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General preface

Oxford Studies in Semantics and Pragmatics publishes original research on meaning in
natural language within contemporary semantics and pragmatics. Authors present their
work in the context of past and present lines of inquiry and in a manner accessible to both
to scholars whose core areas of expertise are in linguistic semantics and pragmatics, and to
researchers in related and allied fields such as syntax, lexicology, philosophy, and cognitive
science. The series emphasizes rigorous theoretical analysis grounded in detailed empirical
investigation of particular languages.

This is a companion series to Oxford Surveys in Semantics and Pragmatics. The Surveys
series provides critical overviews of the major approaches to core semantic and pragmatic
phenomena, a discussion of their relative value, and an assessment of the degree of con-
sensus that exists about any one of them. The Studies series equally seeks to put empirical
complexity and theoretical debate into comprehensible perspective, but with a narrower
focus and correspondingly greater depth. In both series, authors develop and defend the
approach and line of argument which they find most convincing and productive.

In this volume, Robin Cooper makes the case for a theory of natural language meaning
that is grounded in a comprehensive theory of perception and action, rather than a theory
of belief and description, as is standardly assumed. The book begins by laying out a the-
ory of types related to perception and action, and then extends this model to a theory of
grammar that prioritizes language’s role in dialogue. It then turns to a close examination of
several empirical phenomena, showing how the perception-and-action-based framework
provides new insights on questions about reference, quantification, modality, and seman-
tic indeterminacy that have resisted fully satisfactory analyses. This carefully crafted and
ambitious work will be of interest to scholars across the subdomains of cognitive science.

Chris Barker
New York University

Christopher Kennedy
University of Chicago
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How to read this book

This book is addressed to different audiences. The main ideas of the book can be followed
without delving into all the technical details and I would encourage even readers who have
technical interests to go for the intuitive ideas first and then fill in the technical details of
their realization. Technical developments that might be skipped on first reading are pre-
sented in boxes. The main technical development of the theory of types in these boxed
areas is collected again in the Appendix and some technically interested people may want
to start there and follow the leads back into the body of the book for examples and moti-
vation. In addition, at the end of each chapter there is a summary of what has been added
or changed to the treatment of linguistic phenomena since the previous chapter so that
the development can be followed chapter by chapter. These summaries use (but do not
include) the theory of types presented in the Appendix.

While the book can be read as the development of an argument from beginning to end it
is not necessary to read it thatway. Part I of the book gives a basic introduction to the kind of
theory of types that I propose andhow Iwant to use it to analyse action and communication
from a dialogic point of view. Part II takes up a number of central issues in traditional
formal semantics and readers may want to select among these chapters according to their
interests.Where the later chapters rely on things introduced in earlier chapters this is clearly
marked and will lead the reader back to the appropriate place in the book.

When referring to theoretical objects in the text we use single quotation marks, e.g. the
label ‘e’, if the representation of the object does not involvemathematical or logical symbols.
Otherwise double quotation marks are used in the text for items such as informal descrip-
tions of objects introduced in the theory, translations, and quotations. Double quotation
marks are also used in formulae and occasionally in the text to represent informally types of
strings of phonological events, e.g. “Dudamel is a conductor”. Linguistic examples referred
to in the text (as opposed to the numbered examples) are italicized, e.g. Dudamel is a con-
ductor. Names of types, such as Ind, for “individual”, are italicized and begin with a capital
letter.

Material related to this book is available on https://sites.google.com/view/robincooper/
publications/ttrbook.

https://sites.google.com/view/robincooper/publications/ttrbook
https://sites.google.com/view/robincooper/publications/ttrbook


Introduction

As we interact with the world and with each other we need to classify objects and situa-
tions; that is, we need to make judgements about what types of objects and situations we
are confronted with. This is an important part of what is involved in planning the future
actions we should carry out and how we should coordinate with other agents in carry-
ing out collaborative actions. This is true of action in general, including linguistic action.
This classification needs to be multimodal in that we need to classify what we experience
through different senses and be able to combine the information in order to come to a
judgement. The aim of this book is to characterize a notion of type which will cover both
linguistic and non-linguistic action and to lay the foundations for a theory of action based
on these types. We will argue that a theory of language based on action allows us to take a
perspective on linguistic content which is centred on interaction in dialogue and that this is
importantly different to the traditional view of natural languages as being essentially simi-
lar to formal languages such as logics developed by philosophers or mathematicians. At the
same time we will argue that the tremendous technical advances made by the formal lan-
guage view of semantics can be incorporated into the action-based view and that this can
lead to important improvements both of intuitive understanding and empirical coverage.
In this enterprise we use types rather than possible worlds as commonly employed in stud-
ies of the semantics of natural language. Types are more tractable than possible worlds and
give us more hope of understanding the implementation of semantics both on machines
and in biological brains.

Part I of the book (Chapters 1–3) deals with a theory of types related to perception and
action and shows a way of presenting a theory of grammar within a theory of action. Part II
(Chapters 4–8) then looks at a number of central issues in semantics from a dialogical
point of view and argues that there are advantages to looking at some old puzzles from this
perspective.

In Chapter 1 we introduce a notion of perception of an object or situation as making a
judgement that it is of a type. In symbols, we write a : T to indicate that a is of type T. We
shall talk interchangeably of something being of a type or being a witness for a type. Our
claim is that perceiving something involves classifying it as being of a type, even if that type
is very general (like PhysicalObject or Event)—we cannot perceive it simpliciter. Following
Kant we cannot perceive dasDing an sich (“the thing itself ”) but only in terms of a type that
we assign to it. We present basic notions of the theory of types which will be developed in
the book, TTR, a theory of types with records, which builds to a great extent on ideas taken
from the type theory of Per Martin-Löf although we have made significant changes both
in the general design and aims of the theory and a number of details which appear to us
to be motivated by cognitive and linguistic considerations. The overall approach presented
here owes much to the theory of situations and situation semantics presented by Barwise
and Perry in the 1980s. One of the themes of this book is a working out of parts of the old
situation theory using ideas taken from Martin-Löf ’s type theory.

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0001



2 INTRODUCTION

A central notion in TTR is that of record. The term “record” is used in computer science
for what is often called an attribute-value matrix (AVM) or feature structure in linguistics.
A record is a collection of fields consisting of a label (attribute or feature in the standard
linguistic way of talking) and an object of some kind (which itself can be a record). A
schematic example of a record is given in (1), where the ℓi are labels and the oi are objects
(including situations).

(1)
⎡
⎢
⎢
⎣

ℓ0 = [
ℓ1 = o0
ℓ2 = o1

]

ℓ3 = o2

⎤
⎥
⎥
⎦

Records are witnesses for record types which are also collections of fields. Rather than
objects, the fields in a record type contain types. In the schematic example in (2) the Ti are
types.

(2)
⎡
⎢
⎢
⎣

ℓ0 : [
ℓ1 : T0
ℓ2 : T1

]

ℓ3 : T2

⎤
⎥
⎥
⎦

The record (1) will be of the type (2) just in case the objects are of the types with the same
labelling, that is, o0 : T0, o1 : T1 and o2 : T2. Martin-Löf ’s orginal type theory did not
have records or record types though there have been many suggestions in the literature on
how to add them. We have borrowed freely from some of these ideas in TTR although the
way we have developed the notions differs essentially from previous proposals. We will use
records and record types to model situations and situation types in a sense related to that
of situation semantics as developed by Barwise and Perry. The records and record types
are also related to discourse representation structures as introduced by Kamp.

In Chapter 2 we introduce some basic notions of a theory of action based on these types
which will be developed further as the book progresses and apply the theory of types from
Chapter 1 to basic notions of information update in dialogue. Here we build on seminal
work on dialogue analysis by Jonathan Ginzburg and also related computational imple-
mentation by Staffan Larsson leading to the information state update approach to dialogue
systems. We have adapted these ideas in a way that allows us to pursue the questions of
grammar and semantics that we take up in the remainder of the book. A central notion
here is that of the dialogue gameboard which we construe as a type of information state
representing the current state of play in the dialogue from the perspective of a dialogue
participant. It includes the dialogue participant’s view of what has been committed to as
being true in the dialogue so far and what questions are currently under discussion.

InChapter 3we showhow syntax and semantics can be embedded in the theory of action
characterized in Chapters 1 and 2. Grammatical rules are regarded in terms of affordances
which license us to draw conclusions about the types to be associated with speech events
on the basis of speech events previously perceived. This is in contrast to a formal language
view where language is seen as a set of analysed strings of symbols associated with mean-
ings of some kind. The philosophical ground of the action-based approach goes back to
the relational theory of meaning introduced in Barwise and Perry’s situation semantics
which focusses on the relation between utterance situations and described situations. This
was perhaps the first attempt to generalize the Speech Act Theory developed by Austin and
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Searle to the concerns of compositional interpretation of syntactic structure. It also enables
us to develop a formal approach to dialogical theories of language such as those developed
by the psychologist Herb Clark and the linguist Per Linell. A recent theory to which the
ideas in this chapter are related is that of Dynamic Syntax (DS). While the particular for-
mulations in our approach look rather different from those in DS, the two theories have
common aims relating to the analysis of language as action and an emphasis on the incre-
mental nature of language which in this chapter we relate to the building of a chart type.
There is also a common interest in the treatment of language as a system in flux where
an act of speaking can create a new previously unavailable linguistic resource that can be
reused in future speech events.

Thinking of grammar in terms of a theory of action leads us into an approach to syn-
tax and semantics which emphasizes how we reason about speech events and their types.
This relates to several strands in linguistic analysis which emphasize the inferential nature
of syntactic and semantic processing including Pereira and Warren’s parsing as deduc-
tion, various kinds of categorial grammar including Morrill’s Type Logical Grammar and
glue semantics as used in Lexical Functional Grammar (LFG) by Dalrymple and others.
Of particular importance is Aarne Ranta’s work on Type-Theoretical Grammar and the
Grammatical Framework. The use of records and record types and their similarity to typed
feature structures makes the notion of grammar here closely related to that of Head Driven
Phrase Structure Grammar (HPSG).

The theory of types that we employ gives us two notions which will be important in
the development of semantics in Part II. The first is the notion of intensionality. Types in
TTR are intensional in that the identity of a type is not established in terms of the set of
witnesses of that type. That is, types are not extensional in theway that sets are in a standard
set theory. The axiom of extensionality in standard set theory requires that there cannot
be two sets which have the same members. In contrast, there can be different types which
have exactly the same set of witnesses. The second notion has to do with the facts that the
types themselves are treated as objects that can enter into relations and be used to construct
new types. We will call this first class citizenship of types, though it is related to notions of
intentionality (with a “t”) and reflection in programming languages, that is, the ability not
only to carry out procedures but to reflect on and reason about them. In our terms, an
important enabling factor for human language is that we not only can perceive objects and
situations in terms of types and act on these perceptions but that we can also reason about
and act on the types themselves, for example, in ascribing them to other agents as beliefs
or making a plan to achieve a goal by creating an event of a certain type. The types become
cognitive resources which we can exploit in our communicative activity. In Part II we will
look at a number of examples of this.

In Chapter 4 we examine reference by uses of proper names and occurrences of pro-
nouns which are not bound by quantifiers. In order to account for this we need a notion of
parametric content, which is to say that the content of an utterance depends on a context
belonging to a certain type. For example, an utterance of the proper name Sam requires a
context in which there is an individual named “Sam”. But where in her resources should a
dialogue participant look for such a context?One obvious place is the conversational game-
board that we introduced in Chapter 2. That is, the dialogue participant should determine
whether there has been reference to somebody of that name already in the current dia-
logue according to her gameboard. Another place is the visual scene, or more generally
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the ambient situation which the agent can perceive by different sense modalities. This we
also represent as a resource using a type—that is, the type for which the ambient situation
would be awitness if the agent’s perception is correct. Yet another place to look is the agent’s
long-term memory (which we will equate with the agent’s beliefs, although one may ulti-
mately wish to make a distinction). This resource is also modelled as a type representing
how the world would be if the agent’s memory or beliefs are correct. (The structured nature
of record types means that they can be used in effect as large repositories of information
indexed by the paths provided by the labels in the record type.) The fact that we are reason-
ing about the extent to which the context type associated with the utterance matches the
types modelling the agent’s relevant resources enables us to talk about cases where there
are names of non-existent objects (that is, the agent’s resource types do not exactly match
the world) or where a single object in the world corresponds to two objects in the resources
or vice versa (another way in which there can be a mismatch between reality and an agent’s
resources). The proposal to represent different aspects of mental states in terms of record
types is closely related to (and inspired by) similar proposals for representingmental states
using discourse representation structures.

In Chapter 5 we look at frames associated with common nouns. (The restriction to com-
mon nouns here has to do with the examples that will be discussed and is not a claim
that only common nouns are associated with the kinds of frames we propose.) The idea
of frames goes back to early work on frame semantics by Fillmore and also psychological
work on frames by Barsalou. We will construe frames as situations (modelled as records in
TTR). We will argue that frame types are an additional kind of resource which is exploited
in natural language semantics. A common noun like dog, in addition to being associated
with the property of being a dog (that is, a simple property characterized in terms of the
single predicate ‘dog’), can also be associated with a type of situation (a frame type) which
is common for dogs, for example, where the dog has a name, an age and various other
attributes we commonly attribute to dogs. We will argue that such a frame can play an
important role in interpreting utterances such as the dog is nine in the sense of “the dog is
nine years old”. Some nouns, such as temperature, seem to represent frame level predicates,
following an analysis suggested by Sebastian Löbner in order to account for the analysis
of utterances like the temperature is rising where it is not the case that some particular
temperature is rising (say, 30°) but that different situations (frames) with different temper-
atures are being compared. Nouns which normally predicate of individuals can be coerced
to predicate of frames. An example is the noun ship in an example originally discussed
by Manfred Krifka: four thousand ships passed through the lock which can either mean
that four thousand distinct ships passed through the lock or that there were four thousand
ship-passing-through-the-lock events some of which may have involved the same ship. We
argue that in order to interpret such examples you need to have as a resource an appropriate
frame type associated with the noun ship.

InChapter 6we explore phenomena in natural languagewhich are standardly referred to
asmodal and intensional. We argue that types as we conceive them are better placed to deal
with these phenomena than the possible worlds that are used in standard formal seman-
tics. In standard formal semantics propositions are regarded as sets of possible worlds.
For example, the proposition corresponding to a boy hugged a dog is the set of all logi-
cally possible worlds in which a boy hugged a dog is true. What we substitute for this is
the type of situations in which a boy hugged a dog. At an intuitive level these notions are
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quite similar. They both represent mathematical objects which allow for many different
possibilities as long as the fact that a boy hugged a dog is held constant across them. One
important difference is that sets of possible worlds are extensional sets whereas our types
are intensional. Thus it is possible for us to have two distinct types which have exactly the
same witnesses. One pair of such examples we discuss is Kim sold Syntactic Structures to
Sam and Sam bought Syntactic Structures from Kim. Intuitively we want these to represent
different propositions and we argue that they can yield different truth conditions when
embedded under a predicate like legal. (Under Swedish law, for example, it is illegal to buy
sex but legal to sell sex.) Another pair involves so-called mathematical propositions which
are true in all possible worlds but which nevertheless we would want to represent differ-
ent propositions: Two plus two equals four and Fermat’s last theorem is true (as proved by
Andrew Wiles).

The chapter begins with a discussion of the problems associated with possible worlds
analyses.We then continue with a discussion ofmodality and in particular of howAngelika
Kratzer’s notions of conversational background and ideals can be seen as resources based
on types and the kind of topoi that Ellen Breitholtz has introduced in the TTR literature.
In the third part of the chapter we discuss what are traditionally regarded as intensional
constructions involving attitude verbs like believe and intensional verbs like need andwant.
We treat ‘believe’ as a relation between individuals and types (corresponding to the content
of the embedded sentence). For an individual to believe a type it has to be the case that the
type matches (in a way we make precise) the type which models the beliefs (or long-term
memory) of the individual, that is the same resource that was needed in Chapter 4 to get
the dialogical analysis of proper names to work out.

In Chapter 7 we look at generalized quantifiers from the perspective of dialogic inter-
action. Traditionally generalized quantifiers are treated as sets of sets or sets of properties
and the work of Barwise and Cooper on generalized quantifiers built on this idea. Bar-
wise and Cooper also introduced the auxiliary notion of witness set for quantifiers under
the heading “Processing quantified statements”. In this chapter we turn things around and
make the characterization of witness sets the primary notion in defining quantifiers. This
makes it more straightforward to account for the anaphoric possibilities relating to quanti-
fied expressions in dialogue. We often use quantified statements in dialogue when we have
inadequate information to determine their truth. This is particularly true of determiners
like every and most when talking about large sets. We suggest that this phenomenon can
be analysed by estimating a probability based on the evidence presented in our cognitive
resources (long-term memory or beliefs as discussed in Chapters 4 and 6).

In Chapter 8 we give an account of how TTR types can be used to talk of content which
is underspecified. The idea is to exploit the notion of types which can have several wit-
nesses as “underspecifications” of those witnesses. Rather than associating contents with
utterances as we have done in the earlier chapters, we associate types of contents with utter-
ances. Thus a dialogue participant when observing a speech event associates it with a type
of content rather than a particular content. We show how earlier ideas about the treatment
of underspecification of quantifier scope and anaphora can be accommodated in this view.





PART I

FROM PERCEPTION AND ACTION
TO GRAMMAR

Part I presents a theory of types related to perception and action and shows a way of
presenting a theory of grammar within a theory of action.





1
Fromperception to intensionality

1.1 Introduction

When we perceive objects and events we classify them as belonging to some type. In this
chapter we will explain this idea and introduce a mathematical theory of some of the types
we use. Perception and the use of natural language for communication are closely linked.
Types, particularly types of events, are a good model for what are often called “proposi-
tions”, true if there is something of the type and false if there is nothing of the type. It seems
that the origin of linguistic meaning seems closely related to perception. If you are talking
to a two-year-old child, you tend to point at physical objects or observable events and utter
the corresponding word or phrase. You do not talk about abstract concepts like ‘university’,
‘democracy’, ‘thought’, or ‘feeling’. These come later.We will argue in this book that humans
have built on the basic perceptual apparatus in terms of types in a way that allows them to
reason about the types themselves and that it is this ability which allows us to talk about
intensional notions like ‘belief ’ and ‘knowledge’.

In this chapter we will talk first about the notion of perception as type assign-
ment (Section 1.2). We will then lay the basis for our mathematical modelling of types
(Section 1.3).We introduce a notion of situation type (Section 1.4) whichwill be important
for the idea that types are used to model propositions (discussed in Section 1.5). Included
in the kinds of types we use as situation types are types constructed from predicates and
their arguments (ptypes) and types which are collections of labelled fields (record types).

1.2 Perception as type assignment

Kim is out for a walk in the park and sees a tree. She knows that it is a tree immediately and
does not really have to think anything particularly linguistic, such as “Aha, that’s a tree”. As a
human being with normal visual perception, Kim is pretty good at recognizing something
as a tree when she sees it, provided that it is a fairly standard exemplar, and the conditions
are right: for example, there is enough light and she is not too far away or too close.We shall
say that Kim’s perception of a certain object, a, as a tree involves the ascription of a type
Tree to a. In terms of the kind of type theory discussed by Martin-Löf (1984); Nordström
et al. (1990), we might say that Kim has made the judgement that a is of type Tree (in
symbols, a : Tree).

Objects can be of several types. An object a can be of type Tree but also of type Oak (a
subtype of Tree, since all objects of type Oak are also of type Tree) and Physical Object (a
supertype of Tree, since all objects of type Tree are of type Physical Object). It might also
be of an intuitively more complicated type like Objects Perceived by Kim which is neither
a subtype nor a supertype of Tree since not all objects perceived by Kim are trees and not
all trees are perceived by Kim.

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0002



10 FROM PERCEPTION TO INTENSIONALITY

There is no perception without some kind of judgement with respect to types of the per-
ceived object. When we say that we do not know what an object is, this normally means
that we do not have a type for the object which is narrow enough for the purposes at hand.
I trip over something in the dark, exclaiming “What’s that?”, but my painful physical inter-
action with it through my big toe tells me at least that it is a physical object, sufficiently
hard and heavy to offer resistance to my toe. The act of perceiving an object is perceiving
it as something. You cannot perceive something without ascribing some type to it, even if
it is a very general type such as Thing or Entity.

What we call making a judgement or ascribing a type, is not necessarily a linguistic or
even conscious process. It is something that prelinguistic children and even non-humans
can do. It involves an agent being able to engage in a certain kind of behaviour when
confronted with a certain type of object. Types involved in perception correspond to the
kind of categories that are talked about in the large psychological literature on perceptual
categories. For an overview see Mareschal et al. (2010).

Recognizing something as a tree may be immediate and not involve conscious reason-
ing. Recognizing a tree as an aspen, an elm, or a tree with Dutch elm disease may involve
closer inspection and some conscious reasoning about the shape of the leaves or the state
of the bark. For humans the relating of objects to certain types can be the result of a long
chain of reasoning involving a great deal of conscious effort. But whether the perception
is immediate and automatic or the result of a conscious reasoning process, from a logical
point of view it still seems to involve the ascription of a type to an object.

The kind of types we are talking about here correspond to pretty much any useful way of
classifying things and they correspond to whatmight be called properties in other theories.
For example, in the classical approach to formal semantics developed byMontague (1974)
and explicated by Dowty et al. (1981) among many others, properties are regarded not as
types but as functions from possible worlds and times to (the characteristic functions of )
sets of entities; that is, the property treewould be a function frompossible worlds and times
to the set of all entities which are trees at that world and time.Montague has types based on
a version of Russell’s (1903) simple theory of types but theywere “abstract” types likeEntity
and Truth Value and types of functions based on these types rather than “contentful” types
likeTree. Type theory forMontaguewas a way of providing basicmathematical structure to
the semantic system in a way that would allow the generation of interpretations of infinitely
many natural language expressions in an orderly fashion that would not get into problems
with logical paradoxes. The development of the theory of types which we will undertake
here can be regarded as an enrichment of an “abstract” type theory like Montague’s with
“contentful” types. We want to do this in a way that allows the types to account for content
and relate to cognitive processing such as perception. We want our types to have psycho-
logical relevance and to correspond to what Gibson (1979) might call invariants, that is,
aspects that we can perceive to be the same when confronted with similar objects or the
same object from a different perspective. In this respect our types are similar to notions
developed in situation theory and situation semantics (Barwise and Perry, 1983; Barwise,
1989).

Gibson’s notion of attunement is adopted by Barwise and Perry. The idea is that cer-
tain organisms are attuned to certain invariants while others are not. Suppose that Kim
perceives a cherry tree with flowers and that a bee alights on one of the flowers. One
assumes that the bee’s experience of the tree is very different from Kim’s. It seems unlikely
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that the bee perceives the tree as a tree in the sense that Kim does and it is not at all obvious
that the bee perceives the tree in its totality as an object. Different species are attuned to dif-
ferent types and even within a species different individuals may vary in the types to which
they are attuned. Thismeans that our perception is limited by our cognitive apparatus—not
a very surprising fact, of course, but philosophically very important. If perception involves
the assignment of types to objects and we are only able to perceive in terms of those types
to which we are attuned, then, as Kant (1781) pointed out, we are not actually able to be
aware of das Ding an sich (“the thing itself ”); that is, we are not able to be aware of an object
independently of the categories (or types) which are available to us through our cognitive
apparatus.

1.3 Modelling type systems in terms of mathematical objects

In order to make our theory precise we are going to create mathematical models of the sys-
tems we propose. This represents one of the two main strategies that have been employed
in logic to create rigorous theories. The other approach is to create a formal language to
describe the objects in the theory and define rigorous rules of inference which explicate
the properties of the objects and the relations that hold between them. At a certain level
of abstraction the two approaches are doing the same thing—in order to characterize a
theory you need to say what objects are involved in the theory, which important proper-
ties they have, and what relations they enter into. However, the two approaches tend to
get associated with two different logical traditions: the model theoretic and proof theoretic
traditions.

The philosophical foundation of type theory (as presented, for example, by Martin-Löf,
1984) is normally seen as related to intuitionism and constructive mathematics. It is, at
bottom, a proof-theoretic discipline rather than a model-theoretic one (despite the fact
that model theories have been provided for some type theories). However, it seems that
many of the ideas in type theory that are important for the analysis of natural language
can be adopted into the classical set theoretic framework familiar to linguists from the
classical model-theoretic canon of formal semantics starting from Montague (1974). We
assume a standard underlying set theory such as ZF (Zermelo-Fraenkel) with urelements
(as formulated for example in Suppes, 1960). This is what we take to be the common or
garden working set theory which is familiar from the core literature on formal semantics
deriving from Montague’s original work.

A theory is not very interesting if it does not make predictions; that is, bymaking certain
assumptions you can infer some conclusions. This gives you one way to test your theory:
see what you can conclude from premises that you know or believe to be true and then
test whether the conclusion is actually true. If you can show that your theory allows you to
predict some conclusion and its negation, then your theory is inconsistent, which means
that it is not useful as a scientific theory. One way to discover whether a theory is consistent
or not is to formulate it very carefully and explicitly so that you can show mathematical
properties of the system and any inconsistencies will appear.

From the informal discussion of type theory that we have seen so far, it is clear that it
should involve two kinds of entity: the types and the objects which are of those types. (Here
we use the word “entity” not in the sense that Montague did, that is, basic individuals,
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but as an informal notion which includes both objects and types.) This means that we
should characterize a type theory with two domains: one domain for the objects of the
types and another domain for the types to which these objects belong. Thus we see types
as theoretical entities in their own right, not, for example, as collections of the objects
which are objects of the types. Diagrammatically we can represent this as in Figure 1.1
where object a is of type T1.

T1

a

T2

Figure 1.1 System of basic types

A system of basic types consists of a set of types which are basic in the sense that they
are not analysed as complex entities composed of other entities in the theory. Each of these
types is associated with a set of objects, that is, the objects which are of the type, the wit-
nesses for the type. Thus if T is a type and A(T) is the set of witnesses for T, then a is of
type T (in symbols, a : T) just in case a ∈ A(T). We require that any object a which is a
witness for a basic type is not itself one of the types in the system. (This requirement will
be relaxed later in different kinds of type systems.) A type may be empty in the sense that
it is associated with the empty set; that is, there is nothing of that type.

Notice that we are starting with the types and associating sets of objects with them. This
means that while there can be types for which there are no witnesses, there cannot be
objects which do not belong to a type. This relates back to our claim in Section 1.2 that
we cannot perceive an object without assigning a type to it.

Notice also that the sets of objects associated with types may have members in common.
Thus it is possible for objects to belong tomore than one type. This is important if we want
to have basic types Elm, Tree, and Physical Object, and say that a single object a belongs to
all three types as discussed in Section 1.2.

An extremely important property of this kind of type system is that there is nothing
which prevents two types from being associated with exactly the same set of objects. In
standard set theory the notion of set is extensional; that is sets are defined by their mem-
bership. You cannot have two distinct sets with exactly the same members. The choice of
defining types as entities in their own right rather than as the sets of their witnesses means
that they can be intensional; that is, you can have more than one type with the same set of
witnesses. This can be important for the analysis of natural language words like groundhog
andwoodchuckwhich (as I have learned from the literature on natural language semantics)
are the same animal. In this case one may wish to say that you have two different words
which correspond to the same type, rather than two types with the same extension (that
is, set of witnesses). Such an analysis is less appealing in the case of unicorn and centaur,
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both mythical animals corresponding to types which have an empty extension. If types
were extensional, there would only be one empty type (just as there is only one empty set
in set theory). In the kind of possible world semantics espoused by Montague, the dis-
tinction between unicorn and centaur was made by considering their extension not only
in the actual world (where both are empty) but also in all possible worlds, since there will
be some worlds in which the extensions are not the same. However, this kind of possible
worlds analysis of intensionality fails when you have types whose extensions cannot pos-
sibly be different. Consider round square and positive number equal to 2− 5. The possible
worlds analysis cannot distinguish between these since their extensions are both empty no
matter which possible world you look at.

Finally, notice that there may be different systems of basic types, possibly with different
types and different objects. One way of exploiting this would be to associate different sys-
tems with different organisms as discussed in Section 1.2. (Later in this book we will see
different uses of this for the analysis of types which model the cognitive system of a single
agent.) Thus, properly we should say that an object a is of type T with respect to a system
of basic types TYPEB, in symbols, a :TYPEB

T. However, we will continue to write a : T in
our informal discussion when there is no danger of confusion.

The definition of a system of basic types is made precise in (1), which is repeated in
Appendix A2.

(1) A system of basic types is a pair:

TYPEB = ⟨Type, A⟩

where:

1. Type is a non-empty set
2. A is a function whose domain is Type
3. for any T ∈ Type, A(T) is a set disjoint from Type
4. for any T ∈ Type, a :TYPEB

T iff a ∈ A(T)

Some readers may prefer a slightly less formal characterization which uses the kind of
format normally employed in proof theory. This may provide a more easily readable
overview of the definitions while suppressing some of the details which are not nec-
essary for intuitive understanding. We will use Γ, normally used for contexts in proof
theory, that is sequences of judgements to refer to type systems like those characterized
in (1). Thus in (2) Γ corresponds to TYPEB. We will write Γ ⊢ T ∈ Type “T ∈ Type
follows from Γ” to represent that Type is the set of types in Γ as specified in (1) and that
the type T is a member of this set. We will similarly write Γ ⊢ a ∈ A(T) to indicate that
object a is in the set assigned to T by the function A given by Γ. We can then write a rule
as in (2).

(2) For Γ a system of basic types:
Γ ⊢ T ∈ Type Γ ⊢ a ∈ A(T)

Γ ⊢ a : T
continued
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We take this to be an inductive definition of the set of consequences. That is, we are
characterizing the smallest set of judgements Γ ⊢ a : T which obey the premises. In
this way the inference rule (2) has the force of a biconditional corresponding to clause 4
in (1).

The fact that we are relating the witnesses of types to a set assigned to the type occa-
sionally leads to the misunderstanding that types in TTR are just sets or names of sets
(Chatzikyriakidis and Luo, 2020, p. 17). Hopefully the discussion above and the devel-
opments undertaken in the rest of the book will make clear that they are mathematical
objects in their own right and distinct from the collections of their witnesses. The use of
sets here gives us a convenient way to relate to the kind of model theory which is used in
Montagovian formal semantics. However, elsewhere in the TTR literature basic types
are often associated with classifiers (Cooper, 2019; Larsson, 2020, for example) and this
possibility is an important aspect of having types as objects and not identifying them
with collections of their witnesses.

What counts as an object may vary from agent to agent (particularly if agents are of dif-
ferent species). Different agents have what Barwise (1989) would call different schemes of
individuation. It even seems likely that a single agent might switch quite easily between dif-
ferent schemes of individuation. For example, Cooper (2011) discusses what might count
as individual books: for example, physical volumes, a particular text, a text and its transla-
tions into other languages. There appears to be a complex relationship between the types
that an agent is attuned to and the parts of the world which the agent will perceive as an
object. We model this in part by allowing different type systems to have different objects.
In addition we will make extensive use in our systems of a basic type Ind or “individual”
which corresponds to Montague’s notion of “entity”. The type Ind might be thought of as
modelling a large part of an agent’s scheme of individuation in Barwise’s sense. However,
this clearly still leaves a great deal to be explained and we do this in the hope that explor-
ing the nature of the type systems involved will ultimately give us more insight into how
individuation is achieved.

1.4 Situation types

Kim continues her walk in the park. She sees a boy playing with a dog and notices that
the boy gives the dog a hug. In perceiving this event she is aware that two individuals are
involved and that there is a relation holding between them, namely hugging. She also per-
ceives that the boy is hugging the dog and not the other way around. She sees that a certain
action (hugging) is being performed by an agent (the boy) on a patient (the dog). This per-
ception seems more complex than the classification of an individual object as a tree in the
sense that it involves two individual participants and a relation between them as well as the
roles those two individuals play in the relation.While it is undoubtably more complex than
the simple classification of an object as a tree, we want to say that it is still the assignment
of a type to an object. The object is now an event and she classifies the event as a hugging
event with the boy as agent and the dog as patient. We shall have complex types which can
be assigned to such events.
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Complex types are constructed out of other entities in the theory. As we have just seen,
cognitive agents, in addition to being able to assign types to individual objects like trees,
also perceive the world in terms of states and events where objects have properties and
stand in relations to each other—what Davidson (1967) called events and Barwise and
Perry (1983) called situations. For the purposes of this book we will tend to use the words
situation and event interchangeably, although properly an event should be considered a
situation where something happens (as opposed to a state where something persists in
holding true).

1.4.1 Types constructed from predicates (ptypes)

We introduce types which are constructed from predicates (like ‘hug’) and objects which
are arguments to this predicate. If a and b are objects, we will represent such a constructed
type as hug(a,b) andwewill call it a ptype to indicate that it is a typewhosemain constructor
is a predicate. What would an object belonging to such a type be? According to the type-
theoretic approach introduced by Martin-Löf it should be an object which constitutes a
proof that a is hugging b. For Martin-Löf, who was considering mathematical predicates,
such proof objects might be numbers with certain properties, ordered pairs, and so on.
Ranta (1994) points out that for non-mathematical predicates the objects could be events
as conceived by Davidson (1967, 1980). Thus hug(a,b) can be considered to be an event
type or a situation type. In some versions of situation theory (Barwise, 1989; Seligman and
Moss, 1997), objects (called infons) constructed from a relation and its arguments were
considered to be one kind of situation type. The term “infon”wasmeant to suggest that they
were minimal units of information. One view would be that ptypes are playing a similar
role to the role that infons play in situation theory, allowing us to construct situation types
in terms of one or more ptypes.

What kind of entity are predicates? One important fact about predicates is that they
come along with an arity. The arity of a predicate tells you how many and what kind of
arguments the predicate takes and what order they come in. For us, the arity of a predicate
will be a sequence of types. The predicate ‘hug’, as discussed just above, we can think of as
a two-place predicate both of whose arguments must be of type Ind, that is, an individual.
Thus the arity of ‘hug’ will be ⟨Ind, Ind⟩. The idea is that if you combine a predicate with
arguments of the appropriate types in the appropriate order indicated by the arity then you
will have a type. Thus if a : Ind and b : Ind then hug(a,b) will be a type, intuitively the type
of situation where a hugs b.

We will introduce a function Arity which is defined on predicates and which assigns
an arity to any predicate. This function is introduced in a predicate signature which in
addition tells you what predicates there are and what we can use to characterize their
arguments (a set of types in the way we will use this). We define a predicate signature
by the definition in (3) (repeated in Appendix A3.1).

continued
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(3) A predicate signature is a triple

⟨Pred, ArgIndices, Arity⟩

where:

1. Pred is a set (of predicates)
2. ArgIndices is a set (of indices for predicate arguments, normally types)
3. Arity is a function with domain Pred and range included in the set of finite

sequences of members of ArgIndices.

A simple example of a predicate signature would be given by (4).

(4) a. Pred = {boy, dog, hug}
b. ArgIndices = {Ind}
c. Arity is defined by:

Arity(boy) = ⟨Ind⟩
Arity(dog) = ⟨Ind⟩
Arity(hug) = ⟨Ind, Ind⟩

It may be desirable to allow some predicates to combine withmore than one assortment
of argument types. Thus, for example, one might wish to say that the predicate ‘believe’
can combine with two individuals just like ‘hug’ (as in Kim believes Sam) or with an
individual and a “proposition” (as in Kim believes that Sam is telling the truth). Simi-
larly the predicate ‘want’ might be both a two-place predicate for individuals (as in Kim
wants the tree) or a two-place predicate between individuals and “properties” (as inKim
wants to own the tree). We shall have more to say about “propositions” and “properties”
later. For now, we just note that we want to allow for the possibilities that predicates can
be polymorphic in the sense that there may be more than one sequence of types which
characterize the arguments they are allowed to combine with. The sequences need not
even be of the same length (consider Kim walked and Kim walked the dog). We thus
allow for the possibility that these pairs of natural language examples can be treated
using the same polymorphic predicate. Another possibility, of course, is to say that the
English verbs can correspond to different (though related) predicates in the example
pairs and not allow this kind of predicate polymorphism in the type theory. We do not
take a stand on this issue but merely note that both possibilities are available. If predi-
cates are to be considered polymorphic then the arity of a predicate can be considered
to be a set of sequences of types. In (5) we give a definition of a polymorphic predicate
signature (repeated in Appendix A3.1).

(5) A polymorphic predicate signature is a triple

⟨Pred, ArgIndices, Arity⟩
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where:

1. Pred is a set (of predicates)
2. ArgIndices is a set (of indices for predicate arguments, normally types)
3. Arity is a function with domain Pred and range included in the powerset

of the set of finite sequences of members of ArgIndices.

A simple example of a polymorphic predicate signature is given in (6).

(6) a. Pred = {boy, dog, hug, walk}
b. ArgIndices = {Ind}
c. Arity is defined by:

Arity(boy) = {⟨Ind⟩}
Arity(dog) = {⟨Ind⟩}
Arity(hug) = {⟨Ind, Ind⟩}
Arity(walk) = {⟨Ind⟩, ⟨Ind, Ind⟩}

An alternative to our characterization of predicates is to consider themas functions from
sequences of objects matching their arity to types. As such they would be a dependent
type, that is, an entity which returns a type when provided with an appropriate object
or sequence of objects. We can also think of them as type constructors as will be made
clear in our discussion of systems of complex types just below.

A system of complex types adds to a system of basic types a collection of types con-
structed from a set of predicates with their arities; that is, it adds all the types which
you can construct from the predicates by combining themwith objects of the types cor-
responding to their arities according to the types in the rest of the system. The system
also assigns a set of objects to all the types thus constructed from predicates. Many of
these types will be assigned the empty set. Intuitively, if we have a type hug(c,d) and
there are no situations in which c hugs d then there will be nothing in the extension of
hug(c,d); that is, it will be assigned the empty set in the system of complex types. Notice
that the intensionality of our type system becomes very important here. There may be
many individuals x and y for which hug(x,y) is empty but still we would want to say that
the types resulting from the combination of ‘hug’ with the various different individuals
corresponds to different types of situations. The formal characterization of a system of
complex types is given in (7) (repeated in Appendix A3.2).

(7) A system of complex types is a quadruple:

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

where:

1. ⟨BType, A⟩ is a system of basic types
2. BType⊆Type
3. for any T ∈ Type, if a :⟨BType,A⟩ T then a :TYPEC

T
4. ⟨Pred, ArgIndices, Arity⟩ is a (polymorphic) predicate signature

continued
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5. P(a1, …an) ∈ PType iff P ∈ Pred, T1 ∈ Type, …,Tn ∈ Type,
Arity(P)=⟨T1, …,Tn⟩ (or, if we are allowing polymorphic predicates,
⟨T1, …,Tn⟩∈Arity(P)) and a1 :TYPEC

T1, …, an :TYPEC
Tn

6. PType⊆Type
7. for any T ∈ PType, F(T) is a set disjoint from Type
8. for any T ∈ PType, a :TYPEC

T iff a ∈ F(T)

(7) perhaps looks a little forbidding for something that says that if you have a predicate
P whose arity is ⟨T1, …,Tn⟩ and you have objects a1 : T1, …, an : Tn then P(a1, …, an) is
a ptype and any ptype is also a type. In this definition we have not made explicit exactly
what set theoretic object we are representing with P(a1, …, an). We will take this up
below (in Section 1.4.2) since it is part of a general strategy we employ for representing
entities in our type theory as sets. (7) also gives us a function F which maps ptypes to a
set of witnesses and it also makes clear that a system of complex types adds to a system
of basic types. The set of types of the new system consists of the basic types and the
ptypes. Perhaps the informal proof theoretic notation in (8) is a little less forbidding.

(8) For Γ a system of complex types:

a. Γ ⊢ T ∈ BType Γ ⊢ a ∈ A(T)
Γ ⊢ a : T

b.
Γ ⊢ T ∈ BType
Γ ⊢ T ∈ Type

c.
Γ ⊢ P ∈ Pred Γ ⊢ ⟨T1, …,Tn⟩ = Arity(P) Γ ⊢ a1 : T1, …, Γ ⊢ an : Tn

Γ ⊢ P(a1, …, an) ∈ PType
or alternatively if we are considering our predicates to be polymorphic:
Γ ⊢ P ∈ Pred Γ ⊢ ⟨T1, …,Tn⟩ ∈ Arity(P) Γ ⊢ a1 : T1, …, Γ ⊢ an : Tn

Γ ⊢ P(a1, …, an) ∈ PType

d.
Γ ⊢ T ∈ PType
Γ ⊢ T ∈ Type

e. Γ ⊢ T ∈ PType Γ ⊢ s ∈ F(T)
Γ ⊢ s : T

(8a) is the rule that we had for basic type systems except that we have identified the
relevant set of types as BType (the basic types). (8b) tells us that BType is a subset of
Type. (8c) tells us how to form ptypes from a predicate and an appropriate sequence of
objects. (8d) tells us that ptypes are types. (8e) tells us that the witnesses of ptypes are
determined by the function F.

There are thus two important functions in a system of complex types: one, which
we call A, which comes from the system of basic types embedded in the system and
assigns extensions to basic types and the other, which we call F, which assigns exten-
sions to types constructed from predicates and arguments corresponding to the arity of
the predicates. We have chosen the letters A and F because they are used very often in
the characterization of models of first order logic. A model for first order logic is often
characterized as a pair ⟨A, F⟩ where A is the domain and F a function which assigns
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denotations to the basic expressions (constants and predicates) of the logic. In a slight
variation on classical first order logic A may be a sorted domain; that is, the domain is
not a single set but a set divided into various subsets, corresponding to sorts. For us,
A characterizes assignments to basic types and thus provides something like a sorted
domain in first order model theory. In first order logic F gives us what we need to know
to determine the truth of expressions like ‘hug(a,b)’ in first order logic. ThusFwill assign
to the predicate ‘hug’ a set of ordered pairs telling us who hugs whom. Our F also gives
us the information we need in order to tell who stands in a predicate relation. However,
it does this, not by assigning a set of ordered n-tuples to each predicate, but by assigning
sets of witnesses (or “proofs”) to each type constructed from a predicate with appro-
priate arguments. The set of ordered pairs assigned to ‘hug’ by the first order logic F
corresponds to the set of pairs of arguments ⟨x, y⟩ for which the F in a complex system
of types assigns a non-empty set to ‘hug(x,y)’, (that is, there is some situation which wit-
nesses ‘hug(x,y)’). For this reason we call the pair ⟨A, F⟩ a model within the type system,
even though it is not technically a model in the sense of model theory for logic. The
correspondence becomes important later in the book, when we talk about modal type
systems.

What are the entities which are witnesses for ptypes? The intuition is that, for example,
(9) means that e is an event or situation¹ where the individual a is running.

(9) e : run(a)

There are two competing intuitions about what e could be. One is that it is a “part of the
world”, a non-set (urelement). That is, from the perspective of set theory and the theory
of types it is an unstructured atom. The other intuition we have is that it is a structured
entity which contains a as a component and in which a running activity is going on which
involves smaller events such as picking feet up off the ground, spending a certain time in
each step cycle with neither foot touching the ground and so on. We want to allow for both
of these intuitions. That is, a witness for a ptype can be a non-set corresponding to our
notion of an event of a certain type. Or it can be a record (see Section 1.4.3.1). That is, e
is not only a witness for the type ‘run(a)’ but also for a record type which characterizes in
more detail the structure of the event. We will argue that both intuitions are important and
that observers of the world shift between views where certain ptypes are regarded as types
of non-sets and views where those ptypes are types of records.

The introduction of predicates and ptypes raises the question of how one-place predi-
cates relate to basic types. For example, what is the relationship between a type Dog whose
witnesses are dogs and a predicate ‘dog’ whose arity is ⟨Ind⟩. One way to relate the two is
given in (10).

(10) a : Dog iff ∃e e : dog(a)

(10) says that something is of type Dog just in case there is a situation which shows it
to fall under the predicate ‘dog’. In this book we will relate common nouns to predicates
rather than basic types, in part because common nouns can sometimes have more than

¹ Throughout the book we will use the variables e or smore or less interchangeably to represent intuitive events
or situations.
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one argument and in part because we want to limit the number of basic types we use. If we
need a type we can derive it from the predicate using something like (10).

This claim of a relationship between predicates and types as suggested in (10) flies in
the face of arguments presented by Chatzikyriakidis and Luo (2020, Section 3.2.1) in
favour of treating common nouns as types rather than predicates. Their arguments do
not seem to carry over to the kind of theory of types we are proposing in TTR, however.
For example, they argue that common nouns are more closely associated with crite-
ria of identity than verbs or adjectives and therefore should be treated as types rather
than predicates. However, for us, criteria of identity are centrally important both for
nouns (for example, identifying a dog) and for verbs (for example, indentifying a hug-
ging event). It is perhaps rather that different identity criteria are used for individuals
and events, although there are of course nouns corresponding to predicates of events
such as the noun event. Also important is that we regard predicates as being a kind of
type constructor. Thus there is not a clear opposition between using a type and using a
predicate as there appears to be in their system.

Chatzikyriakidis and Luo also refer to Retoré (2014) who also introduces corre-
sponding predicates and types, though in a rather different setting to what we are
proposing in this book. However, Chatzikyriakidis and Luo point out that such a pro-
posal requires an equivalence between predicates and types very like the one in (10).
(Retoré has a similar correspondence though expressed in a different way.) Chatzikyr-
iakidis and Luo claim, however, that such an equivalence has the consequence that the
decidability of type checking has to be abandoned, presumably because they think that
it is undecidable whether something falls under a predicate or not. There are two points
here. One is that even if some predications are undecidable, this does not mean that all
predications are undecidable and we could have types correspond to decidable predica-
tions.More importantly, it is not at all obvious that common nouns are always decidable
in natural language. For example, it is not clear when a child becomes an adult. There
may be laws that make the natural language precise and require that you become an
adult on your eighteenth birthday immediately after midnight at the beginning of your
birthday. But this is a special legal meaning of child and adult which is not especially
precise (or decidable) in many every day language uses where a seventeen year old may
sometimes count as an adult and a nineteen year old as a child. TTR is an attempt to
create a theory which can account for this kind of variation and thus we do not want to
require decidability here from the outset.

1.4.2 Representing complex entities as labelled sets

When we characterized ptypes in Section 1.4.1, we did not make explicit exactly which
set-theoretic entity we were representing by the notation for a ptype ‘P(a1, …, an)’. In
general, complex entities in our theory will be a particular kind of set.

We introduce a notion labelled sets tomodel our complex entities.Wewill assume that
our set theory comes equipped with a set of urelements (entities which are not sets but
which can bemembers of sets).Wewill assume that among the urelements is a countably
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infinite set which is designated as the set of labels. A labelled set (see also Appendix A1)
is a set of ordered pairs whose firstmember is a label andwhose second element is either
an urelement which is not a label or a set (possibly a labelled set), such that no more
than one ordered pair can contain any particular label as its first member. This means
that a labelled set is the traditional set theoretic construction of an extensional function
from a set of labels onto some set. Suppose that we have a set (11a) and that ℓ0, ℓ1, ℓ2, ℓ3
are labels. Then examples of labelled sets which are labellings of (11a) would be (11b
and c).

(11) a. {a, b, c, d}
b. {⟨ℓ0, a⟩, ⟨ℓ1, b⟩, ⟨ℓ2, c⟩, ⟨ℓ3, d⟩}
c. {⟨ℓ0, {⟨ℓ0, a⟩, ⟨ℓ1, b⟩}⟩, ⟨ℓ2, c⟩, ⟨ℓ3, d⟩}

We will also sometimes have need of adding flavours to our labelled sets when we need
to model distinct objects which correspond to the same set of ordered pairs. (This will
happen when we need to distinguish records which contain types from record types.)
Wewill assume that there is a finite or countably infinite set of flavours among the urele-
ments and that this set is disjoint from the set of labels. A flavoured labelled set contains
a single flavour, 𝔣, in addition to the ordered pairs. Thus the labelled sets in (12) are
examples of labelled sets with flavour 𝔣.

(12) a. {𝔣, ⟨ℓ0, a⟩, ⟨ℓ1, b⟩, ⟨ℓ2, c⟩, ⟨ℓ3, d⟩}
b. {𝔣, ⟨ℓ0, {⟨ℓ0, a⟩, ⟨ℓ1, b⟩}⟩, ⟨ℓ2, c⟩, ⟨ℓ3, d⟩}

We have introduced flavours here for the sake of completeness, though they will not
play a role in the rest of this section.

We will refer to the first members of the pairs in a labelled set as labels used in the
labelled set and we will refer to the second members of the ordered pairs as the labelled
elements of the labelled set. If X is a labelled set, we will use labels(X) to represent the
set of labels of X, that is, the left projection of Xwhichmeans the set of objects which are
first members of the set of ordered pairs which are members of X. Note that this means
that if X is the labelled set (11c) or (12b), then labels(X) is {ℓ0, ℓ2, ℓ3}, that is, the set
of those labels which occur at the topmost level of X, not including the set of labels that
occur within a labelled set contained in X, which in this case would in addition include
the label ℓ1. If X is a labelled set and ℓ ∈ labels(X) we will use X.ℓ to represent the
entity labelled by ℓ. Thus if X is (12b), X.ℓ0 is a. We can also define the set of paths in
labelled sets given by the definition in (13).

(13) If X is a labelled set, then

1. if ℓ ∈ labels(X), then ℓ ∈ paths(X)
2. if ℓ ∈ labels(X), X.ℓ is a labelled set and π ∈ paths(X.ℓ), then

ℓ.π ∈ paths(X)

By this definition the set of paths in (11c) is (14).

(14) {ℓ0, ℓ2, ℓ3, ℓ0.ℓ0, ℓ0.ℓ1}
continued
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Note also that by these definitions, if X is (11c), then X.ℓ0.ℓ0 is a; that is, we can use the
dot notation to take us down to a value on any path in the labelled set.

The set of total paths in a labelled set, X, tpaths(X) is the set of paths, π, such that
π ∈ paths(X) and X.π is not a labelled set.

There are various ways in which labelled sets could be represented graphically. One
way to represent the examples in (11b and c) would be as in (15).

(15) a. ℓ0

{a,

ℓ1

b,

ℓ2

c,

ℓ3

d}
b. ℓ0

ℓ0

{a,

ℓ1

b,

ℓ2

c,

ℓ3

d}

Labelled sets where we identify particular distinguished labels will always give us
enough structure to model the structured entities that we need and define operations
on them as required by our theory of types.

The entity represented by P(a1, …an) is the labelled set in (16) where ‘pred’, ‘argi’ are
reserved labels (that is, not used except as required here).

(16) {⟨pred,P⟩, ⟨arg1, a1⟩, …, ⟨argn, an⟩}

1.4.3 Record types

Kim sees a situation where a (the boy) hugs b (the dog) and perceives it to be of type
‘hug(a,b)’. However, there are intuitively other types which she could assign to this situa-
tion other than the type of situationwhere a hugs bwhich is represented here. For example,
a more general type, which would be useful in characterizing all situations where hugging
is going on between any individuals, is that of “situation where one individual hugs another
individual”. Another type of situation she might use is that of “situation where a boy hugs a
dog”. This is a more specific type than “situation where one individual hugs another indi-
vidual” but still does not tie us down to the specific individuals a and b as the type ‘hug(a,b)’
does.

There are at least two different ways in type theory to approach thesemore general types.
One is to use Σ-types such as (17).

(17) a. Σx:Ind.Σy:Ind.hug(x,y)
b. Σx:Boy.Σy:Dog.hug(x,y)

We will use the notation T((x1, …, xn)) to represent that the type T depends on x1, …, xn. For
example, the types ‘hug(x,y)’ represented within the expressions in (17) depend on x and y.
In general Σx:T1.T2((x)) will have as witnesses any ordered pair the first member of which
is a witness for T1 and the second member of which is a witness for T2((x)). Thus this type
will be non-empty (“true”) just in case there is something a of type T1 such that there is
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something of type T2((a)). Thismeans that Σ-types correspond to existential quantification.
A witness for (17a) would be ⟨a, ⟨b, s⟩⟩ where a:Ind, b:Ind and s:hug(a,b). If there is such
a witness then some individual hugs another individual and conversely if some individual
hugs another individual there will be a witness for this type. Σ-types are exploited for the
semantics of natural language by Ranta (1994); Chatzikyriakidis and Luo (2020) among
others.

Another approach to these more general types is to use record types such as (18a,b) or, as
we will prefer given our decision in Section 1.4.1 to use ptypes constructed from predicates
rather than types corresponding to common nouns, (18c).

(18) a.
⎡
⎢
⎢
⎣

x : Ind
y : Ind
e : hug(x,y)

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

x : Boy
y : Dog
e : hug(x,y)

⎤
⎥
⎥
⎦

c.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
c1 : boy(x)
y : Ind
c2 : dog(y)
e : hug(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In examples like (18c) we can think of labels ‘ci’ as intuitively corresponding to “constraint”
or “condition”.

In TTR, record types are labelled sets. A first approximation to the labelled sets rep-
resented in (18) is given in (19). (In Section 1.4.3.1 we will introduce a complication in
connection with the dependency represented by ‘hug(x,y)’, ‘boy(x)’ and ‘dog(y)’.)

(19) a. {⟨x, Ind⟩, ⟨y, Ind⟩, ⟨e, hug(x, y)⟩}
b. {⟨x, Boy⟩, ⟨y, Dog⟩, ⟨e, hug(x, y)⟩}
c. {⟨x, Ind⟩, ⟨c1, boy(x)⟩, ⟨y, Ind⟩, ⟨c2, dog(y)⟩, ⟨e, hug(x, y)⟩}

‘x’, ‘y’, ‘c1’, ‘c2’, and ‘e’ are particular labels. In record types, the ordered pairs whose first
member is a label are called fields. Thus record types are sets of fields.We will give a precise
characterization of which labelled sets are record types later.

The witnesses of record types are records. These are also labelled sets, consisting of
ordered pairs which we will call fields of the record. However, in this case the fields consist
of a label and an object belonging to a type, rather than a type, as in the fields of record
types. A record, r, is a witness for a record type, T, just in case r contains fields with the
same labels as those in T and the objects in the fields in r are of the type with the corre-
sponding label in T. The record may contain additional fields with labels not mentioned
in the record type with the restriction there can only be one field within the record with a
particular label. Thus both (20a) and (20b) are records of type (18a).
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(20) a.
⎡
⎢
⎢
⎣

x = a
y = b
e = s

⎤
⎥
⎥
⎦

where a:Ind, b:Ind and s:hug(a,b)

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x = c
y = d
e = sʹ
z = aʹ
w = aʹʹ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where c:Ind, d:Ind, sʹ:hug(c,d) and aʹ and aʹʹ are objects
of some type

Note that in our notation for records we have ‘=’ between the two elements of the field
whereas in record types we have ‘:’. Note also that when we have types constructed from
predicates in our record types and the arguments are represented as labels as in (18a) this
means that the type is dependent on what objects you choose for those labels in the object
of the record type. Thus in (20a) the type of the object labelled ‘e’ is hug(a,b) whereas in
(20b) the type is hug(c,d). Actually, the notation we are using here for the dependent types
is a convenient simplification of what is needed as we will explain later.

Record types and Σ-types are very similar in an important respect. The type (18a) will be
witnessed (“true”) just in case there are individuals x and y such that x hugs y. Thus both
record types and Σ-types can be used to model existential quantification. In fact record
types and Σ-types are so similar that you would probably not want to have both kinds of
types in a single system and we will not use Σ-types. We have chosen to use record types
for a number of reasons:

fields are unordered The Σ-types in (21) are distinct, although there is an obvious equiv-
alence which holds between them.

(21) a. Σx:Ind.Σy:Ind.hug(x,y)
b. Σy:Ind.Σx:Ind.hug(x,y)

They are not only distinct types but they also have distinct sets of witnesses. The object
⟨a, ⟨b, s⟩⟩ will be of type (21a) just in case ⟨b, ⟨a, s⟩⟩ is of type (21b). In contrast, since we
are regarding record types (and records) as sets of fields, (22a,b) are variant notations for
the same type.

(22) a.
⎡
⎢
⎢
⎣

x : Ind
y : Ind
c : hug(x,y)

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

y : Ind
x : Ind
c : hug(x,y)

⎤
⎥
⎥
⎦

labels Record types (and theirwitnesses) include labelled fieldswhich can be used to access
components of what is being modelled. Components of a record are defined as objects
which occur in a record. (A precise definitionwill be given later.) This is useful, for example,
when we want to analyse anaphoric phenomena in language where pronouns and other
words refer back to parts of previous meanings in the discourse. They can also be exploited
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in other cases where we want to refer to components of utterances or their meanings as in
clarification questions.

Discourse representation The labels in record types can play the role of discourse ref-
erents in discourse representation structures (DRSs, Kamp and Reyle, 1993) and
record types of the kind we are proposing can be used to model DRSs.

Dialogue game boards Record types have been exploited to model dialogue game
boards or information states (see in particular Ginzburg, 2012).

Feature structures Record types can be used to model the kind of feature structures
that linguists like to use (as, for example, in linguistic theories like Head Driven
Phrase Structure Grammar, HPSG, Sag et al., 2003). Here the labels in record types
correspond to attributes in feature structures.

Frames Record types can also be used to model something very like the kinds of frames
discussed in frame semantics (Fillmore, 1982, 1985; Ruppenhofer et al., 2006) or
in the psychological literature (Barsalou, 1992b, 1999). The labels in record types
correspond to roles (frame elements).

For discussion of some of the various uses to which record types can be put see Cooper
(2005). We will take up all of the uses named here as we progress.

Another way of approaching more general types such as “situation where a boy hugs a
dog” is to use contexts as used in type theory. If we wish to express an inference from “x
hugs y” to “x touches y” we might consider doing it as in (23)

(23) x : Ind, y : Ind, e : hug(x,y) ⊢ e : touch(x,y)

(23) means that in a context where x and y are individuals and e is a witness for the type
‘hug(x,y)’ then e is also a witness for the type ‘touch(x,y)’. Contexts (as represented to the
left of the turnstile (‘⊢’) in (23)) are standardly thought of as sequences of judgements.
They are not standardly thought of as being objects which are witnesses for types in the
type theory. However, as we develop our semantic theory in this book, we will want to
think of contexts as objects belonging to a certain type and to give semantic analyses in
terms of types of context. Records and record types will enable us to do this. Thus, for
example, (18a) models the type of context represented to the left of the turnstile in (23). As
in the comparison with Σ-types there is a difference in that the judgements in a standard
type theory context are ordered. This is important on the standard type theoretical view
because some judgements may depend on objects named in previous judgements in the
context. In contrast the fields in record types in TTR are unordered and dependence is
not characterized in terms of order of presentation. This means that technically (24) is a
distinct context from that in (23) even though there is an obvious equivalence between
them.
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(24) y : Ind, x : Ind, e : hug(x,y)

They correspond to the same record type, however. Thus we use record types to replace
both the Σ-types and contexts that one often finds in standard versions of type theory.

1.4.3.1 Dependent fields in record types
Consider again the record type (18c) repeated as (25).

(25)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
c1 : boy(x)
y : Ind
c2 : dog(y)
e : hug(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Strictly speaking the notations ‘boy(x)’, ‘dog(y)’, and ‘hug(x,y)’ do not represent ptypes as
we have defined them since ‘x’ and ‘y’ are labels, not objects of type Ind as required by the
arities of the predicates. What we mean by this notation is that the labels are to be replaced
by whatever is in the field with that label in the record that we are checking against the
type. Thus, for example, if we are checking whether the record in (26a) is of the type (25)
we need to check that the judgements listed in (26b) are correct.

(26) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x = a
c1 = s1
y = b
c2 = s2
e = s3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

b. a : Ind
s1 : boy(a)
b : Ind
s2 : dog(b)
s3 : hug(a,b)

The notation ‘boy(x)’ in (25) thus actually encodes two pieces of information: firstly that
we have what is known as a dependent type, a function which takes a certain type of object
and returns a type, and secondly that we give an address where we should look for the
object in the record that we are checking. We will represent functions using λ-expressions
from a variant of the λ-calculus. The relevant functions for (25) are given in (27).

(27) a. λv:Ind . boy(v)
b. λv:Ind . dog(v)
c. λv1:Ind . λv2:Ind . hug(v1,v2)

We shall normally use v, v1, v2, …for the variables in our functions. In general if ξ is a
variable and φ((ξ)) represents an object containing the value of ξ, then we use the notation
λξ:T . φ((ξ)) to represent the total function fwhose domain is the set of witnesses of the type
T and for any a : T, f(a) = φ((a)). We shall say something more precise about functions in
Section 1.4.3.2.
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The second piece of information we need to provide is where to find the object(s) which
will serve as the arguments to these functions. This will be a sequence of paths in the record,
providing a path for each argument to the function. A path is a string of labels separated
by ‘.’ and corresponds to the general notion of paths for labelled sets with the important
exception that we exclude paths containing the distinguished labels used in non-record
structures, for example the labels ‘pred’ and ‘arg0’ used in ptypes. We will make this notion
precise in Section 1. In the case of our current example we only need paths consisting of
one label.

We will represent the dependent field as containing an ordered pair consisting of the
dependent type and the sequence of paths. Thus (25) is more explicitly represented as (28).

(28)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
c1 : ⟨λv:Ind . boy(v), ⟨x⟩⟩
y : Ind
c2 : ⟨λv:Ind . dog(v), ⟨y⟩⟩
e : ⟨λv1:Ind . λv2:Ind . hug(v1,v2), ⟨x,y⟩⟩

⎤
⎥
⎥
⎥
⎥
⎥
⎦

This will be our “official” notation although we will continue to use the notation as in (25)
for the sake of readabilitywhen it is not important tomake this explicit.While this approach
to dependent fields in record types enables us to treat dependency in terms of mathemat-
ical objects, it does introduce a complication in the notion of paths in record types which
we will need to deal with later.

The nature of dependent fields in record types as we have explained it here means that
before we can give an explicit account of record types, wemust first introduce type systems
which contain functions and ensure that those functions can return types in order to give
us the dependent types that we need. This we will do in Sections 1.4.3.2 and 1.4.3.3.

1.4.3.2 Functions and function types
In Cooper (2012b) we left it open exactly what kind of object a function is and assumed
there was some theory of functions which would allow us to characterize them in terms of
their domain and range. One option commonly used in a classical set theoretic setting is
to let functions be modelled as their graphs, that is, a set of ordered pairs. The graph of a
function f can be characterized as the set in (29).

(29) {⟨x, y⟩ ∣ f(x) = y}

Ideally, we want a notion of function that is more like a program or a procedure. That is,
functions can be intensional in the sense that two distinct functions can correspond to the
same graph. In Appendix A4 we indicate a way of modelling functions as labelled sets.

In (30) we characterize a system of complex types with function types (repeated in
Appendix A4).

(30) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩
continued
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has function types if

1. for any T1,T2 ∈ Type, (T1→T2) ∈ Type
2. for any T1,T2 ∈ Type, f :TYPEC

(T1→T2) iff f is a function whose domain
is {a ∣ a :TYPEC

T1} and whose range is included in {a ∣ a :TYPEC
T2}

We specify a function type (T1→T2) to be the labelled set (31) where ‘dmn’ (“domain”)
and ‘rng’ (“range”) are reserved labels.

(31) {⟨dmn,T1⟩, ⟨rng,T2⟩}

The informal proof theory version of (30) is given in (32).

(32) For Γ, a system of complex types with function types:

a.
Γ ⊢ T1 ∈ Type Γ ⊢ T2 ∈ Type

Γ ⊢ (T1→T2) ∈ Type

b.

[Γ ⊢ a : T1]...
Γ ⊢ f(a) : T2

[Γ ⊢ f(a) : T2]...
Γ ⊢ a : T1

Γ ⊢ f : (T1→T2)

c.
Γ ⊢ f : (T1→T2) Γ ⊢ a : T1

Γ ⊢ f(a) : T2

d.
Γ ⊢ f : (T1→T2) Γ ⊢ f(a) : T2

Γ ⊢ a : T1

(32a) tells us that for any two types, T1 and T2, we can form the function type (T1→T2).
(32b) tells us that if we can prove that f(a) : T2 from the assumption that a : T1 and
we can also prove from the assumption f(a) : T2 that a : T1, then f : (T1→T2). The
first premise requires that the function is defined on all witnesses for T1 and the second
premise requires that anything on which the function is defined is a witness for T1.
Jointly they require that the domain of the function (the set of objects on which it is
defined) is the set of witnesses for T1. (32c) tells us that if we have a function of type
(T1→T2) and an object of type T1 then the result of applying the function to that object
will be of type T2. Conversely, (32d) tells us that if we have a function of type (T1→T2)
and the result of applying it to some object is of type T2, then that object must be of
type T1.

If a function, f, is of type (T1→T2)we say that thedomain type of f,domtype( f ), isT1.We
introduce a notation for functions based on the λ-calculus. The notation is characterized
in (33) where v is a variable in our notation.

(33) λv :T . φ is that function f such that for any a : T, f(a) (the result of applying f to a)
is represented by φ[v ← a] (the result of replacing any free occurrence of v in φ
with a).
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In our informal proof theoretic representation this can be expressed by (34) (where
again [v ← a] represents the replacement of any free occurrence of the variable v by a).

(34)
a.

[Γ ⊢ a : T1]...
Γ ⊢ φ[v ← a] : T2

Γ ⊢ λv :T1 . φ : (T1→T2)

b.
Γ ⊢ λv :T1 . φ : (T1→T2) Γ ⊢ a : T1

Γ ⊢ λv :T1 . φ (a) = φ[v ← a] : T2

In this section we have introduced functions from objects of one type to objects of
another type. However, it does not yet give us the functions we need in the dependent
fields of our record types since these are functions which take objects of a type and return
a type; that is, they are dependent types.

1.4.3.3 The type Type
Up until now we have said that the witnesses of any type do not overlap with the set of
types. We are now going to relax this requirement in a restricted way by introducing a
special type called Type whose witnesses are any type, that is, members of the set Type.
We will call type systems that have types of types in this way intensional since this will be
a key feature of our treatment of natural language intensional constructions in Chapter 6.²
Since Type is itself a type it will also be a member of the set Type and this will mean that it
has itself as a witness, that is, Type : Type. For everyday working purposes we will assume
that this is the system we have and ignore the fact that this is bringing us into danger of
introducing Russell’s paradox. In the remainder of this subsection we will show how the
paradox can be avoided by using a technique called stratification. We will in future assume
that our type systems are stratified in this way without mentioning it explicitly for the most
part. If you are not interested in the details of this you can skip the rest of this subsection
and come back to it if you feel the need.

Allowing types to belong to themselves puts us in danger of creating a situation in which
Russell’s paradox arises. If some members of Type belong to themselves then we should
be able to talk of the set of types which do not belong to themselves, {T ∈ Type ∣ T ̸ : T}.
Suppose that somemodel assigns this set toT ʹ. Then the question arises whetherT ʹ belongs
to itself and we can show that if T ʹ : T ʹ then T ʹ ̸ : T ʹ and if T ʹ ̸ : T ʹ then T ʹ : T ʹ. In order
to avoid this problem we will stratify (or ramify) our type system by introducing types of
different orders. (For a discussion of stratification see Turner, 2005.) A type system of order
0 will be a system of complex types in the way we have defined it. The set of types, Type1
of a type system of order 1 based on this system will contain in addition to everything in
the original type system a type, Type1, to which all the types of order 0, members of the set
Type0, belong. In general for all the natural numbers n, Typen+1 will be a type to which all
the types in Typen belong.

² In Martin-Löf type theory, types of types are called universes. This is, however, potentially a confusing ter-
minology for a theory relating to the kind of model theory which has been used in linguistics where “universe”
has a different meaning.
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We characterize an intensional system of complex types in (35) (repeated in
Appendix A10).

(35) An intensional system of complex types is a family of quadruples indexed by the
natural numbers:

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

where (using TYPEICn
to refer to the quadruple indexed by n):

1. for each n,⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩ is a
system of complex types

2. for each n, Typen ⊆ Typen+1 and PTypen ⊆ PTypen+1

3. for each n, if T ∈ PTypen then Fn(T) ⊆ Fn+1(T)
4. for each n > 0, Typen ∈ Typen

5. for each n > 0, T :TYPEICn
Typen iff T ∈ Typen−1

Here, but not in Cooper (2012b), we make explicit that Type is a distinguished urele-
ment and that Typen represents the labelled set {⟨ord, n⟩, ⟨typ,Type⟩} where ‘ord’ and
‘typ’ are reserved labels (for “order” and “type”).

In our informal proof theoretic notation we can characterize intensional systems of
complex types as in (36).

(36) For {Γn}n∈Nat an intensional system of complex types

a.
Γn ⊢ T ∈ Typen

Γn+1 ⊢ T ∈ Typen+1

b.
Γn ⊢ T ∈ PTypen

Γn+1 ⊢ T ∈ PTypen+1

c. Γn ⊢ a : T
Γn+1 ⊢ a : T

d. n > 0
Γn ⊢ Typen ∈ Typen

e.
Γn ⊢ T ∈ Typen

Γn+1 ⊢ T : Typen+1

f.
Γn ⊢ T : Typen

n > 0
Γn−1 ⊢ T ∈ Typen−1

For the most part in the remainder of this book we will suppress the n-superscripts.
This means that we will characterize a function such as (37a) as being of the type (37b)
whereas in fact it is a witness for all the types characterized in (37c).

(37) a. λv:Ind . dog(v)
b. (Ind→Type)
c. {(Ind→Typen) ∣ n > 0}
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1.4.3.4 Definitions of records and record types
A record according to a set of labels ℒ and a type system 𝕋 is a finite labelled set
whose labels are included inℒ and whose labelled elements are witnesses of some type
according to 𝕋. Records are characterized by the definition in (38).

(38) r is a record according to a set of labels ℒ, a set of distinguished labels,𝒟 (such
that𝒟 is a proper subset of ℒ), and a type system, 𝕋 (Appendix A11.1) iff r is a
finite labelled set (Appendix A1) whose labels are included in ℒ but not in𝒟
and for any labelled element, v, in r, there is some type T such that v :𝕋 T.

In giving our informal proof theoretic characterization of the set of records, we will use
(39) to mean that r is a record according to type system Γ a set of labelsℒ and a proper
subset,𝒟, of ℒ considered to be the distinguished labels.

(39) Γ,ℒ,𝒟 ⊢ r record

We give the characterization inductively in (40).

(40) For Γ a type system, ℒ a set of labels and𝒟 a set of distinguished labels in ℒ

a. Γ,ℒ,𝒟 ⊢ ∅ record

b.
Γ ⊢ a : T Γ,ℒ,𝒟 ⊢ r record ℓ ∈ ℒ − (𝒟 ∪ labels(r))

Γ,ℒ,𝒟 ⊢ r ∪ {⟨ℓ, a⟩} record
(40a) says that the empty set is a record (the “empty record”). (40b) says that given a
record, you can add a pair of a label and an object of some type as long as the label is
not one of the labels reserved for other objects (like ptypes) and is not a label already
occurring in the record. Thus this is a way of requiring that ℓ is “fresh” in r.

If r is a record and ⟨ℓ, v⟩ is in r, we call ⟨ℓ, v⟩ a field of r, ℓ a label in r, and v a value in
r (the value of ℓ in r). We use r.ℓ to denote v.

Records, as labelled sets, will have paths as defined for labelled sets (see Appendix A1).
However, we will want in addition a more restricted notion of path for records
which excludes those paths which include the distinguished labels used in non-record
structures which may be values in a record as characterized in (41), repeated in
Appendix A11.2.

(41) If r is a record, then

1. if ℓ ∈ labels(r), then ℓ ∈ pathsrec(r)
2. if ℓ ∈ labels(r), r.ℓ is a record and π ∈ pathsrec(r.ℓ), then

ℓ.π ∈ pathsrec(r)

Similarly, tpathsrec(r) is the set of paths, π, such that π ∈ pathsrec(r) and r.π is not
a record.

We will sometimes use ‘paths’ and ‘tpaths’ without the subscript for these more
restricted notions when there is no risk for confusion.

We use a tabular format to represent records. A record as given in (42a) is displayed
as (42b).

continued
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(42) a. {⟨ℓ1, v1⟩, …, ⟨ℓn, vn⟩}

b.
⎡
⎢
⎢
⎢
⎣

ℓ1 = v1
...

ℓn = vn

⎤
⎥
⎥
⎥
⎦

The objects vi in (42) may themselves be records. If so, then the definition in (41) will
guarantee that the paths in the record include paths that continue into any such vi. If
the vi is not a record it may either be an object which is not a labelled set (in which
case there is no question of the path continuing into it) or it may be a labelled set which
uses reserved labels used for characterizing non-record objects (for example, ptypes)
which are nonetheless modelled as labelled sets. In this latter case also we do not want
the record path to continue into the non-record object, even though there would be
such a path according to the general definition of paths for labelled sets. A simple way
of thinking of this is that the record paths in a record are all those paths according to
the definition of paths for a labelled set which do not contain one of the distinguished
(reserved) labels (represented by𝒟 in our definitions).

We now move to characterizing record types. Record types are, with two exceptions
of distinguished non-complex record types, flavoured labelled sets using a flavourwhich
we represent as ‘RT’, the record-type flavour. We first characterize type systems which
have non-dependent record types (that is, record types which do not have dependent
fields). Non-dependent record types are labelled sets whose labelled elements are types.
We characterize a type system with complex types and non-dependent record types in
(43) (repeated in Appendix A11.2).

(43) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has (non-dependent) record types based on ⟨ℒ,RType⟩, where ℒ is a countably
infinite set (of labels) and RType ⊆ Type if

1. Rec ∈ RType
2. r :TYPEC

Rec iff r is a record according to ℒ and TYPEC.
3. ERec ∈ RType
4. r :TYPEC

ERec iff r = ∅
5. if ℓ ∈ ℒ and T ∈ Type, then {RT, ⟨ℓ,T⟩} ∈ RType.
6. r :TYPEC

{RT, ⟨ℓ,T⟩} iff r :TYPEC
Rec, ⟨ℓ, a⟩ ∈ r and a :TYPEC

T.
7. if R ∈ RType − {Rec,ERec}, ℓ ∈ ℒ, ℓ does not occur as a label in R (i.e.

there is no field ⟨ℓ',T ʹ⟩ in R such that ℓ' = ℓ) and T ∈ Type, then
R ∪ {⟨ℓ,T⟩} ∈ RType.

8. r :TYPEC
R ∪ {⟨ℓ,T⟩} iff r :TYPEC

R, ⟨ℓ, a⟩ ∈ r and a :TYPEC
T.

In this definition we introduced two distinguished non-complex types: Rec, the type of
all records (clauses 1 and 2), and ERec, the type of the empty record (clauses 3 and 4).
In clauses 5 and 6 we introduce records with a single field, ⟨ℓ,T⟩, the type of records
which contain a field with label ℓ and an object of type T. Clauses 7 and 8 are recursion
clauses that add a single field, ⟨ℓ,T⟩, to any record type with at least one field (that is,
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those record types which are labelled sets). A record will be a witness for the new type
if it is a record of the old type and it contains a field with the label ℓ and an object of
type T.

In terms of our informal proof theoretic notation this can be expressed as (44).

(44) For Γ a system of complex types which has record types based on ⟨ℒ, RType⟩,ℒ
a countably infinite set of labels:

a. Γ,ℒ ⊢ Rec ∈ RType

b. Γ,ℒ ⊢ r record
Γ,ℒ ⊢ r : Rec

c.
Γ,ℒ ⊢ r : Rec
Γ,ℒ ⊢ r record

d. Γ,ℒ ⊢ ERec ∈ RType

e. Γ,ℒ ⊢ ∅ : ERec

f.
Γ,ℒ ⊢ r : ERec

Γ,ℒ ⊢ r = ∅ : ERec

g.
Γ ⊢ T ∈ Type

Γ,ℒ ⊢ T ∈ Type

h. Γ ⊢ a : T
Γ,ℒ ⊢ a : T

i.
Γ,ℒ ⊢ T ∈ RType
Γ,ℒ ⊢ T ∈ Type

j.
Γ,ℒ ⊢ T ∈ Type ℓ ∈ ℒ

Γ,ℒ ⊢ {RT, ⟨ℓ,T⟩} ∈ RType

k.
Γ,ℒ ⊢ r : Rec Γ,ℒ ⊢ a : T ⟨ℓ, a⟩ ∈ r

Γ,ℒ ⊢ r : {RT, ⟨ℓ,T⟩}

l.
Γ,ℒ ⊢ T ∈ Type Γ,ℒ ⊢ R ∈ RType − {Rec,ERec} ℓ ∈ ℒ − labels(R)

Γ,ℒ ⊢ R ∪ {⟨ℓ,T⟩} ∈ RType

m.
Γ,ℒ ⊢ a : T Γ,ℒ ⊢ R ∈ RType Γ,ℒ ⊢ r : R ℓ ∈ ℒ − labels(R) ⟨ℓ, a⟩ ∈ r

Γ,ℒ ⊢ r : R ∪ {⟨ℓ,T⟩}
(44a) tells us that Rec is a distinguished record type (corresponding to (43), clause 1).
(44b and c) tell us that r:Rec just in case r is a record (corresponding to (43), clause 2).
(44d) introduces ERec as a distinguished record type (corresponding to (43), clause 3)
and (44e and f ) tells us that the empty set is the only witness for ERec (corresponding to
(43), clause 4). (44g and h) tell us respectively that anything which is a type according to
the system is also a type according to the system and the set of labels and similarly that
anything which is a witness for a type according to the system will be a witness for that
type according to the system and the set of labels. (44i) requires that any record type is
also a type according to the system (corresponding to the requirement RType⊆Type).

continued
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(44j) introduces record types with one field.⟨ℓ,T⟩ (corresponding to (43), clause 5) and
(44k) tells us that a record containing a field with label ℓ and an object of type T will
be a witness for such a record type (corresponding to (43), clause 6). (44l and m) are
inductive rules which, respectively, tell us that you can add a new field, ⟨ℓ,T⟩, to a record
type, R, provided ℓ is not already a label of R (corresponding to (43), clause 7) and that
a record, r, is of the new type just in case r : R and it contains a field ⟨ℓ, a⟩ such that a : T
(corresponding to (43), clause 8).

The issue of what counts as a path in a record type is a little complex. As for records, it
is based on the definition of paths for labelled sets but excluding the distinguished labels
used in non-record structures such as ptypes. However, we will make an exception to
this when we introduce meet types since it will be important to include paths into meet
types.Wewill discuss this whenwe introducemeet types inChapter 2.Wewill also want
paths to go into dependent fields which always return a record type such that for any
appropriate arguments to the function in the dependent field the resulting record types
will all have same paths. This will become important when we introduce relabelling for
record types in Chapter 4. We will define paths for record types in terms of the paths of
the recordswhich are theirwitnesses. The relevant definitions are given in (45), repeated
in Appendix A11.2.

(45) For a record type, T,
a. π ∈ pathsrectype(T) iff for any r : T, π ∈ pathsrec(r)
b. π ∈ tpathsrectype(T) iff for any r : T, π ∈ tpathsrec(r)

In terms of our informal proof theoretic notation this can be expressed as (46).

(46) For a record type, T,

a.

[r : T]
...

π ∈ pathsrec(r)
π ∈ pathsrectype(T)

b.

[r : T]
...

π ∈ tpathsrec(r)
π ∈ tpathsrectype(T)

As with pathsrec, we will often suppress the subscript on pathsrectype when there is
no risk of confusion.

We can add dependent record types to systems which have non-dependent record
types. In order to do this we need dependent types, that is, functions which return types
and for this we need the type Type as introduced in intensional systems of complex
types characterized in (35). We characterize an intensional system of types with (non-
dependent) record types in (47), repeated in Appendix A11.2.

(47) An intensional system of complex types

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has (non-dependent) record types based on ⟨ℒ,RTypen⟩n∈Nat if for each n,
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⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩

has record types based on ⟨ℒ,RTypen⟩ and

1. for each n, RTypen ⊆ RTypen+1
2. for each n > 0, RecTypen ∈ Typen
3. for each n > 0, T :TYPEICn

RecTypen iff T ∈ RTypen−1

The definition in (47) requires that an intensional systemwith record types is a family of
systems with record types, indexed by the natural numbers such that any record type in
a system indexed by a natural number nwill also be a record type in the system indexed
by n+1. It also introduces as distinguished type RecTypen for each level n above 0 whose
witnesses are the record types of the level n−1. In our informal proof-theoretic notation
this can be expressed as in (48).

(48) For {Γn}n∈Nat an intensional system of complex types with (non-dependent)
record types

a.
Γn ⊢ T ∈ RTypen

Γn+1 ⊢ T ∈ RTypen+1

b. n > 0
Γn ⊢ RecTypen ∈ Typen

c.
Γn ⊢ T ∈ RTypen

Γn+1 ⊢ T : RecTypen+1

d.
Γn ⊢ T : RecTypen

n > 0
Γn−1 ⊢ T ∈ RTypen−1

(48a) requires that any record type on one level will be a record type on the next higher
level (corresponding to (47), clause 1). (48b) introduces the distinguished type RecType
on all levels above 0 (corresponding to (47), clause 2). (48c and d) requires that the
witnesses ofRecType are exactly the record types which are in the system one level down
(corresponding to (47), clause 3).

Now we can introduce dependent record types by adding them to intensional type
systems with record types. The characterization of type systems with dependent record
types is given in (49) (repeated in Appendix A11.2).

(49) An intensional system of complex types

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has dependent record types based on ⟨ℒ,RTypen⟩n∈Nat, if it has record types
based on ⟨ℒ,RTypen⟩n∈Nat and for each n > 0

1. if R ∈ RTypen, ℓ ∈ ℒ − labels(R), T1, …,Tm ∈ Typen,
π1, …, πm ∈ paths(R) and 𝒯 is a function of type
(T1→…→(Tm→Typen)…), then R ∪ {⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩} ∈ RTypen.

2. r :TYPEICn
R ∪ {⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩} iff r :TYPEICn

R, ⟨ℓ, a⟩ is a field in r,
r.π1 :TYPEICn

T1, …, r.πm :TYPEICn
Tm and a :TYPEICn

𝒯(r.π1)…(r.πm).
continued
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(49), clause 1 says that for any record type R we can create a new record type by adding
a field ⟨ℓ, ⟨𝒯, ⟨π1, ..., πm⟩⟩⟩, where ℓ is not a topmost label in R,𝒯 is an m-place function
which returns a type and π1, ..., πm are paths in R. Clause 2 says that a record r is of the
new type just in case it is of type R, ⟨ℓ, a⟩ is a field in r, r.π1, …, r.πm are appropriate
arguments to 𝒯 and a is of the type resulting from the application of 𝒯 to r.π1, …, r.πm.
In terms of our informal proof theoretic notation we can express this as (50).

(50) For {Γn}n∈Nat an intensional system of complex types with dependent record
types based on ⟨ℒ,RTypen⟩n∈Nat

a.

Γn ⊢ R ∈ RTypen

Γn ⊢ T1, …,Tm ∈ Typen

ℓ ∈ ℒ − labels(R)
Γn ⊢ 𝒯 : (T1→…→(Tm→Typen)…)
π1, ..., πm ∈ paths(R)

Γn ⊢ R ∪ {⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩} ∈ RTypen

b.
Γn ⊢ r : R ⟨ℓ, a⟩ ∈ r ℓ ∈ ℒ − labels(R) Γn ⊢ a : 𝒯(r.π1)…(r.πm)

Γn ⊢ r : R ∪ {⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩}

(50a) corresponds to (49), clause 1. It says that for any record type R not containing
ℓ among its labels, any sequence of a subset of R’s paths, π1, …, πm, and a depen-
dent type 𝒯 with m arguments, we can obtain a new record type by adding the field,
⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩ to R. (50b) corresponds to (49), clause 2. It says that if a record, r,
is of type R and contains a field ⟨ℓ, a⟩, where ℓ is not a label in R and a is of the type
obtained by applying the dependent type 𝒯 to r.π1, …, r.πm, then r is of the record type
resulting from adding the field ⟨ℓ, ⟨𝒯, ⟨π1, …, πm⟩⟩⟩ to R. As usual, the force of the bicon-
ditional in (49b) is provided by the fact that (50b) is part of an inductive definition and
it is the only rule which specifies under which conditions a record is a witness for the
record type with the additional dependent field.

Note that both records and record types may contain types in their fields. Minimal
examples are given in (51).

(51) a.
[

ℓ = T
]

b.
[

ℓ : T
]

The record and the type in (51) are distinct objects which nevertheless seem to corre-
spond to the same set of ordered pairs. We distinguish them by modelling the record as
an unflavoured labelled set and the record type as a flavoured labelled set as given in
(52a and b) respectively.

(52) a. {⟨ℓ,T⟩}
b. {RT, ⟨ℓ,T⟩}

1.4.3.5 Subtyping in record types
An important property of record types is that they introduce a restrictive notion of sub-
typing. Intuitively T1 is a subtype of T2 (in symbols T1 ⊑ T2) just in case for any a, a : T1
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implies a : T2, no matter what is assigned to the basic types and ptypes. Consider the types
in (53).

(53) a.
⎡
⎢
⎢
⎢
⎣

x : Ind
c1 : boy(x)
y : Ind
c2 : dog(y)

⎤
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
c1 : boy(x)
y : Ind
c2 : dog(y)
e : hug(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(53a) is intuitively the type of situation inwhich there is a boy and a dog. (53b) is the type of
situation in which there is a boy and a dog and the boy hugs the dog. Clearly any situation
of type (53b) must be of type (53a). This holds independently of what boys and dogs there
are and what kind of hugging is going on.We can tell that (53b) is a subtype of (53a) simply
by the fact that the set of fields of (53a) is a subset of the set of fields of (53b). We will notice
other ways in which you can recognize that one record type is a subtype of another as we
progress.

Subtyping on this view is a modal notion. This means that we do not just consider
one type system but a collection of type systems which assign different objects to the
basic types and ptypes. We call such a collection a modal type system. This corresponds
intuitively to a set of possibilities under consideration. A type,T1, is a subtype of another
type, T2, with respect to a modal type system just in case for each of the systems in the
modal type system any witness for T1 is also a witness for T2. We characterize a modal
system of complex types as a collection of systems of complex types in (54), repeated
in Appendix A9. We use M as a variable over pairs ⟨A, F⟩ where A is an assignment of
witnesses to the basic types of a system of complex types and F is an assignment to the
ptypes of that system.

(54) A modal system of complex types based onℳ is a family of quadruples:

TYPEMC = ⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩M∈ℳ

where for each M ∈ℳ,

⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩

is a system of complex types.

We call the individual systems of complex types in such a system the possibilities of
the system. The set of basic types and the predicates and their arities are held constant
across the different possibilities whereas the set of ptypes (and therefore the set of types
in general) will vary since different assignments to the basic types will generate different

continued
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arguments to the predicates and thus different ptypes. We can then define the notion of
subtype with respect to a modal system of complex types as in (55).

(55) T1 is a subtypei of T2 in TYPEMC, T1 ⊑TYPEMC
T2, iff for all M ∈ℳ, if T1 and T2

are members of TypeM, then {a ∣ a :TYPEMCM
T1} ⊆ {a ∣ a :TYPEMCM

T2}

We can recast this in our informal proof theoretic notation as (56).

(56) For 𝒢 a modal system of complex types

a.

[Γ ∈ 𝒢, Γ ⊢ x : T1, Γ ⊢ T2 ∈ Type]
...

Γ ⊢ x : T2

𝒢 ⊢ T1 ⊑ T2

b.
𝒢 ⊢ T1 ⊑ T2 Γ ∈ 𝒢 Γ ⊢ a : T1 Γ ⊢ T2 ∈ Type

Γ ⊢ a : T2

A disadvantage of (56a) is that it does not tell us exactly what types would count as being
in the subtype relation on the basis of the nature of the types. In the case of record types
we can often recognize the subtype relation on the basis of the structure of the types.
For example, a record type T1 is a subtype of a record type T2 if T2 ⊆ T1. (Recall that
record types are sets of fields.) This means that we can have the informal inference rule
in (57).

(57) For 𝒢, a modal system of complex types

Γ, Δ ∈ 𝒢 Γ ⊢ T1 ∈ RType Δ ⊢ T2 ∈ RType T2 ⊆ T1

𝒢 ⊢ T1 ⊑ T2

We will introduce more such specific inference rules later.

1.5 Intensionality: Propositions as types

Kim continues to think about the boy and the dog as she walks along. It was fun to see
them playing together. They seemed so happy. The boy obviously thought that the dog was
a good playmate. Kim is not only able to perceive events as being of certain types. She is
able to recall and reflect on these types. She is able to form attitudes towards these types: it
was fun that the boy and the dog were playing but a little worrying that they were so close
to the pond. This means that the types themselves seem to be arguments to predicates like
‘fun’ and ‘worrying’. This seems to be an important human ability—not only to be able
to take part in or observe an event and find it fun or worrying but to be able to reflect
independently of the actual occurrence of the event that it or in general similar events are
fun or worrying. This is a source of great richness in human cognition in that it enables
us to consider situation types independently of their actual instantiation.³ This abstraction

³ This richness also has its downside in that we often become so engaged in our internal cognitive abstrac-
tion that it can be difficult to be fully present and conscious of our direct perception of the world—for example,
worrying about what might happen in the future rather than enjoying the present.
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also enables us to consider what attitudes other individuals might have. For example, Kim
believes that the boy thought that the dog was a good playmate. She is able to ascribe this
belief to the boy. Furthermore, we are able to reflect on Kim’s state of mind where she has
a belief concerning the type of situation where the boy thinks that the dog was a good
playmate. And somebody else could consider of us that we have a certain belief about Kim
concerning her belief about the boy’s belief. There is in principle no limit to the depth of
recursion concerning our attitudes towards types.

We propose to capture this reflective nature of human cognition by making the type
theory technically reflective in the sense that we allow types themselves to be objects which
can be components in other types. In classicalmodel theoretic semanticswe think of believe
as corresponding to a relation between individuals and propositions. In our type theory,
however, we are subscribing to the “propositions as types” view which comes to us via
Martin-Löf (1984) and has its origins in intuitionistic logic (see Ranta, 1994, Section 2.16
and Wadler, 2015 for discussion). Propositions are true or false. Types of situations such
as hug(a,b) correspond to propositions in the sense that if they are non-empty then the
proposition is true. If there is nothing of this type then it is false. The reasoning is thus
that we do not need propositions in our system as separate semantic objects if we already
have types. We can use the types to play the role of propositions. To believe a type is to
believe it to be non-empty. This relates to the notion of proof by witness in constructive
mathematics (Bridges and Palmgren, 2018). From the point of view of a theory of types
for cognition in which we connect types to our basic perceptual ability, this provides a
welcome link between our perceptual ability and our ability to entertain propositions (that
is, to consider whether they are true or false). We will develop this idea in Chapter 6.

1.6 Summary

In this chapter we started with a notion of perception as type assignment: perceiving
an object or a situation involves judging it to be of a certain type. We ended with the
promise that the kind of types used for perception will be used in the analysis of inten-
sional constructions in natural language which involve attitudes (such as belief or desire)
to propositions using the “propositions as types” dictum. An important point here is that
while the origin of the system of types we use lies in perception, there is no claim that all
the types which we can have attitudes to are types which have been used in perception. We
have developed the ability to reflect on and reason about the types themselves, even types
that we have not encountered any witness for or that we know could not possibly have a
witness.

In this chapter we introduced four kinds of types and a way of modelling them math-
ematically: basic types which are not structured, ptypes which are constructed from a
predicate and appropriate arguments to the predicate, function types, and record types
containing labelled fields which contain types. Record types may contain dependent fields
where the type in the field depends on objects in other fields. In the remainder of the book
we will add more kinds of types as we need them.



2
From event perception and action to

information states and information exchange

2.1 Introduction

In Chapter 1 we talked about two kinds of situation types: ptypes and record types. This
presents a static view of situations which are events, that is, those situations in which a
change takes place. In Section 2.2 we will introduce string types which enable us to treat
events as strings of smaller events. The kind of coordination which results from agents
collaborating on such complex events leads to the conclusion that there are more actions
involving events than just judging that something is of a type (Section 2.3). For example,
we also create events of particular types. In particular we both classify and create speech
events (Section 2.4). Speech events are associated with semantic content and this fact leads
to a theory of signs (Section 2.5) and it is this fact that enables us to exchange information
in dialogue (Section 2.6) using signs which constitute a particular language (Section 2.7).

2.2 The string theory of events

Kim stands and watches the boy and the dog for a while. They start to play fetch.¹ This is a
moderately complex game in that it consists of a number of components which are carried
out in a certain order. The boy picks up a stick attracts the attention of the dog (possibly
shouting “Fetch!”), and throws the stick. The dog runs after the stick, picks it up in his
mouth and brings it back to the boy. This sequence can be repeated arbitrarily many times.
One thing that becomes clear from this is that events do not happen in a single moment
but rather they are stretched out over intervals of time, characterized by the sub-events
that constitute them. So if we were to have a type of event (that is, a type of situation)
‘play_fetch(a,b,c)’ where a is a human, b is a dog, and c is a stick we can say something
about the series of subevents thatwe have identified. Sowemight draw an informal diagram
something like Figure 2.1.

In an important series of papers including Fernando (2004, 2006, 2008, 2009, 2011,
2015), Fernando introduces a finite state approach to event analysis where events are anal-
ysed in terms of finite state automata something likewhatwe have represented in Figure 2.2.
Such an automaton will recognize a string of sub-events. The idea is that our perception of
complex events can be seen as strings of punctual observations similar to the kind of sam-
pling we are familiar with from audio technology and digitization processing in speech
recognition. Thus events can be analysed as strings of smaller events. Any object of any

¹ http://en.wikipedia.org/wiki/Fetch_(game), accessed 11 May 2022.

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0003

http://en.wikipedia.org/wiki/Fetch_(game)
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pick_up(a, c)

Begin

attract_attention(a, b) throw(a, c)

run_af ter(b, c) pick_up(b, c) return(b, c, a)

End

Figure 2.1 ‘play_fetch(a,b,c)’

0start 1 2 3

456

pick_up(a, c) attract_attention(a, b) throw(a, c)

return(b, c, a)

pick_up(a, c)

pick_up(b, c)

run_after(b, c)

Figure 2.2 play_fetch(a,b,c) as a finite state machine

type can be part of a string. Any two objects (including strings themselves), s1 and s2, can
be concatenated to form a string s1s2. An important property of concatenation is associa-
tivity; that is, if we concatenate s1 with s2 and then concatenate the result with s3 we get
the same string that we would obtain by concatenating s2 with s3 and then concatenat-
ing s1 with the result. In symbols: (s1s2)s3 = s1(s2s3). For this reason we normally write
s1s2s3 (without the parentheses). Following Fernando we will use these strings to give us
our notion of temporal order.

If a1, a2, …, an are objects, we will normally represent the string of these objects as
a1a2 … an. Where confusion might arise from this notation we use str(a1a2 … an). This
latter notation will be particularly useful when distinguishing a single object, a, from a unit
string containing this object str(a). Although we will present strings in this way, we will
model them as records with distinguished labels related to the natural numbers, t0, t1, …
(‘t’ for “time”). The field labelled tn will correspond to the n + 1th place in the string. Thus
a string of objects a1a2a3 will be the record in (1).

(1)
⎡
⎢
⎢
⎣

t0 = a1
t1 = a2
t2 = a3

⎤
⎥
⎥
⎦

The concatenation of (1) with the string str(a4), that is, (2a), will be (2b).

(2) a.
[

t0 = a4
]

b.
⎡
⎢
⎢
⎢
⎣

t0 = a1
t1 = a2
t2 = a3
t3 = a4

⎤
⎥
⎥
⎥
⎦



42 INFORMATION STATES AND INFORMATION EXCHANGE

Strings can be introduced into a type system with record types by the definition in
(3) (repeated in Appendix A13)

(3) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with record types based on ⟨ℒ,RType⟩ has strings if

1. for each natural number i, ti ∈ ℒ
2. String ∈ BType
3. ∅ :TYPEC

String
4. if T ∈ Type and a :TYPEC

T then {⟨t0, a⟩} : String
5. if s :TYPEC

String, tn ∈ labels(s) such that there is no i> n where
ti ∈ labels(s), T ∈ Type and a :TYPEC

T then s ∪ {⟨tn+1, a⟩} :TYPEC
String

6. Nothing is of type String except as required above.

Clause 1 of (3) ensures that the labels ti are among the labels available for forming record
types. Clause 2 introduces a basic type String. Clause 3 says the empty set (also known as
the empty record and empty string) is a string. Clause 4 says that if you have an object, a,
of some type then you can formaunit string containing a. That is the record

[
t0=a

]
. Note

that we always start with the label ‘t0’. Clause 5 says that we can always create a new string
from a string s by adding an additional object to the end of it, using a label ‘tn+1’ where
n is the highest number such that tn ∈ labels(s). Clause 6 is an exclusion clause.
Clauses 3–6 constitute an inductive definition of the set of witnesses of the type String.

In our informal proof theoretic notation this can be characterized by giving an
inductive definition as in (4).

(4) For Γ a system of complex types with record types based on ⟨ℒ,RType⟩ and
strings
a. i ∈ Nat

ti ∈ ℒ
b. Γ ⊢ String ∈ BType
c. Γ ⊢ ∅ : String

d.
Γ ⊢ a : T

Γ ⊢ {⟨t0, a⟩} : String

e.
Γ ⊢ s : String Γ ⊢ a : T {t0, …, tn} = labels(s) n ≥ 0

Γ ⊢ s ∪ {⟨tn+1, a⟩} : String

We will continue to represent strings for convenience in the traditional way but mod-
elling strings as records will become important when following paths in records down to
elements in strings and any operations we define on records will automatically generalize
to strings. We will use ε to represent the empty string (that is, the empty set). We will use
s[n] to represent the nth element in a string s (where the first element in the string is s[0]).
In terms of the record notation this is just a convenient abbreviation for s.tn.

We will use T=n, or, when there is no risk of confusion, simply T n, as the type of strings
of length n all of whose elements are of type T. We will use T≥n for the type of strings of
objects of type T which have length greater than or equal to n. In particular we will use T *

(the Kleene star) for T≥0 and T+ (the Kleene plus) for T≥1.
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We can make this precise with the definition in (5) (repeated in Appendix A13)

(5) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with strings has length determining string types if

1. for any T ∈ Type and n a natural number, the string types T=n, T≤n,
T≥n ∈ Type

2. s :TYPEC
T=n (T≤n,T≥n) iff s :TYPEC

String, for all i, 0 ≤ i<length(s),
s[i] :TYPEC

T and length(s) = (≤,≥) n

In our informal proof theoretic notation this can be expressed as (6).

(6) For Γ a system of complex types with strings and length determining string
types:

a.
Γ ⊢ T ∈ Type

n ∈ Nat
Γ ⊢ T=n ∈ Type

Γ ⊢ T ∈ Type
n ∈ Nat

Γ ⊢ T≤n ∈ Type
Γ ⊢ T ∈ Type

n ∈ Nat
Γ ⊢ T≥n ∈ Type

b. Γ ⊢ s : String length(s) = n

[i< n]
...

Γ ⊢ s[i] : T
Γ ⊢ s : T=n

Γ ⊢ s : String length(s) ≤ n

[i<length(s)]
...

Γ ⊢ s[i] : T

Γ ⊢ s : T≤n

Γ ⊢ s : String length(s) ≥ n

[i<length(s)]
...

Γ ⊢ s[i] : T

Γ ⊢ s : T≥n

(6a) introduces the string types and (6b) specifies witness conditions for the types.

Next we introduce concatenation types. For any two types, T1 and T2, we can form the
type T1

⌢T2. This is the type of strings ab where a : T1 and b : T2. The concatenation
operation on types (just like that on objects) is associative so we do not use parentheses
when more than one type is involved, e.g. T1

⌢T2
⌢T3.

This can be made precise as (7), repeated in Appendix A13.

(7) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with strings and length determining string types has concatenation types if
continued
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1. if T1, T2 ∈ Type then the string type T1
⌢T2 ∈ Type

2. s :TYPEC
T1

⌢T2 iff there are s1 and s2 such that
(a) s1s2 = s
(b) s1 :TYPEC

T1 if T1 is a string type, otherwise s1 :TYPEC
T1

=1

(c) s2 :TYPEC
T2 if T2 is a string type, otherwise s2 :TYPEC

T2
=1

Clause 1 introduces concatenation types, T1
⌢T2, and clause 2 says that witnesses for

concatenative types must be the concatenation of two strings which are of the types T1
and T2 respectively if they are string types of if they are not they must be of the type of
singleton strings whose only element is of type T1 or T2 respectively.

We can express this in our informal proof theoretic notation as (8).

(8) For Γ a system of complex types with strings, length determining string types
and concatenative string types

a.
Γ ⊢ T1 ∈ Type Γ ⊢ T2 ∈ Type

Γ ⊢ T1
⌢T2 ∈ Type

b.
Γ ⊢ s1 : T '1 Γ ⊢ s2 : T '2 T 'i = Ti if Ti is a string type; otherwise T 'i = T=1

iΓ ⊢ s1s2 : T1
⌢T2

(8a) introduces concatenative types, T1
⌢T2, and (8b) tells us that witnesses for these

types are concatenations of two strings, s1 and s2, where s1 : T1 (or s1 : T=1
1 if T1 is not

a string type) and similarly for s2 and T2.
To (8) we can add (9) to express the associativity of ‘⌢’.

(9)
Γ ⊢ (T1

⌢T2)⌢T3 ∈ Type Γ ⊢ T1
⌢(T⌢

2 T3) ∈ Type
Γ ⊢ (T1

⌢T2)⌢T3 = T1
⌢(T⌢

2 T3) ∈ Type

While strings as we have defined them are useful for modelling events in terms of strings
of subevents, it is not the case that all strings of events can be considered as occurring
events. Consider a case where we have two events as characterized in (10).

(10) a. e1 : T1
b. e2 : T2

The type theory as we have defined it will yield both judgements in (11).

(11) a. e1e2 : T1
⌢T2

b. e2e1 : T⌢
2 T1

However, if we are using event strings to model temporal ordering it cannot be the case
that both e1e2 and e2e1 both model occurring events even though they are both strings of
events. That is, if e1 temporally precedes e2 then e2 cannot temporally precede e1 and vice
versa. This has to do with the fact that a particular event can only happen once. It is, of
course, possible to have different events of the same types occurring in the reverse order
as in (12).

(12) a. e1e2 : T1
⌢T2

b. e3e4 : T⌢
2 T1

One way to distinguish those strings which correspond to occurring events from those
which do not is to introduce a type Occur such that if e1e2 : Occur then e2e1 ̸ : Occur.
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Records are sometimes used to model the simultaneous occurrence of events. We can do
this by allowing records to be witnesses forOccur and requiring that if r :Occur and ℓ1, ℓ2 ∈
labels(r) then r.ℓ1r.ℓ2 ̸ : Occur; that is, for any two distinct fields in a record, a string
consisting of the objects in those fields does not occur.Wewill not develop this idea further
here but assume it in the background.

Let us return to Kim watching the boy, a, playing fetch with the dog, b, using the stick, c.
She perceives the event as being of type ‘play_fetch(a,b,c)’. But what does it mean to be an
event of this type? Given our concatenation types we can build a type which corresponds
to most of what we have sketched in Figure 2.1, namely (13).

(13) pick_up(a,c)⌢attract_attention(a,b)⌢throw(a,c)⌢run_after(b,c)⌢pick_up(b,c)⌢
return(b,c,a)

(13) is a type corresponding to everything we have represented in Figure 2.1 except for
the arrow which loops back from the end state to the start state. In order to get the loop
into the event type we will use a Kleene-+ type. The type (14) will, then, give us a type
corresponding to the complete Figure 2.1 since it will be the type consisting of strings of
one or more events of the type (13).

(14) (pick_up(a,c)⌢attract_attention(a,b)⌢throw(a,c)⌢run_after(b,c)⌢pick_up(b,c)⌢
return(b,c,a))+

We will complicate (14) slightly by substituting record types for the ptypes as in (15).
We do this because we will want to allow for things happening simultaneously and record
types will give us a straightforward way of allowing this.

(15) (
[
e:pick_up(a,c)

]⌢[e:attract_attention(a,b)
]⌢[e:throw(a,c)

]⌢[e:run_after(b,c)
]⌢

[
e:pick_up(b,c)

]⌢[e:return(b,c,a)
]
)+

The label ‘e’ (“event”) occurs in each of the elements of the string type. In this case we will
say that ‘e’ labels a dimension of events of this type. The ‘e’-dimension can be thought of as
the dimension which characterizes what is happening at each stage of the event.

An important question that arises with this approach of decomposing events into strings
of smaller events is: will the decomposition ever bottom out? If we can think of events of
playing fetch as decomposing into a string beginning with an event of picking up a stick,
can we not also think of the picking up event as being decomposed into a string involving
bending, arm movement, grasping and so on. Furthermore bending can be decomposed
into tightening certain muscles, tightening muscles into chemical reactions in the brain
and in nerves. Will it ever stop? Intuitively, it seems that we can always open up an event
and think of it as a string of smaller events. Perhaps there are some basic events at the
level of particle physics but this hardly seems an appropriate matter for investigation by a
semanticist.

The key to being able to admit this intuitive fact that we can break events into smaller
events without getting the formal system into a potentially infinite regress is that we think of
the type system as representing resources available to an agent. An agent may have the type
‘pick_up(a,c)’ available as a resource andmay be able to classify events as being of that type
without being conscious of the string of subevents which go to make it up (for example by
using a probabilistic classifier, Larsson, 2020). Thus this ptype might be basic in the type
system available to the agent in the sense that it is not related to a string type. However,
upon reflection or investigation the agent may be able to refine the type system and add
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the information that a string of events of certain types would be of the type ‘pick_up(a,c)’.
Thus any of the type systems which the agent has available at a given time can be refined in
this way to provide a more complex type system available to the agent subsequently. Thus
there may be no end to the possibilities for refining a type system, but none of the type
systems individually will have an infinite regress.

Another important question iswhether our type systemwill only be able to encode deter-
ministic finite state automata in this way. Later we will introduce join (that is, disjunctive
types) that enable the encoding of non-deterministic automata.

2.3 Doing things with types

2.3.1 Type acts

The boy and the dog have to coordinate and interact in order to create an event of the game
of fetch. This involves doing more with types than just making judgements. For example,
when the dog observes the situation in which the boy raises the stick, it may not be clear to
the dog whether this is part of a fetch-game situation or a stick-beating situation. The dog
may be in a situation of entertaining these two types as possibilities prior to making the
judgement that the situation is of the fetch type. We will call this act a query as opposed
to a judgement. Once the dog has made the judgement that what it has observed so far is
an initial segment of a fetch type situation it has to make its own contribution in order to
realize the fetch type; that is, it has to run after the stick and bring it back. This involves the
creation of a situation of a certain type. Thus creation acts are another kind of act related
to types.

In standard type theory we have judgements such as o : T “o is of type T ” and T true
“there is something of type T ”.² We want to enhance this notion of judgement by including
a reference to the agent A which makes the judgement, giving judgements such as o :A T
“agent A judges that o is of type T ” and :A T “agent A judges that there is some object of
type T ”. We will call the first of these a specific judgement and the second a non-specific
judgement. Such judgements are one of the three kinds of acts represented in (16) that we
want to include in our type act theory.

(16) Type Acts

judgements

specific o :A T “agent A judges object o to be of type T ”
non-specific :A T “agent A judges that there is some object of type T ”

queries

specific o :A T? “agent A wonders whether object o is of type T ”
non-specific :A T? “agent A wonders whether there is some object of type T ”

creations

non-specific :A T! “agent A creates something of type T ”

² This section contains revised material from Cooper (2014a).
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Note that creations only come in the non-specific variant. You cannot create an object
which already exists.

Creations are also limited in that there are certain types which a given agent is not able
to realize as the main actor. Consider for example the event type involved in the fetch
game of the dog running after the stick. The human cannot be the main creator of such
an event since it is the dog who is the actor. The most the human can do is wait until
the dog has carried out the action and we will count this as a creation type act. This will
become important when we discuss coordination in the fetch-game in Section 2.3.3. It is
actually important that the human makes this passive contribution to the creation of the
event of the dog running after the stick and does not, for example, get the game confused
by immediately throwing another stick before the dog has had a chance to retrieve the first
stick. There are other cases of event types which require a less passive contribution from
an agent other than the main actor. Consider the type of event where the dog returns the
stick to the human. The dog is clearly the main actor here but the human also has a role to
play inmaking the event realized. For example, if the human turns her back on the dog and
ignores what is happening or runs away, the event type will not be realized despite the dog’s
best efforts. Other event types, such as lifting a piano, involve more equal collaboration
between two or more agents, where it is not intuitively clear that any one of the agents is
the main actor. So when we say “agent A creates something of type T ” perhaps it would be
more accurate to phrase this as “agent A contributes to the creation of something of type
T ” where A’s contribution might be as little as not realizing any of the other types involved
in the game until T has been realized.

Creating objects of a given type often has a de se (see, for example, Perry, 1979; Lewis,
1979a; Ninan, 2010; Schlenker, 2011) aspect.

The dog has to know that it itself must run after the stick in order tomake this a situa-
tion inwhich it and the boy are playing fetch. There is something akin towhat Perry calls
an essential indexical here, though, of course, the dog does not have indexical linguistic
expressions. It is nevertheless part of the basic competence that an agent needs in order
to be able to coordinate its action with the rest of the world that it has a primitive sense
of self which is distinct from being able to identify an object which has the same prop-
erties as itself. We will follow Lewis inmodelling de se in terms of functional abstraction
over the “self ”. In our terms this will mean that de se type acts involve dependent types.

De se type acts involve functions which have the agent in its domain and return a
type; that is, they are dependent types which, given the agent, will yield a type. We will
say that agents are of type Ind and that the relevant dependent types, 𝒯, are functions
of type (Ind→Type). We characterize de se type acts in a way parallel to (16), as given in
(17).

(17) De Se Type Acts

judgements

specific o :A 𝒯(A) “agent A judges object o to be of type 𝒯(A)”
non-specific :A 𝒯(A) “agent A judges that there is some object of type𝒯(A)”

continued
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queries

specific o :A 𝒯(A)? “agent A wonders whether object o is of type 𝒯(A)”
non-specific :A 𝒯(A)? “agent A wonders whether there is some object of

type 𝒯(A)”

creations

non-specific :A 𝒯(A)! “agent A creates something of type 𝒯(A)”

From the point of view of the theory of types, de se type acts seem more complex
than non-de se type acts since they involve a dependent rather than a non-dependent
type and a functional application of that dependent type to the agent. However, from a
cognitive perspective one might expect de se type acts to be more basic. Agents which
perform type acts using types directly related to themselves are behaving egocentrically
and one could regard it as a more advanced level of abstraction to consider types which
are independent of the agent. This seems a puzzling way in which our notion of type
seems in conflict with out intuitions about cognition.

While these type acts are prelinguistic (we need them to account for the dog’s behaviour
in the game of fetch), it seems that they are the basis on which the notion of speech act
(Austin, 1962; Searle, 1969, and much subsequent literature) is built.

2.3.2 Making inferences about events

What happens when Kim perceives an event as being of the type (15)? She makes a series
of observations of events, assigning them to types in the string type. Note that the ptypes
in each of the types can be further broken down in a similar way. This gives us a whole
hierarchy of perceived events which at some point have to bottom out in basic perceptions
which are not further analysed. In order to recognize an event as being of this type Kim
does not need to perceive a string of events corresponding to each of the types in the string
types. She may, for example, observe the boy waving the stick to attract the dog’s attention,
get distracted by a bird flying overhead for a while, and then return to the fetch event at
the point where the dog is running back to the boy with the stick. This still enables her to
perceive the event as an event of fetch playing because she has seen such events before and
learned that such events are of the string type in (15). It suffices for her to observe enough
of the elements in the string to distinguish the event from other event types she may have
available in her knowledge resources. Suppose, for example, that she has just two event
string types available that begin with the picking up of a stick by a human in the company
of a dog. One is (15). The other is one that leads to the human beating the dog with the
stick. If she only observes the picking up of the stick she cannot be sure whether what she
is observing is a game of fetch or a beating. However, as soon as she observes something in
the event string which belongs only to the fetch type she can reasonably conclude that she
is observing an event of the fetch type. Shemay, of course, be wrong. Shemay be observing
an event of a type which she does not yet have available in her resource of event types, in
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which case she will need to learn about the new event type and add it to her resources.
However, given the resources at her disposal she can make a prediction about the nature
of the rest of the event. One could model her prediction-making ability in terms of a func-
tion which maps a situation (modelled as a record) to a type of predicted situation, for
example (18).

(18) λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
chuman:human(x)
y:Ind
cdog:dog(y)
z:Ind
cstick:stick(z)
e:
[
e:pick_up(x,z)

]⌢[e:attract_attention(x,y)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. [e:play_fetch(r.x,r.y,r.z)cinit:init(r.e,e)
]

Here the predicate ‘init’ has arity ⟨String, String⟩. The type init(s1,s2) is non-empty just
in case s1 is an initial substring of s2.

We achieve this by the definition in (19), repeated in Appendix A13.

(19) If s1 is a string of length n and s2 is a string of any length, then s : init(s1,s2) iff the
length of s2 is greater than or equal to n and for each i, 0 ≤ i< n, s1[i] = s2[i] and
s = s2.

That is, if the initial substring condition holds then the second argument to the predicate
(and nothing else) is of the ptype.

The kind of function of which (18) is an instance is a function of the general form (20).

(20) λa :T1 . T2((a))

Recall that the notation T2((a)) represents that T2 depends on a. The nature of this
dependence in (18) is seen in the occurrences of r in the body of the function, for
example, (21).

(21) play_fetch(r.x,r.y,r.z)

A function of the form (20)maps an object of some type (represented by T1) to a type (rep-
resented by T2((a))). The type that results from an application of this function will depend
on what object it is applied to; that is, we have the possibility of obtaining different types
from different objects. This function is then a dependent type as discussed, for example, in
relation to Chapter 1, example (26). These functions will play an important role in much
of what is to come later in this book. They will show up many times in what appear at
first blush to be totally unrelated phenomena. We want to suggest, however, that all of the
phenomena we will describe using such functions have their origin in our basic cognitive
ability to make predictions on the basis of partial observation of objects and events. The
ubiquity of dependent types related to prediction suggests a relationship with ideas about
the predictive brain, discussed, for example by Clark (2016).

Functions which are dependent types return types but they do not, of themselves,
tell us what to do with the type if we have obtained it by applying the function to an
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argument. Suppose 𝒯 is the function (18) and that T is the domain type of 𝒯, that
is, (22).

(22)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
chuman : human(x)
y : Ind
cdog : dog(y)
z : Ind
cstick : stick(z)
e :

[
e:pick_up(x,z)

]⌢[e:attract_attention(x,y)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then we may have the action rule given in (23).

(23)
s :A T
:A 𝒯(s)

(23) represents that if an agent, A, judges a situation, s, to be of type T then A is licensed
to judge that there is some situation of type 𝒯(s). We use a wavy line in this inference
rule to indicate that it does not represent a conclusion that follows from a premise in a
logical sense, but rather that the act above the line licenses the act below the line. That is,
on the basis of what is above the line it is reasonable to perform what is below the line,
though without a guarantee that it is correct or even that the action will be performed.
Given that you observe a human pick up a stick and attract a dog’s attention, it is reasonable
to conclude that there will be an event of playing fetch, but there is no guarantee that there
actually will be such an event. We have talked in terms of what is above the line licensing
what is below the line. Another term that can be used is afford which goes back to Gibson’s
(1979) notion of affordance. Thus we can talk of the action above the line as affording the
action below the line.

Sometimes dependent type functions like𝒯 can be associatedwithmore than one action
rule. Agents may get to choose which they apply or perhaps there will be aspects of the
context which will determine which of the action rules is appropriate. Thus in addition to
(23) we might also have the action rules in (24).

(24) a.
s :A T

s :A 𝒯(s)

b.
s :A T

:A 𝒯(s)!
(24a) says that if A judges s to be of type T then A is licensed to judge that s is also of type
𝒯(s). (24b) says that if A judges s to be of type T then A is licensed to create something of
type 𝒯(s).

The dependent types,𝒯, in these rules are in effect topoi in the sense of Breitholtz (2020).
Likemany uses of topoi in reasoning, this use is reminiscent of abductive reasoning (Hobbs
et al., 1993). The main idea of abduction is that given an inference such as (25) we can use
the rule to reason backwards.

(25)
It is raining

The ground is wet
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If we observe that the ground is wet we can surmise that it is raining, although we cannot
be sure that it is raining if there are other rules that allow us to infer the ground is wet (for
example, if somebody has been watering the garden). One difference between the use of
topoi and abductive reasoning is that topoi do not require there to be a necessary inference
in either direction. For example, when I cook, the kitchen is often in amess afterwards (but
not always). Elisabet,mywife, also sometimesmakes amess in the kitchenwhen she’s cook-
ing, though not as often as I do. That is, the inference between me cooking and the kitchen
being in a mess is not necessary in either direction. Nevertheless, somebody seeing the
kitchen in a mess might well surmise that I have been cooking since that is the most likely
reason (at least in the view of the observer). Topoi are meant to account for this kind of
case as well. Another important difference between abduction and topoi is that abduction
is really a method of using inference rules, put simply, you apply them backwards, whereas
topoi are the rules themselves (reified as functions which are dependent types). Given this,
you can use abduction with topoi. If you have a topos which says that situations where I
cook can lead to situations in which the kitchen is in a mess, you can use this abductively
to surmise that I have been cooking if the kitchen is in a mess. In the case at hand, though,
our action rules concern reasoning about affordances, that is opportunities for action, and
this is not normally something that is thought of in terms of abductive reasoning.

What happens when Kim does not observe enough of the event to be able to predict
with any certainty that the complete event will be a game of fetch? One theory would be
that she can only make categorical judgements, and that she has to wait until she has seen
enough so that there is only one type that matches in the collection of situation types in her
resources. Another theory would be one where she predicts a disjunction of the available
matching types when there is more than one that matches. One might refine this theory
so that she can choose one of the available types but assign it a probability based on the
number of matching types. If n is the number of matching types the probability of any one
of them might be 1

n
. This assumes that each of the types is equally likely to be realized. It

would be natural to assume, however, that the probability which Kim assigns to any one of
the matching types would be dependent in part on her previous experience. Suppose, for
example, that she has seen 100 events of a boy picking up a stick in the company of a dog,
99 of those events led to a game of fetch and only one led to the boy beating the dog. One
might then assume that when she now sees the boy pick up the stick she would assign a .99
probability (on a scale of 0 to 1) to the type of fetch events and only .01 probability to the
boy beating the dog. That is, the probability she assigns to an event of a boy picking up a
stick leading to a game of fetch is the result of dividing the number of instances of a game of
fetch she has already observed by the sum of the number of instances she has observed of
any types whose initial segment involves the picking up of a stick. Inmore general termswe
can compute the probability which an agent A assigns on the basis of a string, s, of previous
observations to a predicted type Tpr given an observed type Tobs, pA,ω(Tpr ∣ Tobs), in the case
where Tpr is a member of the set of alternatives which can be predicted from Tobs according
to A’s resources based on p, altA,s(Tobs), by the formula in (26).

(26) pA,s(Tpr ∣ Tobs) = ∣{Tpr}A,s∣
∑

Talt∈altA,s(Tobs)
∣{Talt}A,s∣
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where {T}A,s is the set of objects of type T observed by A in s. If Tpr is not a member of
altA,s(Tobs), that is not one of the alternatives, we say that pA,s(Tpr ∣ Tobs) = 0.

Where does the set of alternatives come from? We assume that an agent has a set of
functions similar to (18) available as cognitive resources, that is, a set of resources that
associates objects of given types with another type, that is collections of dependent types.
We could think of these resources as topoi in the sense of Breitholtz (2020). Among this
collection of functions may be several which share the same domain type; that is, for some
particular type T they are witnesses of the function type (T→Type). Suppose that F is a set
of such resources sharing the type T as a domain type. Then the set of alternatives for an
object r of type T with respect to F is {T ' ∣ T ' = f(r) for some f ∈ F}.

While this is still a rather naive and simple view of how probabilities might be assigned
it is not without interest, as shown by the following points:

Probability distributions It will always provide a probability distribution over sets of
alternatives, that is (27).
(27)

∑

Tpr∈altA,s(Tobs)
pA,s(Tpr ∣ Tobs) = 1

Alternatives We have assumed a notion of alternatives based on types of completed
events for which the observed event is an initial segment but other notions of
alternativeness could be considered and perhaps even combined.

Relativity of probability assignments The notion of probability is both agent and
resource relative. It represents the probability which an agent will assign to a type
when observing a given situation after a previous string of observations. Two agents
may assign different probabilities depending on the resources they have available.

Learning Relevant observations will update the probability distributions an agent will
assign to a given set of alternatives since the probability is computed on the basis of
previous observations of the alternative types.

Kim is not alone in being able to draw conclusions based on partial observations of an
event. The dog can do it too. As soon as the boy has raised the stick and attracted the
dog’s attention the dog is excitedly snapping at the stick and starting to run in the direction
in which the boy seems to be about to throw. The dog also seems to be attuned to string
types of events just as Kim is and also able to make predictions on the basis of partial
observations. The types to which a dog is attuned will not be the same as those to which
humans can be attuned and this can certainly lead to miscommunication between humans
and dogs. For example, there may be many reasons why I would go to the place where
outdoor clothes are hanging and where the dog’s lead is kept. Many times it will be because
I am planning to take the dog out for a walk, but not as often as the dog appears to think,
judging from the excitement he shows any time I go near the lead. It is difficult to explain to
the dog that I am just looking for a receipt that I think I might have left in my coat pocket.
But the basic mechanism of being able to assemble types of events into string types of more
complex events and make predictions on the basis of these types seems to be common to
both humans and dogs and a good number of other animals too. Perhaps simple organisms
do not have this ability and can only react to events that have already happened, but not to
predicted outcomes.
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This basic inferential ability is thus not parasitic on the ability to communicate using a
human language. It is, however, an ability which appears to be exploited to a great extent
in our use of language as we will see in later chapters.

2.3.3 Coordination and games

Let us now apply these notions to the kind of interaction that has to take place between
the human and the dog in a game of fetch. First consider in more detail what is actually
involved in playing a game of fetch, that is creating an event of type (15). Each agent has
to keep track in some way of where they are in the game and in particular what needs to
happen next. We analyse this by saying that each agent has an information state which we
will model as a record. We need to keep track of the progression of types of information
state for an agent during the course of the game. We will refer to the types of information
states as gameboards.³ The idea is that as part of the event occurs, the agent’s gameboard is
updated so that an event of the next type in the string is expected. For now, wewill consider
gameboards which only place one requirement on information states, namely that there is
an agenda which indicates the type of the next move in the game. Thus, if the agent is
playing fetch and observes an event of the type where the human throws the stick, then,
according to (15), the nextmove in the gamewill be an event of the type where the dog runs
after the stick. If the actor in the next move is the agent herself then the agent will need to
create an event of the type of the nextmove if the game is to progress. If the actor in the next
move is the other player in the game, then the agent will need to observe an event and judge
it to be of the appropriate type in order for the game to progress. The type of information
states, InfoState, will be (28a). The type of the initial information state, InitInfoState, will
be one where the agenda is required to be the empty list.

(28) a.
[

agenda : list(RecType)
]

b.
[

agenda=[ ] : list(RecType)
]

The type RecType is the type of record types; that is, the witnesses for this type will be
record types. Just like the type Type, RecType should have a superscript as in RecTypen,
representing the order with which it is associated in the stratification of the type system.
This was made precise in Chapter 1, example (47). As with Type, we ignore the stratifica-
tion order superscript except where it becomes important to mention it. For any type, T,
list(T) is also a type, the type whose witnesses are lists all of whose members are of type
T. Suppose that a, b, c are of type T, then the list [a, b, c] is of type list(T). We use [ ], as
in (28b) to represent the empty list, identical with the empty set, ∅. The field in the type
(28b) is an example of a manifest field (Coquand et al., 2004). We use the notation

[
ℓ=a:T

]

to represent
[
ℓ:Ta

]
where Ta is a type such that b : Ta just in case b : T and b = a; that is,

it either has no witnesses because a is not of type T or it has exactly one witness, a, of type
T. We call Ta a singleton type.
[a, b, c] is a convenient standard notation for the list consisting of a, b, and c in that order

but, as with strings, we will actually model lists as records with a first and rest structure as
in (29) and we will use the standard notation as a convenient abbreviation.

³ Our notions of information state and gameboard are taken from Larsson (2002) and Ginzburg (2012) respec-
tively as well as a great deal of related literature on the gameboard or information state approach to dialogue
analysis originating from Ginzburg (1994). We have adapted the notions somewhat to our own purposes.
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(29)

⎡
⎢
⎢
⎢
⎢
⎣

fst = a

rst =
⎡
⎢
⎢
⎣

fst = b

rst = [
fst = c
rst = [ ] ]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

We introduce list types and singleton types in detail below.

We can introduce lists and list types into our type systems by the definition in (30),
repeated in Appendix A12.

(30) A system of complex types with record types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has list types if

1. for any T ∈ Type, list(T) ∈ Type
2. for any T ∈ Type,

(a) [ ] :TYPEC
list(T)

(b) a ∣L :TYPEC
list(T) iff a :TYPEC

T and L :TYPEC
list(T)

Lists are a common data structure used in computer science but they are not normally
defined in basic set theory, although it is straightforward to define them in terms of
records. We will use the reserved labels ‘fst’ and ‘rst’ for the first member of the list and
the remainder (“rest”) of the list respectively. We let the empty list, [], be the empty set,
∅. If L is a list then a ∣L is to be the record in (31).

(31) [
fst = a
rst = L ]

If L is a list we often use fst(L) and rst(L) to represent L.fst and L.rst respectively.
In our informal proof theoretic notation we can characterize type systems with lists

as in (32).

(32) For Γ a system of complex types with list types

a.
Γ ⊢ T ∈ Type

Γ ⊢ list(T) ∈ Type

b. Γ ⊢ [ ] : list(T)
Γ ⊢ a : T Γ ⊢ L : list(T)

Γ ⊢ a ∣L : list(T)
(32a) introduces list types and corresponds to clause 1 of (30). (32b) gives an inductive
definition of the set of witnesses for an arbitrary list type and corresponds to clause 2 of
(30).

We introduce singleton types by the definition in (33), repeated in Appendix A6.

(33) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has singleton types if

1. for any T,T ' ∈ Type and a :TYPEC
T ', Ta ∈ Type

2. for any T,T ' ∈ Type and a :TYPEC
T ', b :TYPEC

Ta iff b :TYPEC
T and a = b
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Note that this definition allows the formation of singleton types from singleton types.
We sometimes refer to these as multiple singleton types and notate them as Ta,b,…. Fol-
lowing the definition above an object c will be of type Ta,b just in case c : T and
a = b = c.

In our informal proof theoretic notation we can characterize type systems with
singleton types as in (34).

(34) For Γ a system of complex types with singleton types

a.
Γ ⊢ T ∈ Type Γ ⊢ a : T '

Γ ⊢ Ta ∈ Type

b.
Γ ⊢ a = b : T
Γ ⊢ b : Ta

We can now see the rules of the game corresponding to the type (15) as a set of update
functions which indicate for an information state of a given type what type the next infor-
mation state may belong to if an event of a certain type occurs. These update functions
correspond to the transitions in a finite state machine. This is given in (35).

(35) { λr:
[
agenda=[]:list(RecType)

]
.[

agenda=[
[
e:pick_up(a,c)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:pick_up(a,c)

]
]:list(RecType)

]

λe:
[
e:pick_up(a,c)

]
.[

agenda=[
[
e:attract_attention(a,b)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:attract_attention(a,b)

]
]:list(RecType)

]

λe:
[
e:attract_attention(a,b)

]
.[

agenda=[
[
e:throw(a,c)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:throw(a,c)

]
]:list(RecType)

]

λe:
[
e:throw(a,c)

]
.[

agenda=[
[
e:run_after(b,c)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:run_after(b,c)

]
]:list(RecType)

]

λe:
[
e:run_after(b,c)

]
.[

agenda=[
[
e:pick_up(b,c)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:pick_up(b,c)

]
]:list(RecType)

]

λe:
[
e:pick_up(b,c)

]
.[

agenda=[
[
e:return(b,c,a)

]
]:list(RecType)

]
,

λr:
[
agenda=[

[
e:return(b,c,a)

]
]:list(RecType)

]

λe:
[
e:return(b,c,a)

]
.[

agenda=[]:list(RecType)
]

}

Note that having a set of update functions in this way allows us to encode non-deterministic
automata by having more than one update function whose first argument is required to be
of the same type.

Since we are treating an empty agenda as the condition for the input to the initial state
in the corresponding automaton and also the output of the final state, we automatically get
the loop effect from the final state to the initial state. In order to prevent the loop we would
have to distinguish the type corresponding to the initial and final states.
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The first function listed in (35) is of the type (36).

(36) (InitInfoState→RecType)

It maps an initial information state, that is, with an empty agenda, to a record type where
the type of event where the human, a, picks up the stick c is on the agenda.

The remaining functions all map information states of some type to a function. For
example, the first of these functions is of the type in (37).

(37) ((r:
[
agenda=[

[
e:pick_up(a,c)

]
]:list(RecType)

]
)→(fst(r.agenda)→RecType))

They map an information state where some type is on the agenda and an event of that type
to a new type of information state where the next type to be realized in the game is on the
agenda. (37) is a dependent function type. A function of this type maps something, r, of
type

[
agenda=[

[
e:pick_up(a,c)

]
]:list(RecType)

]
, to a function from records of the first

type on the list in the ‘agenda’-field in r to a record type. For any list, L, we use fst(L) to
represent the first member of L.Dependent functions are slightly more complex than the
function types we have seen previously in that they introduce a variable (in this case, r)
on which type of the object they return can depend. Schematically, we can represent the
difference between non-dependent function types and dependent function types as the
difference between (T1→T2) and (a : T1)→T2((a)).

We can introduce dependent function types into our type systems as in (38), repeated
in Appendix A10.

(38) An intensional system of complex types TYPEIC,

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has dependent function types if

1. for any n>0, T ∈ Typen and𝒯 :TYPEICn
(T→Typen),

((a : T)→𝒯(a)) ∈ Typen

2. for each n>0, f :TYPEICn
((a : T)→𝒯(a)) iff f is a function whose domain is

{a ∣ a :TYPEICn
T} and such that for any a in the domain of f,

f(a) :TYPEICn
𝒯(a).

We can express this in our informal proof theoretic notation as (39).

(39) For {Γn}n∈Nat an intensional system with complex types and dependent function
types

a.
Γn ⊢ T ∈ Typen Γn ⊢ 𝒯 : (T→Typen)

Γn ⊢ ((a : T)→𝒯(a)) ∈ Typen

b.

[Γn ⊢ a : T]
...

Γn ⊢ f(a) : 𝒯(a)
Γn ⊢ f : ((a : T)→𝒯(a))

Γn ⊢ f : ((a : T)→𝒯(a)) Γn ⊢ f(a) : 𝒯(a)
Γn ⊢ a : T

(39a) introduces dependent function types. (39b) characterizes what it means for a
function to be a witness for a dependent function type. The first rule says that if, assum-
ing a : T, we can conclude that f(a) : 𝒯(a), then f is of the dependent function type
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((a : T)→𝒯(a)). The second rule says that if a function f is of this type and f applied to
some object a is of type 𝒯(a) then a : T. We have included this second rule in order to
require that the domain type of f is T. The first rule requires that f will be defined on
anything of type T and the second requires that anything the function is defined on is of
type T; that is, a function f of type ((a : T)→𝒯(a)) is defined on all and only witnesses
of T.

We can think of the set (35) of update functions as the set of rules which define the game.
With the types we have so far these rules will not have a type in common. All the rules,
except for the first one listed will be defined on some type of information state with a non-
empty agenda. If T is a type we will use nelist(T) to represent the type of non-empty
lists of objects of type T given in (40).

(40) [
fst : T
rst : list(T) ]

We might think that all the functions listed in (35) are of the type (41).

(41) ((r:
[
agenda:nelist(RecType)

]
)→(fst(r.agenda)→RecType))

This would, however, be incorrect since functions of the type (41) would have to be
defined on all information states with a non-empty agenda. However, the functions in (35)
are only defined on some of the information states with a non-empty agenda, since they
require a particular type to be on the agenda. That is they are partial functions on informa-
tion states with non-empty agenda. We shall use (T1 ⇀ T2) to represent the type of partial
functions from objects of type T1 to objects of type T2. Functions of this type are not arbi-
trary partial functions but those which are of some total function type (T→T2) such that
any object of type T is also of type T1. That is, we only consider partial functions which are
total functions on the objects of some type.

We can characterize this formally by (42), repeated in Appendix A4.

(42) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with function types has partial function types if

1. for any T1,T2 ∈ Type, (T1 ⇀ T2) ∈ Type
2. for any T1,T2 ∈ Type, f :TYPEC

(T1 ⇀ T2) iff there is some type T ' such
that f : (T '→T2) and for any a, if a : T ' then a : T1

This can be expressed in our informal proof theoretic notation as (43).

(43) For Γ a system of complex types with partial function types:

a.
Γ ⊢ T1 ∈ Type Γ ⊢ T2 ∈ Type

Γ ⊢ (T1 ⇀ T2) ∈ Type

b.
Γ ⊢ f : (T→T2)

[Γ ⊢ x : T]
...

Γ ⊢ x : T1

Γ ⊢ f : (T1 ⇀ T2)
continued
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Γ ⊢ f : (T1 ⇀ T2) a ∈ dom(f)
Γ ⊢ a : T1

Γ ⊢ f : (T1 ⇀ T2) a ∈ dom(f)
Γ ⊢ f(a) : T2

Essentially these definitions characterize a type (T1 ⇀ T2) as a limited kind of poly-
morphic function type. That is, a function will be of this type just in case it is a witness
for one of many types (T→T2) where any witness for type T is also a witness for type T1.

The rules in the game (35) are either of type (36) or (44).

(44) (r:
[
agenda:nelist(RecType)

]
⇀(fst(r.agenda)→RecType))

That is, they are all of the join type in (45), which we will call GameRule.

(45) ((InitInfoState→RecType)∨(r:
[
agenda:nelist(RecType)

]
⇀(fst(r.agenda)→RecType)))

In general we can say that for any two types, T1 and T2, there is another type (T1 ∨T2) and
that a : (T1 ∨ T2) just in case either a : T1 or a : T2. Join types can also be called union or
disjunctive types.

We can introduce join types formally as in (46), repeated in Appendix A7.

(46) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has join types if

1. for any T1,T2 ∈ Type, (T1 ∨ T2) ∈ Type
2. for any T1,T2 ∈ Type, a :TYPEC

(T1 ∨ T2) iff a :TYPEC
T1 or a :TYPEC

T2

In our informal proof theoretic notation this can be expressed as (47).

(47) For Γ a system of complex types with join types:

a.
Γ ⊢ T1 ∈ Type Γ ⊢ T2 ∈ Type

Γ ⊢ (T1 ∨ T2) ∈ Type

b.
Γ ⊢ a : T1 Γ ⊢ T2 ∈ Type

Γ ⊢ a : (T1 ∨ T2)
Γ ⊢ T1 ∈ Type Γ ⊢ a : T2

Γ ⊢ a : (T1 ∨ T2)

Γ ⊢ a : (T1 ∨ T2)

[Γ ⊢ x : T1]...
Γ ⊢ x : T

[Γ ⊢ x : T2]...
Γ ⊢ x : T

Γ ⊢ a : T
(47a) tells us that for any two types in the system there is a join type which can be
constructed from them. The first two rules in (47b) tell us it is sufficient for an object to
be a witness of one of the two types in order to be a witness for the join type. The third
rule tells us that if something, a, is a witness for a join type and there is some type, T,
such that we can show that witnesses for either of the two types used to construct the
join type are also witnesses for T, then a is a witness for T.

We specify that (T1 ∨ T2) represents the labelled set (48)

(48) {⟨disj1,T1⟩, ⟨disj2,T2⟩}



2.3 DOING THINGS WITH TYPES 59

where ‘disj1’ and ‘disj2’ are reserved labels (“disjunct”). For many purposes it may be an
unwanted consequence of this characterization of join types that the types T1 ∨ T2 and
T2 ∨ T1 are distinct types, albeit with the same set of witnesses. For cases where this is
not desired we introduce generalized join types as in (49), repeated in Appendix A7.

(49) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has generalized join types if

1. for any finite set of types,𝒯, such that𝒯 ⊆ Type,
⋁
𝒯 ∈ Type

2. for any finite𝒯 ⊆ Type, a :TYPEC

⋁
𝒯 iff a :TYPEC

T for some T ∈ 𝒯

In our informal proof theoretic notation, this is expressed as (50).

(50) For Γ a system of complex types with generalized join types:

a.
Γ ⊢ T1 ∈ Type,T2 ∈ Type, …,Tn ∈ Type

Γ ⊢
⋁
{T1,T2, …,Tn} ∈ Type

b.
Γ ⊢

⋁
{T1, …,Ti, …,Tn} ∈ Type Γ ⊢ a : Ti

Γ ⊢ a :
⋁
{T1, …,Ti, …,Tn}

Γ ⊢ a :
⋁
{T1, …,Tn}

[Γ ⊢ x : T1]...
Γ ⊢ x : T

· · ·
[Γ ⊢ x : Tn]...
Γ ⊢ x : T

Γ ⊢ a : T
We can then, if desired, use the notation (T1 ∨T2 ∨…∨Tn) to express

⋁
{T1,T2, …,Tn}.

The set in (35) is thus a set all of whose members are witness of type GameRule, that is
the set is of type set(GameRule). For any type, T, there is a type set(T) whose witnesses
are sets each of whose members are of type T.

We can introduce set types formally as in (51), repeated in Appendix A5.

(51) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has set types if

1. for any T ∈ Type, set(T) ∈ Type
2. for any T ∈ Type, X :TYPEC

set(T) iff X is a set and for all a ∈ X,
a :TYPEC

T

In our informal proof theoretic notations, this is expressed as (52).

(52) For Γ a system of complex types with set types:

a.
Γ ⊢ T ∈ Type

Γ ⊢ set(T) ∈ Type

b. X set

[x ∈ X]
...

Γ ⊢ x : T
X : set(T)

Γ ⊢ X : set(T) a ∈ X
Γ ⊢ a : T

continued
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(52a) tells us that for any type, T, there is another type set(T). In (52b) we use ‘X set’
to represent that X is a set, in the sense of set theory. The first rule in (52b) tells that if
we have a set, X, and a way of showing that any member of X is of type T, then X is of
type set(T). The second rule tells us conversely that if we have a set of type set(T)
then anymember of X is of type T. The inference rules in (52b) are presumably not rules
that would be available in a constructive type theory in that they rely on the set theoretic
notion of set (including infinite and non-denumerable sets) and it may not be decidable
whether all the members of an arbitrary set are of type T or not. One strategy that can
be used, if we are concerned about this, is to limit the notion of set to those which are
recursive. For many of the applications we have in mind, finite sets are adequate. For
example, we would probably want to limit games to having a finite set of rules.

The set of game rules in (35) gives the rules for specific participants, a, b, and c. In order
to characterize the game in general we need to abstract out the roles of the individual par-
ticipants in the game. This we will do by defining a function from a record containing
individuals appropriate to play the roles in the game thus revising (35) to (53).

(53) λr*:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h : Ind
chuman : human(h)
d : Ind
cdog : dog(d)
s : Ind
cstick : stick(s)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

{ λr:
[
agenda=[]:[RecType]

]
.[

agenda=[
[
e:pick_up(r*.h,r*.s)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:pick_up(r*.h,r*.s)

]
]:[RecType]

]

λe:
[
e:pick_up(r*.h,r*.s)

]
.[

agenda=[
[
e:attract_attention(r*.h,r*.d)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:attract_attention(r*.h,r*.d)

]
]:[RecType]

]

λe:
[
e:attract_attention(r*.h,r*.d)

]
.[

agenda=[
[
e:throw(r*.h,r*.s)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:throw(r*.h,r*.s)

]
]:[RecType]

]

λe:
[
e:throw(r*.h,r*.s)

]
.[

agenda=[
[
e:run_after(r*.d,r*.s)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:run_after(r*.d,r*.s)

]
]:[RecType]

]

λe:
[
e:run_after(r*.d,r*.s)

]
.[

agenda=[
[
e:pick_up(r*.d,r*.s)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:pick_up(r*.d,r*.s)

]
]:[RecType]

]

λe:
[
e:pick_up(r*.d,r*.s)

]
.[

agenda=[
[
e:return(r*.d,r*.s,r*.h)

]
]:[RecType]

]
,

λr:
[
agenda=[

[
e:return(r*.d,r*.s,r*.h)

]
]:[RecType]

]

λe:
[
e:return(r*.d,r*.s,r*.h)

]
.[

agenda=[]:[RecType]
]

}
(53) is of type (Rec ⇀ set(GameRule)) which we will call Game.
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Specifying the rules of the game in terms of update functions in this way will not actually
get anything to happen, though. For that we need type acts of the kind we discussed. We
link the update functions to type acts by means of licensing conditions on type acts which
we can also refer to as action rules as discussed in Section 2.3. A basic licensing condition
is that an agent can create (or contribute to the creation of ) a witness for the first type that
occurs on the agenda in its information state. Such a licensing condition is expressed in
(54) where we use si,A to represent the current information state of the agent A.

(54)
si,A :A [agenda:[

fst:RecType
rst:list(RecType)]]

:A si,A.agenda.fst!

Update functions (or game rules) of the kindwehave discussed are handled by the licens-
ing conditions in (55), wherewe use f to represent an update function available to the agent,
A, and e an event currently observed by the agent. As before si,A refers to A’s current infor-
mation state and si+1,A is used to refer to A’s updated information state. We use e* to refer
to a current event.

(55) a.
f : (T1→(T2→Type)) si,A :A T1 e* :A T2

si+1,A :A f(si,A)(e*)

b.
f : (T→Type) si,A :A T

si+1,A :A f(si,A)

(55a) is for the case where the update function requires an event in order to be triggered
and is thereby licensed (or “afforded”) to judge their updated information state as being
of the type resulting from applying the update function to their current information state
and the observed event. (55b) is for the case where no event is required. We can think of
updates to the information state licensed by this as tacit updates, that is, updates that do
not require an external event such as a speech event or move in a game.

Licensing conditions will regulate the coordination of successfully realized games like
fetch. They enable the agents to coordinate their activity when they both have access to the
same objects of type Game and are both willing to play. The use of the word “license” is
important, however. The agents have free will and may choose not to do what is licensed
and also may perform acts that are not licensed. We cannot build a theory that will predict
exactly what will happen but we can have a theory which tells us what kinds of actions
belong to a game. It is up to the agents to decide whether they will play the game or not.
At the same time, however, we might regard whatever is licensed at a given point in the
game as an obligation. That is, if there is a general obligation to continue a game once you
have embarked on it, then whatever type is placed on an agent’s agenda as the result of a
previous event in the game can be seen as an obligation on the agent to play its part in the
creation of an event of that type.

2.4 Speech events

So far we have talked about the perception of events such as a boy and a dog playing fetch.
We have imagined Kim walking through the park and perceiving various kinds of events.
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Suppose that she meets a friend in the park and they start to have a conversation. A conver-
sation is a kind of event involving languagewhich seems to be uniquely human. The kind of
dialogue involved in a conversation enables humans to exchange information in a way that
is more complex and more abstracted from currently occurring events than other animals
seem capable of. Nevertheless, we will argue that the basic mechanisms of dialogue involve
assigning types to events in the way that we have discussed so far. The events involved are
speech events.

Consider the kind of event type prediction that we considered in Section 2.3.2. Suppose
that Kim sees the boy playing fetch with the dog and the boy is standing close to the lake
with his back to it. As the dog runs towards him with the stick he takes a step backwards.
“No,” says Kim, seeing that the boy is about to fall in the lake. “Watch out,” she shouts to
the boy who takes a step forward just in time and narrowly misses falling in the lake. Her
utterance of no represents a negative attitude towards a predicted outcome. This kind of
negation is discussed briefly in Cooper and Ginzburg (2011a,b) where examples are given
of cases where no is a response to a completed event and where it is used as an attempt
to prevent the predicted outcome. This latter exploits the fact that agents cannot only per-
ceive and classify events according to the types to which they are attuned but can also
intervene and prevent a predicted outcome. Kim’s linguistic utterance of watch out is used
in this way. While Kim is using words of English this is not yet completely linguistic inter-
action. A dog, sensing danger, will begin to bark and this can have the effect of preventing
a predicted outcome. It is a kind of inter-agent communication nevertheless in that it is an
intervention in the flow of events which involves predicting and changing the behaviour
of another agent. In this sense it is similar to human dialogue, although human dialogue is
normally amuchmore abstract affair, involving predicting and influencing the other agent’s
linguistic behaviour and the attitudes and beliefs which the other agent has concerning
certain types.

Dialogues themselves are events and, just like other events, can be regarded as strings
of smaller events. Consider the dialogue excerpt (56) from the British National Cor-
pus which is the beginning of a consultation between a patient (John) and a doctor
(Anon 1).

(56) John: Hello doctor.
Anon 1: Hello.

Well Mr [last or full name], what can I [do for you today]1?
John: [Er, it’s]1 a wee problem I’ve had for a ⟨pause⟩ say about a year now.
Anon 1: Mhm.
John: It’s er my face.

And my skin.
I seem to get an awful lot of, it’s like

Anon 1: Aha.
John: dry flaky skin.
Anon 1: Yeah.
John: And I get it on my forehead, [down here]2
Anon 1: [I can see]2

BNC file G43, sentences 1–13
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We might assign the whole dialogue of which this is a part to a genre type for patient
doctor consultation.⁴ The genre type could be seen as an event type which, like the type
for the game of fetch discussed in Section 2.2, can be broken down into a string of subevent
types such as greeting (realized here by the exchange Hello doctor./Hello), establishing the
patient’s symptoms (realized here by the remainder of (56)), making a diagnosis, prescrib-
ing treatment, and so on. These subevents can be further broken down into strings of turns
which further can be broken down into strings of utterances of phrases. In turn, phrase
utterances are constituted by strings of word utterances which in turn can be regarded as
strings of phoneme events. Notice that the temporal relationships between the elements of
these strings is more varied than we accounted for in Section 2.2. In dialogue, utterances
may temporally overlap each other (as indicated in (56) by the notation […]n). When we
consider adjacent phoneme events in a string, overlap becomes the norm (referred to as
coarticulation in phonetics). Although we did not take it up in Section 2.2, temporal over-
lap in event strings is not restricted to speech events. For example, in the game of fetch it is
quite often the case that the dog will start running after the stick before the human has fin-
ished throwing it. Perceiving temporally overlapping events is part of our basic perceptual
apparatus.

We will work on developing a type for speech events, SEvent.⁵ Crucial here is the type
of phonological event, Phon, that is the type of event where certain speech sounds are pro-
duced. A field for events of this type will play a role corresponding to the phonology feature
in HPSG (Sag et al., 2003). For simplicity we might assume that Phon is an abbreviation
for

[
e:Word

]+ that is a non-empty string of events where a word is uttered.⁶ Here Word is
the type of event where word forms of the language are uttered. A more accurate proposal
might be that Phon is

[
e:Phoneme

]+⁷ where Phoneme is the type of utterance event where a
phoneme is uttered. This would still be a simplification and an abstraction from the actual
events that are being classified, however. A phoneme type is rather to be regarded as a com-
plex type of acoustic and articulatory event and what we regard as a string of phonemes is
in fact a string of events where the phoneme types overlap. For example, the pronunciation
of the phoneme /k/ in “kit” is distinct from its pronunciation in “cat” due to the influence
of the following vowel. Suppose that the dimensions of phoneme utterance events are given
by place, manner, rounding, voicing, and nasality. Then we might represent the type of an
utterance of /k/ as

(57)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : Velar
manner : Stop
rounding : NonRound
voicing : NonVoiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

the type of an utterance of /i/ by

⁴ For a discussion of genre in the kind of framework that we are describing see Ginzburg (2010, 2012).
⁵ This type will be different for different languages, dialects, even idiolects. Thus there will be a different type

corresponding to what we think of as speech events of English as opposed to speech events of French. Similar
remarks can bemade about all the linguistic types that we introduce.We will ignore this in our grammatical types
in order to avoid proliferation of subscripts.

⁶ If we want to be more grammatically sophisticated we might want to allow silent speech events by allowing
empty phonologies; that is, we say that Phon is the type

[
e:Word

]* .
⁷ Or

[
e:Phoneme

]* .
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(58)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : FrontHigh
manner : Vocalic
rounding : NonRound
voicing : Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and the type of an utterance of /æ/ by

(59)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : BackHigh
manner : Vocalic
rounding : NonRound
voicing : Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Naively, one might think that the type of the phoneme string /ki/ would be

(60)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : Velar
manner : Stop
rounding : NonRound
voicing : NonVoiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : FrontHigh
manner : Vocalic
rounding : NonRound
voicing : Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

However, the place of articulation of the /k/ will be influenced by the place of articulation
of the following vowel as in (61)

(61)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : Palatal
manner : Stop
rounding : NonRound
voicing : NonVoiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : FrontHigh
manner : Vocalic
rounding : NonRound
voicing : Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

In addition to this the voice onset associated with the vowel will normally begin before the
articulation of the stop is complete as in (62).

(62)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : Palatal
manner : Stop
rounding : NonRound
voicing : NonVoiced⌢Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

place : FrontHigh
manner : Vocalic
rounding : NonRound
voicing : Voiced
nasal : NonNasal

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

This is not meant to be a serious phonological analysis. We include it here to show how the
well-studied phenomenon of coarticulation could be included in the general framework
and to show that the notion of overlapping events which we will need later for semantics
and dialogue is the same notion that is needed for phonology. However, it seems likely
that TTR could be used to model something like autosegmental phonology (Goldsmith,
1990) possibly applying the ideas for using types to model musical scores introduced by
Cooper (2013b). We have no more to say about phonology and will limit our analysis of
phonological events to strings of words.

We will keep the simplifying assumption that phonology is a string of words here (that
is, that Phon is Word+ and we do not say more about what is of type Word) as we do not
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aim to give a detailed account of phonology. Thus a proposal for the type SEvent might
be (63).

(63)
[

e : Phon
]

To this we might usefully add the speech location as in (64).

(64)
⎡
⎢
⎢
⎣

e-loc : Loc
e : Phon
cloc : loc(e,e-loc)

⎤
⎥
⎥
⎦

We will take Loc to be the type of regions in three dimensional space without specifying
more detail. Further if e is an event and l a location we will say that the type loc(e,l) is
non-empty just in case e is located at l, again without saying exactly what that means for
now.

It might seem natural to add roles of speaker and audience, given what we know about
speech act theory (Searle, 1969). Thus we might consider SEvent to be the type in (65).

(65)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

However, while many speech events may be considered to be of this type, not all will. Of
course, some speech events are not addressed to any audience. An example might be an
exclamation uttered after hitting one’s thumb with a hammer. Longer speech events like
dialogues will not have a single speaker or audience. Even shorter chunks corresponding
perhaps to single speech acts do not always have a single speaker or audience. For example,
consider split utterances as discussed by Purver et al. (2010) who give the example (66).

(66) A: I heard a shout. Did you
B: Burn myself ? No, luckily.

Here we probably want to consider the utterance of Did you …burn myself ? as a speech
event on which A and B collaborate. Otherwise it might be hard to explain how you can be
interpreted as the subject of burn. We have a single predication split across two speakers.
Similarly, speakers can address different audiences within the same predicate structure as
in (67).

(67) You [pointing] work with you [pointing] and you [pointing] work on your own.

Nevertheless, we might consider that the majority of speech events would belong to the
more restricted type (65).

Because we have taken a neo-Davidsonian (Dowty, 1989) approach to the more
restricted speech-event types, where the objects playing the various roles in the speech
events are introduced in separate fields, both (64) and (65) are subtypes of (63). We will
use SEvent to represent the most specific of the types, (65), while bearing in mind that
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many events we may want to call “speech events” will belong only to more general types
such as (64) and (63).

2.5 Signs

We interpret many speech events as being associated with a semantic content, but not all.
When John in (56) says It’s a wee problem I’ve had for a, say, about a year now he is using
the speech event to refer to another situation—a situation in which he has dry skin for a
period of a year. This is what Barwise and Perry (1983) would refer to as the described
situation which is distinct from the speech situation. In contrast, the doctor’s utterance of
Hello in (56) does not tell us anything about a described situation external to the current
conversation, although it does give us information about where we are in the conversation
(the beginning) and indicate that the doctor is paying attention.We shall say that the former
utterance is associated with a type of described situation and call this the content of the
utterance. A situation type is an appropriate content for a declarative sentence used tomake
an assertion.⁸ The contents of phrases within such a sentence such as a wee problem or
about a year will be objects which can be combined to produce such a type. The contents of
other kinds of speech acts, for example, associatedwith questions like the doctor’s utterance
of what can I do for you today? will be objects based on situation types, in the case of this
question a function which maps situations of a certain type to a situation type. (Questions
are not treated in this book but seeGinzburg (2012) for a discussion of a treatment inTTR.)

We can think of this association of content with a speech event in similar terms to pre-
diction of event completion discussed in Section 2.2 of Chapter 1. At least in the case of
declarative assertions it is a mapping from an observation of a situation to a type of sit-
uation. In the case of the event completion the result of the mapping was a type for the
completion of the event so far observed. In the case of the speech event we are relating
the observation to a type of situation which is entirely distinct from the speech event. The
association is less immediate andmore abstract but the underlyingmechanism, associating
the observation of a situation of a given type with another type and drawing the conclusion
that the second type must be non-empty, is the same. We could represent the association
by a function of the form (68), corresponding to (20) in Chapter 1.

(68) λs :TSpEv . TCont(s)

This represents a mapping from a speech event s of a given type TSpEv to a type TCont which
is the content of the speech event. The type TCont can depend on s (for example, the type of
the described situation may require that the described situation be related to the utterance
situation temporally or spatially).

de Saussure (1916) called the association between speech and content a sign and this
notion has been taken up inmodern linguistics inHead-Driven Phrase StructureGrammar
(HPSG, Sag et al., 2003). In HPSG a sign is regarded technically as a feature structure and
our notion of record type correponds to a feature structure. One way in which our type

⁸ We will discuss later that alternative proposed in Ginzburg (2012) that it should be a pairing of a situation
type with a situation, that is an Austinian proposition as introduced by Barwise and Perry (1983) based on Austin
(1961).
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system differs from HPSG is that we have both records and record types to model signs
and sign types respectively, whereasHPSGhas just feature structures tomodel signs or sign
types. We will consider a sign to be a record representing a pairing of a speech event and a
type representing the content. One advantage of considering a sign as a record rather than
a function as in (68) is that there is no directionality in a record as there is in a function.
Thus the record can be associatedwith either interpretation (from speech event to content)
or generation (from content to speech event). We can make a straightforward relationship
between a function such as (68) and a record type (69).

(69) [
s-event : TSpEv
cont=TCont : Cont ]

(69) is a type of signs. Notice that the ‘cont’-field in (69) is a manifest field. It requires that
any record of this type will have a ‘cont’-field containing the type TCont. This corresponds
to the fact that the function in (68) returns the type TCont, not an object of type TCont. This
means that the ‘cont’ field in (69) requires that the type itself is in the ‘cont’ field in a record
of the type, that is, in the sign. The typeCont is the type of contents. For themomentwewill
say that Cont is the type RecType, that is, that contents are record types. This is because, for
the moment, we will restrict our attention to declarative sentences. When we come to look
at constituents of sentences and speech acts other than assertions we will need to expand
Cont to include other kinds of entities as well. Restricting our attention first to complete
declarative sentences is similar to starting with propositional logic before moving on to
more complex analysis. The type Sign of signs in general is given in (70).

(70) [
s-event : SEvent
cont : Cont ]

A record of this type, a sign, will pair a speech event with a content. We will refine our
definition of Sign as we progress. We will often have occasion to use subtypes of Sign to
characterize the signs used in our analyses. We will call these sign types and introduce the
type SignType whose witnesses we characterize in (71).

(71) T : SignType iff T ⊑ Sign

Sign types are a particular kind of record type so we will also have (72).

(72) SignType ⊑ RecType

2.6 Information exchange in dialogue

We start by considering simple dialogues such as (73) which might occur between two
people one of whom is instructing the other about simple facts or between a user and a
systemwhere the user is adding simple facts to a database using a natural lanuage interface.

(73) User: Dudamel is a conductor
System: Aha
User: Beethoven is a composer
System: OK
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The job of the dialogue partner identified as “System” is to record the facts in mem-
ory and confirm to the dialogue partner identified as “User” that this has happened. It
seems straightforward to think of the user’s utterances in (73) as corresponding to signs
as described in Section 2.5. For example, the user’s first utterance could be regarded as
corresponding to a sign of the type in (74).

(74)
⎡
⎢
⎢
⎣

s-event:
[

e : “Dudamel is a conductor”
]

cont=[ e : conductor(dudamel)
ctns : final_align(⇑s-event.e,e) ] : RecType

⎤
⎥
⎥
⎦

Here “Dudamel is a conductor” is a convenient abbreviation for (75).

(75)
[
e:“Dudamel”

]⌢[e:“is”
]⌢[e:“a”

]⌢[e:“conductor”
]

where for any wordw, “w” is the type of event wherew is uttered. “Dudamel is a conductor”
is thus a type of string of events of word utterances and is thus a subtype of Phon, given
our assumptions in Section 2.4.

The notation ‘⇑’ in (74) indicates that the path ‘x’ is not to be found in the local record
type which is required to be the value of ‘cont’ but in the next higher record type with the
fields ‘s-event’ and ‘cont’.

The content is that Dudamel is a conductor and that his being a conductor is aligned
with the speech event in that the speech event occurs simultaneously with the end of the
event of Dudamel being a conductor. This is not to say that Dudamel will not continue to
be a conductor after the speech event but rather to say that we are aligning the speech event
with what has happened so far up to and including the speech event. (The simple present
in English in contrast to the present progressive and the simple present in many other
languages seems to require this.) How do we align events?We use the technique developed
by Fernando (see, for example, Fernando, 2008) of creating a single event which includes
both events as a part. We will exploit our record technology to keep track of the separate
events in the larger event and to achieve something corresponding to what Fernando calls
superposition. We might require that the event which is the coordination of the two events
of type “Dudamel is a conductor” and ‘conductor(dudamel)’ is of the type in (76).

(76) [
e1 : “Dudamel is a conductor”
e2 : conductor(dudamel) ]

Another option is to require that the coordinated event type explicitly allow for there to be
events of the type ‘conductor(dudamel)’ prior to the utterance as in (77).

(77)
[

e : conductor(dudamel)
]*⌢[ e : [

e1 : “Dudamel is a conductor”
e2 : conductor(dudamel) ] ]

Here the dimension ‘e’ splits into two subdimensions ‘e.e1’ and ‘e.e2’. If we wish to be
explicit about the fact that a situation of type “Dudamel is a conductor” is a string of word
utterances we can give the more detailed type in (78).
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(78)
[

e : conductor(dudamel)
]*⌢[ e : [

e1 : “Dudamel”
e2 : conductor(dudamel) ] ]⌢

[ e : [
e1 : “is”
e2 : conductor(dudamel) ] ]⌢

[ e : [
e1 : “a”
e2 : conductor(dudamel) ] ]⌢

[ e : [
e1 : “conductor”
e2 : conductor(dudamel) ] ]

This explicitly requires that Dudamel is a conductor during the utterance of each indi-
vidual word. Both the types (77–78) are facilitated by the fact that ‘conductor(dudamel)’ is
a state-type; that is, given a situation e : conductor(dudamel) we can regard it as a string of
events of type

[
e:conductor(dudamel)

]+. The predicate ‘final_align’ in (74) requires align-
ment of the speech event and the described event in the way we have exemplified in (77)
and (78).

What has been sketched here is suggestive of an approach to tense and aspect in TTR
which seems deserving of more detailed exploration. It is not developed further in this
book, however.

If s is a string, we use the notation s[i] to represent the object which is in the ith
position of s, that is, in the records that we use to code strings, s.ti. s[0] represents the
first element in s. The definition of what counts as a witness for final_align(e1,e2), given
in (79) and repeated in Appendix A13.2, requires that e is of this type just in case e is
an event where e1 is aligned with a final segment of e2; that is, in e there is a split in
dimension in the final segment as illustrated in (78).

(79) If s1:Rec+ is a string of length n and s2:Rec+ is a string of length m, then s :
final_align(s1,s2) iff

1. m is greater than or equal to n
2. s is a string of length m
3. for each i, 0 ≤ i< n,

(a) s[(m − n) + i] : [e1:Rec
e2:Rec]

(b) s[(m − n) + i].e1 = s1[i]
(c) s[(m − n) + i].e2 = s2[(m − n) + i]

4. otherwise for each i, 0 ≤ i<m, s[i] = s2[i]

Suppose that s1 and s2 are the two strings in (80) of lengths 4 and 5 respectively.

(80) a. s1[0]s1[1]s1[2]s1[3]
b. s2[0]s2[1]s2[2]s2[3]s2[4]

continued
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Then s will be the string in (81).

(81) s2[0][
e1 = s1[0]
e2 = s2[1]

][
e1 = s1[1]
e2 = s2[2]

][
e1 = s1[2]
e2 = s2[3]

][
e1 = s1[3]
e2 = s2[4]

]

In terms of our informal proof theoretic notation we might write (82).

(82) For Γ with string types

a.
Γ ⊢ s1 : Recn

Γ ⊢ s2 : Recm

Γ ⊢ s : Recm
m ≥ n

[0 ≤ i< n]
...

Γ ⊢ s[(m − n) + i] = [ e1 = s1[i]
e2 = s2[(m − n) + i] ]

Γ ⊢ s : final_align(s1, s2)

b.

Γ ⊢ s1 : Recn

Γ ⊢ s2 : Recm

Γ ⊢ s : Recm
m ≥ n

0 ≤ i< n Γ ⊢ s : final_align(s1, s2)

Γ ⊢ s[(m − n) + i] = [ e1 = s1[i]
e2 = s2[(m − n) + i] ]

(74) is a more friendly notation for (83).

(83)
⎡
⎢
⎢
⎢
⎣

s-event:
[
e:“Dudamel is a conductor”

]

cont:⟨λv1:“Dudamel is a conductor” .
RecType

[
e:conductor(dudamel)
ctns:⟨λv2:conductor(dudamel) . final_align(v1 , v2), ⟨e⟩⟩

]
, ⟨s-event.e⟩⟩

⎤
⎥
⎥
⎥
⎦

The ‘⇑’ notation is inspired by the use of ‘⇑’ in Lexical Function Grammar (Dalrym-
ple et al., 1995) pointing up a hierarchical structure.

An alternative involves unique identifiers and is inspired by the notation used for
reentrancy in Head-Driven Phrase Structure Grammar (Sag et al., 2003). The example
in this notation is given in (84).

(84)
⎡
⎢
⎢
⎣

s-event:
[

e 0 : “Dudamel is a conductor”
]

cont=[ e 1 : conductor(dudamel)
ctns : final_align( 0 , 1 ) ]:RecType

⎤
⎥
⎥
⎦

We will call this last notation unique identifier notation. We will go into this notation
with some rigour because it will be useful later when we introduce relabelling of record
types in Chapter 4. The unique identifier notation for a type, T, can be obtained from
the official notation for T by carrying out in order the manipulations characterized in
(85), repeated in Appendix A11.5.

(85) 1. Add a unique identifier i (where i is a natural number) to the last label
occurrence in any path, π, which is referenced in a dependent field,
⟨ f, ⟨…, π, …⟩⟩, somewhere in T.
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2. Replace π in any dependent field, ⟨ f, ⟨…, π, …⟩⟩, with the unique identifier
associated with the final label occurrence in π.

3. Replace any pair in a dependent field of the form

⟨λv1 : T1… λvn : Tn . φ((v1, …, vn)), ⟨ i1 , …, in ⟩⟩

with

φ(( i1 : T1, …, in : Tn))

The final step involves a variant of β-conversion. It is important to represent the type
restriction associated with the unique identifier by the domain type of the function
since the domain type of the function may be distinct from the type associated with
the identifier in the field labelled by the identifier. However, we suppress the type when
the domain type of the function is identical with the type associated with the path in
T which is referenced (as is most often the case in the examples we discuss). This is
illustrated in (84).

We also show how to convert back from unique identifier notation for a type, T, to
official notation.We can do this by carrying out themanipulations characterized in (86)
in order (repeated in Appendix A11.5)

(86) 1. For each occurrence of i in a dependent field labelled ℓd (the label for the
dependent field) for some natural number, i, locate the smallest record
structure, Δ, in T which contains a path, πd, to ℓd and a path πa to a label ℓ i
(the label for the addressed field)

2. Let ℓ be the first label on πd. If Δ.ℓ is an ordered pair
⟨λvj :Tj . φ(( i :Ti)), ⟨π1, …, πn⟩⟩, then replace Δ.ℓ with
⟨λvi :Ti . λvj :Tj . φ[ i :Ti ⇝ vi], ⟨π1, …, πn, πa⟩⟩. Otherwise, if Δ.ℓ is φ(( i :Ti)),
replace Δ.ℓ with ⟨λvi :Ti . φ[ i :Ti ⇝ vi], ⟨πa⟩⟩

3. For any number i, remove the subscript i on any label on which it occurs.

The sign type (74) seems to give us what we need in order to explain how an utter-
ance of Dudamel is a conductor can convey the information that Dudamel is a conductor.
If both dialogue participants have this sign type among their resources then the User
knows that in order to convey this content she has to make an utterance which witnesses
the appropriate speech event type. The System knows that on observing a speech event
of this type the corresponding content should be recorded. Simple action rules relating
to the sign type (74)/(86) are given in (87) to illustrate the kind of reasoning we are
thinking of. These rules assume that the agent A has access to the type (74)/(86) as a
resource, either stored inmemory or available through computation using other accessible
resources.

(87) a.

u :A “Dudamel is a conductor”

:A
⎡
⎢
⎢
⎣

s-event:
[
e=u:“Dudamel is a conductor”

]

cont= [e:conductor(dudamel)
ctns:final_align(⇑s-event.e,e)]:RecType

⎤
⎥
⎥
⎦
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b.

si,A :A

⎡
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

s-event:
[
e:Phon

]

cont= [e:conductor(dudamel)
ctns:final_align(⇑s-event.e,e)]:RecType

⎤
⎥
⎥
⎦

:RecType

rst:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

si+1,A :A

⎡
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

s-event:
[
e:“Dudamel is a conductor”

]

cont=[e:conductor(dudamel)
ctns:final_align(⇑s-event.e,e)]:RecType

⎤
⎥
⎥
⎦

:RecType

rst=si,A.agenda.rst:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

(87a) tells us that if an agent, A, judges an utterance, u, to be of the phonological type we are
representing as “Dudamel is a conductor” then A is licensed to make the judgement that
there is a sign, that is, an event, of the type (74)/(87) of which u is the speech component.
(87b) tells us that if an agent, A, is planning to make an utterance with the content that
Dudamel is a conductor, that is, there is a sign type onA’s agendawhich specifies the content
but does not specify the exact nature of the phonological event required, then A is licensed
to update her information state with the type (74)/(87) which does specify the type of
the phonological content and has the same content. The rules in (87) are, of course, very
specific and rely on a simple notion of information state in which there is an agenda. In
what follows we will try to move towardsmore general rules based on sign types which can
be derived by parsing and generation techniques and compositional processing of speech
events. However, these rules illustrate how we can relate the kind of abstract and static sign
types that we are proposing to dynamic actions afforded by given events and information
states of an agent.

Things are not as straightforward, however, for the acknowledgements Aha and OK
expressed by the system. It is not obvious whether these utterances are to be regarded as
signs at all. Certainly a speech event is involved but one might question what content they
have. One suggestion would be that the content of Aha uttered after an assertion by the
other dialogue partner would be the same as the content of that assertion. Thus the system
is expressing the same content as the user. This may or may not be true. But such an analy-
sis seems to be missing a central point about what is going on in this dialogue, namely that
the user is making an assertion and the system is acknowledging that the content has been
accepted and duly processed. In order to account for this kind of fact Ginzburg in a large
body of work has developed the notion of a dialogue game-board,most recently formulated
in terms of TTR in Ginzburg (2012); Ginzburg and Fernández (2010). In the computa-
tional dialogue systems literature this has given rise to the Information State Update (ISU)
approach (Larsson and Traum, 2001; Larsson, 2002) which is also described in Ginzburg
and Fernández (2010). In Chapter 1 we introduced the notion of an information state as a
record containing a field labelled ‘agenda’ and used the word “gameboard” to refer to a type
of information state. Our aim there was to show that the kind of gameboard analysis intro-
duced for dialogue in this literature is also important for the coordination of joint action by
agents in general. The gameboards that have been used for dialogue analysis have a num-
ber of fields in addition to the agenda. Each dialogue participant will have among their
resources a record type, their dialogue gameboard which represents their understanding of
(what Larsson calls their take on) their current information state. FollowingLarsson (2002)
we place information which the agent assumes to be common with its interlocutors under
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User

Private: plan to utter “Dudamel is a conductor”
Shared

Output to System:
“Dudamel is a conductor”

Private
Shared: Latest utterance is

‘User: Dudamel is a conductor’

Input from System: “Aha”

Private
Shared:  Latest utterance is ‘System: aha’

Commitment is conductor(Dudamel)

System

Private
Shared

Input from User:
“Dudamel is a conductor”

Private: plan to acknowledge latest utterance
Shared: Latest utterance is

‘User: Dudamel is a conductor’

Output to user: “Aha”

Private
Shared:   Latest utterance is ‘System: aha’

Commitment is conductor(Dudamel)

Figure 2.3 Dialogue management:“Dudamel is a conductor”

the label ‘shared’ in the gameboard and also have a field with the label ‘private’ representing
information about the state of the dialogue which is not shared with other dialogue par-
ticipants. This will include, for example, plans for what should be said next represented in
the agenda. In Figure 2.3 we give a schematic view of the gameboards associated with each
of the dialogue participants in the first exchange in (73).

This assumes ideal communication. There is lots that could go wrong which could
have the consequence that the two agents become misaligned and an important part of
this framework is to provide a basis for the description of miscommunication as well as
communication. (See Ginzburg (2012) for more discussion of this.)

We treat the dialogue information states represented by the square boxes as records as
in (88).

(88)
⎡
⎢
⎢
⎣

private =
[

agenda = AGENDA
]

shared = [
latest-utterance = L-UTT
commitments = COMM ]

⎤
⎥
⎥
⎦

What kinds of objects should AGENDA, L-UTT and COMM be? We will say that
AGENDA is a list of sign types, that is, the types of sign that the agent plans to realize
by means of a creation type act. Note that it is important here that the agenda is a list of
sign types rather than signs, since signs are already realized utterances whereas the types
on the agenda may or may not be realized at some future time. This important distinction
between signs and sign types is something that is available in TTR but which is not avail-
able in HPSG. The use of types here seems related to Levelt’s (1989) notion of message
planning. Putting a type on the agenda might correspond to what Levelt calls macroplan-
ning. What he callsmicroplanning might correspond to procedures that would refine types
already present on the agenda, for example, planning the exact phonology to be used.

Recall from Chapter 1 that putting a type on the agenda does not necessarily mean that
the agent is the main actor in the event realizing the sign type. It can for example be a type
of move to be carried out by an interlocutor which the agent should wait for. This will
give us a mechanism for handling basic turn-taking in dialogue. (See Sacks et al., 1974 for
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the classic work on turn-taking.) For now we will say that there are two ways in which an
agent can be involved in a dialogue act: as speaker (or performer) or as hearer (part of the
audience to whom the dialogue act is addressed).⁹

L-UTT should tell us what the latest utterance in the dialogue was. This will be the
witness of a sign type.

The commitments field has normally been considered as a set of facts or propositions
(Ginzburg, 2012; Larsson, 2002). Here we will treat them as a single record type, i.e. a
witness of the type RecType. Using a single type will make it more straightforward to deal
with issues like consistency and anaphora as we will see in later chapters.

Thus information states can belong to the type (89), our current version of the type
InfoState.

(89)
⎡
⎢
⎢
⎣

private :
[

agenda : list(RecType)
]

shared : [
latest-utterance : Sign*

commitments : RecType ]

⎤
⎥
⎥
⎦

Here Sign* is the type of strings of signs of length 0 or more using the string type notation
introduced on p. 42. At the beginning of a dialogue there will be no latest utterance and we
will represent this by having the empty string of signs in ‘latest-utterance’-field. By using
Sign* we allow for the possibility that the previous utterance can be represented by a string
of several signs although in the examples we will discuss here we will only have strings of
length 1.

At the beginning of a dialogue there will not be any shared commitments either. There-
fore, it will be natural to use Rec for the commitments at the beginning of a dialogue. Rec
is the type of all records. If we think of records as modelling situations then a commitment
represented by Rec is a commitment to the existence of a situation but not to a situation of
any particular type. Thus it corresponds to “there is a situation” or “the world is not empty”.
It plays a similar role in our theory to the set of all possible worlds in a system based on
possible worlds. It represents a state where no constraints have been placed on the nature
of the world. The type Rec is one of the witnesses of RecType (see Appendix A11.2). The
type of an initial information state based on (89) is (90), that is, our current version of the
type InitInfoState.

(90)
⎡
⎢
⎢
⎣

private :
[

agenda=[ ] : list(RecType)
]

shared : [
latest-utterance=ε : Sign*

commitments=Rec : RecType ]

⎤
⎥
⎥
⎦

Some signs (but not all) will be associated with an illocutionary force, a term which
originally comes from Austin (1962). The four illocutionary forces we will consider here
are: assertion, query, command, and acknowledgement. Signs which have an illocutionary
force can be thought of as dialogue moves or in Austin’s original terminology illocution-
ary acts. Those signs which are not associated with an illocutionary force are normally
constituents of something which does have illocutionary force. Thus, for example, if some-
body says The dog barked the whole utterance can be thought of as an assertion. However,
the utterance of the dog which is part of this utterance does not have illocutionary force.
This is not to say that some other utterance of the dog could not have illocutionary force.

⁹ A third way of being involved in a dialogue act which we will not take account of here is as an overhearer.
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For example, in response to the question What made all the mess?, an utterance of the dog
might be regarded as an assertion that the dog made all the mess. For discussion of such
non-sential utterances see Fernández and Ginzburg (2002); Fernández (2006); Stainton
(2006); Ginzburg (2012).

We introduce four subtypes of Sign:Assertion,Query,Command, andAcknowledgement.
These are characterized in (91).

(91) Assertion –
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : assert(s-event, cont)

⎤
⎥
⎥
⎦

Query –
⎡
⎢
⎢
⎣

s-event : SEvent
cont : Question
illoc : query(s-event, cont)

⎤
⎥
⎥
⎦

Command –
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : command(s-event, cont)

⎤
⎥
⎥
⎦

Acknowledgement –
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : acknowledge(s-event, cont)

⎤
⎥
⎥
⎦

Note that the type of the content varies with the illocutionary force. We use the type Ques-
tion for queries and RecType for the others. The type Question is not characterized further
in this book (but see Ginzburg, 2012). It is quite likely that the content type for commands
should be something other than RecType, for example, the type Ppty (“property”) that we
will develop in later chapters, but we do not have more to say about commands in this
work. In a more complete treatment of illocutionary force, the nature of the speech event
could also be made to vary with illocutionary force. For example, we could require ques-
tion syntax for queries, although that would not take account of the fact that declarative
sentence syntax can also be used to ask questions. It is not our aim here to give a detailed
analysis of such phenomena but to provide a general framework in which they could be
analysed.

We will also introduce types AssertionType, QueryType, CommandType, and Acknowl-
edgementType which are characterized in a similar way to SignType as in (92).

(92) a. T : AssertionType iff T ⊑ Assertion
b. T : QueryType iff T ⊑ Query
c. T : CommandType iff T ⊑ Command
d. T : AcknowledgementType iff T ⊑ Acknowledgement

In order to find the content of an utterance of ok, we look to the content of the previous
utterance. Thus an utterance of ok following an utterance of Dudamel is a conductor will
have the same content as the assertion, namely (93).

(93)
[

e : conductor(dudamel)
]

Assigning (93) as the content of Dudamel is a conductor involves the naive assumption
that a proper name uniquely identifies a particular individual. We will develop a more
sophisticated approach to proper names in Chapters 3 and 4.

Let us consider the update function and update rule which the user could use in order
to update her information state after her own utterance of Dudamel is a conductor. This is
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modelled on the kind of integration rules discussed in Larsson (2002). The update function
we wish to characterize will be defined on information states which have some assertion
type as the first element on the agenda, that is the type in (94).

(94)

⎡
⎢
⎢
⎢
⎢
⎣

private : [ agenda : [
fst : AssertionType
rst : list(RecType) ] ]

shared : [
latest-utterance : Sign*

commitments : RecType ]

⎤
⎥
⎥
⎥
⎥
⎦

Rather than writing out such types in our update functions we can think of the objects
in the domain of our update function as meeting the requirement that they belong to two
types as in (95).

(95) a. InfoState
b.

[
private :

[
agenda :

[
fst : AssertionType

] ] ]

A statement of the update function in terms of the abbreviation InfoState will not only
save space but also be helpful as we further develop our notion of what type InfoState
represents. If we are just adding extra fields to the type InfoState, that is, we develop our
theorymonotonically just by addingmore detail, then we do not have to go back and revise
the formulation of the update functions based on earlier versions of the theory.

However, we still need to give a characterization of a single type which will serve as the
domain type of the update function. One way to do this is to use TTR’s meet types such as
(96).

(96) (InfoState ∧
[

private :
[

agenda :
[

fst : AssertionType
] ] ]

)

In general, a : (T1 ∧ T2) just in case a : T1 and a : T2.

We can introduce meet types (also known as intersection or conjunctive types) into a
type system as in (97), repeated in Appendix A8.

(97) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has meet types if

1. for any T1,T2 ∈ Type, (T1 ∧ T2) ∈ Type
2. for any T1,T2 ∈ Type, a :TYPEC

(T1 ∧ T2) iff a :TYPEC
T1 and a :TYPEC

T2

In our informal proof theoretic notation this can be represented as (98).

(98) For Γ a system of complex types

a.
Γ ⊢ T1 ∈ Type Γ ⊢ T2 ∈ Type

Γ ⊢ (T1 ∧ T2) ∈ Type

b.
Γ ⊢ a : T1 Γ ⊢ a : T2

Γ ⊢ a : (T1 ∧ T2)

c.
Γ ⊢ a : (T1 ∧ T2)

Γ ⊢ a : T1

d.
Γ ⊢ a : (T1 ∧ T2)

Γ ⊢ a : T2
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Just as we did for join types we can introduce a generalized version of meet types as in
(99), repeated in Appendix A8.

(99) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has generalized meet types if

1. for any non-empty finite set of types, 𝕋, such that 𝕋 ⊆ Type,
⋀
𝕋 ∈ Type

2. for any finite 𝕋 ⊆ Type, a :TYPEC

⋀
𝕋 iff a :TYPEC

T for all T ∈ 𝕋

In our informal proof theoretic notation this can be represented as (100).

(100) For Γ a system of complex types

a.
Γ ⊢ T1, …,Tn ∈ Type

Γ ⊢
⋀
{T1, …,Tn} ∈ Type

b.
Γ ⊢ a : T1, …, a : Tn

Γ ⊢ a :
⋀
{T1, …,Tn}

c.
Γ ⊢ a :

⋀
{T1, …,Tn} 1 ≤ i ≤ n
Γ ⊢ a : Ti

As with join types, we can, if we wish, use T1 ∧… ∧ Tn to represent
⋀
{T1, …,Tn}.

Note that the definition of paths for record types (Chapter 1, example (45)) means
that paths in record types will extend into meet types (but not join types). For example,
the record type (101a) (assuming Sit is some basic type) has the paths (101b)

(101) a.
⎡
⎢
⎢
⎣

e :
⎡
⎢
⎢
⎣

x : Ind
y : Ind
e : hug(x,y)

⎤
⎥
⎥
⎦

∧ Sit
⎤
⎥
⎥
⎦

b. {e, e.x, e.y, e.e}

If T1 and T2 are record types then there will always be a record type (not a meet) T3
which is necessarily equivalent to T1 ∧ T2, that is, any record, r, of type T1 ∧ T2 will be of
type T3 and vice versa. We will call this the merge of T1 and T2 which we will represent as
T1∧̣T2 (with a dot under ‘∧’). For example, (102a) will have the same set of witnesses as
(102b).

(102) a.
[

f : T1
]
∧
[

g : T2
]

b. [ f : T1
g : T2

]

When a label only occurs in one of the types being merged then the field with that label is
also a field of the merge of the two types. Thus (103) holds.

(103)
[

f : T1
]
∧̣
[

g : T2
]
= [ f : T1

g : T2
]

When the same label, ℓ, occurs in both types, then whatever occurs in the ℓ-field must be
of the types required in those fields by both the types. Thus (104a) and (104b) will have
the same witnesses.
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(104) a.
[

f : T1
]
∧
[

f : T2
]

b.
[

f : T1 ∧ T2
]

In a case like this we will make the merge recursive down inside the type; that is, we will
make merge the types in the ‘f ’-field in (104b). Thus (105) will hold.

(105)
[

f : T1
]
∧̣
[

f : T2
]
=
[

f : T1∧̣T2
]

If one or the other of T1 and T2 is not a record type then T1∧̣T2 will be T1 ∧ T2. If T1 ⊑ T2
then T1∧̣T2 is T1 and if T2 ⊑ T1 then T1∧̣T2 is T2.

We can define the merge operation on types in the following way (repeated in
Appendix A11.3). The definition is closely related to the unification algorithms used
in feature based grammar (see Shieber, 1986 for the classic reference).

We define a function μ which maps meets of record types to an equivalent record
type, record types to equivalent types where meets in their values have been simplified
by μ and any other types to themselves. μ is also defined on labelled sets which are not
types in order to account for merging inside a record type of structures which depend
on fields in the type outside the structure:

1. if for some T1,T2, T = (T1 ∧ T2) and T1 ⊑ T2 then μ(T) = T1
2. if for some T1,T2, T = (T1 ∧ T2) and T2 ⊑ T1 then μ(T) = T2
3. otherwise:

(a) if for some labelled sets T1, T2, T = (T1 ∧ T2) then μ(T) = μ'(μ(T1) ∧ μ(T2)).
(b) if T is a labelled set then μ(T) is T ' such that for any ℓ,v, ⟨ℓ, μ(v)⟩ ∈ T ' iff

⟨ℓ, v⟩ ∈ T.
(c) otherwise μ(T) = T.

μ'(T1 ∧ T2) is defined by:

1. if T1 and T2 are labelled sets, then μ'(T1 ∧ T2) = T3 such that
(a) for any ℓ, v1, v2, if ⟨ℓ, v1⟩ ∈ T1 and ⟨ℓ, v2⟩ ∈ T2, then

(i) if v1 and v2 are
⟨λu1:T '1…λui:T 'i . ϕ, ⟨π1…πi⟩⟩
and
⟨λu'1:T ''1…λu'k:T ''k . ψ, ⟨π'1…π'k⟩⟩
respectively, then
⟨λu1:T '1…λui:T 'i, λu'1:T ''1…λu'k:T ''k . μ(ϕ ∧ ψ), ⟨π1…πi, π'1…π'k⟩⟩ ∈
T3

(ii) if v1 is
⟨λu1:T '1…λui:T 'i . ϕ, ⟨π1…πi⟩⟩
and v2 is a type (i.e. not of the form ⟨ f, Π⟩ for some function f and

sequence of paths Π), then
⟨λu1:T '1…λui:T 'i . μ(ϕ ∧ v2), ⟨π1…πi⟩⟩ ∈ T3
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(iii) if v2 is

⟨λu'1:T ''1…λu'k:T ''k . ψ), ⟨π'1…π'k⟩⟩

and v1 is a type, then

⟨λu'1:T ''1…λu'k:T ''k . μ(v1 ∧ ψ), ⟨π'1…π'k⟩⟩ ∈ T3

(iv) otherwise ⟨ℓ, μ(v1 ∧ v2)⟩ ∈ T3

(b) for any ℓ, v1, if ⟨ℓ, v1⟩ ∈ T1 and there is no v2 such that ⟨ℓ, v2⟩ ∈ T2, then
⟨ℓ, v1⟩ ∈ T3

(c) for any ℓ, v2, if ⟨ℓ, v2⟩ ∈ T2 and there is no v1 such that ⟨ℓ, v1⟩ ∈ T1, then
⟨ℓ, v2⟩ ∈ T3

2. if T1 is list(T '1) (set(T '1), plurality(T '1)) and T2 is list(T '2)
(set(T '2), plurality(T '2)), then μ'(T1 ∧ T2) = list(μ(T '1 ∧ T '2))
(set(μ(T '1 ∧ T '2)), plurality(μ(T '1 ∧ T '2)))

3. otherwise μ'(T1 ∧ T2) = T1 ∧ T2

(T1 ∧̣ T2) is used to represent μ(T1 ∧ T2). We call (T1 ∧̣ T2) the merge of T1 and T2.
It is important for this characterization ofmerge to work properly that paths in record

types extend into meet types within the record type. Consider the merge expressed
in (106a) where we assume that Sit is a basic type, for example the type of situations.
According to the above definition (106a) will be identical with (106b).

(106) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :
⎡
⎢
⎢
⎣

x : Ind
y : Ind
e : hug(x,y)

⎤
⎥
⎥
⎦

c1 : boy(e.x)
c2 : dog(e.y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∧̣
[

e : Sit
]

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :
⎡
⎢
⎢
⎣

x : Ind
y : Ind
e : hug(x,y)

⎤
⎥
⎥
⎦

∧ Sit

c1 : boy(e.x)
c2 : dog(e.y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

If the paths of record types do not extend intomeet types then the paths of (106b) would
be (107) and (106) would not be a well-formed record type since the ‘c1’ and ‘c2’-fields
would reference non-existant paths.

(107) {e, c1, c2}

However, clearly any record which is of the type (106b) must in addition have the paths
‘e.x’ and ‘e.y’ because of the requirement expressed by themeet type. Thus it is appropri-
ate and intuitive that these should count as paths in the record type thus making (106b)
well-formed.

In our update action rules we will make use of an operation called asymmetric merge.
The asymmetric merge of types T1 and T2, T1 ∧̣T2 is like their merge except that if either
T1 or T2 is not a record type then T1 ∧̣T2 is T2. Also asymmetric merge does not check
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for subtyping in the way that ordinary merge does. Thus when asymmetrically merging
non-record types, T1 and T2, T1 ∧̣T2 will always be T2 regardless of whether the subtype
relation holds between the two types.

We can define asymmetric merge in the following way (repeated in Appendix A11.3).
The definition is closely related to the priority unification algorithms used in feature
based grammar (Shieber, 1986).

The asymmetric merge of T1 and T2 is defined by a function, μasym, exactly like μ
except that the first two clauses of the definition of μ are missing and μ' is replaced by
another function μ'asym. Thus the definition of μasym is:

1. if for some T1, T2, T = (T1 ∧ T2) then μasym(T) = μ'asym(μasym(T1) ∧ μasym(T2)).
2. if T is a record type then μasym(T) is T ' such that for any ℓ,v, ⟨ℓ, μasym(v)⟩ ∈ T ' iff
⟨ℓ, v⟩ ∈ T.

3. otherwise μasym(T) = T.

The definition of μ'asym is exactly like μ', replacing μ and μ' with μasym and μ'asym
respectively, except that the clause 3 of the definition of μ' is replaced by

3'. otherwise μ'asym(T1 ∧ T2) = T2

We use T1 ∧̣ T2 to represent the asymmetric merge of T1 and T2.
Asymmetric merge may result in an ill-formed record type if we take the asymmetric

merge of a record type, T1, and a non-record type, T2, since T1 may be embedded in
a larger type with fields dependent on paths into T1 which will not be present in the
result where T2 has been substituted for T1 thus removing the relevant paths. Consider
the asymmetric merge (108a) which is (108b), where, as above, Sit is a basic type.

(108) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e :
⎡
⎢
⎢
⎣

x : Ind
y : Ind
e : hug(x,y)

⎤
⎥
⎥
⎦

c1 : boy(e.x)
c2 : dog(e.y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∧̣
[

e : Sit
]

b.
⎡
⎢
⎢
⎣

e : Sit
c1 : boy(e.x)
c2 : dog(e.y)

⎤
⎥
⎥
⎦

(108b) is clearly not a well-formed type since the fields labelled by ‘c1’ and ‘c2’ address
non-existent paths.

For the sake of saving space and for readability it will be useful to introduce the nota-
tional convention in (109) inspired by a similar notation in Head-Driven Phrase Structure
Grammar (Sag et al., 2003).
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(109)

⎡
⎢
⎢
⎢
⎢
⎣

T
ℓ1 : T1
...
ℓn : Tn

⎤
⎥
⎥
⎥
⎥
⎦

represents

(T∧̣
⎡
⎢
⎢
⎢
⎣

ℓ1 : T1
...
ℓn : Tn

⎤
⎥
⎥
⎥
⎦

)

Armed with this technology we can define an update function, fPLANACKASS, and action
rule which plan an acknowledgement to an assertion as in (110).

(110) a. fPLANACKASS
λr:InfoState .

λu:Assertion .
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s-event:
⎡
⎢
⎢
⎣

SEvent
sp=u.s-event.au:Ind
au=u.s-event.sp:Ind

⎤
⎥
⎥
⎦

cont=u.cont:Cont
illoc:acknowledge(s-event, cont)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

rst=r.private.agenda:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:
[
latest-utterance=u:Assertion

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b. PLANACKASS
si,A :A Tcurr Tcurr ⊑ domtype(fPLANACKASS) u* :A Tutt Tutt ⊑ Assertion

si+1,A :A Tcurr ∧̣ (fPLANACCASS(si,A)(u*)∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

(110a) maps information states (records), r, to a function that maps events to a type of
information state. The second argument to the function (represented by u) requires a
speech event which is an assertion. The type that results from applying the function to
its arguments represents the effect of the update. This type requires the agenda to be the
result of pushing the type of an acknowledgement of the content of u onto the agenda and
recording u as the latest utterance. It also requires that the speaker of the acknowledgement
is the addressee of u and that the addressee of the acknolwedgement be the speaker of u.
The content of the acknowledgement is the same as the content of the assertion. That is,
what is being acknowledged is the content of the assertion.

(110b) is the action rule PLANACKASS which characterizes the conditions under which
an agent A can be licensed to plan to acknowledge an assertion. As before, we use si,A for A’s
current information state and si+1,A for A’s updated information state. Tcurr is used for the
type A assigns to her current information state. u* is used for the current utterance andTutt
for the type that A assigns to the current utterance. The rule says that if Tcurr is a subtype
of the domain type of the update function (110a) and Tutt is a subtype of Assertion then A
is licensed to judge that her updated information state is of the type Tcurr asymmetrically
merged with the result of applying the update function to the current information state and
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the current utterance and merged with the information that the latest utterance is of type
Tutt.

Note that the field ‘shared.commitments’ has not been updated after the assertion. This is
because the assertion has not yet been acknowledged. Thismodels cases inwhich agents are
cautious and do not assume that commitments are shared until the dialogue participant(s)
they are addressing have confirmed acceptance. This interaction is known as grounding
and is discussed (among other places) in Traum (1994) and Larsson (2002).

It is at the point that an agent performs an acknowledge-event (“ok”) which will license
an update of shared.commitments. Before we define this update function and action rule
we will examine what needs to happen in order to update the commitments.

Suppose that in the dialogue so far it has been established that Dudamel is a conductor
and that this is represented by the record type (111).

(111)
[

e : conductor(Dudamel)
]

Suppose further that the latest utterance has the content that Beethoven is a composer,
namely (112).

(112)
[

e : composer(Beethoven)
]

One obvious way to combine them would be to merge them; that is, (113a) which
is identical with (113b) which in turn is identical with (113c), given the definition in
Appendix A11.3 which requires that the merge of any two types which are not both record
types is identical with the meet of the two types.

(113) a.
[

e : conductor(Dudamel)
]
∧̣
[

e : composer(Beethoven)
]

b.
[

e : conductor(Dudamel) ∧̣ composer(Beethoven)
]

c.
[

e : conductor(Dudamel) ∧ composer(Beethoven)
]

For the simple storing of information represented by predicates and names represented in
(73) thismight be sufficient. It makes the claim that all the information is collected into one
eventuality. In more narrative dialogues referring to separate events which we may wish to
be able to refer back to this would be an inadequate solution, however. It would be better
if we have a way of keeping the labels ‘e’ separate so that they don’t clash, for example in
(114a) which is identical with (114b)

(114) a.
[

e1 : conductor(Dudamel)
]
∧̣
[

e2 : composer(Beethoven)
]

b. [ e1 : conductor(Dudamel)
e2 : composer(Beethoven) ]

The potential problems of label clash become very clear if we consider the types in (115a)
corresponding to a boy hugged a dog and a girl stroked a cat. (115a) is identical with (115b)
and has a single individual which is both a girl and a boy stroking another individual which
is both a dog and a cat.

(115) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∧̣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
cgirl : girl(x)
y : Ind
ccat : cat(y)
e : stroke(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦
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b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
cboy : boy(x)
cgirl : girl(x)
y : Ind
cdog : dog(y)
ccat : cat(y)
e : hug(x,y)∧stroke(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

One way to get around this problem is to ensure that whenever you introduce new types
you always use fresh labels that have not been used before and then use explicit constraints
to require identity in cases where it is required. However, when we come to examine com-
positional semantics in Chapter 3 we will see that it is quite important to refer to particular
labels in our rules of combination. Instead of introducing unique labels we will use the
power of records to introduce unique paths when contents are combined. We will use the
label ‘prev’ (“previous”). If Told is the content so far and Tnew is the content we wish to
add then the new combined content will be as in (116a). Thus adding the content of a girl
stroked a cat to that of a boy hugged a dog will yield (116b).

(116) a.
[

prev : Told
]
∧̣ Tnew

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x : Ind
cboy : boy(x)
y : Ind
cdog : dog(y)
e : hug(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

x : Ind
cgirl : girl(x)
y : Ind
ccat : cat(y)
e : stroke(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the case of our example with Dudamel and Beethoven the result will be (117).

(117) [
prev :

[
e : conductor(Dudamel)

]

e : composer(Beethoven) ]

If we add a further fact to this, say, that Uchida is a pianist we would obtain (118)

(118)
⎡
⎢
⎢
⎣

prev : [
prev :

[
e : conductor(Dudamel)

]

e : composer(Beethoven) ]

e : pianist(Uchida)

⎤
⎥
⎥
⎦

This means that we now have to add additional information if we want to require identity,
for example if we want the Beethoven andUchida eventualities (prev.e and e in (118)) to be
identical. We will return to these matters when we deal with anaphora in Chapter 8. Note
that this strategy also gives us a straightforward record of the order in which content was
added.

The update function fINTEGACK and action rule INTEGACK which allow for the integration
of an acknowledgement into an information state are given in (119).
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(119) a. fINTEGACK
λr:InfoState .

λu:Acknowledgement .

[shared:[commitments=
[
prev:r.shared.commitments

]
∧̣u.cont:RecType

latest-utterance=u:Acknowledgement ]]

b. INTEGACK
si,a :A Tcurr Tcurr ⊑ domtype(fIntegAck) u* :A Tutt Tutt ⊑ Acknowledgement

si+1,A :A Tcurr ∧̣ (fINTEGACK(si,A)(u*) ∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

The update function (119a) takes an information state and an acknowledgement to a type
of information state where the content of the acknowledgement is used to update the shared
commitments and the acknowledgement utterance is recorded as the latest utterance. The
action rule (119b) is parallel to PLANACKASS.

We need two more action rules relating to the agenda: EXECTOPAGENDA which allows
the agent to make their contribution to executing what is uppermost on the agenda and
DOWNDATEAGENDA which allows the removal of a type from the top of the agenda if the
current event is of that type. These two rules are given in (120).

(120) a. EXECTOPAGENDA

si,A :A
⎡
⎢
⎢
⎣

InfoState

private:[agenda:[fst:RecType
rst:list(RecType)]]

⎤
⎥
⎥
⎦

:A si,A.private.agenda.fst!
b. DOWNDATEAGENDA

si,A :A Tcurr Tcurr ⊑ [private:[agenda:[fst:RecType
rst:list(RecType)]]] u* :A si,A.private.agenda.fst

si+1,A :A Tcurr ∧̣
[
private:

[
agenda=si,A.private.agenda.rst:list(RecType)

]]

2.7 English resources

We shall say that update functions and action rules are different kinds of resources that are
available to an agent. Those that we have discussed in the previous section are resources
associatedwith dialoguemanagement. We shall seemore examples of resources as the book
progresses. In general they can be viewed as related to the theory of topoi and enthymemes
as discussed in Breitholtz’s work (Breitholtz and Villing, 2008; Breitholtz, 2010; Breitholtz
and Cooper, 2011; Breitholtz, 2014b, 2020).

In this chapter we are taking signs to be objects of type (70) and the sign corresponding
to Dudamel is a conductor is (74). For compactness of representation we can define an
operation which takes a speech event type and a content and constructs the corresponding
sign. This can be defined as in (121).

(121) If σ is a type of speech event and κ is a type (of situation) then

sign(σ,κ)=
⎡
⎢
⎢
⎣

s-event:
[
e:σ

]

cont=[e:κctns:final_align(⇑s-event.e,e)]:RecType

⎤
⎥
⎥
⎦
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Note that the operation ‘sign’ introduces the interpretation of present tense (represented
by the field ‘ctns’). This is only possible because the resources we are considering concern
only simple present tense assertions such asDudamel is a conductor. We will see already in
the next chapter that things are not this simple. We can use (121) to create sign types for
utterances with specific contents such as Dudamel is a conductor or Beethoven is a com-
poser. We will use another operation ‘signuc’ to create signs with underspecified content as
defined in (122).

(122) If σ is a type of speech event then

signuc(σ)= [
s-event:

[
e:σ

]

cont:RecType]

Now we can characterize the sign types of an agent that can deal with the simple dialogues
that we have been characterizing in this chapter as (123).

(123) {sign(“Dudamel is a conductor”, conductor(dudamel)),
sign(“Beethoven is a composer”, composer(beethoven)),
sign(“Uchida is a pianist”, pianist(uchida)),
signuc(“ok”),
signuc(“aha”)}

Recall that “Dudamel is a conductor” etc. represent a type of a string of word utterance
events. For any word w, “w” is the type of event where w is uttered. For present purposes
we assume that the agent has basic types of word utterances as given in (124a). In order
to cope with the content the agent must have a basic type Ind to which certain individuals
belong as given in (124b). Finally in order to construct the ptypes used for the content the
agent would have to have the predicates given in (124c).

(124) a. “Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”,
“aha”, “ok”

b. dudamel, beethoven, uchida : Ind
c. predicates with arity ⟨Ind⟩: conductor, composer, pianist

The set of ptypes based on (124b,c) is thus (125).

(125) {p(a) ∣ p ∈ {conductor,composer,pianist} and
a ∈ {dudamel,beethoven,uchida}}

Of the ptypes in (125) we could say that ‘conductor(dudamel)’, ‘composer(beethoven)’ and
‘pianist(uchida)’ are non-empty (“true”) and the rest are empty, although that may not
correspond to the actual facts of the world. (Beethoven was a pianist, for example.) Very
often, we are mainly interested in whether a ptype has witnesses (something of the type)
or not and not particularly what those witnesses are. In a complete formal treatment, of
course, the type system would specify objects which belong to those types. For example,
we could say s1 : conductor(dudamel), s2 : composer(beethoven) and s3 : pianist(uchida).
Informally, we can say s1 is a situation where Dudamel is a conductor or which shows that
Dudamel is a conductor and so on. The idea of saying that an agent has a certain type in
its resources is not so much to say that it has complete information about what belongs
to the type (although its memory will contain partial information about what belongs to
what types) but rather that it has a way (possibly not entirely decidable) of recognizing an
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object of the type if it sees one. Thus since I am an agent with the type ‘composer(uchida)’
in my resources I know (sort of ) what it would mean for a situation to be of this type, e.g. a
situation in which Uchida has written original musical compositions, had them performed
and so on. When we are using our type theory to give an analysis of certain fragments
of language we are sometimes interested in going into more detail concerning the criteria
for belonging to a given type. Other times we just treat the type as basic and only need to
assume that the agent has some way of recognizing objects of the type. It depends on the
level of detail we are interested in for the particular analysis.

Let us now check that we can characterize the types of information states of A and B
in the dialogue (126), where we represent the information states associated with the two
agents at various points in the dialogue as ai and bi, and the utterance events as ui.

(126) a0,b0
A: Dudamel is a conductor u1

a1,b1
B: Aha u2

a2,b2
A: Beethoven is a composer u3

a3,b3
B: ok u4

a4,b4
A: Uchida is a pianist u5

a5,b5
B: ok u6

a6,b6

We will assume that a0 and b0 are initial states, essentially empty except for A’s agenda to
make the three assertions. This is shown in (127).

(127) a. a0 :
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:composer(beethoven)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:pianist(uchida)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst=[ ]:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:[latest-utterance:ERec
commitments=Rec:RecType]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b. b0 :
⎡
⎢
⎢
⎣

private:
[
agenda=[ ]:list(RecType)

]

shared:[latest-utterance:ERec
commitments=Rec:RecType]

⎤
⎥
⎥
⎦

(127) indicates that a0 meets the premise of the action rule EXECTOPAGENDA and in
accordance with this A creates the utterance u1 which is of the first type on the agenda
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in a0. The existence of u1 will now trigger the action rule DOWNDATEAGENDA which will
remove the first type on the agenda in a0. From this we derive that there is an intermediate
information state for A which is of the type (128).

(128)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:composer(beethoven)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:pianist(uchida)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst=[ ]:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:[latest-utterance:ERec
commitments=Rec:RecType]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This in turn triggers the action rule PLANACKASS which will put the type of a speech
act on the top of the agenda which acknowledges u0 with speaker B and addressee A and
also record u0 as the latest utterance. Thus the state a1, A’s state after u0, will be of the type
(129).

(129)
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=

⎡
⎢
⎢
⎢
⎢
⎣

Acknowledgement

s-event:[sp=B:Indau=A:Ind]

cont=u1.cont:RecType

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:composer(beethoven)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:pianist(uchida)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst=[ ]:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

latest-utterance=u1:

⎡
⎢
⎢
⎢
⎢
⎣

Assertion

s-event:[sp=A:Indau=B:Ind]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

)

commitments=Rec:RecType

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This assumes that A has judged u1 to be of the type in (130) (corresponding to Tutt in
PLANACKASS), as represented in the ‘shared.latest-utterance’-field in (129).

(130)

⎡
⎢
⎢
⎢
⎢
⎣

Assertion

s-event:[sp=A:Indau=B:Ind]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

Thus the first type on A’s agenda is now the type of an acknowledgement event in which
B is the speaker and A is the audience. This means that A has to wait for B to make the
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acknowledgement and to pay attention to it before continuing with the next item on the
agenda.

A type for b1 can be obtained in a similar fashion using PLANACKASS, assuming that B
also classifies u1 as a witness of the type (130). This type is given in (131).

(131)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=

⎡
⎢
⎢
⎢
⎢
⎣

Acknowledgement

s-event:[sp=B:Indau=A:Ind]

cont=u1.cont:RecType

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

rst=[ ]:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

latest-utterance=u1:

⎡
⎢
⎢
⎢
⎢
⎣

Assertion

s-event:[sp=A:Indau=B:Ind]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

commitments=Rec:RecType

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now we are in a situation where both A and B are in information states (a1 and b1) with
non-empty agendas. A and B are coordinated because the type labelled by ‘shared’ on their
respective gameboards are the same. In addition, they are coordinated because they both
have the same type at the top of their respective agendas. That is, they are both plannning
that the next move will be one in which B acknowledges the content of u1.

EXECTOPAGENDA is applicable to both a1 and b1 followed by DOWNDATEAGENDA. In
A’s case realizing the acknowledgement type involves waiting for B to speak and paying
attention to the acknowledgement when it comes. In B’s case realizing the type involves
making the utterance u2. This is an elementary form of what is known as turn-taking in the
dialogue literature (Sacks et al., 1974).

Once u2 has been uttered, its content has to be integrated into ‘shared.commitments’ on
both A’s and B’s gameboards. This can be achieved by applying INTEGACK. The results for
both gameboards are given in (132).

(132) a. a2 :
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:composer(beethoven)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst:

⎡
⎢
⎢
⎢
⎢
⎣

fst=
⎡
⎢
⎢
⎣

Assertion
s-event:

[
sp=A:Ind

]

cont=
[
e:pianist(uchida)

]
:RecType

⎤
⎥
⎥
⎦

:RecType

rst=[ ]:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

latest-utterance=u2:

⎡
⎢
⎢
⎢
⎢
⎣

Acknowledgement

s-event:[sp=B:Indau=A:Ind]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

commitments=[prev:Rec
e:conductor(dudamel)]:RecType

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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b. b2 :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:
[
agenda=[ ]:list(RecType)

]

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

latest-utterance=u2:

⎡
⎢
⎢
⎢
⎢
⎣

Acknowledgement

s-event:[sp=B:Indau=A:Ind]

cont=
[
e:conductor(dudamel)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

commitments=[prev:Rec
e:conductor(dudamel)]:RecType

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

A and B are coordinated in that they both hypothesize the same type for
shared.commitments. Now the assertion–acknowledgement cycle can begin again and
repeat until both agents have gameboards with empty agendas. The final gameboards for
A and B are both of the type given in (133). Thus A and B are aligned at the end of this
dialogue.

(133)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:
[
agenda=[ ]:list(RecType)

]

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

latest-utterance=u6:

⎡
⎢
⎢
⎢
⎢
⎣

Acknowledgement

s-event:[sp=B:Indau=A:Ind]

cont=
[
e:pianist(uchida)

]
:RecType

⎤
⎥
⎥
⎥
⎥
⎦

commitments=

⎡
⎢
⎢
⎢
⎢
⎣

prev:
⎡
⎢
⎢
⎣

prev:[prev:Rec
e:conductor(dudamel)]

e:composer(beethoven)

⎤
⎥
⎥
⎦

e:pianist(uchida)

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The dialogue we have analysed here is, of course, extremely simple andwe have assumed
ideal conditions under which the dialogue participants completely understand each other.
However, it seems that the tools developed in this chapter could be developed further to
account for the kind of dialogue data, including misunderstandings and phenomena such
as repair. In particular we could build on the kind of analyses presented inGinzburg (2012).
In the remainder of the book we will not develop this further but concentrate on what is
involved in incorporating treatments of more traditional grammatical and semantic con-
cerns into an action based framework capable of dealing with dialogue phenomena and
examining what might be gained by taking a dialogical approach to these concerns.

2.8 Summary of resources introduced

2.8.1 Universal grammar resources

2.8.1.1 Types
Loc — a basic type

l : Loc iff l is a region in three dimensional space
Phon — a basic type

e : Phon iff e is a phonological event



90 INFORMATION STATES AND INFORMATION EXCHANGE

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Cont — RecType

Sign — [
s-event : SEvent
cont : Cont ]

SignType — a basic type
T : SignType iff T ⊑ Sign

2.8.1.2 Predicates
with arity ⟨Phon, Loc⟩

loc — e : loc(u, l) iff u is located at l in e

with arity ⟨Phon, Ind⟩

speaker — e : speaker(u, a) iff u is the speaker of u in e
audience — e : audience(u, a) iff u is the audience of u in e

2.8.2 Universal speech act resources

2.8.2.1 Types

Assertion —
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : assert(s-event, cont)

⎤
⎥
⎥
⎦

Query —
⎡
⎢
⎢
⎣

s-event : SEvent
cont : Question
illoc : query(s-event, cont)

⎤
⎥
⎥
⎦

Command —
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : command(s-event, cont)

⎤
⎥
⎥
⎦

Acknowledgement —
⎡
⎢
⎢
⎣

s-event : SEvent
cont : RecType
illoc : acknowledge(s-event, cont)

⎤
⎥
⎥
⎦

AssertionType — a basic type
T : AssertionType iff T ⊑ Assertion

QueryType — a basic type
T : QueryType iff T ⊑ Query

CommandType — a basic type
T : CommandType iff T ⊑ Command

AcknowledgementType — a basic type
T : AcknowledgementType iff T ⊑ Acknowledgement
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2.8.3 Universal dialogue resources

2.8.3.1 Types

InfoState —
⎡
⎢
⎢
⎣

private :
[

agenda : list(RecType)
]

shared : [
latest-utterance : Sign*

commitments : RecType ]

⎤
⎥
⎥
⎦

InitInfoState —
⎡
⎢
⎢
⎣

private :
[

agenda=[ ] : list(RecType)
]

shared : [
latest-utterance=ε : Sign*

commitments=Rec : RecType ]

⎤
⎥
⎥
⎦

2.8.3.2 Update functions and action rules
fPLANACKASS λr:InfoState .

λu:Assertion .
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

s-event:
⎡
⎢
⎢
⎣

SEvent
sp=u.s-event.au:Ind
au=u.s-event.sp:Ind

⎤
⎥
⎥
⎦

cont=u.cont:Cont
illoc:acknowledge(s-event, cont)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

rst=r.private.agenda:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:
[
latest-utterance=u:Assertion

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PLANACKASS
si,A :A Tcurr Tcurr ⊑ domtype(fPLANACKASS) u* :A Tutt Tutt ⊑ Assertion

si+1,A :A Tcurr ∧̣ (fPLANACCASS(si,A)(u*)∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

fINTEGACK λr:InfoState .
λu:Acknowledgement .

[shared:[commitments=
[
prev:r.shared.commitments

]
∧̣u.cont:RecType

latest-utterance=u:Acknowledgement ]]

INTEGACK
si,a :A Tcurr Tcurr ⊑ domtype(fIntegAck) u* :A Tutt Tutt ⊑ Acknowledgement

si+1,A :A Tcurr ∧̣ (fINTEGACK(si,A)(u*) ∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

EXECTOPAGENDA
si,A :A

⎡
⎢
⎢
⎣

InfoState

private:[agenda:[fst:RecType
rst:list(RecType)]]

⎤
⎥
⎥
⎦

:A si,A.private.agenda.fst!
DOWNDATEAGENDA
si,A :A Tcurr Tcurr ⊑ [private:[agenda:[fst:RecType

rst:list(RecType)]]] u* :A si,A.private.agenda.fst

si+1,A :A Tcurr ∧̣
[
private:

[
agenda=si,A.private.agenda.rst:list(RecType)

]]

2.8.4 English resources

2.8.4.1 Basic types and predicates
Basic phonological types for words

{“Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”, “aha”,
“ok”}
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Witnesses for basic types
Ind — dudamel, beethoven, uchida : Ind

Predicates
with arity ⟨Ind⟩ {conductor, composer, pianist}

2.8.4.2 Sign types
Notation
We introduce a general notation for introducing language specific sign types here. This

notation will not be useful in subsequent chapters.
If σ is a type of speech event and κ is a type (of situation) then

sign(σ,κ)=
⎡
⎢
⎢
⎣

s-event:
[
e:σ

]

cont=[e:κctns:final_align(⇑s-event.e,e)]:RecType

⎤
⎥
⎥
⎦

If σ is a type of speech event then

signuc(σ)= [
s-event:

[
e:σ

]

cont:RecType]

Lexical sign types
{sign(“Dudamel is a conductor”, conductor(dudamel)),
sign(“Beethoven is a composer”, composer(beethoven)),
sign(“Uchida is a pianist”, pianist(uchida)),
signuc(“ok”),
signuc(“aha”)}

2.9 Summary

In this chapter we have been concerned with relating a general approach to event percep-
tion and action to the particular case of the kind of information states that are needed to
take part in linguistic events and how such events facilitate information exchange.

We started with the string theory of events based on important work by Tim Fernando.
This is the idea that events can be seen as strings of smaller events and that our percep-
tion of events involves a string of observations which involve classifying smaller events as
witnesses for certain types.

The second component in our approach is the idea that there are various kinds of acts
which can be associatedwith types. This builds on the notion of judgementwhich is present
in Martin-Löf ’s type theory. We say that in addition to this type act one can also query
whether objects belong to a type and, crucially for the proposals in this chapter, one can
create witnesses (such as events) for a type. Thus, for example, we can represent an agent’s
agenda as a list of types of situations which the agent plans to realize.

Building on these notions we talked about non-linguistic games and the kind of infor-
mation states which an agent must be in in order to coordinate with an agent in playing a
game, that is, in creating an event of a type corresponding to the game. A crucial compo-
nent of these information states is the agenda which indicates the types of events which the
agent is currently planning to create witnesses for.
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Associated with information states are update functions which will map from an infor-
mation state of a certain type to the type of the next information state. Such update
functions provide affordances which license the agent to progress from one information
state to another. These affordances are treated in terms of action rules which look very
much like inference rules in a logic except that they represent affordances rather than
inferences.

We showed how this view of action in general can be applied to the special case of action
in linguistic communication. In approaching linguistic action from this direction our aim is
tomove towards a theory of language related, for example, to that proposed byChristiansen
and Chater (2008) where we ask not how the brain is adapted to language but rather how
language is adapted to the brain. That is, we want to explore the extent to which language
is based on prelinguistic cognitive abilities.

We characterized a type of speech event (although we pointed out that the type we used
is not the only type for speech events, as shown, among other things, by split utterances).
We developed a notion of sign and sign type closely related to the kind of signs which are
found in the feature-based theory HPSG. We showed how signs can be related to action
rules corresponding to speech event understanding and speech event generation.

Finally, we proposed some simple update functions and action rules for dialogue which
make use of the notion of sign and showed how these can be used to account for a very
simple dialogue. An important notion that we introduced is that of a cognitive resource
available to an agent, a notion that we make precise in terms of types.
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Grammar in a theory of action

3.1 Introduction

InChapter 2wemade the simplifying assumption that sentences come as single unanalysed
units (something like the assumption that is made in propositional logic). In this chapter
we will deal with the same simple examples but break the sentences down into their con-
stituent parts. (This will be something like moving from propositional logic to predicate
logic without quantifiers.) In order to do this we will need more complex signs.

Section 3.2 relates the constituent structure of speech events to the structure of other
events and suggests that syntax builds on a prelinguistic ability to perceive and structure
events. Section 3.3 explores the structure of speech events in more detail. Section 3.4 adds
semantic content to this structure and Section 3.5 explores how the structure relates to the
incremental processing of a speech event as it progresses.

3.2 Constituent structure and events

We will first consider how linguistic constituent structure is related to our general per-
ception of events. We have so far talked of events in terms of string types which we have
related to finite state automata. Finite state automata are equivalent to regular grammars.
Wewill now consider an example of howwe perceive events which suggest amore complex
structure in terms of strings of regular types. This gives us something which is equiva-
lent to recursive transition networks (RTNs) which are in turn equivalent to context free
grammars.¹ Consider an event type of bus trips, BusTrip. This could be defined as in (1).

(1) GetBus⌢TravelOnBus⌢GetOffBus

Each of the three event types which are concatenated in (1) could be further broken down
into strings of events. For example, GetBus might be defined as in (2).

(2) WaitAtBusstop*⌢BusArrive⌢GetOnBus

The elements in (2) could be broken down further. For example, getting on the bus could
be analysed in terms of going towards a door on the bus, waiting for the door to open,
placing one foot on the step into the bus and then the other, paying for your ticket and
so on. There seems almost no limit to how finegrained an analysis of events we can give.
Which muscles do you have to move in order to place your right foot inside the bus? What
events are involved in the contraction of this muscle? However, there seems to be a limit on
the level of detail we need to be conscious of (or even are capable of being conscious of ) in

¹ For a general introduction to automata theory and its relation to the Chomsky hierarchy see, for example,
Partee et al. (1990).

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0004
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order to carry out a high level action like getting on a bus. We can also build upwards from
the type BusTrip. For example, many bus trips are not direct in that we have to change
buses in order to reach our destination. Thus a bus trip can consist of a string of events
where you get on a bus, travel on it, and then get off it again. A return bus trip involves a
bus trip from one place to another followed (after intervening events) by a bus trip from
the second place back to the first. Both of those bus trips might involve several buses if the
connection is not direct.

Given the two definitions in (1) and (2), BusTrip could be seen as an abbreviation for
the regular string type in (3).

(3) WaitAtBusstop*⌢BusArrive⌢GetOnBus⌢TravelOnBus⌢GetOffBus

Thus while our notation is giving us the beginnings of a hierarchical organization, the type
that is represented by the notation is not hierarchically organized. We are still in the realm
of a finite state system. Compare this with the statements in (4).

(4) a. e : BusTrip iff e : GetBus⌢TravelOnBus⌢GetOffBus
b. e : GetBus iff e : WaitAtBusstop*⌢BusArrive⌢GetOnBus

The statements in (4) claim that there are distinct types BusTrip and GetBus in addition
to the regular types used on the right-hand side of ‘iff ’. These types are equivalent to the
regular types in the sense that anything of the one type will be of the other type. Now the
type system is hierarchically organized and includes two additional “higher” types BusTrip
and GetBus. On the face of it one might think that the type system with the additional
higher types would be just a more complicated way of achieving the same result and would
be less efficient than a system which just includes the regular types. However, there seems
to be good reason to suppose that an organism that organizes its event perception in terms
of such a hierarchical type system would have serious advantages over an organism that
lacks the hierachical organization. These advantages include at least the following:

Access and compact representation Recall from Chapter 1 that we want to consider
the types that an agent has available as resources as being represented in the brain
states of the agent. Having higher types means that something corresponding to a
complex type can be stored as a single element. In a complex reasoning task this can
give considerable advantage in that the task can be represented in a more compact
fashion and it can be easier to access (search and find) something which is a single
element rather than something which is represented in terms of a complex string
each element of which has to be checked in order to be sure that you have found the
right element.

Planning Having a compact representation facilitates planning. It is feasible to plan to
take a bus trip given that we can conceive of it as such without having to plan for all
the small subevents that make it up, for example, all that is involved in lifting your
legs in the right way in order get on the bus. The ability to plan actions seems based
on an ability to classify events in a hierarchical way.

Reuse A hierarchical organization of event types means that certain event types can be
reused in other event types. For example, getting on a bus (waiting for the doors to
open, putting one foot inside and so on) can be very much like getting on a train.
Similarly, paying for a ticket on a bus trip involves an exchange of money for a ticket
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in much the same way for a bus, a tram, a train, a theatre performance, and so on.
An agent which is not able to perceive this kind of generalization would at best use
up a lot of memory coding the same event types over and over as parts of different
larger event types.

LearningThe hierarchical organization of event types and the reuse capabilities it offers
also facilitates learning of new event types. In learning to take the tram it can be useful
to reuse what you have learnt about buying tickets on buses and insert it ready made
into your type for tram trips. If it turns out that the procedure for buying tickets for
trams is slightly different from for buses (for example, you can buy a ticket on the bus
but you have to pay before you get on the tram) you nevertheless have a buying ticket
type which you can modify. This might involve creating more types corresponding
to those strings which the two ticket buying procedures have in common to separate
out the differences between the two procedures.

Related observations about the importance of hierarchical structure for behaviour and its
relationship to hierarchical reinforcement learning and neurological structure have been
made for example by Botvinick (2008); Botvinick et al. (2009); Ribas-Fernandes et al.
(2011). Similar points have been made within the context of machine learning by Caron
et al. (2021); Ilinykh and Dobnik (2021). Tenenbaum et al. (2011) take a more cognitive
perspective. It is not a new idea that hierarchical structure is important for behaviour. For
example, it is discussed by Miller et al. (1960) as a central part of their psychological the-
ory of behaviour reacting against behaviourism. In early work on artificial intelligence,
hierarchical organization was important, for example, in scripts (Schank and Abelson,
1975).

Introducing hierarchical types in this way is an important step in our cognitive pro-
cessing of events because of the computational and learning processes indicated just above
even if the class of events we are formally able to recognize is the same as what could be rec-
ognized by non-hierarchical regular string types, that is, technically, finite state languages.
An organismwith hierarchically organized types will have important advantages in acquir-
ing new finite state event patterns. An evolutionary step from non-hierarchically organized
string types to hierarchically organized types is a significant development, and organisms
with hierarchical types will have clear evolutionary advantages over those that do not.

However, hierarchical organization brings with it, almost as a kind of side effect, some-
thing which means that the organism could recognize classes of events that are not finite
state. This is known as recursion. Hierarchical organization means that we can give type
definitions of the form in (5).

(5) a : T iff a : T1
⌢…⌢Tn

If we do not explicitly rule it out, there is nothing to say that one of the Ti is not T itself. Of
course, things will go badly wrong if we have a definition such as (6).

(6) a : T iff a : T1
⌢T⌢T2

If we try to perceive or create something of this type we will not be able to terminate and
get into an endless string of objects of type T1 and never be able tomove on to T2. However,
if we define T in terms of a join type where at least one of the types in the join does not
contain T, things will work fine. For example, (7):
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(7) a : T iff a : (T1
⌢T⌢T2 ∨ T1

⌢T2)

According to (7), anything of typeTwill be a string of objects of typeT1 followed by a string
of equal length of objects of type T2. It is the requirement “of equal length” which means
that this type is not a regular type. For example, we could have the the regular type T+⌢

1 T+
2

but this only expresses that we require a non-empty string of objects of type T1 followed by
a non-empty string of objects of type T2 without the equal length requirement. What we
have done here is restate a basic result from formal language theory in terms of our types.
In formal language theory one talks of languages of the form anbm (the set of strings of n
a’s followed by a string of m b’s, for any n and m greater than 0) which is a regular or finite
state language and anbn (the set of strings of n a’s followed by n b’s, for any n greater than 0)
which is context free. While this possibility of recursion is offered as soon as we allow the
hierarchical typing of events in this way, it is not clear that it is exploited to a great extent
in non-linguistic events. The clear examples that seem to exist are examples like opening
and closing Chinese boxes, that is, boxes within boxes. The type of opening and closing
(reassembling) a Chinese box could be characterized as the anbn-type in (8).

(8) e : OpenClose iff
e : (Open⌢OpenClose⌢Close ∨ Open⌢Close)

It is significant in this kind of example that the ordering of the events is forced on the agent
by the physical reality of the boxes. There is only one order in which you can open all the
boxes and only one order (the reverse order) in which you can close them if you are going
to assemble all the boxes within a single box. It is unclear that such ordering is required in
non-linguistic event types when it is not dictated by physical reality.

3.3 Syntax

We now turn our attention to how this hierarchical organization is reflected in the nature
of linguistic events.² In Chapter 2 we used (9) as our sign type.

(9) [
s-event : SEvent
cont : Cont ]

This represents the pairing of a speech event with content in a Saussurean sign. It does not,
however, require the presence of any hierarchical information in the sign corresponding
to what in linguistic theory is normally referred to as the constituent (or phrase) structure
of the utterance. To some extent it is arbitrary where we add this information. We could,
for example, add it under the label ‘s-event’, perhaps by dividing ‘s-event.e’ into two fields
‘phon’ and ‘syn’ (“syntax”). However, it will be more convenient (in terms of keeping paths
that we need to refer to often shorter) to add a third field labelled ‘syn’ at the top level of
the sign type as in (10).

(10)
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

² A version of some material from this section has appeared in Cooper (2014b).
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Syn will require a ‘daughters’-field for a string of signs. This means that Sign becomes a
recursive type. It will be a basic type with its witnesses defined by (11).

(11) σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

We shall take Syn to be the type (12).³

(12) [
cat : Cat
daughters : Sign* ]

The type Sign, as so far defined, can be seen as a universal resource. By this we mean
that it is a type which is available for all languages. Cat is the type of names of syntac-
tic categories. In this chapter we will take the witnesses of Cat to be: ‘s’ (“sentence”), ‘np’
(“noun phrase”), ‘det’ (“determiner”), ‘n’ (“noun”), ‘v’ (“verb”), and ‘vp’ (“verb phrase”).
These correspond to the categories we will use to cover the expressions of the fragment
of English we introduced in Chapter 2. We will use capitalized versions of these category
names to represent types of signs with the appropriate path in a sign type as in (13).

(13) a. S represents [Signsyn:
[
cat=s:Cat

]]

b. NP represents [Signsyn:
[
cat=np:Cat

]]

c. Det represents [Signsyn:
[
cat=det:Cat

]]

d. N represents [Signsyn:
[
cat=n:Cat

]]

e. V represents [Signsyn:
[
cat=v:Cat

]]

f. VP represents [Signsyn:
[
cat=vp:Cat

]]

Recall from (109) in Chapter 2 that, for example, (13a) represents (14) and that the
symbol ∧̣ there represents the merge operation on types as defined in Appendix A11.3.

(14) (Sign ∧̣
[
syn:

[
cat=s:Cat

]]
)

This means that, for example, (13a) is the type in (15).

³ One might think that Syn should also be defined as a recursive type since it can contain Sign which in its
turn can contain Syn. However, in the types we are currently proposing the only way for Syn to recur is through
Sign and it is sufficient for Sign to be defined recursively to ensure that we do not introduce record types that
are non-well founded sets of ordered pairs. That is, we want to avoid the mathematical object which is the type:
being a set which contains itself. In contrast the set of witnesses for a recursive type, while it will be infinite, will
be well-founded.
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(15)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s-event :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

syn : [
cat=s : Cat
daughters : Sign* ]

cont : Cont

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The structure of signs introduced here is similar to the sign structure in the earliest version
of HPSG (Pollard and Sag, 1987) and also that of Sag et al. (2003, p. 475).

We might think that the type Cat is a language specific resource and indeed if we were
being more precise we might introduce separate types for different languages such as
Cateng, Catswe, and Cattag for the type of category names of English, Swedish, and Taga-
log respectively. However, there is a strong intuition that categories in different languages
are more or less related. For example, we would not be surprised to find that the categories
available for English and Swedish closely overlap (despite the fact that their internal syn-
tactic structure differs) whereas the categories of English and Tagalog have less overlap.
(See Gil, 2000 for discussion.) For this reason we assume that there is a universal resource
Cat and that each language will have a subtype of Cat which specifies which of the cate-
gories are used in that particular language. This is related to the kind of view of linguistic
universals as a kind of toolbox from which languages can choose which is put forward by
Jackendoff (2002).

The ontological status of objects of type Cat as we have presented them is a little sus-
picious. Intuitively, categories should be subtypes of Sign, that is, like the types such as S,
NP, and so on in (13). We have identified signs belonging to these types as containing a
particular object in Cat in their ‘cat’-field. But one might try to characterize such signs in a
different way, for example, as fulfilling certain conditions such as having certain kinds of
daughters. However, this is not quite enough, for example, for lexical categories, which do
not have daughters. We have to have a way of assigning categories to words and we need to
create something in the sign-type that will indicate the arbitrary assignment of a category
to a word. For want of a better solution we will introduce the category names which belong
to the type Cat as a kind of “book-keeping” device that will identify a sign-type as being
one whose witnesses belong to the category bearing that name.

The ‘daughters’-field is required to be a string of signs, possibly the empty string, since
the type Sign* uses the Kleene-*, that is the type of strings of signs including the empty
string, ε. (See Appendix A13.) Lexical items, that is words and phrases which are entered
in the lexicon, will be related to signs which have the empty string of daughters. We will
use NoDaughters to represent the type

[
syn:

[
daughters=ε:Sign*]].

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign, then we shall use Lex(Tphon, Tsign) to represent (16).

(16) ((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)
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This means, for example, that (17a) represents the type in (17b) which, after spelling out
the abbreviations, can be seen to be the type in (17c).

(17) a. Lex(“Dudamel”, NP)

b. ( [NP
s-event:

[
e:“Dudamel”

]] ∧̣ NoDaughters)

c.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s-event :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : “Dudamel”
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

syn : [
cat=np : Cat
daughters=ε : Sign* ]

cont : Cont

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can think of ‘Lex’ as the function in (18)⁴

(18) λT1:Type
λT2:Type .
((T1 ∧̣

[
s-event:

[
e:T2

]]
) ∧̣ NoDaughters)

This function, which is used to create sign types for lexical items in a language, associating
types with a syntactic category, can be seen as a universal resource. We can think of it as
representing a (somewhat uninteresting, but nevertheless true) linguistic universal: “There
can be speech events of given types which have no daughters (lexical items)”.

The lexical resources needed to cover our example fragment is given in (19).

(19) Lex(“Dudamel”, NP)
Lex(“Beethoven”, NP)
Lex(“a”, Det)
Lex(“composer”, N)
Lex(“conductor”, N)
Lex(“is”, V )
Lex(“ok”, S)
Lex(“aha”, S)

The choice of S for “ok” and “aha” might be seen as an arbitrary choice for the sake of this
particular restricted fragment of English. We will not pursue details of the syntax of these
particles here.

The types in (19) belong to the specific resources required for English. This is not to say
that these resources cannot be shared with other languages. Proper names like Dudamel
and Beethoven have a special status in that they can be reused in any language, though often
in modified form, at least in terms of the phonological type with which they are associated

⁴ We are using the notational convention for function application as used, for example, by Montague (1973)
that if f is a function f(a, b) is f(b)(a).
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without this being perceived as quotation, code-switching, or simply showing off that you
know another language.

Resources like (19) can be exploited by action rules. If Lex(Tw, C) is one of the lexical
resources available to an agent A and A judges an event e to be of type Tw, then A is licensed
to update their gameboard with the type Lex(Tw,C). Intuitively, this means that if the agent
hears an utterance of the word “composer”, then they can conclude that they have heard a
sign which has the category noun. This is the beginning of parsing , which we will regard as
the same kind of update involved in event perception as discussed in the previous chapters.
The action rule corresponding to lexical resources like (19), LEXRES, is given in (20), where
we use ‘T resourceA’ to mean that the type T is a resource available to A. Here the relevant
resource is a type returned by the function ‘Lex’.) We will return in Section 3.5 to how this
relates to gameboard update.

(20)
Lex(T,C) resourceA u :A T

:A (Lex(T,C)∧̣
[
s-event:

[
e=u:T

]]
)

(20) says that an agent with lexical resource Lex(T, C) who judges a speech event, u, to
be of type T is licensed to judge that there is a sign of type Lex(T, C) whose ‘s-event.e’-
field contains u. We represent this as an affordance since it is not the case that hearing
an utterance of a given phonological type, T, and having a resource which associates T
with the category type, C, neccessitates that you draw the conclusion that that particular
utterance has category C. You may for example have another resource which associates the
same phonological type with a different category. For example, the English phonological
type “can” can be either a modal verb or a common noun. There may also be other reasons
why you do not draw this conclusion such as lack of attention or being convinced that the
speaker is speaking a different language and that it is therefore not appropriate to apply this
resource. For example, the phonological type “can” (or “kan”) would allow classification
as a modal verb using Swedish resources but not as a common noun.

Strings of utterances of words can be classified as utterances of phrases. That is, speech
events are hierarchically organized into types of speech events in the way that we discussed
at the beginning of this chapter. Agents have resources which allow them to reclassify a
string of signs of certain types (“the daughters”) into a single sign of another type (“the
mother”). So for example a string of type Det⌢N can lead us to the conclusion that we
have observed a sign of typeNP whose daughters are of the typeDet⌢N. The resource that
allows us to do this is a rule which we will model as the function in (21a) which we will
represent as (21b).

(21) a. λu : Det⌢N .

[
NP
syn:

[
daughters=u:Det⌢N

]]

b. RuleDaughters(NP, Det⌢N)

‘RuleDaughters’ is to be the function in (22).

(22) λT1:Type .
λT2:Type .

λu :T1 . T2 ∧̣
[
syn:

[
daughters=u:T1

]]
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Thus ‘RuleDaughters’, if provided with a subtype of Sign+ and a subtype of Sign as argu-
ments, will return a functionwhichmaps a string of signs of the first type to the second type
with the restriction that the daughters field is filled by the string of signs. ‘RuleDaughters’ is
one of a number of sign type construction operations which we will introduce as universal
resources which have the property of returning functions which combine signs. The action
rule associated with ‘RuleDaughters’, COMBINEDAUGHTERS, is characterized in (23).

(23)
f = RuleDaughters(Tmother,Tdaughters) f resourceA u :A Tdaughters

:A f(u)

Thismeans, for example, that if you categorize a string of signs as being of typeDet⌢N then
you are licensed to conclude that there is a sign of type NP with the additional restriction
that its daughters are u. Again we characterize this syntactic inference as an affordance
rather than a necessary inference for exactly similar reasons as the lexical case discussed
above.

‘RuleDaughters’ takes care of the ‘daughters’-field but it says nothing about the ‘s-event.e’-
field, that is the phonological type associated with the new sign. This should be required
to be the concatenation of all the ‘s-event.e’-fields in the daughters. If u : T+ where T is
a record type containing the path π, we will use concati(u[i].π), the concatenation of all
the values u[i].π for each element in the string u in the order in which they occur in the
string.

This definition is repeated in Appendix A13.
If s is a string of length n of records such that for each i, 0 ≤ i < n, s[i].π is a defined

path, concat
0≤i<n

(s[i].π) denotes s[0].π…s[n − 1].π. We use concati(s[i].π) to represent

concat
0≤i<length(s)

(s[i].π).

We can now formulate the function ConcatPhon as in (24)

(24) λu:
[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]

ConcatPhonwill map any string of speech events to the type of a single speech event whose
phonology (that is the value of ‘s-event.e’) is the concatenation of the phonologies of the
individual speech events in the string.

We want to combine the function (24) with a function like that in (21). We do this
by merging the domain types of the two functions and also merging the types that they
return. This is shown in (25a) which in deference to standard linguistic notation for phrase
structure rules could be represented as (25b).⁵

⁵ Note that ‘⟶’ used in the phrase structure rule in (25b) is not the same arrow as ‘→’ which is used in our
notation for function types. We trust that the different contexts in which they occur will help to distinguish them.
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(25) a. λu : (Det⌢N ∧̣
[
s-event:

[
e:Phon

]]+) .
⎡
⎢
⎢
⎣

NP
syn:

[
daughters=u:Det⌢N

]

s-event:
[
e=concati(u[i].s-event.e):Phon

]

⎤
⎥
⎥
⎦

b. NP⟶ Det N

In order to give a general characterization of the kind of merging that is represented in (25)
we define a notion of merge for dependent types. If 𝒯1 and 𝒯2 are dependent types, then
we use (𝒯1∧̣̣𝒯2) to represent the merge of𝒯1 and𝒯2. Note that we use ‘∧̣̣’ (with two dots)
to represent the merge of the functions which are the dependent types which we define
in terms of the merges of the domain types and ranges of the functions (using ‘∧̣’ with a
single dot). For any dependent types (that is, functions which return a type) of the form
(26a) and (26b), (26c) (the merge of the two functions) represents the function (26d).

(26) a. λr :T1 . T2((r))
b. λr :T3 . T4((r))
c. (λr :T1 . T2((r)) ∧̣̣ λr :T3 . T4((r)))
d. λr : (T1∧̣T3) . (T2((r))∧̣T4((r)))

If C,C1, …,Cn are category sign types as in (13) then (27a) represents (27b)

(27) a. C⟶C1…Cn
b. RuleDaughters(C, C1

⌢…⌢Cn) ∧̣̣ ConcatPhon

Thus the function in (25) can be represented in a third way as in (28).

(28) RuleDaughters(NP, Det⌢N) ∧̣̣ ConcatPhon

The ability to factorize rules into components in this way enables us to build a theory of
resources that will allow us to study them in isolation and also facilitates the development
of theories of learning. It gives us a clue to how agents can build new rules by combining
existing components in novel ways. It has implications for universality aswell. For example,
while the ruleNP⟶ Det N is not universal (though itmay be shared by a large number of
languages), ConcatPhon is a universally available rule component, albeit a trivial universal
which says that you can have concatenations of speech events tomake a larger speech event.

The rules associated with our small grammar are given by (29)

(29) S⟶ NP VP
NP⟶ Det N
VP⟶ V NP

It may seem that we have done an awful lot of work to arrive at simple phrase structure
rules. Some readers might wonder why it is worth all this trouble to ground the rules in
a theory of events and action when what we come up with in the end is something that
can be expressed in a standard notation which is one of the first things that a student of
syntax learns. One reason has to do with our desire to explore the relationship between
the perception and processing of non-linguistic events and speech events as discussed at
the beginning of this chapter. Another reason has to do with placing natural constraints
on syntax. By grounding syntactic structure in types of events we provide a motivation for
the kind of discussion in Cooper (1982). An abstract syntax which proposes constituent
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structure which does not correspond to speech events is not grounded in the same way
and thus presents a different kind of theory.

3.4 Semantics

We have so far specified our sign types in terms of phonology and syntax. Now we need
to specify the content in the ‘cont’-field. We shall start by accounting for the contents of
the lexical items specified in (19). We consider first the common nouns composer and con-
ductor. For each of these we introduce a predicate of arity ⟨Ind⟩. Our universal resources
will include a function, ‘SemCommonNoun’ which will construct a common noun content
from such a predicate, p. This is defined as in (30).

(30) SemCommonNoun(p) = λr:
[
x:Ind

]
.
[

e : p(r.x)
]

The function in (30) is of type (
[
x:Ind

]
→RecType). That is, it is a function which maps

any record containing a field labelled ‘x’ with an individual as value to a record type. We
will abbreviate this type as Ppty (for “property”) and we will call functions of this type
properties. In our compositional semantics, properties will play a similar role as functions
from individuals to truth values in Montague semantics, (that is, functions of type ⟨e, t⟩ in
Montague’s system). In place of individuals, we use records with an ‘x’-field containing an
individual. Themotivation for this will become apparent later. Basically, we want to be able
to restrict the function by adding additional fields to the domain type of the function.

In place of Montague’s truth-values (that is, objects of Montague’s type t) we use record
types. Record types play the role of “propositions” in our system. Types, thought of as types
of situations, can be considered as truth-bearing objects. They are true just in case there
is something of the type and false otherwise, that is, if there is nothing of the type. The
fact that we use the “proposition-like” objects as the results that our properties return is
an essential ingredient in our intensional treatment of properties. In this way it follows in
the tradition of property theory (Chierchia and Turner, 1988; Fox and Lappin, 2005) and
Thomason’s intensional approach to propositional attitudes (Thomason, 1980).

We can now combine the ‘Lex’-functionwhich builds sign types excluding content infor-
mation with our new way of constructing common noun content. We define a function
LexCommonNoun which takes a phonological type and a predicate and returns a sign type.
This is defined in (31).

(31) LexCommonNoun(Tphon, p) =
Lex(Tphon, N) ∧̣

[
cont=SemCommonNoun(p):Ppty

]

Note that the type of the content required here is Ppty. In Chapter 2 we defined the content
type Cont to be identical with RecType. Now we have to revise the definition of Cont to
be (RecType ∨ Ppty). We will add further disjuncts to allow for more possibilities as we
progress.

In order to cover the two common nouns conductor and composer we can include the
sign types in (32) among our resources.

(32) a. LexCommonNoun(“composer”, composer)
b. LexCommonNoun(“conductor”, conductor)



3.4 SEMANTICS 105

Following Montague’s (1973) original strategy we shall treat the contents of noun-
phrases such as Dudamel or a conductor as being functions from properties to truth-
bearing elements, that is, in our terms, record types. That is, noun-phrase contents will be
of type (Ppty→RecType) which we will abbreviate as Quant (for “quantifier”). This means
that we should now redefine the type of contents, Cont, as RecType ∨ Ppty ∨ Quant.

Some readers may find this a rather old-fashioned approach to the treatment of proper
names which in proposals after Montague are analysed as representing individuals rather
than quantifiers. There is nothing in principle which rules out these more modern treat-
ments in TTR but for now we will keep to the classical Montague approach. We will in any
case change Montague’s proposal in later chapters of this book.

Dudamel and Beethoven will receive proper name contents. The recipe for constructing
a proper name content based on a particular individual a is given by SemPropName(a) as
defined in (33).

(33) SemPropName(a) =
λP:Ppty . P(

[
x=a

]
)

We define LexPropName which takes a phonological type (a name) and an individual (the
referent of the name) and returns a sign type as in (34).

(34) LexPropName(TPhon, a) =
Lex(TPhon, NP) ∧̣

[
cont=SemPropName(a):Quant

]

Resources to cover the proper names in our grammar could be as in (35) where d, b : Ind
(two individuals, Dudamel and Beethoven).

(35) a. LexPropName(“Dudamel”, d)
b. LexPropName(“Beethoven”, b)

Note that there is nothing to prevent us from constructing sign types with the same phono-
logical type but different contents. Thus proper names are not required to be “logically
proper” in the sense that there is one and only one individual which can be referred to by
an utterance belonging to the phonological type. Names can be ambiguous. For example,
there are many composers named Bach and Strauss. We have the means to construct sign
types for all of them on an as needed basis. This sign-based approach, even though in the
current version it holds closely to Montague’s original treatment of proper names, has the
advantage that it does not require a proper name to be limited to a single individual for its
content. See Cooper (2017b) for some further discussion.

Now that we have both properties and quantifiers let us check at this point that we
are on the right track for combining them in something like the kind of way that we will
need for compositional semantics. Suppose we want to combine a proper name content for
Dudamel (36a) with the property of being a conductor (36b). The obvious way to do this is
by applying the function in (36a) to the argument (36b) as represented in (36c). According
to the definition of functional application in Appendix A4, (36c) is identical to (36d) which
in turn is identical to (36e). In turn the dot notation for record path values shows (36e) to
be identical to (36f ).

(36) a. λP:Ppty . P(
[
x=d

]
)

b. λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]
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c. λP:Ppty . P(
[
x=d

]
)

(λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]
)

d. λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]
(
[
x=d

]
)

e.
[

e : conductor(
[
x=d

]
.x)

]

f.
[

e : conductor(d)
]

This means that if we were dealing with a language like Russian where Dudamel is a
conductor corresponds to a proper name followed by a common noun we would have a
good way of combining the two contents by applying the content of the proper name to the
content of the common noun.⁶ However, things are not quite so straightforward in English.
Here we use an indefinite article to form the noun phrase a conductor. We shall treat the
content of indefinite articles as a function that maps properties to quantifiers involving the
existential relation between properties. That is, it will be a function of type (Ppty→Quant),
a type which should be added to our definition of Cont which now becomes RecType ∨
Ppty ∨Quant ∨ (Ppty→Quant). As part of our universal resources we introduce a function
‘SemIndefArt’ which is defined as the function in (37).

(37) λQ:Ppty .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

We can also define a universal resource, LexIndefArt, which associates a phonological type
(corresponding to an indefinite article in the language) with the category Det and this
content, as defined in (38).

(38) LexIndefArt(TPhon) =
Lex(TPhon, Det) ∧̣

[
cont=SemIndefArt:(Ppty→Quant)

]

The local resource for the English indefinite article would thus be (39).

(39) LexIndefArt(“a”)

The compositional semantics of a noun-phrase consisting of a determiner followed by
a noun will be the content of the determiner applied to the content of the noun. This is a
case of content forward application. We define a function ‘ContForwardApp’, which is part
of the universal resources, as in (40).

(40) λT1:Type λT2:Type .
λu:

[
cont:(T2→T1)

]⌢[cont:T2
]
.[

cont=u[0].cont(u[1].cont):T1
]

The intuition behind this function is that if you observe a string of two utterances, the
first of which has a content of type (T2→T1) and the second of which has a content of
type T2 then you are licensed to conclude that there is an utterance whose content is the
result of applying the content of the first element in the string to the content of the second
element of the string. (For the notation s[n] representing the nth element of a string s see

⁶ An alternative would be to treat the content of a proper name as a record rather than a quantifier and apply the
property to the record as in (36d). Thiswould correspond to the treatment of proper names as individual-denoting
as discussed, for example, by Partee (1986).
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Appendix A13.) We can use ‘ContForwardApp’ to add constraints on content to a phrase
structure rule as in the example in (41).

(41) (NP⟶ Det N ∧̣̣ ContForwardApp(Ppty,Quant))

Recall from (25a) thatNP⟶Det N is the function (42a). ContForwardApp(Ppty,Quant)
is the function (42b). Merging these two functions yields (42c).

(42) a. λu :( Det⌢N ∧̣
[
s-event:

[
e:Phon

]]+) .
⎡
⎢
⎢
⎣

NP
syn:

[
daughters=u:Det⌢N

]

s-event:
[
e=concati(u[i].s-event.e):Phon

]

⎤
⎥
⎥
⎦

b. λu:
[
cont:(Ppty→Quant)

]⌢[cont:Ppty
]
.[

cont=u[0].cont(u[1].cont):Quant
]

c. λu : (Det⌢N ∧̣
[
s-event:

[
e:Phon

]]+)
∧̣
[
cont:(Ppty→Quant)

]⌢[cont:Ppty
]
.

⎡
⎢
⎢
⎢
⎣

NP
syn:

[
daughters=u:Det⌢N

]

s-event:
[
e=concati(u[i].s-event.e):Phon

]

cont=u[0].cont(u[1].cont):Quant

⎤
⎥
⎥
⎥
⎦

A convenient abbreviatory notation for this interpreted phrase structure rule is given in
(43a) or more simply, since we can read the content types off the types Det and N, (43b).

(43) a. NP⟶ Det N ∣ Detʹ(N ʹ:Ppty):Quant
b. NP⟶ Det N ∣ Detʹ(N ʹ)

Here Detʹ and N ʹ represent the contents of the determiner and noun.
We can represent the type (44a) using an informal diagrammatic tree notation which is

common in linguistics as in (44b).⁷

(44) a.
⎡
⎢
⎢
⎢
⎣

NP
s-event:

[
e=syn.daughters[0].s-event.e⌢syn.daughters[0].s-event.e:Phon

]

syn:
[
daughters:Det⌢N

]

cont=syn.daughters[0].cont(syn.daughters[1].cont):Quant

⎤
⎥
⎥
⎥
⎦

b. NP
α(β)

Det
α

N
β

Here what is written under the category type (e.g. α, β) represents the value in the ‘cont’-
field.

The content of an utterance of a conductor will be (45a) applied to (45b), that is (45c).

⁷ A similar use of tree notation, though relating to typed feature structures rather than types, is used in HPSG
(see, for example, Ginzburg and Sag, 2000, Chapter 2).
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(45) a. λQ:Ppty .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

b. λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

c. λP:Ppty .
⎡
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

We will now look in more detail at the nature of the generalized quantifier in (45c).
‘exist’ is a predicate with arity ⟨Ppty,Ppty⟩; that is, it corresponds to a relation between two
properties. The classical account of generalized quantifiers (Barwise and Cooper, 1981;
Peters and Westerståhl, 2006, and much other literature) treats such quantifier relations
as relations between sets. Here we will follow Cooper (2011, 2013a) in relating our treat-
ment directly to the classical relation between sets, although, as argued in Cooper (2012a)
based on earlier work by Keenan and Stavi (1986), there are ultimately good reasons for
exploiting the intensionality of properties. If P is a property, the relevant set is the set of
individuals which have the property, which we will represent as [↓P]. This is defined as in
(46) where we use the notation [̌T] to represent {a ∣ a : T}.⁸

(46) [↓P] = {a ∣ ∃r[r :
[
x=a:Ind

]
and [̌P(r)] ≠ ∅]}

Following the terminology of Cooper (2011, 2013a) we will call [↓P] the property exten-
sion, or P-extension, of property P. Intuitively the property extension of P is the set of
objects which have the property in some situation. Let us compute this for a particular
example of a property, the property of being a dog given in (47).

(47) λr:
[
x:Ind

]
.
[

e : dog(r.x)
]

The property extension of (47) is given in (48).

(48) {a ∣ ∃r[r:
[
x=a:Ind

]
and

[̌λr :
[
x:Ind

]
.
[

e : dog(r.x)
]
(r)] ≠ ∅]}

By β-reduction (that is, the definition of function application) (48) is the same set as (49).

(49) {a ∣ ∃r[r:
[
x=a:Ind

]
and [̌

[
e : dog(r.x)

]
] ≠ ∅]}

Since r is required to be of the type
[
x=a:Ind

]
we know that r.x must be a. Therefore (49)

is identical to (50).

(50) {a ∣ ∃r[r:
[
x=a:Ind

]
and [̌

[
e : dog(a)

]
] ≠ ∅]}

By the definition of record types, a record
[
e=s

]
is of type

[
e:dog(a)

]
just in case s : dog(a).

Therefore this type is non-empty just in case there is such an s. For this reason (50) is the
same set as (51).

(51) {a ∣ ∃r[r:
[
x=a:Ind

]
and ∃s[s : dog(a)]]}

⁸ The notation ‘[̌T]’ is used here on purpose to relate toMontague’s (1973) “down operator” for extension. The
set of witnesses of a type can be thought of as the type’s extension. Note that since types are inherently intensional
there is no need for anything corresponding to Montague’s “up operator” to create intensions from types. For
example, ‘[ˆT]’, would not make sense.
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Since r is no longer bound in the second conjunct of (51), (52) also defines the same set.

(52) {a ∣ ∃r[r:
[
x=a:Ind

]
] and ∃s[s : dog(a)]}

Given the nature of records, there will be an r of the required type just in case a:Ind.
Therefore we can characterize the same set as in (53).

(53) {a ∣ a:Ind and ∃s[s : dog(a)]}

Finally, since the existence of a situation of type dog(a) requires the a is an individual given
that the arity of ‘dog’ is ⟨Ind⟩ we can eliminate the first conjunct altogether so the minimal
characterization of this set is (54).

(54) {a ∣ ∃s[s : dog(a)]}

If P andQ are properties we want exist(P,Q) to be a type of situations which will be non-
empty (that is, “true”) just in case the P-extensions of P and Q have a non-empty overlap;
that is, there is some individual which has both property P and property Q. In symbols we
can express this as (55).

(55) [̌exist(P,Q)] ≠ ∅ iff [↓P] ∩ [↓Q] ≠ ∅

This places a requirement on objects which are assigned to the type ‘exist(P, Q)’ without
actually tying down what kind of object they have to be. That is, it leaves it open as to
which objects get assigned to the type, as long as they respect this requirement. It places
a constraint on F in the models discussed on p. 18. We can, however, go a step further
and make precise exactly which objects these should be. The intution is that a situation
e should be of type exist(P, Q) just in case it is a witness (or “proof ”) of the fact that the
“exist”-relation holds between P andQ (that is, that the P-extensions of P andQ have a non-
empty overlap). We will say that a situation is such a witness just in case the P-extensions
of the properties restricted to the situation in question stand in the required relation, that
is, intuitively that the set of objects in the situation which have P overlaps with the set of
objects in the situation which have Q. We will get at this notion by restricting properties to
a particular situation (what we have called a resource situation in previous literature such
as Barwise and Perry, 1983; Cooper, 1996). We will represent the restriction of property P
to situation s as P↾ s. We take our previous example of the property of being a dog, repeated
in (56a). Its restriction to the situation s is given in (56b).

(56) a. λr:
[
x:Ind

]
.
[

e : dog(r.x)
]

b. λr:
[
x:Ind

]
.
[

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs : dog(r.x)
]

In (56b) the restricted field
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:dog(r.x)

]
requires that the object in ‘e’-field is not only of

type ‘dog(r.x)’ but also that it is either s itself or a component of s, that is, for some path π
in s it is the object s.π.

The notion component is defined in (57), repeated in Appendix A11.1.

(57) An object, a, is a component of a record, r, in symbols, aεr, just in case there is
some path, π, in r such that r.π = a.

In terms of our informal proof theoretic notation this could be expressed as (58).
continued
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(58) a. Γ ⊢ r record π ∈ paths(r)
Γ ⊢ r.π ε r

b. Γ ⊢ r.π ε r
Γ ⊢ r record

Γ ⊢ r.π ε r
π ∈ paths(r)

Based on this notion we can define a notion of present in a record as in (59), repeated
in Appendix A11.1.

(59) An object, a, is present in a record, r, in symbols, aεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r, just in case either a = r or
aεr.

We can express this in our informal proof theoretic notation as in (60).

(60) a. Γ ⊢ r record
Γ ⊢ r εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r

Γ ⊢ a ε r
Γ ⊢ a εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r

b. Γ ⊢ a εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r

[Δ ⊢ rʹ record]
...

Δ ⊢ φ

[Δ ⊢ aʹ ε rʹ]
...

Δ ⊢ φ
Γ ⊢ φ

We define a general notion of restricting a type by a record as in (61), repeated in
Appendix A11.7.

(61) A type system 𝕋 has restricted types according to a set of labels ℒ if it is the case
that

1. if T is a type, but not a record type, according to 𝕋 and r is a record
according to ℒ and 𝕋, then the restriction of T by r, ρ(T, r), is a type
according to 𝕋.

2. a :𝕋 ρ(T, r) iff aεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r and a :𝕋 T.

In terms of our informal prooftheoretic notation this can be expressed as (62).

(62) a.
Γ,ℒ ⊢ T ∈ Type − RType Γ,ℒ ⊢ r record

Γ,ℒ ⊢ ρ(T, r) ∈ Type

b.
Γ,ℒ ⊢ r record a εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r Γ,ℒ ⊢ a : T

Γ,ℒ ⊢ a : ρ(T, r)
Γ,ℒ ⊢ a : ρ(T, r)
Γ,ℒ ⊢ r record

Γ,ℒ ⊢ a : ρ(T, r)
a εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε r

Γ,ℒ ⊢ a : ρ(T, r)
Γ,ℒ ⊢ a : T

We then generalize restriction to record types and other objects using o ↾ r to rep-
resent the object o restricted to r. This is given by the definition in (63) repeated in
Appendix A11.7.

(63) a. If T is a type but not a record type then

T↾ r = ρ(T, r)

b. If X is a labelled set whose labels are not distinguished (as for example in
ptypes; that is, labels(X) is a set of labels which can be used in record
types)
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{⟨ℓ1, o1⟩, …, ⟨ℓn, on⟩}

then

X↾ r = {⟨ℓ1, o1 ↾ r⟩, …, ⟨ℓn, on ↾ r⟩}

c. if o is

⟨𝒯, Π⟩

where 𝒯 is a dependent type and Π is a sequence of paths, then

o↾ r = ⟨𝒯↾ r, Π⟩

d. if 𝒯 is a dependent type

λv1 :T1 . … . λvn :Tn . T((v1, …, vn))

then

𝒯↾ r = λv1 :T1 . … . λvn . T((v1, …, vn))↾ r

e. otherwise o↾ r = o

We use a similar notation for restricted fields in record types as we do for manifest
fields. That is, we represent (64a) as (64b) in the case where T is not a record type or a
pair of a dependent type and a sequence of paths.

(64) a.
[

ℓ : T↾ r
]

b.
[

ℓεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεr : T
]

Now we can compute the property extension of (64b) in a similar fashion to the
calculation for the non-restricted property. The property extension of (64b) is given in (65).

(65) {a ∣ ∃r[r:
[
x=a:Ind

]
and

[̌λr :
[
x:Ind

]
.
[

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs : dog(r.x)
]
(r)] ≠ ∅]}

By β-reduction (65) is the same set as (66).

(66) {a ∣ ∃r[r:
[
x=a:Ind

]
and [̌

[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs : dog(r.x)

]
] ≠ ∅]}

Since r is required to be of the type
[
x=a:Ind

]
we know that r.x must be a. Therefore (66)

is identical to (67).

(67) {a ∣ ∃r[r:
[
x=a:Ind

]
and [̌

[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs : dog(a)

]
] ≠ ∅]}

By the definition of record types, a record
[
e=sʹ

]
is of type

[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:dog(a)

]
just in case sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and

sʹ : dog(a). Therefore this type is non-empty just in case there is some sʹ such that sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and
sʹ : dog(a). For this reason (67) is the same set as (68).
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(68) {a ∣ ∃r[r:
[
x=a:Ind

]
and ∃sʹ[sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and sʹ : dog(a)]]}

Since r is no longer bound in the second conjunct of (68), (69) also defines the same set.

(69) {a ∣ ∃r[r:
[
x=a:Ind

]
] and ∃sʹ[sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and sʹ : dog(a)]}

Given the nature of records, there will be an r of the required type just in case a:Ind.
Therefore we can characterize the same set as in (70).

(70) {a ∣ a:Ind and ∃sʹ[sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and sʹ : dog(a)]}

Finally, since the existence of a situation of type dog(a) requires the a is an individual given
that the arity of ‘dog’ is ⟨Ind⟩ we can eliminate the first conjunct altogether so the minimal
characterization of this set is (71).

(71) {a ∣ ∃sʹ[sʹεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs and sʹ : dog(a)]}

Now we can use the notion of property restriction to characterize the witness condition
for ptypes constructed with ‘exist’, as in (72).

(72) e : exist(P,Q) iff [↓P] ∩ [↓Q↾e] ≠ ∅

This will have the consequence that any record of the type (73a) will be of type (73b).

(73) a.
⎡
⎢
⎢
⎣

x : Ind
c : dog(x)
e : run(x)

⎤
⎥
⎥
⎦

b. exist(λr:
[
x:Ind

]
.
[
e:dog(r.x)

]
, λr:

[
x:Ind

]
.
[
e:run(r.x)

]
)

In other words, (73a) is a subtype of (73b). We abbreviate the two properties in (73b) as
‘dogʹ’ and ‘runʹ’ respectively. Consider an arbitrary record, r, of type (73a) as given in (74).

(74) r =
⎡
⎢
⎢
⎢
⎣

x = a
c = s1
e = s2
…

⎤
⎥
⎥
⎥
⎦

where s1 : dog(a) and s2 : run(a)

Given rwe know that amust be amember of both [↓dogʹ] and [↓runʹ ↾ r] and that therefore
r must be of type (73b). Therefore (73a)⊑(73b). The argument does not go the other way,
however: (73b)̸⊑(73a). Consider the situation r in (75).

(75) r =
[

e = s1
]

where there is some situation s ≠ r such that s : dog(a) and s1 : run(a)

In (75), r:(73b) but r is not of type (73a), since r does not “contain the information” that a
is a dog.

Let us consider what we get when we apply the content we have for a conductor, (76a)
(repeated from (45c)), to the property of composing, (76b). The result which would corre-
spond to a conductor composes if we were to introduce composes as an intransitive verb in
our resources, is given in (76c).
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(76) a. λP:Ppty .
⎡
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

b. λr:
[
x:Ind

]
.
[

e : compose(r.x)
]

c.
⎡
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty
scope=λr:

[
x:Ind

]
.
[

e : compose(r.x)
]

: Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

Whatwould itmean for there to be something of type (76c)? In other words, what would be
required tomake the sentence a conductor composes true? There would have to be a record,
r*, which contains the three fields in the record in (77) and which meets the condition
indicated.

(77) r* =
⎡
⎢
⎢
⎣

restr = λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

scope = λr:
[
x:Ind

]
.
[

e : compose(r.x)
]

e = s

⎤
⎥
⎥
⎦

where [↓r*.restr↾s] and [↓r*.scope↾s] have a non-empty overlap.

This gives us a version of the classical treatment of indefinite articles as involving the
existential quantifier, expressed in terms of a generalized quantifier which compares sets.
There is, of course, a real and important question whether this is an appropriate content
for the sentence a conductor composes which tends to get a generic reading something like
“conductors, in general, compose”. We will ignore the sentence a conductor composes since
we are not considering syntactic resources for it anyway.

We are concerned with finding a way to interpret the verb phrase is a conductor. Can
we find a content for is which could be combined with the content for a conductor given
in (45c) to produce an appropriate interpretation for the verb-phrase? Montague’s (1973)
strategy for assigning a content to is is reproduced in our terms in (78).

(78) λ𝒬:Quant .
λr1:

[
x:Ind

]
.

𝒬(λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ])

Here we use a manifest field based on a multiple singleton type (a singleton type formed
from a singleton type, see discussion of Chapter 2, example (33)) to require the identity
of r1.x and r2.x. In the ‘e’-field of the type with the manifest field we use the predicate ‘be’
which we will take to be polymorphic with the set of arities as given in (79a). The witness
condition associated with types constructed with ‘be’ is given in (79b).

(79) a. arity(be) = {⟨T⟩ ∣ T is a type}
b. e : be(a) iff aεe

The intuition behind (79b) could be expressed as “To be is to be a component of a situa-
tion”; that is, more technically, a “is” just in case there is a path, π, in some record, r, such
that r.π = a.⁹

⁹ This might be compared with Quine’s (1948) dictum: “To be is to be the value of a variable”.
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We will call (78) ‘SemBe’. It will be included among the universal resources, together
with the ‘Lexbe’ as defined in (80).

(80) If TPhon is a phonological type, then Lexbe(TPhon) is Lex(TPhon, V ) ∧̣[
cont=SemBe:(Quant→Ppty)

]

Among the lexical resources for English we have Lexbe(“is”).
Now let us see what we get when we combine (78) with the content of a conductor. This

involves applying (78), repeated as (81a), to (45c), repeated as (81b). The result of this
application is (81c).

(81) a. λ𝒬:Quant .
λr1:

[
x:Ind

]
.

𝒬(λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ])

b. λP:Ppty .
⎡
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

c. λr1:
[
x:Ind

]
.

⎡
⎢
⎢
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty

scope=λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ] : Ppty

e : exist(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎦

In order to obtain a content forDudamel is a conductorwe apply the content ofDudamel,
(36a), repeated as (82a), to (81c), repeated as (82b), with result (82c).

(82) a. λP:Ppty . P(
[
x=d

]
)

b. λr1:
[
x:Ind

]
.

⎡
⎢
⎢
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty

scope=λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ] : Ppty

e : exist(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎦

c.

⎡
⎢
⎢
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty

scope=λr2:
[
x:Ind

]
. [ x=r2.x, d : Ind

e : be(x) ] : Ppty

e : exist(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎦

The type (82c) is distinct from the type (36f ), repeated as (83), which we obtained by
applying the content of Dudamel directly to the content of conductor.

(83)
[

e : conductor(d)
]

There is, however, an equivalence that holds between (82c) and (83). The equivalence is
not that they share the same set of witnesses. We can characterize the set of witnesses of
(82c) and (84a) and the witnesses of (83) as (84b).
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(84) a. {
⎡
⎢
⎢
⎣

restr = P
scope = Q
e = s

⎤
⎥
⎥
⎦

∣

P = λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

and Q = λr:
[
x:Ind

]
. [ x=r.x, d : Ind

e : be(x) ]

and [↓P↾s] ∩ [↓Q↾s] ≠ ∅

}

b. {
[

e = s
]
∣ s : conductor(d)}

The sets in (84) do not have any members in common. The equivalence is a weaker “truth-
conditional” equivalence. (82c) has a witness (“is true”) if and only if (83) has a witness.
This is because the P-extensions of the property of being a conductor and the property
of being identical with Dudamel can have a non-empty overlap if and only if Dudamel is
a conductor. We might try to characterize the difference between the property associated
with conductor and the property associated with is a conductor as “the property of being
an x such that conductor(x)” and “the property of being an x such that there is a y such that
conductor(y) and y = x”. The two are truth-conditionally equivalent and for this reason in
Montague’s system they turn out to be the same property. For us, since we are taking amore
intensional approach thanMontague, they are distinct properties but they are nevertheless
truth-conditionally equivalent.

Since we have two distinct properties, the question is raised whether the property that
is associated with the verb-phrase should be the same as the property associated with the
common noun or whether it should be the property proposed here involving existential
quantification. One way to do this is to create a type corresponding to the tree in (85).

(85) VP
γ

V
α

“is”

NP
β(γ)

Det
β

“a”

N
γ

This is not compositional in the standard sense because the content of the verb phrase is
not defined as some operation applied to the contents of the verb and the noun phrase, but
rather it makes the content of the verb phrase be the content of the noun. Furthermore, it
requires the verb and determiner utterances be of the specific types “is” and “a” respectively.
This gives (85) the flavour of representing a construction type as discussed in a variety of
approaches toConstructionGrammar (see, for example, Boas and Sag, 2012).We can allow
the type corresponding to (85) by introducing the update function (86).

(86) λu:[Vs-event:
[
e:“is”

]]⌢
⎡
⎢
⎢
⎣

NP

syn:[daughters:[Det
s-event:

[
e:“a”

]] ⌢ [
N
cont:Ppty]]

⎤
⎥
⎥
⎦

.

[
VP
cont=u[2].syn.daughters[2].cont:Ppty]

We can call this function CnstrIsA (“is-a construction”) and merge it with VP ⟶ V NP.
Thus one of the resources available for English is (87).
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(87) VP⟶ V NP ∧̣̣ CnstrIsA

This suggests that a phrase structure and construction based approach can be combined
within a single framework. Since we are working with a toy fragment where the only verb is
is and the only determiner is a, we canmake do with (87) as the only resource for assigning
content to verb-phrases. In a more general grammar we would, of course, require in addi-
tion a rule that applies the content of the verb to the content of the object noun-phrase as
in (88).

(88) VP⟶ V NP ∧̣̣ ContForwardApp(Quant, Ppty)

Allowing both resources (87) and (88) simultaneously raises the issue of what the rela-
tionship should be between them. Should the more specific rule (87) take precedence and
guarantee that the only content associated with the verb phrase is a conductor is the prop-
erty which is the content of conductor? Or should the verb phrase be ambiguous between
this interpretation and the property obtained by applying the content of is to the content
of a conductor?

A more pressing issue, perhaps, is what to do about the sentence in (89).

(89) #A conductor is Dudamel

We have used the marking ‘#’ in (89) to indicate that an utterance of this sentence would
under most, if not all, circumstances be considered to be odd, though it is difficult to rule it
out as ungrammatical, particularly if we are to use something corresponding to context-free
phrase structure rules as we are. The oddness of (89) may have something to do with the
tendency to interpret noun phrases with indefinite articles in subject position as generic as
in (90).

(90) A conductor is a high-ranking individual in the musical hierarchy

(89) can be improved without becoming generic. Examples are given in (91).

(91) a. A conductor to reckon with is Dudamel
b. A conductor to consider is Dudamel
c. A conductor who impresses me as a leader in his generation is Dudamel
d. A conductor I would like to see more often in Gothenburg is Dudamel

This raises a lot of issues which we do not currently have tools to deal with. There is, how-
ever, something we can say, if we choose to allow the is-a construction interpretation of
is a conductor. The content of the sentence Dudamel is a conductor on the construction
analysis becomes (83), repeated as (92a), rather than (82c), repeated as (92b).

(92) a.
[

e : conductor(d)
]

b.

⎡
⎢
⎢
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty

scope=λr2:
[
x:Ind

]
. [ x=r2.x, d : Ind

e : be(x) ] : Ppty

e : exist(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎦

If we include the resource (88) then the content of is Dudamel is (93a) applied to (93b),
that is, (93c).



3.4 SEMANTICS 117

(93) a. λ𝒬:Quant .
λr1:

[
x:Ind

]
.

𝒬(λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ])

b. λP:Ppty . P(
[
x=d

]
)

c. λr1:
[
x:Ind

]
. [ x=d, r1.x : Ind

e : be(x) ]

The content of A conductor is Dudamel is (94a) applied to (94b) (identical with (93c)),
which is (94c).

(94) a. λP:Ppty .
⎡
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

b. λr1:
[
x:Ind

]
.
[

x=d, r1.x : Ind
]

c.

⎡
⎢
⎢
⎢
⎢
⎣

restr=λr:
[
x:Ind

]
.
[

e : conductor(r.x)
]

: Ppty

scope=λr1:
[
x:Ind

]
. [ x=d, r1.x : Ind

e : be(x) ] : Ppty

e : exist(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎦

(94c) is almost exactly the same type as (92b). The difference between them is that d is
the first restrictor of Ind in (94c) whereas in (92b) it is the second restrictor. In (94c) we
have, for some conductor, c, Indd,c whereas in (92b) we have Indc,d. Thus while an analysis
that only uses the content of is that is based on Montague’s original interpretation does
predict different contents for Dudamel is a conductor and a conductor is Dudamel, the
difference between the types hardly seems enough to explain the difference in reaction we
have to the two sentences. Given the construction analysis for Dudamel is a conductor we
get a markedly different type (92a) which does not involve existential quantification (even
though it is truth conditionally equivalent to both the types with existential quantification).
The onlyway that (92a) can be expressed according to the resources thatwe have developed
in this chapter is by the sentence Dudamel is a conductor, using the non-compositional
construction ‘CnstrIsA’. Thus if (92a) is the target content and we do not wish to express a
content involving existential quantification, a conductor is Dudamel is not an option.

We thus have the beginnings of an explanation of the difference in acceptability between
the two sentences. It is not the whole story since we have not explained why the quan-
tificational readings appear odd in these cases. Note that the distinction we are making
between a non-quantified reading and a reading involving an existential quantification is
not available on Montague’s 1973 original approach since the fact that the two contents
are truth-conditionally equivalent means for Montague that they are identical. The same
holds for the kind of analysis discussed in Partee (1986) where even though the content
may not be built up using existential quantification the final result is still the same content
that would be expressed by using existential quantification because of the truth-conditional
equivalence. One might try to introduce the distinction we are making by relating utter-
ances to an expression in an artificial logical language in addition to the content. Thiswould
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correspond to the notion of logical form as discussed for example by Heim and Kratzer
(1998) andmuch current work in linguistic semantics. The ideamight be that there are two
distinct logical forms such as (95) which correspond to identical contents in Montague’s
terms.

(95) a. conductor(dudamel)
b. ∃x [conductor(x) ∧ x=dudamel]

Here the challenge would be to give an explanatory account of why one expression in an
artificial language, (95a), should be preferred over another, (95b), when they both express
the same content. An alternative is to follow Lewis (1972) (further developed by Cresswell,
1985). The idea here is that we keep a record not only of the final content but the way in
which that content is constructed—that is, we keep a record of the content of each of the
syntactic constituents of the English sentence and the way these contents are combined.
This idea, which goes back to the notion of intensional isomorphism introduced byCarnap
(1956), provides enough structure to make the distinction required here. However, there
are other problems with the proposal which we will take up in Chapter 6 when we discuss
intensionality.

There are many arguments in the literature that a logical form or intermediate language
such as discourse representation provides a structured representation with a finer grain
that standard model theoretic semantics provides and this is necessary to make distinc-
tions necessary for semantic analysis. One example of this is the argument by Farkas and
de Swart (2003) that the presence or absence of discourse referents in discourse represen-
tation structures makes a difference to possibilities for anaphora. For such distinctions we
will rely on the structure of record types and the fact that distinct types can be equivalent
in terms of truth conditions. Such cases will be discussed in Chapter 7.

Finally in this section we turn our attention to acknowledgements like aha and ok.
These do not have a specified content (cf. the function ‘signuc’ we used for these words in
Chapter 2); we do not need a function that specifies their content but canmake do with the
function ‘Lex’ which associates them with a sign type in which the content is unspecified.
Their content in a given dialogue is given by the update functions and action rules.

3.5 Incremental processing and building a chart type

If we are to take the idea that language is action seriously, we must take account of the fact
that speech events happen in real time. People understand what is being said during the
time that the utterance is produced. If somebody stops talking mid-sentence we are often
able to complete the sentence for them or respond to what we have heard so far. There are
many good accounts in the literature of why linguistic processing in incremental in this
way. A couple of good overviews of the arguments are Ginzburg and Poesio (2016) and
Kempson et al. (2016).

It may seem that recreating phrase structure rules and their compositional semantic
interpretation in terms of a theory of action is not the best route to building a theory of the
incremental nature of language processing. However, drawing this conclusion would be
over-hasty. In the remainder of this chapter we will sketch a view of incrementality based
on the computational technique of chart parsing which was prevalent in computational
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linguistics in the 1980s and 1990s. Despite the fact that it has fallen into disuse in current
data-driven computational linguistics, it still has significance for a theory of language as
action.

For a textbook introduction to chart parsing see Jurafsky andMartin (2009, chapter 13).
The idea of a chart is that it should store all the hypotheses that we make during the pro-
cessing of an utterance and allow us to compute new hypotheses to be added to the chart
on the basis of what is already present in the chart. We will say that a chart is a record and
we will use our resources to compute a chart type on the basis of utterance events. We will
first go through an example of the incremental construction of a chart type for an agent
processing an utterance of the sentence Dudamel is a conductor. Then we will consider
what kind of update functions and action rules are needed in order to achieve this. We
will, as usual, make the simplifying assumption that what we have at bottom is a string of
word utterances as we are not dealing with the details of phonology. Thus we are giving a
simplified view of incremental processing at the word level.

Suppose that we have so far heard an utterance of the word Dudamel. At this point we
will say that the type of the chart is (96).

(96) [
e1 : “Dudamel”
e :

[
e1:start(⇑2e1)

]⌢[e1:end(⇑2e1)
] ]

The main event of the chart type (represented by the ‘e’-field) breaks the phonological
event of type “Dudamel” down into a string of two events, the start and the end of the
“Dudamel”-event.¹⁰

Why are the arguments to ‘start’ and ‘end’ in the string type prefixed by ‘⇑2’? Recall from
the discussion of Chapter 2, example (1) that a string of type (97a) will be a record of type
(97b).

(97) a.
[
e1:T1

]⌢[e1:T2
]

b. [ t0 :
[
e1:T1

]

t1 :
[
e1:T2

] ]

Thus a record of type (96) will be of the type (98).

(98)
⎡
⎢
⎢
⎣

e1 : “Dudamel”

e : [
t0:
[
e1:start(⇑2e1)

]

t1:
[
e1:end(⇑2e1)

] ]

⎤
⎥
⎥
⎦

Thus the arguments to the ‘start’ and ‘end’ predicates are to be found two levels up.
Thus (96) records that we have observed an event of the phonological type “Dudamel”

and an event consisting of the start of that event followed by the end of that event. Given
that we have the resource LexPropName(“Dudamel”, d) available, we can update (98) to (99).

(99)

⎡
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=e1:Phon

] ]

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢[
e1:end(⇑2e1)
e2:end(⇑2e2)

]

⎤
⎥
⎥
⎥
⎥
⎦

¹⁰ These starting and ending events correspond to what are standardly called vertices in the chart parsing
literature.
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That is, we add the information to the chart that there is an event (labelled ‘e2’) of the type
which is the sign type corresponding to “Dudamel” and that the event which is the speech
event referred to in that sign type is the utterance event, labelled by ‘e1’. Furthermore, the
duration of the event labelled ‘e2’ is the same as that labelled ‘e1’. One could discuss where
there are two events which are contemporaneous or whether there is a single utterance
event which is of both types. The fact that we have presented two fields labelled ‘e1’ and ‘e2’
does not of itself prevent the two fields containing the same event. However, the fact that
we have analysed the sign as containing the speech event as a part (corresponding to the
basic intuition that signs are pairings of utterances and contents) decides the issue for us.
A sign is a record (a labelled set) which models a situation and we are not allowing sets to
be members of themselves. Thus records cannot be a part of themselves.¹¹

The type LexPropName(“Dudamel”, d) is a subtype of NP. Thus the event labelled ‘e2’
could be the first item in a string that would be appropriate for the function which we have
abbreviated as (100a) which has the type (100b).

(100) a. S⟶ NP VP ∣ NPʹ(VPʹ)
b. (NP⌢VP → Type)

On the view of syntactic rules that we are presenting, they are similar to the prediction by
the dog in Chapter 1 that it should run after the stick as part of a game of fetch. On seeing
the stick being held up the dog predicts that it will be thrown and that it should run after
it and that this will be part of an event of the game of fetch type. Similarly, on observing
a noun-phrase event we can predict that it might be followed by a verb phrase event thus
creating a sentence event. We will add a hypothesis event to our chart which takes place at
the end of the noun-phrase event as in (101).¹²

(101)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢
⎡
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the e3-field the ‘rule’-field is for a syntactic rule, that is, a function from a string of
signs of a given type to a type. The ‘fnd’-field is for a sign or string of signs so far found
which match an initial segment of a string of the type required by the rule. The ‘req’-field is
the type of the remaining string required to satisfy the rule as expressed in the ‘e’-field. This
hypothesis event both starts and ends at the end of the event of the noun-phrase event e2.¹³

We can now progress to the next word in the input string as shown in (102).

¹¹ ‘e1 ’ and ‘e2 ’ correspond to what are known as passive edges in the chart parsing literature. They represent
information about potential constituents that have been found.

¹² In terms of the traditional chart parsing terminology this corresponds to an active edge involving a dotted
rule. The fact that the addition of this type to the chart type is triggered by finding something of an appropriate
type to be the leftmost element in a string that would be an appropriate argument to the rule corresponds to what
is called a left-corner parsing strategy.

¹³ With respect to the word string event labelled by ‘e’, it is a punctual event.
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(102)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e4 : “is”

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢
⎡
⎢
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)
e4:start(⇑2e4)

⎤
⎥
⎥
⎥
⎦

⌢[e4:end(⇑2e4)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that the start of the “is”-event is aligned with the end of “Dudamel”-event. This allows
for the fact that there is no break between the words and that the exact pronunciation of the
final /l/ in “Dudamel” is influenced by the pronuniciation of the initial /i/ in “is” through
coarticulation.¹⁴

We can now go through similar procedures as we did for Dudamel adding both a lexical
event based on our lexical resources and a hypothesis event based on the only rule for
strings beginning with a V that we have in our resources. The result of these two steps is
given in (103).

(103)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e4 : “is”
e5 : Lexbe(“is”)∧̣

[
s-event:

[
e=⇑2e4:Phon

] ]

e6 :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rule=VP⟶ [V “is”] [NP [Det “a”] N] ∣ N ʹ:
(V ∧̣

[
s-event:

[
e:“is”

]]⌢

NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]]

→ Type)
fnd=⇑e5:Sign
req=NP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)
e4:start(⇑2e4)
e5:start(⇑2e5)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢
⎡
⎢
⎢
⎣

e4:end(⇑2e4)
e5:end(⇑2e5)
e6:start(⇑3e6)⌢end(⇑3e6)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now we can add a and conductor in a similar way with the result shown in (104).

¹⁴ It also means that the number of elements in the string labelled ‘e’ is the same as the number of vertices in a
standard chart.
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(104)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e4 : “is”
e5 : Lexbe(“is”)∧̣

[
s-event:

[
e=⇑2e4:Phon

] ]

e6 :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rule=VP⟶ [V “is”] [NP [Det “a”] N] ∣ N ʹ:
(V ∧̣

[
s-event:

[
e:“is”

]]⌢

NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]]

→ Type)
fnd=⇑e5:Sign
req=NP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e7 : “a”
e8 : LexIndefArt(“a”) ∧̣

[
s-event:

[
e=⇑2e7:Phon

] ]

e9 :
⎡
⎢
⎢
⎢
⎣

rule=NP⟶ Det N ∣ Detʹ(N ʹ):(Det⌢N → Type)
fnd=⇑e8:Sign
req=N:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e10 : “conductor”
e11 : LexCommonNoun(“conductor”, conductor)∧̣

[
s-event:

[
e=⇑2e10:Phon

] ]

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)
e4:start(⇑2e4)
e5:start(⇑2e5)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e4:end(⇑2e4)
e5:end(⇑2e5)
e6:start(⇑3e6)⌢end(⇑3e6)
e7:start(⇑2e7)
e8:start(⇑2e8)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e7:end(⇑2e7)
e8:end(⇑2e8)
e9:start(⇑3e9)⌢end(⇑3e9)
e10:start(⇑2e10)
e11:start(⇑2e11)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢[
e10:end(⇑2e10)
e11:end(⇑2e11)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that there is no possibility of adding a hypothesis event based on the utterance of
conductor given the resources we have since our small grammar does not include a phrase
structure rule for strings whose first element is of typeN. However, now for the first timewe
have found something which fulfils one of our hypotheses. The hypothesis event labelled
‘e9’ has the type N in its ‘req’-field. The event labelled ‘e11’ is required to be of a subtype of
N and thus fulfils the requirement of ‘e9’. Furthermore, the start of e11 is aligned with the
end (and also the start) of ‘e9’. This means that we can update the chart-type by adding a
new field for an event of the type returned by applying ‘e9.rule’ (a function) to the string
e9.fnd⌢e11. The start of this new NP-event will be aligned with the start of e9.fnd (that
is, e8). The end of the new event is aligned with the end of e11. The resulting chart-type is
given in (105).
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(105)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e4 : “is”
e5 : Lexbe(“is”)∧̣

[
s-event:

[
e=⇑2e4:Phon

] ]

e6 :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rule=VP⟶ [V “is”] [NP [Det “a”] N] ∣ N ʹ:
(V ∧̣

[
s-event:

[
e:“is”

]]⌢

NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]]

→ Type)
fnd=⇑e5:Sign
req=NP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e7 : “a”
e8 : LexIndefArt(“a”) ∧̣

[
s-event:

[
e=⇑2e7:Phon

] ]

e9 :
⎡
⎢
⎢
⎢
⎣

rule=NP⟶ Det N ∣ Detʹ(N ʹ):(Det⌢N → Type)
fnd=⇑e8:Sign
req=N:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e10 : “conductor”
e11 : LexCommonNoun(“conductor”, conductor)∧̣

[
s-event:

[
e=⇑2e10:Phon

] ]

e12 : e9.rule(e9.fnd⌢e11)

e : [
e1:start(⇑2e1)
e2:start(⇑2e2)

]⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)
e4:start(⇑2e4)
e5:start(⇑2e5)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e4:end(⇑2e4)
e5:end(⇑2e5)
e6:start(⇑3e6)⌢end(⇑3e6)
e7:start(⇑2e7)
e8:start(⇑2e8)
e12:start(⇑2e12)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e7:end(⇑2e7)
e8:end(⇑2e8)
e9:start(⇑3e9)⌢end(⇑3e9)
e10:start(⇑2e10)
e11:start(⇑2e11)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢
⎡
⎢
⎢
⎣

e10:end(⇑2e10)
e11:end(⇑2e11)
e12:end(⇑2e12)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The event labelled ‘e12’ will be of type NP and thus satisfy the requirement of e6. By
carrying out the same procedure as before we will obtain a new event (labelled ‘e13’) of
type VP which will satisfy the requirement of ‘e3’ which will allow us to add a new event
(labelled ‘e14’) of type S whose start is at the beginning of the string labelled ‘e’ and whose
end is at the end of that string. The final chart type is given in (106).
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(106)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1 : “Dudamel”
e2 : LexPropName(“Dudamel”, d) ∧̣

[
s-event:

[
e=⇑2e1:Phon

] ]

e3 :
⎡
⎢
⎢
⎢
⎣

rule=S⟶ NP VP ∣ NPʹ(VPʹ):(NP⌢VP → Type)
fnd=⇑e2:Sign
req=VP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e4 : “is”
e5 : Lexbe(“is”)∧̣

[
s-event:

[
e=⇑2e4:Phon

] ]

e6 :

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

rule=VP⟶ [V “is”] [NP [Det “a”] N] ∣ N ʹ:
(V ∧̣

[
s-event:

[
e:“is”

]]⌢

NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]]

→ Type)
fnd=⇑e5:Sign
req=NP:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e7 : “a”
e8 : LexIndefArt(“a”) ∧̣

[
s-event:

[
e=⇑2e7:Phon

] ]

e9 :
⎡
⎢
⎢
⎢
⎣

rule=NP⟶ Det N ∣ Detʹ(N ʹ):(Det⌢N → Type)
fnd=⇑e8:Sign
req=N:Type
e:required(req,rule)

⎤
⎥
⎥
⎥
⎦

e10 : “conductor”
e11 : LexCommonNoun(“conductor”, conductor)∧̣

[
s-event:

[
e=⇑2e10:Phon

] ]

e12 : e9.rule(e9.fnd⌢e11)
e13 : e6.rule(e6.fnd⌢e12)
e14 : e3.rule(e3.fnd⌢e13)

e :
⎡
⎢
⎢
⎣

e1:start(⇑2e1)
e2:start(⇑2e2)
e14:start(⇑2e14)

⎤
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1:end(⇑2e1)
e2:end(⇑2e2)
e3:start(⇑3e3)⌢end(⇑3e3)
e4:start(⇑2e4)
e5:start(⇑2e5)
e13:start(⇑2e13)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e4:end(⇑2e4)
e5:end(⇑2e5)
e6:start(⇑3e6)⌢end(⇑3e6)
e7:start(⇑2e7)
e8:start(⇑2e8)
e12:start(⇑2e12)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e7:end(⇑2e7)
e8:end(⇑2e8)
e9:start(⇑3e9)⌢end(⇑3e9)
e10:start(⇑2e10)
e11:start(⇑2e11)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⌢

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e10:end(⇑2e10)
e11:end(⇑2e11)
e12:end(⇑2e12)
e13:end(⇑2e13)
e14:end(⇑2e14)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We now need to turn our attention to the action rules that will achieve this building of
the chart type. We will introduce a field ‘current-utterance’ into the field ‘shared’ on the
gameboard. This field will be used for the incremental construction of a chart during the
course of an utterance. The new type InfoState (which is a modification of the InfoState as
defined in Chapter 2, example (89), p. 74) is given in (107).
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(107)

⎡
⎢
⎢
⎢
⎢
⎣

private :
[

agenda : list(RecType)
]

shared :
⎡
⎢
⎢
⎣

latest-utterance : Sign*

current-utterance : RecType
commitments : RecType

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

The initial type InitInfoState is now (108).

(108)

⎡
⎢
⎢
⎢
⎢
⎣

private :
[

agenda=[ ] : list(RecType)
]

shared :
⎡
⎢
⎢
⎣

latest-utterance=ε : Sign*

current-utterance=ERec : RecType
commitments=Rec : RecType

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

We first characterize an update function, fINTEGLEX, and action rule, INTEGLEX, for integrat-
ing lexical events into the chart. In order to do this we will need to introduce two new
technical notions. First we will need to find themaximum i such that ‘ei’ is among the labels
in the current chart type, so that we can make sure that what we add to the chart type will
have the label ‘ei+1’. If X is a labelled set, we say that maxℓ(X) is the number defined in (109).

(109) max({i ∣ ℓi ∈ labels(X)})

For convenience we abbreviate (110a) as (110b), where ‘incr’ stands for “increment”.

(110) a. maxℓ(X) + 1
b. incrℓ(X)

Secondly, we introduce an operation of concatenative merge, ‘∧̣concat’, which is exactly like
ordinary merge except in the case of two string types where T1 ∧̣concat T2 is T⌢1 T2.

We can now define ‘fINTEGLEX’ as (111a) and ‘INTEGLEX’ as (111b).

(111) a. λTchart:RecType
λTphon:RecType.

Tchart ∧̣concat [
eincre(Tchart):Tphon
e:
[
eincre(Tchart):start(⇑

2eincre(Tchart))
]⌢[eincre(Tchart):end(⇑

2eincre(Tchart))
]]

b.

Lex(Tphon,Tsign) resourceA si,A :A Tinfstate u* :A Tphon

Tinfstate ⊑
[
shared:

[
current-utterance:Tchart

]]

si+1,A :A Tinfstate ∧̣
[
shared:

[
current-utterance:fINTEGLEX(Tchart, Tphon)

]]

We now need action rules that will add signs to the chart which are derived from the
lexical resources for signs associated with phonological types. In (112) we specify an action
rule INTEGPROPNAME for integrating proper names into the chart. For common nouns we
have a similar rule, INTEGCOMMONNOUN, as in (113). Finally, for indefinite articles we
have INTEGINDEFART given in (115).

These three rules are identical except for the different categories involved. They are tacit
action rules in that they do not require any external event such as an utterance in order for
their premises (or preconditions) to be met. This means that we have to be careful to avoid
them being used repeatedly adding the same information over and over to the chart. The
side conditions on these rules are meant to check that the information that they will add is
not already present on the chart.



(112)

LexPropName(TPhon, a) resourceA
si,A :A Tinfstate

si,A.shared.current-utterance :A Tchart

Tchart ⊑
⎡
⎢
⎢
⎣

ej:Tphon

e:[tk:
[
ej:start(⇑2ej)

]

tl:
[
ej:end(⇑2ej)

] ]

⎤
⎥
⎥
⎦

Tchart ̸⊑
⎡
⎢
⎣

ej:Tphon
en:LexPropName(Tphon, a) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]
⎤
⎥
⎦

for any n

si+1,A :A Tinfstate ∧̣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

current-utterance:Tchart∧̣
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ej:Tphon
eincre(Tchart):LexPropName(Tphon, a) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]

e:[tk:
[
eincre(Tchart):start(⇑

2eincre(Tchart))
]

tl:
[
eincre(Tchart):end(⇑

2eincre(Tchart))
] ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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LexCommonNoun(TPhon, p) resourceA
si,A :A Tinfstate

si,A.shared.current-utterance :A Tchart

Tchart ⊑
⎡
⎢
⎢
⎣

ej:Tphon

e:[tk:
[
ej:start(⇑2ej)

]

tl:
[
ej:end(⇑2ej)

] ]

⎤
⎥
⎥
⎦

Tchart ̸⊑
⎡
⎢
⎣

ej:Tphon
en:LexCommonNoun(Tphon, p) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]
⎤
⎥
⎦

for any n

si+1,A :A Tinfstate ∧̣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

current-utterance:Tchart∧̣
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ej:Tphon
eincre(Tchart):LexCommonNoun(Tphon, p) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]

e:[tk:
[
eincre(Tchart):start(⇑

2eincre(Tchart))
]

tl:
[
eincre(Tchart):end(⇑

2eincre(Tchart))
] ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(114)

LexIndefArt(TPhon) resourceA
si,A :A Tinfstate

si,A.shared.current-utterance :A Tchart

Tchart ⊑
⎡
⎢
⎢
⎣

ej:Tphon

e:[tk:
[
ej:start(⇑2ej)

]

tl:
[
ej:end(⇑2ej)

] ]

⎤
⎥
⎥
⎦

Tchart ̸⊑
⎡
⎢
⎣

ej:Tphon
en:LexIndefArt(Tphon) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]
⎤
⎥
⎦

for any n

si+1,A :A Tinfstate ∧̣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

current-utterance:Tchart∧̣
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ej:Tphon
eincre(Tchart):LexIndefArt(Tphon) ∧̣[

s-event:
[
e=⇑2ej:Phon

]]

e:[tk:
[
eincre(Tchart):start(⇑

2eincre(Tchart))
]

tl:
[
eincre(Tchart):end(⇑

2eincre(Tchart))
] ]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Recall that we use ‘ti’ where i is a natural number as the distinguished labels in records
that represent strings. Thus the type (115) is the type of strings whose k + 1th and l + 1th
positions are of type T1 and T2 respectively.

(115) [
tk : T1
tl : T2

]

Note that becausewe aremodelling strings as records these types can bemerged as required
by these rules. Thus the merge of (115) with (116a) will be (116b).

(116) a. [ tk : T1 '
tl : T2 '

]

b. [ tk : T1∧̣T1 '
tl : T2∧̣T2 '

]

After integrating lexical sign types into the chart, the next step is to integrate rules from
our resources that apply to strings which could begin with a lexical sign of this type. We
will use an action rule called INTEGRULE which integrates a syntactic rule of the kind we
have discussed into the chart. It is given in (117).

The action rule in (117) adds a rule to the chart if there is already something on the chart
of the right type to match its “left corner”, that is the first type in the string type which is
the domain type of the function which models the rule. It marks the rule as having its left
corner found and requiring the remaining string type (without the left corner) as what is
still required.¹⁵

The final action rule that we need in order to build charts involves combining an event
with a non-empty requirement with an event of a type matching the requirement whose
start coincides with the end of the first event. We will call this action rule COMBINE. There
are two variants of this action rule: one for the case where what is required is a string of
category signs greater than length 1 and one for the case where what is required is a string
of a single category sign. In the first case we need to create a new event with a requirement
which is the remainder of the requirement after removing the left corner of the original
requirement and a found string which concatenates the found event at the end of the origi-
nal found event string. In the second case we need to add an event of the type which results
from applying the rule to the concatenation of the found event to the original found event
string. As we only have binary rules in our small grammar, the first case will not be nec-
essary here as we will only introduce a rule onto the chart when we have found an event
matching its first element, and the requirement resulting from this addition will thus be a
string consisting of a single event of a given category type. We will thus only introduce the
action rule for the second case here. We do this in (118).

¹⁵ The fact that the new event has a non-empty requirement for future eventsmeans that it corresponds to what
is known in the chart parsing literature as an active edge and the new event encodes a dotted rule.



(117)

si,A :A Tinfstate si,A.shared.current-utterance :A Tchart

Tchart ⊑ [
ek:Tsign
e :Tevpref

⌢Tend
] incre(si,A.shared.current-utterance) = n

Tcat ∈ {NP,VP, …} Tsign ⊑ Tcat Tend ⊑
[
ek:end(ek)

]

frule resourceA frule : Trule
Trule = (Tleftcorner

⌢Trest→Type) Tsign ⊑ Tleftcorner

Tchart ̸⊑
⎡
⎢
⎢
⎣

el=frule:Trule
e:Tevpref

⌢
[
e1:start(⇑3el)⌢end(⇑3el)

]

⎤
⎥
⎥
⎦

for any l
si+1,A :A Tinfstate ∧̣
⎡
⎢
⎢
⎢
⎢
⎣

shared:

⎡
⎢
⎢
⎢
⎢
⎣

current-utterance:Tchart∧̣

⎡
⎢
⎢
⎢
⎢
⎣

en:
⎡
⎢
⎢
⎣

rule=frule:Trule
fnd=si,A.shared.current-utterance.ek:Tsign
req=Trest:Type

⎤
⎥
⎥
⎦

e:Tevpref
⌢(Tend∧̣

[
en:start(⇑3en)⌢end(⇑3en)

]
)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦



(118)

si,A :A Tinfstate si,A.shared.current-utterance :A Tchart

Tchart ⊑

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ef:Tsign1

ek:
⎡
⎢
⎢
⎣

rule=frule:(T→Type)
fnd=⇑ef:Sign
req=Tsign2

:Type

⎤
⎥
⎥
⎦

el:Tsign3

e:T1
⌢[ef:start(⇑3ef)

]⌢T2
⌢

⎡
⎢
⎢
⎣

ef:end(⇑3ef)
ek:start(⇑3ek)⌢end(⇑3ek)
el:start(⇑3el)

⎤
⎥
⎥
⎦

⌢T3
⌢

[
el:end(⇑3el)

]⌢T4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

1 ≤ i ≤ 3 Tsigni
⊑ Ti Ti ∈ {NP,VP, …}

maxe(si,A.shared.current-utterance) = n

Tchat ̸⊑

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ef:Tsign1

el:Tsign3

ei:frule(ef⌢el)

e:Rec*⌢[ei:start(⇑ei)
ef:start(⇑ef)

]⌢Rec*

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for any i

si+1,A :A Tinfstate ∧̣
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

shared:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

current-utterance:Tchart∧̣

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ef:Tsign1

ek:
⎡
⎢
⎢
⎣

rule=frule:(T→Type)
fnd=⇑ef:Sign
req=Tsign2

:Type

⎤
⎥
⎥
⎦

el:Tsign3

en+1:r.ek.rule(r.ef⌢r.el)

e:T1
⌢[

ef:start(⇑3ef)
en+1:start(⇑3en+1)

]⌢T2
⌢[

ek:start(⇑3ek)⌢end(⇑3ek)
el:start(⇑3el)

]

⌢T3
⌢[

el:end(⇑3el)
en+1:end(⇑3en+1)

]⌢T4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.6 Summary of resources introduced

This summary does not include the resources for chart processing introduced in
Section 3.5.

3.6.1 Universal grammar resources

3.6.1.1 Types
Loc — a basic type

l : Loc iff l is a region in three dimensional space
Phon — a basic type

e : Phon iff e is a phonological event

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Ppty — (
[
x:Ind

]
→RecType)

Quant — (Ppty→RecType)
Cont — RecType∨Ppty∨Quant∨(Ppty→Quant)
Cat — a basic type

s, np, det, n, v, vp : Cat

Syn — [
cat : Cat
daughters : Sign* ]

Sign — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

SignType — a basic type
T : SignType iff T ⊑ Sign (as in Chapter 2)

S — [
Sign
syn:

[
cat=s:Cat

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]
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N — [
Sign
syn:

[
cat=n:Cat

]]

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]

NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

3.6.1.2 Predicates
with arity ⟨Phon, Loc⟩

loc — e : loc(u, l) iff u is located at l in e

with arity ⟨Phon, Ind⟩

speaker — e : speaker(u, a) iff u is the speaker of u in e
audience — e : audience(u, a) iff u is the audience of u in e

with arity ⟨Ppty,Ppty⟩New!

exist — s : exist(P,Q) iff [↓P] ∩ [↓Q↾ s] ≠ ∅

with arity {⟨ T⟩ ∣ T is a type}New!

be — e : be(a) iff aεe

3.6.1.3 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)

SemCommonNoun(p)
If p is a predicate, then SemCommonNoun(p) is

λr:
[
x:Ind

]
.
[

e : p(r.x)
]

LexCommonNoun(Tphon, p)
If Tphon is a phonological type and p is a predicate, then LexCommonNoun(Tphon, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(p):Ppty

]
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SemPropName(a)
If a:Ind, then SemPropName(a) is

λP:Ppty . P(
[
x=a

]
)

LexPropName(TPhon, a)
If TPhon is a phonological type and a:Ind, then LexPropName(TPhon, a) is

Lex(TPhon, NP) ∧̣
[
cont=SemPropName(a):Quant

]

SemIndefArt
λQ:Ppty .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

LexIndefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt:(Ppty→Quant)

]

SemBe
λ𝒬:Quant .

λr1:
[
x:Ind

]
.

𝒬(λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ])

Lexbe(TPhon)
If TPhon is a phonological type, then Lexbe(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBe:(Quant→Ppty)

]

3.6.1.4 Constituent structure
RuleDaughters(Tdaughters, Tmother)

If Tmother is a sign type and Tdaughters is a type of strings of signs then

RuleDaughters(Tdaughters, Tmother)

is

λu :Tdaughters . Tmother ∧̣
[
syn:

[
daughters=u:Tdaughters

]]

ConcatPhon
λu:

[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]

Tmother⟶Tdaughter1…Tdaughtern
If Tmother is a sign type and Tdaughter1 , … ,Tdaughtern are sign types, then

Tmother⟶Tdaughter1…Tdaughtern
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represents

RuleDaughters(Tmother, Tdaughter1
⌢…⌢Tdaughtern)∧̣̣ConcatPhon

ContForwardApp(Targ, Tres)
If Targ and Tres are types, then ContForwardApp(Targ, Tres) is

λu:
[
cont:(Targ→Tres)

]
⌢
[
cont:Targ

]
.

[
cont=u[0].cont(u[1].cont):Tres

]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(T ʹdaughter2 :Targ) :Tres
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(T ʹdaughter2 : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp(Targ, Tres)

3.6.1.5 Action rules
LEXRES

Lex(T,C) resourceA u :A T

:A (Lex(T,C)∧̣
[
s-event:

[
e=u:T

]]
)

3.6.2 Universal speech act resources

(as in Chapter 2)

3.6.3 Universal dialogue resources

(as in Chapter 2)

3.6.4 English resources

3.6.4.1 Basic types and predicates
(as in Chapter 2)

Basic phonological types for words
{“Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”, “aha”, “ok”}

Witnesses for basic types
Ind — dudamel, beethoven, uchida : Ind
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Predicates
with arity ⟨Ind⟩ {conductor, composer, pianist}

3.6.4.2 Grammar
Lexical sign types
{LexPropName(“Dudamel”, d),
LexPropName(“Beethoven”, b),
LexIndefArt(“a”),
LexCommonNoun(“composer”, composer),
LexCommonNoun(“conductor”, conductor),
Lexbe(“is”),
Lex(“ok”, S) (as in Chapter 2),
Lex(“aha”, S) (as in Chapter 2) }

Constituent structure rule components
CnstrIsA

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]].

VP∧̣
[
cont=u[2].syn.daughters[2].cont:Ppty

]

Constituent structure rules
{S⟶ NP VP ∣ NPʹ(VPʹ:Ppty):RecType,
NP⟶ Det N ∣ Detʹ(N ʹ:Ppty):Quant,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣ V ʹ(NPʹ:Quant):Ppty}

3.7 Summary

This chapter has focussed on a view of grammar within a theory of action. In this respect it
relates closely to the aims of Dynamic Syntax. For example, the view of language as action
is emphasized by Kempson et al. (2016). This is a perspective which has been present since
the earliest work on Dynamic Syntax, for example Kempson et al. (2001); Tugwell (1999).

We started by relating the kind of constituent structure found in syntax to the hierar-
chical structure of event types which seems necessary for even non-linguistic agents to
interact effectively with their environment and to learn new types of actions efficiently by
exploiting components of actions they already know how to perform. The kind of syn-
tax we proposed builds closely on the insights of Head-Driven Phrase Structure Grammar
(HPSG) and exploits the similarities between the feature structures used there and records.
One major difference between the two approaches is that we have both records and record
types where HPSG has just feature structures which sometimes leads to confusion as to
whether they should be thought of intuitively as objects or types within the theory.

Another important difference is that the type theoretical approach includes functions
and function types which cannot be characterized in terms of feature structures. This was
important, for example, whenwemodelled phrase structure rules in terms of functions and
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associated action rules. It was, of course, of central importance when we turned our atten-
tion to semantics, where much of what we did in this chapter followed the classical formal
semantic analyses proposed by Montague. The techniques we are using here are related to
the categorial grammar tradition, as is indeed Montague’s approach. This tradition is cur-
rently represented by a number of variants of categorial grammar including Combinatory
Categorial Grammar (CCG) (Steedman, 2000), Type Logical Grammar (Morrill, 1994),
and Type-Theoretical Grammar (Ranta, 1994).

If we are going to give a theoretical account of language in terms of a theory of action, we
need to take seriously the fact that language is processed incrementally, that is, not in terms
of complete sentences but in terms of small phonological events corresponding to words
or parts of words. Our suggestion for this was to adopt the notion of parse chart which was
developed in computational linguistics in the 1980s, developed from formal methods used
for the parsing of programming languages in computer science. We sketched how chart
parsing could be conceived of in terms of our types and action rules and showed how this
could be integrated into our view of updates carried out on information states in terms of
gameboards. Thus the incremental processing of an utterance becomes part of the general
theory of information state update needed to account for dialogical interaction. This, then,
provides a reasoning-based account of linguistic processing relating to the idea of parsing
as deduction (Pereira andWarren, 1983). It also provides a reasoning-based account of the
association between syntactic and semantic processing which is related to the use of glue
semantics in Lexical Functional Grammar (Dalrymple et al., 1995).

The division of grammatical resources into those which are universal and those which
are language specific is related to work on the Grammatical Framework (Ranta, 2011).

While we have included both syntax and semantics in this framework and taken a fairly
detailed look at how incremental parsing can be incorporated in this approach, the actual
grammatical phenomena that we have looked at are linguistically trivial. In fact, what we
have presented in this chapter is, in terms of syntax, equivalent to a simple context free
phrase structure grammar. It is, however, possible to go beyond context free constructions
(as suggested, for example, by Shieber, 1985) since we allow arbitrary functions to combine
constituents.

In Part II we will look at a variety of linguistic phenomena and argue that the approach
we have developed provides theoretically interesting insights both in terms of old problems
and into new problems that arise when we view language from a dialogical perspective.



PART II

TOWARDS A DIALOGICAL VIEW
OF SEMANTICS

Part II looks at a number of central issues in semantics from the dialogical point of view
that has been developed in Part I and argues that there are advantages to examining some
old semantic puzzles from this perspective.





4
Reference andmental states

4.1 Introduction

In this chapter¹ and the following chapters we will extend the linguistic coverage of the
toy grammar we presented in Chapter 3. For many of the phenomena we discuss we will
first present a treatment which is as close as possible to Montague’s (1973; 1974) original
treatment and then present a treatment which exploits the advantages of the approach we
are proposing in this book as well as more recent developments since Montague’s original
work. In this chapter we will be concerned with the relation of reference, in particular of
proper names and unbound pronouns, to the mental states of agents.

Section 4.2 argues that the treatment of proper names as signs enables us to deal with the
fact that more than one individual can have the same proper name. Section 4.3 explores
how acknowledging the fact that more than one individual can have the same proper name
reveals important strategies in dialogue. Section 4.4 continues this discussion introducing
the relevance of salience and accommodation for proper names. Section 4.5 discusses an
old problem introduced by Saul Kripke where a single person, Paderewski, is mistakenly
assumed to be two people with the same name. Finally, Section 4.6 discusses reference
using unbound pronouns.

4.2 Proper names as signs

The treatment of proper names that we presented in Chapter 3, encapsulated in the
definition of SemPropName andLexPropName, is an adaptation ofMontague’s original treat-
ment in that it has the content of a proper name utterance as a quantifier generated from
an individual. The essence of Montague’s treatment was that if we have a proper name
Sam whose denotation is based on an individual ‘sam’, then the denotation of Sam is
the characteristic function of the set of properties possessed by the individual concept of
‘sam’. Montague modelled individual concepts as functions from possible worlds to indi-
viduals. Using more or less Montague’s logical notation, the denotation of Sam would be
represented by (1).

(1) λP.P{[ˆsam]}

Here [ˆsam] represents the individual concept of ‘sam’, that is, that function, f, on the set of
possible worlds such that for any worldw, f(w) = sam. The reason that Montague used the
individual concept (and the associated special notion of application involved in applying
a property to an individual concept represented by the ‘{}’-brackets) was to treat what is

¹ An earlier version of some of the material in this chapter has appeared in Cooper (2017b).

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0005
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known as the Partee-puzzle concerning temperature and price which we will discuss in
Chapter 5.Many subsequent researchers came to the conclusion thatMontague’s treatment
of this puzzle was not the correct one and that the individual concept was not necessary in
the treatment of proper names. Thus (1) could be simplified to (2).

(2) λP.P(sam)

The content that we assigned to an utterance of Sam in Chapter 3 is represented in (3).

(3) λP:Ppty.P(
[
x=sam

]
)

The reason thatwehave chosen to characterize properties as having records as their domain
rather than individuals, has to do with our treatment of the Partee puzzle as we will explain
in Chapter 5. Thus the reason that we have the record

[
x=sam

]
as the argument to the prop-

erty rather than an individual as in (4) is for the same reason as Montague introduced an
individual concept.

(4) λP:Ppty.P(sam)

The treatment of proper nameswe presented inChapter 3 has an important advantage over
Montague’s original. For Montague, (1) is the result of applying an interpretation func-
tion to the linguistic expression Sam and a number of indices for the interpretation, 𝔄, a
possible world, i, a time, j, and an assignment to variables, g. This is represented in (5).

(5) [[ Sam ]]𝔄,i,j,g = λP.P{[ˆsam]}

This requires that the English expression Sam is always associatedwith the same individual
‘sam’ with respect to𝔄 and any i, j, g related to𝔄. This seems to go against the obvious fact
that more than one individual can have the name Sam. It does not work to say that a dif-
ferent individual can be associated with Sam when it is evaluated with respect to different
parameters. g is irrelevant since it is defined as an assignment to variables and the English
expression Sam is not (associated with) a variable—it cannot be bound by a quantifier.² A
strategy which involves varying the possible world and time to get a different individual
associated with Sam would be defeated by the fact that there are many people called Sam
in the actual world right now. We might try saying that associating a different individual
with Sam involves a different interpretation, 𝔄', of the language. This has some intuitive
appeal and we will discuss a variant of it in Section 4.5 in relation to a proposal by Ludlow
(2014). But it will come to grief when we need to talk about two people named Sam in
the same sentence unless we allow a switch in interpretationmid-sentence. While allowing
interpretation to change mid-sentence may be an attractive option for other reasons it is
not an option that is available on Montague’s account of meaning. The normal assump-
tion is that in cases where two individuals have the same name the language contains two
expressions which are pronounced the same, for example, Sam1 and Sam2. This would
make the treatment of proper names somewhat like Montague’s treatment of pronouns in
that they have silent numerical subscripts attached to them. How many Sami should the
language contain? One for each person named Sam, now, in the past and future and who
could be named Sam in some non-actual world? If we follow the strategy with variables
we would introduce countably many Sami so that we would always have enough. But with

² This claim has been called into question by later research. See Maier (2009) for discussion.
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assignments to variables we can always assign individuals to more that one variable with-
out this causing a problem. But the consequence of doing this with proper names would be
to say that an individual can have many names that are pronounced the same. (Sam says,
“My name is Sam”, not “My names are Sam”.) Similarly no two individuals would have the
same name, although they would be able to have distinct names which are pronounced the
same. This would mean that the interpretation of have the same name would have to mean
“have names which are pronounced the same”. This might cause difficulties distinguishing
between a case where we have two people named Sam and a case where people really do
have distinct names which are pronounced the same such as Ann and Anne (unless you
want to count this as a case of spelling the same name differently).

In contrast the analysis of proper names we presented in Chapter 3 is sign-based. It
allows several sign types to share the same phonology but be associated with different
contents. Treating the language in terms of signs eliminates the need for arbitrary index-
ing of proper names. It also allows us to individuate names in a sensible way. One way to
individuate names is by the phonologies occurring in proper name sign types. Thus if we
have two proper name sign types with the same phonology but contents associated with
different individuals, then we have two individuals with the same name. Note that this pro-
posal would make Ann and Anne different spellings of the same name since they are both
associated with the same phonological type. How we individuate names can be different
in different contexts if we follow the kind of proposal for counting discussed by Cooper
(2011). We could, for example, introduce a field into lexical sign types for an orthograph-
ical type and allow the individuation of names by either phonology or orthography or a
combination of both depending on what is most useful to the purpose at hand.

Using signs in this way seems to give us a clear, if rather simple, advantage over Mon-
tague’s formal language approach, even though we have so far essentially just transplanted
Montague’s analysis of proper names into our variant of a sign-based approach. However,
there is a remaining question within sign-based approaches which is a kind of correlate to
the need on Montague’s approach to create many different names Sami. We are tempted
to think of a “language” as being defined as a collection of sign types. Thus a person who
knows English will know sign types which pair the phonological type “Sam” with vari-
ous individuals who are called Sam. The problem with this is that different speakers of
English will know different people named Sam and thus technically we would have to say
that they speak different languages. It has long been assumed in the linguistic literature that
different individuals have slightly different languages or grammars and Chomsky’s notion
of I-grammar (Chomsky, 1980, 1986) has grown out of this. However, it is not normally
assumed that people’s languages differ in terms of who they know with a particular proper
name. In the terminology of Chapter 3 we would say that the two agents indeed have dif-
ferent linguistic resources available to them. But there is also a resource which the two
agents share, even if they do not have any overlap in the people named Sam that they are
aware of. This is the knowledge that Sam is a proper name in English and can be used
to name individuals. Arguably it is this knowledge which is constitutive of English, rather
than the knowledge of who is actually called Sam, important though that might be for
performing adequately in linguistic situations. In Chapter 3 we introduced sign type con-
struction operations and in particular ‘LexPropName’ which maps a phonological type and
an individual to an appropiate proper name sign type. We called this a universal resource
since it represents the general knowledge that utterances can be used to name individuals.
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In the English resources we defined there we named sign types such as ‘LexPropName(“Sam”,
sam)’, where we specify both the phonological type and the individual associated with it.
But, given the power of functional abstraction, we can identify (6) as an English resource
where the phonological type is specified but not the particular individual.

(6) λx:Ind . LexPropName(“Sam”, x)

Saying that an agent has this function available as an English resource could be argued to
encode the fact that the agent has the knowledge that Sam is a proper name in English. An
agent who has this resource has a recipe for constructing an appropriate sign type in their
resources whenever they meet somebody called Sam. Knowing that Sam is a proper name
in English is not amatter of knowingwho is called Sambut rather amatter of knowingwhat
to do linguistically when you encounter somebody called Sam. Thus while we have so far
just taken over Montague’s original analysis of proper names we have given ourselves the
opportunity to recast it in terms of a theory which enables agents to update their linguistic
resources as they become aware of new facts about the world.

4.3 Proper names and communication

However, what we have done so far tells us little about the communicative processes asso-
ciated with utterances of proper names. In Cooper (2013c) we pointed out that this kind
of analysis does not give us any way of placing the requirement on the interlocutor’s game-
board that there already be a person named Sam available in order to integrate the new
information onto the gameboard. As Ginzburg (2012) points out, the successful use of a
proper name to refer to an individual a requires that the name be publicly known as a
name for a. We will follow the analysis of Cooper (2013c) in parametrizing the content.
A is a function which maps a context to a content. As such it relates to Montague’s techni-
cal notion of meaning in his paper ‘Universal Grammar’ (Montague, 1970, 1974) where he
regarded meaning as a function from possible worlds and contexts of use to denotations.³
This also corresponds to the notion of character in Kaplan (1978).

We will take a context to be a situation modelled as a record. A simple proposal for a
parametric content for a proper name might be (7).

(7) λc:
[
x:Ind

]
. λP:Ppty . P(c)

This would allow any record with an individual labelled ‘x’ to be mapped to a proper name
content. Recall that the label ‘x’ is picked up by the notion of property that we defined in
Chapter 3 as being of type (

[
x:Ind

]
→RecType), an example being (8).

(8) λr:
[
x:Ind

]
.
[
e:run(r.x)

]

Associating the phonological type “Sam” with (7) would essentially be a way of encapsu-
lating in the interpretation of Sam what is expressed by (6)—namely, that potentially any
individual can be called Sam. However, we want the parametric content of Sam to be more
restrictive than this. It is going to be the tool that we use to help us identify an appropriate
referent when we are confronted with an utterance of type “Sam”. The obvious constraint

³ See Section 4 (Semantics: Theory of Reference) of ‘Universal Grammar’.
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that we should place is that the referent is indeed named Sam. Thus we can restrict (7) so
that it is an appropriate parametric content for Sam rather than something that appears to
be a parametric content appropriate to proper names in general. The modification is given
in (9).

(9) λc:[x:Inde:named(x, “Sam”)] .

λP:Ppty . P(c)

We will see in Section 4.6 that there is more than one component in the context since we
will use a separate component to assign individuals to unbound pronouns. In preparation
for this we will use the label ‘𝔠’ for the component of the context we are introducing here
as shown in (10).

(10) λc:[𝔠:[x:Inde:named(x, “Sam”)]] .

λP:Ppty . P(c.𝔠)

In order to ensure the presence of the label ‘𝔠’ in contexts we will define a type of con-
texts, Cntxt. We will refine the characterization of this type as we progress. For now it is
characterized as in (11).

(11) Cntxt designates
[
𝔠 : Rec

]

This treatment of proper names is closely related to treatments thatwere proposed earlier in
situation semantics (Gawron and Peters, 1990; Cooper, 1991; Barwise and Cooper, 1993).
A more recent close relation is Maier’s (2009) proposal for the treatment of proper names
in terms of layered discourse representation theory (LDRT). Maier points out in a useful
overview of the history of semantic treatments of proper names that this view of proper
names is a hybrid of the descriptivist and referential approaches: it uses a description like
“named Sam” to provide a presuppositional restriction on the kind of referent which can
be assigned to the proper name. (11) maps a context in which there is an individual named
Sam to a proper name content based on that individual. Care has to be taken with the
predicate ‘named’ on this kind of analysis. It is important that it not be too restrictive,
for example, requiring the legal registering of the name. It may be sufficient that someone
at some point has called the individual by the name. The exact conditions under which a
situationmay be of a type constructed with this predicate will vary depending on the needs
associated with the conversation at hand. Wemay, for example, take a stricter view of what
it means to have a certain name if we are talking in a court of law than if we are trying
to attract somebody’s attention to avoid an accident on a mountainside. This flexibility of
meaning “in flux” has been discussed in Cooper and Kempson (2008); Cooper (2012b);
Ludlow (2014); Ginzburg and Cooper (2014); Kracht and Klein (2014) amongmany other
places and we will return to it several times in the following chapters.

An alternative to the use of parametric contents is to use parametric signs. This could
be formulated as in (12) where LexPropName is the function for associating lexical content
with phonological types that was introduced in Chapter 3.
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(12) λc:[𝔠:[x:Inde:named(x, “Sam”)]] .

LexPropName(“Sam”, c.𝔠.x)

Intuitively, (12) says that given a situation in which there is an individual named by the
phonological type “Sam” we can construct a sign type in which the phonological type
“Sam” is associated with that individual. From the point of view of the formal seman-
tics tradition, (12) is a much more radical proposal than (10). The function (10) is a
close relative of Montague’s meaning and Kaplan’s character. It is a function from con-
texts to contents, although our theory of what contexts and contents are differs from both
Montague’s and Kaplan’s proposals. The function in (12), however, is something that
creates a kind of linguistic resource on the basis of a context. That is, given a context in
which ‘sam’ is named by “Sam” we derive the information that linguistic signs can be
used which associate “Sam” with ‘sam’. If we did not know this before, we are extending
the collection of linguistic resources we have available. We suspect that both parametric
contents and parametric sign types could be of importance for a theory of linguistic inter-
pretation and learning. For now, we will work with the less radical notion of parametric
content.

Parametric contents as we have presented them so far are problematic for compositional
semantics because the domain type of the function (representing the “presupposition”)
which is the parametric content varies from case to case depending on what the intuitive
presupposition of the phrase is. According to our rules it will always be some subtype of
RecType (since we are thinking of contexts as records/situations) and we can therefore
assign them to the type of partial functions from records to quantifiers, (Rec ⇀ Quant).
However, while types of partial functions as we have defined them are useful for gather-
ing together functions of different types into a single class, they are not useful in a setting
where we need to guarantee that a given function is provided with an argument which is
in its domain.

For this reason we will say that a parametric content is a pair (construed as a record
with two fields) containing a type and a function whose domain type is that type. We can
create such a parametric content by using a redefined version of ‘SemPropName’ which
we introduced in Chapter 3. Whereas the version from Chapter 3 took an individual as
argument and created the content of a name of that individual, the new version will take
a phonological type as argument and create a parametric content requiring an individual
named by that phonological type. The new version is given in (13).

(13) SemPropName(T), where T is a phonological type, is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

bg = [𝔠:[x:Inde:named(x, T)]]

fg = λc: [𝔠:[x:Inde:named(x, T)]] .

λP:Ppty . P(c.𝔠)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here the field labelled ‘bg’ (“background”) contains a record type and the field labelled ‘fg’
(“foreground”) is a function whose domain type is the background record type. From now
on we will mean records of this kind by parametric content.
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While it is useful to think of parametric contents as records of this kind the record nota-
tion in (13) is clumsy and repetitive and we will need to talk a good deal about different
parametric contents. We will therefore use a more concise notation for such records as
given in (14).

(14) ˹λv :T . φ˺ represents the record

[
bg = T
fg = λv :T . φ ]

This means that we can write (13) more economically as (15)

(15) SemPropName(T), where T is a phonological type, is

˹λc: [𝔠:[
x:Ind
e:named(x, T)]]

. λP:Ppty . P(c.𝔠)˺

The type of a parametric content of proper names is (16) where we use CntxtType to be the
type of types which are subtypes of Cntxt, that is T:CntxtType iff T ⊑ Cntxt.

(16) [
bg : CntxtType
fg : (bg→Quant) ]

That is, the foreground is a function from records of the background type (modelling con-
texts) to quantifiers. We will refer to this type as PQuant (“parametric quantifiers”). The
universal resource LexPropName for associating proper name content with phonological
types, creating a sign type for a proper name, will now be redefined so that it only takes a
phonological type as argument as in (17).

(17) LexPropName(TPhon), where TPhon is a phonological type,
is defined as
Lex(TPhon, NP) ∧̣

[
cnt=SemPropName(TPhon):PQuant

]

Note that the phonological type plays a dual role here. It figures once as determining the
phonology of the sign and again as determining the presupposition associated with the
parametric content.

There are two main questions that need to be answered about parametric contents. One
concerns how the compositional semantics works and the other concerns the nature of
contexts and how you compute with them. We will take the compositionality issue first.
Let us assume that all signs provide us with a parametric content rather than a content.
In those cases where there is no constraint on what the context must be we will use a triv-
ial parametric content, that is, one that maps any context (modelled as a record) to the
same content. Thus, for example, if we wish to represent a theory in which the intransitive
verb leave does not place any restrictions on the context, we could represent its parametric
content as (18a) which is of the type for parametric properties (PPpty) given in (18b).

(18) a. ˹λc:Cntxt.λr:
[
x:Ind

]
.
[
e:leave(r.x)

]
˺

b. [ bg : CntxtType
fg : (bg→Ppty) ]
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The foreground of this parametric property will map any context c to the function (19)
which does not depend in any way on c.

(19) λr:
[
x:Ind

]
.
[
e:leave(r.x)

]

Such a content could be introduced by a resource for lexical content construction ‘Sem-
IntransVerb’ as characterized in (20), where Tbg, the “background” or “presupposition”
type, is a record type and p is a predicate with arity ⟨Ind⟩.

(20) SemIntransVerb(Tbg, p) is

˹λc:Tbg . λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺

Note that if (20) is the only way of constructing parametric content for lexical intransitive
verbs, then although it is possible to place restrictions on the context by choosing a non-
trivial record type (something other than Rec) for Tbg this will not have any effect on the
property returned as the content. As we are not here concernedwith presuppositions intro-
duced by lexical intransitive verbs we will leave open whether it is necessary to change this.
‘SemIntransVerb’ will be used by the universal resource ‘LexIntransVerb’ defined in (21),
where Tphon is a phonological type and p is a predicate with arity ⟨Ind⟩.

(21) LexIntransVerb(Tphon, Tbg, p)
is defined as
Lex(Tphon, Vi) ∧̣

[
cnt=SemIntransVerb(Tbg, p):PPpty

]

This means that the English resource corresponding to the lexical entry for leave can be
defined as (22).

(22) LexIntransVerb(“leave”, Rec, leave)

A standard strategy for dealing with compositional semantics when using parametric
contents is to use a version of what is known in combinatorial logic as the S-combinator.
In its λ-calculus version this is (23).

(23) λz . α(z)(β(z))

Our version of the S-combinator including different type requirements on the context aris-
ing from the function and the argument will be (24), a preliminary version which we will
modify in order to include the treatment of free pronouns in Section 4.6.

(24) If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣[β.bg]𝔠⇝𝔠.a . [α]𝔠⇝𝔠.f(c)([β]𝔠⇝𝔠.a(c))˺

The notation [o]π1⇝π2
used here refers to an object like o except that any occurrence of the

path π1 has been replaced by the path π2.
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If T is a record type, the notation [T]π1⇝π2
refers to the type like T except that the path

π1 has been replaced by π2 provided that π1 ⇝ π2 represents an appropriate relabelling
for T as characterized below on pp. 150ff. Otherwise [T]π1⇝π2

is T.
If f is a function of the form λv :T . φ((v)) then we use [f]π1⇝π2

to represent (25).

(25) λv : [T]π1⇝π2
. [φ((v))]v.π1∕v.π2

where [φ((v))]v.π1∕v.π2
is exactly like φ((v)) except that any instance of v.π1 is replaced by

v.π2.
If r is a record of the type (26)

(26) [
bg : CntxtType
fg : (bg→T) ]

for some type T and has exactly two fields, we use [r]π1⇝π2
to represent the record in

(27)

(27) [
bg = [r.bg]π1⇝π2

fg = [r.fg]π1⇝π2

]

Otherwise [o]π1⇝π2
refers to o.

We will discuss such relabellings in detail on pp. 150ff. The use of relabelling here means
that in the background for the result we have kept the backgrounds of α and β separated
in their own fields labelled ‘f ’ (“function”) and ‘a’ (“argument”). This means that we avoid
an unwanted clash of labels if α.bg and β.bg should happen to share labels.

This new method of combination for parametric contents means that we also have
to adjust the sign combination operation ContForwardApp (“forward application of
contents”) used in the definition of interpreted phrase structure rules (see Chapter 3,
example (40)). The new version using ‘@’ rather than straightforward application is given
in (28).

(28) λT1:Type λT2:Type .

λu:[cont:[bg:CntxtType
fg:(bg→(T2→T1))

]]⌢ [cont:[bg:CntxtType
fg:(bg→T2)

]] .

[cont=u[0].cont@u[1].cont:[bg:CntxtType
fg:(bg→T1)

]]

We can use (28) to combine the contents (10) and (18). The result is given in (29) where
we can show by successive applications of β-reduction that (29a–d) are all identical.

(29) a. ˹λc:
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

.

(λc:[𝔠:[f:[x:Inde:named(x, “Sam”)]]] . λP:Ppty . P(c.𝔠.f))(c)

((λc:
[
𝔠:
[
a:Rec

]]
. λr:

[
x:Ind

]
.
[
e:leave(r.x)

]
)(c))˺
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b. ˹λc:
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

.

λP:Ppty . P(c.𝔠.f )
(λr:

[
x:Ind

]
.
[
e:leave(r.x)

]
)˺

c. ˹λc:
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

.

λr:
[
x:Ind

]
.
[
e:leave(r.x)

]
(c.𝔠.f )˺

d. ˹λc:
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

.

[
e:leave(c.𝔠.f.x)

]
˺

(29) represents the parametric content of Sam leaves. Given a situation containing an indi-
vidual, a, named by “Sam” the function which is its foreground returns a type of situation
in which a leaves. As usual this type can play the role of a “proposition”. It is “true” if there
is a situation of the type and “false” if there is no situation of the type.

The background of the parametric content, that is the domain type of its foreground, is to
be thought of as placing a constraint on the context. The idea is that you can only get to the
non-parametric content if you have an appropriate situation available. The background
of the parametric content is a type which represents a kind of presupposition. We shall
treat presuppositions as constraints on the resources available to dialogue participants. In
Chapter 2 we introduced the notion of a dialogue gameboard as a type of dialogue informa-
tion state. The most obvious place to look for the referent of an utterance of a proper name
is in the shared commitments represented on the gameboard representing what has been
committed to in the dialogue so far. If an individual named Sam has already been intro-
duced in the dialogue, then a subsequent utterance of Sam in that dialogue is most likely
to refer to that individual unless there is an explicit indication to the contrary. The shared
commitments on an agent’s dialogue gameboard represent information that is particularly
salient to the agent. The notion of salience in semantics was first introduced by Lewis
(1979b) in connection with the analysis of definite descriptions. As Lewis says, “There are
various ways for something to gain salience. Some have to do with the course of conver-
sation, others do not.” We wish to suggest that a way of gaining salience in a conversation
is by figuring in the shared commitments on the gameboard. (Ginzburg, 2012, argues that
being on shared commitments, or FACTS in his terminology, is not always sufficient to
indicate salience.)

A reasonable strategy, then, is to look at the shared commitments on the dialogue game-
board first and then look elsewhere if that fails. We will first explore what we need to do
to match the background type of a parametric content against the type which models the
shared commitments of the dialogue and thenwewill discuss what needs to be done if there
is not a successful match with the shared commitments. In Chapter 2 we treated the game-
board as a record type. In Chapter 2, example (133), for instance, the shared commitments
were represented as the type (30).
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(30)

⎡
⎢
⎢
⎢
⎢
⎣

prev:
⎡
⎢
⎢
⎣

prev:[prev:Rec
e:conductor(dudamel)]

e:composer(beethoven)

⎤
⎥
⎥
⎦

e:pianist(uchida)

⎤
⎥
⎥
⎥
⎥
⎦

Recall that with each successive updating of the shared commitments the record type rep-
resenting the previous state of shared commitments was embedded under the label ‘prev’
(“previous”). This prevented label clash and also kept a record of the order in which infor-
mation was introduced. As Lewis (1979b) observed, information introduced later in the
dialogue tends to be more salient than information introduced earlier. Thus keeping track
of the order also gives us one measure of relative salience.

In Chapter 2 we were using theMontague treatment of proper names that did not intro-
duce the naming predicate. In this chapter we will work towards shared commitments
where the naming associated with proper names is made explicit, as in (31).

(31)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here we are using the label ‘bg’ to represent background information in the manner sug-
gested by Larsson (2010) and we see also that this labelling corresponds to our use of ‘bg’
and ‘fg’ in parametric contents. Note that in this version of the shared commitments we
have lost the connection with the actual individuals ‘dudamel’, ‘beethoven’, and ‘uchida’.
This can be seen as an advantage if we are representing the information state of an agent in
the kind of situation described in Chapter 2. If we simply inform an agent with no previous
knowledge of Dudamel that Dudamel is a conductor, then the information that this agent
will get is that there is somebody named Dudamel who is a conductor. There will be no
connection to a particular individual of whom the agent is aware. If this is not the case,
we can reinstate the connection to the individuals by using manifest fields to anchor the
information as in (32).

(32)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x=dudamel:Ind
e:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x=beethoven:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x=uchida:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The ‘bg’-fields in (31) can be thought of as corresponding to the internal anchors of Kamp
(1990); Kamp et al. (2011). The use of manifest fields in (32) would then correspond to
the association of what they call external anchors with those internal anchors.

The task we have before us is to try tomatch the domain type of the function in (29), that
is, the type which is the background of the parametric content, repeated in (33), against
the types of shared commitments in (31) or (32).

(33)
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

This attempt at matching should fail since there is no commitment to an individual named
Sam in the shared commitments. Suppose now that we add to (31) as in (34).

(34)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Sam”)]

fg:
[
e:singer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Intuitively, this should enable a match since this does commit to an individual named Sam.
However, there is not a direct formal relationship between (33) and (34) corresponding to
this intuition. We will use relabelling of record types in order to capture the relationship.

In order to match (33) against (34) we look for a relabelling, η, of (33) that would make
(34) be a subtype of (33). Such a relabelling is given in (35a), which we will write as (35b),
and the result of applying it to (33) is given in (35c).

(35) a. η is a function with domain {𝔠.f.x,𝔠.f.e,𝔠.a} such that
η(𝔠.f.x) = bg.x
η(𝔠.f.e) = bg.e
η(𝔠.a) = prev4

where prev4 stands for prev.prev.prev.prev
b. 𝔠.f.x⇝ bg.x

𝔠.f.e⇝ bg.e
𝔠.a⇝ prev4

c.
⎡
⎢
⎢
⎣

bg : [
x : Ind
e : named(x, “Sam”) ]

prev :
[

prev :
[

prev :
[

prev : Rec
] ] ]

⎤
⎥
⎥
⎦
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This means, then, that any situation which is of the type required by the shared com-
mitments would, modulo the relabelling, be of the type which is the background of the
parametric content under consideration, spelled out in (36).

(36) ˹λc:
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

.
[
e:leave(c.𝔠.f.x)

]
˺

The background of the parametric content is being used as a presupposition which is being
matched against the hearer’s current information state.

In order to give amore precise characterization of relabellingwewill need two auxiliary
notions. If T is a record type, we will use dpaths(T) to represent the dependent paths
of T, that is, the set of paths which occur in any field within T in a dependent field, that is
any path π that occurs in Π in some dependent field [ℓ : ⟨f, Π⟩] anywhere within T. We
also use a notion of initial subpath. To characterize this we will use the notation given
in (37).

(37) If π1 is ℓ1. … .ℓn and π2 is ℓn+1. … .ℓm (where all ℓi are labels), then π1.π2
represents ℓ1. … .ℓn.ℓn+1. … .ℓm

We can now characterize the notion of initial subpath as in (38) (repeated in
Appendix A1).

(38) a. π1 is an initial subpath of π2, π1 ≤ π2, just in case either π1 = π2 or there is
some π such that π2 = π1.π.

b. π1 is a proper initial subpath of π2, π1 < π2, just in case there is some π such
that π2 = π1.π.

Ifℒ is a set of labels, we useℒπ to represent the set of potential paths ℓ1. … .ℓn where n
is a natural number and each ℓi is a member ofℒ. The notion of a relabelling of a record
type can now be characterized as in (39).

(39) A relabelling, η, of a record type T relative to a set of labels ℒ on which T is based
is a one–one function whose domain is included in paths(T) and whose
range is included in ℒπ such that

1. if π1, π2 ∈ dom(η) then π1 < π2 iff η(π1) < η(π2)
2. if π ∈ dpaths(T), then π ∈ dom(η)
3. if π ∈ paths(T) − dom(η), then it is not the case for any πʹ ∈ dom(η)

that η(πʹ) = π, unless πʹ < η(πʹ)

Note that we allow η(π) = π. Thuswhile clause 2 of (39) requires each pathmentioned in
a dependent field of the record type (i.e.dpaths(T)) is in the domain of the relabelling,
we do not require that the relabelling actually change that path. It is, however, important
that we guarantee that there is a path in the relabelled type which the dependent field
can refer to. This becomes important when we have paths in dependent fields which are

continued
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not total. Consider (40) which could intuitively be a type corresponding to Sam saw a
dog run.

(40)

⎡
⎢
⎢
⎢
⎢
⎣

s :
⎡
⎢
⎢
⎣

x : Ind
c : dog(x)
e : run(x)

⎤
⎥
⎥
⎦

e : see(sam,s)

⎤
⎥
⎥
⎥
⎥
⎦

Suppose that we tried to apply the relabelling in (41) to this.

(41) s.x⇝ x
s.c⇝ c
s.e⇝ e1

Wemight expect this relabelling to result in the type in (42) which is ill-formed because
the ‘e’-field depends on a path ‘s’ which is not present.

(42)
⎡
⎢
⎢
⎢
⎣

x : Ind
c : dog(x)
e1 : run(x)
e : see(sam,s)

⎤
⎥
⎥
⎥
⎦

This relabelling is prevented by the requirement in clause 2 that all paths mentioned
in dependent fields (the “dpaths”) be assigned something by the relabelling. In this
example the dpaths are ‘s’ and ‘s.x’ (represented just by ‘x’ in the abbreviatory nota-
tion). Furthermore, it is required that η(s) < η(s.x) by clause 1. That is, in intuitive
terms, we must provide a path to what Sam sees in the relabelled type. In (43) we have
an example of a relabelling which respects the requirements.

(43) s⇝ sit
s.x⇝ sit.id.x
s.c⇝ sit.id.e
s.e⇝ sit.e

This results in (44).

(44)

⎡
⎢
⎢
⎢
⎢
⎣

sit :
⎡
⎢
⎢
⎣

id : [
x : Ind
e : dog(x) ]

e : run(x)

⎤
⎥
⎥
⎦

e : see(sam,sit)

⎤
⎥
⎥
⎥
⎥
⎦

We represent the result of relabelling a type T with a relabelling, η, for T, as [T]η. We
characterize this in terms of the unique identifier notation for record types introduced
in Chapter 2, example (84). We will use three additional notions based on this notation
as given in (45).

(45) a. A unique identifier segment is a path ℓ1. … .ℓn i such that only ℓn i has a
unique identifier subscript in ℓ1, …, ℓn i

b. A unique identifier segmentation is a path π1 i .π2 j . … .πn k or π1 i .π2 j . … .πn

where π1 i , π2 j , …, πn k or π1 i , π2 j , …, πn−1 k are unique identifier segments
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c. The result of removing the prefix π1 from a path π1.π2, in symbols π1.π2\π1, is
π2

We can now characterize [T]η as in (46).

(46) The result of relabelling a type T with a relabelling, η, for T, [T]η, is defined by
carrying out the following on the unique identifier notation of T.

1. if π ∈ dom(η) and π (that is, without unique identifiers) is represented as a
path in T, then replace π with η(π)

2. if π1 i .π2 j . … .πn k is a unique identifier segmentation in dom(η) then
replace it with
η(π1) i .(η(π1.π2)\η(π1)) j . … .(η(π1.π2. … .πn)\η(π1.π2. … .πn−1)) k

3. if π1 i .π2 j . … .πn is a unique identifier segmentation in dom(η) then replace
it with η(π1) i .(η(π1.π2)\η(π1)) j . … .η(π1.π2. … .πn)\η(π1.π2. … .πn−1)

Note that using this definition in terms of unique identifier notation will automati-
cally account for cases in which the scope of the dependent field has to be adjusted in
the relabelling. Consider the record type in (47a) and the relabelling in (47b) which
should result in (47c).

(47) a. [ x : [
x : Ind
e : ⟨λv:Ind . dog(v), ⟨x⟩⟩ ] ]

b. x.x⇝ y

c. [ y : Ind
x : ⟨λv:Ind .

[
e : dog(v)

]
, ⟨y⟩⟩ ]

The unique identifier notation for (47a) and (47c) are (48a) and (48b) respectively and
(48b) is the result of relabelling (48a) with (47b) according to the definition we have
given.

(48) a. [ x : [
x 0 : Ind
e : dog( 0 ) ] ]

b. [ y 0 : Ind
x :

[
e : dog( 0 )

] ]

To understand why this works, see the characterization of unique identifier notation in
Chapter 2, example (84).

Given that we have now found a match, how can we go about updating the shared
commitments with the new information represented by the parametric content?

If we are updating (34) with the parametric content (36a) then the result should be (49)
where (34) has been embedded under the label ‘prev’ and the new information provided by
the parametric content has been added at the top level of the new type, suitably relabelled
so as to pick out the individual named Sam which has been previously introduced.



154 REFERENCE AND MENTAL STATES

(49)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Sam”)]

fg:
[
e:singer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:
⎡
⎢
⎢
⎣

f:[x=⇑
2prev.bg.x:Ind

e=⇑2prev.bg.e:named(x, “Sam”)]

a=⇑prev5:Rec

⎤
⎥
⎥
⎦

fg:
[
e:leave(⇑bg.f.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that this both achieves a link to a previous mention of Sam and simultaneously
ensures that Sam is the most salient individual in shared commitments in virtue of the
new mention.

We can achieve this update by the following method. Suppose that Tcomm is the type
representing shared commitments that we wish to update with a parametric content given
in (50).

(50) [
bg = Tbg
fg = f ]

where f : (Tbg→RecType). We need to find a relabelling, η, of Tbg such that Tcomm ⊑ [Tbg]η.
Suppose that we have a record, rcomm, of type Tcomm. We can use this together with η to
anchor Tbg. The result of the anchoring is notated as Tbg ∥η rcomm. The operation T ∥η r
replaces fields in T,

[
ℓ:T '

]
, such that ℓ is in the domain of the relabelling, η, and for which

η returns a path, π, in r such that r.π : T ' with a manifest field
[
ℓ=r.π:T '

]
. For example,

suppose that Tbg is (51a), rcomm : Tcomm and η is (51b). Then Tbg ∥η rcomm is (51c).

(51) a. [ x : Ind
e : named(x, “Sam”) ]

b. x⇝ bg.x
e⇝ bg.e

c. [ x=rcomm.bg.x : Ind
e=rcomm.bg.e : named(x, “Sam”) ]

In the type of the updated shared commitments the background will be the background of
the parametric content anchored to the previous shared commitments and the foreground
will be the result of applying the functionwhich is the foreground of the parametric content
to this background. The updated type of the shared commitments will thus be that given
in (52).
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(52)
⎡
⎢
⎢
⎣

prev : Tcomm
bg : Tbg ∥η prev
fg : f(bg)

⎤
⎥
⎥
⎦

Recall that a dependent field in a record type normally represented as [ℓ = a : T] is in
actual fact [ℓ : Ta]where Ta is a singleton type. The intuition in defining T ∥ r is that for
any path, π, in T leading to a type T.π, T.π is replaced by the singleton type constructed
from T.π and r.π. This is made precise in (53), repeated in Appendix A11.7.

(53) If T is a record type and r is a record, then T ∥ r, the specification (or anchoring)
of T by r is a type, T ', like T except that if π is a path in both T and r,

1. if T.π is a type, then T '.π is (T.π)r.π (that is, if ℓ is the last label in π then
[ℓ : T.π] is replaced by [ℓ = r.π : T.π] at the end of π in T)

2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, then T '.π is ⟨f ', ⟨π1, …, πn⟩⟩ where for any a1, …, an,
f '(a1)…(an) is defined iff f(a1)…(an) is defined and
f '(a1)…(an) = (f(a1)…(an))r.π

Note that according to this definition if the type at the end of path π is already a singleton
type, that is, the field is already manifest, this will add an additional identity constraint.
Recall that c : (Ta)b iff c : Ta and c = b. Thus c : (Ta)b requires a = b = c.

A variant of this notion of specification is default specification which will only require
specification of fields which are not already specified; that is, manifest fields will remain
unchanged. This variant is given in (54), repeated in Appendix A11.7.

(54) If T is a record type and r is a record, then T∕∕r, the default specification (or
anchoring) of T by r is a type, T ', like T except that if π is a path in both T and r,

1. if T.π is a type but not a singleton type, then T '.π is (T.π)r.π
2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, then T '.π is ⟨f ', ⟨π1, …, πn⟩⟩ where for any a1, …, an,

f '(a1)…(an) is defined iff f(a1)…(an) is defined and
f '(a1)…(an) = (f(a1)…(an))r.π if f(a1)…(an) is not a singleton type and
otherwise f '(a1)…(an) = f(a1)…(an)

Types can also be specified by records which have different paths to the type by using
a relabelling. Thus T ∥η r anchors the value of a path, π, in T with the value of η(π) in r.
This is defined in (55), repeated in Appendix A11.7.

(55) If T is a record type, r is a record and η is a relabelling of T whose range is
included in paths(r), then T ∥η r, the specification (or anchoring) of T by r
relative to η is a type, T ', like T except that if π is in the domain of η,

1. if T.π is a type, then T '.π is (T.π)r.η(π)
2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, then T '.π is ⟨f ', ⟨π1, …, πn⟩⟩ where for any a1, …, an,

f '(a1)…(an) is defined iff f(a1)…(an) is defined and
f '(a1)…(an) = (f(a1)…(an))r.η(π)

continued
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In (56) we provide two simple examples.

(56) a. let η1 be characterized by
ℓ1 ⇝ ℓ3
ℓ2 ⇝ ℓ4

b. then [ ℓ1 : T1
ℓ2 : T2

] ∥η1 [
ℓ3 = a
ℓ4 = b ] = [ ℓ1=a : T1

ℓ2=b : T2
]

c. let η2 be characterized by
ℓ5.ℓ1 ⇝ ℓ7.ℓ3
ℓ5.ℓ2 ⇝ ℓ8.ℓ4

d. then
⎡
⎢
⎢
⎣

ℓ5 : [
ℓ1 : T1
ℓ2 : T2

]

ℓ6 : T3

⎤
⎥
⎥
⎦

∥η2

⎡
⎢
⎢
⎣

ℓ7 =
[

ℓ3 = a
]

ℓ8 = [
ℓ4 = b
ℓ9 = c ]

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎣

ℓ5 : [
ℓ1=a : T1
ℓ2=b : T2

]

ℓ6 : T3

⎤
⎥
⎥
⎦

We can tie all this together in a single action rule, given in (57), a preliminary version
which we will revise slightly later in the light of other accommodation functions which we
will introduce in Section 4.4.

(57) ACCGB – preliminary version

si,A :A Tinf Tinf ⊑
[
shared:

[
commitments:RecType

]]
u*.cont :A Tutt Tutt ⊑ [

bg:RecType
fg:(bg→RecType)]

η

si+1,A :A Tinf ∧̣
⎡
⎢
⎢
⎣

shared:
⎡
⎢
⎢
⎣

commitments=
⎡
⎢
⎢
⎣

prev:si,A.shared.commitments
bg:u*.cont.bg∥ηprev
fg:u*.cont.fg(bg)

⎤
⎥
⎥
⎦

:RecType
⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

where η is a relabelling for u*.cont.bg with range included in si,A.shared.commitments

This action rule requires that an agent, A, judges her current information state, si,A, to be of
type,T, which includes shared commitments. Furthermore,A judges the content of the cur-
rent utterance, u*, to be a parametric content which will yield a record type when applied
to a context of the appropriate background type. Given an appropriate relabelling, η, of
the background type of the parametric content which associates it with elements of the
shared commitments in the current information state, A is licensed (afforded) to make the
judgement that her next information state is like the current one except that the shared
commitments have been changed so that the current shared commitments are marked as
previous, the background of the parametric content anchored to those previous shared
commitments constrains a background situation under the label ‘bg’ and a foreground
situation is added, under the label ‘fg’, resulting from applying the (foreground of ) the para-
metric content to the background thus introduced. (57) abstracts away from the problem
of exactly how to choose an appropriate relabelling, η.
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4.4 Proper names, salience, and accommodation

What we have presented so far enables us to find a match for presuppositions introduced
by a parametric content when such a match is present in shared commitments. Suppose
there is more than one such match. In that case there will be a choice of relabellings η.
In this case we may wish to choose the relabelling that corresponds to a match with the
most salientmatch in terms of recency of introduction into the shared commitments. Tech-
nically, this means that we choose the relabelling which introduces paths with the least
number of occurrences of ‘prev’. Note that the most recent match may be anchored to a
match that was introduced earlier in the manner we have just described. There may be
factors other than recency which contribute to salience, for example, the kinds of factors
that are discussed in centring theory (Joshi and Weinstein, 1981; Grosz et al., 1983, 1995;
Walker et al., 1998; Poesio et al., 2004).Wewill leave it to futurework to give amore detailed
account of saliency in the current framework.

What happens when there is no match for Sam in the shared commitments? Here we
need some kind of accommodation in order to use the parametric content to update the
gameboard. There are two kinds of accommodation we will consider. The first is where the
agent knows of a person named Sam independently of the current conversation. That is, a
match for Sam can be found in the agent’s resources corresponding to long-term memory.
We will not attempt a detailed account of the stucture of long-term memory. We assume
that it is complex and constantly in flux not only in terms of new information being added
but also in terms of what is salient in the old information, depending on which part of the
memory is being focussed on at any particular time. Here we will content ourselves with
a simple model of long-term memory as a record type of a similar kind to that we have
proposed for shared commitments. This means that the techniques we need for matching
will be the same as those discussed in the previous section. In reality the notion of salience
with respect to long-term memory will be a good deal more complicated than salience
with respect to the shared commitments on the dialogue gameboard. You have to take into
account not only recency but also likelihood based on other knowledge that it is this partic-
ular Sam that is being referred to. For example, if you believe that your interlocutor could
not possibly know of the Sam in your memory who is otherwise the most likely candidate
you should not choose that Samas amatch. Choosing an appropriatematch involves a great
deal of world knowledge and common sense. We will ignore these matters and concentrate
our attention on what needs to be done if we find a suitable match. The idea is that if you
have failed to find a match in shared commitments on the gameboard but you do find a
match in long-term memory, then you need to load the item from long-term memory into
the shared commitments on your gameboard. This is what will constitute accommodation
in this case.Wewill later take into account caseswherewhat is accommodated is not present
in memory.

We will introduce the notion of a total information state (cf. Larsson, 2002) which
includes a record type corresponding to long-term memory, represented by the ‘ltm’-field
in (58) and a dialogue gameboard, represented by the ‘gb’-field in (58). Up until now we
have thought of the gameboard as a record type. Now, however, we want to be able to
make links from the gameboard to long-term memory and we will achieve this by making
the gameboard be a dependent type which maps records (situations) of the type repre-
senting long-term memory to the record type representing the gameboard. Thus a total
information state will be of the type (58).
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(58) [
ltm : RecType
gb : (ltm→GameBoard) ]

Here we useGameBoard as the type of types which are a subtype of InfoState (for example,
as defined most recently in Chapter 3, example (107)); that is, a gameboard is a type of
information state. Formally, this is expressed as in (59).

(59) T : GameBoard iff T ⊑ InfoState

An example of a type corresponding to long-term memory is given in (60).

(60)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id0:Rec

id1:[
x:Ind
e:named(x, “Dudamel”)]

id2:
[
e:conductor(⇑id1.x)

]

id3:[
x:Ind
e:named(x, “Beethoven”)]

id4:
[
e:composer(⇑id3.x)

]

id5:[
x:Ind
e:named(x, “Uchida”)]

id6:
[
x:pianist(⇑id5.x)

]

id7:[
x:Ind
e:named(x, “Sam”)]

id8:
[
e:singer(⇑id7.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(60) is one way of putting the information in shared commitments represented by (34) into
a type corresponding to long-term memory. We are assuming that in long-term memory
information is indexed by unique identifiers modelled here by the labels ‘idn’ (of which we
assume there is a countably infinite stock, one for each natural number, n). It is important
that in long-term memory paths are persistent under updating; that is, the old paths do
not change when we add information to long-term memory. This is in contrast to the kind
of updating we proposed for the gameboard, adding the label ‘prev’ to the path for the old
gameboard. Thismeant that all pathswithin the old gameboardwere adjusted by anupdate.
When we link from the gameboard to long-term memory we want to make sure that the
link uses a persistent path which will still be correct if the long-term memory should get
updated. When long-term memory is updated we prefix the path to the new information
with the identifier ‘idi+1’, where i is the highest index on an ‘id’-label in the long-termmem-
ory type we are updating. (This is the same technique we used for ‘e’-labels in our treatment
of chart parsing in Chapter 3.) The way of achieving the link is illustrated schematically in
(61) where we use M to represent the long-term memory (60) and leave out all irrelevant
details of the gameboard.

(61)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ltm=M:RecType

gb=λr:ltm .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

…

shared:

⎡
⎢
⎢
⎢
⎢
⎣

commitments=

⎡
⎢
⎢
⎢
⎢
⎣

…

bg:[x=r.id7.x:Ind
e=r.id7.e:named(x,“Sam”)]

fg:
[
e:leave(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

⎤
⎥
⎥
⎥
⎥
⎦

…

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:(ltm→RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The intuition expressed in (61) is as follows: given a situation, r, of the type represented by
our long-term memory, that is one in which a particular appropriate individual is labelled
by ‘id7’, the gameboard will be a type of information state where the background of the
parametric content used to update the shared commitments is anchored to ‘id7’. Two agents
are aligned in their shared commitments to the extent that we can find an equivalence
between the two types which represent their respective view of the shared commitments
obtained by applying their respective functions labelled ‘gb’ to a situation of their respective
memory types.

The link represented by the dependence on the long-term memory type corresponds to
what (Kamp, 1990; Kamp et al., 2011) call an internal anchor. We are representing here
how individual roles in an agent’s view of shared commitments can be anchored in that
agent’s long-term memory. In a more complete treatment we could in addition make the
gameboard depend on a type for the current visual scene and also types for other sensory
input. Our use of dependent types and Kamp et al.’s use of internal anchors allow us to
link different components of cognitive structure. Cognitive structure can also be linked to
objects in the external world, giving rise to what Kamp et al. call external anchors. Our
manifest fields can be used to correspond to their external anchors. Suppose, for example,
that we have an individual ‘sam’ who is named Sam. We can use a manifest field to restrict
the long-term memory type (60) so that any record (“situation”) of that type has ‘sam’ in
the ‘id7.x’-field. This is represented in (62) where for convenience we have omitted all but
the ‘id7’-field in (60).

(62)

⎡
⎢
⎢
⎢
⎢
⎣

…

id7:[
x=sam:Ind
e:named(x, “Sam”)]

…

⎤
⎥
⎥
⎥
⎥
⎦

If M in (61) is the type (62) then for any r : M, it will be the case that r.id7.x will be ‘sam’.
Thus the shared commitment is that ‘sam’ leaves. Given that manifest fields can occur in
any record type, this kind of external anchoring is not restricted to long-term memory but
could also be directly in the gameboard if that is desired.

Let us now consider how the update of a gameboard dependent on long-term memory
can be carried out when there is amatch between the parametric content used for updating
and an item in long-term memory. Suppose that agent A’s current total information state,
stoti,A , is of the type in (63).

(63) [
ltm : RecType
gb=λr:ltm . Tgb((r)) : (ltm→RecType) ]

and that we wish to update this with the parametric content, f, given in (64) (where
Tbg ⊑

[
x:Ind

]
).

(64) [
bg = Tbg
fg = λr:Tbg . Tupd((r))

]

In order to find a match between f.bg, that is, Tbg and stoti,A .ltm (that is, to ascertain that the
presupposition associated with the parametric content is met by the long-term memory of
the current total information state) we need to find a relabelling, η, of Tbg such that (65)
holds.
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(65) stoti,A .ltm ⊑ [Tbg]η
Then we can derive (66) as a type of the updated total information state.

(66)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ltm=stoti,A .ltm:RecType
gb=λr:ltm . (Tgb((r)) ∧̣

⎡
⎢
⎢
⎣

shared:
⎡
⎢
⎢
⎣

commitments=
⎡
⎢
⎢
⎣

prev:stoti,A .gb.shared.commitments
bg:Tbg ∥η r
fg:f(bg)

⎤
⎥
⎥
⎦

:RecType
⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

)

:(ltm→RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Thus, for example, if Tbg is (33), repeated as (67a), r is a record representing long-term
memory of type (60), repeated as (67b), and η is the relabelling in (67c), then Tbg ∥η r is
(67d).

(67) a.
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id0:Rec

id1:[
x:Ind
e:named(x, “Dudamel”)]

id2:
[
e:conductor(id1.x)

]

id3:[
x:Ind
e:named(x, “Beethoven”)]

id4:
[
e:composer(id3.x)

]

id5:[
x:Ind
e:named(x, “Uchida”)]

id6:
[
x:pianist(id5.x)

]

id7:[
x:Ind
e:named(x, “Sam”)]

id8:
[
e:singer(id7.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c. 𝔠.f.x⇝ id7.x
𝔠.f.e⇝ id7.e
𝔠.a⇝ id0

d.
⎡
⎢
⎢
⎣

𝔠:
⎡
⎢
⎢
⎣

f:[x=r.id7.x:Ind
e=r.id7.e:named(x, “Sam”)]

a=r.id0:Rec

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

We can now put all this together as the action rule in (68) on p. 161, which we call
ACCLTM (“accommodate match with long-term memory”).

We have used accommodation from long-term memory to represent the kind of accom-
modation where the agent has a resource which provides a match. In a more complete
treatment we could use this technique for accommodation from other available resources
such as the visual scene.

We now turn our attention to accommodation where there is no appropriate match
with other resources. This corresponds to the case where the hearer does not know any



(68)

stoti,A : Ttot Ttot ⊑ [
ltm:RecType
gb:ltm→GameBoard] stoti,A .gb(s

tot
i,A .ltm) ⊑

[
shared:

[
commitments:RecType

]]
u*.cont :A Tutt Tutt ⊑ [

bg:RecType
fg:(bg→RecType)]

η

stoti+1,A :A

⎡
⎢
⎢
⎢
⎢
⎣

ltm=stoti,A .ltm:RecType

gb=λr:ltm . stoti,A .gb(r) ∧̣
⎡
⎢
⎢
⎣

shared:
⎡
⎢
⎢
⎣

commitments=
⎡
⎢
⎢
⎣

prev:(stoti,A .gb(r)).shared.commitments
bg:u*.cont.bg∥η r
fg:u*.cont.fg(bg)

⎤
⎥
⎥
⎦

:RecType
⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

:(ltm→GameBoard)

⎤
⎥
⎥
⎥
⎥
⎦

where η is a relabelling for u*.cont.bg with range included in stoti,A .ltm
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appropriate person named Sam but merely adds that there is a person named Sam to the
shared dialogue commitments. The first step in this update is to create a type from the
parametric content under consideration so that we can merge it with

[
prev:T

]
, where T

is the type representing the current shared commitments. Suppose we are considering
the parametric content, ξ, given in (69a). (Recall the corner quotes notation introduced
in (14).) Then the type we will create from ξ is defined as in (69b) which is identical
with (69c).

(69) a. ξ = ˹λr:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

.
[
e:leave(r.f.x)

]
˺

b. [ bg : ξ.bg
fg :

[
e : ξ.fg(bg)

] ]

c.

⎡
⎢
⎢
⎢
⎢
⎣

bg:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

fg:
[
e:leave(bg.f.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

Suppose now that the current shared commitments are given by the type in (70).

(70)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Indfg:
[
e:named(x, “Beethoven”)

]]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Then the new shared commitments will be (71a) which is (71b).
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(71) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧̣

⎡
⎢
⎢
⎢
⎢
⎣

bg:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

fg:
[
e:leave(⇑bg.f.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prev:

⎡
⎢
⎢
⎢
⎢
⎣

prev:Rec

bg:[x:Inde:named(x, “Dudamel”)]

fg:
[
e:conductor(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Beethoven”)]

fg:
[
e:composer(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:[x:Inde:named(x, “Uchida”)]

fg:
[
e:pianist(⇑bg.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

bg:
⎡
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:Rec

⎤
⎥
⎥
⎦

fg:
[
e:leave(⇑bg.f.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We can now put this together as the action rule in (72) on p. 164, which we call ACCNM
(“accommodate no match”). This is the same as ACCLTM in (68) except that in the update
for shared commitments there is no anchoring to long-term memory.

We can now adjust the preliminary version of ACCGB given in (57) which was the action
rule for cases where there is amatch on the gameboard so that it matches the general format
of action rules for total information states. This is given in (74) on p. 164.



(72)

stoti,A : Ttot Ttot ⊑ [
ltm:RecType
gb:ltm→GameBoard] stoti,A .gb(s

tot
i,A .ltm) ⊑

[
shared:

[
commitments:RecType

]]
u*.cont :A Tutt Tutt ⊑ [

bg:RecType
fg:(bg→RecType)]

stoti+1,A :A

⎡
⎢
⎢
⎢
⎢
⎣

ltm=stoti,A .ltm:RecType

gb=λr:ltm . stoti,A .gb(r) ∧̣
⎡
⎢
⎢
⎣

shared:
⎡
⎢
⎢
⎣

commitments=
⎡
⎢
⎢
⎣

prev:(stoti,A .gb(r)).shared.commitments
bg:u*.cont.bg
fg:u*.cont.fg(bg)

⎤
⎥
⎥
⎦

:RecType
⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

:(ltm→GameBoard)

⎤
⎥
⎥
⎥
⎥
⎦

(73) ACCGB – final version

stoti,A :A Ttot Ttot ⊑ [
ltm:RecType
gb:ltm→GameBoard] stoti,A .gb(s

tot
i,A .ltm) ⊑

[
shared:

[
commitments:RecType

]]
u*.cont :A Tutt Tutt ⊑ [

bg:RecType
fg:(bg→RecType)]

η

stoti+1,A :A

⎡
⎢
⎢
⎢
⎢
⎣

ltm=stoti,A .ltm:RecType

gb=λr:ltm . stoti,A .gb(r) ∧̣
⎡
⎢
⎢
⎣

shared:
⎡
⎢
⎢
⎣

commitments=
⎡
⎢
⎢
⎣

prev:(stoti,A .gb(r)).shared.commitments
bg:u*.cont.bg∥η (stoti,A .gb(r)).shared.commitments
fg:u*.cont.fg(bg)

⎤
⎥
⎥
⎦

:RecType
⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

:(ltm→GameBoard)

⎤
⎥
⎥
⎥
⎥
⎦

where η is a relabelling for u*.cont.bg with range included in (stoti,A .gb(s
tot
i,A .ltm)).shared.commitments
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The three action rules for accommodation that we have defined do not specify how we
choose the relabelling η. They are governed by the regime in (74).
(74) a. if there is a labelling, η, such that

stoti,A .gb(s
tot
i,A).ltm.shared.commitments ⊑ [u*.cont.bg]η, then use AccGB with η

b. else if there is a labelling, η, such that stoti,A .ltm ⊑ [u*.cont.bg]η then use AccLTM
with η

c. else use ACCNM

This account of accommodation for proper names where a new item is allowed to be cre-
ated inmemorywhen attempts atmatching have failed is similar to a proposal by deGroote
and Lebedeva (2010) to treat accommodation as error handling when amatch has failed to
be found. Our information states can be thought of as corresponding to their environment
which they consider to be not simply a list of individuals but individuals with their proper-
ties. They thus provide objects similar to those like the record types which can be found in
our information states. One difference between the two proposals, apart from the obvious
fact that our aim here has been to embed the theory in amore general theory of dialogue, is
that de Groote and Lebedeva use a selection function to select the matches thus apparently
assuming an algorithmwhich yields a unique result. We, on the other hand, talk in terms of
matches being licensed and thereby allow for the possibility of non-deterministic selection.
What we have in common, though, is that in order to account for the way accommodation
is carried out we both add an additional layer to a type theory based semantics and talk in
procedural terms of actions to be carried out: we with our action rules and de Groote and
Lebedeva with their error handling mechanism.

4.5 Paderewski

Kripke (1979) discusses the case of Peter who hears about a pianist called Paderewski.
Later, in a different context, he learns of a Polish national leader and PrimeMinister called
Paderewski. In reality therewas a single (remarkable)man called Paderewski whowas both
a famous concert pianist and a distinguished statesman. But Peter does not realize this and
thinks that he has learned about two distinct people, both named Paderewski. Thus, in our
terms, Peter’s long-term memory might be a subtype of (75) for some natural numbers i, j,
k and l.

(75)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Paderewski”)]

idj:
[
e:pianist(⇑idi.x)

]

idk:[
x:Ind
e:named(x, “Paderewski”)]

idl:
[
e:statesman(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(75) technically allows for the two Paderewskis to be the same individual but if there is
nothing in Peter’s long-term memory that requires them to be the same individual we will
count that as corresponding to his view of them as distinct. If Peter were in this state and
asked whether the pianist Paderewski and the statesman Paderewski were the same person
Peter might reply, “Well, I wouldn’t have thought so, but I suppose they could be the same
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person. I don’t know.” On being told that the two Paderewskis are in fact the same person
he might update his long-term memory by carrying out the merge in (76a); that is, his
long-term memory would now be (76b).

(76) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Paderewski”)]

idj:
[
e:pianist(⇑idi.x)

]

idk:[
x:Ind
e:named(x, “Paderewski”)]

idl:
[
e:statesman(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧̣[
idi:

[
x:Ind

]

idk:
[
x=⇑idi.x:Ind

]]

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Paderewski”)]

idj:
[
e:pianist(⇑idi.x)

]

idk:[
x=⇑idi.x:Ind
e:named(x, “Paderewski”)]

idl:
[
e:statesman(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Eventually, his long-term memory may be restructured to the type in (77) which is set
equivalent to that in (76), though not multiset equivalent to it since in any record of this
type the individual named Paderewski will only occur once, not twice as in (76).

(77)

⎡
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Paderewski”)]

idj:
[
e:pianist(⇑idi.x)

]

idl:
[
e:statesman(⇑idi.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

We might think of the two types (76b) and (77) as representing two subtly different states
of mind which Peter could be in. In (76b) he has two concepts of Paderewski, one concept
associated with him being a pianist and perhaps other associated properties, such as prac-
tising hard, wearing tails when he is performing, and so on and the other concept where
he is a statesman, and perhaps associated with other properties such as being a dynamic
national leader, a driver of hard political bargains, or whatever. In (77) he has a single con-
cept of Paderewski including all he knows about him. The first state is perhaps a natural one
to be in after just learning that the two Paderewskis are in fact the same, before you have
fully assimilated the identity. It is harder to discover contradictions between the two con-
cepts here since it will only be the manifest field linking the two concepts which will reveal
the contradiction. Suppose, for example, Peter’s concept of the statesman Paderewski has
him always late for appointments and pressed for time whereas his concept of the pianist
Paderewski has him never late for appointments and not pressed for time. There is no
contradiction in the state when Peter believes there to be two Paderewskis. Checking for
the inconsistency in the two concept state involves reasoning about the identity expressed
by the manifest field. One could imagine a simple consistency checker that does not do
this—logically inadequate, of course, but human perhaps. The single concept state could,
however, involve a direct conflict between type and its negation which, one imagines, even
the simplest of consistency checkers would find. Thus if Peter finds himself in such a state
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hemight need to refine the properties that he was ascribing to the two Paderewskis in order
tomake the unified concept of the single Paderewski consistent, for example, bymodifying
the properties to be always late for political meetings and pressed for time in his political
life but never late to a musical event and not pressed for time in concerts.

Note that the link that we have expressed between the two concepts in (76b) does not
involve anything like an external anchor. An alternative offered us by the type theory to
represent that the two Paderewskis are identical is (78), where we are using p to represent
the individual Paderewski.

(78)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x=p:Ind
e:named(x, “Paderewski”)]

idj:
[
e:pianist(idi.x)

]

idk:[
x=p:Ind
e:named(x, “Paderewski”)]

idl:
[
e:statesman(idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here the link between Peter’s two concepts goes through the world since both his
Paderewski concepts are linked to the individual p. If an agent’s long-term memory is a
subtype of (78), then Indp figures in the long-term memory type (recall that the mani-
fest field

[
x=p:Ind

]
is a notation for

[
x:Indp

]
, where Indp is a type whose only witness is

p (see Appendix A6)). We take this to mean that the agent has a direct way of identify-
ing Paderewski but that he has not in this case become conscious of the identity of the
object involved in different perceptions of Paderewski.⁴ The situation could be that Peter
observes Paderewski on the concert platform in tails and then sees him later in the par-
liament building. His observations are connected to the same individual although without
him realizing that he has observed the same Paderewski twice. Thus the situation is similar
to that decribed forHesperus and Phosphorus in Frege (1892). In Frege’s case the agent was
visually aware of the planet Venus on different occasions, conceived of it as the Evening Star
(Hesperus) and the Morning Star (Phosphorus) without being aware that the same heav-
enly body was being observed in the morning as in the evening. The difference between
Frege’s example and that represented by (78) is that in Frege’s case two different proper
names were associated with the different observations of the same individual whereas here
the same proper name is being used for the same individual, although without awareness
that the proper name is being associated with the same individual on both occasions.

Ludlow (2014) discusses Kripke’s Paderewski and argues that the reason that proper
names can be used to refer to different individuals can be due to the fact that our lexicons
are dynamic and that we use differentmicrolanguages on different occasions. In this discus-
sion he is building on previous work by Larson and Ludlow (1993) although in that work
the emphasis is on interpreted logical forms (pairs of abstract syntactic representations and
semantic values such as truth values for sentences) rather than on local microlanguages
constructed for use in a particular situation as argued for on the basis of a number of dif-
ferent kinds of examples in Ludlow (2014). In general the idea of local microlanguages
being constructed on the fly during the course of dialogues and for the purposes at hand
is something for which I have a great deal of sympathy and have argued for in the past

⁴ One could choose to interpret such types differently in cognitive terms.
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(Cooper and Ranta, 2008; Larsson and Cooper, 2009; Cooper, 2010, 2012b). And indeed
Ludlow (2014) is right to argue that proper names provide support for this viewof language.
The argument is straightforward in the case of proper names and does not involve the kinds
of subtleties of meaning variation which can lead some people to suspicion of this view in
the case of other words. If somebody says to me at a party, “I’d like to introduce you to
my friend Sam” and indeed I have never met Sam before, I can, as a competent speaker of
English, immediately form an association between the phonological type “Sam” and the
individual to whom I have been introduced. It is obviously not part of my competence as
a speaker of English to know all of the individuals in the universe named Sam. Our com-
petence lies rather in our ability to make the connection between the phonological type (a
name) and an individual as the need arises. The competence involves a dynamic process of
acquiring a linguistic coupling of a speech event type with another part of the world and
not a static knowledge of all the available couplings. Once I have added this pairing, mod-
elled in our terms as a sign type, to my resources, I have in a technical sense modified my
language.⁵ An advantage of sign-based approaches of the kind we are proposing is that you
do not have to resort to subscripts in some logical language in order to distinguish between
pairings of the same phonological type with different individuals. This is a trap which Lar-
son and Ludlow (1993) fall into when they claim that there are two (or more) names in
such cases distinguished by subscripts in logical form. A disadvantage of this analysis is
that no two individuals could have the same name in logical form and thus we would have
to use something else to analyse sentences like (79).

(79) My wife’s sister, one of my graduate students, and our neighbour all have the same
name: Karin

(79) describes a confusing situation which I have to contend with on a daily basis. If the
logical form theory with subscripts were correct, this sentence would be necessarily false
and one might have expected that the natural way to describe this situation would rather
have been (80).

(80) My wife’s sister, one of my graduate students, and our neighbour all have similar
names in that they are pronounced “Karin”

(80), according to my intuitions, is not a natural way of describing the situation, although
it is something that might be said if their names were pronounced the same but spelt dif-
ferently. This suggests to me that one would need something in addition to, or in place
of, a logical form with subscripts to explain how speakers of natural languages individuate
names.

One interpretation of Ludlow’s proposal is that when a proper name is used to refer to
different individuals, different microlanguages are used for the references to the different
individuals. Thus when Elisabet says Karin and means her sister, she is using a slightly
different language than when she says Karin and means our neighbour. While I am much
in sympathy with the idea of different microlanguages in general it seems to me that such
a proposal could not be quite right. Consider dialogues like (81), a kind of dialogue which
is not infrequent in our house.

⁵ In my case the resource is quite likely to disappear again shortly afterwards. People vary in their ability to
remember names.
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(81) Elisabet: Karin called
Robin: Karin?
Elisabet: My sister

My utterance in (81) is an example of what is called a clarification request in the dia-
logue literature (Ginzburg and Cooper, 2004; Ginzburg, 2012, and much other literature).
According to that literature one of the uses of a clarification request such as Karin? is to
ask for further identification of the referent of the use of the proper name in the previous
dialogue turn. It might initially seem tempting to regard such a request as being in effect
a request for (partial) identification of the microlanguage Elisabet is talking. On this view
the example would be similar to (82).⁶

(82) A: I would like oeufs en cocotte
B: er, oeufs…?
A: baked eggs

A’s first turn is an example of what might be called culinary code-switching, naming a dish
in the language of the cuisine. B, who perhaps in general has difficulty with French, asks a
clarification question and receives an English translation.

But if we take that route then we have to ask ourselves what language the clarification
request itself is in. In the case of (82), it might be French or, if B really has no French, an
inaccurate attempt to represent part of the phonology of the previous turn, arguably not a
language at all. In the case of (81), assuming that we have three variants of microlanguages
available, one where Karin refers to Elisabet’s sister, one where it refers to our neighbour,
and one where it refers to my graduate student, then if the request is in any of those lan-
guages the answer to the question is self-evident and it is hard to see why I would ask
it. And in particular if I was thinking of Karin, my graduate student, I might be justified
in saying that Elisabet’s answer was wrong. This, of course, is not at all what is going on.
It seems that the clarification request is part of a microlanguage in which Karin can be
used to refer to any of the three and I am interested in finding out which was meant here.
This is the kind of option that might be offered by our sign-based approach where a single
(micro)language can contain several different signs with the same phonology but with dif-
ferent contents. The exact treatment of this needs, of course, an account of questions and
clarification questions in particular which we will not undertake here.

One can understand, however, why the idea of a single referent for a proper name in
a single microlanguage might seem attractive. When Kripke (1979) introduces the puz-
zle about Peter and Paderewski he is careful to point out the circumstances under which
Peter came to the conclusion that there were two Paderewskis. Peter first learns the name
Paderewski in connection with the famous pianist. Then: “Later, in a different circle, Peter
learns of someone called ‘Paderewski’ who was a Polish nationalist leader and prime min-
ister.” Kripke’s example would not have been at all as convincing if Peter had learned about
Paderewski, the pianist and Paderewski, the statesman from the same person in the same
conversation. Ludlow (2014) makes a similar point in criticizing Kripke’s construction of
the apparent contradiction that Peter believes, namely that Paderewski both is and is not
a pianist: “The fallacy involves the conjunction of two sentences that have the appearance

⁶ Based on an example suggested by an anonymous referee.



170 REFERENCE AND MENTAL STATES

of contradicting each other…but they do not contradict because they come from different
microlanguages.” (p. 148). The fact of the matter is that we do tend to use proper names
to refer uniquely within the same dialogue, all other things being equal. Suppose we are
involved in a conversation about pianists and have been, say, comparing the relative merits
of Paderewski and Ashkenazy, and at some point I say (83):

(83) Paderewski was a leading statesman in Poland

You would naturally infer that I was talking about the same Paderewski, unless I explicitly
point out that I intend to refer to a different person with the same name. It is, of course,
possible to refer to two different people with the same name within the same dialogue and
even within the same sentence, even though it may lead to confusion. The assumption is
normally, though, that within the space of a dialogue a name will refer to a unique indi-
vidual unless it is explicitly stated otherwise. One way of being explicit is to say something
like (84):

(84) I know another person named Paderewski

If both dialogue participants are aware of the two people with the same name it is possible
to use the names together in a construction which normally requires different intended
referents as in (85).⁷

(85) Churchland and Churchland think that replacement of symbol manipulation
computer-like devices…with connectionist machines hold (sic) great promise

(Globus, 1995, p. 21)

Two people named John engaged in conversation with a third person can refer to each
other with the name John when addressing the third person without risk of confusion as
in (86).

(86) John E: I remember John as an inspiring professor when I was a student
John P: Well, I remember John as an extremely bright student
Third person: I didn’t realize you’d known each other that long

When addressing a person you can always use their name as a vocative even if the message
you wish to convey involves a person with the same name as in (87).

(87) A: John, I’d like to introduce you to my good friend John
B: Glad to meet you. Another John, eh?

It is conceivable that somebody would want to argue that all of these cases where the same
name is used twice to refer to different people are examples of code-switching between
microlanguages within the space of a dialogue or sentence. Since code-switching does take
place even between different languages like English and Portuguese within single dialogues
and sentences it is hard to say that such an analysis is impossible. However, given that a
sign-based analysis of proper names does not require these examples to be cases of code-
switching perhaps the onus is on the proponent of the code-switching analysis to motivate
this more complex analysis.

⁷ I am grateful to Anders Tolland and Stellan Petersson for callingmy attention to the fact that the Churchlands
are often referred to as “Churchland and Churchland”.
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Puzzles about proper names and reference such as the Paderewski puzzle and Frege’s
(1892) original puzzle about Hesperus and Phosphorus are standardly presented as puzzles
about belief reports. Indeed the matters we have discussed in this section do give rise to
puzzles in belief reports and we will return to this later. However, we would like to claim
that the discussion here shows that the basis of these puzzles does not lie in the analysis
of belief reports per se but in the nature of communication in dialogue and the resulting
organization of memory. In this we seem to be in agreement with the views expressed by
Saul (2007, chapter 6). This insight is incorporated into a formal analysis by Asudeh and
Giorgolo (2016, 2020) which will be discussed further in Chapter 6. While these phenom-
ena seem puzzling from a Fregean or Montagovian formal language perspective, from the
point of view of a dialogic approach employing a sign-based analysis they seem to be a nat-
ural consequence of the way that communication takes place and knowledge gets stored.

4.6 The interpretation of unbound pronouns

So far in this chapter we have talked about reference associated with uses of proper names
and seen that mental states play an important role in explaining how reference works. The
sign-based approach to proper names that we have taken is essentially different from the
traditional approach to proper names as being something like constants in a logic, since
it allows proper name phonologies to be paired with different referents in different utter-
ances. In this way our proper names are behaving more like free variables whose referents
are determinedby a context. So called deictic or unbounduses of pronouns are often related
to free variables in logic. The following question now arises: how does our treatment of
proper names relate to our treatment of unbound pronouns? In this section we will give a
treatment of unbound pronouns which will also lay a basis for the treatment of binding in
Chapter 7.

We will consider how to recreate a simple interpretation of pronouns ranging over
individuals, first treating them in a similar way to free variables in logic. The central idea is
to use records as pronominal contextswhich correspond to partial assignments to variables
in standard logical treatments. Consider first a simple sentence with a deictic pronoun as
in (88).

(88) he left

In our initial pass we will ignore matters of gender to make things simpler. The content
of (88) is a type which depends on a context (a situation) which provides a value of the
pronoun he. Thus it will have a parametric content which is a function from a context
assigning a value to the pronoun to a type. In order to do this we will make use of the fact
that our contexts are structured.

The contexts that we have used so far have a single component (labelled ‘𝔠’) which are
records of general types corresponding to presuppositions (Beaver and Geurts, 2014) or
content not under discussion (Ginzburg, 1994, 2012) or not at issue (Potts, 2005). For
example, (89) puts a constraint on the context (expresses a presupposition) that there is
an individual named Sam.

(89) [
x : Ind
e : named(x, “Sam”) ]
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In the treatment of unbound pronouns we will use records that are much more restricted
in nature and which correspond to partial assignments to variables. Their labels will all be
of the form ‘xi’ where i is a natural number and the record types that we will use will be
restricted to using a restricted number of non-dependent types. For the current account
of singular unbound pronouns we will restrict ourselves to the type Ind. Thus (90) is an
example of the kind of record type we will use.

(90) [
x0 : Ind
x1 : Ind ]

Wewill introduce a general type, Assgnmnt, of assignments of which (90) will be a subtype.

This is done in (91).

(91) Assgnmnt is a basic type. r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}

If we wish to restrict assignments to be assignments of individuals we can give the more
specific witness condition in (92).

(92) r : Assgnmnt iff r : Rec, labels(r) ⊂ {x0, x1, …} and for any i such that
xi ∈ labels(r), r.xi : Ind

We regard these different kinds of context as separate components of the context as they
may be treated differently by compositional semantics, for example, in terms of their pro-
jection properties which regulate to what extent contexts required by lower constituents
are projected up to higher constituents. This is discussed, for example, by Potts (2005).
For proper names, the constraint on the context that the referent of the name is called by
the phonology of the name is something that typically is a constraint on any expression in
which the occurrence of the name occurs; that is, the constraint is projected to the top of
the expression containing the name.Wewill have parametric contents which look like (93).

(93) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔰:[x0:Indx1:Ind
]

𝔠:[x:Inde:named(x, “Sam”)]

…

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. φ((c))˺

We use the label ‘𝔰’ for the component in the context which assigns entities to occurrences
of pronouns and the label ‘𝔠’, as before, for the component which corresponds to presuppo-
sitions.We leave open the possibility of adding further components to the context later. We
shall call the component of the context labelled ‘𝔠’ the propositional context since it places
constraints on what must hold true in the context. It will be important that the labels used
donot overlapwith those of the assignment. For this reasonwe introduce a typePropCntxt.

This is done in (94).

(94) PropCntxt is a basic type. r : PropCntxt iff r : Rec and
labels(r) ∩ {x0, x1, …} = ∅
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We will now revise the characterization of Cntxt in (95) to require both an assignment
and a propositional context.

(95) Cntxt designates

[
𝔰 : Assgnmnt
𝔠 : PropCntxt ]

The parametric content for he could be that given in (96a), for left (ignoring tense) that
given in (96b) and their combination, using a variant of S-combination which we will
discuss as we progress, is represented in (96c).

(96) a. ˹λc:Cntxt∧̣
[
𝔰:
[
x0:Ind

]]
. λP:Ppty . P(

[
x=c.𝔰.x0

]
)˺

b. ˹λc:Cntxt . λr:
[
x:Ind

]
.
[

e : leave(r.x)
]
˺

c. ˹λc:Cntxt∧̣
[
𝔰:
[
x0:Ind

]]
.
[

e : leave(c.𝔰.x0)
]
˺

Using the notation for merging with record types introduced in Chapter 2, example (109),
we can represent (96) as (97).

(97) a. ˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

b. ˹λc:Cntxt . λr:
[
x:Ind

]
.
[

e : leave(r.x)
]
˺

c. ˹λc:[Cntxt
𝔰:
[
x0:Ind

]] .
[

e : leave(c.𝔰.x0)
]
˺

We will define ‘SemPron’ to be (98).

(98) ˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

We will define ‘LexPron(Tphon)’, where Tphon is a phonological type, to be (99).

(99) Lex(Tphon, NP) ∧̣
[
cnt=SemPron:PQuant

]

This means that every instance of a pronoun when viewed in isolation as an utterance of a
lexical itemwill involve the label ‘x0’. However, whenwe combine phraseswewill increment
the indexes on ‘x’ in one of the constituents so that no two occurrences of pronouns will
have the same index. This will be done in our combination rule based on the S-combinator
(andwould also need to be done in other combination rules if they were added). In order to
define this we will use the notation πi to represent a path in which the last label is indexed
with i. If T is a record type we characterize the maximum index associated with a path of
the form π (without the index), maxπ(T), as (100).

(100) max({i ∣ πi ∈ paths(T)})

Here for convenience we assume that max(∅) is -1 and that max picks out the highest of a
non-empty set of natural numbers, as normal. This simplifies our definition of incremen-
tation. We use the notation [T]πi⇝πf(i)

to represent the result of relabelling each path in T of
the form πi where i is a natural number with πf(i) where f is a function from natural num-
bers to natural numbers. We characterize the incrementation of the π-indexes in a record
type T1 with respect to another record type T2, incrπ(T1,T2), in (101).

(101) [T1]πi⇝πi+maxπ(T2)+1
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Similarly, we characterize the incrementation of the π-indexes of a dependent type, λv :
T . φ((v)) with respect to a record type, T ', that is, (102a), as (102b).

(102) a. incrπ(λv :T . φ((v)),T ')
b. λv :incrπ(T,T ') . incrπ(φ((v)),T ')

We can now modify the combination rule in (24) to take account of the incrementation of
free pronouns. This is given in (103).

(103) If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr𝔰.x([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr𝔰.x([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺

While each pronoun considered on its own will have a content involving the label ‘x0’,
whenever constituents are combined relabelling will take place that ensures that none of
the ‘xi’ in the contents of the two constituents are the same. Thus considering the boy and
the dog, a content for (104a) will be (104b).

(104) a. he hugged it

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔰:[x0:Indx1:Ind
]

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : hug(c.𝔰.x0, c.𝔰.x1)
]
˺

In order to achieve this we need to introduce resources for transitive verbs as in (105) in
which we use PRel2 to represent the parametric content type for (extensional) transitive
verbs, given in (105a).

(105) a. PRel2 — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]

b. If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩,
then SemTransVerb(Tbg, p) is

˹λc:Tbg . λq:Quant . λr1:
[
x:Ind

]
. q(λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
)˺

c. If Tphon is a phonological type, Tbg a record type (for context) and p is a
predicate with arity ⟨Ind, Ind⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p):PRel2

]

d. LexTransVerb(“hug”, Rec, hug)

A potential advantage of using record types to characterize pronominal contexts rather
than variable assignments is that we can add further information represented by the
pronoun such as gender. Thus a simple treatment of gender for (105) might be given by
making the content be (106).
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(106) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔰:[x0:Indx1:Ind
]

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:[PropCntxt
e:male(⇑2𝔰.x0)

]

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[PropCntxt
e:neuter(⇑3𝔰.x1)

]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : hug(c.𝔰.x0, c.𝔰.x1)
]
˺

There are some complications with this simple idea when it comes to the interpretation of
pronouns which are bound by quantifiers. Even for deictic pronouns there are problems
determining which predicates should be used in a semantic treatment of gender. Even for
a language like English which apparently has semantic gender (as opposed to grammatical
gender like German or French), neuter can be used for objects which do not have gender
(like tables) and for animals other than humans which do have gender and which can be
referred to with masculine and feminine pronouns. We will not explore this further here.

4.7 Summary of resources introduced

Items that are new since Chapter 3 are marked “New!” and items that have been revised
since Chapter 3 are marked “Revised!”. We have included some items for completeness
which were not explicitly introduced in the text.

4.7.1 Universal grammar resources

4.7.1.1 Types
Loc — a basic type

l : Loc iff l is a region in three dimensional space
Phon — a basic type

e : Phon iff e is a phonological event

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Assgnmnt New! — a basic type
r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}

PropCntxt New! — a basic type
r : PropCntxt iff r : Rec and labels(r) ∩ {x0, x1, …} = ∅

Cntxt New! — [
𝔰 : Assgnmnt
𝔠 : PropCntxt ]
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CntxtTypeNew! — a basic type
T : CntxtType iff T ⊑ Cntxt

Ppty — (
[
x:Ind

]
→RecType)

PPptyNew! — [
bg : CntxtType
fg : (bg→Ppty) ]

Quant — (Ppty→RecType)

PQuant New! — [
bg : CntxtType
fg : (bg→Quant) ]

QuantDet New! — (Ppty→Quant)

PQuantDet New! — [
bg : CntxtType
fg : (bg→QuantDet) ]

PRel2New! — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]

PRecTypeNew! — [
bg : CntxtType
fg : (bg→RecType) ]

Cont Revised! — PRecType∨PPpty∨PQuant∨PQuantDet
Cat — a basic type

s, np, det, n, v, vp : Cat

Syn — [
cat : Cat
daughters : Sign* ]

Sign — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

SignType — a basic type
T : SignType iff T ⊑ Sign (as in Chapter 2)

S — [
Sign
syn:

[
cat=s:Cat

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]

N — [
Sign
syn:

[
cat=n:Cat

]]

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]

NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

4.7.1.2 Predicates
(as in Chapter 3)
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4.7.1.3 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)

SemCommonNoun(p) Revised!
If p is a predicate with arity ⟨Ind⟩, then SemCommonNoun(p) is

λc:Cntxt . λr:
[
x:Ind

]
.
[

e : p(r.x)
]

LexCommonNoun(Tphon, p)
If Tphon is a phonological type and p is a predicate with arity ⟨Ind⟩, then
LexCommonNoun(Tphon, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(p):PPpty

]

SemPropName(Tphon) Revised!
If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

LexPropName(Tphon ) Revised!
If Tphon is a phonological type,
then LexPropName(Tphon) is

Lex(Tphon, NP) ∧̣
[
cnt=SemPropName(Tphon):PQuant

]

SemPronNew!

˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

LexPron(Tphon)New!
If Tphon is a phonological type, then LexPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemPron:PQuant

]

SemIndefArt Revised!
˹λc:Cntxt .

λQ:Ppty .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

LexIndefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt:PQuantDet

]



178 REFERENCE AND MENTAL STATES

SemIntransVerb(Tbg, p)New!
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind⟩, then
SemIntransVerb(Tbg, p) is

˹λc:Tbg . λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺

LexIntransVerb(Tphon, Tbg, p)New!
If Tphon is a phonological type, Tbg a record type (for context) and p is a predicate with
arity ⟨Ind⟩, then LexIntransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vi) ∧̣
[
cnt=SemIntransVerb(Tbg, p):PPpty

]

SemTransVerb(Tbg, p)New!
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . λr1:
[
x:Ind

]
. 𝒬(λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
)˺

LexTransVerb(Tphon, Tbg, p)New!
If Tphon is a phonological type, Tbg a record type (for context) and p is a predicate with
arity ⟨Ind, Ind⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p):PRel2

]

SemBe Revised!
˹λc:Cntxt .

λ𝒬:Quant .
λr1:

[
x:Ind

]
.

𝒬(λr2:
[
x:Ind

]
. [ x=r2.x, r1.x : Ind

e : be(x) ])˺

Lexbe(TPhon)
If TPhon is a phonological type, then Lexbe(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBe:PRel2

]

4.7.1.4 Constituent structure
RuleDaughters(Tdaughters, Tmother)

If Tmother is a sign type and Tdaughters is a type of strings of signs then

RuleDaughters(Tdaughters, Tmother)
is

λu :Tdaughters . Tmother ∧̣
[
syn:

[
daughters=u:Tdaughters

]]

ConcatPhon
λu:

[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]

Tmother⟶Tdaughter1…Tdaughtern
If Tmother is a sign type and Tdaughter1 , … ,Tdaughtern are sign types, then

Tmother⟶Tdaughter1…Tdaughtern
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represents

RuleDaughters(Tmother, Tdaughter1
⌢…⌢Tdaughtern)∧̣̣ConcatPhon

α@βNew!

If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β based

on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr𝔰.x([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr𝔰.x([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺

ContForwardApp(Targ, Tres) Revised!
If Targ and Tres are types, then ContForwardApp(Targ, Tres) is

λu:[cont:[
bg:CntxtType
fg:(bg→(Targ→Tres))

]]⌢ [cont:[
bg:CntxtType
fg:(bg→Targ)

]] .

[cont=u[0].cont@u[1].cont:[
bg:CntxtType
fg:(bg→Tres)

]]

Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 ' (Tdaughter2 ' :Targ) :Tres
If Tmother, Tdaughter1 and Tdaughter2 are sign types and Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 '(Tdaughter2 ' : Targ) : Tres

is
Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp(Targ, Tres)

4.7.1.5 Action rules
(as in Chapter 3)

4.7.2 Universal speech act resources

(as in Chapter 2)

4.7.3 Universal dialogue resources

4.7.3.1 Types

InfoState —
⎡
⎢
⎢
⎣

private :
[

agenda : list(RecType)
]

shared : [
latest-utterance : Sign*

commitments : RecType ]

⎤
⎥
⎥
⎦

InitInfoState —
⎡
⎢
⎢
⎣

private :
[

agenda=[ ] : list(RecType)
]

shared : [
latest-utterance=ε : Sign*

commitments=Rec : RecType ]

⎤
⎥
⎥
⎦

GameBoard New! — a basic type
T : GameBoard iff T ⊑ InfoState

TotalInfoStateNew! — [
ltm : RecType
gb : (ltm→GameBoard) ]



180 REFERENCE AND MENTAL STATES

4.7.3.2 Update functions and action rules
fPLANACKASS λr:InfoState .

λu:Assertion .
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

private:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

agenda:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

fst:

⎡
⎢
⎢
⎢
⎢
⎣

s-event:SEvent ∧̣ [sp=u.s-event.au:Indau=u.s-event.sp:Ind]

cont=u.cont:Cont
illoc:acknowledge(s-event, cont)

⎤
⎥
⎥
⎥
⎥
⎦

rst=r.private.agenda:list(RecType)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

shared:
[
latest-utterance=u:Assertion

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

PLANACKASS
si,A :A Tcurr Tcurr ⊑ domtype(fPLANACKASS) u* :A Tutt Tutt ⊑ Assertion

si+1,A :A Tcurr ∧̣ (fPLANACCASS(si,A)(u*)∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

fINTEGACK λr:InfoState .
λu:Acknowledgement .

[shared:[commitments=
[
prev:r.shared.commitments

]
∧̣u.cont:RecType

latest-utterance=u:Acknowledgement ]]

INTEGACK
si,a :A Tcurr Tcurr ⊑ domtype(fIntegAck) u* :A Tutt Tutt ⊑ Acknowledgement

si+1,A :A Tcurr ∧̣ (fINTEGACK(si,A)(u*) ∧̣
[
shared:

[
latest-utterance:Tutt

]]
)

EXECTOPAGENDA
si,A :A InfoState∧̣ [private:[agenda:[fst:RecType

rst:list(RecType)]]]

:A si,A.private.agenda.fst!

DOWNDATEAGENDA
si,A :A Tcurr Tcurr ⊑ [private:[agenda:[fst:RecType

rst:list(RecType)]]] u* :A si,A.private.agenda.fst

si+1,A :A Tcurr ∧̣
[
private:

[
agenda=si,A.private.agenda.rst:list(RecType)

]]

ACCGBNew! See p. 164.
ACCLTMNew! See p. 161.
ACCNMNew! See p. 164.

Control regime for accommodation New!
a. if there is a labelling, η, such that stoti,A .gb(s

tot
i,A).ltm.shared.commitments ⊑

[u*.cont.bg]η, then use AccGB with η
b. else if there is a labelling, η, such that stoti,A .ltm ⊑ [u*.cont.bg]η then use AccLTM

with η
c. else use ACCNM



4.8 SUMMARY 181

4.7.4 English resources

4.7.4.1 Basic types and predicates
Basic phonological types for words

{“Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”, “aha”,
“ok”, “leaves” New!, “hugs” New!}

Witnesses for basic types
Ind— dudamel, beethoven, uchida : Ind No longer necessary for interpretation of
proper names!

Predicates
with arity ⟨Ind⟩ {conductor, composer, pianist, leave New!}
with arity ⟨Ind, Ind⟩ {hug New!}

4.7.4.2 Grammar
Lexical sign types
{LexPropName(“Dudamel”) Revised!,
LexPropName(“Beethoven”) Revised!,
LexPron(“he”) New!,
LexIndefArt(“a”),
LexCommonNoun(“composer”, composer),
LexCommonNoun(“conductor”, conductor),
LexIntransVerb(“leave”, Rec, leave) New!,
LexTransVerb(“hug”, Rec, hug) New!,
Lexbe(“is”),
Lex(“ok”, S),
Lex(“aha”, S) }

Constituent structure rule components
CnstrIsA

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]] .

VP∧̣
[
cont=u[2].syn.daughters[2].cont:Ppty

]

Constituent structure rules
{S⟶ NP VP ∣ NP'(VP':Ppty):RecType,
NP⟶ Det N ∣ Det'(N ':Ppty):Quant,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣ V '(NP':Quant):Ppty}

4.8 Summary

In this chapter we have looked at the analysis of proper names and unbound pronouns.We
started by showing how Montague’s analysis of proper names could be recast in TTR and
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we showed that there was an advantage in the sign-based approach that we have adopted
in accounting for the fact that different individuals can have the same name. Montague’s
original analysis did not say anything about the presupposition-like nature of proper names
in that they seem to require interlocutors to be able to identify appropriate referents for
the use of a proper name from among a number of potential referents which might be
available. We showed how this could be treated by introducing parametric contents for
proper names and we showed how accommodation phenomena could be accounted for
including a simple-minded analysis of salience analysed in terms of the information states
of agents. We discussed Kripke’s puzzle concerning Paderewski and its possible relation to
a theory of microlanguages as discussed by Ludlow. While in general we find the idea of
microlanguages appealing we suggested that it plays a role in the analysis of proper names
in a rather different way to that suggested by Ludlow.

Finally, we gave an analysis of unbound pronouns. Our treatment of proper names and
pronouns shows them to be similar in that they can be related to different individuals
depending on context. However, they are associated with different components of the con-
text. Proper names add a restriction on the context that the individual referred to has the
appropriate name whereas pronouns are associated with labels indexed by natural num-
bers. These are the labels of the component of the context which keeps track of pronouns.
We can think of this component as corresponding to a partial assignment to variables in
logic-based treatments of pronouns. Just as in logical treatments it will be this assignment
based on subsets of the natural numbers which will be operated on when we come to the
treatment of pronouns bound by quantifiers in Chapter 7.



5
Frames and descriptions

5.1 Introduction

In this chapter we will explore a notion of frame deriving originally from the work of
Fillmore on frame semantics. We will focus on their use in relation to the semantics of
common nouns. We will suggest, following Sebastian Löbner, that the modern notion of
frame is an improvement on Montague’s original use of individual concepts in connection
with common nouns. In Section 5.2 we introduce Montague’s original use of individual
concepts. In Section 5.3 we introduce Partee’s puzzle which motivated the introduction of
individual concepts and show how, following Löbner, we can treat this in terms of frames.

In Section 5.4, frames are modelled as records (corresponding to intuitive situations)
and this has the consequence that frames can also be arguments to predicates (that is,
they are first class citizens). The compositional treatment (Section 5.5) shows how frames
associated with nouns can be passed to verbs by mechanisms associated with dynamic
quantification (Section 5.6). The analysis also introduces a systematic ambiguity in nouns
as being individual level or frame level (Section 5.7). This explains how nouns which are
basically individual level can give rise to situation (or event) interpretations (Section 5.8).

This chapter is an expanded version of Cooper (2016) which in turn presentedmodified
material from Cooper (2010, 2012b).

5.2 Common nouns and individual concepts

The treatment of commonnouns inChapter 3 is encapsulated in LexCommonNoun and carried
over into Chapter 4 where it was modified to accommodate parametric contents. The idea
is that for a common noun such as dog there should be a corresponding predicate ‘dog’
with arity ⟨Ind⟩ as well as a phonological type “dog”. Then an utterance event of the type
“dog” will be associated with the content in (1a) whose foreground is of type (1b).

(1) a. ˹λc:Cntxt . λr:
[
x:Ind

]
.
[
e:dog(r.x)

]
˺

b. (Cntxt→(
[
x:Ind

]
→ RecType))

Once we have applied the foreground of (1a) to a context (modelled as a record) we will
obtain the function (2a) of type (2b)

(2) a. λr:
[
x:Ind

]
.
[
e:dog(r.x)

]

b. (
[
x:Ind

]
→ RecType)

There is a correspondence between this and Montague’s treatment of common nouns.
Montague (1973) introduces predicates corresponding to commonnounswhich in his type

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0006
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system are of the type ⟨⟨s, e⟩, t⟩. The type ⟨s, e⟩ for Montague is the type of individual con-
cepts. These are modelled as functions from world-time pairs (of type s) to individuals
(of type e). The reason that Montague used this type rather than the simpler type ⟨e, t⟩,
that is, the type of functions from individuals to truth-values, has to do with his treatment
of the Partee puzzle concerning temperatures and prices which we will take up below in
Section 5.3. Much subsequent research has abandoned Montague’s analysis using individ-
ual concepts and used the simpler type ⟨e, t⟩. This alternative would correspond to (3) in
our terms.

(3) a. λx:Ind .
[
e:dog(x)

]

b. (Ind → RecType)

Ind corresponds to Montague’s type e, the type of entities or individuals. Instead of Mon-
tague’s t, the type of truth values we have RecType. Record types serve as our propositions.
Thus instead of mapping to a truth value (for Montague, following Frege, the denotation
corresponding to a proposition), we map to the proposition itself (see the discussion in
Chapter 3, Section 3.4). We will argue that (1) is preferable to (3) in that records which are
arguments to such a function can be thought of as frames in the way that we will charac-
terize them in this chapter and that, among other things, frames as arguments enable us to
account for the Partee puzzle which we will describe in Section 5.3. One way of seeing this
is that we are using frames to replace Montague’s use of individual concepts to approach
this problem. In this way our proposal is closely related to work by Löbner (2015).

5.3 The Partee puzzle

The puzzle is one that Barbara Partee raised while sitting in on an early presentation of the
material that led to Montague (1973). In its simplest form it is that (4c) should follow from
(4a,b) given some otherwise apparently harmless assumptions.

(4) a. The temperature is rising
b. The temperature is ninety
c. Ninety is rising

Clearly, our intuitions are that (4c) does not follow from (4a,b). The assumptions that the
error relies on are those given in (5).

(5) a. temperature is a predicate of individuals
b. is in (4b) represents identity between individuals

Montague’s solution was to abandon (5a) and say that ‘temperature’ is a predicate not of
individuals but of individual concepts, in his terms functions fromworld-time pairs to indi-
viduals, thus introducing intensionality into predication by common nouns. When we say
(4a) we are predicating ‘rise’ not of an individual but of a function.Whenwe say (4b) we are
saying that the value of the function at the current world and time is identical with ninety.
The technical machinery that Montague uses to achieve this involves his predilection for
general treatments. He treats all common nouns as being predicates of individual concepts.
But in the case of all nouns other than price or temperature in his fragment he requires that
the individual concepts are rigid designators; that is, they are constant functions which
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return the same individual for every world-time pair. Similarly, intransitive verbs will cor-
respond to predicates of individual concepts but in the case of verbs other than rise and
change (in his fragment) there will be a predicate of the value of the individual concept
which holds just in case the verb predicate holds of the individual concept. Finally be is
treated as representing identity of the values of individual concepts and a given time and
world and not identity of the individual concepts. Thus two distinct individual concepts
can have identical values at a given world and time.

Given this machinery we can analyse the Partee puzzle represented in (4) as follows.
Whenwe say that the temperature is risingwe are predicating ‘rise’ of an individual concept,
a function from world–time pairs. Montague does not say what it might mean for such a
function to rise. There is, however, something obvious that we could say, namely that if f is
such that temperature(f ) at world w and time t, then rise(f ) is true at world w and time t
just in case there is some time t ʹ, t ʹ<t (“t ʹ is earlier than t”), and some time t ʹʹ, t<t ʹʹ, such that
f(w, t ʹ) is less than f(w, t ʹʹ). (Wemay assume that f returns a (real) number for any world and
time.) When we say that the temperature f is ninety at world w and time t, what we mean is
that f(w, t) = 90 (assuming that the interpretation of ninety is an individual concept g such
that for any world, w, and time, t, g(w, t) = 90). From this is does not follow that ninety
is rising, that is, rise(g). After all, we have just said that ninety corresponds to a constant
function which always returns the same value and rising functions have to return different
values at different times.

We have now shown that Montague’s analysis prevents the offending inference from
going through but we must also show that the inference does go through in “normal” cases
according to his analysis. Consider (6).

(6) a. The dog is barking
b. The dog is Fido
c. Fido is barking

Here we do want (6c) to follow as a conclusion from the premises (6a,b). When we say that
the dog is barking we are predicating ‘bark’ of a constant function f since for an individual
concept to fall under the predicate ‘dog’ it must be rigid, i.e. return the same object for each
world and time. Furthermore, there is a predicate, call it ‘bark*’, such that for any w and
t, ‘bark*’ holds of f(w, t) just in case ‘bark’ holds of f. So in effect by predicating ‘bark’ of f
at w and t, we are predicating ‘bark*’ of f(w, t). (Given Montague’s notion of proposition,
bark(f ) and bark*(f(w, t)) are the same proposition since they are true at exactly the same
possible worlds and times.) When we say that the dog is Fido at w and t what we mean is
that f(w, t) = g(w, t) where g is the individual concept corresponding to Fido. According
to Montague’s theory of proper names, g too will be a constant function always returning
the same individual, say, ‘fido’. Is Fido barking given these assumptions, that is, is bark(g)
true at w and t? There are a couple of ways to make the argument. Since both f and g are
constant functions if they have the same value at anyworld and time theywill have the same
value at all worlds and times, that is, given the classical set theoretic view of functions that
Montague is using, f and gwill in fact be the same function. Thus if we predicate anything of
f it will also hold of g, since they are identical. The other argument involves the nature of the
predicate ‘bark’. Since bark(f ) is equivalent to bark*(f(w, t)) and, given that f(w, t) = g(w, t),
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bark*(f(w, t)) is equivalent to bark*(g(w, t)), which in turn is equivalent to bark(g), then
bark(f ) and bark(g) are equivalent. Thus if bark(f ) is true, then so is bark(g).

Despite the obvious ingenuity and formal correctness of this solution it fell into disuse.
As Löbner (2015) points out, one objection is to the interpretation of (4) as an identity
statement rather than the location of the temperature value on a scale. This point wasmade
by Jackendoff (1979), a paper which has given rise to a trickle of remarks and replies in
Linguistic Inquiry over a period of thirty years: Löbner (1981); Lasersohn (2005); Romero
(2008). Part of Jackendoff ’s argument is that in addition to (7a) we can also say (7b), just
as we can say (7c).

(7) a. The temperature is ninety
b. The temperature is at ninety
c. The airplane is at 6000 feet

We do not, he argues, feel the temptation to conclude (8c) from (8a,b).

(8) a. The airplane is at 6000 feet
b. The airplane is rising
c. 6000 feet is/are rising

So neither should we feel the temptation to draw the offending conclusion in the temper-
ature puzzle since even though we say the temperature is ninety we mean the temperature
is at ninety. Jackendoff does not point out, however, that there is an important difference
between the temperature and the airplane case, namely that (9) does not mean the same as
(8a), and to the extent that it means anything it means something absurd which involves
an equality between an airplane and 6000 feet.

(9) The airplane is 6000 feet

If Jackendoff were right that is can mean is at why would this be the case? Löbner (1981)
has a stronger argument against Jackendoff. He points out that we cannot conclude (10c)
from (10a,b)

(10) a. The temperature of the air in my refrigerator is the same as the temperature of
the air in your refrigerator

b. The temperature of the air in my refrigerator is rising
c. The temperature of the air in your refrigerator is rising

Lasersohn (2005) gives the example in (11) based on Löbner’s example.

(11) a. The temperature in Chicago is rising
b. The temperature in Chicago is the very same as the temperature in St. Louis
c. The temperature in St. Louis is rising

These examples are meant to show that there are similar cases to the original Partee puz-
zle where the construction seems clearly equative rather than locative. Note that we can
mention identity explicitly as in (12).

(12) The temperature in Chicago is identical with the temperature in St. Louis

Romero (2008) discusses examples with prices where it seems intuitive that there are two
readings, one where the inference does not go through and one where it does.
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(13) a. The prices in supermarket A are (the very same as) the prices in supermarket B
b. Most prices in supermarket A are rising
c. Most prices in supermarket B are rising

On one reading (not the preferred one, I think) (13a) means that at the current time the
prices just happen to be the same. In this case the inference does not go through. The other
reading is that the prices in the two supermarkets are pegged to each other, perhaps because
they are owned by the same chain even though they have different names. (Note that this
is not quite the same as saying that the prices are necessarily the same which is the case that
Romero discusses. This is a matter of business strategy, not logic. The supermarket owners
could have chosen not to peg the prices to each other.) In this case the inference does go
through.¹

Despite all this discussion, there is an important intuition in Jackendoff ’s observation
that the interpretation of the temperature is ninety involves the placement of the temper-
ature on a scale. In a sense Montague was recognizing this by modelling temperature in
terms of his individual concepts. He was giving us a function which returns for each world
and time an individual (presumably a number) representing the temperature. Thus he
could account for the fact that the temperature is different at different times. The prob-
lem is, though, that possible worlds (that is, total ways the universe could be) do not have a
single temperature, even at a single point of time. The notion of individual concept he has
is simply not fine-grained enough to deal with temperature. One can understandwhyMon-
taguemight not havewanted to pursue thismatter further in PTQ.Hewanted to include the
treatment of temperature in his general treatment of intensions (functions from possible
worlds and times to objects of various types) but in order to get temperature right he would
have had to change this. One strategy would be to use possible situations (parts of possible
worlds). Another strategy would have been to use an additional index, not just worlds and
times but also locations. But if he had done this for temperature and maintained a gen-
eral theory of intensions he would have had to make all intensions be functions defined on
triples of worlds, times, and locations and this would have raised issues about the relation-
ship between intensionality and indexicality which he was probably wise to avoid at that
point in the development. Nevertheless, it is an important issue which nags at some of the
central assumptions of formal semantics as Montague was proposing it: namely, the use of
possible worlds and evaluation with respect to a finite set of indices some of which are in
the domain of intensions and some of which are contextual parameters.

Löbner’s early work on this topic (Löbner, 1979, 1981) treated this problem by removing
what he called functional concepts (Funktionalbegriffe) from the general notion of inten-
sion and allowing them to have different numbers and types of argument roles. These
insights led him in later work (Löbner, 2014, 2015) to adopt a frame semantic approach
where the parameters that are relevant for interpretation can vary between different words
and phrases and there is no fixed set of indices as there was in the original work on for-
mal semantics. This is very much the same kind of proposal as in Cooper (2010, 2012b)

¹ Actually, there is a further complication with these examples involving plural quantifiers, which Romero
does not discuss. We also need an assumption that the two supermarkets have sufficiently similar stock. If most
of the prices are rising in supermarket A and supermarket B only stocks those items whose prices are not rising
in supermarket A, then even though the prices in the two supermarkets are the same (and pegged to each other),
the prices in supermarket B are not rising.
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although the historical precursors we had inmindwere different. Inmy case, the precursors
were early work on situation semantics such as Barwise and Perry (1983) and frame seman-
tics of the kind suggested in Fillmore (1982, 1985) and taken as a foundation for FrameNet
(Ruppenhofer et al., 2006, https://framenet.icsi.berkeley.edu, accessed 8 September 2022).
In Löbner’s case, the inspiration for frames comes from the psychological work of Barsalou
(1992a,b, 1999).

5.4 Frames as records

Our leading idea in modelling frames is that they correspond to records and that the roles
(or frame elements in the terminology of FrameNet) are represented by the record fields.
Records are in turn what we use to model situations so frames and situations in our view
turn out to be the same. Given that we are working in a type theory which makes a clear
distinction between types and the objects which belong to those types it is a little unclear
whether what we call frame should be a record or a record type. We need both and we
will talk of frames (records) and frame types (record types). For example, when we look
up the frame Ambient_temperature (https://framenet2.icsi.berkeley.edu/fnReports/data/
frameIndex.xml?frame=Ambient_temperature, accessed 8 September 2022) in FrameNet
we will take that to be an informal description of a frame type which can be instantiated
by the kinds of situations which are described in the examples there. In our terms we can
characterize a type corresponding to a very stripped down version of FrameNet’s Ambi-
ent_temperature which is sufficient for us to make the argument we wish to make. This is
the type AmbTempFrame defined in (14).

(14)
⎡
⎢
⎢
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎥
⎥
⎦

This is different from the earlier proposal we made in Cooper (2012b) which is given in
(15).

(15)
⎡
⎢
⎢
⎢
⎣

x : Ind
e-time : Time
e-location : Loc
ctemp_at_in : temp_at_in(e-time, e-location, x)

⎤
⎥
⎥
⎥
⎦

The new proposal in (14) differs from the old one in two ways. Firstly we have removed
the field for time. This is because we now want to treat time in terms of strings of events
rather than introducing time-points as such. This follows Fernando’s strategy (for example
in Fernando, 2011) and relates to the discussion of the Russell-Wiener construction of time
in Kamp (1979). Secondly we have made the type in the ‘x’-field (the field which will con-
tain ‘ninety’ in our example) be Real (“real number”) rather than Ind (“individual”). As
Lasersohn (2005) points out, the issue was raised early in the literature as to whether num-
bers (or temperature measurements at any rate) should be treated as individuals in these
examples or should be counted as belonging to a separate type (Bennett, 1974; Thoma-
son, 1979). In our earlier work we assumed that temperatures were to be considered as

https://framenet.icsi.berkeley.edu
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Ambient_temperature
https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Ambient_temperature
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individuals because we had no reason to do otherwise. In the current analysis, however,
we want to build in a notion of scale which involves a mapping to real numbers and there-
fore we will model temperatures as real numbers. As we will see, this will lead to a slight
complication in the compositional semantics so there is still an open issue as to whether
this is the right decision.

A scale is a function which maps frames (situations) to a real number. Thus a scale for
ambient temperature will be of the type (16a) and the obvious function to choose of that
type is the function in (16b)whichmaps any ambient temperature frame to the real number
in its ‘x’-field.

(16) a. (AmbTempFrame → Real)
b. λr:AmbTempFrame . r.x

Let us call (16b) ζtemp. As a first approximation we can take an event of a temperature
rise to be a string of two temperature frames, r1⌢r2, where ζtemp(r1)<ζtemp(r2). Using a
notation where T n is the type of strings of length n each of whose members are of type T
and where for a given string, s, s[0] is the first member of s, s[1] the second, and so on, a
first approximation to the type of temperature rises could be (17).

(17) [
e : AmbTempFrame2
crise : ζtemp(e[0]) < ζtemp(e[1])

]

In the crise-field of (17) we are using < as an infix notation for a predicate ‘less-than’ with
arity ⟨Real, Real⟩ which obeys the constraint in (18).

(18) less-than(n, m) is non-empty (“true”) iff n<m

One way to meet this constraint is to specify the witness conditions for ‘less-than(n, m)’ as
in (19).

(19) e : less-than(n, m) iff nεe, mεe and n<m

A more general type for temperature rises is given by (20) where we abstract away from
the particular temperature scale used by introducing a field for the scale into the record
type. This, for example, allows for an event to be a temperature rise independent of whether
it is measured on the Fahrenheit or Celsius scales.

(20)
⎡
⎢
⎢
⎣

scale : (AmbTempFrame → Real)
e : AmbTempFrame2
crise : scale(e[0]) < scale(e[1])

⎤
⎥
⎥
⎦

This type, though, is now too general to count as the type of temperature rising events. To
be of this type, it is enough for there to be some scale on which the rise condition holds and
the scale is allowed to be any arbitrary function from temperature frames to real numbers.
Of course, it is possible to find some arbitrary function which will meet the rise condition
even if the temperature is actually going down. For example, consider a function which
returns the number on the Celsius scale but with the sign (plus or minus) reversed making
temperatures above 0 to be below 0 and vice versa. There are two ways we can approach
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this problem. One is to make the type in the scale-field a subtype of (AmbTempFrame →
Real) which limits the scale to be one of a number of standardly accepted scales. This may
be an obvious solution in the case of temperature where it is straightforward to identify the
commonly used scales.However, scales aremuchmore generally used in linguisticmeaning
and people create new scales depending on the situation at hand. This makes it difficult to
specify the nature of the relevant scales in advance and we therefore prefer our second way
of approaching this problem.

The second way is to parametrize the type of temperature rising events. By this we mean
using a dependent type which maps a record providing a scale to a record type modelling
the type of temperature rising events according to that scale. The function in (21) is a
dependent type which is related in an obvious way to the record type in (20).

(21) λr:
[
scale:(AmbTempFrame → Real)

]
.

[
e : AmbTempFrame2
crise : r.scale(e[0]) < r.scale(e[1]) ]

According to (20) an event will be a temperature rise if there is some scale according to
which the appropriate relation holds between the temperatures of the two stages of the
event which we are comparing. According to (21) on the other hand, there is no abso-
lute type of a temperature rise. We can only say whether an event is a temperature rise
with respect to some scale or other. If we choose some non-standard scale like the one
that reverses plus and minus temperatures as we suggested above then what we normally
call a fall in temperature will in fact be a rise in temperature according to that scale. You
are in principle allowed to choose whatever scale you like, though if you are using the
type in a communicative situation you had better make clear to your interlocutor what
scale you are using and perhaps also why you are using this scale as opposed to one of the
standardly accepted ones. Like the parametric contents we introduced in Chapter 4, the
dependent types introduce a presupposition-like component to communicative situations.
We are assuming the existence of some scale in the context.

Whydowe characterize the domain of the function in (21) in terms of records containing
a scale rather than just scales as in (22)?

(22) λσ:(AmbTempFrame → Real) .

[
e : AmbTempFrame2
crise : σ(e[0]) < σ(e[1]) ]

The intuitive reason is that we want to think of the arguments to such functions as being
contexts, that is situations (frames) modelled as records. The scale will normally be only
one of many informational components which can be provided by the context and the
use of a record type allows for there to be more components present. In practical terms of
developing an analysis it is useful to use a record type to characterize the domain even if
we have only isolated one parameter since if further analysis should show that additional
parameters are relevant this will mean that we can add fields to the domain type thereby
restricting the domain of the function rather than giving it a radically different type.

And indeed in this case we will now show that there is at least one more relevant param-
eter that needs to be taken account of before we have anything like a reasonable account
of the type of temperature rise events. In (14) we specified that an ambient temperature
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frame relates a real number (“the temperature”) to a spatial location. And now we are say-
ing that a temperature rise is a string of two such frames where the temperature is higher
in the second frame. But we have not said anything about how the locations in the two
frames should be related. For example, suppose I have a string of two temperature frames
where the location in the first is London and the location in the second is Marrakesh. Does
that constitute a rise in temperature (assuming that the temperature in the second frame is
higher than the one in the first)? Certainly not a temperature rise in London, nor in Mar-
rakesh. If youwant to talk about a temperature rise in a particular location then both frames
have to have that location and we need a way of expressing that restriction. Of course, you
can talk about temperature rises which take place as you move from one place to another
andwhich therefore seem to involve distinct locations. However, it seems that even in these
cases something has to be kept constant between the two frames. One might analyse it in
terms of a constant path to which both locations have to belong or as a constant relative
location such as the place where a particular person (or car, or airplane) is. You cannot
just pick two arbitrary temperature frames without holding something constant which ties
them together. We will deal here with the simple case where the location is kept constant.²
We will say that the background information for judging an event as a temperature rise has
to include not only a scale but also a location which is held constant in the two frames. This
is expressed in (23).

(23) λr:[fix:
[
loc:Loc

]

scale:(AmbTempFrame → Real)] .

[
e : (AmbTempFrame∧̣

[
loc=r.fix.loc:Loc

]
)2

crise : r.scale(e[0]) < r.scale(e[1]) ]

Here the ‘fix’-field in the context is required to be a record which provides a location. One
reason for making the ‘fix’-field a record rather than simply a location is that we will soon
see an example where more than one parameter needs to be fixed. It will also help us ulti-
mately in characterizing a general type for a rising event (not just a rise in temperature) if
we can refer to the type in the ‘fix’-field as Rec (“record”) rather than to list a disjunction
of all the various types of the parameters that can be held constant in different cases.

The temperature rise event itself is now required to be a string of two frames which
belong to a subtype of AmbTempFrame, namely where the ‘loc’-field has been made mani-
fest and is specified to have the value specified for ‘loc’ in the ‘fix’-field. Here we are using
the record in the ‘fix’-field of the argument to the function to partially specify the type
AmbTempFrame by fixing values for some of its fields. One can think of the ‘fix’-record
as playing the role of a partial assignment of values to fields in the type. To emphasize this
important role and to facilitate making general statements without having to name the par-
ticular fields involved, we shall use the operation of specification or anchoring introduced
in Chapter 4, example (51). This operation maps a record type, T, and a record, r to the
result of specifying T with r, which we notate as T ∥ r. Using this notation we can rewrite
(23) as (24).

² Although in astronomical terms, of course, even a location like London is a relative location, that is, where
London is according to the rotation of the earth and its orbit around the sun. Thus the simple cases are not really
different from the cases apparently involving paths.
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(24) λr:[fix:
[
loc:Loc

]

scale:(AmbTempFrame → Real)] .

[
e : (AmbTempFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

Wewill call (24) TempRiseEvent and its domain type TempRiseEventCntxt. This means that
given a record, c, of type TempRiseEventCntxt we can make a judgement such as that given
in (25).

(25) e : TempRiseEvent(c)

That is, we judge that e is a temperature rising event according to the context c.
This is still a very simple theory of what a temperature rise event may be, but it will

be sufficient for our current purposes. How might we use this to specify a content for the
intransitive verb rise in a sentence like the temperature is rising? First we define a predicated
‘rise’ which takes two arguments which are both records. Thus the arity of ‘rise’ is ⟨Rec,Rec⟩.
The first record can be an ambient temperature frame and the second a temperature rise
event context. We specify a witness condition associated with ‘rise’ in (26).

(26) e : rise(r, c) if

r : AmbTempFrame,
c : TempRiseEventCntxt and
e : TempRiseEvent(c) ∧̣

[
e:
[
t0=r:AmbTempFrame

]]

Note first that in (26) we use ‘if ’ rather than ‘iff ’. This is not the only witness condition
which we will associate with ‘rise’; it represents a sufficient but not necessary condition.
Note also that the third condition specifies that e is a temperature rise event and that the
first item in the string of two ambient temperature frames thus specified is the temperature
frame r, that is, the first argument to the predicate. (Recall that a string e1e2 is modelled as
the record in (27).)

(27) [
t0 = e1
t1 = e2

]

The intuition is, then, that when we predicate ‘rise’ of an ambient temperature frame, we
are saying that it is the initial frame in a temperature rising event. We can use this predicate
in the characterization of a parametric content for the verb rise, given in (28).

(28) ˹λc:[Cntxt
𝔠:TempRiseEventCntxt] . λr:

[
x:Rec

]
.
[

e : rise(r, c.𝔠)
]
˺

However, the verb rise can be used to talk about other kinds of rising events than
temperature rises and we will need different parametric contents for other cases.

We move on now to price rise events. We will take (29) to be the type of price frames,
PriceFrame.

(29)
⎡
⎢
⎢
⎢
⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥
⎥
⎥
⎦
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The fields represented here are based on a much stripped down version of the FrameNet
frame Commerce_scenario where our ‘commdodity’-field corresponds to the frame
element called ‘goods’ and the ‘x’-field corresponds to the frame element ‘money’. A price
rise is a string of two price frames where the value in the ‘x’-field is higher in the second.
Here, as in the case of a temperature rise, we need to keep the location constant. It does not
make sense to say that a price rise has taken place if we compare a price in Marrakesh with
a price in London, even though the price in London may be higher. In the case of price we
also need to keep the commodity constant, something that does not figure at all in ambient
temperature.We cannot say that a price rise has taken place if we have the price of tomatoes
in the first frame and the price of oranges in the second frame. Thus, following the model
of (24), we can characterize the dependent type of price rises as (30).

(30) λr:
⎡
⎢
⎢
⎣

fix:[loc:Loccommodity:Ind]

scale:(PriceFrame → Real)

⎤
⎥
⎥
⎦

.

[
e : (PriceFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

We call (30) PriceRiseEvent and its domain type PriceRiseEventCntxt. We can add a new
witness condition associated with ‘rise’.

(31) e : rise(r, c) if

r : PriceFrame,
c : PriceRiseEventCntxt and
e : PriceRiseEvent(c) ∧̣

[
e:
[
t0=r:PriceFrame

]]

We can construct a parametric content for the verb rise which exploits this witness
condition. This is given in (32).

(32) ˹λc:[Cntxt
𝔠:PriceRiseEventCntxt] . λr:

[
x:Rec

]
.
[

e : rise(r, c.𝔠)
]
˺

Finally we consider a third kind of rising event discussed in Cooper (2012b) based on
the example in (33).

(33) As they get to deck, they see the Inquisitor, calling out to a Titan in the seas. The
giant Titan rises through the waves, shrieking at the Inquisitor.

https://www.gamespot.com/risen/user-reviews/2200-104176/
accessed 11 May, 2022

Here what needs to be kept constant in the rising event is the Titan. What needs to change
between the two frames in the event is the height of the location of the Titan. Thus in
this example the location is not kept constant. In order to analyse this we can use location
frames of the type LocFrame as given in (34).

(34)
⎡
⎢
⎢
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎥
⎥
⎦

https://www.gamespot.com/risen/user-reviews/2200-104176/
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The dependent type, LocRiseEvent, with domain type LocRiseEventCntxt, for a rise in
location event is (35).

(35) λr:[fix:
[
x:Ind

]

scale:(LocFrame → Real)] .

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

Here the obvious scale function does not simply return the value of a field in the loca-
tion frame. What is needed is a scale based on the height of the location. One way
to do this would be to characterize the type of locations, Loc, as the type of points in
three-dimensional Euclidean space. That is, we consider Loc to be an abbreviation for (36).

(36)
⎡
⎢
⎢
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎥
⎥
⎦

Each of the fields in (36) corresponds to a coordinate in Euclidean space. A more adequate
treatment would be to consider locations as regions in Euclidean space but we will not
pursue that here. Treating Loc as (36) means that we can characterize the scale function,
ζheight, as returning the height of the location in the location frame, as in (37).

(37) λr:LocFrame . r.loc.z-coord

If we wish to restrict the dependent type of rising events to vertical rises we can fix the x
and y-coordinates of the location as in (38).

(38) λr:

⎡
⎢
⎢
⎢
⎢
⎣

fix:
⎡
⎢
⎢
⎣

x:Ind

loc:[x-coord:Real
y-coord:Real]

⎤
⎥
⎥
⎦

scale:(LocFrame → Real)

⎤
⎥
⎥
⎥
⎥
⎦

.

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

We can now add a new witness condition associated with ‘rise’, given in (39).

(39) e : rise(r, c) if

r : LocFrame,
c : LocRiseEventCntxt and
e : LocRiseEvent(c) ∧̣

[
e:
[
t0=r:LocFrame

]]

We can use this predicate to create a parametric content for the intransitive verb rise, as in
(40).

(40) ˹λc:[Cntxt
𝔠:LocRiseEventCntxt] . λr:

[
x:Rec

]
.
[

e : rise(r.x, c.𝔠)
]
˺

We have now characterized three kinds of rising events. In Cooper (2010, 2012b) we
argued that there is in principle no limit to the different kinds of rising events which can
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be referred to in natural language and that new types are created on the fly as the need
arises. The formulation in those works did not allow us to express what all these particular
meanings have in common. We were only able to say that the various meanings seem to
have some kind of family resemblance. Now that we have abstracted out scales and param-
eters to be fixed we have an opportunity to formulate something more general. There are
two things that vary across the different dependent types that we have characterized for ris-
ings. One is the frame type being considered and the other is the type of the record which
contains the parameters held constant in the rising event. If we abstract over both of these
we have a characterization of rising events in general. This is given in (41).

(41) λr:
⎡
⎢
⎢
⎢
⎣

frame_type:RecType
fix_type:RecType
fix:fix_type
scale:(frame_type → Real)

⎤
⎥
⎥
⎥
⎦

.

[
e : (r.frame_type∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

(41) is so general (virtually everything of content has been parametrized) that it may be
hard to see it as being used in the characterization of the meaning of rise. What seems
important for characterizing themeanings of rise that a speaker has acquired is precisely the
collection of frame types, and associated fix types and scales which an agent has developed
through experience. (41) seems to be relevant to a kind of meta-meaning which specifies
what kind of contents can be associated with the word rise. In this sense it seems related to
the notion ofmeaning potential, a term which has its origins in the work of Halliday (1977)
wheremeanings are spoken of informally as being “created by the social system” and chara-
terized as “integrated systems ofmeaning potential” (p. 199). The notion ismuch discussed
in more recent literature, for example, Linell (2009), where meaning potential is discussed
in the following terms: “Lexical meaning potentials are (partly) open meaning resources,
where actual meanings can only emerge in specific, situated interactions” (p. 330). The
parametric contents for rise that we have presented here (and included in the summary of
resources in Section 5.9) are examples of what Linell is calling here “actual meanings”.

5.5 Frames and common nouns

A central aspect of our analysis of the Partee puzzle is that the contents of common nouns
are functions that take frames, that is records, as arguments. Nevertheless, we make a dis-
tinction between individual level predicates like ‘dog’ whose arity is ⟨Ind⟩ and frame level
predicates like ‘temperature’ whose arity is ⟨Rec⟩. Leaving aside for now the need for para-
metric contents, the content associated with an utterance event of type “dog” would be
(2a) repeated here as (42a). This is contrasted with the content for an utterance of type
“temperature” given in (42b).

(42) a. λr:
[
x:Ind

]
.
[

e : dog(r.x)
]

b. λr:
[
x:Rec

]
.
[

e : temperature(r.x)
]
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We make an exactly similar distinction between individual level and frame level verb
phrases. In (43) we present contents which can be associated with utterances of type “run”
and “rise” respectively.

(43) a. λr:
[
x:Ind

]
.
[

e : run(r.x)
]

b. λr:
[
x:Rec

]
.
[

e : rise(r.x)
]

The types which we associate with the individual level and frame level properties in (42)
and (43) are given in (44).

(44) a. (
[
x:Ind

]
→ RecType)

b. (
[
x:Rec

]
→ RecType)

While these types are distinct, they are nevertheless related in that they both have the same
range type and the domain types of (44a) and (44b) are both record types requiring a field
with the label ‘x’. Up until now we have used Ppty (“property”) to designate (44a). Now
we might be more specific and designate it as IndPpty (“property of individuals”) and use
FramePpty (“property of frames”) to designate (44b). Given that TTRhas join (disjunctive)
types (Appendix A7) we always have the option of forming the join of those types which
we want to represent types of properties. Thus, given the two types of properties we have
seen so far we can form the join type in (45).

(45) ((
[
x:Ind

]
→ RecType) ∨ (

[
x:Rec

]
→ RecType))

If there are more types of properties we wish to add to the general type of properties we
can form a larger join type to include them. We can always form a join type based on any
finite collection of types. Using join types in this way we can create a type which has all the
witnesses of any finite collection of types. We cannot, however, express a type correspond-
ing to an infinite set of types in this way. In addition, using join types in this way does not
make explicit any relationship between the various types in the collection, in this case that
all the types are function types whose range type is RecType and whose domain type is a
record type with an ‘x’-field. In order to deal with this kind of case, we will use the same
technique as we used for parametric contents in Chapter 4. We will first define the type
xType as a basic type of record types that have a ‘x’ among its labels, as specified in (46).

(46) T : xType iff T : RecType and x ∈ labels(T)

We will treat properties as a pair (that is, a record with two fields) consisting of a type
(labelled with ‘bg’) and a function (labelled with ‘fg’) corresponding to what we have up
to now been calling a property. (47a) is an example of the new kind of property which we
normally represent as (47b) and (47c) is the new definition of the type, Ppty, of properties.³

(47) a. [ bg =
[
x:Ind

]

fg = λr:
[
x:Ind

]
.
[
e:dog(r.x)

] ]

b. ˹λr:
[
x:Ind

]
.
[
e:dog(r.x)

]
˺

³ For a similar kind of case, though a different approach to treating it, see the discussion in Ginzburg et al.
(2014, p. 93), of the type of Austinian questions. We have also treated this kind of case in terms of a limited kind
of polymorphism, for example, in Ginzburg and Cooper (2014).
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c. [ bg : xType
fg : (bg→RecType) ]

If P is a property as in (47a,b), we will use P(r) to represent P.fg(r) (the result of applying
the function P.fg to r).

Actually, things are a little more complicated than this. Using this polymorphic type
for properties introduces a complication when we define functions on properties. This
is illustrated in the example in (48) where we assume that a:Ind, p is a predicate whose
arity is ⟨Rec⟩ and that the types Ind and Rec preclude each other, that is, nothing can be
of both type Ind and type Rec.

(48) a. λP:Ppty . P(
[
x=a

]
) (˹λr:

[
x:Rec

]
.
[

e : p(r.x)
]
˺)

b. ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺ (
[
x=a

]
)

In (48a) the argument ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺ seems appropriate for the func-

tion λP:Ppty . P(
[
x=a

]
) since according to our new definition the argument is indeed

of type Ppty. However, it appears that the result of β-conversion given in (48b) leads
to a situation where the argument

[
x:a

]
is not appropriate to the function λr:

[
x:Rec

]
.[

e : p(r.x)
]
because a is an individual and not a record. This appears to lead to a

contradictory situation where (48a) is both well-formed and ill-formed because by β-
conversion (48a and b) represent the same object. We avoid this problem by saying that
the application of a property, P, to an argument, a, if P.fg(a) in the case where a : P.bg
but that otherwise it returns a type that is necessarily empty. We introduce a distin-
guished type, ‘⊥’, called “bottom”, which is necessarily empty. We can achieve this, for
example, by giving it the witness condition in (49).

(49) a : ⊥ iff a ≠ a

We can then define property applicationmore accurately than we did above as in (50).

(50) If P : Ppty and a is some object, then

1. P(a) = P.fg(a) if a : P.bg
2. otherwise P(a) = ⊥

An advantage of this approach to properties is that providing inappropriate argu-
ments to properties will result in something that is necessarily false but not ill-formed
while its negation will also be well-formed and true. Thus while (51a) seems strange
because individual numbers do not rise, (51b) seems true for the same reason.

(51) a. 90 rises
b. 90 does not rise

Now that we have generalized our definition of property in this way, we need also to
adjust our definition of property extension. The definition we gave in Chapter 3, example
(46), is repeated in (52).⁴

⁴ Recall that the notation [̌T] is defined by
[̌T] = {a ∣ a : T}
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(52) [↓P] = {a ∣ ∃r[r :
[
x:Ind

]
∧ r.x = a ∧ [̌P(r)] ≠ ∅]}

This definition is based on the assumption that all properties are of type
(
[
x:Ind

]
→ RecType). Now we need to modify it so that we will have a notion of

property extension for our new definition of Ppty. This is done in (53).

(53) If T : xType and P : (T→RecType) then [↓P] = {a ∣ ∃r[r : T ∧ r.x = a ∧ [̌P(r)] ≠ ∅]}

In characterizing the content of the noun temperature we used the predicate ‘temper-
ature’. This predicate has the arity ⟨Rec⟩. What is the relationship between this predicate
and the type AmbTempFrame, which is a type of records. An intuition that seems reason-
able if we are treating temperature as a frame level noun is that one kind of frame that could
count as a temperature is an ambient temperature frame.We can express this by the witness
condition in (54).

(54) s : temperature(r) if r : AmbTempFrame and s = r

This witness condition corresponds to the inference rule in (55).

(55)
r : AmbTempFrame
r : temperature(r)

Note that in (54) we again use if rather than iff. This represents one way in which a record
can be regarded as a temperature. This allows for there to be other ways to be regarded as
a temperature. Note also that we are talking of judgements of the form a : p(a) where the
witness for the type is identical with the argument to the predicate. This might appear to
be introducing some kind of non-wellfoundedness. However, this is not the case. We can
think of the type p(a) in such a case as corresponding to a singleton type Ta; that is, it is
either witnessed by a or nothing.

When we say the temperature is rising we are talking about an event which is a tem-
perature rise, not a price rise or any other kind of rise. Somehow we have to coordinate
the frame which is chosen in connection with the interpretation of temperature with the
framewhich is chosen in connectionwith the interpretation of rise. The solution to this that
we wish to propose rests on the treatment of generalized quantifiers proposed in Cooper
(2011, 2013a).

5.6 Definite descriptions as dynamic generalized quantifiers

In Chapter 3 we showed how to treat indefinite descriptions (consisting of an indefinite
article and a common noun phrase) as generalized quantifiers. We will now do some-
thing similar for definite descriptions (consisting of a definite article and a common noun
phrase). We will then show how to modify this static interpretation of generalized quan-
tifiers so that it becomes a dynamic treatment as presented in Cooper (2011). We will see
that the dynamic treatment accounts for how the frame associated with the noun is passed
to the verb.

We will treat the definite article the as introducing a uniqueness condition. We say that
a property is unique in a situation just in case its property extension in that situation is a
singleton set. We will make this precise by introducing a predicate ‘unique’ whose arity is
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⟨Ppty⟩. We characterize a witness condition associated with this predicate using the notion
of restricted type introduced in Chapter 3, pp. 109ff, but adjusted to take account of the
new kind of property as in (56).

(56) If P is a property, then P↾ r is

[
bg = P.bg
fg = P.fg↾ r ]

The witness condition for ‘unique’ is given in (57).

(57) If P:Ppty and s:Rec,

then s : unique(P) iff ∣ [↓P↾ s] ∣= 1

(57) says that a situation, s, is of the type ‘unique(P)’ (where P is a property) just in case
there is exactly one object which has the property P in some component of s. We could
introduce a generalized quantifier predicate, ‘the’, with arity ⟨Ppty,Ppty⟩, associated with
the witness condition in (58).

(58) If P,Q:Ppty then,

s : the(P,Q) iff s : unique(P) and [↓P↾s] ⊆ [↓Q↾s]

This corresponds to the Russellian definite description analysis as used by Montague (see
Dowty et al., 1981 for an explanation of this) except that here the uniqueness is restricted
to a particular situation. This means that we could talk about “the dog” without requiring
that there is exactly one dog in the universe.

It is well-known that the uniqueness condition in the Russellian treatment of definite
descriptions used by Montague is not quite right for natural language. (For a detailed dis-
cussion of the issues involved see Elbourne, 2012.) We can, for example, use the definite
description the dog even though there are several dogs. It is not a simple matter of restrict-
ing ourselves to a particular situation that we are describing since we may be describing a
situation with several dogs but still refer to some particular dog in the situation as the dog.
Such examples are discussed in Cooper (1996) citing (59) from McCawley (1979).

(59) The dog had a fight with another dog yesterday

Our solution to this is to in effect introduce resource situations (Barwise and Perry, 1983;
Cooper, 1996). (A similar proposal is made by Elbourne, 2012.) We follow the analysis in
Cooper (2013c) and exploit the fact that properties can be restricted to a particular situation
by introducing a restricted field in the foreground as in (60).

(60) ˹λr:
[
x:Ind

]
.
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:dog(r.x)

]
˺

For the restricted field notation
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:dog(r.x)

]
see Chapter 3, example (56). (60) can be

glossed as “the property of being a dog in s”. We will abbreviate this as ‘dog'↾s’ where we
use ‘dog'’ to abbreviate the property without the restricted field. These abbreviations are
represented in (61).

(61) a. dog' abbreviates ˹λr:
[
x:Ind

]
.
[
e:dog(r.x)

]
˺

b. dog'↾s abbreviates ˹λr:
[
x:Ind

]
.
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:dog(r.x)

]
˺



200 FRAMES AND DESCRIPTIONS

In general we can say that if p is a predicate with arity ⟨T⟩ then p' represents (62)

(62) ˹λr:
[
x:T

]
.
[

e : p(r.x)
]
˺

We could introduce a function ‘SemDefArt’ on the model of ‘SemIndefArt’ which
was defined in Chapter 3, example (37), although modified to accommodate parametric
contents. This is given in (63).

(63) ˹λc:Cntxt .
λQ:Ppty .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : the(restr, scope)

⎤
⎥
⎥
⎦

˺

The reason that we need a uniqueness predicate of this kind has to do with the nature of
our type theory. The typing mechanism allows us to say for example what is given in (64).

(64) s : dog(a)

One way to paraphrase (64) is “a is a dog in s”. It says that s is of type ‘dog(a)’ but does not
rule out that s can be of other types as well including possibly ‘dog(b)’ where b is distinct
from a. We do not have a way of saying that ‘dog(a)’ is the only type to which s belongs.
This would correspond to Schubert’s (2000) notion of characterizing a situation, that is, in
our terms, presenting an exhaustive list of types to which it belongs, which given that we
have meet types (Appendix A8), corresponds to providing a single type to which it belongs
such that there is no other type to which it belongs. We have made this choice because it
would be very hard if not impossible to guarantee that anything belongs to just one type
in the kind of type system we have introduced. Consider, for example, join types. Given
our definition of join types in Appendix A7 if any object a is of some type T it will also be
of type (T ∨ T ʹ) for any type T ʹ. Introduction of this classical kind of disjunction into the
system makes it difficult to define a useful notion of a type that completely characterizes
an object or situation in the way that Schubert wants.

Schubert’s argument for needing the notion of characterization has to do with defin-
ing a causation relation between events. It seems to me that an analysis of causality
must involve a type of the causing event. Thus in addition to a two-place cause relation
between two events, “e1 caused e2”, we need a three-place cause relation between two
events and a type of the first event, “e1 caused e2 in virtue of the fact that e1 : T ”. Thus,
to take an example that Schubert discusses, John’s singing in the shower caused Mary to
wake up in virtue of the fact that it was a singing event but not John’s singing in the shower
caused Mary to wake up in virtue of the fact that it was an event in the shower. Allowing
types to be arguments to predicates in the way that we do provides a different solution to
the problem that Schubert presents. This view of causation relates to Vendler’s (1967)
claim that the first argument of cause is what he would call a fact, that is, something
propositional like our types. See Portner (1992); Zucchi (1993) for discussion of the
distinctions which Vendler draws.
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Introducing the predicate ‘unique’ in the way that we have allows us to place a constraint
on the types to which a situation belongs without having to give a complete characteriza-
tion of all the types to which it belongs. Defining it as a predicate whose argument is a
property means that its argument, the property, involves a type. A property is a function
which returns a type. Technically, we call it a dependent type. In Chapter 6 we will suggest
that allowing types or dependent types as arguments to predicates is a characteristic of evo-
lutionary higher organisms (at least humans). It seems intuitive that the kind of uniqueness
involved in the semantics of definite descriptions should belong to this higher kind of rea-
soning. We can imagine simple organisms (perhaps even as simple as an amoeba) which
respond to situations of certain types in certain ways, for example, eating behaviour when
confronted with a situation in which an item of food is present. However, it seems unin-
tuitive that such a simple organism would be programmed to engage in eating behaviour
when exactly one item of food is present and not otherwise.

Despite the success of our analysis so far in reducing the uniqueness condition to a par-
ticular situation rather than applying it to the whole universe, there is another problem
with the use of Russellian definite descriptions which it does not address. This is that the
uniqueness is treated as part of the assertion, that is, as something that is at issue. This
means that we should be able to deny an utterance of a sentence like (65a) or answer the
question (65b) with something like (65c).

(65) a. The dog barked.
b. Did the dog bark?
c. No, we don’t have a dog.

If (65c) is at all a possible response to (65a or b) then it feels like the denial of a presuppo-
sition. When a definite description is used in dialogue it seems that there is an assumption
that the interlocutor will be able to identify a relevant situation in which there is a unique
dog in a similar way as is suggested in our proposal for the identification of referents of uses
of proper names in Chapter 4, that is, looking first on the dialogue gameboard, then in long
termmemory and if nothing is to be found then accommodating a situation in which there
is a unique dog.

We shall use uniqueness to create a presuppositional account of definite descriptions
using the techniques for parametric contents which we developed in Chapter 4. The
presupposition type (a version of that proposed in Cooper, 2013c adjusted to the new
one-place predicate ‘unique’) is given in (66).

(66)
[
e:unique(dogʹ)

]

This is the type that, according to the techniques developed in Chapter 4, will need to be
matched against an agent’s resources (gameboard or long-term memory) or, if a match is
not available, will need to be accommodated into the agent’s gameboard. It requires there
to be a situation which has exactly one dog in it. Satisfying the uniqueness presupposition
on this view is not so much a question of determining the way the world is (i.e. whether
the dog is in some objective sense unique) as determining how the agent has carved up the
world into situations.

(66) will, then, be the background of the parametric content of the noun-phrase the
dog. Three different options for this parametric content present themselves, as in (67).
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(67) a. ˹λc:[Cntxt
𝔠:
[
e:unique(dogʹ)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=dogʹ↾c.𝔠.e : Ppty
scope=P : Ppty
e : the(restr, scope)

⎤
⎥
⎥
⎦

˺

b. ˹λc:[Cntxt
𝔠:
[
e:unique(dog')

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=dog'↾c.𝔠.e : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

c. ˹λc:[Cntxt
𝔠:
[
e:unique(dog')

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=dogʹ↾c.𝔠.e : Ppty
scope=P : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

It does not make much difference which of these you choose for the analysis of singular
definite descriptions. InCooper (2013c)we chose the option corresponding to (67c), which
offers some vague hope of being able to draw a parallel with plural definites. Note that
choosing (67b) or (67c) eliminates the need for the predicate ‘the’. Here we will choose
(67c). This assumes that we have a predicate ‘every’ with arity ⟨Ppty,Ppty⟩with the witness
condition (68).

(68) s : every(P,Q) iff [↓P] ⊆ [↓Q↾ s]

From the perspective of compositional semantics it is important that the common noun
dog in these examples plays a role twice in the parametric content of the noun phrase the
dog: once in determining the type of the context and once as the first argument to the quan-
tifier. In order to achieve the contribution to the context we will need to treat the content
of the not as a parametric content but as a function from properties (corresponding to the
common noun) to a parametric content. The content of the, ‘SemDefArt’, is given in (69).

(69) λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

For the sake of consistency in how determiners are combined with nouns we shall adjust
the definition of the ‘SemIndefArt’ so that it too is a dependent parametric content of the
same form as ‘SemDefArt’ even though it does not introduce a presupposition that depends
on the following noun. ‘SemIndefArt’ is defined as (70).
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(70) λQ:Ppty .
˹λc:Cntxt .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

How should these contents be combined with the content of a common noun to form
the content of the noun-phrase? Let us refer to (70) as the and use dog to refer to the
parametric content associated with dog given in (71), where ‘dogʹ’ represents the property
of being a dog as we defined earlier.

(71) λc:Cntxt . dogʹ

(This assumes that the content for dog does not depend on the context.) We can derive a
parametric content for the dog as indicated in (72).

(72) λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠 :
⎡
⎢
⎢
⎣

s : dog.bg
f : the(dog(s)).bg
a=s.𝔠 : PropCntxt

⎤
⎥
⎥
⎦

𝔰=𝔠.s.𝔰 : Assgnmnt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. [the]𝔠⇝𝔠.f([dog]𝔠⇝𝔠.a(c))(c)

In order to achieve this we need a variant of the operation ‘ContForwardApp’ defined in
Chapter 4, example (28)which combines contents of phrases based on forward application.
We will call new variant ‘ContForwardApp@@’ since it makes use of a combination oper-
ation we designate by ‘@@’ whereas the normal version uses the combination operation
‘@’, whose current version is defined in Chapter 4, example (103). ‘ContForwardApp@@’ is
given in (73a) and ‘@@’ is defined in (73b).

(73) a. If Targ and Tres are types, then ContForwardApp@@(Targ, Tres) is

λu:
[
cont:(Targ→Tres)

]
⌢
[
cont:Targ

]
.

[
cont=u[0].cont@@u[1].cont:Tres

]

b. If α : (T1→ [
bg:CntxtType
fg:(bg→T2)

]) and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α

and β based on functional application, α@@β, is

˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠 :
⎡
⎢
⎢
⎣

s : β.bg
f : α(β(s)).bg
a=s.𝔠 : PropCntxt

⎤
⎥
⎥
⎦

𝔰=𝔠.s.𝔰 : Assgnmnt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

[α]𝔠⇝𝔠.f([β]𝔠⇝𝔠.a(c))(c)˺

What we have characterized so far is a static treatment of generalized quantifiers.
Dynamic generalized quantifiers as presented in Cooper (2011) involving changing the
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constraint on the quantifier predicate so that the information represented by the first argu-
ment to the quantifier predicate is passed on as a restriction to the second argument of the
predicate. What we mean by the information associated with a property P is essentially the
merge of the domain type and the range type of the dependent typewhich is the foreground
of the property. Consider the example ‘dogʹ’ repeated in (74).

(74) λr:
[
x:Ind

]
.
[

e : dog(r.x)
]

Informally, the information associated with this which is to be passed on to the second
argument of the quantifier is that we are talking about some individual which is a dog.
This is represented by the record type in (75).

(75) [
x : Ind
e : dog(x) ]

Intuitively, the type in (75) can be obtained from ‘dogʹ’ by merging the domain type with
the result of relabelling the range type so that ‘r.x’ is replaced by ‘x’, that is, (76).

(76)
[

e : dog(x)
]

We call (75) a fixed point type for ‘dogʹ’ because for any record r of this type, r : dogʹ(r). We
use ‘ℱ(dogʹ)’ to designate (75).

There are some complications which need to be noted concerning fixed point types.
Not all functions which return record types will have fixed points. For example, if the
domain type of some function, 𝒯 requires a non-record, and 𝒯 returns a record type,
then there cannot be any a such that a : 𝒯(a).

Even if𝒯maps records to record types, it will not always be the case that𝒯 has fixed
points. Consider (77).

(77) λr:
[
x:Rec

]
.
⎡
⎢
⎢
⎣

x : Ind
c : p(x)
e : q(r.x)

⎤
⎥
⎥
⎦

Wecould compute a fixed point type for this given in (78) but, assuming that individuals
are not records, this type will be necessarily empty.

(78)
⎡
⎢
⎢
⎣

x : (Rec∧Ind)
c : p(x)
e : q(x)

⎤
⎥
⎥
⎦

The problem here is that we have the label ‘x’ occurring both in the domain type and in
the returned type and in the fixed point type it is required to label the same object. In
general, if we want to construct fixed point types from functions we should avoid cases
where the paths in the domain type overlap those in the returned type.

Even if the domain type is a record type and the returned type is a record type and
there is no label clash between the two it will not always be possible to construct a fixed
point type. Consider the two functions in (79).

(79) a. λr:
[
x:Ind

]
.
[

e : p(r.x)
]

b. λr:
[
x:Ind

]
.
[

e : p(r)
]
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In the case of (79a) we can construct the fixed point type in (80).

(80) [
x : Ind
e : p(x) ]

Suppose that (81) holds.

(81) r = [ x = a
e = s ]

where a : Ind
s : p(a)

Suppose that 𝒯 is (79a). Then r : 𝒯(r), that is, r :
[
e:p(a)

]
. Now consider (79b). A

candidate for a fixed point would be (82).

(82) r' = [ x = a
e = s ]

where a : Ind
s : p(rʹ)

However, the conditions expressed in (82) do not correspond to any type as illustrated
in (83).

(83) [
x : Ind
e : p(?) ]

In TTR we do not allow for types that are re-entrant or non-well-founded where the
‘?’ in (83) could be replaced by something which refers to the whole record which is of
the type in (83). This means that there is no way of characterizing a fixed point type for
(79b) in TTR. The difference between (79a) and (79b) is that (79a) depends only on
paths in r but not on r as a whole, whereas (79b) depends on r as an object. We say that
(79a) is path-dependent on r whereas (79b) is not. Path dependence is characterized in
(84), repeated in the Appendix on p. 412.

(84) A dependent type,𝒯, is path-dependent on r, 𝒯((r))path, just in case 𝒯 depends
on paths in r but not on the whole object r.

For cases like (79b) where path dependence does not obtain there is a related notion
of quasi-fixed point. Consider the record in (85a) which is of the type (85b).

(85) a. r = [ 𝔠* =
[

x = a
]

e = s ]

where: a : Ind
s : p(

[
x=a

]
)

b. [ 𝔠* :
[

x : Ind
]

e : p(𝔠*) ]

continued
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Supposing that 𝒯 is (79b), we now have r : 𝒯(r.𝔠*), that is, r :
[
e=p(

[
x=a

]
)
]
. We say

that r is a quasi-fixed point for 𝒯 and that (85b) is a quasi-fixed point type for 𝒯 as
characterized in (86), repeated in Appendix 11.4 on p. 412.

(86) T is a quasi-fixed point type for dependent type 𝒯 iff r : T implies that there is a
component aεr such that r : 𝒯(a)

If we use the distinguished label ‘𝔠*’ only used in the construction of quasi-fixed point
types, this will also guard against unwanted label clash.

If T is a record type and r is a record of any type, we will use Tr.π⇝π to designate the
type like T except that for any π ∈ paths(T) any occurrence of r.π is replaced by π.
For example, suppose T((r)) is (87) (using abbreviatory notation for dependent fields).

(87) [
x : Ind
e : dog(r.x) ]

Then T((r))r.π⇝π will be (88).

(88) [
x : Ind
e : dog(x) ]

(88) is now no longer dependent on r. Note that using the abbreviatory notation here
conveniently hides some additional processing that is going on in this conversion,
namely, that a non-dependent field is being converted to a dependent field. In official
notation (88) is represented as (89).

(89) [
x : Ind
e : ⟨λv:Ind . dog(v), ⟨x⟩⟩ ]

We then characterize ℱ as in (90), repeated in Appendix 11.4 on p. 412.

(90) If𝒯 is a dependent record type of the form λr :T1 . T2((r))path where T1 is a
record type and for any r, paths(T1) ∩ paths(𝒯(r)) = ∅, then

ℱ(𝒯) is that type T such that for any r* : T1, λr :T1 . (T1∧̣T2)r.π⇝π(r*) = T

We illustrate this with an example. Suppose that λr :T1 . T2((r))path is ‘dogʹ’, that is, (91).

(91) λr:
[
x:Ind

]
.
[

e : dog(r.x)
]

Then λr :T1 . T1∧̣T2((r)) is (92).

(92) λr:
[
x:Ind

]
. [ x : Ind

e : dog(r.x) ]

Removing any dependence on r we obtain λr :T1 . (T1∧̣T2)r.π⇝π, that is, (93).

(93) λr:
[
x:Ind

]
. [ x : Ind

e : dog(x) ]

Note that since we have removed all dependencies on r, (93) is a constant function; that
is, for any record of type

[
x:Ind

]
it will return the type (94).
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(94) [
x : Ind
e : dog(x) ]

(94) is, then, ℱ(dogʹ).
The importance of the constraint that there are no shared paths in the domain type

and the resulting type of the function to which we applyℱ is made clear by the abstract
example in (95). Suppose that we did not have this restriction and allowedℱ to apply to
a function like (95a). Then the putative result would be (95b) which is not well-formed
since we do not allow dependent fields which depend on themselves.

(95) a. λr:
[
ℓ:T1

]
.
[

ℓ : T2((r.ℓ))
]

b.
[

ℓ : T1∧̣T2((ℓ))
]

If we feel that we need to construct a fixed point type for a dependent type where
there are shared paths, then we can achieve the effect we need by first relabelling the
dependent type so that there are no shared paths.

We do not need to be careful to prevent clashing of paths in constructing a quasi-fixed
point type. Here we replace any path r.πwith 𝔠*.π. We define the operation constructing
a quasi-fixed point type,ℱquasi in (96) where wemake use of an additional distinguished
label ‘𝔯*’. This is repeated in Appendix 11.4 on p. 412.

(96) If𝒯 is a dependent record type of the form λr :T1 . T2((r)) where T1 is a record
type, then

ℱquasi(𝒯) is that type T such that for any
r* : T1, λr :T1 . (

[
𝔠*:T1

]
∧̣
[
𝔯*:T2

]
)r.π⇝𝔠* .π(r*) = T

For dependent types which require more than one argument we can define a recursive
version of ℱquasi, ℱquasi* , in (97), repeated in Appendix 11.4 on p. 412.

(97) If𝒯 is a dependent record type of the form λr :T1 . T2((r)) where T1 is a record
type and for any r in its domain𝒯(r) is a record type, then

ℱquasi*(𝒯) = ℱquasi((𝒯))

else if 𝒯 is a dependent record type of the form λr :T1 . 𝒯'((r)) where T1 is a
record type and for any r in its domain 𝒯(r) is a dependent record type, then

ℱquasi*(𝒯) is that type T such that for any
r* : T1, T = λr :T1 . (

[
𝔠*:T1

]
∧̣
[
𝔯*:ℱquasi*(𝒯')

]
)r.π⇝𝔠* .π

We shall use the fixed point type of the first argument to restrict the dependent type
which is the second argument. We define the restriction of a function by a type as in (98).

(98) If f is a function λv :T1 . ϕ, then the restriction of f by a type T2, f|T2
, is

λv : (T1∧̣T2) . ϕ
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We can extend this notation to properties as in (99).

(99) If P:Ppty, then P|T is the property

[
bg = P.bg∧̣T
fg = P.fg|T

]

that is,

˹P.fg|T˺

We can then define dynamic versions of the contents of quantifier determiners as in
(100).

(100) a. SemIndefArt —
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

b. SemDefArt —
λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

The original motivation for treating generalized quantifiers dynamically was to be able
to treat the kind of “donkey-anaphora” binding that occurs in sentences like every farmer
who owns a donkey likes it. Our version of dynamic generalized quantifiers essentially repli-
cates the treatment by Chierchia (1995), though in our own terms. A similar analysis of
generalized quantifiers, exploiting contexts in type theory, is given by Fernando (2001).
In order to see how our strategy here will facilitate the treatment of donkey anaphora we
will have to wait until we have a treatment of anaphora in Chapter 8. The basic strategy is
to exploit the conservativity of generalized quantifiers and treat every farmer who owns a
donkey likes it as every farmer who owns a donkey is a farmer who owns a donkey and likes
it. This is achieved by restricting the second argument of the quantifier predicate in the
manner indicated in (100). This treatment in terms of a restriction on the scope argument
of the quantifier in the compositional semantics of determiners rather than as a conserva-
tivity constraint on the quantifier relationship itself may relate to claims in the literature
that conservativity is a structural constraint on the syntax/semantics interface rather than a
semantic constraint as such. This is discussed by Steinert-Threlkeld and Szymanik (2019),
who cite Fox (2002); Sportiche (2005); Romoli (2015).
For present purposes the advantage of dynamicizing the generalized quantifiers is that if

the first argument property is restricted to be a property of ambient temperature then that
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restriction will be passed on to the second argument. Let us look in detail at how this will
happen. Consider the type in (101).

(101) every( ˹λr:
[
x:AmbTempFrame

]
.
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(r.x)

]
˺,

˹λr:
[
x:Rec

]
.
[
e:rise(r.x)

]
˺)

The result of applying ℱ to the foreground of the first argument of (101) in order to
obtain a fixed point type is given in (102).

(102) [
x : AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs : temperature(x) ]

The condition on ‘every’ in (100b) requires that we compare the first argument to ‘every’
with the result of restricting the second argument with (102). The foreground of this
is given in (103a), which is identical with (103b) (by the definition of restriction) and
(103c) (by the definition of merge) and to (103d) (by the definition of merge⁵ because
AmbTempFrame is a subtype of Rec).

(103) a. λr:
[
x:Rec

]
.
[
e:rise(r.x)

]
|⎡
⎢
⎢
⎣

x:AmbTempFrame

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)

⎤
⎥
⎥
⎦

b. λr:
[
x:Rec

]
∧̣[

x:AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)] .

[
e:rise(r.x)

]

c. λr:[x:Rec∧̣AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] .

[
e:rise(r.x)

]

d. λr:[x:AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)] .

[
e:rise(r.x)

]

Thus intuitively by choosing to restrict the first argument property to ambient tempera-
ture frames we are also restricting the second argument property to ambient temperature
frames.

This technique for dynamic quantifiers also has an important consequence if we try to
combine frame level and individual level properties. Suppose for example thatwe are trying
to compute the witness condition for the temperature runs where runs corresponds to the
content given in (42a). Then we will have (104) as the foreground of the second argument
property.

(104) a. λr:
[
x:Ind

]
.
[
e:run(r.x)

]
|⎡
⎢
⎢
⎣

x:AmbTempFrame

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)

⎤
⎥
⎥
⎦

b. λr:
[
x:Ind

]
∧̣[

x:AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)] .

[
e:run(r.x)

]

c. λr:[x:Ind∧̣AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] .

[
e:run(r.x)

]

d. λr:[x:Ind∧AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] .

[
e:run(r.x)

]

⁵ For this step we need to take the version of merge in Appendix A11.3 which contains the two additional
clauses taking account of subtypes.
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Here since neither Ind nor AmbTempFrame are a subtype of the other, the final step of
merging represented in (104d) is the meet type (without the dot!) whose components are
the two types which were merged. The property represented in (104) is thus necessarily
empty (that is, its property extension is the empty set no matter what we assign to the
basic types), if we have the assumption that individuals are non-records. This would be a
way of requiring that the content of runs be coerced to something which could hold for
temperature frames in order to prevent the sentence from being anomalous. Similarly, if
we wish to find a content for the dog rises then we have to associate rises with an individual
property or alternatively associate dog with a frame property.

What then should be the content of is ninety? An obvious modification to the treatment
of be in Chapter 3, substituting the type Real for the type Ind, would lead to the property
in (105).

(105) ˹λr:
[
x:Real

]
. [ x=r.x, 90 : Ind

e : be(x) ]˺

This property might be the content you need if you are treating a sentence like 2 times 45 is
90. However, if we use this content with the temperaturewe will run into a similar problem
as that represented in (104). This is spelled out in (106)

(106) a. λr:
[
x:Real

]
. [x=r.x, 90:Inde:be(x) ]|⎡

⎢
⎢
⎣

x:AmbTempFrame

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)

⎤
⎥
⎥
⎦

b. λr:
[
x:Real

]
∧̣[

x:AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)] . [x=r.x, 90:Inde:be(x) ]

c. λr:[x:Real∧̣AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] . [x=r.x, 90:Inde:be(x) ]

d. λr:[x:Real∧AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] . [x=r.x, 90:Inde:be(x) ]

Assuming that real numbers are not records, we have the same problem as we had in (104)
in that the property turns out to be necessarily empty. What we need instead is a prop-
erty of frames (records) that will make reference to a scale, ζ, of the kind we defined for
AmbTempFrame in (16), for example, a property with the foreground given in (107).

(107) λr:
[
x:Rec

]
. [x=ζ(r.x), 90:Inde:be(x) ]

If ζ is fixed to be the scale in (16) then (107) is identical with (108).

(108) λr:
[
x:Rec

]
. [x=r.x.x, 90:Inde:be(x) ]

That is, what is checked for being identical with 90 is the ‘x’-field of the temperature frame
which is in the ‘x’-field of the argument to the property. If we choose this property as the
content for is ninety then the restriction of the property as second argument to the quan-
tifier will give a property as result which is not necessarily empty. This property is shown
in (109).
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(109) a. ˹λr:
[
x:Rec

]
. [x=ζ(r.x), 90:Inde:be(x) ]|⎡

⎢
⎢
⎣

x:AmbTempFrame

eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)

⎤
⎥
⎥
⎦

˺

b. ˹λr:
[
x:Rec

]
∧̣[

x:AmbTempFrame
e=s:temperature(x)] . [x=ζ(r.x), 90:Inde:be(x) ]˺

c. ˹λr:[x:Rec∧̣AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x) ] . [x=ζ(r.x), 90:Inde:be(x) ]˺

d. ˹λr:[x:AmbTempFrame
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:temperature(x)] . [x=ζ(r.x), 90:Inde:be(x) ]˺

Now, as in (103), (109d) is equivalent to (109c) in the sense that exactly the same objects
will have the properties. This is because AmbTempFrame is a subtype of Rec. In the func-
tions in (109) there are two parameters which will need to be determined by context in
compositional semantics, that is, will need to be found by matching the domain type of a
parametric content against an agent’s resources. These are the resource situation, s, and the
scale, ζ.

5.7 Individual vs. frame level nouns

We have made a distinction between individual level nouns like dog and frame level nouns
like temperature, differentiating their contents as in (42) and motivating the distinction
with the Partee puzzle. Now consider (110).

(110) a. The dog is nine
b. The dog is getting older/ageing
c. Nine is getting older/ageing

We have the same intuitions about (110) as we do about the original temperature puzzle.
We cannot conclude (110c) from (110a,b). Does this mean that dog is a frame level noun
after all? Certainly, if we think of frames as being like entries in relational databases, it
would be natural to think of age (or information allowing us to compute age such as date
of birth) as being a natural field in a dog-frame.⁶

Our strategy to deal with this will be to say that contents of individual level nouns can
be coerced to frame level contents, whereas the contents of frame level nouns cannot be
coerced “down” to individual level contents. Thus in addition to (111a) we have (111b).

(111) a. ˹λc:Cntxt . ˹λr:
[
x:Ind

]
.
[

e : dog(r.x)
]
˺˺

b. ˹λc:Cntxt . ˹λr:
[
x:Rec

]
.
[

e : dog_frame(r.x)
]
˺˺

The predicate ‘dog_frame’ is related to the predicate ‘dog’ by the constraint in (112).

(112) e : dog_frame(r) implies r : [x:Inde:dog(x)]

⁶ Curiously, it does not seem to figure in FrameNet for dog (as of 30 May 2022). The noun dog is associated
with the frame Animals which inherits from the frame Biological entity. But in neither of these frames is there a
frame element corresponding to age or date of birth. There is a frame Age but this does not seem to be related to
Animals or Biological entity.
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There are several different kinds of dog frames with additional information about a dog
which an agent may acquire or focus on. Here we will consider just frames which contain
a field labelled ‘age’ as exemplified in (113).

(113)
⎡
⎢
⎢
⎢
⎣

x:Ind
e:dog(x)
age:Real
cage:age_of(x,age)

⎤
⎥
⎥
⎥
⎦

An age scale, ζage, for individuals can then be defined as the function in (114).

(114) ζage = λr:
⎡
⎢
⎢
⎣

x:Ind
age:Real
cage:age_of(x,age)

⎤
⎥
⎥
⎦

. r.age

The content for is nine in the dog is nine is then like (107) with ζ set to ζage and 9 replacing
90. Thus be followed by a numeral can be coerced to a content depending on some scale
which is available as a resource.

We can think of the sentence the dog is nine as involving two coercions: one coercing
the content of dog to a frame level property and the other coercing the content of be to a
function which when applied to a number will return a frame level property depending on
an available scale. Such coercions do not appear to be universally available in languages.
For example, in German it is preferable to say die Temperatur ist 35 Grad “the temperature
is 35 degrees” rather than #die Temperatur ist 35 “the temperature is 35”. Similarly der Hund
ist neun Jahre alt “the dog is nine years old” is preferred over #der Hund ist neun “the dog
is nine”. Even within English the availability of an appropriate frame depends very much
on the noun used. Thus The book is nine⁷ sounds at best like an attempt to consider a book
as some kind of animate being, even though books can be old (though not young). We will
return to the matter of coercion or creation of new contents in Section 5.8.

We can think of the common noun sign types like (111a) as unmodulated in something
like the sense of modulation discussed by Recanati (2010) in that the restriction type yield-
ing the type of the domain of the property is identical with the type that represents the arity
of the predicate. We will see later a way to modulate the content of the noun by choosing a
subtype of the type of the predicate argument as the domain type of the property.

Here we discuss an operation ‘CommonNounIndToFrame’ which is defined on individ-
ual level common noun sign types and “raises” them to frame level common noun sign
types. In order to facilitate this we first introduce a function FrameType which maps
predicates with arity ⟨Ind⟩ to a type of frames. The way FrameType is defined depends
on a particular agent at a particular time; that is, FrameType(p) represents the type of
frames that an agent associates with the predicate p. A general constraint on FrameType
is that for any p in its domain (115) must hold.

(115) FrameType(p) ⊑ [
x : Ind
e : p(x) ]

Using this we can derive a new predicate ‘p_frame’ from any predicate p for which
FrameType is defined. This is characterized in (116).

⁷ An example pointed out by an anonymous referee.
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(116) a. If p is a predicate in the domain of FrameType, then p_frame is a predicate
with arity ⟨Rec⟩.

b. e : p_frame(r) iff r : FrameType(p) and e = r

‘CommonNounIndToFrame’ is defined in (117).

(117) If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a
record type (the “background type” or “presupposition”) then
CommonNounIndToFrame(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(Tphon, Tbg, p_frame)

This operation is a universal resource which may or may not be used by individual lan-
guages. Given the discussion in Section 5.7, we suggest that it is used productively for
certain nouns in English (possibly those describing animate beings which have birthdays)
but not in German, for example. This gives us a way of generating new lexical resources
from already existing resources. Similarly, we can think of p_frame as being the result of
applying a “raising” operation to the predicate p.

Another way to generate new lexical resources from basic common noun sign types is
to restrict the domain of the common noun by some type (perhaps related to a topos as
suggested in Section 5.5). This is formulated in (118).

(118) If Tphon is a phonological type, p is a predicate, Tbg and Tres are record types
and Σ is LexCommonNoun(Tphon, Tbg, p), then RestrictCommonNoun(Σ, Tres) is

Σ ∧̣
[

cont=˹λc :Tbg . ˹SemCommonNoun(Tbg, p)(c) ∣Tres ˺˺ : PPpty
]

This will enable us, for example, to restrict the basic lexical entry for temperature,
Σ“temperature” (repeated in (119a)) to obtain the additional lexical resource (119b).

(119) a. Σ“temperature” = LexCommonNoun(“temperature”, Rec, temperature)
b. RestrictCommonNoun(Σ“temperature”, AmbTempFrame)

This gives us a content for temperature which is restricted to ambient temperature.
We can combine restriction coercion with frame coercion. While frame coercion gives

us a general frame level property of records we can restrict the frame to be of a certain type
corresponding to a particular type of frame that we have as a resource. For example, sup-
pose that we have resource which is a frame type for dog frames, DogFrame as introduced
in (113) repeated in (120).

(120)
⎡
⎢
⎢
⎢
⎣

x:Ind
e:dog(x)
age:Real
cage:age_of(x,age)

⎤
⎥
⎥
⎥
⎦

We can useDogFrame to restrict the result of coercing our frame level dog sign type; that is,
there can be a two-step coercion from the basic lexical entry in (121a), Σ“dog”, as represented
in (121a) to (121b).

(121) a. Σ“dog” = LexCommonNoun(“dog”, Rec, dog)
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b. RestrictCommonNoun(CommonNounIndToFrame(Σ“dog”), DogFrame)

We need a treatment of is which will allow it to combine with numerals like nine and
ninety to form a frame level predicate as indicated in (107). We start from a parametrized
version of the definition of SemBe which we introduced in Chapter 3, also adjusted for our
new treatment of properties. This is given in (122).

(122) ˹λc : Tbg .
λ𝒬:Quant .

˹λr1:
[
x:Ind

]
.

𝒬(˹λr2:
[
x:Ind

]
. [ x=r1.x, r2.x : Ind

e : be(x) ]˺)˺˺

Here the context represented by the first argument to the function, c, does not contribute
anything to the final content of bewhich represents straightforward equality. In this chapter
we want to allow equality not only between individuals but also objects of other types.
We can do this by letting the content of be be parametric on a type including the label ‘x’
introduced in the context as in (123).

(123) ˹λc:[Cntxt
𝔠:
[
ty:Type

]] .

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:c.𝔠.ty

]
. [ x=r1.x, r2.x : c.𝔠.ty

e : be(x) ]˺)˺˺

This gives us a content for bewhich will express identity for objects in any type. Thus it will
be appropriate for both sentences in (124) where (124a) expresses identity for individuals
and (124b) expresses identity for numbers.

(124) a. The dog is Fido
b. The number is nine

We will call this ‘SemBeID’. We need a slightly different content in order to deal with (125).

(125) a. The dog is nine
b. The temperature is ninety

Here we need to introduce a scale into the context andmake sure that the second argument
to be is a number. This is given in (126).

(126) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[ty:Typesc:(ty→Real)]

⎤
⎥
⎥
⎦

.

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:Real

]
. [ x=c.𝔠.sc(r1.x), r2.x : Real

e : be(x) ]˺)˺˺

We will refer to this as ‘SemBescalar’.
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We now have two similar contents for be. It would be a simple matter to define
‘SemBescalar’ as the result of a coercion operation applied to ‘SemBeID’ if we wanted to.
Montague (1973) treated both kinds of be as identical and used individual concepts instead
of individuals in order to account for the Partee puzzle. Most following work avoids this
use of individual concepts and instead assumes that the content of be is different in the two
cases. The analysis we have presented is a way of capturing both intuitions. We have two
contents associated with be but we havemade explicit that they are closely related and both
basically have be express an identity relation, corresponding to Montague’s intuition. Note
that technically both sentences in (127) are ambiguous according to this analysis.

(127) a. The dog is nine
b. The temperature is ninety

They each have a nonsense necessarily false reading in which, respectively, the dog is iden-
tical with the number nine and the temperature is identical with the number ninety. The
derivation of both of these sentences involves a property application which results in ‘⊥’
(see (50) on p. 197). It is natural to assume that speakers in general disprefer the content ‘⊥’.
Note that this does not necessarily mean that speakers disprefer all contradictory readings.
There are other necessarily empty types. For example, suppose that T1 and T2 preclude
each other; that is, no object can be a witness for both types. Then T1 ∧ T2 is a necessarily
empty type but is distinct from ‘⊥’.

To complete the picture we need to account for nine and ninety. We will treat these as
logically proper names of real numbers. Thus we will not treat them as introducing presup-
positions in themanner inwhichwe suggested inChapter 4 but rather in theMontague-like
manner which we used for proper names in Chapter 3, except that we now adjust it to take
account of parametric contents and the new definition of Ppty (property).

If n is a (real) number, then SemNumeral(n) (the content for a number expression such
as nine) is as given in (128).

(128) ˹λc:Cntxt . λP:Ppty . P(
[
x=n

]
)˺

Then we can define Lexnumeral as an operation which takes a phonological type Tphon and
a (real) number n and returns the sign type (129).

(129) Lexnumeral(Tphon, n) =
Lex(Tphon, NP) ∧̣

[
cnt=SemNumeral(n):PQuant

]

The two sign types that we need as resources for our small fragment are given in (130).

(130) a. Lexnumeral(“nine”, 9)
b. Lexnumeral(“ninety”, 90)

5.8 Passengers and ships

Gupta (1980) points out examples such as (131).

(131) a. National Airlines served at least two million passengers in 1975
b. Every passenger is a person
c. National Airlines served at least two million persons in 1975
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His claim is that we cannot conclude (131c) from (131a,b). There is a reading of (131a)
where what is being counted is not passengers as individual people but passenger events,
events of people taking flights, where possibly the same people are involved in several
flights. Gupta claims that it is the only reading that this sentence has. While it is certainly
the preferred reading for this sentence (say, in the context of National Airlines’ annual
report or advertising campaign), I think the sentence also has a reading where individuals
are being counted. Consider (132).

(132) National Airlines served at least two million passengers in 1975. Each one of
them signed the petition.

While (132) could mean that a number of passengers signed the petition several times, our
knowledge that people normally only sign a given petition once makes a reading where
there are two million distinct individuals involved more likely. Similarly, while (131c)
seems to prefer the individual reading where there are two million distinct individuals, it
is not impossible to get an event reading here. Krifka (1990) makes a similar point. Gupta’s
analysis of such examples involves individual concepts and is therefore reminiscent of the
functional concepts used by Löbner (1979, 1981) to analyse the Partee puzzle.

Carlson (1982) makes a similar point about Gupta’s examples in that nouns which
appear to normally point to individual related readings can in the right context get the
event-related readings. One of his examples is a traffic engineer’s report as in (133).

(133) Of the 1,000 cars using Elm St. over the past 49 hours, only 12 cars made noise in
excess of EPA recommended limits.

It is easy to interpret this in terms of 1,000 and 12 car events rather than individual cars.
Carlson’s suggestion is to use his notion of individual stage, what he describes intuitively
as “things-at-a-time”. Krifka (1990) remarks that “Carlson’s notion of a stage serves basi-
cally to reconstruct events”. While this is not literally correct, the intuition is nevertheless
right. Carlson was writing at a time when times and time intervals were used to attempt to
capture phenomena that in more modern semantics would be analysed in terms of events
or situations. Thus Carlson’s notion of stage is related to a frame-theoretic approach which
associates an individual with an event.

Consider the noun passenger. It would be natural to assume that passengers are asso-
ciated with journey events. FrameNet⁸ does not have an entry for passenger. The closest
relevant frame appears to be TRAVEL which has frame elements for traveller, source, goal,
path, direction, mode of transport, among others. The FrameNet lexical entry for journey
is associated with this frame. Let us take the type TravelFrame to be the stripped down
version of the travel frame type in (134a). Then we could take the type PassengerFrame to
be (134b).

(134) a.
⎡
⎢
⎢
⎣

traveller : Ind
source : Loc
goal : Loc

⎤
⎥
⎥
⎦

⁸ As of 30 May 2022.
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b.
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

Here ‘take_journey’ is a predicate with arity ⟨Ind,TravelFrame⟩ with the witness condi-
tion in (135).

(135) If a:Ind and e:TravelFrame, then

s : take_journey(a, e) iff s = e and e.traveller = a

Let us suppose that the basic lexical entry for passenger is (136), where ‘passenger’ is a
predicate with arity ⟨Ind⟩.

(136) LexCommonNoun(“passenger”, Rec, passenger)

Let us call (136) Σ“passenger”. Just as we did for dog we can introduce a coerced version of the
lexical entry for passenger as in (137), using the type PassengerFrame.

(137) RestrictCommonNoun(CommonNounIndToFrame(Σ“passenger”),
PassengerFrame)

This means that the non-parametric content will now be a property of passenger frames of
type PassengerFrame. This introduces not only a passenger but also a journey, an event in
which the passenger is the traveller.

It seems that we have now done something which Krifka (1990) explicitly warned us
against. At the end of his discussion of Carlson’s analysis he comes to the conclusion that
it is wrong to look for an explanation of event-related readings of these sentences in terms
of a noun ambiguity. One of Krifka’s examples is (138) (which gives the title to his paper).

(138) Four thousand ships passed through the lock

This can eithermean that four thousand distinct ships passed through the lock or that there
were four thousand ship-passing-through-the-lock events a number of which involved the
same ships. The problem he sees is that if we treat ship as being ambiguous between denot-
ing individual ships or ship stages in Carlson’s sense then there will be too many stages
which pass through the lock. For example, suppose that a particular ship passes through
the lock twice. This gives us two stages of the ship which pass through the lock. But then,
Krifka claims, there will be a third stage, the sum of the first two, which also passes through
the lock. It is not clear to me that this is an insuperable problem for the stage analysis. We
need to count stages that pass through the lock exactly once. Barker (1999) points out that
this is not essentially different to the problem faced in analyses where pluralities of indi-
viduals are counted as a kind of individual. Barker’s solution is essentially similar to ours
in that he counts stages which pass through the lock exactly once. By using frames we have
a natural way of identifying the type of events which are being used for individuation. Let
us see how the frame analysis fares.

We will start with a singular example in order to avoid the additional problems offered
by the plural. Consider (139).

(139) Every passenger gets a hot meal
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Note that this example is problematic for the analysis byBarker (1999). For Barker, the
individuating event type comes from the verb-phrase and relies on the determiner being
symmetric, thus Four thousand ships passed through the lock is true just in case Four
thousand ships which passed through the lock passed through the lock. However, every is
not symmetric in this sense. It is not the case that (139) is true just in case every passenger
who gets a hot meal gets a hot meal. Furthermore it is not events of getting a hot meal
which individuate the passengers, but rather events of taking a journey. Similar remarks
can bemade about the similar analysis presented byDoetjes andHoncoop (1997). They
argue that most ships passed through the lock does not get an event reading since most
is not symmetric. This seems right if we are taking events of passing through the lock
as being the individuating event type. However, suppose the individuating event type is
making a particular journey for which there are two routes, only one of which involves
the lock. Then it seems clear that there is an event reading.

Suppose that an airline has this as part of its advertising campaign. Smith, a frequent
traveller, takes a flight with the airline and as expected gets a hot meal. A few weeks later
she takes another flight with the same airline and does not get a hot meal. She sues the
airline for false advertising. At the hearing, her lawyer argues, citing Gupta (1980), that
the advertising campaign claims that every passenger gets a hot meal on every flight they
take. The lawyer for the airline company argues, citing Krifka (1990), that the sentence in
question is ambiguous between an individual and an event reading, that the airline had
intended the individual reading and thus the requirements of the advertising campaign
had been met by the meal that Smith was served on the first flight. Smith’s lawyer then
calls an expert witness, a linguist who quickly crowdsources a survey of native speakers’
interpretations of the sentence in the context of the campaign and discovers that there
is an overwhelming preference for the meal-on-every-flight reading. (The small percent-
age of respondents who preferred the individual reading over the event reading gave their
occupation as professional logician.) Smith wins the case and receives an additional hot
meal.

What is important for us at the moment is the fact that there is an event reading of this
sentence. We will not deal with the matter of preferred readings. We will treat the content
of every on the model of the content of the indefinite article, except that the quantifier
relation will be ‘every’ instead of ‘exist’. Thus we will define SemUniversal on the model of
SemIndefArt.⁹ This is given in (140).

(140) λQ:Ppty .
˹λc:Cntxt .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

⁹ We leave to one side the issue of whether every should introduce a background constraint that there are at
least three objects which have the property associated with the noun.
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If we use the content associatedwith passenger in (137), the content associatedwith every
passenger will be (141).

(141) ˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=˹λr:
[
x:PassengerFrame

]
. passenger_frame(r.x)˺ : Ppty

scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

In order to simplify matters let us treat gets a hot meal as if it were an intransitive verb cor-
responding to a single predicate ‘get_a_hot_meal’. This is a predicate whose arity is ⟨Ind⟩.
It is individuals, not frames (situations), that get hot meals. Thus the content of gets a hot
meal will be (142).

(142) ˹λc:Cntxt . ˹λr:
[
x:Ind

]
.
[

e : get_a_hot_meal(r.x)
]
˺˺

While (142) is the right type of argument for (141), since it is a property it will lead us
eventually into problems because there is nothing which is both a passenger frame and
an individual for the reasons discussed in Section 5.6. What we need is a coercion which
will obtain a frame level intransitive verb to match the frame level noun. This would be
a coercion IntransVerbIndToFrame exactly parallel to CommonNounIndToFrame defined
in (117). Thus IntransVerbIndToFrame is defined as in (143).

(143) If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a
record type (the “background type” or “presupposition”) then
IntransVerbIndToFrame(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(Tphon, Tbg, p_frame)

Thus the new parametric content derived for get_a_hot_meal will be (144).

(144) ˹λc:Cntxt . ˹λr:
[
x:Rec

]
.
[

e : get_a_hot_meal_frame(r.x)
]
˺˺

A “get_a_hot_meal” frame will, according to our characterization of predicates of the form
‘p_frame’ be of type (145).

(145) [
x : Ind
e : get_a_hot_meal(x) ]

Intuitively the ‘every’ relation holding between the two frame-level coerced individual
properties corresponding to passenger and get_a_hot_meal will mean “every frame (sit-
uation) containing an individual in the ‘x’-field who is a passenger taking a journey will be
a frame where the individual in the ‘x’-field gets a hot meal”. Or, more formally, (146).

(146) every r of type
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

is of type

[
x : Ind
e : get_a_hot_meal(x) ]
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This means that every frame of type PassengerFrame will be of type (147a), that is (147b)
which is identical with (147c).

(147) a. PassengerFrame∧̣[x:Inde:get_a_hot_meal(x)]

b.
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

∧̣ [
x : Ind
e : get_a_hot_meal(x) ]

c.
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)∧get_a_hot_meal(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

Thus even though we have coerced to a frame-level reading it is still the passengers (i.e.
individuals) in the frames who are getting the hotmeal not the situation which is the frame.

Things go less well with cardinality quantifiers, however. Consider 2000 passengers get
a hot meal which corresponds to (148).

(148) 2000 r of type
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

are of type

[
x : Ind
e : get_a_hot_meal(x) ]

Theproblem is not exactly the same as the problemwhichKrifka foresawwith the summing
of stages, although it is intuitively related. It has to dowith the waywe have set up subtyping
with record types. Given a record of a type, we can always add a new field to the record
and obtain a distinct record of the same type. Trivially the field we add could contain an
object already occurring in a field in the original record. As we are assuming that the set
of labels is countably infinite, if there is one record of a given type there will be infinitely
many records of the same type. We illustrate this with an abstract example in (149).

(149) a. [ ℓ1 : T1
ℓ2 : T2

]

b. [ ℓ1 = a
ℓ2 = b ]

c.
⎡
⎢
⎢
⎣

ℓ1 = a
ℓ2 = b
ℓ3 = a

⎤
⎥
⎥
⎦
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d.
⎡
⎢
⎢
⎢
⎣

ℓ1 = a
ℓ2 = b
ℓ3 = a
ℓ4 = a

⎤
⎥
⎥
⎥
⎦e. …

If (149b) is of type (149a) (i.e. a : T1 and b : T2), then so are (149c) and (149d) and so
on as we successively “grow” the record without changing the fields that make the records
a witness for the type and without necessarily adding anything new in the new fields. If
recordsmodel events (situations) then this corresponds to the intuition that given any event
there will always be a larger event of which it is a part. For example, if I wash my hands
that is part of an event in which I wash my hands and stand at the washbasin. This is in
turn part of an event in which I wash my hands, stand at the washbasin, and breathe and
so on. We want this to be true but still there is the robust intuition that we are only talking
about one event of washing my hands here which is part of infinitely many larger events.

Fortunately, this problem is easy to fix. We use the notion of one record being a proper
part of another; that is, the set of paths of the first is a proper subset of the set of paths of
the second and the objects at the end of the total paths of the first are the same as those at
the end of the corresponding total path in the second.

Technically this is given by the definition in (150) (repeated in Appendix A5).

(150) r1 is a proper part of r2, r1<r2, just in case

1. r1 and r2 are records,
2. pathsrec(r1) ⊂ pathsrec(r2) and
3. for all π ∈ tpaths(r1), r1.π = r2.π

This notion yields a notion of minimal object of a given type which is related to Schu-
bert’s (2000) notion of characterization discussed on p. 200. It is different from Schubert’s
notion in that we do not say that there are no other types to which the situation belongs
but rather that no proper part of the situation is of the type. In this way it is related to the
notion of minimal situation discussed by Kratzer (2014) and elsewhere in earlier work. It
is also, of course, related to mereological approaches that have been used, for example, in
approaches to the analysis of the plural as in Krifka (1990) and much other literature (see
Champollion, 2017 for a thorough account). It is this we will exploit in our analysis of the
plural cardinality quantifiers. We introduce the notion of a plurality as a set of objects of a
given type that does not contain two objects where one is a proper part of the other.

We characterize a notion of plurality types as in (151) (repeated in Appendix A5).

(151) A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with set types has plurality types if
continued
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1. for any T ∈ Type, plurality(T) ∈ Type
2. for any T ∈ Type, A :TYPEC

plurality(T) iff
(a) A :TYPEC

set(T)
(b) if a ∈ A then for any b such that a<b, b ∉ A

In terms of our informal proof theoretic notation this can be expressed as (152).

(152) For Γ a system of complex types with set types,

a.
Γ ⊢ T ∈ Type

Γ ⊢ plurality(T) ∈ Type

b. Γ ⊢ A : set(T)

[a ∈ A, a<b]
...

b ∉ A
Γ ⊢ A : plurality(T)

It might seem natural to require that a plurality contains at least two objects. The choice
not to place this requirement on a plurality makes this analysis number neutral in the sense
of Zweig (2008, 2009). Zweig (2008) contains a useful overview of some of the variants of
analyses of the plural that have been proposed in the literature, including the distinction
between set-based and sum-based analyses. A more recent overview is given by Cham-
pollion (2017), Chapter 2.6.2, including a discussion of the arguments for and against
requiring that a plurality should contain at least two objects. In the theory of types we have
proposed we have sets already available and a kind of mereology based on the structure
of records, as illustrated in (150), and we have used a combination of these in our char-
acterization of plurality. Whether this proposal would survive an in-depth investigation of
the plural in this framework is an open question. In particular the work on mass terms by
Sutton and Filip (2017) suggests that we will in any case need an additional sum-structure.

We propose here a treatment of basic plural quantification cases involving cardinality
quantification that will allow us to say something about the content of 2000 passengers get
a hot meal. The reading of the sentence we are treating here is distributive, that is, a reading
on which each of the passengers individually gets a hot meal. We will first introduce plural
predicates with distributive interpretations. For simplicity, we will define this just for one-
place predicates though it could be easily generalized to n-place predicates. If p is a singular
predicate then we use ‘p_pl’ to represent a plural version of p in (153).

(153) a. If p is a singular predicate (i.e. there is no p' such that p = p'_pl) with arity ⟨T⟩,
then p_pl is a predicate with arity ⟨plurality(T)⟩

b. e : p_pl(A) if for all a ∈ A, e : p(a)

(We use a conditional in (153b) rather than a biconditional because ultimately we think
that there will be other non-distributive witness conditions for types constructed with
plural predicates.)

We then introduce, in (154), resources ‘PluralCommonNoun’ and ‘PluralIntransVerb’ to
generate plural nouns and verbs. For this, we will assume without definition that we have
operations ‘pluralnoun’ and ‘pluralverb’ which will map one (singular) phonological type
to another. (We will not in this book present a formulation of morphology in TTR.)
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(154) a. If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩
and Tbg is a record type then PluralCommonNoun(LexCommonNoun(Tphon, Tbg,
p)) =

LexCommonNoun(pluralnoun(Tphon), Tbg, p_pl)

b. If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩
and Tbg is a record type then PluralIntransVerb(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(pluralverb(Tphon), Tbg, p_pl)

We introduce a type of plural properties, PlPpty, considered as a property of pluralities.
Its witness condition is given in (155).

(155) P : PlPpty iff P : Ppty and for some type T, P.bg ⊑
[
x:plurality(T)

]

We consider cardinality quantifiers such as two and two thousand to correspond to pred-
icates whose arity is ⟨PlPpty, PlPpty⟩. If n is a natural number (that is, an object of type
Nat), let ‘exactly_n’ be such a predicate. Similarly, we introduce predicates ‘at_least_n’ and
‘at_most_n’. In order to give the witness conditions for these predicates we use a predicate
‘card’ (“cardinality”) with arityCard⟩, whereCard is the type of cardinal numbers (the nat-
ural numbers together with the transfinite cardinals,ℵ0,ℵ1, …). A set, X, is of type ‘card(n)’
if its cardinality is n. Similarly we introduce predicates ‘card_at_least’ and ‘card_at_most’
The relevant witness conditions are spelt out in (156).

(156) a. X : card(n) iff for some T, X : set(T) and |X| = n
b. X : card_at_least(n) iff for some T, X : set(T) and |X| ≥ n
c. X : card_at_most(n) iff for some T, X : set(T) and |X| ≤ n

We now give the witness conditions for the cardinal quantifier predicates in (157).

(157) a. s : exactly_n(P, Q) iff s : at_least_n(P, Q)∧at_most_n(P, Q)
b. s : at_least_n(P, Q) iff [̌ℱ((Q↾ s).fg ∣ℱ(P.fg)) ∧̣

[
x:card_at_least(n)

]
] ≠ ∅

c. s : at_most_n(P, Q) iff r : ℱ((Q↾ s).fg ∣ℱ(P.fg)) implies r :
[
x:card_at_most(n)

]

Let us take these definitions through our example 2000 passengers get a hot meal. One
relevant type which could serve as the content of this sentence is given in (158).

(158) at_least_2000(˹λr:
[
x:plurality(Rec)

]
.
[
e:passenger_frame_pl(r.x)

]
˺,

˹λr:[x:plurality(Rec)
e:passenger_frame_pl(x)] .

[
e:get_a_hot_meal_frame_pl(r.x)

]
˺)

Let us instantiate (157b) bit by bit with (158), assuming that the situationwe are checking
is s. We first compute the fixed point type of the foreground of the first argument. That is,
(159a) which is identical to (159b).

(159) a. ℱ(λr:
[
x:plurality(Rec)

]
) .[

e:passenger_frame_pl(r.x)
]
)

b. [ x : plurality(Rec)
e : passenger_frame_pl(x) ]
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Then we compute the result of restricting the second argument to s, that is, Q↾ s. This is
given in (160).

(160) λr:[x:plurality(Rec)
e:passenger_frame_pl(x)] .

[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:get_a_hot_meal_frame_pl(r.x)

]

We then compute the fixed point type of (160), given in (161a) which is identical with
(161b) and equivalent to (161c).

(161) a. ℱ(λr:[x:plurality(Rec)
e:passenger_frame_pl(x)] .

[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:get_a_hot_meal_frame_pl(r.x)

]
)

b. [x:plurality(Rec)
e:passenger_frame_pl(x)∧(get_a_hot_meal_frame_pl(x)↾ s)]

c. [x:plurality(Rec)
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:passenger_frame_pl(x)∧get_a_hot_meal_frame_pl(x)]

In order to understand why (161b) and (161c) are equivalent we need to consider
that the equivalences in (162) hold for any type system, 𝕋.

(162) T1 ∧ (T2 ↾ s) ≈𝕋 (T1 ∧ T2)↾ s ≈𝕋 (T1 ↾ s) ∧ T2

In addition we have the distribution equivalence of restriction as in (163).

(163) (T1 ∧ T2)↾ s ≈𝕋 (T1 ↾ s) ∧ (T2 ↾ s)

These equivalences follow trivially from the witness condition for restricted types.

The final step specified in (157) involves merging (163b) with (164a), that is, (164b)
which is identical with (164c).

(164) a.
[

x : card(2000)
]

b. [x:plurality(Rec)
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:passenger_frame_pl(x)∧get_a_hot_meal_frame_pl(x)] ∧̣
[

x : card(2000)
]

c. [x:plurality(Rec)∧card(2000)
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:passenger_frame_pl(x)∧get_a_hot_meal_frame_pl(x)]

It is thus the type (164c) which is required to be non-empty by the content of an utterance
of 2000 passengers get a hot meal. This means that it is required that there is a plurality of
records with cardinality 2000 where each record in the plurality is a passenger frame and
the passenger in each frame gets a hot meal, or slightly more colloquially, there are 2000
separate events of a passenger getting a hot meal.
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5.9 Summary of resources introduced

Items that are new since Chapter 4 are marked “New!” and items that have been revised
since Chapter 4 are marked “Revised!”.

5.9.1 Universal grammar resources

5.9.1.1 Types

Loc Revised! —
⎡
⎢
⎢
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎥
⎥
⎦

Phon — a basic type
e : Phon iff e is a phonological event

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Assgnmnt — a basic type
r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}

PropCntxt — a basic type
r : PropCntxt iff r : Rec and labels(r) ∩ {x0, x1, …} = ∅

Cntxt — [
𝔰 : Assgnmnt
𝔠 : PropCntxt ]

CntxtType — a basic type
T : CntxtType iff T ⊑ Cntxt

xTypeNew! — a basic type
T : xType iff T : RecType and x ∈ labels(T)

Ppty Revised! — [
bg : xType
fg : (bg→RecType) ]

PlPptyNew! — a basic type
P : PlPpty iff P : Ppty and for some type T, P.bg ⊑

[
x:plurality(T)

]

PPpty — [
bg : CntxtType
fg : (bg→Ppty) ]

Quant — (Ppty→RecType)

PQuant — [
bg : CntxtType
fg : (bg→Quant) ]

QuantDet — (Ppty→Quant)
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PQuantDet — [
bg : CntxtType
fg : (bg→QuantDet) ]

PRel2 — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]

PRecType — [
bg : CntxtType
fg : (bg→RecType) ]

Cont — PRecType∨PPpty∨PQuant∨PQuantDet
Cat — a basic type

s, np, det, n, v, vp : Cat

Syn — [
cat : Cat
daughters : Sign* ]

Sign — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

SignType — a basic type
T : SignType iff T ⊑ Sign

S — [
Sign
syn:

[
cat=s:Cat

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]

N — [
Sign
syn:

[
cat=n:Cat

]]

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]

NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

Real New! — a basic type
n : Real iff n is a real number

Card New! — a basic type
n : Card iff n is a cardinal number (natural numbers with the addition of ℵ0,ℵ1, …)

AmbTempFrameNew! —
⎡
⎢
⎢
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎥
⎥
⎦
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TempRiseEventCntxt New! — [
fix :

[
loc : Loc

]

scale : (AmbTempFrame → Real) ]

TempRiseEvent New! —
λr:TempRiseEventCntxt .

[
e : (AmbTempFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

PriceFrameNew! —
⎡
⎢
⎢
⎢
⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥
⎥
⎥
⎦

PriceRiseEventCntxt New! —
⎡
⎢
⎢
⎣

fix : [
loc : Loc
commodity : Ind ]

scale : (PriceFrame → Real)

⎤
⎥
⎥
⎦

PriceRiseEvent New! —
λr:TempRiseEventCntxt .

[
e : (PriceFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

LocFrameNew! —
⎡
⎢
⎢
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎥
⎥
⎦

LocRiseEventCntxt New! — [
fix :

[
x : Ind

]

scale : (LocFrame → Real) ]

LocRiseEvent New! —
λr:LocRiseEventCntxt .

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

5.9.1.2 Predicates
with arity ⟨Phon, Loc⟩

loc — e : loc(u, l) iff u is located at l in e

with arity ⟨Phon, Ind⟩

speaker — e : speaker(u, a) iff u is the speaker of u in e
audience — e : audience(u, a) iff u is the audience of u in e

with arity ⟨Card⟩

cardNew! — X : card(n) iff for some T, X : set(T) and |X| = n
card_at_leastNew! — X : card_at_least(n) iff for some T, X : set(T) and |X| ≥ n
card_at_mostNew! — X : card_at_most(n) iff for some T, X : set(T) and |X| ≤ n

with arity ⟨Ppty⟩

uniqueNew! — s : unique(P) iff ∣ [↓P↾ s] ∣= 1
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with arity ⟨Ppty,Ppty⟩

exist — s : exist(P,Q) iff [↓P] ∩ [↓Q↾ s] ≠ ∅
every New! — s : every(P,Q) iff [↓P] ⊆ [↓Q↾ s]

with arity ⟨PlPpty,PlPpty⟩

exactly_nNew! — for n a natural number,
s : exactly_n(P, Q) iff s : at_least_n(P, Q)∧at_most_n(P, Q)

at_least_nNew! — for n a natural number,
s : at_least_n(P, Q) iff [̌ℱ((Q↾ s).fg ∣ℱ(P.fg)) ∧̣

[
x:card_at_least(n)

]
] ≠ ∅

at_most_nNew! — for n a natural number,
s : at_most_n(P, Q) iff r : ℱ((Q↾ s).fg ∣ℱ(P.fg)) implies r :

[
x:card_at_most(n)

]

with arity {⟨T⟩ ∣ T is a type}

be — e : be(a) iff aεe

with arity ⟨Loc,Real⟩

tempNew! — e : temp(l, n) iff n is the temperature at l in e.

with arity ⟨Real,Real⟩

less-thanNew! — e : less-than(n, m) iff nεe, mεe, and n<m

5.9.1.3 Scales
ζtemp New! — λr:AmbTempFrame . r.x : (AmbTempFrame → Real)
ζheight New! — λr:LocFrame . r.loc.z-coord : (LocFrame → Real)

ζage New! — λr:
⎡
⎢
⎢
⎣

x:Ind
age:Real
cage:age_of(x,age)

⎤
⎥
⎥
⎦

. r.age : (
⎡
⎢
⎢
⎣

x:Ind
age:Real
cage:age_of(x,age)

⎤
⎥
⎥
⎦

→ Real)

5.9.1.4 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)

SemCommonNoun(Tbg, p) Revised!
If p is a predicate with arity ⟨Ind⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺
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If p is a predicate with arity ⟨Rec⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺˺

LexCommonNoun(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ or ⟨Rec⟩ and Tbg is a type
(of context), then LexCommonNoun(Tphon, Tbg, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(Tbg, p):PPpty

]

SemPropName(Tphon)
If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

LexPropName(Tphon )
If Tphon is a phonological type,
then LexPropName(Tphon) is

Lex(Tphon, NP) ∧̣
[
cnt=SemPropName(Tphon):PQuant

]

SemPron

˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

LexPron(Tphon)
If Tphon is a phonological type, then LexPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemPron:PQuant

]

SemNumeral(n)New!
If n is a real number, then SemNumeral(n) is

˹λc:Cntxt . λP:Ppty . P(
[
x=n

]
)˺

Lexnumeral(Tphon, n)New!
If Tphon is a phonological type and n is a real number, then Lexnumeral(Tphon, n) is

Lex(Tphon, NP) ∧̣
[
cnt=SemNumeral(n):PQuant

]
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SemIndefArt Revised!
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

LexIndefArt(TPhon) Revised!
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt:(Ppty→PQuant)

]

SemUniversalNew!

λQ:Ppty .
˹λc:Cntxt .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexUniversal(TPhon)New!
If TPhon is a phonological type, then LexUniversal(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemUniversal:(Ppty→PQuant)

]

SemDefArtNew!
λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .

⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexDefArt(TPhon)New!
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemDefArt:(Ppty→PQuant)

]

SemIntransVerb(Tbg, p) Revised!
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind⟩, then
SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺
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If Tbg ⊑
[
𝔠:Rec

]
is a record type (for context) and p is a predicate with arity ⟨Rec,Rec⟩,

then SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x, c.𝔠)
]
˺˺

LexIntransVerb(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, Tbg ⊑

[
𝔠:Rec

]
a record type (for context) and p is a

predicate with arity ⟨Ind⟩ or ⟨Rec,Rec⟩, then LexIntransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vi) ∧̣
[
cnt=SemIntransVerb(Tbg, p):PPpty

]

SemTransVerb(Tbg,p) Revised!
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr1:
[
x:Ind

]
. 𝒬(˹λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
˺)˺˺

LexTransVerb(Tphon, Tbg, p)
If Tphon is a phonological type, Tbg a record type (for context) and p is a predicate with
arity ⟨Ind, Ind⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p):PRel2

]

SemBe Revised!

SemBeID

˹λc:[Cntxt
𝔠:
[
ty:Type

]] .

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:c.𝔠.ty

]
. [ x=r1.x, r2.x : c.𝔠.ty

e : be(x) ]˺)˺˺

SemBescalar

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[ty:Typesc:(ty→Real)]

⎤
⎥
⎥
⎦

.

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:Real

]
. [ x=c.𝔠.sc(r1.x), r2.x : Real

e : be(x) ]˺)˺˺

Lexbe(TPhon) Revised!
If TPhon is a phonological type, then LexbeID

(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBeID:PRel2

]
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If TPhon is a phonological type, then Lexbescalar
(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBescalar:PRel2

]

FrameType(p)New!
FrameType is a partial function on predicates, p, with arity ⟨Ind⟩which can be defined
for particular agents and particular times, which obeys the constraint:

FrameType(p) ⊑ [
x : Ind
e : p(x) ]

p_frameNew!

1. If p is a predicate in the domain of FrameType, then p_frame is a predicate with
arity ⟨Rec⟩.

2. e : p_frame(r) iff r : FrameType(p) and e = r

p_plNew!

1. If p is a singular predicate (i.e. there is no p' such that p = p'_pl) with arity ⟨T⟩,
then p_pl is a predicate with arity ⟨plurality(T)⟩

2. e : p_pl(A) if for all a ∈ A, e : p(a)

CommonNounIndToFrameNew!
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
CommonNounIndToFrame(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(Tphon, Tbg, p_frame)

RestrictCommonNounNew!
If Tphon is a phonological type, p is a predicate, Tbg and Tres are record types and Σ is
LexCommonNoun(Tphon, Tbg, p), then RestrictCommonNoun(Σ, Tres) is

Σ ∧̣
[

cont=˹λc :Tbg . ˹SemCommonNoun(Tbg, p)(c) ∣Tres ˺˺ : PPpty
]

IntransVerbIndToFrameNew!
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
IntransVerbIndToFrame(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(Tphon, Tbg, p_frame)

PluralCommonNounNew!
We assume that ‘pluralnoun’ is a function that maps phonological types for singular
common nouns to corresponding phonological types for plural common nouns.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralCommonNoun(LexCommonNoun(Tphon, Tbg, p)) =
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LexCommonNoun(pluralnoun(Tphon), Tbg, p_pl)

PluralIntransVerbNew!
Weassume that ‘pluralverb’ is a function thatmaps phonological types for singular verbs
to corresponding phonological types for plural verbs.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralIntransVerb(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(pluralverb(Tphon), Tbg, p_pl)

5.9.1.5 Constituent structure
RuleDaughters(Tdaughters, Tmother)

If Tmother is a sign type and Tdaughters is a type of strings of signs then

RuleDaughters(Tdaughters, Tmother)

is

λu :Tdaughters . Tmother ∧̣
[
syn:

[
daughters=u:Tdaughters

]]

ConcatPhon
λu:

[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]

Tmother⟶Tdaughter1…Tdaughtern
If Tmother is a sign type and Tdaughter1 , … ,Tdaughtern are sign types, then

Tmother⟶Tdaughter1…Tdaughtern

represents

RuleDaughters(Tmother, Tdaughter1
⌢…⌢Tdaughtern)∧̣̣ConcatPhon

α@β

If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β based

on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr𝔰.x([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr𝔰.x([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺

ContForwardApp(Targ, Tres)
If Targ and Tres are types, then ContForwardApp(Targ, Tres) is

λu:[cont:[
bg:CntxtType
fg:(bg→(Targ→Tres))

]]⌢ [cont:[
bg:CntxtType
fg:(bg→Targ)

]] .

[cont=u[0].cont@u[1].cont:[
bg:CntxtType
fg:(bg→Tres)

]]
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Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 '(Tdaughter2 ' :Targ) :Tres
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 '(Tdaughter2 ' : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp(Targ, Tres)

α@@βNew!

If α : (T1→ [
bg:CntxtType
fg:(bg→T2)

]) and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@@β, is

˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠 :
⎡
⎢
⎢
⎣

s : β.bg
f : α(β(s)).bg
a=s.𝔠 : PropCntxt

⎤
⎥
⎥
⎦

𝔰=𝔠.s.𝔰 : Assgnmnt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

[α]𝔠⇝𝔠.f([β]𝔠⇝𝔠.a(c))(c)˺

ContForwardApp@@(Targ, Tres)New!
If Targ and Tres are types, then ContForwardApp@@(Targ, Tres) is

λu:
[
cont:(Targ→Tres)

]
⌢
[
cont:Targ

]
.

[
cont=u[0].cont@@u[1].cont:Tres

]

Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 '(@@Tdaughter2 ' :Targ) :Tres New!
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ Tdaughter1 '(@@Tdaughter2 ' : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@@(Targ, Tres)

5.9.1.6 Action rules
(as in Chapter 3)

5.9.2 Universal speech act resources

(as in Chapter 2)
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5.9.3 Universal dialogue resources

(as in Chapter 4)

5.9.4 English resources

5.9.4.1 Types and predicates
Basic phonological types for words
{“Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”, “aha”, “ok”,
“leaves” , “hugs”, “dog” New!, “nine” New!, “ninety” New!}

Predicates
with arity ⟨Ind⟩ {conductor, composer, pianist, leave, dog New!, passenger New!}
with arity ⟨Ind, Ind⟩ {hug}
with arity ⟨Rec,Rec⟩ — {rise New!}

e : rise(r, c) if

r : AmbTempFrame,
c : TempRiseEventCntxt and
e : TempRiseEvent(c) ∧̣

[
e:
[
t0=r:AmbTempFrame

]]

or if

r : PriceFrame,
c : PriceRiseEventCntxt and
e : PriceRiseEvent(c) ∧̣

[
e:
[
t0=r:PriceFrame

]]

or if

r : LocFrame,
c : LocRiseEventCntxt and
e : LocRiseEvent(c) ∧̣

[
e:
[
t0=r:LocFrame

]]

with arity ⟨Rec⟩ — {temperature New!}
e : temperature(r) if

r : AmbTempFrame and e = r

with arity ⟨Ind,TravelFrame⟩ — {take_journey New!}
s : take_journey(a, e) iff s = e and e.traveller = a

Frame types

DogFrameNew! —
⎡
⎢
⎢
⎢
⎣

x : Ind
e : dog(x)
age : Real
cage : age_of(x,age)

⎤
⎥
⎥
⎥
⎦
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TravelFrameNew! —
⎡
⎢
⎢
⎣

traveller : Ind
source : Loc
goal : Loc

⎤
⎥
⎥
⎦

PassengerFrameNew! —
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

5.9.4.2 Grammar
Lexical sign types
{LexPropName(“Dudamel”),
LexPropName(“Beethoven”),
LexPron(“he”),
Lexnumeral(“nine”, 9) New!,
Lexnumeral(“ninety”, 90) New!,
LexIndefArt(“a”),
LexUniversal(“every”) New!,
LexDefArt(“the”) New!,
LexCommonNoun(“composer”, Rec, composer) Revised!,
LexCommonNoun(“conductor”, Rec, conductor) Revised!,
LexCommonNoun(“dog”, Rec, dog) (= Σ“dog”) New!,
RestrictCommonNoun(CommonNounIndToFrame(Σ“dog”), DogFrame) New!,
LexCommonNoun(“passenger”, Rec, passenger) (= Σ“passenger”) New!,
RestrictCommonNoun(CommonNounIndToFrame(Σ“passenger”), PassengerFrame) New!,
LexCommonNoun(“temperature”, Rec, temperature) (= Σ“temperature”) New!,
RestrictCommonNoun(Σ“temperature”, AmbTempFrame) New!,
LexIntransVerb(“leave”, Rec, leave),
LexIntransVerb(“run”, Rec, run), New!,
LexIntransVerb(“rise”,

[
𝔠:TempRiseEventCntxt

]
, rise) New!,

LexIntransVerb(“rise”,
[
𝔠:PriceRiseEventCntxt

]
, rise) New!,

LexIntransVerb(“rise”,
[
𝔠:LocRiseEventCntxt

]
, rise) New!,

LexTransVerb(“hug”, Rec, hug),
LexbeID

(“is”) Revised!,
Lexbescalar

(“is”) Revised!,
Lex(“ok”, S),
Lex(“aha”, S) }

Constituent structure rule components
CnstrIsA

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]].

VP∧̣
[
cont=u[2].syn.daughters[2].cont:Ppty

]
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Constituent structure rules
{S⟶ NP VP ∣ NPʹ(VPʹ:Ppty):RecType,
NP⟶ Det N ∣ Detʹ(@@N ':PPpty):PQuant Revised!,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣ V '(NP':Quant):Ppty}

5.10 Summary

In this chapter we have proposed an analysis of frames as records which model situations
(including events) and we have suggested that frame types (record types) are important
in both the analysis of the Partee puzzle concerning rising temperatures and prices and in
the analysis of quantification which involves counting events rather than individuals like
passengers or ships passing through a lock.

Our original inspiration for frames comes from the work of Fillmore (1982, 1985)
and work on FrameNet (https://framenet.icsi.berkeley.edu). An important aspect of our
approach to frames is that we treat them as first class objects. That is, they can be argu-
ments to predicates and can be quantified over. While this is important, it is not surprising
once we decide that frames are in fact situations (here modelled by records) or situation
types (here modelled by record types). The distinction between frames and frame types is
not made in the literature deriving from Fillmore’s work but it seems to be an important
distinction to draw if we wish to apply the notion of frame to the kind of examples we have
discussed in this chapter.

The proposal that we have made for solving the Partee puzzle is closely related to the
work of Löbner (2014, 2015) whose inspiration is from the work of Barsalou (1992a,b,
1999) rather than Fillmore. Barsalou’s approach in a version which is embedded in a the-
ory of cognition based on perception and a conception of cognition as dynamic, that is, a
system in a constant state of flux (Prinz and Barsalou, 2014), seems much in agreement
with what we are proposing in this book. Barsalou’s (1999) characterization of basic frame
properties constituting a frame as: “(1) predicates, (2) attribute-value bindings, (3) con-
straints, and (4) recursion” seems to have a strong family resemblance with our record
types. Our proposal for incorporating frames into natural language semantics is, however,
different from Löbner’s in that he sees the introduction of a psychological approach based
on frames as a reason to abandon a formal semantic approach whereas we see type theory
as a way of combining the insights we have gained from model theoretic semantics with a
psychologically oriented approach.

Our approach to frames has much in common with that of Kallmeyer and Osswald
(2013) who use feature structures to characterize their semantic domain. We have pur-
posely used record types in a way that makes them correspond both to feature structures
and discourse representation structures which allows us to relate our approach to more
traditional model theoretic semantics at the same time as being able to merge record
types corresponding to unification in feature-based systems. However, our record types
are included in a richer system of types including function types; this facilitates a treat-
ment of quantification and binding which is not available in a system which treats feature
structures as a semantic domain.¹⁰

¹⁰ It is possible to code up a notation for quantification in feature structures but that is not the same as giving
a semantics for it.

https://framenet.icsi.berkeley.edu
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Modality and intensionality without

possible worlds

6.1 Introduction

This chapter begins (Section 6.2) by reviewing the role of possible worlds in the analysis of
modality (involving notions such as possibility andnecessity) and intensionality (involving
mental states such as belief and desire). Types of situations are suggested as providing an
improvement over these uses of possible worlds. This suggestion is developed in respect of
modality in Section 6.3 which uses modal type systems which we introduced in Chapter 1
in connection with subtyping to account for basic modal notions and Section 6.4 which
applies them to the analysis of modal constructions in natural language. Section 6.5 does
the same for intensional constructions.

6.2 Possible worlds, modality, and intensionality

Montague (1973) uses possible worlds to analyse both modality (represented in his frag-
ment by the adverbs possibly and necessarily) and a variety of intensional constructions in
addition to the temperature and price examples discussed in Chapter 5: intensional tran-
sitive verbs such as seek, intensional adverbs such as voluntarily, verbs of propositional
attitudes such as believe and assert and verbs taking infinitival complements such as try
(to) and wish (to).

A short introduction to the use of possible worlds in modal logic and philosophical con-
ceptions of possible worlds is given by Menzel (2015). As he points out at the beginning of
this article, possible worlds are considered to be totalities (or at least a limit) which include
the situations which we are aware of around us.

The notion of possible world is intuitively appealing. We talk of living in the best (or
worst) of all possible worlds. But equally we talk of the best (or worst) possibility. When
we talk in such terms we normally have a small finite number of possibilities inmindwhich
we are contrasting. This has led some authors to use the term “possible world” to refer not
to a total universe but to a small set of facts that might obtain in some version of the world.
This appears to be standard usage in probability theory (e.g. Halpern, 2003). It is important
not to confuse this notion with the notion of possible world as a totality which is used in
semantics, inherited from modal logic. This point is made by Cooper et al. (2014a) and
Lappin (2015).

Problems have been raised for the notion possible world. These have to do with how you
individuate and count them and how many possible worlds there must be. Rescher (1999)
takes up these problems from a philosophical perspective. He argues that it is impossible to
individuate possible worlds and therefore impossible to count them. Lappin (2015) takes

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0007
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up the representation problem for possible worlds. If you cannot represent possible worlds
then you cannot individuate them. The central problem for possible worlds as they are
talked about in the semantics literature seems to be that the intuitive way to distinguish one
possible world from another is to find a proposition that is true in the first world but false
in the second. This would be fine except that we now have the corresponding problem for
propositions. Unfortunately the intuitive way of distinguishing between one proposition
and another (if you are a possible worlds theorist) is to find a possible world in which
the first proposition is true and the other is false. This, of course, is circular and will not
give us an individuation of either possible worlds or propositions. The standard version
of possible worlds semantics as proposed by Montague does not, of course, fall into this
obvious trap. Worlds are not represented in terms of sets of propositions which are true
in them. Rather we just define an interpretation to include a set of possible worlds and
leave aside the question of how they have been individuated. In a sense it is fine from a
technical point of view to have an arbitrary set whose membership we cannot represent as
a central component of our semantic theory. But it leaves us with the suspicion that we are
left with an abstract theory which we do not really know how to connect to any empirical
observations of the world. If you take a mathematical view of the semantic enterprise as
Montague did, this may be acceptable. But if you are interested in semantics as an aspect of
human cognitive ability it can appear problematic. Traditional possible world semantics is
a theory based on an assumed set of possible worlds. But it is not a theory of the possible
worlds as such, beyond the claim that there is a set of them.

Despite this, there is an intuition about the set of possible worlds which possible world
theorists hold onto: that they represent all the logical possibilities. This, at least, gives us
a way of considering the required cardinality of the set of possible worlds. The issue of
the cardinality of the set of possible worlds and its relationship to a psychological the-
ory of language is something that is already taken up by Partee (1977). Here she refers to
Lewis’s (1973) argument that there must be at least ℶ2 (the cardinality of the power set
of the power set of natural numbers) possible worlds. The argument¹ goes like this: sup-
pose we have a family that goes on for ever. That is, there would be ℵ0 members of the
family. Now consider that in a logically possible world (though possibly not in biologi-
cally possible worlds) any subset of these family members might have blue eyes (none of
them, all of them, and all the possibilities in between). This gives us a set of possible worlds
whose cardinality is the same as the power set of the natural numbers 2ℵ0 or ℶ1, that is,
the cardinality of the set of real numbers. Now consider the logical possibility that each of
those possible worlds is biologically plausible. Again, logically speaking, any subset of those
worlds could be biologically plausible. This will yield a set of possible worlds of cardinal-
ity 22ℵ0 or ℶ2. In principle one could create sets of possible worlds of any of the infinitely
many infinite cardinalities although, as Lewis claims, ℶ2 is probably sufficient for normal
purposes.

Another argument for the uncountability of the set of possible worlds comes from usual
assumptions about space and time. We normally assume that the set of moments of time
has the same cardinality as the set of points on the real line, that is, that time is continuous.
Similarly we also assume that space is continuous. Now for any possible world where an

¹ …which I first heard from Barbara Partee but for which I cannot find a published reference …
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object is at a certain location at a certain time there is another logically possibleworldwhere
that object is located at a different location or occupies its location in the first world at a
different time. For each such world there are uncountably many different logically possible
worlds in which the object is located elsewhere.

How do we manage to reason about such large numbers of possibilities? The answer we
want to propose here is that we reason in terms of types. A single type has a set of witnesses
and there are no constraints on the cardinality of the set of witnesses. Types which have
infinitely many witnesses are not more complex than types which have a small finite num-
ber of witnesses. Reasoning with a type involves manipulating the structural object which
is the type itself not the set of its witnesses. Thus, for example, reasoning with a record
type may be more complex than reasoning with a basic type that has no components. But
still a record type is always a finite structure and so we are not entering into the complex-
ity of manipulating uncountable sets, even though the record type may be thought of as a
“representation” for its set of witnesses which may indeed be an uncountable set. Here our
approach connects with proof theoretic approaches. In proof theorywemanipulate expres-
sions in a language which may represent sets of objects. Our types are not expressions in
a language but they are objects in our type theoretic universe which could be thought of
as “representing” the set of their witnesses. This approach also makes it possible to have a
learning theory where agents can be acquainted with a type without being acquainted with
the complete set of its witnesses. Knowing a type whose witnesses are dogs does not mean
that you are acquainted with the set of all dogs, but rather that you know a dog when you
see one; that is, you have a reliable dog classifier. (See Larsson, 2013 for a discussion of the
relationship between types and classifiers.) An important aspect of human cognitive pro-
cessing is that it involves reasoning with the types themselves, treating them as first class
citizenswhich can be arguments to predicates. This is what gives rise tomodality and inten-
sionality. Possibly this higher level reasoning is unique, or, at least, most fully developed,
in humans.

We think of types like record types as being types of situations. If we want to keep to the
idea of possible worlds as total universes it is straightforward to convert a type of situations,
T, to a type of worlds,TW, as long as we have a way of definingworlds asmaximal situations.
We could say that a world,w, is of typeTW just in case some part, s ofw is of typeT. Actually,
we do not need to do this because of the way we have set up subtyping. If T is a record type
and s : T, then if s< sʹ, that is, s is a proper part of sʹ in the sense defined in Chapter 5,
then sʹ : T. If we had a way of defining maximal situations, that is, situations s such that
there is no sʹ such that s< sʹ, we could take these to be our worlds. The problem is, though,
that it is not clear that it is desirable, or even possible, to characterize a notion of maximal
situation in this sense. Certainly, there is no notion of maximal record so our choice of
modelling situations as records suggests that there is no notion of maximal situation. Our
axioms say that given any record it is always possible to add a new field to it.² This lack
of maximal situations makes the notion of situation very different from that envisioned by
Kratzer (1989) (revised in Kratzer, 2012, chapter 5) which assumes that there are maximal
situations which serve as worlds.

² This fact is parallel to Proposition 2 in Barwise (1989), ch. 8: Every situation, s, is a proper part of some other
situation, sʹ.
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6.3 Modal type systems

Let us develop further the story about Kim’s walk in the park from Chapter 2. Kim contin-
ues her walk still thinking about the boy and the dog whom she had seen playing the game
of fetch. She thinks, “Was the boy standing too close to the pond? Suppose he had fallen
in. If he had been my son, I wouldn’t have let him play just there.” An important aspect
of human cognition is that we are not only able to observe things as they are but also to
conceive of alternatives which go beyond the completion of observed events in the way dis-
cussed in Chapter 2, Section 2.2. We can not only observe objects and perceive them to be
of certain types we can also consider possibilities in which they belong to different types
and perhaps do not belong to the type we have observed. We have managed to unhook
type judgements from direct perception. While the seeds of this ability can be seen in the
kind of event perception and prediction discussed in Chapter 2 in that it gives us a way to
consider types which have not yet been realized, it is at least one step further in cognitive
evolution to be able to consider alternative type assignments which do not correspond to
completions of events already perceived.

This leads us to construct modal type systems with alternative assignments of objects to
types.³ Figure 6.1 provides an example of a modal system of basic types with two possibil-
ities, one where the extensions of types T1 and T2 overlap and another possibility where
they do not.

The object a is of type T1 in the first possibility but not in the second possibility. There
is an object, b, of type T1 in the second possibility. b does not exist at all in the first possibil-
ity. In the figure we just show two possibilities but our general definition in Appendix A9,
introduced in Chapter 1, example (54), allows for there to be any number of possibilities,
including infinitely many.

T1 T2

a

a
b

Figure 6.1 Modal system of basic types

³ The term modal is taken from modal logic. See Hughes and Cresswell (1968) for a classic introduction. A
modern introduction is to be found in Blackburn et al. (2001).
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Given this apparatus we define four simple modal notions:

(Necessary) equivalence Two types are (necessarily) equivalent just in case the exten-
sion of one type is identical with that of the other type in all the possibilities. While
the different possibilitiesmay provide different extensions for the types, it will always
be the case that in any given possibility the two types will have the same extension.⁴

Subtype One type is a subtype of another just in case whatever possibility you look at
it is always the case that the extension of the first type is a subset of the extension of
the second. We can also say that the first type “entails” the second, that is, any object
which is of the first type will also be of the second type, no matter which possibility
you are considering.

Necessity The notion of necessity we characterize for a type could be glossed as “nec-
essarily realized” or “necessarily instantiated”. A type will be necessary just in case
there is something of the type in all the possibilities.

Possibility This notion corresponds to “possibly realized” or “possibly instantiated”. A
type will be possible just in case there is some possibility according to which it has a
non-null extension.

These notions are made precise for modal systems of complex types in (1) and (2),
repeated in Appendix A9. As a preliminary we note that if

TYPEMC = ⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩M∈ℳ

is a modal system of complex types based onℳ, we shall use the notation TYPEMCM

(where M ∈ ℳ) to refer to that system of complex types in TYPEMC whose model
is M. Let TypeMCrestr

be
⋂

M∈ℳ
TypeM, the “restrictive” set of types which occur in all

possibilities, andTypeMCincl
be

⋃

M∈ℳ
TypeM, the “inclusive” set of types which occur in at

least one possibility. Then we can definemodal notions either restrictively or inclusively
(indicated by the subscripts r and i respectively).

(1) Restrictive modal notions
a. for any T1,T2 ∈ TypeMCrestr

, T1 is (necessarily) equivalentr to T2 in TYPEMC,
T1 ≈TYPEMC

T2, iff for all M ∈ℳ, {a ∣ a :TYPEMCM
T1} = {a ∣ a :TYPEMCM

T2}
b. for any T1,T2 ∈ TypeMCrestr

, T1 is a subtyper of T2 in TYPEMC, T1 ⊑TYPEMC
T2,

iff for all M ∈ℳ, {a ∣ a :TYPEMCM
T1} ⊆ {a ∣ a :TYPEMCM

T2}
c. for any T ∈ TypeMCrestr

, T is necessaryr in TYPEMC iff for all M ∈ℳ,
{a ∣ a :TYPEMCM

T} ≠ ∅
d. for any T ∈ TypeMCrestr

, T is possibler in TYPEMC iff for some M ∈ℳ,
{a ∣ a :TYPEMCM

T} ≠ ∅

⁴ As pointed out by a referee, this is extensional necessary equivalence. It is therefore reminiscent of the notion
of equivalence in a possible worlds framework. Type identity provides a more restricted intensional notion of
equivalence. Other notions of equivalence can be characterized by the structure of types and the introduction of
constraints corresponding to meaning postulates, as will be seen as this chapter progresses.
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(2) Inclusive modal notions
a. for any T1,T2 ∈ TypeMCincl

, T1 is (necessarily) equivalenti to T2 in TYPEMC,
T1 ≈TYPEMC

T2, iff for all M ∈ℳ, if T1 and T2 are members of TypeM, then
{a ∣ a :TYPEMCM

T1} = {a ∣ a :TYPEMCM
T2}

b. for any T1,T2 ∈ TypeMCincl
, T1 is a subtypei of T2 in TYPEMC, T1 ⊑TYPEMC

T2,
iff for all M ∈ℳ, if T1 and T2 are members of TypeM, then
{a ∣ a :TYPEMCM

T1} ⊆ {a ∣ a :TYPEMCM
T2}

c. for any T ∈ TypeMCincl
, T is necessaryi in TYPEMC iff for all M ∈ℳ, if

T ∈TypeM, then
{a ∣ a :TYPEMCM

T} ≠ ∅
d. for any T ∈ TypeMCincl

, T is possiblei in TYPEMC iff for some M ∈ℳ, if
T ∈TypeM, then
{a ∣ a :TYPEMCM

T} ≠ ∅

It is easy to see that if any of the restrictive definitions holds for given types in a
particular system then the corresponding inclusive definition will also hold for those
types in that system.

This can be recast in terms of our informal proof theoretic notation where we use
‘T true’ to represent that T has some witness, ‘T1 ⊑r T2’ (‘T1 ⊑i T2’) to represent that
T1 is a restrictive (inclusive) subtype of T2, ‘T1 ≈r T2’ (‘T1 ≈i T2’) to represent that
T1 is restrictively (inclusively) equivalent to T2, ‘T necr’ (‘T neci’) to represent that T
is restrictively (inclusively) necessary and ‘T possr’ (‘T possi’) to represent that T is
restrictively (inclusively) possible. We give the restrictive notions in (3).

(3) Restrictive modal notions
For 𝒢 a modal system of complex types

a.

[Γ ∈ 𝒢]
...

Γ ⊢ T1 ∈ Type

[Γ ∈ 𝒢]
...

Γ ⊢ T2 ∈ Type

[Γ ∈ 𝒢, Γ ⊢ a : T1]...
Γ ⊢ a : T2

𝒢 ⊢ T1 ⊑r T2

b.
𝒢 ⊢ T1 ⊑r T2 𝒢 ⊢ T2 ⊑r T1

𝒢 ⊢ T1 ≈r T2

c.

[Γ ∈ 𝒢]
...

Γ ⊢ T ∈ Type

[Γ ∈ 𝒢]
...

Γ ⊢ T true
𝒢 ⊢ T necr

d.

[Γ ∈ 𝒢]
...

Γ ⊢ T ∈ Type Γ' ∈ 𝒢 Γ' ⊢ a : T
𝒢 ⊢ T possr

The inclusive notions are given in (4).
continued



244 MODALITY AND INTENSIONALITY WITHOUT POSSIBLE WORLDS

(4) Inclusive modal notions
For 𝒢 a modal system of complex types

a.

[Γ ∈ 𝒢, Γ ⊢ T1 ∈ Type, Γ ⊢ T2 ∈ Type, Γ ⊢ a : T1]...
Γ ⊢ a : T2

𝒢 ⊢ T1 ⊑i T2

b.
𝒢 ⊢ T1 ⊑i T2 𝒢 ⊢ T2 ⊑i T2

𝒢 ⊢ T1 ≈i T2

c. Γ' ∈ 𝒢 Γ' ⊢ T ∈ Type

[Γ ∈ 𝒢, Γ ⊢ T ∈ Type]
...

Γ ⊢ T true
𝒢 ⊢ T neci

d.
Γ ∈ 𝒢 Γ ⊢ T ∈ Type Γ ⊢ a : T

𝒢 ⊢ T possi

Note that all of these notions are relativized to the modal system you are considering
and the possibilities it offers. We may think of the family of assignments 𝒜 as providing
a modal base in the sense of Kratzer (2012). We may wish to consider very small families
of assignments corresponding to the knowledge we have. Alternatively, we may want to
consider strong logical variants of these modal notions where we consider all the logical
possibilities, for example, all possible assignments of extensions to types.

6.4 Modality without possible worlds

Montague (1973) introduces necessarily and possibly as sentence adverbs; that is, they com-
bine with a sentence to produce another sentence. If α is a sentence, then necessarily α is
true in a possible world, w, just in case α is true in every possible world and possibly α is
true in a possible world, w, just in case there is some possible world in which α is true. This
simple treatment ofmodality corresponds to themodal logic system known as S5where the
interpretation of necessarily and possibly involves quantification over all possible worlds (as
opposed to certain subsets of possible worlds determined by accessibility relations between
possible worlds) (Hughes and Cresswell, 1968, 1996).

In Section 6.3we discussedmodal type systemswhich are families of type systems, which
we call possibilities, differing in their assignments of witnesses to basic types and ptypes.
The important difference between possible worlds and possibilities is that for possibilities
the parameters along which they can vary are fixed by the available types introduced in the
type system, a well-defined notion, and one which varies depending on the particular type
system. Thus we have a way of characterizing the dimensions along which the possibilities
associated with a given type system vary and thus we have a way of representing the possi-
bilities, whereas we do not have such a way of characterizing possible worlds. Building on
the modal notions that we introduced in Section 6.3 we can introduce type constructors
‘☐’ and ‘♢’ corresponding to the operators in modal logic as in (5).
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(5) If T is a type, then ☐rT, ☐iT, ♢rT, and ♢iT are types

These types obey the constraints in (6) which correspond to the truth conditions for the
corresponding operators in modal logic (S5).

(6) a. ☐r∕iT is non-empty iff T is restrictively/inclusively necessary (approximately,
non-empty in all possibilities)

b. ♢r∕iT is non-empty iff T is restrictively/inclusively possible (approximately,
non-empty in some possibility)

Making the witness conditions for these types meet the constraints in (6) is a little
tricky. We do not have biconditionals, but two conditionals which correspond to intro-
duction and elimination rules in proof theory. Suppose that 𝕋 is a modal type system
and that p ∈ 𝕋 is a possibility in 𝕋. Then for ‘☐rT, we have (7).

(7) a. If a :p ☐r∕iT then T is necessaryr∕i in 𝕋
b. If T is necessaryr∕i in 𝕋 then for any p' ∈ 𝕋 there is some a' such that

a' :p' ☐r∕iT

Note that the two clauses in (7) jointly entail (8).

(8) For any p' ∈ 𝕋 there is some a' such that a' :p' ☐r∕iT (“☐r∕iT is true in p'”) iff T is
necessaryr∕i in 𝕋

For ‘♢r∕iT ’ we have (9).

(9) a. If a :p ♢r∕iT then T is possibler∕i in 𝕋
b. If T is possibler∕i in 𝕋 then for any p' ∈ 𝕋 there is some a' such that a' :p' ♢r∕iT

The two clauses in (9) jointly entail (10).

(10) For any p' ∈ 𝕋 there is some a' such that a' :p' ♢r∕iT (“♢r∕iT is true in p'”) iff T is
possibler∕i in 𝕋

We can recreate the witness conditions in (7) and (9) in our informal proof theo-
retic representation as in (11) where we use 𝒢 ⊢ T nec/possr∕i to represent T is
necessary/possibler∕i in 𝒢.

(11) For 𝒢 a modal system of complex types:

a.
Γ ∈ 𝒢 Γ ⊢ a : ☐r∕iT

𝒢 ⊢ T necr∕i

b.
𝒢 ⊢ T necr∕i Γ ∈ 𝒢

Γ ⊢ ☐r∕iT true

c.
Γ ∈ 𝒢 Γ ⊢ a : ♢r∕iT

𝒢 ⊢ T possr∕i

d.
𝒢 ⊢ T possr∕i Γ ∈ 𝒢

Γ ⊢ ♢r∕iT true

This shows how we can, if we want to, recreate in TTR the modal system that Montague
(1973) uses.
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We have used the symbols ‘☐’ and ‘♢’ above to suggest the relationship between our
proposal in terms of types and the traditional formulas of modal logic. We could, how-
ever, have achieved the same effect as above by introducing predicates ‘necr∕i’ and ‘possr∕i’
with arity ⟨Type⟩ and giving ptypes of the form ‘necr∕i(T)’ and ‘possr∕i(T)’ the same witness
conditions as above. We will pursue this option and also add additional arguments to the
predicate.

How many possibilities are there in a modal type system? The answer to this question
is that there can be as many as you choose for the given type system, ranging from a small
finite number of possibilities to a higher order infinity. The definition of a modal type sys-
tem given in Appendix A9 only requires that there be a family of possibilities. Thus this
definition includes the kind of restricted sets of “possible worlds” differing along a small
finite set of parameters which probability theorists talk of and indeed also linguistic seman-
ticists talk of informally when they are in pedagogical explanatory mode (see, for example,
Dowty et al., 1981 and much literature on inquisitive semantics such as Ciardelli et al.,
2019).

It is important in a modal type system that the identity criteria for the possibilities
are determined by the types provided by the system. Two possibilities are distinct only
if they differ in the witnesses associated with some basic type or ptype. It is not possible to
make distinctions for which you do not have appropriate types available. Thus the range
of possibilities is limited by the types which are available to classify objects.

This is not to say that we have eliminated all potential decidability problems frommodal
type systems. Of course, if the types that we use to construct the system are not decidable
it may not be possible to decide on identity for possibilities. Even if all the types are guar-
anteed to be decidable, given an infinite set of possibilities there cannot be any general
guarantee that we can decide whether an arbitrary type is necessary or possible or not
since we cannot visit every possibility in a finite amount of time. We can only be sure if
we have some general argument about the possibilities which does not involve inspect-
ing each possibility individually. But having a way of distinguishing between possibilities
which may in the limit be undecidable is better than not having a way of distinguishing
between possibilities, other than that they are distinct members of a set.

The work on modality in natural language which has followed after Montague’s origi-
nal work all points to amore restricted kind of modality which involves arguing from some
basic assumptions to a conclusion rather than considering all logical possibilities. This view
of modality in natural language has been put forward by Kratzer in a body of work begin-
ning with Kratzer (1977). This and other papers by Kratzer on modality are collected in
revised and commented form in Kratzer (2012) and there is much other literature which
builds on Kratzer’s ideas. An excellent introduction to Kratzer’s work is given in chapter 3
of Portner (2009). The essential idea is that modals like must (corresponding to necessity)
and can (corresponding to possibility) must be interpreted relative to a “conversational
background” which in Kratzer (1981) (chapter 2 of Kratzer, 2012) is split into two com-
ponents, a modal base and an ordering source. The modal base is a set of propositions⁵
which characterize the assumptions from which we are arguing. The ordering source is a
set of propositions⁶ which determine an ideal which we are trying to get as close to as pos-
sible. It is called an ordering source because Kratzer, following Lewis (1981), thinks of it

⁵ Actually, a function which determines a set of propositions for each possible world.
⁶ Again relativized to possible worlds.
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as inducing a partial ordering on possible worlds, in terms of their closeness to the ideal.
Kratzer’s insight is that necessity and possibility in natural language should be defined rel-
ative to amodal base and an ordering source. In simple terms, a proposition, p, is necessary
with respect to amodal base, b, and an ordering source (ideal), i, just in case p follows from
the conjunction of b and i; that is, b and i requires p to be true. A proposition, p, is possible
with respect to b and i just in case p is consistent with the conjunction of b and i; that is, b
and i allows p to be true.

We shall construe Kratzer’s propositions as types and we shall take modal bases and
ideals to be types as well. To recreate a Kratzerian semantics for necessity and possibility
we let the predicates ‘nec’ and ‘poss’ have arity ⟨Type, Type, Type⟩.

In order to allow types constructed with these predicates we need to create inten-
sional modal type systems in addition to the intensional type systems we introduced in
Chapter 1, p. 30. An intensionalmodal system of complex types is a family of intensional
type systems each of which represents a possibility. Figure 6.2 represents an intensional
modal type systemwhere we indicate just the initial three orders of an infinite hierarchy
of type orders on just one of the possibilities. Let M be a model, ⟨A, F⟩, where A is an
assignment to basic types and F an assignment to ptypes as usual. Letℳ be an infinite
sequence of models, M, indexed by the natural numbers, corresponding to the models
for the type systems of each order in an intensional type system.We useℳn to represent
the model for the n-th order in an intensional type system. We use𝔐 to represent a set
of such model sequences, representing the model sequences for each of the possibilities
in the intensional modal type system. We characterize an intensional modal system of
complex types in (12), repeated in Appendix A10.

(12) An intensional modal system of complex types based on𝔐 is a family, indexed
by the natural numbers, of families of quadruples indexed by members of𝔐:

TYPEIMC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩,
ℳn⟩ℳ∈𝔐,n∈Nat

where:

1. for each n,

⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩,ℳn⟩ℳ∈𝔐

is a modal system of complex types based on {ℳn ∣ℳ ∈𝔐}
2. for eachℳ ∈𝔐,

⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩,ℳn⟩n∈Nat

is an intensional system of complex types

In terms of our informal proof theoretic notation we can say that if we have an
intensional modal type system 𝔾, if {Γn}n∈Nat ∈ 𝔾 then {Γn}n∈Nat obeys the rules for
intensional systems of types and if for some m ∈ Nat, 𝒢 = {Γm ∣ for some X ∈ 𝔾, Γm ∈
X}, then 𝒢 obeys the rules for modal systems of types.
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Our first suggestion for witness conditions for ptypes constructed with ‘nec’ are given in
(13), assuming that 𝕋 is a modal type system, p ∈ 𝕋 and that T, B (“base”) and I (“ideal”)
are types.

(13) Witness condition for ‘nec’ (version 1)
s :p nec(T,B, I) iff s :p B and for any p' ∈ 𝕋 if for some a, a :p' B (i.e. B is “true”) and
for some a, a :p' I (i.e. I is “true”) then for some a, a :p' T (i.e. T is “true”)

A consequence of (13) is that ‘nec(T,B, I)’ is true in some possibility, p, just in case B is true
in p and for any possibility, p', if B and I are true in p' then T is true in p'. Building on a basic
example from Portner (2009, p. 49) , suppose that T is Mary-eat-her-broccoli, B is Mary-
has-broccoli-on-her-plate and I isMary-eats-everything-on-her-plate. Then according to the
definitions in (13) ‘nec(T,B, I)’ is non-empty (i.e. it’s necessary that Mary eat her broccoli)
just in case B is true (Mary has broccoli on her plate) and for any of the possibilities we are
considering if both B and I are non-empty then T is non-empty; that is, if there’s a situation
where Mary has broccoli on her plate and there’s a situation where Mary eats everything
on her plate then there’s a situation in which Mary eats her broccoli.

We can treat ‘poss’ in a similar way as in (14).

(14) Witness condition for ‘poss’ (version 1)
s :p poss(T,B, I) iff s :p B and for some p' ∈ 𝕋 there is some a, a :p' B (i.e. B is
“true”) and there is some a, a :p' I (i.e. I is “true”) and there is some a, a :p' T (i.e. T
is “true”)

A consequence of (14) is that poss(T,B,I) is true in some possibility, p, just in case Mary
has broccoli on her plate and there is some possibility that we are considering where

T1

T1

T1

T2

T2

T3

T3

Type2

Type1

Type1

T2

Figure 6.2 Intensional modal type system
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there’s a situation in which Mary has broccoli on her plate, a situation in which Mary eats
everything on her plate and a situation in which Mary eats her broccoli.

The witness conditions (13) and (14) allow different witnesses for the types T, B, and I.
An alternative is to require the same object to be of these types. This alternative for ‘nec’ is
presented in (15).

(15) Witness conditions for ‘nec’ (version 2)
s :p nec(T,B, I) iff s :p B and for any p' ∈ 𝕋 and a :p' (B ∧ I), a :p' T

For ‘poss’ we have (16).

(16) Witness condition for ‘poss’ (version 2)
s :p poss(T,B, I) iff s :p B and for some p' ∈ 𝕋 there is some a, a :p' ((B ∧ I) ∧ T)

A disadvantage with (15) is that it does not require the base, B, and the ideal, I, to be com-
patible. That is, it allows for ‘nec(T,B, I)’ to be true even if there is no possibility in which
there is a witness for B ∧ I. This is in contrast to (16) which does require there to be a
witness of B ∧ I in some possibility. We could add a compatibility condition to (15) but it
suggests that we could formulate a neater definition in terms of relations between the types.
We already have a notion of subtype which corresponds to the quantification over p' and
a' in (15). Thus we could replace this quantification with (B ∧ I) ⊑𝕋 T. We will use the
notation T1⊤𝕋T2 to represent that T1 is compatible with T2 in the modal system 𝕋. This is
defined in (17).

(17) T1 is compatible with T2 in modal type system 𝕋, T1⊤𝕋T2, just in case

there is some p ∈ 𝕋 such that for some a, a :p (T1 ∧ T2)

Wecan now characterize witness conditions associatedwith ‘nec’ as (18), as usual assuming
some modal system of types, 𝕋 and p ∈ 𝕋.

(18) Witness condition for ‘nec’ (version 3)
s :p nec(T,B, I) iff s :p B, B⊤𝕋I and (B ∧ I) ⊑𝕋 T

Similarly, we can define witness conditions for ‘poss’ as in (19).

(19) Witness condition for ‘poss’ (version 3)
s :p poss(T,B, I) iff s :p B and (B ∧ I)⊤𝕋T

Version 3 of these definitions is interesting because if you have a way of (at least approxi-
mately) computing whether one type is a subtype of or compatible with another simply by
looking at the types, then you will not have to look at the different possibilities. This makes
it possible, for example, to consider all logical possibilities without inspecting all the possi-
bilities but by considering the structure of the types involved. This relates to a more proof
theoretic oriented approach tomodality. Part of the important insight of Kratzer’s approach
tomodality is that it involves arguments which can be constructed from themodal base and
the ideal.

Versions 2 and 3, where we talk of particular situations being witnesses for the types
involved rather than just the “truth” of the types, seem to fit better intuitively with the
particular broccoli example we are discussing. ‘nec(T,B,I)’ will be non-empty just in case
Mary having broccoli on her plate is compatible with her eating everything on her plate
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and in all of the possibilities under consideration any situation in which she has broccoli on
her plate and eats everything on her plate is also a situation in which she eats her broccoli.

WhenKratzer talks of the conversational background consisting of the base and the ideal
she often talks about rules that might be encoded there (bodies of laws or regulations in the
case of deontic modality). This idea of rules being involved actually fits even better with
intuitions about the broccoli example. It is not somuch that we are considering possibilities
where Mary eats everything on her plate, but rather that we are considering possibilities
where there is a rule that Mary eats whatever is on her plate.

It is important for Kratzer that such rules not be logical laws in the sense that they always
hold true. For example, a law that cars not park on double yellow lines does not entail
that cars do not park on double yellow lines—this is only something that holds true in
deontically ideal worlds. This suggests that there could be a role for what Breitholtz (2014a,
2020) calls topoi. A topos in her terms is a dependent type, that is, a functionwhichmaps an
object of some type to a type. Given a situation of the domain type of the topos, the topos
will return a new type. We will introduce a basic type Topos which meets the condition
in (20).

(20) If τ : Topos, then τ : [ bg : Type
fg : (bg→Type) ]

We will use τ(s) to represent τ.fg(s). A standard action rule associated with a topos is
given in (21).

(21)
τ : Topos τ resourceA s :A τ.bg

:A τ(s)
That is, if an agent, A, judges a situation s to be of the background (domain) type of a topos,
τ, which is available to A as a resource, then A is licensed (afforded) to judge that there is
something of type τ(s).

We will say that topoi associated with this action rule are used epistemically. The con-
dition has to do with increasing our knowledge on the basis of a previous judgement. If
we judge something, s, to be of the type which is the background of the topos then we can
judge that there is something of the type resulting from applying the foreground of the
topos to s.

Topoi can also be used deontically; that is, they are associated with an action rule which
involves creating an event of the type returned by the topos. Such an action rule may repre-
sent an affordance as in (22a) or an obligation as in (22b), the latter represented by labelling
the action rule with ‘oblig’.

(22) a.
τ : Topos τ resourceA s :A τ.bg

:A τ(s)!

b.
τ : Topos τ resourceA s :A τ.bg

oblig
:A τ(s)!

That is, if an agent, A, judges a situation, s, to be of the background type of the topos, then A
is allowed/obliged to create (contribute to the creation of ) something which is of the type
resulting from applying the foreground of the topos to s.
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Topoi can be associated with these and other action rules and one topos can be associ-
ated with several action rules; that is, the same topos can be used either epistemically or
deontically.

We now replace the third “ideal” type argument to the predicates ‘nec’ and ‘poss’ with a
topos argument, giving them the arity ⟨Type, Type, Topos⟩. If we need to recreate the option
provided by an ideal as a type rather than the topos we can use a topos whose background
type is the type Rec. That is, it does not place any constraints on the situations in its domain
and thus will return a type for any situation. If such a function is a constant function, that
is, it returns the same type for any situation, then this will give us the same effect as we
obtained when the argument was a type rather than a topos.

We define the witness conditions in (23) for the new version of ‘nec’, again assuming a
modal type system, 𝕋 and p ∈ 𝕋.

(23) Witness condition for ‘nec’ (version 4)
s :p nec(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s) ⊑𝕋 T

In informal terms, (23) says that a situation, s, witnesses that a type, T, is necessary with
respect to a background type, B, and a topos, τ just in case s is of the type B, τ is defined
on situations of type B and the type resulting from the application of τ to s is such that any
situation of that type will be of type T.

Similarly, for ‘poss’ we have the witness condition in (24).

(24) Witness condition for ‘poss’ (version 4)
s :p poss(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s)⊤𝕋T

(24) says that a situation, s, witnesses that T is possible with respect to B and τ just in
case s : B, τ is defined on situations of type B and the type resulting from the application
of τ to s is consistent with T, i.e. that it is possible for a situation to be of both types.

Let us see how thismight play out in our basic example (taken fromPortner, 2009, p. 49).
Consider (25).

(25) Mary should eat her broccoli

Portner points out that this sentence can receive a bouletic (having to do with desires)
intepretation if “we are talking about the fact that Mary loves broccoli” while “if we are
trying to enforce the idea that children should eat everything on their plates, it naturally
receives a deontic interpretation”. Suppose that b is the broccoli on Mary’s plate. For sim-
plicity we will assume b : Ind. Let m be Mary and p her plate. Then the type, B, of the base
situation could be (26).

(26)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x=b : Ind
c1 : broccoli(x)
y=m : Ind
c2 : child(y)
z=p : Ind
c3 : plate(z)
e1 : have(y,z)
e2 : on(x,z)
e3 : love(y,x)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let us in addition assume that broccoli is food according to the modal type system, 𝕋, we
are considering, that is, (27) holds.
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(27) For any a, broccoli(a) ⊑𝕋 food(a)

Now let us introduce two topoi, τ1 and τ2 represented in (28a and b) respectively.

(28) a. τ1 — ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:food(x)
y:Ind
c2:child(y)
z:Ind
c3:plate(z)
e1:have(y,z)
e2:on(x,z)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : eat(r.y, r.x)
]
˺

b. τ2 — ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:food(x)
y:Ind
c2:child(y)
e3:love(y,x)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : eat(r.y, r.x)
]
˺

(28a) associates the type of situation where a child has food on her plate with the type of
situation where the child eats that food. This topos is naturally associated with a deontic
condition; that is, a child is obliged to create a situation of the type returned by the topos, to
eat the food on her plate. (28b) associates the type of situationwhere there is foodwhich the
child loves with the type of situation where the child eats that food. This topos is naturally
associated with what we might call a bouletic condition; that is, we can use the topos to
reason that the child has a desire to create a situation of the type returned by the topos, i.e.
the child wants to eat the food. This involves a kind of condition which we have not talked
about yet which associates types withmental states rather than actions.We will discuss this
more in Section 6.5.

The type corresponding to Mary should eat her broccoli based on these resources could
be either of the types in (29), where Tbroc is (26) and τ1 and τ2 are (28a and b) respectively.

(29) a. nec(
[
e:eat(m, b)

]
, Tbroc, τ1)

b. nec(
[
e:eat(m, b)

]
, Tbroc, τ2)

We can now check the witness conditions in (23) against some modal system, 𝕋, and
possibility, p ∈ 𝕋. Any s which is of the type (29a) has to fulfil the conditions in (30).

(30) a. s :p Tbroc

b. Tbroc ⊑𝕋

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:food(x)
y:Ind
c2:child(y)
z:Ind
c3:plate(z)
e1:have(y,z)
e2:on(x,z)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

c. τ1(s) ⊑𝕋
[
e:eat(m, b)

]
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Assuming that s meets (30a), we can check that (30b) holds by noting that anything of the
first type will also be of the second type. (In this case, the two types are identical except for
(i) ‘broccoli’ in the first type corresponds to ‘food’ in the second, but we know from (27)
that broccoli is food (ii) the manifest fields in the first type correspond to non-manifest
fields in the second, but we know from the definition of singleton types represented by
manifest fields that they are subtypes of the corresponding non-singleton type and (iii) the
additional field labelled ‘e3’, but adding fields to a type creates a subtype of that type.) We
can see that (30c) will hold given our characterization of τ1 in (28) since τ1(s) will be (31a)
and given that s : Tbroc, s.y will be m and s.x will be b. Thus τ1(s) is identical with (31b).

(31) a.
[

e : eat(s.y, s.x)
]

b.
[

e : eat(m, b)
]

Thus (30) is checking that the type
[
e:eat(m, b)

]
is a subtype of itself and, of course, any

type is a subtype of itself.
We can make a similar argument for (29b).
Notice that in this worked example we have carefully chosen the labels on our topoi so

that theymatch the types in our example. In a completely explicit treatment we would need
to allow for relabelling. We will take up relabelling again in our discussion of intensionality
in Section 6.5.

This is an inferential view of modality in the sense that the topoi, which correspond
to patterns of inference, have taken over the work of the accessibility relations between
possible worlds which Kratzer uses. Note that while it might appear from our formulation
of the witness conditions for ‘nec’ and ‘poss’ that we have a definition of modal predicates
which does not use the previous notion of modality that we had in terms of possibilities
defined in varying the assignments to basic types and ptypes, this is in fact not the case
since our definitions of subtyping and compatibility rely on this kind of modality. Thus
these definitions have both an inferential flavour (in that they use topoi which are similar
to rules of inference) and also a Kripke model flavour in that they use sets of possibilities.

While the use of topoi here gives us something corresponding to accessibility relations
in Kratzer’s treatment of modality in Kratzer (1977) (Kratzer, 2012, Chapter 1), it does not
yet give us anything corresponding to the notion of ordering source introduced in Kratzer
(1981) (Kratzer, 2012, chapter 2) to deal with the different degrees of modality expressed
in examples like

(32) a. Mary absolutely must eat her broccoli
b. Mary must eat her broccoli
c. Mary ought to eat her broccoli
d. Mary should eat her broccoli

While it is not obvious that there is a fixed order of strength in (32) it is nevertheless the
case that speakers of English will perceive differences of strength in the modalities having
to do with how necessary it is for Mary to eat her broccoli. For that we need the notion of
preference structure (Condoravdi and Lauer, 2016) adapted to TTR. We will not under-
take this here. Nor will the insights of Lassiter (2017) on graded modality be incorporated,
although it would be important to investigate to what extent his probabilistic approach
relates to probabilistic TTR (Cooper et al., 2015).
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Another important aspect of natural language modality that we will not take up here is
its relationship with tense, in particular the future. Clearly if Mary should eat her broccoli,
we are thinking of the broccoli as being on her plate before she starts eating it and if she
eats all her broccoli then, of course, there will not be broccoli on her plate. The possible
eating of the broccoli is temporally after the speech event which is the utterance of Mary
should eat her broccoli. A number of modal constructions are associated with future tense
and we would need to handle this in terms of types of event strings.

While we have by nomeans seen a complete treatment ofmodality in this section, I hope
that this is enough to show that there is a way to explore the treatment of modality which
avoids the use of possible worlds by using TTR and thereby avoids the kinds of problems
that possible worlds present for modern treatments of modality.

6.5 Intensionality without possible worlds

In Section 6.2 we discussed problems that have to do with individuating and counting
possible worlds. Here we discuss well-known problems that arise when you consider
propositions to be the sets of possible worlds⁷ which make them true. (For a detailed
account of these problems and approaches which have been taken to them in the litera-
ture see Égré, 2020.) The central problem is that the sets of possible worlds provide a too
coarse-grained analysis of propositions. There are intuitively distinct propositions which
are true in the same sets of possible worlds. Standard examples of this are mathematical
propositions. Mathematical propositions are not contingent; that is, they are either true in
every possible world or false in every possible world. The view of propositions as sets of
possible worlds has the consequence that there are only two mathematical propositions:
the necessarily true proposition and the necessarily false proposition. It seems unintuitive
to reduce a rich field of continuing investigation where new “propositions” are still being
discovered and proved or disproved to a field where just two propositions are being dis-
cussed. Clearly, mathematics involves a different intuitive notion of proposition that is not
modelled by a set of possible worlds. One might be tempted to think that this is a problem
about mathematics rather than natural language and that for normal every day dialogue
we can ignore this problem. Perhaps we just do not normally talk about necessary propo-
sitions or at least what we think of as being necessarily true is in fact relativized in the
way that we discussed above (Section 6.4) in relation to Kratzer’s semantics for modality.
This is a dangerous route to pursue, not least perhaps because, although many of us do
not spend a lot of our time talking about mathematical propositions, we are nevertheless
able to express mathematical propositions in natural language and to ignore them would
be to rule out something that is part of linguistic activity. There are many of us who are not
mathematicians who can nevertheless understand that there is a difference in the content
of the two examples in (33).

(33) a. Andrew Wiles proved that two plus two equals four
b. Andrew Wiles proved that Fermat’s last theorem is true

⁷ Or, if we are concerned with tensed propositions, sets of pairs of possible worlds and times.
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If the correct notion of proposition for natural language was that propositions are sets of
possible worlds then we should have difficulty in distinguishing the content of these two
sentences.

There are non-mathematical candidates for propositions that would be true in all
possible worlds. King (2014) points to examples like (34).

(34) a. Bachelors are unmarried
b. Brothers are male siblings

These are examples of what are sometimes called analytic sentences, true in virtue of their
meaning. Despite the considerable difficulties with the notion of analyticity (see Rey, 2015,
for discussion), it is nevertheless hard to think of a possible world where one of these sen-
tences is true and the other is false. Yet they seem to correspond to different propositions. It
does not seem attractive to say that all analytic sentences express the one and only analytic
proposition (which in addition is identical with the true mathematical proposition).

There are also examples of sentences, such as those in (35), which we can argue express
different propositions although they are true in the same possible worlds.

(35) a. Kim sold Syntactic Structures to Sam
b. Sam bought Syntactic Structures from Kim

An early reference to the equivalence relationship between buy and sell in the linguistic
literature is Fillmore (1970) where it is stated:

There are no situations that can in themselves be distinguished as buying situations or
selling situations; but the choice of one or another of these verbs seems to make it possible
to speak of a buying/selling transaction from one of the participant’s point of view.

In our terms we would want to say that the ptypes buy(a,b,c) and sell(c,b,a) are distinct
types which have the same witnesses. In terms of propositions as sets of possible worlds we
would be committed to the claim that these sentences express the same proposition.

The problem is not just a matter of what we intuitively consider to be distinct propo-
sitions. It has consequences for the truth of sentences with sentential complements after
verbs like believe and know, the verbs of propositional attitude. If we analyse these verbs
in terms of relations between individuals and propositions and we treat propositions as
sets of possible worlds then for some individual, a, if a believes/knows p and p is logically
equivalent to q (that is, is true in the same possible worlds which in turnmeans that p and q
are the same proposition) then a believes/knows q. This has the unfortunate consequence
that once you know one logical truth you know them all. So, for example, somebody who
knows that the sum of 2 and 2 is 4 also knows any other mathematical truth (since they are
all the same proposition), as well as any analytic truth and any logically valid truths. The
problem extends beyond propositions that are true in all, or no, possible worlds. For any
two propositions that are true in the same possible worlds (that is, are logically equivalent)
if you know or believe one of them then you also know or believe the other. It interacts with
the idea (originally advanced by Kripke, 1972) that proper names should be rigid designa-
tors, that is, that they should have the same denotation in every possible world. One of the
puzzles goes back to discussion by Frege (1892). In the ancient world people believed that
the morning star and the evening star were distinct heavenly bodies, whereas they are in
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fact both the planet Venus. The “morning star” had the name Phosphorus and the “evening
star” had the nameHesperus. If both these names refer to the same planet Venus in all possi-
ble worlds then Phosphorus rose in themorning expresses the same proposition asHesperus
rose in the morning; that is, the two sentences are true in the same possible worlds, though
they are not true in all possible worlds. Yet it seems reasonable to say that the Ancients
believed that Phosphorus rose in the morning but that they did not believe that Hesperus
rose in the morning. Frege’s original puzzle, which is also problematic for the view that
propositions are sets of possible worlds concerned the difference between The Ancients
believed that Hesperus is Hesperus (true if they believed in the law of self identity which
they presumably did) and The Ancients believed that Hesperus is Phosphorus (false, since it
was an astronomical discovery that both Hesperus and Phosphorus are the planet Venus).
Yet both Hesperus is Hesperus and Hesperus is Phosphorus represent the same proposition,
the one that is true in all possible worlds. As we noted in Chapter 4 this problem is related
to Kripke’s Paderewski puzzle which we discussed there and we will build on our analysis
of proper names in that chapter in our analysis of the attitudes in this chapter.

The example of the equivalence of buy and sell may initially seem like an argument for
the straightforward possibleworlds approachwhenwe consider propositional attitudes like
believe and know. It seems impossible that any rational agent who believes or knows one
of (35) would not know or believe the other. However, there are other attitude predicates
where it does seem feasible to make the distinction. The sentences in (36) do not seem to
be contradictory.

(36) a. Chris was happy that Kim bought Syntactic Structures from Sam
b. Chris was not happy that Sam sold Syntactic Structures to Kim

There are other non-attitude predicates which also make the distinction. For example, in
Sweden it is illegal to buy sex but not illegal to sell sex which has important consequences
for who gets punished in a situation where sex is bought and sold. Thus the sentences in
(37) are consistent when considering Swedish law.

(37) a. It was illegal that Kim bought sex from Sam
b. It was not illegal that Sam sold sex to Kim

These problems have been well known since the early days of formal semantics. There
is an excellent overview of the discussion up to the end of the 1970s in Dowty et al.
(1981), 170ff. An up to date discussion from a more philosophical perspective is given
by Égré (2020). Partee (1979) provides an important account of relevant issues from a
linguistic perspective. For a modern update of Partee’s view see Partee (2014). For some
modern philosophical views of propositions which go in somewhat similar directions to
the proposals here, linking propositions to perception and action, see King et al. (2014).

Our basic strategy here is to replace the notion of propositions as sets of possible worlds
with the notion of propositions as types, which goes back to work in intuitionistic logic (see
discussion by Ranta, 1994, for a relation of this idea to linguistic semantics, and Wadler,
2015, for an overview of the history of the idea from the perspective of logic and computer
science). There is a more sophisticated view of propositions in TTR which was advanced
by Ginzburg (2012) and used, for example, in Cooper et al. (2015). This is that we should
regard propositions as pairs of a situation and a type (that is, a record with two fields).
This is the notion of Austinian proposition which goes back to Barwise and Perry (1983)
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who coined the term because of the proposal in Austin (1961) that propositions should
incorporate the part of the world which they are true (or false) of. Both of these notions of
proposition exploit the intensionality of types, the fact that you can have two distinct types
with the same set of witnesses. A type used as a proposition is true just in case there is some-
thing of the type. This makes types as propositions parallel to what was called a Russellian
proposition in Barwise (1989, chapter 11). An Austinian proposition is true just in case the
situation in the proposition is of the type of the proposition. An Austinian proposition is
a way of reifying a judgement; that is, it gives us an object in our type theoretic universe
which corresponds to the act of judging a particular situation to be of a type (a record of
such a judgement). This means that if a Russellian proposition is true then there is an Aus-
tinian proposition containing the same type which is true. If an Austinian proposition is
true then the corresponding Russellian proposition is true. If a Russellian proposition is
false then any Austinian proposition containing the same type is also false. However, if an
Austinian proposition is false, then we cannot conclude from this either the truth or fal-
sity of the corresponding Russellian proposition. We know that the particular situation in
the Austinian proposition is not of the type in the Austinian proposition but this tells us
nothing about whether there is some other situation of the type.

Neither “proposition” nor “Russellian proposition” are technical terms in TTR. This is
because we can judge any type to be non-empty (“true”) or empty (“false”) and thus any
type can be used as a proposition. In practice, however, we will take record types (intu-
itively, types of situations) to be what corresponds to the intuitive notion of propositions
that can be expressed in natural language. The simplest theory of verbs of propositional atti-
tude like believe and know on this kind of view would be that they correspond to predicates
which express relations between individuals and record types; that is, there are predicates
‘believe’ and ‘know’ with arity ⟨Ind,RecType⟩. Thismeans that wewill have a ptype like (38)
where a is an individual and T is a record type.

(38) believe(a, T)

What does it mean for this type to be non-empty? We will say that it involves finding a
match, in the sense introduced in Chapter 4, for T in a’s long-term memory. In the terms
introduced in Chapter 4 this means that if r is a’s total information state, then a’s long-term
memory will be r.ltm, which is a record type, a type representing how the world would be
if a’s long-term memory were true. Thus we are matching the type T, a record type which
is the second argument of ‘believe’, against another record type corresponding to a’s long-
term memory. Note that according to the proposal for matching in Chapter 4 this involves
finding a relabelling for T. The match obtains if there is a relabelling, η, of T, such that
r.ltm ⊑ [T]η, where [T]η is the result of relabelling T by η (see Chapter 4, example (35)).
Let us introduce an abbreviatory notation for this as in (39).

(39) T1 ⊑⇝ T2 just in case there is some relabelling, η, of T2 such that T1 ⊑ [T2]η.

Our preliminary witness conditions for believe(a, T) are given in (40). (We will modify
this in example (58).)

(40) e : believe(a, T) iff
e : ltm(a, T ʹ)
and T ' ⊑⇝ T
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The fact that relabelling is involved in the matching process is important for the analysis
of belief because it means that (41) holds.

(41) If s : believe(a, T), then for any relabelling, η, of T, s : believe(a, [T]η)

This means that the choice of particular labels in a record type is not relevant when we
compute whether an agent stands in the belief (or other attitude) relation to a record type.
Note also that, given the way we have defined relabelling in terms of paths, that record
types which are structured differently, as in (42a,b), will also count as relabellings of each
other, in this example in virtue of the relabelling (42c).

(42) a.
⎡
⎢
⎢
⎣

ℓ1 : [
ℓ2 : T1
ℓ3 : T2

]

ℓ4 : T3

⎤
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎣

ℓ1 : T1

ℓ2 : [
ℓ3 : T2
ℓ4 : T3

]

⎤
⎥
⎥
⎦

c. ℓ1.ℓ2 ⇝ ℓ1
ℓ1.ℓ3 ⇝ ℓ2.ℓ3
ℓ4 ⇝ ℓ2.ℓ4

Thus any agent who stands in the belief-relation to (42a) will also stand in the belief-
relation to (42b) and vice versa. The intuition here is that two agents will have the same
beliefs even though they structure the information differently in their separate long-term
memories.

This can be contrasted with proposals for structured meanings in the possible worlds
literature, starting with Lewis (1972), who based his idea on the notion of intensional
isomorphism from Carnap (1956), and developed by Cresswell (1985). The idea here is
that you alleviate the coarse-grainedness of the possible worlds analysis of propositions by
keeping around the functions and arguments that are used to compute the set of possible
worlds corresponding to a sentence during its derivation. (A computer scientist could use-
fully compare this notion of structured meaning to lazy evaluation, discussed in relation
to computational semantics by van Eijck and Unger, 2010.) The structured meaning is
then a semantic derivation structure which is used to calculate synonymy and as the sec-
ond argument of predicates like believe. One problem with this approach is that sentences
with radically different structure which nevertheless intuitively express the same proposi-
tion may correspond to different structured meanings. One possible example is the active
and passive sentences in (43).

(43) a. Kim sold the book to Sam
b. Sam was sold the book by Kim

It is hard to think of a way inwhich a competent native speaker of English could believe one
of these but not the other. Such examples depend very much on the way in which you anal-
yse them and how you set up the relation between syntax and semantics. For example, if
you believe that compositional semantics is not defined directly on English syntax but on a
logical form derived from English syntax and you are careful to relate both sentences to the
same logical form, then, of course, both sentences could be related to the same structured
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meaning. Another kind of example which is possibly more difficult to handle with such
machinery is cases of speakers of different languages with radically different structure who
nevertheless intuitively share the same belief.

This kind of theory when viewed from the perspective of the theory presented in this
book presents a rather odd viewof the phenomena. It first proposes a theory of propositions
which is obviously too coarse-grained to model the propositional attitudes. It then tries to
fix this by using the derivational structure involved in reading these propositions off the
syntax of the natural language. When this turns out to be too fine-grained, a wholly new
representation, logical form, is introduced to fix this new problem. The status of logical
form is in our terms mysterious. It is neither based on the utterance situation nor on the
situation types used to construct the content associated with the utterance situation. It is an
additional language introduced in order to fix problems involved in interpreting utterances
directly, a language which mediates between the utterance and the content. If logical form
is more amenable to semantic interpretation than natural language one might raise the
question why we do not speak in logical forms rather than the way we do. It is hard to
imagine what the realistic status of this intermediate language should be either in terms of
the utterance situation, the type of situation associated with the content or neurological
events associated with perceiving or conceiving either of these.

A second problem for the structured meaning approach is that it tells us nothing about
cases where no syntactic structure is involved, for example, proper names which have
the same referent like Hesperus and Phosphorus or synonymous words like groundhog
and woodchuck. This is pointed out by Dowty et al. (1981) and also by Égré (2020) who
attributes the first mention of it to Mates (1952).

The fact that matching is involved in the logic of belief rules out two important ways
(relating to labelling and the internal structure of record types) in which record types could
be too fine-grained to give an analysis of intuitive propositions. In general it seems prefer-
able to start from objects that are too fine-grained since we can then set about finding
ways of collapsing distinctions rather than starting out with something (like sets of possi-
ble worlds) which are not fine-grained enough and trying to add things to it to make the
finer distinctions.

Another advantage of this strategy is that it offers possibilities for varying the fineness of
the grain for different cases. Thus while we can understand that (37) can be consistent, it
is much harder to think that both of (44a,b) could be true.

(44) a. Chris believes that Kim bought sex from Sam
b. Chris does not believe that Sam sold sex to Kim

The best we can do to make sense of (44) as a pair of consistent sentences is that Chris is
either irrational in her beliefs or does not have sufficient understanding of the language, or
that somehow the equivalence between buy and sell has been suspended. This seems very
different from (37).

In the case of believe we have suggested that the type represented by the complement
has to be matched against the long-term memory of the believer in order for the sentence
to be true. The kind of matching introduced in Chapter 4 involves not only relabelling but
also subtyping. Suppose that Chris’s long-term memory is modelled by the type (45a) and
that the content of an utterance of Sam sold sex to Kim is the type (45b).
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(45) a.
⎡
⎢
⎢
⎢
⎣

...
idi :

[
e : buy(kim, sex, sam)

]

...

⎤
⎥
⎥
⎥
⎦

b.
[

e : sell(sam, sex, kim)
]

Is there a match for (45b) in (45a)? The answer is “yes”. The relevant relabelling is (46a)
and the result of applying that relabelling to (45b) is (46b).

(46) a. e⇝ idi.e
b.

[
idi :

[
e : sell(sam, sex, kim)

] ]

We can see that (45a) is a subtype of (46b) in virtue of the fact in (47)—any event of buying
is also an event of selling.

(47) buy(kim, sex, sam) ⊑ sell(sam, sex, kim)

In this way we can obtain the correct level of granularity for believe. Consider now (48a)
where we have the verb say instead of believe and a situation where the actual utterance
that Chris made was (48b).

(48) a. Chris said that Sam sold sex to Kim
b. Kim bought sex from Sam

Is (48a) true in this case? It seems that we answer this question differently depending on
how close the match between the reported speech and the original utterance has to be for
the purposes at hand. Ginzburg andCooper (2014) treat direct quotation in terms of a sim-
ilarity metric on types which is associated with the context. In different contexts we require
different similarity metrics. In some contexts (49) might be considered close enough given
that what Chris had said originally was (48b).

(49) Chris said, “Sam sold sex to Kim.”

This might especially be true if Chris’s original utterance was in a language other than
English. Here I would like to say that indirect speech cases like (48) also involve a similarity
metric given by the context and that similarity metrics associated with indirect speech in
general can be looser that those associated with direct speech where we often look not
only at the content of the original utterance but also its exact form of words. So according
to some similarity metrics (48a) will be true and for others it will be false. It will be true
intuitively if the content of its complement is close enough for current purposes to the
content of Chris’s original utterance.

We can assimilate our treatment of belief to this general treatment involving similar-
ity metrics by defining a similarity metric that says that the type representing an agent’s
long-term memory is similar to the type which is the content of the belief complement if
the complement contentmatches the long-termmemory type in thewaywehave described.
We will argue here that there is an advantage to making this assimilation since the criteria
we use for whether an agent has a certain belief seem to vary according to the purposes we
have at hand in the current context.

One of the distinctions that it seems to be possible to make in similarity metrics involves
different kinds of subtyping. We have defined subtyping so that for two types, T1 and T2,
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T1 is a subtype of T2 just in case for any a, if a : T1 then a : T2 and that this holds nomatter
what assignment is made to basic types and ptypes. Now consider the two examples of
subtyping in (50).

(50) a. [ ℓ1 : T1
ℓ2 : T2

] ⊑
[

ℓ1 : T1
]

b. sell(a, b, c) ⊑ buy(c, b, a)

(50a) holds because of the general characterization of our type theory. It is, if you like,
“hard-wired” into the type theoretic system. There is no way that you could construct a
type system of the kind TTR characterizes which does not require (50a). (50b), on the
other hand, holds only in virtue of a “postulate” that we have added to the general system
relating to the particular predicates ‘buy’ and ‘sell’. Just as Montague (1973) introduced
what have come to be known as meaning postulates in his system as “restrict[ing] attention
to those interpretations of intensional logic in which the following formulas are true”, a
postulate concerning the equivalence of selling and buying events in TTR means that we
are restricting attention to possibilities (assignments to basic types and ptypes) in which
the equivalence holds. According to the general definitions of TTR (not including such
postulates) it is possible to construct a systemwhere the equivalence does not hold.We will
refer to (50a) as an instance of structural subtyping and (50b) as an instance of postulated
subtyping. It appears that natural languages can distinguish between these different kinds
of subtyping in the kind of matching that is required by predicates which take types as
arguments. In the case of believe(a, T) we say that this is instantiated (non-empty) just
in case a’s long-term memory is characterized by a type which, modulo relabelling, is a
subtype (either structural or postulated) of T. On the other hand, if we think of a set of laws
as characterizing, among other things, a set of forbidden types of situations, then illegal(T)
would be instantiated just in case T is, modulo relabelling, a structural subtype of one of
the forbidden types.

The distinction between structural and postulated subtyping also gives us a clue on how
to deal with groundhogs and woodchucks. Structural subtyping is hardwired into the sys-
tem. Any cognitive system which implements types will also have structural subtyping,
assuming TTR is the right type theory for cognitive systems. Any such system will also
have the capability to include postulated subtyping. But exactly which postulates the sys-
tem has is a matter of learning. Different agents will acquire different postulates depending
on their experience. While it is hard to imagine a competent speaker of English not know-
ing the equivalence between buying and selling it is very easy to suppose that a competent
speaker does not know the equivalence between woodchucks and groundhogs. Indeed it
would be natural for speakers to assume that the words woodchuck and groundhog are
associated with distinct types and an agent would need some kind of evidence to establish
an equivalence between the types. It would be possible for an agent who has not acquired
the postulates that establish the equivalence to believe that a woodchuck is in the garden
but not to believe that a groundhog is in the garden. However, an agent who has acquired
the equivalence would have to believe or disbelieve both. Thus the claim in (51) seems
contradictory.

(51) Kim knows that woodchucks are the same as groundhogs and believes that a
woodchuck is in the garden but does not believe that a groundhog is in the garden
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The only way we can make sense of Kim believing something about a woodchuck but not
about a groundhog is that Kim is unaware that woodchucks and groundhogs are the same
animal. Thus getting the semantics of these attitude reports right is not simply a matter of
having a finegrained enough semantics to distinguish between woodchuck and groundhog
but also in linking this finegrainedness to a lack of knowledge about equivalence on the
agent’s part.

Suppose that Kim believes a woodchuck is in the garden and does not have the pos-
tulated equivalence between woodchuck and groundhog. It would seem from what we
have said here that it does not follow that Kim believes that a groundhog is in the gar-
den, and indeed there is a sense in which this is right, if we are taking account of subtyping
according to Kim’s postulates. Suppose, however, that I do know that woodchucks and
groundhogs are the same animal. It seems that I can truthfully report that Kim believes
that a groundhog is in the garden, using my knowledge that woodchucks and groundhogs
are the same, even though Kim would not herself necessarily assent to a claim: “There’s
a groundhog in the garden”. There is a systematic ambiguity in reports of this kind as
to whether the match with Kim’s long-term memory is computed using the postulates
available in Kim’s resources or the postulates available in the reporter’s resources. Most of
the time we do not notice this distinction because it only arises in the case where there
is this particular discrepancy between the resources available to the two agents. But it
is important to note that in this case there is no one answer to the question Does Kim
believe that a groundhog is in the garden?. In one sense she does not, and in another sense
she does. A similar point is made by Asudeh and Giorgolo (2016) and Asudeh and Gior-
golo (2020, chapter 5) using the example of dolphins and marine mammals. They have
a way of making the denotation of common noun phrases like marine mammal distinct
depending on whose perspective is being taken. Intuitively this relates to the beliefs of
the perspective holder, but their theory as stated does not make this connection explicit,
although one could imagine it being extended in a way that corresponds to the proposal
here.

On the reading where the reporter uses her own postulates it seems that there is a rela-
tionship with quotation in translation. Suppose that Kim is a monolingual speaker of
German and has a belief which would be reported in German as “Ein Waldmurmeltier
ist im Garten”. The way in which this belief should be reported in English has to depend
entirely on the reporter’s resources concerning the correspondences between the contents
of Waldmurmeltier, groundhog, and woodchuck.

There is a similar systematic ambiguity to that we saw with reporting beliefs about
woodchucks and groundhogs in our reporting of ancient beliefs aboutHesperus and Phos-
phorus. Did the ancients believe that Venus rose in the morning? In one sense they did
not, since they did not know that the heavenly body which they called Hesperus was in
fact Venus. In another sense they did, since the heavenly body which they called Hesperus
is in fact (according to the reporter’s resources) Venus. The change in long-term mem-
ory of an ancient who learns that Hesperus and Phosphorus are identical is parallel to
that discussed in relation to example (75) and subsequent examples in Chapter 4 except
that two proper names are involved rather than one. The type of the ancients’ long-term
memory in their state of ignorance could be a subtype of (52) for some natural numbers
i, j, k, and l.
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(52)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Hesperus”)]

idj:
[
e:rise_in_the_evening(⇑idi.x)

]

idk:[
x:Ind
e:named(x, “Phosphorus”)]

idl:
[
e:rise_in_the_morning(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Upon the ancients’ learning thatHesperus and Phosphorus are the same object, (52) would
be updated to (53a) which is identical with (53b).

(53) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Hesperus”)]

idj:
[
e:rise_in_the_evening(⇑idi.x)

]

idk:[
x:Ind
e:named(x, “Phosphorus”)]

idl:
[
e:rise_in_the_morning(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧̣[
idi:

[
x:Ind

]

idk:
[
x=⇑idi.x:Ind

]]

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

idi:[
x:Ind
e:named(x, “Hesperus”)]

idj:
[
e:rise_in_the_evening(⇑idi.x)

]

idk:[
x=⇑idi.x:Ind
e:named(x, “Phosphorus”)]

idl:
[
e:rise_in_the_morning(⇑idk.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that (53) could be construed as corresponding to a state of mind where an ancient
would still refer to Venus as “Hesperus” in connection with evening rising events and
“Phosphorus” in connection with morning rising events even though she was aware that
they were the same object. The structure of the memory associates the different name with
certain types of events. This seems intuitively correct.

Recall that ‘SemPropName’, which characterizes the meanings of proper names, is
defined as in (54).

(54) If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

According to the account of proper names we gave in Chapter 4, the background type (that
is, the domain type of the function, specifying the type of the context) has to be matched
against the gameboard or failing that against the long-term memory or failing that added
to the gameboard, before the new information can be integrated. The assumption in that
discussion was that the relevant long-term memory was that of the agent integrating the
utterance. Now we are raising the issue of whose long-term memory is the relevant one
to check. There are three long-term memories which can be relevant in a belief report:
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that of the agent integrating the utterance of the report (that is, the same long-term mem-
ory as we were considering in Chapter 4), the long-term memory of the reporter and the
long-term memory of the subject of the report (the “believer”). Obviously it is the infor-
mation state of the agent integrating the report that we are primarily concerned with as it
is this integration process which we are trying to explain. This agent does not, of course,
have direct access to the long-term memories of either the reporter or the subject of the
report. (The integrator’s brain is not wired to either the reporter’s or the subject’s brain.)
However, the integrator can form views of the nature of their long-term memories using
as evidence, among other things, utterances made by them or utterances made by others
about them. Such information about the long-term memories of the reporter and subject
can be incorporated in the integrator’s long-term memory. That is, among the beliefs we
have encoded in long-term memory we have beliefs concerning what others believe. This
is similar to the result achieved by Asudeh and Giorgolo (2016) and Asudeh and Giorgolo
(2020, chapter 5), although in their analysis the information about the perspectives of the
other agents is stored in the speaker’s lexicon whereas on the current proposal it is stored
in long-term memory, that is, not in a grammatical resource as such.

Consider the type characterizing long-term memory in (55).

(55)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Venus”)]

id2:
[
e:rise_in_the_evening(⇑id1.x)

]

id3:
[
e:rise_in_the_morning(⇑id1.x)

]

id4:[
x:Ind
e:named(x, “Homer”)]

id5:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Hesperus”)]

id2:
[
e:rise_in_the_evening(⇑id1.x)

]

id3:[
x:Ind
e:named(x, “Phosphorus”)]

id4:
[
e:rise_in_the_morning(⇑id3.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:RecType

id2:
[
e:believe(⇑2id4.x, ⇑id1)

]

id3=

⎡
⎢
⎢
⎢
⎢
⎣

id1:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

id3:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here the type in the ‘id5.id3’-field in (55) is a point of view on the type in the ‘id5.id1’-field.
A point of view on a type, T, is a type which has labels which overlap with those of T
and represents an alternative take on the fields with corresponding labels. The notion of
point of view introduced here is closely related to the notion of perspective discussed by
Asudeh and Giorgolo (2016, 2020). One important difference, however, is that points of
view are structured types whereas perspectives are similar to Montague’s possible worlds
in being atomic elements with no internal structure which can be used to explain how they
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relate to each other. Another important difference is that the present proposal relates to an
explicit modelling of themental states of interacting agents. These points notwithstanding,
there are deep and important similarities between the two proposals and they are largely
motivated by similar data.

In (55), we introduce a predicate ‘pov’ with arity ⟨RecType,RecType⟩ such that pov(T1,T2)
will have a witness just in case T1 is a point of view on T2. Here what is represented
is that both what Homer calls Hesperus and what Homer calls Phosphorus is what the
agent whose long-term memory is represented in (55) would call Venus. We can obtain
a complete alternative version of the original type by taking the asymmetric merge (see
Appendix A11.3) of the original type with the point of view. Thus in this case we can obtain
(56a) which is identical with (56b).

(56) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Hesperus”)]

id2:
[
e:rise_in_the_evening(⇑id1.x)

]

id3:[
x:Ind
e:named(x, “Phosphorus”)]

id4:
[
e:rise_in_the_morning(⇑id3.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∧̣

⎡
⎢
⎢
⎢
⎢
⎣

id1:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

id3:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

⎤
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

id2:
[
e:rise_in_the_evening(⇑id1.x)

]

id3:[
x=⇑2id1.x:Ind
e:named(x, “Venus”)]

id4:
[
e:rise_in_the_morning(⇑id3.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In order to account for belief when a point of view is involved we need to revise the
witness conditions for ‘believe’ which were given in (40). In order to state this revision it
will be useful to have a notation for saying that an object, a, is of a type, T, or one of a’s
components is of type T. We shall use a :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε T to represent this. The characterization of this
notation is given in (57).

(57) a :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε T iff either a : T or for some b ε a, b : T

The revision for the witness condition associated with ‘believe’ is given in (58) and involves
replacing the orginal biconditional with a conditional and adding an additional conditional
to cover the case for a point of view:

(58) e : believe(a, T) if
e : ltm(a, T ʹ)
and T ' ⊑⇝ T

e : believe(a, T) if
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e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε believe(a, T1)
e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T2, T1)
and T1 ∧̣T2 ⊑⇝ T

Suppose, contrary to fact, that Homer encountered Pythagoras, who believed that the
morning star and the evening star were identical and Homer, while perfectly aware of
Pythagoras’ belief, maintained a distinction between the two objects and that Pythago-
ras used the name “Venus”⁸ to refer to both Hesperus and Phosphorus. A type of Homer’s
long-term memory could be (59).

(59)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Hesperus”)]

id2:
[
e:rise_in_the_evening(⇑id1.x)

]

id3:[
x:Ind
e:named(x, “Phosphorus”)]

id4:
[
e:rise_in_the_morning(⇑id3.x)

]

id5:[
x:Ind
e:named(x, “Pythagoras”)]

id6:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=

⎡
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Venus”)]

id2:
[
e:rise_in_the_morning(⇑id1.x)

]

id3:
[
e:rise_in_the_evening(⇑id1.x)

]

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

id2:
[
e:believe(⇑2id5.x, ⇑id1)

]

id3=
[
id1:

[
x=⇑3id1.x,⇑3id3.x:Ind

]]
:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that here we have generalized the convenient notation for manifest fields. The
manifest field in the type (under ‘id6.id3’)

[
x=⇑3id1.x,⇑3id3.x:Ind

]
requires that the

value in the ‘x’-field is identical with the value of the two values in the fields at the
top level on the paths ‘id1.x’ and ‘id3.x’. We use the notation

[
ℓ=a, b, …:T

]
to represent[

ℓ:Ta ∧ Tb ∧…
]
.

A more complex point of view in place of the type given under ‘id6.id3’ is (60).

(60)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:
[
x=⇑id4.x,⇑id5.x:Ind

]

id4:[
x=⇑3id1.x:Ind
e:named(x, Hesperus”)]

id5:[
x=⇑3id3.x:Ind
e:named(x, “Phosphorus”)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

With (60) substituted for the record type in ‘id6.id3’ in (59), Homer might now truthfully
report (61).

⁸ Or more correctly from the historical point of view: “Aphrodite”.
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(61) Pythagoras believes that Hesperus rises in the evening and Phosphorus rises in the
morning (though, of course, he believes they are both something called Venus)

In case (61) does not seem convincing, let us consider a more modern story (given in
(62)) where there actually are two individuals who are mistakenly considered to be one
individual.

(62) Tom and Bill Smith are identical twins who are both employed as teachers at the
same school (a source of endless confusion for staff and students alike). Sam is a
new girl spending her first day at the school. Early in the morning Tom, for whom
Sam has the name “Mr Smith”, tells her class, “There will be Geometry at 11”. Sam
thinks he said ‘There will be Geography at 11’. Later in the morning Bill addresses
her class and Sam thinks he is the same “Mr Smith” she saw earlier. Bill says,
“There will be French at 11:30.” Sam, who had been too nervous to eat much
breakfast and is already feeling quite hungry, thinks he said ‘There will be lunch at
11:30’. Later, in the staff room, Matti, the head teacher explains to some of her
colleagues that one of the new girls was in tears in her office complaining that the
Geography lesson was about strangely shaped countries which were difficult to
understand and there was no lunch when she went to the dining hall. Matti says,
“She thought Tom said ‘Geography at 11’ and Bill said ‘Lunch at 11:30’. And to add
to the confusion, she thought they were the same person. Poor wee thing, she’s had
a difficult day.”

In (62) it seems natural that Matti should use her names for the two teachers rather than
Sam’s name “Mr Smith” for both of them when reporting Sam’s beliefs.

In summary, our approach to intensional constructions in natural language has twomain
components. Firstly, we use (hyper)intensional types rather than sets of possible worlds or
situations as the objects of intensional predicates (like ‘believe’). Secondly, we characterize
the truth-conditions of these constructions in terms of matching these types against other
types (such as types characterizing the long-term memories of the believer, the reporter
or the hearer of the report or, in the case of illegal, types characterizing a particular canon
of law). This opens up possibilities for varying interpretations depending on both which
types we match against and what kind of match is required. This makes the interpretation
of intensional constructions much more context dependent than is normally assumed and
interactive in the sense that we are often comparing (our view of ) resources available to
different agents.

In the rest of this section we will look at how these ideas can be applied to another inten-
sional construction that Montague (1973) treated: intensional transitive verbs. Our basic
strategy is to recast Montague’s analysis of transitive verbs in terms of TTR, treating them
in terms of a predicate whose arguments are an individual (of type Ind) and a quantifier
(of type Quant). This strategy might seem a little out-of-date given the discussion that has
occurred in the literature since Montague’s proposal which is given an excellent summary
and evaluation by Schwarz (2020). The TTR version of Montague’s analysis actually fares
rather well in terms of yielding a new perspective on the old analysis and points to inter-
esting relationships with at least one of the other two approaches which Schwarz discusses.
This will be taken up as the discussion progresses.

We have so far characterized the semantics of transitive verbs as in (63).
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(63) If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr1:
[
x:Ind

]
. 𝒬(˹λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
˺)˺˺

To this we can add a case for predicates with arity ⟨Ind,Quant⟩ given in (64).

(64) If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind,Quant⟩,
then SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr:
[
x:Ind

]
.
[

e : p(r.x, 𝒬)
]
˺˺

One way to use this is to treat extensional verbs like find as based on predicates which
have arity ⟨Ind, Ind⟩ and intensional verbs like seek as based on predicates with arity
⟨Ind,Quant⟩.

An equivalent alternative is to followMontague’s treatmentmore closely and treat exten-
sional verbs like find also as based on predicates with arity ⟨Ind,Quant⟩ but then to have an
additional requirement, given in (65), for any predicate pwhich we want to be extensional,
relating it to another predicate p† which has arity ⟨Ind, Ind⟩

(65) We restrict attention to modal systems, 𝕋, such that

p(a,𝒬) ≈𝕋 𝒬(˹λr:
[
x:Ind

]
.
[
e:p†(a, r.x)

]
˺)

This corresponds more or less exactly to Montague’s meaning postulate in Montague
(1973) for extensional transitive verbs (meaning postulate 4). In our version, however, the
postulate is situation specific. If p is the predicate ‘find’, it says that any situation which
is of the type ‘find(a, Q)’ is itself of the type obtained by “quantifying in” Q over a type
constructed from the predicate ‘find†’ as specified in (65) and furthermore, as it is a bicon-
ditional, any situation of the second type with the quantifier “exported” will also be of the
first type with the quantifier as the second argument to ‘find’.

In addition to this meaning postulate for extensional verbs, Montague also had a specific
meaning postulate relating seek to try to find (his meaning postulate 9 in Montague, 1973).
We will treat this rather differently in terms of what it means for a search to be successful.
The intuitive idea is that a search is successful if you find what you are looking for. Our
postulate is presented in (66), which uses the predicate ‘successful’ with arity ⟨Type⟩.

(66) We restrict attention to modal systems, 𝕋, such that

successful(seek(a,𝒬)) ⊑𝕋 find(a,𝒬)

This says that any situation is successful as a seeking of 𝒬 by a is also a situation in which
a finds 𝒬. Note that this is a subtyping but not an equivalence. It could be that a finds Q
without looking for it. Finding something does not always represent a successful search but
you cannot have a successful search without finding what you are looking for. An event that
witnesses your successful search for a unicorn would have to be one in which you find a
unicorn.
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Doing things this way gives us a rather different perspective on the relationship between
extensional and intensional verbs than Montague’s analysis. Montague treats both inten-
sional and extensional verbs as relations between individuals and quantifier intensions.
Extensional verbs are extensional in virtue of the fact that they are associated with a mean-
ing postulate which says that there is an equivalence between the relation holding between
some individual and the quantifier intension and the quantifier having wide scope over
a formula which involves the corresponding relation between individuals. This can seem
unintuitive in that the extensional case, which intuitively seems simpler than the inten-
sional case, involves an extra meaning postulate which is not available for the intensional
case. Thus the intensional case is taken as the basic case and the extensional case involves an
additional inference. On the kind of analysis we are proposing both extensional and inten-
sional verbs involve inferences whereby the quantifier is given wide scope. In the case of an
extensional verb, the inference is more direct and in some sense simpler. As exemplified by
(65), it involves an equivalence and is an inference concerning the same situation which is
of the type with the quantifier in argument position. The predicate involved is intuitively
a version of the same predicate which takes two individuals as arguments rather than an
individual and a quantifier. The inference involved with intensional verbs (as illustrated
by (66)) is, however, more complex. Firstly, it does not involve an inference directly from
the intensional verb holding between an individual and a quantifier, but rather concern-
ing what would be a successful outcome of a situation of that type. Secondly, it involves
a conditional inference rather than an equivalence, though perhaps it is unclear whether
that has anything to do with intuitive complexity. And thirdly, the conclusion does not
involve the original intensional predicate but a distinct extensional predicate from which
one can draw a conclusion with the quantifier exported. It seems then that in an intuitive
sense somethingmore complex, or at least special, is going on in the case of the intensional
predicates.

Another important aspect of this analysis is that it draws a parallel between Montague’s
analysis of intensional verbs as having quantifiers in object position and the approach
which Schwarz (2020) identifies as “clausal complement accounts”, first proposed byQuine
(1960) and argued for by den Dikken et al. (2018).

In the PTQ fragment (Montague, 1973)worshipwas treated as an intensional verb. Early
on in the literature on formal semantics this was generally regarded as a mistake (Bennett,
1974). It is indeed the case that a sentence like (67) does not entail the existence of a god.

(67) Kim worshipped a god

But on the other hand it seems that there has to be a specific (though possibly non-
existent) god which Kim worshipped. This is different to the case with a true inten-
sional verb like seek, look for, or need where there is no requirement of specificity. The
verb worship requires specificity but not existence of the object in this case. There are
verbs which require existence but not specificity. An example of this is book as used
in connection with booking a table at a restaurant. Compare the examples in (68), for
example.

(68) a. # Kim booked a table but there were no tables
b. Kim was looking for / needed a table but there were no tables
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(68a) seems inconsistent. If Kim booked a table then there must have been at least one
table. (68b) on the other hand seems fine. Note, however, that you can book a table without
booking a specific table. It may be that when you get to the restaurant there are several
available tables and you get to choose which one you want to sit at. Booking a table can
just mean that there will be a table available for you at the agreed time at the restaurant, not
that any specific table has been reserved for you, although that, of course, is possible too
and you may have specified which table you want (the one in the corner by the window).
The verb book has thus the hallmarks of an intensional verb when it comes to specificity
but nevertheless requires existence.

Let us deal first with worship and religious beliefs. Suppose that somebody says (69).

(69) Kim worships Zeus

This does not commit the speaker to the existence of Zeus, but it does commit the speaker
to a system of religious belief in which there is a god Zeus and also commits her to the claim
that Kim subscribes to such a belief system. Thus (70a) seems perfectly consistent whereas
(70b) seems either inconsistent or at best to force a rather special meaning for worship.

(70) a. Kim worships Zeus, but I don’t believe in Zeus
b. # Kim worships Zeus, but she doesn’t believe in Zeus

If Kim worships Zeus, then she not only has to believe in Zeus, but she also has to believe
that she worships Zeus. (71a) sounds strange or at least forces us into an unusual meaning
for worship. In contrast (71b) with a standard extensional verb seems perfectly consistent.

(71) a. # Kim worships Zeus, but she doesn’t believe that she worships Zeus
b. Kim found Harry, but she doesn’t believe that she found Harry (because he was

wearing a disguise)

This is another aspect of the content of worship which seems to suggest intensionality (or
intentionality, with a ‘t’): it describes a conscious aspect of somebody’s mental state. The
verb find, on the other hand, can describe an external fact about an agent of which the
agent itself is not aware.

We suppose that in our characterization of an agent’s mental state by a type we can iso-
late a type that characterizes the agent’s religious beliefs. We might regard this as a part
of long-term memory or as a separate component at the same level as long-term memory
in the type characterizing the agent’s total information state, visual field, and so on. The
type corresponding to religious beliefs represents the way the world would be if the agent’s
religious beliefs were true. In (72) we give a type that could correspond to Kim’s religious
beliefs.

(72)

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(kim, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

Notice that the worship predicate we use is ‘worship†’ representing a relation between
individuals. In this way worship is like the extensional verb find in that it is related by
postulate to a †-variant of the same predicate, getting us the specificity. However, in the
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case ofworship the type constructed with the †-predicate is embedded within another type
representing religious belief which gives the verb an intensional quality.⁹

(69) commits the speaker not to the existence of Zeus but the type characterizing Kim’s
religious beliefs containing a match (in the sense we have discussed in this chapter) for the
type (73).

(73) [
x : Ind
e : named(x, “Zeus”) ]

In the sense that the object of worship has to be matched against a mental state just like the
complement of believe rather than checked against the world, worship is behaving like an
intensional verb. It is also like an intensional verb in that we do not have a postulate like
the one we have for find in (65). Where it is different from the classical cases of intensional
verbs is that we do not have postulates like the one for seek in (66) but rather require a
specific match for Zeus in the religious beliefs of the subject. (74) is a type corresponding
to the speaker’s long-term memory which would fulfil the commitments of (69).

(74)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x : Ind
e : named(x, “Kim”) ]

id2=

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(⇑2id1.x, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

id3:
[

e : rbelieve(⇑id1.x, ⇑id2)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In the ‘id3’-field here we are using the predicate ‘rbelieve’. Informally, rbelieve(a, T) is non-
empty just in case a has T as a religious belief; that is, the type identified as representing a’s
religious beliefs in the type corresponding to her total information state is a subtype of T.

Armed with this view of the characterization of religious belief in information states we
formulate a postulate for ‘worship’ in (75) which shows the intensionality and specificity
requirements.

(75) e : worship(a,𝒬) iff for some T

1. e : rbelieve(a,T)
2. T ⊑⇝ 𝒬(λr:

[
x:Ind

]
. worship†(a,r.x))

Clause (1) of (75) represents the intensionality (or perhaps more appropriately intention-
ality) requirement in that it requires us to use a type which characterizes the religious belief
of the first argument of ‘worship’. Clause (2) represents the specificity requirement in that
it requires the religious belief type to be a subtype of a type (possibly relabelled) obtained
by “exporting” the quantifier Q.

Things are, however, a little more complicated than this. Jupiter is the Roman name for
the god which in Greek is called Zeus.¹⁰ Suppose that Kim is Greek oriented and does not

⁹ Notice also that we are using ‘kim’ for the owner of the belief state, ignoring here de se issues.
¹⁰ I am assuming for the sake of the example that Jupiter and Zeus are different names for the very same god

and not names for distinct Roman and Greek gods who play similar roles in their respective pantheons. Ellen
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know the name Jupiter. Suppose further that the speaker is Roman oriented and reports
(76).

(76) Kim worships Jupiter

It seems that the speaker of (76) can be said to have spoken the truth even though Kim
does not know the name Jupiter and the speaker does not believe that Jupiter exists or have
any kind of religious belief in Jupiter. It is true because we know that Jupiter and Zeus are
the same god in the Roman-Greek pantheon. How can this be when the speaker is not
committed to the existence of Zeus/Jupiter?

First consider that the speaker might be committed to a type characterizing part of the
Roman pantheon, for example, (77).

(77)
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

This can be incorporated into (74) as in (78).

(78)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x : Ind
e : named(x, “Kim”) ]

id2=

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(⇑2id1.x, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

:RecType

id3:
[

e : rbelieve(⇑id1.x, ⇑id2)
]

id4=
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

:RecType

id5:
[

e : roman_pantheon(⇑id4)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In (78) no connection is expressed between the types in the ‘id2’-field and the ‘id4’-field.
Note that they are, however, aligned in their labelling. The individual named Zeus and the
individual named Jupiter are required to have the same labelling in witnesses for the two
types and similarly for the situations that show they have those names respectively aswell as
the situations that show the individual is a god and chief god respectively.We shall take this
alignment of labelling of the two types to be a significant aspect of the type of information
state that (78) represents. We shall say that the type in the ‘id4’-field is a point of view on
the type in the ‘id2’-field. It represents the agent’s alternative perspective on certain aspects
of what she believes to be Kim’s religious beliefs. We introduce an additional field to (78)
in order to represent this connection between the two types and we reorganize the point
of view and Kim’s religious beliefs into a single record type since it will be important to be
able to refer to a single situation providing this information in computing the semantics of
worship. This is given in (79).

Breitholtz has pointed out to me that the presentation in the example may not correspond to standard views of
Greek and Roman mythology. This despite the fact that Zeus is cognate with the first part of Jupiter.
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(79)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x : Ind
e : named(x, “Kim”) ]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(⇑3id1.x, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

: RecType

id2:
[

e : rbelieve(⇑2id1.x, ⇑id1)
]

id3=
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

: RecType

id4:
[

e : roman_pantheon(⇑id3)
]

id5:
[

e : pov(⇑id3, ⇑id1)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The idea of a point of view is that it represents an alternative take on certain aspects of
another type. As before we can obtain a complete alternative version of the original type
by taking the asymmetric merge of the original type with the point of view. Thus in the
case of the relevant types in (79) we can obtain (80a) which is identical with (80b).

(80) a.

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(kim, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

∧̣

⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

id3 :
[

e : worship†(kim, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

Wewill call (80) a complete point of view. We will now allow two alternative witness condi-
tions for ‘worship’. The first, as before, checks that the type corresponding to the religious
beliefs of the subject is a subtype of the type resulting from exporting the quantifier. The
second checks that a complete point of view fulfils this condition. This is parallel to the
witness conditions we gave for ‘believe’. The two witness conditions are given in (81).
(81) a. e : worship(a,Q) if for some T

1. e : rbelieve(a,T)
2. T ⊑⇝ Q(λr:

[
x:Ind

]
. worship†(a,r.x))

b. e : worship(a,Q) if for some T1, T2

1. e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε rbelieve(a, T1)
2. e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T2, T1)
3. T1 ∧̣T2 ⊑⇝ Q(λr:

[
x:Ind

]
. worship†(a,r.x))
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We will allow the background conditions of proper names, for example the type in (82), to
match a complete resource and indeed (82) matches (80).

(82) [
x : Ind
e : named(x, “Jupiter”) ]

Now consider the case with the indefinite article. Suppose we have a situation of the type
(74), where Kimworships Zeus, who is, according to Kim’s religious beliefs, a god. In order
to show that Kimworkships a god wemay show, following (81a), that this type is a subtype
of (83).¹¹

(83) exist(god', λr:
[
x:Ind

]
. worship†(kim,r.x))

In virtue of the witness conditions associated with ‘exist’ introduced in Chapter 3, example
(61), the subtype relation holds between (74) and (83). That is, any situation of type (74)
will be of type (83) since in such a situation there will be a individual who is a god whom
Kim worships.

Now let us consider a case which shows that we can use the witness condition (81b). In
(84) it is presumably not the case that it is part of Kim’s religious beliefs that the god she
worships is a false god.

(84) Kim worships a false god

Rather the phrase false god can be used to represent a point of view on the part of the
speaker. In (85) we add such a point of view to (79).

(85)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x : Ind
e : named(x, “Kim”) ]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=

⎡
⎢
⎢
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : god(⇑id1.x)
]

id3 :
[

e : worship†(⇑3id1.x, ⇑id1.x)
]

⎤
⎥
⎥
⎥
⎥
⎦

: RecType

id2:
[

e : rbelieve(⇑2id1.x, ⇑id1)
]

id3=
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Jupiter”) ]

id2 :
[

e : chief_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

: RecType

id4:
[

e : roman_pantheon(⇑id3)
]

id5:
[

e : pov(⇑id3, ⇑id1)
]

id6=
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x, “Zeus”) ]

id2 :
[

e : false_god(⇑id1.x)
]

⎤
⎥
⎥
⎦

: RecType

id7:
[

e : pov(⇑id6, ⇑id1)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

One thing to note about (85) is that an agent can have more than one distinct point of view
on the same type, here shown by the ‘id2.id3’-field and ‘id2.id6’-field which both introduce

¹¹ Where ‘god'’ abbreviates λr:
[
x:Ind

]
.
[
e:god(r.x)

]
.
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points of view on the type in the ‘id2’-field. In searching for a match for the content of
(84) we may use the asymmetric merge of the ‘id2.id1’ type with either the ‘id2.id3’ type or
the ‘id2.id6’ type. That is, there will be a relabelling of the content of (84), such that any
situation of type (85) will also be a situation of the type which is the relabelled content. To
make this concrete consider a putative (non-parametric) content for (84) represented in
(86a) and the relabelling given in (86b), yielding the relabelled type in (86c).

(86) a.
⎡
⎢
⎢
⎣

x : Ind
c : named(x,“Kim”)
e : worship(x, λP:Ppty .

[
e:exist(false_god', P)

]
)

⎤
⎥
⎥
⎦

b. x⇝ id1.x
c⇝ id1.e
e⇝ id2

c.
⎡
⎢
⎢
⎣

id1 : [
x : Ind
e : named(x,“Kim”) ]

id2 : worship(x, λP:Ppty .
[
e:exist(false_god', P)

]
)

⎤
⎥
⎥
⎦

We can see that any situation of type (85) would also be of type (86c) given the witness
conditions associated with ‘worship’ and ‘exist’ that we have discussed.

Let us now consider sentences such asKimbooked a tablewhere there is no inference to a
specific table but nevertheless an inference to the existence of a table. This can be achieved
by introducing the postulate in (87).

(87) We restrict our attention to model type systems, 𝕋, such that if a:Ind and Q is a
monotone increasing quantifier, then

book(a,Q) ⊑𝕋 Q(λr:
[
x:Ind

]
.
[
e:be(r.x)

]
)

Intuitively, (87) requires that if there is some situation, s, in which a books a table, then
there is some table in s which is a component of some situation (following the witness
conditions for ‘be’ presented in Chapter 3, example (79)). Notice that we do not get such
an inference if the quantifier is monotone decreasing. Thus Kim booked no table (to the
extent that this is an acceptable sentence of English) does not imply that there are no tables
and neither does it imply that there are tables. We will discuss monotonicity in Chapter 7.

We now turn our attention to a phenomenon first discussed in the semantics litera-
ture by Fodor (1970, p. 226ff ). She points out that (88) can mean that Charley does not
want a specific coat even if Charley would not describe what he wants as a “coat like
Bill’s”.

(88) Charley wants to buy a coat like Bill’s

The sentence could be true on what Montague would call a de dicto reading even though
Charley does not know Bill, or a least does not know what kind of coat he has. This
kind of example seems straightforwardly treatable with the notion of point of view that
we have developed. Consider the type (89), representing the long-term memory of some
agent.
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(89)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x,“Charley”)]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:coat(x)]

id2:
[
e:trenchcoat(⇑id1.x)

]

id3:
[
e:has_big_pockets(⇑id1.x)

]

id4:
[
e:buy†(⇑3id1.x, ⇑id1.x)

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

:RecType

id2:want†(⇑2id1.x, id1)

id3=
⎡
⎢
⎢
⎣

id1:[
x:Ind
e:coat(x)]

id5:
[
e:coat_like_Bill’s(⇑id1.x)

]

⎤
⎥
⎥
⎦

:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Here we use the predicate ‘buy†’ which is the buy-relation between individuals and the
predicate ‘want†’ which has arity ⟨Ind, RecType⟩. It is related to two other want-predicates:
‘wantP’ with arity ⟨Ind, Ppty⟩ and ‘wantQ’ with arity ⟨Ind, Quant⟩ used to treat examples
like, respectively, want to buy a coat and want a coat. These two predicates are related to
‘want†’ as shown in (90).

(90) We restrict our attention to modal systems, 𝕋, such that
a. if a : Ind and P : Ppty, then

wantP(a, P) ≈𝕋 want†(a, P(
[
x=a

]
))

b. if a : Ind and Q : Quant, then

wantQ(a,Q) ≈𝕋 want†(a, Q(˹λr:
[
x:Ind

]
. have(a, r.x)˺))

In order to characterize witness conditions for ‘want†’ we need to assume that an agent’s
total information state include a record type representing the agent’s desires, parallel to
long-term memory and religious beliefs. Intuively the type for desires is a type which
represents the way the world would be if the agent’s desires were fulfilled. Thus a total
information state would belong to a subtype of (91).

(91)
⎡
⎢
⎢
⎣

ltm : RecType
rbel : RecType
des : RecType

⎤
⎥
⎥
⎦

We will introduce a predicate ‘des’ which holds between an individual and a record type
(that is, with arity ⟨Ind,RecType⟩). e : des(a,T) just in case T is a’s desires in e. This should
require that if r is a’s information state then r.des = T. Now we can characterize witness
conditions for ‘want†’ as given in (92).
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(92) e : want†(a, T) if for some T ʹ
e : des(a, T ʹ)
and T ' ⊑⇝ T

e : want†(a, T) if for some T1 and T2
e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε want†(a, T1)
e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T2, T1)
and T1 ∧̣T2 ⊑⇝ T

Our analysis of Fodor’s example is similar to Schwager (2009) in that the analysis using
a point of view and asymmetric merge involves replacing part of the original content of the
attitude with something from the perspective of the speaker. Schwager¹² introduces what
she calls the replacement principle quoted in (93).

(93) For the sake of reporting an attitude, a property that is involved in the content of
the attitude that is to be reported (the reported property) can be replaced by a
different property (the reporting property) as long as the reported property is a
subset of the reporting property at all relevant worlds.

(Schwager, 2009, p. 409)

This addresses the important question of what replacements we can make. As Schwager
points out we cannot make arbitrary replacements and use them to report an attitude. For
example, we cannot report Charley’s desire to buy a trenchcoat with big pockets by (94).

(94) Charley wants to buy a unicorn

For us, this question concerns whatmust hold if the ‘pov’-relation holds between two types.
We could imitate something like Schwager’s replacement principle by requiring (95).

(95) If pov(T1, T2) is witnessed then T2 ⊑ T2 ∧̣T1

This says that if the world is of the original attitude type then it is also of the type resulting
from asymmetrically merging the attitude type with the point of view. This successfully
rules out replacing a trenchcoat with big pockets with a unicorn. If the world is such that
Charley has a trenchcoat with big pockets it does not follow that he has a unicorn.

Unfortunately, this constraint does not seem to hold for all of the examples for which we
have suggested using points of view. For example, if the original attitude type involves two
heavenly bodies, Hesperus and Phosphorus, which rise respectively in the evening and the
morning and the point of view requires Hesperus and Phosphorus to correspond to one
heavenly body, Venus, which rises in the morning and the evening, then it is not the case
that any situation which contains the two heavenly bodies would be one in which there is
only one heavenly body (and not vice versa either). There is no subtyping relation here, just
a disagreement about how many heavenly bodies are involved and what they are called.

Similarly, consider the example where, according to the original attitude, Kimworships a
god called Zeus and according to the point of view Kim worships a false god called Zeus. It
is not obvious that a situation in which the first holds is also a situation in which the second
holds or vice versa, although one might argue that this depends on whether false gods are
gods or not. I would tend to think that sometimes we make the inference from false god to

¹² Currently named Magdalena Kaufmann.
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god and sometimes we do not and that this is part of the general nature of semantic flux
in language. However, an inference from god to false god seems unlikely. Again the point
of view seems to reflect a disagreement about the status of Zeus rather than a subtyping
relation.

A potential conflict in judgement between the reporter and the attitude bearer also arises
in Fodor examples like those in (96).

(96) a. Charley wants to buy something nonexistent
b. Charley wants to buy an uncool coat

If Charley’s attitude involves a trenchcoat with big pockets, it may in fact be the case that
there are no such trench coats but that does not mean that the type Trenchcoat with big
pockets is a subtype of Nonexistent. Recall that for T1 to be a subtype of T2 it has to be
the case that no matter what we assign to basic types and ptypes (that is, no matter which
possibility we consider), something of type T1 would also be of type T2. But there are pre-
sumably possibilities in which there are trenchcoats with big pockets. What (96a) seems to
commit the speaker to is that there are no trenchcoats with big pockets in the actual pos-
sibility we are considering, not that trenchcoats with big pockets are impossible. In actual
fact the speaker seems to be committed to a falsehood here because trenchcoats in gen-
eral have big pockets. We cannot say the same about (96b). However cool we may think
trenchcoats are, the speaker is entitled to her opinion. The word uncool is a predicate of
personal taste and the concept of faultless disagreement (Kölbel, 2004) becomes relevant.
For a suggestion of how predicates of personal taste could be treated using TTR and some
references to other literature see Cooper (2015). What this points to is that the speaker is
replacing a judgement by the attitude bearer with a judgement of her own. This could be
expressed by introducing the action rule in (97).

(97)
:A pov(T1,T2) s :B T2

s :A T2 ∧̣T1

(97) says that if A judges pov(T1, T2) to be witnessed (that is, A judges that T1 is a point
of view of T2) and B judges s to be of type T2, then A is licensed (afforded) to judge s to
be of the type resulting from asymmetrically merging T2 with T1. Note that this action
rule concerns the judgements that two agents make rather than the way things actually are
in the world. It belongs to the realm of our theory of action based on type theory rather
than to the type theory itself. This means that in principle there is nothing preventing a
speaker reporting Charley’s desire to buy a trenchcoat with large pockets as a desire to buy
a unicorn, provided that the speaker is willing to commit to a claim that she would judge
a trenchcoat with large pockets to be a unicorn, something that we would find unexpected
given the normal meanings associated with these words.

The proposal here also has aspects in common with the proposal by Pross (ms) which
presents a semantics in terms of DRTwhich takes account of how to represent the attitudes
of an agent and analyses the attitude report in terms of this. Our approach to representing
the attitudes in TTR has a good deal in common with the DRT approach as set forth in
Kamp (1990); Kamp et al. (2011) and developed in Maier (2016, 2017).

Where our proposal differs from previous proposals in the literature is that we are not
concerned with trying to identify objects in possible worlds in order to get the Fodor-
ean reading. Rather we are concerned with how different agents might judge situations of
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certain types. Whether there are situations of the relevant types is not a question which is
of relevance to the analysis. Let us see how this relates to examples which have been dis-
cussed in the literature. In order to do this we will first say in a little more detail what the
content of an utterance of Charlie wants to buy a coat like Bill’s will be. Let us first look at
the content of Charlie bought a coat like Bill’s (ignoring issues of tense), given in (98).

(98) λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Charlie”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

[
e : buy(𝔠.f.x, a⌢coat_like_Bill’s(c.a))

]

Here we use ‘a⌢coat_like_Bill’s’ to represent the content of an utterance of the noun
phrase a coat like Bill’s. (For simplicity of presentation we are ignoring the fact that Bill
makes a similar contribution to the context type as Charlie though on the path headed
by ‘a’. We are also considerably simplifying the structure of the context for presentational
purposes.) Since ‘buy’ is an extensional predicate it will obey the constraint in (99) which
relates ‘buy’ to the corresponding predicate with two individual arguments, ‘buy†’.

(99) We restrict our attention to modal type systems, 𝕋, such that

buy(a,Q) ≈𝕋 Q(λr:
[
x:Ind

]
.
[

e : buy†(a, r.x)
]
)

This means that (98) is equivalent to (100), in the sense that any record of the former type
will be of the latter type and vice versa.

(100) λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Charlie”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

[
e : a⌢coat_like_Bill’s(c.a)(λr:

[
x:Ind

]
.
[

e : buy(𝔠.f.x, r.x)
]
)
]

(100) is (101) where we have spelled out the contribution of the indefinite article.

(101) λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Charlie”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

e :
⎡
⎢
⎢
⎣

range=coat_like_Bill’s(c.a) : Ppty
scope=λr:

[
x:Ind

]
.
[
e:buy(𝔠.f.x, r.x)

]
: Ppty

e : exist(range, scope)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

Now let us consider the non-parametric content of Charlie wants to buy a coat like Bill’s
given in (102a) which, by (90a), is equivalent to (102b).
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(102) a.
[
e:wantP(charlie, λr:

[
x:Ind

]
.
[
e:buy(r.x, λP:Ppty .

[
e:exist(coat_like_Bill’s',P)

]
)
]
)
]

b.
[
e:want†(charlie,

[
e:buy(charlie, λP:Ppty .

[
e:exist(coat_like_Bill’s', P)

]
)
]
)
]

Note that ‘want†’, in virtue of (92), introduces the possibility of a point of view.
Wewill now examine whether the kind of content expressed in (102a) can bematched to

a number of scenarios for Fodorean readings which have been discussed in the literature.
Here we follow the recent survey of the literature presented by Pross (ms) in Section 1.2 of
his paper. Consider the scenario in (103).

(103) Suppose a store sells some jackets that all look like Malte’s and that Adrian does
not know anything about Malte. Assume further that Adrian wants one of those
jackets and any of them is an option.

(Romoli and Sudo, 2009)

In (104) we exhibit a type which corresponds to how the speaker might represent this
scenario in memory.

(104)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Adrian”)]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

id1=[
id1=jacket_in_the_shop':Ppty
id2:

[
e:buy(⇑3id1.x, λP:Ppty .

[
e:exist(⇑id1, P)

]
)
]]:RecType

id2:want†(⇑2id1.x, id1)
id3=

[
id1=jacket_like_Malte’s':Ppty

]
:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(104) requires that Adrian’s desire is to buy something with the property of being a jacket
in the shop. The alternative point of view is that the property of being a jacket in the shop
can be replaced with the property of being a jacket like Malte’s. If the world matches this
type then the sentence Adrian wants to buy a jacket like Malte’s is true.

The next scenario Pross considers is (105).

(105) Suppose a store offers some jackets that all look like Malte’s and that Adrian does
not know anything about Malte. Assume that some of the jackets are on sale while
others are not and that Adrian is aware of this. Assume further that Adrian wants
one of the jackets on sale and any of them is an option.

The point of this is that it emphasizes that the property of jackets involved in Adrian’s desire
need not be coextensive with the property in the point of view. That is, it is still the case
that all the jackets in the shop are like Malte’s but Adrian has his sights set on a subset of
them (those on sale) although he has not chosen any particular jacket among those. The
type we exhibit for this scenario (in (106)) is almost exactly the same as the previous one.

(106)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Adrian”)]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

id1=[
id1=jacket_on_sale_in_the_shop':Ppty
id2:

[
e:buy(⇑3id1.x, λP:Ppty .

[
e:exist(⇑id1, P)

]
)
]]:RecType

id2:want†(⇑2id1.x, id1)
id3=

[
id1=jacket_like_Malte’s':Ppty

]
:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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The only difference between this and the previous type is that we have replaced the prop-
erty ‘jacket_in_the_shop'’ with ‘jacket_on_sale_in_the_shop'’. Note that the constraint on
‘pov’ that we introduced in (97) did not require coextension in anyway, only that if an agent
were to judge a situation as of type T1 then the agent with the point of view would judge
the situation to be of the point of view type. This allows for the possibility that there could
be additional situations of the point of view type which the first agent would not judge to
be of type T1. This view of things was in fact already important for the first scenario, since,
while Adrian is focussed on the jackets in the shop, the speaker presumably could consider
that there are other jackets in addition to those in the shop which are like Malte’s. That is,
the sentence would not be falsified by discovering a jacket like Malte’s which is not in the
shop.

Pross’s third scenario is (107) which he offers as problematic for the proposal in von
Fintel andHeim (2011) because there are no actual jackets likeMalte’s aswould be required
by their analysis.

(107) Suppose Adrian has seen a picture of a certain green Burberry jacket in a
catalogue and wants to buy one. Unbeknownst to Adrian, Malte happens to own
exactly such a green Burberry jacket. Unbeknownst to Adrian, the type of jacket
in the picture which Adrian has seen is sold out and no further jackets of this type
have been produced yet: there are no actual jackets like Malte’s.

This scenario could correspond to the type in (108).

(108)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Adrian”)]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

id1=[
id1=jacket_like_the_one_in_the_catalogue':Ppty
id2:

[
e:buy(⇑3id1.x, λP:Ppty .

[
e:exist(⇑id1, P)

]
)
] ]:RecType

id2:want†(⇑2id1.x, id1)
id3=

[
id1=jacket_like_Malte’s':Ppty

]
:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The only difference between this and the previous type is that we have
replaced the property ‘jacket_on_sale_in_the_shop'’ with the property
‘jacket_like_the_one_in_the_catalogue'’. Note that the constraint on ‘pov’ that
we introduced in (97) does not require that anything have either the property
‘jacket_like_the_one_in_the_catalogue'’ or ‘jacket_like_Malte’s'’, only that if an agent
were to judge a situation as of the type involving the first property then the agent with the
point of view would judge the situation to be of the type involving the second property.
Whether there actually are such jackets is an independent question.

Pross (ms) introduces a further scenario for the Fodorian reading in Section 3.5 of his
paper which we reproduce in (109).

(109) Adrian has seen a jacket which has three stripes on its sleeves and wants to buy
such a jacket. However, he has read that Adidas uses child labour in the
production of its jackets, so the additional condition for his purchase is that the
jacket is not from Adidas. If Adrian does not know that Adidas is the brand with
the three stripes, he has a desire that he would paraphrase as “I want to buy a
jacket from the brand with the three stripes but not from Adidas.” Fritz hears
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Adrian’s utterance and as he has seen Malte’s jacket which has three stripes and as
he also knows about the problem with child labour and Adidas he believes that
Malte would never buy a jacket which is made using child labour. Fritz also
doesn’t know that Adidas is the brand with the three stripes. He reports Adrian’s
desire as “Adrian wants to buy a jacket like Malte’s”.

This mixes in the problem of contradictory beliefs with that of Fodorean readings. The
type corresponding to Fritz’s information state could be represented by the type in (110).

(110)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1:[
x:Ind
e:named(x, “Adrian”)]

id2:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

id1=
⎡
⎢
⎢
⎣

id1=jacket_with_three_stripes_on_its_sleeves':Ppty
id2=not_Adidas':Ppty
id3:

[
e:buy(⇑3id1.x, λP:Ppty .

[
e:exist(⇑id1∧⇑id2, P)

]
)
]

⎤
⎥
⎥
⎦

:RecType

id2:want†(⇑2id1.x, id1)
id3=

[
id1=jacket_like_Malte’s':Ppty

]
:RecType

id4:pov(id3, id1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Adrian’s desire is perfectly rational given that he does not know that a jacket with three
stripes on its sleeves is made by Adidas. Note that we can also truthfully report his desire
even when we know about Adidas and the three stripes, as in (111).

(111) Adrian wants to buy a jacket like Malte’s but not from Adidas. He doesn’t realize
that having three stripes on the sleeve means that the jacket is from Adidas.

It seems that none of these successive complications of the scenario, increasing, so to
speak, the degree of intensionality involved, provide a problemwhen you combine a theory
of intensional types with the notion of point of view as we have described it.

6.6 Summary of resources introduced

Items that are new since Chapter 5 are marked “New!” and items that have been revised
since Chapter 5 are marked “Revised!”.

6.6.1 Universal grammar resources

6.6.1.1 Types

Loc —
⎡
⎢
⎢
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎥
⎥
⎦

Phon — a basic type

e : Phon iff e is a phonological event
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SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Assgnmnt — a basic type

r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}

PropCntxt — a basic type

r : PropCntxt iff r : Rec and labels(r) ∩ {x0, x1, …} = ∅

Cntxt — [
𝔰 : Assgnmnt
𝔠 : PropCntxt ]

CntxtType — a basic type

T : CntxtType iff T ⊑ Cntxt

xType — a basic type

T : xType iff T : RecType and x ∈ labels(T)

Ppty — [
bg : xType
fg : (bg→RecType) ]

PlPpty — a basic type

P : PlPpty iff P : Ppty and for some type T, P.bg ⊑
[
x:plurality(T)

]

PPpty — [
bg : CntxtType
fg : (bg→Ppty) ]

Quant — (Ppty→RecType)

PQuant — [
bg : CntxtType
fg : (bg→Quant) ]

QuantDet — (Ppty→Quant)

PQuantDet — [
bg : CntxtType
fg : (bg→QuantDet) ]

PRel2 — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]

PRecType — [
bg : CntxtType
fg : (bg→RecType) ]

Cont — PRecType∨PPpty∨PQuant∨PQuantDet

Cat — a basic type

s, np, det, n, v, vp : Cat
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Syn — [
cat : Cat
daughters : Sign* ]

Sign — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

SignType — a basic type

T : SignType iff T ⊑ Sign

S — [
Sign
syn:

[
cat=s:Cat

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]

N — [
Sign
syn:

[
cat=n:Cat

]]

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]

NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

Real — a basic type

n : Real iff n is a real number

Card — a basic type

n : Card iff n is a cardinal number (natural numbers with the addition of ℵ0,ℵ1, …)

AmbTempFrame —
⎡
⎢
⎢
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎥
⎥
⎦

TempRiseEventCntxt — [
fix :

[
loc : Loc

]

scale : (AmbTempFrame → Real) ]

TempRiseEvent —

λr:TempRiseEventCntxt .

[
e : (AmbTempFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]
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PriceFrame —
⎡
⎢
⎢
⎢
⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥
⎥
⎥
⎦

PriceRiseEventCntxt —
⎡
⎢
⎢
⎣

fix : [
loc : Loc
commodity : Ind ]

scale : (PriceFrame → Real)

⎤
⎥
⎥
⎦

PriceRiseEvent —

λr:TempRiseEventCntxt .

[
e : (PriceFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

LocFrame —
⎡
⎢
⎢
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎥
⎥
⎦

LocRiseEventCntxt — [
fix :

[
x : Ind

]

scale : (LocFrame → Real) ]

LocRiseEvent —
λr:LocRiseEventCntxt .

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

ToposNew! — a basic type

If τ : Topos, then τ : [ bg : Type
fg : (bg→Type) ]

6.6.1.2 Predicates
with arity ⟨Phon, Loc⟩

loc — e : loc(u, l) iff u is located at l in e

with arity ⟨Phon, Ind⟩

speaker — e : speaker(u, a) iff u is the speaker of u in e
audience — e : audience(u, a) iff u is the audience of u in e

with arity ⟨Card⟩

card — X : card(n) iff for some T, X : set(T) and |X| = n
card_at_least — X : card_at_least(n) iff for some T, X : set(T) and |X| ≥ n
card_at_most — X : card_at_most(n) iff for some T, X : set(T) and |X| ≤ n

with arity ⟨Ppty⟩

unique — s : unique(P) iff ∣ [↓P↾ s] ∣= 1
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with arity ⟨Ppty,Ppty⟩

exist — s : exist(P,Q) iff [↓P] ∩ [↓Q↾ s] ≠ ∅
every New! — s : every(P,Q) iff [↓P] ⊆ [↓Q↾ s]

with arity ⟨PlPpty,PlPpty⟩

exactly_nNew! — for n a natural number,
s : exactly_n(P, Q) iff s : at_least_n(P, Q)∧at_most_n(P, Q)

at_least_nNew! — for n a natural number,
s : at_least_n(P, Q) iff [̌ℱ((Q↾ s).fg ∣ℱ(P.fg)) ∧̣

[
x:card_at_least(n)

]
] ≠ ∅

at_most_nNew! — for n a natural number,
s : at_most_n(P, Q) iff r : ℱ((Q↾ s).fg ∣ℱ(P.fg)) implies r :

[
x:card_at_most(n)

]

with arity {⟨T⟩ ∣ T is a type}

be — e : be(a) iff aεe

with arity ⟨Loc,Real⟩

temp — e : temp(l, n) iff n is the temperature at l in e.

with arity ⟨Real,Real⟩

less-than — e : less-than(n, m) iff nεe, mεe and n<m

with arity ⟨Type,Type,Topos⟩

necNew! —
If 𝕋 is a modal type system and p ∈ 𝕋, then

s :p nec(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s) ⊑𝕋 T

possNew! —
If 𝕋 is a modal type system and p ∈ 𝕋, then

s :p poss(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s)⊤𝕋T

with arity ⟨RecType,RecType⟩

pov New! — e : pov(T1,T2) iff T2 is a point of view on T1 in e.
e : pov(T1,T2) implies labels(T2) ⊆ labels(T1)

with arity ⟨Ind,RecType⟩

ltmNew! — e : ltm(a,T) iff T is a’s long-term memory in e.
rbelieveNew! — e : rbelieve(a,T) iff T is a’s religious beliefs in e.
desNew! — e : des(a,T) iff T is a’s desires in e.
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6.6.1.3 Scales
(as in Chapter 5)

6.6.1.4 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)

SemCommonNoun(Tbg, p)
If p is a predicate with arity ⟨Ind⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If p is a predicate with arity ⟨Rec⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺˺

LexCommonNoun(Tphon, Tbg, p)
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ or ⟨Rec⟩ and Tbg is a type
(of context), then LexCommonNoun(Tphon, Tbg, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(Tbg, p):PPpty

]

SemPropName(Tphon)
If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

LexPropName(Tphon )
If Tphon is a phonological type,
then LexPropName(Tphon) is

Lex(Tphon, NP) ∧̣
[
cnt=SemPropName(Tphon):PQuant

]

SemPron

˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

LexPron(Tphon)
If Tphon is a phonological type, then LexPron(Tphon) is
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Lex(Tphon, NP) ∧̣
[
cont=SemPron:PQuant

]

SemNumeral(n)
If n is a real number, then SemNumeral(n) is

˹λc:Cntxt . λP:Ppty . P(
[
x=n

]
)˺

Lexnumeral(Tphon, n)New!
If Tphon is a phonological type and n is a real number, then Lexnumeral(Tphon, n) is

Lex(Tphon, NP) ∧̣
[
cnt=SemNumeral(n):PQuant

]

SemIndefArt
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

LexIndefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt:(Ppty→PQuant)

]

SemUniversal
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexUniversal(TPhon)
If TPhon is a phonological type, then LexUniversal(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemUniversal:(Ppty→PQuant)

]

SemDefArt
λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexDefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is
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Lex(TPhon, Det) ∧̣
[
cont=SemDefArt:(Ppty→PQuant)

]

SemIntransVerb(Tbg, p)
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind⟩, then
SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If Tbg ⊑
[
𝔠:Rec

]
is a record type (for context) and p is a predicate with arity ⟨Rec,Rec⟩,

then SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x, c.𝔠)
]
˺˺

LexIntransVerb(Tphon, Tbg, p)
If Tphon is a phonological type, Tbg ⊑

[
𝔠:Rec

]
a record type (for context) and p is a

predicate with arity ⟨Ind⟩ or ⟨Rec,Rec⟩, then LexIntransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vi) ∧̣
[
cnt=SemIntransVerb(Tbg, p):PPpty

]

SemTransVerb(Tbg, p) Revised!
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr1:
[
x:Ind

]
. 𝒬(˹λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
˺)˺˺

If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind,Quant⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr:
[
x:Ind

]
.
[

e : p(r.x, 𝒬)
]
˺)˺

LexTransVerb(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, Tbg a record type (for context) and p is a predicate with
arity ⟨Ind, Ind⟩ or ⟨Ind,Quant⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p):PRel2

]

SemBe

SemBeID

˹λc:[Cntxt
𝔠:
[
ty:Type

]] .

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:c.𝔠.ty

]
. [ x=r1.x, r2.x : c.𝔠.ty

e : be(x) ]˺)˺˺
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SemBescalar

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[ty:Typesc:(ty→Real)]

⎤
⎥
⎥
⎦

.

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:Real

]
. [ x=c.𝔠.sc(r1.x), r2.x : Real

e : be(x) ]˺)˺˺

Lexbe(TPhon)
If TPhon is a phonological type, then LexbeID

(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBeID:PRel2

]

If TPhon is a phonological type, then Lexbescalar
(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBescalar:PRel2

]

FrameType(p)
FrameType is a partial function on predicates, p, with arity ⟨Ind⟩which can be defined
for particular agents and particular times, which obeys the constraint:

FrameType(p) ⊑ [
x : Ind
e : p(x) ]

p_frameNew!

1. If p is a predicate in the domain of FrameType, then p_frame is a predicate with
arity ⟨Rec⟩.

2. e : p_frame(r) iff r : FrameType(p) and e = r

p_pl

1. If p is a singular predicate (i.e. there is no p' such that p = p'_pl) with arity ⟨T⟩,
then p_pl is a predicate with arity ⟨plurality(T)⟩

2. e : p_pl(A) if for all a ∈ A, e : p(a)

CommonNounIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
CommonNounIndToFrame(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(Tphon, Tbg, p_frame)
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RestrictCommonNoun
If Tphon is a phonological type, p is a predicate, Tbg and Tres are record types and Σ is
LexCommonNoun(Tphon, Tbg, p), then RestrictCommonNoun(Σ, Tres) is

Σ ∧̣
[

cont=˹λc :Tbg . ˹SemCommonNoun(Tbg, p)(c) ∣Tres ˺˺ : PPpty
]

IntransVerbIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
IntransVerbIndToFrame(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(Tphon, Tbg, p_frame)

PluralCommonNoun
We assume that ‘pluralnoun’ is a function that maps phonological types for singular
common nouns to corresponding phonological types for plural common nouns.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralCommonNoun(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(pluralnoun(Tphon), Tbg, p_pl)

PluralIntransVerb
We assume that ‘pluralverb’ is a function thatmaps phonological types for singular verbs
to corresponding phonological types for plural verbs.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralIntransVerb(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(pluralverb(Tphon), Tbg, p_pl)

6.6.1.5 Constituent structure
(as in Chapter 5)

6.6.1.6 Action rules
LEXRES

Lex(T,C) resourceA u :A T

:A (Lex(T,C)∧̣
[
s-event:

[
e=u:T

]]
)

TOPOSCONCLUDENew!
τ : Topos τ resourceA s :A τ.bg

:A τ(s)
TOPOSPERMITNew!

τ : Topos τ resourceA s :A τ.bg

:A τ(s)!
TOPOSOBLIGENew!

τ : Topos τ resourceA s :A τ.bg
oblig

:A τ(s)!
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6.6.2 Universal speech act resources

(as in Chapter 2)

6.6.3 Universal dialogue resources

(as in Chapter 4)

6.6.4 English resources

6.6.4.1 Types and predicates
Basic phonological types for words
{“Dudamel”, “is”, “a”, “conductor”, “Beethoven”, “composer”, “Uchida”, “pianist”, “aha”, “ok”,

“leaves” , “hugs”, “dog”, “nine”, “ninety”, “find” New!, “seek” New!, “worship” New!}

Predicates
with arity ⟨Ind⟩ {conductor, composer, pianist, leave, dog, passenger}
with arity ⟨Ind,Quant⟩ {hug Revised!, find New!, seek New!, worship New!, wantQ
New!}
e : worship(a,𝒬) iff for some T

1. e : rbelieve(a, T)
2. T ⊑⇝ 𝒬(λr:

[
x:Ind

]
. worship†(a, r.x))

or for some T ʹ

1. e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε rbelieve(a, T)
2. e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T ʹ, T)
3. T ∧̣T ʹ ⊑⇝ Q(λr:

[
x:Ind

]
. worship†(a, r.x))

We restrict our attention to modal systems, 𝕋, such that

1. if p ∈ {hug, find} then

p(a,𝒬) ≈𝕋 𝒬(˹λr:
[
x:Ind

]
.
[
e:p†(a, r.x)

]
˺)

2. successful(seek(a,𝒬)) ⊑𝕋 find(a,𝒬)
3. wantQ(a,Q) ≈𝕋 want†(a, Q(˹λr:

[
x:Ind

]
. have(a, r.x)˺))

with arity ⟨Rec,Rec⟩ — {rise }
e : rise(r, c) if

r : AmbTempFrame,
c : TempRiseEventCntxt and
e : TempRiseEvent(c) ∧̣

[
e:
[
t0=r:AmbTempFrame

]]
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or if

r : PriceFrame,
c : PriceRiseEventCntxt and
e : PriceRiseEvent(c) ∧̣

[
e:
[
t0=r:PriceFrame

]]

or if

r : LocFrame,
c : LocRiseEventCntxt and
e : LocRiseEvent(c) ∧̣

[
e:
[
t0=r:LocFrame

]]

with arity ⟨Rec⟩ — {temperature}
e : temperature(r) if

r : AmbTempFrame and e = r

with arity ⟨Ind,TravelFrame⟩ — {take_journey}
s : take_journey(a, e) iff s = e and e.traveller = a

with arity ⟨Ind,Ppty⟩ — {wantP}
We restrict our attention to modal systems, 𝕋, such that

wantP(a, P) ≈𝕋 want†(a, P(
[
x=a

]
))

with arity ⟨Ind,RecType⟩ — {believe New!, want† New!}
e : believe(a, T) if

e : ltm(a, T ʹ)
and T ' ⊑⇝ T

or if

e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε believe(a, T1)
e' :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T2, T1)
and T1 ∧̣T2 ⊑⇝ T

e : want†(a, T) if for some T ʹ
e : des(a, T ʹ)
and T ' ⊑⇝ T

or if for some T1 and T2
e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε want†(a, T1)
e :εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε pov(T2, T1)
and T1 ∧̣T2 ⊑⇝ T
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Frame types

DogFrame —
⎡
⎢
⎢
⎢
⎣

x : Ind
e : dog(x)
age : Real
cage : age_of(x,age)

⎤
⎥
⎥
⎥
⎦

TravelFrame —
⎡
⎢
⎢
⎣

traveller : Ind
source : Loc
goal : Loc

⎤
⎥
⎥
⎦

PassengerFrame —
⎡
⎢
⎢
⎢
⎣

x : Ind
e : passenger(x)
journey : TravelFrame
ctravel : take_journey(x, journey)

⎤
⎥
⎥
⎥
⎦

6.6.4.2 Grammar
Lexical sign types
{LexPropName(“Dudamel”),
LexPropName(“Beethoven”),
LexPron(“he”),
Lexnumeral(“nine”, 9),
Lexnumeral(“ninety”, 90),
LexIndefArt(“a”),
LexUniversal(“every”),
LexDefArt(“the”),
LexCommonNoun(“composer”, Rec, composer),
LexCommonNoun(“conductor”, Rec, conductor),
LexCommonNoun(“dog”, Rec, dog) (= Σ“dog”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“dog”), DogFrame),
LexCommonNoun(“passenger”, Rec, passenger) (= Σ“passenger”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“passenger”), PassengerFrame),
LexCommonNoun(“temperature”, Rec, temperature) (= Σ“temperature”),
RestrictCommonNoun(Σ“temperature”, AmbTempFrame),
LexIntransVerb(“leave”, Rec, leave),
LexIntransVerb(“run”, Rec, run),
LexIntransVerb(“rise”,

[
𝔠:TempRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:PriceRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:LocRiseEventCntxt

]
, rise),

LexTransVerb(“hug”, Rec, hug),
LexTransVerb(“find”, Rec, find) New!,
LexTransVerb(“seek”, Rec, seek) New!,
LexTransVerb(“worship”, Rec, worship) New!,
LexbeID

(“is”),
Lexbescalar

(“is”),
Lex(“ok”, S),
Lex(“aha”, S) }
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Constituent structure rule components
CnstrIsA

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]].

VP∧̣
[
cont=u[2].syn.daughters[2].cont:Ppty

]

Constituent structure rules
{S⟶ NP VP ∣ NP'(VP':Ppty):RecType,
NP⟶ Det N ∣ Det'(@@N ':PPpty):PQuant,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣ V '(NP':Quant):Ppty}

6.7 Summary

In this chapter we first pointed out some conceptual and technical problems involving pos-
sible worlds as they are standardly used in semantics. We have considered the two main
areas where possible worlds have been used:modality and intensionality involving the atti-
tudes. We have suggested that both benefit from an analysis in terms of intensional types
instead of possible worlds.

In the case of modality the use of types of situations rather than sets of possible worlds
makes Kratzer’s approach to modality more tractable and emphasizes the relationship to a
proof-theoretic approach in that it involves reasoning from a modal base and an ideal.

In the case of intensional constructions types give us a finer granularity than sets of
possible worlds and the structure of types enable us to exploit equivalence classes of types
when less granularity is required. We examined consequences both for attitude verbs like
believe and intensional verbs like seek. We showed how to analyse verbs which seem to
pattern in some respects like intensional verbs and in other respects like extensional verbs.
Examples of this are worship and book (a table). In this way it is possible to analyse a range
of different kinds of intensionality rather than a simple two-way distinction. A well-known
example of this was pointed out by Janet Fodor early in the formal semantics literature
and has been the subject of some attention in recent discussion. An important aspect of
the analysis of intensionality here is that it is explicity related to a modelling of the mental
states of agents. In this way it is more related to a cognitive view of intensionality than the
classical possible worlds approach that we have inherited from Montague. An important
part of this cognitive approach is a notion of point of view which is closely related to the
notion of perspective proposed by Asudeh and Giorgolo (2016, 2020). The proposal here
depends crucially on the structure of types used to model mental states.



7
Witness-based quantification

7.1 Introduction

In this chapter we are going to explore how the TTR approach to semantics we have
developed gives us a novel treatment of quantification and binding in natural language.

In Section 7.2 we are going to propose a revision of witness conditions for quantifica-
tional ptypes which will constitute what we will call a witness based account of generalized
quantifiers. The motivation for this is in part to get a neater treatment of anaphora, and a
more general treatment along the lines of Lücking and Ginzburg (2019, 2022).

In Section 7.5 we will take a brief look at how long distance dependencies can be treated
as preparation for our treatment of quantifier scope and binding in Chapter 8.

7.2 Quantifiers and their witness sets

7.2.1 Conservativity and dynamic generalized quantifiers

Here we review the treatment of quantifiers that we have presented so far and its relation
to the notion of conservativity which we will discuss here. This property of conservativity
facilitates the witness-based account of quantifiers that we will undertake here.

In Chapter 5, example (100), we introduced the notion of dynamic generalized quan-
tifier and pointed out that one of the original motivations for them was what is known
as donkey anaphora which we will discuss in Chapter 8, Section 8.3. Here we will point
out a connection between dynamic quantifiers and conservativity of quantifiers, noted in
Chierchia (1995). The informal way to state conservativity for quantifiers is as in (1a) and
an example is given in (1b).

(1) a. Q A B is true just in case Q A A&B is true
b. every farmer likes a donkey is true just in case every farmer is a farmer and likes a

donkey (or more naturally, every farmer is a farmer who likes a donkey) is true

Most, if not all, natural language quantifiers have this property.¹
Now consider the discussion of dynamic generalized quantification in Chapter 5,

Section 5.6. There in example (100) we gave dynamic versions of generalized quantifier
interpretations of noun-phrases.We spell out the witness condition for the quantificational
ptype, (2b), corresponding to every dog runs in (2).

(2) a. dogʹ = ˹λr:
[
x:Ind

]
.
[
e:dog(r.x)

]
˺

run' = ˹λr:
[
x:Ind

]
.
[
e:run(r.x)

]
˺

¹ For discussion, see Peters and Westerståhl (2006, p. 138f ).

From Perception to Communication. Robin Cooper, Oxford University Press.
© Robin Cooper (2023). DOI: 10.1093/oso/9780192871312.003.0008
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b. T = every(dogʹ, run' ∣ℱ(dog'))
c. s : T iff [↓dog'] ⊆ [↓run'|ℱ(dog') ↾ s] (witness condition for ‘every’, Chapter 5,

example (68))
iff [↓dog'] ⊆ [↓run'|⎡

⎢
⎢
⎣

x:Ind

e:dog(x)

⎤
⎥
⎥
⎦

↾ s] (fixed point types, Chapter 5,
example (90))

iff [↓dog'] ⊆ [↓λr:
[
x:Ind

]
∧̣[

x:Ind
e:dog(x)] .

[
e:run(r.x)

]
↾ s ] (function restric-

tion, Chapter 5,
example (98))

iff [↓dog'] ⊆ [↓λr:[x:Inde:dog(x)] .
[
e:run(r.x)

]
↾ s ] (merge, Chapter 2, p. 78)

iff [↓dog'] ⊆ [↓λr:[x:Inde:dog(x)] .
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:run(r.x)

]
] (property restriction,

Chapter 3, example 56)
iff {a ∣ ∃r:

[
x:Ind

]
∧r.x = a ∧ [̌

[
e:dog(r.x)

]
] ≠ ∅}

⊆ {a ∣ ∃r:[x:Inde:dog(x)] ∧r.x = a ∧ [̌
[
eεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs:run(r.x)

]
] ≠ ∅} (↓, Chapter 5,

example 52)
iff {a ∣ [̌dog(a)] ≠ ∅} ⊆ {a ∣ [̌dog(a)] ≠ ∅ ∧ ∃s'[s'εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs ∧ s' : run(a)]}

(Arity of ‘dog’, ‘run’ and set extension of
records, Chapter 3, p. 111ff )

iff {a ∣ ∃s'[s' : dog(a)]} ⊆ {a ∣ ∃s'[s' : dog(a)] ∧ ∃s'[s'εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεs ∧ s' : run(a)]}
([̌T], Chapter 3, p. 108)

7.2.2 Witness sets

The classical view of quantifiers is based on the notion that noun phrases represent sets of
sets or sets of properties and the definition of a quantifier involves characterizing which
set of sets or properties it represents. This was the view presented, for example, in Barwise
and Cooper (1981). Associated with this was the notion of witness set defined by Barwise
and Cooper as in (3).

(3) A witness set for a quantifier D(A) living on A is any subset w of A such that
w ∈ D(A).

In (3)Dwas used as the function corresponding to a determiner such as some ormost map-
ping a set A (corresponding, for example, to the set denoted by a common noun phrase
such as farmer or farmer who owns a donkey) to a set of sets. The notion lives on used by
Barwise and Cooper corresponds to what was later in the literature referred to as conser-
vativity. Their definition of the lives-on property, slightly simplified by removing reference
to the model, is given in (4).

(4) A quantifier Q lives on a set A if Q is a set of sets with the property that

X ∈ Q iff (X ∩ A) ∈ Q

This means that the notion of witness set given by Barwise and Cooper is defined for
conservative quantifiers. Examples of witness sets that they give include: a witness set for
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the quantifier corresponding to a proper name John as the singleton set containing the
individual John; a witness set corresponding to a woman as any non-empty set of women;
a witness set corresponding tomost women as a set of womenwhich containsmost women.

The notion of witness set was introduced by Barwise and Cooper in a section called
Processing Quantified Statements. It was introduced as an auxiliary notion which could be
used in an account of how an agent might evaluate the truth of a quantified statement.
This suggests that it should play an important role in a theory of semantics like ours which
is oriented towards explaining cognitive semantic processing, especially if it is a theory
which attempts to do this in terms of judgements that objects (including situations) are
witnesses of types. It seems natural to make a link between the notion of witnesses for
types and the notion of witnesses for quantifiers. We will go further and suggest that the
characterization of the meaning of determiners is based on witness sets, thus elevating the
witness sets from an auxiliary notion derived from the meaning assigned to quantifiers
to the central notion which characterizes the distinctions between the various quantifier
meanings available, just as in type theory the notion ofmeaning is characterized in terms of
the witness conditions for types. In doing this we will be going at least part way to meeting
some of the requirements of the proposals by Ginzburg and Purver (2008); Lücking and
Ginzburg (2019, 2022).

In the literature on generalized quantifiers, van Benthem (1984) introduced the per-
spective that we should think of determiners as representing relations between sets rather
than as mappings from sets to families of sets. This is reflected in our characterization
of quantifier relations as relations between properties (which can be used to generate the
set of objects which have the property) and the use of ptypes constructed with quantifier
relations and two properties as arguments.

With each quantifier relation, q, and property, P, we will associate a type of witness sets
qw(P). For example, a set, X, is of type mostw(P) if X is a set of objects with property P
which contains most of the objects which have property P. We will say that a witness for
the quantificational ptype ‘most(P, Q)’ is a pair (coded as a record and thus corresponding
intuitively to a situation) consisting of the set, X, where X : qw(P) (i.e. X is a witness set
for q and P) and a function, f, whose domain is X and such that for any a ∈ X, f(a) is a
situation which shows that a has property Q. In general for distributive readings of mono-
tone increasing quantifiers, q, we can say that a witness for q(P,Q) provides a witness set
X of type qw(P) and a function which shows that every member of X has the property Q.
For distributive readings of monotone decreasing quantifiers we need a different kind of
function together with the witness set. Here we have to check that everything which has
both property P and propertyQ is a member of the witness set. Thus we need a function, f,
whose domain is the set of objects having both P andQ, such that if a is in this set then f(a)
is a situation which shows that a is a member of the witness set X. These two kinds of func-
tions correspond exactly to the evaluation procedures suggested in Barwise and Cooper
(1981) quoted in (5).

(5) To evaluate X ∈ D(A) do the following:

1. Take some subset w of A which you know to be in D(A)
2. (i) For mon↑ D(A), check w ⊆ X.

(ii) For mon↓ D(A), check (X ∩ A) ⊆ w
3. If there is such a w, the sentence is true. Otherwise it is false.
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Using pairs of witness sets and functions as witnesses for quantificational ptypes is also
closely related to the treatment of quantification in Martin-Löf type theory using Σ-types
and dependent types. (See, for example, discussion in Ranta, 1994.) A witness for the Σ-
type (6a) would be an ordered pair as characterized in (6b).

(6) a. (Σx : A)B(x)
b. ⟨a, b⟩ where a : A and b : B(a)

In the following subsections we will develop the tools we need to make our analysis
precise in terms of the TTR machinery we have developed so far to create a witness-
based analysis of quantfiers. We will also consider how we can move away from a
set-based account of quantification to a type-based approach where we can estimate
the probability of a quantificational ptype being witnessed on the basis of our previous
experience.

7.2.3 Relating properties, types, and sets

A property, P, can be pure, as in (7a), that is, P.bg has exactly one field, the required ‘x’-
field; or it can be restricted by including additional fields in the background as in (7b), the
restricted property of being an individual which is a dog that barks.

(7) a. ˹λr:
[
x:Ind

]
.
[

e : bark(r.x)
]
˺

b. ˹λr:[x:Indc:dog(x)] .
[

e : bark(r.x)
]
˺

The ability to restrict properties will be important for analysing dynamic quantification
where information from the first argument of the quantifier relation is passed to the sec-
ond argument of the quantifier relation and this is what enables the treatment of donkey
anaphora. Thus every farmer who owns a donkey likes it will be treated as the ‘every’-
relation holding between the property of being a farmer and owning a donkey and the
property of being a farmer who owns a donkey and likes it thus providing an antecedent for
it within the second property (see Chapter 8, Section 8.3). However, it will also be impor-
tant to be able to “purify” such restricted properties, that is, relate them systematically to a
corresponding property whose background contains just the one ‘x’-field. This will allow
us to avoid the proportion problem that can arise in the analysis of donkey anaphora; that
is, in computing whether a sentence like most farmers who own a donkey like it is true,
we need to ensure that the majority of farmers who own a donkey are such that they like
it and not that the majority of pairs of farmers and donkeys where the farmer owns the
donkey are such that the farmer likes the donkey. Thus we need a property of individuals,
not of farmer-donkey pairs. Suppose we have the restricted property (8a). We will define
an operation on functions which will yield the pure property (8b).

(8) a. ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like(r.x, r.y)
]
˺
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b. ˹λr:
[
x:Ind

]
.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠 :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x=r.x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

e :
[

e : like(⇑𝔠.x, ⇑𝔠.y)
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

˺

This purification operation changes the property in (8a), a property of farmers who own a
donkey, into the property (8b), a property of individuals. The restriction in (8a) has been
lowered into the body of the property and labelled with ‘𝔠’, intuitively a local context in the
type returned by the function.

We first define an operation which will generalize a type to the type containing one of
its non-dependent fields. This is just one way of many to operate on a type to make it more
general. Consider (9).

(9) [
x : Ind
e : dog(x) ]

We can pick out the ‘x’-field which is not dependent, unlike the ‘e’-field. The result is (10)

(10)
[

x : Ind
]

In general for a record type, T, we will represent the generalization of T to its non-
dependent ℓ-field as Tℓ.

The general definition of this is (11), repeated in Appendix A11.6.

(11) If T : RecType, ℓ ∈ labels(T) and ⟨ℓ,T ʹ⟩ ∈ T where T ʹ: Type (that is, [ℓ,T ʹ] is a
non-dependent field in T), then the generalization of T to its ℓ-field, T ℓ, is

[
ℓ : T ʹ

]

We denote the purification operation on properties by𝔓 and define it as in (12).

(12) If P : Ppty, then

if P.bgx = P.bg, then

𝔓(P) = P

otherwise:

𝔓(P) is ˹λr:P.bgx . [
𝔠 : P.bg ∥

[
x=r.x

]

e : P(𝔠)
]˺

(Recall that T∥r is the result of specifying or anchoring T with the record r as defined in
Appendix A11.7.)

(12) represents one of two options for purifying a property. It yields the property of being
something such that the background conditions P.bg are met and the body of the property
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is met under those conditions. The alternative is to say that the property yielded is the
property of being something such that if the background conditions P.bg are met, then the
body of the property is met under those conditions. This alternative, which has the effect
of universal quantification over situations which meet the background conditions, will be
represented by the operator ‘𝔓∀’ characterized in (13).

(13) If P : Ppty, then

if P.bgx = P.bg, then𝔓∀(P) = P

otherwise:

𝔓∀(P) is ˹λr:P.bgx . ((r ʹ :P.bg∥
[
x=r.x

]
)→

[
e : P(r ʹ)

]
)˺

The option presented by ‘𝔓∀’ will become relevant in our discussion of donkey anaphora
in Chapter 8, example (60). For now, we will continue the discussion with the existential
variant, ‘𝔓’.

As an example let us apply𝔓 to (8a). The result will be (14)

(14) ˹λr:
[
x:Ind

]
.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠 :

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∥
[
x=r.x

]

e : ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like(r.x, r.y)
]
˺(𝔠)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

˺

According to the definition of the specification of a record type by a record, (15a) represents
(15b).

(15) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∥
[
x=r.x

]

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x=r.x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x, y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

To understand the reduction of the type in the ‘e’-field in (14) we represent it first in the
official notation for dependent fields as in (16a). This represents the same as (16b) (by
β-conversion) and its abbreviatory notation in the context of (14) is (16c).
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(16) a. ⟨λv:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like(r.x,r.y)
]
˺(v), ⟨𝔠⟩⟩

b. ⟨λv:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind
c1:farmer(x)
y:Ind
c2:donkey(y)
e:own(x,y)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like(v.x,v.y)
]
, ⟨𝔠⟩⟩

c.
[

e : like(⇑𝔠.x,⇑𝔠.y)
]

Making these substitutions yields (8b).
If P is a pure property, we will use the notation P{a} to represent the type P(

[
x=a

]
). If

P{a} is witnessed we say that a has property P. We can now define the type of objects which
have P, which we will represent as𝔗(P). We introduce this type as in (17).

(17) a. If P : Ppty and P is pure, then𝔗(P) : Type.
b. a : 𝔗(P) iff𝔓(P){a} is witnessed.

There is a different route to a type with the same witnesses as𝔗(P). We have previously
defined [↓P] as the set of objects which have the property P, as in Chapter 5, example (53).
For any set, X, we can define a type whose witnesses are exactly the members of X. We will
represent this type as𝔗(X) and introduce it as in (18) (repeated in Appendix A5).

(18) a. If T is a type and X : set(T), then𝔗(X) is a type
b. a : 𝔗(X) iff a ∈ X

Given this, it is straightforward to see that (19) holds.

(19) For any pure property, P, a : 𝔗(P) iff a : 𝔗([↓P])

What distinguishes these two types is the method they suggest for determining whether
something is a witness for the type. In the case of 𝔗([↓P]) we have to first determine the
complete set of objects which have the property and then determine whether the object in
question is a member of the set. In the case of𝔗(P) we only have to determine whether the
object in question has the property P. Computing the set of all objects which have a prop-
erty may be viable when we are considering a property whose extension is a small finite set
of objects (for example, if the property is that of being a dog in a particular small situation)
but it does not seem feasible in the case of large finite sets or infinite sets. We will return
to this issue in Section 7.3 when we consider the interpretation of generalized quantifiers
which are classically treated by comparing sets and we will consider an alternative in terms
of types and estimated probabilities.

7.2.4 Types of witness sets for quantifiers

In this section we will discuss the characterization of types of witness sets for various gen-
eralized quantifiers as a step on our way to characterizing a witnessed-based account of
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generalized quantifiers. The witness sets we characterize will be very close to those of Bar-
wise andCooper (1981), though not exactly the same in all cases. In general for a quantifier
relation, q, and property, P, a witness set, X, of type qw(P) must meet two conditions. The
first is that it must be a subset of the property extension of P. We now have two ways of
expressing this as shown in (20).

(20) a. X ⊆ [↓P]
b. X : set(𝔗(P))

(20a)makes explicit the connection to the original definition of witness sets by Barwise and
Cooper. (20b) is an equivalent condition on X which does not involve the computation of
the complete property extension of P.

The second condition whichmust bemet by witnesses, X, of qw(P) is a cardinality condi-
tion on X. Thismay be an absolute condition on the size of X or itmay involve a comparison
of the size of X with the size of the property extension of P, that is, [↓P]. Thus even though
we have a way of avoiding the computation of the total property extension in the first con-
dition on witness sets, we will not always be able to avoid it in the second condition. It is
for this reason that we will move to probability estimations in the next section.

The witness condition for ‘existw(P)’ is given in (21).

(21) X : existw(P) iff

1. X : set(𝔗(P))
2. |X| = 1

Note that this differs from Barwise and Cooper in that it requires that the witness set
contain exactly one object having propertyP rather than at least one such object. The quan-
tifier relation ‘exist’ is used in interpreting the English determiner a and also the singular
determiner some. Plural some corresponds to the quantifier relation ‘existpl’. The witness
condition for ‘existwpl(P)’ is given in (22).

(22) X : existwpl(P) iff

1. X : set(𝔗(P))
2. |X| ≥ 2

Correspondingly we can define the witness condition for ‘now(P)’ is given in (23).

(23) X : now(P) iff

1. X : set(𝔗(P))
2. |X| = 0

(23) could, of course, be given more concisely as (24).

(24) X : now(P) iff X = ∅

The witness condition for ‘everyw(P)’ is given in (25).

(25) X : everyw(P) iff

1. X : set(𝔗(P))
2. |X| = |[̌𝔗(P)]|
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Note that (25) requires X to be identical with [̌𝔗(P)] and we could, of course, express the
witness condition more succinctly as (26) if we are not concerned about demonstrating
that the witness conditions for the types of witness sets for all quantifiers follow the same
pattern.

(26) X : everyw(P) iff X = [̌𝔗(P)]

Either way, we seem committed to computing the set [↓P] in order to compute a witness
set of ‘every’ and P and this can therefore lead to problems if [↓P] is a large set. A standard
way of avoiding the computation of this set in the interpretation of universal quantification
is to associate universal quantification with a function so that, using the notions we have
built up, a witness for ‘every(P,Q)’ would be a function from 𝔗(P) to 𝔗(Q) (see Ranta,
1994, for discussion of how this is done in a standardMartin-Löf type theory). This avoids
computing the property extension of P if we have the right view of functions as intensional
objects or procedures, rather than the notion of function as a set of ordered pairs as is
standard in set theory. We will make use of such functions when we come to treat the
witness conditions for quantificational ptypes. Such a treatment on its own does not yield
a characterization of a witness set, however, and thus does not immediately yield a way of
treating plural discourse anaphora with a universal quantifier as antecedent as in (27).

(27) Every dog ran into the field. They had seen the rabbits.

For this reason we will pursue the witness set approach and attempt to solve the problem
of large sets by introducing probability estimation.

In order to account for the witness condition for ‘mostw’ we assume that there is a thresh-
old, θmost(P), which tells you what proportion of the property extension of P has to be
included in the witness set. This is possibly an oversimplification in that the threshold may
depend on more than the quantifier relation and the first argument property to the rela-
tion. A common assumption in the generalized quantifier literature is that ‘most(P,Q)’ is
true just in case at least one more than half of the Ps are Q (see, for example, Peters and
Westerståhl, 2006). This may be true if the property extension of P is a small finite set. But
it hardly seems to be the case for an example involving a larger set as in (28).

(28) Most supporters in the stadium cheered when the goal was scored.

(28) does not appear to be true if only one more than half of the forty thousand supporters
in the stadium cheered. Rather we would expect the number of cheering supporters to be
something in excess of 75% or 85% of the supporters in the stadium. For discussion of this
issue see, for example, Kotek et al. (2015); Solt (2016). The unclarity as to exactly which
proportion is involved leads us to introduce a threshold which can vary with the context
and the speaker. This accounts for proportional readings but not for the superlative reading
discussed in these works.

The witness condition for ‘mostw(P)’ is given in (29).

(29) X : mostw(P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmost(P)

Clause 2 in (29) requires us to count both the witness set, whichmay be quite large, like the
number of supporters in a stadium, as well as the property extension of P. We will address
this by using probability estimations in the next section.
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TheEnglish determinermany, has two readings: absolute andproportional.Wewill treat
this in terms of two quantifier relations ‘manya’ and ‘manyp’. For any property, P, we will
assume that thresholds, θmanya(P) and θmanyp(P) are provided. These will indicate, respec-
tively, the number of objects having property P that will count as many and the proportion
of the set of objects having P that will count as many. The witness condition for ‘manywa (P)’
is given in (30).

(30) X : manywa (P) iff

1. X : set(𝔗(P))
2. |X| ≥ θmanya(P)

The witness condition for ‘manywp (P)’ is given in (31).

(31) X : manywp (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmanyp(P)

The quantifier relations corresponding to few are treated in an exactly similar fashion to
those corresponding tomany except that the cardinality of thewitness set or the proportion
of the property extension included in the witness set is required to be less than or equal to
the relevant threshold. The witness condition for ‘feww

a (P)’ is given in (32).

(32) X : feww
a (P) iff

1. X : set(𝔗(P))
2. |X| ≤ θfewa

(P)

The witness condition for ‘feww
p (P)’ is given in (33).

(33) X : feww
p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≤ θfewp

(P)

The quantifier relations corresponding to a few use the same thresholds as those corre-
sponding to few but in the case of a few the size of the witness set and the proportion of
the witness set to the property extension have to be greater than or equal to the threshold.
The witness condition for ‘a_feww

a (P)’ is given in (34).

(34) X : a_feww
a (P) iff

1. X : set(𝔗(P))
2. |X| ≥ θfewa

(P)

The witness condition for ‘a_feww
p (P)’ is given in (35).

(35) X : a_feww
p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θfewp

(P)
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7.3 Relating witness sets to probabilities

In general, our strategy for relating witness sets to probabilities will involve two conditions,
the first of which is the same as we had in the previous section; that is, that the witness set,
X, is a set of objects which have the property, P, i.e. X : set(𝔗(P)). The second condition,
however, will place a constraint on the value of a conditional probability which we will
represent as p(𝔗(X)‖𝔗(P)), that is, the probability for any object a that it is of type 𝔗(X)
given that it is of type 𝔗(P).² Similar probabilities associated with quantifiers have been
suggested by Emerson (2020). Here we will take a frequentist view of this probability and
define it according to the equation in (36).

(36) p(T1‖T2) = |[̌T1∧T2]|

|[̌T2]|
if T2 is witnessed and 0 otherwise.

Clearly, this of itself will not help if we wish to avoid counting the set of witnesses of T1
or T2. However, probabilities can be estimated on the basis of previous experience. We
will assume that an agent has available in memory a finite set of Austinian propositions,
𝔍, recording judgements previously made. We will define a notion of having a type with
respect to a set of Austinian propositions,𝔍, using a :𝔍 T to represent “a is of type T with
respect to𝔍”. This notion is defined in (37).

(37) a. a :𝔍 T if [ sit = a
type = T ] ∈𝔍

b. If T = (T1 ∧ T2), then a :𝔍 T if a :𝔍 T1 and a :𝔍 T2
c. Otherwise a ̸:𝔍 T

We will use the notation [̌T]𝔍 to represent the extension of T with respect to𝔍, defined in
(38).

(38) [̌T]𝔍 = {a ∣ a :𝔍 T}

We can now define the notion of estimate of p(T1‖T2) based on𝔍, p𝔍(T1‖T2), as in (39).

(39) p𝔍(T1‖T2) =
|[̌T1∧T2]𝔍|

|[̌T2]𝔍|

A measure of reliability of the estimate could be related to the number of instances
observed, that is, about which a judgement has been made, for example as in (40).

(40) reliability(p𝔍(T1‖T2)) = ln min(|[̌T1]𝔍|, |[̌T2]𝔍|)

This could still involve an agent in a serious amount of counting which might be unin-
tuitive from a psychological point of view. From a computational point of view it would
be straightforward enough to keep track of how many objects of each type have already
been judged and to increment these numbers when a new object of the type is encoun-
tered. However, we do not seem to be aware of how many objects of a given type we have
encountered when the numbers get high. For example, I know that I have seen a lot of dogs
in my life but I have no idea how many. It would also not explain how I could estimate the

² We contrast this with p(𝔗(X)|𝔗(P), the probability that there is something of type𝔗(X), given that there is
something of type𝔗(P). See Cooper et al. (2014a) for discussion.
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probability that any person in a stadium is wearing an IFK Göteborg scarf just by look-
ing around the stadium but not exactly counting the number of people in the stadium and
the number of those wearing the scarf. This seems to point to the related proposals based
on Austinian propositions involving Bayesian reasoning about probability which are sug-
gested in Cooper et al. (2014a). An important difference between what we are doing here
and what we did in the earlier work is that here we assume that the Austinian propositions
in𝔍 are categorical rather than probabilistic.We could, of course, derive a set of categorical
propositions from a set of probabilistic propositions by choosing categorical propositions
for all those in the probabilistic set whose probabilities exceed a given threshold.

Here we will look at the straight frequentist interpretation of probabilities associated
with types of witness sets of quantifiers as this can be shown to relate directly to the
characterization of these types in Section 7.2.4 and assume that these probabilities can be
estimated on the basis of a (tractably small) set,𝔍, of propositions available to the agent in
memory. For convenience in the discussion below, we will repeat the second clause of the
non-deterministic characterization from Section 7.2.4 for comparison.

The witness condition for ‘existw(P)’ is given in (41).

(41) X : existw(P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) = 1

|[̌𝔗(P)]|
(corresponds to |X| = 1)

It is easy to see that the clauses (1) and (2) in (41) are equivalent to the non-probabilistic
version if we take the frequentist interpretation of the conditional probability in (36). Noth-
ing is gained by going to the extra expense of computing the probability here. All we need
to do is check that the witness set is a singleton and that its member is of the type𝔗(P).

The witness condition for ‘existwpl(P)’ is given in (42).

(42) X : existwpl(P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ 2

|[̌𝔗(P)]|
(corresponds to |X| ≥ 2)

The probabilistic condition is again equivalent to the non-probabilistic condition and there
is no point in going to the extra expense of computing the probability.

The witness condition for ‘now(P)’ is given in (43).

(43) X : now(P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) = 0 (corresponds to |X| = 0)

Again the probabilistic and non-probabilistic conditions are equivalent and there is no
point to computing the probability since all we have to do is check that the witness set
is the empty set.

The witness condition for ‘everyw(P)’ is given in (44).

(44) X : everyw(P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) = 1 (corresponds to |X| = |[̌𝔗(P)]|)
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Again the probabilistic and non-probabilistic conditions are equivalent given the fre-
quentist interpretation of probability. However, here there is some point to the probability
for semantic processing. Both the conditions as formulated require counting the set of
objects which have the property, P, which can be intractable especially if the set is infinite
or finite and reasonably large. However, the probability can be estimated on the basis of a
finite number of observations. The more relevant observations you have, the more reliable
your estimate. Consider the sentence in (45).

(45) Every dog barks when it is time to go for a walk

An utterance of (45) is naturally interpreted to be quantifying over dogs in general, or at
least those which are physically capable of barking. I have no practical way of determin-
ing the truth or falsity of this sentence, though I can make an estimate on the basis of my
observations of dogs in pre-walk situations. If all relevant observations of dogs involved
the dog barking, then I can estimate that the sentence is true. Of course, if I have only
observed two or three dogs, my estimate is not very reliable even though it is consistent
with my experience. If on the other hand I have observed hundreds of situations where a
dog is about to go for a walk, all of them with the dog barking, then it seems like a more
reliable estimate, although my experience will not show conclusively that it will be true.
How do sentences like this get used in a dialogue? Consider the (constructed) dialogue
in (46).

(46) A and B are about to take A’s dog for a walk. The dog, realizing that a walk is in the
offing, begins to bark excitedly.
A : I must apologize for the racket.
B : Not to worry. Every dog barks when it is time to go for a walk. B is

thinking of her past experience of dogs in similar situations.
A : Yes, that’s right. A is thinking of her past experience of dogs in similar

situations.

A and B are agreeing on the basis of their own distinct observations. They both know what
the sentence means but they both also know that it is not practically possible for a human
agent to verify the truth of the sentence on the set-based view or its equivalent frequentist
probabilistic interpretation and therefore that the basis for the assertion must be a proba-
bility estimation. The situation seems similar to that with predicates of personal taste on
the kind of approach taken by Cooper (2015, 2017a). Consider the (constructed) dialogue
in (47).

(47) A and B are eating lunch together and have just been served soup
A : (tasting the soup) Hhm, this soup is good. A is basing her assertion on her

taste sensations.
B : (also tasting the soup) You’re right. It is. B is basing her assertion on her

taste sensations.

Again A and B are agreeing on the basis of their own distinct observations. The reason here,
however, does not have to do with the impracticality of counting a large set but rather that
it is not possible to directly observe another person’s taste sensation. But there is also an
important difference between (46) and (47). In (46) there is a fact of the matter which is
being discussed. For example, consider the continuation of (46) given in (48) where a third
dialogue participant, C, joins the conversation.
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(48) C : Actually, I used to have a dog which never barked except when he saw
another dog or a squirrel.

B : OK, then, most dogs bark when it’s time for a walk / #Well, I think that
every dog barks when it’s time for a walk

This contrasts with a continuation of (47) in a similar vein.

(49) C : No, this soup is not good.
A : #OK, then the soup is sort of/mostly good / Well, I think it’s good.

What the examples have in common is that the justification for the assertions of the
same “proposition” is different facts based on personal experience. Where they differ is
in whether there is an objective fact or not.

A similar discussion holds formost. The witness condition for ‘mostw(P)’ is given in (50).

(50) X : mostw(P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ θmost(P) (corresponds to

|X|
|[↓P]|

≥ θmost(P))

As usual the frequentist interpretation of the conditional probability is equivalent to the
corresponding non-probabilistic. In order to see this note that (51) holds.

(51) |[̌𝔗(X)∧𝔗(P)]|
|[̌𝔗(P)]|

= |X|
|[↓P]|

(51) holds because of the equalities in (52).

(52) a. |[̌𝔗(X)]| = |X| since [̌𝔗(X)] = X
b. [̌𝔗(P)] = [↓P]
c. |[̌𝔗(X) ∧𝔗(P)]| = |[̌𝔗(X)]| since [̌𝔗(X)] ⊆ [̌𝔗(P)] (since X : set(𝔗(P)))

Again, to make an evaluation when large sets are involved we may need to estimate the
relevant probability on the basis of our own experience and the kind of dialogue which we
illustrated for every might occur.

The witness condition for ‘manywa (P)’ is given in (53).

(53) X : manywa (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥

θmanya
(P)

[[̌𝔗(P)]]
(corresponds to |X| ≥ θmanya(P))

Again the probabilistic condition on the frequentist interpretation is equivalent to the non-
probabilistic one since both require that the cardinality of X is greater than or equal to
θmanya(P).

The witness condition for ‘manywp (P)’ is given in (54).

(54) X : manywp (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ θmanyp(P) (corresponds to

|X|
|[↓P]|

≥ θmanyp(P))
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Again, the frequentist interpretation of the probabilisitic condition is equivalent to the non-
probabilistic condition and with large sets we may need to estimate the probability rather
than compute the cardinality of the witness set.

The same holds for the quantifier relations corresponding to few and a few. The witness
condition for ‘feww

a (P)’ is given in (55).

(55) X : feww
a (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≤ θfewa (P)

[[̌𝔗(P)]]
(corresponds to |X| ≤ θfewa

(P))

The witness condition for ‘feww
p (P)’ is given in (56).

(56) X : feww
p (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≤ θfewp

(P) (corresponds to |X|
|[↓P]|

≤ θfewp
(P))

The witness condition for ‘a_feww
a (P)’ is given in (57).

(57) X : a_feww
a (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ θfewa (P)

[[̌𝔗(P)]]
(corresponds to |X| ≥ θfewa

(P))

The witness condition for ‘a_feww
p (P)’ is given in (58).

(58) X : a_feww
p (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ θfewp

(P) (corresponds to |X|
|[↓P]|

≥ θfewp
(P))

7.4 Witness conditions for quantificational ptypes

In general there are two witness conditions that can be associated with quantificational
ptypes q(P,Q) where q is a quantifier relation andP andQ are properties. These correspond
to the two evaluation procedures suggested by Barwise and Cooper (1981) in connection
with witness sets for monotone increasing and decreasing quantifiers respectively. The two
conditions are given in (59).

(59) a. s : q(P,Q) iff s : [ X : qw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

b. s : q(P,Q) iff s : [ X : qw(P)
f : ((a : (𝔗(P) ∧𝔗(Q)))→

[
x=a : 𝔗(X)

]
) ]

(59a) is the condition to be associated with monotone increasing quantifiers. It says that
s is of the quantificational ptype just in case it provides an appropriate witness set (in a
field labelled ‘X’) and a function (in a field labelled ‘f ’) from objects, a, in that witness set
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to situations (modelled as records) which show that a has the purified property derived
from the second argument of the quantificational ptype. (59b) is the condition to be asso-
ciated with monotone decreasing quantifiers. It says that s is of the quantificational ptype
just in case it provides an appropriate witness set (in a field labelled ‘X’) and a function
from objects, a, which have both the property which is the first argument and the purified
property derived from the second argument to a situation (record) which shows that a is a
member of the witness set.

For each quantifier relation, q, we have to saywhether ptypes constructedwith q have the
witness condition (59a) or (59b).We shall call these the generalwitness conditions. Judging
from the anaphoric possibilities associated with natural language quantified expressions
the witness conditions used for some quantifier relations are not the general witness con-
ditions but simpler conditions (which we will call particular witness conditions) using an
equivalent type. That is, if the relevant witness condition expressed in (59) is s : T what
actually gets used is s : T ʹ where T is witnessed if and only if T ʹ is witnessed. We shall
discuss these cases as we go through the witness conditions associated with the individual
quantifier relations.

The general witness condition for ‘exist(P,Q)’ is given in (60).

(60) s : exist(P,Q) iff s : [ X : existw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

This requires that a witness for ‘exist(P,Q)’ must be a record providing a pair of a singleton
set whose member is an object which has property P and a function whose domain is this
set which returns for any a a situation in which a has (the purification of ) the property
Q. Thus if we let ‘dogʹ’ and ‘bark'’ represent the properties indicated in (61a) and (61b)
respectively then a witness for ‘exist(dogʹ,bark')’ will according to (60) be of the type (61c).

(61) a. ˹λr:
[
x:Ind

]
.
[

e : dog(r.x)
]
˺

b. ˹λr:
[
x:Ind

]
.
[

e : bark(r.x)
]
˺

c. [ X : existw(dogʹ)
f : ((a : 𝔗(X))→bark'{a}) ]

It is trivial to show that (61c) has a witness just in case (62) has a witness.

(62) [
x : 𝔗(dogʹ)
e : bark'{x} ]

The argument is essentially that there is a singleton set containing a dog all of whose mem-
bers bark just in case there is a dog which barks. We might prefer to have the particular
witness condition for ‘exist(P,Q)’ in (63).

(63) s : exist(P,Q) iff s : [ x : 𝔗(P)
e : 𝔓(Q){x} ]

Apart from its intuitive simplicity and correspondence to the classical DRT treatment
of indefinites as well as to the use of Σ-types to interpret indefinites in type theory, the
particular witness condition provides a component in the witness (in the ‘x’-field) which
can be picked up on by singular anaphora in examples like (64).

(64) A dog is barking. It is right outside my window
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The general witness condition for ‘existpl(P,Q)’ is (65).

(65) s : existpl(P,Q) iff s : [
X : existwpl(P)
f : ((a : 𝔗(X))→𝔓(Q){a})

]

This corresponds to a distributive reading of plural some. It says intuitively that a situation,
s, is of type ‘existpl(P,Q)’ just in case s provides a set of objects which have property P with
at least twomembers and a function which shows that eachmember of the set has property
Q. In this case the witness set provides us with a suitable antecedent for plural anaphora as
in (66) and we do not need a particular witness condition.

(66) Some dogs are barking. They are right outside my window.

The general witness condition for ‘no(P,Q)’ is given in (67).

(67) s : no(P,Q) iff s : [ X : now(P)
f : ((a : (𝔗(P) ∧𝔗(Q)))→

[
x=a : 𝔗(X)

]
) ]

The only witness set allowed (that is, the only set of type now(P), nomatter what P is) is the
empty set. Suppose that we find some object, a, which has both properties P and Q, then
the function will return a situation (record) that shows that a is in the empty set. There
is, however, no such situation. The only way that there can be a function of this type is if
the set of objects which have both P and Q is also the empty set. While this is technically
correct and fits the general pattern formonotone decreasing quantifiers, it does not seem to
be an intuitive account of how we would check that ‘no(P,Q)’ is witnessed. More intuitive
is to check each object that has property P and find that it does not have property Q. This
method is equivalent to the first and the relationship between the two corresponds to the
equivalence between (68a) and (68b) in first order logic.

(68) a. ¬∃x[P(x) ∧ Q(x)]
b. ∀x[P(x)→¬Q(x)]

In order to do this, wewill use the notion of negation given inCooper andGinzburg (2011a,
2012). First we say that two types, T1 and T2 preclude each other, T1⊥T2, just in case there
is no possibility in which [̌T1] and [̌T2] overlap. That is, nothing can be of both types. We
then introduce negated types as in (69).

(69) a. if T is a type, then ¬T is a type
b. a : ¬T iff for some type, T ʹ, such that T⊥T ʹ, a : T ʹ

We will define the particular witness condition for ‘no(P,Q)’ as (70).

(70) s : no(P,Q) iff s : [ X : everyw(P)
f : ((x : 𝔗(X))→¬𝔓(Q){x}) ]

Some evidence that English uses the particular witness condition rather than the general
one comes from the fact that we can have plural discourse anaphora related to a noun
phrase with no as its determiner, as in (71).

(71) No dog barked. They were all busy gnawing on a bone.

Clearly, they does not refer to the witness set of type ‘now(dogʹ)’, which would have to be
the empty set, but rather to a witness set of type ‘everyw(dogʹ)’, the set of all dogs. This is an
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instance of complement set anaphora, first discussed in the psychology literature by Moxey
and Sanford (1987); Sanford and Moxey (1993) and discussed in the semantics literature
by Kibble (1997); Nouwen (2003); Lücking and Ginzburg (2019, 2022) among others.

The general witness condition for ‘every(P,Q)’ is given in (72).

(72) s : every(P,Q) iff s : [ X : everyw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

In this case we do not need a particular witness condition. (72) correctly predicts the
availability of plural discourse anaphora as in (73).

(73) Every dog barked. They had been disturbed by the intruder.

The same holds for most. The general witness condition for ‘most(P,Q)’ is given in (74).

(74) s : most(P,Q) iff s : [ X : mostw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

In this case we do not need a particular witness condition. (74) correctly predicts the
availability of plural discourse anaphora as in (75).

(75) Most dogs bark when somebody unknown comes into their territory. They are
disturbed by an intruder.

Note that the occurrence of they here can be interpreted to refer not to all dogs or dogs
in general but to the witness set of dogs containing most dogs. (This is what Moxey and
Sanford call REFSET anaphora.) It can, however, also be interpreted to refer to dogs in
general; that is, all dogs are disturbed by an intruder but not all of them bark when this
happens. This is referred to as MAXSET anaphora by Moxey and Sanford. This could
be taken as motivation for having a field which introduces the property ‘dog’ in the sign
corresponding to most dogs in the manner suggested in Chapter 3. Alternatively, it might
be considered as motivation for an additional field corresponding to P in the witness for
‘most(P,Q)’. We will leave this issue unresolved. It seems clear, though, as has been pointed
out in the literature (Nouwen, 2003), that COMPSET anaphora is not possible with most.
That is, they in (76) cannot refer to dogs which do not bark when somebody unknown
comes into their territory.

(76) #Most dogs bark when somebody unknown comes into their territory. They never
feel threatened whatever happens.

The lack of this reading is consistent with the witness condition in (74).
Similar remarks can be made for many. The general witness condition for ‘manya(P,Q)’

is given in (77).

(77) s : manya(P,Q) iff s : [ X : manywa (P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

The general witness condition for ‘manyp(P,Q)’ is given in (78).

(78) s : manyp(P,Q) iff s : [
X : manywp (P)
f : ((a : 𝔗(X))→𝔓(Q){a})

]
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For both absolute and proportional readings ofmanyREFSET andMAXSET anaphora are
available but not COMPSET. There is no motivation for a particular witness condition.

The general witness condition for ‘fewa(P,Q)’ is given in (79).

(79) s : fewa(P,Q) iff s : [ X : feww
a (P)

f : ((a : (𝔗(P) ∧𝔗(Q)))→
[

x=a : 𝔗(X)
]
) ]

The general witness condition for ‘fewp(P,Q)’ is exactly similar as given in (80).

(80) s : fewp(P,Q) iff s : [ X : feww
p (P)

f : ((a : (𝔗(P) ∧𝔗(Q)))→
[

x=a : 𝔗(X)
]
) ]

These witness conditions involve computing first the set of all objects that have both prop-
erty P and Q and then checking that all the members of the set are in the witness set. A
more intuitive and less computationally expensive way of achieving an equivalent result
is to find a sufficient number of objects that have property P but which don’t have prop-
erty Q (in our terms they have a property which precludes them having Q). What counts
as a sufficient number of objects? It has to be a number of objects with property P such
that only few objects having property P remain; that is, it has to be a set with at least the
cardinality of the set whose members have P minus the threshold, θfew in the case of an
absolute quantifier. In the case of a proportional quantifier the proportion of objects hav-
ing P but not Q has to be greater than one minus the proportional threshold. We treat
this by introducing types of complement witness sets for few. The absolute case is given
in (81).

(81) a. If feww
a (P) is a type, then feww

a (P) is a type
b. X : feww

a (P) iff

1. X : set(𝔗(P))
2. |X| ≥ |[̌𝔗(P)]| − θfewa

(P)

The proportional case is given in (82).

(82) a. If feww
p (P) is a type, then feww

p (P) is a type

b. X : feww
p (P) iff

1. X : set(𝔗(P))
2. |X|

|[̌𝔗(P)]|
≥ 1 − θfewp

(P)

Clearly, computing whether a set is a witness for one of these new types can involve com-
puting the cardinality of the set of objects which have property P and for this reason it may
be more tractable to estimate a probability. The relevant probabilities here are similar to
those associated with many. The witness condition for feww

a (P) is given in (83).

(83) X : feww
a (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P)) ≥ θfewa (P)

[[̌𝔗(P)]]
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The witness condition for feww
p (P) is given in (84).

(84) X : feww
p (P) iff

1. X : set(𝔗(P))
2. p(𝔗(X)‖𝔗(P) ≥ 1 − θfewp

(P)

Nowwe can give particular witness conditions for ptypes constructedwith the quantifier
predicates ‘fewa’ and ‘fewp’. The witness condition for ‘fewa(P,Q)’ is given in (85).

(85) s : fewa(P,Q) iff s : [ X : feww
a (P)

f : ((x : 𝔗(X))→¬𝔓(Q){x})
]

The witness condition for ‘fewp(P,Q)’ is given in (86).

(86) s : fewp(P,Q) iff s : [ X : feww
p (P)

f : ((x : 𝔗(X))→¬𝔓(Q){x})
]

Whydowe use complement witness set types for few in the particular witness conditions
rather than witness sets related to many? We might naively have thought that few dogs
barkedwas equivalent tomany dogs did not bark. A standard analysis of few in the literature
is as not many; that is, few dogs barked is equivalent to not many dogs barked or it is not
true that many dogs barked. On the kind of analysis that we are proposing here neither of
these will work. We illustrate this with an example. Suppose that we have a dog hotel with
twenty-five dogs in residence. Suppose that what counts as many dogs in the context is ten
and what counts as few is five. This means that few dogs barkedmeans that five or less dogs
barked. If this is true then it follows that many dogs did not bark (fifteen or more, and we
only need ten to count as many) and it also follows that it is not the case that many dogs
barked (since at most five did and for many dogs to bark we would need ten). Thus few
seems to imply both many not and not many. However, the implications do not go back
the other way. Suppose that many dogs did not bark. This means that ten or more dogs
did not bark. If ten dogs did not bark then fifteen did bark. Thus many dogs barked at the
same time as many dogs did not bark. It does not follow that few dogs barked. Suppose
that it is not the case that many dogs barked. This means that less than ten dogs barked.
For example, nine dogs barked. While nine is not many in this context neither is it few.
We might say quite a lot or quite a few. That is, our analysis allows for a gap between what
counts as many and what counts as few and thus not many is not equivalent to few.

Adopting the particularwitness condition predicts the existence ofCOMPSETanaphora
as in (87).

(87) Few dogs in the kennels barked. They didn’t hear the intruder.

However, there are convincing examples in the literature that few will also allow REFSET
anaphora, which would be predicted by the general witness condition. Nouwen (2003)
quotes (88) from Evans (1980).

(88) Few congressmen admire Kennedy, and they are very junior.

One way to handle this is to allow both the general and particular witness conditions as
alternatives. Another solution to consider is letting the general witness condition be used
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for absolute few and the particular witness condition for proportional few. This would per-
haps be consistent with Kibble’s (1997) observation that complement anaphora seems to
be associated with monotone decreasing proportional quantifiers.

The general witness condition for ‘a_fewa(P,Q)’ is given in (89).

(89) s : a_fewa(P,Q) iff s : [ X : a_feww
a (P)

f : ((a : 𝔗(X))→𝔓(Q){a}) ]

The general witness condition for ‘a_fewp(P,Q)’ is given in (90).

(90) s : a_fewp(P,Q) iff s : [ X : a_feww
p (P)

f : ((a : 𝔗(X))→𝔓(Q){a}) ]

These will correctly predict the availability of REFSET anaphora as in (91).

(91) A few dogs barked. They had heard the intruder.

If these are the only witness conditions then this will correctly predict the unavailability of
COMPSET anaphora as shown by (92), where they cannot refer to the dogs that did not
bark.

(92) #A few dogs barked. They hadn’t heard the intruder

7.4.1 Some examples

In this section we show how these definitions could be used to express content for English
utterances.

A dog barks
The content of the indefinite article, a(n), is given in (93). This is ‘SemIndefArt’

(93) λQ:Ppty .
˹λc:Cntxt .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P ∣ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

The content of a dog would then be as in (94).

(94) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

.

λP:Ppty .
⎡
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=P ∣ℱ(dog') : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

Finally, the content of a dog barks would be as in (95).



7.4 WITNESS CONDITIONS FOR QUANTIFICATIONAL PTYPES 317

(95) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

Following the particular witness condition for ‘exist(P,Q)’ in (63) we can infer (96).

(96) s : exist(dogʹ,bark'|ℱ(dog')) iff

s : [
x : 𝔗(dogʹ)
e : 𝔓(bark'|ℱ(dog')){x}

]

ℱ(dogʹ) is given in (97).

(97) [
x : Ind
e : dog(x) ]

‘bark'|ℱ(dog')’ is thus (98).

(98) λr:[x:Inde:dog(x)] .
[

e : bark(r.x)
]

This means that ‘𝔓(bark'|ℱ(dog'))’ is (99).

(99) λr:
[
x:Ind

]
.
⎡
⎢
⎢
⎣

𝔠 : [
x=r.x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

This means we can restate (96) as (100).

(100) s : exist(dogʹ,bark'|ℱ(dogʹ)) iff

s :

⎡
⎢
⎢
⎢
⎢
⎣

x : 𝔗(dogʹ)

e :
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

Note that the record type on the right hand side of (100) is truth-conditionally equivalent
to the simpler record types in (101); that is, for any pair of the types there is a witness for
one of the types just in case there is a witness for the other type.

(101) a. [ x : 𝔗(dogʹ)
e : bark(x) ]

b.
⎡
⎢
⎢
⎣

x : Ind
c : dog(x)
e : bark(x)

⎤
⎥
⎥
⎦

The additional structure in (100) is unnecessary for this example but it will help us when
we come to donkey anaphora.
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The witness condition in (100) means that anything of the type resulting from applying
(95) to a context will also be of the type (102).

(102)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty

e :

⎡
⎢
⎢
⎢
⎢
⎣

x : 𝔗(dogʹ)

e :
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Assuming a theory of anaphora where anaphoric references must relate to paths in a
witness, s, for the content, we could potentially have all of the examples of anaphora in
(103).

(103) a. A dog barked. They (dogs in general, s.restr, MAXSET) do when they notice an
intruder.

b. A dog barked. They (dogs in general which bark, s.scope) make such a racket.
c. A dog barked. That (an event of a dog barking, s.e, event anaphora) frightened

off an intruder.
d. A dog barked. It (the dog which barked, s.e.x, individual, REFSET, anaphora)

heard an intruder.

No dog barks
The content for no dog barks would be derived in an exactly similar way as that for a dog
barks. We obtain (104).

(104) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty
e : no(restr, scope)

⎤
⎥
⎥
⎦

˺

Following the particular witness condition in (70), we can infer (105).

(105) s : no(dogʹ,bark'|ℱ(dog')) iff

s : [
X : everyw(dog')
f : ((x : 𝔗(X))→¬𝔓(bark'|ℱ(dog')){x})

]

Given that𝔓(bark'|ℱ(dog')) is (99) we can restate (105) as (106).

(106) s : no(dogʹ,bark'|ℱ(dog')) iff

s :

⎡
⎢
⎢
⎢
⎢
⎣

X : everyw(dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦
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Anything of the type resulting from applying (104) to a context will also be of the
type (107).

(107)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty

e :

⎡
⎢
⎢
⎢
⎢
⎣

X : everyw(dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠:[x=⇑
2x:Ind

e:dog(x) ]

e:bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This suggests that we could potentially have the anaphora in (108).

(108) a. No dog barked. They (dogs in general, s.restr, MAXSET) normally do when
they notice an intruder.

b. No dog barked. They (dogs in general which bark, s.scope) normally make
such a racket.

c. No dog barked. That (an event of no dog barking, s.e, event anaphora) made it
easy for the intruder.

d. No dog barked. They (the dogs which didn’t bark, s.e.X, COMPSET anaphora)
did not hear the intruder.

few dogs bark
The content for an utterance of few dogs bark is either (109a) or (109b).

(109) a. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty
e : fewa(restr, scope)

⎤
⎥
⎥
⎦

˺

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=dogʹ : Ppty
scope=bark' ∣ℱ(dog') : Ppty
e : fewp(restr, scope)

⎤
⎥
⎥
⎦

˺

Following the particular witness conditions in (85) and 86, we obtain (110a) and (110b)
respectively.

(110) a. s : fewa(dog', bark'|ℱ(dog')) iff

s : [ X : feww
a (dog')

f : ((x : 𝔗(X))→¬𝔓(bark'|ℱ(dog')){x})
]
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b. s : fewp(dog', bark'|ℱ(dog')) iff

s : [ X : feww
p (dog')

f : ((x : 𝔗(X))→¬𝔓(bark'|ℱ(dog')){x})
]

As with our treatment of no these can be unpacked as (111).

(111) a. s : fewa(dog', bark'|ℱ(dog')) iff

s :

⎡
⎢
⎢
⎢
⎢
⎣

X : feww
a (dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦

b. s : fewp(dog', bark'|ℱ(dog')) iff

s :

⎡
⎢
⎢
⎢
⎢
⎣

X : feww
p (dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦

Anything of the type resulting from applying the functions in (109) to a context will also
be of the types in (112).

(112) a.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

restr=dogʹ:Ppty
scope=bark' ∣ℱ(dog'):Ppty

e:

⎡
⎢
⎢
⎢
⎢
⎣

X : feww
a (dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

b.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

restr=dogʹ:Ppty
scope=bark' ∣ℱ(dog'):Ppty

e:

⎡
⎢
⎢
⎢
⎢
⎣

X : feww
p (dog')

f : ((x : 𝔗(X))→¬
⎡
⎢
⎢
⎣

𝔠 : [
x=⇑2x : Ind
e : dog(x) ]

e : bark(𝔠.x)

⎤
⎥
⎥
⎦

)

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This suggests that we could potentially have the anaphora in (113).

(113) a. Few dogs barked. They (dogs in general, s.restr, MAXSET) normally do when
they notice an intruder.

b. Few dogs barked. They (dogs in general which bark, s.scope) normally make
such a racket.
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c. Few dogs barked. That (an event of few dogs barking, s.e, event anaphora)
made it easier for the intruder.

d. Few dogs barked. They (the dogs which didn’t bark, s.e.X, COMPSET
anaphora) did not hear the intruder.

Note that (113) suggests that an occurrence of the pronoun they has three options when
anaphorically related to few dogs. Of these, the COMPSET reading (113d) possibly has a
garden path effect (as suggested by an anonymous referee). That is, at the point at which we
hear they we tend to assume one of the readings (113a,b). If this is true, a possible explana-
tion might be in terms of the length of the path involved. Possibly we compute antecedents
on shorter pathsmore easily ormore quickly and look for antecedents on longer paths only
when there are reasons to reject the readings involving the shorter paths.

7.5 Long distance dependencies

Let us consider how to derive the content of who Sam hugged as a relative clause.
We use hugV to represent the content of hug as a transitive verb, characterized as
in (114).

(114) hugV = ˹λc:Cntxt . λ𝒬:Quant . ˹λr:
[
x:Ind

]
.
[
e:hug(r.x, 𝒬)

]
˺˺

Our theory of syntax in terms of event types means that what have been called “gaps” or
“traces” in other theories of syntax would somehow have to correspond to non-events in
which nothing happens and do not have any temporal extent. This strongly suggests that
they do not exist. Instead we will take a strategy similar to that pursued, for example, in
combinatory categorial grammar (see, for example, Steedman, 2012) where hug can also
be interpreted as a verb phrase whose content is “looking for” awh-phrase content.We will
add a third component to our contexts with label ‘𝔤’ for assignments associated with gaps.
Thus we will redefine the type Cntxt as (115).

(115)
⎡
⎢
⎢
⎣

𝔰 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎦

We will represent this content as hugVP and characterize it in terms of hugV as in (116a)
which is identical with (116b).

(116) a. hugVP = ˹λc:[Cntxt
𝔤:
[
x0:Ind

]] . hugV(c)(λP:Ppty . P(
[
x=c.𝔤.x0

]
))˺

b. ˹λc:[Cntxt
𝔤:
[
x0:Ind

]] . ˹λr:
[
x:Ind

]
.
[
e:hug(r.x, λP:Ppty . P(

[
x=c.𝔤.x0

]
))
]
˺˺

Let us now consider the content of Sam hugged. The parametric content of Sam, which
we will represent as Sam, is (117).

(117) Sam = ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[x:Inde:named(x, “Sam”)]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺
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In order to combine Samwith hugVP we will need to adjust the combination of parametric
contents based on functional application so that it takes account of incrementation of the
context path 𝔴.x in addition to 𝔰.x to allow for more than one wh-dependency. This uses
the operation ‘incr’ defined in Chapter 4, example (101). We will use (118a) to represent
(118b).

(118) a. incrπ1 ,…,πn
(φ,T)

b. incrπ1
(…incrπn

(φ,T),…,T)

We will informally use (119) to represent incrementation of all paths which lead to assign-
ments so that we do not have to keep track of the required subscripts as we add additional
assignments to our contexts.

(119) incr(φ,T)

We now modify the definition of the combination of α and β, α@β, given in Chapter 4,
example (103) to (120).

(120) If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺

The content of Sam hugged, which we will represent as Sam⌢hugged, is Sam@hugVP,
that is (121a) which is identical with (121b).

(121) a. Sam⌢hugged =

˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔤:
[
x0:Ind

]

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Sam𝔠⇝𝔠.f(c)(hugVP,𝔠⇝𝔠.a(c))˺

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔤:
[
x0:Ind

]

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[
e:hug(c.f.x, λP:Ppty . P(

[
x=c.𝔤.x0

]
))
]
˺

In order to treat wh-phrases we will add a fourth component to contexts labelled with
‘𝔴’ for an assignment. Thus we revise Cntxt to (122).

(122)
⎡
⎢
⎢
⎢
⎣

𝔰 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎦
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The content of who, which we will represent as who, is given in (123).

(123) who = ˹λc:[Cntxt
𝔴:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔴.x0

]
)˺

This content is identical with the universal resource ‘SemWhPron’ and is exactly parallel
to ‘SemPron’ but using the context label ‘𝔴’ rather than ‘𝔰’. There will also be a universal
lexical resource ‘LexWhPron’ parallel to ‘LexPron’, characterized in (124).

(124) If Tphon is a phonological type, then LexWhPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemWhPron:PQuant

]

(124) makes a wh-word such as who into a noun phrase and this is important, for
instance, if it occurs in a noun phrase position such as the subject or object of a sentence.
However, these phrases also have a role as complementizers aswho does in relative clauses,
that is in a fronted position in the sentence and not in an argument position to a verb or
preposition. It is important in this case to recognize that this is awh-NP, that is, an NPwith
a wh-content. For this we have the type in (125) which we can abbreviate as WhNP.

(125) [
NP
cont=SemWhPron : PQuant ]

(125) would, however, only allow the wh-index introduced by ‘SemWhPron’, that is ‘0’ and
not allowing for incremented versions of this obtained by combining constituents. A more
general way of characterizing the type WhNP is to treat it as a basic type with the witness
condition in (126).

(126) σ : WhNP iff σ : NP, σ.cont is 𝒬 and 𝒬.bg ⊑
[
𝔴:
[
xi:Ind

]]
, for some natural

number i.

In order to be able to characterize the kind of binding involved in combining who with
Sam hugged we will use the notation r[π = v] for a record, r, path, π, and value v. This
notation is characterized in (127).

(127) If r is a record, π is ℓ0.ℓ1.….ℓn where ℓ0, ℓ1, …, ℓn are labels and v is an object of
some type, then

r[π = v] is the record, r ʹ, exactly like r except for the possible difference that
r ʹ.π = v.

We can make (127) more explicit as in (128), repeated in Appendix A11.1.

(128) If r is a record, π is ℓ0.ℓ1.….ℓn where ℓ0, ℓ1, …, ℓn are labels and v is an object of
some type, then

if π ∉ paths(r), then r[π = v] is the smallest record, r ʹ, such that

1. π ∈ paths(r ʹ)
2. r ʹ.π = v
3. for any π' ∈ paths(r), π' ∈ paths(r ʹ) and r ʹ.π' = r.π'

continued
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if π ∈ paths(r), then r[π = v] is the smallest record, r ʹ, such that

1. π ∈ paths(r ʹ) and r ʹ.π = v
2. for any π' ∈ (paths(r) − {π'' ∣ π'' ≤ π}), π' ∈ paths(r ʹ) and r ʹ.π' = r.π'

Recall that π1 ≤ π2 as used in (128) means that π1 is an initial subpath of π2 (see
Chapter 4, example (38)).

We generalize this notation so that we can use a record to modify another record. This is
characterized in (129), where tpaths(r) represents the set of total paths in r (Chapter 1,
p. 31).

(129) If r1 is a record and r2 is a record such tpaths(r2) = {π1, …, πn}, then r1[r2] is
r1[π1 = r2.π1]…[πn = r2.πn]

This nowgives uswhatwe need to characterize the content of the relative clausewho Sam
hugged, whichwewill represent aswho⌢Sam⌢hugged, as in (130a)which is identical with
(130b). (130b) is in turn equivalent to (130c) because of the constraint on the extensional
predicate ‘hug’ similar to that for ‘find’ given in (65) on p. 268.

(130) a. who⌢Sam⌢hugged =

˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

˹λr1:
[
x:Ind

]
.

who𝔠⇝𝔠.f(c[𝔴.x0 = r1.x]) (˹λr2:
[
x:Ind

]
.

Sam⌢hugged𝔠⇝𝔠.a(c[𝔤.x0 = r2.x])˺)˺˺

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

˹λr1:
[
x:Ind

]
.
[
e:hug(c.𝔠.a.f.x, λP:Ppty . P(

[
x=r1.x

]
))
]
˺˺

c. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

˹λr1:
[
x:Ind

]
.
[
e:hug†(c.𝔠.a.f.x, r1.x)

]
˺˺
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In order to achieve this we need a general operation of wh-combination which will pass
whatever context restrictions are associated with the wh-phrase and those that are associ-
ated with the phrase with which it is being combined up to context restrictions associated
with the whole phrase except for those associated with the paths ‘𝔴.xi’ (for the wh-phrase
which is binding the gap) and ‘𝔤.xj’ (for the gap being bound). The discharging of the
requirements associated with these two paths will involve subtracting them from the types
which are passed up to the context type for the combined phrase.

As record types are labelled sets (Chapter 1, p. 32ff.), this subtraction is based on set-
theoretic subtraction.

We first define what it means to subtract the field labelled ℓ from an assignment type, T,
in (131).

(131) If T ⊑ Assgnmnt and ℓ ∈ labels(T), then

1. if labels(T) = {ℓ}, then T⊖ ℓ = Assgnmnt
2. otherwise, T⊖ ℓ = T − {⟨ℓ,φ⟩}, where ⟨ℓ,φ⟩ ∈ T.

Based on (131) we can define the subtraction of a path to an assignment in a context type
given in (132).

(132) (preliminary)

If T ⊑
⎡
⎢
⎢
⎣

Cntxt

ℓ1:[
Assgnmnt
ℓ2:Ind

]

⎤
⎥
⎥
⎦

, then T⊖ ℓ1.ℓ2 is T ∧̣
[
ℓ1:(T.ℓ1 ⊖ ℓ2)

]

This is a preliminary definition because it does not take account of what happens
if the path that is being removed has dependent fields associated with it. Suppose, for
example, that the context type associated with who were (133) where we represent the
presupposition that what is associated with who is a person.

(133)
⎡
⎢
⎢
⎣

Cntxt
𝔴 :

[
x0 : Ind

]

𝔠 :
[

e : person(⇑𝔴.x0)
]

⎤
⎥
⎥
⎦

Suppose that T is (133). Then T ⊖ 𝔴.x0 according to our present definition would be
(134) which is not a record type since there is a dependence on ‘𝔴.x0’ but there is no
such path.

(134)
⎡
⎢
⎢
⎣

Cntxt
𝔴 : Assgnmnt
𝔠 :

[
e : person(⇑𝔴.x0)

]

⎤
⎥
⎥
⎦

The solution to this is to extend subtraction so that it removes not only the path referred
to but also those paths that depend on it. Thus the result of T⊖ 𝔴.x0 should rather be
(135).

(135)
⎡
⎢
⎢
⎣

Cntxt
𝔴 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎦ continued
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In this particular case, the resulting type, (135), is actually identical with Cntxt.
Actually, things are more complicated that this. For any path we remove by this

method we must recursively remove all the dependencies on that path. Thus if some-
thing had depended on ‘𝔠.e’ in the above example wewould have had to remove that and
so on. In our context types, as defined here, all the dependencies on assignments will
occur under the label ‘𝔠’, that is, in the propositional context. It is perhaps most straight-
forward to use the unique identifier notation introduced in Chapter 2, example (84), in
order to identify paths which depend on another path. Consider again (134). In unique
identifier notation this is (136).

(136)
⎡
⎢
⎢
⎣

Cntxt

𝔴 :
[

x0 0
: Ind

]

𝔠 :
[

e : person( 0 )
]

⎤
⎥
⎥
⎦

In (136), the path ‘𝔠.e’ depends on ‘𝔴.x0’ because the representation of the type at
the former contains the unique identifier which indexes the latter. We give a general
characterization of dependency between paths in a record type in (137) (repeated in
Appendix A11.6).

(137) If T is a record type, π1 ∈ paths(T) and π2 ∈ tpaths(T), then π2 depends
on π1 iff, in unique identifier notation, π1 is indexed with i and the
representation of T.π2 contains i , for some natural number i.

Given this notion of dependency it is then possible to define the set of paths in a record
type, T, which constitute a dependency family on some particular path, π, which we will
represent as pathsπ(T). This is given in (138) (repeated in Appendix A11.6).

(138) If T is a record type and π ∈ paths(T) then the dependency family of π in T,
pathsπ(T), is that subset, Π, of paths(T) such that

1. π ∈ Π
2. for any π' ∈ Π and π'' ∈ tpaths(T), if π'' depends on π', then π'' ∈ Π
3. for and π' ∈ Π and π'' ∈ paths(T), if π' depends on π'', then π'' ∈ Π

We use π∕T as an shorter alternative notation for pathsπ(T).

That is, the dependency family of π includes π itself, anything that depends on any-
thing in the dependency family and anything on which something in the dependency
family depends. This dependency family gives rise to a generalization of the original
type, T, which we will call T generalized to π, T π. We define this in (139) (repeated in
Appendix A11.6).

(139) If T is a record type and π ∈ paths(T), then T generalized to π, T π, is the
smallest labelled set T ʹ such that pathsπ(T) ⊆ paths(T ʹ) and for all
π' ∈ tpaths(T ʹ), T ʹ.π = T.π

We give a definition of a more general version of (139) in (140) (repeated in
Appendix A11.6) where we generalize to several paths in a type simultaneously.
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(140) If T is a record type and {π1, …, πn} ⊂ paths(T), then T generalized to
π1, …, πn, Tπ1 ,…,πn , is the smallest labelled set T ʹ such that for all πi ∈ {π1, …, πn},
pathsπi

(T) ⊆ paths(T ʹ) and for all π' ∈ tpaths(T ʹ), T ʹ.π = T.π

This notion of generalization is important if we wish to associate presuppositions with
wh-phrases and extract them from the context type for local accommodation at the point
at which the wh-phrase binds a gap.

We can now generalize the subtraction operation, ⊖. First we will characterize
branching paths in a labelled set, as in (141).

(141) If X is a labelled set and π ∈ tpaths(X) then π is branching in X iff

1. there is some π' ∈ tpaths(X) such that π' ≠ π
2. there is some π'' such that π'' < π' and π'' < π

(Recall that π1 < π2 means that π1 is a proper initial subpath of π2, Chapter 4,
example (38).)

We characterize subtraction in general for labelled sets as (142) (repeated in
Appendix A1).

(142) a. If X is a labelled set, ℓ ∈ labels(X) and ⟨ℓ,φ⟩ ∈ X, then

X⊖ ℓ = X − {⟨ℓ,φ⟩}

b. If X is a labelled set, ⟨ℓ,φ⟩ ∈ X and ℓ.π ∈ tpaths(X), then

if ℓ.π is branching in X, then

X⊖ ℓ.π = (X − {⟨ℓ,φ⟩}) ∪ {⟨ℓ,φ⊖ π⟩}

otherwise

X⊖ ℓ.π = X − {⟨ℓ,φ⟩}

If X is a labelled set and π1, …, πn ∈ tpaths(X), then we write (143a) for (143b)

(143) a. X⊖ π1, …, πn
b. X⊖ π1 ⊖…⊖ πn

If T is a record type, π ∈ paths(T) and pathsπ(T) = {π, π1, …, πn}, then we
normally write T⊖ π∕T for T⊖ π, π1, …, πn.

We now extend subtraction to include some cases where it would otherwise be
undefined.

(144) 1. If T is Assgnmnt∧T ʹ, T ʹ is a record type and ℓ ∈ labels(T ʹ), then
(a) if labels(T ʹ) = {ℓ}, T⊖ ℓ = Assgnmnt
(b) otherwise, T⊖ ℓ = Assgnmnt ∧ (T ʹ⊖ ℓ∕T)

2. If T is PropCntxt∧T ʹ and π ∈ tpaths(T ʹ) then
(a) if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
(b) otherwise, T⊖ π = PropCntxt ∧ (T ʹ⊖ π∕T ʹ)
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We can now create a preliminary definition of combination based on functional appli-
cation for wh-phrases and sentences with gaps, ‘@wh’, characterized in (145).

(145) (preliminary)
If

1. α : [bg:CntxtType
fg:(bg→Quant)],

2. β : [bg:CntxtType
fg:(bg→RecType)],

3. α.bg ⊑
[
𝔴:
[
xi:Ind

]]
for some natural number, i, and

4. β.bg ⊑
[
𝔤:
[
xj:Ind

]]
for some natural number, j,

then the whi,j-combination of α and β, α@whi,j
β, is

˹λc:([α.bg⊖𝔴.xi]𝔠⇝𝔠.f∧̣incr([β.bg⊖ 𝔤.xj]𝔠⇝𝔠.a, α.bg)) .

𝔓(˹λr1:[
x:Ind
𝔴:
[
xi=⇑x:Ind

]] .

α𝔠⇝𝔠.f(c[r1]) (𝔓(˹λr2:[
x:Ind
𝔤:
[
xj=⇑x:Ind

]] .

incr(β𝔠⇝𝔠.a, α.bg)(c[r2])˺))˺)˺

Recall that𝔓(P) represents the purification of the property P defined in (12) on p. 300.

We can adjust (145) to take account of any presuppositions introduced by the wh and
gap interpretations as in (146).

(146) If

1. α : [bg:CntxtType
fg:(bg→Quant)],

2. β : [bg:CntxtType
fg:(bg→RecType)],

3. α.bg ⊑
[
𝔴:
[
xi:Ind

]]
for some natural number, i, and

4. β.bg ⊑
[
𝔤:
[
xj:Ind

]]
for some natural number, j,

then the whi,j-combination of α and β, α@whi,j
β, is

˹λc:([α.bg⊖paths𝔴.xi(α.bg)]𝔠⇝𝔠.f∧̣
incr([β.bg⊖ paths𝔤.xj(β.bg)]𝔠⇝𝔠.a, α.bg)) .

𝔓(˹λr1:[α.bg
𝔴.xi]𝔴.xi⇝x .

α𝔠⇝𝔠.f,𝔴.xi⇝x(c[r1]) (𝔓(˹λr2:[β.bg
𝔤.xj]𝔤.xj⇝x .

incr(β𝔠⇝𝔠.a,𝔤.xj⇝x, α.bg)(c[r2])˺))˺)˺
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The effect of the property purification here will be to locally accommodate whatever
presuppositions are associated ‘𝔴.xi’ or ‘𝔤.xj’ at the level at which the wh-binding takes
place.

We leave the treatment of constraints on long distance dependencies like wh-
constructions (such as island constraints) to futurework. The strategy for handling these
would be to elaborate on the conditions 1–4 in (146) or as conditions associated with
constituent structure rules.

We can then define a version of ‘ContForwardApp’ (forward application of contents)
based on whi,j-combination as given in (147).

(147) If Tfun, Targ and Tres are types such that if α : Tfun and β : Targ, then α@whi,j
β is

defined and of type Tres, then

ContForwardApp@whi,j
(Tfun,Targ,Tres)

is
λu:

[
cont:Tfun

]
⌢
[
cont:Targ

]
.
[
cont=u[0].cont@whi,j

u[1].cont:Tres
]

We can then characterize a notation for phrase structure rules which use
‘ContForwardApp@whi,j

’ as in (148).

(148) If Tmother, Tdaughter1 , and Tdaughter2 are sign types, Tdaughter1 ⊑
[
cont=c1:Cont

]
where

c1.bg ⊑
[
𝔴:
[
xi:Ind

]]
, Tdaughter2 ⊑

[
cont=c2:Cont

]
where c2.bg ⊑

[
𝔤:
[
xj:Ind

]]
and

Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@whi,j
T ʹdaughter2 : Targ) : Tres

is
Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@whi,j

(Targ, Tres)

We introduce a sign type Rel which requires the category to be ‘rel’ for relative clause and
types NPwhi

and S/i whose witness conditions are given in (149).

(149) a. α : NPwhi
iff α : NP and α.cont.bg ⊑

[
𝔴:
[
xi:Ind

]]

b. α : S∕i iff α : S and α.cont.bg ⊑
[
𝔤:
[
xi:Ind

]]

The slash notation ‘S∕i’ is derived from the use of slash categories to represent constituents
containing gaps inGeneralized Phrase StructureGrammar (Gazdar et al., 1985) andHead-
Driven Phrase Structure Grammar (Sag et al., 2003). We can now add the rule in (150) to
the language specific resources for English.

(150) Rel⟶ NPwhi
S/j ∣ NP ʹwhi

(@whi,j
S/j':PRecType):PPpty

To form the content of a nounmodified by a relative clause such as child who Samhugged
we use a record type which requires of an individual that it has both the property of being
a child and being hugged by Sam as given in (151).
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(151) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:
⎡
⎢
⎢
⎣

PropCntxt
x:Ind
e:named(x, “Sam”)

⎤
⎥
⎥
⎦

a:PropCntxt

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

˹λr:
[
x:Ind

]
.

[
e1 : child'{r.x}
e2 : who⌢Sam⌢hugged𝔠⇝𝔠.a(c){r.x}

]˺˺

In order to achieve this we will first introduce an operation of property conjunction in
(152). As a preliminary, we introduce types for properties and parametric properties of
particular types of objects. This is done in (152).

(152) a. If T is a type, then TPpty is a type – “the type of properties of objects of type T”
b. P : TPpty iff P : Ppty and P.bg ⊑

[
x:T

]

c. If T is a type, then TPPpty is a type – “the type of parametric properties of
objects of type T”

d. 𝒫 : TPPpty iff 𝒫 : PPpty and for any c : 𝒫.bg, 𝒫(c) : TPpty

We can now characterize property conjunction as in (153).

(153) If T is a type, P1 : TPpty and P2 : TPpty, then the conjunction of P1 and P2, P1&P2,
is

˹λr:
[
x:T

]
. [

e1 : P1{r.x}
e2 : P2{r.x}

]˺

We can now characterize a combination operation, @&, in (154).

(154) If T is a type, α : TPPpty and β : TPPpty then the property conjunction
combination of α and β, α@&β, is

λc:[α.bg]𝔠⇝𝔠.f∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) . α𝔠⇝𝔠.f(c)&incr([β]𝔠⇝𝔠.a, α.bg)(c)

We introduce a version of ‘ContForwardApp’ for ‘@&’ in (155).

(155) If T is a type, then ContForwardApp@&
(T) is

λu:
[

cont : TPPpty
]
⌢
[

cont : TPPpty
]
.

[
cont=u[0].cont@&u[1].cont : TPPpty

]

We can then introduce a notation of constituent structure rules which use
‘ContForwardApp@&

’ in (156).

(156) If T is a type, Tmother, Tdaughter1 , and Tdaughter2 are sign types,
Tdaughter1 ⊑

[
cont : TPPpty

]
and Tdaughter2 ⊑

[
cont : TPPpty

]
, then
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Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@&
T ʹdaughter2 : TPPpty) : TPPpty

is
Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@&

(T)

Finally, we introduce the English rules for combining common nouns with relative clauses.
First we introduce types TN and TRel in (157).

(157) a. If T is a type, then TN and TRel are types.
b. α : TN or TRel iff α : N or Rel and α.cont : TPPpty

For any type, T, we introduce the constituent structure rule in (158).

(158) N⟶TN TRel ∣ TN ʹ(@&
TRel ʹ : TPPpty) : TPPpty

7.6 Summary of resources introduced

Items that are new since Chapter 6 are marked “New!” and items that have been revised
since Chapter 6 are marked “Revised!”.

7.6.1 Universal grammar resources

7.6.1.1 Types

Loc —
⎡
⎢
⎢
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎥
⎥
⎦

Phon — a basic type
e : Phon iff e is a phonological event

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Assgnmnt Revised! — a basic type
r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}
If T is Assgnmnt∧T ʹ, T ʹ is a record type and ℓ ∈ labels(T ʹ), then

1. if labels(T ʹ) = {ℓ}, T⊖ ℓ = Assgnmnt
2. otherwise, T⊖ ℓ = Assgnmnt ∧ (T ʹ⊖ ℓ∕T)

PropCntxt Revised! — a basic type
r : PropCntxt iff r : Rec and labels(r) ∩ {x0, x1, …} = ∅

If T is PropCntxt∧T ʹ and π ∈ tpaths(T ʹ) then
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1. if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
2. otherwise, T⊖ π = PropCntxt ∧ (T ʹ⊖ π∕T ʹ)

Cntxt Revised! —
⎡
⎢
⎢
⎢
⎣

𝔰 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎦

CntxtType — a basic type
T : CntxtType iff T ⊑ Cntxt

xType — a basic type
T : xType iff T : RecType and x ∈ labels(T)

Ppty — [
bg : xType
fg : (bg→RecType) ]

purification of properties, 𝒫(P) New!
If P : Ppty, then

if P.bgx = P.bg, then

𝔓(P) = P

otherwise:

𝔓(P) is ˹λr:P.bgx . [
𝔠 : P.bg ∥

[
x=r.x

]

e : P(𝔠)
]˺

purification∀ of properties, 𝒫∀(P) New!
If P : Ppty, then

if P.bgx = P.bg, then

𝔓∀(P) = P

otherwise:

𝔓∀(P) is ˹λr:P.bgx . ((r ʹ :P.bg∥
[
x=r.x

]
)→

[
e : P(r ʹ)

]
)˺

P{a}New!
If P is a pure property, P{a} represents the type P(

[
x=a

]
)

𝔗(P) New!
If P : Ppty and P is pure, then𝔗(P) : Type.
a : 𝔗(P) iff𝔓(P){a} is witnessed.

existw(P)New!
If P : Ppty, then existw(P) : Type.
X : existw(P) iff

1. X : set(𝔗(P))
2. |X| = 1
(equivalently, p(𝔗(X)‖𝔗(P)) = 1

|[̌𝔗(P)]|
)
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existwpl(P)New!
If P : Ppty, then existwpl(P) : Type.
X : existwpl(P) iff

1. X : set(𝔗(P))
2. |X| ≥ 2
(equivalently, p(𝔗(X)‖𝔗(P)) ≥ 2

|[̌𝔗(P)]|
)

now(P)New!
If P : Ppty, then now(P) : Type.
X : now(P) iff

1. X : set(𝔗(P))
2. |X| = 0
(equivalently, p(𝔗(X)‖𝔗(P)) = 0)

equivalently,

X : now(P) iff X = ∅

everyw(P)New!
If P : Ppty, then everyw(P) : Type.
X : everyw(P) iff

1. X : set(𝔗(P))
2. |X| = |[̌𝔗(P)]|
(equivalently, p(𝔗(X)‖𝔗(P)) = 1)

equivalently,

X : everyw(P) iff X = [̌𝔗(P)]

mostw(P)New!
If P : Ppty, then mostw(P) : Type.
X : mostw(P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmost(P), where .5 < θmost(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θmost(P))

manywa (P)New!
If P : Ppty, then manywa (P) : Type.
X : manywa (P) iff

1. X : set(𝔗(P))
2. |X| ≥ θmanya(P), where θmanya(P) is a natural number, i, such that i > 2.

(equivalently, p(𝔗(X)‖𝔗(P)) ≥
θmanya

(P)

[[̌𝔗(P)]]
)
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manywp (P)New!
If P : Ppty, then manywp (P) : Type.
X : manywp (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmanyp(P), where 0 < θmanyp(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θmanyp(P))

feww
a (P)New!
If P : Ppty, then feww

a (P) : Type.
X : feww

a (P) iff

1. X : set(𝔗(P))
2. |X| ≤ θfewa

(P), where θfewa
(P) is a natural number, i, such that i > 2

(equivalently, p(𝔗(X)‖𝔗(P)) ≤ θfewa (P)
[[̌𝔗(P)]]

)

feww
p (P)New!
If P : Ppty, then feww

p (P) : Type.
X : feww

p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≤ θfewp

(P), where 0 < θfewp
(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≤ θfewp
(P))

a_feww
a (P)New!

If P : Ppty, then a_feww
a (P) : Type.

X : a_feww
a (P) iff

1. X : set(𝔗(P))
2. |X| ≥ θfewa

(P), where θfewa
(P) is a natural number, i, such that i > 2

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θfewa (P)
[[̌𝔗(P)]]

)

a_feww
p (P)New!

If P : Ppty, then a_feww
p (P) : Type.

X : a_feww
p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θfewp

(P), where 0 < θfewp
(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θfewp
(P))

TPptyNew! — if T is a type, then TPpty is a type
P : TPpty iff P : Ppty and P.bg ⊑

[
x:T

]

PlPpty — a basic type
P : PlPpty iff P : Ppty and for some type T, P.bg ⊑

[
x:plurality(T)

]

PPpty — [
bg : CntxtType
fg : (bg→Ppty) ]
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TPPptyNew! — if T is a type, then TPPpty is a type
𝒫 : TPPpty iff 𝒫 : PPpty and for any c : 𝒫.bg, 𝒫(c) : TPpty

Quant — (Ppty→RecType)

PQuant — [
bg : CntxtType
fg : (bg→Quant) ]

QuantDet — (Ppty→Quant)

PQuantDet — [
bg : CntxtType
fg : (bg→QuantDet) ]

PRel2 — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]

PRecType — [
bg : CntxtType
fg : (bg→RecType) ]

Cont — PRecType∨PPpty∨PQuant∨PQuantDet
Cat — a basic type

s, np, det, n, v, vp : Cat

Syn — [
cat : Cat
daughters : Sign* ]

Sign — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

SignType — a basic type
T : SignType iff T ⊑ Sign

S — [
Sign
syn:

[
cat=s:Cat

]]

S/iNew! — if i is a natural number, then S/i is a type
α : S∕i iff α : S and α.cont.bg ⊑

[
𝔤:
[
xi:Ind

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

whNP New! — a basic type
σ : WhNP iff σ : NP, σ.cont is 𝒬, and 𝒬.bg ⊑

[
𝔴:
[
xi:Ind

]]
, for some natural number i.

NPwhi New! — if i is a natural number, then NPwhi
is a type

α : NPwhi
iff α : NP and α.cont.bg ⊑

[
𝔴:
[
xi:Ind

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]

N — [
Sign
syn:

[
cat=n:Cat

]]

TNNew! — if T is a type, then TN is a type
α : TN iff α : N and α.cont : TPPpty

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]
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Rel New! — [
Sign
syn:

[
cat=rel:Cat

]]

TRelNew! — if T is a type, then TRel is a type
α : TRel iff α : Rel and α.cont : TPPpty

NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

Real — a basic type
n : Real iff n is a real number

Card — a basic type
n : Card iff n is a cardinal number (natural numbers with the addition of ℵ0,ℵ1, …)

AmbTempFrame —
⎡
⎢
⎢
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎥
⎥
⎦

TempRiseEventCntxt — [
fix :

[
loc : Loc

]

scale : (AmbTempFrame → Real) ]

TempRiseEvent —
λr:TempRiseEventCntxt .

[
e : (AmbTempFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

PriceFrame —
⎡
⎢
⎢
⎢
⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥
⎥
⎥
⎦

PriceRiseEventCntxt —
⎡
⎢
⎢
⎣

fix : [
loc : Loc
commodity : Ind ]

scale : (PriceFrame → Real)

⎤
⎥
⎥
⎦

PriceRiseEvent —
λr:TempRiseEventCntxt .

[
e : (PriceFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

LocFrame —
⎡
⎢
⎢
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎥
⎥
⎦

LocRiseEventCntxt — [
fix :

[
x : Ind

]

scale : (LocFrame → Real) ]

LocRiseEvent —
λr:LocRiseEventCntxt .

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

Topos — a basic type

If τ : Topos, then τ : [ bg : Type
fg : (bg→Type) ]

7.6.1.2 Predicates
with arity ⟨Phon, Loc⟩

loc — e : loc(u, l) iff u is located at l in e
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with arity ⟨Phon, Ind⟩

speaker — e : speaker(u, a) iff u is the speaker of u in e
audience — e : audience(u, a) iff u is the audience of u in e

with arity ⟨Card⟩

card — X : card(n) iff for some T, X : set(T) and |X| = n
card_at_least — X : card_at_least(n) iff for some T, X : set(T) and |X| ≥ n
card_at_most — X : card_at_most(n) iff for some T, X : set(T) and |X| ≤ n

with arity ⟨Ppty⟩

unique — s : unique(P) iff ∣ [↓P↾ s] ∣= 1

with arity ⟨Ppty,Ppty⟩

exist Revised!

general witness condition

s : exist(P,Q) iff s : [ X : existw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

particular witness condition

s : exist(P,Q) iff s : [ x : 𝔗(P)
e : 𝔓(Q){x} ]

existpl New!

general witness condition

s : existpl(P,Q) iff s : [
X : existwpl(P)
f : ((a : 𝔗(X))→𝔓(Q){a})

]

noNew!

general witness condition

s : no(P,Q) iff s : [ X : now(P)
f : ((a : (𝔗(P) ∧𝔗(Q)))→

[
x=a : 𝔗(X)

]
) ]

particular witness condition

s : no(P,Q) iff s : [ X : everyw(P)
f : ((x : 𝔗(X))→¬𝔓(Q){x}) ]

every Revised!

general witness condition

s : every(P,Q) iff s : [ X : everyw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

mostNew!

general witness condition

s : most(P,Q) iff s : [ X : mostw(P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]
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manya New!

general witness condition

s : manya(P,Q) iff s : [ X : manywa (P)
f : ((a : 𝔗(X))→𝔓(Q){a}) ]

manyp New!

general witness condition

s : manyp(P,Q) iff s : [
X : manywp (P)
f : ((a : 𝔗(X))→𝔓(Q){a})

]

fewa New!

general witness condition

s : fewa(P,Q) iff s : [ X : feww
a (P)

f : ((a : (𝔗(P) ∧𝔗(Q)))→
[

x=a : 𝔗(X)
]
) ]

particular witness condition

s : fewa(P,Q) iff s : [ X : feww
a (P)

f : ((x : 𝔗(X))→¬𝔓(Q){x})
]

fewp New!

general witness condition

s : fewp(P,Q) iff s : [ X : feww
p (P)

f : ((a : (𝔗(P) ∧𝔗(Q)))→
[

x=a : 𝔗(X)
]
) ]

particular witness condition

s : fewp(P,Q) iff s : [ X : feww
p (P)

f : ((x : 𝔗(X))→¬𝔓(Q){x})
]

a_fewa New!

general witness condition

s : a_fewa(P,Q) iff s : [ X : a_feww
a (P)

f : ((a : 𝔗(X))→𝔓(Q){a}) ]

a_fewp New!

general witness condition

s : a_fewp(P,Q) iff s : [ X : a_feww
p (P)

f : ((a : 𝔗(X))→𝔓(Q){a}) ]

with arity ⟨PlPpty,PlPpty⟩

exactly_n — for n a natural number,
s : exactly_n(P, Q) iff s : at_least_n(P, Q)∧at_most_n(P, Q)

at_least_n — for n a natural number,
s : at_least_n(P, Q) iff [̌ℱ((Q↾ s).fg ∣ℱ(P.fg)) ∧̣

[
x:card_at_least(n)

]
] ≠ ∅

at_most_n — for n a natural number,
s : at_most_n(P, Q) iff r : ℱ((Q↾ s).fg ∣ℱ(P.fg)) implies r :

[
x:card_at_most(n)

]
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with arity {⟨T⟩ ∣ T is a type}

be — e : be(a) iff aεe

with arity ⟨Loc,Real⟩

temp — e : temp(l, n) iff n is the temperature at l in e.

with arity ⟨Real,Real⟩

less-than — e : less-than(n, m) iff nεe, mεe, and n < m

with arity ⟨Type,Type,Topos⟩

nec —
If 𝕋 is a modal type system and p ∈ 𝕋, then

s :p nec(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s) ⊑𝕋 T

poss —
If 𝕋 is a modal type system and p ∈ 𝕋, then

s :p poss(T,B, τ) iff s :p B, B ⊑𝕋 τ.bg and τ(s)⊤𝕋T

with arity ⟨RecType,RecType⟩

pov — e : pov(T1,T2) iff T2 is a point of view on T1 in e.
e : pov(T1,T2) implies labels(T2) ⊆ labels(T1)

with arity ⟨Ind,RecType⟩

ltm — e : ltm(a,T) iff T is a’s long-term memory in e.
rbelieve — e : rbelieve(a,T) iff T is a’s religious beliefs in e.
des — e : des(a,T) iff T is a’s desires in e.

7.6.1.3 Properties
P1&P2 New!

If T is a type, P1 : TPpty and P2 : TPpty, then the conjunction of P1 and P2, P1&P2, is

˹λr:
[
x:T

]
. [

e1 : P1{r.x}
e2 : P2{r.x}

]˺

7.6.1.4 Scales
(as in Chapter 5)

7.6.1.5 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)
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SemCommonNoun(Tbg, p)
If p is a predicate with arity ⟨Ind⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If p is a predicate with arity ⟨Rec⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺˺

LexCommonNoun(Tphon, Tbg, p)
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ or ⟨Rec⟩ and Tbg is a type
(of context), then LexCommonNoun(Tphon, Tbg, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(Tbg, p):PPpty

]

SemPropName(Tphon)
If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

LexPropName(Tphon )
If Tphon is a phonological type,
then LexPropName(Tphon) is

Lex(Tphon, NP) ∧̣
[
cnt=SemPropName(Tphon):PQuant

]

SemPron

˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺

LexPron(Tphon)
If Tphon is a phonological type, then LexPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemPron:PQuant

]

SemWhPronNew!

˹λc:[Cntxt
𝔴:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔴.x0

]
)˺

LexWhPron(Tphon)New!
If Tphon is a phonological type, then LexWhPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemWhPron:PQuant

]
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SemNumeral(n)
If n is a real number, then SemNumeral(n) is

˹λc:Cntxt . λP:Ppty . P(
[
x=n

]
)˺

Lexnumeral(Tphon, n)
If Tphon is a phonological type and n is a real number, then Lexnumeral(Tphon, n) is

Lex(Tphon, NP) ∧̣
[
cnt=SemNumeral(n):PQuant

]

SemIndefArt
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

LexIndefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt:(Ppty→PQuant)

]

SemUniversal
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexUniversal(TPhon)
If TPhon is a phonological type, then LexUniversal(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemUniversal:(Ppty→PQuant)

]

SemDefArt
λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P|ℱ(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexDefArt(TPhon)
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemDefArt:(Ppty→PQuant)

]
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SemIntransVerb(Tbg, p)
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind⟩, then
SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If Tbg ⊑
[
𝔠:Rec

]
is a record type (for context) and p is a predicate with arity ⟨Rec,Rec⟩,

then SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x, c.𝔠)
]
˺˺

LexIntransVerb(Tphon, Tbg, p)
If Tphon is a phonological type, Tbg ⊑

[
𝔠:Rec

]
a record type (for context) and p is a

predicate with arity ⟨Ind⟩ or ⟨Rec,Rec⟩, then LexIntransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vi) ∧̣
[
cnt=SemIntransVerb(Tbg, p):PPpty

]

SemTransVerb(Tbg,p)
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr1:
[
x:Ind

]
. 𝒬(˹λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
˺)˺˺

If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind,Quant⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr:
[
x:Ind

]
.
[

e : p(r.x, 𝒬)
]
˺)˺

LexTransVerb(Tphon, Tbg, p)
If Tphon is a phonological type, Tbg a record type (for context), and p is a predicate with
arity ⟨Ind, Ind⟩ or ⟨Ind,Quant⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p):PRel2

]

SemBe

SemBeID

˹λc:[Cntxt
𝔠:
[
ty:Type

]] .

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:c.𝔠.ty

]
. [ x=r1.x, r2.x : c.𝔠.ty

e : be(x) ]˺)˺˺
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SemBescalar

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[ty:Typesc:(ty→Real)]

⎤
⎥
⎥
⎦

.

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:Real

]
. [ x=c.𝔠.sc(r1.x), r2.x : Real

e : be(x) ]˺)˺˺

Lexbe(TPhon)
If TPhon is a phonological type, then LexbeID

(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBeID:PRel2

]

If TPhon is a phonological type, then Lexbescalar
(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBescalar:PRel2

]

FrameType(p)
FrameType is a partial function on predicates, p, with arity ⟨Ind⟩which can be defined
for particular agents and particular times, which obeys the constraint:

FrameType(p) ⊑ [
x : Ind
e : p(x) ]

p_frame

1. If p is a predicate in the domain of FrameType, then p_frame is a predicate with
arity ⟨Rec⟩.

2. e : p_frame(r) iff r : FrameType(p) and e = r

p_pl

1. If p is a singular predicate (i.e. there is no p' such that p = p'_pl) with arity ⟨T⟩,
then p_pl is a predicate with arity ⟨plurality(T)⟩

2. e : p_pl(A) if for all a ∈ A, e : p(a)

CommonNounIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
CommonNounIndToFrame(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(Tphon, Tbg, p_frame)

RestrictCommonNoun
If Tphon is a phonological type, p is a predicate, Tbg and Tres are record types and Σ is
LexCommonNoun(Tphon, Tbg, p), then RestrictCommonNoun(Σ, Tres) is

Σ ∧̣
[

cont=˹λc :Tbg . ˹SemCommonNoun(Tbg, p)(c) ∣Tres ˺˺ : PPpty
]
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IntransVerbIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
IntransVerbIndToFrame(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(Tphon, Tbg, p_frame)

PluralCommonNoun
We assume that ‘pluralnoun’ is a function that maps phonological types for singular
common nouns to corresponding phonological types for plural common nouns.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralCommonNoun(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(pluralnoun(Tphon), Tbg, p_pl)

PluralIntransVerb
We assume that ‘pluralverb’ is a function thatmaps phonological types for singular verbs
to corresponding phonological types for plural verbs.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralIntransVerb(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(pluralverb(Tphon), Tbg, p_pl)

TransVerbToVerbPhraseNew!
If Tphon is a phonological type, Tbg a context type, p is a predicate with arity ⟨Ind, Ind⟩
or ⟨Ind,Quant⟩ and Σ is LexTransVerb(Tphon, Tbg, p), then TransVerbToVerbPhrase(Σ) is

Σ ∧̣ [
cat=vp : Cat
cont=φ : PPpty ]

where φ is

˹λc:Σ.cont.bg∧̣
[
𝔤:
[
x0:Ind

]]
. Σ.cont(c)(λP:Ppty . P{c.𝔤.x0})˺

7.6.1.6 Constituent structure
RuleDaughters(Tdaughters, Tmother)

If Tmother is a sign type and Tdaughters is a type of strings of signs then

RuleDaughters(Tdaughters, Tmother)
is

λu :Tdaughters . Tmother ∧̣
[
syn:

[
daughters=u:Tdaughters

]]

ConcatPhon
λu:

[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]
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Tmother⟶Tdaughter1…Tdaughtern
If Tmother is a sign type and Tdaughter1 , …Tdaughtern are sign types, then

Tmother⟶Tdaughter1…Tdaughtern

represents

RuleDaughters(Tmother, Tdaughter1
⌢…⌢Tdaughtern)∧̣̣ConcatPhon

α@β Revised!

If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β based

on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺

ContForwardApp(Targ, Tres)
If Targ and Tres are types, then ContForwardApp(Targ, Tres) is

λu:[cont:[
bg:CntxtType
fg:(bg→(Targ→Tres))

]]⌢ [cont:[
bg:CntxtType
fg:(bg→Targ)

]] .

[cont=u[0].cont@u[1].cont:[
bg:CntxtType
fg:(bg→Tres)

]]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(T ʹdaughter2 :Targ) :Tres
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and Targ and Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(T ʹdaughter2 : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp(Targ, Tres)

α@whi,j
βNew!

If

1. α : [bg:CntxtType
fg:(bg→Quant)],

2. β : [bg:CntxtType
fg:(bg→RecType)],

3. α.bg ⊑
[
𝔴:
[
xi:Ind

]]
for some natural number, i, and

4. β.bg ⊑
[
𝔤:
[
xj:Ind

]]
for some natural number, j,

then the whi,j-combination of α and β, α@whi,j
β, is

˹λc:([α.bg⊖paths𝔴.xi(α.bg)]𝔠⇝𝔠.f∧̣
incr([β.bg⊖ paths𝔤.xj(β.bg)]𝔠⇝𝔠.a, α.bg)) .
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𝔓(˹λr1:[α.bg
𝔴.xi ]𝔴.xi⇝x .

α𝔠⇝𝔠.f,𝔴.xi⇝x(c[r1]) (𝔓(˹λr2:[β.bg
𝔤.xj ]𝔤.xj⇝x .

incr(β𝔠⇝𝔠.a,𝔤.xj⇝x, α.bg)(c[r2])˺))˺)˺

ContForwardApp@whi,j
(Tfun,Targ,Tres)New!

If Tfun, Targ, and Tres are types such that if α : Tfun and β : Targ, then α@whi,j
β is defined

and of type Tres, then

ContForwardApp@whi,j
(Tfun,Targ,Tres)

is

λu:
[
cont:Tfun

]
⌢
[
cont:Targ

]
.
[
cont=u[0].cont@whi,j

u[1].cont:Tres
]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@whi,j
T ʹdaughter2 :Targ) :Tres New!

If Tmother, Tdaughter1 , and Tdaughter2 are sign types, Tdaughter1 ⊑
[
cont=c1:Cont

]
where

c1.bg ⊑
[
𝔴:
[
xi:Ind

]]
, Tdaughter2 ⊑

[
cont=c2:Cont

]
where c2.bg ⊑

[
𝔤:
[
xj:Ind

]]
and Targ and

Tres are content types, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@whi,j
T ʹdaughter2 : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@whi,j
(Targ, Tres)

α@@β

If α : (T1→ [
bg:CntxtType
fg:(bg→T2)

]) and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@@β, is

˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

𝔠 :
⎡
⎢
⎢
⎣

s : β.bg
f : α(β(s)).bg
a=s.𝔠 : PropCntxt

⎤
⎥
⎥
⎦

𝔰=𝔠.s.𝔰 : Assgnmnt

⎤
⎥
⎥
⎥
⎥
⎦

.

[α]𝔠⇝𝔠.f([β]𝔠⇝𝔠.a(c))(c)˺

ContForwardApp@@(Targ, Tres)
If Targ and Tres are types, then ContForwardApp@@(Targ, Tres) is

λu:
[
cont:(Targ→Tres)

]
⌢
[
cont:Targ

]
.

[
cont=u[0].cont@@u[1].cont:Tres

]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@@T ʹdaughter2 :Targ) :Tres
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and Targ and Tres are content types, then
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Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@@T ʹdaughter2 : Targ) : Tres

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@@(Targ, Tres)

α@&βNew!
If T is a type, α : TPPpty and β : TPPpty then the property conjunction combination of α
and β, α@&β, is

λc:[α.bg]𝔠⇝𝔠.f∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) . α𝔠⇝𝔠.f(c)&incr([β]𝔠⇝𝔠.a, α.bg)(c)

ContForwardApp@&
(T)New!

If T is a type, then ContForwardApp@&
(T) is

λu:
[

cont : TPPpty
]
⌢
[

cont : TPPpty
]
.

[
cont=u[0].cont@&u[1].cont : TPPpty

]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@&
T ʹdaughter2 :

TPPpty) :TPPptyNew!
If T is a type, Tmother, Tdaughter1 , and Tdaughter2 are sign types, Tdaughter1 ⊑
[

cont : TPPpty
]
and Tdaughter2 ⊑

[
cont : TPPpty

]
, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(@&
T ʹdaughter2 : TPPpty) : TPPpty

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp@&
(T)

7.6.1.7 Action rules
(as in Chapter 6)

7.6.2 Universal speech act resources

(as in Chapter 2)

7.6.3 Universal dialogue resources

(as in Chapter 4)

7.6.4 English resources

7.6.4.1 Types and predicates
(as in Chapter 6)
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7.6.4.2 Grammar
Lexical sign types
Let Lexicon be the set of lexical sign types defined inductively as follows. The following

set is included in Lexicon.

{LexPropName(“Dudamel”),
LexPropName(“Beethoven”),
LexPron(“he”),
Lexnumeral(“nine”, 9),
Lexnumeral(“ninety”, 90),
LexIndefArt(“a”),
LexUniversal(“every”),
LexDefArt(“the”),
LexCommonNoun(“composer”, Rec, composer),
LexCommonNoun(“conductor”, Rec, conductor),
LexCommonNoun(“dog”, Rec, dog) (= Σ“dog”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“dog”), DogFrame),
LexCommonNoun(“passenger”, Rec, passenger) (= Σ“passenger”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“passenger”), PassengerFrame),
LexCommonNoun(“temperature”, Rec, temperature) (= Σ“temperature”),
RestrictCommonNoun(Σ“temperature”, AmbTempFrame),
LexIntransVerb(“leave”, Rec, leave),
LexIntransVerb(“run”, Rec, run),
LexIntransVerb(“rise”,

[
𝔠:TempRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:PriceRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:LocRiseEventCntxt

]
, rise),

LexTransVerb(“hug”, Rec, hug),
LexTransVerb(“find”, Rec, find),
LexTransVerb(“seek”, Rec, seek),
LexTransVerb(“worship”, Rec, worship),
LexbeID

(“is”),
Lexbescalar

(“is”),
Lex(“ok”, S),
Lex(“aha”, S) }

Transitive verbs as verb phrases New!
If Σ = LexTransVerb(TPhon, Tbg, p), for some TPhon, Tbg, and p, and Σ ∈ Lexicon, then
TransVerbToVerbPhrase(Σ) ∈ Lexicon.

Constituent structure rule components
CnstrIsA

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N∧̣
[
cont:Ppty

] ]] .

VP∧̣
[
cont=u[2].syn.daughters[2].cont:Ppty

]
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Constituent structure rules
Let CSRules be the set of constituent structure rules, defined inductively as follows. The
following set is included in CSRules.

{S⟶ NP VP ∣ NPʹ(VPʹ:Ppty):RecType,
NP⟶ Det N ∣ Detʹ(@@N ʹ:PPpty):PQuant,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣ V ʹ(NPʹ:Quant):Ppty}

Relative clauses New!
If i and j are natural numbers, then

Rel⟶ NPwhi
S/j ∣ NP ʹwhi

(@whi,j
S/jʹ:PRecType):PPpty

is a member of CSRules
If T is a type, then

N⟶TN TRel ∣ TN ʹ(@&
TRel ʹ : TPPpty) : TPPpty

is a member of CSRules

7.7 Summary

In this chapter we looked at a witness-based account of quantification where we started
by characterizing types of witness sets for quantifiers. This provides us with an account
of generalized quantifiers which is more in line with the ideas expressed by Purver and
Ginzburg (2004); Ginzburg and Purver (2008); Lücking and Ginzburg (2019, 2022) who
argue that clarification and anaphoric phenomena in dialoguemotivate an approachwhere
quantifiers represent sets rather than sets of properties as inMontague’s classical approach.
We have argued that our approach suggests the possibility of accounting for a range of
anaphoric phenomena and will provide some more detailed techniques for the treatment
of anaphora in Chapter 8.

In addition our witness-based account provides a natural approach to a probabilistic
account of quantification and we have suggested that estimations of probability are used
in dialogue exchanges involving quantification in cases where it is obvious that a dialogue
participant could not know whether the quantified statement is true but is able to esti-
mate the probability of its truth based on the dialogue participant’s previous experience or
knowledge.

We presented an account of witness conditions for quantification ptypes based on two
general patterns, one for monotone increasing quantifiers and one for monotone decreas-
ing quantifiers. For a number of quantifiers there is in addition a specific witness condition,
equivalent to the general one, which increases anaphoric possibilities and which also
provide types more closely related to the DRT treatment of quantifiers.

Finally, in preparation for our treatment of quantifier scope ambiguity and binding in
Chapter 8, we sketched a treatment of long distance dependencies where wh-phrases are
treated as quantifiers which bind pronoun interpretations as arguments to verbs which
are in the content but not realized syntactically. This is similar to proposals in categorial
grammar (Steedman, 2012).



8
Type-based underspecification

8.1 Introduction

In this bookwe have argued that an account of the content of natural language utterances in
terms of types provides us with a treatment whichmakes finer grained distinctions than are
possible with a basic possible worlds approach. The fact that types are structured semantic
objects that can be manipulated was important in this analysis. Among other things, types
can bemademore specific, for example by adding additional fields to a record type, thereby
potentially restricting thewitnesses to be a proper subset of those for the less restricted type.
Types can also be generalized, for example by removing fields from a record type, thereby
potentially making the witnesses for the generalized type to be a proper superset of the
witnesses for the original type. Types provide us not only with a way of characterizing
objects or situations but also with a way of generalizing over or underspecifying objects or
situations. For example, we might have a type Fido which has a single witness (some dog
with the name “Fido”, for example). Compare this with a typeDog whose witnesses are any
indvidual which is a dog. Such a type is a single mathematical object which corresponds
to a collection of dogs. In this chapter we will move from associating a single content with
natural language utterances to associating a type of contents with utterances, thus using a
single type to represent a whole collection of potential contents that can be associated with
the utterance. For example, instead of computing two potential contents for the sentence
every boy hugged a dog which are types corresponding informally to (1) we will compute
a single type whose witnesses are those types (in this case, then, a type of types).

(1) a. every boy, x, is such that there is a dog, y, such that x hugged y
b. there is a dog, y, such that every boy, x, is such that x hugged y

Thus the technique we will be developing in this chapter is to “raise” the contents which we
have introduced in previous chapters to types of those contents and thereby underspecify
the contents of utterances.

Being able to represent a potentially large collection of contents as a single underspeci-
fied object is important from a computational perspective, both from a psychological point
of view and from the point of view of processing by computer. This is something that has
been of concern both to theoretical semantics (Reyle, 1993) and computational semantics
(Alshawi, 1992) since at least the early 1990s since it yields a way of computing a single con-
tent representation from which we can compute more specific representations on demand
rather than being forced to compute a potentially large number of different contents and
then have to choose between them. In previous treatments this has standardly involved
building an underspecified version of some kind of representation language such as dis-
course representation (Reyle, 1993) or logical form such as the quasi-logical form (QLF) of
Alshawi (1992) or the representations in minimal recursion semantics (MRS) (Copestake
et al., 2005). The approach here, however, is not to introduce a new kind of representation
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to deal with underspecification but to exploit the natural power of types to underspecify
the objects which are their witnesses. In Section 8.2, we will show how to deal with the
underspecification of quantifier scope in this way and in Section 8.3, we will extend this
treatment of underspecification to include anaphoric readings.

8.2 Quantifier scope and underspecification

Given the kind of interpretation rules we have so far we can obtain a reading for (2a)
which corresponds to the content in (2b), using the abbreviations ‘boy'’ as introduced in
Chapter 5, example (61), hug for the parametric content of hug and every⌢dog for the
parametric content of every dog.
(2) a. a boy hugged every dog

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=boyʹ : Ppty
scope=hug(c)(every⌢dog(c))∣ℱ(boyʹ) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

This, of course, represents the reading where there is a boy such that he hugs every dog. In
order to obtain the reading where every dog has wide scope, we followMontague in basing
our treatment of quantifier scope on the treatment of free pronouns, though without the
contribution of any gender information. Let us imagine just for a moment that such a
pronoun existed in English and is written as it* with the kind of pronoun interpretations
given in Chapter 4, Section 4.6. Then the content for (3a) could be (3b).

(3) a. a boy hugged it*

b. λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=boyʹ : Ppty
scope=hug(c)(λP:Ppty . P{c.𝔰.x0})∣ℱ(boyʹ) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

We will refer to (3b) as ‘a⌢boy⌢hugged⌢it*’. Let us further imagine, contrary to fact,
that English represented the fact that a noun phrase has wide scope over a sentence by
placing it at the beginning of a sentence as in (4a) and giving it an interpretation where the
interpretation of it* gets bound as in (4b).
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(4) a. every dog, a boy hugged it*

b. λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

restr=dogʹ:Ppty
scope=λr:

[
x:Ind

]
. a⌢boy⌢hugged⌢it* (c[𝔰.x0 = r.x])∣ℱ(dogʹ):Ppty

e:every(restr, scope)

⎤
⎥
⎥
⎦

The imaginary English expression (4a) corresponds quite closely to the kind of represen-
tation for wide scope readings that are used in various theories of logical form. A major
difference is that in logical form there is an index corresponding to the label ‘x0’ that we
use in the interpretation which shows that every dog binds it*. This might be represented
something like in (5).

(5) every dogx0
, a boy hugged it*x0

The imaginary sentence (4a) also corresponds closely to Montague’s (1973) treatment
of scope phenomena. Montague would also index the pronoun and use a quantification
rule with the same index which would replace the pronoun with the noun-phrase being
quantified in.

Neither of these options are open to us since our syntax is defined in terms of types of
utterance situations and signs which relate utterance situations to contents. Our realistic
strategy does not allow for the use of additional imaginary utterance structures. For this
reason we will adapt the kind of storage technique used in Cooper (1983). In the original
version of storage, we moved from assigning a single content to a syntactic structure to
assigning a set of contents in order to allow for the ambiguous interpretation of a single
syntactic structure. In our sign-based approach using types, the corresponding move is
not such a major change and the result yields a theory involving underspecified content
rather than a set of contents.

To see this consider the type Sign introduced in Chapter 3. Any object of type Sign will
be of the type in (6).

(6)
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Cont

⎤
⎥
⎥
⎦

The type in (6) is completely underspecified. Any sign will be of this type.We could specify
it with respect to content by making the ‘cont’-field be a manifest field as in (7), where φ is
a particular content.

(7)
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont=φ : Cont

⎤
⎥
⎥
⎦
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Now recall that the manifest field
[
cont=φ:Cont

]
is just a convenient way of writing[

cont:Contφ
]
where Contφ is a singleton type whose only witness is φ if φ : Cont; oth-

erwise it has no witnesses. It is in this sense that the content has been specified to be φ.
Suppose now that we do not have enough information to fully specify the content, that is,
tie it down to be one particular content, but we know that it has to be one of either φ or
ψ. This could be represented by using a join type of two singleton types, Contφ∨Contψ, as
in (8).

(8)
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : Contφ∨Contψ

⎤
⎥
⎥
⎦

(8) is the type of signs whose contents are either φ or ψ. This is, then, a single type, which
corresponds to an “underspecified content”. Of course, the set of witnesses of the join type,
{φ,ψ}, could correspond to the set of contents that could be generated by a storage algo-
rithm. Another way to achieve this is to use the operator, 𝔗, introduced in Chapter 7,
example (18) on p. 302 which takes a set and returns a type whose witnesses are exactly
the members of the set. We could thus use (9) instead of (8) with the same effect.

(9)
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : 𝔗({φ,ψ})

⎤
⎥
⎥
⎦

Our strategy is to devise a way of computing such types on the basis of compositional
interpretation without having to enumerate the members of the set of contents in the way
that we did in (8) and (9).

We will exploit our treatment of context to include a store of parametric quantifiers that
are to be given a wide scope interpretation. Thus our characterization of the type Cntxt
will be extended to (10).

(10)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝔮 : QStore
𝔰 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎥
⎥
⎦

QStore is the type of assignments all of whose values are parametric quantifiers, that is,
as characterized in (11).

(11) QStore is a basic type. r : QStore iff r : Assgnmnt and for any xi ∈ labels(r),
r.xi : PQuant

An example of a witness for QStore would thus be (12) where we have stored the basic
parametric content of every dog under the label ‘x0’.

(12)
⎡
⎢
⎢
⎣

x0 = ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

. λP:Ppty .
⎡
⎢
⎢
⎣

restr=dogʹ:Ppty
scope=P:Ppty
e:every(restr, scope)

⎤
⎥
⎥
⎦

˺
⎤
⎥
⎥
⎦

The record in (12) is, among other types, of the type in (13), which will be the kind of type
we will be using in our content types which will be underspecified for quantifier scope.
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(13)

⎡
⎢
⎢
⎢
⎢
⎣

QStore

x0=˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

. λP:Ppty .
⎡
⎢
⎢
⎣

restr=dogʹ:Ppty
scope=P:Ppty
e:every(restr, scope)

⎤
⎥
⎥
⎦

˺ : PQuant

⎤
⎥
⎥
⎥
⎥
⎦

Suppose that the basic parametric content associated with a noun-phrase is 𝒬; that is, the
type of the content as we have been expressing it so far (using a manifest field) will be
Cont𝒬. Now we want to generalize this type so that not only 𝒬 will be a witness for the
type but also a parametric content where 𝒬 is required in the qstore of the context. This
parametric quantifier will be (14).

(14) ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=𝒬:PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

Note that (14) is exactly like the pronoun content introduced in Chapter 4, example (97),
except that we have a parametric quantifier required in the qstore labelled with the same
label ‘x0’ as is used in the pronoun content. Thus this corresponds to the content of it* in (3)
and (4). Note that (14) is of type PQuant. It is distinguished from a parametric quantifier
like (15), however, in that it requires the qstore in the context to be non-empty.

(15) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

. λP:Ppty .
⎡
⎢
⎢
⎣

restr=dog':Ppty
scope=P:Ppty
e:every(restr, scope)

⎤
⎥
⎥
⎦

˺

Using terminology that goes back to Bos (1996), we will say that (15) is plugged (that is, in
our terms, does not require anything to be in the qstore) whereas (14) is unplugged (that
is, in our terms, does require something to be in the qstore). The intuition is that when a
quantifier has been placed in the qstore it has been unplugged from themain interpretation
andneeds to be plugged back in at somepoint in order to get a fully specified interpretation.
We formally characterize the notion plugged in (16).

(16) A parametric content, α, is unplugged iff c : α.bg implies c.𝔮 ≠ ∅ (that is, c.𝔮 is not
the empty record). Otherwise α is plugged.

We can derive (14) from 𝒬 by an operation ‘store’ characterized in (17).

(17) If 𝒬 : PQuant and 𝒬 is plugged, then store(𝒬) is

˹λc:
⎡
⎢
⎢
⎢
⎣

Cntxt

𝔮:
[
x0=𝒬:PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

We will now turn our attention to retrieval which removes a quantifier from the qstore
and quantifies over the virtual pronoun created by storage.
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In order to do this we need to generalize our characterization of ‘⊖’ in Chapter 7,
example (144) to include QStore as a special case exactly similar to Assgnmnt. This is
done in (18).

(18) 1. If T is Assgnmnt∧T ʹ, T ʹ is a record type and ℓ ∈ labels(T ʹ), then
(a) if labels(T ʹ) = {ℓ}, T⊖ ℓ = Assgnmnt
(b) otherwise, T⊖ ℓ = Assgnmnt ∧ (T ʹ⊖ ℓ∕T )

2. If T is PropCntxt∧T ʹ and π ∈ tpaths(T ʹ) then
(a) if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
(b) otherwise, T⊖ π = PropCntxt ∧ (T ʹ⊖ π∕T ʹ)

3. If T is QStore∧T ʹ and π ∈ tpaths(T ʹ) then
(a) if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
(b) otherwise, T⊖ π = QStore ∧ (T ʹ⊖ π∕T ʹ)

We characterize retrieval in a version corresponding to quantification with scope over sen-
tences. In a more complete treatment we would at least add quantification with scope over
verb phrases and common nouns corresponding to Montague’s (1973) treatment. In (19),
we characterize an operation ‘retrieve’ which maps a parametric record type with a
quantifier in store to one where the quantifier is removed from the store and given scope
over the non-parametric content.

(19) If α : PRecType, 𝒬 : PQuant α.bg ⊑
[
𝔮:
[
xi=𝒬:Ind

]]
, 𝒬ʹ is [𝒬]𝔠⇝𝔠.f and αʹ is

[incr(α,𝒬ʹ)]𝔠⇝𝔠.a, then retrieve(xi, α) is

λc:(𝒬ʹ.bg∧̣αʹ.bg⊖ 𝔮.xi,𝔰.xi) .

𝒬(c)(𝔓(˹λr:
⎡
⎢
⎢
⎣

x:Ind

𝔰:[
Assgnmnt
xi=⇑x:Ind]

⎤
⎥
⎥
⎦

∧̣αʹ.bg𝔰.xi . αʹ(c[r][𝔮.xi = 𝒬])˺))

‘retrieve’ applies to a label, ‘xi’ and a parametric record type, α, which contains a
parametric quantifier, 𝒬, in its qstore labelled by ‘xi’. It returns a parametric record type
where the context type is an appropriate combination of the context types (labelled ‘bg’)
associated with 𝒬 and α including path adjustment and incrementation but with fields
labelled ‘𝔮.xi’ and ‘𝔰.xi’ removed together with any fields depending on them. The field
labelled ‘𝔰.xi’ and fields dependent on it are added to the domain type of the property to
which 𝒬 is applied and a ‘𝔮.xi’-field is added to the context argument for αʹ to make the
context an appropriate argument, though this field will not appear in the result. Purifica-
tion (𝔓) is applied to the property so that the additional fields from the domain type are
“moved down” into α giving the effect of what in Discourse Representation Theory would
be called local accommodation of any presuppositions (Van der Sandt, 1992). This means
that any presuppositions associated with the quantifier will apply at the level at which it is
quantified in.
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Nowwehave twoways, storage and retrieval, inwhichwe can derive parametric contents
from other parametric contents. How can we, then, characterize the type of paramet-
ric contents associated with some particular phrase? We will introduce a type ContType
characterized in (20).

(20) a. ContType, “the type of types of contents”, is a basic type
b. T : ContType iff T ⊑ Cont

Suppose that T : ContType. Then we define a new type 𝔖(T) whose witnesses are the
closure of the set of witnesses of T under ‘store’ and ‘retrieve’. We give a precise
characterization of this in (21).

(21) a. If T : ContType, then𝔖(T) is a type
b. The witnesses of𝔖(T) are characterized by

1. if φ : T then φ : 𝔖(T)
2. if φ : 𝔖(T) and φ is in the range of ‘store’, then store(φ) : 𝔖(T)
3. if φ : 𝔖(T) and ‘xi’ and φ are appropriate arguments to ‘retrieve’, then
retrieve(xi,φ) : 𝔖(T)

4. nothing is a witness for𝔖(T) except as required above.

If φ is a parametric content, that is, φ : Cont, we use the notation φ𝔖 to represent
𝔖(Contφ), that is, the type whose witnesses are the closure of {φ} under ‘store’ and
‘retrieve’.

How should such types of parametric contents be combined in compositional seman-
tics? First, the value in the ‘cont’-field in a sign will now not be a parametric content as
previously but a type of parametric contents; that is, it will be of type ContType. Thus we
redefine the type Sign as in (22).

(22) a. Sign, “the type of signs”, is a basic type

b. σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : ContType

⎤
⎥
⎥
⎦

Suppose that T1 and T2 are of typeContType and that𝒪 is a combination operation such
as @, @@, @whi,j

, then we say T1𝒪
𝔖T2 is also a type with the witness condition in (23).

(23) If α : T1, β : T2, and α𝒪β is defined, then α𝒪β : T1𝒪
𝔖T2. Nothing else is a witness

for T1𝒪
𝔖T2.

What we need then for the type of parametric contents for the combined constituents is
𝔖(T1𝒪

𝔖T2), that is, the type of the closure of the set of all combinations under ‘store’ and
‘retrieve’. Note that (23) has the consequence that if ‘α𝒪β’ is undefined for all witnesses,
α and β of T1 and T2 respectively we will still obtain a result for T1𝒪

𝔖T2, albeit a type which
has no witnesses. This will mean that we do not have to be as careful in keeping track of
typing when interpreting syntactic constructions, though with the consequence that some
phrases will not have any content.

In (24) we introduce versions of ‘ContForwardApp’ operations which apply at the
content type level.

(24) If 𝒪 is one of @, @@, @whi,j
(for some natural numbers i and j), or @&, then

ContForwardApp𝔖,𝒪 is
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λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(u[0].cont𝒪𝔖u[1].cont)

]

Note that we now no longer have to keep track of the arguments to ContForwardApp that
we had in some of the variants since the combination of the typeswill always return a result,
though if the types of contents do not match for the particular combination operation the
combined type will have no witnesses. This means that we can simplify our notation for
constituent structure rules as in (25).

(25) If Tmother, Tdaughter1 , and Tdaughter2 are sign types and 𝒪 is a combination operation,
then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(𝒪T ʹdaughter2)

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪

8.3 Anaphora

We will treat anaphora by adding to the storage mechanism we have just introduced. In
informal terms the idea is that if the content type of an utterance has something corre-
sponding to (26a) as a witness then it will also have something corresponding to (26b) as
a witness where x1 has been anaphorically related to x0.

(26) a. x0 thinks that x1 has succeeded
b. x0 thinks that x0 has succeeded

Thus in general the content type yielded by the grammatical resources will be under-
specified as to whether there is anaphora or not but will nevertheless delimit what the
anaphoric possibilities are. Anaphora will be accounted for at the point of combination.
This is illustrated schematically in (27).

(27) a. xo + thinks that x1 has succeeded = x0 thinks that x1 has succeeded
b. If ‘xo + thinks that x1 has succeeded’ is an interpretation, then ‘xo + (thinks that

x1 has succeeded)[x1 ⇝ x0]’ is an interpretation

We will, of course, not be implementing this in terms of replacing variables as in (27) but
rather in adjusting the contexts of interpretation associated with pronoun utterances. For
example, we will define a variant of the combination operation ‘@’, ‘@i,j’ which anaphor-
ically relates a pronoun associated with the context path ‘𝔰.j’ to one associated with the
context path ‘𝔰.i’. This is given in (28).

(28) If 𝒪 is a combination operator, then so is 𝒪i,j, where i and j are natural numbers.
If α and β are parametric contents such that α𝒪β is defined, α.bg ⊑

[
𝔰:
[
xi:Ind

]]

and incr(β.bg, α.bg) ⊑
[
𝔰:
[
xj:Ind

]]
but incr(β.bg, α.bg) ̸⊑

[
𝔮:
[
xj:PQuant

]]
,

then α𝒪i,jβ is

[α𝒪β]𝔰.xj⇝𝔰.xi
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We can now add contents with anaphora to our characterization of𝔖(T) given in (21)
as in (29) where we again use boxing to indicate the new material.

(29) a. If T : ContType, then𝔖(T) is a type
b. The witnesses of𝔖(T) are characterized by

1. if φ : T then φ : 𝔖(T)
2. if α𝒪β : 𝔖(T), (for some combination operation, 𝒪) and α𝒪i,jβ

is defined (for some natural numbers, i and j), then α𝒪i,jβ : 𝔖(T)

3. if φ : 𝔖(T) and φ is in the range of ‘store’, then store(φ) : 𝔖(T)
4. if φ : 𝔖(T) and ‘xi’ and φ are appropriate arguments to ‘retrieve’, then
retrieve(xi,φ) : 𝔖(T)

5. nothing is a witness for𝔖(T) except as required above.

Wewill now take some examples of key anaphoric phenomena and discuss howwe could
use these tools to account for them.

No girl thinks she failed Given the strategy we suggested in Section 4.6 for interpreting
unbound pronouns the foreground of a content for she failed would be parallel to example
(97c) as in (30), where we in addition express this as the content type obtained by𝔖.

(30) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

.
[

e : fail(c.𝔰.x0)
]
˺𝔖

Call this she⌢failed. Then the content type for thinks she failed is (31).

(31) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. ˹λr:
[
x:Ind

]
.
[

e : think(r.x,
[
e:fail(c.𝔰.x0)

]
)
]
˺˺𝔖

Call this thinks⌢she⌢failed. Here she is still a free occurrence of a pronoun dependent
on the context for resolution.

The content type associated with no girl will be (32).

(32) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

. λP:Ppty .
⎡
⎢
⎢
⎣

restr=girl':Ppty
scope=P:Ppty
e:no(restr, scope)

⎤
⎥
⎥
⎦

˺𝔖

Let us represent the generator of this type, that is, (33), by ‘no'(girlʹ)’.

(33) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

. λP:Ppty .
⎡
⎢
⎢
⎣

restr=girlʹ:Ppty
scope=P:Ppty
e:no(restr, scope)

⎤
⎥
⎥
⎦

˺
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This means that one witness for the type (32) is (34) where ‘noʹ(girlʹ)’ has been stored.

(34) ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=noʹ(girlʹ):PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

Note that the context type for this parametric content has the path ‘𝔰.x0’ which means that
it is available for anaphoric version of combination operations, thus enabling she in thinks
she failed to be related to ‘𝔰.x0’. This can be achieved by the combination of parametric
contents expressed in (35a) which is identical with (35b). This uses ‘@0,1’ as characterized
in (28).

(35) a. ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=noʹ(girlʹ):PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

@0,1

˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. ˹λr:
[
x:Ind

]
.
[

e : think(r.x,
[
e:fail(c.𝔰.x0)

]
)
]
˺˺

b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=noʹ(girl'):PQuant

]

𝔰:
[
x0:Ind

]

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : think(c.𝔰.x0,
[
e:fail(c.𝔰.x0)

]
)
]
˺

Application of ‘retrieve’ to the content (35) will obtain a content where the scope of
the quantifier is the property of “being a girl who thinks she (the girl) failed”. The whole
content is given in (36) on p. 360 where (36a–c) are identical.

(36) a. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(λP:Ppty .
⎡
⎢
⎢
⎣

restr=girlʹ : Ppty
scope=P|ℱ(girlʹ) : Ppty
e : no(restr, scope)

⎤
⎥
⎥
⎦

(𝔓(˹λr:
⎡
⎢
⎢
⎣

x:Ind

𝔰:[Assgnmnt
x0=⇑x:Ind]

⎤
⎥
⎥
⎦

.
[

e : think(r.𝔰.x0,
[
e:fail(r.𝔰.x0)

]
)
]
˺)))˺
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b. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(λP:Ppty .
⎡
⎢
⎢
⎣

restr=girl' : Ppty
scope=P|ℱ(girlʹ) : Ppty
e : no(restr, scope)

⎤
⎥
⎥
⎦

(˹λr:
[
x:Ind

]
.
⎡
⎢
⎢
⎣

𝔠:[𝔰:[Assgnmnt
x0=r.x:Ind

]]

e:think(𝔠.𝔰.x0,
[
e:fail(𝔠.𝔰.x0)

]
)

⎤
⎥
⎥
⎦

˺))˺ (purification)

c. ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:

⎡
⎢
⎢
⎢
⎢
⎣

f:PropCntxt

a:
⎡
⎢
⎢
⎣

f:PropCntxt

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎢
⎣

restr=girl' : Ppty

scope=˹λr:[x:Inde:girl(x)] .
⎡
⎢
⎢
⎣

𝔠:[𝔰:[Assgnmnt
x0=r.x:Ind

]]

e:think(𝔠.𝔰.x0,
[
e:fail(𝔠.𝔰.x0)

]
)

⎤
⎥
⎥
⎦

˺ : Ppty

e : no(restr, scope)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

˺

(β-reduction, property restriction)

Amanwalked.Hewhistled. Given our strategy for defining the content of quantified sen-
tences in terms of generalized quantifiers a witness for the content type of a man walked
will be (37).

(37) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.
⎡
⎢
⎢
⎣

restr=manʹ : Ppty
scope=walkʹ|ℱ(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

We know from our treatment of the witness conditions associated with ‘exist’ that (37) is
equivalent to (38).

(38) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.

⎡
⎢
⎢
⎢
⎢
⎣

restr=manʹ : Ppty
scope=walkʹ|ℱ(restr) : Ppty

e : [
x : 𝔗(⇑restr)
e : 𝔓(⇑scope){x} ]

⎤
⎥
⎥
⎥
⎥
⎦

˺
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Using our previous treatment for free pronouns, he whistled will have (39) as a witness of
its content type.

(39) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

.
[

e : whistle(c.𝔰.x0)
]
˺

We will represent (39) as he⌢whistled.
The utterance of He whistled is to be interpreted in the context of the previous utterance

of amanwalked. We will achieve this bymerging the quasi-fixed point type (see Chapter 5,
example (96)) of the foreground of the parametric content of the previous utterance with
the context type of the current utterance. The quasi-fixed point type for the foreground of
(38) is (40).

(40)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠* :

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

restr=manʹ : Ppty
scope=walkʹ|ℱ(restr) : Ppty

e : [
x : 𝔗(⇑restr)
e : 𝔓(⇑scope){x} ]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We will merge this under the label ‘𝔭’ (“previous”) into the context type in (39) yield-
ing (41).

(41) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔭:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠*:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

restr=manʹ:Ppty
scope=walkʹ|ℱ(restr):Ppty

e:[x:𝔗(⇑restr)
e:𝔓(⇑scope){x}]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : whistle(c.𝔰.x0)
]
˺

(41) makes the content of the previous utterance be part of the context for content of the
current utterance. It does not, however, express the anaphoric relation between he and a
man. In order to do this we need to require that 𝔰.x0 in the context is identical with 𝔭.e.s.
This can be done by introducing a manifest field under the ‘𝔰’-label as in (42).
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(42) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔭:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠*:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

restr=manʹ:Ppty
scope=walkʹ|ℱ(restr):Ppty

e:[x:𝔗(⇑restr)
e:𝔓(⇑scope){x}]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝔰:
[
x0=⇑𝔭.e.x:Ind

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : whistle(c.𝔰.x0)
]
˺

On the basis of (42), we can create a new function with the same effect which will have the
same domain and return the same results for each element in the domain but in which any
dependency on ‘c.𝔰.x0’ is replaced by a dependency on ‘c.𝔭.e.x’ as in (43).

(43) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔭:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠*:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

restr=manʹ:Ppty
scope=walkʹ|ℱ(restr):Ppty

e:[x:𝔗(⇑restr)
e:𝔓(⇑scope){x}]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝔰:
[
x0=⇑𝔭.e.x:Ind

]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : whistle(c.𝔭.e.x)
]
˺

Since nothing now depends on the path ‘𝔰.x0’ in the context and ‘𝔗(manʹ)’, that is, the type
restriction on the path ‘𝔭.e.x’, is a subtype of ‘Ind’, the type from which the singleton type
on the path ‘𝔰.x0’ is derived, we can remove the path ‘𝔰.x0’ without changing the extension
of any records that are witnesses for the context type. Thus we obtain (44).

(44) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔭:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔠*:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt

𝔠:
⎡
⎢
⎢
⎣

f:[f:PropCntxt
a:PropCntxt]

a:PropCntxt

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

restr=manʹ:Ppty
scope=walkʹ|ℱ(restr):Ppty

e:[x:𝔗(⇑restr)
e:𝔓(⇑scope){x}]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : whistle(c.𝔭.e.x)
]
˺
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(Repeated in Appendix A11.8) Suppose that T is a record type and that π1 and π2 are
paths in T. Then we use Tπ1=π2

to represent the type exactly like T except that Tπ1=π2
.π1 =

(T.π1)π2
; that is, whatever type,T ʹ, is at the end of the path π1, is replaced by the singleton

type T ʹπ2
, or if T.π1 is

⟨λv1 :T1…λvn :Tn . T ʹ((v1, …, vn)), Π⟩

then it is replaced by

⟨λv1 :T1…λvn :Tn . (T ʹ((v1, …, vn)))π2
, Π⟩

We use Tπ11=π21 ,…,π1n=π2n
to represent (…(Tπ11=π21

)…)π1n=π2n
.

Suppose that φ1 and φ2 and parametric contents, π11…π1n ∈ paths(φ1.bg) and
π21…π2n ∈ paths(ℱquasi*(φ2.fg)), then the content φ1 given φ2 with alignment of π11
and π21,…,π1n and π2n, φ1 |π11 ,π21;…;π1n ,π2n

φ2, is

[
bg = (φ1.bg ∧̣

[
𝔭:ℱquasi*(φ2.fg)

]
)π11=𝔭.π21 ,…,π1n=𝔭.π2n

fg = λc:bg . φ1(c)
]

This gives us a way of combining two parametric contents. Now we need a way of
combining the kinds of parametric content types that we are using for underspecified
interpretation. If T1 and T2 are types of parametric contents, then there is a combined
type, ℭ(T1,T2), whose witnesses include witnesses for T1 given a witness for T2 with
some possible alignment between the two. The witnesses ofℭ(T1,T2) are characterized
recursively by:

1. if φ : T1, then φ : ℭ(T1,T2)
2. if φ1 : ℭ(T1,T2),

π11, …, π1n ∈ paths(φ1.bg),
φ2 : T2 and
π21, …, π2n ∈ paths(ℱquasi*(φ2.fg)),
then

φ1|π11 ,π21;…;π1n ,π2n
φ2 : ℭ(T1,T2)

What we need then for the content type of the utterance is𝔖(ℭ(T1,T2)).We can express
this by means of the action rule in (45).

(45)
si,A :A

[
shared:

[
latest-utterance:

[
cont:ContType

]]]
u* :A

[
cont:ContType

]

si+1,A :A
[
shared:

[
latest-utterance:

[
cont=𝔖(ℭ(u*.cont, si,A.shared.latest-utterance.cont)):ContType

]]]
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This does not express any of the linguistic constraints concerning what anaphors can be
related to what antecedents.

Nodogwhich chases a cat catches it This example is an instance of what is known in the
literature as donkey anaphora. For a brief overview with references to a large linguistic
literature see King and Lewis (2018). For good overviews up to the mid 1990s from a
linguistic perspective seeChierchia (1995, chapter 2), andKanazawa (1994).Our treatment
of donkey anaphorawill treat it in (46a)more like the kind of discourse anaphora discussed
in the previous example rather than direct binding of a pronoun by a quantifier. In this way
it follows the classic linguistic treatment of donkey anaphora in DRT, first formulated in
Kamp (1981). Some evidence for this can be taken from (46b), where it is difficult to relate
the singular pronoun it to every cat, and (46c)where the plural pronoun them can be related
to every cat. This follows the pattern of discourse anaphora illustrated in (46d) where it is
difficult to relate it to every cat and (46e) where it is easy to relate they to every cat.

(46) a. No dog which chases a cat catches it
b. No dog which chases every cat catches it
c. No dog which chases every cat catches them
d. Every cat miaowed. It wanted milk.
e. Every cat miaowed. They wanted milk.

The key to the treatment of donkey anaphora is a process of local accommodation of
context in a parametric property. Consider a parametric content for the verb-phrase catches
it given in (47).

(47) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

. ˹λr:
[
x:Ind

]
.
[

e : catch†(r.x, c.𝔰.x0)
]
˺˺

Local accommodation involves “moving” the type of the context into the domain type of
the property under the label ‘𝔠’ as in (48), adjusting any paths in c addressed in the resulting
function to paths in r beginning with ‘𝔠’.

(48) ˹λc:Cntxt . ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : catch†(r.x, r.𝔠.𝔰.x0)
]
˺˺

In general we define a localization operation, ℒ, on parametric properties characterized
in (49).

(49) If 𝒫 is a parametric property of the form

˹λc :T1 .˹λr :T2 . φ˺˺

then the localization of 𝒫, ℒ(𝒫), is

˹λc :Cntxt . ˹λr :T2∧̣
[
𝔠:T1

]
. φc.π⇝r.𝔠.π˺˺
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If we use the localized content (48) as the content of the verb phrase, then, after
combination with no dog which chases a cat, the scope of the quantifier will become (50).

(50) ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

e1:dog(x)

e2:[
x:𝔗(cat')
e:chase†(⇑x, x)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : catch†(r.x, r.𝔠.𝔰.x0)
]
˺

We can paraphrase this as “the property of being a dog which chases a cat and there is
something which it catches”. In order to obtain the anaphora we need to align the following
two paths in the domain type of this function: ‘𝔠.𝔰.x0’ and ‘e2.x’. This we do in (51) by
creating a manifest field on the former path.

(51) ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0=⇑2e2.x:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

e1:dog(x)

e2:[
x:𝔗(catʹ)
e:chase†(r.x, x)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : catch†(r.x, r.𝔠.𝔰.x0)
]
˺

We can paraphrase this as “the property of being a dog which chases a cat and catches that
cat”.

In order to include such properties with aligned paths as the scope of quantifiers in our
interpretations, we will first generalize the characterization of alignment of paths given on
p. 363f to functions in (52) (repeated in Appendix A11.8).

(52) If φ = ˹λr :T . ψ˺ and π1, π2 ∈ paths(T), then

φπ1=π2
= ˹λr :Tπ1=π2

. ψ˺

We then add two further clauses to the characterization of witnesses for𝔖(T) for content
types, T, in (53) with the new additions boxed.

(53) a. If T : ContType, then𝔖(T) is a type
b. The witnesses of𝔖(T) are characterized by

1. if φ : T then φ : 𝔖(T)

2. if φ : 𝔖(T) and φ : PPpty, then ℒ(φ) : 𝔖(T)

3. if φ : 𝔖(T), φ ⊑
[
scope=ψ:Ppty

]
and π1, π2 ∈ paths(ψ.bg), then

φ[scope = ψπ1=π2
: Ppty] : 𝔖(T)
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4. if α𝒪β : 𝔖(T), (for some combination operation, 𝒪) and α𝒪i,jβ is defined
(for some natural numbers, i and j), then α𝒪i,jβ : 𝔖(T)

5. if φ : 𝔖(T) and φ is in the range of ‘storage’, then storage(φ) : 𝔖(T)
6. if φ : 𝔖(T) and ‘xi’ and φ are appropriate arguments to ‘retrieve’, then
retrieve(xi,φ) : 𝔖(T)

7. nothing is a witness for𝔖(T) except as required above.

Overall we can get a parametric content for no dog which chases a cat catches it which
looks like (54) where dog⌢which⌢chases⌢a⌢cat and catches⌢it represent parametric
contents which have not undergone operations introduced by𝔖.

(54) λc:Cntxt.
⎡
⎢
⎢
⎣

restr=dog⌢which⌢chases⌢a⌢cat(c) : Ppty
scope=(ℒ(catches⌢it)(c)|ℱ(dog⌢which⌢chases⌢a⌢cat))𝔠.𝔰.x0=e2 .x : Ppty
e:no(restr, scope)

⎤
⎥
⎥
⎦

Given the semantics we have specified for the determiner no, (54) is (55).

(55) λc:Cntxt .
⎡
⎢
⎢
⎢
⎢
⎣

restr=dog⌢which⌢chases⌢a⌢cat(c) : Ppty
scope=(ℒ(catches⌢it)(c)|ℱ(dog⌢which⌢chases⌢a⌢cat))𝔠.𝔰.x0=e2 .x : Ppty

e:[ X : everyw(restr)
f : ((x : 𝔗(X))→¬𝔓(scope){x}) ]

⎤
⎥
⎥
⎥
⎥
⎦

We can paraphrase this content as “for every dog which chases a cat it’s not the case that it’s
a dog which chases a cati and catches iti” where the subscript on cat and it indicates that it
is anaphorically related to a cat.

This treatment of donkey anaphora is essentially similar to that of Chierchia (1995) in
that it associates an existential reading with the pronoun it; that is, it is not the case that
there is a cat which the dog chases that it also catches. The dog does not catch any of the
cats it chases. If we use every instead of no we get a reading which is paraphrased as “every
dog which chases a cat is a dog which chases a cat and catches it”. This is what is known
in the literature as a weak reading or a ∃-reading. It says that every dog which chases a cat
catches some cat that it chases (but not necessarily all). This reading may intuitively not be
appropriate for every dog that chases a cat catches it which formany speakers would suggest
that the dogs catch all the cats they chase. However, the weak reading is important for the
examples in (56).

(56) a. Every person who had a dime put it in the parking meter (Pelletier and
Schubert, 1989)

b. Every man who has a daughter thinks she is the most beautiful girl in the world
(Cooper, 1979)

(56a) does not seem to suggest that anybody who had several dimes put them all in the
meter and (56b) does not seem to commit a man who has two daughters to believe the
contradictory proposition that they are both the one and only most beautiful girl in the
world. What then do we say about the original donkey sentences like every farmer who
owns a donkey likes it which were analysed by Geach and the classical analyses in DRT
and type theory as having a strong reading in which every farmer who owns a donkey likes
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any donkey that he owns? One option is to say that we only need the weak reading for such
sentences as it is consistent with the stronger reading. Many speakers feel that it unclear
what the sentence means if some man owns more than one donkey. That is, every farmer
who owns a donkey likes it requires that for every donkey owning farmer there is at least
one donkey the farmer owns such that she likes it. This allows for the farmers to like all
their donkeys but does not require it. (See Kanazawa, 1994 for a discussion of this.) In the
case of every dog which chases a cat catches it I have the following intuition:

if there is a dog under consideration which is involved in two distinct cat-chasing events
(with a single cat) and only succeeds in catching the cat in one of the two events, then this
seems to make the sentence false;

if there is a dog under consideration which is involved in a single event of chasing two
cats and only succeeds in catching one of the cats in that event, then it seems that the
sentence could still be true.

This suggests an analysis which requires that every relevant cat-chasing event must involve
the catching of at least one of the cats chased in that event. Firm judgements concerning
such intuitions are notoriously hard to come by. Chierchia (1995) argues that the strong
∀-reading is necessary because of examples like (57).

(57) Every man who owned a slave owned his offspring

(57) is a modification of an example in Heim (1990) which is used to make a different
argument. It seems like a single instance of somebody owning a slave but not the slave’s
offspring would be sufficient to falsify (57). Though again, in the case of a slave who has
several offspring one of which is owned by somebody else, it seems to me that it is unclear
whether that is sufficient to falsify the sentence.

One option is to recreate the original Geach reading by using the variant of the purifi-
cation operation, ‘𝔓∀’, in Chapter 7, example(13) which introduces a function on local
contexts. Using ‘𝔓∀’ instead of ‘𝔓’ will have the consequence that the content of every
farmer who owns a donkey likes it will be (58).

(58) λc:Cntxt .
⎡
⎢
⎢
⎣

restr=farmer⌢who⌢owns⌢a⌢donkey(c) : Ppty
scope=(ℒ(likes⌢it)(c)|ℱ(farmer⌢who⌢owns⌢a⌢donkey))𝔠.𝔰.x0=e2 .x : Ppty
e:every(restr, scope)

⎤
⎥
⎥
⎦

Given the general witness condition associated with ‘every’, (58) is equivalent to (59).

(59) λc:Cntxt .
⎡
⎢
⎢
⎢
⎢
⎣

restr=farmer⌢who⌢owns⌢a⌢donkey(c) : Ppty
scope=(ℒ(likes⌢it)(c)|ℱ(farmer⌢who⌢owns⌢a⌢donkey))𝔠.𝔰.x0=e2 .x : Ppty

e:[ X : everyw(⇑restr)
f : ((x : 𝔗(X))→𝔓(⇑ scope){x}) ]

⎤
⎥
⎥
⎥
⎥
⎦

If we use a variant of this witness condition which uses ‘𝔓∀’ instead of ‘𝔓’ we have (60).
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(60) λc:Cntxt .
⎡
⎢
⎢
⎢
⎢
⎣

restr=farmer⌢who⌢owns⌢a⌢donkey(c) : Ppty
scope=(ℒ(likes⌢it)(c)|ℱ(farmer⌢who⌢owns⌢a⌢donkey))𝔠.𝔰.x0=e2 .x : Ppty

e:[
X : everyw(⇑restr)
f : ((x : 𝔗(X))→𝔓∀(⇑ scope){x})

]

⎤
⎥
⎥
⎥
⎥
⎦

Let us check that (60) does in fact give us the strong ∀-reading. We will do this by showing
that the value associated with the label ‘scope’ will be paraphrasable as “the property of
being an individual such that if it’s a farmer who owns a donkey, she likes that donkey”, that
is, likes every donkey she owns.We can show this by unpacking the expression representing
the scope in (60). ‘likes⌢it’, according to our treatment of free pronouns and extensional
verbs, will be (61).

(61) ˹λc:[Cntxt
𝔰:
[
x0:Ind

]] . ˹λr:
[
x:Ind

]
.
[

e : like†(r.x, c.𝔰.x0)
]
˺˺

Using the definition of the localization operation, ℒ, in (49), we can see that ‘ℒ(likes⌢it)’
is (62).

(62) ˹λc:Cntxt . ˹λr:
⎡
⎢
⎢
⎣

x:Ind

𝔠:[Cntxt
𝔰:
[
x0:Ind

]]

⎤
⎥
⎥
⎦

.
[

e : like†(r.x, r.𝔠.𝔰.x0)
]
˺˺

Applying (62) to any context, c, will obtain (63).

(63) ˹λr:
⎡
⎢
⎢
⎣

x:Ind

𝔠:[Cntxt
𝔰:
[
x0:Ind

]]

⎤
⎥
⎥
⎦

.
[

e : like†(r.x, r.𝔠.𝔰.x0)
]
˺

Restricting (63) by ‘ℱ(farmer⌢who⌢owns⌢a⌢donkey)’, yields (64).

(64) ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

e1:farmer(x)

e2:[
x:𝔗(donkey')
e:own†(⇑x, x)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like†(r.x, r.𝔠.𝔰.x0)
]
˺

Aligning the paths ‘𝔠.𝔰.x0’ and ‘e2.x’ in (64) yields (65).

(65) ˹λr:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0=⇑2e2.x:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

e1:farmer(x)

e2:[
x:𝔗(donkey')
e:own†(⇑x, x)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like†(r.x, r.𝔠.𝔰.x0)
]
˺
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Finally, in the ‘e.f ’-field in (60) ‘𝔓∀’ is applied to the scope, that is, (65). Thus ‘𝔓∀(scope)’
represents (66).

(66) ˹λr:
[
x:Ind

]
. ((rʹ:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x=r.x:Ind

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0=⇑2e2.x:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

e1:farmer(x)

e2:[
x:𝔗(donkeyʹ)
e:own†(⇑x, x)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

)→
[

e : like†(rʹ.x, rʹ.𝔠.𝔰.x0)
]
)˺

(66) can be paraphrased as “the property of being an individual, x, if x is a farmer and
owns a donkey, y, then x likes y” thus requiring that every farmer likes all of the donkeys
she owns. The whole sentence says that every farmer who owns a donkey has this property.

The domain of the function introduced is farmers who own a donkey in our analysis of
both the weak and the strong readings. This is in contrast to the classical treatment of the
strong reading (Geach, 1962; Sundholm, 1986, 1989; Kamp and Reyle, 1993) which can
be construed as quantification over pairs of farmers and donkeys. This works in the case
of universal quantification. The sentence every farmer who owns a donkey likes it can be
construed as “every farmer-donkey pair such that the farmer owns the donkey is such that
the farmer likes the donkey”. However, for other generalized quantifiers, such as most this
represents an incorrect paraphrase. Thus most farmers who own a donkey like it cannot be
construed as “most farmer-donkey pairs such that the farmer owns the donkey are such
that the farmer likes the donkey”. Chierchia (1995) gives a good account of why this is so.
Suppose we have five farmers four of which have exactly one donkey and do not like it. The
fifth farmer has fifty donkeys and likes them all. Clearly in this case most farmer-donkey
pairs are such that the farmer likes the donkey but it is not the case that most farmers who
own a donkey like it. This problem is known in the literature as the proportion problem.
The treatment that we have proposed here does not suffer from it since the quantification is
over farmers who own a donkey rather than farmer-donkey pairs. For a different proposal
for a solution to this problem using types in a different framework see Luo (2021).

Sam likeshim/himself The treatment of anaphora that we have presented so far overgen-
erates in that it does not take account of the restrictions on anaphoric possibilities which
exist in natural languages. For example, the sentence (67) does not allow a reading in which
him is anaphorically related to Sam.

(67) Sam likes him

Note that this is not the same as saying that Sam and him are not allowed to refer to the same
individual. There are cases where this is possible, though often bizarre. Suppose that Sam
finds a wikipedia page describing a person with interests and achievements very similar to
his own but he does not realize that in fact somebody has written a page about Samhimself.
Sam can decide that he likes the person described in the entry and this can be described by
(67). The basic technique that we employ for making this distinction is illustrated by the
types in (68).
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(68) a.
⎡
⎢
⎢
⎢
⎣

x : Ind
c : named(x, “Sam”)
y : Ind
e : like(x, y)

⎤
⎥
⎥
⎥
⎦

b.
⎡
⎢
⎢
⎢
⎣

x : Ind
c : named(x, “Sam”)
y=x : Ind
e : like(x, y)

⎤
⎥
⎥
⎥
⎦

c.
⎡
⎢
⎢
⎣

x : Ind
c : named(x, “Sam”)
e : like(x, x)

⎤
⎥
⎥
⎦

In (68a) we have two fields for individuals labelled by ‘x’ and ‘y’ respectively. There is noth-
ing to prevent these fields from being filled by the same individual in some of the witnesses
for the type. In (68b), however, the fields will be filled by the same individual in any witness
for the type. A further possibility is to have just one field for an individual as in (68c). Let
us see how these options play out in actual parametric contents for Sam likes him resulting
currently in a content where him is anaphorically related to Sam. A parametric content for
likes him is (69), parallel to contents for similar verb phrases we have seen previously.

(69) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

. ˹λr:
[
x:Ind

]
.
[

e : like†(r.x, c.𝔰.x0)
]
˺˺

Using the lexical rule for proper nouns we obtain the parametric content (70) for Sam.

(70) ˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[x:Inde:named(x, “Sam”)]

⎤
⎥
⎥
⎦

. λP:Ppty . P {c.𝔠.x}˺

Let us represent (70) as Sam. Using ‘storage’ we obtain an additioinal parametric
content given in (71).

(71) ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=Sam:PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P {c.𝔰.x0}˺

We can nowobtain a parametric content for Sam likes him by using (71) and (69) combined
with ‘@0,1’. This is given in (72).

(72) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Cntxt
𝔮:
[
x0=Sam:PQuant

]

𝔰:
[
x0:Ind

]

𝔠:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
[

e : like†(c.𝔰.x0, c.𝔰.x0)
]
˺
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We can now apply ‘retrieve’ to ‘x0’ and (72) to obtain (73).

(73) ˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

𝔠:

⎡
⎢
⎢
⎢
⎢
⎣

f:[x:Inde:named(x, “Sam”)]

a:[f:PropCntxt
a:PropCntxt]

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

.
[

e : like†(c.𝔠.f.x, c.𝔠.f.x)
]
˺

(73) is not an appropriate content for Sam likes him although it would be appropriate for
Sam likes himself. Simplifying a good deal, pronouns which are not reflexive (like himself )
cannot be anaphorically related to an antecedent within the same clause. This is Principle B
of Chomsky’s binding theory (Chomsky, 1981).We shall treat this by adding a field labelled
‘𝔩’ in the context requiring an assignment which keeps track of pronouns which are local.
We adjust the definition of Cntxt to be (74).

(74)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔮 : QStore
𝔰 : Assgnmnt
𝔩 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This is the first time that we have introduced an assignment based not on the form of an
element in a potential anaphoric relation (such as pronoun, wh-phrase, gap) but on the
position of elements in structure. At this point the reader may feel that there is a plethora
of assignments being introduced which reduces the cognitive plausibility of the proposal
and gives the impression of introducing a new assignment for each new phenomenon.¹ The
use of assignments here is similar to argument passing in logic programming approaches
to grammar and semantics (Pereira and Shieber, 1987; Blackburn and Bos, 2005). The use
of an assignment which keeps track of which pronouns are local at any point in the deriva-
tion is inspired by a similar treatment by Cooper et al. (1993). Using multiple assignments
in a structured context in this way gives us a simple way of keeping track of relationships
between various parts of a speech event with a structure corresponding to a phrase struc-
ture tree. It does this while obeying a locality principle by keeping track of relevant objects
for each constituent rather than introducing structural relations on a tree structure as is
standardly done in many linguistic approaches. This gives the approach some cognitive
plausibility from a processing point of view.

The generating parametric content for he is (75) where we mark ‘x0’ in the 𝔩-field.

(75) ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔩:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

We adjust (28) to include reference to paths ‘𝔩.xi’ by adding the boxed material as in (76).

(76) If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] and α.bg ⊑
[
𝔰:
[
xi:Ind

]]
and

incr(β.bg, α.bg) ⊑
[
𝔰:
[
xj:Ind

]]
but incr(β.bg, α.bg) ̸⊑

[
𝔮:
[
xj:PQuant

]]

¹ Such a comment has been made by an anonymous referee.
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and incr(β.bg, α.bg) ̸⊑
[
𝔩:
[
xj:PQuant

]]
, then the combination of α and β based

on functional application and anaphoric relation of j to i, α@i,jβ, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣[incr([β.bg]𝔠⇝𝔠.a, α.bg)]𝔰.xj⇝𝔰.xi .
[α]𝔠⇝𝔠.f(c)([incr([β.fg]𝔠⇝𝔠.a, α.bg)]𝔰.xj⇝𝔰.xi(c))˺

The information about locality represented by the ‘𝔩’-field will now percolate up as a con-
straint on the context as we combine consituents. However, once we reach a sentence we
no longer want the pronoun to count as local since pronouns can be anaphorically related
to antecedents outside the clause in which they occur as in Sami thinks that shei is lucky.
We define an operation B on parametric contents (think of Principle “B” or “Boundary”)
which uses asymmetric merge to remove the locality constraint. B is defined in (77).

(77) If α is a parametric content,
˹λc :T . φ((c))˺

then B(α) is
˹λc:T ∧̣

[
𝔩:Assgnmnt

]
. φ((c))˺²

Suppose that T1 and T2 are of type ContType and that 𝒪 is a combination operation such
as @ etc., then we say that T1𝒪

𝔖,BT2 is also a type with the witness condition in (78).

(78) If α : T1, β : T2 and α𝒪β is defined, then B(α𝒪β) : T1𝒪
𝔖,BT2. Nothing else is a

witness for T1𝒪
𝔖,BT2.

In (79) we introduce versions of ‘ContForwardApp’ operations which involve B.

(79) If 𝒪 is a combination operator, then ContForwardApp𝔖,𝒪,B is

λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(u[0].cont𝒪𝔖,Bu[1].cont)

]

We then introduce a notation for constituent structure rules involving locality boundaries
as in (80).

(80) If Tmother, Tdaughter1 , and Tdaughter2 are sign types and 𝒪 is a combination operation,
then

Tmother⟶Tdaughter1 Tdaughter2 ∣ B(T ʹdaughter1(𝒪T ʹdaughter2))

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪,B

Thus for example we can formulate the constituent rule that says that a sentence can consist
of a noun phrase followed by a verb phrase as (81).

² This assumes that parametric contents are defined in such as way that φ will not depend on c.𝔩.π for any π.
Otherwise B(α) would need to be

˹λc:T ∧̣
[𝔩:Assgnmnt

]
. [φ((c))]

c.𝔩.π⇝c.𝔰.π
˺
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(81) S⟶ NP VP ∣ B(NPʹ(@VPʹ))

Core examples of reflexive pronouns, like himself, as handled directly by Principle
A in Chomsky’s binding theory (described, for example, by Hornstein et al., 2005,
Chapter 8), obey an almost complementary principle to non-reflexive pronouns—they
must be anaphorically related to a local antecedent and cannot be related to a non-local
antecedent.³ In addition, they must be related to some antecedent. They cannot simply
refer to something in the context as ordinary pronouns can. In Chomsky’s binding theory
such pronouns are called “anaphors” and include both reflexive pronouns and reciprocals
such as each other. In order to handle such requirements on local anaphora we will add
another component to the context type under the label 𝔯 (“reflexive”). Thus the type Cntxt
will now be defined as in (82).

(82)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔮 : QStore
𝔰 : Assgnmnt
𝔩 : Assgnmnt
𝔯 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The generating parametric content for himself is (83) where we mark ‘x0’ in the 𝔯-field.

(83) ˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔯:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

The reflexive marking in the context will percolate up to contexts associated with higher
phrases. We provide a mechanism for removing the marking in properties and simultane-
ously binding the reflexive pronoun. This is given in (84).

(84) If 𝒫 is a parametric property of the form

˹λc :T1 . ˹λr :T2((T1)) . φ((T1,T2))˺˺

where for some natural number i, T1 ⊑
[
𝔯:
[
xi:Ind

]]
, then the reflexivization of 𝒫,

ℜ(𝒫), is

˹λc:(T1 ∧̣
[
𝔯:Assgnmnt

]
)⊖𝔰.xi . ˹λr:T2 . [φ]c.𝔰.xi⇝r.x˺˺

This operation removes the reflexive marking in the 𝔯-field of the context using asym-
metric merge and also removes the corresponding path ‘𝔰.xi’ from the context type so there
is no dependence on an individual labelled ‘xi’ in the context. Any dependence on ‘𝔰.xi’ in
the body of the property represented by φ is replaced by a dependence on ‘x’ in the domain
of the property—note that the domain type of the property, T2, is guaranteed to be a record
type with ‘x’ among its labels by the requirement that 𝒫 is a parametric property.

The operation,ℜ, gives us a way of binding reflexive pronouns with verb phrases by the
subject of the sentence. It does not, however, allow us to have a reflexive bound within a

³ This does not include non-core uses of reflexive pronouns such as logophoric uses.
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verb-phrase as in examples like The guru revealed Kimi to himselfi. Nor does it correctly
require that both occurrences of himself have to be anaphorically related to the guru in The
guru revealed himself to himself.⁴ We shall not deal with such cases here.

We will, however, introduce a mechanism for requiring that the reflexive pronoun must
be anaphorically related to something. It cannot be left as free anddependent on the context
like a regular pronoun. Our strategy for doing this involves mapping a parametric content
type to a subtype which excludes witnesses which have a reflexive marking involving the
label 𝔯 in the context type. For any parametric content type, T, we characterize a subtype,
𝔄(T), which excludes parametric contents with free reflexives as indicated by the 𝔯-field
(𝔄 for “Principle A”). This is characterized in (85).

(85) If T is a parametric content type, then𝔄(T) is also a parametric content type.
φ : 𝔄(T) iff φ : T and φ.bg ̸⊑

[
𝔯:
[
xi:Ind

]]
, for any natural number i.

In (86) we introduce versions of ‘ContForwardApp’ operations which involve𝔄.

(86) If 𝒪 is a combination operator, then ContForwardApp𝔖,𝒪,𝔄 is

λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(𝔄(u[0].cont𝒪𝔖u[1].cont))

]

We then introduce a notation for constituent structure rules involving locality boundaries
as in (87).

(87) If Tmother, Tdaughter1 , and Tdaughter2 are sign types and 𝒪 is a combination operation,
then

Tmother⟶Tdaughter1 Tdaughter2 ∣ 𝔄(T ʹdaughter1(𝒪T ʹdaughter2))

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪,𝔄

Thus for example we can formulate the constituent rule that says that a sentence can consist
of a noun phrase followed by a verb phrase as (88).

(88) VP⟶ V NP ∣𝔄(V ʹ(@NPʹ))

Introducing the𝔄-locality boundary at the VP-level as in (88) will ensure that all reflexives
will be anaphorically related within a clause.

In order to include reflexives we need to extend our characterization of 𝔖 to include
reflexive parametric contents as indicated by the boxed text in (89).

(89) a. If T : ContType, then𝔖(T) is a type
b. The witnesses of𝔖(T) are characterized by

1. if φ : T then φ : 𝔖(T)
2. if φ : 𝔖(T) and φ : PPpty, then ℒ(φ) : 𝔖(T)

⁴ In other languages such as German and Scandinavian languages, these examples involve a different reflexive
construction. (See, for example, Hellan, 1986.)
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3. if φ : 𝔖(T) and φ : PPpty, thenℜ(φ) : 𝔖(T)
4. if φ : 𝔖(T), φ ⊑

[
scope=ψ:Ppty

]
and π1, π2 ∈ paths(ψ.bg), then

φ[scope = ψπ1=π2
: Ppty] : 𝔖(T)

5. if α𝒪β : 𝔖(T), (for some combination operation, 𝒪) and α𝒪i,jβ is defined
(for some natural numbers, i and j), then α𝒪i,jβ : 𝔖(T)

6. if φ : 𝔖(T) and φ is in the range of ‘storage’, then storage(φ) : 𝔖(T)
7. if φ : 𝔖(T) and ‘xi’ and φ are appropriate arguments to ‘retrieve’, then
retrieve(xi,φ) : 𝔖(T)

8. nothing is a witness for𝔖(T) except as required above.

This is only the beginning of a theory of reflexives in English. For example, it will not
on its own prevent reflexives occuring in subject position as in *Himself saw Sam or *Kim
feels that herself is welcome. Perhaps this is simply a matter of case, which we have not
treated here. There is just no nominative version of the reflexive which can be used as the
subject of a tensed sentence. This is perhaps suggested by the acceptability of Kim feels
herself to be welcome which seems to express the same content. A further example, well-
known from the literature, concerns what are known as picture noun-phrases. While this
treatment will allow for a correct interpretation of Kim found a picture of herself where
Kim is the antecedent of herself, it will not correctly account for Kim found Sam’s picture of
herself, where the only possible antecedent for herself is Sam.Wewill leave amore complete
treatment of reflexives for future exploration.

Looking at (89) as a whole, it may seem that whenever we wish to treat a new anaphoric
phenomenon we have to add a new clause to the characterization of the witnesses of𝔖(T)
and that we thereforemight bemissing a generalization.What is given in (89b) is an induc-
tive definition of the set of witnesses of𝔖(T) with clause 1 as the base clause, clauses 2–7
as the recursion clauses and clause 8 as the exclusion clause. In this way it is essentially
similar to the recursive definitions of sets that are used, for example, to characterize the set
of expressions in a logic. If we need to add a new kind of object to the set (in this case a
new kind of interpretation), then we need to add a new clause to the definition in order
to add the new objects to the set. Treating a new anaphoric phenomenon thus involves
adding additional interpretations that were not previously available in the earlier develop-
ment of the theory and thus we should not be surprised that we need a new clause to do
this, anymore than we are surprised by needing a new clause to add a new kind of syntactic
expression to a logic.

8.4 Summary of resources introduced

Items that are new since Chapter 7 are marked “New!” and items that have been revised
since Chapter 7 are marked “Revised!”.

8.4.1 Universal grammar resources

8.4.1.1 Types

Loc —
⎡
⎢
⎢
⎣

x-coord : Real
y-coord : Real
z-coord : Real

⎤
⎥
⎥
⎦
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Phon — a basic type
e : Phon iff e is a phonological event

SEvent —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e-loc : Loc
sp : Ind
au : Ind
e : Phon
cloc : loc(e,e-loc)
csp : speaker(e,sp)
cau : audience(e,au)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(as in Chapter 2)

Assgnmnt — a basic type
r : Assgnmnt iff r : Rec and labels(r) ⊂ {x0, x1, …}

If T is Assgnmnt∧T ʹ, T ʹ is a record type and ℓ ∈ labels(T ʹ), then

1. if labels(T ʹ) = {ℓ}, T⊖ ℓ = Assgnmnt
2. otherwise, T⊖ ℓ = Assgnmnt ∧ (T ʹ⊖ ℓ∕T)

PropCntxt — a basic type
r : PropCntxt iff r : Rec and labels(r) ∩ {x0, x1, …} = ∅
If T is PropCntxt∧T ʹ and π ∈ tpaths(T ʹ) then

1. if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
2. otherwise, T⊖ π = PropCntxt ∧ (T ʹ⊖ π∕T ʹ)

Cntxt Revised! —

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝔮 : QStore
𝔰 : Assgnmnt
𝔩 : Assgnmnt
𝔯 : Assgnmnt
𝔴 : Assgnmnt
𝔤 : Assgnmnt
𝔠 : PropCntxt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CntxtType — a basic type
T : CntxtType iff T ⊑ Cntxt

xType — a basic type
T : xType iff T : RecType and x ∈ labels(T)

Ppty — [
bg : xType
fg : (bg→RecType) ]

purification of properties,𝔓(P)
If P : Ppty, then

if P.bgx = P.bg, then
𝔓(P) = P

otherwise:

𝔓(P) is ˹λr:P.bgx . [
𝔠 : P.bg ∥

[
x=r.x

]

e : P(𝔠)
]˺



8.4 SUMMARY OF RESOURCES INTRODUCED 377

purification∀ of properties,𝔓∀(P)
If P : Ppty, then

if P.bgx = P.bg, then
𝔓∀(P) = P

otherwise:
𝔓∀(P) is ˹λr:P.bgx . ((rʹ :P.bg∥

[
x=r.x

]
)→

[
e : P(rʹ)

]
)˺

P{a}
If P is a pure property, P{a} represents the type P(

[
x=a

]
)

𝔗(P)
If P : Ppty and P is pure, then𝔗(P) : Type.
a : 𝔗(P) iff𝔓(P){a} is witnessed.

existw(P)
If P : Ppty, then existw(P) : Type.
X : existw(P) iff

1. X : set(𝔗(P))
2. |X| = 1
(equivalently, p(𝔗(X)‖𝔗(P)) = 1

|[̌𝔗(P)]|
)

existwpl(P)
If P : Ppty, then existwpl(P) : Type.
X : existwpl(P) iff

1. X : set(𝔗(P))
2. |X| ≥ 2
(equivalently, p(𝔗(X)‖𝔗(P)) ≥ 2

|[̌𝔗(P)]|
)

now(P)
If P : Ppty, then now(P) : Type.
X : now(P) iff

1. X : set(𝔗(P))
2. |X| = 0
(equivalently, p(𝔗(X)‖𝔗(P)) = 0)

equivalently,

X : now(P) iff X = ∅

everyw(P)
If P : Ppty, then everyw(P) : Type.
X : everyw(P) iff

1. X : set(𝔗(P))
2. |X| = |[̌𝔗(P)]|
(equivalently, p(𝔗(X)‖𝔗(P)) = 1)



378 TYPE-BASED UNDERSPECIFICATION

equivalently,

X : everyw(P) iff X = [̌𝔗(P)]

mostw(P)
If P : Ppty, then mostw(P) : Type.
X : mostw(P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmost(P), where .5 < θmost(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θmost(P))

manywa (P)
If P : Ppty, then manywa (P) : Type.
X : manywa (P) iff

1. X : set(𝔗(P))
2. |X| ≥ θmanya(P), where θmanya(P) is a natural number, i, such that i > 2.

(equivalently, p(𝔗(X)‖𝔗(P)) ≥
θmanya

(P)

[[̌𝔗(P)]]
)

manywp (P)
If P : Ppty, then manywp (P) : Type.
X : manywp (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θmanyp(P), where 0 < θmanyp(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θmanyp(P))

feww
a (P)
If P : Ppty, then feww

a (P) : Type.
X : feww

a (P) iff

1. X : set(𝔗(P))
2. |X| ≤ θfewa

(P), where θfewa
(P) is a natural number, i, such that i > 2

(equivalently, p(𝔗(X)‖𝔗(P)) ≤ θfewa (P)
[[̌𝔗(P)]]

)

feww
p (P)
If P : Ppty, then feww

p (P) : Type.
X : feww

p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≤ θfewp

(P), where 0 < θfewp
(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≤ θfewp
(P))

a_feww
a (P)

If P : Ppty, then a_feww
a (P) : Type.

X : a_feww
a (P) iff
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1. X : set(𝔗(P))
2. |X| ≥ θfewa

(P), where θfewa
(P) is a natural number, i, such that i > 2

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θfewa (P)
[[̌𝔗(P)]]

)

a_feww
p (P)

If P : Ppty, then a_feww
p (P) : Type.

X : a_feww
p (P) iff

1. X : set(𝔗(P))
2. |X|

|[↓P]|
≥ θfewp

(P), where 0 < θfewp
(P) < 1

(equivalently, p(𝔗(X)‖𝔗(P)) ≥ θfewp
(P))

TPpty — if T is a type, then TPpty is a type
P : TPpty iff P : Ppty and P.bg ⊑

[
x:T

]

PlPpty — a basic type
P : PlPpty iff P : Ppty and for some type T, P.bg ⊑

[
x:plurality(T)

]

PPpty — [
bg : CntxtType
fg : (bg→Ppty) ]

ℒ(𝒫)New!
If 𝒫 is a parametric property of the form

˹λc :T1 .˹λr :T2 . φ˺˺

then the localization of 𝒫, ℒ(𝒫), is

˹λc :Cntxt . ˹λr :T2∧̣
[
𝔠:T1

]
. φc.π⇝r.𝔠.π˺˺

ℜ(𝒫)New!
If 𝒫 is a parametric property of the form

˹λc :T1 . ˹λr :T2((T1)) . φ((T1,T2))˺˺

where for some natural number i, T1 ⊑
[
𝔯:
[
xi:Ind

]]
, then the reflexivization of 𝒫,

ℜ(𝒫), is

˹λc:(T1 ∧̣
[
𝔯:Assgnmnt

]
)⊖𝔰.xi . ˹λr:T2 . [φ]c.𝔰.xi⇝r.x˺˺

TPPpty — if T is a type, then TPPpty is a type
𝒫 : TPPpty iff 𝒫 : PPpty and for any c : 𝒫.bg, 𝒫(c) : TPpty

Quant — (Ppty→RecType)

PQuant — [
bg : CntxtType
fg : (bg→Quant) ]

QuantDet — (Ppty→Quant)

PQuantDet — [
bg : CntxtType
fg : (bg→QuantDet) ]

PRel2 — [
bg : CntxtType
fg : (bg→(Quant→Ppty)) ]
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PRecType — [
bg : CntxtType
fg : (bg→RecType) ]

Cont — PRecType∨PPpty∨PQuant∨PQuantDet
ContTypeNew! — a basic type

T : ContType iff T ⊑ Cont

𝔄(T)New!
If T is a parametric content type, then𝔄(T) is also a parametric content type.
φ : 𝔄(T) iff φ : T and φ.bg ̸⊑

[
𝔯:
[
xi:Ind

]]
, for any natural number i.

QStoreNew! — a basic type
r : QStore iff r : Assgnmnt and for any xi ∈ labels(r), r.xi : PQuant
If T is QStore∧T ʹ and π ∈ tpaths(T ʹ) then

1. if π is ℓ and labels(T ʹ) = {ℓ}, then T⊖ π = PropCntxt
2. otherwise, T⊖ π = QStore ∧ (T ʹ⊖ π∕T ʹ)

unplugged New! — definition
A parametric content, α, is unplugged iff c : α.bg implies c.𝔮 ≠ ∅ (that is, c.𝔮 is not
the empty record). Otherwise α is plugged.

store(𝒬)New!
If 𝒬 : PQuant and 𝒬 is plugged, then store(𝒬) is

˹λc:
⎡
⎢
⎢
⎢
⎣

Cntxt

𝔮:
[
x0=𝒬:PQuant

]

𝔰:
[
x0:Ind

]

⎤
⎥
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

retrieve(xi, α)New!
If α : PRecType, 𝒬 : PQuant α.bg ⊑

[
𝔮:
[
xi=𝒬:Ind

]]
, 𝒬ʹ is [𝒬]𝔠⇝𝔠.f and

α' is [incr(α,𝒬ʹ)]𝔠⇝𝔠.a, then retrieve(xi, α) is

λc:(𝒬ʹ.bg∧̣αʹ.bg⊖ 𝔮.xi,𝔰.xi) .

𝒬(c)(𝔓(˹λr:
⎡
⎢
⎢
⎣

x:Ind

𝔰:[
Assgnmnt
xi=⇑x:Ind]

⎤
⎥
⎥
⎦

∧̣αʹ.bg𝔰.xi . α'(c[r][𝔮.xi = 𝒬])˺))

𝔖(T)New! — if T : ContType, then𝔖(T) is a type
The witnesses of𝔖(T) are characterized by

1. if φ : T then φ : 𝔖(T)
2. if φ : 𝔖(T) and φ : PPpty, then ℒ(φ) : 𝔖(T)
3. if φ : 𝔖(T) and φ : PPpty, thenℜ(φ) : 𝔖(T)
4. if φ : 𝔖(T), φ ⊑

[
scope=ψ:Ppty

]
and π1, π2 ∈ paths(ψ.bg), then

φ[scope = ψπ1=π2
: Ppty] : 𝔖(T)

5. if α𝒪β : 𝔖(T), (for some combination operation, 𝒪) and α𝒪i,jβ is defined (for
some natural numbers, i and j), then α𝒪i,jβ : 𝔖(T)
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6. if φ : 𝔖(T) and φ is in the range of ‘store’, then store(φ) : 𝔖(T)
7. if φ : 𝔖(T) and ‘xi’ and φ are appropriate arguments to ‘retrieve’, then
retrieve(xi,φ) : 𝔖(T)

8. nothing is a witness for𝔖(T) except as required above.

Cat — a basic type
s, np, det, n, v, vp : Cat

Syn — [
cat : Cat
daughters : Sign* ]

Sign Revised! — a basic type

σ : Sign iff σ :
⎡
⎢
⎢
⎣

s-event : SEvent
syn : Syn
cont : ContType

⎤
⎥
⎥
⎦

SignType — a basic type
T : SignType iff T ⊑ Sign

S — [
Sign
syn:

[
cat=s:Cat

]]

S/i — if i is a natural number, then S/i is a type
α : S∕i iff α : S and α.cont.bg ⊑

[
𝔤:
[
xi:Ind

]]

NP — [
Sign
syn:

[
cat=np:Cat

]]

whNP — a basic type
σ : WhNP iff σ : NP, σ.cont is 𝒬 and 𝒬.bg ⊑

[
𝔴:
[
xi:Ind

]]
, for some natural number i.

NPwhi — if i is a natural number, then NPwhi
is a type

α : NPwhi
iff α : NP and α.cont.bg ⊑

[
𝔴:
[
xi:Ind

]]

Det — [
Sign
syn:

[
cat=det:Cat

]]

N — [
Sign
syn:

[
cat=n:Cat

]]

TN — if T is a type, then TN is a type
α : TN iff α : N and α.cont : TPPpty

V — [
Sign
syn:

[
cat=v:Cat

]]

VP — [
Sign
syn:

[
cat=vp:Cat

]]

Rel — [
Sign
syn:

[
cat=rel:Cat

]]

TRel — if T is a type, then TRel is a type
α : TRel iff α : Rel and α.cont : TPPpty
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NoDaughters —
[
syn:

[
daughters=ε:Sign*]]

Real — a basic type
n : Real iff n is a real number

Card — a basic type
n : Card iff n is a cardinal number (natural numbers with the addition of ℵ0,ℵ1, …)

AmbTempFrame —
⎡
⎢
⎢
⎣

x : Real
loc : Loc
e : temp(loc, x)

⎤
⎥
⎥
⎦

TempRiseEventCntxt — [
fix :

[
loc : Loc

]

scale : (AmbTempFrame → Real) ]

TempRiseEvent —
λr:TempRiseEventCntxt .

[
e : (AmbTempFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

PriceFrame —
⎡
⎢
⎢
⎢
⎣

x : Real
loc : Loc
commodity : Ind
e : price(commodity, loc, x)

⎤
⎥
⎥
⎥
⎦

PriceRiseEventCntxt —
⎡
⎢
⎢
⎣

fix : [
loc : Loc
commodity : Ind ]

scale : (PriceFrame → Real)

⎤
⎥
⎥
⎦

PriceRiseEvent —
λr:TempRiseEventCntxt .

[
e : (PriceFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

LocFrame —
⎡
⎢
⎢
⎣

x : Ind
loc : Loc
e : at(x, loc)

⎤
⎥
⎥
⎦

LocRiseEventCntxt — [
fix :

[
x : Ind

]

scale : (LocFrame → Real) ]

LocRiseEvent —
λr:LocRiseEventCntxt .

[
e : (LocFrame∥r.fix)2
crise : r.scale(e[0]) < r.scale(e[1]) ]

Topos — a basic type

If τ : Topos, then τ : [ bg : Type
fg : (bg→Type) ]

8.4.1.2 Predicates
(as in Chapter 7)

8.4.1.3 Properties
(as in Chapter 7)
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8.4.1.4 Scales
(as in Chapter 5)

8.4.1.5 Lexicon
Lex

If Tphon is a phonological type (that is, Tphon ⊑ Phon) and Tsign is a sign type (that is,
Tsign ⊑ Sign), then we shall use Lex(Tphon, Tsign) to represent

((Tsign ∧̣
[
s-event:

[
e:Tphon

]]
) ∧̣ NoDaughters)

SemCommonNoun(Tbg, p)
If p is a predicate with arity ⟨Ind⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If p is a predicate with arity ⟨Rec⟩ and Tbg is a type (of context), then
SemCommonNoun(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x)
]
˺˺

LexCommonNoun(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ or ⟨Rec⟩ and Tbg is a type
(of context), then LexCommonNoun(Tphon, Tbg, p) is

Lex(Tphon, N) ∧̣
[
cont=SemCommonNoun(Tbg, p)𝔖:ContType

]

SemPropName(Tphon)
If Tphon is a phonological type, then SemPropName(Tphon) is

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[
x:Ind
e:named(x, Tphon)

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(c.𝔠)˺

LexPropName(Tphon ) Revised!
If Tphon is a phonological type,
then LexPropName(Tphon) is

Lex(Tphon, NP) ∧̣
[
cnt=SemPropName(Tphon)𝔖:ContType

]

SemPron Revised!

˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔩:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P(
[
x=c.𝔰.x0

]
)˺
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LexPron(Tphon) Revised!
If Tphon is a phonological type, then LexPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemPron𝔖:ContType

]

SemWhPron

˹λc:[Cntxt
𝔴:
[
x0:Ind

]] . λP:Ppty . P(
[
x=c.𝔴.x0

]
)˺

LexWhPron(Tphon) Revised!
If Tphon is a phonological type, then LexWhPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemWhPron𝔖:ContType

]

SemReflPronNew!

˹λc:
⎡
⎢
⎢
⎣

Cntxt
𝔰:
[
x0:Ind

]

𝔯:
[
x0:Ind

]

⎤
⎥
⎥
⎦

. λP:Ppty . P{c.𝔰.x0}˺

LexReflPron(Tphon)New!
If Tphon is a phonological type, then LexReflPron(Tphon) is

Lex(Tphon, NP) ∧̣
[
cont=SemReflPron𝔖:ContType

]

SemNumeral(n)
If n is a real number, then SemNumeral(n) is

˹λc:Cntxt . λP:Ppty . P(
[
x=n

]
)˺

Lexnumeral(Tphon, n) Revised!
If Tphon is a phonological type and n is a real number, then Lexnumeral(Tphon, n) is

Lex(Tphon, NP) ∧̣
[
cnt=SemNumeral(n)𝔖:ContType

]

SemIndefArt
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|𝔉(restr) : Ppty
e : exist(restr, scope)

⎤
⎥
⎥
⎦

˺

LexIndefArt(TPhon) Revised!
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemIndefArt𝔖:ContType

]
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SemUniversal
λQ:Ppty .

˹λc:Cntxt .
λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q : Ppty
scope=P|𝔉(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexUniversal(TPhon) Revised!
If TPhon is a phonological type, then LexUniversal(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemUniversal𝔖:ContType

]

SemDefArt

λQ:Ppty .

˹λc:[Cntxt
𝔠:
[
e:unique(Q)

]] .

λP:Ppty .
⎡
⎢
⎢
⎣

restr=Q↾c.𝔠.e : Ppty
scope=P|𝔉(restr) : Ppty
e : every(restr, scope)

⎤
⎥
⎥
⎦

˺

LexDefArt(TPhon) Revised!
If TPhon is a phonological type, then LexIndefArt(TPhon) is

Lex(TPhon, Det) ∧̣
[
cont=SemDefArt𝔖:ContType

]

SemIntransVerb(Tbg, p)
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind⟩, then
SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Ind

]
.
[

e : p(r.x)
]
˺˺

If Tbg ⊑
[
𝔠:Rec

]
is a record type (for context) and p is a predicate with arity ⟨Rec,Rec⟩,

then SemIntransVerb(Tbg, p) is

˹λc:Tbg . ˹λr:
[
x:Rec

]
.
[

e : p(r.x, c.𝔠)
]
˺˺

LexIntransVerb(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, Tbg ⊑

[
𝔠:Rec

]
a record type (for context) and p is a

predicate with arity ⟨Ind⟩ or ⟨Rec,Rec⟩, then LexIntransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vi) ∧̣
[
cnt=SemIntransVerb(Tbg, p)𝔖:ContType

]

SemTransVerb(Tbg, p)
If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind, Ind⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr1:
[
x:Ind

]
. 𝒬(˹λr2:

[
x:Ind

]
.
[

e : p(r1.x, r2.x)
]
˺)˺˺
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If Tbg is a record type (for context) and p is a predicate with arity ⟨Ind,Quant⟩, then
SemTransVerb(Tbg, p) is

˹λc:Tbg . λ𝒬:Quant . ˹λr:
[
x:Ind

]
.
[

e : p(r.x, 𝒬)
]
˺)˺

LexTransVerb(Tphon, Tbg, p) Revised!
If Tphon is a phonological type, Tbg a record type (for context) and p is a predicate with
arity ⟨Ind, Ind⟩ or ⟨Ind,Quant⟩, then LexTransVerb(Tphon, Tbg, p) is

Lex(Tphon, Vt) ∧̣
[
cnt=SemTransVerb(Tbg, p)𝔖:ContType

]

SemBe

SemBeID

˹λc:[Cntxt
𝔠:
[
ty:Type

]] .

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:c.𝔠.ty

]
. [ x=r1.x, r2.x : c.𝔠.ty

e : be(x) ]˺)˺˺

SemBescalar

˹λc:
⎡
⎢
⎢
⎣

Cntxt

𝔠:[ty:Typesc:(ty→Real)]

⎤
⎥
⎥
⎦

.

λ𝒬:Quant .
˹λr1:

[
x:c.𝔠.ty

]
.

𝒬(˹λr2:
[
x:Real

]
. [ x=c.𝔠.sc(r1.x), r2.x : Real

e : be(x) ]˺)˺˺

Lexbe(TPhon) Revised!
If TPhon is a phonological type, then LexbeID

(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBeID𝔖:ContType

]

If TPhon is a phonological type, then Lexbescalar
(TPhon) is

Lex(TPhon, V ) ∧̣
[
cont=SemBescalar𝔖:ContType

]

FrameType(p)
FrameType is a partial function on predicates, p, with arity ⟨Ind⟩which can be defined
for particular agents and particular times, which obeys the constraint:

FrameType(p) ⊑ [
x : Ind
e : p(x) ]
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p_frame

1. If p is a predicate in the domain of FrameType, then p_frame is a predicate with
arity ⟨Rec⟩.

2. e : p_frame(r) iff r : FrameType(p) and e = r

p_pl

1. If p is a singular predicate (i.e. there is no pʹ such that p = pʹ_pl) with arity ⟨T⟩,
then p_pl is a predicate with arity ⟨plurality(T)⟩

2. e : p_pl(A) if for all a ∈ A, e : p(a)

CommonNounIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
CommonNounIndToFrame(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(Tphon, Tbg, p_frame)

RestrictCommonNoun Revised!
If Tphon is a phonological type, p is a predicate, Tbg and Tres are record types and Σ is
LexCommonNoun(Tphon, Tbg, p), then RestrictCommonNoun(Σ, Tres) is

Σ ∧̣
[

cont=˹λc :Tbg . ˹SemCommonNoun(Tbg, p)(c) ∣Tres ˺˺𝔖 : ContType
]

IntransVerbIndToFrame
If Tphon is a phonological type, p is a predicate with arity ⟨Ind⟩ and Tbg is a record type
(the “background type” or “presupposition”) then
IntransVerbIndToFrame(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(Tphon, Tbg, p_frame)

PluralCommonNoun
We assume that ‘pluralnoun’ is a function that maps phonological types for singular
common nouns to corresponding phonological types for plural common nouns.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralCommonNoun(LexCommonNoun(Tphon, Tbg, p)) =

LexCommonNoun(pluralnoun(Tphon), Tbg, p_pl)

PluralIntransVerb
We assume that ‘pluralverb’ is a function thatmaps phonological types for singular verbs
to corresponding phonological types for plural verbs.
If Tphon is a (singular) phonological type, p is a singular predicate with arity ⟨T⟩ and Tbg
is a record type then PluralIntransVerb(LexIntransVerb(Tphon, Tbg, p)) =

LexIntransVerb(pluralverb(Tphon), Tbg, p_pl)
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TransVerbToVerbPhrase Revised!
If Tphon is a phonological type, Tbg a context type, p is a predicate with arity ⟨Ind, Ind⟩
or ⟨Ind,Quant⟩ and Σ is LexTransVerb(Tphon, Tbg, p), then TransVerbToVerbPhrase(Σ) is

Σ ∧̣ [
cat=vp : Cat
cont=Σ.cont∕Quant : ContType ]

where for any content type, T, such that φ : T implies φ : (Quant→PPpty), T∕Quant is
a type such that

φ : T iff ˹λc:T.bg∧̣
[
𝔤:
[
x0:Ind

]]
. φ(c)(λP:Ppty . P{c.𝔤.x0})˺ : T∕Quant

8.4.1.6 Constituent structure
RuleDaughters(Tdaughters, Tmother)

If Tmother is a sign type and Tdaughters is a type of strings of signs then

RuleDaughters(Tdaughters, Tmother)

is

λu :Tdaughters . Tmother ∧̣
[
syn:

[
daughters=u:Tdaughters

]]

ConcatPhon
λu:

[
s-event:

[
e:Phon

]]+ .[
s-event :

[
e=concati(u[i].s-event.e) : Phon

] ]

Tmother⟶Tdaughter1…Tdaughtern
If Tmother is a sign type and Tdaughter1 , … ,Tdaughtern are sign types, then

Tmother⟶Tdaughter1…Tdaughtern

represents

RuleDaughters(Tmother, Tdaughter1
⌢…⌢Tdaughtern)∧̣̣ConcatPhon

B(α)New!
If α is a parametric content,

˹λc :T . φ((c))˺

then B(α) is

˹λc:T ∧̣
[
𝔩:Assgnmnt

]
. φ((c))˺

α@β

If α : [bg:CntxtType
fg:(bg→(T1→T2))

] and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β based

on functional application, α@β, is

˹λc:[α.bg]𝔠⇝𝔠.f ∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) .
[α]𝔠⇝𝔠.f(c)(incr([β.fg]𝔠⇝𝔠.a, α.bg)(c))˺
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α@whi,j
β

If

1. α : [bg:CntxtType
fg:(bg→Quant)],

2. β : [bg:CntxtType
fg:(bg→RecType)],

3. α.bg ⊑
[
𝔴:
[
xi:Ind

]]
for some natural number, i, and

4. β.bg ⊑
[
𝔤:
[
xj:Ind

]]
for some natural number, j,

then the whi,j-combination of α and β, α@whi,j
β, is

˹λc:([α.bg⊖paths𝔴.xi(α.bg)]𝔠⇝𝔠.f∧̣
incr([β.bg⊖ paths𝔤.xj(β.bg)]𝔠⇝𝔠.a, α.bg)) .

𝔓(˹λr1:[α.bg
𝔴.xi ]𝔴.xi⇝x .

α𝔠⇝𝔠.f,𝔴.xi⇝x(c[r1]) (𝔓(˹λr2:[β.bg
𝔤.xj ]𝔤.xj⇝x .

incr(β𝔠⇝𝔠.a,𝔤.xj⇝x, α.bg)(c[r2])˺))˺)˺

α@@β

If α : (T1→ [
bg:CntxtType
fg:(bg→T2)

]) and β : [bg:CntxtType
fg:(bg→T1)

] then the combination of α and β

based on functional application, α@@β, is

˹λc:

⎡
⎢
⎢
⎢
⎢
⎣

𝔠 :
⎡
⎢
⎢
⎣

s : β.bg
f : α(β(s)).bg
a=s.𝔠 : PropCntxt

⎤
⎥
⎥
⎦

𝔰=𝔠.s.𝔰 : Assgnmnt

⎤
⎥
⎥
⎥
⎥
⎦

.

[α]𝔠⇝𝔠.f([β]𝔠⇝𝔠.a(c))(c)˺

α@&β
If T is a type, α : TPPpty and β : TPPpty then the property conjunction combination of α
and β, α@&β, is

λc:[α.bg]𝔠⇝𝔠.f∧̣incr([β.bg]𝔠⇝𝔠.a, α.bg) . α𝔠⇝𝔠.f(c)&incr([β]𝔠⇝𝔠.a, α.bg)(c)

α𝒪i,jβNew!
If 𝒪 is a combination operator, then so is 𝒪i,j, where i and j are natural numbers.
If α and β are parametric contents such that

1. α𝒪β is defined
2. α.bg ⊑

[
𝔰:
[
xi:Ind

]]

3. incr(β.bg, α.bg) ⊑
[
𝔰:
[
xj:Ind

]]

4. incr(β.bg, α.bg) ̸⊑
[
𝔮:
[
xj:PQuant

]]

5. incr(β.bg, α.bg) ̸⊑
[
𝔩:
[
xj:PQuant

]]

then α𝒪i,jβ is

[α𝒪β]𝔰.xj⇝𝔰.xi
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T1𝒪
𝔖T2 New!

Suppose that T1 and T2 are of type ContType and that 𝒪 is a combination operation
such as @,…as characterized above, then we say T1𝒪

𝔖T2 is also a type with the witness
condition:

If α : T1, β : T2 and α𝒪β is defined, then α𝒪β : T1𝒪
𝔖T2. Nothing else is a witness for

T1𝒪
𝔖T2.

T1𝒪
𝔖,BT2 New!

Suppose that T1 and T2 are of type ContType and that 𝒪 is a combination operation
such as @ etc., then we say that T1𝒪

𝔖,BT2 is also a type with the witness condition:

If α : T1, β : T2 and α𝒪β is defined, then B(α𝒪β) : T1𝒪
𝔖,BT2. Nothing else is a witness

for T1𝒪
𝔖,BT2.

ContForwardApp𝔖,𝒪 New!
If 𝒪 is one of @,…as defined above, then ContForwardApp𝔖,𝒪 is

λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(u[0].cont𝒪𝔖u[1].cont)

]

Note: This single characterization of ContForwardApp replaces all the previous vari-
ants that were defined in previous chapters.

ContForwardApp𝔖,𝒪,B New!
If 𝒪 is a combination operator, then ContForwardApp𝔖,𝒪,B is

λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(u[0].cont𝒪𝔖,Bu[1].cont)

]

ContForwardApp𝔖,𝒪,𝔄 New!
If 𝒪 is a combination operator, then ContForwardApp𝔖,𝒪,𝔄 is

λu:
[
cont:ContType

]
⌢
[
cont:ContType

]
.
[
cont:𝔖(𝔄(u[0].cont𝒪𝔖u[1].cont))

]

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(𝒪T ʹdaughter2)New!
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and𝒪 is a combination operation, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ T ʹdaughter1(𝒪T ʹdaughter2)

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪

Note: This covers all the variant notations introduced in previous chapters.
Tmother⟶Tdaughter1 Tdaughter2 ∣ B(T ʹdaughter1(𝒪T ʹdaughter2))New!

If Tmother, Tdaughter1 , and Tdaughter2 are sign types and𝒪 is a combination operation, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ B(T ʹdaughter1(𝒪T ʹdaughter2))

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪,B
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Tmother⟶Tdaughter1 Tdaughter2 ∣ 𝔄(T ʹdaughter1(𝒪T ʹdaughter2))New!
If Tmother, Tdaughter1 , and Tdaughter2 are sign types and𝒪 is a combination operation, then

Tmother⟶Tdaughter1 Tdaughter2 ∣ 𝔄(T ʹdaughter1(𝒪T ʹdaughter2))

is

Tmother⟶Tdaughter1 Tdaughter2 ∧̣̣ ContForwardApp𝔖,𝒪,𝔄

8.4.1.7 Action rules
(as in Chapter 6)

8.4.2 Universal speech act resources

(as in Chapter 2)

8.4.3 Universal discourse resources

φ1 |π11,π21;…;π1n,π2n φ2 New!
Suppose that φ1 and φ2 and parametric contents, π11…π1n ∈ paths(φ1.bg) and
π21…π2n ∈ paths(ℱquasi*(φ2.fg)), then the content φ1 given φ2 with alignment of π11
and π21,…,π1n and π2n, φ1 |π11 ,π21;…;π1n ,π2n

φ2, is

[
bg = (φ1.bg ∧̣

[
𝔭:ℱquasi*(φ2.fg)

]
)π11=𝔭.π21 ,…,π1n=𝔭.π2n

fg = λc:bg . φ1(c)
]

ℭ(T1,T2) New!
If T1 and T2 are types of parametric contents, then there is a combined type, ℭ(T1,T2),
whose witnesses include witnesses for T1 given a witness for T2 with some possible
alignment between the two.
The witnesses of ℭ(T1,T2) are characterized recursively by:

1. if φ : T1, then φ : ℭ(T1,T2)
2.. if φ1 : ℭ(T1,T2),

π11, …, π1n ∈ paths(φ1.bg),
φ2 : T2 and
π21, …, π2n ∈ paths(ℱquasi*(φ2.fg)),

then

φ1|π11 ,π21;…;π1n ,π2n
φ2 : ℭ(T1,T2)

Interpretation in the context of a previous utterance New!— action rule in example
(45).

8.4.4 Universal dialogue resources

(as in Chapter 4)
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8.4.5 English resources

8.4.5.1 Types and predicates
(as in Chapter 6)

8.4.5.2 Grammar
Lexical sign types

Let Lexicon be the set of lexical sign types defined inductively as follows. The following
set is included in Lexicon.

{LexPropName(“Dudamel”),
LexPropName(“Beethoven”),
LexPron(“he”),
Lexnumeral(“nine”, 9),
Lexnumeral(“ninety”, 90),
LexIndefArt(“a”),
LexUniversal(“every”),
LexDefArt(“the”),
LexCommonNoun(“composer”, Rec, composer),
LexCommonNoun(“conductor”, Rec, conductor),
LexCommonNoun(“dog”, Rec, dog) (= Σ“dog”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“dog”), DogFrame),
LexCommonNoun(“passenger”, Rec, passenger) (= Σ“passenger”),
RestrictCommonNoun(CommonNounIndToFrame(Σ“passenger”), PassengerFrame),
LexCommonNoun(“temperature”, Rec, temperature) (= Σ“temperature”),
RestrictCommonNoun(Σ“temperature”, AmbTempFrame),
LexIntransVerb(“leave”, Rec, leave),
LexIntransVerb(“run”, Rec, run),
LexIntransVerb(“rise”,

[
𝔠:TempRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:PriceRiseEventCntxt

]
, rise),

LexIntransVerb(“rise”,
[
𝔠:LocRiseEventCntxt

]
, rise),

LexTransVerb(“hug”, Rec, hug),
LexTransVerb(“find”, Rec, find),
LexTransVerb(“seek”, Rec, seek),
LexTransVerb(“worship”, Rec, worship),
LexbeID

(“is”),
Lexbescalar

(“is”),
Lex(“ok”, S),
Lex(“aha”, S) }

Transitive verbs as verb phrases
If Σ = LexTransVerb(TPhon, Tbg, p), for some TPhon, Tbg, and p, and Σ ∈ Lexicon, then

TransVerbToVerbPhrase(Σ) ∈ Lexicon.
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Constituent structure rule components
CnstrIsA Revised!

λu:V ∧̣
[
s-event:

[
e:“is”

]]⌢NP∧̣[syn:[daughters:Det∧̣
[
s-event:

[
e:“a”

]]

⌢ N ] ] .

VP∧̣
[
cont=u[2].syn.daughters[2].cont:ContType

]

Constituent structure rules
Let CSRules be the set of constituent structure rules, defined inductively as follows. The
following set is included in CSRules.

{S⟶ NP VP ∣ B(NPʹ(@VPʹ) Revised!,
NP⟶ Det N ∣ Detʹ(@@N ʹ) Revised!,
VP⟶ V NP ∧̣̣ CnstrIsA,
VP⟶ V NP ∣𝔄(V ʹ(@NPʹ)) Revised!}

Relative clauses
If i and j are natural numbers, then

Rel⟶ NPwhi
S/j ∣ NPʹwhi

(@whi,j
S/jʹ) Revised!

is a member of CSRules
If T is a type, then

N⟶TN TRel ∣ TNʹ(@&
TRelʹ) Revised!

is a member of CSRules

8.5 Summary

In this chapter we have explored how to use types to characterize underspecified interpre-
tation. A type underspecifies its witnesses since any one of them can be used as a specific
object of the type. We thus characterize types of contents to play the role of underspecified
representations as employed, for example, in DRT by Reyle (1993) or using Quasi Logical
Form (Alshawi, 1992). Using underspecified representations of meaning is important in
computational applications where a large number of alternative specified representations
can be generated. The idea here is that we can compute a single type of content for an
utterance and then determine a precise content as needed and check that it is of the type
generated. This helps us understand how speakers of a natural language can rapidly process
utterances in real time when in fact many different contents are available.

We started by recreating the storage algorithm of Cooper (1983), showing how the stores
for quantifiers can be incorporated into context on the structure view of context we have
developed using record types. We then showed how a treatment of anaphora can be added
to the elaboration of content types including discourse anaphora, donkey anaphora, and
aspects of Chomskyan binding theory.

While we do not claim that we have covered everything that has been accounted for in
the considerable linguistic literature on these topics, there does seem to be enough here
to show that our theory of types which we used in the earlier parts of the book to deal
with perception, interaction, andmental states, is also capable of dealing with these central
concerns of linguistic semantics.



Conclusion

What view of language have we come to after working through the details of this book?
There are a number of general themes which are woven together:

Language as action We see the prototypical form of language as speech events in the
context of dialogue and see other forms of language such as written text, talking,
or thinking to yourself as derivative of this. Rather than start from a formal view of
language in terms of strings of symbols with associated structure and try to associate
this with linguistic events, we start with a simple theory of action and show how the
insights of the formal view of language can be expressed in those terms.

Linguistic content grounded in perception as type judgement Language is not an
abstract formal construction but rather a form of communicative behaviour embed-
ded in biological agents. As such the nature of the content which those biological
agents can express is conditioned by the physical relationship which they have with
their environment and the way that they perceive and cognitively represent it. We
have offered the beginnings of an abstract theory of how perception and linguistic
content can be related using type judgements. It is important that such a theory does
not limit content to concern only that which can be perceived. We have suggested
that linguistic agents (and presumably non-linguistic higher animals) can not only
judge things to be of types but have developed the ability to reflect on and reason
with the types themselves. This includes the ability to reflect on types that could not
possibly have a witness as well as types realized in the past or which might be real-
ized in the future or which correspond to a different possibility from what is actually
the case.

Language as interaction and coordination If you think of language as a form of com-
municative behaviour it comes as no surprise that interaction and coordination are
central to a theory of language. In this book we have tried to relate linguistic inter-
action and coordination to an approach in terms of a general theory of action. The
techniques that seem necessary for the successful coordination of a game of fetch
between a dog and a human seem to underlie what is needed for coordination in dia-
logue. Both involve recognizing (or predicting) the type of event that is to be jointly
realized by the coordinating agents. Both are analysed in terms of update rules on
information states containing at least an agenda. Both involve affordances provided
to the agents by what has happened in the event so far. Both suggest a view of events
as strings of smaller events which have some similarity to scripts as they have been
used in artificial intelligence.What we think of as grammar arises out of these update
procedures. This is in contrast to previous views of language processing where it
is often the case that the linguistic processing such as parsing arises from the pre-
existence of grammatical rules which need to be called upon by a parsing algorithm.

From Perception to Communication. Robin Cooper, Oxford University Press.
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Language as a system in flux Given a view of language as action which involves inter-
action and coordination, it does not come as a surprise that language is a system
in flux that is constantly being adjusted to fit current needs, both in terms of what
content one wishes to express (the world is constantly presenting us with types of sit-
uations we have not seen before) and in terms of the linguistic habits and presumed
resources available to our interlocutors. We have tried to build a theory in which it
would be natural to modify the system on the fly. For example, our discussion of
proper names talks of proper names as being able to be connected to individuals on
the fly during the course of communication. Something similar is going on in our
discussion of semantic frames (modelled as record types) which can, we suggest, be
created on the fly.

Types, not possible worlds We have used types to do the kind of work which in other
semantic theories is done by possible worlds. One type corresponds to uncountably
many possible worlds. It is more tractable to reason with a small number of types, for
example, when dealing with preference orders in the analysis of modality, than the
transfinite collection of possible worlds that correspond to them. Types also give us
a better way of modelling propositions than sets of possible worlds as in many other
approaches to linguistic semantics. Firstly, a proposition is modelled by a single type
rather than an uncountable number of possible worlds. Secondly, types provide us
with a finer granularity than sets of possible worlds and this enables us to distinguish
among propositions which are logically equivalent. Finally, when the grain of types
is too fine, the structured nature of the types allows us to define equivalence relations
which make the grain more coarse. The structure of the types and the equivalence
relations available limits what kind of grain can be made relevant to the semantics.
For example, record types can be exactly similar except in respect of their labelling.
In the case of anaphora this granularity is important so that labels can be used to
point to parts of the content to be referred to. In other cases, such as attitudes like
belief, the labels get in the way and provide too fine a grain but it is straightforward
to use relabelling in order to make this grain irrelevant as we showed in Chapter 6.

Types and reference to non-existent objects There are a number of ways in which
expressions in natural languages, notably proper names and pronouns, can be used
to refer to non-existent objects. Rather than posit a class of non-existent objects as
such in our semantic universe we have used types in order to achieve this. Recall
that there is no requirement that all types have witnesses. There are also “impos-
sible” or inconsistent types which could not have witnesses in any possibility. The
labels in record types can be exploited to achieve the effect of anaphoric reference
to non-existent objects. This provides us with a parsimonious theory in which there
are types and real existent witnesses for types. We do not have to in addition posit
possible but non-actual objects or impossible objects, and it gives us a convenient
and intuitive way of talking about fiction as presenting a type (or a series of types)
which are not witnessed.

Types and cognitive resources Given that we have viewed language in terms of action
by cognitive agents grounded in their perception of the world, it does not come as
a surprise that the agents’ mental states and cognitive resources play a central role
in our account of how language is used in communication. This represents a shift
from the view given by classical formal semantics which is often presented in terms
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of the relationship between language and the world. While we have tried to show
that the insights gained from traditional formal semantics can be incorporated in our
action-based theory, the puzzles that remain in the traditional approach often involve
cases where mental states seem to play a role. This is particularly obvious in the case
of attitudes such as belief. Our analysis of belief involves matching the content of an
utterance against a type which we judge to represent an aspect of the mental state of
the person whose belief we are reporting. However, we have also used mental states
in cases where it is not so obvious in traditional theories that they are necessary, for
example, in the treatment of the use of proper names. This is natural in a dialogically
oriented approach to semantics where processing an utterance in a dialogue involves
updating an information state which records the current “scoreboard” (using David
Lewis’s term) of the dialogue so far. We have proposed that types can be used in the
modelling of cognitive resources as well as in the modelling of utterances and their
content. For example, a model of an agent’s belief state is a type which intuitively
represents how the world would be if the agent’s beliefs were true. We suspect that
most people’s total belief states are inconsistent types which could not actually be
witnessed.

Types as a way of doing underspecification Types, as we know, can have several wit-
nesses. Thismeans thatwe can use types to represent thatwe donot have information
to choose among the witnesses. Thus types can be used to do the work of what
have been called “underspecified representations” in the linguistic and computa-
tional literature or “descriptions” in the computational literature. Our exploration
of underspecification in Chapter 8 involved relating types of utterances to types of
contents rather than to contents as we had done in the earlier chapters. The aim of
the work on underspecification in general in the literature is to make the treatment
of ambiguity in natural language tractable by having a single representation covering
in some cases hundreds or even thousands of contents that might be associated with
a given utterance and being able to refine such a general representation as the mean-
ing of the utterance is narrowed down. Structured types such as record types are
well-suited to this kind of refinement and are thus promising candidates for under-
specified processing of natural language. From a psycholinguistic and philosophical
perspective the use of types both for underspecification and the modelling of beliefs
provides us with a interesting perspective on linguistic processing: namely, that what
we get from processing an utterance is not a fully specified content but rather a belief
about what kind of content was expressed—a belief that may be more or less specific
depending on the information we have available.

Direct interpretation Part of Montague’s original programme for semantics was to
show that natural languages can be interpreted directly without first having to trans-
late them into an artificial logical representation. For Montague this was in support
of the slogan “English as a formal language”—the claim that English can be given
the same kind of semantic treatment as the artificial formal languages created by
logicians. This is appealing for the kind of theory developed in this book which is
an attempt to say something about the kind of cognition involved in linguistic com-
munication. Presumably our linguistic behaviour has evolved in order to support
our communication with each other. A theory which says that language first has to
be mapped to an artificial logical language which is then interpreted suggests either
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that evolution has failed to give us a language which we can use for communication
or that we, as theorists, have so far failed to find a way of explaining how the actual
speech events as such can convey information. In this book we have not introduced
an intermediate language between the natural language and its interpretation. Rather
we have explored what kind of structured semantic objects can be directly related
to speech events. This seems more convincing as the basis of a cognitive theory of
communication.

Types in a general theory of cognition Behind all this is a desire to find a theory of
types which can be used to talk about cognition in general as well as allow us to give
a general account of language which includes many of the insights we have gained
from separate linguistic theories, a foundation for a formal approach to cognition, if
you like. What has been presented in this book represents a first step towards such a
theory.

TTR as a theory of types (as presented in the Appendix to this book) provides a
foundation for building linguistic theories which is more fitted to a discussion of
cognitive aspects of linguistic action than set theory on its own as a foundation.
The theory of types here has been presented as having its foundation in set theory.
This may not be ultimately necessary and perhaps the kind of theory of types pre-
sented here could be presented as having a type theoretic foundation in the manner
of Martin-Löf type theory. It has not been my aim in this book to contribute to the
discussion of the foundation of mathematics but rather to consider how we might
improve the foundation of cognitive and linguistic theories and to relate this dis-
cussion to the linguistic theories founded on set theory. What is presented in the
body of the book is the beginnings of a theory of language as action and interaction
which is built on this theory of types. Often the term “TTR” is used to refer to such
a theory rather than the theory of types as such. While TTR as a theory of types
allows different theories to be formulated using it as a foundation, there are never-
theless commonalities in approach in the various proposals that have been made in
the literature.

Why try to do all of this at once? Would it not have been better to write individual books
and papers on each of these topics in turn? These are questions that I have asked myself
at various points while writing this book. It worries me (and it will probably worry you)
despite the fact that I know the answer: it is important to have a single approach to language
in which all these issues can be addressed simultaneously. Taking the issues one at a time
is not as convincing or ultimately as interesting as showing how these different aspects of
language interact in a complex system, giving us a view of linguistic interpretation which
both embraces an action oriented approach and preserves the insights we have gained from
formal semantics as well as addressing some of the puzzles that it failed to solve adequately.
A large part of the motivation for using types in the way that we have is to raise the possi-
bility that the same theory of types can be used to address all of these issues within a single
coherent theory.



APPENDIX

TTR

Unless otherwise stated this is the version of TTR presented in Cooper (2012b).

A1 Underlying set theory

In previous statements of this system such as Cooper (2012b) we tacitly assumed a stan-
dard underlying set theory such as ZF (Zermelo-Fraenkel) with urelements (as formulated
for example in Suppes, 1960). This is what we take to be the common or garden working
set theory which is familiar from the core literature on formal semantics deriving from
Montague’s original work (Montague, 1974).

In this versionwewill assume that our set theory comes equippedwith a set ofurelements
(entities which are not sets but which can be members of sets). We will assume that among
the urelements is a countably infinite set which is designated as the set of labels. In addition
we assume that among the urelements there is a finite or countably infinite set, disjoint
from the set of labels, designated as the set of flavours. Finally, we assume that there is a
countably infinite set of urelements, 0 , 1 ,…, called indices, which is disjoint from both
the set of labels and the set of flavours.

A field is either

an ordered pair ⟨ℓ, a⟩ where ℓ is a label and a is not a label or a flavour

or

an ordered triple ⟨ℓ, a, i⟩ where ⟨ℓ, a⟩ is a field and i is an index

An (unflavoured) labelled set (Chapter 1, Section 1.4.2) is a set of fields such that no
more than one field can contain any particular label as its first member. This means that a
labelled set whosemembers are all ordered pairs is the traditional set theoretic construction
of an extensional function from a set of labels onto some set. A flavoured labelled set is an
unflavoured labelled set, X, with the addition of some flavour, 𝔣, that is, X ∪ {𝔣}. We use
flavours when we need to distinguish objects which correspond to the same set of ordered
pairs.

We refer to the first members of the fields in a labelled set (flavoured or unflavoured) as
labels used in the labelled set and we will refer to the second members of the fields as the
labelled elements of the labelled set. If X is a labelled set we use labels(X) to represent
the set {ℓ ∣ ∃x, i ⟨ℓ, x⟩ ∈ X or ⟨ℓ, x, i⟩ ∈ X}, the left projection of X. If ℓ ∈ labels(X) and
⟨ℓ, v⟩ ∈ X or ⟨ℓ, v, i⟩ ∈ X for some i, then we use X.ℓ to represent v. We characterize the set
of paths in a labelled set, paths(X) by the following inductive definition:

If X is a labelled set, then

1. if ℓ ∈ labels(X), then ℓ ∈ paths(X)
2. if ℓ ∈ labels(X), X.ℓ is a labelled set and π ∈ paths(X.ℓ), then ℓ.π ∈ paths(X)

From Perception to Communication. Robin Cooper, Oxford University Press.
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The set of total paths in a labelled set, X, tpaths(X) is the set of paths, π, such that
π ∈ paths(X) and X.π is not a labelled set.

π1 is an initial subpath (Chapter 4, p. 151) of π2, π1 ≤ π2, just in case either π1 = π2 or
there is some π such that π2 = π1.π.

π1 is a proper initial subpath (Chapter 4, p. 151) of π2, π1 < π2, just in case there is some
π such that π2 = π1.π.

If X is a labelled set, then x is a component of X, xεX, iff there some π ∈ paths(X) such
that X.π = x.

We characterize the subtraction of a path, π, from a labelled set X, X ⊖ π, (Chapter 7,
p. 327) as follows:

1. If X is a labelled set, ℓ ∈ labels(X) and ⟨ℓ,φ⟩ ∈ X, then X⊖ ℓ is

X − {⟨ℓ,φ⟩}

2. If X is a labelled set, ⟨ℓ,φ⟩ ∈ X and ℓ.π ∈ tpaths(X), then

if ℓ.π is branching in X, then X⊖ ℓ.π is

(X − {⟨ℓ,φ⟩}) ∪ {⟨ℓ,φ⊖ π⟩}

otherwise X⊖ ℓ.π is

X − {⟨ℓ,φ⟩}

If X is a labelled set and π1, …, πn ∈ tpaths(X), then we write X ⊖ π1, …, πn for
X⊖ π1 ⊖…⊖ πn.

If ℒ is a set of labels, the ℒ+ is defined inductively by

1. if ℓ ∈ ℒ, then ℓ ∈ ℒ+
2. if ℓ ∈ ℒ and π ∈ ℒ+, then ℓ.π ∈ ℒ+

Ifℒ is a set of labels andX is a labelled set such thatpaths(X) ⊆ ℒ+, then aℒ-relabelling
of X is a one–one function, η, such that

1. dom(η) ⊆ paths(X)
2. rng(η) ⊆ ℒ+ − (paths(X) − dom(η))
3. if π1, π2 ∈ dom(η), and π1 < π2, then η(π1) < η(π2)

If X is a labelled set based onℒ and η is aℒ-relabelling of X, then [X]η is the labelled set
X ʹ exactly like X except that

1. if π ∈ dom(η), then η(π) replaces π in paths(X ʹ), that is

paths(X ʹ) = (paths(X) − dom(η)) ∪ rng(η)

2. if π ∈ dom(η) and there is no π ʹ ∈ dom(η) such that π < π ʹ, then X ʹ.η(π) = X.π
3. if π ∈ tpaths(X ʹ) and π ∉ dom(η), then X ʹ.π = X.π

We represent a relabelling, η, whose domain is {π1, …, πn} and which is defined by
η(π1) = π ʹ1, …, η(πn) = π ʹn as:

π1 ⇝ π ʹ1
...
πn ⇝ π ʹn
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A2 Basic types

A2.1 System of basic types

A system of basic types (Chapter 1, p. 13) is a pair:

TYPEB = ⟨Type, A⟩

where:

1. Type is a non-empty set
2. A is a function whose domain is Type
3. for any T ∈ Type, A(T) is a set disjoint from Type
4. for any T ∈ Type, a :TYPEB

T iff a ∈ A(T)

A3 Complex types

A3.1 Predicates

We start by introducing the notion of a predicate signature.
A predicate signature (Chapter 1, p. 16) is a triple

⟨Pred, ArgIndices, Arity⟩

where:

1. Pred is a set (of predicates)
2. ArgIndices is a set (of indices for predicate arguments, normally types)
3. Arity is a functionwith domainPred and range included in the set of finite sequences

of members of ArgIndices.

A polymorphic predicate signature (Chapter 1, p. 17) is a triple

⟨Pred, ArgIndices, Arity⟩

where:

1. Pred is a set (of predicates)
2. ArgIndices is a set (of indices for predicate arguments, normally types)
3. Arity is a function with domain Pred and range included in the powerset of the set

of finite sequences of members of ArgIndices.

A3.2 Systems of complex types

A system of complex types (Chapter 1, p. 18) is a quadruple:

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

where:

1. ⟨BType, A⟩ is a system of basic types
2. BType⊆Type
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3. for any T ∈ Type, if a :⟨BType,A⟩ T then a :TYPEC
T

4. ⟨Pred, ArgIndices, Arity⟩ is a (polymorphic) predicate signature
5.¹ P(a1, …an) ∈ PType iff P ∈ Pred, T1 ∈ Type, …,Tn ∈ Type, Arity(P)=⟨T1, …,Tn⟩

(or, if we are allowing polymorphic predicates, ⟨T1, …,Tn⟩∈Arity(P)) and a1 :TYPEC

T1, …, an :TYPEC
Tn

6. PType⊆Type
7. for any T ∈ PType, F(T) is a set disjoint from Type
8. for any T ∈ PType, a :TYPEC

T iff a ∈ F(T)

We call the pair ⟨A, F⟩ in a complex system of types the model because of its similarity to
first order models in providing values for the basic types and the ptypes constructed from
predicates and arguments. It is this pair which connects the system of types to the non-type
theoretical world of objects and situations.

In Cooper (2012b) we did not define exactly what entity is represented by P(a1, …an).
Here we will specify it to be the labelled set

{⟨pred,P⟩, ⟨arg1, a1⟩, …, ⟨argn, an⟩}

where ‘pred’, ‘argi’ are reserved labels (not used except as required here).

A4 Function types

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has function types (Chapter 1, p. 28) if

1. for any T1,T2 ∈ Type, (T1→T2) ∈ Type
2. for any T1,T2 ∈ Type, f :TYPEC

(T1→T2) iff f is a function whose domain is
{a ∣ a :TYPEC

T1} and whose range is included in {a ∣ a :TYPEC
T2}

In Cooper (2012b) we did not specify exactly what object is represented by a function
type (T1→T2). Here we specify it to be the labelled set

{⟨dmn,T1⟩, ⟨rng,T2⟩}

where ‘dmn’ (“domain”) and ‘rng’ (“range”) are reserved labels.
We also introduce a limited kind of polymorphism in function types which we did not

have in Cooper (2012b).
A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with function types has partial function types (Chapter 2, p. 57) if

1. for any T1,T2 ∈ Type, (T1 ⇀ T2) ∈ Type
2. for any T1,T2 ∈ Type, f :TYPEC

(T1 ⇀ T2) iff there is some type T ʹ such that
f : (T ʹ→T2) and for any a, if a : T ʹ then a : T1

We specify the type (T1 ⇀ T2) to be the labelled set

{⟨partdmn,T1⟩, ⟨rng,T2⟩}

¹ This clause has been modified since Cooper (2012b) where it was a conditional rather than a biconditional.
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where ‘partdmn’ (“partial domain”) and ‘rng’ (“range”) are reserved labels (‘rng’ being the
same reserved label that was used for total function types).

We introduce a notation for functions which is borrowed from the λ-calculus:

λv :T . φ (Chapter 1, p. 28)

is that function f such that for any a : T, f(a) (the result of applying f to a) is represented
by φ[v ← a] (the result of replacing any free occurrence of v in φ with a).

For example, the graph of the function

λv:Ind . run(v)

is the set of ordered pairs

{⟨v,run(v)⟩ ∣ v : Ind}

Recall that ‘run(v)’ is itself a representation for the labelled set

{⟨pred,run⟩, ⟨arg1, v⟩}

Note that if f is the function λv:Ind . run(v) and a:Ind then f(a) (the result of applying f
to a) is ‘run(a)’. Our definition of function-argument application guarantees what is called
β-equivalence in the λ-calculus. When we discuss record types as arguments to functions
we will need to introduce one slight complication to our notion of function application.
We will introduce that complication when we discuss record types.

In order to maintain α-equivalence (for example, if v1 and v2 are distinct variables,
λv1 : T . φ((v1)) represents the same function as λv2 : T . φ((v2))), we use a variant of de
Bruijn indexing (de Bruijn, 1972) in the labelled set we use to model functions. We model
functions as labelled sets with two fields with the distinguished labels ‘lambda’ and ‘body’.
Where de Bruijn uses natural numbers to index the variable positions we use segments of
paths in the labelled set which relate the appropriate instance of the ‘body’-label labelling
the field which is sister to the binding ‘lambda’-field. Thus

λv:Ind . run(v)

is the labelled set

{⟨lambda, Ind⟩,
⟨body, {⟨pred, run⟩,

⟨arg1, ‘body.arg1’⟩}⟩},

λv1:Ind . λv2:Ind . r(v1, v2)

is the labelled set

{⟨lambda, Ind⟩,
⟨body, {⟨lambda, Ind⟩,

⟨body, {⟨pred, r⟩,
⟨arg1, ‘body.body.arg1’⟩,
⟨arg2, ‘body.arg2’⟩}⟩}⟩}

and

λv1:Ind . r1(v1, λv2:Ind . r2(v2, v1))
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is the labelled set

{⟨lambda, Ind⟩,
⟨body, {⟨pred, r1⟩,

⟨arg1, ‘body.arg1’⟩,
⟨arg2, {⟨lambda, Ind⟩,

⟨body, {⟨pred, r2⟩,
⟨arg1, ‘body.arg1’⟩,
⟨arg2, ‘body.arg2.body.arg2’⟩}⟩}⟩}⟩}

A5 Set types

Set types were not included in Cooper (2012b).
A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has set types (Chapter 2, p. 59) if

1. for any T ∈ Type, set(T) ∈ Type
2. for any T ∈ Type, X :TYPEC

set(T) iff X is a set and for all a ∈ X, a :TYPEC
T

3. for any T ∈ Type, if X : set(T), then𝔗(X) ∈ Type (Chapter 7, p. 302)
4. a : 𝔗(X) iff a ∈ X

We let set(T) represent the labelled set {⟨set,T⟩} where ‘set’ is a reserved label.
In order to define plurality types as subtypes of set types we introduce a notion of one

record being a proper part of another. For any objects r1 and r2, r1 is a proper part of r2,
r1 < r2, (Chapter 5, p. 221) just in case

1. r1 and r2 are records,
2. pathsrec(r1) ⊂ pathsrec(r2) and
3. for all π ∈ tpaths(r1), r1.π = r2.π

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with set types has plurality types (Chapter 5, p. 222) if

1. for any T ∈ Type, plurality(T) ∈ Type
2. for any T ∈ Type, A :TYPEC

plurality(T) iff
(a) A :TYPEC

set(T)
(b) if a ∈ A then for any b such that a < b, b ∉ A

We let plurality(T) represent the labelled set {⟨plurality,T⟩} where ‘plurality’ is a
reserved label.

A6 Singleton types

Singleton types were not included in the formal definition in Cooper (2012b).
A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩
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has singleton types (Chapter 2, p. 54) if

1. for any T,T ʹ ∈ Type, and a :TYPEC
T ʹ, Ta ∈ Type

2. for any T,T ʹ ∈ Type, and a :TYPEC
T ʹ, b :TYPEC

Ta iff b :TYPEC
T and a = b

We let Ta represent the labelled set {⟨singleton, ⟨T, a⟩⟩} where ‘singleton’ is a reserved
label.

A7 Join types

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has join types (Chapter 2, p. 58) if

1. for any T1,T2 ∈ Type, (T1 ∨ T2) ∈ Type
2. for any T1,T2 ∈ Type, a :TYPEC

(T1 ∨ T2) iff a :TYPEC
T1 or a :TYPEC

T2

Here, but not in Cooper (2012b), we specify that (T1 ∨ T2) represents the labelled set
{⟨disj1,T1⟩, ⟨disj2,T2⟩} where ‘disj1’ and ‘disj2’ are reserved labels (“disjunct”).

We add generalized join types which were not present in Cooper (2012b). A system of
complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has generalized join types (Chapter 2, p. 59) if

1. for any finite set of types,𝒯, such that𝒯 ⊆ Type,
⋁
𝒯 ∈ Type

2. for any finite𝒯 ⊆ Type, a :TYPEC

⋁
𝒯 iff a :TYPEC

T for some T ∈ 𝒯

We specify that
⋁
𝒯 represents the labelled set {⟨disj,𝒯⟩} where ‘disj’ is a reserved label

(“disjunction”).

A8 Meet types

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has meet types (Chapter 2, p. 76) if

1. for any T1,T2 ∈ Type, (T1 ∧ T2) ∈ Type
2. for any T1,T2 ∈ Type, a :TYPEC

(T1 ∧ T2) iff a :TYPEC
T1 and a :TYPEC

T2

Here, but not in Cooper (2012b), we specify that (T1 ∧ T2) represents the labelled set
{⟨conj1,T1⟩, ⟨conj2,T2⟩} where ‘conj1’ and ‘conj2’ are reserved labels (“conjunct”).

We add generalized meet types which were not present in Cooper (2012b). A system of
complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has generalized meet types (Chapter 2, p. 77) if

1. for any non-empty finite set of types,𝒯, such that𝒯 ⊆ Type,
⋀
𝒯 ∈ Type

2. for any finite𝒯 ⊆ Type, a :TYPEC

⋀
𝒯 iff a :TYPEC

T for all T ∈ 𝒯
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We specify that
⋀
𝕋 represents the labelled set {⟨conj,𝕋⟩} where ‘conj’ is a reserved label

(“conjunction”).

A9 Models and modal systems of types

A modal system of complex types provides a collection of models, ℳ, so that we can
talk about properties of the whole collection of type assignments provided by the various
models M ∈ℳ.

Amodal system of complex types based onℳ (Chapter 1, p. 37) is a family of quadruples:²

TYPEMC = ⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩M∈ℳ
where for each M ∈ ℳ, ⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩ is a
system of complex types.

This enables us to define modal notions. If

TYPEMC = ⟨TypeM, BType, ⟨PTypeM, Pred, ArgIndices, Arity⟩,M⟩M∈ℳ
is amodal systemof complex types based onℳ, we shall use the notationTYPEMCM

(where
M ∈ ℳ) to refer to that system of complex types in TYPEMC whose model is M. Let
TypeMCrestr

be
⋂

M∈ℳ
TypeM, the “restrictive” set of types which occur in all possibilities, and

TypeMCincl
be

⋃

M∈ℳ
TypeM, the “inclusive” set of types which occur in at least one possibil-

ity. Then we can define modal notions either restrictively or inclusively (indicated by the
subscripts r and i respectively):

Restrictive modal notions

1. for any T1,T2 ∈ TypeMCrestr
, T1 is (necessarily) equivalentr to T2 in TYPEMC,

T1 ≈TYPEMC
T2, iff for all M ∈ℳ, {a ∣ a :TYPEMCM

T1} = {a ∣ a :TYPEMCM
T2}

2. for any T1,T2 ∈ TypeMCrestr
, T1 is a subtyper of T2 in TYPEMC, T1 ⊑TYPEMC

T2, iff for
all M ∈ℳ, {a ∣ a :TYPEMCM

T1} ⊆ {a ∣ a :TYPEMCM
T2}

3. for any T ∈ TypeMCrestr
, T is necessaryr in TYPEMC iff for all M ∈ℳ,

{a ∣ a :TYPEMCM
T} ≠ ∅

4. for any T ∈ TypeMCrestr
, T is possibler in TYPEMC iff for some M ∈ℳ,

{a ∣ a :TYPEMCM
T} ≠ ∅

Inclusive modal notions

1. for any T1,T2 ∈ TypeMCincl
, T1 is (necessarily) equivalenti to T2 in TYPEMC,

T1 ≈TYPEMC
T2, iff for all M ∈ ℳ, if T1 and T2 are members of TypeM, then

{a ∣ a :TYPEMCM
T1} = {a ∣ a :TYPEMCM

T2}
2. for any T1,T2 ∈ TypeMCincl

, T1 is a subtypei of T2 in TYPEMC, T1 ⊑TYPEMC

T2, iff for all M ∈ ℳ, if T1 and T2 are members of TypeM, then
{a ∣ a :TYPEMCM

T1} ⊆ {a ∣ a :TYPEMCM
T2}

² This definition has been modified since Cooper (2012b) to make PType and Type be relativized to the
model M.
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3. for any T ∈ TypeMCincl
, T is necessaryi in TYPEMC iff for all M ∈ ℳ, if T ∈TypeM,

then
{a ∣ a :TYPEMCM

T} ≠ ∅
4. for any T ∈ TypeMCincl

, T is possiblei in TYPEMC iff for some M ∈ ℳ, if T ∈TypeM,
then
{a ∣ a :TYPEMCM

T} ≠ ∅

It is easy to see that if any of the restrictive definitions holds for given types in a particular
system then the corresponding inclusive definition will also hold for those types in that
system.

A10 The type Type and stratification

An intensional system of complex types (Chapter 1, p. 30) is a family of quadruples indexed
by the natural numbers:

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

where (using TYPEICn
to refer to the quadruple indexed by n):

1. for each n,⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩ is a system of
complex types

2. for each n, Typen ⊆ Typen+1 and PTypen ⊆ PTypen+1

3. for each n, if T ∈ PTypen then Fn(T) ⊆ Fn+1(T)
4. for each n > 0, Typen ∈ Typen

5. for each n > 0, T :TYPEICn
Typen iff T ∈ Typen−1

Here, but not inCooper (2012b), wemake explicit thatType is a distinguished urelement
and that Typen represents the labelled set {⟨ord, n⟩, ⟨typ,Type⟩} where ‘ord’ and ‘typ’ are
reserved labels (“order”, “type”).

An intensional system of complex types TYPEIC,

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has dependent function types (Chapter 2, p. 56) if

1. for any n > 0, T ∈ Typen and 𝒯 :TYPEICn
(T→Typen), ((a : T)→𝒯(a)) ∈ Typen

2. for each n > 0, f :TYPEICn
((a : T)→𝒯(a)) iff f is a function whose domain is

{a ∣ a :TYPEICn
T} and such that for any a in the domain of f, f(a) :TYPEICn

𝒯(a).

Wemight say that on this view dependent function types are “semi-intensional” in that they
depend on there being a type of types for their definition but they do not introduce types
as arguments to predicates and do not involve the definition of orders of types in terms of
the types of the next lower order.

Here, in contrast to Cooper (2012b), we make explicit that ((a : T)→ℱ(a)) represents
the labelled set {⟨dmn,T⟩, ⟨deprng,ℱ⟩} where ‘dmn’ as before for function types is a
reserved label corresponding to “domain” and ‘deprng’ is a reserved label corresponding
to “dependent range”.

Let M be a model, ⟨A, F⟩, where A is an assignment to basic types and F an assignment
to ptypes as usual. Let ℳ be an infinite sequence of models, M, indexed by the natural
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numbers, corresponding to the models for the type systems of each order in an intensional
type system. We use ℳn to represent the model for the n-th order in an intensional type
system. We use 𝔐 to represent a set of such model sequences, representing the model
sequences for each of the possibilities in the intensional modal type system. Putting the
definition of a modal type system and an intensional type system together we obtain:³

An intensional modal system of complex types based on𝔐 (Chapter 6, p. 247) is a family,
indexed by the natural numbers, of families of quadruples indexed by members of𝔐:

TYPEIMC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩,ℳn⟩ℳ∈𝔐,n∈Nat

where:

1. for each n, ⟨Typen,BType, ⟨PTypen,Pred,ArgIndices,Arity⟩,ℳn⟩ℳ∈𝔐 is amodal
system of complex types based on {ℳn ∣ℳ ∈𝔐}

2. for each ℳ ∈ 𝔐, ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ℳn⟩n∈Nat is
an intensional system of complex types

A11 Records and Record types

In this section we will define what it means for a system of complex types to have record
types. The objects of record types, that is, records, are themselves structured mathematical
objects of a particular kind and we will start by characterizing them.

A11.1 Records

r is a record according to a set of labels ℒ, a set of distinguished labels, 𝒟 (such that 𝒟 is a
proper subset ofℒ), and a type system,𝕋 (Chapter 1, example (38)) iff r is a finite labelled set
(Appendix A1) whose labels are included in ℒ but not in𝒟 and for any labelled element,
v, in r, there is some type T such that v :𝕋 T.

If r is a record and ⟨ℓ, v⟩ is in r, we call ⟨ℓ, v⟩ a field of r, ℓ a label in r, and v a value in r
(the value of ℓ in r). We use r.ℓ to denote v.

We use a tabular format to represent records. A record {⟨ℓ1, v1⟩, …, ⟨ℓn, vn⟩} is displayed
as

⎡
⎢
⎢
⎢
⎣

ℓ1 = v1
...

ℓn = vn

⎤
⎥
⎥
⎥
⎦

An alternative notation is as a tree (or directed graph) whose root is unlabelled:

ℓ1

v1

… ℓn

vn
We will sometime says that the occurrences ℓ1, …, ℓn are sisters in the record.

³ This explicit definition was not present in Cooper (2012b).
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Records, as labelled sets, will have paths as defined for labelled sets. However, we will
want in addition a more restricted notion of path for records which excludes those paths
which include the distinguished labels used in non-record structures which may be values
in a record (Chapter 1, p. 31).

If r is a record, then

1. if ℓ ∈ labels(r), then ℓ ∈ pathsrec(r)
2. if ℓ ∈ labels(r), r.ℓ is a record and π ∈ pathsrec(r.ℓ), then ℓ.π ∈ pathsrec(r)

Similarly, tpathsrec(r) is the set of paths, π, such that π ∈ pathsrec(r) and r.π is not a
record.

We say that η is a ℒ-relabellingrec for a record, r, just in case it is a ℒ-relabelling for r
whose domain is a subset of pathsrec(r).

We generally use ‘paths’ and ‘tpaths’ without the subscript for these more restricted
notions when there is no risk for confusion. Similarly we talk of relabellings for records
when what is meant are relabellingsrec.

The extension of a record, r, is
⋃

π∈tpathsrec(r)
{r.π}

The multiset extension of r is similarly
⨄

π∈tpathsrec(r)
{r.π}

(where ⊎ represents multiset union).
A record may be regarded as a way of labelling and structuring its (multiset) extension.
An object, a, is a component (Chapter 3, p. 109) of a record, r, in symbols, aεr, just in

case there is some path, π, in r such that r.π = a.

Using records as assignments
From Chapter 7, p. 324:
If r is a record, π is ℓ0.ℓ1.….ℓn where ℓ0, ℓ1, …, ℓn are labels and v is an object of some type,

then

if π ∉ paths(r), then r[π = v] is the smallest record, rʹ, such that

1. π ∈ paths(rʹ)
2. rʹ.π = v
3. for any π' ∈ paths(r), π ʹ ∈ paths(rʹ) and rʹ.π ʹ = r.π ʹ

if π ∈ paths(r), then r[π = v] is the smallest record, rʹ, such that

1. π ∈ paths(rʹ) and rʹ.π = v
2. for any π ʹ ∈ (paths(r) − {π ʹʹ ∣ π ʹʹ ≤ π}), π ʹ ∈ paths(rʹ) and rʹ.π ʹ = r.π ʹ

If r1 is a record and r2 is a record such that tpaths(r2) = {π1, …, πn}, then r1[r2] is

r1[π1 = r2.π1]…[πn = r2.πn]
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A11.2 Record types

We will model record types as flavoured labelled sets (see Appendix A1) using a distin-
guished flavour ‘RT’, the “record type flavour”. This is to distinguish record types from
records, which may in certain cases correspond to the same set of ordered pairs.

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has (non-dependent) record types based on ⟨ℒ,RType⟩, where ℒ is a countably infinite set
(of labels) and RType ⊆ Type (Chapter 1, p. 32) if

1. Rec ∈ RType
2. r :TYPEC

Rec iff r is a record according to ℒ and TYPEC.
3. ERec ∈ RType
4. r :TYPEC

ERec iff r = ∅
5. if ℓ ∈ ℒ and T ∈ Type, then {RT, ⟨ℓ,T⟩} ∈ RType.
6. r :TYPEC

{RT, ⟨ℓ,T⟩} iff r :TYPEC
Rec, ⟨ℓ, a⟩ ∈ r and a :TYPEC

T.
7. if R ∈ RType − {Rec,ERec}, ℓ ∈ ℒ, ℓ does not occur as a label in R (i.e. there is no

field ⟨ℓʹ,T ʹ⟩ in R such that ℓʹ = ℓ) and T ∈ Type, then R ∪ {⟨ℓ,T⟩} ∈ RType.
8. r :TYPEC

R ∪ {⟨ℓ,T⟩} iff r :TYPEC
R, ⟨ℓ, a⟩ ∈ r and a :TYPEC

T.

If T is a record type, then (Chapter 1, p. 34)

π ∈ pathsrectype(T) iff for any r : T, π ∈ pathsrec(r)

and

π ∈ tpathsrectype(T) iff for any r : T, π ∈ tpathsrec(r)

An intensional system of complex types

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has (non-dependent) record types based on ⟨ℒ,RTypen⟩n∈Nat (Chapter 1, p. 35) if for each
n, ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩ has record types based on
⟨ℒ,RTypen⟩ and

1. for each n, RTypen ⊆ RTypen+1
2. for each n > 0, RecTypen ∈ Typen
3. for each n > 0, T :TYPEICn

RecTypen iff T ∈ RTypen−1

Here, but not in Cooper (2012b), we make explicit that RecType is treated in a simi-
lar manner to Type; that is, it is a distinguished urelement and RecTypen represents the
labelled set {⟨ord, n⟩, ⟨typ,RecType⟩} where ‘ord’ and ‘typ’ are reserved labels (“order”,
“type”).

Intensional type systemsmay in addition contain dependent record types. An intensional
system of complex types

TYPEIC = ⟨Typen, BType, ⟨PTypen, Pred, ArgIndices, Arity⟩, ⟨A, Fn⟩⟩n∈Nat

has dependent record types based on ⟨ℒ,RTypen⟩n∈Nat, (Chapter 1, p. 36) if it has record
types based on ⟨ℒ,RTypen⟩n∈Nat and for each n > 0
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1. if R ∈ RTypen, ℓ ∈ ℒ − labels(R), T1, …,Tm ∈ Typen, π1, …, πm ∈ paths(R)
andℱ is a function of type (T1→…→(Tm→Typen)…), thenR∪ {⟨ℓ, ⟨ℱ, ⟨π1, …, πm⟩⟩⟩} ∈
RTypen.

2. r :TYPEICn
R ∪ {⟨ℓ, ⟨ℱ, ⟨π1, …, πm⟩⟩⟩} iff r :TYPEICn

R, ⟨ℓ, a⟩ is a field in r, r.π1 :TYPEICn
T1, …, r.πm :TYPEICn

Tm and a :TYPEICn
ℱ(r.π1)…(r.πm).

We represent a record type {RT, ⟨ℓ1,T1⟩, …, ⟨ℓn,Tn⟩} graphically as

⎡
⎢
⎢
⎣

ℓ1 : T1
…
ℓn : Tn

⎤
⎥
⎥
⎦

In the case of a manifest field, that is, one containing a singleton type, as in ⟨ℓ,Ta⟩, we
display this

[
ℓ=a : T

]

In the case of a multiple singleton type (a singleton type formed from a singleton type) as
in ⟨ℓ,Ta,b,…⟩, we display

[
ℓ=a, b, … : T

]

In the case of dependent record types we sometimes use a convenient notation repre-
senting e.g.

⟨λuλv love(u, v), ⟨π1, π2⟩⟩

as

love(π1, π2)

A11.3 Merges of record types

This definition of the merge operation on types is first introduced and discussed in
Chapter 2, p. 78. We define a function μwhichmaps meets of record types to an equivalent
record type, record types to equivalent types where meets in their values have been sim-
plified by μ and any other types to themselves. μ is also defined on labelled sets which are
not types in order to account for merging inside a record type of structures which depend
on fields in the type outside the structure:

1. if for some T1,T2, T = (T1 ∧ T2), and T1 ⊑ T2 then μ(T) = T1
2. if for some T1,T2, T = (T1 ∧ T2), and T2 ⊑ T1 then μ(T) = T2
3. otherwise:

(a) if for some labelled sets T1, T2, T = (T1 ∧ T2), then μ(T) = μʹ(μ(T1) ∧ μ(T2)).
(b) ifT is a labelled set then μ(T) isT ʹ such that for any ℓ,v, ⟨ℓ, μ(v)⟩ ∈ T ʹ iff ⟨ℓ, v⟩ ∈ T.
(c) otherwise μ(T) = T.

μʹ(T1 ∧ T2) is defined by:

1. if T1 and T2 are labelled sets, then μʹ(T1 ∧ T2) = T3 such that
(a) for any ℓ, v1, v2, if ⟨ℓ, v1⟩ ∈ T1 and ⟨ℓ, v2⟩ ∈ T2, then

(i) if v1 and v2 are

⟨λu1:T ʹ1…λui:T ʹi . ϕ, ⟨π1…πi⟩⟩
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and

⟨λuʹ1:T ʹʹ1…λuʹk:T ʹʹk . ψ, ⟨π ʹ1…π ʹk⟩⟩

respectively, then

⟨λu1:T ʹ1…λui:T ʹi, λuʹ1:T ʹʹ1…λuʹk:T ʹʹk . μ(ϕ∧ψ), ⟨π1…πi, π ʹ1…π ʹk⟩⟩ ∈ T3

(ii) if v1 is

⟨λu1:T ʹ1…λui:T ʹi . ϕ, ⟨π1…πi⟩⟩

and v2 is a type (i.e. not of the form ⟨f, Π⟩ for some function f and sequence
of paths Π), then

⟨λu1:T ʹ1…λui:T ʹi . μ(ϕ ∧ v2), ⟨π1…πi⟩⟩ ∈ T3

(iii) if v2 is

⟨λuʹ1:T ʹʹ1…λuʹk:T ʹʹk . ψ), ⟨π ʹ1…π ʹk⟩⟩

and v1 is a type, then

⟨λuʹ1:T ʹʹ1…λuʹk:T ʹʹk . μ(v1 ∧ ψ), ⟨π ʹ1…π ʹk⟩⟩ ∈ T3

(iv) otherwise ⟨ℓ, μ(v1 ∧ v2)⟩ ∈ T3
(b) for any ℓ, v1, if ⟨ℓ, v1⟩ ∈ T1 and there is no v2 such that ⟨ℓ, v2⟩ ∈ T2, then

⟨ℓ, v1⟩ ∈ T3
(c) for any ℓ, v2, if ⟨ℓ, v2⟩ ∈ T2 and there is no v1 such that ⟨ℓ, v1⟩ ∈ T1, then

⟨ℓ, v2⟩ ∈ T3

2. if T1 is list(T1ʹ) (set(T1ʹ), plurality(T1ʹ)) and T2 is list(T2ʹ) (set(T2ʹ),
plurality(T2ʹ)), then μʹ(T1 ∧ T2) = list(μ(T1ʹ ∧ T2ʹ)) (set(μ(T1 ' ∧ T2ʹ)),
plurality(μ(T1ʹ ∧ T2ʹ)))

3. otherwise μʹ(T1 ∧ T2) = T1 ∧ T2

(T1 ∧̣ T2) is used to represent μ(T1 ∧ T2). We call (T1 ∧̣ T2) the merge of T1 and T2.
We define also a notion of asymmetric merge (Chapter 2, p. 79) of T1 and T2 which is

defined by a function, μasym, exactly like μ except that the first two clauses of the definition
of μ are missing and μʹ is replaced by another function μʹasym. Thus the definition of μasym
is:

1. if for some T1, T2, T = (T1 ∧ T2) then μasym(T) = μʹasym(μasym(T1) ∧ μasym(T2)).
2. if T is a record type then μasym(T) is T ʹ such that for any ℓ,v, ⟨ℓ, μasym(v)⟩ ∈ T ʹ iff
⟨ℓ, v⟩ ∈ T.

3. otherwise μasym(T) = T.

The definition of μʹasym is exactly like μʹ, replacing μ and μʹ with μasym and μʹasym
respectively, except that the clause 3 of the definition of μʹ is replaced by

3ʹ. otherwise μʹasym(T1 ∧ T2) = T2

We use T1 ∧̣ T2 to represent the asymmetric merge of T1 and T2.
Asymmetric merge may result in an ill-formed record type if we take the asymmetric

merge of a record type, T1, and a non-record type, T2, since T1 may be embedded in a
larger type with fields dependent on paths into T1 which will not be present in the result
where T2 has been substituted for T1 thus removing the relevant paths.



412 TTR

Merging functions which return types λr : T1 . T2((r)) ∧̣̣ λr : T3 . T4((r)) denotes the
function λr :T1∧̣T3 . T2((r))∧̣T4((r)).

A11.4 Constructing fixed point types for functions which return record types

(Chapter 5, p. 204ff.)
If T is a record type and r is a record of any type, we will use Tr.π⇝π to designate the type

like T except that for any π ∈ paths(T) any occurrence of r.π is replaced by π.
A dependent type, 𝒯, is path-dependent on r, 𝒯((r))path, just in case 𝒯 depends on paths

in r but not on the whole object r.
If 𝒯 is a dependent record type of the form λr :T1 . T2((r))path where T1 is a record type

and for any r, paths(T1) ∩ paths(𝒯(r)) = ∅, then

ℱ(𝒯) is that type T such that for any r* : T1, λr :T1 . (T1∧̣T2)r.π⇝π(r*) = T

If𝒯 is a dependent record type of the form λr :T1 . T2((r)) where T1 is a record type, then

ℱquasi(𝒯) is that type T such that for any
r* : T1, λr :T1 . (

[
𝔠*:T1

]
∧̣
[
𝔯*:T2

]
)r.π⇝𝔠* .π(r*) = T

If𝒯 is a dependent record type of the form λr :T1 . T2((r)) where T1 is a record type and
for any r in its domain 𝒯(r) is a record type, then

ℱquasi*(𝒯) = ℱquasi((𝒯))

else if 𝒯 is a dependent record type of the form λr :T1 . 𝒯ʹ((r)) where T1 is a record type
and for any r in its domain 𝒯(r) is a dependent record type, then

ℱquasi*(𝒯) is that type T such that for any
r* : T1, T = λr :T1 . (

[
𝔠*:T1

]
∧̣
[
𝔯*:ℱquasi*(𝒯ʹ)

]
)r.π⇝𝔠* .π

A11.5 Unique identifier notation for record types

The unique identifier notation for a type, T, can be obtained from the official notation for
T by carrying out in order the following manipulations (Chapter 2, p. 71):

1. Add a unique identifier i (where i is a natural number) to the last label occurrence
in any path, π, which is referenced in a dependent field, ⟨f, ⟨…, π, …⟩⟩, somewhere in
T.

2. Replace π in any dependent field, ⟨f, ⟨…, π, …⟩⟩, with the unique identifier associated
with the final label occurrence in π.

3. Replace any pair in a dependent field of the form

⟨λv1 : T1…λvn : Tn . φ((v1, …, vn)), ⟨ i1 , …, in ⟩⟩

with

φ(( i1 : T1, …, in : Tn))

We also showhow to convert back fromunique identifier notation for a type,T, to official
notation. We can do this by carrying out the following manipulations (Chapter 2, p. 71):
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1. For each occurrence of i in a dependent field labelled ℓd (the label for the dependent
field) for some natural number, i, locate the smallest record structure, Δ, in T which
contains a path, πd, to ℓd and a path πa to a label ℓ i (the label for the addressed field)

2. Let ℓ be the first label on πd. If Δ.ℓ is an ordered pair ⟨λvj :Tj . φ(( i :Ti)), ⟨π1, …, πn⟩⟩,
then replace Δ.ℓ with ⟨λvi : Ti . λvj : Tj . φ[ i : Ti ⇝ vi], ⟨π1, …, πn, πa⟩⟩. Otherwise, if
Δ.ℓ is φ(( i :Ti)), replace Δ.ℓ with ⟨λvi :Ti . φ[ i :Ti ⇝ vi], ⟨πa⟩⟩

3. For any number i, remove the subscript i on any label on which it occurs.

This notational conversion can be characterized also in terms of labelled sets:
If T is a dependent record type then a unique identifier correlate for T is obtained by the

following operations applied to T in order.

1. For each π and ℓ occurring in a dependent value, v = ⟨f, ⟨…, π.ℓ, …⟩⟩ such that for
some π ʹ and ℓʹ, T.π ʹ.ℓʹ = v and T.π ʹ.π.ℓ = vʹ, change the field ⟨ℓ, vʹ⟩ to ⟨ℓ, vʹ, i ⟩, where
i is a fresh identifier, and replace π.ℓ in v with i .

2. Replace any pair in a dependent field of the form

⟨λv1 :T1 . … . λvn :Tn . φ((v1, …, vn)), ⟨ i1 , …, in ⟩⟩

with

φ((⟨ i1 ,T1⟩, …, ⟨ in ,Tn⟩))

The following procedure can be used for finding a dependent record type for a unique
identifier correlate.

1. If X is a labelled set, then for each occurrence, ξ of ⟨ i ,T⟩, for some i and T, in X, find
the smallest labelled set, Δ, such that ΔεX and contains ξ and ⟨ℓ, v, i ⟩ for some ℓ and
v.
Let πa be the path in Δ such that Δ.πa = ⟨ℓ, v, i ⟩.
Let ℓd.πd be the longest path in Δ (not containing a reserved label) such that ξ occurs
in Δ.ℓd.πd.
If Δ.ℓd is an ordered pair

⟨λvj :Tj . φ((⟨ i ,T⟩)), ⟨π1, …, πn⟩⟩

then replace Δ.ℓd with

⟨λvi :T . λvj :Tj . φ((vi)), ⟨π1, …, πn, πa⟩⟩

Otherwise if Δ.ℓd is φ((⟨ i ,T⟩)), replace it with

⟨λvi :T . φ((vi)), ⟨πa⟩⟩

2. For any ℓ, v, and i , replace any occurrence of ⟨ℓ, v, i ⟩ in X with ⟨ℓ, v⟩.

A11.6 Dependency in record types and record type generalization

If T : RecType, ℓ ∈ labels(T) and ⟨ℓ,T ʹ⟩ ∈ T where T ʹ: Type (that is, [ℓ,T ʹ] is a non-
dependent field in T), then the generalization of T to its ℓ-field (Chapter 7, p. 300), Tℓ,
is
[

ℓ : T ʹ
]
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(This simple definition is made more general in the definition of generalization to a path
given below.)

If T is a record type, π1 ∈ paths(T) and π2 ∈ tpaths(T), then π2 depends on
π1 (Chapter 7, p. 326) iff, in unique identifier notation, π1 is indexed with i and the
representation of T.π2 contains i , for some natural number i.

If T is a record type and π ∈ paths(T) then the dependency family of π in T (Chapter 7,
p. 326), pathsπ(T), is that subset, Π, of paths(T) such that

1. π ∈ Π
2. for any π ʹ ∈ Π and π ʹʹ ∈ tpaths(T), if π ʹʹ depends on π ʹ, then π ʹʹ ∈ Π
3. for and π ʹ ∈ Π and π ʹʹ ∈ paths(T), if π ʹ depends on π ʹʹ, then π ʹʹ ∈ Π

If T is a record type and π ∈ paths(T), then T generalized to π (Chapter 7, p. 326),
T π, is the smallest labelled set T ʹ such that pathsπ(T) ⊆ paths(T ʹ) and for all
π ʹ ∈ tpaths(T ʹ), T ʹ.π = T.π.

If T is a record type and {π1, …, πn} ⊂ paths(T), then T generalized to π1, …, πn,
Tπ1 ,…,πn (Chapter 7, p. 327), is the smallest labelled set T ʹ such that for all πi ∈ {π1, …, πn},
pathsπi

(T) ⊆ paths(T ʹ) and for all π ʹ ∈ tpaths(T ʹ), T ʹ.π = T.π.

A11.7 Using records to restrict and specify record types

(These definitions were not included in Cooper, 2012b.)
A type system 𝕋 has restricted types according to a set of labelsℒ (Chapter 3, p. 110) if it

is the case that

1. if T is a type, but not a record type, according to 𝕋 and r is a record according to ℒ
and 𝕋, then the restriction of T by r, ρ(T, r), is a type according to 𝕋.

2. a :𝕋 ρ(T, r) iff aεr and a :𝕋 T.

We then generalize restriction to record types and other objects using o↾ r to represent
the object o restricted to r.

1. If T is a type but not a record type then

T↾ r = ρ(T, r)

2. If X is a labelled set whose labels are not distinguished (as for example in ptypes, that
is labels(X) is a set of labels which can be used in record types)

{⟨ℓ1, o1⟩, …, ⟨ℓn, on⟩}

then

X↾ r = {⟨ℓ1, o1 ↾ r⟩, …, ⟨ℓn, on ↾ r⟩}

3. if o is

⟨𝒯, Π⟩

where 𝒯 is a dependent type and Π is a sequence of paths, then

o↾ r = ⟨𝒯↾ r, Π⟩
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4. if 𝒯 is a dependent type

λv1 :T1 . … . λvn :Tn . T((v1, …, vn))

then

𝒯↾ r = λv1 :T1 . … . λvn . T((v1, …, vn))↾ r

5. otherwise o↾ r = o

We use a similar notation for restricted fields in record types as we do for manifest fields.
That is, we represent
[

ℓ : T↾ r
]

as
[

ℓεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεr : T
]

in the case where T is not a record type or a pair of a dependent type and a sequence of
paths.

If T is a record type and r is a record, then T ∥ r, the specification (or anchoring) of T by
r (Chapter 4, example (53)) is a type, T ʹ, like T except that if π is a path in both T and r,

1. if T.π is a type, then T ʹ.π is (T.π)r.π (that is, if ℓ is the last label in π then [ℓ : T.π] is
replaced by [ℓ = r.π : T.π] at the end of π in T)

2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, then T'.π is ⟨fʹ, ⟨π1, …, πn⟩⟩where for any a1, …, an, fʹ(a1)…(an)
is defined iff f(a1)…(an) is defined and fʹ(a1)…(an) = (f(a1)…(an))r.π

If T is a record type and r is a record, then T∕∕r, the default specification (or anchoring)
of T by r (Chapter 4, example (54)) is a type, T ʹ, like T except that if π is a path in both T
and r,

1. if T.π is a type but not a singleton type, then T ʹ.π is (T.π)r.π
2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, thenT ʹ.π is ⟨fʹ, ⟨π1, …, πn⟩⟩where for any a1, …, an, fʹ(a1)…(an)

is defined iff f(a1)…(an) is defined and fʹ(a1)…(an) = (f(a1)…(an))r.π if f(a1)…(an) is
not a singleton type and otherwise fʹ(a1)…(an) = f(a1)…(an)

If T is a record type, r is a record and η is a relabelling of T whose range is included in
paths(r), then T ∥η r, the specification (or anchoring) of T by r relative to η (Chapter 4,
example (55)) is a type, T ʹ, like T except that if π is in the domain of η,

1. if T.π is a type, then T ʹ.π is (T.π)r.η(π)
2. if T.π is ⟨f, ⟨π1, …, πn⟩⟩, then T'.π is ⟨fʹ, ⟨π1, …, πn⟩⟩where for any a1, …, an, fʹ(a1)…(an)

is defined iff f(a1)…(an) is defined and f'(a1)…(an) = (f(a1)…(an))r.η(π)

A11.8 Path alignment within record types

(Chapter 8, p. 363) Suppose that T is a record type and that π1 and π2 are paths in T. Then
we use Tπ1=π2

to represent the type exactly like T except that Tπ1=π2
.π1 = (T.π1)π2

; that is,
whatever type, T ʹ, is at the end of the path π1, is replaced by the singleton type T ʹπ2

, or if
T.π1 is

⟨λv1 :T1…λvn :Tn . T ʹ((v1, …, vn)), Π⟩
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then it is replaced by

⟨λv1 :T1…λvn :Tn . (T ʹ((v1, …, vn)))π2
, Π⟩

We use Tπ11=π21 ,…,π1n=π2n
to represent (…(Tπ11=π21

)…)π1n=π2n
.

(Chapter 8, p. 365.) If φ = ˹λr :T . ψ˺ and π1, π2 ∈ paths(T), then

φπ1=π2
= ˹λr :Tπ1=π2

. ψ˺

A12 List types

List types were not included in Cooper (2012b).
A system of complex types with record types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

has list types (Chapter 2, p. 54) if

1. for any T ∈ Type, list(T) ∈ Type
2. for any T ∈ Type,

(a) [ ] :TYPEC
list(T)

(b) a ∣L :TYPEC
list(T) iff a :TYPEC

T and L :TYPEC
list(T)

In Cooper (2012b) we did not specify an encoding of lists in terms of sets. Here we will
use records with the reserved labels ‘fst’ and ‘rst’ for the first member of the list and the
remainder (“rest”) of the list respectively. We let the empty list, [], be the empty set, ∅.⁴ If
L is a list then a ∣L is to be the record

[
fst = a
rst = L ]

We sometimes use nelist(T) as an abbreviation for the type of non-empty lists:

[
fst : T
rst : list(T) ]

If L is a list we often use fst(L) and rst(L) to represent L.fst and L.rst respectively. In
contrast to Cooper (2012b) we here make it explicit that list(T) represents {⟨lst,T⟩}
where ‘lst’ is a reserved label.

A13 Strings and regular types

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with record types based on ⟨ℒ,RType⟩ has strings (Chapter 2, p. 42) if

1. for each natural number i, ti ∈ ℒ
2. String ∈ BType
3. ∅ :TYPEC

String

⁴ If it is important to distinguish the empty list from the empty set we could use an additional reserved label,
e.g. ‘lst’, and have the empty list be the labelled set {⟨lst, ∅⟩}.
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4. if T ∈ Type and a :TYPEC
T then {⟨t0, a⟩} : String

5. if s :TYPEC
String, tn ∈ labels(s) such that there is no i > n where ti ∈ labels(s),

T ∈ Type and a :TYPEC
T then s ∪ {⟨tn+1, a⟩} :TYPEC

String
6. Nothing is of type String except as required above.

If s is a string according to some type system with strings we write length(s) for |s|
(that is the cardinality of the set of ordered pairs constituting the record modelling the
string). If s1 and s2 are strings, then the concatenation s1s2 is s1 ∪ s2ʹ where s2ʹ is the result
of replacing each label ti in labels(s2) with ti+length(s1).

If s is a string according to some type system and tn ∈ labels(s), we use s[n] to
represent s.tn. We use ε to represent the empty string (which is identical with the empty
set).

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with strings has length determining string types (Chapter 2, p. 43) if

1. for any T ∈ Type and n a natural number, the string types T=n, T≤n, T≥n ∈ Type
2. s :TYPEC

T=n (T≤n,T≥n) iff s :TYPEC
String, for all i, 0 ≤ i < length(s), s[i] :TYPEC

T
and length(s) = (≤,≥) n

When there is no source of confusion we write Tn for T=n. We also write T* for T≥0 (Kleene
star) and T+ for T≥1 (Kleene plus). As with other complex types we model Tξn (where ξ is
‘=’, ‘≤’ or ‘≥’) as a labelled set:

{⟨str0, {⟨comp, ξ⟩, ⟨num, n⟩, ⟨type,T⟩}⟩}

A system of complex types

TYPEC = ⟨Type, BType, ⟨PType, Pred, ArgIndices, Arity⟩, ⟨A, F⟩⟩

with strings and length determining string types has concatenation types (Chapter 2, p. 44)
if

1. if T1, T2 ∈ Type then the string type T⌢1 T2 ∈ Type
2. s :TYPEC

T⌢1 T2 iff there are s1 and s2 such that
(a) s1s2 = s
(b) s1 :TYPEC

T1 if T1 is a string type, otherwise s1 :TYPEC
T1

=1

(c) s2 :TYPEC
T2 if T2 is a string type, otherwise s2 :TYPEC

T2
=1

The labelled set represented by T1
⌢T2 can be characterized as follows:

Let T1ʹ be T1
=1 if T1 is not a string type and T1 Let T1ʹ be T1

=1 if T1 is not a string
type and T1 otherwise and similarly let T2ʹ be T2

=1 if T2 is not a string type and T2
otherwise. Then T⌢1 T2 represents the labelled set T1ʹ ∪ T2ʹʹ where T2ʹʹ is the result of
replacing any label ‘stri’ in labels(T2ʹ) with ‘stri+n+1’, where ‘strn’ is in labels(T1ʹ)
and there is no j such that ‘strj’ is in labels(T1ʹ) and j > n.

This definition has as a consequence that ‘⌢’ is associative: (T⌢1 T2)⌢T3 = T⌢1 (T⌢2 T3).
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A13.1 Concatenation of values on a defined path in a string of records

This definition is introduced in Chapter 3, p. 102.
If s is a string of length n of records such that for each i, 0 ≤ i < n, s[i].π is a defined

path,

concat
0≤i<n

(s[i].π)

denotes

s[0].π…s[n − 1].π

We use

concati(s[i].π)

to represent

concat
0≤i<length(s)

(s[i].π).

A13.2 Predicates which relate strings

We introduce a number of distinguished predicates which are used to relate strings. The
following predicates all have arity [String,String]: init, final, final_align

init “s1 is an initial substring of s2”
If s1 is a string of length n and s2 is a string of any length, then s : init(s1,s2) iff the length
of s2 is greater than or equal to n and for each i, 0 ≤ i < n, s1[i] = s2[i] and s = s2.

final “s1 is an final substring of s2”
If s1 is a string of length n and s2 is a string of lengthm, then s : final(s1,s2) iffm is greater
than or equal to n and for each i, 0 ≤ i < n, s1[i] = s2[(m − n) + i] and s = s2.

final_align “s1 is aligned with a final substring of s2”
If s1:Rec+ is a string of length n and s2:Rec+ is a string of length m, then s :
final_align(s1,s2) iff

1. m is greater than or equal to n
2. s is a string of length m
3. for each i, 0 ≤ i < n,

(a) s[(m − n) + i] : [e1:Rec
e2:Rec]

(b) s[(m − n) + i].e1 = s1[i]
(c) s[(m − n) + i].e2 = s2[(m − n) + i]

4. otherwise for each i, 0 ≤ i < m, s[i] = s2[i]
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Symbols and notations used

First occurrences and important explanations of symbols and notations.

:A T! — agent A creates something of type T, 46
:A T? — agent A wonders whether there is some object of type T, 46
:A T — agent A judges that there is some object of type T, 46
P{a}— for pure property P, P(

[
x=a

]
), 302

P|T — the restriction of property P by type T, 208
T((x1, …, xn)) — type T depending on x1, …, xn, 22
T⊖ ℓ — assignment type T with field labelled ℓ subtracted, 325, 327, 355
T ∥ r — the specification of record type T by record r, 155
Tℓ — the generalization of record type T to its non-dependent ℓ-field, 300
T1⟶T2 T3 — a phrase structure rule, a function from strings of type T⌢

2 T3 to a particular subtype
of T1, 103

T1 ⊑⇝ T2 — there is some relabelling, η, of T2 such that T1 ⊑ [T2]η, 257
[o]π1⇝π2

— an object like o except that any occurrence of the path π1 has been replaced by the path
π2, 146

[↓P]— the extension of property P, 108, 197
[̌T]— the set of witnesses of type T, 108
ℒ(𝒫) — the localization of parametric property 𝒫, 364
ℭ(T1,T2) — the combination of types of parametric contents T1 and T2 allowing for anaphoric

alignment, 363
𝔓(P) — the purification of property P, 300
𝔓∀(P) — the universal purification of property P, 301
𝔖(T) — the closure of content type T under ‘store’ and ‘retrieve’, 356, 358, 365, 374
𝔗(P) — the type of objects which have pure property P, 302
𝔗(X) — the type of members of set X, 302
πi — a path, π, whose last label is indexed with i, 173
fst(L) — first member of list L, 56
maxπ(T) — the maximum index associated with a path of the form π in T, 173
˹f ˺ — a parametric content whose foreground is the function f, 145
a : T — a is of type T, 1, 9
a :𝕋 T — a is of type T with respect to system of types 𝕋, 13
aεr — a is a component of r, 109
fT — the restriction of function f by type T, 207
o resourceA — o is a resource available to agent A, 101
o :A T? — agent A wonders whether object o is of type T, 46
o :A T — agent A judges that o is of type T, 46
qw(P) — the type of witness sets associated with quantifier relation q and property P, 298
r[π = v]— assignment record r with the value of path π replaced with v, 323
r1[r2]— assignment record r1 with the values of paths in r2 replaced by the values in r2, 324
si,A — (in action rules) the current information state of the agent A, 61
u* — (in action rules) the current utterance, 81
incrπ(T1,T2) — the result of incrementing π-indexes in T1 with respect to T2, 173
⎡
⎢
⎢
⎢
⎢
⎣

T
ℓ1 : T1
...
ℓn : Tn

⎤
⎥
⎥
⎥
⎥
⎦

— (T∧̣
⎡
⎢
⎢
⎣

ℓ1 : T1
...
ℓn : Tn

⎤
⎥
⎥
⎦

), 81

[
ℓ=a:T

]
— manifest field in a record type, 53

concati(u[i].π) — the concatenation of all u[i].π for each element in the string u, 102



Named types

Informal characterizations, definitions, and revised definitions of named types. Types only having
an informal characterization are glossed in quotation marks.

Acknowledgement — the type of acknowledgements (subtype of Sign), 75
AcknowledgementType — the type of acknowledgement types, 75
Assertion — the type of assertions (subtype of Sign), 75
AssertionType — the type of assertion types, 75
Assgnmnt — the type of assignments, 172

Cat — the type of names of syntactic categories, 98
Cntxt — the type of contexts, 143, 173, 321, 322, 353, 371, 373
CntxtType — the type of context types, 145
Command — the type of commands (subtype of Sign), 75
CommandType — the type of command types, 75
Cont — the type of contents, 67, 104, 105
ContType — the type of content types, 356

Det — the type of determiner signs, 98

ERec — the type of the empty record, 32

GameBoard — the type of gameboards (types which are a subtype of InfoState), 158

Ind — “individual”, 14
InfoState — the type of information states, 53, 74, 124
InitInfoState — the type of initial information states, 53, 74, 125

Loc — “location”, 65

N — the type of common noun signs, 98
NoDaughters — the type of records, r, where r.syn.daughters is the empty string, 99
NP — the type of noun phrase signs, 98

Occur — “occurring strings of events”, 44

Phon — “phonological events”, 63–65
Ppty — the type of properties, 104
PQuant — the type of parametric quantifiers, 145
PRel2 — the parametric content type for (extensional) transitive verbs, 174
PropCntxt — the type of propositional contexts, 172

QStore — the type of quantifier stores, 353
Quant — the type of quantifiers, 105
Query — the type of queries (subtype of Sign), 75
QueryType — the type of query types, 75
Question — the type of questions, 75

Rec — the type of records, 32
RecType — the type of record types, 35, 53

S — the type of sentence signs, 98
SEvent — the type of speech events, 63–66
Sign — the type of signs, 67, 98
SignType — the type of sign types, 67
String — the type of strings, 42
Syn — the type syntax, 98
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Type — the type of types, 29–30

V — the type of verb signs, 98
VP — the type of verb phrase signs, 98

Word — “event where a word is uttered”, 63

xType — the type of records which have a field with label ‘x’, 196
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