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Zusammenfassung

Materialien von industrieller Relevanz weisen oft eine komplexe
Mikrostruktur auf, welche einen direkten Einfluss auf das makroskopi-
sche Materialverhalten hat. Um diese Mikrostrukturinformationen
bei Simulationen auf der Bauteilebene zu verwenden, haben sich
Multiskalenmethoden etabliert. Insbesondere Homogenisierungsmetho-
den werden häufig eingesetzt, da sie auf bewiesenen mathematischen
Resultaten basieren.
Der erste Abschnitt dieser Arbeit konzentriert sich auf die Charakteri-
sierung komplexer Mikrostrukturen. Es wird die Anwendbarkeit von
Minkowskitensoren, welche ihren Ursprung in der stochastischen Geo-
metrie haben, untersucht. Hierbei wird insbesondere ein normalisierter
Tensor als geeigneter Charakterisierer für Mikrostrukturen identifiziert.
Als Grundlage der darauffolgenden Kapitel dient ein Homogenisie-
rungsresultat für das Mumford-Shah Funktional mit periodischen
Parametern, welches für Funktionen mit beschränkter Variation definiert
ist. Diese Funktionen bilden auch die mathematische Grundlage für das
Sprödbruch Modell von Francfort und Marigo. Das Homogenisierungs-
resultat ist für den Fall einer Scherung senkrecht zur Ebene sowie unter
Vernachlässigung der Irreversibilität auf das Francfort-Marigo Modell
anwendbar. Erweiterungen des Homogenisierungsresultats lösen diese
beiden Beschränkungen individuell auf und übertragen das Resultat auf
stochastische Mikrostrukturen. Das resultierende homogenisierte Modell
weist eine ähnliche Struktur zum ursprünglichen Francfort-Marigo
Modell auf, allerdings mit potentiell anisotroper effektiver Steifigkeit
und richtungsabhängiger effektiver Rissenergie. Zudem beinhaltet das
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Zusammenfassung

Homogenisierungsresultat spezifische Zellformeln für die effektiven
Materialparameter, welche voneinander entkoppelt sind.
Der zweite Teil dieser Arbeit widmet sich der Entwicklung numerischer
Verfahren zur Berechnung der effektiven Rissenergie heterogener
Materialien. Die Zellformel zur Berechnung dieser lässt sich als konvexes,
jedoch nicht streng konvexes Optimierungsproblem aufstellen, welches
den (periodischen) minimalen Schnitt durch eine Mikrostruktur be-
stimmt. Zur Lösung dieses Problems werden eine neue Diskretisierung
sowie FFT-basierte Lösungsverfahren mit adaptiver Parameterwahl
entwickelt. Mithilfe dieser Strategie können Materialien von industrieller
Komplexität untersucht werden.
Im darauffolgenden Abschnitt wird der Fokus auf lokal anisotrope
Mikrostrukturen gelegt. Diese erfordern eine Umformulierung des
Zellproblems in eine anisotrope Form sowie eine Modifizierung des
Lösungsverfahrens. Mithilfe dieser Erweiterungen können polykris-
talline Materialien sowie Faserstrukturen mit anisotropen Fasern
untersucht werden.
Der letzte Abschnitt ist Untersuchungen zu verschiedenen Randbedin-
gungen gewidmet. Die ursprünglich hergeleitete Zellformel verwendet
Dirichlet-Randbedingungen. Untersuchungen zur Homogenisierung
von Elastizitäts- oder Wärmeleitungsproblemen zeigen jedoch, dass
die Verwendung periodischer Randbedingungen zu einem geringeren
Fehler der approximierten effektiven Eigenschaften führt. Basierend
auf diesen Ergebnissen wird untersucht, ob diese Verbesserung auf die
Berechnung der effektiven Rissenergie übertragbar ist.
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Summary

Materials used in an industrial context often exhibit a complex mi-
crostructure which directly influences the macroscopic material be-
havior. For simulations on the component scale, multi-scale meth-
ods may exploit the microstructural information. In particular ho-
mogenization methods are often used due to their well formulated
mathematical background.
In a first step we focus on the characterization of complex microstruc-
tures. We investigate the applicability of Minkowski tensors, which
originate from stochastic geometry, to characterize microstructures. We
identify in particular a normalized tensor, the quadratic normal tensor,
as a suitable characterizer.
The foundation of the subsequent chapters is laid by a periodic homoge-
nization result for free discontinuity problems. These free discontinuity
problems form the mathematical basis of the variational approach to
fracture, known in the fracture community as the Francfort-Marigo
model of brittle fracture. The homogenization result is directly applicable
to a single loading step of the Franfort-Marigo model in the special case
of anti-plane shear and without an irreversibility constraint. Further-
more, recent extensions lift these restrictions individually and provide
extensions to random ergodic media, indicating that the homogenization
result holds for the general Francfort-Marigo model and non-periodic
microstructures. The homogenized model has a similar structure as
the original Francfort-Marigo model but with homogeneous, possibly
anistotropic material parameters, namely an effective stiffness and an
effective crack energy. The homogenization result includes specific cell
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Summary

formulas for both effective properties which decouple upon homoge-
nization. The second part of this thesis is devoted to establish numerical
tools to compute the effective crack energy of heterogeneous materials.
The cell formula to compute the effective crack energy may be for-
mulated as a convex, but not strictly convex, optimization problem
to compute the (periodic) minimum cut through a given microstructure.
To solve this problem we investigate novel discretization methods and
FFT-based solvers with an adaptive parameter choice. With this strategy
we investigate microstructures of industrial complexity.
Subsequently, we focus on locally anisotropic microstructures. This
requires an anisotropic formulation of the governing cell formula and
a modification of the solver. These alterations at hand, we investigate
polycrystalline materials and fibrous structures with a distinct anisotropy
of the fibers.
The last section is devoted to investigating the influence of different
boundary conditions. The original cell formula for the effective crack en-
ergy is formulated using Dirichlet boundary conditions. Investigations
on the homogenization of linear elasticity or heat conductivity show an
advantage of periodic boundary conditions over the Dirichlet kind in
the convergence rate of the apparent properties. Based on these results
we investigate if this advantage translates to the computation of the
effective crack energy.
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Chapter 1

Introduction

1.1 Motivation and objectives

With fracture, we denote a separation of a previously coherent material
due to breakage of bonds between the molecules of the material.
This breakage may occur due to crack initiation, the propagation
of a pre-existing crack through the material or a complete failure of
the structure. Fracture mechanics describes these different cracking
behaviors of materials from various perspectives. The field of research
may be broadly categorized into two principal cases, namely brittle
fracture and ductile fracture. Brittle fracture describes a sudden crack
propagation with almost no energy dissipation before the fracture. For
ductile fracture on the other hand, a noticeable amount of energy has
been dissipated before the crack propagates in the form of damage and
plasticity. Furthermore, one distinguishes the dynamic case and the
quasi-static case.
The actual mechanisms of fracture and crack propagation take place over
a broad range of length scales. On the atomic scale, the separation of a
previously intact material is described by breakage of inter-atomic bonds.
On the component scale, a continuum mechanical perspective is typically
taken. However, the classical continuum mechanical toolkit faces
difficulties in the presence of cracks, which make in the displacement
field discontinuous. Additional difficulties arise in the presence of

1



1 Introduction

propagating cracks where the newly formed crack surface provides an
additional unknown.
One particular question of interest in the field of brittle fracture
is when cracks propagate, which is the basic motivation for failure
criteria. Failure criteria play a crucial role in the engineering design of
components to ensure their safety and reliability. Typical failure criteria
involve either a stress-based aproach, are energy based or focus on stress
intensity factors. To equip failure criteria with necessary parameters,
crack-related material properties are required. Of particular interest in
brittle fracture are the critical energy release rate, the fracture toughness,
as well as the ultimate tensile strength.
The theoretical strength of materials, derived from the strength of
the atomic bonds in a hypothetically perfect arrangement, typically
overestimates the actual strength measured in real-world experiments.
This deviation is caused by a non-perfect arrangement of atoms on a
small length scale mainly in the form of micro cracks and defects.
In addition to flaws and micro cracks, industrial materials often exhibit a
random microstructure due to their manufacturing process. From
fiber reinforced composites to polycrystalline materials or porous
media, several intended or unintended production factors influence the
microstructure. This makes a fully experimental characterization rather
expensive. An effective tool to incorporate microstructure information
into material models is given by multi-scale simulation methods and,
in particular, homogenization methods. Assuming a distinct scale
separation, the aim of homogenization methods is to treat the material
on the component scale as homogeneous, where effective mechanical
quantities and material coefficients arise from a separate field problem
on a microstructure cell.
This thesis is devoted to the characterization of microstructures and
the investigation of a homogenization result for variational brittle
fracture (Francfort and Marigo, 1998). For the characterization of
microstructures we rely on an approach originated in stochastic geom-
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1.2 Outline and originality

etry, the Minkowski tensors. In order to characterize microstructures
of different sizes we establish the quadratic normal tensor as our
primary characterizer.
For the homogenization of brittle fracture we pursue an approach
based on a periodic homogenization result (Braides et al., 1996) for
the Mumford-Shah functional (Mumford and Shah, 1989), as well as
several extensions including irreversibility (Giacomini and Ponsiglione,
2006), random, ergodic media (Cagnetti et al., 2019) and the full
Francfort-Marigo functional (Friedrich et al., 2022). Based on these
theoretical works we consider a cell formula defining the effective crack
energy. We aim to provide numerical tools to compute the effective crack
energy building on an initial work of Schneider (2020).

1.2 Outline and originality

Chapter 2 is devoted to the concepts which form the basis of this work.
We first give an overview on brittle fracture mechanics. We discuss the
variational approach to fracture and the typical numerical treatment of
the latter via phase-field fracture models. A second fundamental concept
is given by microstructure characterization which is required to distin-
guish different microstructues using simple quantities. Based on these
characteristics, homogenization methods may be applied. Thirdly, we
discuss phase-field fracture on complex microstructures. The governing
equations require careful treatment and we propose an implicit solver
strategy. Lastly, we discuss a homogenization result (Braides et al., 1996)
for the Mumford-Shah functional (Mumford and Shah, 1989) which
shares various properties with the Francfort-Marigo model of brittle frac-
ture (Francfort and Marigo, 1998). We discuss the requirements for this
homogenization result to be applicable to the Francfort-Marigo model.
We define the effective crack energy based on a cell formula derived by
Braides et al. (1996). Extending Schneider (2020) we identify this formula

3



1 Introduction

as the minimum cut problem and derive an equivalent form based on
the minimum cut/maximum flow duality derived by Strang (1983).

In chapter 3 we focus on the characterization of digital microstructures.
We propose the use of Minkowski tensors, which originate in stochastic
geometry, as a tool to characterize microstructures. These tensors are
applicable to a wide range of different shapes. In particular, we introduce
the quadratic normal tensor as a normalized Minkowski tensor which
provides a measure of the anisotropy of a microstructure. We introduce
a numerical method to compute the quadratic normal tensor on large
digital microstructures. We compare the accuracy of our approach
for fiber reinforced composites with the usual tool to determine the
fiber orientation tensor based on a structure tensor approach. A final
investigation on sand grain structures demonstrates the wide range of
applicability of the quadratic normal tensor.

Chapter 4 is concerned with efficient algorithms to compute the effective
crack energy on heterogeneous random microstructures. In order to find
solutions of the cell problem derived in chapter 2, suitable discretizations
and solvers are required. We provide extensions to the approach of
Schneider (2020) who derived FFT-based solvers and discretizations. We
discuss an implementation of a discretization based on a combinatorially
consistent grid, which was introduced by Couprie et al. (2011), into the
context of FFT-based solvers. Furthermore we rely on the alternating
direction method of multipliers to solve the discretized problem using
an adaptive parameter strategy.

In chapter 5 we use both solvers and discretizations provided in the
previous chapter and propose an extension to the anisotropic case. We
discuss the anisotropic minimum cut/maximum flow problem and
apply it to study anisotropic materials.

Chapter 6 is devoted to explore the influence of the boundary conditions
when computing the effective crack energy on random microstructure
cells of finite size. For this purpose we use fast marching methods to
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1.2 Outline and originality

compute the effective crack energy in two dimensional structures which
allows us to choose the boundary conditions freely.

Finally, we summarize the novelties of our approach and give a final
conclusion in chapter 7 .
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Chapter 2

Fundamental concepts

2.1 Basic concepts of brittle fracture
mechanics1

2.1.1 Linear elastic fracture mechanics

Modern fracture mechanics (Gross and Seelig, 2017) originated from
the pioneering work of Griffith (1921), who postulated an energetic
criterion for the quasi-static growth of a pre-existing crack in a brittle,
isotropic, and elastic solid. He considered the change of the potential
energy Π with the crack area 𝐴 and postulated that a crack can only
grow whenever the energy release rate −𝑑Π/𝑑𝐴 reaches a critical value
𝛾. Put differently, the crack grows whenever it is energetically more
favorable to increase the surface energy of the crack than to increase the
elastic energy stored in the body.
For the case of three-dimensional isotropic elasticity and a semi-infinite
planar pre-existing crack in an infinite medium, Irwin (1957) investigated
the stress state at the crack tip, which has an 𝑟− 1

2 -singularity where
𝑟 denotes the Euclidean distance to the crack tip. He distinguished
three different modes which quantify the degree of singularity of the

1 This section is based on the introductory sections of Ernesti and Schneider (2021; 2022)
and Ernesti et al. (2023) and provides an extension thereof.
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2 Fundamental concepts

(a) Mode I (b) Mode II (c) Mode III

Figure 2.1: Schematic illustration of mode I, mode II and mode III loading.

normal, the in-plane and the out-of-plane shear stresses, respectively, see
Fig. 2.1 for a graphic illustration. He associated a stress-intensity factor
to each mode and postulated that the pre-existing crack has to grow
provided a combination of the stress intensity factors reaches a critical
value, the so-called fracture toughness. Expressing the energy-release
rate in terms of these stress-intensity factors, Irwin converted Griffith’s
criterion into an investigation of the associated stress concentration at
the crack tip (Irwin, 1962). Thus, in the case of linear elastic, isotropic
and homogeneous brittle materials both Griffith’s energy criterion and
Irwin’s notion of stress intensity factors coincide. In the literature,
fracture toughness and critical energy release rate or crack resistance are often
used interchangeably (Gross and Seelig, 2017). This work is focused on
Griffith’s point of view and we call the energy related quantity the crack
resistance, avoiding the term fracture toughness altogether.
Independently, Cherepanov (1967) and Rice (1968) proposed a way to
compute the local energy-release rate at a crack tip in terms of a contour
integral around the crack tip, the so-called J-integral. This J-integral

8



2.1 Basic concepts of brittle fracture mechanics

offers an elegant way to deal with the stress singularity at the crack tip
numerically, as it is independent of the chosen path of integration.
Following the first concept of Irwin (1957), the stress is infinitely large
at the crack tip. This motivated a refinement of the model to account
for small plastic effects close to the crack tip since atomic bonds cannot
withstand an infinite load. These small-scale plastic effects are even
considered for macroscopic brittle material behavior. The small plastic
region around the crack is called the plastic zone (Irwin, 1968).
All three aforementioned pillars - Griffith’s energy release rate, Irwin’s
stress intensity factors and techniques based on the J-integral - may be
extended to (homogeneous) anisotropic brittle solids (Sih et al., 1965;
Wu, 1967; Saouma et al., 1987; Williams, 1989). In the anisotropic case,
however, some care has to be taken, as the fracture modes are not directly
correlated to the normal and tangential jumps of the displacement
field (Laubie, 2013).
Linear elastic fracture mechanics was also extended to account for elasto-
plastic effects. Dugdale (1960) investigated mode I crack propagation,
see Fig. 2.1a, with a perfectly plastic material behavior within the plastic
zone. In his model, the plastic zone has an elongated shape in the
anticipated crack direction. A generalization of this model is found in
the form of cohesive zone models (Barenblatt, 1962; Elices et al., 2002),
which express the correlation of the crack opening and the governing
stresses explicitly via traction separation laws (Amidi and Wang, 2017).
The concept of classical linear elastic fracture mechanics has also
been extended to study fatigue (Rice, 1967). Additionally, leaving
the quasi-static domain, dynamic effects like crack branching (Katzav
et al., 2007) have been studied by accounting for dynamical stress
intensity factors dependent on the speed of the crack. Creep and viscous
effects have also been included (Hollstein and Kienzler, 1988).
Linear elastic fracture mechanics is first and foremost a tool to investigate
when a pre-existing crack propagates, which is expressed via fracture
criteria. Of additional interest is predicting how a crack grows and to
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determine possible crack paths and surfaces (Chambolle et al., 2009).
The question is whether the crack propagates in the same direction
as before, kinks at a certain angle or, e.g., splits into several crack
branches. The most common approaches to predict these kinking
angles exploit the principle of local symmetry (Gol’dstein and Salganik,
1974) or follow the postulate of maximum energy-release (Hussain
et al., 1974). In general, these two models yield different results for the
kinking angle (Amestoy and Leblond, 1992). Of particular interest is the
change of the crack direction at material interfaces in the context of a
heterogeneous material. Early attempts study crack penetration at the
interface (Cook and Erdogan, 1972; Erdogan and Biricikoglu, 1973) or
whether the crack is deflected at the interface (Goree and Venezia, 1977;
He and Hutchinson, 1989).
In addition to the aforementioned analytical methods, several con-
tributions are concerned with computational fracture mechanics, see
Sedmak (2018) for an overview. Equipped with numerical tools, these
may either serve to investigate when a structure fails, or how a crack
may propagate. In particular, in the absence of analytical solutions,
discretization methods are required. Similar to other branches of
mechanics, the most common technique for discretizing the involved
equations are finite elements. Early attempts to compute stress-intensity
factors numerically have been proposed by Chan et al. (1970) and Rice
and Tracey (1973). However, it turns out to be difficult to resolve the
singularity at the crack tip, since the error of a finite element solution
correlates with the regularity of the approximated fields. For this
purpose, enriched (Moës et al., 1999) or extended (Fries and Belytschko,
2010) finite-element discretizations were developed which account for
the crack surface in cracked elements by adding special ansatz functions.
An alternative approach form cohesive zone elements (Chowdhury and
Narasimhan, 2000), which may be incorporated into the finite-element
mesh. In these elements specific traction-separation laws (Wimmer et al.,
2009) may be implemented to model the correlation of crack opening and
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governing stresses. These traction separation laws are readily calibrated
by experiments (Dastjerdi et al., 2013; Amidi and Wang, 2017). However,
caution has to be taken, as cohesive zone elements may induce a mesh
dependency (Rimoli and Rojas, 2015).

2.1.2 The variational approach to fracture

Francfort and Marigo (1998) revisited Griffiths energetic fracture crite-
rion (Griffith, 1921) and introduced a variational approach to fracture.
Consider a given domain Ω ⊂ R𝑑, 𝑑 ∈ {2, 3} with sufficiently smooth
boundary, as well as a field of stiffness tensors C : Ω → 𝐿(𝑆𝑦𝑚(𝑑))
a field of positive crack resistances 𝛾 : Ω → R>0. We denote by
𝐿(𝑆𝑦𝑚(𝑑)) the field of linear operators on symmetric 𝑑× 𝑑 matrices and
explicitly account for positive definite stiffnesses. The Francfort-Marigo
model considers quasi-static crack growth. After a fixed discretization in
(pseudo)-time, which discretizes an increasing external load, it seeks the
displacement field 𝑢 : Ω→ R𝑑 and the 𝑑− 1 dimensional crack surface
𝑆 ⊂ Ω by minimizing the energy functional

𝐹𝑀(𝑢, 𝑆) = 1
2

∫︁
Ω∖𝑆

∇𝑠𝑢(𝑥) : C(𝑥) : ∇𝑠𝑢(𝑥) 𝑑𝑥+
∫︁

𝑆

𝛾(𝑥) 𝑑𝐴 (2.1)

for each time step subjected to appropriate boundary conditions. The
quantity ∇𝑠𝑢 denotes the strain field expressed via the symmetrized
gradient operator∇𝑠. A physical constraint is given by the irreversibility
condition that the crack surface of the current time step must contain
the crack surface of the previous time step. The Francfort-Marigo
functional consists of the sum of two energies, a bulk energy and a
surface energy. The bulk energy is quadratic in the strain field ∇𝑠𝑢 and
describes the elastic deformation of the solid. The surface term is given
by the 𝛾-weighted surface area of the crack surface 𝑆. This additive
decomposition into two energies allows the model to describe both
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crack initiation and crack propagation within a single model. Upon an
increased load, a global minimum may be found by either further elastic
deformation of the solid, or via the formation of a crack surface. Notice,
however, the differences compared to the formulation of Griffith (1921).
His criterion for crack propagation is concerned with local stationary
points. This specifically includes local minima, local maxima and saddle
points. Solutions of the Francfort-Marigo model on the other hand rely
on a global minimization of the functional (Chambolle and Crismale,
2019). This global minimization is, as mentioned by Francfort and
Marigo (1998), "not dictated by any known thermodynamical argument,"
but merely a necessity for the mathematical treatment of the model. In
contrast to the framework of linear elastic fracture mechanics based on
Griffith (1921) and Irwin (1957), no preexisting crack is required in the
Francfort-Marigo model.
The Francfort-Marigo functional (2.1) shows strong similarities with
Mumford-Shah type functionals (Mumford and Shah, 1989) used in
image segmentation. Consider a scalar variable 𝑣 : Ω → R from the
space of special functions of bounded variation (SBV) (Braides, 1998)
with jump set 𝑆𝑣 and the symmetric, positive definite tensor field 𝐴. A
similar functional to (2.1) from the family of Mumford-Shah functionals
is given by

𝑀𝑆(𝑣) = 1
2

∫︁
Ω
∇𝑣(𝑥) ·𝐴(𝑥) · ∇𝑣(𝑥) 𝑑𝑥+

∫︁
𝑆𝑣

𝛾(𝑥) 𝑑𝐴. (2.2)

Notice three main differences compared to the Francfort-Marigo model:
The first difference regards the bulk energy. The Mumford-Shah func-
tional considers a quadratic function of the gradient of 𝑣, whereas the
Francfort-Marigo model considers a quadratic function of the sym-
metrized gradient of 𝑢. For the special case of anti-plane shear, for
which the displacement field 𝑢 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧)𝑇 may be expressed using
a scalar variable 𝑣 = 𝑢𝑧 , which only depends on the spatial dimensions
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𝑥 and 𝑦, the bulk energies coincide. The second difference concerns
the integral range of the surface part. The crack surface 𝑆 serves as an
additional objective variable, whereas the surface range in the Mumford-
Shah functional is given by the jump set of 𝑣, namely 𝑆𝑣. The third
difference between the models is given by the discretization in time.
Within the Mumford-Shah functional there is no time stepping involved.
The Francfort-Marigo model on the other hand explicitely accounts
for changes in an external load and minimizes the Francfort-Marigo
functional in each time step. Furthermore, the history of the previous
steps is taken into account via the irreversibility constraint. To sum-
marize, in the case of anti-plane shear, the Mumford-Shah functional
describes the relaxed form of the Francfort-Marigo model in SBV where
irreversibility is neglected. To prove the existance of weak solutions
of the Francfort-Marigo model in the general case, i.e., including the
symmetrized gradient instead of the gradient as well as accounting
for irreversibility, the solution space of generalized special functions of
bounded deformation (GSBD) (Dal Maso, 2013) is required (Chambolle
and Crismale, 2021). In this function space the crack surface is identified
with the jump set of 𝑢, namely 𝑆𝑢. The existence of strong solutions
which treat the displacement field and the crack surface as two variables
has been shown recently (Chambolle and Crismale, 2019). Various
approaches to compute minimizers of the functional numerically have
been proposed (Giacomini and Ponsiglione, 2003; Pandolfi et al., 2013;
Schmidt et al., 2009). In particular, the Francfort-Marigo model has laid
the foundation of the field of phase-field fracture (Bourdin et al., 2000)
which enjoys great popularity, see Wu et al. (2020) for a recent review.

2.1.3 Phase-field fracture

The phase-field model of brittle fracture was introduced as a regu-
larization of the Francfort-Marigo model, motivated by the Ambrosio-
Tortorelli approximation (Ambrosio and Tortorelli, 1990) of the Mumford-
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Shah functional (Mumford and Shah, 1989). Owing to their ability to
nucleate cracks and to produce complex crack patterns, phase-field
fracture models were subject to a flurry of activity (Ambati et al., 2015;
Wu et al., 2020). The phase-field model introduces a damage variable
𝑑 : Ω → [0, 1] which takes values 𝑑 = 0 when the material is fully
intact and 𝑑 = 1 within a crack. The range between these values is
given by a smeared interface of phase-field width 𝑙 > 0 which provides
a regularization of the sharp interface which represents the crack in
the Francfort-Marigo model. After a discretization in (pseudo-)time,
the phase-field model in its original form is given by minimizing the
functional

𝑃𝐹𝑙(𝑢, 𝑑) =
∫︁

Ω

1
2(1− 𝑑)2∇𝑠𝑢 : C : ∇𝑠𝑢+ 𝛾

(︂
‖𝑑‖2

2𝑙 + 𝑙

2‖∇𝑑‖
2
)︂
𝑑𝑥

(2.3)

in each time step for both 𝑢 and 𝑑. To ensure the irreversibility of the
phase-field model, these minimizers are sought under the constraint that
𝑑𝑖+1 ≥ 𝑑𝑖 almost everywhere, where the index 𝑖 represents the time step.
Chambolle (2004) showed that the phase-field functional Γ-converges
to the Francfort-Marigo model as 𝑙 → 0. Similar to the solution theory
for the Francfort-Marigo model, this convergence result relies on global
minimizers.
Several methods have been established to enforce the irreversibility
constraint, which is necessary for the physicality of the model since it
prevents cracks from healing. Miehe et al. (2010a) introduced a formula-
tion based on a history field which enjoys great popularity. Another ap-
proach (Bourdin et al., 2000; Burke et al., 2010) enforces the irreversibility
constraint by fixing 𝑑 = 1 in all points 𝑥 where the damage field exceeds
a certain threshold via Dirichlet boundary conditions. Alternatives rely
on established methods for constrained optimization problems such
as penalty methods (Gerasimov and De Lorenzis, 2019) or augmented
Lagrangian methods (Wheeler et al., 2014).
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(a) Tension (b) Compression

Figure 2.2: Schematic illustration of tension and compression under mode I loading.

Originating from the form (2.3), several extensions have been proposed.
The model (2.3) does not distinguish tension and compression since the
strain field∇𝑠𝑢 enters quadratically into the functional. This is, however,
unphysical. Consider a pre-existing crack under mode I tensile load,
see Fig. 2.2a. The load, if sufficiently large, causes the crack faces to
open and the crack to further propagate. Subjected to the same load in
opposite direction, i.e., a compressive load, see Fig. 2.2b, the material
behavior is fundamentally different since the load forces the crack faces
to close which results in an entirely different stress state. To account
for this distinction of tension and compression, several models have
been proposed. Amor et al. (2009) established a splitting for isotropic
materials based on the sign of the strain trace. A different approach was
proposed by Miehe et al. (2010b) based on an eigenvalue decomposition
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of the strain field. Chambolle et al. (2018) proved that the approach of
Amor et al. (2009) Γ-converges to the Francfort-Marigo model with the
additional constraint that the crack faces do not interpenetrate as 𝑙→ 0.
In the same work they showed that the method which uses the splitting
of Miehe et al. (2010b) converges to a Francfort-Marigo type model which
prevents crack propagation due to shear loading. Recent developments
propose extensions to anisotropic stiffnesses (van Dijk et al., 2020) and
multi-axial loading conditions (De Lorenzis and Maurini, 2021).
The phase-field model (2.3) is formulated within the context of brittle
fracture and small strain elasticity. Extensions to finite deformations
(Hesch and Weinberg, 2014; Miehe et al., 2016) and ductile fracture
(Ambati et al., 2016; Kuhn et al., 2016) are, however, well established.
Furthermore, applications of phase-field models to dynamic fracture
problems were proposed (Borden et al., 2012; Mandal et al., 2020; Ren
et al., 2019; Weinberg and Wieners, 2022) which rely on continuum wave
equations instead of the quasi-static case. In these models, typically
observed dynamical effects such as crack branching (Sun et al., 2021) can
be modeled (Hofacker and Miehe, 2012).
Phase-field models may be used to simulate crack initiation and propa-
gation on the component scale where the material properties are often
modeled as isotropic and homogeneous. Moreover, models which specif-
ically account for heterogeneities on the microscale were established
(Kuhn et al., 2015; Chen et al., 2019; Ernesti et al., 2020).
Additionally, several extensions accounting for anisotropic crack re-
sistances were proposed. Francfort and Marigo (1998) already pro-
posed a way to incorporate a direction dependent crack resistance into
their model. Focardi (2001) established a Γ-convergence result for an
Ambrosio-Tortorelli approximation (Ambrosio and Tortorelli, 1990) of a
Mumford-Shah functional with a direction dependent surface term. This
result may be applied to the weak form of the Francfort-Marigo problem
in case of anti-plane shear, neglecting irreversibility. Implementations of
phase-field models with an anisotropic crack resistance were proposed
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by Clayton and Knap (2014; 2015), who introduced a geometrically
nonlinear phase-field model and expressed the anisotropy of the crack
resistance via a second order tensor. Na and Sun (2018) and Bryant
and Sun (2018) proposed a method coupling crystal plasticity with an
anisotropic phase field fracture model. Expressing a general, anisotropic
crack resistance via a second order tensor allows for only one weak
direction within the plane. Nguyen et al. (2017) proposed a multi phase-
field approach to consider more complex forms of anisotropy. Other
approaches rely on a higher order phase-field model which accounts
for second derivatives of the damage variable 𝑑. In this case, a fourth
order crack resistance tensor may account for a more general case (Li
et al., 2015; Teichtmeister et al., 2017; Kakouris and Triantafyllou, 2019;
Ma and Sun, 2020).
Kuhn et al. (2015) investigated the use of different degradation functions
within phase-field fracture models. Furthermore, different approxi-
mations of the crack energy, which establish a different interpretation
of phase-field models were proposed (Pham et al., 2011). Phase-field
models exhibit similarities to non-local damage models (Jirasek, 1998)
and may be treated as such, instead of as the regularization of a free-
discontinuity problem. In this interpretation, the phase-field width
𝑙 serves as a material parameter (Kuhn, 2013) which influences the
ultimate tensile strength of the material based on a one-dimensional
analysis of the model. Additionally, length-scale insensitive methods
were proposed (Wu and Nguyen, 2018) which are referred to as cohesive
phase-field fracture.
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2.2 Characterization of digital microstructures2

2.2.1 Objectives

Materials of industrial interest often display a heterogeneous underlying
microstructure which influences the macroscopic material behavior. Let
us consider an injection molded structural component made from a
polymer material. For improving the stiffness of the component while
keeping its lightweight potential, filler materials, such as glass fibers,
are commonly added to the polymer melt before being modeled. As a
result, the component’s material is given by a fiber reinforced polymer
which has a complex microstructure determined by the arrangement
of the fibers. Often, both polymer and glass are considered isotropic.
However, the macroscopic material behavior is strongly dependent on
the fiber arrangement on the microscale which may induce a distinctly
anisotropic material behavior on the component scale.
Due to the infinite number of possible arrangements on the microscale,
an exhaustive experimental characterization of a composite’s microstruc-
ture dependent anisotropic behavior may prove challenging. Hence,
homogenization-based multi-scale methods have been developed to
simulate the material behavior by explicitly taking the microstructural
information into account, see Matouš et al. (2017) for a recent overview.
These homogenization techniques compute the effective response of the
heterogeneous material, taking the material behavior of the constituents
and the microstructure into account. Therefore, the microstructure has
to be quantified in terms of suitable data, which is where microstructure
characterization comes into play.

2 This section is based on the introduction of Ernesti et al. (2022). Changes to the text have
been made in order to include it into the structure of this work.
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2.2.2 State of the art

A common image-based microstructure-characterization method is scan-
ning a material sample via micro-computed tomography (𝜇-CT) (Schla-
ditz et al., 2017; Cnudde et al., 2009). After tomographic reconstruction,
the local mass density of a material is determined and stored as 3D
voxel data. In case of a two-phase material and after some processing,
this voxel data may be interpreted as the characteristic function of the
microstructure, i.e., the function which attains the value 1 for one phase,
and the value 0 for the complementary phase. Correctly segmenting
𝜇-CT scans requires a certain contrast in the absorption rates of the
constituents to be applicable, for instance for porous media or for a
variety of composite materials.
The mechanical behavior of composite and porous materials is strongly
influenced by the volume fractions of the phases. If the characteristic
function is accurately resolved by the 𝜇CT-scan, the volume fraction
can be computed accurately by numerical integration. With the volume
fraction at hand, bounds that predict the possible range of effective
elastic and thermal material properties may be established, see Voigt
(1889) and Reuss (1929). However, for a high material contrast, these
bounds span a wide range and hence provide limited information.
For higher accuracy, additional information is required, see Torquato
(2002) for an overview. For instance, 𝑛-point correlation functions (Brown,
1955; Torquato and Stell, 1982) provide suitable additional information.
Their applicability for anisotropic materials, however, is limited due to
the high associated computational effort, see Eriksen et al. (2004).
For the class of fiber-reinforced composites, specific microstructure-
characterization techniques have been established. In addition to the
fiber volume-fraction, common characteristics include the fiber aspect-
ratio and fiber-orientation tensors of second and fourth order (Kanatani,
1984; Advani and Tucker, 1987), see for instance Müller and Böhlke
(2016). A variety of methods for computing fiber-orientation tensors
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based on volumetric images has been established (Robb et al., 2007;
Daniels et al., 2007). A common approach is based on the so-called
structure tensor (Krause et al., 2010).
For porous structures, different microstructure characteristics are of
interest. For instance, the tortuosity (Neumann et al., 2019) and
chord-length distribution (Matheron, 1975; Torquato, 2002), as well
as the pore-size distribution (Kate and Gokhale, 2006) are investigated.
These measures are primarily responsible for the effective (isotropic)
permeability of the porous medium in question.
Polycrystalline materials require a different approach. Typically, the
grains differ only in their crystalline orientation, but have identical
absorption rates. Hence, 𝜇-CT scans are of limited use. Instead,
for reconstructing the 3D-microstructure of polycrystalline materials,
focused ion beam - scanning electron microscopy (FIB-SEM) (Bansal
et al., 2006; Groeber et al., 2006; Zaefferer et al., 2008) or electron
back-scattering diffraction (EBSD) (Korte et al., 2011; Adams and
Olson, 1998; Larsen et al., 2002) are preferred. Primary microstructure
characteristics of polycrystalline materials are the grain-size distribution
(morphological texture) (Döbrich et al., 2004) and the orientation
distribution (crystallographic texture) (Bunge, 1982; Böhlke, 2006; Böhlke
and Lobos, 2014; Junk et al., 2012; Böhlke et al., 2010).
From a theoretical point of view, most materials undergoing a manufac-
turing process are influenced by stochastic factors, for instance due to
slight variations in the composition or the seemingly chaotic behavior
of the processing condition as a result of a high sensitivity to initial
and boundary conditions. Still, the experimentally determined effective
properties of such composites are often surprisingly deterministic.
These observations may be formalized by the theory of stochastic
homogenization (Kozlov, 1979; Papanicolaou and Varadhan, 1981) which
forms the basis for modern computational multi-scale methods. We refer
to section 2.4.2 where we discuss these homogenization methods in the
context of brittle fracture.
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2.3 Phase-field fracture on heterogeneous microstructures

2.3 Phase-field fracture on heterogeneous mi-
crostructures3

In this section, we investigate the classical phase-field fracture problem
on heterogeneous microstructures. Classical here means that the phase-
field functional we consider uses both a quadratic damage degradation
function and a quadratic damage penalty term. We derive the governing
equations in section 2.3.1. We introduce several energy splittings from
the literature (Amor et al., 2009; Miehe et al., 2010b). Additionally, we
follow Boeff et al. (2015) to adjust the phase-field model for heteroge-
neous material properties.
To solve the governing equations we rely on FFT-based solvers and
discretizations on regular voxel grids, as well as a fully implicit scheme
which is first order in time. To be more precise, we use a fast gradient-
method for the staggered treatment of the fully-coupled nonlinear phase-
field fracture system. Fast gradient-methods add an inertial term to
classical gradient schemes, dramatically accelerating the latter, and
exhibit good performance also for non-convex problems of interest,
with recent research triggered by machine learning applications. The
theoretical reasons are still under investigation (Jin et al., 2018), but it
is commonly believed that the inertial term helps navigating through
non-convex energy landscapes more rapidly, ignoring local stationary
points and flat ravines. Here, we rely on the heavy-ball method, first
introduced by Polyak (1964).
We investigate phase-field fracture on the complex microstructures of
fiber reinforced composites in sections 2.3.3 and 2.3.4.

3 This section is based on Ernesti et al. (2020) which introduces a novel solver for phase-
field fracture on heterogeneous microstructures. This solver was first presented in
my masters thesis (Ernesti, 2018) and the publication (Ernesti et al., 2020) provides an
extension thereof. We exclude the detailed discussion on the solver and its performance
and provide only a selected choice of numerical examples which serve our purpose here.

21



2 Fundamental concepts

2.3.1 Continuous model under investigation

Let 𝑌 = [0, 𝐿1]× [0, 𝐿2]× [0, 𝐿3] be a rectangular unit cell. Suppose two
heterogeneous elastic strain energy potentials 𝜓+, 𝜓− : 𝑌 ×Sym(3)→ R

are given, where Sym(3) denotes the space of symmetric two-tensors in
R3. 𝜓− measures the stored elastic energy per unit volume which is not
degraded, whereas 𝜓+ is responsible for the part which degrades as a
result of damage. These potentials shall sum to the total (local) stored
elastic energy density 𝜓 : 𝑌 × Sym(3)→ R, i.e., the equation

𝜓(𝑥, 𝜀) = 𝜓+(𝑥, 𝜀) + 𝜓−(𝑥, 𝜀) (2.4)

shall hold for all 𝑥 ∈ 𝑌 and 𝜀 ∈ Sym(3). For the present manuscript,
we set 𝜓(𝑥, 𝜀) = 1

2𝜀 : C(𝑥) : 𝜀 with a heterogeneous linear elastic
tensor field C.
Let furthermore a subvolume 𝑌 ⊆ 𝑌 be given, containing all microscopic
points where the material can be damaged. (In particular, 𝑌 may be
equal to 𝑌 .) Denote by 𝜒 the characteristic function of 𝑌 , i.e., the function
which equals unity on 𝑌 and vanishes elsewhere.
For a given macroscopic strain 𝐸 ∈ Sym(3), the functional under consid-
eration reads

𝐹 (𝑢, 𝑑) =
∫︁

𝑌

𝑓(𝑥, 𝑑(𝑥))𝜓+(𝑥, 𝜀) + 𝜓−(𝑥, 𝜀) +𝐺𝑐

(︂
𝑑2

2𝑙 + 𝑙

2 ‖∇𝑑‖
2
)︂
𝑑𝑥,

(2.5)
a function of the periodic displacement fluctuation field 𝑢 : 𝑌 → R3 and
the periodic damage field 𝑑 : 𝑌 → R. Here, 𝜀 = 𝐸 +∇𝑠𝑢 denotes the
total strain involving the symmetrized gradient operator∇𝑠,

𝑓(𝑥, 𝑑) = 𝑘0 + (1− 𝑘0)(1− 𝜒(𝑥)𝑑)2 (2.6)

is the damage degradation function involving a relative residual stiffness
𝑘0> 0 and 𝐺𝑐 > 0 stands for the critical energy release rate according
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to Griffith (1921). The latter is assumed to be homogeneous for now as
we specify the material points that may damage via the characteristic
function 𝜒. The length parameter 𝑙 > 0 describes the width of the
transition zone between broken and intact material, and is decisive for
crack nucleation. Before continuing, we discuss the types of splittings
(2.4) we will consider in this section, where we assume C to be isotropic,
i.e., its application may be written as

C(𝑥) : 𝜀 = 2𝜇(𝑥)𝜀+ 𝜆(𝑥) tr(𝜀) Id = 2𝜇(𝑥)𝜀′ +𝐾(𝑥) tr(𝜀) Id,

𝜀 ∈ Sym(3), 𝑥 ∈ 𝑌,
(2.7)

for positive functions 𝜆, 𝜇,𝐾 : 𝑌 → R, which encode the heterogeneous
Lamé’s constants and the compression modulus, and the deviatoric
strain 𝜀′ = 𝜀 − 1

3 tr(𝜀) Id. In this isotropic case we distinguish three
different energy splittings:

1. Trivial splitting: no distinction between tension and compression

𝜓+(𝑥, 𝜀) = 1
2𝜀 : C(𝑥) : 𝜀, 𝜓−(𝑥, 𝜀) ≡ 0, 𝑥 ∈ 𝑌, 𝜀 ∈ Sym(3).

(2.8)

2. The spherical splitting of Amor et al. (2009)

𝜓+(𝑥, 𝜀) = 𝜇(𝑥)‖𝜀′‖2 + 2𝜆(𝑥)⟨tr(𝜀)⟩2+,

𝜓−(𝑥, 𝜀) = 2𝜆(𝑥)⟨tr(𝜀)⟩2−,

𝑥 ∈ 𝑌, 𝜀 ∈ Sym(3),

(2.9)

where ⟨·⟩± denote the McCauley brackets

⟨·⟩+ = max(0, ·) and ⟨·⟩− = min(0, ·).
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3. The eigenvalue splitting of Miehe et al. (2010b)

𝜓±(𝑥, 𝜀) = 𝜇(𝑥)(⟨𝜀1⟩2± + ⟨𝜀2⟩2± + ⟨𝜀3⟩2±) + 𝜆(𝑥)⟨tr(𝜀)⟩2±,

𝑥 ∈ 𝑌, 𝜀 ∈ Sym(3),
(2.10)

where 𝜀𝑖 (𝑖 = 1, 2, 3) denote the eigenvalues of the symmetric tensor 𝜀.

The last two splittings enable the model to distinguish tensile and
compressive loading. More precisely, Chambolle et al. (2018) proved
that the phase-field model using Amor’s splitting Γ-converges for 𝑙→ 0
to the Francfort–Marigo model with a constraint of non-interpenetration.
In the same paper it was shown that the splitting of Miehe et al. (2010b)
converges to a Francfort-Marigo model which restricts crack opening to
shear loading, which is typical, for instance, for concrete.
Suppose that 𝜇 and 𝜆 are essentially bounded from above. Then, for
all three splittings considered, the phase-field functional (2.5) is well-
defined on the product Banach space 𝑉 ×𝑍, where 𝑉 contains all periodic
𝐻1 displacement vector fields with mean zero and 𝑍 is the intersection
of periodic scalar-valued 𝐻1 damage fields with 𝐿∞(𝑌 ). The restriction
to essentially bounded damage fields ensures that the first term in (2.5)
is integrable.
It can be shown, see Burke et al. (2013), that 𝐹 is Gâteaux-differentiable
on 𝑉 × 𝑍 with directional derivative

𝐷𝐹 (𝑢, 𝑑)[𝑣, 𝑧] = 𝐷𝑢𝐹 (𝑢, 𝑑)[𝑣] +𝐷𝑑𝐹 (𝑢, 𝑑)[𝑧] (2.11)

for 𝑢, 𝑣 ∈ 𝑉 , 𝑑, 𝑧 ∈ 𝑍. The directional derivatives are given by

𝐷𝑢𝐹 (𝑢, 𝑑)[𝑣] =
∫︁

𝑌

[︂
𝑓(𝑑)𝜕𝜓

+

𝜕𝜀
(𝜀) + 𝜕𝜓−

𝜕𝜀
(𝜀)
]︂

: ∇𝑠𝑣 𝑑𝑥, 𝜀 ≡ 𝐸 +∇𝑠𝑢,

(2.12)
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2.3 Phase-field fracture on heterogeneous microstructures

where we, for simplicity of notation, suppress the 𝑥-dependence, and

𝐷𝑑𝐹 (𝑢, 𝑑)[𝑧] =
∫︁

𝑌

𝜕𝑓

𝜕𝑑
(𝑑)𝜓+(𝜀)𝑧 +𝐺𝑐

[︂
𝑑𝑧

𝑙
+ 𝑙∇𝑑 · ∇𝑧

]︂
𝑑𝑥. (2.13)

We say that (𝑢, 𝑑) is a critical point of 𝐹 if both 𝐷𝑢𝐹 (𝑢, 𝑑) = 0 in 𝑉 ′ and
𝐷𝑑𝐹 (𝑢, 𝑑) = 0 in 𝑍 ′ hold. Integrating by parts, it is readily seen that
such a critical point (𝑢, 𝑑) satisfies both the balance of linear momentum

div (𝜎) (𝜀, 𝑑) = 0 (2.14)

with the stress

𝜎(𝜀, 𝑑) = 𝑓(𝑑)𝜕𝜓
+

𝜕𝜀
(𝜀) + 𝜕𝜓−

𝜕𝜀
(𝜀), 𝜀 ≡ 𝐸 +∇𝑠𝑢, (2.15)

and an advection-diffusion-type equation for the damage variable

0 = 𝜕𝑓

𝜕𝑑
(·, 𝑑)𝜓+(𝜀) +𝐺𝑐

[︂
𝑑

𝑙
− 𝑙Δ𝑑

]︂
,

which can, for later reference, be equivalently rewritten in the form

(1 + 𝛼)𝑑− 𝑙2Δ𝑑 = 𝛼 (2.16)

involving the function 𝛼 : 𝑌 → R determined by the equation

𝛼(𝑥) = 2𝑙
𝐺𝑐

(1− 𝑘0)𝜒(𝑥)𝜓+(𝑥, 𝜀(𝑥)). (2.17)

To conclude the discussion of the continuous model, several remarks are
in order.

1. The model we presented does not account for irreversibility, i.e., it
is purely elastic. Such a model may be reasonable for monotonic
loading, where, in addition, no local unloading occurs. To account for
irreversibility, several strategies have been developed. Classically, the
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constraint 𝑑 ≥ 0 is enforced, and solved by, for instance, augmented
Lagrangian methods (Wheeler et al., 2014), primal-dual active-set
methods (Heister et al., 2015) or penalty formulations (Gerasimov
and De Lorenzis, 2019).
An alternative approach is based on the usage of a suitable history-
field, as pioneered by Miehe et al. (2010a). More precisely, for a given
(pseudo-)time-dependent strain loading

𝐸 : [𝑡0, 𝑡1]→ Sym(3),

the history-field based model seeks the displacement field and the
damage field

𝑢 : [𝑡0, 𝑡1]× 𝑌 → R3 and 𝑑 : [𝑡0, 𝑡1]× 𝑌 → R,

s.t. the balance of linear momentum (2.14) is satisfied, for

𝜀(𝑡, 𝑥) = 𝐸(𝑡) +∇𝑠𝑢(𝑡, 𝑥),

together with the advection-diffusion-type equation (2.16) for the
damage variable with the forcing term

𝛼(𝑡, 𝑥) = 2𝑙
𝐺𝑐

(1− 𝑘0)𝜒(𝑥) sup
𝑡0≤𝜏≤𝑡

𝜓+(𝑥, 𝜀(𝜏, 𝑥)). (2.18)

Thus, the entire history of the elastic energy density is taken into
account, in contrast to equation (2.17). From an implementation
point of view, using either (2.17) or (2.18) does not make much of a
difference, because equation (2.16) needs to be solved in both cases.
However, the resulting models are different, see (Ernesti et al., 2020,
section 4.3.6).

2. The model we presented is quasi-static, and allows for brutal fracture.
However, some care has to be taken, as brutal fracture involves cracks
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2.3 Phase-field fracture on heterogeneous microstructures

propagating with infinite speed. This violates physical experience,
where cracks propagate with finite speed. To account for finite-speed
crack-propagation, Ginzburg-Landau-type equations (Miehe et al.,
2010b; Kuhn, 2013) replacing (2.16) may be used. More precisely,
a multiple of 𝑑 is added to the equation (2.16). Upon a backwards
Euler time-discretization, the resulting equation is of similar type
as equation (2.16) and may be treated by the same techniques, see
Chen et al. (2019), section 2. However, for the sake of brevity, we will
consider the unregularized form (2.16). Investigating this choice
has the added benefit that our computational techniques do not
deteriorate for vanishing viscous regularization (or, equivalently,
infinite phase-field mobility parameter).

3. The reader may wonder about the particular form of the energy
functional (2.5) that we consider. In particular, the appearance of
the set 𝑌 ⊆ 𝑌 (and its associated characteristic function) are non-
standard.
Most of the models and computational strategies for phase-field
fracture have been developed with homogeneous materials in mind.
Consider, for the sake of exposition and 𝑙 > 0 , the functional

𝐺(𝑢, 𝑑) =
∫︁

𝑌

𝑔(𝑥, 𝑑)𝜓+(𝑥, 𝜀) + 𝜓−(𝑥, 𝜀) + 𝛾

[︂
𝑑2

2𝑙 + 𝑙

2 ‖∇𝑑‖
2
]︂
𝑑𝑥

(2.19)
with 𝑔(𝑥, 𝑑) = 𝑘0 + (1− 𝑘0)(1− 𝑑)2 and a heterogeneous crack resis-
tance 𝛾 : 𝑌 → (0,∞). The corresponding Euler-Lagrange equations
consist of the balance of linear momentum (2.14) (with 𝑔 replacing 𝑓
in (2.15)) and the phase-field equation

0 = 𝜕𝑔

𝜕𝑑
(·, 𝑑)𝜓+(𝜀) + 𝑑

𝑙
− 𝑙 div (𝛾∇𝑑) . (2.20)

Thus, in contrast to the phase-field equation used in this work (2.16),
equation (2.20) involves gradients of the crack resistance 𝛾, compli-

27



2 Fundamental concepts

cating the numerical treatment.
Instead, we chose to work with a homogeneous crack resistance 𝐺𝑐,
but restrict the domain, where cracks may occur, to the subset 𝑌 ⊆ 𝑌 .
Thus, we consider 𝑌 as a homogeneous elastic-brittle material with
internal variable field 𝑑, whose evolution is governed by the non-local
PDE (2.17).
Clearly, our framework can be extended to heterogeneous crack
resistances as follows. Suppose 𝛾 is piece-wise constant, i.e., might be
written as 𝛾 =

∑︀𝐾
𝑘=1 𝐺𝑐,𝑘𝜒𝑘, where the 𝐺𝑐,𝑘 are positive and the sets

corresponding to 𝜒𝑘 form a non-overlapping partition of 𝑌 . Then,
the natural extension of (2.5) is the functional

𝐹𝐾(𝑢, 𝑑1, . . . , 𝑑𝐾) =
∫︁

𝑌

𝑓𝐾(𝑥, 𝑑1, . . . , 𝑑𝑘)𝜓+(𝑥, 𝜀) + 𝜓−(𝑥, 𝜀)

+
𝐾∑︁

𝑘=1
𝐺𝑐,𝑘

[︂
𝑑2

𝑘

2𝑙 + 𝑙

2 ‖∇𝑑𝑘‖2
]︂
𝑑𝑥,

involving 𝐾 distinct periodic damage variables 𝑑1, . . . , 𝑑𝐾 , and
𝑓𝐾 reads

𝑓𝐾(𝑥, 𝑑1, . . . , 𝑑𝐾) = 𝑘0 + (1− 𝑘0)
(︃

1−
𝐾∑︁

𝑘=1
𝜒𝑘(𝑥)𝑑𝑘(𝑥)

)︃2

.

Thus, also 𝐾 different phase-field equations need to be solved for
this approach. For this section, we restrict to a single brittle phase
𝑌 , characterized by a single crack resistance 𝐺𝑐, and consider the
complement of 𝑌 in 𝑌 to deform elastically.
The principal advantage of our approach is that, for the phase-field
equation (2.16), the coefficients in front of the derivatives are homo-
geneous, implicating a simplified treatment by FFT-based methods
compared to the formula (2.20).
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2.3 Phase-field fracture on heterogeneous microstructures

4. Due to the 𝜒-term in (2.17) and (2.18), 𝛼 is concentrated on the chosen
region 𝑌 . Similarly, 𝑓(𝑥, 𝑑) = 1 for 𝑥 /∈ 𝑌 . Thus, 𝑑 has no direct effect
on the mechanical behavior of the composite outside of 𝑌 .
Formally setting 𝑙 = 0 in (2.16) shows that 𝑑 vanishes outside of 𝑌 . For
positive 𝑙, the damage field may also be positive in 𝑌 ∖𝑌 . However,
for small 𝑙, 𝑑 will be small in 𝑌 ∖𝑌 , as well. Rather, this phenomenon
is closely tied to computing the energy dissipated by creating a crack,∫︁

𝑌

𝐺𝑐

[︂
𝑑2

2𝑙 + 𝑙

2 ‖∇𝑑‖
2
]︂
𝑑𝑥,

as a part of the functional (2.5), correctly. We have learned this ap-
proach from Boeff et al. (2015), who call it "non-local phase damage".

2.3.2 Numerical setup

In order to solve the governing equations (2.14) and (2.16), suitable
discretizations and solvers are required. In the work at hand we rely on
an FFT-based solver framework and discretization methods on regular
voxel grids. We integrated this into an in-house FFT-based computa-
tional micromechanics solver, based on Python 3.7 with Cython exten-
sions. This in-house code is strain-based, i.e., the primary variable is the
(compatible) strain field instead of the displacement field. Furthermore,
we consider periodic boundary conditions. Thus, we seek a periodic
strain field with prescribed mean value 𝐸. We rely on a staggered grid
discretization (Schneider et al., 2016) to discretize the strain field. For
the damage variable we rely on the original Moulinec–Suquet discretiza-
tion (Moulinec and Suquet, 1994; 1998).
In each load step we solve the balance of linear momentum using an ac-
celerated gradient descent method, namely the heavy-ball method, first
introduced by Polyak (1964). In each iteration we solve the advection-
diffusion type equation for the phase-field variable using gradient de-
scent. I introduced this approach in my master thesis Ernesti (2018) and
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for a detailed discussion I refer to (Ernesti et al., 2020, section 3).
To change between load steps, affine extrapolation is used for the strain,
as described by Moulinec and Suquet (1998), and the last converged
damage field is taken as initial guess for the succeeding step.
For the mechanical sub-problem, we use the convergence criterion pro-
vided in (Ernesti et al., 2020, equation (3.4)), with a prescibed tolerance
tol. In section 2.3.3 we chose tol = 10−5 and in section 2.3.4 we chose
tol = 10−4. The damage sub-problem is terminated upon satisfying the
criterion in (Ernesti et al., 2020, equation(3.17)) with tol = 10−6, similar
to Chen et al. (2019).
The average stress Σ is computed by volume averaging

Σ := ⟨𝜎⟩𝑌 ≡
1
|𝑌 |

∫︁
𝑌

𝜎 𝑑𝑥

of the individual components of the stress tensor.
All computations were performed on a desktop computer with a 6-core
Intel i7 CPU and 32GB RAM.

𝐸 in GPa 𝜈 𝐺𝑐 in N/mm
Polyamide 3.45 0.39 0.1

E-glass 72.00 0.22 -

Table 2.1: Material parameters of polyamide and E-glass (Ernesti, 2018)

ℎ in 𝜇m 𝑙 in 𝜇m 𝑘0

2 6 10−4

Table 2.2: Numerical parameters
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2.3 Phase-field fracture on heterogeneous microstructures

2.3.3 Phase-field fracture for a continuous-fiber rein-
forced brittle composite

y

x

(a) #1 (b) #2 (c) #3 (d) #4

(e) #5 (f) #6 (g) #7 (h) #8

Figure 2.3: Damage fields and crack paths upon final failure for eight different microstruc-
tures. (Ernesti et al., 2020)

In this section, we investigate the phase-field fracture behavior of
continuous-fiber reinforced composites. This allows us to rely on 2D
structures. We consider the inclusions linear elastic and the matrix
material brittle, see Tab. 2.1 for the material parameters. The numerical
parameters, i.e., the pixel length ℎ, the phase-field width 𝑙 and the
remaining stiffness 𝑘0 are listed in Tab. 2.2. These parameters have
been selected carefully in (Ernesti et al., 2020, section 4). We consider a
stochastic arrangement of the fillers. The fiber volume-fraction is chosen
as 45%, with 16 fibers placed within the volume, using the Torquato-Jiao
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algorithm (Torquato and Jiao, 2010). We rely upon images of a resolution
of 256× 256 pixels.

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8
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Figure 2.4: Stress-strain diagram upon uni-axial extension, on 8 different microstructures,
see Fig. 2.3. (Ernesti et al., 2020)

Eight different microstructures were generated, see Fig. 2.3. These
microstructures were subjected to uni-axial strain loading in 𝑥-direction
and 0.1%-steps until complete failure of the structure. The resulting
stress-strain diagrams for the stresses perpendicular to the fiber direction
are shown in Fig. 2.4. Only small scatter is observed prior to failing. Also,
the post-critical stresses are identical for the different microstructures.
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structure 𝐸crit
𝑥𝑥 in % Σmax

𝑥𝑥 in MPa
#1 1.3 114.10
#2 1.3 113.82
#3 1.3 113.76
#4 1.3 114.66
#5 1.3 114.44
#6 1.2 112.27
#7 1.3 115.27
#8 1.3 114.58
𝜇± 𝜎 1.29± 0.03 114.11± 0.83

Table 2.3: Strain and stress at failure on the 8 microstructure realizations, see Fig. 2.3.

Seven of the eight microstructures fail at 1.3% axial strain, see Tab. 2.3.
Also, the maximum effective axial-stresses are very similar, at about
114MPa and a standard deviation below 1MPa. Taking into account
the differences in the resulting crack paths, see Fig. 2.3, this may be
surprising.
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2.3.4 Phase-field fracture for a short-fiber reinforced brit-
tle composite

(a) Original microstructure (b) Crack at 𝐸𝑥𝑥 = 0.9%

Figure 2.5: Microstructure and crack surface for uni-axial strain loading in 𝑥-direction.
(Ernesti et al., 2020)

As our final example for phase-field fracture, we consider a short-fiber
reinforced composite with distributed fibers. The material parameters
are identical to the previous section, listed in Tab. 2.1.
Aligned fibers with a length of 320𝜇m and a diameter of 32𝜇m were
dispersed in a periodic unit cell with dimensions 256× 256× 2048𝜇m3,
up to a fiber volume fraction of 18%. Both the fiber diameter and the
cell dimensions were chosen carefully to ensure that the numerical
parameters in Tab. 2.2 can be used, as well.
The resulting microstructure, see Fig. 2.5a, was generated by the Sequen-
tial Addition and Migration algorithm (Schneider, 2017) and discretized
by 128× 128× 1024 voxels.
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0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

Exx in %

Σ
in

M
P

a

Σxx Σyy Σzz

(a) Stress-strain diagram for an extension in
𝑥-direction
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(b) Stress-strain diagram for an extension in
𝑦-direction

Figure 2.6: Stress-strain diagrams for extensions in 𝑥- and 𝑦-directions. (Ernesti et al., 2020)

The structure was subjected to uni-axial strain loading, successively
increasing the level by 0.1% per steps. The structure failed at𝐸𝑥𝑥 = 0.9%,
and the corresponding stress-strain diagrams are shown in Fig. 2.6a. The
stress-strain diagram is linear elastic prior to failure. Also, in the diagram,
the stresses transversal to the fiber directions are indistinguishable.
The crack upon failure is shown in Fig.2.5b. The crack surface forms
around the fibers, showing matrix cracking and fiber pull-out. Further-
more, we conducted a similar experiment as before, but with loading in
𝐸𝑦𝑦-direction. The structure failed after 16 0.1% steps. The stress-strain
diagram is shown in Fig. 2.6b. In contrast to loading in fiber direction, a
damaging effect is seen in the stress-strain curves. Furthermore, upon
loading, the symmetry between Σ𝑥𝑥 and Σ𝑧𝑧 is slightly broken. The
crack upon failure is shown in Fig. 2.7b and runs entirely through the
matrix. A transverse view of the crack is shown in Fig. 2.7d. The crack is
straight in the 𝑥-𝑧-plane, but avoids the individual fibers.
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(a) Original microstructure (b) Crack at 𝐸𝑦𝑦 = 1.6%

(c) Original microstructure (transverse view)

(d) Crack at 𝐸𝑦𝑦 = 1.6% (transverse view)

Figure 2.7: Crack surface and stress-strain diagram for uni-axial strain loading in 𝑦-
direction. (Ernesti et al., 2020)
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2.3.5 Conclusions

In this section, we presented an approach to compute phase-field frac-
ture on heterogeneous microstructures. We discussed the governing
equations which rely on a strategy by Boeff et al. (2015) to deal with
heterogeneous material parameters. We solved these equations using
FFT-based fast gradient solvers and discretizations on a regular grid.
Finally, we investigated phase-field fracture on complex microstructures
of fiber reinforced composites.
The strategy presented here follows an approach often conducted in
FFT-based micromechanics for the homogenization of complex materials,
see Schneider (2021a) for an overview: A cell formula for the balance
of linear momentum on a stochastic microstructure cell is conducted.
This cell is considered large enough in order to be representative for the
microstructure of the considered material. Using FFT-based solvers for
this cell problem and extracting the local fields allows to compute the
effective stress-strain relation via averaging. For linear elastic materials
this allows to compute an effective stiffness which may then be used
for simulations on the component scale. For hardening type materi-
als, upscaling approaches may be conducted (Gajek et al., 2021). For
softening type materials, however, which includes phase-field fracture,
this relation of effective stresses and strains provides limited informa-
tion (Gitman et al., 2007). Hence, the question remains how to extract
effective properties in the context of fracture mechanics which result from
a homogenization result.
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Figure 2.8: Schematic of a crack increment in a microstructured material (Ernesti and
Schneider, 2021, Fig. 2).

2.4 Homogenization methods for brittle frac-
ture4

2.4.1 Objectives

As we pointed out in section 2.2, materials of industrial interest
often exhibit a stochastic microstructure which strongly influences
the macroscopic material behavior. To perform mechanical simulations
on the component scale by taking the microstructure into account,
multi-scale methods are often conducted. These multi-scale methods
are well established for hardening material behavior, i.e., a monotone
stress-strain relation, see Matouš et al. (2017) for an overview. In
this context, homogenization methods (Papanicolaou and Varadhan,
1981; Kozlov, 1978) play a key role. Building upon a well-defined

4 This section is based on the introductory sections of Ernesti and Schneider (2021; 2022)
as well as section 1 and 2 of Ernesti et al. (2023) and provides an extension thereof.
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mathematical foundation, these methods aim to establish effective
models based on the arrangement of the microstructure and the
governing material behavior of the different phases on the microscale.
Computational approaches typically rely on simulations on finite cells
which represent the underlying microstructure. If these are chosen
sufficiently large, these are called representative volume elements
(RVEs) (Drugan and Willis, 1996; Kanit et al., 2003).
These well established homogenization and multi-scale methods face
difficulties when leaving the realm of hardening-type materials. In the
presence of a propagating crack the stress-strain relation is no longer
monotonic and thus softening of the material occurs. One example is
given by Gitman et al. (2007) who performed numerical simulations
using a non-local damage model. They showed that in the post-peak
loading regime, the average stress response tends to zero as the size
of the volume element goes to infinity. In particular, the strategy of
computing effective quantities via simulations on representative volume
elements – which works well for hardening-type materials – leads to
impractical results in case of softening.
Classically, homogenization relies on a distinct scale separation. More
precisely, the macroscopic displacement or stress fields should vary
slowly compared to the local fields on the microscale. In the classical
linear elastic fracture mechanics setting and for an evolving crack,
the stress singularity at the crack tip typically prohibits such a scale
separation. Indeed, in classical linear elastic homogenization, the
displacement field is split into a smooth macroscopic and a highly-
oscillating microscopic part. Upon homogenization, the relationship
between the macroscopic and the microscopipc displacement fields
is simplified to a one-way coupling. This permits the transfer of
information from the microscale to the macro scale via the effective
stiffness. In the case of an evolving crack, the displacement field is
no longer smooth at the crack tip, even for a homogeneous medium.
In particular, the classical macro-micro decomposition, which was
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successful for linear elastic homogenization, loses its promise. Moreover,
the evolution of the crack needs to be accounted for at both scales.
From another perspective, let us consider a non-local damage model.
The non-locality is necessary to obtain mesh-independent results for a
corresponding finite-element model. Thus, two scales are present in such
a multi-scale non-local damage model, the typical scale of heterogeneity
and the length scale of the nonlocality. In upscaling, the scale of
heterogeneity is small, and we wish to pass to the limit of vanishing
heterogeneity size. On the one hand, if we fix the non-local length
scale, the nonlocallity would exceed the size of the heterogeneities upon
homogenization. On the other hand, tying the non-local length scale
to the size of the heterogeneities would recover the mesh-dependence
of the model upon homogenization, and thus rendering the procedure
illegitimate. Nevertheless, computations of phase-field fracture on
microstructures may be pursued, see section 2.3. Furthermore using
non-local damage models (Boeff et al., 2015; Berthier et al., 2014) to
simulate crack propagation on microstructures are well established. Un-
fortunately, connecting these results to macroscopic material properties
appears challenging as the apparent stresses for softening materials are
inherently size-dependent, see Gitman et al. (2007).
The actual question is: Which model is suitable for the macroscopic
modeling of fracture mechanics that results from the homogenization
limit of a model on the microscale? An illustration of this procedure
is given in Fig. 2.8. In the following section we identify the Francfort-
Marigo model of brittle fracture (Francfort and Marigo, 1998) as a
suitable candidate.

2.4.2 Homogenization of the Francfort-Marigo model

The strategy pursued in this thesis to homogenizing brittle fracture has
been proposed by Schneider (2020) and is based on a homogenization
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2.4 Homogenization methods for brittle fracture

result by Braides et al. (1996) for free discontinuity problems. For a given
domain Ω ⊂ R𝑑 we consider periodic functions 𝑓 : Ω×R𝑑 → [0,∞) and
𝑔 : Ω×R× 𝑆𝑑−1 → [0,∞) which, for constants 𝑐1, 𝑐2, 𝑐3, 𝑐4 > 0 satisfy
the growth conditions

𝑐1‖𝜉‖2 ≤ 𝑓(𝑥, 𝜉) ≤ 𝑐2(1 + ‖𝜉‖2) ∀𝜉 ∈ R𝑑 and

𝑐3(1 + |𝑧|) ≤ 𝑔(𝑥, 𝑧, 𝑛) ≤ 𝑐4(1 + |𝑧|) ∀𝑛 ∈ 𝑆𝑑−1 ∀𝑧 ∈ R.
(2.21)

Furthermore, we consider the family of functionals

𝐵𝜂(𝑣) =
∫︁

Ω
𝑓

(︂
𝑥

𝜂
,∇𝑣

)︂
𝑑𝑥+

∫︁
𝑆𝑣

𝑔

(︂
𝑥

𝜂
, [𝑣], 𝑛𝑣

)︂
𝑑𝐴. (2.22)

Here, [𝑣] = 𝑣+ − 𝑣− denotes the jump of 𝑣 and 𝑛𝑣 denotes the unit
normal to the jump set of 𝑣, 𝑆𝑣. The length parameter 𝜂 represents
the periodicity of the functions 𝑓 and 𝑔, see Fig. 2.9a for an illustration.
We signify 𝑓 as the bulk term of the energy functional (2.22) and 𝑔 as
the surface term of the functional. Braides et al. (1996) proved that this
series of functionals converges to the homogeneous functional

𝐵hom(𝑣) =
∫︁

Ω
𝑓hom(∇𝑣) 𝑑𝑥+

∫︁
𝑆𝑣

𝑔hom([𝑣], 𝑛𝑣) 𝑑𝐴 (2.23)

as 𝜂 → 0 in the sense of Γ-convergence. The expressions 𝑓hom and
𝑔hom denote the homogeneous bulk and surface terms. Notice that the
heterogeneous and the homogeneous functionals are very similar in
their structure.
Additionally, Braides et al. (1996) provide specific cell formulas for both
effective terms. Consider the infinite periodic continuation of the domain
Ω and a finite cuboid cell [0, 𝐿]𝑑 within this infinite domain. For the
effective bulk function the governing cell formula, equipped with zero
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η

(a) Periodic microstructure

η

(b) Random microstructure

Figure 2.9: Schematic illustration of a periodic microstructure with period 𝜂 and a
stochastic microstructure with characteristic length 𝜂.

Dirichlet boundary conditions on the boundary of the cube, reads

𝑓hom(𝜉) = lim
𝐿→∞

inf
𝑣∈𝐻1

0

1
𝐿𝑑

∫︁
[0,𝐿]𝑑

𝑓(𝑥,∇𝑣 + 𝜉) 𝑑𝑥. (2.24)

This is a classic formula for the homogenization of bulk energies. Sup-
pose, for instance, 𝑓(𝑥, 𝜉) = 𝜉𝑇𝐴(𝑥)𝜉 for some symmetric, positive
definite matrix field 𝐴. In this case, the cell formula (2.24) may be
interpreted as the homogenization of the static heat equation with 𝐴

denoting a heterogeneous heat conductivity tensor and 𝜉 denoting the
gradient of the temperature field. The resulting effective bulk term
provides a formula for the effective heat conductivity 𝐴eff (Jikov et al.,
1994; Bakhvalov and Panasenko, 1989). Alternatively to the Dirichlet
boundary conditions used in (2.24), periodic boundary conditions are
also suitable since the effective bulk energy does not depend on the
boundary conditions (Sab, 1992). Furthermore, using periodic boundary
conditions for a periodic homogenization problem permits to rely on a
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Figure 2.10: Visualization of the computation of the effective crack energy. The cube 𝐿𝑄𝑛

is placed into the periodic structure. Depending on the material contrast 𝛾2/𝛾1 either the
green or the red path is favored. The image is a slight modification of Fig. 1 in Ernesti et al.
(2023).

single period of the structure. For this case, well established tools for
solving the periodic cell problem are available (Moulinec and Suquet,
1994; 1998; Dorn and Schneider, 2019).
For the effective surface term, Braides et al. (1996) proceed as follows.
Consider a rotated cuboid 𝐿𝑄𝑛 with its 𝑒1 axis aligned with the normal
𝑛 and edge length 𝐿 placed in the infinite periodic continuation of our
domain Ω, see Fig. 2.10. The formula for the effective surface term reads

𝑔hom(𝑧, 𝑛) = lim
𝐿→∞

inf
𝑣∈𝒱

1
𝐿𝑑−1

∫︁
𝐿𝑄𝑛∩𝑆𝑣

𝑔(𝑥, [𝑣], 𝑛𝑣) 𝑑𝐴 (2.25)
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with the solution space

𝒱 =
{︂
𝑣 ∈ SBV(𝐿𝑄𝑛),∇𝑣 = 0 a. e.,

𝑣 =

⎧⎨⎩𝑧, 𝑥 · 𝑛 > 0

0, 𝑥 · 𝑛 ≤ 0
on𝜕𝐿𝑄𝑛

}︂
.

(2.26)

and 𝑧 ∈ R quantifying the jump of 𝑣 at the boundary. This minimization
problem is fundamentally different to the problem associated with
the bulk term. In (2.25) we seek a function in the space of SBV with
minimal 𝑔-weighted integral over its jump set. In other words, we
seek a 𝑔-weighted minimum surface cutting through the rotated cube
𝐿𝑄𝑛 with mean normal 𝑛 fulfilling the boundary conditions specified
in the set 𝒱 . Thus, we refer to (2.25) as the minimum cut problem. A
visualization of this procedure for a periodic structure of inclusions
is shown in Fig. 2.10, where we set 𝑔(·, 𝑥, ·) = 𝛾2 in the inclusion and
𝑔(·, 𝑥, ·) = 𝛾1 in the surrounding area. In this example we distinguish
two cases, depending on the material contrast 𝛾2/𝛾1. For a large contrast,
the minimum surface will avoid the inclusion, illustrated by the red
curve, for a small contrast it will cut the inclusion in a straight line.
Similar to the bulk term, formula (2.25) is expressed via an infinite
volume limit. However, using periodic boundary conditions instead
of Dirichlet boundary conditions allows us to rely on a single periodic
cell (Braides and Piat, 1995; Chambolle and Thouroude, 2009) via the
following procedure. Let 𝑌 ⊂ R𝑑 be the cuboid cell describing a single
period of the periodic functions 𝑓 and 𝑔. Using periodic boundary
conditions, the effective crack energy may be computed via

𝑔hom(𝑧, 𝑛) = inf
𝑣∈𝑆𝐵𝑉, periodic

1
|𝑌 |

∫︁
𝑌

𝑔(𝑥, [𝑣], 𝑛+∇𝑣) 𝑑𝑥. (2.27)
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Notice that the two formulas for 𝑓hom and 𝑔hom are fully decoupled, i.e.,
the formula (2.24) does not depend on 𝑔 and (2.25) does not depend
on 𝑓 . This decoupling results from the different scaling of the surface
and the bulk term within the functional (2.22), as well as the condition
(2.21). If this condition is not fulfilled due to a certain scaling of 𝑓 or 𝑔
with the length scale 𝜂, a coupling of the two terms may be observed
(Pellet et al., 2019).
The work of Braides et al. (1996) on periodic homogenization has recently
been extended to the case of stochastic homogenization by Cagnetti et al.
(2019). This is of particular importance for the application to industrial
materials, which often exhibit a randomness in their microstructure.
Cagnetti et al. (2019) investigated the functional (2.22) with the same
assumptions (2.21) but considered non-periodic, random and ergodic
functions 𝑓 and 𝑔. The parameter 𝜂 in (2.22) serves as a length parameter
of the microstructure indicating a scale separation in a random medium,
see Fig. 2.9b for a schematic illustration. In their work, they showed that
both the homogenized functional (2.23) and the cell formulas (2.24) and
(2.25) are the same as in the periodic case. Hence, the decoupling of the
two formulas holds upon stochastic homogenization as well. For the
stochastic homogenization result the infinite volume limit for both the
bulk term and the surface term is indispensable.
Let us now consider the Francfort-Marigo model (Francfort and Marigo,
1998) and discuss how the homogenization results of Braides et al. (1996)
and Cagnetti et al. (2019) apply for this model. For heterogeneous C and
𝛾 with characteristic length 𝜂, the weak form of the Francfort-Marigo
functional reads

𝐹𝑀𝜂(𝑢) = 1
2

∫︁
Ω
∇𝑠𝑢 : C

(︂
𝑥

𝜂

)︂
: ∇𝑠𝑢 𝑑𝑥+

∫︁
𝑆𝑢

𝛾

(︂
𝑥

𝜂

)︂
𝑑𝐴. (2.28)

For a given discretization in (pseudo-)time this functional is to be mini-
mized in each time step with the constraint that the jump set 𝑆𝑢 must
contain the jump set of the previous time step. The weak solution of this
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minimization problem is found in the function space SBD (Chambolle
and Crismale, 2021). This functional is very similar to the functional
(2.22). In particular, 𝑔(𝑥, [𝑣], 𝑛) = 𝛾(𝑥) is a suitable option, since 𝛾 is
strictly positive. Furthermore, C is positive definite and thus a similar
growth condition as (2.21) holds. However, we notice two deviations
between the models. Firstly, the bulk energy of Braides et al. (1996)
depends on the gradient of 𝑣, whereas in (2.28) the bulk term depends
on the symmetrized gradient of 𝑢. Thus, instead of SBV in case of
Braides et al. (1996), the function space SBD (Chambolle and Crismale,
2021) is required. Only in the case of anti-plane shear these two terms
coincide. Lifting this restriction, however, is subject of current research.
In a recent preprint, Friedrich et al. (2022) investigated the case 𝑢 ∈ 𝑆𝐵𝐷
for 𝑑 = 2, i.e., lifting the restriction to anti-plane shear. For the 3𝐷
case they considered a homogeneous crack resistance. In their preprint
they showed a periodic homogenization result of the Francfort-Marigo
functional to the homogeneous functional

𝐹𝑀hom 1
2

∫︁
Ω
∇𝑠𝑢 : Ceff : ∇𝑠𝑢 𝑑𝑥+

∫︁
𝑆𝑢

𝛾eff(𝑛𝑢) 𝑑𝐴. (2.29)

The secend deviation between the Francfort-Marigo model and the func-
tional (2.22) is given in the presence of a time stepping. The Francfort-
Marigo model explicitly considers discrete time steps and introduces
an irreversibility constraint. In the functional of Braides et al. (1996)
on the other hand, no time stepping scheme is present. Without the
irreversibility constraint, the results of Braides et al. (1996) and Friedrich
et al. (2022) may be applied in each step separately providing a ho-
mogenization result for the Francfort-Marigo model. This holds in
particular for the initial time step if no pre-existing crack is present,
i.e., 𝑆𝑢 is initially empty. The consideration of a time-stepping scheme
and an irreversibility constraint in the homogenization result of Braides
et al. (1996) has been provided by Giacomini and Ponsiglione (2006).
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They showed a periodic homogenization result and found the same cell
formulas as Braides et al. (1996). Therefore, in case of anti-plane shear,
a periodic homogenization result for the Francfort-Marigo model is
available. A proof for the general case, i.e., a stochastic homogenization
result of the Francfort-Marigo model under anyy loading case including
the irreversibility constraint, is, however, still pending, as the restrictions
are only lifted individually.
All aforementioned extensions of the homogenization result of Braides
et al. (1996) show the same formulas for the effective properties and a
decoupling upon homogenization. In order to compute the effective
stiffness Ceff in case of periodic homogenization, one may rely on the cell
formula (Bakhvalov and Panasenko, 1989), defined on a single periodic
cell 𝑌 equipped with periodic boundary conditions. For a macroscopic
strain field 𝐸 ∈ 𝑆𝑦𝑚(𝑑) the cell formula reads

𝐸 : Ceff : 𝐸 = inf
𝑢, periodic

1
|𝑌 |

∫︁
𝑌

(𝐸 +∇𝑠𝑢) : C(𝑥) : (𝐸 +∇𝑠𝑢) 𝑑𝑥. (2.30)

Additionally, the case of coputing effective stiffnesses in stochastic
homogenization is well-studied and any boundary conditions may be
conducted. Upon an infinite-volume limit, the effects of the boundary
conditions vanish (Sab, 1992; Bourgeat and Piatnitski, 2004; Owhadi,
2003). However, for cells of finite size, the chosen type of boundary
conditions does have an influence on the approximation quality of the
"true" effective5 stiffness, see the works (Sab, 1992; Kanit et al., 2003)
among numerous others. It can be shown – both theoretically and

5 A part of the mechanics community distinguishes apparent and effective properties. The
former correspond to cells of finite size, whereas the latter emerge only upon an infinite
volume limit (for stationary and ergodic media). Alternatively, apparent properties may
be interpreted as approximations of the effective properties, in the same way as the
displacement computed in a Galerkin discretization approximates the displacement
of the continuous solution. In this work, we follow the second paradigm and use
the terminology effective for quantities computed on cells of finite size, as well, tacitly
assuming their approximative character.
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numerically – that optimal convergence rates are reached when using
periodic boundary conditions and periodized ensembles of microstruc-
tures, see Schneider et al. (2022) for a thorough discussion.
The cell formula for the effective crack energy is – in all aforemen-
tioned cases – given by the formula (2.25). In the periodic case, the
equivalent formula (2.27) applies. Thus, computing the effective crack
energy breaks down to computing a 𝛾-weighted minimal surface, the
minimum cut.
Computing minimal surfaces in the context of fracture has been consid-
ered for predicting crack propagation on two-dimensional micrographs
even before the homogenization result of Braides et al. (1996) by Jeulin
(1988; 1994a;b). In fact, in two spatial dimensions, the problem of com-
puting the effective crack energy simplifies drastically. Indeed, it reduces
to the problem of computing minimum (weighted) geodesics, for which
efficient algorithms are available (Sethian, 1999; Osher and Fedkiw, 2002).
Based on the homogenization result by Braides et al. (1996), Schneider
(2020) established numerical tools to solve the cell formula for the
effective crack energy on complex, three-dimensional microstructures.

2.4.3 The cell formula for periodic minimum cut/maximum
flow

Consider the unit cell 𝑌 = [0, 𝐿1]× [0, 𝐿2]× [0, 𝐿3] and the field of crack
resistances 𝛾 : 𝑌 → R≥0 which satisfies for positive constants 𝛾1, 𝛾2 > 0
the condition

𝛾1 ≤ 𝛾(𝑥) ≤ 𝛾2 ∀𝑥 ∈ 𝑌.

Based on the homogenization result of Braides et al. (1996) and following
contributions (Cagnetti et al., 2019; Friedrich et al., 2022; Giacomini
and Ponsiglione, 2006) we define the effective crack energy via the cell
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formula

𝛾eff(𝑛) = inf
𝜑 periodic

1
|𝑌 |

∫︁
𝑌

𝛾(𝑥)‖𝑛+∇𝜑‖ 𝑑𝑥 𝑛 ∈ 𝑆2 (2.31)

using periodic boundary conditions. This minimization problem seeks
the periodic minimum cut through the cell 𝑌 with mean normal 𝑛. For a
periodic cell 𝑌 this cell formula is equivalent to (2.25). A detailed discus-
sion on the preferred boundary conditions in stochastic homogenization
is given in chapter 6.
A question of particular mathematical interest relates to whether a mini-
mizer exists, i.e., if the infimum is actually attained, and if so, in which
function space? Following Hintermüller et al. (2018) this is the case if
𝛾 is lower semicontinuous. We are mainly interested in heterogeneous
materials for which 𝛾 is a piecewise constant function and describes
for instance inclusions of higher crack resistance within a matrix. To
fulfill lower semicontinuity we set the value of 𝛾 at the interface of the
inclusions to the lower value. Under this assumption the minimizer is
attained in BV. Notice, however, that the functional is convex but not
strictly convex. Hence, any minimizer is a global minimizer but no
uniqueness is guaranteed. Nevertheless, the resulting effective crack
energy, i.e., the minimum value, is attained for any minimizer.
The objective function of the minimization problem (2.31) is, for any
normal 𝑛, given by

𝑓(𝜉) = 1
|𝑌 |

∫︁
𝑌

𝛾(𝑥)‖𝜉‖ 𝑑𝑥.

This objective function is homogeneous of degree one in its argument,
i.e, 𝑓(𝜆𝜉) = 𝜆𝑓(𝜉)∀𝜆 > 0, and thus non-differentiable. Due to this non-
differentiability of the objective function, gradient based methods to
solve the minimization problem may not be applied directly. As a
remedy we follow the strategy proposed by Schneider (2020). We
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consider the constrained optimization problem

1
|𝑌 |

∫︁
𝑌

𝛾 ‖𝜉‖ 𝑑𝑥→ min
𝜉∈𝒦𝜉

with

𝒦𝜉 = {𝜉 : 𝑌 → R3 | 𝜉 = 𝜉 +∇𝜑, 𝜉 ∈ R3, 𝜑 periodic}.
(2.32)

If the direction 𝜉 has length unity, the minimum value of this optimiza-
tion problem is the effective crack energy for unit normal 𝑛 = 𝜉 given
in (2.31). The problem (2.32) seeks the minimum cut 𝜉 which satisfies
the compatibility constraint specified via the set 𝒦𝜉. This constrained
form permits a dualization of the problem, as suggested by (Schneider,
2020). The formal dual problem to (2.32) is given by the maximum
flow problem. This duality was first described by Strang (1983) who
found that minimum cut is dual to maximum flow. The maximum flow
problem seeks the periodic flow field 𝑣 : 𝑌 → R3, solving

1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣(𝑥) 𝑑𝑥→ max
div 𝑣=0, ‖𝑣(𝑥)‖≤𝛾(𝑥)

. (2.33)

This problem may be interpreted as a linear program with two con-
straints. The first constraint is linear and enforces that the flow field is
divergence free. This is the dual constraint to the compatibility of the
cut field 𝜉. The second constrained bounds the local norm of the flow
field 𝑣 with the local crack resistance 𝛾. Both optimization problems, the
minimum cut and the maximum flow problem are equivalent. Hence, for
‖𝜉‖ = 1 both problems compute the effective crack energy with 𝑛 = 𝜉.
To solve (2.33) numerically, suitable discretizations and solvers are
required. Schneider (2020) used an FFT-based solution framework
with a trigonometric collocation discretization (Moulinec and Suquet,
1994; 1998) and a finite element discretization with reduced integra-
tion (Willot, 2015a). He solved the governing equations with a primal
dual hybrid gradient method (Esser et al., 2010; Pock et al., 2009). A
similar approach has been proposed by Willot (2020) who investigated
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the related problem of finding the effective conductivity of resistor
networks. Michel and Suquet (2022) proposed a different approach
to computing the effective crack energy. For the discretization of the
governing formulas they conducted a discretization method based on
trigonometric collocation (Moulinec and Suquet, 1994; 1998). In their
work (Michel and Suquet, 2022) they pointed out similarities of the
governing equations with the problem of computing limit loads of
structures (Christiansen, 1981). For their similar problem they conducted
classical optimization methods.
Finding novel discretization methods and solvers to compute the effec-
tive crack energy via minimum cut/maximum flow is the main goal of
chapter 4.

2.4.4 Discussion on the terminology "effective crack re-
sistance"

Independent of the homogenization result for fracture, discussed in
section 2.4.2 several approaches concerning effective properties in
fracture mechanics are found in the literature. These methods define the
effective crack resistance or the effective toughness using computations on
heterogeneous materials and classical linear elastic fracture mechanics
or phase-field fracture. Their approaches differ from our definition
of the effective crack energy and we wish to put our approach into
perspective. In particular, this difference gave reasons for naming the
effective surface term when homogenizing the Francfort-Marigo model
the effective crack energy instead of effective crack restistance.
Bower and Ortiz (1991) provided a perturbative solution for a semi-
infinite crack passing through a single, tough inclusion in a matrix. They
relied on methods from classical linear elastic fracture mechanics and de-
fined an effective toughness by either averaging or taking the maximum
value of evaluated stress intensity factors during crack propagation.
Roux et al. (2003) discussed an emerging effective crack resistance
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for a material with isotropic and homogeneous elastic properties and
a heterogeneous crack resistance. In this context, a self-consistent
method for estimating the effective fracture toughness of a planar crack
propagating through inclusions is established. For a medium with
randomly distributed heterogeneities, they identified regions of weak
pinning, where the fracture toughness is given by the arithmetic mean of
the local toughness, and strong pinning, where a much higher toughness
emerges, see also Démery et al. (2014) for a related study. Lebihain (2019)
and Lebihain et al. (2021) extended the mentioned studies by accounting
for cracks which bypass an inclusion, based on a perturbative, coplanar
approach (Rice, 1985).
To account for heterogeneity in the elastic properties, Hossain et al.
(2014) performed phase-field fracture computations on heterogeneous
microstructures with specific, so-called "surfing" boundary conditions.
The emerging effective crack resistance equals the maximum in time of
the J-integral evaluated along the crack tip, see also Kuhn and Müller
(2016) and Brach et al. (2019).
Let us compare these approaches to compute the effective crack resis-
tance with our approach based on the homogenization result (Braides
et al., 1996; Giacomini and Ponsiglione, 2006; Cagnetti et al., 2019;
Friedrich et al., 2022) for the Francfort-Marigo model of brittle frac-
ture (Francfort and Marigo, 1998). The problem of heterogeneous
fracture mechanics in general involves two prominent length scales:
the correlation length of the heterogeneities and the typical size of a
displacement increment. Typically, in a quasi-static framework, the
size of the displacement increment is assumed to be infinitesimal. In
this framework, when we consider a crack propagating through a
microstructure, its progress may be hindered by various factors, like
being pinned to an interface or avoiding an inclusion. This interpretation
is implicit in Hossain et al. (2014) as well as Lebihain et al. (2021), for
example, who consider crack propagation through microstructures of a
fixed size and in continuous time, which is only discretized to enable a
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numerical treatment.
In practical applications however, the displacement increment is typi-
cally of the order of magnitude of the macroscopic scale. In particular,
in a homogeneous macro-model, the size of the heterogeneities has
vanished due to a distinct scale separation and an incrementally
discretized load is considered. This is the point of view considered
when homogenizing the Francfort-Marigo model. The displacement
increment is fixed, once and for all, as the limit of infinitesimally small
heterogeneities is considered. Therefore, in this setting, the crack passes
a microstructure cell within a single (macroscopic) increment.
Another difference is the understanding of the emerging effective
properties. As Hossain et al. (2014) always consider a time-continuous
problem, their crack resistance is defined as the maximum in time of
the local J-integral. Similarly, Lebihain et al. (2021) define the effective
crack resistance by either the average in time or the maximum evaluated
energy release rate. Notice that these definitions are neither related, nor
motivated by mathematical homogenization results. Hence, in their case,
a macroscopic material model has to be postulated. This macroscopic
model then requires a discretization in time for numerical purposes.
In contrast, the homogenization result for the Francfort-Marigo model
practically works with an energy equivalence between the macro-
scopic and the microscopic fracture energy, as a result of the energetic
framework. In particular, no time step is present in evaluating the
cell formula since the time step has been fixed once and for all on the
macroscale. A detailed discussion on this difference is also found in
Michel and Suquet (2022).
Finally, let us remark that Γ-convergence implies the convergence
of absolute minimizers, but does not predict what happens to local
minimizers. Although an energy equivalence between the microscopic
fracture energy and the macroscopic fracture energy appears in a
natural way, the (absolutely) minimal surface in the cell problem is
be a byproduct of Γ-convergence. From a physical point of view, it
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might be more appropriate to work with crack surfaces that are just
local minima of the weighted area. Still, keeping the assessment of the
safety of microstructured components in mind, the absolutely minimal
surface serves as a lower bound for the (real) effective crack energy, and
is furthermore robust w.r.t. stochastic fluctuations in the microstructure.
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Chapter 3

Characterizing digital
microstructures by the
Minkowski-based quadratic
normal tensor1

3.1 Introduction

For material modeling of microstructured media, an accurate character-
ization of the underlying microstructure is indispensable. The overall
goal is to find simple quantities that describe the geometric shape as
well as the composition of the microstructure under consideration. Once
a microstructured material is characterized in these terms, correlations
between microstructure characteristics and effective material parameters
may be investigated via multi-scale methods, see Matouš et al. (2017).
For microstructures of different material classes, different characteristics
have been established. Particle reinforced composites may be characer-
ized by the size(-distribution) of the particles and the volume fraction of
the latter. The special case of fiber-reinforced composites additionally
takes the fiber-orientation distribution, expressed via fiber orientation

1 This chapter is based on Ernesti et al. (2022). In order to include this paper into the
structure of this work I shortened the introduction and made minor changes to the
manuscript.
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tensors (Kanatani, 1984; Advani and Tucker, 1987) into account. For
porous media, in addition to the porosity, i.e., the volume fraction of the
porous space, the pore-size distribution (Kate and Gokhale, 2006), the
turtosity (Neumann et al., 2019) and the chord-length distribution (Math-
eron, 1975) are the typical quantities of interest. Polycrystalline materials
are typically characterized in terms of a grain-size distribution (Döbrich
et al., 2004) and an orientation distribution (Bunge, 1982; Böhlke, 2006).
Since microstructures are often stochastic, a mathematical investigation
of microstructure and their characterization is strongly related to the field
of stochastic geometry. One basic tool in stochastic geometry to describe
geometrical shapes and sizes is given by Minkowski functionals (Schnei-
der and Weil, 2008; Hadwiger, 1951), also known as intrinsic volumes.
They are defined for wide classes of shapes, including all convex sets
and their finite unions as well as all bounded sets with smooth boundary.
A Minkowski functional associates to any such shape a scalar quantity. If
one requires such a functional to be invariant with respect to Euclidean
motions, additive and to satisfy a certain continuity property, then it can
be shown, see Hadwiger (1951), that in 3D it can be written as linear
combination of only four basic functionals, the Minkowski functionals.
Among them are the total volume, the total surface area, the Euler
characteristic and one further functional, which for convex shapes may
be interpreted as the mean width, or in the context of smooth boundaries
as the integral of mean curvature. Approaches for computing Minkowski
functionals are based, for instance, on marching squares (Mantz et al.,
2008) or on Steiner’s formula (Klenk et al., 2006; Guderlei et al., 2007).
Being scalar-valued and rotation invariant, Minkowski-functionals are
intrinsically insensitive to anisotropic features of the shape in question.
Therefore, tensor-valued analogs of Minkowski functionals, the so-
called Minkowski tensors (Alesker, 1999; Hug et al., 2008a;b; Jensen and
Kiderlen, 2017), were introduced and studied. In addition to additivity
and continuity, Minkowski tensors are required to be equivariant w.r.t.
Euclidean transformations. This means, for instance, that rotating a
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shape first and computing its Minkowski tensor afterwards leads to
the same result as computing the Minkowski tensor first and rotating
the tensor afterwards. A direct consequence of this property is that
Minkowski tensors preserve axes of symmetry of structures, i.e., if a
shape is rotationally invariant w.r.t. an axis p, the Minkowski tensor will
be rotationally invariant w.r.t. p as well.
Minkowski tensors may be computed for general microstructures with
distinct interfaces, such as porous media, foams, bones or granular
structures (Schröder-Turk et al., 2011). For porous media, Klatt et al.
(2017) conducted a comparison between the common chord-length
analysis and a Minkowski-tensor based approach. Schröder-Turk et al.
(2011; 2013) evaluated Minkowski tensors for a given triangulation of the
interface via explicitly known expressions for polytopes. Their ansatz
was successfully used for characterizing the anisotropy of granular
matter and metal foams, as well as identifying defects in molecular
dynamics simulations of metal phases. For 3D gray-value images, Svane
(2014; 2015) introduced approximation formulas for Minkowski function-
als and tensors, also establishing convergence upon mesh refinement,
called multigrid convergence in this context. Unfortunately, the cited
works (Svane, 2014; 2015) did not include numerical examples.
For finite point samples, Voronoi-based estimators Hug et al. (2017) may
be used for approximating Minkowski tensors.

Contributions

We present an applied approach for characterizing digital microstruc-
tures of industrial complexity in terms of the quadratic normal tensor,
a tensor-valued quantity based on Minkowski tensors, bringing these
concepts to the attention of the engineering community.
For phenomenological continuum theories, which use microstructure
information as state or microstructure variables to model the influence
of microstructure on macroscopic material behavior, the Minkowski
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tensors are promising quantities, because they are in principle observable
and can be effectively calculated from three-dimensional image data.
The Minkowski tensors complement, e.g., the already widely used
fiber-orientation tensors (Advani and Tucker, 1987; Kanatani, 1984),
which approximate the tangent distribution of the fiber centerline, and
tensorial texture coefficients (Böhlke, 2006; Böhlke et al., 2010), which
describe the distribution of crystal orientations.
We introduce the relevant Minkowski functionals and tensors in section
3.2 and isolate among them those suitable for microstructure char-
acterization. In section 3.3, we present a novel algorithm for com-
puting the quadratic normal tensor. For large microstructures with
complex geometry, finding triangulations of the interface may be a
challenging task, in particular if the microstructure is described by
voxel data. Therefore, we present here an alternative to triangulation-
based algorithms (Schröder-Turk et al., 2011) that works directly with
gray-value images as input. The outward-pointing unit normals on the
materials interface are approximated by finite-difference gradients of the
discretized characteristic function.
We investigate multigrid convergence of our approach by numerical
studies in section 3.4. For fiber-reinforced composites, we compare the
quadratic normal tensor to the more conventional fiber-orientation tensor
of second order (Kanatani, 1984; Advani and Tucker, 1987). We compare
the accuracy of our approach to the commonly used structure-tensor
based algorithm (Krause et al., 2010) for computing fiber-orientation
tensors. Last but not least, we study the anisotropy of sand grains and
porous sand-binder aggregates based on the quadratic normal tensor.
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3.2 Using Minkowski tensors for describing
microstructures

3.2.1 Minkowski tensors

We briefly introduce Minkowski functionals and Minkowski tensors in
a form suitable for our purposes and restrict to the 3D case. We refer
to Schröder-Turk et al. (2013; 2011) or the lecture notes by Jensen and
Kiderlen (2017) for the general case.
Consider a solid body, by which we mean a bounded, not necessarily
connected set 𝐾 in R3 with sufficiently regular boundary 𝜕𝐾. Here
regularity can mean smoothness or convexity of some form. For our
purposes it will be completely sufficient to assume that 𝐾 is polyconvex,
i.e., 𝐾 can be represented as a finite union of (not necessarily disjoint)
convex sets. To gain insight into the morphology of 𝐾, a shape index
𝜙 associates to any such set 𝐾 a scalar value. If one requires the shape
index 𝜙 to satisfy some natural basic properties, namely invariance
with respect to rigid motions, additivity (meaning that 𝜙(𝐾 ∪ 𝐿) =
𝜙(𝐾) + 𝜙(𝐿)− 𝜙(𝐾 ∩ 𝐿) for solid bodies 𝐾,𝐿) and a certain continuity
(for convex sets, and w.r.t. the Hausdorff distance, see e.g. (Schneider
and Weil, 2008, §12.3)), then it is a well-known fact due to Hadwiger
(1951) that 𝜙 may be represented as a linear combination of only four
basic functionals 𝑉0, . . . , 𝑉3, known as Minkowski functionals or intrinsic
volumes. The Minkowski functionals encompass the volume 𝑉 = 𝑉3,
the surface area 𝑆 = 2𝑉2, and two further functionals, 𝑉1 and 𝑉0, which
in special situations can be interpreted as the total mean curvature and
the total Gaussian curvature of the body 𝐾. The latter is proportional to
the Euler characteristic of 𝐾, i.e., the genus of the surface 𝜕𝐾, which is a
topological invariant. Volume and surface area are computed by

𝑉 (𝐾) =
∫︁

𝐾

𝑑𝑉 and 𝑆(𝐾) =
∫︁

𝜕𝐾

𝑑𝑆. (3.1)
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K
ε

Kε

ε→ 0

Figure 3.1: Illustration of the 𝜀-parallel expansion 𝐾𝜀 of the shape 𝐾 ⊆ R3. (Ernesti et al.,
2022)

If the boundary 𝜕𝐾 is sufficiently smooth, then the local mean curvature
𝐻 and the Gaussian curvature 𝐺 (i.e. the average and the product of the
principal curvatures) are well-defined at each boundary point and the
total curvatures may be computed via

𝑉1(𝐾) = 1
𝜋

∫︁
𝜕𝐾

𝐻 𝑑𝑆 and 𝑉0(𝐾) = 1
4𝜋

∫︁
𝜕𝐾

𝐺𝑑𝑆. (3.2)

Such integral representations are also available for non-smooth bodies
when one replaces 𝜕𝐾 by an integration over the normal bundle of
𝐾 (Zähle, 1986). For practical computations, the additivity property is
essential, allowing to decompose complex structures into simple convex
pieces and to treat these pieces individually. For convex shapes, the
Steiner formula provides another way to characterize the Minkowski
functionals and another idea how to compute them.
Consider, for a convex body 𝐾 and 𝜀 > 0, the 𝜀-approximation

𝐾𝜀 =
{︀

x ∈ R3 : ||x− y|| ≤ 𝜀 for some y ∈ 𝐾
}︀
,
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see Fig. 3.1 for a schematic illustration. The Steiner formula (Schneider,
2014) states that the volume of𝐾𝜀 is a polynomial in 𝜀, whose coefficients
are (up to some normalization constants) the Minkowski functionals of
𝐾:

𝑉 (𝐾𝜀) = 𝑉 (𝐾) + 𝜀𝑆(𝐾) + 𝜋𝜀2𝑉1(𝐾) + 4𝜋
3 𝜀3𝑉0(𝐾). (3.3)

This allows to recover the Minkowski functionals of 𝐾 by computing
volumes of a number of 𝜀-approximations and inverting the above
formula, see Klenk et al. (2006). One can also use the fact that the
𝜀-approximations 𝐾𝜀 are smooth even if 𝐾 is not, allowing to determine
the Minkowski functionals 𝑉1 and 𝑉0 by means of the limit procedure

𝑉1(𝐾) = lim
𝜀→0

𝑉1(𝐾𝜀) and 𝑉0(𝐾) = lim
𝜀→0

𝑉0(𝐾𝜀).

While these approximation results follow from the continuity of the
Minkowski functionals, 𝜀-approximation properties of more general
classes of sets are discussed in Rataj (2006). For more background to
our informal discussion, we refer to Schröder-Turk et al. (2013) and the
references therein.

Since Minkowski functionals are, by definition, invariant w.r.t. Euclidean
motions or change of frame, they are insensitive to directional and
positional information. Hence, they are inappropriate for detecting
anisotropies in a shape 𝐾. For this latter purpose and other applications,
a more general theory of tensor-valued shape indices has been devel-
oped, which are covariant w.r.t. Euclidean motions, see Schröder-Turk
et al. (2013). In analogy to Hadwiger’s theorem (Hadwiger, 1951) and
restricting to R3 ⊗sym R

3 ∼= R3×3
sym tensors, there are only six linearly

independent shape indices (in addition to the Minkowski functionals
multiplied by the identity), see Alesker (1999) and in particular (Hug
et al., 2008b, §4). For a (convex) body 𝐾 with sufficiently smooth
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boundary, these may be expressed as

𝑊 2,0
0 (𝐾) =

∫︁
𝐾

x⊗ x 𝑑𝑉, 𝑊 2,0
1 (𝐾) = 1

3

∫︁
𝜕𝐾

x⊗ x 𝑑𝑆,

𝑊 2,0
2 (𝐾) = 1

3

∫︁
𝜕𝐾

𝐻(x)x⊗ x 𝑑𝑆, 𝑊 2,0
3 (𝐾) = 1

3

∫︁
𝜕𝐾

𝐺(x)x⊗ x 𝑑𝑆,

𝑊 0,2
1 (𝐾) = 1

3

∫︁
𝜕𝐾

n⊗ n 𝑑𝑆, 𝑊 0,2
2 (𝐾) = 1

3

∫︁
𝜕𝐾

𝐻(x)n⊗ n 𝑑𝑆.

(3.4)

Here, x denotes the position vector of a point in 𝐾 (or 𝜕𝐾) and n
stands for the field of outward-pointing unit-normal vectors on 𝜕𝐾. For
Minkowski tensors, Steiner-type formulas based on support measures
have been established, see Schneider (2000). Note that some Minkowski
functionals can be recovered from Minkowski tensors. For instance, the
surface area is given by the formula 𝑆(𝐾) = 3tr(𝑊 0,2

1 (𝐾)).
Based on these Minkowski tensors, Schröder-Turk et al. (2011) introduce
the eigenvalue ratios

𝛽(𝑊 ) =
min𝜆∈E(𝑊 ) |𝜆|
max𝜆∈E(𝑊 ) |𝜆|

, (3.5)

as scalar measures of anisotropy. Here 𝑊 stands for any of the six
Minkowski tensors defined in (3.4) and E(𝑊 ) is the set of eigenvalues
of the symmetric matrix 𝑊 . Clearly, 𝛽(𝑊 ) ∈ [0, 1]. For 𝑊 = 𝑊 2,0

0 ,
𝑊 2,0

1 and 𝑊 0,2
1 , the matrix 𝑊 (𝐾) is positive semi-definite in general

(and this is also true for the other Minkowski tensors if 𝐾 is a convex
body), implying that all eigenvalues of 𝑊 are nonnegative. In this case,
𝛽(𝑊 ) = 1 if and only if all eigenvalues are equal, i.e., if the tensor is a
multiple of the identity. Note that smaller values of 𝛽(𝑊 ) correspond to
a higher degree of anisotropy.
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3.2.2 Minkowski-tensor based microstructure characteri-
zation

Heterogeneous materials often exhibit random variations in their mi-
crostructure, but a resulting deterministic material behavior (Torquato,
2002). For characterizing microstructures, we are interested in singling
out a small number of tensor-valued descriptors that may in turn be
used as input for homogenization schemes, see Klusemann and Svend-
sen (2010) for an overview. These microstructure identifiers should
preferably exhibit certain natural properties:

1. Respect for symmetries: We seek microstructure identifiers that pre-
serve symmetry information. If a microstructure possesses some
symmetry, then this is typically reflected in the macroscopic material
behavior. Therefore, identifiers should capture such symmetry.

2. Robustness: To be of practical use, small changes in the microstructure
should only result in small changes in the descriptor.

3. Translation invariance: For homogenization, statistical homogeneity
is essential (Torquato, 2002). Thus, our identifiers should be invariant
with respect to translations of the shape 𝐾. Furthermore, we want to
explicitly include periodic structures, as periodic homogenization is
often used for studying random microstructures (Kanit et al., 2003).

4. Universal applicability: Minimal assumptions on the geometry of
the structure allow for general application on a variety of different
microstructures.

In the light of these criteria, Minkowski tensors are promising candidates
for microstructure characteristics.

1. Their covariant tensorial nature reflects the anisotropy and direction
dependence of the structure in question.

2. They are robust due to their continuity properties w.r.t. the Hausdorff
distance. For example, if a sequence of convex bodies 𝐾𝑛 converges
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to a convex body 𝐾, as 𝑛→∞, then all their Minkowski functionals
and Minkowski tensors converge as well. Similar results hold e.g.
if a polyconvex set 𝐾 is approximated by its parallel sets 𝐾𝜀, see
Schneider (2014) and Rataj (2006). There are also stability results
showing Hölder continuity with exponent at least 1/2, see Hug and
Schneider (2015).

3. If translation invariance is required, then beside the Minkowski
functionals among the above mentioned Minkowski tensors precisely
𝑊 0,2

1 and 𝑊 0,2
2 are suitable. As computing the curvature of interfaces

of 3D voxel images is not straightforward (Lenoir, 1997; Monga et al.,
1991), we restrict in this article to the volume 𝑉 , the surface area 𝑆
and the Minkowski tensor 𝑊 0,2

1 .

4. The Minkowski tensors are not restricted to specific shape as-
sumptions on 𝐾. Indeed, only minimal assumptions on 𝐾 are
required (Schröder-Turk et al., 2011). For any practical application
it is probably sufficient to note that any set (however complex) can
be approximated arbitrarily well by a polyconvex set on which
Minkowski tensors are defined. The tensor 𝑊 0,2

1 under consideration
can in fact be defined under much weaker regularity assumptions,
e.g. for sets with piecewise smooth boundaries. This flexibility
distinguishes them from other approaches, where geometric priors
are required for characterizing microstructures. For instance, for
fiber-reinforced composites, fibers are often assumed to be (locally)
cylindrical. Such geometrical priors run into problems for fibrous
microstructure where the fibers deviate from their original cylindrical
shape. For instance, during injection molding, fibers may be bent or
twisted (Heinecke and Willberg, 2019). As they are independent of
priors, Minkowski tensors may be suitable for characterizing fibers
with distinct curvature.

In the field of microstructure characterization, 𝐾 is often the set union
of a multitude of bodies, for instance inclusions within a surround-
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K

∂K

n

Figure 3.2: Body 𝐾 with outward-pointing unit-normal field n. (Ernesti et al., 2022)

ing matrix material. In this context, we are interested in a tensorial
anisotropy-measure, which is stable w.r.t. an infinite-volume limit, where
the number of inclusions tends to infinity. Thus, we normalize 𝑊 0,2

1 to
obtain the quadratic normal tensor (QNT)

QNT(𝐾) = 𝑊 0,2
1 (𝐾)

tr(𝑊 0,2
1 (𝐾))

, (3.6)

which, for a single body or microstructure 𝐾 with sufficiently smooth
boundary, may be written in the form

QNT(𝐾) = 1
𝑆(𝐾)

∫︁
𝜕𝐾

n⊗ n d𝑆,

where again n = n(x) is the field of normal vectors on 𝜕𝐾, see Fig. 3.2.
For a geometric interpretation of the QNT, observe that for any vector
𝜉 ∈ R3 the expression

(n⊗ n)𝜉 = n (n · 𝜉)
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describes the orthogonal projection of 𝜉 onto the line spanned by the
normal direction n at x. In this sense, QNT(𝐾) may be interpreted as
an average over the normal projections computed w.r.t. the uniform
probability measure concentrated on the surface 𝜕𝐾. (Note that the
resulting average matrix is still symmetric and positive definite but does
not represent a projection anymore.)
The QNT(𝐾) admits an additional interpretation from a mechanical
point of view. Suppose the structure 𝐾 deforms with a homogeneous
stress 𝜎. Then, contracting the stress tensor with the QNT

QNT(𝐾) : 𝜎 = 1
𝑆(𝐾)

∫︁
𝜕𝐾

n · (𝜎n) 𝑑𝑆

computes the mean normal stress on the surface 𝜕𝐾.
By construction, the QNT is symmetric, positive semi-definite and has
trace 1. In particular, QNT(𝐾) admits an eigenvalue decomposition
with real-valued, non-negative eigenvalues 𝜆1, 𝜆2 and 𝜆3, which sum to
1. In case of a convex 𝐾, certain eigenvalue combinations can directly
be interpreted in terms of the resulting shape of 𝐾: 𝜆1 ≫ 𝜆2 = 𝜆3, for
instance, indicates a rather flat shape within the plane perpendicular to
the eigenvector corresponding to 𝜆1. For 𝜆1 = 𝜆2 ≫ 𝜆3 we expect 𝐾 to
be a needle expanded in the direction of the eigenvector associated with
𝜆3, see also Appendix A.2, where the QNT is computed for a cylinder,
and the sand grain experiments in section 3.4.4.
Another advantage of Minkowski tensors is that they are locally defined
and therefore locally computable. Complex polyconvex shapes can be
cut into simple pieces and each piece can be treated separately. Then
the additivity allows to recover the Minkowski tensor of the whole
body from the Minkowski tensors of the pieces, allowing for efficient
computation and parallelization.
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3.3 Efficient implementation for 3D image
data

3.3.1 Algorithmic overview

Consider a (periodic) heterogeneous two-phase material on the domain
𝑌 = [0, 𝐿𝑥] × [0, 𝐿𝑦] × [0, 𝐿𝑧]. The microstructure of the material is
described by its characteristic function 𝜒 : 𝑌 → {0, 1}, defining the
two phases Ω0 and Ω1 via Ω0 = {x ∈ 𝑌 : 𝜒(x) = 0} and Ω1 = 𝑌 ∖Ω0,
respectively. Our aim is to describe phase Ω1 using the Minkowski
functionals and tensors 𝑉 (Ω1), 𝑆(Ω1), 𝑊 0,2

1 (Ω1) and QNT(Ω1).
Note that Ω1 is unknown in practice, only CT images of Ω1 can be
observed. 𝜇-CT data is typically stored as 3D gray-value voxel data. We
interpret the voxel data as a mapping 𝜒ℎ : 𝑌ℎ → [0, 1] from the discrete
set 𝑌ℎ, comprising the centers of a regular voxel grid with voxel length
ℎ, to the unit interval representing gray values. The gray value 𝜒ℎ(y)
associated to a point y ∈ 𝑌ℎ stands for the volume fraction of Ω1 in the
voxel centered at y. The relation between 𝜒 and its discretization 𝜒ℎ

is demonstrated in Fig. 3.3. Fig. 3.3a shows the characteristic function
𝜒 of a ball. Fig. 3.3b shows the non-discretized ball with the regular
grid 𝑌ℎ in the background. In Fig. 3.3c, we see the discrete characteristic
function 𝜒ℎ of this ball as a gray-value image. Note that, in general, the
input data 𝜒ℎ does not allow to recover the phases Ω0 and Ω1 exactly
as the interface is blurred. Only in the limit as ℎ → 0 the correct
characteristic function and, therefore, the correct sets are recovered.
For determining 𝑊 0,2

1 and 𝑆, in addition the normal directions are
needed. In a weak sense, the unit normal n of the set Ω1 at a boundary
point is recovered by n = −∇𝜒, whereas −∇𝜒 = 0 away from the
boundary. This statement may be formalized in terms of functions of
bounded variation (Ambrosio et al., 2000). Therefore, we will compute
the gradient numerically and establish formulas for𝑊 0,2

1 and 𝑆 based on
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(a) Characteristic
function 𝜒

(b) 𝜒 with background
grid

(c) gray-value image 𝜒ℎ

Figure 3.3: Characteristic function of a ball and its discrete representation by a gray-value
image on a regular voxel grid. (Ernesti et al., 2022)

volume averaging, see section 3.3.4. To improve the gradient estimation,
a smoothing of the characteristic function 𝜒ℎ is applied beforehand.
The algorithm for computing the Minkowski quantities from a given
voxel image is summarized in Alg. 1. First, we apply an image filter ℱ𝜎

to the characteristic function 𝜒ℎ. Secondly, we estimate the outward-
pointing normal vector by computing the gradient g from the resulting
smoothed image ℐ𝜎

ℎ . Finally, the desired quantities 𝑉, 𝑆,𝑊 0,2
1 and QNT

are estimated.

Algorithm 1 Computation of Minkowski quantities

1: ℐ𝜎
ℎ ← ℱ𝜎 * 𝜒ℎ ◁ Blur image with image filter

2: g(x)← ∇ℎℐ𝜎
ℎ (x) ◁ Compute gradient

3: Compute 𝑉 by (3.7)
4: Compute 𝑆 by (3.8)
5: Compute 𝑊 0,2

1 by (3.9)
6: Compute QNT by 𝑊 0,2

1 /tr(𝑊 0,2
1 )

7: return (𝑉, 𝑆,𝑊 0,2
1 ,QNT)
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3.3.2 Smoothing by image filters

Due to the reconstruction procedure, 𝜇-CT scans often exhibit artifacts
and impurities. Furthermore, binary voxel-based images do not allow
reconstructing interfaces accurately (Mantz et al., 2008). To deal with
these issues, we apply an image filter to the discrete characteristic func-
tion (prior to computing the gradient). As different filters (and different
choices of parameters) are available, we will also address choosing an
appropriate filter. Applying the filter is realized by convolving the
image with a specific filter kernel ℱ𝜎. The filter parameter 𝜎 controls
the width of filtering, and the result is the filtered image ℐ𝜎

ℎ , given as
the convolution

ℐ𝜎
ℎ = ℱ𝜎 * 𝜒ℎ.

In our implementation, the convolution with ℱ𝜎 is implemented via fast
Fourier transform (FFT) (Cooley and Turkey, 1965), see Alg.2. Notice that
in some cases the Fourier-transformed filter kernel may be computed
efficiently without using the FFT.

Algorithm 2 FFT-based filter application

1: ̂︁𝜒ℎ ← FFT(𝜒ℎ) ◁ Transformation of the characteristic function
2: ̂︁ℱ𝜎 ← FFT(ℱ𝜎) ◁ Transformation of the filter kernel
3: ̂︁ℐ𝜎

ℎ (𝜉)← ̂︁𝜒ℎ(𝜉)̂︁ℱ𝜎(𝜉) ◁ Multiplication in Fourier space for all
frequencies 𝜉

4: ℐ𝜎
ℎ ← IFFT(̂︁ℐ𝜎

ℎ ) ◁ Inverse transformation

We shall consider a dimensionless filter parameter 𝜎 and scale it
by the voxel length ℎ. As filter kernels, we consider a Gaussian

69



3 Characterizing digital microstructures by the Minkowski-based QNT

kernel (Bredies and Lorenz, 2018)

𝒢𝜎(x) = 1
(ℎ𝜎)3(2𝜋) 3

2
exp

(︂
− ‖x‖2

2(ℎ𝜎)2

)︂
and the characteristic function of the unit ball, scaled to integrate
to unity,

ℬ𝜎(x) =

⎧⎨⎩ 3
4𝜋(ℎ𝜎)3 if ‖x‖ ≤ ℎ𝜎,

0 otherwise.

In Fig. 3.4, the effect of filtering by a Gaussian and a ball kernel, re-
spectively, is shown for a 1D laminate structure discretized with a
voxel length of ℎ = 2𝜇m for three different filter parameters 𝜎. The
red curve illustrates the impact of the Gaussian filter, whereas the blue
line represents the ball-filtered image. In the Gaussian case, the resulting
image is smooth across the laminate’s interface. However, for larger 𝜎,
not only the interface is blurred, but no region of black or white remains.
In fact, due to its global support, this even holds for small 𝜎.
The impact of the ball filter is completely different. The piecewise
constant indicator function with jumps at the interfaces is transformed
into a piecewise linear function with slopes ± 1

2ℎ𝜎 . Therefore, when
applying the ball filter to a structure with diameter larger than 2ℎ𝜎,
some region with ℐ𝜎

ℎ = 1 will remain.

70



3.3 Efficient implementation for 3D image data
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Figure 3.4: Influence of filtering with different kernels and widths 𝜎. (Ernesti et al., 2022)

3.3.3 Approximating the surface normal by finite differ-
ences

Computing the Minkowski tensor 𝑊 0,2
1 (Ω1) requires determining the

(unit) normal vector field n on the surface 𝜕Ω1. We approximate the
normal field n by computing the gradient vector field

g = ∇ℎℐ𝜎
ℎ

of the filtered image ℐ𝜎
ℎ numerically. Notice that g is dependent on

the voxel length ℎ. At boundary points, we consider n ≈ −g/||g||
as the outward pointing unit normal, provided g ̸= 0. We briefly
discuss the choice of the numerical gradient-approximation method.
Finite-difference approximations are a simple way for approximating
the gradient of a function given on a regular voxel grid numerically.
Suppose a function 𝑓 : 𝑌 → R, x ↦→ 𝑓(x) is given. We consider
three finite-difference discretization schemes for the partial derivative in
e𝑖-direction (𝑖 = 1, 2, 3):
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3 Characterizing digital microstructures by the Minkowski-based QNT

1. first-order approximation by forward differences, i.e.,

𝜕ℎ
𝑖 𝑓(x) ≈ 𝑓(x + ℎe𝑖)− 𝑓(x)

ℎ
;

2. first-order approximation by backward differences, i.e.,

𝜕ℎ
𝑖 𝑓(x) ≈ 𝑓(x)− 𝑓(x− ℎe𝑖)

ℎ
;

3. second-order approximation by central differences, i.e.,

𝜕ℎ
𝑖 𝑓(x) ≈ 𝑓(x + ℎe𝑖)− 𝑓(x− ℎe𝑖)

2ℎ .

Since our numerical experiments are performed on periodic structures,
we treat the boundary in a periodic fashion. Under certain regularity
assumptions on the function to differentiate, the first-order approxima-
tions converge linearly in ℎ to the exact gradient, whereas the second
order approximation converges quadratically as ℎ→ 0, see Olver (2014).
However, some further differences arise, which we demonstrate by
example, see Fig. 3.5.
Consider the filtered gray-value image of a ball, shown in Fig. 3.5a. When
computing the gradient via central differences, the symmetry of the
structure is recovered in the symmetry of the gradient field, since ℐ𝜎

ℎ (x)
and n(x) are evaluated at the same position, see Fig¸ 3.5d. However, if we
compute the gradient via forward or backward differences, respectively,
this will not be the case. The forward or backward partial derivatives in
direction e𝑖 are not evaluated at x, but at x±ℎ/2e𝑖, respectively, the faces
of the cell. In particular, the partial derivatives in different directions
will also be located on different faces. The resulting gradient fields are
shown in Fig. 3.5c and Fig. 3.5b, respectively. Both appear deformed and
uneven compared to the central-differences approach. Furthermore, a
diagonal offset is noticeable. Numerical tests show that, in our present
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(a) Filtered image ℐ𝜎
ℎ (b) ‖∇ℎℐ𝜎

ℎ ‖, computed via forward
differences

(c) ‖∇ℎℐ𝜎
ℎ ‖, computed via backward

differences
(d) ‖∇ℎℐ𝜎

ℎ ‖, computed via central
differences

Figure 3.5: Filtered gray-value image of a ball (a) and norm of the gradient computed via
the three different finite-difference approximations (b)-(d). (Ernesti et al., 2022)
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3 Characterizing digital microstructures by the Minkowski-based QNT

setting, the gradient approximation based on central differences is more
accurate than the other approaches and will therefore be preferred, see
also Section 3.4.2.

3.3.4 Computing Minkowski tensors

In this section, we propose formulas for computing the volume (fraction)
of Ω1, the surface area of 𝜕Ω1 and the Minkowski tensor 𝑊 0,2

1 (Ω1). Their
accuracy and multigrid convergence will be investigated by numerical
means in Section 3.4.2.
The volume is approximated by quadrature, more precisely, by the
trapezoidal rule, via

𝑉 (Ω1) ≈
∑︁

x∈𝑌ℎ

𝜒ℎ(x)ℎ3. (3.7)

Motivated by results from geometric measure theory, see Giusti (1984)
(Defintion 1.6, Theorem 1.24 and Definition 3.3) and Maggi (2012) (Propo-
sition 12.20), we approximate the surface area via

𝑆(Ω1) ≈
∑︁

x∈𝑌ℎ

‖g(x)‖ℎ3, (3.8)

where the gradient g(x) is computed by finite differences and || · ||
denotes the Euclidean norm. Due to the relation 𝑆(Ω1) = 3tr(𝑊 0,2

1 (Ω1)),
we approximate the Minkowski tensor 𝑊 0,2

1 by

𝑊 0,2
1 (Ω1) ≈ 1

3
∑︁

x∈𝑌ℎ

g(x)⊗ g(x) ℎ3

‖g(x)‖+ 𝜖
, (3.9)

where 𝜖 > 0 is a small constant used to avoid division by zero. The ap-
proximation of the quadratic normal tensor QNT is computed from the
approximation of 𝑊 0,2

1 by dividing by the trace, as in its definition (3.6).
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3.4 Numerical examples

3.4.1 Setup

The algorithms 1 and 2 (as well as algorithm 3 discussed in Section 3.4.3
below) were implemented in Python 3.7 with Cython (Behnel et al.,
2011) extensions. Critical operations were parallelized using OpenMP.
For the eigenvalue decomposition of the structure tensor, discussed in
Section 3.4.3 below, we rely on LAPACK (Anderson et al., 1999). The
computations were performed on a desktop computer with a 6-core Intel
i7 CPU and 32GB RAM.

3.4.2 Parameter selection and multigrid convergence

The proposed algorithm depends on several basic parameters including
the grid size, the gray scale depth, the type and width of the applied
filter and the choice of the gradient approximation, which we are free to
choose in order to tune the algorithm. In this section, we investigate the
influence of these parameters and propose suitable choices.
In practical applications, the continuous range [0, 1] of gray values is
replaced by a set of discrete colors

𝒞𝑝 =

⎧⎨⎩{0, 1} if 𝑝 = 1,

{0, 1
𝑝3−1 ,

2
𝑝3−1 , . . . , 1} if 𝑝 ≥ 2

of depth 𝑝 ≥ 1. In this context, we consider the discrete characteristic
function as the mapping 𝜒ℎ : 𝑌ℎ → 𝒞𝑝. For 𝑝 = 1, we voxelize the object
under consideration in a binary manner, by colorizing a voxel if its center
lies inside the object. For 𝑝 > 1, we compute the binary image on the
finer grid ℎ′ = ℎ/𝑝 and determine the gray-value of a voxel of size ℎ as
the mean value of its 𝑝3 sub-voxels, resulting in a gray-value image of
depth 𝑝. We investigate a ball 𝐵𝑅 of radius 𝑅 > 0 for different 𝑝. The
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3 Characterizing digital microstructures by the Minkowski-based QNT

Minkowski quantities of 𝐵𝑅 are known exactly and given by

𝑉 (𝐵𝑅) = 4𝜋𝑅3

3 , 𝑆(𝐵𝑅) = 4𝜋𝑅2,

𝑊 0,2
1 (𝐵𝑅) = 4𝜋𝑅2

9 Id, QNT(𝐵𝑅) = 1
3 Id,

see Appendix A.1 for a derivation of the expressions for 𝑊 0,2
1 and

QNT. Hence these quantities can be compared to the corresponding
numerically determined quantities 𝑉 ≈, 𝑆≈, 𝑊≈ = 𝑊 0,2,≈

1 and QNT≈.
For 𝑊 = 𝑊 0,2

1 and QNT, we define error measures by

𝐸 = ‖𝑊 (𝐵𝑅)−𝑊≈(𝐵𝑅)‖
‖𝑊 (𝐵𝑅)‖ and 𝐸 =

⃦⃦
QNT(𝐵𝑅)−QNT≈(𝐵𝑅)

⃦⃦
‖QNT(𝐵𝑅)‖ ,

where || · || denotes the Frobenius norm. Since 𝑊 is connected to the
surface area via 𝑆 = 3tr(𝑊 ), the error 𝐸 is directly affected by an error
in computing 𝑆. In contrast, this latter error does not necessarily affect
𝐸, as both QNT and QNT≈ have trace 1.
We investigate the influence of the different gradient approximations,
filter kernels and filter widths 𝜎, as well as that of the depth 𝑝 of the
initial gray-value image, and we examine multigrid convergence as
ℎ → 0 numerically. The effect of the filters on the initial gray-value
image, depending on the image depth, is exemplified in Fig. 3.6. In
Fig. 3.6a, we see a slice through the characteristic function of a ball with
a regular grid in the background. In Fig. 3.6b and 3.6c, we see slices of
the discrete characteristic functions of the ball for depths 1 and 4. The
center of the ball does not lie in the center of a voxel, but was chosen with
a slight displacement, which results in a more uneven representation of
the ball in the discrete images compared to Fig. 3.3.
Apparently, images with a higher depth give rise to a more accurate
representation of a ball than binary images do. Fig. 3.6d and 3.6e show
the image after applying a ball-filter with 𝜎 = 1.2. We see that the
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3.4 Numerical examples

difference between depth 1 and 4 has become smaller, but remains
visible. The filtered binary image (𝑝 = 1) seems more uneven than the
filtered gray-scale image (𝑝 = 4).

(a) 𝜒 with grid (b) 𝜒ℎ for 𝑝 = 1 (c) 𝜒ℎ for 𝑝 = 4

(d) ℐ1.2
ℎ for 𝑝 = 1 (e) ℐ1.2

ℎ for 𝑝 = 4

Figure 3.6: Characteristic function 𝜒, discrete characteristic function 𝜒ℎ and filtered image
ℐ1.2

ℎ for a single ball using depth 1 and 4. (Ernesti et al., 2022)

First, we study the influence of the gray-value depth 𝑝 of the initial voxel
image for different spatial resolutions. The structure under consideration
contains a single ball of diameter 16𝜇m in a box of edge length 24𝜇m, i.e.,
the material has a volume fraction of 15.5%. For this first study, we omit
using a filter and rely on central differences for the gradient estimation.
Fig. 3.7a shows the computed volume fraction vs. 𝐷/ℎ, the diameter of
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3 Characterizing digital microstructures by the Minkowski-based QNT

the ball per voxel length, for several gray-value depths 𝑝. The binary
image, i.e., 𝑝 = 1, exhibits the largest error and oscillates around the
correct value. Only for a high resolution above 𝐷/ℎ = 10, the error is
within reasonable bounds. For a higher depth, the volume fraction is
accurate even for the lowest resolution.
The computed surface area vs. 𝐷/ℎ is shown in Fig. 3.7b. Using the bi-
nary image without any filter overestimates the surface area significantly
and does not converge. For 𝑝 ≥ 2, we see that the error is reasonable for
a resolution of 4 voxels per diameter and higher. For higher resolution
and higher depth, the surface-area computation is rather accurate, but
systematically overestimates the correct value by about 2% and does not
converge. The error 𝐸 of the Minkowski tensor is shown in Fig. 3.7c.
For 𝑝 ≥ 2, it is below 6% even for the second-coarsest resolution of
𝐷/ℎ = 4 and stays below 3% at higher resolutions. Finally, the quadratic
normal tensor QNT is the one among the computed characteristics which
is computed most accurately, see Fig. 3.7d. For 𝑝 ≥ 2, the error is
below 5% for all spatial resolutions. Additionally, for all image depths,
multigrid convergence is visible. This suggests that, to some degree, the
error of computing the Minkowski tensor results from the mentioned
overestimation of the surface area. Indeed, since QNT differs from 𝑊 0,2

1
by its trace and tr(𝑊 0,2

1 ) = 𝑆/3, the error of computing the surface area
present in 𝑊 0,2

1 cancels out to some extent in QNT.

In a second series of numerical experiments we repeated large parts of
the above tests using first-order gradient approximations, as described
in Section 3.3.3, instead of central differences. Compared to the latter,
both first-order gradient approximations induce much larger errors,
exceeding 20%. Therefore, we will restrict to central differences for the
remainder of the article.
Finally, we examine the influence of different filter kernels. Fig. 3.8
shows the surface area as well as the two tensor-error measures vs. 𝐷/ℎ
for gray-value depth 𝑝 = 1 (binary) on the left and 𝑝 = 3 on the right.
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(c) Minkowski tensor error 𝐸
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(d) QNT error 𝐸

Figure 3.7: Volume fraction, total surface area and tensor errors 𝐸 and 𝐸 for the unfiltered
image, i.e., 𝜎 = 0. The gradient was computed via central differences. (Ernesti et al., 2022)
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We consider the ball filter ℬ𝜎 and the Gaussian filter 𝒢𝜎 , both with filter
parameters 𝜎 = 1.2 and 𝜎 = 2, i.e., for a filter width slightly larger than
a single voxel and a filter width of 2 voxels.
In general, the errors for the gray-value image are smaller compared
to the binary image. Focusing on the surface-area computation, i.e.,
Fig. 3.8a and Fig. 3.8b, we notice that applying no filter is actually most
beneficial for a low spatial resolution. For 𝑝 = 3, this even holds up
to 𝐷/ℎ = 10. For 𝑝 = 1, the surface area is strongly overestimated for
higher resolution. Even for 𝑝 = 3, no multigrid convergence is achieved,
if the filtering step is skipped. To achieve convergence, the ball filter
with 𝜎 = 1.2 is the most accurate. For 𝑝 = 1, the ball filter with 𝜎 = 1.2
appears to be the best choice for resolutions up to 𝐷/ℎ = 10. Above
that threshold, the choice 𝜎 = 2 exhibits the smallest error. Nevertheless,
the ball filter with 𝜎 = 1.2 serves as a good compromise. For both gray-
image depths, applying the ball filter leads to better results than applying
the Gaussian filter for computing the surface area of the structure.
Investigating the error 𝐸, see Fig. 3.8c and Fig. 3.8d, permits us to draw
similar conclusions. Fig. 3.8e and Fig. 3.8f show that the filter choice
plays a subordinate role compared to the image depth for the error𝐸. For
the binary image, the Gaussian filter with 𝜎 = 2 exhibits the lowest error,
staying below the threshold of 2% for all resolutions. For gray-value
images, however, the error of computing the quadratic normal tensor
is below 3% for all resolutions and filters, which is accurate enough for
most applications.

3.4.3 A short-fiber reinforced composite

Characterization of fiber-reinforced composites

Short-fiber reinforced composites enjoy great popularity owing to their
high (mass-)specific stiffness (Jones, 1998). The local fiber alignment is
strongly dependent on the manufacturing process (Chung and Kwon,
1995). The effective material behavior of short-fiber reinforced com-
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(c) Minkowski tensor error 𝐸 for 𝑝 = 1
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(d) Minkowski tensor error 𝐸 for 𝑝 = 3
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(e) QNT error 𝐸 for 𝑝 = 1
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(f) QNT error 𝐸 for 𝑝 = 3

Figure 3.8: Surface area and tensor errors 𝐸 and 𝐸 for depths 𝑝 = 1 and 𝑝 = 3 comparing
the filter choice. (Ernesti et al., 2022)
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posites is anisotropic, in general, and strongly dependent on the lo-
cal fiber orientation. Each fiber is interpreted as a straight spherical
cylinder of length 𝐿 and diameter 𝐷, axis-aligned with unit vector
p. Frequently used microstructure characteristics for fiber-reinforced
composite materials are the volume fraction, the aspect ratio 𝐿/𝐷 and
the fiber-orientation tensors of second or fourth order (Kanatani, 1984;
Advani and Tucker, 1987). For fibers of equal length and equal diameter,
the resulting fiber-orientation tensors (of order 2 and 4) of a structure
with 𝑁 fibers and orientation vectors p1, . . . ,p𝑁 are defined by

𝐴 = 1
𝑁

𝑁∑︁
𝑖=1

p𝑖 ⊗ p𝑖 and A = 1
𝑁

𝑁∑︁
𝑖=1

p𝑖 ⊗ p𝑖 ⊗ p𝑖 ⊗ p𝑖.

For varying fiber length and diameter, similar expressions have been
proposed in Bay and Tucker III (1992) based on length- or volume-
weighted averaging.
For a gray-value 𝜇-CT image, the fiber-orientation tensors of second
and fourth order may be computed by a variety of methods, see Pinter
et al. (2018). A popular approach uses the structure tensor (Krause et al.,
2010), see Alg. 3. Alternatively, fibers may be segmented individually,
see Hessman et al. (2019) for recent work.
To gain insight into the relation between the fiber-orientation tensor
𝐴 and the Minkowski tensor 𝑊 0,2

1 , we compare their expressions for
a single fiber of length 𝐿 and diameter 𝐷, oriented in direction p, see
Appendix A.2 for the detailed computation:

𝐴 = p⊗ p, (3.10)

𝑊 0,2
1 = 𝜋𝐷2

6

[︂
p⊗ p + 𝐿

𝐷

(︂
Id−p⊗ p

)︂]︂
and (3.11)

QNT = 1
1 + 2 𝐿

𝐷

[︂
p⊗ p + 𝐿

𝐷

(︂
Id−p⊗ p

)︂]︂
. (3.12)
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For microstructures containing𝑁 fibers, 𝐴 is computed by averaging the
single-fiber expression (3.10). 𝑊 0,2

1 is computed by summing (3.11) over
all fibers. The resulting quadratic normal tensor QNT may be computed
as a surface-area weighted average of expression (3.12).
The fiber-orientation tensor and the quadratic normal tensor need to be
interpreted differently:

• For a single fiber 𝐾, the fiber-orientation tensor of second order is
a singular matrix (of rank 1) describing the projection onto the fiber
axis. In contrast, the Minkowski tensor 𝑊 0,2

1 (𝐾) of a single fiber 𝐾 is
a full rank matrix, which arises as a weighted sum of the orthogonal
projection onto the fiber axis and the complementary projection onto
the plane perpendicular to this axis.

• For high aspect ratios, i.e., for 𝐿 ≫ 𝐷, for the QNT, the prefactor
in front of the complementary projection is much larger than the
other prefactor.

• Using the fiber-orientation tensor as a descriptor of a microstructure
rests upon specific assumptions that are often not satisfied for real
structures. Typically, fibers are not of equal length, because they break
during the manufacturing process (Inceoglu et al., 2011). Furthermore,
the assumption that fibers are straight cylinders is not met in most of
the cases, as longer fibers bend during manufacturing and therefore
exhibit curvature (Heinecke and Willberg, 2019). In such situations,
the structure-tensor based computation of the fiber-orientation tensor
still gives some tensorial quantity as output. However, interpreting
this result as a fiber-orientation tensor may not be justified.
The Minkowski tensors, on the other hand, are not restricted to specific
geometric assumptions such as particular shapes. Therefore, for
structures containing curved fibers of different lengths or mixtures of
fibers with other objects etc., 𝑊 0,2

1 is still a geometrically well-defined
quantity. As Minkowski tensors are integrals of locally computable
quantities, see (3.4), they are even well-defined locally on any piece of
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𝐴 QNT for 𝐿
𝐷 = 10 QNT for 𝐿

𝐷 = 25 QNT for 𝐿
𝐷 = 50

#1

⎛⎝ 1 0 0
0 0 0
0 0 0

⎞⎠ ⎛⎝ 0.048 0 0
0 0.476 0
0 0 0.476

⎞⎠ ⎛⎝ 0.025 0 0
0 0.4875 0
0 0 0.4875

⎞⎠ ⎛⎝ 0.012 0 0
0 0.494 0
0 0 0.494

⎞⎠
#2

⎛⎝ 0.79 0 0
0 0.19 0
0 0 0.02

⎞⎠ ⎛⎝ 0.1379 0 0
0 0.3946 0
0 0 0.4675

⎞⎠ ⎛⎝ 0.1219 0 0
0 0.3996 0
0 0 0.4785

⎞⎠ ⎛⎝ 0.1131 0 0
0 0.4024 0
0 0 0.4845

⎞⎠
#3

⎛⎝ 0.49 0 0
0 0.49 0
0 0 0.02

⎞⎠ ⎛⎝ 0.266 0 0
0 0.266 0
0 0 0.468

⎞⎠ ⎛⎝ 0.2607 0 0
0 0.2607 0
0 0 0.4785

⎞⎠ ⎛⎝ 0.258 0 0
0 0.258 0
0 0 0.484

⎞⎠
#4

⎛⎝ 0.6 0 0
0 0.3 0
0 0 0.1

⎞⎠ ⎛⎝ 0.219 0 0
0 0.348 0
0 0 0.433

⎞⎠ ⎛⎝ 0.21 0 0
0 0.349 0
0 0 0.441

⎞⎠ ⎛⎝ 0.205 0 0
0 0.349 0
0 0 0.446

⎞⎠
#5

⎛⎝ 0.33 0 0
0 0.33 0
0 0 0.33

⎞⎠ ⎛⎝ 0.333 0 0
0 0.335 0
0 0 0.332

⎞⎠ ⎛⎝ 0.333 0 0
0 0.335 0
0 0 0.332

⎞⎠ ⎛⎝ 0.333 0 0
0 0.335 0
0 0 0.332

⎞⎠

Table 3.1: Comparison of fiber-orientation tensor 𝐴 and quadratic normal tensor QNT for
microstructures of different orientation and aspect ratio.

a complex geometric structure. In contrast, the fiber orientation tensor
is a non-local quantity intrinsically tied to cylindrical shapes.

An overview of how the fiber-orientation tensor compares with the
quadratic normal tensor for varying aspect ratios is given in Tab. 3.1.
For this study, we generated 5× 3 different microstructures, each con-
taining 20% fibers of equal length and diameter, using the sequential
addition and migration algorithm (Schneider, 2017). This algorithm
draws fibers from an angular central Gaussian distributions on the
two-dimensional sphere (Tyler, 1987). Indeed, the set of possible angular
central Gaussian distributions may be parameterized by the second-
order fiber-orientation tensors, see Montgomery-Smith et al. (2011).
Across the microstructures we varied the orientation distribution (5
different ones #1−#5) and the aspect ratio (3 different choices: 𝐿/𝐷 =
10, 25 and 50). For convenience, all matrices are chosen to be diagonal
w.r.t. the standard basis {e1, e2, e3}.
Microstructure #1 is composed of aligned fibers in 𝑒1-direction. The
second microstructure lies almost entirely within the e1 − e2-plane,
with preferred direction e1. The almost planar-isotropic case in the
e1 − e2-plane is realized via microstructure #3. A general anisotropic
case with preferred direction e1 and least preferred direction e3 is given
in case #4. And, finally, microstructure #5 shows the isotropic case. For
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the isotropic orientation (#5), all tensors are nearly equal. The QNT for
the almost planar orientation (#3) results in one larger (corresponding
to the normal vector of the plane) and two equal smaller eigenvalues,
indicating no preferred direction within the plane. The QNT of structure
#2 exhibits three different eigenvalues. The largest is equal to the largest
eigenvalue of #3. Of the two smaller eigenvalues, the smallest indicates
a preferred direction. The same interpretation holds for structure #4. For
the uni-directional case (#1), the largest eigenvalue appears twice, which
indicates a planar symmetry in both planes normal to the corresponding
eigenvectors. By the smallest eigenvalue, again a preferred direction
is indicated.
In contrast to the fiber orientation tensor 𝐴, the quadratic normal tensor
varies also with the aspect ratio 𝐿/𝐷 of the fibers. This may also be
seen from the eigenvalue ratio 𝛽 of QNT, see (3.5), listed in Tab. 3.2.
This scalar measure of anisotropy is smallest in case of a unidirectional
orientation distribution (#1) and almost 1 in the isotropic case #5. The
degree of anisotropy is amplified for higher aspect ratios, which results
in a lower 𝛽.

𝛽 for 𝐿
𝐷 = 10 𝛽 for 𝐿

𝐷 = 25 𝛽 for 𝐿
𝐷 = 50

#1 0.1003 0.0503 0.0250
#2 0.2943 0.2544 0.2343
#3 0.5690 0.5448 0.5327
#4 0.5055 0.4751 0.4598
#5 0.991 0.9903 0.9899

Table 3.2: The degree of anisotropy of the different structures considered in Tab. 3.1
measured by means of the eigenvalue ratio 𝛽(QNT) of the quadratic normal tensor, see
equation (3.5). Apparently, the anisotropy does not only depend on the fiber-orientation
distribution, but is also sensitive to the aspect ratio 𝐿/𝐷 of the fibers

.
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3 Characterizing digital microstructures by the Minkowski-based QNT

Sensitivity w.r.t. inter-fiber spacing

A well-known challenge when computing fiber-orientation measures
on 𝜇-CT scans is the sensitivity w.r.t. spatial resolution, as well as
overlapping or touching fibers (Wirjadi et al., 2009). In the following
study, we investigate the influence of the inter-fiber distance. Using
the sequential addition and migration algorithm (Schneider, 2017), we
generated structures with 20% fibers of aspect ratio 25, containing a
total of 1336 inclusions. The fiber-orientation tensor was chosen almost
planar isotropic with 𝐴 = diag(0.49, 0.49, 0.02). The minimum distance
between the fibers compared to their diameter can be chosen as an input
for the microstructure generator. We generated 6 microstructures with
minimum relative distance varying from 1% to 50% . Volumetric views
and transverse slices of three of these structures are shown in Fig. 3.9.
For 1% relative distance, several bundles of touching or almost touching
fibers are visible, whereas, for 50%, each fiber is comfortably surrounded
by matrix material. All structures were voxelized with gray-value
depth 𝑝 = 2 and for three spatial resolutions of 𝐷/ℎ = 4, 𝐷/ℎ = 8
and 𝐷/ℎ = 12, resulting in volume images with 2563, 5123 and 7683

voxels, respectively.
For this data set, we compare the surface-area computation and the errors
for the tensors 𝑊 0,2

1 and QNT. As processing options, we compare no
filter and the ball filter ℬ𝜎 with filter parameter 𝜎 = 1.2. The central-
difference approximation is used for the gradient. Fig. 3.10a shows the
computed total surface area vs. the minimum fiber distance relative to
the diameter for the three spatial resolutions under consideration, using
the ball filter with 𝜎 = 1.2. We observe two trends. Firstly, the surface
area is generally underestimated for all spatial resolutions. However,
we clearly see multigrid convergence. Furthermore, the error is smaller
for the larger minimum distance. This observation conforms to our
expectations, as the surface area of touching or almost touching fibers
is not computed accurately enough by a gradient-based approximation.
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3.4 Numerical examples

(a) 1% relative distance (b) 1% relative distance - slice

(c) 10% relative distance (d) 10% relative distance - slice

(e) 50% relative distance (f) 50% relative distance - slice

Figure 3.9: Fiber-reinforced composite containing 1336 fibers of equal length and varying
inter-fiber spacing. The structures were generated synthetically using the sequential
addition and migration algorithm (Schneider, 2017). (Ernesti et al., 2022)

87



3 Characterizing digital microstructures by the Minkowski-based QNT

correct value D
h = 12 D

h = 8 D
h = 4

0 5 10 15 20 25 30 35 40 45 50
2.4

2.6

2.8

3

3.2

3.4

3.6
·106

relative min �ber distance

s
u
r
fa
c
e
a
r
e
a
in
µ
m

2

(a) total surface area, 𝜎 = 1.2
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(b) total surface area, no filter
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(c) Minkowski tensor error 𝐸, 𝜎 = 1.2
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(d) Minkowski tensor error 𝐸, no filter
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(e) QNT error 𝐸, 𝜎 = 1.2
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(f) QNT error 𝐸, no filter

Figure 3.10: total surface area and the errors 𝐸 and 𝐸 plotted vs. the minimum relative
distance between fibers. (Ernesti et al., 2022)
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3.4 Numerical examples

In Fig. 3.10b, we see the results of the surface area computation without
applying any filter. The errors are, in general, lower than in the case of
𝜎 = 1.2. However, neither multigrid convergence, nor a convergence
as the minimum fiber distance increases is observed. Fig. 3.10c and
Fig. 3.10d show the error 𝐸 for both filter choices. Again, the results
reflect the relative error of the surface area estimation. Fig. 3.10e and
Fig. 3.10f contain the errors of the quadratic normal tensor for both
filter choices. For no filter application, the error is below 4%, and for
𝜎 = 1.2, it is even below 2% for all spatial resolutions and minimum
inter-fiber distances. No clear trend w.r.t. the inter-fiber spacing is visible.
Hence, the quadratic normal tensor QNT may serve as a microstructure
descriptor that is robust w.r.t. small inter-fiber spacing.
We compare our approach with the well-established structure-tensor

method, see Algorithm 3, which we implemented into our code. Com-

Algorithm 3 Computing the fiber-orientation tensor via the structure-
tensor method (Krause et al., 2010)

1: ℐ𝜎
ℎ ← ℱ𝜎 * 𝜒ℎ ◁ Blur image with image filter

2: g(x)← ∇ℎℐ𝜎
ℎ ◁ Apply discrete gradient

3: 𝐼(x)← g(x)⊗ g(x) ◁ Compute local tensor
4: 𝐼𝜇 ← ℱ𝜇 * 𝐼 ◁ Blur local tensor with second filter
5: {𝜆𝑖(x),v𝑖(x)} ← Eig(𝐼𝜇(x)) ◁ Local eigenvalue decomposition

(sorted, smallest first)
6: 𝐴≈ =

∑︀
x∈𝑌ℎ

v1(x)⊗ v1(x) ◁ Extract local orientation tensor
7: return 𝐴≈/tr(𝐴≈)

puting the fiber-orientation tensor numerically via the structure-tensor
algorithm requires applying a second filter ℱ𝜇 with filter parameter 𝜇 to
the tensor field n(x)⊗ n(x) (component-wise, this tensor field denotes
said ‘structure tensor’). Pinter et al. (2018) recommend that for the filter
parameter for the second filter should be larger than for the first filter,
which should be rather small. In our case, this is best recovered by
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(a) Fiber-orientation tensor error 𝐸𝐴, 𝜎 =
0, 𝜇 = 3
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(b) Fiber-orientation tensor error 𝐸𝐴, 𝜎 =
0, 𝜇 = 6
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(c) Fiber-orientation tensor error 𝐸𝐴, 𝜎 =
1.2, 𝜇 = 3
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(d) Fiber-orientation tensor error 𝐸𝐴, 𝜎 =
1.2, 𝜇 = 6

Figure 3.11: Error of the structure-tensor based fiber orientation tensor computation using
different filter parameters for the first and second filter. (Ernesti et al., 2022)
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3.4 Numerical examples

choosing the ball filter with small filter parameter (i.e., 𝜎 = 1.2) or no
filter (i.e., 𝜎 = 0) as the first filter. For the second filter, we choose a
Gaussian kernel 𝒢𝜇 with 𝜇 = 3 and 𝜇 = 6. To evaluate the accuracy
of the method, we introduce the fiber-orientation tensor error measure
(similar to 𝐸)

𝐸𝐴 = ‖𝐴−𝐴
≈‖

‖𝐴‖
,

where 𝐴≈ is the approximated fiber-orientation tensor computed by the
structure tensor approach.
Fig. 3.11 shows the error of this method for the four filter combinations
𝜎 = 0, 1.2; 𝜇 = 3, 6. The error is below 9% for all structures and
resolutions. The first filter width 𝜎 = 1.2 results in a lower error than for
𝜎 = 0. This holds for all spatial resolutions and fiber-distance thresholds.
For the second filter, however, the optimal choice depends on the spatial
resolution. The two finer resolutions benefit from a larger second filter
and even exhibit a larger error for the smaller 𝜇 than for the coarse
resolution. With respect to the relative minimum distance of fibers, no
clear trend is visible. The error fluctuates between 1% and 8% for the
different microstructures. The error of the quadratic normal tensor QNT,
on the other hand, was below 2% for all spatial resolutions and hence
provides a reliable option for characterizing fiber-reinforced composites.
All computations were performed in a matter of minutes.

3.4.4 Sand grains and sand-binder composites

For manufacturing parts with complex geometry, casting is often the
preferred choice (Rao, 2003). For casting, the mold enters a cavity of
the specified shape. This cavity, in turn, is realized as a sand core,
which has to be destroyed after the casting process. Such sand cores
are composed of sand grains which are held together by an organic
or inorganic binder. These constituents, their proportion and shape,

91



3 Characterizing digital microstructures by the Minkowski-based QNT

strongly influence the overall material behavior of the sand-binder
aggregate (Schneider et al., 2018). Loosely speaking, if the strength of
the aggregate is too low, the part will not survive the casting process. On
the other hand, excessive strength may prevent the part to be extracted
unscathed from the sand core.
In this section, we compute the quadratic normal tensors of sand cores
to study their anisotropy and to demonstrate the wide range of applica-
bility of quadratic normal tensors. We consider six different sand-grain
shapes which were obtained from fitting cleaned up and binarized
𝜇-CT scans (Schneider et al., 2018). The individual grains are shown in
Fig. 3.12.

(a) Grain #1 (b) Grain #2 (c) Grain #3

(d) Grain #4 (e) Grain #5 (f) Grain #6

Figure 3.12: Six different sand grains whose shapes are analyzed using QNT, see Tab. 3.3.
(Ernesti et al., 2022)
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3.4 Numerical examples

Grain QNT 𝛽 Grain QNT 𝛽

#1

⎛⎝ 0.2743 0.0518 0.0722
0.0518 0.2486 0.0179
0.0722 0.0179 0.4772

⎞⎠ 0.4044 #2

⎛⎝ 0.3669 −0.0428 0.0405
−0.0428 0.2949 −0.0204
0.0405 −0.0204 0.3382

⎞⎠ 0.6643

#3

⎛⎝ 0.382 0.0405 0.0055
0.0405 0.2945 −0.0462
0.0055 −0.0462 0.3235

⎞⎠ 0.626 #4

⎛⎝ 0.2195 0.0407 0.0319
0.0407 0.3979 0.0936
0.0319 0.0936 0.3826

⎞⎠ 0.4244

#5

⎛⎝ 0.28 0.0092 0.0013
0.0092 0.2875 0.07
0.0013 0.07 0.4325

⎞⎠ 0.5564 #6

⎛⎝ 0.3123 0.07 0.0428
0.07 0.3202 −0.023

0.0428 −0.023 0.3674

⎞⎠ 0.5795

Table 3.3: Quadratic normal tensor QNT and eigenvalue ratio 𝛽 of the six grains in Fig. 3.12.

These sand grains are non-convex and anisotropic. The computed
quadratic normal tensors QNT are listed in Tab. 3.3. For the com-
putation, we chose the ball filter ℬ𝜎 with 𝜎 = 1.2 voxels and used
central differences for the gradient-approximation. In addition to the
quadratic normal tensor, we quantify the degree of anisotropy by listing
the eigenvalue ratios (3.5) of QNT. We observe that all sand grains have
a distinct degree of anisotropy, varying between 𝛽 = 0.4 and 𝛽 = 0.63.
To gain further insight into the anisotropy of the grains, we compute the
eigenvalue decomposition of QNT for grain #1. The eigensystem reads

𝜆1 = 0.5046, v1 =

⎛⎜⎝ −0.3233
−0.1308
−0.9372

⎞⎟⎠ ; 𝜆2 = 0.2914, v2 =

⎛⎜⎝ −0.6666
−0.6715
0.3236

⎞⎟⎠ ;

𝜆3 = 0.204, v3 =

⎛⎜⎝ −0.6717
0.7294
0.1299

⎞⎟⎠ .

The largest eigenvalue indicates a somewhat disc-like shape within
the plane normal to v1. The vectors v2 and v3 lie in that plane, the
lower eigenvalue 𝜆3 indicates a slight extension in direction v3. For
a better understanding, we point at Tab. 3.1, where fiber-reinforced
composites are analyzed and a ‘translation’ to well-known orientation
tensors is provided.
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3 Characterizing digital microstructures by the Minkowski-based QNT

(a) Structure #1, containing 216 sand grains (b) Structure #2, containing 343 sand grains

Figure 3.13: Sand core structures, containing 58.58% sand and 1.28% inorganic binder.
The structures were generated by the mechanical contraction method (Schneider et al.,
2018). (Ernesti et al., 2022)

These six sand grains of Fig. 3.12 were used for generating sand-binder
composite microstructures, characteristic for casting applications, using
the mechanical contraction method (Schneider et al., 2018). Two realiza-
tions, containing 216 and 343 sand grains, are shown in Fig. 3.13. Both
structures consist of 58.58% sand grains and 1.28% inorganic binder. In
contrast to particle-filled composites, these microstructures involve an
interpenetrating porous phase.
On 𝜇-CT images of sand-binder composites, the binder phase cannot be
distinguished from the sand phase, see Schneider et al. (2018). There-
fore, we investigate how the presence of the binder phase affects the
Minkowski tensors. We compare the quadratic normal tensor QNT of
the sand-binder composite to the one with only sand grains for both
structures in Fig. 3.13. We chose the ball filter ℬ𝜎 with 𝜎 = 1.2 voxels
and central differences for the gradient approximation. For all structures,
the resulting tensor QNT, the degree of anisotropy 𝛽 and the total
surface area are listed in Tab. 3.4. The quadratic normal tensor is almost
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Sand grains alone Sand-binder composite
QNT 𝛽 𝑆[mm2] QNT 𝛽 𝑆[mm2]

Structure #1

⎛⎝ 0.3294 −0.0002 −0.0025
−0.0002 0.3412 −0.0094
−0.0025 −0.0094 0.3293

⎞⎠ 0.9329 51.74

⎛⎝ 0.3292 −0.0015 −0.0006
−0.0015 0.3396 −0.0074
−0.0006 −0.0074 0.3312

⎞⎠ 0.9485 47.26

Structure #2

⎛⎝ 0.3218 −0.0004 −0.0011
−0.0004 0.3366 −0.0028
−0.0011 −0.0028 0.3415

⎞⎠ 0.9385 80.72

⎛⎝ 0.3233 −0.001 −0.0014
−0.001 0.3362 −0.0026
−0.0014 −0.0026 0.3405

⎞⎠ 0.9451 73.96

Table 3.4: Quadratic normal tensor, degree of anisotropy and total surface area for grain
structures #1 and #2 with and without binder.

isotropic in all four cases. Removing the binder phase leads to slightly
more anisotropic quadratic normal tensors compared to the sand-binder
composite. However, the change is marginal. Without the binder, the
surface area of every grain is fully exposed, which results in a 9.5% larger
total surface area in case of structure #1 and 9.1% larger surface area in
case of structure #2. In general, we see that, although the grains within
both structures are highly anisotropic, the resulting microstructure as a
whole is almost isotropic. Hence, mechanical contraction of anisotropic
shapes results in an overall isotropic microstructure. This conforms to the
results of Schneider et al. (2018), where elastic homogenization studies
on similar structures were performed. An isotropic approximation of
the effective stiffness tensor was shown to be accurate.

3.5 Conclusion and Outlook

In this study, we proposed using Minkowski tensors, a tensor-valued
generalization of the scalar-valued Minkowski functionals, for the
analysis of microstructures given implicitly on voxel images. Due to
their tensorial nature, Minkowski tensors naturally contain information
about the anisotropy of geometric structures and can be incorporated
into continuum mechanical or other physical modeling approaches.
We provide an efficient and compact algorithm for computing the
Minkowski tensor 𝑊 0,2

1 and the resulting quadratic normal tensor
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(QNT) from 3D gray-value image data. This algorithm is based on image
filtering and a numerical gradient computation. We demonstrated
the multigrid convergence of our algorithm on a single-ball structure.
Central differences and a ball filter with low filter parameter turned out
to be the most accurate for binary images. For gray-value images of low
resolution, skipping the filtering step may be beneficial. Furthermore,
we demonstrated that the quadratic normal tensor is rather insensitive to
errors in the surface area computation, thus providing a robust measure
of microstructure anisotropy.
For fiber-reinforced composites, we compared characterizations based on
the QNT to the well-established fiber-orientation tensors. We compared
our approach to the common structure-tensor approach and demon-
strated the accuracy and robustness of the quadratic normal tensor.
Finally, we studied the QNT of sand-core microstructures. Its applica-
bility to complex grain geometries demonstrates the versatility of the
Minkowski-tensor approach.
In future applications, further Minkowski tensors may be used for
describing and characterizing a variety of microstructures, including
curved fibers, fibers of different length and diameter, mixtures of several
different shapes within a matrix, or polycrystalline structures. For a
robust curvature-approximation technique based on voxel-image data,
for instance, the curvature-dependent Minkowski tensor 𝑊 0,2

2 may be
computed, providing additional information on the microstructure.
The Minkowski tensors of the second rank may reflect only three types
of material symmetries: isotropy, transverse isotropy and orthotropy. To
detect finer material symmetries, working with higher-order Minkowski
tensors is necessary. Mickel et al. (2013) suggested using irreducible
Minkowski tensors for anisotropy characterization, a decomposition
of the surface-normal density into those of some basic shapes in
the spirit of Fourier analysis. This approach may also be beneficial
for fiber-orientation analysis. Moreover, the concept of Minkowski
maps (Klatt et al., 2012; Göring et al., 2013) may allow studying the local
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differences of the fiber orientation across an inhomogeneous medium.
Last but not least, Minkowski tensors may serve as input for further
studies. Similar to fiber-orientation tensor based mean-field models (Ben-
veniste, 1987; Kehrer et al., 2018), models based on Minkowski tensors
may be developed. The quadratic normal tensor is able to provide
insights for structures containing curved fibers and may serve as a tool
for investigating their mechanical behavior.
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Chapter 4

An FFT-based method for
computing the effective crack
energy of a heterogeneous
material on a combinatorially
consistent grid1

4.1 Introduction

Francfort and Marigo (1998) revisited Griffth’s original proposition
(Griffith, 1921) in a quasi-static setting in order to include crack nu-
cleation and crack branching, utilizing a variational formulation. More
precisely, for a given body Ω and after a discretization in pseudo-time,
they seek the displacement 𝑢 and the crack surface 𝑆 as minimizers of
the Francfort-Marigo functional

𝐹𝑀(𝑢, 𝑆) = 1
2

∫︁
Ω∖𝑆

∇𝑠𝑢(𝑥) : C(𝑥) : ∇𝑠𝑢(𝑥) 𝑑𝑥+
∫︁

𝑆

𝛾(𝑥) 𝑑𝐴 (4.1)

1 This chapter is based on Ernesti and Schneider (2021). In order to include this paper into
the structure of this work I shortened the introduction and made minor changes to the
manuscript.
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under the constraint of crack irreversibility, i.e., that the crack set 𝑆 must
contain the crack set of the previous time step. Here, ∇𝑠𝑢 denotes
the symmetrized gradient of the displacement field, i.e., the strain
tensor field, C refers to the stiffness tensor and 𝛾 denotes the crack
resistance. Some care has to be taken with the formulation (4.1), as
Griffith’s original proposal concerns only critical points of the functional
(4.1) including local minima, local maxima and saddle points, whereas a
rigorous mathematical treatment (Chambolle and Crismale, 2019) of the
Francfort-Marigo model (4.1) appears to be limited to global minimizers.
Please note that the formulation (4.1) accounts for heterogeneities in a
natural way.
A pertinent numerical approach to minimize the Francfort-Marigo func-
tional (4.1) was introduced by Bourdin et al. (2000), and founded what is
now referred to as phase-field fracture, see Wu et al. (2020) for a recent
review. In close analogy to the Ambrosio-Tortorelli approximation (Am-
brosio and Tortorelli, 1990) of the Mumford-Shah functional (Mumford
and Shah, 1989), the phase field model approximates the crack surface
𝑆 via a smeared interface of width 𝑙 and introduces a damage variable
𝑑. Owing to their ability to nucleate cracks and to produce complex
crack patterns, phase-field fracture models were subject to a flurry of
activity (Ambati et al., 2015). In particular, strategies to account for
material anisotropy in the phase-field framework (Prajapati et al., 2020;
Teichtmeister et al., 2017; Schreiber et al., 2009) were proposed. As for
linear elastic fracture mechanics of anisotropic media, such models may
require elaborate and expensive experimental techniques to identify the
material parameters.
To alleviate this burden, multi-scale methods, in particular homogeniza-
tion approaches, proved to be very effective for elastic and hardening-
type inelastic material behavior. We refer to Matouš et al. (2017) for a
recent overview. Relevant for this chapter is a mathematical homog-
enization result of Braides et al. (1996) for the Mumford-Shah func-
tional (Mumford and Shah, 1989). In case of anti-plane shear and
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neglecting the irreversibility constraint, this homogenization result is
applicable to the Francfort-Marigo model of brittle fracture. More
precisely, in a quasi-static setting and after a discretization in pseudo-
time, we consider a fixed periodic microstructure (with non-degenerate
stiffness and crack resistance). Following Braides et al. (1996) we identify
the Γ-limit for vanishing period as the functional

𝐹𝑀eff(𝑢, 𝑆) = 1
2

∫︁
Ω∖𝑆

∇𝑠𝑢(𝑥) : Ceff : ∇𝑠𝑢(𝑥) 𝑑𝑥+
∫︁

𝑆

𝛾eff (𝑛) 𝑑𝐴, (4.2)

where 𝑛 denotes the unit normal to the crack surface 𝑆. Here, the (possi-
bly anisotropic) effective stiffness tensor Ceff arises from the usual elastic
homogenization formula based on the classical cell problem (Milton,
2002). The integrand 𝛾eff of the surface term is a function of a unit
vector, and may be computed by a corrector problem involving the local
crack resistances only. This corrector problem may be interpreted as
finding the 𝛾-weighted minimal surface with average normal 𝑛 cutting
the microstructure (Schneider, 2020).
In particular, the volumetric and the surface energies decouple upon
homogenization, as a result of the different scalings of these terms in
the model (4.1). Please note that this volume-surface decoupling is
a consequence of the assumed non-degeneracy of the integrands. In
case of degeneracy, an interaction of the two terms is not excluded, see
Barchiesi et al. (2016) and Pellet et al. (2019).
Recently, the homogenization statement was extended to the case of
stationary and ergodic random materials (Cagnetti et al., 2019). Further-
more, Friedrich et al. (2022) showed the homogenization result (4.2) for
linear elasticity (without the restriction to anti-plane shear). Let us also
highlight that the effective model (4.2) also emerges when homogenizing
the Ambrosio-Tortorelli approximation of the Francfort-Marigo model,
i.e., phase-field fracture models, see Bach et al. (2021).
A method for computing the effective crack energy for three-dimensional
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solids based on the homogenization result of Braides et al. (1996) and fol-
lowing contributions was proposed by Schneider (2020). The approach
is based on a convex reformulation of the minimum-cut problem (Strang,
1983) in terms of maximum flow. More precisely, a primal-dual hybrid
gradient method (Esser et al., 2010; Pock et al., 2009) was used, extending
previous FFT-based computational homogenization methods for thermal
conductivity and elasticity.

Contributions

This chapter is concerned with computing the effective crack energy
via an appropriate cell formula (to be discussed in Section 4.2.1) corre-
sponding to the mathematical homogenization results (Braides et al.,
1996; Cagnetti et al., 2019; Friedrich et al., 2022). Please note that the
computed effective crack energy may differ from the effective crack resis-
tance, depending on the underlying length scales and loading scenarios
(see Section 2.1, item 5, in Schneider (2020) for a discussion). Still, the
computed effective crack energy gives rise to a lower bound for the
effective crack resistance, and may thus be used for assessing the safety
of components made of such composites.
Previous work (Schneider, 2020) provided a computational approach for
computing the effective crack energy using an FFT-based primal-dual
hybrid gradient solver and two discretization schemes, i.e., trigonometric
collocation and the rotated staggered grid. The approach (Schneider,
2020) has two shortcomings. First, the solution fields are characterized
by ringing or checkerboard artifacts, depending on the discretization.
Moreover, the solver does not permit reaching a high accuracy for
complex three-dimensional microstructures. Although the first short-
coming concerns the discretization and the second issue is related to
the numerical resolution, both effects are actually related. Indeed, as
computing the effective crack energy involves a pointwise constraint
on a vector field, discretization-related artifacts may interfere with
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solver performance.
The cell problem for computing the effective crack energy is closely
related to the minimum-cut problem put forward by Strang (1983) in
his analysis of the continuous maximum flow problem, see Section 4.2.1.
To be more precise, the maximum flow problem is rooted in graph
theory and seeks a feasible flow through a flow network that obtains
the maximum possible flow rate under capacity constraints (Ford and
Fulkerson, 1956). With the help of duality theory for linear programming,
it may be shown that the maximum flow equals the minimum capacity
of a cut disconnecting the source and the sink (Ford and Fulkerson, 1956;
Elias et al., 1956). Strang (1983) proposed a continuum generalization
of the graph-theoretic maximum flow problem, involving an incom-
pressible flow field subject to a (continuous) capacity constraint. Similar
to the graph-theoretic version, he established a duality result which
equates the maximum flow rate with the capacity of a minimum cut.
However, the continuous version is no longer based on linear duality
theory, and requires more sophisticated mathematical tools. Previous
work (Schneider, 2020) realized that the cell problem corresponding to
the mathematical homogenization results (Braides et al., 1996; Cagnetti
et al., 2019; Friedrich et al., 2022) may be interpreted as a minimum-cut
problem, where the microscopic (heterogeneous) crack resistance is
regarded as a (spatially varying) capacity. Then, the maximum flow-
minimum cut duality, valid on a discrete level, is invoked to construct a
suitable primal-dual solver.
For the graph-theoretic maximum flow problem, a variety of efficient
solvers is available (Ford and Fulkerson, 1956; Dinic, 1970; Edmonds
and Karp, 1972; Goldberg and Rao, 1998). Unfortunately, these solvers
are unsuited for the continuous maximum flow problem. Indeed, work-
ing with a graph-theoretic discretization leads to so-called metrication
artifacts, which do not vanish upon mesh refinement (Kolmogorov and
Zabin, 2004). More precisely, for the graph-theoretic version, the capacity
constraints are associated to the edges, whereas, when representing
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4 Computing the effective crack energy on a combinatorially consistent grid

the continuous maximum flow problem in terms of a finite difference
discretization, the capacity constraints are associated to the nodes of the
graph. As a remedy, Couprie et al. (2011) introduced the combinatorial
continuous maximum flow (CCMF) discretization, whose node-based
capacity constraints account for all adjacent edges in a suitable way. The
CCMF discretization, to be discussed in Section 4.2.2, naturally avoids
metrication errors, and may be implemented into standard convex
optimization solvers (Boyd and Vandenberghe, 2004). However, as
the authors remark themselves: "In 3D, our CCMF implementation is
suffering from memory limitations in the direct solver we used, limiting
its performances." (Couprie et al., 2011, Sec. 4.4.3)
Our contributions are threefold. For a start, we propose using the
CCMF discretization for the effective crack energy associated to the
mathematical homogenization results (Braides et al., 1996; Cagnetti et al.,
2019; Friedrich et al., 2022), see Section 4.2 for details. In this way, the
artifacts of the previously used discretizations (Schneider, 2020) are fully
eliminated. Our second contribution concerns a novel FFT-based solver
for the maximum flow problem in the CCMF discretization on regular
periodic grids, filling the gap mentioned by Couprie et al. (2011). The
proposed solver, see Section 6.4, is based on a doubling of the degrees
of freedom per cell, which makes the nonlocal capacity constraint for
the CCMF discretization local, at the expense of additional constraints
enforcing compatibility of the flow field across the faces of the voxel grid.
As a byproduct, we arrive at an expression for the minimum-cut problem
that is much simpler than in Couprie et al. (2011), see Section 4.3.1. Then,
the alternating direction method of multipliers (ADMM), pioneered by
Michel et al. (2000; 2001) in conjunction with FFT-based methods, is
used to extract the minimum cut, see Section 4.3.2. Last but not least,
we study recently proposed (Schneider, 2021b), adaptive strategies for
choosing the penalty parameter in the ADMM. Finally, we demonstrate
the capabilities of our approach in applications of industrial size, see
Section 4.4. We find that an adaptive parameter-selection strategy is
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4.2 The effective crack energy of a heterogeneous material

Figure 4.1: Schematic of a potentially minimal crack traversing a two-phase microstructure
for prescribed normal 𝜉. (Ernesti and Schneider, 2021)

critical for high performance and high accuracy, improving upon the
standard ADMM used by Willot (2020), who treats the closely related
graph-based maximum flow problem (not the continuous one).

4.2 The effective crack energy of a heteroge-
neous material

4.2.1 Cell formulas for the minimum cut and the maxi-
mum flow

Let us consider a cuboid cell 𝑌 = [0, 𝐿1] × [0, 𝐿2] × [0, 𝐿3], on which
a heterogeneous field of crack resistances 𝛾 : 𝑌 → R is given. For
mathematical reasons, we suppose that there are positive constants 𝛾±,
s.t. the inequalities

𝛾− ≤ 𝛾(𝑥) ≤ 𝛾+ hold for all 𝑥 ∈ 𝑌.
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4 Computing the effective crack energy on a combinatorially consistent grid

We define the effective crack energy 𝛾eff (Braides et al., 1996; Cagnetti
et al., 2019; Schneider, 2020), a function on the unit sphere 𝑆2 ⊆ R3, by

𝛾eff(𝜉) = inf
𝜑

1
|𝑌 |

∫︁
𝑌

𝛾
⃦⃦
𝜉 +∇𝜑

⃦⃦
𝑑𝑥, 𝜉 ∈ 𝑆2, (4.3)

see Fig. 4.1, where |𝑌 | = 𝐿1𝐿2𝐿3 denotes the volume of the cell and
the infimum is evaluated over all smooth scalar fields 𝜑 : 𝑌 → R

which are periodic, together with all their derivatives. This formula
computes the (periodic) minimum cut through the cell 𝑌 with mean
normal 𝜉 as a 𝛾-weighted minimal surface. The scalar 𝜑 plays the role
of a characteristic function jumping across the cut. Please note that the
integrand in the right hand side of equation (4.3) is a function which
is homogeneous of degree one, i.e., it satisfies 𝑓(𝜆𝜉) = 𝜆𝑓(𝜉) for all
vectors 𝜉 ∈ R3 and all scalars 𝜆 > 0. This contrasts with thermal
conductivity (Milton, 2002), where a homogeneity of degree two leads to
a linear Euler-Lagrange equation associated to the variational problem.
For the problem at hand (4.3), additional complications arise. For a
start, due to the one-homogeneity, the functional in the definition (4.3)
is not differentiable. In particular, the first-order necessary conditions
are (strongly) non-linear. Furthermore, the one-homogeneity permits
localization to appear for minimizers of the variational problem (4.3). This
localization is not unwarranted, as such minimizers actually represent
minimum cuts through the microstructure (Strang, 1983), weighted
by the crack resistance, and enables computing the effective crack
energy by the local crack resistance averaged over the minimum cut. In
fact, the minimum cut needs not be unique. However, the computed
effective crack energy is unique as a consequence of the convexity of the
functional to be minimized.
To circumvent the inherent lack of differentiability characterizing
the functional (4.3), dual and primal-dual formulations may be ex-
ploited (Chambolle and Pock, 2016). As an example, the (formal)
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dual to the variational problem is given by the maximum flow prob-
lem (Strang, 1983)

1
|𝑌 |

∫︁
𝑌

𝑣 · 𝜉 𝑑𝑥 −→ max
div(𝑣)=0

‖𝑣‖≤𝛾

, (4.4)

where the maximum is evaluated over all smooth and solenoidal vector
fields 𝑣 : 𝑌 → R3 which satisfy the pointwise constraint

‖𝑣(𝑥)‖ ≤ 𝛾(𝑥) for (almost) all 𝑥 ∈ 𝑌. (4.5)

Due to the non-negativity of the terms involved, the latter condition may
also be recast in the form

‖𝑣(𝑥)‖2 ≤ 𝛾(𝑥)2 for (almost) all 𝑥 ∈ 𝑌. (4.6)

The dual problem (4.4) maximizes the total flow in direction 𝜉 through
the microstructure under the point-wise constraints (4.5). The advantage
of the dual formulation (4.4) over the primal formulation (4.3) is that it
represents a smooth (in fact linear) optimization problem with linear
and quadratic constraints, for which powerful solution methods are
available (Boyd and Vandenberghe, 2004). However, some caution is
advised, as the primal (4.3) and the dual problem (4.4) are strongly
dual in the continuous setting only for a continuous crack resistance
𝛾 (Strang, 1983). As soon as the crack resistance 𝛾 is discontinuous,
explicit counterexamples (Nozawa, 1994) to strong duality are known,
i.e., the maximum computed in the dual problem (4.4) is strictly less
than the minimum computed for the primal problem (4.3).
For practical considerations, this delicacy does not play much of a role.
Indeed, in finite dimensions, convex optimization problems with convex
constraints always satisfy strong duality provided Slater’s condition is
satisfied (Boyd and Vandenberghe, 2004, Sec. 5.2). Slater’s condition
states that there is a strictly feasible point, i.e., a point where all inequality
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Figure 4.2: Consistent placement of the flow-field variables on a generic voxel cell. (Ernesti
and Schneider, 2021)

constraints are satisfied as strict inequalities. Due to our prerequisite
𝛾 ≥ 𝛾− > 0, the field 𝑣 ≡ 0 is strictly feasible for the dual problem
(4.4), and strong duality holds upon discretization. In particular, we
may exploit the maximum flow formulation (4.4), as long as it arises by
formal Lagrangian dualization (Boyd and Vandenberghe, 2004, Ch. 5) of
a discretization of the cell problem (4.3).

4.2.2 The combinatorial continuous maximum flow dis-
cretization

In this section, we discuss the combinatorial continuous maximum flow
discretization (CCMF) introduced by Couprie et al. (2011) for the special
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4.2 The effective crack energy of a heterogeneous material

case of regular grids and in the periodic setting. The discretization
scheme naturally approximates the continuous maximum flow formula-
tion (4.4), and we take it as our point of departure.
For this purpose, suppose that the unit cell 𝑌 = [0, 𝐿1]× [0, 𝐿2]× [0, 𝐿3]
is discretized by a regular grid with 𝑁𝑖 (𝑖 = 1, 2, 3) voxels for each
coordinate direction. Each voxel is assumed to be cubic with edge length
ℎ, i.e., the conditions ℎ = 𝐿𝑖/𝑁𝑖 (𝑖 = 1, 2, 3) are assumed to hold. In a
finite volume discretization, where each individual voxel serves as a
control volume, the flow between adjacent cells is quantified by a flow
field 𝑣, which is located at the voxel faces, see Fig. 4.2. The conservation
of mass is encoded by the balance of in- and outflow

0 = 𝑣[𝑖+ 1
2 ,𝑗,𝑘]− 𝑣[𝑖− 1

2 ,𝑗,𝑘] + 𝑣[𝑖,𝑗+ 1
2 ,𝑘]− 𝑣[𝑖,𝑗− 1

2 ,𝑘]
+ 𝑣[𝑖,𝑗,𝑘+ 1

2 ]− 𝑣[𝑖,𝑗,𝑘− 1
2 ],

(4.7)

where we tacitly assume the integer indices 𝑖, 𝑗, 𝑘 to satisfy

0 ≤ 𝑖 < 𝑁1, 0 ≤ 𝑗 < 𝑁2 and 0 ≤ 𝑘 < 𝑁3,

and the equation (4.7) should be interpreted in a periodic fashion. Let
us denote by

𝛾[𝑖,𝑗,𝑘] = 𝛾
(︀
(𝑖+ 1

2 )ℎ, (𝑗 + 1
2 )ℎ, (𝑘 + 1

2 )ℎ
)︀

the evaluations of the crack resistance 𝛾 at the voxel centers, which we
sample on a discrete grid 𝑌𝑁 . Then, for the CCMF-discretization, the
constraint (4.5) is approximated by the 𝑁1𝑁2𝑁3 constraints

2 𝛾[𝑖,𝑗,𝑘]2 ≥ 𝑣[𝑖+ 1
2 ,𝑗,𝑘]2 + 𝑣[𝑖− 1

2 ,𝑗,𝑘]2 + 𝑣[𝑖,𝑗+ 1
2 ,𝑘]2

+ 𝑣[𝑖,𝑗− 1
2 ,𝑘]2 + 𝑣[𝑖,𝑗,𝑘+ 1

2 ]2 + 𝑣[𝑖,𝑗,𝑘− 1
2 ]2.

(4.8)

Here, the constraint (4.8) is associated to each cell, and accounts for
all six in- and outflow variables located on the corresponding adjacent
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faces, see Fig. 4.2. Compared to the continuous formulation (4.6), which
involves a vector of dimension three, twice the number of terms is
considered. This is compensated by adding a factor two on the right
hand side.
Then, for prescribed average crack normal 𝜉 ∈ 𝑆2, the CCMF dis-
cretization approximates the maximum flow problem (4.4) by the
maximization problem

1
𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

𝜉𝑥 𝑣[𝑖+ 1
2 ,𝑗,𝑘] + 𝜉𝑦 𝑣[𝑖,𝑗+ 1

2 ,𝑘] + 𝜉𝑧 𝑣[𝑖,𝑗,𝑘+ 1
2 ]

−→ max
𝑣 satisfying (4.7) and (4.8)

.

(4.9)

With FFT-based solution methods, to be discussed in Section 6.4, in
mind, we transform the natural finite volume formulation into a more
compact representation that is simpler to manipulate algebraically. For
this purpose, we regard the flow field 𝑣 as a vector field located at the
voxel centers, with the identification

𝑣𝑥[𝑖,𝑗,𝑘] = 𝑣[𝑖+ 1
2 ,𝑗,𝑘],

𝑣𝑦 [𝑖,𝑗,𝑘] = 𝑣[𝑖,𝑗+ 1
2 ,𝑘],

𝑣𝑧 [𝑖,𝑗,𝑘] = 𝑣[𝑖,𝑗,𝑘+ 1
2 ].

We also introduce a (backwards) divergence-type operator div− via(︀
div− 𝑣

)︀
[𝑖,𝑗,𝑘] = 𝑣𝑥[𝑖,𝑗,𝑘]− 𝑣𝑥[𝑖−1,𝑗,𝑘] + 𝑣𝑦 [𝑖,𝑗,𝑘]

− 𝑣𝑦 [𝑖,𝑗−1,𝑘] + 𝑣𝑧 [𝑖,𝑗,𝑘]− 𝑣𝑧 [𝑖,𝑗,𝑘−1].

Then, the mass conservation (4.7) is satisfied precisely if div− 𝑣 = 0
holds. To encode the constraint (4.8), we introduce the backwards shift
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operator 𝑆, which operates as follows

𝑆(𝑣)[𝑖,𝑗,𝑘] =

⎡⎢⎣ 𝑣𝑥[𝑖−1,𝑗,𝑘]

𝑣𝑦 [𝑖,𝑗−1,𝑘]

𝑣𝑧 [𝑖,𝑗,𝑘−1]

⎤⎥⎦ . (4.10)

Then, the constraint (4.8) is equivalent to the condition

‖𝑣[𝑖,𝑗,𝑘]‖2 + ‖𝑆(𝑣)[𝑖,𝑗,𝑘]‖2 ≤ 2 𝛾[𝑖,𝑗,𝑘]2, (4.11)

expressed in terms of the Euclidean norm of the involved vectors. Last
but not least, let us introduce the 𝐿2 inner product on such vector fields

⟨𝑣, 𝑣⟩𝐿2 = 1
𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

(𝑣𝑥[𝑖,𝑗,𝑘]𝑣𝑥[𝑖,𝑗,𝑘] + 𝑣𝑦 [𝑖,𝑗,𝑘]𝑣𝑦 [𝑖,𝑗,𝑘] + 𝑣𝑧 [𝑖,𝑗,𝑘]𝑣𝑧 [𝑖,𝑗,𝑘])

(4.12)
with corresponding norm ‖ · ‖𝐿2 . With this notation at hand, we may
express the maximization problem (4.13) in the compact form

⟨𝜉, 𝑣⟩𝐿2 −→ max
div− 𝑣=0

‖𝑣‖2+‖𝑆𝑣‖2≤2𝛾2

, (4.13)

where we regard 𝜉 as a constant vector field and the norm constraint
is enforced at every voxel. In the latter formulation, the similarities
(and differences) to the continuous formulation (4.4) become apparent.
Indeed, both the objective function and the divergence constraint are
discretized in the natural way. The norm constraint, however, is replaced
by a "non-local" constraint which involves neighboring values of the flow
field, as well. Please note that this is a feature rather than a bug, as the
flow-field variables are naturally located on the voxel faces, whereas the
crack resistance is associated to the voxel center. Instead of interpolating
the flow-field variables, the CCMF discretization averages the squares
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of the flow fields. Such an approach has its merits, as will become clear
in Section 4.4.

4.3 An FFT-based solver for the CCMF dis-
cretization

4.3.1 The primal formulation for the CCMF discretiza-
tion

On a voxel grid, we consider the maximum flow problem (4.13)

⟨𝜉, 𝑣⟩𝐿2 −→ max
div− 𝑣=0

‖𝑣‖2+‖𝑆𝑣‖2≤2𝛾2

(4.14)

in the combinatorial continuous maximum flow (CCMF) discretization.
With FFT-based resolution in mind, we compute the corresponding
Lagrangian dual, i.e., the associated minimum cut problem.
For later reference please notice that the adjoint of the backward shift op-
erator 𝑆 (5.14) w.r.t. the inner product (4.12) is given by the (periodized)
forward shift operator

𝑆*(𝑣)[𝑖,𝑗,𝑘] =

⎡⎢⎣ 𝑣𝑥[𝑖+1,𝑗,𝑘]

𝑣𝑦 [𝑖,𝑗+1,𝑘]

𝑣𝑧 [𝑖,𝑗,𝑘+1]

⎤⎥⎦ . (4.15)

In particular, as backward and forward shifting are mutual inverses, the
equation 𝑆*𝑆 = Id holds in terms of the identity operator Id.
The shift operator is non-local, which makes the inequality constraint
in the maximum flow problem (4.14) non-local, as well. With computa-
tional resolution in mind, we seek a local formulation that relies upon
a doubling of dimension. For this purpose, we introduce the linear
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extension operator 𝐴, acting on vector fields 𝑣 via

(𝐴𝑣) = 1√
2

[︃
𝑣

𝑆𝑣

]︃
, (4.16)

and producing a vector field with six scalar components per voxel. Then,
the problem (4.14) may be expressed in the equivalent form

⟨𝜉, 𝑣⟩𝐿2 −→ max
div− 𝑣=0
‖𝐴𝑣‖≤𝛾

, (4.17)

where the factor two in front of the crack resistance (4.14) was transferred
into the 𝐴-operator (4.16) and the norm in the constraint refers to the
Euclidean norm of vectors with six components. For later reference,
let us remark that the adjoint of the operator 𝐴 (4.16) w.r.t. the six-
component version of the 𝐿2 inner product (4.12) is given by

𝐴*

[︃
𝑤1

𝑤2

]︃
= 1√

2
(𝑤1 + 𝑆*𝑤2) (4.18)

in terms of the backward shift operator (4.15). In particular, it holds

𝐴*𝐴𝑣 = 1
2(𝑣 + 𝑆*𝑆𝑣) = 𝑣,

i.e., 𝐴*𝐴 = Id and ‖𝐴‖ = 1 in operator norm. Thus, the operator 𝐴
is an isometric embedding, and the operator 𝐴* is a left inverse to the
operator 𝐴. In turn, the operator 𝐴𝐴* is the orthogonal projector onto
the image of the operator 𝐴. To complete the necessary notation, we
define the indicator function 𝜄𝑇 of a set 𝑇 via

𝜄𝑇 (𝑢) =
{︃

0 𝑢 ∈ 𝑇
+∞, otherwise,
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which permits encoding a constraint to the set 𝑇 in terms of an
objective function.
With the necessary terminology at hand, we turn our attention to
deriving the Lagrangian dual of the maximum flow problem (4.14) in
the constrained form

⟨𝜉, 𝑣⟩𝐿2 − 𝜄{div− 𝑣=0}(𝑣)− 𝜄𝒞𝛾
(𝑤) −→ max

𝑤+𝐴𝑣=0
, (4.19)

where we denote by 𝒞𝛾 the set

𝒞𝛾 =
{︀
𝑤 : 𝑌𝑁 → R6 ⃒⃒ ‖𝑤[𝑖,𝑗,𝑘]‖ ≤ 𝛾[𝑖,𝑗,𝑘] for all 𝑖, 𝑗, 𝑘

}︀
. (4.20)

The associated Lagrangian function reads

𝐿(𝑣, 𝑤, 𝜉) = ⟨𝜉, 𝑣⟩𝐿2 − 𝜄{div− 𝑣=0}(𝑣)− 𝜄𝒞𝛾
(𝑤)− ⟨𝜉, 𝐴𝑣 + 𝑤⟩𝐿2 (4.21)

in terms of the Lagrangian multiplier field 𝜉 : 𝑌𝑁 → R6. To evaluate the
dual function

𝜙(𝜉) = sup
𝑣,𝑤

𝐿(𝑣, 𝑤, 𝜉),

we rearrange the expression of the Lagrangian (4.21)

𝜙(𝜉) = sup
𝑣
⟨𝜉, 𝑣⟩𝐿2 − 𝜄{div− 𝑣=0}(𝑣)− ⟨𝜉, 𝐴𝑣⟩𝐿2⏟  ⏞  

=⟨𝐴*𝜉,𝑣⟩𝐿2

+ sup
𝑤
⟨𝜉, 𝑤⟩𝐿2 − 𝜄𝒞𝛾

(𝑤)

=
{︃

1
𝑁1𝑁2𝑁3

∑︀
𝑖,𝑗,𝑘 𝛾[𝑖,𝑗,𝑘] ‖𝜉[𝑖,𝑗,𝑘]‖, 𝜉 ∈ 𝒦𝜉,

+∞, otherwise,

in terms of the set of compatible normal fields

𝒦𝜉 = {𝜉 : 𝑌𝑁 → R6 ⃒⃒ there is some 𝜑 : 𝑌𝑁 → R,

s.t. 𝐴*𝜉 = 𝜉 +∇+𝜑}.
(4.22)
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This set may be interpreted as follows. Fields 𝜉 : 𝑌𝑁 → R6 associate to
every voxel six scalar values. These values are assigned to each face of
the voxel. Please note that any face of the voxel mesh is thus assigned
with two values, one for each adjacent voxel. Up to a factor

√
2, 𝐴*𝜉

refers to the face-wise average of these two values. The set 𝒦𝜉 contains
all fields, whose averages 𝐴*𝜉 are compatible in the sense that they arise
as the sum of a constant vector (which is fixed beforehand) and the
gradient of a scalar field (one scalar per voxel). Thus, up to face-wise
averaging, the compatibility constraint is similar to thermal conductivity
or elasticity. The final form

1
𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

𝛾[𝑖,𝑗,𝑘] ‖𝜉[𝑖,𝑗,𝑘]‖ −→ min
𝜉∈𝒦𝜉

(4.23)

of the dual to the CCMF problem (4.14) is remarkably close to the original
minimum cut formulation (4.3), cf. the more involved formulas in section
2.3 in Couprie et al. (2011).

4.3.2 An FFT-based ADMM solver

To proceed, we rewrite the optimization problem (4.23) as an equivalent
convex program that is amenable to operator-splitting approaches

𝑓(𝜉) + 𝑔(𝜉) −→ min
𝜉

(4.24)

in terms of the convex functions

𝑓(𝜉) = 𝜄𝒦𝜉
(𝜉) and 𝑔(𝜉) = 1

𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

𝛾[𝑖,𝑗,𝑘] ‖𝜉[𝑖,𝑗,𝑘]‖.
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4 Computing the effective crack energy on a combinatorially consistent grid

The starting point of operator-splitting approaches is the rewriting of
the unconstrained problem (5.21) in constrained form

𝑓(𝜉) + 𝑔(𝑒) −→ min
𝜉=𝑒

. (4.25)

For solving the problem (5.22), we utilize the alternating direction
method of multipliers (ADMM) (Glowinski and Marrocco, 1975; Gabay
and Mercier, 1976), which was pioneered in the context of FFT-based
methods by Michel et al. (2000; 2001), and applied to non-smooth
optimization by Willot (2020). For this purpose, we investigate the
augmented Lagrangian function

𝐿𝜌(𝜉, 𝑒, 𝑣) = 𝑓(𝜉) + 𝑔(𝑒) + ⟨𝑣, 𝜉 − 𝑒⟩𝐿2 + 𝜌

2 ‖𝜉 − 𝑒‖
2
𝐿2 , (4.26)

involving a penalization factor 𝜌 > 0 and the Lagrange multiplier 𝑣 :
𝑌𝑁 → R6. The ADMM is based on the three-term recursion

𝜉𝑘+1 = argmin𝜉𝐿𝜌(𝜉, 𝑒𝑘, 𝑣𝑘),

𝑒𝑘+1 = argmin𝑒𝐿𝜌(𝜉𝑘+1, 𝑒, 𝑣𝑘),

𝑣𝑘+1 = 𝑣𝑘 + 𝜌 (𝜉𝑘+1 − 𝑒𝑘+1).

(4.27)

Let us investigate the first line more explicitly,

𝜉𝑘+1 = argmin𝜉𝐿𝜌(𝜉, 𝑒𝑘, 𝑣𝑘)

= argmin𝜉𝑓(𝜉) + ⟨𝑣𝑘, 𝜉⟩𝐿2 + 𝜌

2
⃦⃦
𝜉 − 𝑒𝑘

⃦⃦2
𝐿2

= argmin𝜉∈𝒦𝜉

⃦⃦⃦⃦
𝜉 − 𝑒𝑘 + 1

𝜌
𝑣𝑘

⃦⃦⃦⃦2

𝐿2
.

Thus, 𝜉𝑘+1 arises as the orthogonal projection of the point 𝑒𝑘− 𝑣𝑘/𝜌 onto
the set 𝒦𝜉,

𝜉𝑘+1 = 𝒫𝒦𝜉

(︂
𝑒𝑘 − 1

𝜌
𝑣𝑘

)︂
.
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4.3 An FFT-based solver for the CCMF discretization

Let us write down an explicit expression for the projection operator 𝒫𝒦𝜉
.

For given 𝑤 : 𝑌𝑁 → R6, we seek 𝜉 : 𝑌𝑁 → R6, s.t.

𝜉 = 𝒫𝒦𝜉
(𝑤), i.e., 𝜉 = argmin𝜉∈𝒦𝜉

‖𝜉 − 𝑤‖2
𝐿2 holds. (4.28)

With the help of the orthogonal projector 𝑃 = 𝐴𝐴* and its orthogonal,
complementary projector 𝑄 = Id−𝐴𝐴*, we may decompose the vector
field 𝜉

𝜉 = 𝜉𝑃 + 𝜉𝑄 with 𝜉𝑃 = 𝑃𝜉 and 𝜉𝑄 = 𝑄𝜉, (4.29)

s.t., by orthogonality,

‖𝜉‖2
𝐿2 = ‖𝜉𝑃 ‖2

𝐿2 + ‖𝜉𝑄‖2
𝐿2 (4.30)

holds. Then, we may express the set 𝒦𝜉 in the form

𝒦𝜉 = {𝜉 : 𝑌𝑁 → R6 ⃒⃒ there are 𝜑 : 𝑌𝑁 → R and 𝜂 : 𝑌𝑁 → R6,

s.t. 𝜉 = 𝐴(𝜉 +∇+𝜑) +𝑄𝜂}.
(4.31)

To show equivalence of definitions, let us take an element 𝜉 ∈ 𝒦𝜉

according to the former definition (4.22), which was characterized by
the defining constraint

𝐴*𝜉 = 𝜉 +∇+𝜑.

Then, by definition of 𝜉𝑃 , we observe

𝜉𝑃 ≡ 𝑃𝜉 = 𝐴𝐴*𝜉 = 𝐴(𝜉 +∇+𝜑),

and 𝜉 is contained in the set (4.31). Conversely, applying 𝐴* to an
element 𝜉 of the set (4.31) yields

𝐴*𝜉 = 𝐴*𝐴⏟ ⏞ 
=Id

(𝜉 +∇+𝜑) +𝐴*𝑄⏟ ⏞ 
=0

𝜂 = 𝜉 +∇+𝜑,
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4 Computing the effective crack energy on a combinatorially consistent grid

which shows that 𝜉 lies in the original set (4.22). Returning to the
projection problem (4.28)

𝜉 = argmin𝜉∈𝒦𝜉
‖𝜉 − 𝑤‖2

𝐿2 ,

we decompose 𝑤 = 𝑤𝑃 + 𝑤𝑄 in the same form (4.29). Due to the
Pythagorean theorem (4.30), we observe

𝜉 = argmin𝜉∈𝒦𝜉
‖𝜉 − 𝑤‖2

𝐿2

= argmin𝜉∈𝒦𝜉
‖𝜉𝑃 − 𝑤𝑃 ‖2

𝐿2 + ‖𝜉𝑄 − 𝑤𝑄‖2
𝐿2

= argmin𝜑,𝜂‖𝐴(𝜉 +∇+𝜑)− 𝑤𝑃 ‖2
𝐿2 + ‖𝑄𝜂 − 𝑤𝑄‖2

𝐿2 ,

where we inserted the definition (4.31) in the last line. We observe
that the optimization problems for the variables 𝜑 and 𝜂 decouple. The
problem for 𝑄𝜂 is particularly simple, and is solved by 𝑄𝜂 = 𝑤𝑄 ≡ 𝑄𝑤.
Using that 𝐴 is an isometric embedding, the problem for 𝜑 becomes⃦⃦

𝜉 +∇+𝜑−𝐴*𝑤
⃦⃦2

𝐿2 −→ min
𝜑
.

The corresponding critical point satisfies

div− [︀𝜉 +∇+𝜑−𝐴*𝑤
]︀

= 0 ⇐⇒ div−∇+𝜑 = div− 𝐴*𝑤.

The latter equation may be solved formally to give

𝜑 = (div−∇+)†div− 𝐴*𝑤,

where † denotes the Moore-Penrose pseudo inverse. Reinserting the
found expressions into the definition (4.31), we find

𝜉 = 𝐴𝜉 +𝐴∇+(div−∇+)†div− 𝐴*𝑤 + (Id−𝐴𝐴*)𝑤,
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4.3 An FFT-based solver for the CCMF discretization

which we may also write in the more convenient form

𝒫𝒦𝜉
(𝑤) = 𝐴𝜉 + (Id−𝐴𝐴* +𝐴Γ𝐴*)𝑤

with Γ = ∇+(div−∇+)†div− .
(4.32)

The second line (5.24) can be rewritten using Moreau’s identity (Cham-
bolle and Pock, 2016, Eq. (3.8)) in the form

𝑒𝑘+1 =
[︀
𝑣𝑘 + 𝜌 𝜉𝑘+1 − 𝒫𝒞𝛾

(︀
𝑣𝑘 + 𝜌 𝜉𝑘+1)︀]︀ /𝜌,

where 𝒫𝒞𝛾 is the orthogonal projector

(︀
𝒫𝒞𝛾

(𝑤)
)︀

[𝑖,𝑗,𝑘] =
{︃

𝛾[𝑖,𝑗,𝑘]𝑤[𝑖,𝑗,𝑘]/‖𝑤[𝑖,𝑗,𝑘]‖, ‖𝑤[𝑖,𝑗,𝑘]‖ > 𝛾[𝑖,𝑗,𝑘],

𝑤[𝑖,𝑗,𝑘], otherwise,

onto the constraint set 𝒞𝛾 (4.20). Thus, we are led to the following scheme

𝜉𝑘+1 = 𝐴𝜉 − 1
𝜌

(Id−𝐴𝐴* +𝐴Γ𝐴*)
(︀
𝑣𝑘 − 𝜌 𝑒𝑘

)︀
,

𝑒𝑘+1 =
[︀
𝑣𝑘 + 𝜌 𝜉𝑘+1 − 𝒫𝒞𝛾

(︀
𝑣𝑘 + 𝜌 𝜉𝑘+1)︀]︀ /𝜌,

𝑣𝑘+1 = 𝑣𝑘 + 𝜌 (𝜉𝑘+1 − 𝑒𝑘+1).

(4.33)

A recent study (Schneider, 2021b) highlighted the importance of utilizing
a damping factor and choosing the penalty factor 𝜌 adaptively. For this
purpose, we consider the modified scheme

𝜉𝑘+1/2 = 𝐴𝜉 − 1
𝜌𝑘

(Id−𝐴𝐴* +𝐴Γ𝐴*)
(︀
𝑣𝑘 − 𝜌𝑘 𝑒𝑘

)︀
,

𝜉𝑘+1 = 2(1− 𝛿)𝜉𝑘+ 1
2 − (1− 2𝛿)𝑒𝑘,

𝑒𝑘+1 =
[︀
𝑣𝑘 + 𝜌𝑘 𝜉𝑘+1 − 𝒫𝒞𝛾

(︀
𝑣𝑘 + 𝜌𝑘 𝜉𝑘+1)︀]︀ /𝜌𝑘,

𝑣𝑘+1 = 𝑣𝑘 + 𝜌𝑘 (𝜉𝑘+1 − 𝑒𝑘+1).

(4.34)
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with damping 𝛿 ∈ (0, 1) and adaptive penalty parameter 𝜌𝑘. In general,
the over-relaxation 𝛿 = 1/4 is recommended (Monchiet and Bonnet,
2012; Moulinec and Silva, 2014; Schneider, 2021b). Simple choices for the
parameter 𝜌𝑘 are based on the Lorenz-Tran-Dinh scaling (Lorenz and
Tran-Dinh, 2019)

𝜌𝑘 = ‖𝑣
𝑘‖𝐿2

‖𝑒𝑘‖𝐿2

or the Barzilai-Borwein scaling (Xu et al., 2017)

𝜌𝑘 = ⟨𝑣
𝑘 − 𝑣𝑘−1, 𝑒𝑘 − 𝑒𝑘−1⟩𝐿2

‖𝑒𝑘 − 𝑒𝑘−1‖2
𝐿2

and an additional safeguard (Schneider, 2021b, Sec. 2.5). In our compu-
tational experiments, the latter two schemes outperform, both, constant
penalty parameter 𝜌 and residual balancing (He et al., 2000).
Last but not least, let us stress that the operator Γ has an explicit form in
Fourier space, see (Willot et al., 2014, Eq. 18)

4.4 Computational experiments

4.4.1 Setup

The algorithm (4.34) was integrated into an existing FFT-based compu-
tational homogenization code for thermal conductivity (Dorn and
Schneider, 2019), written in Python with Cython extensions (and
OpenMP). In the context of small-strain inelasticity, the implementation
of the ADMM (4.34) and the memory-efficient computation of the
penalty factor is discussed in Schneider (2021b). In the same paper, the
convergence criterion⃦⃦⃦

𝑒𝑘 − 𝜉𝑘+ 1
2

⃦⃦⃦
𝐿2
≤ tol ‖⟨𝑣⟩𝑌 ‖ , (4.35)
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(a) ‖𝑣‖, CCMF (left), rotated staggered grid (center) and Moulinec-Suquet discretization
(right)

(b) ‖𝜉‖, CCMF (left), rotated staggered grid (center) and Moulinec-Suquet discretization
(right)

Figure 4.3: Flow 𝑣 and normal 𝜉 fields on a cross section through a 643 single-sphere
microstructure for 𝜉 = 𝑒𝑥, 𝛾ball = 10 𝛾matrix and different discretizations. (Ernesti and
Schneider, 2021)

for prescribed tolerance tol, is identified as suitable. All computational
experiments were run on a desktop computer with 32GB RAM and
six 3.7GHz cores, and on a workstation with 512 GB RAM and two
Intel Xeon(R) Gold 6146 processors (12× 3.20 GHz), respectively. If not
mentioned otherwise, we will use ADMM with damping factor 𝛿 = 0.25
and the Barzilai-Borwein adaptive choice for the penalty factor. The
default tolerance tol (5.33) was set to tol = 10−4.
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4 Computing the effective crack energy on a combinatorially consistent grid

4.4.2 A single spherical inclusion

As a first example, we build upon previous numerical experiments
(Schneider, 2020, Sec. 4.2.2) and compare the CCMF-discretization to
previously investigated discretization schemes, namely the rotated stag-
gered grid (Saenger et al., 2000; Saenger and Bohlen, 2004; Willot, 2015a)
and the Moulinec-Suquet discretization (Moulinec and Suquet, 1994;
1998). We consider a 643 box containing a single spherical inclusion
with a diameter of 32 voxels. The crack resistance of the inclusion
is chosen as 𝛾sphere = 10 𝛾matrix. We prescribe a unit vector 𝜉 = 𝑒𝑥

in 𝑥-direction as the crack normal. We solved the problem up to a
tolerance of 10−4 using ADMM and chose the penalty factor as lower
bound 𝜌 = min{𝛾sphere, 𝛾matrix}, which was the preferred choice for the
primal-dual hybrid gradient method (Schneider, 2020, Sec. 3). Solution
fields on a central cross section are shown in Fig. 4.3.
The local flow fields 𝑣 are shown in Fig. 4.3a. The Moulinec-Suquet dis-
cretization shows significant artifacts, which is characteristic for Fourier
spectral discretizations. The rotated staggered grid discretization, on the
other hand, features checkerboard artifacts, although at a lower degree.
In contrast, the flow field corresponding to the CCMF-discretization
is much smoother, similar to the explicit jump discretization in the
context of thermal conductivity (Wiegmann and Zemitis, 2006; Dorn and
Schneider, 2019). The differences in the local crack-normal field 𝜉 for the
CCMF and the rotated staggered grid discretization are negligible and
differ from the Moulinec-Suquet discretization in the local maximum
values close to the central inclusion, see Fig. 4.3b.
All discretization methods give rise to the same effective crack energy,
i.e., 𝛾eff = 𝛾matrix, as the crack bypasses the inclusion in a plane. This is
independent of the material contrast, as long as the crack resistance of
the matrix exceeds the crack resistance of the single sphere (Schneider,
2020, Sec. 4.2.2).
As the Moulinec-Suquet discretization shows the strongest artifacts, we
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focus on the remaining two discretization methods for the remaining
investigations.

4.4.3 A continuous-fibe reinforced composite

In this section, we wish to assess the performance of the ADMM solver
introduced in Section 6.4. As a measure of verification, we choose a
comparatively simple microstructure which enables us to employ a high-
fidelity interior-point solver (Domahidi et al., 2013) for second-order
cone programs (Ernesti et al., 2021). The latter produces high-precision
solutions, but is limited in terms of problem size.
Accounting for this limitation, we consider a continuously fiber-rein-
forced composite with 50% filler content. The two-dimensional mi-
crostructure, containing 32 circular inclusions, was generated by the
mechanical-contraction method (Williams and Philipse, 2003) and dis-
cretized on a 1282 voxel grid. The inclusions were furnished by a
crack resistance of 𝛾fiber = 10 𝛾matrix. We investigate the effective crack
energy in direction 𝜉 = 𝑒𝑥 and compare the CCMF discretization and
the rotated staggered grid discretization, as well as different ADMM
damping parameters 𝛿, namely 𝛿 = 0.25 and 𝛿 = 0.5. Furthermore, we
investigate different selection strategies for the ADMM penalty-factor,
the lower bound 𝜌 = min{𝛾fiber, 𝛾matrix}, preferred in Schneider (2020)
and the Barzilai-Borwein scaling (Xu et al., 2017), as well as the scaling
by Lorenz and Tran-Dinh (2019) and residual balancing (He et al., 2000).
As announced earlier, we compare the effective crack energy to solutions
obtained by the high-fidelity solver ECOS (Domahidi et al., 2013) applied
to conic reformulations of the minimum-cut problem (4.23) for the CCMF
scheme and the discretization on a rotated staggered grid. We assess the
solver quality in terms of the relative error

error =
|𝛾eff − 𝛾accurate

eff |
𝛾accurate

eff
(4.36)
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4 Computing the effective crack energy on a combinatorially consistent grid

(a) ‖𝑣‖, CCMF (left) and rotated staggered grid discretization (right)

(b) ‖𝜉‖, CCMF (left) and rotated staggered grid discretization (right)

Figure 4.4: Cross section through the solution fields 𝑣 and 𝜉 for a 1282 microstructure,
containing 32 circular inclusions for CCMF and rotated staggered grid discretization for
𝜉 = 𝑒𝑥 and 𝛾fiber = 10𝛾matrix. (Ernesti and Schneider, 2021)
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in the effective crack energy, where 𝛾accurate
eff is computed by the interior-

point solver (Domahidi et al., 2013) with a residual of 10−10.
Fig. 4.4a shows the local flow field for, both the CCMF discretization and
the rotated staggered grid discretization. For the rotated staggered grid,
the flow field exhibits significant checkerboard artifacts in the inclusions
as well as the matrix. The CCMF solution, on the other hand, is devoid
of such artifacts. The corresponding crack paths are shown in Fig. 4.4b.
The cracks bypass the inclusions and look qualitatively similar for both
discretizations. However, the rotated staggered grid discretization
shows a wider crack path, whereas the CCMF crack path is sharper. This
allows the CCMF crack path to avoid several inclusions in a straight
line, whereas the rotated staggered grid crack path has to avoid them,
resulting in a less straight crack path. This observation is also reflected in
the resulting effective crack energy, i.e. 𝛾eff = 1.021 𝛾matrix for the rotated
staggered grid and 𝛾eff = 1.014 𝛾matrix for the CCMF discretization.
Fig. 4.5a shows the residual of the solver vs the iteration count for the two
strategies for selecting the penalty factor, two damping factors and the
two discretizations under consideration. During the first 1000 iterations,
all solvers behave similarly, with a slight advantage for the choice
𝛿 = 0.25. After 2000 iterations, all solvers result in a residual below
10−3. For the CCMF discretization, the ADMM solver with 𝛿 = 0.25 and
Barzilai-Borwein penalty-choice speeds up at 1600 iterations and reaches
the required tolerance of 10−5 shortly thereafter. For 𝛿 = 0.5 a similar
acceleration occurs after slightly more than 8000 iterations. Selecting
the lower bound for the penalty factor 𝜌 does not reach the required
tolerance within 10000 iterations.
For the rotated staggered grid discretization, the Barzilai-Borwein
penalty-factor outperforms the constant choice, as well. For this
discretization, the difference between the two damping factor choices is
much smaller than for CCMF.
The investigations are supplemented by Fig. 4.5b, which records the
associated relative error (4.36).
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δ = δ =
Lower bound 0.25 0.5
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(a) Residual vs iteration count, CCMF (left) and rotated staggered grid (right)
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(b) Error vs iteration count, CCMF (left) and rotated staggered grid (right)

Figure 4.5: Residual and error measure (4.36) for CCMF and rotated staggered grid
discretizations, comparing different solver parameters. (Ernesti and Schneider, 2021)
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Indeed, the relation between the residual (5.33) and the error in the
quantity of interest (4.36) is not directly apparent. Indeed, we know
that convergence of effective properties is implied by convergence of
the fields. However, the quantitative relation between these may only
be determined by comparison to a ground truth. For the CCMF dis-
cretizations, the relative error (4.36) correlates with the residual rather
well, reaching an accuracy below 10−4 at convergence. In contrast, the
solution for the rotated staggered grid leads to an error of only 0.5%, i.e.,
hits a "stall".
In addition to the mentioned penalty-factor choices, we studied two
further (less competitive) approaches, namely residual balancing (He
et al., 2000), which is often recommended in the literature, as well as an
the approach suggested by Lorenz and Tran-Dinh (2019), which proved
to be promising in small-strain micromechanics (Schneider, 2021b). To
increase readability, the residual and the error (4.36) were moved to
Fig. B.1b of Appendix B.
With this validation at hand, we restrict to the CCMF discretization in
combination with ADMM, damping factor 𝛿 = 0.25 and the Barzilai-
Borwein penalty-factor for the remainder of this chapter.

4.4.4 A fiber-reinforced composite

After the necessary verification steps, we turn our attention to problems
with a higher degree of complexity. We consider a short-fiber reinforced
composite with 18% filler content. The synthetic structure contains 376
fibers with an aspect ratio (length/diameter) of 20, and was generated
by the sequential addition and migration algorithm (Schneider, 2017).
The prescribed fiber-orientation tensor of second order (Kanatani, 1984;
Advani and Tucker, 1987) was diag(0.75, 0.19, 0.06), i.e., the fibers lie al-
most exclusively in the 𝑥-𝑦-plane with a strong preference in 𝑥-direction.
The fibers are discretized with eight voxels per diameter, resulting in a
volume image with 2563 voxels, see Fig. 4.6a. Since the computations
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4 Computing the effective crack energy on a combinatorially consistent grid

(a) Considered fiber-reinforced microstructure
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(b) Effective crack energy in 𝑒𝑥 vs. material
contrast

Figure 4.6: Microstructure and effective crack energy for the fiber-reinforced composite.
(Ernesti and Schneider, 2021)

on such large structures are costly, we first investigate the influence of
the tolerance entering the stopping criterion (5.33). For a configuration
𝛾fiber = 50 𝛾matrix, we computed the effective crack energy in direction
𝜉 = 𝑒𝑥. After 1000, 2500, 5000, 7500, and 10000 iterations, we take a look
at the corresponding residual and the computed effective crack energy,
see Tab. 4.1. We observe that, after 1000 iterations we reach a residual of
almost 10−3 with a relative deviation in effective crack energy about 2%
compared to the prediction after 10000 iterations. After 2500 iterations,
the relative error is below 1% with a residual at about 6 · 10−4. For more
than 5000 iterations, the effective crack energy does not change in the
third significant digit, whereas the residual decreases only slowly.
To complement these numbers, we take a look at a cross section through
the computed crack surface at different iteration counts, see Fig. 4.7.
We observe an influence of the solver accuracy on the solution field 𝜉.
Indeed, after 1000 iterations, several distinct crack paths are present
in the vicinity of the solution. These different cracks, however, come
with different "intensities", as well. This ambiguity is reduced after
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4.4 Computational experiments

(a) 1000 iterations (b) 2500 iterations (c) 5000 iterations

Figure 4.7: Cross section through crack surface for 𝛾fiber = 50 𝛾matrix at different ADMM
iterations. (Ernesti and Schneider, 2021)

# iteration residual 𝛾eff/𝛾matrix

1000 1.7 · 10−3 2.94
2500 6.1 · 10−4 2.89
5000 1.9 · 10−4 2.87
7500 1.0 · 10−4 2.87

10000 5.5 · 10−5 2.87

Table 4.1: Residual and computed effective crack energy with normal 𝜉 = 𝑒𝑥 depending
on the number of ADMM iterations for a fiber-reinforced composite, see Fig. 4.6a, with
material parameters 𝛾fiber = 50 𝛾matrix

2500 iterations. Only after 5000 iterations, the solver finds a unique
crack surface.
Please note that, in general, we do not expect the minimum-cut problem
(4.3) to have a unique solution. Rather, for the problem at hand, a
unique crack is formed and, at low levels of the residual, additional
cracks appear, compare also Section 4.1.2 in Schneider (2020). These
vanish, however, at high accuracy. To balance accuracy and ensuing
computational costs, we fix the tolerance to 5 · 10−4.
Next, we investigate the resulting crack surfaces and effective crack
energies corresponding to different crack normals, see Fig. 4.8. In
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4 Computing the effective crack energy on a combinatorially consistent grid

𝛾fiber/𝛾matrix # iterations
10 404
20 2701
30 2633
40 2626
50 2717

Table 4.2: Number of ADMM iterations for varying material contrast 𝛾fiber/𝛾matrix

𝑒𝑥-direction, the effective crack energy is highest. This is caused by
a preferred fiber orientation in this direction, forcing the crack surface
to bypass the numerous inclusions. In 𝑒𝑦-direction, see Fig. 4.8b, the
crack surface looks roughly similar. However, the crack needs to avoid
fewer fibers, resulting in a lower effective crack energy. In 𝑒𝑧-direction,
the crack surface is almost straight, see Fig. 4.8b, resulting in the lowest
effective crack energy.
Last but not least, we investigate the influence of the material contrast
on the computed effective crack energy in 𝜉 = 𝑒𝑥-direction, see Fig. 4.6b.
This contrast is responsible for the allowed crack-inclusion interaction-
mechanisms. Indeed, for high contrast, the inclusions can only be
avoided, i.e., inclusion bypass is the only viable option. In general,
the particles’ anisotropy (encoded by the aspect ratio and the fiber
orientation for the example at hand) and the filler content determine
the threshold in contrast where only inclusion bypass is permitted. For
the example at hand, Fig. 4.6b reveals that this threshold is roughly
at a material contrast of 40. In Tab. 4.2, the influence of the material
contrast on the ADMM iteration count is listed. For a contrast of 10, the
solver requires 404 iterations to reach the desired tolerance. Above a
contrast of 20, the iteration count stabilizes at approximately 2700. For
lower contrast, it may be energetically more favorable to cross some of
the inclusions. For decreasing material contrast, this inclusion-crossing
mechanism occurs more frequently.
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(a) 𝜉 = 𝑒𝑥, 𝛾eff = 2.88 𝛾matrix (b) 𝜉 = 𝑒𝑦, 𝛾eff = 1.67 𝛾matrix (c) 𝜉 = 𝑒𝑧, 𝛾eff = 1.20 𝛾matrix

Figure 4.8: Crack surfaces for the Cartesian normals, material contrast 𝛾fiber/𝛾matrix = 50
and the fiber-reinforced composite, see Fig. 4.6a. (Ernesti and Schneider, 2021)

4.4.5 Microstructures with a monodisperse pore distribu-
tion

As our next example, we consider microstructures with monodisperse,
spherical pores and varying degrees of porosity. For a porosity between 5
and 50%, we generated microstructures with 200 spheres by the mechan-
ical contraction method (Williams and Philipse, 2003), see Fig. 4.9. All
structures were discretized on a 2563 voxel grid. The solid material has
crack resistance 𝛾, and the spherical pores are furnished with a vanishing
crack resistance, resulting in an infinite material contrast. Please note
that in the previous study (Schneider, 2020, Sec. 4.1.1), the pores were
furnished with a non-vanishing (yet small) crack resistance to ensure
robust convergence of the utilized solution scheme. Such a restriction
appears unnecessary for the improved solution method presented in
this chapter.
The effective crack energy in direction 𝜉 = 𝑒𝑥 and the required ADMM
iterations are listed in Tab. 4.3. Following physical intuition, the effective
crack energy decreases for increasing porosity. If the crack were straight,
its crack energy would be proportional to the in-plane porosity of
the crack plane. For a curved crack, there is a competition between
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4 Computing the effective crack energy on a combinatorially consistent grid

(a) 5% porosity (b) 25% porosity (c) 50% porosity

Figure 4.9: Crack surface through microstructures with varying porosity. (Ernesti and
Schneider, 2021)

porosity in % 𝛾eff/𝛾 iterations
5 0.871 4986
25 0.535 3300
40 0.412 3327
50 0.305 2358

Table 4.3: Influence of the porosity on the effective crack energy and solver performance
for varying porosity

"maximizing the porosity" and remaining as straight as possible, see
Fig. 4.9. The iteration count appears to be uncorrelated with the porosity.
As a remark, we found the iteration count to be strongly dependent on
the specific realization of the microstructure, in general. Thus, we expect
that no such correlation may be inferred from a single sample, but would
require a more elaborate study.

4.4.6 Sand-binder composite

In our final example, we examine the microstructure of a sand-binder
aggregate which is characteristic for inorganically bound sand cores
used in casting applications. The synthetic structure was generated by a
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(a) Microstructure (b) Case #1 - porous composite

(c) Case #2 - grain-matrix composite (d) Case #3 - porous inclusions

Figure 4.10: Bond sand-grain microstructure and Crack surfaces through the structure for
three different combinations of crack resistances for matrix, inclusion and binder. (Ernesti
and Schneider, 2021)
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𝛾matrix in MPa·𝜇m 𝛾grain in MPa·𝜇m 𝛾binder in MPa·𝜇m
#1 0 1 1
#2 1 10 1
#3 10 1 10

Table 4.4: Material parameters for the three cases under consideration

𝛾eff in MPa·𝜇m iterations
#1 0.074 3204
#2 1.133 1711
#3 3.246 3971

Table 4.5: Effective crack energies and iteration count for the three cases under considera-
tion

mechanical-contraction type method (Schneider et al., 2018; Ettemeyer
et al., 2020), and is shown in Fig. 4.10a. The microstructure consists
of three phases: The sand grains (58.6%), connected by a binder phase
(1.3%), and a third phase (40.1%). In the physical applications, the latter
phase represents the pore space. We wish to utilize the microstructure to
get insights for a number of physical scenarios, and we will refer to the
third phase more generally as the "matrix" for reasons that will become
clear shortly.
The crack resistances associated to the phases are denoted by 𝛾grain, 𝛾binder

and 𝛾matrix, respectively. To investigate the effective crack energy and
possible crack surfaces through the microstructure, we consider three
different parameter scenarios, where the single phases model different
physical scenarios. The governing parameters for the three cases under
consideration are listed in Tab. 4.4. The resulting effective crack energies,
as well as the required iteration counts are listed in Tab. 4.5. In parameter
case #1, the crack resistance of the grains and the binder are equal,
and the matrix material corresponds to a pore space. The resulting
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crack surface is shown in Fig. 4.10b. We notice that the crack is fully
contained in the binder phase. The effective crack energy is reduced to
7.5% of the crack resistance which grain and binder share. The second
parameter case models the structure as a matrix material with tougher
sand-grain inclusions. The binder phase is treated as additional matrix
material. Fig. 4.10c shows the crack surface avoiding the sand-grain
shaped inclusions. The resulting effective crack energy of the composite
is 1.133 𝛾matrix. The third case deals with the same contrast, i.e., the binder
phase is once again treated as additional matrix. This time, however, the
sand-grain shaped inclusions are weaker than the surrounding material.
The effective crack energy is 32% of the matrix crack resistance. Fig. 4.10d
shows the crack surface crossing several grains in order to avoid the
matrix phase as much as possible.

4.5 Conclusions

In this chapter, we presented a powerful FFT-based solution method
for computing the effective crack energy of industrial-scale composite
microstructures. Based on a homogenization result for the Francfort-
Marigo model of brittle fracture (Francfort and Marigo, 1998) in an
anti-plane shear setting, see Braides et al. (1996), a cell formula for
computing the effective crack energy was investigated. This cell formula
may be interpreted as a minimum cut / maximum flow problem (Strang,
1983), which finds various applications, for instance in graph networks
and image segmentation. Following Couprie et al. (2011), we considered
the CCMF discretization on regular voxel data and integrated it into an
FFT-based computational homogenization framework. In comparison to
traditional spectral and finite-difference discretizations, we found the
CCMF discretization to significantly reduce artifacts in the local fields.
For solving the discretized equations, we investigated the alternating
direction method of multipliers (ADMM) with various adaptive strate-
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4 Computing the effective crack energy on a combinatorially consistent grid

gies, and found a damping parameter 𝛿 = 0.25 combined with the
Barzilai-Borwein penalty-factor choice to be the most effective. We
demonstrated the applicability of our approach to various large-scale
problems, considering complex microstructures, as well as large or
even infinite contrast in the local crack resistance. The presented
framework was implemented into an existing homogenization code for
thermal conductivity, and, although we ran some computations on a
workstation, all presented computations could be done on a conventional
desktop computer.
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Chapter 5

Computing the effective crack
energy of heterogeneous and
anisotropic microstructures via
anisotropic minimal surfaces1

5.1 Introduction

Francfort and Marigo (1998) reformulated Griffith’s theory of crack
propagation (Griffith, 1921) as a variational problem, introducing the
Francfort-Marigo model of fracture. For a fixed domain Ω and a fixed
time discretization, they seek minimizers, i.e., the displacement field 𝑢
and the crack surface 𝑆 across which 𝑢 may be discontinuous, of the
energy functional

𝐹𝑀(𝑢, 𝑆) = 1
2

∫︁
Ω∖𝑆

∇𝑠𝑢 : C(𝑥) : ∇𝑠𝑢 𝑑𝑥+
∫︁

𝑆

𝛾(𝑥) 𝑑𝐴. (5.1)

The energy consists of a volume-energy part accounting for elastic
deformations, and a surface-energy part quantifying the crack-surface
energy. Physical assumptions of their model include 𝑆𝑡 ⊆ 𝑆𝑡+1 at all time

1 This chapter is based on Ernesti and Schneider (2022). In order to include this paper into
the structure of this work I shortened the introduction and made minor changes to the
manuscript.
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5 The effective crack energy of heterogeneous and locally anisotropic microstructures

steps 𝑡, i.e., the crack surface may only grow. Notice that their formula-
tion is based on global minimization for reasons of mathematical well-
posedness, whereas Griffith seeks local critical points. The Francfort-
Marigo model naturally includes heterogeneous material properties,
as both crack resistance 𝛾 and the stiffness tensor C may depend on
the position. Furthermore, distinct material anisotropy may already be
expressed in terms of an anisotropic stiffness tensor. Additionally, as
noted by the authors themselves (Francfort and Marigo, 1998, eq. (17))
the surface energy may account for anisotropy by replacing the isotropic
crack resistance in the surface energy by an anisotropic term 𝛾(𝑥, 𝑛(𝑥))
depending on the unit normal 𝑛 of the crack surface.
The prevailing tool for treating the Francfort-Marigo model computa-
tionally is the phase-field model of fracture. The method, introduced
by Bourdin et al. (2000), is motivated by the Ambriosio-Tortorelli ap-
proximation (Ambrosio and Tortorelli, 1990) of the Mumford-Shah func-
tional (Mumford and Shah, 1989), used in image segmentation. The
phase-field model involves a length-scale parameter 𝑙 and seeks mini-
mizers 𝑢 as well as 𝑑, namely the displacement field and the damage
variable, of the functional

𝑃𝐹𝑙(𝑢, 𝑑) = 1
2

∫︁
Ω

(1− 𝑑)2∇𝑠𝑢 : C(𝑥) : ∇𝑠𝑢+ 𝛾(𝑥)
2

[︂
𝑑2

𝑙
+ 𝑙‖∇𝑑‖2

]︂
𝑑𝑥.

(5.2)

Chambolle (2004) showed that, for 𝑙 → 0, the phase-field model
Γ−converges to the Francfort-Marigo model. Additionally, the phase-
field model shows similarities to nonlocal damage models (Dimitrijevic
and Hackl, 2008; Bažant, 1991) and may be treated as such as long as
𝑙 > 0 is regarded as a material parameter (Kuhn, 2013).
The phase-field fracture model is rather popular in the scientific
community, including a variety of contributions over the last decade,
see Wu et al. (2020) for a recent overview. Of particular interest to

138



5.1 Introduction

this chapter are contributions that account for material anisotropy.
Investigations on modeling anisotropic fracture using an anisotropic
stiffness but isotropic crack energy were carried out (Gmati et al., 2020;
Shanthraj et al., 2017). An approach to incorporate tension-compression
anisotropy into the context of an anisotropic stiffness was suggested
by van Dijk et al. (2020). Clayton and Knap (2014) introduced a
geometrically nonlinear phase-field model with an anisotropic crack
resistance, which takes, in case of small deformation elasticity, the form

𝑃𝐹𝑙(𝑢, 𝑑) =
∫︁

Ω

1
2(1− 𝑑)2∇𝑠𝑢 : C(𝑥) : ∇𝑠𝑢+ 𝛾(𝑥)

2

[︂
𝑑2

𝑙
+ 𝑙∇𝑑 ·𝑀𝑝∇𝑑

]︂
𝑑𝑥

(5.3)

with 𝑀𝑝(𝑥) = 𝑝(𝑥) ⊗ 𝑝(𝑥) + 𝛽(𝑥)(Id−𝑝(𝑥) ⊗ 𝑝(𝑥)) and a field of unit
vectors 𝑝. They applied their model at small deformations to simulating
cleavage in polycrystalline ceramics (Clayton and Knap, 2015). The posi-
tive cleavage parameter 𝛽 is introduced to penalize crack propagation
within the plane perpendicular to the unit vector 𝑝. Further extensions
to incorporate crystal plasticity and ductile fracture were reported (Na
and Sun, 2018; Bryant and Sun, 2018). The tensor 𝑀𝑝 permits to model
either one weak plane, or one tough direction. Introducing a general
symmetric and positive definite tensor 𝑀 , up to three different crack
resistances, i.e, the eigenvalues of 𝑀 , in the three eigendirections may
be prescribed. More general approaches were proposed using a multi
phase-field setting, see Nguyen et al. (2017), or a higher order phase-field
method, using fourth order tensors (Teichtmeister et al., 2017; Kakouris
and Triantafyllou, 2019; Ma and Sun, 2020; Li et al., 2015), to study
polycrystalline materials. Pillai et al. (2020) proposed an anisotropic
cohesive phase-field model to simulate the behavior of anisotropic fiber
structures. Incorporating weak interfaces via cohesive elements was
proposed by Rezaei et al. (2021).
To account for the influence of the microstructure of a material to its
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5 The effective crack energy of heterogeneous and locally anisotropic microstructures

macroscopic behavior, multi-scale methods may be used, see Matouš
et al. (2017) for an overview. For hardening material behavior, those
multi-scale approaches are well understood. Softening materials, in
contrast, where distinct strain localization may occur, are more challeng-
ing (Gitman et al., 2007).
Braides et al. (1996) established a periodic homogenization result for the
Mumford-Shah functional (Mumford and Shah, 1989) which is closely
related to the Francfort-Marigo model of brittle fracture (Francfort and
Marigo, 1998). Consider the Francfort-Marigo model with periodic
material properties C and 𝛾 with a fixed discretization in time, i.e., the
quasi-static case. Furthermore, we neglect the irreversibility constraint
and consider the loading case anti-plane shear. Subjected to these as-
sumptions, the Francfort-Marigo model converges, as shown by Braides
et al. (1996), to the effective functional

𝐹𝑀 eff(𝑢, 𝑆) = 1
2

∫︁
Ω∖𝑆

∇𝑠𝑢 : Ceff : ∇𝑠𝑢 𝑑𝑥+
∫︁

𝑆

𝛾eff(𝑛) 𝑑𝐴 (5.4)

with effective, possibly anisotropic stiffness tensor Ceff and effective
crack energy 𝛾eff(𝑛). Furthermore, they showed that the two effective
quantities decouple, i.e., the local stiffness tensor has no influence on the
effective crack energy and the local crack resistance does not influence
the effective stiffness. A key ingredient for the homogenization result of
Braides and coworkers was a formulation on a single unknown, namely
the displacement field which is permitted to be discontinuous across
specific crack surfaces. In this way, the headache concerning the distinc-
tion of a displacement field and the crack can be avoided. Indeed, the
(possibly jumping) displacement field can be decomposed additively
into a macroscopic and a microscopic part.
The work of Braides et al. (1996) was further extended to stochastic
homogenization by Cagnetti et al. (2019), ensuring representative vol-
ume elements to exist for the Francfort-Marigo fracture model under
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anti-plane shear. Recently, the restriction to anti-plane shear was lifted
by Friedrich et al. (2022), so the homogenization result holds in general.
To compute the effective quantities, Braides et al. (1996) provide specific
formulas. Computing the effective stiffness reduces to classical linear
elastic homogenization (Milton, 2002), whereas the effective crack energy
𝛾eff(𝑛) associated to a crack with normal 𝑛 may be computed as a
𝛾-weighted minimal surface cutting the microstructure. Note that the
homogenization results are based on the notion of Γ−convergence.
Thus, they only concern global minimizers of both the original and
the effective functional.
Schneider (2020) proposed a method for computing the effective crack
energy for heterogeneous, locally isotropic microstructures using a
reformulation of the cell formula of Braides et al. (1996) into a convex
optimization problem. The transformation of the cell formula relies on
Strang’s minimum cut/maximum flow duality (Strang, 1983). The es-
tablished optimization problem was solved using FFT based algorithms.
Recently, Ernesti and Schneider (2021) proposed a discretization on a
combinatorially consistent grid, which improves the solution quality,
introducing an associated adaptive ADMM solver, see also chapter 4.

Contributions

This chapter extends the approach presented in chapter 4 to account for
a locally anisotropic crack resistance, enabling to treat matrix-inclusion
composites with anisotropic phases or polycrystalline materials. In
section 5.2.1, we introduce the cell formula for the effective anisotropic
crack energy and anisotropic phases. We describe the anisotropy in terms
of a tensor, similar to approaches applied in phase-field fracture (Clayton
and Knap, 2014). We transform the anisotropic minimum cut problem
into an anisotropic maximum flow problem in section 5.2.2, which gives
rise to a convex optimization problem.
Powerful solution methods for maximum flow problems arose for
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maximum-flow problems on graphs (Ford and Fulkerson, 1956). Due to
metrication artifacts, these are not directly applicable to the continuous
maximum flow problem at hand (Kolmogorov and Zabin, 2004). This
may be overcome by a combinatorial continuous maximum flow (CCMF)
discretization (Couprie et al., 2011), recently applied to computing the
effective crack energy of solids (Ernesti and Schneider, 2021), see also
chapter 4. We propose a way to account for anisotropic crack resistances
within the CCMF discretization in section 5.3.1. As the anisotropy
of the crack resistance is described in terms of a (symmetric positive
definite) second-order tensor, the maximum-flow formulation involves
the projection onto an ellipsoid. We express the governing projection
operator as the solution of a constrained optimization problem in section
5.3.3. Finally, we apply our anisotropic minimum cut/maximum flow
approach to brittle materials with a distinct anisotropy. In section 5.4.2
we investigate polycrystalline brittle materials, such as ceramics with
distinct cleavage in each grain. Last but not least, we investigate fracture
of carbon fiber reinforced composites, where each fiber itself shows
strong anisotropy of transversely isotropic kind.

5.2 Minimum cut/maximum flow with
anisotropic crack resistance

5.2.1 Cell formula for an anisotropic minimum cut

Consider a unit cell 𝑌 = [0, 𝐿1] × [0, 𝐿2] × [0, 𝐿3] and a given field of
heterogeneous and direction-dependent crack resistances

𝛾 : 𝑌 ×R3 → R (5.5)
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We assume that, for any microscopic point 𝑥 ∈ 𝑌 , the association

R3 ∋ 𝜉 ↦→ 𝛾(𝑥, 𝜉)

defines a norm on the vector space R3, i.e., it is one-homogeneous,
satisfies the triangle inequality and is non-degenerate. Moreover, we
assume that there are positive constants 𝛾−, 𝛾+, s.t. the inequalities

𝛾− ≤ 𝛾(𝑥, 𝜉) ≤ 𝛾+ hold for all 𝑥 ∈ 𝑌 and 𝜉 ∈ R3 with ‖𝜉‖ = 1.
(5.6)

Under these assumptions, we define the effective crack energy as a
function on the unit sphere 𝑆2 via

𝛾eff(𝜉) = inf
𝜑

1
|𝑌 |

∫︁
𝑌

𝛾
(︀
𝑥, 𝜉 +∇𝜑(𝑥)

)︀
𝑑𝑥, (5.7)

where the infimum is evaluated over all smooth periodic fields 𝜑. Upon
one-homogeneous extension, the effective crack energy 𝛾eff gives rise to
a norm on R3, as well.
In this article, we specialize the form of the microscopic crack resistances
considered to those which describe an anisotropic Euclidean norm. More
precisely, for a field G : 𝑌 → 𝑆𝑦𝑚(3) of symmetric, positive definite
crack resistance tensors, we consider the local crack resistance field

𝛾(𝑥, 𝜉) = ‖G(𝑥)[𝜉]‖.

Then, equation (5.7) becomes

𝛾eff(𝜉) = inf
𝜑

1
|𝑌 |

∫︁
𝑌

⃦⃦
G(𝑥)

[︀
𝜉 +∇𝜑(𝑥)

]︀⃦⃦
𝑑𝑥. (5.8)

The isotropic case (Schneider, 2020; Ernesti and Schneider, 2021), also
described in chapter 4, where we consider the isotropic crack resistance
field 𝛾 : 𝑌 → R, is recovered via G(𝑥) = 𝛾(𝑥) Id.
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5.2.2 Anisotropic maximum flow formulation

We define the energy functional

𝑓(𝜉) = 1
|𝑌 |

∫︁
𝑌

‖G 𝜉‖ 𝑑𝑥 (5.9)

and, for fixed 𝜉 ∈ R3, the set of kinematic constraints

𝒦𝜉 = {𝜉 : 𝑌 → R3 periodic | 𝜉 = 𝜉 +∇𝜑

for some periodic 𝜑 : 𝑌 → R}.

With the energy functional and the kinematic constraints at hand, we call

𝑓(𝜉)→ min
𝜉∈𝒦𝜉

, (5.10)

the anisotropic minimum cut problem. For fixed normal 𝜉, the minimum
effective crack energy (5.8) computes as the minimum value of this
minimization problem.
Treating this problem numerically is challenging, since the energy func-
tional is homogeneous of degree one and thus non-differentiable. Ex-
tending the isotropic case (Schneider, 2020; Ernesti and Schneider, 2021),
see also chapter 4, we introduce a dual formulation, i.e., a corresponding
anisotropic maximum flow problem (Strang, 1983). The formal dual
problem to the minimization problem (5.10) is given by

𝑓*(𝑣)− 1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣 𝑑𝑥→ min
div 𝑣=0

, (5.11)

where 𝑓* denotes the Legendre-Fenchel dual of 𝑓 , given by

𝑓*(𝑣) = sup
𝜉

1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣 𝑑𝑥− 𝑓(𝜉) ≡ sup
𝜉

1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣 − ‖G 𝜉‖ 𝑑𝑥 (5.12)
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and the minimum (5.11) is evaluated over all periodic solenoidal fields 𝑣.
Since the tensor G is symmetric and positive definite, and thus invertible,
we transform the Legendre-Fenchel dual (5.12)

𝑓*(𝑣) = sup
𝜉

1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣 − ‖G 𝜉‖ 𝑑𝑥

= sup
𝜉=G 𝜉

1
|𝑌 |

∫︁
𝑌

𝜉 ·G−1 𝑣 − ‖𝜉‖ 𝑑𝑥

=

⎧⎨⎩0
⃦⃦
G−1 𝑣

⃦⃦
≤ 1,

+∞ otherwise.

Thus, the Legendre-Fenchel dual 𝑓* equals the indicator function

𝜄𝒞 =

⎧⎨⎩0 𝑣 ∈ 𝒞,

+∞ otherwise,

of the closed set

𝒞 = {𝑣 : 𝑌 → R3, periodic
⃒⃒ ⃦⃦

G(𝑥)−1𝑣(𝑥)
⃦⃦
≤ 1

for almost all 𝑥 ∈ 𝑌 }.
(5.13)

Since G is symmetric and positive definite, the set 𝒞 is a convex domain.
More precisely, the constraint in the definition of the set 𝒞 describes an
ellipsoid centered at the origin, see Fig. 5.1. Combining (5.12) with this
expression for 𝒞, with arrive at the anisotropic maximum flow problem

1
|𝑌 |

∫︁
𝑌

𝜉 · 𝑣 𝑑𝑥 −→ max
div𝑣=0, ‖G−1 𝑣‖≤1

.
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x

y

v1

γ1γ2

v2

Cx

Figure 5.1: Schematic sketch of the ellipsoidal domain 𝒞𝑥, i.e., all vectors satisfying⃦⃦
G(𝑥)−1𝑣(𝑥)

⃦⃦
≤ 1, with eigensystem {𝑣𝑖} and semi-axis 𝛾𝑖. (Ernesti and Schneider,

2022)

5.3 Numerical treatment

Ernesti and Schneider (2021) proposed to solve the maximum flow
problem in the combinatorial continuous maximum flow (CCMF) dis-
cretization (Couprie et al., 2011) by FFT-based methods (Schneider,
2021a). The formulation is based on doubling the degrees of freedom.
We present an extension of this strategy to account for an anisotropic
crack resistance expressed via a heterogeneous field of crack resistance
tensors G : 𝑌 → 𝑆𝑦𝑚(3). We refer to Ernesti and Schneider (2021), as
well as chapter 4, as a general reference throughout this section.

5.3.1 The CCMF discretization for anisotropic maximum
flow

We discretize the unit cell 𝑌 = [0, 𝐿1]× [0, 𝐿2]× [0, 𝐿3] on a regular cubic
voxel grid 𝑌𝑁 with 𝑁𝑖, (𝑖 = 1, 2, 3) voxels in each direction under the
assumption that each voxel is cubic with edge length ℎ = 𝐿𝑖/𝑁𝑖, (i=1,2,3).
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5.3 Numerical treatment

We evaluate the crack resistance tensor at the voxel center, i.e.,

G [𝑖,𝑗,𝑘] = G
(︀
(𝑖+ 1

2 )ℎ, (𝑗 + 1
2 )ℎ, (𝑘 + 1

2 )ℎ
)︀

and the flow field 𝑣 : 𝑌 → R3 on the faces of each voxel

𝑣𝑥[𝑖,𝑗,𝑘] = 𝑣𝑥

(︀
𝑖ℎ, (𝑗 + 1

2 )ℎ, (𝑘 + 1
2 )ℎ
)︀
,

𝑣𝑦 [𝑖,𝑗,𝑘] = 𝑣𝑦

(︀
(𝑖+ 1

2 )ℎ, 𝑗ℎ, (𝑘 + 1
2 )ℎ
)︀
,

𝑣𝑧 [𝑖,𝑗,𝑘] = 𝑣𝑧

(︀
(𝑖+ 1

2 )ℎ, (𝑗 + 1
2 )ℎ, 𝑘ℎ

)︀
.

This placement of the flow field enables to encode the conservation of
mass via the discrete backwards divergence operator div−

(︀
div− 𝑣

)︀
[𝑖,𝑗,𝑘] = 𝑣𝑥[𝑖,𝑗,𝑘]−𝑣𝑥[𝑖−1,𝑗,𝑘]+𝑣𝑦 [𝑖,𝑗,𝑘]−𝑣𝑦 [𝑖,𝑗−1,𝑘]+𝑣𝑧 [𝑖,𝑗,𝑘]−𝑣𝑧 [𝑖,𝑗,𝑘−1].

To enforce the constraint ‖G−1 𝑣‖ ≤ 1 in the context of the CCMF
discretization, we introduce the nonlocal shift operator 𝑆

𝑆(𝑣)[𝑖,𝑗,𝑘] ≡

⎡⎢⎣ 𝑣𝑥[𝑖−1,𝑗,𝑘]

𝑣𝑦 [𝑖,𝑗−1,𝑘]

𝑣𝑧 [𝑖,𝑗,𝑘−1]

⎤⎥⎦ . (5.14)

The constraint is then enforced via the inequality⃦⃦
G [𝑖,𝑗,𝑘]−1𝑣[𝑖,𝑗,𝑘]

⃦⃦2 +
⃦⃦
G [𝑖,𝑗,𝑘]−1𝑆(𝑣)[𝑖,𝑗,𝑘]

⃦⃦2 ≤ 2. (5.15)

To integrate the CCMF discretization of the anisotropic maximum flow
problem into an FFT-based homogenization solver for heat conductivity,
we introduce the extension operator 𝐴, given by

𝐴(𝑣) = 1√
2

[︃
𝑣

𝑆(𝑣)

]︃
. (5.16)
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With this notation at hand, accompanied by the inner product

⟨𝑣, 𝑤⟩ = 1
𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

𝑣𝑥[𝑖,𝑗,𝑘]𝑤𝑥[𝑖,𝑗,𝑘] + 𝑣𝑦 [𝑖,𝑗,𝑘]𝑤𝑦 [𝑖,𝑗,𝑘] + 𝑣𝑤 [𝑖,𝑗,𝑘], 𝑣𝑧 [𝑖,𝑗,𝑘]

we may rewrite the discrete maximum flow problem as

⟨𝜉, 𝑣⟩ −→ max
div− 𝑣=0,

‖G̃−1
𝐴(𝑣)‖≤1

with ̃︀G =
[︃

G 0
0 G

]︃
. (5.17)

For the CCMF discretization, the set 𝒞 from equation (5.13) reads

𝒞G =
{︁
𝑤 : 𝑌𝑁 → R6,

⃒⃒⃒ ⃦⃦⃦ ̃︀G[𝑖,𝑗,𝑘]−1𝑤[𝑖,𝑗,𝑘]
⃦⃦⃦
≤ 1 for all 𝑖, 𝑗, 𝑘

}︁
. (5.18)

The derivation of the associated discrete primal problem follows the
same steps as the isotropic case, described in section 4.3.1. The discrete
minimum cut problem with a tensorial crack resistance is given by

1
𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

⃦⃦⃦ ̃︀G[𝑖,𝑗,𝑘]𝜉[𝑖,𝑗,𝑘]
⃦⃦⃦
−→ min

𝜉∈𝒦𝜉

(5.19)

with set of discretely compatible fields

𝒦𝜉 = {𝜉 : 𝑌𝑁 → R6 ⃒⃒there is some 𝜑 : 𝑌𝑁 → R,

s.t. 𝐴*𝜉 = 𝜉 +∇+𝜑}.
(5.20)

The operator 𝐴* denotes the left inverse of 𝐴, i.e., 𝐴*𝐴 = Id holds, and
∇+ refers to the discrete forward gradient operator.

5.3.2 The alternating direction method of multipliers

To solve equation (5.19) with the alternating direction method of multipli-
ers (ADMM), we rewrite the discrete minimum cut problem equivalently
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5.3 Numerical treatment

as
𝑓(𝜉) + 𝑔(𝜉) −→ min

𝜉
(5.21)

with the two convex functions

𝑓(𝜉) = 𝜄𝒦𝜉
(𝜉) and 𝑔(𝜉) = 1

𝑁1𝑁2𝑁3

∑︁
𝑖,𝑗,𝑘

‖G [𝑖,𝑗,𝑘] 𝜉[𝑖,𝑗,𝑘]‖ ,

where 𝜄𝒦𝜉
is the indicator function of the set 𝒦𝜉 described in (5.20).

The operator-splitting approach starts by rewriting the problem as a
constrained optimization problem

𝑓(𝜉) + 𝑔(𝑒) −→ min
𝜉=𝑒

. (5.22)

The alternating direction method of multipliers (ADMM) (Glowinski
and Marrocco, 1975; Gabay and Mercier, 1976) was introduced into the
context of FFT-based methods by Michel et al. (2000; 2001), see also the
application to non-smooth optimization by Willot (2020). Applied to our
problem, we investigate the augmented Lagrangian function

𝐿𝜌(𝜉, 𝑒, 𝑣) = 𝑓(𝜉) + 𝑔(𝑒) + ⟨𝑣, 𝜉 − 𝑒⟩+ 𝜌

2 ‖𝜉 − 𝑒‖
2
, (5.23)

involving a penalty factor 𝜌 > 0 and the Lagrange multiplier, i.e., our
flow field, 𝑣 : 𝑌𝑁 → R6. The damped ADMM recursion (4.34) with
damping factor 𝛿 is given by

𝜉𝑘+1/2 = argmin𝜉𝐿𝜌(𝜉, 𝑒𝑘, 𝑣𝑘),

𝜉𝑘+1 = 2(1− 𝛿)𝜉𝑘+1/2 − (1− 2𝛿)𝑒𝑘,

𝑒𝑘+1 = argmin𝑒𝐿𝜌(𝜉𝑘+1, 𝑒, 𝑣𝑘),

𝑣𝑘+1 = 𝑣𝑘 + 𝜌 (𝜉𝑘+1 − 𝑒𝑘+1).

(5.24)
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Figure 5.2: Schematic of the projection of the vector 𝑣 onto the admissible set in the case of
isotropic (left) and anisotropic (right) crack resistance. (Ernesti and Schneider, 2022)

More explicitly, the ADMM algorithm for anisotropic minimum cut/
maximum flow with adaptive penalty factor 𝜌𝑘 is given by

𝜉𝑘+1/2 = 𝒫𝒦𝜉

(︂
𝑒𝑘 − 1

𝜌𝑘
𝑣𝑘

)︂
,

𝜉𝑘+1 = 2(1− 𝛿)𝜉𝑘+1/2 − (1− 2𝛿)𝑒𝑘,

𝑒𝑘+1 =
[︀
𝑣𝑘 + 𝜌𝑘 𝜉𝑘+1 − 𝒫𝒞G

(︀
𝑣𝑘 + 𝜌𝑘 𝜉𝑘+1)︀]︀ /𝜌𝑘,

𝑣𝑘+1 = 𝑣𝑘 + 𝜌𝑘 (𝜉𝑘+1 − 𝑒𝑘+1),

(5.25)

where 𝒫𝒦𝜉
and 𝒫𝒞G denote the orthogonal projectors onto the sets 𝒦𝜉

and 𝒞G, respectively.

5.3.3 The anisotropic projector problem

Within the ADMM iterations (5.25), evaluating two projection operators
is required. The projection onto the compatible fields expressed via
the projector 𝒫𝒦𝜉

may be efficiently performed with the help of the
FFT (4.32). Additionally, the orthogonal projection onto the set 𝒞G is
required, expressed via the projection operator 𝒫𝒞G and illustrated in
Fig. 5.2. In the isotropic case, the set of constraints 𝒞 comprises a sphere
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5.3 Numerical treatment

per voxel. Thus, the projection onto 𝒞 involves orthogonal projections
onto a spheres with radii 𝛾(𝑥) and is straightforward. In the anisotropic
case, however, the set 𝒞G comprises an ellipsoid for each voxel, with the
eigenvalues 𝛾𝑖 of G as semi-axes. Following Kiseliov (1994), we write
this projection as an optimization problem.
Consider a vector 𝑣 ∈ R𝑛 and a symmetric, positive definite tensor Q.
We seek the projection 𝑤 ∈ R𝑛, such that

‖𝑤 − 𝑣‖2 → min
𝑤𝑇 Q 𝑤≤1

. (5.26)

Introducing the Lagrange parameter 𝜆, the governing KKT-conditions,
see for instance (Nocedal and Wright, 1999, Thm. 12.1), read

2(𝑤 − 𝑣) + 2𝜆Q𝑤 = 0, (5.27)

𝑤𝑇 Q𝑤 − 1 ≤ 0, (5.28)

𝜆 ≥ 0 𝜆(𝑤𝑇 Q𝑤 − 1) = 0. (5.29)

From conditions (5.27) we find

𝑤 = (Id + 𝜆Q)−1𝑣. (5.30)

If the vector 𝑣 satisfies 𝑣𝑇 Q 𝑣 ≤ 1, the problem (5.26) is trivially solved
for 𝑤 = 𝑣 (and 𝜆 = 0). We therefore focus on the case 𝑣𝑇 Q 𝑣 > 0. Since
the tensor Q is symmetric and positive definite, the inequality (5.28)
describes a convex domain. Thus, the projection 𝑤 lies on the boundary
of the admissible set. Thus, the inequality (5.28) is satisfied as an equality.
We insert the representation (5.30) into the conditions 𝑤𝑇 Q𝑤 − 1 = 0
and solve the resulting equation

𝑣𝑇 (Id + 𝜆Q)−1 Q(Id + 𝜆Q)−1𝑣 − 1 = 0 (5.31)
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5 The effective crack energy of heterogeneous and locally anisotropic microstructures

for the scalar 𝜆, using Newton’s method and initial value 𝜆0 = 0, follow-
ing Kiseliov (1994). In the mentioned reference, global convergence of
this algorithm is proved.
For the application at hand, where 𝑛 = 6, we set

Q = ̃︀G(𝑥)−2 (5.32)

for each 𝑥 ∈ 𝑌 . Therefore, the projection operator summarizes as

𝒫𝒞G𝑣(𝑥) =

⎧⎨⎩𝑣(𝑥),
⃦⃦⃦ ̃︀G(𝑥)−1𝑣(𝑥)

⃦⃦⃦
≤ 1,

(Id + 𝜆Q)−1𝑣(𝑥), otherwise,

with 𝜆 solving (5.31).

5.4 Numerical examples

5.4.1 Setup

The presented computational approach was integrated into an existing
FFT-based code for computing effective crack energies on microstruc-
tures (Ernesti and Schneider, 2021), which is embedded into an FFT-
based computational homogenization code for thermal conductiv-
ity (Dorn and Schneider, 2019). The software is written in Python with
Cython extensions (and OpenMP). All computations were performed
using the ADMM solver presented in chapter 4 with either the Barzilai-
Borwein adaptivity or the averaging adaptivity, and a damping factor
of 0.25. If not mentioned otherwise, the governing equations were
solved for a prescribed tolerance tol = 10−4 and the convergence
criterion (Schneider, 2021b)⃦⃦⃦

𝑒𝑘 − 𝜉𝑘+ 1
2

⃦⃦⃦
𝐿2
≤ tol ‖⟨𝑣⟩‖ . (5.33)
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The computational experiments in this section were run on a desktop
computer with 32GB RAM and six 3.7GHz cores and on a worksta-
tion with 512 GB RAM and two Intel Xeon(R) Gold 6146 processors
(12× 3.20 GHz), respectively.

5.4.2 A polycrystalline microstructure

As our first example, we consider a polycrystalline microstructure gen-
erated synthetically based on Laguerre tessellations and the algorithm
described in Kuhn et al. (2020). Following a similar approach as Nguyen
et al. (2017) within the context of phase-field fracture, we distinguish
between 2D and 3D structures. In a 2D microstructure with distinct
anisotropy, we identify one weak and one tough direction, whereas in
3D, we identify one weak and two tough directions, resulting in one
weak plane. Since elastic deformation and thus elastic material constants
do not play a role in our model, we normalize the crack resistance tensor
to a value 𝛾 and consider a cleavage anisotropy factor 𝛽 ∈ [1, 100] as
proposed in Clayton and Knap (2014; 2015) for polycrystalline silicon
carbide. The crack resistance tensor for 2D and 3D structures is given by

G2D = 𝑅𝑇
grain

[︃
𝛾 0
0 𝛽𝛾

]︃
𝑅grain and

G3D = 𝑅𝑇
grain

⎡⎢⎣ 𝛾 0 0
0 𝛽𝛾 0
0 0 𝛽𝛾

⎤⎥⎦𝑅grain,

(5.34)

respectively, where 𝑅grain is a rotation matrix encoding the orientation
of each grain.

Two-dimensional structures

We start with a 2D Laguerre tessellation and planar grain orientations.
In our first study, we vary the number of grains as well as the cleavage
anisotropy factor 𝛽. For each structure, we vary the loading angle
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x

y

ξ̄

ϕ
(a) 𝜙 = 0∘ (b) 𝜙 = 30∘

(c) 𝜙 = 60∘ (d) 𝜙 = 90∘

Figure 5.3: Crack path through a microstructure with 256 grains and a cleavage anisotropy
factor 𝛽 = 10 for prescribed normal 𝜉 = (cos(𝜙), sin(𝜙)). (Ernesti and Schneider, 2022)
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in seven equidistant steps from 0 to 90 degrees. For each loading
angle, we additionally consider the case where each grain is rotated
by 90 degrees. This results in 14 computations per structure. We used
the Barzilai-Borwein adaptivity within the ADMM solver for most
computations. For some cases, the averaging adaptivity converged
faster and we switched to the latter solver choice in those cases. We
extracted the mean value as well as the standard deviation of the 14
computations per structure. The crack path for various loading angles
is shown in Fig. 5.3. We see that the crack changes its direction for each
grain in order to minimize its surface energy. To close the crack path for
a non-axis aligned normal, the crack has to pass the cell several times.
Furthermore, we observe local similarities in the crack path for different
loading angles.
Fig. 5.4a shows the influence of the number of grains on the effective
crack energy. For a low number of grains, we observe a rather large
standard deviation and no clear trend in the mean value. From 162 to
322 grains, the standard deviation decreases significantly. This trend
continues for 642 grains, where the standard deviation decreases even
further while the mean value remains within the same range, indi-
cating representativity. We thus find a structure of 322 grains to be
sufficiently large.
Secondly, we investigate the influence of the anisotropy factor on the ef-
fective crack energy for the structure containing 1024 grains, see Fig. 5.4b.
Note that the case 𝛽 = 1 gives rise to a homogeneous 𝜉-field, since no
local differences arise in the crack resistance. In particular, the effective
crack energy becomes 𝛾eff ≡ 𝛾. The effective crack energy increases with
an increasing anisotropy factor until a certain threshold is reached at
𝛽 = 50, beyond this internal contrast, no significant increase is visible.
At this threshold, the crack favors the weakest direction in each grain.
This is also reflected in Fig. 5.5. Clear differences in the crack path may
be observed between 𝛽 = 5 and 𝛽 = 10, see Fig. 5.5a and Fig. 5.5b,
respectively. For increasing anisotropy, the differences become more
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(b) Influence of the anisotropy factor 𝛽 on the
effective crack energy for 1024 grains

Figure 5.4: Influence of the number of grains and the cleavage factor on the effective crack
energy in the two-dimensional case. (Ernesti and Schneider, 2022)

subtle, such that the crack paths for 𝛽 = 20 and 𝛽 = 50 are almost
indistinguishable, see Fig. 5.5c and see Fig. 5.5d, respectively.

Three-dimensional structures

We consider generated 3D Laguerre tessellations (Kuhn et al., 2020)
with random grain orientation in each grain. Similar to the 2D case,
we vary both the number of grains and the anisotropy factor. Since
3D simulations are much more costly compared to 2D simulations, we
perform only three simulations per microstructure for the size study by
investigating a normals in 𝑒𝑥, 𝑒𝑦 and 𝑒𝑧-direction, respectively, and only
one simulation per cleavage anisotropy factor 𝛽 for the internal contrast
study. Fig. 5.6 shows two cracked microstructures with 216 and 1728
grains, respectively. Similar to the 2D case, the crack surface changes its
orientation in each grain. Fig. 5.7a shows the results of the size study
for an anisotropy factor 𝛽 = 10. The effective crack energy increases
for increasing number of grains. For a very small structure containing
27 grains, the deviation between the three loading directions is rather
large. For an increasing number of grains, this standard deviation is
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(a) 𝛽 = 5 (b) 𝛽 = 10

(c) 𝛽 = 20 (d) 𝛽 = 50

Figure 5.5: Crack path through a microstructure containing 1024 grains for 𝜉 = 𝑒𝑥 and
varying cleavage anisotropy factors. (Ernesti and Schneider, 2022)
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(a) Cracked structure containing 216 grains (b) Cracked structure containing 1728 grains

Figure 5.6: Cracked microstructure for different number of grains. (Ernesti and Schneider,
2022)

reduced to a negligible amount. Two main distinctions between the
2D and the 3D case emerge in case of the size study. Firstly, the range
of the effective crack resistances differ significantly: In the 2D case the
effective crack energy ranged around 𝛾eff ≃ 1.4 𝛾, whereas for the 3D
case we find 𝛾eff ≃ 5.2 𝛾 for 𝛽 = 10. Secondly, the effective crack energy
increases with increasing number of grains in the 3D, at least within the
range of our observation, whereas in the 2D case we observed saturation.
This indicates that even more than the considered 13824 grains could be
necessary to reach representative results.
Shifting our focus to the contrast study, see Fig. 5.7b, we observe a nearly
linear correlation between the cleavage factor 𝛽 and the effective crack
energy. This clearly differs from the 2D case, which displayed a satura-
tion. This effect has a geometric origin. In the 2D case, a continuous crack
path can be found which passes each grain in the energetically most
favorable direction. In 3D, this is not the case, as planar cracks within
each grain cannot be combined into a continuous, global crack surface, in
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(b) Influence of the material contrast on the
effective crack energy for 1024 grains

Figure 5.7: Influence of the number of grains and of the material contrast on the effective
crack energy in the three-dimensional case. (Ernesti and Schneider, 2022)

general. Hence, in the two- and three-dimensional context, the effective
crack resistance of polycrystalline materials differs fundamentally in the
context of anisotropic intergranular fracture, modeled with one cleavage
parameter. In two spatial dimensions, the parameter 𝛽 plays a subordi-
nate role (at least if it is sufficiently large), in the three-dimensional case
we see clearly that 𝛽 is an important material parameter, which needs to
be identified.

5.4.3 A carbon fiber reinforced polymer

In this section, we investigate a carbon fiber reinforced composite. Car-
bon fibers are used due to their favorable strength-density ratio. The
individual fibers have a strong anisotropy in both elastic and strength
properties. As a result of the manufacturing process, they show higher
Young’s modulus and higher strength in fiber direction compared to the
plane perpendicular to it. We use a crack resistance tensor for a fiber
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(a) Carbon fiber reinforced composite (b) Crack surface for 𝜉 = 𝑒𝑦 , 𝛾eff = 1.82 𝛾

(c) Crack surface for 𝜉 = 𝑒𝑦 , 𝛾eff = 0.85 𝛾 (d) Crack surface for 𝜉 = 𝑒𝑧 , 𝛾eff = 0.87 𝛾

Figure 5.8: Carbon fiber reinforced composite and crack surface for varying direction.
(Ernesti and Schneider, 2022)

160



5.5 Conclusion

oriented in (unit) direction 𝑝 as

G = 25 𝛾 𝑝⊗ 𝑝+ 0.5 𝛾 (Id−𝑝⊗ 𝑝),

assuming an internal contrast of 50 for the crack resistance, as suggested
by Pillai et al. (2020). Furthermore, we model the matrix material in
our composite with the isotropic crack resistance 𝛾, assuming that the
fibers transverse crack resistance is lower than that of the matrix material.
The microstructure under consideration contains 290 fibers of 450𝜇m
length and 7𝜇m diameter, oriented in an almost unidirectional manner in
𝑥-direction with second order orientation tensor diag(0.9, 0.05, 0.05) and
a total of filler content of 15%, see Fig. 5.8a. The structure was generated
using sequential addition and migration (Schneider, 2017).
Fig. 5.8b shows the crack surface oriented in 𝑥-direction. We notice fiber
pullout and matrix failure, as well as fiber damage that appears to be
non-perpendicular to the fiber direction. The effective crack energy is
increased by 50% compared to the matrix material. The crack surfaces in
𝑦- and 𝑧-direction are shown in Fig. 5.8c and Fig. 5.8d, respectively. Both
crack surfaces look qualitatively similar. We notice both matrix failure
and inter-fiber debonding, since we assumed the fibers perpendicular to
their orientation to be weaker than the matrix material. For both cases,
the effective properties are lower compared to the matrix material and
almost equal.

5.5 Conclusion

In this chapter, we presented a numerical method for computing
the effective crack energy of a heterogeneous medium with distinct
anisotropy via weighted minimal surfaces. We derived the anisotropic
maximum flow problem and discussed the implementation into an
FFT-based homogenization tool for isotropic fracture. We saw that
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5 The effective crack energy of heterogeneous and locally anisotropic microstructures

both the solver framework and the discretization established for the
isotropic case serves as a firm foundation for the anisotropic case. Indeed,
the extension requires evaluating the projection onto ellipsoids in an
efficient manner.
This anisotropic extension of the homogenization of the fracture energy
enables the treatment of additional material classes compared to
previous works. Applications were presented for polycrystalline
ceramics and carbon-fiber reinforced composites.
In the literature on anisotropic phase-field fracture, 2D polycrystalline
materials are often investigated in addition to the 3D case. The
anisotropy may be encoded by the cleavage parameter 𝛽, which
penalizes crack propagation in certain directions and forces the crack
path to follow a weak plane. In our homogenization framework, we
observed the behavior for the 2D case to fundamentally differ from the
3D case. In two dimensions, a crack is not geometrically restricted to
follow the weakest plane through each grain. Therefore, the cleavage
parameter 𝛽 has no further meaning beyond a certain threshold. In the
3D case, on the other hand, neighborhood relations between different
grains prohibit the crack to form freely in order to follow the weakest
plane for each grain. Therefore, we observe a strong dependence of
the effective crack energy on the cleavage parameter 𝛽, emphasizing its
importance from the viewpoint of materials science.
Additionally, we saw that our framework allows us to investigate carbon
fiber structures, which show distinct anisotropy within each fiber. This
enables modeling additional effects compared to isotropic fibers, studied
in chapter 4. With isotropic inclusions either weakening, similar to pores,
or toughening with respect to the matrix material can be modeled. The
inclusion of anisotropic fibers allows for toughening in one direction, for
instance the fiber direction, and weakening in the transverse direction,
broadening the spectrum for material design.
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Chapter 6

Investigations on the influence of
the boundary conditions when
computing the effective crack
energy of random heterogeneous
materials using fast marching
methods1

6.1 Introduction

Nearly 25 years ago, Francfort and Marigo introduced a variational
fracture model (Francfort and Marigo, 1998) based on Griffth’s original
energy criterion (Griffith, 1921). The model was formulated in terms of
an energy functional to be minimized and added impetus to phase-field
fracture mechanics (Bourdin et al., 2000; Wu et al., 2020). The latter is
rather popular, as it permits to simulate both crack initiation and
crack propagation in a common framework based on traditional

1 This chapter is based on Ernesti et al. (2023) which was built on the results of the master
thesis by Lendvai (2022) which was supervised by me. In order to include this paper
into the structure of this work I shortened both the introduction and the second section.
Furthermore, minor additional changes to the manuscript have been made. The results
which were originally presented in Lendvai (2022) are found in section 6.4. Figures
which are found in the master thesis are labeled accordingly.
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6 On the influence of the boundary conditions when computing the effective crack energy

finite element methods. The phase-field model may be interpreted
as a regularization of the Francfort-Marigo model, inspired by the
Ambrosio-Tortorelli approximation (Ambrosio and Tortorelli, 1990) of
the Mumford-Shah functional (Mumford and Shah, 1989). Alternatively,
the phase-field fracture model may be interpreted as a non-local damage
model (Dimitrijevic and Hackl, 2008; Bažant, 1991).
Multi-scale methods (Milton, 2002) are used to predict the macroscopic
behavior of microstructured materials, explicitly accounting for the
material behavior of the constituents and their arrangement on the
microscale. Homogenization theories serve as the mathematical un-
derpinnings of modern multi-scale methods. Seminal contributions
focus on periodic homogenization (De Giorgi and Spagnolo, 1973;
Babuska, 1973; Larsen, 1975), where the underlying microstructure
is given by a periodic cell. Since microstructured materials are often
random due to their manufacturing process (Jeulin, 2021), stochastic
homogenization results (Papanicolaou and Varadhan, 1981; Kozlov,
1978) have been established, where an infinitely large domain with a
random microstructure is investigated. One method to evaluate effective
properties based on stochastic homogenization results is by exploring
representative volume elements (RVEs). For prescribed accuracy and fixed
boundary condition type, a volume element is called representative
provided it approximates the effective properties of the infinitely large
domain up to this prescribed accuracy (Drugan and Willis, 1996). Since
the size of the RVE is not known a priori and dependent on various
factors, the RVE size is often found via computations on volume elements
of increasing size (Gusev, 1997; Segurado and Llorca, 2002) until a
desired degree of representativity is reached. For elliptic PDEs such as
elasticity and conductivity problems, theoretical results show that for
different boundary conditions applied to cells of finite size, i.e., periodic,
Dirichlet or Neumann boundary conditions, the effective quantities
evaluated on the cells share the same infinite-volume limit (Sab, 1992;
Bourgeat and Piatnitski, 2004; Owhadi, 2003). Yet, it is well known that
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6.1 Introduction

the boundary conditions may have a strong influence on the necessary
size of the RVE, see Kanit et al. (2003).
In the field of fracture mechanics, multi-scale approaches face additional
difficulties compared to linear elastic or conductivity problems. One
necessary ingredient for multi-scale methods is a distinct scale sepa-
ration, allowing the quantities of interest, displacements, stresses or
strains, to be separable into a large-scale and small-scale component. In
an elastic material without a crack, for instance, this separation leads to
a cell formula on the microscale, from which effective quantities may be
derived. This approach does not work within a cracked microstructure,
since this crack and the stress singularity resulting from it would be
present on both the micro- and the macroscale. On the other hand,
investigations on volume elements of finite size may be conducted
with phase-field fracture models (Chen et al., 2019; Ernesti et al., 2020).
However, it is well known (Gitman et al., 2007) that such a procedure
will not, in general, lead to a macroscopic model for softening materials.
Thus, special care is required.
Our strategy is based on a periodic homogenization result of Braides et al.
(1996) for the Mumford-Shah functional (Mumford and Shah, 1989) and
energetic minimization. This result covers the Francfort-Marigo model
of brittle fracture (Francfort and Marigo, 1998) in the case of anti-plane
shear when considering a fixed quasi-static time discretization and
neglecting crack irreversibility (for instance in the very first load step
on an un-cracked specimen). Within their result, Braides et al. (1996)
show a decoupling of the volumetric part and the surface part of the
Mumford-Shah functional. In the context of the Francfort-Marigo model
this implies a decoupling of the effective stiffness and the effective crack
energy in the anti-plane shear case. Furthermore, they provide specific
formulas for both effective quantities. From their work the effective crack
energy is defined as the area of the crack resistance-weighted minimal
surface cutting through the microstructure. Numerical approaches to
computing the effective crack energy have been proposed by Schneider
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6 On the influence of the boundary conditions when computing the effective crack energy

(2020), as well as Ernesti and Schneider (2021; 2022) using FFT-based
algorithms and periodic boundary conditions, see also chapters 4 and 5.
Recently, Michel-Suquet addressed the approach based on the ho-
mogenization result of Braides et al. (1996) using an alternative so-
lution strategy by pointing out similarities with limit load analy-
sis (Christiansen, 1981).

Contributions

The aim of this chapter is to investigate the effective crack energy of
solids with random microstructures and the influence of the imposed
boundary conditions. We give a brief summary on the cell formula for
the effective crack energy based on the periodic (Braides et al., 1996) and
stochastic (Cagnetti et al., 2019) homogenization results for the Mumford-
Shah functional (Mumford and Shah, 1989) in section 6.2. For both the
periodic and the stochastic setting, the effective crack energy is expressed
in terms of a multi-cell formula on specifically notched cubes, which
we call Dirichlet boundary conditions. For periodic homogenization,
this multi-cell strategy is overly arduous, and a single-cell formula
is sufficient, provided periodic boundary conditions are used, as well.
Therefore, it makes sense to investigate periodic boundary conditions
for random materials, as well. Indeed, for periodic boundary condi-
tions, powerful numerical tools for computing the effective quantities
based on the fast Fourier transform (FFT) are available (Schneider, 2020;
Ernesti and Schneider, 2021; 2022), see also chapters 4 and 5. Dirichlet
boundary conditions on the other hand are not easily integrated into
this framework.
In a two-dimensional setting the problem of computing the effective
crack energy reduces to finding weighted minimal paths. One prominent
algorithm to compute such paths is the fast marching method intro-
duced by Sethian (1996; 1999) where fast implementations are publicly
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6.2 The effective crack energy of heterogeneous random media

available2. In the context of fracture mechanics, the fast marching
method has already been used for fatigue fracture using stress intensity
factors (Jovičić et al., 2005) and in combination with the extended finite
element method (Stolarska et al., 2001; Sukumar et al., 2003; 2008). We
discuss a straightforward way to compute the effective crack energy with
the help of the fast marching method in section 6.3. One advantage of
this method is that Dirichlet boundary conditions can easily be applied,
since every point of a domain may be used as a starting or ending point.
Section 6.4 comprises the numerical results. We first validate the fast
marching method in terms of accuracy of the discretization and compare
the results for periodic boundary conditions with established tools.
Finally, we investigate the influence of the boundary condition on the ap-
proximated effective crack energy for microstructure samples of increas-
ing cell size. We compare Dirichlet and periodic boundary conditions
and study their necessary size of the computational cell.

6.2 The effective crack energy of heteroge-
neous random media3

Consider a domain Ω ⊂ R𝑑 and a heterogeneous field of crack resistances
𝛾 : Ω → R>0 which is periodic with periodicity 𝜂. Following the
homogenization result of Braides et al. (1996) for the Mumford-Shah
functional (Mumford and Shah, 1989) we define the effective crack
energy as follows: Inside an infinite periodic continuation of our material
with periodicity 𝜂 we place a cube 𝐿𝑄𝑛 of edge length 𝐿 with its 𝑒1 axis
rotated onto the prescribed normal 𝑛. On such a cube, we compute a
𝛾-weighted minimal surface 𝑆 cutting the cube under the constraint

2 https://github.com/scikit-fmm/scikit-fmm, accessed in November 2021
3 In this section we provide a brief summary of section 2.4.2 to enhance the readability of

this chapter.
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6 On the influence of the boundary conditions when computing the effective crack energy

that the surface cuts the boundary of the cube at 𝑥1 = 𝐿/2 within the
coordinate system of the cube, see Fig. 2.10 in section 2.4.2 for a visual
representation. The effective crack energy is given by the limit of these
computed weighted minimal surfaces as the cube edge-length 𝐿→∞.
In mathematical terms, the effective crack energy is defined via

𝛾eff(𝑛) = lim
𝐿→∞

inf
𝑆

1
𝐿𝑑−1

∫︁
𝑆

𝛾 𝑑𝐴. (6.1)

Let us take a closer look at the cell formula (6.1). From a computational
point of view, the limit of 𝐿→∞ is not practicable, as we can only deal
with finite computational domains. To overcome this issue, we may
restrict to a single cell 𝐿𝑄 and employ the boundary conditions used
above, which we call Dirichlet boundary conditions. In this case, we fix
the surface 𝑆 on the boundary 𝜕𝐿𝑄 of the cube at 𝑥1 = 𝐿/2 within the
local coordinate system of the cube. Actually, any cut at 𝑥1 ∈ [0, 𝐿] could
be chosen. We choose 𝑥1 = 𝐿/2 for definiteness.
The approach by Braides et al. (1996) involves a multi-cell formula
(6.1) although the homogenization problem is periodic. As the inte-
grand in the problem (6.1) is convex, it is reasonable to hope that a
single-cell formula may prove sufficient for computing the effective
crack resistance 𝛾eff. This is indeed true, as shown by Braides and
Piat (1995) and Chambolle and Thouroude (2009). More precisely, they
showed that the effective crack energy 𝛾eff(𝑛) in equation (6.1) may be
computed on a single cell 𝑌𝜂 with period 𝜂 and for fields with periodic
boundary conditions

𝛾eff(𝑛) = inf
𝜑:𝑌𝜂→R, periodic

1
|𝑌𝜂|

∫︁
𝑌𝜂

𝛾 ‖𝑛+∇𝜑‖ 𝑑𝑥. (6.2)

Many materials of industrial relevance show a randomness in their mi-
crostructure composition, and periodic homogenization is not sufficient
for describing those. Recently, Cagnetti et al. (2019) proved an extension
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of the result of Braides et al. (1996) to stochastic homogenization for
the Mumford-Shah functional. Remarkably, the result provides a true
extension of the periodic case. The explicit formula they find is the
same as in the periodic case, i.e., (6.1), but the infinite-volume limit is
indispensable for stochastic homogenization.
The case of stochastic homogenization of elastic materials is well-studied.
To compute effective quantities on cells of finite size, appropriate bound-
ary conditions are required. Upon the infinite-volume limit the chosen
boundary conditions do not affect the effective quantities (Sab, 1992;
Bourgeat and Piatnitski, 2004; Owhadi, 2003). However, for cells of finite
size, the boundary conditions have an influence on the approximation
quality of the "true" effective stiffness, as shown by Sab (1992); Kanit et al.
(2003). Typically, using periodic boundary conditions and periodized
ensembles of random microstructures result in optimal convergence
rates (Schneider et al., 2022).
In contrast to computing the effective stiffness or effective conductivity
of a microstructured material, very little is known about the influence
of the boundary conditions when computing the effective crack energy
evaluated on cells of finite size. The aim of this chapter is to provide a
first step in this direction. For the periodic boundary conditions and in
three spatial dimensions, Schneider (2020) proposed an algorithm for
computing the effective crack energy on cells on finite size. The approach
relies on Strang’s minimum cut/maximum flow duality (Strang, 1983),
see also chapters 4 and 5.
Due to the tremendous computational effort involved, we restrict to
two-dimensional microstructures. In this case, it is possible to compute
shortest paths with fast marching, see section 6.3, which is well-known
among experts.
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6 On the influence of the boundary conditions when computing the effective crack energy

6.3 Finding the minimum cut with the fast
marching method

6.3.1 From minimum cut to shortest path problems

y

x

(a) Microstructure

y

x

(b) ‖𝜉‖ for 𝜉 = 𝑒1

y

x

(c) ‖𝜉‖ for
𝜉 = (3𝑒1 + 𝑒2)/

√
10

Figure 6.1: Microstructure and minimum cut field (𝜉 in eq. (2.32)) for an axis-aligned and
a non-axis-aligned prescribed mean normal. (Ernesti et al., 2023)

To gain some intuition into minimum cut fields in two spatial dimen-
sions, we consider a periodic microstructure of circular inclusions,
shown in Fig. 6.1a. The structure contains 35 fillers, i.e., 50% area
fraction. We consider tough inclusions, i.e., these have a (much) higher
crack resistance than the matrix material. Fig. 6.1b and Fig. 6.1c show
the minimum cut for mean crack normals 𝜉 = 𝑒1 and 𝜉 = (3𝑒1 +𝑒2)/

√
10.

In both cases, the minimum cut field localizes and takes the shape of
a crack path that cuts through the microstructure. However, a distinct
difference is present between the two cases. For the axis-aligned case, the
cut field traverses the microstructure once, cutting from left to right. For
the non-axis aligned case, the cut field wraps around the microstructure
several times in order to both preserve the mean normal of the cut and
to retain periodicity.
Thus, at least for the axis-aligned case, it appears reasonable the
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6.3 Finding the minimum cut with the fast marching method

minimum cut may be computed by an algorithm which returns a
(weighted) shortest path (Jeulin, 1988; 1994a; Noyel et al., 2011). In-
deed, after fixing two corresponding points on opposing edges of the
microstructure, a minimum weighted path joining the two points would
have to be computed.

QL

y

x

(a) Obstacles with loop holes

LQ

n

n

y

x

(b) Diagonal obstacle

Figure 6.2: Periodic microstructures 𝐿𝑄 (with a periodic extension in 𝑦-direction), giving
rise to possible problems for shortest path methods. (Ernesti et al., 2023)

Some caution is advised with this kind of strategy, as the following
two examples demonstrate. For a start, we consider the periodic
microstructure shown in Fig. 6.2a with imposed crack normal 𝜉 = 𝑒1.
If the crack resistance in the rectangles (shown in blue) is much higher
than in the complement (shown in white), the minimum cut is forced
to navigate through the white pathways. In this process, more than
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6 On the influence of the boundary conditions when computing the effective crack energy

one unit cell needs to be crossed. In the example shown, the green
curve crosses the horizontal "boundary" twice. Such a curve may be
represented by a shortest path algorithm if periodicity in 𝑦-direction is
accounted for. Otherwise the red curve would arise as the shortest path
from left to right.
Unfortunately, taking periodicity in 𝑦-direction into account does not
always offer the proper strategy, as the microstructure in Fig. 6.2b
shows. A straight "obstacle" with high crack resistance is placed along
the diagonal. For prescribed normal 𝜉 = 𝑒1, the minimum cut has to
cross the obstacle. The shortest path strategy with periodic boundary
conditions in 𝑦-direction, however, would give rise to the green path.
Unfortunately, the shown path does not give rise to the correct path
normal 𝜉 = 𝑒1, but to the normal 𝑛 pointing in diagonal direction! If,
instead, no periodicity in 𝑦-direction is permitted, the correct crack path
(in red) is computed.
To summarize, the charming idea of working with shortest path
algorithms to compute the effective crack energy for axis-aligned crack
normals may be unsuited to some microstructures. Therefore, it is
unavoidable to perform a validation against minimum cut methods. For
the microstructure models considered in this article, such a comparison
is contained in section 6.4.3.

6.3.2 Finding shortest paths by the fast marching method

There is a deep connection between the eikonal equation and efficient
path finding which led Sethian (1996; 1999) to devise computationally
efficient algorithms for the latter. More precisely, consider a domain
Ω ⊂ R𝑑 and suppose a wave propagates through our domain, starting
from some point 𝑥0 ∈ Ω at a given velocity 𝑣 : Ω→ R>0. Then, the
time 𝑇 : Ω→ R≥0 this wave needs to arrive at point 𝑥 ∈ Ω solves the
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6.3 Finding the minimum cut with the fast marching method

eikonal equation

‖∇𝑇 (𝑥)‖ = 1
𝑣(𝑥) , 𝑥 ∈ Ω, (6.3)

with 𝑇 (𝑥0) = 0. If the velocity 𝑣 is spatially homogeneous, the level sets
of the travel time 𝑇 describe concentric spheres around the starting point
𝑥0. For a heterogeneous velocity, the wavefront is refracted. Sethian
(1996; 1999) introduced the fast marching method as a fast algorithm for
solving the eikonal equation. The fast marching method is an integrated
strategy where the spatial discretization and the strategy for solving the
eikonal equation are well orchestrated. More precisely, the solution
strategy uses a modification of Dijkstra’s algorithm (Dijkstra, 1959)
well-known in graph theory (Gera et al., 2018). The fast marching
method finds application in various fields ranging from shortest path
finding (Kimmel and Sethian, 1996; Mirebeau, 2018; Garrido et al., 2006)
to simulating wildfire spreading (Carballeira et al., 2021) and within the
extended finite element method (Sukumar et al., 2003; 2008).
In 𝑑 spatial dimensions and on a regular grid with 𝑁𝑑 grid points, the
fast marching method has the computational complexity 𝑂(𝑁𝑑 log𝑁).
In contrast, iterative procedures for solving the eikonal equation (6.3)
typically have a complexity of 𝑂(𝑁𝑑+1). This complexity reduction is
partly caused by an underlying min-heap data structure (Williams, 1964).
The problem of computing the effective crack energy on a microstructure
involves finding a weighted minimal surface, as we pointed out in
chapter 2. For the special case of two-dimensional structures, this
problem simplifies to finding shortest paths in a given two-dimensional
microstructure, for which various methods are available Willot (2015b;
2019). In particular, the fast marching method may be applied as follows.

1. The crack resistance 𝛾(𝑥) serves as the weight in computing the
weighted shortest path playing the role of a resistance for the crack to
propagate. In contrast, for a propagating wave, the velocity 𝑣(𝑥)
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Figure 6.3: Example for (non-unique) shortests path with Dirichlet (index "D", red) and
periodic (index "P", green) boundary conditions. (Ernesti et al., 2023)

enables the propagating wave to travel faster at a higher speed.
Therefore we set the right hand side of the eikonal equation (6.3)
to 𝛾(𝑥) instead of 1/𝑣(𝑥) for computing the effective crack energy
with fast marching4.

2. The solution field 𝑇 (𝑥) embodies the 𝛾-weighted distance from point
𝑥 to the origin 𝑥0. We therefore call it the distance field throughout
this work.

3. To compute the effective crack energy of a given microstructure
cell 𝑌 = [0, 𝐿]2 with crack normal 𝑛 = 𝑒2 and Dirichlet boundary
conditions, we choose a starting point 𝑥0 = (0, 𝐿/2)𝑇 and evaluate
the distance field 𝑇 in 𝑥* = (𝐿,𝐿/2)𝑇 . The effective crack energy is
given by 𝑇 (𝑥*)/𝐿, see the red path in Fig. 6.3.

4 The crack resistance 𝛾 and the inverse velocity 1/𝑣 have different physical units.
However, both the effective crack energy and the travel time field scale homogeneously
under a rescaling of the crack resistance and the inverse velocity. Thus, upon introducing
a conversion factor between crack resistance and the velocity in the beginning, the same
conversion factor permits to recover the effective crack energy from the computed
distance field. For simplicity of notation, we therefore suppress mentioning the
conversion factor and tacitly assume it to be chosen appropriately.
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Figure 6.4: Distance field and crack path for different boundary conditions for a single
circular inclusion microstructure. (Ernesti et al., 2023)

4. The solution for periodic boundary conditions with mean normal
𝑛 = 𝑒𝑦 is given by the 𝛾-weighted shortest periodic path from the
left hand side to the right hand side. To find this shortest path with
the fast marching approach, we consider all paths with the starting
point 𝑥0 = (0, 𝑦) and end point 𝑥* = (𝐿, 𝑦) for some 𝑦 ∈ [0, 𝐿], and
select the starting point which returns the smallest crack energy, see
the green path in Fig. 6.3. On a computational grid with 𝑁 ×𝑁 pixels,
this process includes 𝑁 fast marching computations, which increases
the computational complexity to 𝑂(𝑁3 log𝑁).

5. The fast marching method enables computing the minimum crack
energy in a straightforward way. However, the involved crack path is
not directly accessible. Rather, different approaches are available to
obtain the crack in post processing, see for instance Noyel et al. (2011).
Using the fact that the shortest crack path is perpendicular to the level
sets of the distance field 𝑇 , we rely on a gradient descent method
to compute the crack path from any point 𝑥 to the origin 𝑥0. To do
so, we compute a spline interpolation on the numerically evaluated
gradient of the distance field 𝑇 .

One advantage of the fast marching method over the maximum flow
approach discussed in chapters 4 and 5 is that additional boundary
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conditions can easily be studied, as we can choose any point of Ω as our
starting or ending point. We consider three different cases, illustrated
in Fig. 6.4, which shows the level sets of the distance field and the
resulting crack path for a structure containing a single circular inclusion
of diameter 𝐿/2 positioned at the center of a square with edge length 𝐿.
The inclusion has a much higher crack resistance than the embedding
matrix, forcing the crack path to avoid the inclusion altogether. The
distance field and the crack path for Dirichlet boundary conditions is
shown in Fig. 6.4a. The distance field describes concentric circles starting
from the left hand side until the inclusion is reached and a refraction
occurs. To draw the crack path, we start on the right hand side at 𝑦 = 𝐿/2
and follow the path perpendicular to the contour lines of the distance
field. Notice that this path does not prescribe the shortest path from the
right hand side of the structure to the origin on the left hand side. Indeed,
Fig. 6.4b shows this shortest path originating in 𝑥0 to the right-hand side.
To draw this path we select 𝑥* as the point on the right hand side with
the minimum effective crack energy and draw the path perpendicular to
the contour lines of the distance field. Since the mean crack normal may
differ from the prescribed mean normal we do not focus on this case
in this paper. For periodic boundary conditions the crack path is not
unique for this example, as both above and below the inclusion straight
paths are possible, see Fig. 6.4c for one possible option.
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6.4 Numerical investigations

6.4.1 Setup5

The fast marching based algorithm for computing the effective crack en-
ergy was implemented in Python 3 based on the scikit-fmm module6,
which provides both first-order and second-order fast marching methods.
These differ in the convergence order of the underlying approximation
of first derivatives. The first-order fast marching method uses classical
forward and backward differences, whereas for the second-order method
a three point stencil approximation of forward and backward differences
is used Rickett and Fomel (1999). The crack paths were visualized by
first computing the gradient of the resulting distance field by finite
differences, interpolating this gradient field with bi-cubic splines and
finally using gradient descent starting from the end point of the crack
path.
For the computations based on the minimum cut/maximum flow
approach, we relied on an in-house FFT-based code (Schneider, 2020;
Ernesti and Schneider, 2021; 2022), see also chapters 4 and 5. The contin-
uous equations were discretized with the CCMF discretization (Couprie
et al., 2011) and solved by a damped version of the alternating direction
method of multipliers (ADMM) (Glowinski and Marrocco, 1975; Gabay
and Mercier, 1976) with adaptive choice for the penalty parameter, see
Ernesti and Schneider (2021). We chose a relative tolerance of 10−4.
All fast marching computations were run on an ARM-based SoC
Apple M1 with 8 GB of RAM using a single thread. The minimum
cut/maximum flow computations were performed on a desktop com-

5 The numerical investigations presented in this section are the result of the master thesis
by Lendvai (2022) which was supervised by me. We reevaluated the findings of this
thesis in a joint publication (Ernesti and Schneider, 2022) which forms the basis of this
chapter.

6 https://github.com/scikit-fmm/scikit-fmm, accessed in November 2021
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Figure 6.5: Microstructure of a rotated square with anticipated crack path, distance field
and crack path for Dirichlet boundary conditions. (Lendvai, 2022; Ernesti et al., 2023)

puter with 32 GB of RAM and six 3.7 GHz cores.

6.4.2 A single rotated square inclusion

To investigate the accuracy of the fast-marching approach, we start with a
structure containing a single square inclusion of edge length 𝐿/2, which
is rotated at 45 degrees and positioned at the center of our computational
domain of edge length 𝐿, see Fig. 6.5a. The crack resistance of the
inclusion is given by 𝛾fib = 10 𝛾mat. We consider an initial double notch
crack at 𝑦 = 0.5𝐿, i.e., Dirichlet boundary conditions. The analytical
solution, which may be extracted from the structural measurements, see
Fig. 6.5a, is 𝛾eff/𝛾mat =

√︀
3/2 ≈ 1.22247, see Fig. 6.5a. Fig. 6.5b shows

a contour plot of the distance field. Starting from the initial notch on
the left hand side, the distance field initially shows a circular expanding
front. Upon hitting the inclusion, the field is refracted and a new circular
front with the top/bottom edge of the inclusion as origin continues to
the other side. Since the distance field is symmetric with respect to the
𝑥-axis, we slightly perturb the starting point for our gradient descent
method in 𝑦-direction to break this symmetry and enforce a unique crack
path. The evaluated crack path is shown in Fig. 6.5c. We observe that it

178



6.4 Numerical investigations

First Order Second Order Analytic N−1

100 200 400 800 1600 3200 6400

1.23

1.24

1.25

1.26

N

γ
e
f
f
/γ

m
a
t

(a) Effective crack energy vs. number of pixels
per dimension

100 200 400 800 1600 3200 6400
0.01

0.1

1

10

N

R
el
at
iv
e
er
ro
r
in

%

(b) Relative error of the effective crack energy vs
number of pixels per dimension

Figure 6.6: Effective crack energy and relative error for the rotated square microstructure.
(Ernesti et al., 2023)

matches the geometrically anticipated path.
Next, we investigate the quality of the solution with respect to the grid
size. We compute the effective crack energy for different resolutions
ranging from 100 to 6400 pixels per side length of our computational
domain. Furthermore, we investigate the performance of both first-order
and second-order fast marching methods. The results are shown in
Fig. 6.6a, where the absolute values of the crack energy are depicted,
as well as in Fig. 6.6b, which shows the relative error compared to
the analytical solution. Both the first and the second-order methods
converge to the analytical solution with a linear rate of convergence.
However, the second-order approach leads to a higher accuracy than the
first-order approach, even on a coarser grid. To reach the accuracy of the
second-order fast marching using first-order requires almost four times
more pixels per edge length. Hence, we rely on the second-order fast
marching method for the remainder of this chapter.
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6.4.3 Comparison with minimum cut/maximum flow

In our next study, we investigate a periodic structure containing 32
unidirectional fibers and a filler fraction of 50%, which are represented
as circular inclusions, see Fig 6.7. The structure was generated using
a mechanical contraction algorithm (Williams and Philipse, 2003). The
inclusions are considered tough, i.e., they have a higher crack resistance
than the matrix and we set 𝛾fib = 10 𝛾mat. We investigate various
resolutions ranging from 128 to 4096 pixels per edge length.
In this section, we would like to investigate whether the results obtained
with the fast-marching method and with the FFT-based technique give
rise to similar results. Indeed, as discussed in section 6.3.1, it is necessary
to exclude certain pathological situations in order to gain confidence
into the results obtained with the fast marching method. We wish to
emphasize that due to the lack of uniqueness of the solutions to the
minimization problem (2.32), we may only expect the obtained effective
crack energies to be close. However, a similar obtained minimum cracks
are certainly a sufficient condition for the latter.
To enforce periodic boundary conditions in the fast-marching setting,
we iterate over all pixels on the right hand side of the microstructure,
evaluate the distance field at the same height on the other side and select
the minimum. The distance field is shown in Fig. 6.7c. From the near
center of the 𝑦-axis we observe a circular expanding front which is re-
fracted at every inclusion. For both, the fast marching and the minimum
cut/maximum flow formulation and the two considered resolutions, the
crack paths are shown in Fig. 6.8. Notice that the way these two methods
extract the crack path is very different. Whereas the crack path of the fast
marching method is computed via gradient descent along the distance
field, the crack path of the minimum cut/maximum flow approach is
given by the total minimum cut through the microstructure with mean
normal 𝑒𝑦 , which is a field that localizes around the crack attaining large
values whose magnitude has no physical meaning. This results from
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Figure 6.7: Microstructure containing 32 circular inclusions for different resolutions and
distance field for periodic boundary conditions. (Lendvai, 2022; Ernesti et al., 2023)

the fact that the minimum cut is given by the gradient of the periodic
field 𝜑 in equation(6.2) which has a jump discontinuity across the crack.
Evaluating this quantity numerically results in large but finite values
which tend to infinity as the pixel length goes to zero. Both methods
find extremely similar crack paths. On a coarser grid of 1282 pixels, the
fast marching crack in Fig. 6.8b exhibits some small isolation distance
to the inclusions, which is not the case for the minimum cut field. This
isolation distance vanishes for higher resolutions, see Fig. 6.8d. These
computational results resolve possible doubts about the expressivity of
the fast marching results for the considered microstructures.
In Fig. 6.9, the effective crack energy for the two approaches under
consideration is plotted against the resolution, together with the relative
error, where we used the solution on the 40962 grid as the ground truth
for each method. Both approaches show a linear rate of convergence with
respect to the resolution per edge length. Furthermore, both approaches
overestimate the effective crack energy on a coarser grid. However,
in order to reach the accuracy of the minimum cut, the fast marching
method requires between 1.5 and 2 times the resolution of the edge
length. Notice the difference in the complexity of the two methods. The
complexity of the minimum cut/maximum flow is mainly driven by the
FFT, which has a complexity of 𝑂(𝑁2 log𝑁), as well as the number of
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Figure 6.8: Periodic crack paths for minimum cut/maximum flow and fast marching
method of a microstructure containing 32 circular inclusions for different grid sizes.
(Lendvai, 2022; Ernesti et al., 2023)
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Figure 6.9: Effective crack energy and relative error comparing fast marching with
minimum cut/maximum flow. (Ernesti et al., 2023)

required iterations, which range between 2000 and 7000 in order to reach
the desired accuracy of 10−4. The fast marching approach has a com-
plexity of 𝑂(𝑁3 log𝑁) for periodic boundary conditions. As a result we
noticed for resolutions below 𝑁 = 2048 that the fast marching method
required less computational time than the minimum cut/maximum
flow method, each running on a single thread. For 𝑁 = 4096 the fast
marching method required twice the computational time of minimum
cut/maximum flow.

6.4.4 The influence of boundary conditions

In our next study we investigate the influence of the boundary condi-
tions on the effective crack energy for computational cells of increasing
size. We consider two types of boundary conditions, namely Dirichlet
boundary conditions and periodic boundary conditions. For Dirichlet
boundary conditions, we consider the crack propagating at 𝑦 = 0.5𝐿 to
the other side of the domain at the same height. Fully periodic boundary
conditions are attained by the minimum value when iterating over
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Figure 6.10: Crack paths for different boundary conditions. (Lendvai, 2022; Ernesti et al.,
2023)

all pixels in 𝑦-direction using Dirichlet boundary conditions starting
from each pixel. The material parameters are chosen as before, i.e., the
inclusions are considered tough with a material contrast of 10.
A comparison of the crack paths for different boundary conditions
is shown in Fig. 6.10, where we consider a microstructure with 50%
circular inclusions, i.e., unidirectional continuous fibers. The crack
path for the periodic boundary conditions interacts with less inclusions,
resulting in a path with more straight segments compared to the Dirichlet
boundary conditions.
To further investigate the boundary conditions, we consider microstruc-
tures with 30% and 50% filler fraction and a varying number of inclu-
sions ranging from 52 to 802. For each number of inclusions we consider
100 microstructure realizations which were generated using mechanical
contraction (Williams and Philipse, 2003). For the Dirichlet boundary
conditions we consider all realizations. To reduce the computational
costs for periodic boundary conditions we only take half of the real-
izations into account for a fiber count of 502 and higher. The results
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Figure 6.11: Comparison of the boundary conditions for 30% filler content. (Ernesti et al.,
2023)
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for volume fractions 30% and 50% are shown in Fig. 6.11 and Fig. 6.12,
respectively. Fig. 6.11a and Fig. 6.12a show a histogram of the crack
energy for 252 inclusions. On the 𝑦-axis, the number (in percent) of
microstructures is shown whose effective crack energy corresponds to
the 𝑥 coordinate. We notice that the range of the periodic boundary
condition is shifted to the lower values of the effective crack energy
ranging, into the lower part of the Dirichlet boundary conditions. For the
Dirichlet boundary conditions we notice some accumulation in the lower
range up to 𝛾eff = 1.025 𝛾mat for 30% filler fraction and 𝛾eff = 1.06 𝛾mat

for 50% filler fraction. Above these thresholds both histograms show
some dispersion. These dispersions result from the fact that for some
microstructures, the initial crack in the Dirichlet boundary conditions
starts in an inclusion. Hence, the crack has to exit the inclusion first
which causes an increase of the effective crack energy.
Fig. 6.11b and Fig. 6.12b show the scatter of the effective crack energy
computed for all 100 microstructure realizations in the lower fiber count
range. For both volume fractions, we observe that the Dirichlet boundary
conditions result in a much wider range of possible values for the effec-
tive quantity 𝛾eff than the periodic boundary conditions. Furthermore,
we observe a division of this wide range into wide scatter, about one
third of the data for 30% filler fraction and on half of the data for a filler
fraction of 50%. Furthermore, we see an accumulation of the remaining
data around lower effective values. Additionally, we notice that the
range of the outliers decreases for increasing fiber count since these
effects result from initial cracks inside of inclusions.
To gain additional insight into the influence of the boundary conditions,
we investigate the median as well as the upper and the lower percentile
ranges in Fig. 6.11c and Fig. 6.12c. We observe that the range of effective
crack energies for the two boundary conditions under consideration
overlap for both volume fractions. Hence, for some microstructures, the
Dirichlet boundary conditions result in the same effective crack energy as
the periodic boundary condition for a possibly different microstructure
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Figure 6.12: Comparison of the boundary conditions for 50% filler content. (Ernesti et al.,
2023)
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realization. Furthermore, we notice that for both boundary conditions
the total range and the mid percentile range become smaller for an
increasing fiber count. The median lines are approaching each other
as the fiber count increases, however, at a very low rate. In general,
the range of possible values for the effective crack energy for Dirichlet
boundary conditions is much wider compared to periodic boundary
conditions. Furthermore, the median for periodic boundary conditions
is roughly placed in the center of the data set. In contrast, for Dirichlet
boundary conditions the median and the mid percentile range are placed
in the lower quarter of the data sets, reflecting the aforementioned
outliers.
Last but not least, we investigate the relative standard deviation of
the two data sets over the fiber count, see Fig. 6.11d and Fig. 6.12d.
We observe a decrease of the standard deviation as the fiber count
increases. Furthermore, we notice that the standard deviation for
periodic boundary conditions is more than one magnitude lower than
for Dirichlet boundary conditions. Specifically, for a volume fraction
of 50%, we notice an increase of the standard deviation for the last
microstructure sample with 802 fillers. A possible explanation for this
effect may be found in Fig. 6.12c where we notice that the spread of the
standard deviation is caused by some computations with lower effective
crack energy compared to the median/mean value. These lower outliers
are caused by sections of straight crack paths which are still possible and
probable for very large microstructures.
To sum up, we strongly discourage using the Dirichlet boundary condi-
tions. Rather, periodic boundary conditions should be preferred.

6.5 Conclusion

In this chapter we studied the influence of the boundary conditions on
the effective crack energy of heterogeneous materials. Based on homoge-
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nization result (Braides et al., 1996; Friedrich et al., 2022; Cagnetti et al.,
2019) for the Francfort-Marigo model of brittle fracture (Francfort and
Marigo, 1998) in a quasi-static setting and without crack irreversibility,
we investigated a method for computing the effective crack energy
using the fast marching method (Sethian, 1996). We validated our
approach and compared it to the FFT-based methods using periodic
boundary conditions discussed in chapters 4 and 5. In addition to
periodic boundary conditions, the fast marching method provides
additional freedom in the boundary condition choice. With this freedom
at hand we compared periodic and Dirichlet boundary conditions for a
continuously reinforced composite with tough inclusions, containing
filler fractions of 30% and 50%. We noticed in a study with several
realizations of volume elements of increasing size that the periodic
boundary conditions result in a much lower spreading of the results
compared to Dirichlet boundary conditions. This was reflected in the
standard deviation, which was one magnitude lower for the periodic
boundary conditions compared to Dirichlet boundary conditions. For
an increasing size of the computational cell, we noticed that the medians
approached each other. However, periodic boundary conditions should
be preferred over Dirichlet boundary conditions due to the much
lower standard deviation. This lower standard deviation indicates that
the necessary computational cell for periodic boundary conditions is
considerably smaller than for Dirichlet boundary conditions. Thus, we
strongly recommend using periodic boundary conditions.
Applying periodic boundary conditions in the context of the fast
marching method relied on an iterative process over one axis of the
domain, i.e., increasing the complexity of the algorithm on an𝑁×𝑁 grid
from𝑂(𝑁2 log𝑁) for Dirichlet boundary conditions to 𝑂(𝑁3 log𝑁). For
microstructures of moderate size, i.e., up to 𝑁 = 2048, the fast marching
method is still competitive with an FFT-based solver for the minimum
cut/maximum flow problem. However, for larger structures the higher
complexity forms a strong argument against using fast marching for
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periodic boundary conditions.
Classical fast marching algorithms are only applicable to isotropic
crack resistances in the plane. To cover anisotropies in the crack
resistance (Ernesti and Schneider, 2022), anisotropic fast marching
methods Waheed (2020) may be explored.
Last but not least, let us mention that it would be desirable to have
mathematical results at hand which concern the influence of boundary
conditions on the effective crack energy. Indeed, for elastic solids,
results (Sab, 1992; Bourgeat and Piatnitski, 2004; Owhadi, 2003) are
available which provide a list of suitable boundary conditions whose
influence becomes negligible when going to the infinite-volume limit.
Previous work by Bouchitte and Suquet (1991; 1994) for limit-load
problem suggests that Dirichlet boundary conditions may be used,
whereas Neumann boundary conditions give rise to different results.
Further research may be necessary to clarify this issue.
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Chapter 7

Summary and conclusions

The two main goals of this thesis were to find suitable characterizers
for microstructures applicable to a wide class of microstructures, and to
establish computational tools for multi-scale brittle fracture.
Well established multi-scale homogenization methods for hardening
type materials (Matouš et al., 2017) face difficulties when applied to
softening type materials (Gitman et al., 2007). Therefore, a first attempt
to simulate phase-field fracture on heterogeneous microstructures, dis-
cussed in section 2.3, provides only limited applicability for a multi-
scale approach to fracture. This problem motivated us to pursue a
different path.
In this work we focussed on the Francfort-Marigo model of brittle
fracture (Francfort and Marigo, 1998). The Francfort-Marigo model
provides a variational approach to fracture by subsequently solving free-
discontinuity problems fulfilling an irreversibility constraint. Braides
et al. (1996) provided a periodic homogenization result for a similar
class of free-discontinuity problems, which is directly applicable to a
single increment of the Francfort-Marigo model under specific loading
conditions, namely anti-plane shear, while neglecting the irreversibility
constraint. Furthermore, extensions lifting these requirements individu-
ally were established. Giacomini and Ponsiglione (2006) included the
irreversibility constraint and Cagnetti et al. (2019) provided an extension
to random, ergodic media, both within the anti-plane shear setting.
Friedrich et al. (2022) lifted the restriction to anti-plane shear for periodic
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microstructures and the two-dimensional case.
Motivated by the homogenization result of Braides et al. (1996), which
gives specific formulas for the homogenized bulk and surface term in
free-discontinuity problems, the effective crack energy is defined as the
minimum cut through the microstructure of varying crack resistances.
To solve this problem, Schneider (2020) proposed an FFT-based solution
strategy for complex three dimensional microstructures based on the
minimum cut/maximum flow duality shown by Strang (1983).

Chapter 3 was devoted to the characterization of digital microstructures.
Microstructure characterization is concerned with finding simple quan-
titative expressions to classify microstructures and provides a crucial
step before finding effective material parameters using homogenization
approaches. By taking an approach based on Minkowski tensors which
originate in stochastic geometry, we established the quadratic normal
tensor as a suitable characterizer for microstructures which, due to local
symmetries on the microscale, indicates a macroscopic anisotropy in the
effective material behavior. Our main findings are listed below.

• We established the quadratic normal tensor as a robust characterizer of
microstructures since it is translation invariant and does not scale with
the size of the microstructure. Due to its tensorial form it naturally
accounts for anisotropy.

• We provided a robust computational method to compute the quadratic
normal tensor on large scale gray images of microstructures. We care-
fully validated our approach and investigated multi-grid convergence.

• We investigated complex microstructures of industrial interest. First,
we compared the quadratic normal tensor with the fiber orienta-
tion tensor of second order for a fiber reinforced composite. We
furthermore compared its accuracy with a well established method to
compute fiber orientation tensors, namely a structure tensor approach.
Finally, we investigated sand-binder structures used in casting appli-

192



7 Summary and conclusions

cations, demonstrating the wide range of possible shapes for which
the quadratic normal tensor may be computed.

In chapter 4 we established a novel discretization and solver strategy for
the cell formula for computing the effective crack energy. The approach
of Schneider (2020) used trigonometric collocation (Moulinec and Suquet,
1994; 1998) and finite elements with reduced integration (Willot, 2015a)
to discretize the cell formula. Furthermore, an FFT-based primal-dual
hybrid gradient method (Chambolle and Pock, 2016) was used to solve
the discretized equations. This initial work had two shortcomings. The
involved discretizations showed checkerboard artifacts and non-smooth
solution fields. Furthermore, the performance of the solver prevented
finding high accuracy solutions. In (Ernesti et al., 2021) we found that
higher accuracy and smoother solution fields may be established using
a discretization presented by Couprie et al. (2011) based on a combi-
natorially consistent grid, namely the CCMF discretization. However,
only computations using a small number of degrees of freedom were
possible with this approach as only direct solvers were available. Our
main findings in chapter 4 were the following.

• We provided an implementation of the CCMF discretization into a
framework for FFT-based micromechanics. The implementation relies
on a doubling of the degrees of freedom. The resulting solution
fields exhibit far less artifacts than the discretizations previously
investigated by Schneider (2020).

• To solve the discretized problem we relied on the alternating di-
rection method of multipliers (ADMM) (Glowinski and Marrocco,
1975; Gabay and Mercier, 1976). In particular, augmenting the strat-
egy with an adaptive parameter strategy (Schneider, 2021b) showed
promising results.

• In a study on a continuous-fiber reinforced composite we found that
for the CCMF discretization the residual correlates with the error
compared to an accurate solution (Ernesti et al., 2021; Domahidi
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et al., 2013) which was not the case for other discretizations (Willot,
2015a). The adaptive strategy showed a strong reduction of the
iterations required to reach desired accuracies. In particular, we
found the Barzilai-Borwein adaptive strategy (Xu et al., 2017) to be
most promising.

• In subsequent numerical experiments we investigated complex mi-
crostructures ranging from fiber reinforced composites to structures
with porous space.

We provided an extension of the approach presented in chapter 4 in
chapter 5 to account for locally anisotropic crack resistances. Our main
findings are listed below.

• We considered an anisotropic minimum cut problem which includes
the anisotropy via a tensorial crack resistance. For this case we derived
an anisotropic maximum flow cell formula to compute the effective
crack energy.

• In order to include this anisotropy into the framework presented in
chapter 4 we established a projection operator, more precisely the
projection onto an ellipsoid. To solve this projection problem we
relied on Newton’s method.

• This novel framework including anisotropy allows the study of ad-
ditional classes of materials. We investigated polycrystalline brittle
materials with a cleavage plane in each grain, as well as a carbon fiber
reinforced composite with a transversely isotropic crack resistance in
each fiber.

In chapter 6 we focussed particularly on the case of stochastic homog-
enization where Cagnetti et al. (2019) provided the theoretical back-
ground. From a mathematical point of view, the qualitative theory
of stochastic homogenization and (non-porous) linear elastic materials
is well established (Papanicolaou and Varadhan, 1981; Kozlov, 1978;
Sanchez-Palencia, 1980). Whereas the effective properties do not depend
on the boundary conditions, apparent properties, i.e., those evaluated
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on cells of finite size, are affected by the choice of boundary conditions.
In particular, a higher accuracy of the apparent properties is typically
achieved with periodic boundary conditions. In this chapter we inves-
tigated the influence of the boundary conditions on the apparent crack
energy evaluated using the cell formula of Braides et al. (1996). Several
remarks on our main findings are in order.

• Even before their established homogenization result, Braides and
Piat (1995) showed that using periodic boundary conditions on a
single periodic cell results in the same effective surface term for free-
discontinuity problems than considering the infinite volume limit
using Dirichlet boundary conditions.

• In order to compare the boundary conditions in the stochastic case
we established the fast marching method (Sethian, 1996; 1999) as
a tool to compute the effective crack energy on two dimensional
microstructures. In particular, using fast marching methods provided
additional freedom in the choice of the boundary conditions compared
to the approach presented in chapters 4 and 5.

• After a validation of the fast marching approach we investigated
the influence of the boundary conditions on various ensembles of
cells and increasing cell size. Our investigations showed that for
an increasing cell size the influence of the boundary condition de-
creases. However, Dirichlet boundary conditions resulted in a large
scatter for different microstructure realizations compared to periodic
boundary conditions and in particular a standard deviation of one
magnitude higher. As a result we strongly recommend using peri-
odic boundary conditions to compute the effective crack energy on
heterogeneous microstructures.

Let us put our multi-scale approach for brittle fracture into perspec-
tive. The foundation for our approach is laid by a mathematical ho-
mogenization result for free discontinuity problems. Based on this
result the effective crack energy is defined via a minimium cut problem.

195



7 Summary and conclusions

We overcame numerical issues, namely checkerboard artifacts in the
discretization and slow converging solvers, by introducing a novel
solver and discretization strategy which allowed for higher accuracy
solutions than previous work (Schneider, 2020). Anisotropic materials
may be studied by computing the orthogonal projection on an ellipsoid.
Investigations of the boundary conditions on 2D structures using fast
marching methods indicated that using periodic boundary conditions
results in a decrease of the necessary size of the computational domain
compared to Dirichlet boundary conditions.
Nevertheless, the presented approach does have its limitations. First
of all, the original homogenization result holds only for a restricted
setup of the Francfort-Marigo model, i.e., neglecting irreversiblity and
assuming anti-plane shear loading. Subsequent work extending the
original approach (Friedrich et al., 2022; Giacomini and Ponsiglione,
2006) only lifted these restictions individually but not all at once.
A second issue lies in the Francfort-Marigo model itself and its math-
ematical roots in free-discontinuity problems. The homogenization
result proves Γ-convergence of the functionals upon homogenization. By
definition, Γ-convergence implies the convergence of global minimizers
of the functionals but provides no statement on local minimizers. Fol-
lowing physical intuition, local minimizers may be more realistic but are
excluded from the mathematical treatment. Consider for instance a crack
propagating through a microstructure. As the crack hits an obstacle, it
may change its direction based on what is currently energetically more
favorable, but may not follow the globally minimal path.
A further consequence of the given homogenization result is the de-
coupling of the effective crack energy and the effective stiffness upon
homogenization. This may indeed contrast with physical intuition as
pointed out by Michel and Suquet (2022), who considered a two phase
laminate material with different elastic properties in the phases but
equal crack resistance 𝛾. Michel and Suquet (2022) pointed out that the
laminate material may in fact be toughened due to the presence of a
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phase with a lower stiffness. In this case the effective crack resistance
may exceed 𝛾 which is not possible with our approach.
An additional issue is caused by the presence of two small scales, i.e., the
characteristic length of the microstructure, and the loading increment on
the macro-scale, which is considered quasi-static. The ansatz proposed
here considers a fixed discretization of the load into small increments
and vanishing size of the microstructure in each step. Therefore, if a
macroscopic crack propagates by a certain increment as a result of an
increased load, the size of the microstructure upon homogenization is
smaller than the crack increment. Hence, the macroscopic crack passes
the microstructure cell within a single load increment. This point of
view contrasts with other approaches from the literature on multi-scale
fracture mechanics. For instance, Hossain et al. (2014) investigated quasi-
static crack propagation on the microscale using a phase-field fracture
model and identified the effective crack resistance as the maximum J-
integral in time. However, their approach is not based on a mathematical
homogenization result, and thus, a macroscopic model would have to
be postulated. More to the point, the limit of vanishing time step size
and the limit of vanishing microstructure size do not seem to commute.
Hence, further investigations on this may be required.
Furthermore, investigations whether the quasi-static assumption holds
may be of interest. In particular, quasi-static refers to a low velocity of an
applied load which allows to neglect dynamical effects. It also assumes
that the crack itself travels with a low velocity. If the crack passes the
microstructure within a single load step its velocity may in fact be too
large for this assumption. This would require a novel homogenization
result which accounts for dynamic effects.
Lastly, let us point out that the Francfort-Marigo model does not distin-
quish tension and compression since the bulk energy of the Francfort-
Marigo model is quadratic in the strain field. This contradicts physical
intuition, see Fig. 2.2 when a compressive load causes the crack phases
to close which may result in an interpenetration of the material with
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itself and motivated energy splittings for phase-field fracture mod-
els (Amor et al., 2009; Miehe et al., 2010b). The model by Amor et al.
(2009) converges to the Francfort-Marigo model with the additional
constraint to non-interpenetrating crack faces for vanishing phase-field
width (Chambolle et al., 2018). For this constraint to non-interpenetrating
crack faces no homogenization result is yet available.
To conclude, the presented approach does have its limitations. On the
one hand, the basis is laid by a proven homogenization result. But
on the other hand, several assumptions for the homogenization result
to hold may contradict with physical intuition. To overcome these
issues, introducing these physical constraints into novel homogenization
approaches may serve as a first step. From the application point of
view, further investigations on the non-commuting small scales may
be conducted. Michel and Suquet (2022) suggested for instance an
additional time stepping on the microscale. However, caution has
to be taken in order to stay on the trail provided by a well defined
homogenization result. This distinguishes our approach from others
who compute the effective crack resistance (Lebihain et al., 2021; Hossain
et al., 2014). Furthermore, due to the global minimization involved,
the established effective crack energy does form a lower bound to
the true effective crack resistance. It is therefore suitable to model
the worst case scenario, but may not incorporate certain toughening
effects (Michel and Suquet, 2022).
Future work to continue our ansatz may discuss the up-scaling aspect of
the presented homogenization approach. Using the presented tools one
may compute the effective crack energy and use well known methods to
compute the effective stiffness (Milton, 2002) of given microstructures.
Using these effective quantities, simulations on the component scale
may be conducted using phase-field methods. These face two main diffi-
culties in the presence of anisotropy. First, the use of energy splittings
to account for a tension-compression anisotropy faces difficulties if the
stiffness is anisotropic. Due to the anisotropy, the eigensystems of local
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strains and stresses do not align. In this case, an additive decomposition
of the energy is not possible, in general. Furthermore, the question arises
how to define tension or compression in the anisotropic setting. An
initial contribution was proposed by van Dijk et al. (2020) who consider
the elastic energy as an isotropic tensor function of a quantity Ψ via
𝜀 : C : 𝜀 = Ψ : Ψ. For an energy decomposition expressed in Ψ, the
well-established splittings of Miehe et al. (2010b) and Amor et al. (2009)
are applicable.
Secondly, the phase-field model has to account for an anisotropic crack
resistance. Several approaches have been proposed to incorporate tenso-
rial crack resistances, we refer to section 6.1 for an overview. Following
Focardi (2001) we may chose an approximation of the surface energy of
the form ∫︁

Ω

𝛾

2

[︂
𝑑2

𝑙
+ 𝑙𝜙2(∇𝑑)

]︂
𝑑𝑥 (7.1)

within a phase field model for some anisotropic norm 𝜙 : R𝑑 → R≥0 and
mean crack resistance 𝛾. A common approach (Clayton and Knap, 2014)
uses 𝜙2(∇𝑑) = ∇𝑑 ·𝑀∇𝑑 for some symmetric, positive definite matrix
𝑀 . One question of particular interest is how to relate the anisotropic
norm 𝜙 and the prefactor 𝛾 with the efective crack energy 𝛾eff.
Finally, a strategy for components with locally varying fibrous mi-
crostructure may be conducted. Here, the approach of fiber orientation
interpolation proposed by Köbler et al. (2018) may be promising.
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Appendix A

Minkowski tensors for specific
shapes

A.1 Minkowski tensor of a ball

Consider the ball𝐵𝑅(0), parameterized by spherical coordinates (𝑟, 𝜙, 𝜃),
with 𝑟 ∈ [0, 𝑅), 𝜙 ∈ [0, 2𝜋], and 𝜃 ∈ [0, 𝜋]. The transformation to
Cartesian coordinates reads

x(𝑟, 𝜙, 𝜃) =

⎛⎜⎝ 𝑟 sin(𝜃) cos(𝜙)
𝑟 sin(𝜃) sin(𝜙)

𝑟 cos(𝜃)

⎞⎟⎠ .

The outward-pointing unit normal on 𝜕𝐵𝑅(0) is given by n(𝑟, 𝜙, 𝜃) =
x(1, 𝜙, 𝜃) and is thus independent of 𝑟. With this parameterization at
hand, the Minkowski tensor 𝑊 0,2

1 computes as

𝑊 0,2
1 (𝐵𝑅(0)) = 𝑅2

3

∫︁ 2𝜋

0

∫︁ 𝜋

0
n(𝜙, 𝜃)⊗ n(𝜙, 𝜃) sin(𝜃)d𝜃d𝜙

= 4𝜋𝑅2

9 Id .
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A.2 Minkowski tensor of a cylinder

We consider a cylinder𝐾 inR3, oriented in 𝑧-direction. We parameterize
it by cylindrical coordinates (𝑟, 𝜙, 𝑧) with 𝑟 ∈ [0, 𝑅), 𝜙 ∈ [0, 2𝜋] and
𝑧 ∈ (0, 𝐿). The transformation to Cartesian coordinates reads

x(𝑟, 𝜙, 𝑧) =

⎛⎜⎝ 𝑟 cos(𝜙)
𝑟 sin(𝜙)

𝑧

⎞⎟⎠ .

We divide the boundary into three subsets, describing the side, top
and bottom of the cylinder 𝜕𝐾 = 𝜕𝐾𝑠 ∪ 𝜕𝐾𝑡 ∪ 𝜕𝐾𝑏. The side 𝜕𝐾𝑠 is
parameterized by 𝑟 = 𝑅, 𝜙 ∈ (0, 2𝜋], 𝑧 ∈ [0, 𝐿], the bottom 𝜕𝐾𝑏 by
𝑟 ∈ [0, 𝑅], 𝜙 ∈ (0, 2𝜋], 𝑧 = 0 and the top 𝜕𝐾𝑡 by 𝑟 ∈ [0, 𝑅], 𝜙 ∈ (0, 2𝜋],
𝑧 = 𝐿. The outward-pointing unit normals for the side, bottom and top
boundary, respectively, read

n𝑠 =

⎛⎜⎝ cos(𝜙)
sin(𝜙)

0

⎞⎟⎠ , n𝑡 =

⎛⎜⎝ 0
0
1

⎞⎟⎠ and n𝑏 =

⎛⎜⎝ 0
0
−1

⎞⎟⎠ .

With this parametrization at hand, we compute the Minkowski tensor
𝑊 0,2

1 of 𝐾 by

𝑊 0,2
1 (𝐾) = 1

3

∫︁ 2𝜋

0

∫︁ 𝐿

0

⎛⎜⎝ cos2(𝜙) cos(𝜙) sin(𝜙) 0
cos(𝜙) sin(𝜙) sin2(𝜙) 0

0 0 0

⎞⎟⎠𝑅d𝜙d𝑧

+ 2
3

∫︁ 𝑅

0

∫︁ 2𝜋

0
e𝑧 ⊗ e𝑧𝑟d𝑟d𝜙

= 𝜋

3𝐿𝑅(e𝑥 ⊗ e𝑥 + e𝑦 ⊗ e𝑦) + 2𝜋
3 𝑅2e𝑧 ⊗ e𝑧

= 2𝜋
3 𝑅2

[︂
e𝑧 ⊗ e𝑧 + 𝐿

2𝑅

(︂
Id−e𝑧 ⊗ e𝑧

)︂]︂
.
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A.2 Minkowski tensor of a cylinder

Dividing 𝑊 0,2
1 (𝐾) by its trace gives the quadratic normal tensor of 𝐾:

QNT(𝐾) = 𝑅

𝑅+ 𝐿
e𝑧 ⊗ e𝑧 + 𝐿

2(𝑅+ 𝐿)

(︂
Id−e𝑧 ⊗ e𝑧

)︂
.

If 𝑅 ≪ 𝐿 holds, then 𝑅/(𝑅 + 𝐿) is the smallest eigenvalue, which
indicates an extension in e𝑧-direction. The larger eigenvalue𝐿/(2(𝑅+𝐿))
has multiplicity 2, indicating some symmetry within the e𝑥 − e𝑦-plane.
If 𝑅≫ 𝐿 holds, the smaller eigenvalue has multiplicity 2, indicating a
disc-like shape within the e𝑥 − e𝑦-plane.
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Appendix B

Performance of additional penalty
factor choices for ADMM

In addition to the lower bound and the Barzilai-Borwein strategy for
choosing the penalty factor 𝜌 in combination with different damping
parameters 𝛿, see Section 4.4.3, we investigated two additional choices
which are popular in the literature. More precisely, we consider resid-
ual balancing (He et al., 2000) and the averaging strategy proposed
by Lorenz and Tran-Dinh (2019), which perform admirably for linear
elastic and inelastic homogenization problems (Schneider, 2021b). The
resulting residual and error plots are shown in Fig. B.1. For the CCMF-
discretization and the damping parameter 𝛿 = 0.5, the residual balancing
strategy led to an unstable behavior. The choice 𝛿 = 0.25 resolves this
instability. However, this approach does not lead to a highly accurate
solution. The averaging strategy by Lorenz and Tran-Dinh (2019) shows
more promising results, reaching a tolerance of 10−4 in fewer than 2000
iterations and 𝛿 = 0.25. However, this parameter choice turns out to
be inferior to the Barzilai-Borwein approach. The relative error (4.36),
shown in Fig. B.1b correlates with the residual in a similar way as for
the choices considered in Section 4.4.3. For the rotated staggered grid
discretization, the Lorenz-Tran-Dinh scaling with 𝛿 = 0.25 shows the
best performance. However, only low accuracy in terms of the relative
error (4.36) may be reached.

205



B Performance of additional penalty factor choices for ADMM

δ = δ =
Averaging 0.25 0.5

Residual balance 0.25 0.5

0 2,000 4,000 6,000 8,000 10,000
10−5

10−4

10−3

10−2

10−1

iteration

r
e
s
id
u
a
l

0 2,000 4,000 6,000 8,000 10,000
10−5

10−4

10−3

10−2

10−1

iteration

r
e
s
id
u
a
l

(a) Residual vs iteration count, CCMF (left) and rotated staggered grid (right)
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(b) Error vs iteration count, CCMF(left) and rotated staggered grid (right)

Figure B.1: Residual and error measure for CCMF and rotated staggered grid discretiza-
tions, comparing different solver parameters. (Ernesti and Schneider, 2021)
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Materials of industrial interest often show a complex microstructure. This micro-
structure directly influences their macroscopic material behavior. For simulations 
on the component scale, multi-scale methods may exploit this microstructural 
information. 
This work is devoted to a multi-scale approach for brittle materials. The math-
ematical foundation of this work is laid by a homogenization result for free 
discontinuity problems. This homogenization result includes specific cell formu-
las for the effective crack energy and the effective stiffness of heterogeneous 
materials which decouple upon homogenization. We investigate novel discreti-
zation methods and FFT-based solvers to efficiently compute the effective crack 
energy. Furthermore, we provide extensions to locally anisotropic materials and 
investigate the influence of the boundary conditions on apparent properties.
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