 
 real-  world examples illustrate the strengths and shortcomings of current oc-
cupant modeling approaches and assumptions in the design process. The 
case studies also provide examples of various qualitative and quantitative re-
search approaches to evaluate both technical and nontechnical aspects of oc-
cupant modeling and representation. Our analysis involves simulation, field 
studies, surveys, and interviews with design stakeholders and occupants.

We selected the case studies in this chapter based on the following cri-
teria: ( 1) authors’ access to information about the cases, ( 2) breadth of 
design/ construction phases represented among the cases, and ( 3) usability 
of analysis outcomes for advancing occupant modeling approaches dur-
ing building design. The case studies are diverse in terms of project phase, 

11 Detailed Case Studies
Tareq Abuimara, Attila Kopányi, Jean Rouleau, 
Ye Kang, Andrew Sonta, Ghadeer Derbas, 
Quan Jin, William O’Brien, Burak Gunay, 
Juan Sebastián Carrizo, Viktor Bukovszki, 
András Reith, Louis Gosselin, Jenny Zhou, 
Thomas Dougherty, Rishee Jain, Karsten Voss, 
Tugcin Kirant Mitic and Holger Wallbaum

https://doi.org/10.1201/9781003176985-11


258 Tareq Abuimara et al.

location/ climate zone, building type and size, and analysis approach. Col-
lectively, our analysis of the selected case studies covers approximately the 
whole life cycle of a building, including design, construction, and operation 
( see  Figures 11.1 and 11.2).

In the Toronto and Budapest case studies ( Case Studies 1 and 2), we 
demonstrate alternative methods of representing occupants during design 
( see also  Chapter 3). In the Quebec City, Melbourne, Redwood City, Nied-
eranven, and Gothenburg case studies ( Case Studies  3–  7), we focus on  post- 
 occupancy conditions, aiming to evaluate design approaches and provide 
recommendations for  occupant-  centric design and operation. The seven 
case studies are summarized in  Table 11.1.
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 Figure 11.1  A conceptual diagram illustrating the range of the case studies with 
regards to project phase and spatial scale.
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 Figure 11.2  Geographical distribution of the case studies.
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Table 11.1 Summary of the seven case studies

Case study
Location 
( Köppen climate 
classification)

Building size 
and type

Project phase
Case study 
objectives

Case Study 1:  
Toronto

Toronto, Canada 
( Dfa, humid 
continental)

 Mid-  rise 
office 
building

Design • Document 
occupant 
modeling 
approaches during 
design

• Develop a method 
for handling 
 occupant-  related 
uncertainty 
during design

Case Study 2:  
 E-    co-  housing

Budapest, 
Hungary ( Dfb, 
warm summer 
continental)

 Mid-  rise 
 multi-  unit 
residential 
building

Design & 
construction

• Explore and 
leverage synergies 
between people 
and the built 
environment in 
all dimensions of 
sustainability

• Bridge qualitative 
participatory  co- 
 design methods 
and simulation 
for higher fidelity 
energy models

Case Study 3: 
Cité Verte

Quebec City, 
Canada ( Dfb, 
warm summer 
continental)

 Mid-  rise 
 multi-  unit 
residential 
building

 Post-   
occupancy 

• Evaluate the 
feasibility of  low- 
 energy buildings

• Assess the impact 
of occupants on 
achieving  low- 
 energy goals

Case Study 4: 
Gillies Hall

Melbourne, 
Australia ( Cfb, 
temperate 
oceanic)

 Six-  story 
student 
residence

 Post-   
occupancy

• Assess occupants’ 
comfort and  well- 
 being as well as 
energy saving 
potentials from 
passive house 
strategies when 
coupled with 
 performance- 
 based modeling

• Assess the benefits 
of deploying 
 low-  cost sensing 
techniques in 
passive house 
design
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Case study
Location 
( Köppen climate 
classification)

Building size 
and type

Project phase
Case study 
objectives

Case Study 5: 
Stanford 
Redwood 
City

Redwood City,  
USA ( Csb,  
 dry-  summer 
subtropical/  
Mediterranean)

 Mid-  rise 
office 
building

 Post-   
occupancy

• Optimize 
building layouts 
to maximize 
occupants’ 
productivity and 
collaboration 
while achieving 
energy efficiency

Case Study 6:  
Goblet 
Lavandier & 
Associésa 
headquarter

Niederanven, 
Luxembourg 
( Cfb, temperate 
oceanic climate)

 Mid-  rise 
office 
building

 Post-   
occupancy

• Derive  occupant- 
 centric rules for 
optimal exterior 
shading design

Case Study 7: 
Samhällsby-
ggnad 1

Gothenburg, 
Sweden ( Cfb, 
marine west 
coast)

Institutional 
office 
building

 Post-   
occupancy

• Enhance indoor 
environmental 
quality ( IEQ) and 
energy savings 
potential based 
on an evaluation 
of occupants’ 
satisfaction in 
energy efficient 
buildings

11.2  Case Study 1: Toronto, Canada

Tareq Abuimara, William O’Brien, Burak Gunay, Juan Sebastián Carrizo

11.2.1  Summary

This case study is a  mid-  rise office building located in Toronto, Canada. The 
analysis of this case study includes implementing alternative methods for 
occupant considerations during building design ( as detailed in  Chapter 3). 
The  occupant-  centric analysis of this case study building covers the entire 
design phase of the building and aims to document the current practices of 
occupant modeling throughout the  simulation-  aided building design pro-
cess and investigate possible improved approaches. The analysis included 
documenting  occupant-  related design assumptions and the implications of 
these assumptions on design outcomes.

The analysis was performed using qualitative ( workshop and interviews) 
and quantitative (  simulation-  based investigation) approaches. The quali-
tative analysis included documenting occupant modeling approaches and 
assumptions through the analysis of design documents and interviewing 

 Table 11.1 Continued
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design stakeholders of the case study. The quantitative analysis was a 
 simulation-  based investigation to assess occupant assumptions and pro-
pose alternative approaches for modeling occupants and quantifying their 
impact on design decisions. The  simulation-  based investigation included 
 occupant-  centric parametric analysis, design optimization, and comfort 
analysis.

The findings of the qualitative analysis indicated the absence of a stand-
ardized and consistent occupant assumptions sharing mechanisms among 
design stakeholders. Further, these findings indicated that the adoption of 
an integrated design process ( IDP) could have assisted in avoiding discrep-
ancies among design disciplines.

The findings of the quantitative  simulation-  based investigation indicated 
that occupant assumptions are influential in terms of selecting optimal en-
ergy conservation measures ( ECMs) and determining optimal design solu-
tions. Additionally, the  occupant-  centric comfort analysis indicated the 
need to consider comfort at the occupant and building zone level rather 
than at the building level.

Overall, the findings of this case study analysis can contribute to 
 occupant-  centric building design by providing insights to building de-
signers on how to handle  occupant-  related uncertainty throughout the 
 simulation-  aided building design process. Additionally, the findings can 
inform relevant building codes and standards on advancing requirements 
to improve the quality of assumptions and efficiently manage  occupant- 
 related uncertainty.

11.2.2  Building Description

The Toronto building is a  mid-  rise commercial building located in Liberty 
Village to the west of downtown Toronto, Canada. The building consists 
of four similar office floors, a retail ground floor, and two levels of under-
ground parking. The building has a gross floor area of 7,940 m2 ( including 
the underground parking). The building is in ASHRAE climate zone 6A 
(  cold-  humid) with overcast cold winters and  hot-  humid summers.

The above grade floors were constructed using mass timber and nail lam-
inated timber ( NLT) panels, and the main design objective was to create a 
building that is sustainable, aesthetically pleasing, and  cost-  effective by re-
turning to the use of heavy timber.  Figure 11.3 shows the building shortly af-
ter construction and  Table 11.2 summarizes key performance specifications.

11.2.3  Methodology

In this study, both qualitative and quantitative data collection and analysis 
approaches were used as described in the sections below.
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11.2.3.1  Qualitative Analysis

The qualitative analysis sought to document occupant assumptions and oc-
cupant modeling approaches throughout the case study building’s design 
process. In brief, the process included  semi-  structured interviews about cur-
rent practices with four key design stakeholders: the owner representative, 

Table 11.2 Toronto case study description

1.1.1. Item Description 

Typical office floor area 1,728 m2

HVAC Rooftop package unit with zone level variable air 
volume ( VAV) reheat

Hydronic baseboard heating
Cooling coefficient of 

performance ( COP)
3.5

Boiler ( space heating) Type: Condensing boiler
Fuel: Natural gas
Nominal thermal efficiency = 0.9

Heat recovery  Air-    to-  air heat exchanger
Sensible effectiveness at 100% heating / cooling 

airflow = 70%
Sensible effectiveness at 75% heating/ cooling 

airflow = 85%
Outdoor air minimum flow 

rate 
0.000435 m3/ s.m2

Windows  U-  factor = 1.9 W/ m2·K; SHGC = 0.33
WWR ( overall) = 46.5%
WWR ( south) = 85%
WWR ( north) = 12%
WWR ( east) = 41%
WWR ( west) = 41%

Walls  U-  value = 0.245 W/ m2·K

 Figure 11.3  Toronto case study building.
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the architect, the mechanical engineer, and the energy modeler. First, written 
questionnaires were sent to each stakeholder, with each questionnaire cus-
tomized to the stakeholder’s scope of work and design objectives. Then, ques-
tionnaire responses were analyzed qualitatively, and the findings were used 
as the basis for a set of interview questions. Next, interviews were conducted 
to obtain depth and clarification. Finally, all the questionnaire and interview 
responses were analyzed qualitatively, and conclusions were drawn.

11.2.3.2  Quantitative Analysis

The quantitative analysis took the form of a  simulation-  based investigation 
that included a parametric analysis, optimization study, and comfort study. 
For this purpose, an energy model for a typical office floor of the case study 
building was created using EnergyPlus ( see  Figure  11.4). Custom scripts 
in MATLAB were used to automate simulations. Each step of analysis is 
 described below.

11.2.3.2.1   OCCUPANT-  CENTRIC PARAMETRIC ANALYSIS

The first step of the  simulation-  based investigation was to use a paramet-
ric analysis to evaluate the impact of occupant assumptions on the ranking 

5 zone model

15 zone model

NN

N
N

 Figure 11.4  The EnergyPlus model used for  simulation-  based investigation.
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and the saving potential of energy conservation measures ( ECMs)/ design 
parameters ( DPs). The case study model was simulated using a parametric 
analysis and EnergyPlus under 12 occupant scenarios ( see  Figure 11.5).

In the parametric analysis, 12 ECMs and DPs were considered, as shown 
in  Table 11.3. Multiple values for each ECM/ DP were used. The simulation 
workflow is shown in  Figure 11.6.

11.2.3.2.2   OCCUPANT-  CENTRIC DESIGN OPTIMIZATION

The second phase of the  simulation-  based investigation was an optimiza-
tion study. The objective of the study was to evaluate the impact of occupant 

Occupant scenarios

Schedules
Occupant 
presence

(4 scenarios) 

Occupant density
(2 scenarios)   

Temperature 
setpoints

(2 scenarios)

Plug-in 
equipment

(2 scenarios) 

Window blinds 
use

(2 scenarios)    

 Figure 11.5  Occupant scenarios used in parametric analysis.

Original 
design 

Design 
alternatives

Design 
parameters

Occupant 
scenarios

Rank lists Compare

 Figure 11.6  The parametric analysis workflow.

Table 11.3  List of design parameters/ energy conservation measures used in the 
parametric analysis

 Systems-  related parameters
Cooling COP
Water boiler efficiency
Lighting power density ( LPD)
 Plug-  in equipment loads
Water pumps efficiency
ERV efficiency

 Envelope-  related parameters
 Window-    to-  wall ratio ( WWR)
Window properties (  U-  factor & SHGC)
Wall insulation
Roof insulation
Air infiltration
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assumptions on the outcomes of building design optimization. The optimi-
zation study was performed following the  three-  step approach, as shown in 
 Figure 11.7.

Step 1 was generating occupant scenarios by using multiple occupant pres-
ence scenarios and varying the relationship between occupant presence 
schedules and lighting and equipment schedules. Four different occu-
pant presence schedules were used: default ( as per ASHRAE Standard 
90.1), low occupancy ( 40% occupancy at the highest), morning peak 
( 90% morning and 40% in afternoons), and afternoon peak ( 40% morn-
ing and 90% in afternoons). For each occupancy schedule, four altered 
lighting and equipment schedules were generated. A total of 64 occu-
pant scenarios were created ( 4 occupancy × 4 lighting × 4 equipment).

Step 2 was to run the optimization using the genetic algorithm ( GA) in 
MATLAB. The objective function was set to minimize the HVAC en-
ergy use intensity ( kWh/ m2). A penalty was applied to the objective 
function for design solutions that have unsatisfactory comfort condi-
tions ( i.e., more than 300 unmet hours). Ten different ECMs/ DPs were 
considered in the optimization including WWR, window material, and 
exterior shading ( overhangs and sidefins).

Finally, Step 3 was training decision trees using MATLAB “ fitctree” func-
tion. Decision trees are a useful method to visualize the optimization out-
comes and derive  occupant-  centric design parameters selection rules.

11.2.3.2.3  OCCUPANT COMFORT ANALYSIS

The comfort analysis was focused on investigating the impact of occupants’ 
spatial distributions on comfort and energy performance of the building. To 
this end, the following steps were followed:

1  The building typical floor model zoning was adjusted to have 15 thermal 
zones instead of five ( see  Figure 11.8). The intention was to have a more 
realistic zoning strategy that included a variety of zone orientations 

Generate 
occupant 
scenarios 

Run 
optimization 

Derive 
design 

guidelines

 Figure 11.7  The  three-  step approach followed in the optimization study.
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(  south-  facing,  north-  facing,  east-  facing,  west-  facing, core, and corner 
offices). Further, the model HVAC equipment and flow rates ( air and 
water) were  hard-  sized based on a sizing run using default ASHRAE 
Standard 90.1 values for occupant density and schedules. The equip-
ment  hard-  sizing was done to mimic reality, as real buildings’ equip-
ment has preset maximum capacities.

 2   Seventy-  five occupant distribution scenarios ( ODSs) were created for 
the use in simulations. An ODS refers to the distribution of building 
occupants across building zones. The same total number of occupants 
was maintained in all the ODSs. The ODSs were generated by sampling 
from uniformly distributed large population using a custom script in 
the programming language R.

3  The  hard-  sized model was simulated in EnergyPlus under the 75 ODSs. 
A MATLAB custom script was used to automate the process.

4  The simulation was repeated with the  demand-  controlled ventilation 
( DCV) to evaluate the impact of using building adaptive technologies 
( e.g., DCV) on comfort and energy performance.

Several performance metrics were evaluated in this analysis. For energy use, 
energy use intensity ( EUI) was used, as it is a commonly used metric in the 
architecture, engineering, and construction ( AEC) industry. For comfort, 
unmet hours, as defined by ASHRAE Standard 90.1, were used. However, 
a limitation of unmet hours is that it does not consider the number of oc-
cupants who suffer from discomfort. Thus, a new comfort metric was de-
veloped for this study. The new thermal comfort metric is called occupant 
discomfort hours ( ODH). ODH indicates the annual share of each occupant 
at a given zone of discomfort hours. Further details about this metric and 
how it is calculated are available in Abuimara et al. ( 2021).

Zone 7 Zone 8 Zone 9 Zone 10 Zone 11

Zone 6 Zone 15 Zone 14 Zone 13 Zone 12

Zone 5 Zone 4 Zone 3 Zone 2 Zone 1

NORTH

 Figure 11.8  Case study model plan demonstrating thermal zones and their 
orientations.
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11.2.4  Results and Discussion

11.2.4.1  Design Process Documentation

The design process documentation was classified and summarized under 
four main groups of findings: ( a) type and source of occupant assumptions 
during design, ( b) design workflow, ( c) communicating  occupant-  related as-
sumptions, and ( d) challenges and limitations throughout the design pro-
cess. Each group of findings is described in turn below.

11.2.4.1.1  TYPE AND SOURCE OF OCCUPANT ASSUMPTIONS DURING DESIGN

The Toronto building was designed without a specific target tenant; instead, 
the client had a general vision of the total number of occupants the build-
ing would host. Due to the lack of specific information about occupants, 
the architect sourced occupant assumptions from Ontario Building Code 
( OBC). The OBC occupant density of 20 m2/ person was used by the archi-
tect’s  in-  house energy modeling using Sefaira software. The mechanical en-
gineer used conservative occupant assumptions for designing and sizing the 
mechanical equipment. It is common practice among HVAC designers to 
size HVAC equipment to supply the highest expected heating and cooling 
loads ( Djunaedy et al., 2011).

The energy modeler was somewhat involved early in the design process 
in a design charrette. At this early phase, the energy modeler used the 
ASHRAE Standard 90.1 values for occupant density, lighting power density 
( LPD), and equipment power density ( EPD) for creating an energy model 
of the building. Once the design development phase started and the energy 
modeler was reengaged, several of the original assumptions had to be re-
fined to align with the current design ( e.g., the LPD was adjusted based on 
the selected lighting fixtures, from 8 to 3.9 W/ m2).

Overall, the design team’s occupant assumptions were sourced from codes 
and standards, including, for example, OBC, NECB, and ASHRAE Stand-
ard 90.1. Additionally, some assumptions ( e.g., the mechanical engineer’s) 
were based on experience.

Sourcing occupant assumptions from codes and standards or from expe-
rience can limit or narrow occupant representation during building design. 
In particular, occupant assumptions in codes and standards ( densities and 
schedules) tend to be conservative and outdated, as many were developed in 
1980s and based on a small set of data ( Abushakra et al., 2004).

11.2.4.1.2  DESIGN WORKFLOW

Initially, this building’s design process was intended to be an integrated de-
sign process, as all design stakeholders participated in a design charrette 
early in the design process. However, as the design progressed, the pro-
cess became characterized by a traditional design process, where different 
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design stakeholders performed their tasks independently at different times 
throughout the process. For example, although the energy modeler was in-
volved in the early design charrette, they were not involved again until late 
in the design development phase when most of the critical design decisions 
( e.g., type of HVAC system) had already been made. This intermittent or 
delayed involvement of energy modelers is typically driven by the client’s un-
willingness and/ or misunderstanding of the role of energy modeling during 
the design process ( Oliveira and Marco, 2018).

Additionally, the energy modeling scope was not integrated into other 
scopes, such as the mechanical engineering scope ( e.g., HVAC selection and 
sizing). The HVAC system type was selected and designed by the mechan-
ical engineer using their conservative occupant assumptions, and then the 
equipment sizing was handed to the energy modeler who performed energy 
modeling using their own occupant assumptions. This inconsistency of oc-
cupant assumptions may have led to suboptimal design decisions and/ or 
missed design opportunities.

11.2.4.1.3  COMMUNICATING  OCCUPANT-  RELATED ASSUMPTIONS

The Toronto building’s design team members reported that they communi-
cated through regular phone calls, emails, and  bi-  weekly meetings. Drawings, 
reports, and computer models were shared. No specific  information-  sharing 
platform or mechanism was reported.

Although the design team members reported that they communicated 
regularly, a deeper investigation of the design documents and models ( along 
with information obtained during the interviews) revealed discrepancies in 
some of the basic occupant assumptions made and used by different design 
stakeholders, as shown in  Figure 11.9.
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 Figure 11.9  Assumptions made by the different design team members of the Toronto 
case study building.
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The lack of  information-  sharing mechanisms may have led to these discrep-
ancies in assumptions and constitutes a fundamental issue in the design process. 
Effective communication throughout the design process is widely recognized as 
fundamental for successful building design ( Arditi and Gunaydin, 2002).

11.2.4.1.4  CHALLENGES AND LIMITATIONS THROUGHOUT THE DESIGN 

PROCESS

One of the major challenges that the Toronto building designers faced was 
time, including the time each team member was involved in the design pro-
cess and the time assigned to complete the design task. The former is typi-
cally out of a design team’s control, as it is determined by the project owner. 
The latter is a common practice in the AEC industry, where a specific time-
line is assigned to design tasks. For example, in the case of the Toronto 
building, the modeler was hired to perform the main modeling scope late in 
the process when they had limited impact on design outcomes because all 
critical design decisions had already been made and approved by the owner.

Another major challenge the Toronto building design team faced was the 
cost limitation of the project ( capital cost and added engineering costs). For 
example, when asked why adaptive ventilation technologies were not consid-
ered, the mechanical engineer reported that cost was the main driver for select-
ing HVAC and any additional technologies were not considered by the owner.

11.2.4.2   Occupant-  Centric Parametric Analysis Results

The first phase of the quantitative analysis was an  occupant-  centric paramet-
ric analysis.  Figure 11.10 presents the results of the parametric analysis under 
different occupant scenarios. Overall, the results presented in  Figure 11.10 
indicated that occupant scenarios affect the  energy-  saving potential of 
ECMs/ DPs. Some ECMs/ DPs such as implementing DCV were sensitive 
to occupant scenarios and demonstrated drastic changes in energy savings 
potential ( 1%–  12%). However, ECMs/ DPs such as increasing wall and roof 
thermal resistance ( i.e.,  R-  value) demonstrated robustness to changing occu-
pant scenarios, as the energy saving potential was only moderately affected 
( 6%–  8%). The  energy-  savings potential of adjusting the WWR also demon-
strated moderate sensitivity to changing occupant scenarios ( 2%–  6%).

The results shown in  Figure 11.10 also demonstrated the insensitivity of 
some ECMs/ DPs, such as cooling COP, to occupant presence. According 
to the results, the ECMs/ DPs saving potential was highly sensitive to as-
sumptions about temperature setpoints. Further, the results indicated the 
impact of  plug-  in equipment assumptions on the  energy-  saving potential of 
different ECMs/ DPs. These variable sensitivities of ECMs/ DPs to occupant 
scenarios point to the importance of occupant assumptions during building 
design. In other words, variable sensitivities to occupant scenarios affect 
design decisions of selecting ECMs/ DPs.
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Overall, the parametric analysis results highlight the impact that occu-
pant assumptions have on the savings and ranking of ECMs/ DPs. Likewise, 
the results emphasize the importance of accurately considering occupant 
assumptions during the building design process and support the use of more 
 occupant-  centric parametric analysis when selecting ECMs/ DPs.

11.2.4.3   Occupant-  Centric Design Optimization Results

The second step of the quantitative analysis was  occupant-  centric design 
optimization. The design optimization was performed under 64 occupant 
scenarios.  Figure 11.11 presents the results of the 64 optimization runs where 
GA was used to search for optimal design solutions. Overall,  Figure 11.11 
demonstrates that occupant scenarios had a substantial impact on the out-
comes of the 64 optimization runs. The results also indicated that even 
with the same occupancy scenario, varying lighting and  plug-  in equipment 
schedules can impact the HVAC energy use intensity significantly and lead 
to different optimal design solutions. The box plots in  Figure  11.11 show 
that the median of the cost function fluctuated drastically with different 
occupant scenarios.  Figure 11.11 also indicates that there were several out-
lier solutions outside the interquartile but no outliers on the lower side of 
the population, which means that there were many poor design solutions 
but few optimal and  semi-  optimal solutions. This result offers the insight 
to building designers that considering families of optimal and  near-  optimal 
solutions offers flexibility in choosing ECMs/ DPs that better suit each pro-
ject constraint ( e.g., budget, time).
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Decision trees were used to better understand and visualize the final re-
sults of the optimization.  Figures 11.12 and 11.13 are examples of the decision 
trees that were trained using the 64 optimization runs results.  Figure 11.12 
represents a case were the DP ( i.e., size of window sidefin shading on  west- 
 facing windows) was highly sensitive to occupant assumptions.
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 Figure 11.11  Optimization results for the 64 different occupant scenarios.
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 Figure 11.12  Example classification tree demonstrating sensitivity to occupant 
assumptions.
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 Figure 11.13 demonstrates an example of a DP ( i.e., window  U-  factor and 
SHGC) that is robust to occupant scenarios. Decision trees are very use-
ful in  occupant-  centric design optimization, as they can assist designers in 
classifying and grouping ECMs/ DPs based on their sensitivity to occupant 
scenarios.

11.2.4.4   Occupant-  Centric Comfort Analysis Results

The third phase of the quantitative analysis was evaluating the impact of 
occupants’ distributions scenarios ( ODS) on comfort and energy perfor-
mance. The case study building was simulated under 75 ODSs.

Overall, the results indicated that occupants’ spatial distributions had a 
high impact on comfort and a moderate impact on energy use.  Figure 11.14 
demonstrates the range of EUI reported from the 75 simulations. It is evident 

U = 1.83 W/m2·K
SHGC = 0.493

West windows assemblies

 Figure 11.13  Example classification tree demonstrating robust design parameter to 
occupant assumptions.
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 Figure 11.14  EUI of the 75 simulations.
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that ODSs were modestly influential on energy use, as EUI experienced 
changes in the range of  5–  10 kWh/ m2/ yr. The  hard-  sized HVAC equipment 
and flow rates likely contributed to limiting the changes in EUI.

On another front,  Figure 11.15 presents the range of the unmet hours as 
per ASHRAE Standard 90.1 for the 75 simulation runs. The ODSs had a 
substantial impact on the number of unmet hours ( i.e., thermal comfort). 
The unmet hours ranged from 150 unmet hours with the standard code 
ODS ( i.e., homogeneous occupants’ distribution across building zones) to 
about 3,000 unmet hours with some extreme ODSs where some zones were 
overpopulated.

To evaluate comfort at zone and occupant level, overheating and over-
cooling ODH were reported.  Figure 11.16 presents the overheating ODH. It 
is clear from  Figure 11.16 that different zones had different values of ODH. 
Further, the zones that were  south-   and  west-  facing and core zones ( zones 
 1–  5 and zones  13–  15; see  Figure 11.16) experienced a wider range of ODH. 
 South-  facing zones had a higher WWR ( 85%) and were subject to longer 
periods of direct solar gains compared to the  east-   and  north-  facing zones. 
The high WWR made  south-  facing zones more likely to experience over-
heating, especially with the increased internal gains from occupants. Core 
zones are also generally known to experience overheating, as they have min-
imal heat exchange with surrounding zones and the effect of infiltration is 
negligible. In the Toronto building, the wide range of ODH in  south-  facing, 
 west-  facing, and core zones indicates sensitivity to occupant distributions, 
where the higher the occupant density, the more discomfort levels will be in 
a given zone.

 Figure 11.17 demonstrates the reported overcooling hours for the different 
building zones. Generally, overcooling ODH was not reported to be sub-
stantially sensitive to ODSs, as the highest overcooling ODH was observed 

Unmet hours as per ASHRAE Standard 90.1

0 500 1000 1500 2000 2500 3000

 Figure 11.15  Unmet hours as per ASHRAE Standard 90.1 under multiple occupant 
distribution scenarios.
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in core zones 13, 14, and 15. Upon further investigation, these core zones 
were found to be  under-  occupied ( only one or two occupants) and sur-
rounded by zones that were also  under-  occupied.

The simulations under the 75 ODSs were repeated with DCV enabled; 
then, the results were compared to the previous run results.  Figure  11.18 
presents the EUI results for both simulations under the 75 ODSs with and 

 Figure 11.17  Overcooling occupant discomfort hours ( ODH) ( Zones  13–  15 are core 
zones).

 Figure 11.16  Overheating occupant discomfort hours ( ODH) ( Zones  13–  15 are core 
zones).
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without DCV. Incorporating DCV was beneficial in terms of saving energy; 
however, it demonstrated a similar range of sensitivity to ODSs.

 Figure 11.19 demonstrates a comparison between the overcooling ODH 
with and without DCV. The results indicated that deploying DCV was bene-
ficial in reducing overcooling ODH by about 50%. Using DCV also reduced 
the unnecessary ventilation of under/ unoccupied zones.

11.2.5  Concluding Remarks

To summarize, this  occupant-  centric documentation and analysis of the 
Toronto case study building design process included: ( 1) interviews with four 
design stakeholders ( owner, architect, mechanical engineer, and energy mod-
eler) and ( 2) a  simulation-  based investigation, including an  occupant-  centric 
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 Figure 11.18  EUI with and without  demand-  controlled ventilation ( DCV) under 
the 75 ODSs.
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parametric analysis, an  occupant-  centric optimization, and a comfort study 
that analyzed the impact of occupants’ spatial distributions across the build-
ing on comfort and energy performance.

The findings of the building design process documentation ( via inter-
views) indicated that  occupant-  related assumptions were not a primary 
design input that influenced design outcomes. The design team typically 
sourced occupant assumptions from codes and standards and from their 
experience. Additionally, their design practice lacked an effective commu-
nication mechanism, which may have been responsible for discrepancies be-
tween  occupant-  related assumptions.

The  simulation-  based investigation indicated that occupant assumptions 
can be critical for selecting ECMs/ DPs as well as influential on design out-
comes ( i.e., different occupant assumptions can lead to different optimal 
solutions). An evaluation of the impact of ODSs on building performance 
revealed that ODSs can yield different comfort and energy performance. 
Overall, the analysis indicated that in order to achieve more accurate de-
sign predictions and reach optimal design solutions, occupants and occu-
pant assumptions should be given more attention during the design process 
in terms of consistency and accuracy of assumptions. In addition, designs 
should be evaluated using alternative occupant scenarios to predict building 
performance and inform design decisions.

11.3  Case Study 2: Budapest, Hungary

Attila Kopányi, Viktor Bukovszki, András Reith

11.3.1  Summary

An apartment building with 27 units, a community hall, and a shared laun-
dry room will be constructed in downtown Budapest, Hungary, as part of 
the  E-    co-  housing project. This case study demonstrates a method to create 
occupancy schedules based on  use-  pattern extraction through participatory 
design ( also referred to as  co-  design), which refers to making design deci-
sions through a  problem-  oriented mutual learning process involving occu-
pants and architects. The two main research questions were therefore as 
follows: ( 1) How can a participatory design methodology be integrated into 
the building energy modeling workflow? ( 2) Does integrating participatory 
design result in significant differences in energy demand outputs compared 
to standard modeling workflows?

To assess the possibility of acquiring additional information regarding 
occupancy behavior from the participatory design process, occupancy 
schedules for the building energy simulations were created based on focus 
group interviews. The energy modeling outcomes using these  co-  design 
schedules were compared to those applying schedules from national guide-
lines. A difference of over 10% heating energy use intensity ( EUI) was found 
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in the apartments, and a difference of between 46% and 86% in heating EUI 
was found in the community hall. This difference is achieved through the 
differentiation between the use of living and common areas and between 
active and passive occupancy.

11.3.2  Building Description

 E-    co-  housing is an experimental building for a novel social housing policy 
spearheaded by the 14th district of Budapest, developed as part of a UIA 
( Urban Innovative Actions) research project by the same name. The main 
goals of the project are to provide methods and evidence of just, sustainable 
transition in housing and to inform policymakers of how a holistic approach 
to sustainable housing development offers a financially viable, environmen-
tally friendly, and socially sensitive alternative to alleviate housing poverty. 
As part of the project, an apartment building with 27 units and two com-
mon areas ( i.e., community hall and laundry room), with a total floor area of 
1,950 m2 will be constructed in downtown Budapest, Hungary by 2022 ( see 
 Figures 11.20 and 11.21). Hungary is in a warm summer continental climate 
zone, and the building itself will be in a dense urban area characterized by pe-
rimeter blocks with attached buildings. The building has four stories, divided 
into two detached tracts connected by a network of suspended corridors. This 
arrangement separates an inner courtyard and a larger backyard from the 
street. The estate is legally owned by the municipality, with the apartments 
rented out at a subsidized rate to residents who live in housing poverty.

The  E-    co-  housing project follows a combination of the  co-  housing model, 
 zero-  energy building principles, and continuous occupant engagement with 

 Figure 11.20  3D model of  E-    co-  housing.
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the objective of minimizing operational expenditures to achieve a viable 
business model for affordable housing. In practice, this model entails a 
wide range of shared facilities, a strong community development program, 
collaborative facility management, and predictable and minimized energy 
demand and load curves. To that end, an initial energy simulation con-
ducted during the design phase by the design team predicted an EUI of 
54.7 kWh/ m2, while the heating and cooling EUI were 6.9 and 10.6 kWh/ m2, 
respectively. This simulation was based on standard Hungarian engineering 
practice, which uses standard occupancy data from conventional buildings. 
However, relying on standard data neglects two occupant  behavior-  centric 
challenges:

1  a demographically varied occupant pool of people living in housing 
poverty, and

2  a range of unconventionally used rooms and facilities.

The first challenge stems from the building project’s goal to create a sup-
port network of occupants built on a synergistic occupant pool. This pool 
includes single, elderly, disabled, family, student, and social worker tenants. 
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 Figure 11.21  Site plan of  E-    co-  housing ( ABUD Mérnökiroda Kft, 2020).
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The heterogeneity of expected occupants means that there is a challenge in 
accurately estimating when and how different apartments and shared facil-
ities will be used, which in turn decreases confidence in projections for en-
ergy demand and load curves. This effect is critical since a core tenet of the 
business model is to have a reliable and predictable reduction of operational 
expenditures.

The second challenge is that the  co-  housing model translates to shared 
facilities with unconventional occupancy patterns. For example, the project 
includes a 107 m2 community hall, and a 20 m2 shared laundry room. The 
energy demand of these spaces is not insignificant, and their use will highly 
depend on the simultaneity of diverse occupant motivations, which adds an 
extra layer of uncertainty to predicting building operation.

In response to these two challenges, a  co-  design process involving oc-
cupants in the building’s architectural design was conducted. This process 
provided an opportunity to access specific occupancy data, which can be 
used to simulate shared facilities and account for occupant heterogeneity.

The aim of the present case study is to showcase how these challenges/ 
opportunities were addressed during the design phase of the  project—  in 
particular, how  co-  design was leveraged to navigate the complexities related 
to occupant behavior.

11.3.3  Methodology

This case study methodology followed an alteration of the standard simula-
tion approach to include participatory or  co-  design ( see  Figure 11.22). The 
role of participatory design in this approach was to produce  simulation- 
 ready occupancy schedules, thus adding new  data-  collection and new 
 data-  preprocessing steps. The design steps were as follows: ( 1) defined and 
organized focus groups representative of potential building occupants, ( 2) 
interviewed focus group members during a design workshop to understand 
their daily routines, ( 3) aggregated daily routines for overall occupancy 
schedules, and ( 4) translated the schedules using occupant metadata. This 
exercise deviated from standard occupancy schedules by providing meta-
data to differentiate occupancy patterns of different social groups and by 
detailing activities that constituted occupancy. The research questions were 
addressed by using the new occupancy schedules together with a selection 
of standard schedules in the same building energy modeling ( BEM) engine 
and comparing the outputs.

11.3.3.1  Participatory Design

The participatory design process consisted of three design workshops with a 
focus group ( n=16). To approximate the future building occupants as much 
as possible, the municipality recruited focus group participants from among 
a pool of residents who were already tenants in municipal social housing. 
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The residents were joined by a group of social workers,  co-  housing experts, 
and architects from the  E-    co-  housing consortium. The former “ target” 
group ( nt=8) and the latter “ expert” group ( ne=8) together formed the final 
focus group. To fulfill the project goals of synergistic housing community 
composition, this focus group was selected to provide a mix of age, sex, fam-
ily status ( single, couple, etc.), education level, and employment status were 
selected ( see  Table 11.4). The age distribution among the focus group par-
ticipants represented the national average, and the sex balance was roughly 
equal ( male = 7, female = 9). Compared to the national average, family and 
employment status were more evenly distributed, while the education level 
of the target group was lower. During the workshops, participants used 
pseudonyms ( used throughout this case study).

The information relevant to occupancy patterns was collected in the sec-
ond workshop, where the focus group was partially present ( nt = 8, 100%; ne 
= 3, 38%). This workshop focused on individual habits and behaviors and, 
to a lesser extent, specific design solutions. Each respondent drew up their 
individual daily routine chart for typical weekdays at an hourly resolution 
( see  Figure 11.23), differentiating between four activity categories: sleeping, 
work/ activities outside the house,  at-  home leisure, and  at-  home chores. This 

Social groups

Activity types

Focus group definition

Daily routine interviews

Occupancy schedules

Differentiated occupancy
schedules

Occupancy aggregation

Occupancy feature
engineering

Standard occupancy
schedules

Adjustments to occupancy 
schedules

Technical data (location, construction, geometry, HVAC)

Run simulations

Compare results

Participatory design1

Data preprocessing2

Data analysis3

Standard BEM workflow New, case study-related steps Information retreived from case study

 Figure 11.22  Case study design in the context of the standard BEM pipeline.
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level of differentiation and resolution was necessary for architectural design 
and served as a  pre-  processing logic for occupancy schedules.

The occupancy schedules were generated through the aggregation of daily 
routine schedules. The aggregation method in each case involved taking the 
mean of responses. Two types of occupancy schedules were created: ( 1) a 
general schedule and ( 2) an active vs. passive occupancy schedule. For the 
general schedule, all activity types except for work were included equally. 
Separate active and passive occupancy schedules were generated by consid-
ering only chores and leisure activities for the former and sleeping for the 
latter. In the context of this case study, active and passive occupancy were 
differentiated in terms of occupant heat load.

11.3.3.2  Building Energy Modeling

To evaluate the impact of using the occupancy schedule created based on the 
 co-  design methodology, a BEM was created using EnergyPlus 9.2 and simulated 
applying different occupancy schedules. Along with the occupancy schedule 

Chores, errands, housekeeping

Leisure, freetime

Work, commuting to work

Sleeping

 Figure 11.23  Registering of daily routines during participatory design workshop 
#2. Participants’ activities were  color-  coded per hour ( scale on top) 
as a Gantt chart.

 Table 11.4  Composition of the focus group,  row-    by-  row for: age, sex, family status, 
education, employment status

Between 18 and 30 Between 30 and 65 Older than 65

Female Male
Single Couple Single 

parent
Family with fewer 

than 3 children
Family with 3 or 

more children 
Elementary Vocational Other secondary  Post-  secondary education
Unemployed Seasonal  Part-  time  Full-  time  Self-  employed Retired

Darker colors indicate a larger cohort population, where each row shows proportions 
independently.
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created using  co-  design approaches, three other schedules from national guide-
lines and standards were used, as described in the paragraphs that follow.

Based on a review of the available standards and guidelines of European 
countries, the authors only found hourly occupancy schedules for residen-
tial buildings in the French  Th-  BCE 2012 ( 2012) and the UK NCM Database 
( 2018); therefore, only these were used in the study as European schedules. 
The residential occupancy schedule provided by ASHRAE Standard 90.1 
( 2019) was applied as well, as it is widely recognized and used in the energy 
modeling industry worldwide.

The residential occupancy profiles provided by these three standards 
are shown in  Figure 11.24. Notably, ASHRAE uses the same schedule for 
all days, and in the  Th-  BCE 2012 and the UK NCM guidelines, the week-
end occupant schedule is 100% throughout the whole period. The  Th-  BCE 
2012 standard weekday values are averages, as it has a different profile for 
Wednesdays. The UK standard provides occupancy schedules on room 
level. Since in the created BEM each apartment represented one thermal 
zone, the  room-  level schedules had to be aggregated into an  apartment-  level 
profile. This aggregation was accomplished by assuming the number of oc-
cupants for each area based on its function.

In the BEM, 3.88 W/ m2 equipment power density was used with an average 
66% diversity, while the lighting power density was assumed to be 2 W/ m2.

11.3.3.3  Occupant Heat Load Profile of the Living Areas

Using the schedules from the  co-  design process, it was possible to differentiate 
between active and passive occupancy when creating the hourly occupancy 
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 Figure 11.24  Residential occupancy schedules based on different standards.
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heat load profile for the living areas ( i.e., private apartments). This profile was 
calculated as a weighted average of the active and passive heat loads, where 
the weighting factors were the probabilities of the active and passive occu-
pancy based on the focus group interview results ( see Equation 11.1).

q p q p qa a p p= ⋅ + ⋅Co-design  ( 11.1)

where:
Co-designq : occupant heat load in the living areas, W/ person

pa: probability of active occupancy
qa: heat load of active occupant, W/ person
pp: probability of passive occupancy
qp: heat load of passive occupant, W/ person

When calculating the heat load used in the  co-  design schedule, a 72 W/ 
person heat load was used for each passive occupant, corresponding to the 
heat load of an average person while sleeping, as per the ASHRAE  55-  2010. 
When considering active occupancy, 100 W/ person was assumed, corre-
sponding to the metabolic rate of a seated, relaxed person ( International 
Organization for Standardization, 2006).

When determining the heat load profile based on the  Th-  BCE 2012, UK 
NCM, and ASHRAE occupancy schedules, no differentiation was possible 
regarding active and passive occupancy; therefore, the schedule value was 
always multiplied by 100 W/ person, including during the nighttime.

11.3.3.4  Occupant Schedule and Heat Load Profile of the Common 
Areas

Since participants were not asked about their weekend habits during the  co- 
 design focus group workshops, information about weekend occupancy was 
not available. Therefore, in the  co-  design schedules for the living areas ( i.e., 
private apartments) and common areas ( i.e., community hall and laundry 
room), the same weekend occupancy was used ( as in the case of the  Th-  BCE 
2012 and UK NCM standards, i.e., a constant value of 100%).

The  co-  design schedule of the common areas was created using assump-
tions regarding the probability that an occupant will use the common rooms 
for either chores/ work or leisure. The assumed probability values are sum-
marized in  Table 11.5. The overall probability ( at each hour) of the common 
area usage was then determined as the average of the probability values of 
the respondents. The occupancy ratio values were then determined propor-
tionately to the probability values, with 100% occupancy assigned to the 
highest probability value.

In case of the  Th-  BCE 2012 and UK NCM standards, no specific guide-
lines were given for the occupancy of common areas; therefore, the same 
schedules were used for the living areas. The ASHRAE standard provided 
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the same occupancy profile for common areas in residential buildings as for 
the living areas. When determining the occupant heat load based on the 
schedules for the common areas, the 100 W/ person metabolic rate used in all 
standards was used for  co-  design calculations.

11.3.4  Results

The  E-    co-  housing case study results are presented below as follows: first, 
the daily routine charts drawn at the design workshop #2; then, the general, 
 active-  passive, and shared facility occupancy schedules; finally, a compari-
son of the simulation outcomes following the three selected standards.

11.3.4.1   Co-  Design Daily Routines

Daily routines were broken down by activity type, as shown in  Figure 11.25. 
The average times for key activities included waking up at 5h43; leaving 
the house at 8h53; arriving home at 18h20; and going to sleep at 22h38. 
Notably, 4 out of 11 respondents spent all their morning hours at home, 
and two stayed at home all day. These respondents explained their sporadic 
occupancy patterns mostly by their employment status. For instance, four 
respondents were  self-  employed, unemployed, seasonally employed, and a 
pensioner. Also, many respondents reported temporary,  short-  term, and 

start hr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

András 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 1 1

Gyuri 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1 1 1

Valcsi 1 1 1 1 1 1 4 4 2 2 2 2 2 2 2 2 3 3 3 3 3 3 1 1

Éva 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 1

Anna 1 1 1 1 4 4 2 3 3 3 3 3 3 3 3 3 3 3 3 4 2 2 1 1

Andrea 1 1 1 1 4 4 4 3 3 3 3 3 3 3 3 4 4 4 4 2 2 2 2 1

Margit 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 1

Józsi bácsi 1 1 1 1 1 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2 1

Izsák 2 1 1 1 1 1 1 4 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 2

Beni 1 1 1 1 1 1 1 1 1 1 2 4 4 3 3 3 3 2 2 2 2 2 2 2

Zsolt 1 1 1 1 1 1 4 4 3 3 3 3 3 3 3 3 3 4 4 4 4 1 1 1

 Figure 11.25  Daily routine charts. Activities were coded as 1=sleeping, 2= at-  home 
leisure 3=away, 4= at-  home chores.

 Table 11.5 Assumed probability values for the occupancy of the common areas

Community hall Laundry room

Probability of using the area for chores 
or work

10% 10%

Probability of using the area for leisure 50% 50%
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volatile employment conditions, overtime working, multiple workplaces, 
and seasonal jobs. On average, respondents spent seven hours sleeping, 
roughly eight hours out of the house, around 5.33 hours spending free time 
at home, and the remaining 3.5 hours doing chores. Regarding differences in 
sex, female respondents slept over 1.5 hours less than male respondents, but 
almost two hours more being active at home than male respondents. Differ-
ences in age and family status yielded no discernible patterns in occupancy.

11.3.4.2   Co-  Design Occupancy Schedules

Overall occupancy of the apartment units (  Figure 11.26) dropped from 100% 
to around 40% between 4h00 and 8h00 and rose to 100% between 16h00 and 
22h00. The schedules plateaued in the morning hours until noon, with some 
movement in the afternoon.

However, not all occupancies were the same from an energy perspective. 
The active and passive occupancies were equal at around 5h00 and 22h00, 
respectively. Between these two points, more people were awake than sleep-
ing. Sleep times varied from 20h00 to midnight, and wake times ranged 
between 3h00 and 10h00. This means that there was a passive occupancy 
component in the schedule for about 58% of the day. Likewise, active oc-
cupancy clearly showed a morning and evening peak at 6h00 and 19h00, 
respectively. In between those times, most but not all occupancy was active.

Time spent on active,  at-  home daily activities in the common areas took 
away from time spent on the same activities in private apartments. This 
pattern was shown by a truncated inverted trajectory of common hall occu-
pancy versus apartment occupancy ( see  Figure 11.27). As the share of pas-
sive occupancy in overall occupancy increased, people spent more time in 
their apartments than in the community hall. The laundry room occupancy 
is flatter, with minor peaks at 9h00 and 21h00, compared to the plateau 

 Figure 11.26  Daily occupancy by the level of activity. All occupancy is the sum of 
active and passive occupancies.
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between 8h00 and 16h00 for the community hall. This flattening is due to 
the smaller overall assumed coefficients, and the peaks can be explained by 
a higher prevalence of chores ( in the case of the laundry room).

11.3.4.3  Occupant Heat Load Profiles

The daily occupant heat load profiles based on the analyzed standards and 
the  co-  design workshop results are summarized in  Figure 11.28. Due to the 
application of a lower heat load for occupants during night hours, the  co- 
 design heat load profile shows generally lower values during this time. The 
root mean squared error ( RMSE) between the  co-  design occupant weekday 
heat load profile and the other profiles for the living areas is summarized in 
 Table 11.6. The heat load profile based on the ASHRAE occupant schedule 
shows the highest similarity to the  co-  design profile.

In the case of the common areas, the occupant heat load profiles showed 
significant differences. The  co-  design heat load profiles of the community 
hall and the laundry room showed higher values during daytime, which re-
flects the assumption that occupants are more likely to use these areas dur-
ing this period.

11.3.4.4  Impact on Energy Modeling Outputs

The heating EUI, cooling EUI, and total EUI of the living areas modeled 
using the  co-  design occupancy schedule were 6.0, 12.4, and 66.1 kWh/ m2, 
respectively. The comparison of these values with the outcomes of apply-
ing the other analyzed occupancy schedules is shown in  Figure 11.29. The 
largest deviation can be seen in the heating EUI, followed by the cooling 
EUI, while the total EUI shows a very small difference, <1%. The heating 

 Figure 11.27  Daily occupancy in private apartments vs. common areas ( community 
hall and laundry room).
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consumption was predicted to be lower and the cooling consumption higher 
based on the  Th-  BCE 2012 and UK NCM standards; in case of ASHRAE, 
the results were the opposite.

In the community hall, when considering the  co-  design schedule, the 
cooling EUI was 119.5 kWh/ m2, the heating EUI was very low ( only 0.42 
kWh/ m2), and the total EUI was 125.7 kWh/ m2. The comparison between 
the heating, cooling, and total EUI applying different schedules is shown in 
 Figure 11.30. All energy results were predicted to be lower in the  Th-  BCE 
2012, UK NCM, and ASHRAE cases.

 Figure 11.31 depicts the differences in the heating and total EUI of the 
laundry room using different occupancy schedules ( no cooling system was 
designed for the laundry room).  Figure 11.31 shows a similar pattern, with 
larger differences regarding the heating EUI. Both the heating and total 
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 Figure 11.28  Occupant heat load profiles used in the analysis. Different profiles 
were created for the living areas, the community hall, and the laun-
dry room in the  co-  design methodology; for the other schedules, the 
same profile was used in every zone. The weekend heat profile was a 
constant 100 W/ person in the  co-  design,  Th-  BCE 2012, and UK NCM 
cases; for ASHRAE, the same heat profile was applied for each day.

 Table 11.6  RMSE between the co-  design weekday heat load profile and the other 
analyzed occupant load profiles of the living areas

 Th-  BCE 2012 UK NCM ASHRAE

RMSE, W/ person 31.7 33.6 13.2



288 Tareq Abuimara et al.

-74%

-5.6% -5.6%

-67%

-10.7% -10.4%

-46%

-35% -34%

-80%

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

Heating energy demand Cooling energy demand Total energy demand

%
, C

o-
de

si
gn

 s
ch

ed
ul

e=
0%

Th-BCE 2012 UK NCM ASHRAE

 Figure 11.30  Heating, cooling, and total EUI of the community hall modeled with 
different occupancy schedules.
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 Figure 11.31  Heating and total EUIs of the laundry room modeled with different 
occupancy schedules.
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 Figure 11.29  Heating, cooling, and total EUI of the living areas modeled with dif-
ferent occupancy schedules. The reference points are the results based 
on  co-  design schedule.
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EUI were predicted to be lower based on the  Th-  BCE 2012 and UK NCM 
standards; in case of ASHRAE, the results were the opposite.

11.3.5  Discussion

In the living areas, the difference in the heating and cooling EUI can be at-
tributed to the disparity in the average occupant heat loads ( see  Figure 11.32). 
When applying the  Th-  BCE 2012 and UK NCM standards, the average heat 
load was slightly higher; yet, when applying the ASHRAE standard, it was 
lower. This discrepancy could be due to the heating EUI being lower and the 
cooling EUI higher in the case of the  Th-  BCE 2012 and UK NCM stand-
ards, while the opposite was true for the ASHRAE standard. In the living 
areas, the heating and cooling EUIs represented only a small part of the to-
tal EUI. The large differences in the heating and cooling EUIs compared to 
the total EUI might be explained by the occupant heat load, which directly 
affects the heating and cooling demand.

In the community hall, the cooling constituted the largest share of the 
total demand, hence the difference in the total demand; the cooling demand 
showed a similar pattern. The heating consumption was very low in all 
cases, which could have caused larger differences.

The difference in the cooling EUI of the community hall when applying 
different schedules can be explained by the variation in the daily profile of 
the occupant heat loads. As shown in  Figure 11.33, the  co-    design-  based oc-
cupant heat load increased during the daytime and significantly contributes 
to the rise in cooling demand in the community hall on a typical summer 
day. Yet, the occupant load profile based on the ASHRAE standard showed 
a decrease during the day, causing the cooling EUI to remain at almost a 
constant value throughout the day.

Moreover, in the laundry room, only the heating and total energy 
EUIs could be analyzed since no cooling was designed for this space. The 
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 Figure 11.32  Average occupant heat load values in the three analyzed areas: living 
areas, community hall, and laundry room.
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difference in the heating EUI of the analyzed models can be explained by 
the changes in the occupant heat loads. All the models resulted in lower 
heating consumption while having higher occupant heat loads.

Limitations of this case study stem from: ( 1) uncertainties in BEM, ( 2) 
assumptions made prior to modeling, and ( 3) the  co-  design methodology. 
In the case of BEMs based on the  Th-  BCE 2012 and UK NCM standards, 
the occupancy schedule of the living areas was used for the common rooms 
as well, assuming an energy modeler would follow a similar path. While 
this approach is purely speculative, it draws attention to the uncertainties 
designers face because of a lack of accurate model inputs. Also, the results 
were limited to weekday analyses only, as weekend schedules were not col-
lected during the focus groups. This case study was likewise limited to ana-
lyzing the effect of changing the occupancy schedule only, whereas other 
sources of internal heat gains ( e.g., equipment, lighting) may have been rel-
evant as well. Additionally, in certain cases, the analyzed energy demands 
had very low absolute values, such as the heating demand in the laundry 
room and the community hall.

Regarding assumptions, the occupancy of these rooms was based on as-
sumptions about the proportion of chore/ leisure time that would be spent 
there. These assumptions, however, were not informed by focus group inter-
views. Furthermore, the calculations did not consider the facilities provided 
by the rooms, nor the number of people living in the building. Both factors 
heavily influenced common room occupancy. The comparison of these re-
sults may have been less insightful as a result.

Finally, the  co-  design process used in this project was intended to sup-
port architects, not BEM. Weekend schedules were thus not collected, and 
the focus group included only a limited sample size of people currently liv-
ing in housing poverty. Retrieving occupancy schedules during  co-  design 
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 Figure 11.33  The occupant heat loads and the cooling energy demand of the com-
munity hall using the  co-  design schedules and ASHRAE standard, 
considering a typical summer day.
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is  time-  consuming, and so future larger studies should consider a more 
streamlined method.

11.3.6  Concluding Remarks

In this case study, participatory design was used as a tool for constructing 
more detailed and more accurate occupancy schedules compared to sched-
ules from the three selected standards. Overall, between 13.2 and 33.6 W/ 
person differences in heat load profiles were observed compared to standard 
occupancy schedules. While these differences did not translate to significant 
differences in overall energy EUI, it yielded over 10% heating EUI differ-
ence in apartments and between 46% and 86% heating EUI difference in 
the community hall. The difference in the EUI was achieved through the 
differentiation of active and passive occupancy and the ability to tell exactly 
how people are using the building beyond simply occupying it. Forecasting 
how occupants use the building could especially be significant for predict-
ing occupancy in shared facilities and common areas, which are prevalent 
features of  co-  housing.

This case study analysis also showed that people living in social housing 
occupy buildings differently than standards predict ( albeit this claim could 
be specific to this case study), potentially due to higher volatility in their em-
ployment schedules. The employment schedules for this study’s participants 
were closer to the standard “  9-    to-  5” work schedule for male occupants and 
less so for female occupants, but further research is required to explore the 
association between sex, work schedules, and occupancy patterns to under-
stand how social housing occupancy may be distinct from conventional res-
idential buildings. Overall, this study’s findings suggest that participatory 
design may be a viable tool to depart from generic standards toward higher 
specificity in BEM as well as a valid research method to explore different 
factors of occupancy, which could potentially contribute to development of 
more inclusive standards in the field.

11.4  Case Study 3: Quebec City, Canada

Jean Rouleau, Louis Gosselin

11.4.1  Summary

In the  mid-  2010s, a  40-  unit,  four-  story social housing building called Les 
Habitations Trentino was constructed in Quebec City, Canada ( lat. 46.78°N, 
lon. 71.29°W), in an  eco-  neighborhood called La Cité Verte. The climate in 
Quebec City is characterized by significant variations throughout the year: 
cold and snowy winters ( HDD18 = 4,843° C-  day), and relatively warm, hu-
mid summers. The stakeholders wanted to reach a high level of energy per-
formance for this building. During the design phase, building performance 
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simulations ( BPS) and  life-  cycle analyses were performed to test different 
options to inform the  decision-  making process.

A partnership with the Chaire industrielle de recherche sur la construc-
tion écoresponsable en bois ( CIRCERB) from Université Laval was estab-
lished to analyze the behavior of this case study building. Researchers from 
Université Laval analyzed the energy performance of the building from the 
beginning of operation and found that occupants had a strong influence on 
the energy performance of the building. The researchers also found a sub-
stantial energy performance gap for this building, where the energy demand 
that was predicted prior to construction differed from the actual demand.

The objectives of the present case study analysis were thus ( 1) to explain 
the reasons behind this energy performance gap and assess if it was caused 
by an inaccurate representation of the occupants in simulation, and ( 2) 
to develop a method to assess the full influence of occupants on the per-
formance of  multi-  unit residential buildings ( MURBs). The analysis also 
aimed to find appropriate ways to incorporate occupant behavior into BPS 
to improve the design of MURBs and reduce the energy performance gap. 
Studied occupant behavior included occupancy, space heating, hot water 
and electricity consumption, setpoint temperatures, and the use of operable 
windows for ventilation. In brief, the study found that the performance gap 
was mainly caused by differences between the assumptions regarding occu-
pants in the BPS and the actual occupant behavior observed in the building.

11.4.2  Building Description

Construction of Les Habitations Trentino took place in 2015 ( see  Figure 11.34). 
Although  pre-  construction BPS assumed a building population of 125 peo-
ple, the total number of occupants in 2016 was 90. Energy bills for heat and 
electricity are included in the lease. The floor area of each unit varies be-
tween 70 and 80 m2. The  window-    to-  wall ratio ( WWR) is 16%, with oper-
able  triple-  glazed windows. A special feature of the building is that part 
of it was constructed with a  cross-  laminated timber ( CLT) system, and a 
 light-  framed wall system was used for the other side. The thermal resistance 
( RSI value) of the opaque portion of the envelope is 6.32 m2K/ W for both 
construction systems. The air tightness of the envelope was measured to be 
0.6 ACH at 50 Pa.

Heating is provided by a  biomass-  based district heating system. Each 
apartment is equipped with three or four hot water radiators. The energy 
supply for producing domestic hot water comes from the district heating 
network. A 100% fresh air ventilation strategy is used. Each dwelling has 
a switch to turn the mechanical ventilation on or off ( with a heat recovery 
ventilator ( HRV) efficiency of 85%). No mechanical cooling was installed.

Building data have been collected since the beginning of building occu-
pancy ( i.e., October 2015). Data on the consumption of electricity, domes-
tic hot water, and heating is collected. Indoor temperature and humidity, 
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window openings, mechanical ventilation control, and exhaust fan opera-
tion ( kitchen hood, dryer, bathroom fan) are also monitored for some units. 
Overall, more than 500 data points are monitored, with, for the most part, 
an acquisition every 10 minutes.

At the building level, the annual EUI of the heating, electricity, and domes-
tic hot water ( DHW) in 2018 was 38.4, 48.1, and 51.3 kWh/ m2, respectively, 
for a total EUI of 137.8 kWh/ m2. These figures are a significant improve-
ment compared to the typical total EUI observed for this type of building in 
Quebec, i.e., 250 kWh/ m2 ( Whitmore and Pineau, 2021). The improvement 
is mostly due to the quality of the envelope that contributes to reducing the 
heating needs. Monitoring of the building from 2015 to 2020 showed that the 
annual energy consumption for heating and DHW was consistent over time, 
but electricity consumption increased over the last few years.

 Figure 11.35 presents the annual EUI of all dwellings in the case study 
building, ranked from the lowest to the highest consumers. The most strik-
ing element of this figure is the large variation of energy consumption from 
one dwelling to another, despite their similar features. The EUI varied by 
a factor of 11 from 23.2 to 267.3 kWh/ m2 across dwellings. Very weak cor-
relations between the DHW consumption and the number of occupants in 
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.2

 m

43.5 m

 Figure 11.34  Picture of the building and floor plan.
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each dwelling and between the  space-  heating demand and the floor level 
were noted, but other factors such as orientation, construction system, etc., 
did not explain the variability of the EUI ( Rouleau et  al., 2018). In fact, 
most of the observed variance appeared to be due to differences in occupant 
behavior.

Thermal comfort during summer was also studied. A portion of the 
dwellings exhibited overheating ( Rouleau and Gosselin, 2018), with an in-
door temperature above the limit provided by the adaptive comfort model 
of ASHRAE Standard 55. In other units, the indoor temperature stayed 
within the limits of acceptable conditions. Once again, most of the variabil-
ity was linked to occupant behavior.

11.4.3  Methodology

Since this analysis had two distinct objectives, the methodology was divided 
into two sections: one to evaluate the impact of occupant behavior on the 
energy performance gap and the other to develop a novel occupant behavior 
model. Details of the methodology are provided below.

11.4.3.1  Occupant Behavior Assumptions during Design

During the design phase of the building, BPS was performed to assess the 
impact of different design options in terms of construction costs and en-
ergy savings. Different envelope assemblies were simulated with the Passive 
House Planning Package ( PHPP) software ( Feist, 2012), leading to the design 
previously presented above, which offered a good  trade-  off between cost 
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 Figure 11.35  Annual energy intensity in each dwelling in 2018.
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and energy performance. In these simulations, occupants were accounted 
for by static schedules that relied on fixed assumptions regarding occupancy, 
heating setpoint, etc. These were the default schedules supplied by the PHPP 
software.

For the purposes of this study, the PHPP model was examined thor-
oughly, and the assumptions of the initial energy model were compared to 
the monitored data. This step allowed for the identification of inaccurate 
assumptions. The initial energy model was modified to account for diver-
gences between the model and the actual building. Changes in the total en-
ergy use predicted by the model were tracked as those changes were applied.

11.4.3.2  Occupant Behavior Simulation Model Development

A versatile integrated occupant behavior model was developed. To develop 
the model, existing models that simulated different facets of occupant be-
havior were adapted and assembled. The unified model provided sets of pos-
sible coherent schedules that served as inputs for the BPS.

The main requirements for the model were:

• Integrated several facets of occupant behavior: The model should pro-
vide schedules for the most influential types of occupant behavior with 
respect to energy consumption and thermal comfort ( occupancy, elec-
tricity consumption, DHW consumption, heating setpoint, window 
opening).

• Ensured coherence between  sub-  models: The model should provide 
schedules that are coherent with one another. For example, if the occu-
pancy schedule indicates that no one is present, the DHW and electric-
ity consumption should be adapted accordingly.

• Provided high time and space resolution: The model should provide rep-
resentative schedules at the level of a single dwelling. It should provide 
daily or yearly schedules, with a time step that could be as small as 10 
minutes.

• Replicated observed variance: The model should generate schedules that 
properly match the observed  unit-    to-  unit variance, as well as the  day-  
  to-  day variability observed in the dwellings. The model should be prob-
abilistic: two different runs lead to two different sets of schedules, both 
of which would still be within the observed variance for each type of 
occupant behavior.

For the occupancy, electricity, and domestic hot water  sub-  models, modifi-
cations were made to existing models to account for various factors. First, 
models were created using data from foreign countries ( United Kingdom 
and USA); then, adjustments were made so the models better represented 
behaviors observed in Canada ( Rouleau et al., 2019). Another modification 
was to add a “ diversity” factor that was randomly assigned to each simulated 
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dwelling to ensure that the dwellings had diverging behaviors ( i.e., that the 
simulated occupant profiles were different between households) so the full 
range of observed occupant behaviors was reproduced. Finally, the  sub- 
 models communicated with each other to make sure that the generated 
schedules for occupancy, electricity, and hot water were coherent with one 
another. The methodology to develop each  sub-  model is described below.

11.4.3.2.1  OCCUPANCY

The daily occupancy profiles generator developed by Richardson et al. ( 2008) 
was used as the basis for the model. The generator assigned the number of 
active occupants ( i.e., present and not sleeping) in the simulated dwelling 
at a  10-  minute frequency. Occupancy schedules were generated and then 
forwarded to other  sub-  models.

11.4.3.2.2  ELECTRICITY CONSUMPTION

Richardson et al. ( 2008) model was also used to generate schedules for the 
use of electric appliances ( Richardson et al., 2010). Another model was also 
used for the usage of artificial lighting ( Armstrong et al., 2009).

11.4.3.2.3  DOMESTIC HOT WATER CONSUMPTION

The domestic hot water  sub-  model used the yearly DHW event schedule gen-
erator developed by the National Renewable Energy Laboratory ( NREL) in 
the United States ( Hendron et al., 2010). The hourly NREL model was ad-
justed so it would fit with the desired time resolution of 10 minutes.

11.4.3.2.4  HEATING SETPOINT

A probability distribution function that copied the distribution found in 
Canadian houses ( National Resources Canada, 2011) was used to assign the 
heating setpoint of the heating system. The setpoint was treated as a static 
parameter that remains constant throughout the year.

11.4.3.2.5  WINDOW OPENING

The state of the windows ( opened/ closed) was calculated based on the out-
door and indoor temperatures using a logit equation to estimate the proba-
bility of window opening ( when closed) and window closure ( when opened). 
This equation was developed with the monitored data from the case study 
building. The equations that calculated the states were based on coefficients 
that varied for each simulated dwelling.  Unit-    to-  unit variance was thus 
ensured.
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More details on these occupant behavior models are available in Rou-
leau et al. ( 2019) and Rouleau and Gosselin ( 2020). The interactions between 
these different  sub-  models are presented in  Figure 11.36.

Since the occupant behavior model described above could generate many 
different schedules that were representative of possible occupants, it offered 
the possibility to run Monte Carlo simulations. For this type of simulation, 
a large number of schedules can be created by running the model repeatedly. 
Then, these different schedules can be introduced into BPS tools. The re-
sults of this procedure will be probability distributions for important model 
outputs ( e.g., energy consumption, thermal comfort, overheating, peak de-
mand). These distributions can indicate the likeliness of achieving a certain 
level of performance while considering the full extent of possible occupant 
behaviors.

The abovementioned approach can also be used to size HVAC equipment. 
For instance, the methodology was used to study the sizing of hot water 
systems. The case study building’s hot water consumption was simulated 
100 times with the occupant behavior model. These 100 building consump-
tion profiles were forwarded to a numerical model of a hot water system to 
find the optimal size of the system ( storage water tank volume and heating 
capacity of the system). If an instantaneous water heater had been installed 
in the building, the methodology predicted that the ideal heating capacity 
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for the building ranged between 192 and 497 kW, depending on how much 
hot water the occupants in the building use. On the other hand, with a water 
tank of 2,000 L, the ideal heating capacity was between 33 and 77 kW.

11.4.4  Results and Discussion

The results of the case study analysis are presented and discussed in the 
sections below.

11.4.4.1  Occupant Behavior Assumptions during Design

According to these  prior-    to-  construction simulations, the predicted annual 
heating EUI was 16.6 kWh/ m2 and the annual total EUI ( summation of 
heating, electricity, and DHW) was 74.3 kWh/ m2. As shown in  Figure 11.37, 
these values departed significantly from the actual average energy consump-
tion observed in the building.

The assumptions of the initial energy model and the measurements were 
compared and analyzed to explain the discrepancies. Three notable sources 
of discrepancies were:

 i Window opening: The original model did not include window opening 
during the heating season. However, it was observed that windows were 
opened 9.4% of the time during the heating season, and so the infil-
tration rate of the building was adjusted to include this behavior. The 
relatively high rate of window openings obviously increased the heating 
demand compared to predictions.

 ii Heating setpoint: The heating setpoint was originally assumed to be 
20°C. In practice, the actual temperature in the units tended to be much 
higher, around 23.9°C, which again increased heat consumption com-
pared to predictions.

 iii Domestic hot water: A daily consumption of 25 L/ person was assumed, 
but the measured consumption was much higher, around 58.3 L/ person.

Other changes applied to the energy model following the monitoring of 
the building included ( continued from the list above): ( iv) using the “ true” 
weather data, ( v) modifying the HRV efficiency from 85 ( expected value by 
the HRV supplier) to 70 ( estimated value from monitored data), ( vi) reduc-
ing the building population from 125 to 90 people, ( vii) considering the in-
ternal heat gains generated from the hot water recirculation loop, and ( viii) 
using the “ true” electricity demand. Implementing these changes in the 
original energy model achieved simulation predictions much closer to meas-
urements, thus reducing the performance gap. As shown in  Figure  11.37, 
changes in the model were applied cumulatively.

This exercise illustrated the challenge of making accurate assumptions 
about occupant behavior prior to construction. At the same time, the study 
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revealed the significant impact that these assumptions might have on energy 
predictions and, potentially, on design choices. In addition, the BPS used 
during the actual design phase only accounted for the “ average occupant” 
and did not consider the full spectrum of possible occupants ( as highlighted 
in  Figure 11.35). Thus, there is a need to develop an integrated model encom-
passing the different facets and inherent variability of occupant behavior as 
well as design methods to exploit these kinds of models.

11.4.4.2  Occupant Behavior Simulation Method

The results presented in this section include the simulation outputs of an 
energy model of a single dwelling located in the case study building. Mon-
itoring data were used to calibrate this numerical model to make sure the 
simulations adequately reflected the real building in terms of annual heating 
demand and thermal comfort. A total of 1,000 annual occupant profiles were 
then generated and provided to the dwelling model to generate probability 
distributions for the heating demand, total energy use, and thermal comfort 
( for more details, see Rouleau et al., 2019). This approach is useful for assess-
ing the robustness of the building design for use by different occupants.

The average annual heating EUI across the 1,000 simulations was 36.6 
kWh/ m2 with an average total EUI of 110.2 kWh/ m2 when adding hot wa-
ter and electricity use. In terms of thermal comfort, a mean value of 2,429 
hours per year was deemed as not comfortable according to ASHRAE 55 
( ASHRAE, 2017).  Figure 11.38 provides the overall distribution observed 
from all simulations for the three performance indicators and illustrates the 
wide range of possible building outputs. For example, the heating EUI in 
the simulated dwelling went from 10 to 150 kWh/ m2 depending on which 
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 Figure 11.37  Revisiting assumptions related to occupant behavior to close the 
 energy gap between predictions and measurements.
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occupant profile was used. Note that in the monitored building, the space 
heating demand per dwelling ranged from 13 to 146 kWh/ m2, which was 
similar to the range obtained with the simulations. The same result was 
true for thermal comfort. On the one hand, there were multiple profiles that 
had close to zero hours of thermal discomfort. On the other hand, some 
profiles endured uncomfortable conditions for most of the year. The large 
range of energy consumption and thermal comfort conditions displayed in 
 Figure 11.38 was similar to that observed in the actual dwellings.

For the three distributions shown in  Figure 11.38, an important propor-
tion of the simulations was located near the bottom boundary of the distri-
bution where the contribution of each unit was small. This means that the 
overall energy consumption of the case study building was not as driven by 
the consumption of the majority of people in the dwellings as it was ( at least 
to some extent) by its  highest-  consuming households. For instance, the av-
erage heating EUI in the biggest 15% of consumers was 77.4 kWh/ m2 versus 
29.4 kWh/ m2 for the remaining 85% of households. This difference suggests 
that the current building design is sensitive to high levels of energy demand 
for certain types of behavior.

The distributions shown in  Figure 11.38 were obtained for a single dwell-
ing at the level at which a high diversity of behaviors was expected, which 
translated to a widespread of possible energy demands and thermal com-
fort. When more units were considered simultaneously ( i.e., when the sam-
ple size increased), extreme behaviors canceled out and the variability of 
possible energy intensity and comfort level was reduced. This result suggests 
that large MURBs should be more robust in terms of energy performance 
with respect to occupant behavior.
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 Figure 11.38  Projected distribution of various energy performance indicators de-
pending on occupant behavior.
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The energy and comfort distributions obtained from housing stocks of 1, 
10, 40, 100, and 400 dwellings were considered. For each of these housing 
stock sizes, 10,000 combinations were randomly chosen from the simula-
tions of the dwelling under different occupant behavior. The resulting dis-
tributions are displayed in  Figure 11.39. The widest probability distribution 
function on each subplot corresponds to the distribution for a  one-  dwelling 
housing stock, and then the distributions become narrower as the housing 
stock increases, where the most cramped distribution is for a  400-  dwelling 
housing stock. The case study building has 40 dwellings, and so the distri-
bution projects that the annual heating EUI should be between 25 and 45 
kWh/ m2, which is roughly what was observed year after year.

To improve the energy robustness of the building, it will be important 
to evaluate the reasons behind its high sensitivity to occupant behavior. 
In  Figure 11.40, the outputs of each simulation are represented in multiple 
grids of 30 × 30 pixels. The color of a pixel conveys the average value of an 
aspect of occupant behavior for all simulations located within the pixel. For 
example, for simulated households with a heating demand between 75 and 
100 kWh/ m2, the average frequency of opened windows is approximately 
50% of the time.

At this point, the heatmaps were only produced for the actual building 
design, but the methodology can be applied to future building designs. Dif-
ferent configurations of building designs can be tested to assess their ro-
bustness regarding occupant behavior. One might envision robust design 
optimization, where the design is optimized not for a single occupant be-
havior profile but for various profiles to ensure that its high level of energy 

 Figure 11.39  Impact of the number of units on the probability distribution of possi-
ble energy consumption, space heating consumption, and discomfort.
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performance is sustained for the full array of possible occupant behaviors. 
 Parametric-  based studies are also possible, where designers can change val-
ues for a specific parameter ( e.g., WWR) in the building model to see the 
changes in the distributions for the energy performance.

Robust design assessment offers additional information that can be pro-
vided to the building stakeholders with the generation of probability dis-
tributions. As discussed, typical  pre-  construction simulations yield only a 
single value of expected heating demand ( or peak demand, thermal com-
fort, etc.). While this single expected value can be useful when comparing 
different designs, it regularly differs from reality; its predictive value is min-
imal. Generating probability distributions helps in that regard by providing 
a full range of possible outputs, which gives stakeholders a better idea of the 
range of performance that the building might exhibit.

Robust design assessment can also help building designers and owners 
identify behaviors that can drive up energy consumptions and to understand 
how the building responds to such behaviors. In this case study analysis, for 
instance, high window opening rates during the heating season were found to 
increase the heating EUI up to 100 kWh/ m2. If designers are not satisfied with 
this level of consumption, they could target designs that yield better perfor-
mance with high window opening frequency ( e.g., decrease WWR, increase 
mechanical ventilation rate to decrease the use of windows, inform occupants).

11.4.5  Concluding Remarks

This case study analysis demonstrated the significant influence that 
 occupants can have on the energy performance of their dwellings. It is also 

 Figure 11.40  Heatmaps representing the influence of various aspects of occupant 
behavior on the heating demand and comfort performance of the 
building.
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another example of the  much-  discussed energy performance gap ( i.e., ac-
tual energy consumption differs from projected energy consumption during 
the design phase of the building). This analysis showed that the energy per-
formance gap in this case study building was mainly caused by a misrep-
resentation of occupants in the energy simulations. Occupant behavior is 
a highly uncertain parameter, especially in residential buildings where be-
haviors change from one household to another; it is practically impossible to 
accurately forecast this variable in the simulations used to design a building.

For these reasons, multiple occupant behavior profiles are recommended 
when designing buildings. This method can be used to guide the  decision- 
 making process during the design phase. For example, the method can be 
applied to energy simulations with different levels of insulation or differ-
ent WWRs, and the resulting probability distributions can be observed for 
energy consumption. In addition to considering the most likely or average 
value of energy consumption, the designer could also consider the possi-
bilities of achieving extreme values depending on how occupants use the 
building systems

11.5  Case Study 4: Melbourne, Australia

Ye Kang, Jenny Zhou

11.5.1  Summary

This case study building was the first  large-  scale timber structure built to 
Passivhaus standard in the southern hemisphere. This case study analysis 
evaluated the interactional behavior between occupants and the building, 
 multi-  story student accommodation. Design specifications and in situ per-
formance were compared to identify misalignments in three  occupant- 
 centric variables: presence profile, interaction with electrical appliances and 
lighting, and thermal comfort. Compared to a fixed value defined by the Pas-
sivhaus simulation model, the actual occupant presence varied significantly 
between  in-  semester and semester break, between weekdays and weekends, 
and between private rooms and shared spaces. The simulation underesti-
mated the use of electrical appliances and lighting and overlooked its time 
dependency. The building also suffered from overheating problems that had 
not been identified in the design stage. The result of this study can contribute 
to a deeper understanding of human behavior and thermal comfort in Pas-
sivhaus buildings. The measured data can also help to refine the parameter 
setting for human factor variables in the future  occupant-  centric design.

11.5.2  Building Description

The case study building ( see  Figures 11. 41–  11.43) is a  Passivhaus-  certified  six- 
 story student accommodation building that is located in the mild temperate 
climate zone of Melbourne, Australia. The PH building has a gross floor area 
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 Figure 11.41  Photograph of the building exterior.

 Figure 11.42  Photograph of the studio room.

 Figure 11.43  Photograph of a communal space.
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of ~5,200 m2 that includes 150 independent studio rooms and various com-
munal spaces. Each studio consists of a bedroom, an  open-  plan living/ kitchen 
area, and a bathroom. The living/ kitchen area is outfitted with a range of 
electrical appliances ( cooktop, microwave, fridge, etc.). The communal spaces 
contain recreation rooms, communal kitchens, and a laundry room.

The building is of lightweight structure, with external walls and roofs built 
from  cross-  laminated timber ( CLT) and a ground floor built from concrete 
panels. Rockwool and rigid foam insulation and  triple-  glazed windows were 
used to improve the thermal performance of the building envelope. The 
characteristics of the building envelope are summarized in  Table 11.7. The 
building is equipped with three mechanical ventilation equipment with heat 
recovery ( MVHR) units. The building management system ( BMS) modu-
lates air dampers to adjust the ventilation rate of the studios. The damper 
position remains in minimum mode ( 3.5 L/ s) when the studio is vacant, and 
it adjusts to the max mode ( 10 L/ s) and boost mode ( 25 L/ s) based on the 
signal from the room key and bathroom light, respectively. When the aver-
age temperature of the floor exceeds 25°C for 10 minutes, the BMS will also 
activate the boost mode for the entire floor. The MVHR units are equipped 
with thermal batteries ( via hot water) to provide tempered outdoor air to the 
student accommodations; the building has no active cooling systems. The 
building was occupied in February 2019.

11.5.3  Methodology

This section is arranged into three different  sub-  sections: ( 1) model and in-
put variables, ( 2) in situ performance data collection and ( 3) TM52 method 
for overheating assessment, to address the objectives of this analysis.

11.5.3.1  Model and Input Variables

The Passive House Planning Package ( PHPP) Version 9 simulation tool was 
used during the design stage to predict the building performance. PHPP 
is the only authorized software in the Australian context for PH certifica-
tion ( Australian Passive House Association, 2021). Similar to other build-
ing energy simulation tools, the PHPP is built upon energy conservation 

Table 11.7  Thermal transmittances (  U-  value) and total areas of the Melbourne 
building envelope

Components Average  U-  value ( W/ m2 K) Total area ( m2)

Wall system 0.308 2,814
Roof system 0.135 1,139
Ground floor system 0.843 1,009
Window 1.322 1,010
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principles and heat balance equations, but it models the entire building as 
one single zone and generates simulation results on a monthly basis owing 
to the limitation of the spreadsheet computing environment ( Passive House 
Institute, 2015).

The simulation required a range of inputs from weather data to building 
service equipment. This work focused on three  occupant-  centric variables:

• Presence profile: The occupancy fraction ( i.e., percentage of time that 
a space is occupied) was used to describe the presence profile. In the 
PHPP simulation, the indoor spaces were assumed to be occupied all 
the time with the occupancy fraction of 1.

• Interaction with electrical appliances and lighting: The energy demand 
was calculated from three variables; power rate, use frequency, and the 
total number of occupants ( Eq. 1) ( Passive House Institute, 2015). The 
PHPP manual ( Passive House Institute, 2015) provided default settings 
for the first two variables (  Table 11.8), and the last parameter was esti-
mated based on the building use: one occupant per studio and eight ad-
ditional residents for building management. The simulation was unable 
to capture the time variance of the appliance and lighting use because 
the PHPP applies a “ per year” rate to the power rate or use frequency.

E V h Gel = ⋅ ⋅Norm  ( 11.2)

where
NormV  is the power use of the appliance or lighting;

h is the use frequency of the appliance or lighting;
G  is the total number of occupants.

• Thermal comfort: The PHPP applies overheating frequency ( i.e., the 
percentage of time that the indoor temperature is above 25°C) to evalu-
ate the thermal comfort of the building ( Passive House Institute, 2015). 
When the annual overheating frequency exceeds 10%, the space is clas-
sified as overheating. To simplify the calculation, the PHPP database 
only specifies monthly average temperatures (  Table  11.9) and a fixed 

Table 11.8 The power rate and use frequency of electrical appliances and lighting

Power rate Use frequency

Dishwashing 0.8 kWh/ use 65 use/(  person-  year)
Refrigerator 0.78 kWh/  person-  day 365 days/ year
Cooktop 0.22 kWh/ use 500 use/(  person-  year)
Television 80 W 1.5 hours/(  person-  year)
Small appliances 0.14 kWh/  person-  year 365 days/ year
Lighting 10 W 8 hours/(  person-  year)
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daily temperature swing ( 10°C). The PHPP evaluation completed for the 
case study building identified an overheating frequency of 6%, which 
meant there were no overheating concerns in the design stage.

In this case study analysis, the simulation results from these three  occupant- 
 centric variables are compared to in situ performance data to evaluate the 
interactional behavior between occupants and the  multi-  story student ac-
commodation built to the Passivhaus standard.

11.5.3.2  In Situ Performance Data Collection

The building management system ( BMS) and a wireless sensing platform 
were applied to collect in situ data for eight months from August 2019 to 
March 2020. The BMS recorded the energy use of the case study building 
and exterior temperature on an hourly basis. The indoor temperature and 
carbon dioxide ( CO2) concentration of indoor spaces were detected every 30 
seconds using the wireless sensing platform. The monitoring devices were 
calibrated against standard reference instruments and displayed the accu-
racy of ±0.6°C for temperature and ±11 ppm for CO2 concentration. Before 
the final data analysis and visualization, the sensor data were aggregated 
to hourly intervals to facilitate the comparison. Permission was granted to 
access 12 spaces in the building for device installation (  Table 11.10). The 12 
spaces spread over three floors and covered both studio rooms and com-
munal spaces. Data collected by the BMS and the sensing platform were 
applied to pursue the three  occupant-  centric variables, as described below.

• Presence profile: The CO2 concentration of indoor spaces recorded by 
the sensor nodes was used to determine the occupancy status and to 
generate the presence profiles. When the hourly CO2 concentration 

Table 11.10 The indoor monitoring stations and room characteristics

Room number Floor Room type Window orientation

103 1 Communal Northwest
108 1 Communal Northwest
309 3 Studio Northwest
314 3 Studio Southwest
324 3 Studio Southeast
327 3 Studio Northeast
332 3 Communal Northwest
609 6 Studio Northwest
614 6 Studio Southwest
624 6 Studio Southeast
627 6 Studio Northeast
632 6 Communal Northwest
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exceeded 550 ppm, the space was considered occupied. The 550 ppm 
was a  cut-  off value obtained from a  four-  day dataset measured during 
the Christmas holiday. It should be noted that this is a simplified ap-
proach as the indoor CO2 concentration could be influenced by window 
operation and occupant behaviors. CO2-  based dynamic occupancy de-
tection algorithms could further improve the accuracy of the outcomes.

• Interactions with electrical appliances and lighting: The BMS system dis-
aggregated the energy use data of the case building into plug load, light-
ing, and other building service functions. The human interaction with 
electrical appliances and lighting was inferred from the BMS energy 
breakdown data.

• Thermal comfort: Considering the limitation of the fixed benchmark 
( 25°C) in the PHPP tool ( Fletcher et  al., 2017), the TM52 method 
( Chartered Institution of Building Services Engineers, 2013), an adap-
tive method derived from EN 15251 ( CEN, 2007), was applied in this 
study to assess the overheating risk of the building. The TM52 method 
is further detailed in the following section.

11.5.3.3  TM52 Method for Overheating Assessment

The TM52 method defines three criteria for overheating assessment. All 
three criteria, listed below, are associated with the exceedance ( ΔT), which 
refers to the difference ( rounded to the nearest integer) between the opera-
tive temperature of the indoor space and the TM52 benchmark. A space is 
classified as overheated when it fails any two out of three criteria specified 
by the TM52 approach.

• Criterion 1: Hours of exceedance, He, should not exceed 3% of the oc-
cupied hours (He ≤ 3%). He represents the total number of hours that 
the ΔT is greater than 0°C between November and March ( typical  non- 
 heating season in the southern hemisphere).

• Criterion 2: Daily weighted exceedance, We, should be no more than 
6° C-  hours in any one day (We ≤ 6° C-  h). We refers to the hours when the 
indoor temperature is above the benchmark ( ΔT ≥ 1°C) during occupied 
hours, weighted by a factor that is a function dependent on how many 
degrees the benchmark has been exceeded ( Equation 11.3).

∑= ×( ),W h We e F  ( 11.3)

where the weighting factor WF  = 0 if ΔT ≤ 0°C; otherwise, WF  = ΔT, 
and he is the number of hours when WF  = ΔT.

• Criterion 3: Maximum exceedance, max_ΔT, should be less than or 
equal to 4°C ( max_ΔT ≤ 4°C). The max_ΔT represents the highest value 
of exceedance.
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The determination of the exceedance ( ΔT) and the TM52 benchmark ( Tben) 
is based on the exponentially weighted running mean outdoor temperature 
( Trm) ( Equations 11. 4–  11.6).

∆ = −T T Top ben ( 11.4)

= +0.33 21.8T Tben rm  ( 11.5)

T
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where,
Top is the operative temperature of the indoor space, considering the ther-

mal uniformity of the case study building, indoor air temperature (Tin) is 
a reasonable approximation for operative temperature (Top) ( Tabatabaei 
Sameni et al., 2015).

Tben is the benchmark.
Trm is the exponentially weighted running mean outdoor temperature.

−1Tout , −2Tout , −3Tout , −4Tout , −5Tout , −6Tout , and −6Tout  are the daily mean 
external temperature for the previous day, the day before, and so on.

11.5.4  Results and Discussion

A range of analyses was conducted to evaluate the interactional behavior 
between occupants and the case study building. The results are broken down 
into four  sub-  sections: ( 1) occupant presence, ( 2) use of electrical appliances 
and lighting, ( 3) thermal comfort, and ( 4) recommendations to improve the 
PHPP software. Each is discussed in turn below.

11.5.4.1  Occupant Presence

 Figure 11.44 shows the occupancy fraction of the studio rooms ( marked as  
orange) and communal spaces ( marked as blue) of the case building. The occu-
pancy data were disaggregated by  in-  semester/ semester break and weekday/  
weekend designations. In contrast to the default setting in the PHPP tool 
( i.e., the building was assumed to be always occupied), the actual occupancy 
fraction of the measured spaces fluctuated.

There were significant differences between  in-  semester and semester 
break occupancy. The studio rooms had occupancy fractions ranging from 
0.32 to 0.79 ( with an average of 0.56) during the semester, but the values were 
decreased to 0. 03–  0.09 ( with an average of 0.07) during the break. Similarly, 
the  off-  peak occupancy fraction ( 0. 01–  0.68, with an average of 0.35) was 
much lower than the  in-  semester values ( 0. 01–  0.18, with an average of 0.10) 
in communal spaces. The decrease in occupancy fraction during the semes-
ter break could be attributed to the increased vacancy in student accommo-
dation during the semester break.
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The occupancy schedules also varied between weekdays and weekends 
during the semester. In studio rooms, a slight reduction in occupancy 
fraction could be found on weekends ( 0. 32–  0.67, with an average of 0.50; 
 Figure 11.44c) compared to weekdays ( 0. 34–  0.79, with an average of 0.58; 
 Figure 11.44a). A similar trend could be observed in communal spaces ( 0. 
10–  0.68, with an average of 0.38 for weekdays;  Figure 11.44e; 0. 01–  0.64, with 
an average of 0.28 for weekends;  Figure 11.41g). The decreasing occupancy 
fraction on weekends could be associated with the fact that the students had 
more opportunities to attend  off-  campus activities during this period and 
thus left their studios for a considerable amount of time. Considering the 
constantly low occupancy fraction (<0.2) of the case study building during 
the semester break, no discernible discrepancy in occupancy profiles could 
be discovered between weekdays and weekends.

 Figure 11.44  Measured occupancy fraction of the studio rooms on ( a) weekdays,  in- 
 semester, ( b) weekdays, semester break, ( c) weekends,  in-  semester and 
( d) weekends, semester break, and communal spaces on ( e) weekdays, 
 in-  semester, ( f) weekdays, semester break, ( g) weekends,  in-  semester, 
and ( h) weekends, semester break. The uncertainty bounds represent 
the standard deviation. Semester: August 2019 to November 2019, 
March 2020; Semester break: December 2019 to February 2020.
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The discrepancy in occupancy profiles between studio rooms and com-
munal spaces also needs to be considered. During the weekdays of the se-
mester (  Figure 11.44a), the studios displayed the highest occupancy fraction 
( ranging between 0.7 and 0.79) between 00h00 ( midnight) and 6h00 because 
most occupants preferred to stay in the studio and sleep during this period. 
Then, the values reduced significantly until 16h00 ( occupancy fraction of 
0.34), likely because students woke up and left their studios to attend various 
courses and activities.

After 16h00, people began to return to their studios and the occupancy 
fraction increased to 0.65 at 23h00. In contrast, a significant reduction of 
the occupancy fraction could be found from 0.66 to 0.10 between 00h00 
and 8h00 in communal spaces (  Figure 11.44e), as individuals left communal 
spaces and returned to their studios for sleeping. After that, the value rose 
to 0.30 at 11h00 and then fluctuated between 0.25 and 0.31 until 18h00. In the 
evening, as individuals entered the communal spaces for entertainment and 
group activities, the occupancy fraction escalated again and reached the 
maximum value ( 0.68) at 21h00. Later, the value declined until 23h00. The 
discrepancy in occupancy profiles between studio and communal spaces 
could also be observed on weekends of the semester and during the semester 
break.

11.5.4.2  Use of Electrical Appliances and Lighting

 Figure 11.45 shows the power density of electrical appliances and lighting. 
Similar to occupancy profiles, the  on-  site data related to electrical appli-
ances were categorized by  in-  semester/ semester break and by weekday/ 
weekend. In comparison to the default settings in the PHPP tool ( 1.9 W/ m2 
for electrical appliances; 0.1 W/ m2 for lighting), the measured power density 
of electrical appliances and lighting ranged from 1.0 to 5.5 W/ m2 ( an average 
of 2.7 W/ m2) and from 0 to 2.9 W/ m2 ( an average of 1.7 W/ m2), respectively.

As expected, the power density of electrical appliances and lighting was 
much higher during the semester as compared to the semester break. Elec-
trical appliances  in-  semester value ( 2. 6–  5.5 W/ m2, with an average of 3.6 
W/ m2) was approximately three times the  off-  peak data ( 1. 0–  1.8 W/ m2, with 
an average of 1.3 W/ m2). A similar trend was observed for lighting, the case 
study building required 0. 5–  2.9 W/ m2 ( with an average of 2.1 W/ m2) for 
lighting during the semester, and the power density was reduced to  0–  2.1 
W/ m2 ( with an average of 1.0 W/ m2) during the break. The significant reduc-
tion in power density during the semester break could be attributed to the 
increased vacancy, as mentioned in the previous section.

The variation in the power density of the electrical appliances could 
also be observed between weekdays and weekends during the semester. 
The power density of the electrical appliances decreased from 3.6 to 2.7 
W/ m2 between 00h00 and 5h00 (  Figure 11.45a) as individuals stopped us-
ing electrical appliances and fell asleep. When students woke up, the value 



Detailed Case Studies 313

increased and reached the first peak ( 3.9 W/ m2) at 12h00 ( lunchtime). Then 
after another reduction ( 12h00 to 14h00) and growth ( 14h00 to 20h00), the 
power density reached the second peak ( 5.2 W/ m2) at 20h00 ( suppertime). 
The two peaks could be attributed to the cooking and corresponding energy 
demand related to kitchenware ( e.g., microwave oven and cooktop). During 
the weekends, the electrical appliances were found to consume more energy 
than on weekdays (  Figure 11.45c). The power density reached 5.2 and 5.5 
W/ m2 at 12h00 ( first peak) and 18h00 ( second peak). The higher energy con-
sumption during the weekends can be related to the fact that students did 
not have any courses during this period and could spend more time cooking. 
During the semester break, no significant difference in the power density of 
electrical appliances was observed between weekdays and weekends due to 
high vacancy.

 Figure 11.45  Power density of electrical appliances on ( a) weekdays,  in-  semester, 
( b) weekdays, semester break, ( c) weekends,  in-  semester and ( d) week-
ends, semester break and lighting on ( e) weekdays,  in-  semester, ( f) 
weekdays, semester break, ( g) weekends,  in-  semester and ( h) week-
ends, semester break. The uncertainty bounds represent the standard 
deviation. Semester: August 2019 to November 2019, March 2020; 
Semester break: December 2019 to February 2020.
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There was no discernible discrepancy in the lighting power density between 
 in-  semester weekdays and weekends, despite the increased vacancy during 
the weekends ( see the previous section). Considering the utility expense was 
amalgamated into the fixed rent, some vacant studio rooms might have had 
the lights left on during the weekends by less  energy-  conscious occupants. 
During the weekdays (  Figure 11.45e), the power density of the lighting dimin-
ished from 1.6 to 0.6 W/ m2 between 00h00 and 4h00, as students fell asleep 
and turned off the lights. Then the value rose to 2.7 W/ m2 at noon with oc-
cupants getting up. After that, the power density fluctuated between 2.6 and 
2.8 W/ m2 until 21h00, which was likely because individuals ( who were not 
responsible for the energy bills) preferred to keep the lights on. After 21h00, 
the occupants began to rest, and the value dropped again. A similar profile 
was observed during the weekends (  Figure 11.45g). No obvious variation was 
discovered in the lighting power density between weekdays and weekends 
during the semester break. It should be noted that considering the lights in 
the communal spaces were always on during the daytime, the lighting power 
density was observed to exceed 1 W/ m2 even during the semester break.

11.5.4.3  Thermal Comfort

The thermal comfort results based on the TM52 method are displayed in 
 Table 11.11. It is worth mentioning that this table only shows data for five 
months ( November 2019 to March 2020), which covered the  non-  heating 
season in the southern hemisphere. The remaining months were not in the 
scope of the TM52 analysis.

Although the PHPP simulation tool reported no overheating risk in the 
case study building, all 12 selected spaces were observed to have overheating 

Table 11.11 TM52 analysis result summary

Room number

TM52 method Overheated
( at least two 
criteria failed)

He (%) Annual max 
We (° C-  h)

Annual  
max_ ΔT (°C)

103 0  0 0 No
108 0  0 0 No
309 0.17 40 5 Yes
314 0.08 56 5 Yes
324 0.08 64 4 Yes
327 0.15 76 6 Yes
332 0.09 28 5 Yes
609 0.12 32 7 Yes
614 0.08 27 4 Yes
624 0.04 25 4 Yes
627 0.13 50 8 Yes
632 0.12 29 5 Yes
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problems with the annual overheating frequency above 10%. Additionally, all 
the selected spaces on the third and sixth floors were classified as overheated 
based on TM52 analysis, as they failed both Criterion 1 and Criterion 2. Some 
occupants in the case study building also reported overheating problems. The 
overheating problem is likely because the PHPP recommended inputs underes-
timated the heat emitted from electrical appliances and lighting. As shown in 
 Figure 11.46, the daily weighted exceedance ( We) of room 309 was found to be 
higher than the threshold specified by the TM52 method ( 6° C-  h) during the se-
mester ( i.e., November and March), likely because the in situ energy consump-
tion for electrical appliances ( with an average of 3.6 W/ m2, see  Figure 11.45a 
and c) and lighting ( with an average of 2.1 W/ m2, see  Figure 11.45e and g) was 
much higher than that considered in the PHPP ( 1.9 W/ m2 for electrical appli-
ances and 0.1 W/ m2 for lighting). The uncertainty in weather could also be a 
contributor. The maximum exceedance ( max_ΔT) of room 309 was observed 
to reach 5°C, higher than the TM52 threshold ( 4°C), on the 1st of November 
( see  Figure 11.46). In the PHPP software, the average monthly outdoor tem-
perature in November was assumed to be 17.1°C ( see  Table 11.9) and a fixed 
value ( 10°C) was applied to represent the diurnal temperature fluctuation. In 
contrast, the maximum outdoor temperature recorded on the 1st of November 
reached 34°C. The maximum outdoor temperature measured  on-  site higher 
than that simulated in the PHPP software could be the main reason contribut-
ing to the high exceedance ( ΔT) of room 309 on the 1st of November. Similar 
trends were observed in all the other selected rooms.

11.5.4.4  Recommendations to Improve the PHPP Software

The following strategies are proposed to reduce the performance gap of the 
Passivhaus case study building:

 Figure 11.46  Daily weighted exceedance ( We) and daily maximum exceedance 
( max_ ΔT) of room 309 between November 2019 and March 2020 in 
the southern hemisphere.
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• The monthly  quasi-  steady state method in the PHPP software could 
be substituted by a dynamic building simulation model. The dynamic 
simulation could consider the variation of outdoor temperature and hu-
man interaction with plug load and lighting on an hourly basis. Thus, 
it could deliver more accurate simulation outcomes than the monthly 
calculation method. Additionally, the incorporation of dynamic simu-
lation with the TM52 model could provide opportunities to better pre-
dict the overheating problems of the case building.

• A feedback loop could be integrated into the PHPP software to bring 
the predicted outcomes closer to reality. It is because the feedback 
mechanism could enable the incorporation of variations in occupant 
behavior and different building electrical appliance profiles into the 
PHPP simulation tool. The feedback loop could be used to better in-
form building design by identifying common mistaken assumptions. 
This process could be supported by various advanced methods, such as 
 low-  cost sensing techniques and  post-  occupancy evaluation.

11.5.5  Concluding Remarks

To summarize, the performance of a recently constructed Passivhaus stu-
dent accommodation in the operational stage was compared to the cor-
responding PHPP simulation in the design stage to develop an  in-  depth 
understanding of occupant behavior in large Passivhaus buildings. The 
temporal schedule of occupancy, the human interaction with electrical ap-
pliances and lighting, and thermal comfort were analyzed and discussed.

The PHPP simulation assumed that spaces were always occupied, but 
this simplification does not work well, as evident by the fluctuating occu-
pancy fraction. Discernible variation can be found between  in-  semester and 
semester breaks and between weekdays and weekends. The fluctuation of 
the occupancy fraction can be attributed to the discrepancy in occupants’ 
activities. The design prediction underestimated the use of electrical appli-
ance and lighting. The use frequency defined by the Passivhaus authority 
would have been a valid assumption for small family dwelling cases but not 
for the examined student accommodations. In addition, the occupants of 
the student accommodation may have been less  energy-  conscious with their 
appliance and lighting use since the utility expense was amalgamated into 
the fixed rent. There were also serious overheating issues that had not been 
identified in the design stage. The increased heat emission from electrical 
appliances and lighting and uncertainty in weather data contributed to the 
discrepancy in thermal comfort assessment.

Considering the limitation of the classical PH design applied in this study, 
adopting a dynamic building simulation model and feedback loop to rec-
ognize the  context-  dependent features of human behavior is suggested. 
Future  occupant-  centric building design should also consider the  energy- 
 consciousness of occupants, as it is a factor that can significantly affect 
 occupant-  building interactions and, consequently, building performance
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11.6  Case Study 5: Redwood City, USA

Andrew Sonta, Thomas Dougherty, Rishee Jain

11.6.1  Summary

This case study considers the question of leveraging information on occu-
pant behavioral patterns to optimize a commercial building’s layout in terms 
of seat assignments in an effort to save energy. The  case-  study building is 
a  three-  story commercial office building located in Redwood City, Cali-
fornia, USA, in a  warm-  summer, Mediterranean climate.  Real-  time data 
collected from one floor of the building was used to establish a correlation 
between  zone-  level lighting energy consumption and diversity in occupant 
behavior, where diversity refers to the level of differences in space use among 
occupants within a particular building zone. A  data-  driven surrogate sim-
ulation model was used to estimate lighting energy consumption as a result 
of changes to the building’s layout. Both  clustering-  based and genetic algo-
rithm optimization routines were introduced to find the layout that reduced 
lighting energy as much as possible. Through simulation, it was found that 
optimizing the building’s layout can reduce lighting energy consumption 
by 5% compared to the existing layout. This study demonstrates the ability 
to use  low-  cost ambient sensing infrastructure to reconsider the layouts of 
existing buildings based on the past behavioral patterns of its occupants.

11.6.2  Building Description

This case study building is a  three-  story commercial office building located 
in Redwood City, California (  Figure 11.47). The building is owned and op-
erated by Stanford University and largely houses university operations staff. 
The building was completed in 2019. Plug load energy sensors were installed 
at each workstation on the third floor of the building ( 164 workstations) in 
June 2019, just before occupancy began ( see sensor details in “ Plug load 
energy sensors” below).

These plug load energy sensors enabled analysis of occupancy patterns. 
Workers were each assigned their own workstation, which did not change 
over the study period. The office design can be characterized as open plan, 
with large, shared office spaces in addition to meeting rooms of various 
sizes. Generally, occupants used the spaces during standard, but flexible, 
business hours:  7h00–  19h00 Monday through Friday. Through the build-
ing management system’s application programming interface ( API), the 
energy consumption of the lighting system ( see details in “ Lighting system 
and zones” below) was also collected. The lighting system is controlled with 
infrared sensors by zone; 11 of the lighting zones service the 164 worksta-
tions in this office building. The  data-  collection period spanned August 1, 
2019 to February 29, 2020. Due to sensor outages at the beginning of data 
collection, data collected between August 1 and September 30, 2019, was 
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discarded. Data collected between December 16, 2019, and January 4, 2020, 
was also discarded due to irregularities during the university’s winter hol-
iday break. The analysis therefore included 132 full days of data. The col-
lection of highly granular occupancy data alongside lighting energy data 
enabled analysis of the relationship between occupant behavior and energy 
consumption.

11.6.2.1  Plug Load Energy Sensors

Installed at each workstation on the third floor of the building were Zooz 
SmartPlugs, which communicated using  Z-  Wave technology to a Sam-
sung SmartThings hub. A schematic of the sensing strategy is shown in 
 Figure 11.48. The sensors reported power consumption values any time the 
power consumption varied by more than 0.1 W. Consistent with previous 
work ( Sonta et al., 2018; Sonta and Jain, 2020), the power consumption was 
aggregated to  15-  minute intervals. This  15-  minute scale offered insight into 
occupant behavioral patterns while reducing noise.

11.6.2.2  Lighting System and Zones

The building is equipped with an automated lighting system that operates 
using infrared occupancy sensors, daylighting sensors, and schedules. This 
system is controlled by zone ( as shown in  Figure  11.49). The occupancy 
sensors turn on the lights in the zone if they sense any motion in the past 

 Figure 11.47  Stanford case study building.
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20 minutes ( 10 minutes on the weekends). Eleven of the lighting zones service 
all 164 workstations. There are other lighting zones that service the small, 
shared spaces of the building ( e.g., meeting rooms, break areas), but analysis 
was restricted to the zones that service workstations, as this study focused 
on how workstation space use impacts lighting energy for those spaces. This 
lighting energy data were scraped for each fixture at  one-  hour intervals.

11.6.3  Methodology

This section describes the methodology for optimizing the layouts of ex-
isting buildings by leveraging individualized occupancy data, that is, data 
ascribed to each individual occupant ( as outlined in  Figure 11.50). First, the 
time series plug load energy data at each workstation was used to model 
occupancy schedules. The methodology introduced by Sonta et  al. ( 2018) 

 Figure 11.48  Schematic of plug load sensing data collection.
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 Figure 11.49  Floorplan diagram, with open office areas shown in white, worksta-
tions and meeting rooms in blue, and the ten lighting zones servicing 
workstations in red.
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was leveraged to abstract the raw time series data into activity states, which 
describe patterns of space use and individual schedules. A distance metric, 
referred to as zone diversity, was introduced to describe the level of differ-
ences among the occupants’ schedules within each lighting zone. This met-
ric allowed the characterization of the relationship between zone diversity 
and empirical energy data, which has been theorized in the literature to be 
a positive relationship ( Yang et  al., 2016). Given this theoretical relation-
ship, two optimization routines were developed to rearrange the occupants’ 
seat assignments. One optimization spatially clustered occupants in a man-
ner that reduced zone diversity. The other, a genetic algorithm, leveraged a 
 data-  driven surrogate model for simulating energy consumption based on 
the layout. This surrogate model used both the occupant layout and the in-
dividualized occupant behavior data to estimate the energy consumption of 
the building’s lighting system.

11.6.3.1  Individualized Occupant Schedules from  
Plug Load Energy Data

This section briefly describes the process for abstracting data streams from 
plug load monitoring devices into individualized occupant schedules. The 
key insight that enabled this process was that time series plug load energy 
signatures provide information about how occupants are interacting with 
their workstations. For example, higher energy consumption indicates that 
occupants are interacting with the electronic equipment at their worksta-
tions and are therefore likely to be actively using their workspaces. Lower 
energy consumption indicates that occupants have stopped interacting with 
this equipment and are likely away from their workstations. In this case 
study, the time series plug load data was defined as Xi, d, where i is the oc-
cupant index and d is the day index. Each entry in Xi, d is a vector {x1,..., 
xT} where T is the number of time steps during the day ( here, T = 96). The 
method described in detail in Sonta et al. ( 2018) was used to map this raw 
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(Section 2.1)
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(Section 2.2)

Layout optimization
(Sections 2.3 & 2.4)

Energy simulation
(Section 2.5)
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 Figure 11.50  Methodology overview: Occupant schedules were used to measure 
zone diversity, which enabled layout optimization. Energy simulation 
was used to estimate the impact of layout optimization.
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data onto the abstracted occupant schedules: Xi, d → Si, d. This mapping 
leveraged a variational Bayesian Gaussian Mixture Model to cluster the 
raw time series data into discrete states. As in Sonta et al. ( 2018), a  two- 
 step process was used, whereby the data for each occupant for each day was 
first clustered into two components, effectively clustering out the  low-  energy 
data ( data near 0 W). The higher energy data was then clustered again, as 
this data generally maintains higher variability. As in past work, the higher 
energy data was clustered into two further components, giving three com-
ponents in total: low energy, medium energy, and high energy ( X → S, where 
si d

t { }⋅ ∈⋅ 1,2,3,  ). Hereafter, these time series of clustered states are referred to 
as occupant schedules.

11.6.3.2  Zone Diversity

Given these individualized occupant schedules, a method was adapted from 
the building operation literature for characterizing the similarities and dif-
ferences in the behavioral patterns of all occupants within a zone. These 
similarities and differences are referred to as zone diversity, with a higher 
zone diversity indicating a greater level of differences in behavior. Based 
on the work of Yang et  al. ( 2016), this diversity metric was computed as 
the Euclidean distance among all vectors containing the occupant sched-
ule data. It should be noted that other distance metrics could have been 
used ( e.g., Manhattan distance, cosine similarity), but it was found that the 
specific distance metric did not have a meaningful impact on the analysis. 
With the schedule data defined as Si, t, where i is the occupant index and t 
an arbitrary time index, the distance between any two occupants i and j was 
computed via Equation ( 11.7):

S S∑ )(= −
=

, 

0

,  , 
2

di j

t

T

i t j t  ( 11.7)

The distances between all pairs of occupants were computed within each 
zone, which formed a distance matrix. This matrix was normalized by the 
total number of entries ( excluding the diagonals, because the distance be-
tween occupants and themselves is 0). This normalized value is the overall 
zone diversity. Then, zone diversity computed over the course of a single day 
( i.e., T = 96) was compared to the energy consumption of the lighting system 
summed over a single day.

11.6.3.3  Optimizing Layouts: Naïve Clustering

The zone diversity metric quantifies the level of differences in occupant 
dynamics within each building zone. Given that higher zone diversity can 
be expected to cause more energy consumption, a clustering algorithm was 
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developed to change the occupant layout in an effort to reduce the diversity. 
A challenge in working with time series data is that the dimension of the 
vectors used for the distance calculation can grow quickly ( e.g., 35,000 sig-
nals per year per occupant in our case). Distance metrics are known to be 
costly to compute and to potentially lose meaning when applied to data of 
such high  dimensionality—  often referred to as the curse of dimensionality. 
Therefore, singular value decomposition ( SVD) was used in this study to 
reduce the dimensionality of the occupancy data without losing valuable in-
formation. SVD was applied to the occupant schedule data matrix S, which 
has dimension I D T× ⋅ . The user can choose the number of dimensions d 
retained, up to I ( in this case, 151), so that the resulting matrix is ×I d  with 

≤d I . It should be noted that the zone diversity metric can be computed for 
either the unreduced data or the reduced data.

The data in S ( reduced or otherwise) can then be used to cluster occu-
pants. The next paragraphs describe the stochastic optimization routine 
used in this study for reducing zone diversity based on past occupancy data. 
This particular clustering problem had the  real-  world constraint that each 
building zone had a predefined size ( i.e., number of workstations). There-
fore, the resulting cluster sizes needed to match the sizes of the zones, which 
prevented the use of standard clustering algorithms such as k-  means. The 
clustering algorithm simulated occupant “ swaps”, whereby two individuals 
swap locations, and then the resulting zone diversity was calculated.

 Figure 11.51 outlines the algorithm. First, a random occupant, with re-
placement, was selected. Then, the effect on overall zone diversity across all 
building zones was simulated when the selected occupant was swapped with 
all other occupants in the building. The swap that produced the largest re-
duction in overall zone diversity was completed. This swap could include the 
null action of swapping the occupant with itself. The process was repeated 
by manually setting an iteration limit, beyond which no further improve-
ment in overall zone diversity was seen. It should be noted that this stopping 
criterion could be automated if desired.

Compute zone 
diversity for all 
possible swaps

Choose random 
occupant

Complete switch 
with largest 

diversity reduction

Repeat until 
iteration limit is 

reached

Zone Desk

 Figure 11.51  Occupant clustering algorithm.
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11.6.3.4  Optimizing Layouts: Genetic Algorithm

The spatial optimization problem considered in this case study has an ex-
tremely large solution space. In an effort to fully explore the solution space 
and gain confidence in our clustering approach, an optimization routine that 
made direct use of our expected energy outcomes was also implemented. 
The clustering approach was designed to reduce zone diversity efficiently, 
but it does not explicitly consider energy consumption of building systems. 
It assumes that reducing zone diversity will have the effect of reducing en-
ergy consumption because these two concepts are hypothesized to be re-
lated. However, in this study, to optimize explicitly for energy, a simulation 
engine was required for predicting energy as new layouts are produced. The 
genetic algorithm optimization approach used to explicitly optimize for en-
ergy reduction is described here, and the  data-  driven surrogate simulation 
model is described in the following subsection.

Genetic algorithms belong to a class of evolutionary optimization algo-
rithms originally inspired by the process of natural selection. They make use 
of a fitness function, which in our case study was expected energy consump-
tion. This study’s genetic algorithm routine started with a set of random 
design points x—  in this case, occupant  layouts—  in an initial population 
P. The energy consumption of each design point was evaluated, and the B 
best performing designs were chosen as well as R random designs in order 
to maintain diversity. A key step in genetic algorithms is the recombination 
of selected designs in order to produce a new generation of designs based on 
the previous generation. For a pair of selected designs, this recombination 
was done c times. The first step is crossover, whereby a random selection of 
the two occupants in the two “ parent” designs was selected for each desk 
location. The next step in recombination is mutation, which occurred with 
probability m. If mutation did occur, a random occupant in each zone was 
swapped with a random occupant in another random zone. This recombina-
tion was repeated until a new generation was formed. This overall process 
repeated G times.  Figure 11.52 represents the algorithm and a visual sum-
mary of the crossover and mutation steps.

11.6.3.5   Data-  Driven Surrogate Energy Simulation Model

To evaluate the impact of the occupant layout on energy consumption, a 
simulation engine that considers the key features of occupant layout and 
historical occupant schedule data was implemented. There are two major 
categories of building energy simulation:  physics-  based thermodynamic 
models ( e.g., EnergyPlus), and  data-  driven “ surrogate” models. Thermody-
namic models can be particularly helpful when modeling heat flows, such 
as in the case of HVAC systems. However, these models are also quite com-
plex and can be prohibitively  time-  intensive when evaluating many different 
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alternatives.  Data-  driven simulation models are growing in popularity for a 
variety of tasks and significantly reduce the time cost of prediction.

Because the present case study considers the lighting system, which is 
controlled through simple on/ off sensors, a  data-  driven surrogate model 
was chosen for simulation. This surrogate modeling approach amounted to 
a machine learning problem that considered the study’s key features ( layout 
and schedules) to predict lighting energy consumption. We tested several 
 models—  multiple linear regression ( MLR), support vector regression 
( SVR), random forests ( RF), and artificial neural networks ( ANN)—  to de-
termine the most robust model for the study’s purpose. Each of these models 
has been applied to energy prediction tasks in the past ( Ekici and Aksoy, 
2009; Jain et al., 2014; Ahmad et al., 2017; Wang et al., 2018). Key aspects of 
the surrogate modeling tests are listed below.

• Features: Seven specific features for this prediction task were identified:
• s1, s2, s3: the occupant energy states as described above, for each oc-

cupant in each zone.
• Hour of day (  0–  23)

x

 Figure 11.52  Genetic algorithm adapted for building layout optimization.
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• Day of week (  0–  6)
• Weekend/ weekday indicator ( 0 or 1)
• Zone number (  0–  number of zones)

It should be noted that the inclusion of both the day or week fea-
ture and the weekend/ weekday feature can introduce multicollinearity. 
While this may reduce confidence when conducting hypothesis testing, 
it does not negatively impact the power of the machine learning algo-
rithms. For the  non-    tree-  based models ( i.e., MLR, SVR, and ANN), 
the day of week and zone number features were  one-  hot encoded. For 
these models, the  hour-    of-  day feature was also transformed using sine 
and cosine transformations to preserve cyclicity. Lastly, the state count 
features were transformed using a sigmoid function, as there are dimin-
ishing returns to having increasing occupants in each state. All features 
were scaled to fall between 0 and 1. These transformations are not re-
quired for the RF model, as the decisions on the trees in the model are 
invariant to this scaling.

• Training and testing: The data was split into a training set and a test set, 
using fivefold cross validation on the training test for model develop-
ment. The training/ test split was 80%–  20%, and the choice was made to 
preserve the  time-  series order in this split so that the  time-  series nature 
of the predictions could be visualized.

• Hyperparameter tuning: For the  high-  performing models, any hyper-
parameters were tuned using fivefold cross validation on the training 
set. The specific hyperparameters for the  high-  performing models are 
discussed in “  Data-  driven prediction of energy consumption” below.

With this surrogate modeling approach defined and the layout optimization 
routines discussed above,  simulation-  based results from layout optimiza-
tion can be analyzed.

11.6.4  Results and Discussion

This section describes the key results from the case study analysis and dis-
cusses their significance for  occupant-  centric design. The results are broken 
down into three sections: ( 1) analysis of zone diversity and energy consump-
tion, ( 2)  data-  driven surrogate model performance, and ( 3) analysis of occu-
pant layout optimization.

11.6.4.1  Energy Consumption versus Zone Diversity

A regression analysis was completed between the lighting energy consump-
tion and the zone diversity metric. The analysis involved each of the 11 zones 
using energy and diversity data aggregated by day over the  data-  collection 
period. Zone diversity was computed using the Euclidean distance of the 
 96-  dimensional vectors for each zone for each day, and the average lighting 
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consumption was computed across lighting fixtures within each zone. The 
regression analysis found that there exists a positive relationship between 
energy consumption and zone diversity for each zone, with the p-  values for 
the t-  statistics being significant at the 0.001 level for all zones.  Figure 11.53 
shows the data along with the regression lines for ( a) all zones, ( b) the zone 
with the strongest relationship in terms of the regression coefficient ( zone 7), 
and ( c) the zone with the weakest relationship ( zone 10).

This result suggests that reducing zone diversity would be a means to re-
duce the energy consumption of the lighting system. The following sections 
present the results for simulating energy consumption based on occupant 
schedules as well as optimizing building layouts in order to reduce this en-
ergy consumption.

11.6.4.2   Data-  Driven Prediction of Energy Consumption

The four models described above ( MLR, SVR, RF, and ANN) were tested 
using the fivefold  cross-  validation methodology.  Table 11.12 shows the per-
formance of each model, as estimated through cross validation, using stand-
ard metrics, as well as the time required for both training and prediction 
in this case. The RF model performed the best in terms of MAE, while 
the ANN performed the best in terms of MSE and R2. Therefore, these 
two models were chosen for hyperparameter tuning. Again, fivefold cross 

 Figure 11.53  Relationship between zone diversity metric and energy consumption 
along with regression fits and confidence intervals for ( a) all  zones— 
 with colors representing different zones, ( b) zone with the largest re-
gression coefficient ( zone 7), and ( c) zone with the smallest regression 
coefficient ( zone 10).
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validation was performed, and these parameters were tuned using a grid 
search. The final parameters for each model were as follows:

• ANN: single hidden layer of size 100, tanh activation function, Adam 
solver, learning rate of 0.01.

• RF: 200 trees, minimum split size of 50, minimum samples per leaf of 2, 
maximum depth of 300, bootstrap used in model training.

Model performance after training is shown in  Table 11.13. The RF model 
outperformed the ANN model after hyperparameter tuning. In addition to 
calculating R2 for hourly lighting energy prediction values, the data by day 
was also aggregated and the R2 for these daily values computed. Prediction 
improved for both models, especially the RF model, after this aggregation.

 Figure 11.54 shows the actual vs. predicted energy consumption ( using the 
tuned RF model) for the first seven days in the test set for zone 1. The model, 
while not perfect, accurately captured the major jumps between low energy 
and high energy consumption. One of the benefits of the RF model is that 

Table 11.12 Energy prediction model results on fivefold cross-  validation

Model
Mean 
absolute error 
( MAE)

Mean 
squared error 
( MSE)

Explained 
variance 
( R2)

Time for 
training 
( s)

Time for 
prediction 
( s)

Multiple linear 
regression

9.55 141 0.534  0.0311 0.00198

Support vector 
regression

7.13 118 0.614 30.9 4.38

Random forest 
regression

6.11  98.2 0.678  2.82 0.0983

Artificial neural 
network

6.29  88.7 0.710 54.8 0.0105

Table 11.13  Energy prediction model results after hyperparameter tuning on both 
fivefold cross-  validation and final test set

Model Errors on CV Errors on test set

Mean 
absolute 
error 
( MAE)

Mean 
squared 
error 
( MSE)

Explained 
variance 
( R2)

Explained 
variance 
( R2)
Hourly

Explained 
variance 
( R2)
Daily

Tuned random forest 
regression

6.27 87.1 0.715 0.740 0.834

Tuned artificial neural 
network

6.28 88.5 0.710 0.734 0.817
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it is quite interpretable in that the importance of each feature in the model 
can be quantified. The feature importance was calculated using the Gini 
importance metric, which can be interpreted as the relative number of times 
tree decisions involved a particular metric ( see  Figure 11.55). The number 
of occupants in state 3, the  high-  energy state, was the second most impor-
tant feature. This finding may explain why the jumps between high and low 
energy consumption were accurately captured in the simulation model: the 
presence of occupants causes the lights to turn on, and this was accurately 
captured in the model.

11.6.4.3  Occupant Layout Optimization

The surrogate simulation model was leveraged to estimate the energy con-
sumption of the lighting system for the existing occupant layout using the full 

 Figure 11.54  Example predicted ( using tuned RF model) versus actual energy con-
sumption data for the first seven days of data in the test set for zone 1.

 Figure 11.55  Feature importance for the final tuned random forest regression model.
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132 days of data, which serves as a baseline. One hundred random occupant 
layouts were also produced and energy consumption was estimated again. 
Then, the  clustering-  based algorithm was applied using increasing dimen-
sionality ( 3, 5, 10, 100, 151, and full dimensionality without reduction). The 
genetic algorithm was also implemented, which explicitly used the surrogate 
model in its optimization. For each optimization option, the algorithm was 
executed 100 times to produce 100 layouts, and the expected energy con-
sumption was simulated for each. The results are shown in  Figure 11.56. The 
 100-  dimension clustering,  151-  dimension clustering,  full-  dimension cluster-
ing, and the genetic algorithm all performed very similarly, resulting in a 
5% reduction in expected energy compared to the existing layout and a 6% 
reduction compared to random layouts. An important result to highlight is 
that the  distance-  based clustering algorithm performed about the same as 
the genetic algorithm, which suggests that  high-  performance layouts can be 
generated without designing an optimization routine that explicitly consid-
ers energy consumption.

It is interesting to note that the random layouts performed slightly worse 
than the existing layout. There are many possible explanations for this. One 
likely explanation is that people tend to align their behavior to those around 
them, as documented in previous work ( Chartrand and Bargh, 1999). In 
other words, individuals’ actions could be influenced by what they see 
their physical neighbors doing. For example, a particular occupant might 
be inspired to take a coffee break when they see their neighbor doing so 
instead of going at a random time, which would have the effect of reduc-
ing the zone diversity metric. This possibility has notable implications for 
the interpretation of this study’s results because the results were based on 
the assumption that occupants’ behavior would not change when their seat 
assignments changed. While this possibility is unlikely to be completely 

 Figure 11.56  Simulated energy consumption ( expressed as % change from the exist-
ing layout) for random and optimized building layouts.
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true ( and is therefore a limitation of this study’s approach), an important 
question is what the direction of the impact would be if individuals did in 
fact change their behavior. If occupants tend to assimilate their behavior to 
those around them, as this study’s random versus existing results suggested, 
then it is quite possible that given new layouts, people will again assimilate 
to those around them, and thus an even further reduction in energy con-
sumption might be expected. It is also possible that people would change 
their behavior after reassignment in other ways. Therefore, future work is 
recommended to test the empirical effects of true layout changes in office 
buildings.

11.6.5  Concluding Remarks

This case study demonstrated how capturing data on individualized occu-
pant dynamics within existing buildings can be helpful for improving spatial 
design throughout the building’s use phase. Using ambient plug load energy 
sensors at the desk level, individual schedules of behavior were captured. 
Higher diversity ( i.e., more differences) in behavior within individual light-
ing zones correlated with higher energy consumption of the zone’s lighting 
system. Two novel optimization methods were applied: ( 1) a naïve cluster-
ing approach that used only the occupant schedule data, and ( 2) a genetic  
algorithm that actively made use of a  data-  driven energy simulation engine. 
For this surrogate model, a random forest model was able to accurately 
predict the lighting system’s energy consumption. Both spatial optimiza-
tion routines could reduce lighting energy consumption by 5% compared to 
the existing layout and 6% compared to a random layout. Overall, this case 
study demonstrated the added value of reconsidering commercial buildings’ 
spatial designs after occupancy has begun. This approach offers new oppor-
tunities for achieving sustainable energy targets in existing buildings and 
ensuring that buildings perform well throughout their life cycle.

11.7  Case Study 6: Niederanven, Luxembourg

Ghadeer Derbas, Karsten Voss, Tugcin Kirant Mitic

11.7.1  Summary

This case study presents the methodology and key findings of a field study 
conducted on a  mid-  rise office building located in Niederanven, Luxem-
bourg. The study focused on the building’s automated shading system 
activation and the interaction between occupants and the shading system 
with the aim of identifying  occupant-  centric rules for optimal shading de-
sign solutions. The study included a design investigation, data monitoring 
statistical analysis, a questionnaire, and a  simulation-  based analysis. The 
design investigation included an interview with the building designer to 
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better understand the shading system design characteristics and selection 
criteria. The data monitoring was performed under summer conditions in 
2019, and the questionnaire was conducted in 2021 under similar conditions. 
Finally, the  simulation-  based analysis evaluated the daylighting and energy 
performance of the shade control strategy.

Contrary to expectations and previous studies’ findings ( Reinhart and 
Voss, 2003, Meerbeek et  al., 2014), the present study found relatively few 
interactions between the occupants and the shading system, though more 
interactions occurred when the occupant was located closer to the button 
for manual shade adjustment. Building orientation, social constraints, 
and time of day were found to influence the manual activation of shad-
ing systems. The statistical analysis of the monitoring data showed the low 
performance of a regression model and the superior performance of data 
mining techniques. The main takeaways from this study for designers and 
researchers include: ( 1) the use of internal/ external shading systems can lead 
to optimal results ( i.e., fewer override actions), ( 2) the definition of control 
thresholds is essential, and ( 3) the deployment of lighting sensors is benefi-
cial. On the operation level, simple and robust shade control strategies are 
recommended.

11.7.2  Building Description

The case study building was the new Headquarters Goblet Lavandier, a  five- 
 story office building located in Niederanven, Luxembourg. The building 
received DGNB ( Deutsche Gesellschaft für Nachhaltiges Bauen) Platinum 
certification in 2018. The building is located in a temperate oceanic climate 
( Cfb) with a mild marine winter and warm summer with no dry season. The 
building is a quadrilateral concrete structure ( 25 m × 25 m) with a galva-
nized metal sheet façade ( see  Figure 11.57). It consists of three underground 
parking floors, a ground floor, and four upper floors ( the fourth floor is 
rented). The building core includes circulation and washrooms and creates 
a naturally daylit office zone and passive night cooling. The moderate use 
of transparent surfaces ( fenestration) in combination with external Venetian 
blind and inner textile screen play a central role in the energy efficiency and 
daylight concepts of the building design.  Table 11.14 provides further details 
about the building.

11.7.2.1  Monitored Offices

 Forty-  seven offices were monitored over 66 working days from June to  mid- 
 September 2019. The majority of the offices are located along the quadrilat-
eral perimeter facing one of the four cardinal directions ( see  Figure 11.58). 
The offices are situated on three floor levels and are occupied by an aver-
age of two to six workers per office ( see  Figure 11.59). The offices’ windows 
are the same in width and height. Each window is equipped with a double 
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 Figure 11.57  Perspective view of Luxembourg building, Christian Bauer & Associés 
Architects.

Source: Jürgen Leick from Goblet Lavadier.

shading system with an external Venetian blind ( type Warema E80) and an 
inner textile screen operated manually to avoid glare discomfort.

11.7.2.2  Configuration of Automated Shading System

The automated external blinds combined with inner glare protection are a 
reflection of design considerations such as more individual workplace con-
trol and passive solar gains in winter. Due to the extra cost, this “ double 
system approach” ( see  Figure 11.60) is not common. The designer was inter-
viewed and the design briefs and architectural documents were investigated 
 in-  depth in order to define the design characteristics and selection criteria of 
the shading systems ( more details in “ Design Investigation” below).

The shading control strategy was developed based on the designer’s ex-
perience. The external shading system is operated automatically based 
on light and temperature control thresholds. Occupants can override the 
blind position and tilt the slat angle to different positions ( horizontal slat 
equal to 0°, 60°, and 80°). Any manual interventions disable the automated 
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 Figure 11.58  Typical offices plan view ( Goblet Lavandier & Associés Navigation).

Table 11.14 Luxembourg building general characteristics ( Lichtmess, 2018)

Item Description

Net floor area ( NFA) 2,600 m2

 Area-    to-  volume ratio 0.31 m–  1

 Window-    to-  wall ratio ( WWR) 43% per façade
No. of employees in offices 138 employees (  30–  40 employees during the 

 COVID-  19 pandemic, July and August 2020)
Year of completion 2018
Thermal insulation  U-  walls: 0.13 W/ m2 K,  U-  roof: 0.13 W/ m2 K,  U- 

 floor: 0.17 W/ m2 K
Windows  U-  value: 0.75 W/ m2 K,  g-  value ( SHGC): 0.49, 

color rendering: 96%
Ventilation 11,000 m³/ h total air volume control depending 

on CO2 concentration, individual air volume 
control in meeting rooms.

Highly efficient heat recovery 80.8%
Shading systems • External Venetian blind ( upper threshold if 

irradiance on the façade exceeds 400 W/ m2, 
lower threshold 250 W/ m2),  g-  tot = 0.07

• Inner textile screen ( Ts = 8%, Rs = 12%,  
As = 80%)

Cooling system • Passive night cooling to cover 20% of the 
cooling energy demand

• Passive ground cooling to cover 80% of the 
rest of the cooling demand

• A heat pump can be switched on only in hot 
weather

Heating system Geothermal heat pump with an array of 
vertical probes ( i.e., liquid-  filled tubes 
installed in the drilled hole)

Electricity demand and 
generation 

23.7 kWh/( m² a), PV = 14.5 kWh/( m² a)
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system until it resets at 11h00 and 15h00. The KNX Elsner sensor controls 
the blinds in each facade. The blinds are automatically raised ( closed) when 
wind speed exceeds 12 m/ s. The blinds are lowered when the irradiance on 
the façade exceeds 120 W/ m2, and the outdoor temperature is above 5°C 
without any delay time. When the irradiance is below 50 W/ m2, the blinds 
are retracted after 60 minutes. During the operation phase, the established 
thresholds were modified. The lowering threshold is set up to 250 W/ m2 with 
a horizontal slat position to maximize the view to the outside. When the 
irradiance exceeds 400 W/ m2, the slat angle inclines up to 15° instead of 80° 
to provide sufficient daylight. Thresholds values can also be increased ( e.g., 
a temporary cloudy sky) for less disruptive blind movements.

11.7.3  Methodology

 Figure 11.61 outlines the methodology of the study. This study began with 
a design investigation via a written interview with the designer who was in-
volved during the design and operation phase of the shading systems. Then, 

Monitored
offices

 Figure 11.59  Section view of the building, where shaded areas indicate monitored 
offices ( Goblet Lavandier & Associés Navigation).
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(a)

(b)

 Figure 11.60  The double shading system approach. Left: Interior view. Right: Sec-
tion view.

Source: Jürgen MÜLLER, https:// www.golav.lu/.
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 Figure 11.61  Methodology of the study.

a  post-  occupancy evaluation ( POE) was performed using data monitoring 
and data collection ( via a  web-  based questionnaire) to explore occupants’ 
interaction, satisfaction, and preferences regarding the shading systems. 
Finally, a  simulation-  based analysis was performed. Each of these steps is 
presented and described in the sections that follow.

http://www.golav.lu
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11.7.3.1  Design Investigation

A written, structured interview with the building’s designer was conducted 
via email to explore if any of the questions below were considered during 
the shading system design. To streamline the interview, potential responses 
were provided for many of the questions ( in brackets below).

a Which solar shading scenarios were proposed before the final shading de-
sign selection? ( Internal roller shades, fixed, dynamic, vertical, complex, 
combined).

b Which selection criteria were considered during the shading design? 
( Environmental and climatic parameters, energy concern, aesthetics, 
safety, privacy, cost, user comfort, codes, etc.).

c What was the basis for the selection of shading control strategy? ( Codes, 
guidelines, literature, design brief, designer experience).

d Which occupant assumptions were considered during the shading design? 
( Number of occupants, demographic, occupancy, work activities, pref-
erences, etc.).

e Did the simulation specialist consider any  simulation-  based evaluation 
for the selection of the optimal shading design? If yes, which metrics were 
used?

f Was there any cooperation between stakeholders ( designer, client, energy 
modeler, etc.) with regard to shading selection and design?

The designer’s feedback provided clarity on the shading system design pro-
cess and selection criteria and a better understanding of the quantitative 
findings of the monitoring study and the questionnaire analysis.

11.7.3.2  Data Monitoring

Monitored datasets were extracted from the building’s  KNX-  based building 
management system ( BMS). Data preprocessing was performed on the raw 
datasets, including cleaning, removing outliers, interpolation, and normali-
zation ( rescale a variable to have a value between 0 and 1).

The monitored weather parameters included global irradiance ( Igl, W/ m2),  
outdoor vertical illuminance ( Eout, lux), air temperature ( Tout, °C), solar 
azimuth, and altitude. The outdoor parameters were measured using a 
weather station mounted on the rooftop of the building. Indoor parame-
ters included air temperature ( Tin, °C), relative humidity ( RH%), and CO2 
concentration ( ppm). The indoor parameters were measured with Netatmo 
data loggers distributed in 11 workspaces throughout the building. Shading 
 system-  triggered actions and  user-  triggered actions were recorded as  event- 
 based measurements. The external Venetian blind  position—  activated by 
the automated  system—  was expressed as 0% fully open and 100% fully 
closed. The datasets were resampled every five minutes using an Excel tool 
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( i.e., HisKNX_V1_2_17_BETA.xlsb, developed by Jürgen Leick from Gob-
let Lavadier) to unify intervals. For analysis purposes, the range of data was 
limited to daytime work hours, between 6h00 and 20h00.

The study analyzed two shade deployment datasets using statistical anal-
ysis methods: ( 1)  system-  triggered datasets and ( 2)  occupant-  triggered da-
tasets. The preliminary behavioral patterns were analyzed in terms of the 
“ rate of change” of blind use. The “ rate of change” was defined as the num-
ber of  user-  shade override adjustments ( UOAs) per day per office. Logistic 
regression was applied to the given datasets to identify associations between 
the physical measurements and  user-  shade interactions and predict the like-
lihood of UOAs. Alternatively, clustering analysis and association rules 
mining ( ARM) were used on the given dataset to allow more accurate as-
sumptions on complex and diverse behavior in big office buildings. Cluster-
ing analysis was used to obtain distinct behavioral patterns using K-  means 
algorithm. The frequent pattern growth algorithm ( FP growth) was em-
ployed to mine the association rules. Both regression and clustering analysis 
were performed in IBM SPSS ( version 21.0) software, while Rapid Minor, 
an  open-  source data mining program, was used for the ARM analysis.

11.7.3.3  Questionnaire

A  cross-  sectional  web-  based questionnaire using LimeSurvey was distrib-
uted to the building’s occupants to examine subtle and  non-  physical trig-
gers behind blind adjustments and better understand the findings of the 
monitored datasets. The questionnaire was distributed in the summer of 
2021 to ensure that occupants had experienced the same thermal and visual 
conditions as those studied during the monitoring period. The question-
naire was distributed via email to the building’s occupants on July 30, 2021, 
and followed by a reminder three weeks later. The questionnaire included 
questions about participants’ demographic details, mood, work activity, 
contextual environment ( e.g., window orientation, size, location), thermal 
and visual discomfort, and interaction with the shading systems, and their 
satisfaction and preferences regarding shading system performance. A total 
of 32 participants ( 25% of the population) working in  single-  occupancy of-
fices completed the questionnaire. Employees who were working from home 
due to the  COVID-  19 pandemic were excluded from the population sample.

11.7.3.4   Simulation-  based Analysis

Daylighting and energy performance of the automated shading control 
strategy was evaluated using a  simulation-  based analysis using IDA Indoor 
Climate and Energy ( IDA ICE) software. Annual heating, cooling, and 
lighting demand ( kWh/ m2) were calculated under five shading control strat-
egies, including low ( S01: irradiance on the façade exceeded 100 W/ m2), and 
high ( S03: irradiance exceeded 450 W/ m2), S02 was the established design 
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lowering threshold ( irradiance exceeded 250 W/ m2), S04 ( fully closed) and 
S05 ( fully open) were added to the analysis for benchmarking. Useful day-
light illuminance ( UDI) was used for the daylighting performance assess-
ment. Achieved UDI% is defined as the annual occurrence of illuminances 
across the work plane where the illuminance is within the range of  300– 
 3,000 lux ( Nabil and Mardaljevic, 2005).

11.7.4  Results and Discussion

The main findings of the study are presented and discussed in the following 
sections.

11.7.4.1  Design Investigation

According to the designer’s interview responses, the external and internal 
shading systems were proposed from the early stages of the building design. 
The design of the systems was based on different environmental and cli-
matic parameters, thermal and visual comfort, energy concerns, aesthetics, 
safety and maintenance, budget restrictions, and building codes and stand-
ards. A  simulation-  based analysis had been conducted by the designer to 
find the optimal shading control strategy in terms of thermal and visual 
comfort as well as energy performance. However, according to the designer, 
occupant assumptions were not considered in their analysis.

The designer indicated that the intention of the shading design was to 
maximize users’ satisfaction and comfort in their workspaces, which aligns 
with the notion of  occupant-  centric design, that is, placing occupants and 
their  well-  being as a top priority throughout the building life cycle. The de-
signer’s details about the shading design were helpful in better understand-
ing the quantitative results of the monitoring and questionnaire analysis, 
described below.

11.7.4.2  Data Monitoring

Shade patterns are explored in terms of  system-   and  user-  triggered actions 
to differentiate their behavior regarding office orientation and shade control 
strategies.

11.7.4.2.1  SYSTEM BEHAVIOR

A total of 576  system-  triggered actions ( 287 fully raising actions and 289 
fully lowering actions) were  recorded—  an average of 8.72 blind changes per 
day.  Figure 11.62 shows that the highest frequency of  system-  triggered ac-
tions was in  west-  facing offices, while the lowest was in  east-  facing offices. In 
contrast, the highest frequency of UOAs was in the  east-  facing offices, while 
the lowest was in the  west-  facing offices. The high rate of  system-  triggered 
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actions in the west and south elevations can be explained by ( a) the average 
daily high irradiance on the facade ( above 400 W/ m2) and ( b) the users ( i.e., 
occupants) occasionally correcting the system.

11.7.4.2.2  USER BEHAVIOR

A total of 1,148 blind position changes were recorded over the 66 working 
days in the 47 monitored offices. The users triggered approximately 49% 
of the blind movements ( fully and intermediate), 274 lowering actions, and 
298 raising actions. The average daily rate of blind use was 0.184 per office. 
 Figure 11.63a shows that the highest rate of UOAs was in the east elevation, 
where an average of 3.93 adjustments per day occurred. Fewer interactions 
were observed in the west and north elevations compared to the east and 
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 Figure 11.62  Relative frequency of  system-   and  user-  triggered actions for each 
façade.
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 Figure 11.63  Relative frequency of UOAs in terms of ( a) office orientation and ( b) 
occupancy level.
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south. This result can be explained by the significant variations of global 
irradiance and indoor work plane illuminance in offices in different eleva-
tions. To reduce the visual discomfort and  blind-  triggered actions in the 
east and south elevations, smaller window size and fixed shading could 
be adapted in the building envelope design, as suggested by O’Brien and 
Gunay’s ( 2015) robust design strategies.

 Figure 11.63b shows a higher frequency of UOAs observed in shared of-
fices, with an average of 0.19 changes per day per office compared to  single- 
 occupancy and  open-  plan offices. Most of the shared offices are located in 
 north-  east elevation close to a nearby building. This result is not in agree-
ment with O’Brien et al. ( 2013), who found that, due to social pressure and 
constraints, occupants tend to be more reluctant to control their environ-
ment if others are present.

 Figure  11.64 shows that the shades in the east and south facades were 
adjusted more frequently in the morning than during the rest of the day, 
while the opposite occurred in  west-  facing offices. This result is in line with 
previous studies ( Inoue et al., 1988; Haldi and Robinson, 2010b) that found 
that occupants interact more with blinds immediately upon arrival to the 
space. In  north-  facing offices, occupants tended to raise the blinds all day 
and in the evening.

Overall, the daily rate of change of UOAs was relatively low compared to 
the findings of previous studies. For comparison, Reinhart and Voss ( 2003) 
reported a mean of 3.7 blind movements per day per office over 174 weekdays 
in 10  south-  facing offices, which is 20 times the present study’s findings. In 
another study by Meerbeek et al. ( 2014), an average of 0.86 blind adjustments 
per day per office were recorded over 100 working days in 40 offices, which 
is five times this study’s findings. Considering these studies were conducted 
in temperate climate zones same as the present case study, the difference in 
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findings may be explained by the case study building having both ( a) appro-
priate and acceptable shade control thresholds and  high-  quality light sensor 
performance, and ( b) additional inner glare protection, which requires less 
effort to prevent glare. Additionally, the daily profile of CO2 concentration 
was analyzed in nine offices in the case study building to estimate occupancy 
presence; based on the results, the offices were occupied approximately 97% 
of the study period. Thus, the low rate of blind use is unlikely to be related to 
occupant absence. Instead, the findings suggest that the automation system 
performance met occupants’ preferences and expectations.

11.7.4.3  Regression Analysis

The initial aim of the present study was to derive occupant behavior models, 
as a high rate of shades adjustments was expected based on previous studies 
( Reinhart and Voss, 2003, Meerbeek et al., 2014). Thermal and visual stim-
uli were identified by earlier research as influencing blind use ( Haldi and 
Robinson, 2010a; Mahdavi et al., 2008). Accordingly, this study used logistic 
regression to predict the probability of UOAs as a function of several ex-
planatory variables:
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where tan_d is the tan of solar profile angle, AOV% is the average occlu-
sion value of the blind ( 0% fully open and 100% fully closed), θslat angle is 
the slat angle degree ( 0°, 60°, 80°), β0 is the intercept, and βn is the variable 
coefficient.

Separate analyses were conducted to predict the probability of UOAs 
( lowering and raising actions) for each façade ( E, S, N, W), including eight 
 sub-  models. The forward regression method was used to select the explan-
atory variables that have a statistically significant influence on the value of 
the dependent variable (  p-  value < 0.05). Further details about the statistical 
analysis process are available in Derbas and Voss ( 2021).

The regression results had a considerably low Nag. R squared ( in other 
words, the proportion of the variance for a dependent variable was close to 
zero) of all  sub-  models for shade lowering and raising actions. Moreover, a 
weak relationship between the model predictions and the physical parame-
ters was found. The developed  sub-  models were all incapable of predicting 
UOAs. The limitations of the monitored parameters such as indoor work 
plane illuminance and glare probabilities, which are the primary triggers 
behind blind use, may explain why the models could not accurately explain 
the actions. Based on these results, it can be concluded that in this case, 
this commonly used modeling approach was not successful for explaining 
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occupant behavior. This limitation justified an alternative approach for 
analyzing the observed patterns, as discussed in the next section.

11.7.4.4  Data mining Analysis

Data mining techniques, including clustering analysis and association rules 
mining, were considered an alternative methodology to provide more accu-
rate assumptions of complex and diverse individual behavior in big office 
buildings and overcome the limitations of the regression models. The results 
of the two techniques are described in turn below.

11.7.4.4.1  CLUSTERING ANALYSIS

First, interactivity patterns clustered occupant behavior based on the fre-
quency of UOAs per day. The  user-  control ratio was calculated by dividing 
the number of  user-  triggered adjustments per office by the total number of 
adjustments (  system-   and  user-  triggered actions) for that office. The activity 
ratio was calculated by dividing the total number of  user-  shade override 
adjustments for an office by the average number per 47 offices.  Figure 11.65 
shows 47 offices labeled by numbers and plotted, where the x-  axis indicates 
the activity ratio and the y-  axis represents the  user-  control ratio. The fol-
lowing interactivity behavioral patterns were clustered in the given dataset:

• Passive adjustments [C01]: 66% of offices assigned ( range of  0–  0.17 times 
per day).

• Neutral adjustments [C02]: 21% of offices assigned ( range of 0. 18–  0.36 
times per day).

• Active adjustments [C03]: 13% of offices assigned ( range of 0. 44–  0.58 
times per day). The offices assigned to this cluster have common design 
features: they are all shared offices and face  north-  east.

Second, motivational patterns clustered the factors that drive users to over-
ride the automated shading systems. Three clusters of  shade-  lowering actions 
and two clusters of  shade-  raising actions were defined ( see  Figure 11.66a and 
b). The clusters were based on each variable’s impact factor ( regression co-
efficients) that influenced the UOAs. Accordingly, logistic regression was 
performed to define the most statistically significant variables in each office. 
Patterns of  user-  shade lowering were clustered in 25 offices, and  user-  shade 
raising was clustered in 30 offices. The rest of the offices were excluded since 
they had the lowest frequency of UOAs.

Based on the motivational patterns, five clusters were induced as follows:

• Shade lowering cluster 01 [C01_L]: 12% of offices were assigned and 
associated with the time of the day ( early morning and morning) and 
outdoor weather conditions ( Tout, tan_d).
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 Figure 11.65    User-  shade clusters based on interactivity patterns.

• Shade lowering cluster 02 [C02_L]: 24% of offices were assigned and 
associated to the time of the day ( early morning until afternoon) more 
than physical drivers.

• Shade lowering cluster 03 [C03_L]: 64% of offices were assigned and 
appeared to be more influenced by slat angle position than physical and 
 time-  related drivers.

• Shade raising cluster 01 [C01_R]: 63% of offices were assigned and ap-
peared to be more influenced by the slat angle position and time of the 
day ( noon and afternoon) than physical drivers.

• Shade raising cluster 02 [C01_R]: 37% of offices were assigned and asso-
ciated to the time of the day and indoor air temperature.

The clustered patterns constitute a base for association rules classifying the 
building occupants into typical office user profiles as described in the next 
section.

11.7.4.4.2  ASSOCIATION RULES MINING ( ARM)

Based on the 20 rules mined, two working user profiles ( user ß, user µ) were 
drawn in this study:
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• User type (  ß) represents the passive user who tends to override the au-
tomated shading system on average 0. 09–  0.17 times per day ( passive 
adjustments). User ß is mainly influenced by the time of day and the 
current blind state for both lowering and raising adjustments.

• User type ( µ) represents the medium user who tends to override the 
automated shading system on average 0. 18–  0.36 times per day ( neutral 
adjustments). User µ is mainly influenced by the time of day and the 
current blind state only for raising adjustments.

11.7.4.5  Questionnaire

In total, 32 of the case study building’s occupants completed the question-
naire, 71.9% of whom identified as male and 28.1% as female. Regarding 
employee role, 68.8% of participants performed professional jobs ( e.g., en-
gineer, specialist planner), 18.8% were in managerial positions, and 12.5% 
were administrators. The main results of the questionnaire are presented 
and discussed in the sections that follow.
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 Figure 11.66  User shade ( a) lowering and ( b) raising clusters based on motivational 
patterns.
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11.7.4.5.1   USER-  SHADE INTERACTION, SATISFACTION, AND PREFERENCES

About 75% of the participants reported never opening or adjusting the ex-
ternal blind once per week, whereas 10% closed the external blind a few 
times per day or week ( see  Figure 11.67). Overall, a low level of manual over-
rides to the automated shading system was observed, which is in line with 
the quantitative results from the study’s monitoring analysis. More than half 
of the occupants indicated that there was no need to adjust the external 
blind, 20% reported that the blinds are fully open all the time, and 20% pre-
ferred the automatic position. Roughly 25% of the occupants chose to adjust 
only the inner glare protection because it is faster and easier to avoid glare 
( compared to waiting for the external blind to move). However, 34.4% of the 
occupants preferred the external blinds to the inner glare protection, while 
28% liked both systems equally and 12% did not like either.

Approximately half of the occupants were satisfied with the performance 
of the automated shading system with an average of 3.68 on a  5-  point scale 
( 0 = very dissatisfied, 5 = very satisfied). Some participants explained that 
the automated shading systems are much more efficient than the glare pro-
tection and simple to operate via a push button. Most participants ( 93.8%) 
were satisfied with their ability to control both shading devices, that is, 
the “ double approach”, with an average satisfaction rating of 4.43 ( see 
 Figure 11.68).

11.7.4.5.2  INFLUENCE OF CONTEXTUAL FACTORS ON BEHAVIORAL PATTERNS

 Figure  11.69 shows the relative frequency of shade lowering and raising 
actions in terms of floor level, office orientation, WWR, and window to a 
desk position. Few occupants ( 15%) whose offices are located on the first 
floor raised the external blind once or more per day. Fewer raising actions 

0% 20% 40% 60% 80% 100%

Adjusting inner
glare protection

Raising external
blinds

Lowering external
blinds

Response %

Never
not very often
Once or twice a week
More than twice a week
Once or twice a day
More than twice a day

 Figure 11.67  Relative frequency of user interactions with inner glare protection and 
external blinds.
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 Figure 11.68  Satisfaction rating of the performance of external blind and the ability 
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(b) How often do you close the external blinds?

Never Once or twice a week More than twice a week

Once or twice a day More than twice a day

 Figure 11.69  Influence of contextual factors on shade behavioral patterns.
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were noticed on the upper floors, while more closure actions occurred on 
the third floor. In the  east-   and  south-  facing offices, occupants opened the 
external blinds more frequently than in the  north-   and  west-  facing offices. 
This finding is in line with the findings from the data monitoring analysis.

In  Figure 11.70a and b, considering that 0 on the y-  axis refers to “ never 
adjusted” and 5 refers to “ more than twice a day”, occupants who sit about 2 
m from the window adjusted the external blinds more frequently than those 
sitting closer to the window. This difference could be due to ( a) ease of access 
to the push button for the automatic blinds ( next to the office door), and ( b) 
most of these offices faced north ( see  Figure 11.70b). In the  east-   and  south- 
 facing offices with large window areas ( WWR=75%), occupants opened the 
external blinds more frequently than those in offices with smaller windows 
( WWR=50% and 25%) ( see  Figure 11.70a). Therefore, moderate window size 
( 50%) and desks farther from the window ( more than 2 m) in east and west 
elevations may decrease UOAs. Based on these results, it is recommended 
that building designers set the first row of desks several meters back from 
the façade, such that the work planes will rarely receive direct solar radi-
ation. Furthermore, moderately sized window areas are recommended in 
east and south elevations to decrease the number of shade interventions.

11.7.4.6   Simulation-  based Analysis

The daylighting and energy performance of the different shading control 
strategies ( based on irradiance threshold) were simulated. The impact of 
inner glare protection was ignored in the analysis since insufficient infor-
mation about the usage of the system ( e.g., number of lowering and raising 
actions) was known during the study period.  Figure 11.71 demonstrates that 
UDI% values were the highest under S01 and S02 ( original design) control 
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strategies in  west-   and  north-  facing offices with slight differences. This re-
sult is expected since the  shade-  lowering irradiance threshold exceeds 100 
W/ m2 in S01 and 250 W/ m2 in S02. The lowest UDI% values were in the 
south elevation when irradiance thresholds exceeds 450 W/ m2 ( S03), and the 
blind is fully closed or open.

 Figure 11.72 shows the annual heating, cooling, and lighting demand in the 
building offices under different shading control strategies (  S01–  S05). Light-
ing demand was hardly affected by the different control strategies since the 
lighting was turned off if the work plane illuminance was above 500 lux. 
More significant differences were found in the heating demand, where the 
difference between the original design ( S02) and the lowest demand ( S05) 
reached up to 9.2 kWh/ m2. The total energy demand of S02 was higher than 
S01 by 43.74 kWh/ m2 and lower than S03 by 76.82 kWh/ m2. The main dif-
ference was in the cooling demand. Overall, the established shading con-
trol strategy seems to provide sufficient daylighting and views to the outside 
( note that the blind is closed 40% of annual working hours) as well as keep 
the energy use close to the minimum compared to other control strategies.

11.7.5  Concluding Remarks

The case study presented a successful example of automated shading sys-
tem design and utilization. Based on the monitored datasets results, the 
daily rate of change of UOAs ( i.e., occupants’ interaction with the systems) 
was relatively low compared to previous studies ( Reinhart and Voss, 2003; 
Meerbeek et  al., 2014). The regression analysis, a commonly used mode-
ling approach, did not successfully explain the occupant behavior in this 
case. Using data mining techniques as an alternative methodology might 
be an improvement in terms of exploring occupant behavior patterns and 
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 Figure 11.71  UDI% (  300–  3,000 lux) distribution on the work plane under different 
shading control strategies.
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allowing more accurate assumptions of complex and diverse behaviors in 
big office buildings. Similar results were found in the questionnaire analysis, 
where more than 50% of the occupants indicated that they rarely or never 
adjusted the automated external blinds.

This case study provides building designers and operators with potentially 
valuable insights about shading design features and operation strategies that 
may increase occupant comfort and satisfaction. Key insights include:

1  Use double shading system approach ( internal/ external).
2  Apply an acceptable range of established shade control thresholds. For 

instance, low irradiance thresholds (  250–  400 W/ m2) are recommended 
for shade control in  south-   and  east-  facing offices with moderate win-
dow size or fixed shades. In contrast, high  irradiance-  lowering thresh-
old ( above 400 W/ m2) can be adopted in  north-   and  west-  facing offices.

3  Use  high-  quality and accurate light sensors.
4  Quiet and infrequent movements while operating the automated shad-

ing systems can increase occupant satisfaction.
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Further research is needed to develop comprehensive guidelines for 
 occupant-  centric shading  design—  for example, studies exploring various 
building types in different climatic zones and with  long-  term monitoring.

11.8  Case Study 7: Gothenburg, Sweden

Quan Jin, Holger Wallbaum

11.8.1  Summary

This case study,  A-  building, is a newly renovated office building in Goth-
enburg, Sweden. The building is certified Miljöbyggnad Silver ( version 2.2), 
which aims to achieve both better indoor comfort and low energy use. This 
 occupant-  centric analysis focused on the operation phase and examined the 
indoor environmental performance predicted during design. The findings 
indicated both conformities and discrepancies between the designed per-
formance and the actual performance as perceived by the occupants. On 
the one hand, the design enhanced the building’s performance regarding, 
for example, daylight, ventilation, and energy savings. On the other hand, 
occupant surveys revealed that performance gaps exist between what was 
targeted and what was perceived regarding, for example, satisfaction with 
the indoor temperature and window screen and preference for daylight and 
indoor climate control. The findings of this study can contribute to closing 
performance gaps by examining how occupants perceive and experience the 
office environment.

11.8.2  Building Description

The  A-  building is an office building hosting the Department of Architecture 
and Civil Engineering on the Chalmers University campus in Gothenburg, 
Sweden ( see  Figures  11.73 and 11.74). The building was built in 1968 and 
extensively renovated in 2016 and 2017. A significant challenge during the 
building renovation was the preservation of the historical features of the 
building. The building was reoccupied in 2018 and is currently fully oper-
ational as of May 2022. It is located in the marine west coast climate zone 
according to the Köppen Climate Classification and features mild summers 
and cool but not cold winters.

The building consists of five stories with lecture halls and work studios on 
the first and second floors, staff and faculty offices on the third and fourth 
floors, and a kitchen and study rooms for students as well as a lunch and cof-
fee room with a kitchen for employees on the fifth floor. In this case study, 
only the office floors ( i.e., third and fourth floors) were the subject of anal-
ysis. The total floor area of the office floors is approximately 4,925 m2. The 
study was conducted in 2018 after the building had been reoccupied for a 
year  post-  renovation.
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The newly renovated  A-  building was certified as Miljöbyggnad Silver 
( version 2.2) by the Sweden Green Building Council. Miljöbyggnad is a 
Swedish system for the environmental certification of buildings ( new and 
existing buildings as well as buildings in operation) that aims to provide 
comfortable and safe environments for people to work and live. The system 
certifies buildings at three  levels—  Bronze, Silver, and  Gold—  with regard 
to energy, indoor environment, and materials/ chemicals. The case study 
building’s Silver level is awarded when a building is designed to perform 
better than the reference values in the Swedish building regulation in terms 
of, for example, lower energy use, a higher daylight factor, and a lower pre-
dicted percentage of dissatisfied ( PPD) value. The  A-  building specifically 
addresses low energy consumption, a comfortable indoor environment, and 
creative workspaces. The main  energy-  efficient features include sun shades, 
 energy-  efficient windows, a low  U-  value of wall, and a mechanical variable 

 Figure 11.73  Photo of the  A-  building exterior space.

 Figure 11.74  Photo of the  A-  building interior office space.
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air volume ( VAV) ventilation system. Since the renovation of the  A-  building 
was so extensive, the certification process followed the ( stricter) certification 
requirements required for new buildings.

11.8.3  Building Design Parameters

The focus of the renovation design was to create a building that contributed 
to different sustainable perspectives, including energy conservation and 
an improved indoor environment. The heating, cooling, and electricity are 
intended to be controlled based on internal load variations from people, 
equipment, and the outdoor climate.  Table 11.15 shows the design parame-
ters for the renovation of the  A-  building.

The building envelope was a classical  brick-    and-  mortar  double-  wall with 
a cavity gap in between, as was very popular in Sweden in the 1960s. Dur-
ing the renovation, the building exterior was kept similar, and additional 
inorganic insulation was added from the inside. By adopting this strategy, 
the historical features of the building were preserved and better thermal 
performance of the exterior wall achieved by reducing the heat flows from 
the indoor to the outdoor environment.

The windows were also renovated. All the windows in the building were 
replaced with  energy-  efficient windows with a low thermal transmittance 
(  U-  value). The windows are now operable,  triple-  pane casement windows. 
Exterior screens ( i.e., awnings, a sheet of canvas, or other material stretched 
on a frame and used to keep the sun off the windows) were also installed to 
further reduce solar heat gain and protect from glare. All sunlit rooms fac-
ing south, west, and east were provided with effective exterior screens. The 
screen is automatically controlled based on the solar radiation level and out-
door temperature. Curtains were also added on the inside of the windows to 
be controlled manually by occupants.

The ventilation system was replaced by a mechanical variable air volume 
( VAV) ventilation system with heat recovery. The ventilation system is con-
trolled based on the presence of occupants in each room by adjusting the 

Table 11.15 Design parameters for the renovation of the  A-  building

Exterior wall U = 0.44 W/ m²K

Window Triple pane casement
U = 1.04 W/ m² K including window frame
SHGC ( g-  value) = 0.4
Light transmission, 60%

Exterior screen Awning, fabric
g-  value screen: 0. 21–  0.24

Ventilation FTX with VAV
Maximum four outlets × 5 m³/ s in office room
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airflow rate according to the signal of presence as well as the indoor tem-
perature.  Figures 11. 75–  11.77 show each of the components mentioned above 
( exterior screens, windows, and ventilation).

11.8.4  Methodology

Energy performance is a topic frequently addressed in building renovations 
and green building design. However, there are still many newly renovated 
buildings that regularly receive complaints from their occupants, especially 
concerning the indoor environmental conditions ( Lee et al., 2019). In other 
words, there are often gaps regarding occupant satisfaction between the 
designed and the actual conditions. The purpose of the present case study 
was to examine the  A-  building’s  post-  renovation performance in terms of 
indoor environmental quality ( IEQ)—  specifically, the extent to which the 

 Figure 11.75  Photo of the  A-  building’s exterior screens.

 Figure 11.76  Photo of one of the  A-  building’s triple pane windows and screens.
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building’s design achieved the target of a comfortable indoor environment 
based on occupants’ perceptions of the building’s performance.

To achieve this purpose, the study included three parts. The first part in-
volved reviewing the building’s design parameters and simulation results of 
its energy performance and indoor comfort ( thermal comfort and daylight). 
The second part was a  post-  occupancy evaluation ( POE) based on the smart 
and sustainable office ( SSO) User Insight Toolbox ( Cordero et al., 2017; Jin 
et al., 2019) that collected occupant feedback on indoor environmental qual-
ity ( IEQ) and behaviors related to indoor comfort and individual control 
over indoor climate. The third part was a comparison of the original build-
ing design and the occupant survey results and a reflection on the develop-
ment of an  occupant-  centric design concept ( see  Figure 11.79). Each part is 
described in turn below.

11.8.4.1  Building Design Simulations

In this study, simulation was used in the early stage building design and to 
support the implementation of the Miljöbyggnad certification. There are 13 
aspects and up to 16 indicators in the Miljöbyggnad certification that need to 
be rated individually and then aggregated to grade a building as Bronze, Silver, 
or Gold. The goal of the  A-  building renovation was to achieve Miljöbyggnad 
Silver. To achieve this goal, the renovation could not only focus on the energy 
performance but also needed to reach  high-  performance level of IEQ related 
to occupant comfort and health. This goal was achieved by performing com-
prehensive simulations of the building’s energy demands, thermal comfort, 
and daylight. A detailed building model was created using the software IDA 
Indoor Climate and Energy ( IDA ICE) to predict the building energy and 
indoor environment performance ( see  Figure 11.78). The results of this simu-
lation were used for comparison with the results of the POE, described below.

 Figure 11.77  Photo of the  A-  building’s ventilation inlet.
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Energy simulation was performed to ensure that the specific energy use, 
which refers to the supplied energy to building’s service and energy system 
distributed over the floor area heated above 10°C, meet the requirement of 
75% of the energy use of BBR ( 2017).

Indoor thermal comfort in winter and summer were simulated as well, 
and PPD index was calculated. To meet the Miljöbyggnad requirements, 
representative floors and worst cases were studied. The representative floor 
stands for the type of the entire building or a few floors ( i.e., office or class-
room). The worst cases are considered, such as lower floors for daylight sim-
ulation, the risk of overheating and cooling for thermal comfort in summer 
and winter, and full exposure toward  north-   and  south-  west. In this case, for 
the thermal comfort simulation, floor 4 was selected as the representative 
floor of office space, and for daylight simulation, floor 3 was selected as the 
representative floor, considering it bad for good daylight.

 Occupant-  related information and assumptions such as internal loads 
and occupancy were taken into account as they are of significance for the 
indoor climate. The basis of the set up for these parameters is based on 
the national guideline on determining the building energy use ( BEN 2) and 
the default values provided by IDA ICE. The following  Table 11.16 shows 
detailed information about these parameters.

11.8.4.2   Post-  occupancy Evaluation

POE is frequently used to evaluate building performance and gather data 
from building occupants. When conducting POE, useful knowledge is 

 Figure 11.78  3D model for the structure of  A-  building.
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assembled to improve the design and operation of both new and renovated 
buildings. POE is essential to examine and motivate  occupant-  centric build-
ing design. There are various ways to implement POE depending on the 
complexity and depth of evaluation. Surveys are a commonly used method 
to assess occupants’ satisfaction  levels—  for example, the Building User 
Satisfaction ( BUS) survey and UC Berkeley’s Center for the Built Environ-
ment ( CBE) survey on office IEQ satisfaction ( Leaman and Bordass, 2001; 
Zagreus et al., 2004). These two surveys include detailed questions about 
occupants’ comfort, health, and productivity.

For the preset case study, POE was conducted using the SSO User Insight 
Toolbox ( Cordere et al., 2017; Jin et al., 2019). This toolbox relies on a holistic 
mixed methods approach based on qualitative and quantitative measures 
to capture a broad range of office occupants’  comfort-   and  health-  related 
factors, including current and general  well-  being. The empirical evidence 
can help identify implementation strategies for a new generation of  user- 
 oriented and resilient building design solutions for future offices. One of the 
main goals of the SSO User Insight Toolbox is to put users at the center of 
office design by collecting their experiences and  needs—  in this case, regard-
ing the  A-  building’s indoor environment, individual control, energy use, 
and social aspects of building use.

In addition to IEQ measurements, the SSO User Insight Toolbox includes 
the following tools:

•  Web-  based SSO Survey
•  Web-  based SSO Diary App
• Observation studies
• Individual and focus group interviews
• Reporting tool

The  web-  based survey ( see  Figure 11.79) is a tool to gain a holistic impression 
of a user’s experience with the environment. The survey includes a series 
of questions around broad themes, such as general satisfaction, stress, and 
preferences, as well as more specific themes, such as mood and job and life 
satisfaction. Information about users’  energy-  related behavior, perceived 
health, and  self-  reported work performance is also gathered, as are details 
about individual contextual factors ( e.g., nature of work). As the other tools 

Table 11.16  Occupant-  related parameters and setpoint ( the third and fourth floors)

Cooling setpoint 23°C at presence, 25°C no presence
Heating setpoint 22°C at presence, 20°C no presence
Person heat 80 W/ person
Clothing, activity 1.0 clo winter; 0.5 clo summer; 1.2 MET
Occupancy Varying attendance between 7:00 and 17:00

Occupancy density: 0.07 person/ m2
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of the SSO User Insight Toolbox are not the focus of this chapter, the de-
tailed description can be found in the study ( Jin et al., 2019).

In the present study, a POE adapted from the SSO User Insight Toolbox 
focusing on the  web-  based survey was conducted over a  two-  week period in 
August and September 2019, one year after occupants’ return  post-  renovation. 
In brief,

• A total of 283 permanent employees ( i.e.,  long-  term contracts) working 
in occupying offices on the third and fourth floors were invited to com-
plete the  web-  based SSO survey; 160 ( 57%) participated in the survey, 
although around 40 chose not to answer all of the questions. Data were 
collected from occupant experience and satisfaction on IEQ, behavior, 
and individual control over indoor environment. The survey asked oc-
cupants a range of questions about their perceptions ( i.e., experience 
and satisfaction) about the building’s performance, including several 
factors of the indoor environment ( glare, daylight, temperature, etc.) 
and adaptive behaviors for indoor comfort.

• Observations of the offices took place four times a day during three 
working days and three times a day during two working days to better 
understand how the spaces were used.

• A total of 46  in-  depth individual interviews and two focus group inter-
views were conducted with a selection of the employees to gain a deeper 
understanding of individual needs.

For the purposes of this chapter, we will present and discuss only the survey 
findings because the study focuses on occupant perceptions of the actual 
indoor environments and the building design. See the study ( Jin et al., 2020) 
for more results of the POE. The diary app and the reporting tool will be 
introduced in the future study.

 Figure 11.79  Image of the SSO User Insight Toolbox’s  web-  based survey accessed 
via smartphone.
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11.8.4.2.1  COMPARISON OF THE BUILDING DESIGN AND SURVEY RESULTS

The target of the original building design is to achieve a high performance 
of good indoor environment and low energy use. The survey results from 
the study will be analyzed to examine the building’s real performance and 
compare with the building design and simulation results. See  Figure 11.80.

11.8.5  Results and Discussion

This section begins with the results of the building simulation from the early 
design phase, followed by key findings from the survey from the POE. Then, 
the simulation and survey results are compared and discussed alongside re-
flections on the development of an  occupant-  centric office design concept.

11.8.5.1  Building Simulation Results

The following sections describe the simulation results for the original model 
for the  A-  building’s renovation, with a focus on energy performance, ther-
mal comfort, and daylight.

11.8.5.1.1  ENERGY

Specific energy use intensity ( EUI) for the whole building was calculated as 
57.4 kWh/ m2 Atemp per year, which meets the requirement of Miljöbygg-
nad Silver ( 60 kWh/ m2 Atemp per year). The term Atemp defines the f loor 
area for which the building’s primary energy use is to be calculated. Atemp is 
the sum of the interior area for each floor, attic, or basement that is heated to 
more than 10°C. With the exterior screen installed, the solar heat load was 
reduced to less than 43 W/ m2 Atemp, which is rated as Miljöbyggnad Gold.

Building 
Design

Design Target: 

high performance of 
good indoor comfort 

and 
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Post-
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Evaluation
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Figure 11.80  Building design concept: learning from occupant experience in the 
A-building.
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11.8.5.1.2  THERMAL COMFORT

The simulation results showed that the PPD in summer was lower than 
10% in all simulated offices on the fourth floor. In the Miljöbyggnad rating 
system, this indicator of summer indoor climate was rated as Miljöbygg-
nad Gold. The simulation results also showed that the PPD in winter was 
lower than 10% in all simulated office spaces. This result means that the 
indicator of winter indoor climate was rated as Miljöbyggnad Gold as well. 
 Figure 11.81 shows the PPD values on the fourth floor in a cold winter from 
the simulation by IDA ICE.

11.8.5.1.3  DAYLIGHT

The simulation results for daylight showed that the daylight factor ( DF) was 
≥1.2% for more than 21% of the total heated floor area on the third floor ( see 
 Figure 11.82). Only 3% of the total heated floor area was calculated with the 
DF of 1.0%. For all the office rooms on plan 3, most of the rooms were rated 

Figure 11.81 A selection of simulation result of the PPD on the fourth floor.   

 Figure 11.82  Simulation result of daylight factor on the third floor.
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as Miljöbyggnad Gold, and one room was rated as Miljöbyggnad Bronze. 
The final grade for the DF was rated as Miljöbyggnad Silver.

11.8.5.2   Post-  occupancy Evaluation Results

 Figure 11.83 shows the levels and percentages of occupants’ satisfaction with 
eight factors of the indoor office environment based on the survey results 
from the POE. In general, most of the factors were perceived as satisfactory 
by most of the occupants, except the screen and indoor temperature. The 
satisfaction rate for the overall indoor climate was about 70%. The amount 
of light and glare had a satisfaction rate higher than 80%, and other factors 
( air quality, daylight, air movement, and access to outside views) had a sat-
isfaction rate of 70%. The most dissatisfactory factors were the air temper-
ature and the screen.

 Figure  11.84 shows occupants’ satisfaction with the level of individual 
control of the indoor climate. In the survey, occupants were asked about 
their perceptions of daylight, ventilation, and indoor temperature since 
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Air quality

Temperature

Amount of light

Daylight

Air movement

Access to outside view

Glare on the computer

Function of sunscreen

Dissatisfied Neutral Satisfied

Figure 11.83 Percentage of occupant satisfaction with eight factors of the indoor 
environment.
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 Figure 11.84  Percentage of occupant satisfaction for individual control of the indoor 
environment.
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these can be controlled to some extent by occupants. For example, glare/ 
daylight can be blocked by a curtain, airflow can be controlled by either 
opening or closing a window, and indoor temperature can be controlled by 
operable windows. The screen cannot be operated manually by the occu-
pants. In general, the satisfaction rates for all three components were rela-
tively low, where more than 30% of occupants reported feeling dissatisfied. 
A majority of occupants expressed dissatisfaction with the control possibil-
ities regarding indoor temperature.

 Figure 11.85 shows the frequency of occupants’ adaptive actions to improve 
comfort. It was observed that about half of the occupants reported operating 
the windows “ Very often” in the office, and, in total, more than 70% of the 
occupants reported operating the windows at least “ At times”. Another fac-
tor related to occupant behavior was clothing: about 70% of the occupants 
reported adjusting their clothing to improve their thermal comfort.

11.8.5.3  Comparison of the Building Design Performance and the 
Perceived Performance

The original design for the renovation of the  A-  building met the design re-
quirements of Miljöbyggnad Silver with a good indoor environment and 
low simulated energy consumption. In this case study analysis, the design 
information was collected and compared with data collected from occu-
pant surveys. The results showed that the design enhanced the building’s 
performance regarding daylight, ventilation rate, and energy saving, among 
others. Some indicators, such as daylight factor and PPD, were simulated 
and met the requirements for the Miljöbyggnad Gold level. Additionally, 
the exterior screen both reduced specific energy use in the  A-  building and 
contributed to high occupant satisfaction against the glare on their com-
puter screens.

However, the survey results pointed to gaps between the designed per-
formance and perceived building performance. Thermal comfort was not 
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 Figure 11.85  Frequency of occupant behavior for individual comfort.
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perceived to be satisfactory by the majority of the occupants even though 
the PPD was simulated to be less than 10% with a thermal sensation around 
neutral. The majority of occupants indicated a preference for a warmer in-
door environment. Simultaneously, 30% of the occupants were not satisfied 
with the air movement, as drafts were perceived in some rooms. Yet, the 
reported occupant satisfaction with perceived air quality was at a good level 
with VAV ventilation.

Furthermore, the function of the screen was not perceived to be satisfac-
tory by more than half of occupants, where many occupants preferred more 
daylight and felt that the screen blocked daylight and outside views, and it 
cannot be operated manually. Thus, 30% of the occupants felt dissatisfied 
with daylight levels, even though the amount of light was sufficient accord-
ing to the measured values ( Jin et al., 2020). Likewise, occupants were not 
satisfied with the level of individual control of the indoor climate, such as 
room temperature, mechanical ventilation, and natural light.

These gaps may be because of design decisions and/ or control strategies 
in the operation phase. For example, the airflow rate, which varies with 
presence, might be set too high and it cannot be controlled by occupants. 
Alternatively ( or additionally), the setup value of solar radiation for daylight 
might be too low. The color and transparency of the screen material might 
be another influential factor.

When considering energy conservation in a building renovation, occu-
pant demand and preference need to be addressed. In the  A-  building, the ex-
terior screen was energy efficient; however, it reduced daylight and outside 
views. A better solution is needed to balance energy savings and visual com-
fort. Likewise, occupants’ control of the indoor climate must be considered. 
With the possibility of ventilation and screen control, for example, occupant 
satisfaction might be improved.

11.8.6  Concluding Remarks

The  A-  building is an example of a building renovation that was designed 
to perform well in terms of indoor environment and low energy consump-
tion.  Energy-  efficient solutions were applied, including  high-  performance 
windows, low  U-  value exterior walls, exterior screens, and a VAV with heat 
recovery. Yet, there were notable discrepancies between the  A-  building’s de-
signed and actual performance during operation and its occupants’ percep-
tions of indoor comfort. Occupants’ insights, collected through an extensive 
POE using the SSO User Insight Tool, included occupant satisfaction with 
IEQ, indoor climate control, and occupant behavior. The study found sev-
eral instances of occupant dissatisfaction with the indoor environment that 
reinforce the need for more  occupant-  centric building design processes.

For example, in the  A-  building, opening windows happened frequently 
compared to other interventions, such as interactions with heaters and cur-
tains. Enabling occupants to control the indoor climate, particularly the 
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temperature and the shading situation, may have significantly increased oc-
cupant satisfaction. However, these aspects were not sufficiently considered in 
the building design, nor are they considered in building regulations or build-
ing certification schemes.  Early-  phase design and building control strategies 
need to better consider occupants’ indoor comfort and preferences alongside 
energy consumption. Conducting occupant surveys can increase stakehold-
ers’ awareness of  occupant-  centric building design and performance. A  pre- 
 intervention survey or POE should be conducted for building renovations 
as well as new building designs, and the collected information and feedback 
should be integrated into the building planning and design process.

The next step of this case study is to provide recommendations to the   
A-  building owner and facility managers to further improve occupants’ sat-
isfaction regarding IEQ. A further point to make is for the office design of 
the future, we need to better understand not only the factors to negatively 
affect occupants’ comfort and  well-  being but also the positive factors, for 
example, salutogenic design (  health-  promoting potential), drawing on sense 
of coherence ( SOC) theory ( Antonovsky, 1987; Eriksson and Lindström, 
2006; Allen et al., 2019; Forooraghi et al., 2021).

11.9  Closing Remarks

In this chapter, we presented  occupant-  centric analyses of seven case study 
buildings to demonstrate the benefits of recognizing occupants and their be-
havior during the design process and throughout the building life cycle. The 
buildings were of different types and located in different countries and cli-
mates, and in different phases of the building life cycle. Likewise, the studies 
represented different design and analysis approaches including participa-
tory design, parametric and sensitivity analysis, optimization, operational 
data analysis, and statistical modeling. Considering the lessons learned 
from each case study, we can conclude the chapter with the following:

• Undertaking  occupant-  centric design requires information to be shared 
effectively among design stakeholders. The traditional linear design 
process is problematic, as it can lead to discrepancies in design assump-
tions and, consequently, to suboptimal or overlooked design solutions.

• Assumptions about occupants can be influential when performing design 
parametric analysis. Different  occupant-  related assumption can lead to a 
different savings potential of ECM/ DP. Additionally, occupant assump-
tions can influence the outcomes of the design optimization process.

• Occupant assumptions can also influence the comfort performance of 
buildings, as current comfort metrics used by practitioners do not con-
sider comfort at the occupant and zone levels. New  occupant-  centric 
comfort metrics should be developed and used instead.

• Occupant participation in the design process ( i.e.,  co-  design) is benefi-
cial in achieving a more accurate representation of occupants’ presence 
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and activities.  Co-  design can reduce performance gaps and improve en-
ergy efficiency.

• Increasing occupants’ consciousness of their  energy-  intensive behaviors 
is an important factor in achieving energy efficiency.

• Collecting  occupant-  related data on individualized occupant dynamics 
 post-  occupancy can be helpful for improving spatial design ( i.e., opti-
mized layouts) and energy efficiency. More broadly, such data collection 
is useful to understand performance gaps between predictions during 
design and actual performance.

• The analyses highlighted the importance of  post-  occupancy data col-
lection through occupant surveys, sensing infrastructure, and inter-
views with building design stakeholders.

Note
  Figures 11.50, 11.51, 11.52, 11.53, 11.54, 11.55, 11.56, and Tables 11.12, 11.13 re-

printed from Energy and Buildings, Vol 238, Andrew Sonta, Thomas R. 
Dougherty, and Rishee K. Jain, Data-driven optimization of building layouts 
for energy efficiency, Copyright (2021), with permission from Elsevier.
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This is the first known book to focus on  occupant-  centric building design 
with an emphasis on quantitative and  simulation-  aided approaches. It builds 
upon decades of research on a variety of topics ranging from indoor envi-
ronmental quality and design theory to occupant modeling and simulation. 
Starting in 2018, over 100 researchers from around the world converged to 
form the collaborative International Energy Agency’s ( IEA) Energy in Build-
ings and Communities ( EBC) Annex 79:  Occupant-  centric building design 
and operation. The Annex 79 researchers were  mid-  way through writing this 
book when the  COVID-  19 pandemic began and the world gained a height-
ened appreciation for the critical role that buildings play in occupant health 
and  well-  being. As the virus spread through ducts and other pathways 
within buildings, and entire organizations and institutions shifted opera-
tions to  work-    from-  home, interest in  occupant-  centric design and operation 
suddenly became widespread. In a way, this unfortunate event in history 
served as a catalyst to fundamentally rethink the way buildings are designed 
and operated for occupants. This book provides researchers and practition-
ers with concrete knowledge and guidance to build on this momentum and 
make significant improvements to the field.

In the first half of the book, we provided an overview of indoor envi-
ronmental quality ( IEQ) fundamentals and took a critical look at pertinent 
standards. We then addressed the challenges of integrating consideration of 
occupants into the building design  decision-  making process and proposed 
 occupant-  centric design patterns that could support the recording and 
transfer of the required information in this process. Arguing that occupants 
can greatly inform building designers and operators, we discussed methods 
for actively engaging occupants in design processes. Next, we established 
the need for and presented a suite of  occupant-  centric building performance 
metrics and targets. These metrics and targets represent a paradigm shift by 
positioning occupants as the central  consideration –   rather than merely one 
of  many –   of building performance.

In the second half of the book, beginning with  Chapter  6, we focused 
our attention on building simulation and its applications. First, we intro-
duced occupant modeling and a wide range of occupant model types, from 
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traditional schedules to sophisticated  agent-  based models. We then dis-
cussed different approaches to identifying  fit-    for-  purpose occupant models 
for different building performance queries, and we described and tested a 
number of  simulation-  aided design methods incorporating occupant be-
havior at their core. Next, we presented the interfaces and sequences of 
building systems operation and control as essential elements in the design of 
 occupant-  centric buildings. Lastly, to provide relatable details to a broader 
audience, we documented seven case studies of  occupant-  centric design 
that showcased a range of the considerations and strategies we discussed 
throughout the book.

12.1 Further Research

By addressing  occupant-  centric  simulation-  aided building design from dif-
ferent perspectives, we, the authors of the book, have collectively identified 
considerable potential for advancement in the field, including several key 
areas for further investigation within the research community. To begin, at 
a fundamental level, future research should continue to provide a better un-
derstanding of occupants’ expectations, perceived and actual control,  multi-  
  IEQ-  domain influences contributing to  occupant-  building interactions, and 
the balance between manual and automated building interfaces. Most mod-
eling and simulation efforts focus on quantifying energy performance and, 
rather coarsely, several types of IEQ ( particularly thermal comfort). How-
ever, future simulation should simultaneously consider all four domains 
of IEQ, the interrelationships between them, and other occupant needs  
( e.g., views, privacy, ergonomics, etc.).

As evidenced by the detailed case studies in  Chapter 11, more efforts are 
needed within the design practice ecosystem to facilitate the effective trans-
fer of information regarding occupancy and occupant behavior throughout 
the  decision-  making process and among different stakeholders. There is still 
much room for improvement in terms of engaging occupants in the processes 
of designing buildings. Although the ultimate occupants of a building are 
often unknown at the time of design, designers and other stakeholders are 
nonetheless responsible for delivering healthy and comfortable buildings. 
Enhancing occupants’ awareness of the buildings’ environmental control 
possibilities and collecting and analyzing  post-  occupancy data could also 
contribute significantly to realizing  occupant-  centric design visions.

With regard to occupant behavior modeling, access to  large-  scale 
 occupant-  related data remains a barrier to the development of more relia-
ble, inclusive, and widely applicable models. In particular, the representa-
tion of different groups of occupants ( with their specific preferences, needs, 
and behaviors) would add noticeable value to design. Realizing this poten-
tial, however, would demand a comprehensive set of occupant behavior 
models developed based on sizable and geographically diverse  occupant- 
 related datasets. Even if this data were to be obtained, occupant behavior 
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modeling efforts would still need to go beyond thermophysical conditions 
to include occupant health and  well-  being more thoroughly. Other relevant 
areas of future work include enhancing the feasibility of integrating a new 
generation of occupant models into  simulation-  aided design workflows and 
establishing building design workflows that accommodate  simulation-  aided 
performance investigations in a more influential manner. Furthermore, 
 occupant-  centric building control is an active area of research that explores 
emerging machine learning techniques toward a more effective use of occu-
pant information in operation of buildings.

Finally, understanding building interfaces, their design, and how users 
interact with them remains a critical research area with potentially substan-
tial impact on the efficient operation of buildings and occupants’ health, 
comfort, and  well-  being. Despite building interfaces playing an important 
role in both providing occupants with greater opportunities to control their 
environment and promoting  pro-  environmental behavior, the state of re-
search in human factors and building interfaces is noticeably behind that of 
other consumer and industry products.

While leading and ambitious practitioners and building projects will 
continue to aim to surpass the status quo, a large portion of the building 
industry will aim only to achieve code compliance. It is therefore essential 
that researchers continue to contribute to building codes and standards to 
translate knowledge into mandated  requirements –   for all aspects and  life- 
 cycle stages of  occupant-  centric buildings.

12.2 Future Prospects

In the conclusion of Exploring Occupant Behavior in Buildings ( Wagner 
et al., 2018) –   which can be seen as a predecessor of this  book –   the authors 
suggested that occupant behavior research was at its peak and likely to go 
through a phase of disillusion to face new  real-  world challenges. Arguably, 
this premonition has actually happened. The research community is now 
much clearer that the mere inclusion of a few sophisticated probabilistic oc-
cupant behavior models in a building performance model does not in itself 
bridge the  so-  called “ performance gap”, nor does it automatically solve any 
other major problem in the building industry. In fact, in the present book, 
our focus on the application of occupant modeling to the building design 
process is based on the understanding that occupant behavior research is 
very much in need of finding its role within the rapidly evolving building 
design and operation practice.

But make no mistake, while the research community now sees the impact 
of narrowly defined occupant behavior models more clearly and more real-
istically ( and as a piece of the puzzle in  occupant-  centric design), the need 
for further research on occupant behavior and its application in building 
design and operation practice is greater than ever. In recent years, we have 
seen  ever-  increasing threats of climate change, extremely  wide-  ranging and 
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unequal effects of a global pandemic, the development of deeper automation 
systems with vast potential and correspondingly vast concerns, a global ref-
ugee crisis, increased impacts of disinformation and  so-  called “ alternative 
facts”, and exceedingly destructive wars that necessitate the accommoda-
tion of large, dislocated populations and reconstructing demolished cit-
ies from scratch. These are problems that must be addressed globally by 
systems thinkers and with a continued trust in  environment-  friendly and 
 human-  centered science and technology. These challenges ( and opportu-
nities) require building designers to address environmental problems and 
societal problems in tandem and much more consciously. To this end, we 
believe a holistic approach to understanding occupants’ preferences, needs, 
and behavior will continue to play a key role in realizing truly  occupant- 
 centric buildings and communities.
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