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Zusammenfassung

Bei der statischen Programmanalyse geht es darum, Eigenschaften von
Programmen abzuleiten, ohne sie auszuführen. Zwei wichtige statische
Programmanalysetechniken sind zum einen die Datenflussanalyse auf Kon-
trollflussgraphen und zum anderen Slicing auf Programmabhängigkeitsgraphen
(PAG). In dieser Arbeit berichte ich über Anwendungen von Slicing und
Programmabhängigkeitsgraphen in der Softwaresicherheit. Außerdem
schlage ich ein Analyse-Rahmenwerk vor, welches Datenflussanalyse auf
Kontrollflussgraphen und Slicing auf Programmabhängigkeitsgraphen
verallgemeinert. Mit einem solchen Rahmenwerk lassen sich neue PAG-
basierte Analysen systematisch ableiten, die über Slicing hinausgehen.

Eine wichtige Anwendung von PAG-basiertem Slicing liegt in der Soft-
waresicherheit, genauer in der Informationsflusskontrolle. Bei dieser geht es
darum sicherzustellen, dass ein gegebenes Programm keine vertraulichen
Informationen über öffentliche Kanäle preisgibt bzw. öffentliche Einga-
ben keine kritischen Berechnungen beeinflussen können. Der Lehrstuhl
Programmierparadigmen am KIT entwickelt seit einiger Zeit Joana, ein
Werkzeug zur Informationsflusskontrolle für Java, das unter anderem
auf Programmabhängigkeitsgraphen und Slicing basiert. Von 2011 bis
2017 war der Lehrstuhl am Schwerpunktprogramm 1496 „Zuverlässig
sichere Softwaresysteme“ (engl. Reliably Secure Software Systems, RS3)
der Deutschen Forschungsgemeinschaft (DFG) beteiligt.
Im ersten Teil dieser Arbeit gebe ich einen Überblick über Beiträge des
Lehrstuhls zu RS3, an denen ich beteiligt war. Diese Beiträge umfassen zum
einen die Erweiterung eines mit PAG-basierten Techniken überprüfbaren
Informationsflusskontrollkriteriums für nebenläufige Programme, und

xi



Zusammenfassung

zum anderen eine Reihe von Anwendungen von Joana in der Softwaresi-
cherheit.

Im zweiten Teil meiner Doktorarbeit schlage ich vor, Datenflussanalysen
auf Kontrollflussgraphen und Slicing auf Programmabhängigkeitsgraphen
zu einer gemeinsamen, verallgemeinerten Analysetechnik zu vereinheitli-
chen. Eine solche Vereinheitlichung ermöglicht beispielsweise neue Ana-
lysen auf PAGs, die über bestehende PAG-basierte Ansätze hinausgehen.
Darüber hinaus können für die Instanzen der allgemeinen Analysetechnik
bestimmte formale Garantien gegeben werden, welche die Korrektheits-
argumente, wie sie u.a. für bestehende PAG-basierte Analysen gegeben
wurden, vereinfachen.
Zunächst stelle ich ein allgemeines Graphmodell sowie ein allgemeines A-
nalyse-Rahmenwerk vor und zeige, dass sich sowohl Datenflussanalyse auf
Kontrollflussgraphen als auch Slicing auf Programmabhängigkeitsgraphen
darin ausdrücken lassen.
Anschließend zeige ich, dass sich Instanzen des allgemeinen Analyse-
Rahmenwerkes durch Ungleichungssysteme beschreiben lassen. Hierbei
greife ich auf klassische Ansätze zurück und passe diese geeignet an.
Ich gebe außerdem Algorithmen zur Lösung der zuvor aufgestellten Un-
gleichungssysteme an. Diese kombinieren klassische Lösungsalgorithmen
für Datenflussanalysen mit einer Erreichbarkeitsanalyse.
Schließlich beschreibe ich eine Instanziierung der allgemeinen Analysetech-
nik für Programmabhängigkeitsgraphen. Ich stelle eine Implementierung
in Joana vor und evaluiere diese anhand von realen Programmabhängig-
keitsgraphen und einiger Beispielanalysen.

Die Hauptthesen meiner Arbeit lauten wie folgt:

1. PAG-basierte Informationsflusskontrolle ist nützlich, praktisch anwend-
bar und relevant.

2. Datenflussanalyse kann systematisch auf Programmabhängigkeitsgra-
phen angewendet werden.

3. Datenflussanalyse auf Programmabhängigkeitsgraphen ist praktisch
durchführbar.

xii



Abstract

Static program analysis is concerned with deriving properties of computer
programs without executing them. Two important static program analysis
techniques are data-flow analysis on control-flow graphs and slicing on program
dependence graphs (PDGs). In this thesis, I report on applications of slicing
and program dependence graphs to software security. Moreover, I propose
a framework that generalizes both data-flow analysis on control-flow
graphs and slicing on program dependence graphs. Such a framework
enables to systematically derive data-flow-like analyses on program de-
pendence graphs that go beyond slicing.

One important application of PDG-based slicing lies in the field of software
security, more specifically in information flow control. The goal of information
flow control is to verify that a given program does not leak confidential
information to public channels, or, respectively, that public input cannot
influence critical computations.
The programming paradigms group at KIT develops Joana, a PDG-based
information flow control tool for Java that employs program dependence
graphs and slicing. From 2011 to 2017, our group participated in the
priority program “Reliably Secure Software Systems” (RS3, SPP 1496) of
the German Research Foundation (DFG).
In the first part of this dissertation I give an overview of the contributions of
the programming paradigms group to RS3 in which I participated. These
contributions include, on the one hand, the extension of an information
flow control criterion for concurrent programs that can be checked with
PDG-based techniques, and, on the other hand, a number of applications
of Joana in software security.
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Abstract

In the second part of my dissertation, I present a unification of data flow
analysis on control flow graphs and slicing on program dependence graphs
into a common, general analysis technique. Such a unification enables
new analyses on PDGs that go beyond existing PDG-based approaches. In
addition, for instances of the general analysis technique, certain formal
guarantees can be given for instances of the general analysis technique,
which simplify correctness proofs such as those given for existing PDG-
based analyses.
First, I introduce a general graph model as well as a general analysis
framework and show that data-flow analysis on control-flow graphs as
well as slicing on program dependence graphs can be expressed in this
framework.
Then, I show that instances of the general analysis framework can be
described by monotone constraint systems. For this, I resort to traditional
approaches and adapt them appropriately.
I also present algorithms for solving the constraint systems set up earlier.
These algorithms combine traditional solution approaches for data flow
analyses with a reachability analysis.
Finally, I describe an instantiation of the general analysis technique for
program dependence graphs: I present an implementation in Joana and
evaluate it using real programs and a selection of example analyses.
In summary, the main theses of my dissertation are:

1. PDG-based information flow control is useful, practically applicable
and relevant.

2. Data-flow analysis can be systematically applied to program dependence
graphs.

3. Data-flow analysis on PDGs can be practically conducted.

xiv



Dear Sir or Madam, will you read my book?
It took me years to write, will you take a look?
The Beatles 1

Introduction

Program analysis is a branch of computer science that is concerned with
the derivation of a given computer program’s properties. Static program
analysis [130, 76], or static analysis for short, is a sub-branch of program
analysis that considers techniques to derive properties of a given program
without executing it.
This thesis is located within the field of static program analysis. More
specifically, it considers automatic static program analysis techniques, i.e.
static analyses that can execute without human interaction.
Two notable static analysis techniques, which are important to this thesis,
are data-flow analysis [101] and program slicing [165, 166, 58]. The basic idea
of data-flow analysis is to analyze how a given program transforms data
along its executions. Slicing was originally developed to aid programmers
in debugging. Its goal is, given a program p, to extract a sub-program of p
that behaves equivalently to p with respect to a given observation. Such a
sub-program is also called a slice.
Both data-flow analysis and program slicing can be conducted on a graph
representation of the given program. Data-flow analysis typically uses
the program’s control-flow graph [12], whereas an established approach
to program slicing employs the program dependence graph (PDG) [58, 93,
137]. These two graph representations concentrate on different aspects of
a program.
The control-flow graph focuses on the actual executions of the program
and how control is transferred between its statements. Its nodes can be
thought of as the program’s statements, while an edge between a statement
s1 and another statement s2 means that s2 may be executed directly after
s1. A program dependence graph on the other hand materializes the
dependencies between the program’s variables and statements. There are

1



1 Introduction

1 x = input();
2 if (x > 42) {
3 y = 17;
4 } else {
5 y = 23;
6 }
7 z = x;

(a)

1

2

3 5

7
(b)

1

2

3 5 7
(c)

Figure 1.1: A small code snippet (a) with its control-flow graph (b) and its program
dependence graph (c) – node labels correspond to line numbers; in
Figure 1.1c, data and control dependencies are represented by solid and
dashed edges, respectively.

two major kinds of dependencies. A data dependency arises between two
statements s1 and s2 if s1 writes a value that s2 reads. A control dependency
describes that s1 controls whether s2 is executed or not. Figure 1.1 shows
an example for control-flow graphs and program dependence graphs.
As has been shown by Ferrante et al. [58], PDGs can be used for program
slicing: Giving a node n in a PDG G, called slicing criterion, the (PDG-based)
backwards slice of n consists of all nodes from which n is reachable in
G. Analogously, the forward slice of n consists of all nodes which are
reachable from n.
Both control-flow graphs and program dependence graphs can also be
used to represent programs with multiple procedures. These variants and
the analyses that process them are called interprocedural [154, 93].

1.1 Applications to Software Security

The first main part of this thesis is concerned with applications of static
analysis techniques such as PDGs and slicing to software security. The
goal of static analysis in software security (which I will call static security
analysis in the following) is usually to analyze a given program or system
with respect to some desirable security property.
In software security, there are three desirable classes of properties of a given
system. Confidentiality means that no sensitive information is disclosed

2



1.1 Applications to Software Security

1 int h = inputPIN(); // HIGH
2 print(h); // LOW
3 if (h > 4711) {
4 print("OK"); // LOW
5 } else {
6 print("FAIL") // LOW
7 }
8 print("A") // LOW

Figure 1.2: Simple examples for illegal information flows

to a public or untrusted channel, integrity describes the property that no
untrusted input can influence critical computations and, finally, availability
states that data is always accessible if necessary [17]. This thesis focuses on
confidentiality and integrity, which both can be generically formulated as
an information-flow property. Basically, such a property demands that high
input cannot influence low output. In the following, I briefly explain this in
more detail. Information-flow properties assume that a program contains
(information) sources and (information) sinks. Sources are typically points in
the program where data is imported from the outside, whereas sinks are
points in the program where it emits output, e.g. where it exports data to
the outside. An information flow between a source and a sink manifests
itself if a change in the data that a source imports can lead to a change
in the output that a sink generates. A typical information-flow property
demands that the given program does not contain any illegal information
flows. In order to distinguish between legal and illegal information flows,
sources and sinks are usually labeled with some form of sensitivity level,
in the simplest case high and low. An information flow is called illegal if it
starts in a high source and ends in a low sink.
Simple examples for legal and illegal information flows are shown in
Figure 1.2. On the one hand, this code snippet contains illegal information
flows from the high source in line 1 to the low sinks in lines 2, 4, and 6,
respectively. On the other hand, no information flows from line 1 to line 8.
The class of static security analyses that are concerned with verifying
information-flow properties is also called information flow control [53].
As Snelting et al. [157] noted, slicing can be used to perform static in-
formation flow control. The basic idea is as follows: A (backwards) slice
of a program with respect to a public sink contains all parts from which
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information may flow to the given sink. Therefore, if such a slice does not
contain any secret source, there is no information flow between any secret
source and the public sink.
Moreover, as mentioned before, program dependence graphs turn out to
be an appropriate program representation to perform slicing. In particular,
they reduce the task of computing a slice to a form of graph reachability.
A slice can be obtained by traversing the graph and collecting all nodes
that are connected to a given node via a chain of edges.
Extending upon these ideas, the programming paradigms group1 at KIT
developed Joana [104], an information flow control tool for Java. First,
given a Java application, Joana builds a program dependence graph. Then,
the user can annotate sources and sinks on this graph and use Joana to
perform various slicing-based static information flow control checks.
From 2011 to 2017, the programming paradigms group participated in the
priority program “Reliably Secure Software Systems” (RS3) of the German
Research Foundation (DFG). The main thesis of RS3 was that classical
mechanism-based approaches to software security like authentication and
access control need to be complemented with property-oriented approaches
such as information flow control [4].
In chapter 4 of this thesis, I will give an overview of the achievements of
the programming paradigms group within the RS3 project. Our group
extended the theoretical foundations of Joana, participated in a number of
collaborations, and applied Joana to various scenarios within the field of
software security.

1.2 Systematic Approaches to Advanced
Information Flow Analysis

The second part of my thesis is concerned with a generalization of both
data-flow analysis on control-flow graphs and slicing-based techniques on
program dependence graphs. One motivation for this is that a generalized
analysis framework enables data-flow-like analyses on program depend-
ence graphs and therefore can extend the toolkit of PDG-based tools like
Joana by a family of powerful analyses. Moreover, such a generalization

1https://pp.ipd.kit.edu
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is also theoretically interesting because it clarifies the relation between the
two techniques, enables the re-use of formal guarantees and simplifies the
development of new slicing-based techniques.
While they have different purposes and have developed independently,
data-flow analysis on control-flow graphs and slicing on program depend-
ence graphs share a fairly large amount of similarities. Both operate on a
graph that represents the program to be analyzed and obtain their result by
some form of propagation along an appropriate set of paths on the given
graph. Moreover, both techniques face the same challenge for programs
with multiple procedures. To analyze such programs properly, it is crucial
to only consider paths where procedure calls return to the sites that they
were actually called from. Data-flow analyses are usually conducted in
order to derive properties of the set of a given program’s executions by
propagating pieces of data along abstract representations of these execu-
tions. Traditionally, they are expressed using a generic framework, for
which general formal guarantees can be given [101, 154, 106]. Moreover,
they can be systematically derived from program semantics [45]. In this
sense, data-flow analysis can be thought of as executing the program
using an abstraction of the real program semantics that concentrates only
on those aspects of interest. Thus, data-flow analysis can represent and
process fairly complex data.
Slicing on program dependence graphs is a form of reachability analysis.
While it appears to be expressible as a very simple data-flow-like analysis –
the information that slicing propagates is “this node is reachable”2 – slicing
can in fact not be cast as an instance of ordinary data-flow frameworks.
This is because slicing requires a richer setting than such frameworks.
In the following, I briefly discuss the setting for data-flow analysis and
then contrast it with the one for slicing.
Firstly, interprocedural data-flow analyses track the flow of data beginning
in a main procedure from which every node is assumed to be reachable.
Secondly, because data-flow analyses are supposed to consider abstractions
of actual program executions, they naturally only follow descending control-
flow paths that begin in entry of the main procedure. A control-flow path
π is called descending, if π only contains returns from procedures for which
π also contains the corresponding call.

2This will be detailed in chapter 3.
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In summary, interprocedural data-flow analyses on control-flow graphs
traverse descending paths that begin in the entry of the main procedure
and thus reach every node in the graph.
In contrast, PDG-based slicing operates with different assumptions.
While data-flow analysis on control-flow graphs always starts propagation
with a fixed node for which it is known per se that every node is reachable
from it, PDG-based slicing starts from an arbitrary node of interest. Naturally,
it cannot be assumed that this node is reachable in the PDG from the entry
of main. Moreover, the node for which the slice is to be computed can be
situated in some arbitrary part of the PDG. Hence, in order to compute a
complete slice for this node, it is necessary to not only consider descending
paths, but also paths that contain unmatched returns.
To sum up, the difference between the two techniques can be described best
as follows: While data-flow analysis assumes that every node is reachable
and computes a value for it, the task of PDG-based slicing is to compute the
very reachability information that data-flow analysis assumes.
Hence, a generalization of both data-flow analysis on control-flow graphs
and PDG-based slicing has to account for the two aspects that the two
techniques lay their respective focus on: On the one hand, it needs to
determine which nodes are reachable (like slicing does) and on the other
hand, it needs to compute some result for every reachable node (like
data-flow analysis does).
The second part of my thesis develops this idea. I propose a generaliz-
ation of both data-flow analysis and slicing. Firstly, my generalization
comprises a general graph model that covers both control-flow graphs
and program dependence graphs. Secondly, it provides a framework for
generalized data-flow analysis on this graph model. With this framework,
both data-flow analyses and slicing-based analyses are expressible. My
generalized data-flow framework combines the strengths of both classical
data-flow analysis and PDG-based slicing. Like data-flow analysis, it
allows to express data with complex structure. Like PDG-based slicing, it
takes the node from which propagation is supposed to start as additional
input and also follows paths with unmatched returns. I will show that
classical approaches to interprocedural data-flow analysis are transferable
to my generalized framework. Moreover, I present general algorithms
that compute solutions to generalized data-flow analysis problems. These
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algorithms combine the classical solution algorithms for data-flow ana-
lyses [102, 130] with reachability analysis and a well-known approach to
interprocedural slicing [93, 137].

1.3 Main Theses and Contributions

The main theses of this dissertation are:

Main Thesis 1: PDG-based information flow control is useful, prac-
tically applicable and relevant. I report on several applications of Joana
within the field of security analysis. These applications were the result of
my collaborations with other research groups within the RS3 project.

Main Thesis 2: Data-flow analysis can be systematically applied to
program dependence graphs.

• I propose a general graph model and – building upon this model
– a general data-flow analysis framework. In this framework, both
classic data-flow analyses on interprocedural control-flow graphs
and slicing-based analyses on interprocedural program dependence
graphs can be expressed.

• I present two approaches with which instances of the proposed
framework can be solved. These approaches are based on the
approaches that were proposed by Sharir and Pnueli [154] for classic
data-flow analysis problems and use monotone constraint systems
to describe solutions.

• I describe generic solution algorithms for the presented approaches.
These algorithms combine the classic worklist-based algorithm for
solving monotone constraint systems and hence classic data-flow
analysis problems with a reachability analysis.

• I give formal characterizations of the results of my algorithms and
prove correctness results.

• I demonstrate that my solution algorithms can be refined in such a
way that they can be reduced to the well-known algorithms proposed
for context-sensitive slicing (for an appropriate framework instance).
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Main Thesis 3: Data-flow analysis on PDGs can be practically con-
ducted. Within the scope of this work, I have implemented my algorithms
in Joana and have evaluated them on real program dependence graphs.
Thus, I demonstrate that the presented approaches not only enjoy pleasant
theoretical properties but are also practically feasible and useful.

1.4 Organization of This Thesis

The organization of this thesis is depicted in Figure 1.3.
Chapter 2 compiles the basic notions and theories that are relevant through-
out this thesis. In particular, it gives an introduction to basic order and
fixed-point theory and, based upon that, a presentation of monotone
constraint systems and the classical worklist-based algorithm to solve such
systems. Monotone constraint systems form the theoretic foundation of
data-flow analysis as it is presented and used in this thesis. The solving
algorithm serves as the basis for algorithms that are developed in later
chapters.
After the general foundations were laid in chapter 2, chapter 3 prepares for
the two main topics of this thesis. Its first part, which ranges from 3.1 to
3.3, gives an introduction to several concepts and techniques employed in
static program analysis. Specifically, it introduces both data-flow analysis
on interprocedural control-flow graphs and context-sensitive slicing on
interprocedural program dependence graphs. Moreover, it introduces
information flow control and discusses its relation to slicing. Finally,
section 3.4 prepares the reader for chapter 4. It gives an overview of
Joana, the information flow control tool developed by the programming
paradigms group. In particular, it explains various data-flow analysis
techniques that Joana employs in order to properly compute program
dependence graphs for object-oriented languages such as Java.
After chapter 3 has provided the necessary program analysis background,
chapter 4 reports on the contributions of the programming paradigms
group to RS3. These contributions consist of (a) advancements of PDG-
based checks for concurrent non-interference and (b) applications of Joana
to various scenarios and collaborations.
The chapters following chapter 4 lay out the second main topic of my thesis:
The development of a general interprocedural framework that subsumes
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Figure 1.3: Visualization of the organization of this thesis – including the relation
to its title

both data-flow analysis on control-flow graphs and context-sensitive slicing
on program dependence graphs.
In chapter 5, which directly builds on the first part of chapter 3, I derive a
graph model that subsumes both control-flow graphs and program de-
pendence graphs and, based on this model, a general data-flow framework.
In addition, I discuss a variety of example analyses that can be expressed
within this framework.
Chapter 6 is concerned with the characterization of solutions to the prob-
lems posed by instances of the data-flow framework in chapter 5. To
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accomplish this task, I employ monotone constraint systems. I demon-
strate that both the functional approach and the call-string approach can be
applied to my general data-flow framework and that – under appropriate
assumptions – both solve the problem with maximal precision. Because the
unrestricted call-string approach in general does not allow a practical solu-
tion algorithm, I also consider a technique that enables practical algorithms
and maintains correctness (while sacrificing precision). In particular, this
technique generalizes the well-known technique that was proposed for
interprocedural data-flow analysis on control-flow graphs.
In chapter 7, I describe algorithms for solving the constraint systems given
in chapter 6. These algorithms combine a general worklist-based approach
with a reachability analysis. For the functional approach, the algorithms
that I obtain look like generalized versions of the well-known algorithms
for context-sensitive slicing.
In chapter 8, I present an implementation of the algorithms derived in
chapter 7, describe an evaluation of the implementation and discuss the
evaluation results.
Chapter 9 gives a critical discussion of the work developed in the preceding
chapters and relates it to the existing literature.
Finally, in chapter 10, I recapitulate the contents of this thesis and give an
outlook on possible future work.

Usage of Personal Pronouns At this point, I want to briefly make clear
the convention that I apply concerning the usage of personal pronouns in
this dissertation.
Generally, it is similar to earlier dissertations [39]: I will mainly use the
first person singular. In proofs, I use the plural form in order to invite
the reader to conduct them with me. An exception is chapter 4, where I
report about research that was conducted by multiple persons, including
me. This is why I use the plural form “we” there. Generally, I choose to
deviate from these rules whenever I think that it is necessary.
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My foundations were made of clay.
Eric Clapton 2

Foundations

2.1 Sets and Relations

I assume in the following that the reader is familiar with basic set theory.
This section is supposed to clarify the notations and conventions that I
apply in this thesis.

For a given set A, I write 2A de f
= {B | B ⊆ A} for the power set of A.

For two sets A and B, A×B
de f
= {(a, b) | a ∈ A∧ b ∈ B} is the cartesian product

of A and B. Elements (a, b) ∈ A× B are also called pairs. For the purposes
of this thesis, I consider cartesian products associative, that is I identify
A × (B × C) with (A × B) × C. Hence, the parentheses can generally be
omitted.
The cartesian product can also be considered for n ∈N sets A1, . . . , An:

A1 × · · · ×An =
n∏︂

i=1

Ai
de f
= {(a1, . . . , an) | ∀1 ≤ i ≤ n. ai ∈ Ai}

Elements (a1, . . . , an) of
∏︁n

i=1 Ai are called n-tuples. A special case is n = 0:∏︁n
i=1 Ai is defined to be the set that consists only of the empty tuple {()}.

In the following, I want to consider the special case of relations between
two sets that I also call binary relations.
A binary relation R ⊆ A× B is called

1. left-unique if

∀x ∈ A.∀x′ ∈ A.∀y ∈ B.(x, y) ∈ R∧ (x′, y) ∈ R =⇒ x = x′

11
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2. right-unique if

∀x ∈ A.∀y ∈ B.∀y′ ∈ B.(x, y) ∈ R∧ (x, y′) ∈ R =⇒ y = y′

3. left-total if
∀x ∈ A.∃y ∈ B.(x, y) ∈ R

4. right-total if
∀y ∈ B.∃x ∈ A.(x, y) ∈ R

The domain of a binary relation R is

dom(R)
de f
= {a ∈ A | ∃b ∈ B. (a, b) ∈ R}

The image of a binary relation R is

im(R)
de f
= {b ∈ B | ∃a ∈ A. (a, b) ∈ R}

If R is right-unique and a ∈ dom(R), then I write R(a) for the one and only
b ∈ B such that (a, b) ∈ R. Analogously, if R is left-unique and b ∈ dom(R),
then I write R−1(b) for the one and only a ∈ A such that (a, b) ∈ R.
If R ⊆ A× B is right-unique, then R is also called partial function from A to
B. For the set of partial functions from A to B, I use the notation A→p B.
For f ∈ A→p B, I also write f : A→p B. If R is additionally left-total, then
R is also called function from A to B. By A→ B, I mean the set of functions
from A to B and for f ∈ A→ B, I also write f : A→ B.
A function R is called

1. injective if R is left-unique,

2. surjective if R is right-total, and

3. bijective if R is both injective and surjective.

Every binary relation R ⊆ A× B can be assigned a function fR : A→ 2B,
defined by

fR(a)
de f
= {b ∈ B | (a, b) ∈ R}.

Occasionally, I will use R and fR interchangeably, that is I will consider
relations R ⊆ A× B as functions A→ 2B.

12



2.2 Complete Lattices, Fixed Point Theory Theory and Monotone Constraint Systems

2.2 Complete Lattices, Fixed Point Theory
Theory and Monotone Constraint Systems

In this section, I recall the basic notions that data-flow analysis builds
upon and show generic algorithms that can be used to perform data-flow
analyses. Particularly, I define monotone constraint systems and show
how to solve them.
In subsection 2.2.1, I recall and clarify the basic notions and compile import-
ant results from the literature. In subsection 2.2.2, I introduce monotone
constraint systems and characterize their solutions. In subsection 2.2.3, I
present algorithms for solving monotone constraint systems.

2.2.1 Partial Orders and Fixed-Points

Partial Orders. A partial order is a tuple (L,≤) which consists of a set
L and a relation ≤ ⊆ L× L with the following properties:

∀x ∈ L. x ≤ x(reflexivity)
∀x, y ∈ L. x ≤ y∧ y ≤ x =⇒ x = y(anti-symmetry)
∀x, y, z ∈ L. x ≤ y∧ y ≤ y =⇒ x ≤ z(transitivity)

Let (L,≤) be a partial order and A ⊆ L. Then x is called minimal in A if
∀y ∈ A.x ̸≥ y. Moreover, x ∈ A is called least element of A if ∀y ∈ A. x ≤ y.
Note that least elements do not need to exist but are unique if they do, while
minimal elements neither need to exist nor need to be unique. However, if
A has a least element, then this element is necessarily minimal. Plus, if A
is finite and non-empty, it always has minimal elements.

Bounds. An element u ∈ L is called upper bound of A ⊆ L if

∀a ∈ A. a ≤ u.

Upper(A) denotes the set of upper bounds of A. u ∈ L is called least upper
bound of A if u is an upper bound of A and if

∀u′ ∈ Upper(A). u ≤ u′.
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I also write
⨆︁

A for the least upper bound of A. l ∈ L is called lower bound
of A if

∀a ∈ A. l ≤ a.

Lower(A), or
⨅︁

A, respectively, denotes the set of lower bounds of A. l ∈ L
is called greatest lower bound of A if l is a lower bound of A and if

∀l′ ∈ Lower(A). l′ ≤ l.

In the following, I compile some basic facts about least upper bounds
and greatest lower bounds. Since they do not need to exist, I apply the
usual convention for equations about partially defined objects: If I state
an equation of the form x = y, I mean that either both x and y exist and
coincide or that neither exists.
Least upper bounds and greatest lower bounds are dual to each other in
the following sense:

∀A ⊆ L.
⨆︂

A =
⨅︁

Upper(A)(2.1)

∀A ⊆ L.
⨅︁

A =
⨆︂

Lower(A)(2.2)

Assume that A = {a, b} and that
⨆︁

A exists. Then we define

a1 ⊔ a2
de f
=
⨆︂
{a1, a2}(2.3)

a1 ⊓ a2
de f
=

⨅︁
{a1, a2}(2.4)

This defines partial binary operations ⊔,⊓ : L× L→p L. Easy calculations
show that both ⊔ and ⊓ are associative and commutative, that is

∀a, b ∈ L. a⊔ b = b⊔ a∧ a⊓ b = b⊓ a(2.5)
∀a, b, c ∈ L. a⊔ (b⊔ c) = (a⊔ b)⊔ c∧ a⊓ (b⊓ c) = (a⊓ b)⊓ c.(2.6)

These properties of ⊔ and ⊓ justify to extend both operations to arbitrary
finite sets:

a1 ⊔ · · · ⊔ an
de f
=
⨆︂
{a1, . . . , an}(2.7)

a1 ⊓ · · · ⊓ an
de f
=

⨅︁
{a1, . . . , an}(2.8)
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Monotone Functions. For two partial orders (L,≤) and (L,≤′), I call
a function f : L→ L′ monotone, if

∀l1, l2 ∈ L. l1 ≤ l2 =⇒ f (l1) ≤′ f (l2)(2.9)

Given a partial order (L,≤) and a monotone function f : L → L, we can
consider elements of L that behave specially with respect to f . I call x ∈ L

1. reductive if f (x) ≤ x

2. extensive if x ≤ f (x)

3. fixed-point if x is both reductive and extensive.

The sets of reductive elements, extensive elements and fixed-points are
denoted by Ext( f ), Red( f ) and Fix( f ), respectively.
If Fix( f ) has a least element, i.e. if there is x ∈ Fix( f ) with the property
∀y ∈ Fix( f ). x ≤ y, then I call x least fixed-point of f and write it as l f p( f ).

Complete Lattices. A complete lattice is a partial order (L,≤) in which
every subset has a least upper bound. In particular, it has a least element

⊥ de f
=
⨆︁ ∅ = ⨅︁

L and a greatest element ⊤ de f
=
⨆︁

L =
⨅︁ ∅.

Theorem 2.1 (Knaster-Tarski, cf.[161, Theorem 1]). Let f : L → L be a
monotone function on a complete lattice (L,≤). Then Fix( f ) is not empty and
(Fix( f ),≤) is a complete lattice. In particular, we have

⨆︂
Fix( f ) =

⨆︂
Ext( f )

and ⨅︁
Fix( f ) =

⨅︁
Red( f )

Theorem 2.1 reduces the problem of finding the least reductive point
to the problem of finding the least fixed point. Unfortunately, it is not
constructive, in the sense that it gives no recipe of how to find the least
fixed point. However, with some modifications, a constructive result can
be given in the form of such a recipe. Before I present this result, I introduce
some auxiliary definitions.
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Chains and Chain conditions. A chain in (L,≤) is a subset C ⊆ L
such that

∀x, y ∈ C. x ≤ y∨ y ≤ x.

With Chains(L) I denote the set of chains in L. A sequence (li)i∈N is called
ascending chain if

∀i, j ∈N. i ≤ j =⇒ li ≤ l j

I denote the ascending chains of L with Asc(L). A sequence (li)i∈N is called
descending chain if

∀i, j ∈N. i ≤ j =⇒ li ≥ l j

I denote the descending chains of L with Desc(L).
It is important to consider the different natures of chains on the one side
and ascending and descending chains on the other side. Any ascending
or descending chain can be assigned a chain as follows: Every sequence
can be considered a function l : N→ L. Hence, we can consider the image
im(l) of l and observe that im(l) is a chain if l is an ascending or descending
chain.
Conversely, for a given chain C, any monotone function

l : (N,≤N)→ L

with C = im(L) can justify to regard C as ascending chain and any
monotone function l : (N,≥N)→ L with C = im(L) can justify to regard
C as descending chain.
However, there are chains which cannot be considered as ascending or
descending chains. Take for example the set Z of integers with its natural
ordering and consider the set 2Z of even integers. It is easy to see that
2Z forms a chain in Z but there is no monotone function l : N→ Z with
im(l) = 2Z (neither for ≤N nor for ≥N).
A partial order satisfies the ascending chain condition, if every ascending
chain eventually stabilizes:

∀(li)i∈N ∈ Asc(L)∃n0 ∈N. ∀n ≥ n0. ln = ln0(ACC)

A partial order satisfies the descending chain condition, if every descending
chain eventually stabilizes:

∀(li)i∈N ∈ Desc(L)∃n0 ∈N. ∀n ≥ n0. ln = ln0(DCC)
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If C is a finite chain, then the cardinality |C| is also called the height of C.
L is said to have finite height if there is n ∈N such that every chain has a
height of at most n. The smallest such n (if it exists) is also called the height
of L and is written as height(L).
L is said to have no infinite chains, if all chains C ⊆ L are finite.
There is a subtle difference between partial orders of finite height and
partial orders with no infinite chains. Figure 2.1b illustrates the difference.

ACC DCC

no
infinite
chains

finite
height

(a)

. . .

⊥

⊤

(b)

Figure 2.1: (a): Relationship between different chain conditions – (b): proof sketch
for why the inclusion between “finite height” and “no infinite chains”
is proper

As I elaborated on above, ascending and descending chains are special
cases of chains. However, with regard to the respective chain conditions,
there is a strong connection.

Theorem 2.2 ([50, p. 2.40]). A partial order has no infinite chains if and only if
it satisfies both the ascending and the descending chain condition.

Chain-Complete Partial Orders. A chain-complete partial order (CCPO)
is a partial order in which every chain in L has a least upper bound. In
particular, a CCPO has a bottom element ⊥ =

⨆︁ ∅, since ∅ is a chain.
Let (L,≤) and (L′,≤′) be two CCPOs. Then f : L→ L′ is called continuous,
if f is monotone and for every chain C in L we have f (

⨆︁
C) =

⨆︁
f (C).
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Theorem 2.3 (Fixed-point theorem of Kleene). If (L,≤) is a CCPO and
f : L → L is continuous, then f has a least fixed-point that is characterized as
follows:

l f p( f ) =
⨆︂

i∈N
f i(⊥)

Proof. See, e.g., [28, Theorem 6.3.2]. □

Theorem 2.3 not only gives a constructive characterization of the least
fixed-point, it also enables a powerful proof technique that I will make use
of later. This proof technique is formalized in the following lemma (cf.[28,
Theorem 6.3.5]).

Lemma 2.4 (fixed-point induction principle). Consider a continuous function
f : L→ L on a CCPO L. Furthermore, let A ⊆ L be a subset of L which has the
following closure properties:

1. ⊥ ∈ A

2. ∀B ∈ Chains(L). B ⊆ A =⇒ ⨆︁
B ∈ A

3. ∀a ∈ L. a ∈ A =⇒ f (a) ∈ A

Then l f p( f ) ∈ A.

Proof. Due to the assumptions about L and f , we can apply Theorem 2.3
and obtain

l f p( f ) =
⨆︂

i∈N
f i(⊥)

With the help of properties 1 and 3 we can show by complete induction on
i ∈N:

∀i ∈N. f i(⊥) ∈ A

Finally, by property 2, we get

l f p( f ) =
⨆︂

i∈N
f i(⊥) ∈ A

□
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Every complete lattice is a CCPO. However, the fixed-point theorem of
Kleene is not applicable under the assumptions of Theorem 2.1. For general
complete lattices, not all monotone functions are continuous. However, if
we restrict the lattice, monotonicity and continuity coincide and Kleene’s
fixed-point theorem becomes applicable.

Lemma 2.5. If (L,≤) is a CCPO which satisfies (ACC), then every monotone
function f : L→ L is continuous.

Proof. Let f : L → L be monotone and assume that C ⊆ L is a chain. We
must show that

f (
⨆︂

C) =
⨆︂

f (C)

Due to the monotonicity of f , it is clear that
⨆︁

f (C) ≤ f (
⨆︁

C), so it suffices
to show

f (
⨆︂

C) ≤
⨆︂

f (C)

This is easy to see if C is finite, so we assume that C is infinite. First we
observe that

⨆︁
C ∈ C, otherwise we could construct an ascending sequence

(ci)i∈N with ∀i ∈N. ci ∈ C and ∀i, j ∈N. i < j =⇒ ci < c j in contradiction
to L satisfying (ACC).
But
⨆︁

C ∈ C implies f (
⨆︁

C) ∈ f (C) and this implies f (
⨆︁

C) ≤ ⨆︁ f (C). □

Corollary 2.6. If (L,≤) is a CCPO which satisfies (ACC) and f : L → L is
monotone, then the least fixed-point of f is characterized as follows:

l f p( f ) =
⨆︂

i∈N
f i(⊥)(2.10)

In particular, there is an n ∈N such that l f p( f ) coincides with f n(⊥):
l f p( f ) = f n(⊥)(2.11)

Proof. By Lemma 2.5, any monotone function on L is continuous. Hence,
the first claim follows by Theorem 2.3.
Next, we show (2.11). For this, consider the set

K f
de f
= { f i(⊥) | i ∈N}
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If K f is finite, we choose n as the greatest number such that f n(⊥) ∈ K f .
This is always possible because K f is not empty. For this choice of n, (2.10)
implies (2.11).
Now consider the case that K f infinite. We take a look at the observation
made in the proof of Lemma 2.5: It said that

⨆︁
C ∈ C for every chain C ⊆ L,

provided that L satisfies (ACC). Plus, an easy inductive argument shows
that K f is indeed a chain. Hence, we may conclude that

⨆︂
K f ∈ K f .

In other words, there must be n ∈N such that
⨆︂

i∈N
f i(⊥) = f n(⊥),

as desired. □

Corollary 2.7. Let L be a CCPO which satisfies (ACC) and f : L → L be a
monotone function on L. Furthermore, let A ⊆ L be a subset of L which has the
following closure properties:

1. ⊥ ∈ A

2. ∀B ∈ Chains(L). B ⊆ A =⇒ ⨆︁
B ∈ A

3. ∀a ∈ L. a ∈ A =⇒ f (a) ∈ A

Then l f p( f ) ∈ A.

Proof. This follows from Lemma 2.5 and Lemma 2.4. □

The ascending chain condition also comes in handy when we want to
show that a partial order is a complete lattice. With (ACC) it is enough to
show the existence of a bottom element and that every finite subset has a
least upper bound. This is formalized by Lemma 2.8.

Lemma 2.8. Let (L,≤) be a partial order that satisfies (ACC). Then the following
statements are equivalent:

1. L is a complete lattice.

2. L has a least element ⊥ and for every x, y ∈ L, x⊔ y exists.

Proof. This follows from [50, p. 2.41]. □
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Some Constructions I want to conclude this section with the com-
pilation of some examples of complete lattices, which will play a role later
in this thesis.
For any set A, the power set 2A with respect to set inclusion forms a
complete lattice (2A,⊆), called the power set lattice of A. If A is finite, then
the power set lattice of A has finite height. If A is infinite, then neither
(ACC) nor (DCC) are satisfied.
If (L1,≤1) and (L2,≤2) are two partial orders, then the cartesian product
(L1 × L2,≤) forms a partial order where ≤ is the relation

(x, y) ≤ (x′, y′)
de f⇐⇒ x ≤1 x′ ∧ y ≤2 y′

Moreover,

• (L1 × L2,≤) is a complete lattice if both L1 and L2 are.

• (L1 × L2,≤) satisfies (ACC) if and only if both L1 and L2 do.

This can be generalized to an arbitrary finite number of complete lattices.
If (L,≤) is a partial order and A is any set, then the set of total functions
A→ L is a partial order with

f ≤ g
de f⇐⇒ ∀x ∈ A. f (x) ≤ g(x)

If L is a complete lattice, then A→ L is, too. Moreover, if L satisfies (ACC)
and A is finite, then A→ L satisfies (ACC). Conversely, if A→ L satisfies
(ACC), then either L contains only one element or A is finite and L satisfies
(ACC).
If (L1,≤1) and (L2,≤2) are partial orders, then the space L1 →mon L2 of
monotone functions is a partial order via the relation defined above. Plus,
if L2 is a complete lattice, then L1 →mon L2 is also a complete lattice. That
is, for any set A ⊆ L1 →mon L2 of monotone functions, the least upper
bound defined by

(
⨆︂

A)(x) =
⨆︂
{ f (x)| f ∈ A}

is also monotone.
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2.2.2 Monotone Constraint Systems

In this section, I introduce monotone constraint systems. These systems are
fundamental for program analysis and in particular for data-flow analysis,
since they are expressive enough to describe abstractly how a program
propagates values.

2.2.2.1 Syntax

I start with a set X of variables and a set F of function symbols. Every
function symbol has an arity a( f ) ∈ N. Particularly, I allow function
symbols with a( f ) = 0, which I also call constants.
The set Expr(X,F ) of expressions over X and F is defined inductively as
follows:

1. X ⊆ Expr(X,F )

2. If f ∈ F with a( f ) = n and t1, . . . , tn ∈ Expr(X,F ), then f (t1, . . . , tn) ∈
Expr(X,F ).

A monotone constraint (or constraint for short) has the form x ≥ t where x is
a variable and t ∈ Expr(X,F ) is some expression over X and F .
A (monotone) constraint system is a set C of constraints.
With FV(t) I denote the variables occurring in t ∈ Expr(X,F ). I refer to
FV(t) as the set of free variables in t.
Let C be a monotone constraint system and c = x≥ t ∈ C. Then I define

lhs(c)
de f
= x and rhs(c)

de f
= t and refer to lhs(c) and rhs(c) as the left-hand

side and right-hand side of c, respectively.
With Vars(C), I denote the set of left-hand sides of constraints in C, i.e.

Vars(C) = {lhs(c) | c ∈ C}(2.12)

For a constraint c ∈ C with x = lhs(c), I also say that c defines x and refer to
c as defining constraint for x.

Definition 2.9. Let C be a constraint system.

1. I define〜 ⊆ C×C by x ≥ t〜 x′ ≥ t′ if x ∈ FV(t′). With〜⋆ I denote the
reflexive-transitive closure of〜 and with〜+ the transitive closure.
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2. For sets C1, C2 ⊆ C of constraints I write C1 〜 C2 if

∃c1 ∈ C1. ∃c2 ∈ C2. c1 〜 c2

C1 〜
⋆ C2 and C1 〜

+ C2 have the respective meaning. Instead of {c}〜 C2, I
also write c〜 C2 (analogously for C2 = {c}). For C0 ⊆ C I denote with C⋆0 the
set {c ∈ C : C0 〜

⋆ c} (C+0 is defined analogously).

3. For x ∈ X I denote with De f (x) the set of constraints with x on the left-hand
side.

4. I overload〜 to〜⊆ X ×X as follows

x〜 x′ ⇐⇒ De f (x)〜 De f (x′).

〜⋆⊆ X ×X and〜+⊆ X ×X have the respective meaning for sets of variables.

2.2.2.2 Semantics

In the following, I define what it means for a constraint system to be
satisfied. In a nutshell, I assign every occurring expression a monotone
function on an appropriately chosen partially ordered set L. This allows
to evaluate the left-hand side and the right-hand side of a constraint and
to determine whether the left-hand side is greater than or equal to the
right-hand side, with respect to the partial order on L.
Let (L,≤) be a partially ordered set.
A variable assignment is a function ψ : X→ L. Furthermore, I assign every
function symbol f ∈ F with a( f ) = n a monotone interpretation α( f ) :
Ln →mon L. Now I inductively define the interpretation ⟦t⟧ : (X→ L)→ L
of expressions:

• for x ∈ X : ⟦x⟧(ψ) = ψ(x)

• ⟦ f (t1, . . . , tn)⟧(ψ) = α( f )(⟦t1⟧(ψ), . . . , ⟦tn⟧(ψ))

By straight-forward induction I can show Lemma 2.10, which states basic
but important properties of ⟦·⟧ and FV.

Lemma 2.10. Let t ∈ Expr(X,F ) be an expression. Then the following state-
ments hold:
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1. ⟦t⟧ : (X→ L)→ L is monotone.

2. If ψ and ψ′ are two variable assignments with

∀x ∈ FV(t). ψ(x) ≤ ψ′(x),
then

⟦t⟧(ψ) ≤ ⟦t⟧(ψ′).
In particular: ∀x ∈ FV(t). ψ(x) = ψ′(x) implies ⟦t⟧(ψ) = ⟦t⟧(ψ′).
A variable assignment ψ : X→ L satisfies a constraint x ≥ t if ψ(x) ≥ ⟦t⟧(ψ).
ψ satisfies a constraint system if it satisfies all c ∈ C. I this case, I call ψ a
solution of C. ψ is called least solution of C if ψ ≤ ψ′ for all solutions ψ′ of C.
Given a constraint system C I define the corresponding functional

FC : (X→ L)→ (X→ L)

by

FC(ψ)(x) =
⨆︂
{⟦t⟧(ψ)|x≥ t ∈ C}

For the moment, I implicitly require that FC is well-defined, i.e. that all
least upper bounds on the right-hand side exist.
An easy calculation shows that FC is monotone. Furthermore, there is a
strong connection between the solutions of C and the reductive points of
FC:

Lemma 2.11. ψ is a solution of C if and only if FC(ψ) ≤ ψ.

Proof. “⇐= ”: Assume FC(ψ) ≤ ψ and let x≥ t ∈ C. Then, by definition of
FC,

FC(ψ)(x) ≥ ⟦t⟧(ψ)
Since FC(ψ) ≤ ψ, this implies

ψ(x) ≥ ⟦t⟧(ψ)
Hence, ψ is a solution of C.
“ =⇒ ”: If we have ψ(x) ≥ ⟦t⟧(ψ) for every x≥ t ∈ C, then

∀x ∈ X.ψ(x) ≥
⨆︂
{⟦t⟧(ψ)|x≥ t ∈ C} = FC(ψ)(x)

which is equivalent to ψ ≥ FC(ψ). □
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The connection between the solutions of C and the reductive points of FC
makes the theory developed in section 2.2 available. The least solution
exists and coincides with the least fixed-point of FC if

• L is a CCPO and FC is well-defined and continuous, or

• L is a complete lattice.

If L is a CCPO and FC is well-defined and continuous (which is for example
the case if L is a complete lattice satisfying the ascending chain condition),
then the least solution is characterized by

l f p(FC) =
⨆︂

i∈N
Fi
C(⊥).

2.2.3 Solving Monotone Constraint Systems

Now we know how monotone constraint systems look like and what they
mean. In the following, I show algorithms that can solve them under some
common conditions.
Let C be a monotone constraint system over a complete lattice L that
satisfies the ascending chain condition. Then Kleene’s fixed-point theorem
(Corollary 2.7) suggests a simple algorithm to compute the least solution
of C, which is presented in Algorithm 1.
Algorithm 1 is indeed very simple. From previous considerations, it can
easily be seen that Algorithm 1 must terminate and that upon termination,
the value of A is indeed the least fixed-point of FC and therefore the
least solution of C. On the other hand, it is very inefficient: FC(A) is
computed by computing FC(A(x)) for all x ∈ X and FC(A)(x) is computed
by evaluating ⟦t⟧(A) for all t such that x ≥ t ∈ C and computing their
supremum. In effect, all constraints are evaluated and this is re-iterated
for all constraints, even if only one value changed.
More efficient algorithms can be obtained by carefully tracking the con-
straints that need to be updated. For every constraint x ≥ t, according
to Lemma 2.10, ⟦t⟧ only depends on FV(t), i.e. it can only change if the
value of at least one y ∈ FV(t) has changed. Conversely, this means: If we
re-evaluateA(x) and it changes, then afterwards we only have to consider
those constraints where x occurs on the right-hand side, i.e. the constraints
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Algorithm 1: Simple algorithm to compute the least solution of a
monotone constraint system

Input: a finite monotone constraint system C
Result: the least solution of C

1 A← ⊥
2 changed← true
3 while changed do
4 changed← f alse
5 Aold ←A
6 A← FC(A)
7 ifA ≠ Aold then
8 changed← true

9 returnA

of the form y ≥ t such that x ∈ FV(t), or, in the spirit of Definition 2.9,
which are related to x ≥ t via C’s〜-relation.
We now can give an improved version of Algorithm 1, which is shown
in Algorithm 2. This algorithm does not apply FC globally but considers
each constraint individually.
Like Algorithm 1, Algorithm 2 maintains a functionA : X→ L which is
initialized to ⊥ for all x and then updated incrementally. Additionally,
it maintains a list of constraints which have to be considered later – the
so-called worklist3. This list initially contains all constraints, which ensures
that every constraint is considered at least once. In the iteration phase,
the worklist is processed as follows: First, a constraint x ≥ t is removed.
Then, the algorithm checks whether the current value ofA satisfies this
constraint. If this is the case, the constraint can be discarded andA is left
unchanged. If this is not the case, thenA is updated. After the update,A
satisfies x ≥ t. Lastly, all constraints which may be influenced by x, i.e. all
x′ ≥ t′ such that x〜 x′, are inserted into the worklist. This ensures that
every constraint that may have been violated by the recent update ofA
will be considered again later.

3I use the term worklist here although the algorithms treat W like a set. The reason is
that I do not want to deviate from the literature too much.
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Algorithm 2: Worklist algorithm for computing the least solution
of a monotone constraint system (adapted from [130, Table 6.1])

Input: a finite monotone constraint system C
Result: the least solution of C

1 W ← ∅
2 foreach x≥ t ∈ C do
3 W ←W ∪ {x ≥ t}
4 A(x)← ⊥
5 while W ≠ ∅ do
6 x ≥ t← remove(W)
7 new← eval(t,A)
8 ifA(x) ̸≥ new then
9 A(x)←A(x)⊔ new

10 foreach x′ ≥ t′ such that x ≥ t〜 x′ ≥ t′ do
11 W ←W ∪ {x′ ≥ t′}

12 returnA

By considering each constraint at least once and ensuring that a constraint
is considered again if the value of an influencing variable has changed, it
can be shown that Algorithm 2 indeed computes the least solution of C, as
stated by Theorem 2.12.

Theorem 2.12 (cf. Lemma 6.4 in [130]). If C is finite and L satisfies the
ascending chain condition, then Algorithm 2 computes the least solution of C.

Note that Algorithm 2 does not specify how elements are inserted into
the worklist and how they are removed. This means that the algorithm is
correct no matter in which order the constraints are processed, so that it
can be further improved by optimizing the evaluation order.
Instead of maintaining constraints in a worklist, one can also maintain
variables instead of constraint. This leads to Algorithm 3. Here, the
worklist contains all the variables whose value needs to be updated.

Theorem 2.13. If C is finite and L satisfies the ascending chain condition, then
Algorithm 3 computes the least solution of C.

Proof. We prove the claim as in the proof of [130, Lemma 6.4] in three steps:
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Algorithm 3: A variable-oriented variant of Algorithm 2
Input: a finite monotone constraint system C
Result: the least solution of C

1 foreach x≥ t ∈ C do
2 A(x)← ⊥
3 W ←W ∪ {x}
4 while W ≠ ∅ do
5 x← remove(W)
6 old←A(x)
7 forall x≥ t ∈ C do
8 A(x)←A(x)⊔ ⟦t⟧(A)
9 ifA(x) ≠ old then

10 foreach x′ ≥ t′ ∈ C such that x ∈ FV(t′) do
11 W ←W ∪ {x′}

12 returnA

1. Algorithm 3 terminates.

2. IfAi denotes the value ofA after the i-th iteration, then

∀i ∈N.Ai ≤ l f p(FC)

3. Upon termination, we have

A ≥ l f p(FC)

For the first two steps, we refer to the proof of [130, Lemma 6.4]. For the
third step, we prove that the loop in lines 4–11 maintains the following
invariant:

(Inv) ∀x≥ t ∈ C. x ∉W =⇒ A(x) ≥ ⟦t⟧(A)

First we note that this invariant proves our claim: Upon termination, the
worklist is empty. The invariant (Inv) implies then that every constraint is
satisfied.
Next we show that (Inv) holds before the first loop iteration. But this
is clear since after the initialization loop in lines 1–3 has finished, every
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variable occurring on the left-hand side of a constraint in C is contained in
W. Hence, the premise of (Inv) is false, so (Inv) holds before the first loop
iteration.
Next we show that (Inv) is preserved by each iteration of the loop in lines
4–11. So, consider the i-th loop iteration. LetAOld and WOld be the values
ofA and W at the beginning andANew and WNew be the values ofA and
W at the end of the i-th iteration, respectively. We assume that (Inv) holds
at the beginning of the i-th iteration and show that it still holds at the end.
So, consider any constraint x≥ t ∈ Cwith x ∉WNew.
We distinguish two cases:

1. x ∉ WOld: Then x ≥ t was satisfied at the beginning of the i-th loop
iteration and x cannot have been removed in this iteration, which means
thatA(x) is not touched. Moreover, no variable from FV(t) can have been
touched in this iteration: Otherwise, line 11 would have been executed
and x ∈WNew. Hence, x ≥ t is still satisfied at the end of the iteration.

2. x ∈ WOld: Since x ∉ WNew, x must be the variable which is processed
in the i-th iteration. Then, at some point, line 8 is executed for x ≥ t, so
that x ≥ t is satisfied afterwards. Now we make three observations that
together allow us to conclude that x ≥ t is still satisfied at the end of the
i-th iteration: First, we see that line 8 is the only place in the loop where
A(x) is modified. Secondly,A is only modified for variable x and no other
variable. Finally, we make the observation that no variable from FV(t) can
have been touched in this iteration: If that were the case, then this would
necessarily entail x ∈ FV(t). But then line 11 would be executed for x ≥ t
and we would have x ∈WNew (which we have not).

From these three observations, it follows that the i-th iteration only changes
Analysis(x) and leaves ⟦t⟧(Analysis) unchanged. Together with the fact
that line 8 changes Analysis(x) upwards, we can conclude that x ≥ t is still
satisfied at the end of the i-th iteration.

This concludes the proof that (Inv) is preserved by the loop in lines 4–11.
□
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2.3 Inductive Definitions

In later chapters, I will use inductive definitions at various places. Further-
more, I will use induction principles derived from the respective definition.
In this section, I make these notions precise by applying the theoretic
foundations compiled in section 2.2. A general version of the following
definitions and results can be found in the literature [7].
To improve presentation, I abbreviate (x1, . . . , xn) ∈ Bn as x ∈ Bn, for a
given set B and n ∈N. Moreover, for x ∈ Bn, I write xi to denote the i-th
component of x.

Definition 2.14. Let X be an arbitrary set. An operator (on X) is a partial
function f : Xn → X for some n ∈ N, which is also called the arity of f and
which is written as ar( f ).

Definition 2.15. For a setF of operators (on a set X), I say that A ⊆ X is closed
under F if

∀ f ∈ F . ∀x ∈ Xar( f ). x ∈ Aar( f ) ∩ dom( f ) =⇒ f (x) ∈ A(2.13)

Usually, I will specify F by giving a list of closure properties of the form
(2.13).
Mostly for layout reasons, I express (2.13) in the following way:

x1 ∈ A . . . xar( f ) ∈ A x ∈ dom( f )

f (x) ∈ A
(2.14)

Occasionally, I will omit the “∈ A”’s if they are clear from the context. I
will also omit other assertions that restrict elements to membership in a
given set if these assertions do not restrict the elements more than other
assertions. I will also omit quantifiers and assume that all free variables
are universally quantified.
Using (2.13) or (2.14) not only specifies an operator set on X but also a
canonical subset of X. I introduce this set in the following.

Definition 2.16. Let F be a set of operators on the set X. I say that A ⊆ X is
inductively defined by F if

A is closed under F(2.15)
∀B ⊆ X. B is closed under F =⇒ A ⊆ B(2.16)
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Remark 2.17. For every set X and every set F of operators on X, there is exactly
one subset A ⊆ X that is inductively defined by F .

Proof. Define A by

A
de f
=
⋂︂
{B ⊆ X | B is closed under F }(2.17)

Then it can be easily seen that A satisfies the two conditions in Defin-
ition 2.16. Now let A1 ⊆ X and A2 ⊆ X be two subsets of X that are
inductively defined by F . Then by (2.15), both A1 and A2 are closed under
F . Hence, by (2.16), we have A1 ⊆ A2 and A2 ⊆ A1. Due to anti-symmetry
of ⊆, it follows that A1 = A2. □

Because of (2.16), one can also say that the set that is inductively defined
by F is the least subset that is closed under F
For an inductively defined set A ⊆ X, the following proof principle can be
applied.

Theorem 2.18. Let A ⊆ X be inductively defined by F and let P : X →
{true, f alse} be a statement about elements of X. Suppose that we can show

∀ f ∈ F . ∀x ∈ Xar( f ). x ∈ dom( f )∧
ar( f )⋀︂

i=1

P(xi) =⇒ P( f (x)).(2.18)

Then ∀a ∈ A. P(a).

Proof. Define C f , CF : 2X → 2X by

C f (B)
de f
= { f (x) | x ∈ Bar( f ) ∩ dom( f )}(2.19)

CF (B)
de f
=
⋃︂

f∈F
C f (B)(2.20)

Then it is easy to see that

1. CF is a monotone function on the complete lattice (2X,⊆).
2. The subsets of X that are closed underF are exactly the reductive points
of CF .

31



2 Foundations

From Theorem 2.1, we know that

l f p(CF ) =
⋂︂

Red(CF )

Hence, l f p(CF ) is the least subset of X that is closed under F .
Another basic observation is that for allA ⊆ 2X we have

CF (
⋃︂
A) =

⋃︂

A∈A
CF (A)

In particular, CF is a continuous function on the CCPO 2X. Hence, we can
use Lemma 2.4 to give a proof for Theorem 2.18. Abbreviate l f p(CF ) as A
and define

P de f
= {B ⊆ A | ∀b ∈ B. P(b).}

Then we need to show A ∈ P. By Lemma 2.4, it suffices to show

∅ ∈ P(2.21)

∀B ⊆ 2X. B ⊆ P =⇒
⋃︂
B ∈ P(2.22)

∀B ⊆ X. B ∈ P =⇒ CF (B) ∈ P(2.23)

The first two properties are easy to see. Now consider (2.23). Let B ∈ P.
We need to show CF (B) ∈ P, that is

⋃︂

f∈F
{ f (x) | x ∈ Bar( f ) ∩ dom( f )} ∈ P

By (2.22), it suffices to show that

{ f (x) | x ∈ Bar( f ) ∩ dom( f )} ∈ P
for all f ∈ F . For this, it is sufficient to show

∀ f ∈ F . ∀x ∈ Bar( f ) ∩ dom( f ). P( f (x))

So let f ∈ F and x ∈ Bar( f ) ∩ dom( f ). From B ∈ Pwe can derive

ar( f )⋀︂

i=1

P(xi)
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and by (2.18),
P( f (x)) ∈ B,

follows, as desired. □

In this thesis, I will at several points consider a set A that is defined in some
non-inductive way. Then, I will specify a set F of operators and propose
that A is inductively defined by F . In order to show this, by Remark 2.17,
I only need to show that A is the least set that is closed under F . The
following theorem formalizes this argument.

Theorem 2.19. Let X be a set,F a set of operators on X and A ⊆ X. Furthermore,
let X0 ⊆ X be the least subset of X that is closed under F . In order to show that
A is inductively defined by F , it suffices to show the following two statements.

A is closed under F .(2.24)
A ⊆ X0, where X0 is the least subset of X that is closed under F .(2.25)

Proof. (2.24) is exactly the same as (2.15). (2.25) is a reformulation of
(2.16) with regards to the representation (2.17). Hence, (2.24) and (2.25)
indeed imply together that A is inductively defined by F according to
Definition 2.16. □

2.4 Symbol Sequences

Let E be a finite set. I will refer to E as alphabet and to the elements of E as
letters, or symbols, respectively.

En de f
=

n∏︂

i=1

E

is the set of sequences with items in E and length n. In particular, E0

contains exactly one element ϵ that I also call the empty sequence.

E⋆
de f
=
⋃︂

i≥0

Ei

is the set of all sequences with items in E.
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I will use some abbreviating notations: I will use an interval notation
for ranges of integers. For instance [i, j] ⊆ N is meant to be the set of
non-negative integers which are ≥ i and ≤ j, the notation for open and
half open intervals ]i, j[, [i, j[ and ]i, j] have respective meaning. For a
sequence π ∈ E⋆ of symbols from E, πi and |π| denote the i-th item in π
and the length of π, respectively. Moreover, I define π[i, j], π[i, j[, π]i, j] and
π]i, j[ as the sub-sequence of π that is obtained by taking only the items
of the respective intervals. So, for example, if π = π0 · . . . · πn−1, then
π[i, j] = πi · . . . · π j. π<i is short for π[0..i[, π>i is short for π]i,|π|−1], π≤i and
π≥i are defined analogously. Generally, I consider π′ a sub-sequence of π
if and only if π′ = πI for some interval I ⊆ range(π). Moreover, although
I will mostly treat πI as a sequence of its own right, I consider it to also
implicitly contain the interval I and the sequence π from which it was
extracted. This avoids ambiguities for cases in which there are multiple
occurrences of a sub-sequence in a sequence. For instance, for π = abab,
the sub-sequence ab could be represented as both π[0,1] and π[2,3]. By also
incorporating the interval, I specify which occurrence of ab I mean.
Both π and I will be clear from the context, unless stated otherwise.
For a sub-sequence π′ = πI of π, I denote with rangeπ(π′) := I the range
of indices which need to be selected from π to obtain π′. If I omit the index,
then I mean the full range of π, so range(π) = {0, ...|π| − 1}.
Lastly, Pre f ixes(π) := {π<i | i ∈ range(π)} is the set of all prefixes of π.

Sequences can be concatenated. For π ∈ Em, π′ ∈ En, π′′ de f
= π · π′ is the

sequence of length m + n with π′′<|π| = π and π′′≥|π| = π′. This defines a
binary operation on E⋆, i.e. a function

· : E⋆ × E⋆ → E⋆.

This operation is associative, that is (π1 ·π2) ·π3 = π1 · (π2 ·π3) and has ϵ
as neutral element, that is we have π · ϵ = ϵ ·π = π. Moreover, for every
π ∈ E⋆, if we split range(π) into adjacent intervals I1, . . . , Ik that only have
endpoints in common, then we can write

π = πI1 · . . . ·πIk .
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2.5 Directed Graphs

Specifically, by considering each symbol in a sequence π as a sequence of
its own right, then we can write

π = π0 · . . . ·π|π|−1

2.5 Directed Graphs

The following definitions are standard and can be found in any text book
about graph theory [44, 55].

Definition 2.20. A directed graph is a pair G = (N, E) where N is a set of
nodes and E ⊆ N ×N is a binary relation over N whose elements are called
edges.

Definition 2.21 (edge labels). An edge-labeled directed graph is a tuple G =
(N, E, L, l) such that (N, E) is a directed graph and

l : E→ L

is a function from edges to a finite, non-empty set L of labels. I assume that L
always contains the empty label τ.

For e ∈ E, I will write n e→ n′ if e = (n, n′) or, for labeled edges, if
∃l.(n, l, n′) ∈ E. Given a (labeled) edge n e→ n′, src(e) = n and tgt(e) = n′
denote the source and target of e, respectively.
For a given sequence π ∈ E⋆, π ≠ ϵ, I define start and end as follows:

start(π) = src(π0)(2.26)

end(π) = tgt(π|π|−1)(2.27)

A path is an edge sequence π ∈ E⋆ with the property

∀1 ≤ i ≤ |π| − 1. src(πi) = tgt(πi−1).

We can characterize the paths in G as follows.
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2 Foundations

The set PathsG ⊆ N ×N × E⋆ is inductively defined by the following rules:

(path-empty)
−

(s, s, ϵ) ∈ PathsG

(path-extend)
(s, t,π) ∈ PathsG t e→ t′

(s, t′,π · e) ∈ PathsG

Instead of (s, t,π) ∈ PathsG, I also write π ∈ PathsG(s, t) and refer to PathsG
as function N ×N→ 2E⋆ .
It is easy to see that PathsG relates the pairs (s, t) ∈ N ×N to the paths
that start in s and end in t, as formalized in Lemma 2.22. Occasionally, I
will consider PathsG not only as a relation but also as a subset of E⋆ by
identifying it with

⋃︁
s,t∈N{π ∈ E⋆ | (s, t,π) ∈ PathsG}. It will be clear from

context, which of the two I mean.

Lemma 2.22. For all π ∈ E⋆ and all s, t ∈ N the following two statements are
equivalent:

(s, t,π) ∈ PathsG(1)
π is a path and (s = t∧π = ϵ∨ start(π) = s∧ end(π) = t)(2)

Proof. “ =⇒ ” can be seen by induction on (s, t,π) ∈ PathsG, “⇐= ” can
be shown by induction on the length of sequences in E⋆. □

Lastly, I state three elementary properties of paths that I will make use of
later.

Lemma 2.23. If π ∈ PathsG(s, t) and π′ ∈ PathsG(t, t′), then π · π′ ∈
PathsG(s, t′).

Proof. Fix s, t ∈ N and π ∈ PathsG(s, t). Then we can show

∀π′ ∈ E⋆. ∀t′ ∈ N. π′ ∈ PathsG(t, t′) =⇒ π ·π′ ∈ PathsG(s, t′)

by induction on the length of π′. □

Lemma 2.24. For all π,π′ ∈ E⋆, the following statement holds:
If π · π′ ∈ PathsG(s, t), then there is t′ ∈ N such that π ∈ PathsG(s, t′) and
π′ ∈ PathsG(t′, t).
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2.5 Directed Graphs

Proof. Fix π′ ∈ E⋆ and t ∈ N. Then we can show

∀π ∈ E⋆. ∀s ∈ N. π ·π′ ∈ PathsG(s, t)
=⇒ ∃t′ ∈ N.π ∈ PathsG(s, t′)∧π′ ∈ PathsG(t

′, t)

by induction on the length of π. □

Remark 2.25. If π is a path and i, j ∈ range(π), then π[i, j] is a path.

Proof. This is clear by definition. □
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My independence seems to vanish in the haze.
The Beatles 3

Program Dependence Graphs
for Object-Oriented Programs

This chapter introduces the reader to common terminology and patterns
of thought used in static program analysis. Moreover, it describes sev-
eral techniques that enable Joana to analyze security properties of Java
programs. This prepares the reader for chapter 4, which shows several
applications of the information flow control tool Joana to software security.
This chapter plays another important role: It describes two fundamental
and widely used static program analysis techniques, namely data-flow
analysis on control-flow graphs and slicing on program dependence graphs.
These two techniques, which were developed more or less independently,
face similar issues that have been solved with analogous approaches. In
later chapters, I will present a common generalization of data-flow analysis
and slicing that combines the strengths of both techniques.
The following sections are structured as follows. In section 3.1, I give an
overview of basic aspects of static program analysis and introduce several
central concepts that play important roles throughout this chapter. After
that, section 3.2 and section 3.3 present data-flow analysis on control-flow
graphs and slicing on program dependence graphs, respectively.
Finally, in section 3.4 I describe Joana and show how it can be used to
verify non-interference for Java programs. In this last section, I put an
emphasis on the explanation of several techniques that are particularly
important for the analysis of the programming language features of Java
and also play a role in chapter 4.
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3 Program Dependence Graphs for Object-Oriented Programs

3.1 Principles of Static Program Analysis

Program Analysis is concerned with techniques that allow to derive
information about a given program and its properties. Roughly, program
analysis techniques can be grouped into dynamic techniques and static
techniques. Dynamic techniques generate information while executing the
program [75], while static techniques aim to analyze a program without
executing it [130, 76].
Another criterion that can be used to classify program analyses is whether
they are automatic or not. As the name suggests, an automatic program
analysis is usually another program that takes a given program as input,
performs some algorithm on it and outputs its analysis result. In contrast,
non-automatic techniques are either fully manual or interactive, that is they
generally employ automatic techniques but query the user if they cannot
complete their task in an automatic fashion.
In this thesis, I focus on automatic and static program analysis techniques
such as data-flow analysis [101] and static program slicing [165, 166, 58]. In
the following, I assume that all analyses are static and automatic, unless
explicitly stated otherwise. Furthermore, I assume that the programs
under analysis are written in a Turing-complete language.
Two important concepts in program analysis are soundness and precision4.
Before I explain these two concepts, I first introduce some formalisms: Let
ϕ be a property of programs, that is a given program P either can satisfy
ϕ, written P |= ϕ, or not, written P ̸|= ϕ. The property ϕ can for example
make a statement about P’s semantics, i.e. about how P transforms states
or can state that P is secure in some sense.
Now let A be a program analysis whose goal is to analyze programs
with respect to ϕ. Formally, we can imagine A as a function that takes
a program P as input and outputs either “P satisfies ϕ” or “P does not
satisfy ϕ”. We write the former as P ⊢A ϕ and the latter as P ⊬A ϕ.
Note that the result ofA a priori has nothing to do with whetherP actually
satisfies ϕ or not. It is merely a consequence of the formal reasoning
performed byA.
The notions of soundness and precision establish a connection between |=
and ⊢A:

4In the area of formal systems, precision is also called completeness.
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1. A is said to be sound with respect to ϕ if

P ⊢A ϕ =⇒ P |= ϕ.

That is, ifA concludes that P satisfies ϕ, then this is indeed the case.

2. A is said to be complete with respect to ϕ if

P |= ϕ =⇒ P ⊢A ϕ.

That is, if P has property ϕ, thenA is able to derive that.

IfA is sound, then it can give the guarantee that a program actually satisfies
a property. If it is additionally complete, then it is actually able to decide ϕ.
Unfortunately, there can be no static automatic analysis for a non-trivial
property of programs written in a Turing-complete programming language
that is both sound and complete [142]. Hence, analysis designers must
make compromises, i.e. analyses usually are usually not sound or not
complete (or neither of the two).
In the context of static program analysis, completeness is commonly
also referred to as precision. Throughout this thesis, I use both terms
interchangeably.
It is common to focus on soundness and sacrifice precision, especially in
security analyses where one aims to give strong guarantees for programs.
However, if an analysis is not precise, then it may raise false alarms, e.g.
report that a program is insecure although it is not. This can undermine
the credibility of an analysis.
Hence, another goal of program analysts is to minimize false alarms, i.e.
make their analyses as precise as possible. Note that, although precision in
theory is a binary property that can be either true or false, in this thesis I
use it as a property that has multiple degrees, so that it can also be used
comparatively or even quantified. Given two analyses A1 and A2, one
can say thatA1 is at least as precise asA2 if

{P | P |= ϕ∧P ⊬A1 ϕ} ⊆ {P | P |= ϕ∧P ⊬A2 ϕ}.
This defines a partial order on the set of analyses that can be used to
compare different analyses.
There are different trade-offs that can be made with respect to analysis
precision. In the following, I give an overview of a selection of them
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3 Program Dependence Graphs for Object-Oriented Programs

int z = input();
x = 2;
if (z * z + z + 1 == 0) {
x = 3;

}

(a)

int z = input();
x = 2;
if (z * z - 9 == 0) {

x = 3;
}

(b)

Figure 3.1: Example for the impact of value-sensitivity

that play some role in this thesis. For illustration, I will use the example
property upon program termination, variable x always has the value 2 that I
write as γx.
One trade-off static analyses can make is how precisely they handle values,
for example numbers and algebraic identities.
Consider the two programs in Figure 3.1. Since the quadratic function
z2 + z + 1 does not have any integral zeros, it is relatively easy to see that x
is always 2 upon termination of the program in Figure 3.1a, hence γx holds
for it. However, γx is not satisfied by the program in Figure 3.1b, since x
is set to 3 if z = 3. A program analysis that is sound with respect to γx
but does not reason about algebraic identities will fail to verify γx for the
program on the left. There are analysis techniques that can deal with such
challenges[128], but the techniques that I consider in this thesis usually do
not reason about values beyond the use of limited constant propagation
[126].
Another aspect of analysis precision is flow-sensitivity, a property that refers
to the ability of an analysis to take the order of statements into account.
As an example, it is clearly the case that the program P1 in Figure 3.2a
satisfies γx, while program P2 in Figure 3.2b does not. Now consider an
analysisA that is sound with respect to γx. Then it must be the case that
P2 ⊬A γx, because P2 ̸|= γx. Now, ifA is flow-insensitive, then it usually
yields the same result for P1, as they only differ in the order of statements.
Hence, a flow-insensitive analysis is usually not able to verify γx for P1.
In contrast, it may be the case that a flow-sensitive analysis may consider
P1 and P2 as different programs.
Context-sensitive program analyses consider not only the program state-
ments, but also take their execution context into account. Examples for the
execution context of a statement include the site from which a procedure
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3.2 Data-Flow Analysis on Control-Flow Graphs

x = 3
x = 2

(a)

x = 2
x = 3

(b)

void main() {
y = f(3);
x = f(2);

}
void f(int a) {
return a;

}

(c)

void main() {
x = f(2);
x = f(3);

}
void f(int a) {
return a;

}

(d)

Figure 3.2: Illustration of different sensitivities: Programs a and b cannot be
distinguished by a flow-insensitive analysis, programs c and d cannot
be distinguished by a context-insensitive analysis

was called (in programs with multiple procedures), or the object on which
a method is called (in object-oriented programs).
For example, it clearly can be seen that the program in Figure 3.2c satisfies
γx, while the program in Figure 3.2d does not. However, a context-
insensitive program analysis that is sound with respect to γx cannot verify
Figure 3.2c: It has to “merge” the calls in lines 2 and 3 and deem it possible
that f may also return 3, otherwise it would not be able to reject the program
in Figure 3.2d.

3.2 Data-Flow Analysis on Control-Flow
Graphs

In this section, I introduce control-flow graphs, a classical data structure
of static analysis and data-flow analysis, which is an important, generic
operation on control-flow graphs that forms the essence of many static
program analyses.
This section is structured as follows: First, I introduce control-flow graphs
in subsection 3.2.1. After that, I explain how data-flow analysis works in
subsection 3.2.2.
The two subsections are structured analogously: First, they consider
programs without procedures and then show how the respective formalism
can be extended to the interprocedural case.
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3 Program Dependence Graphs for Object-Oriented Programs

1 read(n)
2 if (n <= 1) {
3 print(n)
4 } else {
5 a = 0
6 b = 1
7 c = a + b
8 i = 0
9 while (i < n) {

10 a = b
11 b = c
12 c = a + b
13 i = i + 1
14 }
15 print(c)
16 }

entry

1: read(n)

2: n <= 1 5: a = 0

3: print(n) 6: b = 1

7: c = a + b

8: i = 0

15: print(c) 9: i < n 10: a = b

11: b = c

12: c = a + b

exit 13: i = i + 1

yes

no

yesno

Figure 3.3: An example program and its control-flow graph

3.2.1 Control-Flow Graphs

Control-flow graphs are a classical program representation on which many
program analyses operate. A control-flow graph of a given program P
is a directed graph that represents the possible control-flow between P’s
statements and predicates.

3.2.1.1 Intraprocedural Control-Flow Graphs

An example of a simple program and its control-flow graph can be seen in
Figure 3.3. Its nodes represent the program’s statements and predicates.
Directed edges connect nodes with those nodes which may immediately
follow them in an execution.
There are two kinds of control-flow. The control-flow from line 1 to line 2
is unconditional: After the read operation has been executed, control is
always transferred to the following if statement.
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3.2 Data-Flow Analysis on Control-Flow Graphs

The control-flow from line 2 to line 5, however, is conditional. Line 5 is
only executed if the predicate in line 2 is evaluated to true. If it is evaluated
to false, line 3 is executed instead.
It is also a common assumption that control-flow graphs have a unique
entry node from which all nodes in the control-flow graph are reachable
and a unique exit node which can be reached by all nodes.
Next, I introduce control-flow graphs more formally.

Definition 3.1 (control-flow graph, [65, based on Definition 2.1]). Given
a procedure (or procedure-less program) P, a control-flow graph (CFG) is an
edge-labeled directed graph with two distinguished nodes s, e ∈ N, written
G = (N, E, s, e, L, l), with the following properties:

• N is the set of nodes and each statement or predicate in p is represented by a
node n ∈ N,

• E is the set of edges representing the control flow between nodes,

• s, also called start or entry node, has no incoming edges,

• e, also called exit node, has no outgoing edges,

• L is a set of labels and l : E → L is a function that maps each edge to a
label.

The labels are used to model conditional flows. As they do not play an
important role in this thesis, I will mostly ignore them in the following.
For intraprocedural graphs that are considered in isolation, a classical
assumption is that for all n ∈ N there is a path which starts at s and ends at
n.
In the literature there is some variation in the concrete representation
of control-flow graphs. Some authors [12, 106, 130] use a node-oriented
notation, in which the nodes of the control-flow graph represent the
statements, while others [46, 153, 127] use an edge-oriented notation, in
which the edges are annotated with the statements. Also, there are
some differences among the node-oriented notations: some of them use a
different node for each statement, while others use nodes for each basic
block, which are linear chains of statements.
I use a node-oriented notation of control-flow graphs in this thesis.
Moreover, I will only consider basic blocks with one statement, unless I
deviate from this convention explicitly.
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3.2.1.2 Interprocedural Control-Flow Graphs

For programs with multiple procedures, control-flow graphs have to be
adapted in order to model the procedure calls properly. Again, there
are several notions in the literature, which differ slightly. In most of
them, interprocedural control-flow graphs are families of intraprocedural
control-flow graphs for each procedure. They mainly differ in the exact
way in which they model calls and whether the procedural control-flow
graphs are connected or not.
My definition follows notations used by De Sutter et al. [51] and Hammer
[86].

Definition 3.2. Let Proc be a finite set of procedures with main ∈ P. An
interprocedural control-flow graph (ICFG) is a quadruple

G = ((Gp)p∈Proc, Ecall, Eret, Φ)

• For every p ∈ Proc, Gp = (Np, Ep, sp, ep) is an intraprocedural control-flow
graph. For different procedures p, p′ ∈ Proc, the corresponding control-flow
graphs Gp and Gp′ are disjoint: Np ∩Np′ = ∅ and Ep ∩ Ep′ = ∅. If
e ∈ Ep for some p ∈ Proc, e is called intraprocedural edge. The set of
intraprocedural edges is denoted by Eintra.

• Ecall, Eret ⊆ ⋃︁p,p′ Np ×Np′ – The elements of Ecall are called call edges
and the element of Eret are called return edges. There is a bijective function
Φ : Ecall → Eret which maps call edges to their corresponding return edges
(and vice versa). This function is also called correspondence function.

• If n → n′ ∈ Ecall, then there are p, q ∈ Proc such that n ∈ Np \ {ep} and
n′ = sq. For ecall ∈ Ecall, I call src(e) a call node.

• If n → n′ ∈ Eret, then there are p, q ∈ Proc such that n = ep and
n′ ∈ Nq \ {eq}. For eret ∈ Eret, I call tgt(e) a return node.

• Call nodes have, apart from call edges, no further outgoing edges.

• Return nodes have, apart from return edges, no further incoming edges.

Figure 3.4 shows how procedure calls can be modeled: Each call is
represented by two nodes, one for the call itself and one for the point just
after the call to which the called procedure returns. I call this point the

46



3.2 Data-Flow Analysis on Control-Flow Graphs

entry p

. . . entry q

call q . . .

return from q exit q

. . .

call ed
ge e cal

l

return edge eret

p

q

Φ

call
site

return
site

Figure 3.4: Additional control-flow structure for procedure calls

return site. A call edge ecall connects the call node with the entry node of the
callee and a return edge eret connects the exit node of the callee to the return
site. These two edges correspond to each other, i.e. Φ(ecall) = eret.

3.2.2 Data-Flow Analysis

In this subsection, I introduce data-flow analysis, a classical static program
analysis technique. My presentation roughly follows textbook literature
[152, 130] and classic articles [102, 82, 101, 46] on the topic.
Roughly, data-flow analysis gathers information about the possible exe-
cutions of a program. This information can then be used in subsequent
analyses and program transformations.
Before I introduce data-flow analysis in the following, I want to consider
the paths of control-flow graphs more closely.
A usual assumption about control-flow graphs, which I also make in this
thesis, is that they are sound. This means that, given the control-flow
graph G of a programP, every execution ofP is represented by a path in G.
Note however, that this representation is not always exact. For example,
a common simplifying assumption is that all outgoing edges of a given
node might be taken by some program execution, regardless of the path
that an execution had taken before.
An example of what this means can be seen in Figure 3.5.
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Assuming that statement S does not change the outcome of b it is clear
that no program execution can take the path 1→ 2→ 6→ 7. Since 1→ 2
is only traversed if b is evaluated to true at 1 and S does not change the
outcome of b, any execution that traverses 1 → 2 must traverse 6 → 9
after that. Analyses that take into account the histories of paths are also
called path-sensitive. Several publications on path-sensitive analysis can be
found in the literature [89, 54, 35, 49]. In this thesis, I will only consider
path-insensitive analyses.

3.2.2.1 Intraprocedural Data-Flow Analysis

In the following, I concentrate on intraprocedural data-flow analyses that
only consider a single procedure. The notions that I introduce however are
also useful for interprocedural data-flow analysis, which I will describe in
subsubsection 3.2.2.2.
A data-flow framework is a pair (L, F) that specifies the general structure
of the data-flow analysis to be performed. The set L describes how
information look like, while F is a set of functions on L which transform
this information.
A data-flow analysis associates each node n in a given control-flow graph
with some property of the control-flow paths from the graphs start node
to n.

1 if (b) {
2 S
3 } else {
4 T
5 }
6 if (!b) {
7 U
8 } else {
9 V

10 }

(a)

1: b

2: S 4: T

6: !b

7: U 9: V

yes no

yes no

(b)

Figure 3.5: A code snippet and its control-flow graph
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3.2 Data-Flow Analysis on Control-Flow Graphs

The elements of L are used to represent properties like “a is definitely 42”,
“the value of b is unknown” or “variable c has the value assigned to it in
line 5”. Such properties can be partially ordered with respect to the amount
of information they provide. For example, if x represents the property
“a is definitely 42” and y represents the property “a has an unknown
value”, then x can be considered to provide more information than y,
which is formally expressed by x ≤ y. Because we want to propagate
information along the paths of a given control-flow graph, we need a way
to combine values coming from different paths. The value resulting from
a combination of x, y ∈ L should provide at least as much information as
the combined values but can provide no more information, in order to be
safe. So a good candidate for such a combination is the least upper bound or
joins of x and y, In order to have a well-defined structure it is customary to
require L to have least upper bounds for arbitrary subsets A ⊆ L. In other
words, L is assumed to be a complete lattice (see page 15).
The transfer functions are abstractions of the program’s statements’ effect
on properties5. They are assumed to be information-preserving, that is,
if x provides more information than y, then the same should hold for
the transformed values. Formally, this means that transfer functions are
monotone. Additionally, it is customary to require that F enjoys some closure
properties: Usually, one assumes that F contains the identity function and
is closed under composition and arbitrary joins. Since the set of monotone
functions L → L has all these properties, F can in theory be assumed to
contain all monotone functions. In practice however, this set is usually “too
large” in the sense that it contains more functions than actually needed
for the given data-flow analysis. Hence, one aims to find more precise
descriptions of F that allow for effective or even efficient representations.
Classically, a data-flow framework is thought to be independent of the
control-flow graphs they work on. To actually perform a data-flow
analysis on a given control-flow graph, a data-flow framework needs to be
instantiated.
Hence, a data-flow instance is a quintuple (L, F, G,ρ, init) that adds to a
data-flow framework (L, F) a control-flow graph G = (N, E, s, e) connects
the two using (a) an initial information init ∈ L that represents the properties

5The area of abstract interpretation is concerned with the systematic derivation of transfer
functions from program semantics [46].
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which hold at G’s entry node s and (b) a function ρ : E→ F. This function
associates each edge6 e with a transfer function ρ(e) that describes the
effect of the statement src(e) on the properties in L and init ∈ L. Instead of
ρ(e), I also write fe.
By induction, transfer functions can be extended to the paths of G:

fϵ = id
fπ·e = fe ◦ fπ

Due to the closure properties of F, all fπ are elements of F.
The functions fπ describe how properties are transformed along control-
flow paths. We are interested in the properties which hold at each node,
no matter which path was taken. For this purpose, we take the least upper
bound of all fπ and apply this function the initial information init. The
result of this operation is also called the merge-over-all paths solution

MOP(n) =
⨆︂

π∈PathsG(n)

fπ(init),(3.1)

where PathsG(n) is the set of paths in G from s to n.
The function MOP is in some sense the ideal solution of the given data-
flow analysis problem, so the goal of data-flow analysis is to compute
MOP. Note that MOP cannot be computed directly using (3.1), since (3.1)
potentially merges over infinitely many paths. Also, there are data-flow
instances for which MOP is not computable at all [101]. However, there
are sufficiently interesting and useful data-flow frameworks for which it is
possible to compute a safe over-approximation of the corresponding MOP

6It may seem odd that in the formalism I use in this thesis, statements are represented by
nodes but, in contrast, transfer functions are associated with edges. This “hybrid” variant of
data-flow analyses, however, can also be found in the literature [82, 136], just like the “pure”
variants that either associate both statements and transfer functions with nodes [102, 100, 10,
106] or edges [46, 153], respectively. All three variants appear to be equivalent. My decision
is mostly for pragmatic reasons: Although I prefer to associate transfer functions with edges,
I want to describe control-flow graphs and program dependence graphs uniformly and
acknowledge that in previous work [58, 93], program dependence graphs are derived from
control-flow graphs in which the nodes represent statements. Hence I inherit node-oriented
control-flow graphs from these earlier presentations.
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solution. A safe over-approximation is a function A : N→ L that has the
property

∀n ∈ N. A(n) ≥MOP(n).(3.2)

This property is equivalent to

∀n ∈ N. ∀π ∈ PathsG(n). A(n) ≥ fπ(init).(3.3)

Property (3.3) says that for every n ∈ N and every π ∈ PathsG(n), A(n)
can provide no more information than fπ(init). This is safe in the sense
that no piece of information coming from a path ending in n is left out of
A(n). A program optimization (or any other program transformation) that
solely relies on the information provided by A never changes a program’s
behavior, provided that the transfer functions make sure that the program
semantics is abstracted faithfully.
For instance, suppose that a compiler aims to identify variables that always
have the same values in order to substitute read accesses by the constant
value. A possible data-flow analysis for this would then propagate along
a control-flow path π whether the value of variable x stays the same on
π (and the value itself, if applicable). Then A(n) says something about
whether x always has the same value on any control-flow path ending in
n and provides this value, if applicable. But then A(n) has to integrate
the information of all paths ending in n. Otherwise, A(n) could express
that x’s value is always the same up until n but ignores some of the paths
where the value of x is indeed different, which means that A(n) makes an
unsafely wrong statement about the program under analysis. Clearly, the
optimization step that substitutes accesses to x with the value computed
by A would result in a program that differs in behavior from the original
program.
A trivial safe over-approximation of MOP is the function which returns ⊤
for every n. This is of course safe because ⊤ provides no information at
all. For our example, A(n) = ⊤would mean that variable x may assume
different values during program execution, even if this is not the case.
Clearly, this may also be a wrong statement about the program under
analysis but this time it can be considered safe because A(n) provides no
information that can be exploited by the subsequent optimization step.

51



3 Program Dependence Graphs for Object-Oriented Programs

This leads to a notion of precision specialized to data-flow analysis: For
two safe over-approximations A and B, A is at least as precise as B if
∀n ∈ N. A(n) ≤ B(n). In other words, for every n ∈ N, A needs to provide
at least as much information as B.
In general, one aims to obtain a safe over-approximation for MOP which
provides as much information as possible. One way of obtaining such a
solution is to solve the following system of monotone constraints:

Constraint System 3.1.

A(s) ≥ init

m e→ n =⇒ A(n) ≥ fe(A(m))

The idea of this system is to build up MOP “edge by edge”.
By grouping together constraints with the same left-hand side, we can
transform this constraint system to a system with one constraint per node:

A(n) ≥ Fn((A(m))m∈N).

Each Fn : L|N| → L is monotone.
The whole constraint system can be described by one constraint

A ≥ F(A)(3.4)

where

F : (N→ L)→ (N→ L)(3.5)
F = (Fn)n∈N(3.6)

Fn(A) =
⨆︂

m e→n

fe(A(m))(3.7)

Since L is a complete lattice, N → L is, too. Moreover, F : (N → L) →
(N→ L) is monotone.
In order to solve the constraint system, we need to find a function A : N→ L
that satisfies (3.4).
The theory of complete lattices tells us that this is always possible: The-
orem 2.1 implies that (3.4) has a unique least solution, that is a solution A0
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n1

n2

n3 n4

f1

f3

f4

MOP(n4) = f3( f1(init))⊔ f3( f2(init))

MFP(n4) = f3( f1(init)⊔ f3( f2(init)))

Figure 3.6: Illustration of the effect of non-distributivity on the difference between
MOP and MFP, based on Constraint System 3.1

such that A0 ≤ A for every solution A of (3.4). So, A0 is the most precise
solution of (3.4). In the context of data-flow analysis, A0 is also referred to
as Minimal Fixpoint, or MFP for short.
Furthermore, it can be shown that A0 is a safe over-approximation of MOP:

A0 ≥MOP.

Moreover, Theorem 2.13 states that A0 can be computed using Algorithm 3,
provided that L satisfies the ascending chain condition (see page 16).
Note however, that MFP in general does not coincide with MOP. This is
only the case if all the transfer functions enjoy a property that is called
distributivity: A function f : L→ L is distributive, if

∀A ⊆ L. f (
⨆︂

A) =
⨆︂

f (A)

Whereas MOP first applies all transfer functions along the different paths,
MFP applies joins at each node, for results along the incoming edges. In
non-distributive instances, it is impossible to “pull joins out of” functions,
which prevents MFP from coinciding with MOP. This is illustrated in
Figure 3.6.
As an example of intraprocedural data-flow analysis, I want to discuss
reaching definitions. This is a standard data-flow analysis applied in
compilers and can also be used to compute data dependencies (see para-
graph 3.3.2.1.1).
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A(entry) ⊇ ∅
A(1) ⊇ A(entry)
A(2) ⊇ (A(1) − {1})∪ {1}
A(3) ⊇ A(2)
A(5) ⊇ A(2)
A(6) ⊇ (A(5) − {5, 10})∪ {5}
A(7) ⊇ (A(6) − {6, 11})∪ {6}
A(8) ⊇ (A(7) − {7, 12})∪ {7}
A(9) ⊇ (A(8) − {8, 13})∪ {8}
A(9) ⊇ (A(13) − {8, 13})∪ {13}
A(10) ⊇ A(9)
A(11) ⊇ (A(10) − {5, 10})∪ {10}
A(12) ⊇ (A(11) − {6, 11})∪ {11}
A(13) ⊇ (A(12) − {7, 12})∪ {12}
A(15) ⊇ A(9)
A(exit) ⊇ A(3)
A(exit) ⊇ A(15)

node value
entry ∅
1 {1}
2 {1}
3 {1}
5 {1}
6 {1, 5}
7 {1, 5, 6}
8 {1, 5, 6, 7}
9 {1, 5, 6, 7, 8, 10, 11, 12, 13}
10 {1, 5, 6, 7, 8, 10, 11, 12, 13}
11 {1, 6, 7, 8, 10, 11, 12, 13}
12 {1, 7, 8, 10, 11, 12, 13}
13 {1, 8, 10, 11, 12, 13}
15 {1, 5, 6, 7, 8, 10, 11, 12, 13}
exit {1, 5, 6, 7, 8, 10, 11, 12, 13}

Figure 3.7: The constraint system and its least solution for the reaching definition
analysis applied to the example from Figure 3.3

Given a control-flow graph G = (N, E, s, e), a definition of a variable x
is a node n ∈ N which represents an assignment statement x := e. Let
De f (x) ⊆ N be the definitions of variable x and assume for simplicity that
each statement can define at most one variable. A definition n may reach a
node n′ if there is a path from n to n′ on which there is (apart from n) no
further definition of the variable defined by n.
For n ∈ N, the reaching definitions of n are the definitions which may reach
n.
The data-flow framework for reaching definitions consists of (2D, F) where
D ⊆ N is the set of definitions in N, partially ordered by ⊆. F consists
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of functions of the form λA. (A − K) ∪ G where K, G ⊆ D are sets7 of
definitions. It can easily be verified that F contains the identity function
and is closed under composition and joins.
Let m e→ n be an edge in G. Then m’s effect on the reaching definitions
can be described as follows: If m is not a definition, then every definition
which reaches m also reaches n. Therefore, all definitions reaching m are
propagated to n. If m is a definition of variable x, then every definition
of some variable x′ ≠ x is propagated to n, but since m (re-)defines x,
all previously reaching definitions of x are deleted and replaced by m.
Formally, the edge transfer functions fe are defined by

fe =

⎧⎪⎪⎨⎪⎪⎩
λA. A if m does not define any variable
λA. (A−De f (x))∪ {m} if m is a definition of x

.

Since initially no variable is defined, the initial information init is ∅.
For the example program from Figure 3.3, the monotone constraint system
resulting from the corresponding data-flow instance and its least solution
is shown in Figure 3.7.

3.2.2.2 Interprocedural Data-Flow Analysis

Like intraprocedural data-flow analysis operates on intraprocedural
control-flow graphs, interprocedural data-flow analysis operates on inter-
procedural control-flow graphs.

3.2.2.2.1 Context Problem Interprocedural control-flow graphs intro-
duce a source of imprecision, which I already discussed in section 3.1. It is
caused by a main benefit of having procedures in the first place, namely
by the fact that procedures can be called from multiple call sites.
As an example, consider the program in Figure 3.8a. It contains a function
f that is called from two call sites. Its control-flow graph is shown in
Figure 3.8b. The graph contains for example the path π1 : 1 → 2 →
7→ 8→ 9→ 3, which corresponds to the normal execution of the given

7Data-flow analyses where the transfer functions can be expressed in this way are also
called gen/kill or bit vector analyses.
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void main(int x, int y) {
a = f(x);
b = f(y);

}
int f(int z) {
return z;

}

(a)

entry entry

a = f(x) return z

ret exit

b = f(y)

ret

exit

1

2

3

4

5

6

7

8

9

main f

(b)

Figure 3.8: A small program with its interprocedural control-flow graph with
Φ(2→ 7) = 9→ 3 and Φ(4→ 7) = 9→ 5

program. However, another path is π2 : 1 → 2 → 7 → 8 → 9 → 5. This
path does not correspond to any execution because it does not respect the
semantics of procedure calls: When a procedure is called, the site from
which the call is performed is pushed to the call stack. Once the procedure
is finished, the call is popped off the call stack and execution continues
from that call site. The path π2 obviously does not respect this semantics:
No execution that enters f through 2→ 7 leaves it through 9→ 5.
Relating calls and returns to one another is the main task of the corres-
pondence function Φ. In the example, Φ is given by Φ(2 → 7) = 9 → 3
and Φ(4→ 7) = 9→ 5.
This leads to the notion of interprocedurally valid paths. Intuitively, an
interprocedurally valid path is a path that respects the semantics of
procedure calls. Validness can be defined with the help of Φ: We say that
a path π is valid if Φ(ecall) = eret for all pairs (ecall, eret) on path such that
eret is the return that finishes the procedure call performed by ecall.
Consider the path π1 in the example. The return edge 9 → 3 finishes
the call that is started by 2 → 7 and the return edge 9 → 5 finishes the
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call that is started by 4 → 7. According to the definition of Φ, we have
Φ(2→ 7) = 9→ 3 and Φ(4→ 7) = 9→ 5, hence π1 is valid.
By contrast, π2 is not valid, since 9→ 5 finishes the call that is started by
2→ 7 but we have Φ(2→ 7) ≠ 9→ 5.
In chapter 5, I will consider valid paths in a more general context. In
particular, I will make precise what I mean by “eret finishes the call that is
started by ecall”.

3.2.2.2.2 Two Approaches for tackling the Context Problem
From the previous considerations, it is clear that if we perform data-flow
analysis on interprocedural control-flow graphs like we do on intrapro-
cedural control-flow graphs, the result is overly imprecise: Even if MFP
coincides with MOP, the result is still imprecise since MOP merges over too
many paths. To increase precision, we can consider a version of MOP that
ignores paths that are definitely invalid. To define that, we let VP(n) be the
set of valid paths that start in smain and end in n. Now let (L, F, G,ρ, init)
be a data-flow instance.
Then we can define the merge-over-all-valid-paths MOVP as

MOVP(n)
de f
=

⨆︂

π∈VP(n)

fπ(init)(3.8)

Sharir and Pnueli [154] presented two approaches to compute MOVP and
showed that these two approaches compute under certain assumptions
the same solution. In the following two sub-paragraphs, I give a short
summary on both of these approaches. I will also consider both approaches
in chapter 6 and chapter 7 in a more general setting and in more detail.

Call-String Approach The idea of the call-string approach is to ex-
tend the constraint system that describes MOP by an additional stack
component. Every time a call is encountered, this call is pushed onto the
stack and each time a return is encountered, it can be checked whether
it corresponds to the call at the top of the stack. Constraints are only
generated for corresponding call-return pairs.
More formally, the constraint system describes a function

A : N × S→ L
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where S = E⋆call is the set of all call stacks. The intraprocedural constraints
naturally extend the constraint system given for intraprocedural data-flow
analysis. Constraints for call and return edges not only apply the transfer
functions but also manipulate the call stack according to procedure calling
semantics, using the usual stack operations push, pop and top, with the
properties

push(e, σ) = e · σ
pop(e · σ) = σ

top(e · σ) = e

The empty stack is denoted by ϵ. The full constraint system CStack looks as
follows:

Constraint System 3.2.

A(s, ϵ) ≥ init

m e→ n∧ e ∈ Eintra =⇒ A(n, σ) ≥ fe(A(m, σ))

m e→ n∧ e ∈ Ecall =⇒ A(n, push(e, σ)) ≥ fe(A(m, σ))

m e→ n∧ e ∈ Eret ∧ σ ≠ ϵ
∧Φ(top(σ)) = e

=⇒ A(n, pop(σ)) ≥ fe(A(m, σ))

Note the additional precondition for the return constraints: No constraint
is generated if Φ(top(σ)) ≠ e. This ensures that the resulting function A
does not mix up calling contexts.
Like in the intraprocedural case, the above defined constraint system CStack
has a least solution A0.
To ensure comparability with MOVP, we define

Ã0(n)
de f
=
⨆︂

σ∈S
A0(n, σ).

Then it turns out that Ã0 ≥ MOVP and that Ã0 = MOVP under some
additional assumptions. However, there is one hitch: Unlike the intrapro-
cedural constraint system, Constraint System 3.2 cannot be computed by
the usual method, particularly if the program contains recursive calls.
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c

r

s

t

ecall

eret

fp ≥ fπ1
fp ≥ fπ2

π1 π2

(a)

A(r) ≥ feret( fp( fecall(A(c))))(1)

A(s) ≥ fecall(A(c))(2)

(b)

Figure 3.9: Sketch of the idea of the functional approach

The reason simply is that Constraint System 3.2 is not guaranteed to be
finite.
The usual solution is to restrict the depth of the stacks. So instead
of computing a function in N × E⋆call → L, we compute a function in

N × E≤k
call → L and an adjusted push function

pushk(e, σ) = (e · σ)≤k

that discards the lowermost item on the stack σ if σ already has k elements.
By using pushk instead of push, Constraint System 3.2 is always finite, its

least solution A(k)
0 can be computed using the usual method and still has

the property Ã0 ≥MOVP. However, note that discarding parts of the stack
does not yield a fully context-sensitive analysis.

Functional Approach The functional approach uses the following idea,
which is illustrated in Figure 3.9: Suppose that we have for each procedure
p a transfer function fp that faithfully describes a complete traversal of a
procedure p’s control-flow graph. Then we can obtain a context-sensitive
constraint system as follows: For normal intra-procedural edges, we use
the usual constraints. For each call site c of p we can use fp to describe the
effect of a call of f at c with a constraint like (1) in Figure 3.9b.
Additionally, a constraint like (2) ensures that the data-flow information is
propagated from each call site to the entry of p.
Now, because of constraint (1), no constraint of the form

A(r) ≥ feret(A(t))
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is needed to propagate data-flow information back to the return site r. Such
a constraint would introduce the context problem because the data-flow
information at t subsumes all paths to t. This includes in particular the
paths which come from call sites other than c. Information along these
paths is not supposed to be propagated to r. Constraint (1) avoids this
problem by propagating the information at c through the whole procedure
p.
It remains to solve the sub-problem of providing the fp. The idea is to
describe them by a monotone constraint system, just like the final solution
of the overall data-flow analysis. Note however that the fp do not represent
single data-flow information but describe how data-flow information is
transformed. This means that the fp do not live in L but in F.
As I already mentioned above, any fp should faithfully describe a complete
traversal of p. More formally, this means that the fp incorporate the effects
of traversing a certain class of paths from p’s entry to its p’s exit, the
so-called same-level paths. A same-level path is a path that leaves every
called procedure at the right call site and, additionally, ends in the same
procedure in which it started. Hence a same-level path from p’s entry to
p’s exit can be considered a complete traversal of p, as it may also occur in
a real execution.
The sets SL(sp, t) of same-level paths from sp to t ∈ Np are defined induct-
ively for procedure entries sp and nodes t ∈ Np of the same procedure. In
order to avoid that call sites are mixed up, only corresponding call and
return edges can be appended.

ϵ ∈ SL(sp, sp)(3.9)

π ∈ SL(sp, t)∧ t
eintra→ ep′ =⇒ π · eintra ∈ SL(sp, t′)(3.10)

π ∈ SL(sp, t)∧ t
ecall→ sp′ ∧π′ ∈ SL(sp′ , ep′)∧ ep′

Φ(ecall)→ t′′

=⇒ π · ecall ·π′ ·Φ(ecall) ∈ SL(sp, t′′)
(3.11)

Using the same-level paths, we can now specify what we expect of the fp:
The fp shall incorporate the effects of traversing any same-level path:

fp ≥
⨆︂

π∈SL(sp,ep)

fπ
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The constraint system for the fp can defined along the same-level paths as
follows:

Constraint System 3.3.

X(sp, sp) ≥ id(3.12)

t e→ t′ ∧ e ∈ Eintra =⇒ X(sp, t′) ≥ fe ◦X(sp, t)(3.13)

t
ecall→ sp′

∧ecall ∈ Ecall

∧ep′
Φ(ecall)→ t′

=⇒ X(sp, t′)≥ fΦ(ecall)
◦X(s′p, ep′)◦ fecall◦X(sp, t)(3.14)

Both Constraint System 3.3 and the one sketched in Figure 3.9b are finite,
even in the presence of recursion. This means that, if the complete lattice
N×N→ F satisfies the ascending chain condition, it can be solved by Algo-
rithm 3. Note however that this additional condition restricts the practical
applicability of the functional approach in comparison to the restricted
call-string approach: It can only be applied to data-flow frameworks in
which not only the complete lattice L but also the function space F satisfies
the ascending chain condition. However, if the functional approach is
applicable, it obtains a fully context-sensitive solution.

3.3 Slicing on Program Dependence Graphs

In this section, I introduce slicing, another important static program analysis
technique, and program dependence graphs, a data-structure that reduces
slicing to graph reachability.
This section is organized as follows: First, I explain the general idea
of slicing in subsection 3.3.1. In subsection 3.3.2, I introduce program
dependence graphs, first for the intraprocedural case and subsequently for
the interprocedural case. Finally, in subsection 3.3.3 I show how program
slicing can be performed on program dependence graphs. Specifically, I
consider an approach to obtain context-sensitive slices on interprocedural
program dependence graphs.
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3.3.1 Slicing

Program slicing was introduced by Weiser [165] as a technique for focusing
on specific parts of a program. For a given program P, a slice is defined
with respect to a slicing criterion which consists of a program location l
and a variable x. Given such a slicing criterion c = (x, l), a valid slice
with respect to c is any sub-program P′ of P which produces the same
behaviour with respect to c as P. This means that if P and P′ are started in
the same state and both terminate, then P and P′ cannot be distinguished
by just looking at the values of x at each respective execution of location l.
It is desirable to have an automatic procedure which can always find
slices of the smallest possible size. Due to decidability reasons, such a
procedure cannot exist, but Weiser [165] describes a procedure to obtain a
valid program slice that is fairly small. The idea is roughly to traverse the
program’s control-flow graph backwards from the given slicing criterion
(x, l) and include in the slice every statement which may have an influence
on the value of x in l. Essentially, Weiser’s procedure transitively follows
the data and control dependencies ending in x backwards.

3.3.2 Program Dependence Graphs

Program Dependence Graphs [58] (PDGs) are another program representation
used in program analysis. Roughly, PDGs model the dependencies between
the statements and expressions of a program.
Ferrante, Ottenstein and Warren [58] introduced the program dependence
graph as a program representation which makes control dependencies and
data dependencies explicit. On this representation, program slicing can be
expressed as a graph traversal. A slice thus obtained is indeed valid [140].

3.3.2.1 Intraprocedural Program Dependence Graphs

For intraprocedural programs, there are two main kinds of dependencies:
data dependencies and control dependencies. In the following, I will briefly
explain data and control dependencies. After that, I will show how
Program Dependence Graphs are extended for programs with multiple
procedures.
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x:=e

x:=e’

y:=f(x)

definition of x

use of x

path without
re-definition of x

Figure 3.10: Visualization of data dependencies

3.3.2.1.1 Data Dependencies Data dependencies capture the flow of
data inside a program. A statement defines a variable if it writes a value
to it and uses a variable if it reads the current value of that variable and
then uses this value, for example to define other variables or to evaluate a
branching condition.
For a statement (or CFG node, respectively) s I denote with de f (s) the set
of variables defined by s and with use(s) the set of variables used by s.
Basically, a statement or expression s2 is data-dependent on statement s1 if
there is a variable x such that (1) s1 defines x, (2) s2 uses x and (3) there is a
control-flow path between s1 and s2 that does not define x. Such a situation
is illustrated in Figure 3.10. Definition 3.3 gives a formal definition.

Definition 3.3 (data dependencies). Let G = (N, E, s, e) be a control-flow
graph. n ∈ N is data-dependent on m ∈ N, written m →dd n, if there is
x ∈ de f (m) ∩ use(n) and there is a path π ∈ PathsG(m, n) such that ∀1 ≤ i <
|π| − 1. x ∉ de f (πi).

Figure 3.11 shows the data dependency graph of the program from Fig-
ure 3.3.
For example, there is a data dependency from line 5 to line 7 because line 5
defines the variable a, line 7 uses a and a is not overwritten between line
5 and line 7. In contrast, line 5 and line 12 are not connected by a data
dependency: Though line 12 uses a to define c, it definitely does not use
the value of a from line 5, since a is overwritten in line 10.
Data dependencies can be computed using the reaching definitions analysis
described earlier.

3.3.2.1.2 Control Dependencies The other kind of dependencies in a
program dependence graph are control dependencies. The intuition behind
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control dependencies is illustrated in Figure 3.12. Control dependencies
capture that a node m ∈ N is the “latest” node that “decides” whether
(or how often) a node n is executed or not. This means that if program
execution traverses m, then it can either proceed to a branch from which m
can be bypassed or to a branch from which the execution of n is inevitable.
Throughout this thesis, I assume the classical definition by Ferrante et
al. [58], which I present here for reference. Ferrante et al. also propose
an efficient algorithm for computing control dependency graphs that
constructs the post-dominator tree using a fast algorithm presented by
Lengauer and Tarjan [119].

Definition 3.4 ([58], Definitions 2 and 3). Let G = (N, E, s, e) be a control-flow
graph and m, n ∈ N.

1. Node n post-dominates m if

∀π ∈ PathsG(m, e). n ∈ nodes(π)

2. Node n is control-dependent on m, written m→cd n, if
a) there is a path π ∈ PathsG from m to n such that n post-dominates every node
in π (except for m and n)
b) n does not post-dominate m.

Figure 3.13 shows the control dependence graph of the example from
Figure 3.3.

13: i = i + 1

15: print(c)

11: b = c

12: c = a + b

9: i < n

10: a = b

1: read(n)

2: n ≤ 1 3: print(n)

5: a = 06: b = 1

7: c = a + b

8: i = 0

Figure 3.11: Data dependency graph for the example from Figure 3.3
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m

s1 s2

n

n can be
skipped

n is inevitable

Figure 3.12: Illustration of control-dependencies

start

1: read(n) 2: n ≤ 1

3: print(n) 5: a = 0 6: b = 1 7: c = a + b 8: i = 0 9: i ≤ n

10: a = b 11: b = c 12: c = a+b 13: i = i+1

15: print(c)

end

Figure 3.13: Control dependence graph of the program in Figure 3.3 – note that
for well-formedness reasons an additional synthetic control-flow
edge between the entry node and the exit node is assumed

3.3.2.2 Interprocedural Program Dependence Graphs

In the following, I describe briefly how Program Dependence Graphs look
like for programs with multiple procedures. The standard approach has
been described by Horwitz et al. [93].
In this approach, interprocedural PDGs are constructed from intrapro-
cedural PDGs in a similar way as interprocedural control-flow graphs are
constructed from intraprocedural control-flow graphs. An interprocedural
PDG consists of a PDG for every procedure. These procedure dependence
graphs are enriched with additional nodes and edges which model the call
itself and the passing of parameters from caller to callee and the passing
of return values from callee to caller. This modelling assumes call by
value. First of all, a call dependence connects the call node at the call site
and the entry method of the callee. This is a special control dependence
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main

formal-in
x

formal-in
y

a = f(x)

actual-in
x

actual-out
ret

b = f(y)

actual-in
x

actual-out
ret

f

formal-in
x

formal-out
ret

return z
data dep.

control dep.
call / parameter-in / -out
dep.

Figure 3.14: The interprocedural PDG of the example in Figure 3.8a

that captures the intuition that the call node “decides” whether the callee
is called or not.
Moreover, for every parameter of a procedure p, there is a formal-in
parameter node, and for its return value, there is a formal-out node. At each
call site of p, there is an actual-in node for each of p’s parameters and an
actual-out node for p’s return value. Formal and actual parameter nodes are
connected via parameter-in and parameter-out edges, which model passing
of parameters from caller to callee and of the return values from callee to
caller. A procedure call can be thought of to be preceded by a series of
assignment statements which assign the actual parameter values to special
variables which only the callee has access to. After the procedure has
finished, it copies its return value to a special variable which only the caller
has access to. In this sense, parameter-in and parameter-out edges can
be seen as special interprocedural data dependencies. Parameter passing
is then modeled using a parameter-in edge which connects the actual-in
parameter node at the call site with the formal-in node in the callee.
Additional parameter-out edges model how data flows from a formal-out
parameter node of a procedure to its counterpart in the caller. Consider
for example the interprocedural PDG in Figure 3.14: Procedure f has one
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formal-in parameter node for its parameter z and one formal-out parameter
node for its return value. Both are connected to their counterparts at each
of the two call sites of f.
In the following, I consider call dependencies and parameter-in edges
as call edges and refer to all call edges as Ecall. Analogously, I consider
parameter-out edges as return edges and use Eret to refer to the set of
parameter-out edges.

3.3.3 PDG-based Slicing

As I already mentioned in the beginning, program dependence graphs
make explicit the dependencies that are traversed implicitly during Weiser’s
slicing procedure [165]. Hence, PDGs reduce the slicing problem to mere
graph traversal.

3.3.3.1 PDG-based Intraprocedural Slicing

Algorithm 4: A simple intraprocedural backward slicer – upon
termination, we have W = BSintra(s)

Input: a PDG G = (N, E) with intraprocedural edges Eintra, sli-
cing criterion s ∈ N

Result: intraprocedural slice BSintra(s)
1 W ← {s}
2 while W ≠ ∅ do
3 n← remove(W)
4 foreach m→ n ∈ Eintra do
5 W ←W ∪ {m}
6 return W

For single procedures, PDG-based slicing works as follows: Given a PDG
G = (N, E) and some node n, the backwards-slice is the set BS(n) ⊆ N of all
nodes that reach n in the PDG:

BS(n)
de f
= {s ∈ N | s→∗G n}
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Analogously, the forward-slice is the set FS(n) ⊆ N of all nodes that is
reachable by n in the PDG:

FS(n)
de f
= {s ∈ N | n→∗G s}

BS and FS are related by the property

s ∈ BS(n) ⇐⇒ n ∈ FS(s)

and hence are dual to each other. Algorithm 4 shows a simple algorithm
that computes an intraprocedural backward slice of s ∈ N. It is very easy
to modify Algorithm 4 such that it computes an intraprocedural forward
slice.

3.3.3.2 PDG-based Interprocedural Slicing

Interprocedural slicing operates on an interprocedural program depend-
ence graph, just like intraprocedural slicing operates on an intraprocedural
program dependence graph.

3.3.3.2.1 Context Problem Similar to data-flow analysis, interproce-
dural slicing faces the problem that not all paths in an interprocedural
program dependence graph represent a valid chain of dependencies. In
effect, if BS and FS are not adapted to the interprocedural case, they yield
context-insensitive slices, which are usually too big.
For example, Figure 3.15 shows a simple backwards slice of the return
value of the second call of f from Figure 3.14. This slice also contains the
actual parameter of the first call of f.
However, the only path from the actual parameter of the first call of f to
the return value of the second call of f is interprocedurally invalid – just
like the path that enters f through the first call site and leaves it through
the second call site.

3.3.3.2.2 Context-Sensitive Interprocedural Slicing The context prob-
lem for interprocedural slicing can be tackled in similar ways as the context
problem for interprocedural data-flow analysis. Agrawal and Guo [9]
consider a call-string-based approach that supports call-strings of unlim-
ited length. However, Krinke [110] observes that this approach is indeed
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incorrect. He proposes a fixed version and also considers call-strings with
limited depths.
Horwitz, Reps and Binkley [92, 93] propose an approach to interprocedural
slicing that resembles the functional approach for interprocedural data-flow
analysis and thus avoids the context problem. First, in a pre-processing
step the program dependence graph is extended with additional summary
edges. A summary edge is added between an actual-in node and an actual-
out node of the same call site if a corresponding formal-in/formal-out pair
is connected by a chain of intraprocedural edges or summary edges. The
resulting graph is called System Dependence Graph.
In comparison to the original presentation [92, 93], the runtime performance
of the pre-processing step can be improved by introducing additional book-
keeping and trading space for speed, as shown by Reps, Horwitz, Mooly
and Rosay [137]. My presentation in this thesis concentrates on the
improved version.
The actual slicing can then be performed on the System Dependence
Graph using an algorithm that operates in two phases. Each phase
basically consists of a simple graph reachability approach that skips either
parameter-in or parameter-out edges. Both phases use summary edges to
traverse call sites. This way, the approach avoids traversing call and return
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Figure 3.15: Context-insensitive backwards slice of the actual-out ret parameter
of the second call of f
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edges individually – the root cause of the context problem, as I mentioned
earlier.
Similar to the functional approach to interprocedural data-flow analysis
described in section 3.2.2.2.2, summary edges describe a complete traversal
of the called procedure and the System Dependence Graph is nothing more
than the integration of these additional helper transfer functions into the
Program Dependence Graph.
More generally, the PDG edges themselves also can be viewed as transfer
functions. The information they propagate is mere reachability. In this
sense, the two-phase slicer can be understood as the solution algorithm for
a data-flow analysis instance with very simple transfer functions. I will
discuss the similarities between and differences of data-flow analysis and
slicing in more detail in subsection 3.3.4.
In the following, I briefly describe the summary edge algorithm and the
two-phase slicer.

Summary Edges The summary edge computation algorithm pro-
posed by Reps et al. [92, 93] is shown in Algorithm 5. The rough idea
is to compute all node pairs for which there is a same-level path in the
given program dependence graph. To define same-level paths for program
dependence graphs, some modifications are necessary: For one, we need
to use parameter-in edges instead of call edges and parameter-out edges
instead of return edges. Moreover, the correspondence function needs to
be a correspondence relation, since in the presence of multiple parameters,
there may be more than one parameter-out edge that corresponds to a
given parameter-in edge. In chapter 5, I will present a definition that
applies to both control-flow graphs and program dependence graphs.
The algorithm maintains two sets of node pairs (v, w) where w is a formal-
out node and v is an arbitrary node of the same procedure. If (v, w) ∈
PathEdge, then there is a same-level path between v and w. If (v, w) ∈W,
then there is a same-level path between v and w and (v, w) has been
discovered for the first time.
Initially, for every formal-out node w, the pair (w, w) is contained in both
W and PathEdge. This is because the empty path is a same-level path.
In the main iteration, the algorithm removes a pair (v, w) from W and
reacts to two relevant cases for (v, w):
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Algorithm 5: Summary Edge Algorithm proposed by Reps et al.–
compare [137, Figure 5]

Input: a PDG G
Result: summary egdes in G

1 PathEdge← ∅
2 SummaryEdge← ∅
3 W ← ∅
4 foreach w ∈ FormalOuts(G) do
5 PathEdge← PathEdge∪ {(w, w)}
6 W ←W ∪ {(w, w)}
7 while W ≠ ∅ do
8 (v, w)← remove(W)
9 if v is a formal-in node then

10 foreach x
param−in→ v, w

param−out→ y do
11 if x and y belong to the same call-site then
12 SummaryEdge← SummaryEdge∪ {x→ y}
13 foreach a such that (y, a) ∈ PathEdge do
14 if x→ a ∉ PathEdge then
15 PathEdge← PathEdge∪ {(x, a)}
16 W ←W ∪ {(x, a)}

17 else
18 foreach x→ v ∈ Eintra do
19 if (x, w) ∉ PathEdge then
20 PathEdge← PathEdge∪ {(x, w)}
21 W ←W ∪ {(x, w)}
22 if v is an actual-out node then
23 foreach (x, v) ∈ SummaryEdge do
24 if (x, w) ∉ PathEdge then
25 PathEdge← PathEdge∪ {(x, w)}
26 W ←W ∪ {(x, w)}

27 return SummaryEdge
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Figure 3.16: The interprocedural PDG of the example in Figure 3.8a with sum-
mary edges

1. If v is a formal-in node, then a same-level path has been completed.
The algorithm then adds a summary edge between every corresponding
actual-in/actual-out pair (x, y). In this context, this means that there is a
parameter-in edge from x to v, a parameter-out edge from w to y and that
x and y belong to the same call site. Now that there is an additional edge
between x and y, it may be the case that some pair (y, a) can be extended
to (x, a). Because of this, for all already discovered pairs (y, a), (x, a) is
added to W if it has not been discovered before. This ensures that the call
site “notices” that propagation can be continued.

2. If v is not a formal-in node, then every incoming intraprocedural edge
x→ v of v is processed; since there is a same-level path between v and w
and there is an incoming edge x→ v, there is a same-level path between x
and w. Hence, (x, w) is added to PathEdge and W if it was encountered for
the first time. If v is an actual-out node, then the algorithm additionally
processes the already discovered summary edges.

Applied to Figure 3.14, Algorithm 5 starts at the formal-out return node of
f and traverses f’s PDG backwards until it arrives at f’s formal-in node for
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z. Now, a complete same-level path has been discovered and Algorithm 5
inserts a summary edge between the actual-in node for x and the actual-out
return node at each of the two call sites of f. This results in the system
dependence graph shown in Figure 3.16.

The Two-Phase Slicer The idea of the two-phase slicer, which can be
seen in Algorithm 6, bears some similarity to the idea of the functional
approach: With summary edges, procedure calls can be skipped.

Algorithm 6: Backwards two-phase slicer proposed by Horwitz
et al. [92]

Input: a PDG G = (N, E); E consists of the intraprocedural edges
Eintra and Ecall, Eret as described on page 67; Esum is the set
of summary edges as computed by Algorithm 5; slicing
criterion s

Result: context-sensitive backwards slice of s
1 S← ∅
2 W1 = {s} // phase 1: only ascend to callers
3 while W1 ≠ ∅ do
4 n← remove(W1)
5 S← S∪ {n}
6 foreach m e→ n ∈ E do
7 if e ∈ Eintra ∪ Esum ∪ Ecall then
8 W1 ←W1 ∪ {m}
9 else

10 // e ∈ Eret and m is an exit or formal-out node
11 W2 ←W2 ∪ {m}

12 // phase 2: only descend to callees
13 while W2 ≠ ∅ do
14 n← remove(W2)
15 S← S∪ {n}
16 foreach m→ n ∈ Eintra ∪ Esum ∪ Eret do
17 W2 ←W2 ∪ {m}
18 return S
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This way, simple graph reachability can be used to obtain a slice that
respects calling contexts. Note, however, that unlike with data-flow
analysis, we are not interested in paths from the entry of the main procedure
but actually want to start at an arbitrary place in the given graph. But
this means that it does not suffice to descend into called procedures. It is
also necessary to ascend to calling procedures. For this purpose, the slicer
proposed by Horwitz et al. consists of two phases: The first phase only
ascends to calling procedures and the second phase only descends into
called procedures.
Figure 3.17 shows how Algorithm 6 is applied to Figure 3.14. The slicing
criterion is the actual-out return node of the second call of f. In Figure 3.17a,
we see the state after the completion of the first phase of Algorithm 6: At
this point, the slice contains all nodes with bold frame. Moreover, the
actual-out return node of the second call of f is contained in W2 so that
phase 2 will start with that node.
Phase 2 then descends into f. The result of this can be seen in Figure 3.17b.
It can easily be seen that it is more precise than a context-insensitive slice,
since unlike the slice in Figure 3.15, it does not contain the actual parameter
of the first call of f.

3.3.4 Relation of PDG-based Slicing and Data-Flow
Analysis

In the following, I investigate the relation between PDG-based slicing and
data-flow analysis. My observations are

1. slicing can be cast as a very simple data-flow problem,

2. this data-flow problem can be solved with basically the same techniques,
however, different assumptions have to be made, and

3. particularly, summary-based two-phase slicing can be seen as an ap-
plication of a modified functional approach to interprocedural data-flow
analysis

After having identified slicing as a special case of data-flow analysis,
we can generalize it and obtain arbitrary data-flow analyses on program
dependence graphs. These analyses can be solved for instance with the
functional approach. This will be the subject of chapters 5, 6 and 7.

74



3.3 Slicing on Program Dependence Graphs

main

frm-in
x

frm-in
y

a = f(x)

act-in
x

act-out
ret

b = f(y)

act-in
x

act-out
ret

f

frm-in
z

frm-out
ret

return z
(a) after phase 1

main

frm-in
x

frm-in
y

a = f(x)

act-in
x

act-out
ret

b = f(y)

act-in
x

act-out
ret

f

frm-in
z

frm-out
ret

return z
(b) after phase 2

Figure 3.17: Applying the two-phase slicer to the example in Figure 3.14; the slicing
criterion (with dark gray background) is the actual-out return node of
the second call of f; nodes in slice after the respective phase have light
gray background

In the following presentation, I fix a node s ∈ N and consider the forward
slice FS(s) of s. Note that I knowingly ignore the fact that Algorithm 5
and Algorithm 6 traverse the graph backwards. In contrast, I only consider
forward traversals and, in particular, I pretend that Algorithm 5 and
Algorithm 6 traverse the graph forward. I showed these algorithms in their
original version that was motivated by applications such as debugging,
where backward slices are natural. However, in general the propagation
direction does not matter and can easily be changed.

3.3.4.1 PDG-based Slicing as a Data-Flow Problem

As I already mentioned earlier, slicing can be described as a kind of
reachability analysis. As such, it can easily be cast as a data-flow problem.
Mainly, we will have to adapt the way in which the constraint systems are
generated from the given graph.
Let L = {⊥,⊤}with ⊥ < ⊤ and let F = {λx.⊥,λx.x}with the usual partial
order. Then (L, F) is a data-flow framework.
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An instance of this framework is given by the PDG G, the initial information
init = ⊤ and ρ(e) = id.
For simplicity, I consider the special case reachability from a given node8 s.

Intraprocedural case For π ∈ PathsG(s, t), we have fπ = id. Hence,
with

Fintra(t) =
⨆︂

π∈PathsG(s,t)

fπ(init),

we have Fintra(t) = ⊤ if and only if t ∈ FSintra(s) (where FSintra is the
intra-procedural forward slice of s). The function Fintra is similar to MOP
(see (3.1) on page 50), but merges over a different path set. I will examine
the difference later and ignore it for now.
Fintra can be described by a monotone constraint system that is very similar
to the one used in intra-procedural data-flow analysis:

Constraint System 3.4.

X(s) ≥ init

X(t) ≥ X(t′) for t′ e→ t.

As can easily be seen, this constraint system actually precisely characterizes
Fintra: Its least solution X can be used to extract the intra-procedural
forward-slice FSintra of s:

FSintra = {n ∈ N | X(n) = ⊤}.

Interprocedural case In the interprocedural case, we want to compute

Finter(t) =
⨆︂

π∈VP(s,t)

fπ(init).

This is similar to MOVP (see (3.8) on page 57). However, there are two
differences:

8In later chapters, I consider data-flow problems whose MOP functions take two para-
meters.
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Figure 3.18: Illustration of a valid PDG path: The πi are same-level paths. All ni
are reachable from s by a valid path.

1. Finter does not merge over all valid paths starting in smain and ending in
t but over those that start in s (similar to Fintra).

2. Finter refers to a different notion of validness, which I describe in the
following.

For interprocedural control-flow graphs, two usual assumptions are

1. that every procedure p has an entry node sp and each of p’s node is
same-level reachable from sp, and

2. that there is a main procedure main and for each procedure p, sp is
reachable from smain by a descending path, that is a path that consists of a
series of same-level paths interspersed with call edges.

In interprocedural data-flow analysis, one usually is interested in proper
executions that indeed start at smain and proceed until a given program point
is reached. This is why MOVP(t) merges over all valid paths from smain to
t. For slicing, this is different: As we are interested in reachability from s,
we only want to consider the valid paths that start in s and not necessarily
in smain. Moreover, since s may lie anywhere in the program, the notion
of validness employed here can not only consider descending paths, like
in interprocedural control-flow graphs, but also has to include paths that
have an ascending prefix. Analogously to a descending path, an ascending
path can be imagined as a series of same-level paths interrupted by return
edges. A valid path is an ascending path followed by a descending path.
An illustration is given in Figure 3.18.
Now we want to describe Finter by a series of monotone constraint systems.
We use the functional approach, since it is applicable to the reachability
framework and we want to maximize precision. Recall that the idea of
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the functional approach is to avoid traversing call and return edges at
the same time by first solving a helper system that describes the effect of
completely traversing procedures from entry to exit.

Helper System for Same-Level Reachability The helper system is
similar to the helper system for interprocedural data-flow analysis on page
61. However, for PDGs we have to make a few modifications: For one, pro-
cedures may have multiple entries, namely the actual procedure entry and
the formal-in parameter nodes, and also multiple exits, namely the actual
procedure exit and the formal-out parameter nodes. Correspondingly, call
sites may have multiple call nodes (the actual call node and the actual-in
parameter nodes) and multiple return nodes (the actual return node and
the actual-out parameter nodes). In particular, the correspondence relation
Φ in this case relates actual-ins and actual-outs that belong to the same
call site and therefore in general is not a function, but rather an arbitrary
relation.
With these modifications, the helper constraint system that describes
same-level reachability looks as follows:

Constraint System 3.5.

X(n, n) ≥ id(3.15)

t e→ t′ ∧ e ∈ Eintra(3.16)
=⇒ X(n, t′) ≥ X(n, t)

(ecall, eret) ∈ Φ ∧m
ecall→ n0 ∧ n1

eret→ t(3.17)
=⇒ X(n, t) ≥ X(n0, n1) ◦X(n, m).

With uniqueness assumptions of entries, exits, calls and returns in place,
Constraint System 3.5 reduces to Constraint System 3.3.
The least solution of this system is a function XSL : N ×N → F with
X(s, t) = id if and only if t is same-level reachable from s.
In the following, I show how to use XSL to actually compute Finter and
hence FS(s). The approach exploits a fundamental property about valid
paths:
Every valid path π ∈ VP(s, t) is either ascending or there is n ∈ Ncall so that π
can be split up into π1 ·π2 such that π1 is an ascending path from s to n and π2
is a non-empty descending path from n to t.
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Figure 3.19: Illustration of how the computation of the reachability solution
along valid paths works

I will also call the second kind of valid paths non-ascending.
As a consequence of the above mentioned property, Finter can be obtained
in two steps as illustrated by Figure 3.19. They can be described intuitively
as follows:

1. The first step computes the solution along the ascending paths starting
with s.

2. The second step starts at the nodes n ∈ Ncall that are reachable from s
by an ascending path and extends the solution along descending paths.

Computing Reachability Along Ascending Paths This first step
works like the intra-procedural case but additionally propagates the
reachability information along return edges and uses XSL for propagating
from actual-ins to corresponding actual-outs.

Constraint System 3.6.

XASC(s) ≥ init(3.18)

e ∈ Eintra ∪ Eret ∧ t′ e→ t(3.19)
=⇒ XASC(t) ≥ XASC(t

′)

(ecall, eret) ∈ Φ ∧m
ecall→ n0 ∧ n1

eret→ t(3.20)
=⇒ XASC(t) ≥ XSL(n0, n1) ◦XASC(m)
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The least solution XASC has the property

XASC(t) ≠ ⊥ ⇐⇒ s reaches t using an ascending path(3.21)

Extending Reachability Along Descending Paths The second step
starts at the call nodes that are reachable by ascending paths from s and
extends the reachability solution along descending paths. Again, it works
like the intra-procedural case but additionally propagates the reachability
information along call edges and uses XSL for propagating from actual-ins
to corresponding actual-outs.

Constraint System 3.7.

a ∈ Ncall ∧ a e→ t∧ e ∈ Ecall(3.22)
=⇒ XNASC(t) ≥ XASC(a)

e ∈ Eintra ∪ Ecall ∧ t′ e→ t(3.23)
=⇒ XNASC(t) ≥ XNASC(t

′)

(ecall, eret) ∈ Φ ∧m
ecall→ n0 ∧ n1

eret→ t(3.24)
=⇒ XNASC(t) ≥ XSL(n0, n1) ◦XNASC(m)

The least solution XNASC has the property

XNASC(t) ≠ ⊥ ⇐⇒ s reaches t using a non-ascending path .(3.25)

Putting the Steps Together With the fundamental property of valid
paths and properties (3.21) and (3.25), we can characterize Finter as XASC ⊔
XNASC.

Finter = XASC ⊔XNASC(3.26)

3.3.4.2 Comparisons of the Algorithms

After having compared the specification side of data-flow analysis and
slicing, I examine the algorithm side more closely.
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Roughly, one can say that each of the slicers described so far, namely
Algorithm 4, Algorithm 5 and Algorithm 6, correspond to one or more of
the constraint systems that I just showed, in the sense that they compute a
representation of the least solution for significant parts of them.
In particular, the summary edges used by Algorithm 6 can be considered
as procedural effect functions that are used to safely skip procedure
calls, or, for PDGs, transitions from actual-in nodes to actual-out nodes.
Conceptually, all pairs of actual-in and actual-out nodes at the same call
site are connected by edges. The presence of a summary edge between
such an actual-in node m and an actual-node out n encodes whether the
transfer function for the edge between m and n is λx.x or λx.⊥. In the
former case, reachability is propagated, in the latter case propagation stops.
The constraint systems that I showed so far can also be solved with
appropriate instantiations of Algorithm 3. In the following, I investigate
the differences between the slicers and Algorithm 3.
First, when looking at the constraint systems, we see that they are too
large: They contain a lot more constraints than the ones that are actually
needed to compute their respective result. An example for this for the
intraprocedural case can be seen in Figure 3.20: Suppose that the PDG
contains a node s′ that is not reachable from s but like s has an outgoing
edge to t. Then both edges are incorporated in Constraint System 3.4 but
only the edge from s to t is relevant. The other constraint systems have a
similar problem.
The reason is that they cannot already incorporate reachability information
as their purpose is to characterize that very information. An unmodified version
of Algorithm 3 would solve the complete systems and in particular process
large parts that are actually not relevant. The slicers however only explore
the relevant parts of the respective constraint systems, namely the ones
that are reachable from the initial constraints that do not have variables on
the right-hand side.

s s′

t

✗

e e′ X(t) ≥ X(s)
X(t) ≥ X(s′)

Figure 3.20: Illustration for the way in which the constraint systems for slicing –
for example Constraint System 3.4 – contain irrelevant constraints
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A striking similarity between Algorithm 3 and the slicing algorithms is
that they all use worklists to keep track of the items that have yet to be
processed. However, they differ in what I want to call workflow policy. A
workflow policy answers the following questions and thus determines
how the algorithm operates on the worklist to finish its task:

1. Why is an item put on the worklist?

2. Which values are updated?

3. Which items are put on the worklist during processing?

Figure 3.21 illustrates the differences in the worklist policies of Algorithm 3
and the slicing algorithms.
As shown in Figure 3.21a, Algorithm 3 puts an item onto the worklist if
one of its predecessors has changed in an earlier iteration. Then, when an
item x is taken off the worklist and processed, its value is updated with
the value of its predecessors. If the value has changed, all its successors
are put on the worklist.
The slicers have a slightly different worklist policy, as illustrated in Fig-
ure 3.21b. There, an item is put on the worklist if its value has been changed
in an earlier iteration but this has not been propagated yet. Then when an
item x is taken off the worklist and processed, all its successors are updated
with respect to the value of x. All successors whose value changes by this
are put on the worklist.

on worklist because
the value of one
of its predecessors
has changed before

value
is updated from
predecessors

if changed
all successors are
put on worklist

(a)

on worklist because
its value has been
updated before

propagates its
new value
to successors

every successor
that changed
is put on worklist

(b)

Figure 3.21: Illustration of the difference between (a) Algorithm 3 and (b) Algo-
rithm 4 – the node highlighted in gray is assumed to have just been
taken off the worklist and about to be processed
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Another difference between Algorithm 3 and the slicers is that Algori-
thm 3 requires that all variables are processed at least once. For this, the
algorithm initially puts all variables on the worklist. In contrast, the slicing
algorithms initialize the worklist only with those variables that are defined
by initial constraints.
In short, one can say that the slicers integrate a reachability analysis of the
constraint system into their solution process. This may seem like a pointless
observation: For one, reachability analysis is exactly what the slicers do.
Secondly, data-flow analysis makes several reachability assumptions and
therefore has no necessity to additionally perform reachability analysis.
However, this observation is actually helpful for generalizing slicing to
arbitrary data-flow analysis: Since slicing does not make the reachability
assumptions of data-flow analysis, its generalization also does not make
them. Therefore, in order to perform data-flow analysis on program dependence
graphs that includes slicing as a special case, we need solution algorithms that
integrate slicing into its solution processing! I will present such algorithms
in chapter 7, along with the theory that explains why they work and
what exactly they do. These algorithms can be used to perform data-flow
analysis not only on program dependence graphs but also on control-
flow graphs that do not satisfy reachability assumptions such as the ones
mentioned on page 77.

3.4 Joana: PDG-based Information Flow
Control for Java

In this section, I describe the Joana framework in more detail.
Joana heavily uses the T.J. Watson Libraries for Analysis (WALA), a
program analysis framework for Java bytecode [141].
Using WALA, Joana applies a wide variety of program analysis techniques
in order to construct program dependence graphs and to verify various
non-interference-like properties of a given Java application. Apart from
the techniques I have shown so far in section 3.2 and section 3.3, Joana
can also handle modern programming language features.
The goal of this section is to give the reader a rough understanding of how
Joanaworks so that they are equipped to follow the details of chapter 4.

83



3 Program Dependence Graphs for Object-Oriented Programs

For a more thorough description of the inner workings of Joana, I refer
the reader to earlier publications [78, 65, 86].
In subsection 3.4.1, I describe the connection between information flow
control and slicing that is exploited by Joana. After that, I go into some
of the features of Java and describe some of the techniques that Joana
applies in order to treat them appropriately. Specifically, subsection 3.4.2
considers dynamic dispatch, subsection 3.4.3 looks at the challenges posed
by exceptions and, lastly subsection 3.4.4 shows how objects are represented
and handled by Joana.
Note that I will not discuss concurrency in this chapter but in chapter 4,
particularly in section 4.2.

3.4.1 Slicing and Information Flow Control

Slicing has a strong connection with non-interference and, hence, inform-
ation flow. In the following, I give a cursory description of the intuition
behind this connection. For my explanation, I use batch-job termination-
insensitive non-interference (BTINI) [22] in a very simple setting.
Consider a deterministic program P which defines and uses only two
variables h, l. Variable h is thought of to contain secret values that are
not supposed to influence the variable l, which is assumed to be publicly
accessible.
A suitable instantiation of BTINI then demands that

∀σ, σ′ ∈ Σ. σ(l) = σ′(l)∧P ⇓ σ∧P ⇓ σ′ =⇒ ⟦P⟧(σ)(l) = ⟦P⟧(σ′)(l),
where Σ is the set of all program states and P ⇓ σ means that P terminates
for initial state σ.
Now assume that there is a valid slice P′ of Pwith respect to the value of l
at the end of P that does not contain any use of h. Then it can be shown
that P is non-interferent. A rough and intuitive argument for this goes as
follows: Fix a valid slice P′ of P that does not contain any use of h and let
σ, σ′ ∈ Σ with σ(l) = σ′(l) and assume that P⇓ σ and P⇓ σ′. Since P′ is a
valid slice of P with respect to the final value of l, we can conclude that P′
also terminates on σ and that the final state P′(σ) coincides with P(σ) on l:

P′ ⇓ σ∧P′(σ)(l) = P(σ)(l).
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The same argument can be made for σ′:

P′ ⇓ σ′ ∧P′(σ′)(l) = P(σ′)(l).
Moreover, since (a) P′ does not contain any use of h and therefore only
uses l itself and (b) σ(l) = σ′(l), it must be P′(σ)(l) = P′(σ′)(l). Together,
it follows that

P(σ)(l) = P′(σ)(l) = P′(σ′)(l) = P(σ′)(l).
For PDG-based slicing, this basic idea can be exploited to give formal proofs
for the general case. Horwitz et al. [91] show that program dependence
graphs adequately capture program execution behaviour. Extending this
work, Reps et al. [140] show the Slicing Theorem that states that PDG-based
program slices are indeed valid, i.e. that a program and its slices exhibit
the same execution behavior with respect to the slicing criterion.
Snelting, Robschink and Krinke apply the Slicing Theorem to argue that
non-interference according to Goguen and Meseguer [71, 70] can be verified
using PDGs and slicing [157].
Wasserrab [164] shows the correctness of PDG-based slicing and applies
this result to show that slicing can be used to verify BTINI for sequential
programs with multiple procedures.
For concurrent programs, simple properties such as BTINI are not suffi-
cient anymore. I will consider non-interference properties for concurrent
programs in section 4.2.

3.4.2 Dynamic Dispatch

In subsubsection 3.2.1.2, I discussed how interprocedural control-flow
graphs are built by constructing the control-flow graphs of each procedure
and then connecting them appropriately. This works fine for simple
languages in which all call targets can be resolved statically, that is at
compile-time.
Modern programming languages, however, usually support some form
of late binding, i.e. that names are not resolved statically at compile-time
but dynamically at run-time. In the context of procedures (which are also
called methods in object-oriented languages), late binding is also known as
dynamic dispatch: For a dynamically dispatched method, there may exist
multiple implementations and in contrast to statically dispatched methods,
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the actually executed implementation is not selected at compile-time but
deferred to runtime.
In Java, the programmer can declare classes and two types of methods:
Static methods are associated with the class itself and therefore independent
of any instances of this class. They are dispatched statically, that is calls of
them are resolved at compile-time.
The other type of methods are instance methods: They are associated with
every instance of the class individually9.
For instance methods, Javamakes it possible to provide multiple imple-
mentations through its class inheritance mechanism which allows methods
to be overridden – that is, a sub-class can re-declare a method declared in its
superclass and provide another implementation for it.
For the call of an instance method, the bytecode only specifies the static call
target, that is the call target which is derivable at compile-time from static
type information. The method which is actually called is then resolved
dynamically at run-time using the actual type of the receiver object.
An example for this can be seen in Listing 3.1: The method call in line 25 is
dispatched dynamically. The static call target is A::f, however at runtime
B::f is called since the runtime type of parameter a is B.
For a static analysis this means that method calls in general cannot be
resolved uniquely at compile-time but must be approximated. In order for
the static analysis to be sound, this has to be an over-approximation. The
example Listing 3.1 also illustrates that it is crucial for a sound program
analysis to capture all possible call targets of dynamically dispatched
method calls. If it does not, it may miss important program behaviour:
For example, Listing 3.1 contains an information leak: the secret value that
is read in line 18 is printed to a public console in line 8. An information
flow analysis that does not detect B::f as possible call target for the call in
line 25 would miss this illegal information flow.
A static program analysis that aims for a safe over-approximation of the
actual program behaviour must therefore in particular over-approximate
the possible targets of every instance method call.
Hence, in the interprocedural control-flow graph multiple outgoing call
edges from the same call target are allowed. With the definition of

9In Java there are also private methods which are only accessible from within the same
class and therefore are also bound statically. But I ignore them here for simplicity.
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1 class A {
2 void f(int x) {
3 //do nothing
4 }
5 }
6 class B extends A {
7 void f(int x) {
8 print(x);
9 }

10 }
11 class C extends A {
12 void f(int x) {
13 print(42);
14 }
15 }

16 class Main {
17 static void main() {
18 int secret = readPIN();
19 A a = new A();
20 B b = new B();
21 run(secret, b);
22 run(secret, b);
23 }
24 static void run(int x, A a) {
25 a.f(x);
26 }
27 }

Listing 3.1: An example which shows why dynamic dispatch must be handled
correctly

interprocedural control-flow graphs presented in Definition 3.2 on page 46,
this is no problem: The correspondence relation Φ discussed earlier relates
call edges with return edges and not just nodes and, thus, also incorporates
the call target in the identification of a call.
There exist several program analysis techniques for the approximation
of dynamically dispatched method calls that I will discuss briefly in the
following paragraphs. Since Java allows that class loading is deferred to
runtime, they all assume that all classes are available for static analysis.
All of these techniques construct a directed graph, the call graph which
reflects the calling structure of a given program. Its nodes correspond to
the program’s procedures and there is an edge from p to p′ if p may call
p′. Call graphs can be obtained both dynamically and statically. In this
work, I only consider static call graphs and because of that I will omit the
qualifier static from now on.
The analysis techniques that I will describe mainly differ in their precision,
that is, their ability to approximate the possible targets of a call as closely
as possible.

87



3 Program Dependence Graphs for Object-Oriented Programs

Precise resolution of dynamic dispatch is an important and critical feature
for any static analysis aimed at a language like Java and in particular for
static information flow analysis tools like Joana.
For one, the precision of dynamic dispatch resolution directly affects the
precision of a static analysis: Suppose that the object b in line 22 is an
instance of C instead of B. Then the program in Listing 3.1 would be secure
because the secret is never printed. However, an analysis that fails to
exclude B::f as possible call target in line 25 is also not able to rule out the
execution of line 8.
Secondly, precise handling of dynamic dispatch is also important for
scalability of a sound analysis: Consider a statement such as p.equals(q).
Then a sound analysis has to assume that p may be an instance of any
available class and that the call p.equals(q) resolves to every available
implementation of equals – unless it is able to incorporate additional
information about p. If such information is not exploited, the resulting call
graph may be substantially bigger than necessary, practically prohibiting
any further analysis for scalability reasons.
Particularly, the applications of Joana that I present in chapter 4 (see e.g.
section 4.3 or section 4.7) rely on precise handling of dynamic dispatch.

Main::main

Main::run

A::f B::f C::f
(a) class hierarchy analysis

Main::main

Main::run

A::f B::f
(b) rapid type analysis

Main::main

Main::run

B::f
(c) points-to analysis

Figure 3.22: Call graphs for the program from Listing 3.1 resulting from the
application of different analyses

3.4.2.1 Class Hierarchy Analysis

Perhaps the simplest non-trivial analysis for approximating dynamic
dispatch is class hierarchy analysis (CHA) [52]. This analysis considers
the inheritance relationships between classes and resolves a dynamically
dispatched method call to the static call target C::f to all methods D::f

such that D is a subclass of C that overrides method f.
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Clearly, for class-based languages like Java, this rule is sound: If D' is an
arbitrary class that is not a subclass of C, then no method D::f can be a
valid call target for any call with static target C::f.
For the example in Listing 3.1, using CHA would resolve the call in line
25 to the possible call targets A::f, B::f and C::f. This results in the call
graph depicted in Figure 3.22a. Note however that C::f is considered as a
possible runtime call target even though C is never instantiated.

3.4.2.2 Rapid Type Analysis

Rapid Type Analysis (RTA) [23] is an improvement of CHA which addi-
tionally takes instantiation into account: If c is a call site with static call
target C::f and D is a subclass of C that implements f and is instantiated
somewhere in the program, then D::f is considered a possible call target
for c.
Implementations of RTA usually require a main entry point and use an
iterative approach to compute the classes which are instantiated and the
methods reachable according to the above rule.
RTA is obviously still sound for languages like Java: D::f cannot be called
at runtime if D is never instantiated. Moreover, RTA always delivers a
result that is at least as precise as CHA: If CHA does not consider D::f as
possible runtime call target, then neither does RTA.
For the example in Listing 3.1, RTA finds out that C is not instantiated.
Therefore, it resolves the call in line 25 to the possible call targets A::f and
B::f, resulting in the call graph in Figure 3.22b. This shows that RTA can
be more precise than CHA.
However, RTA still cannot rule out the case that A::f is called since A is
instantiated.

3.4.2.3 Points-To Analysis

Points-to analysis [16, 88, 158] is a general technique which aims to
determine the possible runtime values of pointer variables. Among its
numerous applications, points-to analysis can in particular be used to
resolve static call targets [84].
Points-to analysis is concerned with the computation of points-to graphs,
i.e. relations PT ⊆ P×I where P is a finite set of abstract pointers and I is
a finite set of abstract instances.
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For an abstract pointer p,

PT(p)
de f
= {i | (p, i) ∈ PT}

is also called the points-to set of p. The commonly used intuitive meaning
for o ∈ PT(p) is that p may point to o at runtime or, conversely, the intuitive
meaning of o ∉ PT(p) is that p definitely does not point to o at runtime.
This is specifically useful for call graph construction: in order to stay
sound, one wants to rule out impossible call targets10.
With points-to information available, static call targets can be resolved as
follows: Let c. f (o1, . . . , on) be a call site with static call target C::f. Then
D::f may be an actual runtime call target if c may point to a D object. This is
still sound: If c definitely never points to any D object, then D::f definitely
is not a call target. Furthermore, points-to analysis always delivers a result
which is at least as precise as the result of RTA: If D is not instantiated at
all, then no reference can point to any D object.
Lastly, for the example in Listing 3.1, points-to analysis can find out that
a in line 25 does not point to any instance of runtime type A or C. Hence,
it can rule out A::f and C::f as runtime call targets for the call in line 25.
This results in the call graph depicted in Figure 3.22c.
As I already mentioned, points-to analysis is a powerful analysis technique.
Joananot only uses it to resolve dynamic dispatch but also for alias analysis.
I will look at this more closely in subsection 3.4.4.

3.4.3 Exceptions

Exceptions are Java’s mechanism and language construct for handling errors
at runtime. If a program encounters an erroneous state or condition, it
can throw an exception that can be caught at some other place to handle
the error gracefully. In Java, there are two kinds of exceptions. Explicit
exceptions have to be declared, thrown and caught explicitly. The other
kind, implicit exceptions, are thrown by the Java runtime environment in

10Note that the notion p may point to o at runtime does not say anything about whether this
means “sometime at runtime” or whether this statement is bound to a specific point of the
program. Further note that it not necessarily means that p actually will point to o at some
point at runtime. It only means that it is not the case that p definitely does not point to o at
runtime (bound to some specific point or not).
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certain situations for which there is no sensible reaction. This includes
environmental problems like memory shortage or input/output errors, but
also the failure of single instructions because of programming errors. For
example, a field access of the form a.x = y may fail because a is null, or an
array access a[i] = o may fail because i is out of the bounds of a.
An overview of Java’s language constructs in connection with exceptions
is given in Figure 3.23.
From the point of view of a static information flow analysis, exceptions
are challenging: On the one hand, they have to be properly dealt with in
order to capture every possible program behavior. In particular, bytecode
instructions like field or array accesses may cause exceptions that are not
apparent from the program’s bytecode. Therefore, a static information flow
analysis must model the behavior of these bytecode instructions carefully.
On the other hand, exceptions have to be handled with sufficient precision
in order to not introduce too much spurious control-flow which in turn
may cause many false alarms [103]. Particularly, Joana’s precision is
heavily affected by its handling of exceptions. For example, the successful
verification of the case studies described in section 4.3 would not have
been possible without precise exception handling.
Like Joana’s exception analysis, I focus in the following on implicit
exceptions that are caused by programming errors.

int readFile(File f)
throws IOException (1) {
if (!f.exists()) {
throw new IOException(); (2)

}
...

}
int foo() {
int[] arr = new int[5];
...
return arr[6]; (3)

}

void bar(File f) {
try { (4)
int x = readFile(f);

} catch (IOException e) {
(5)

}
println(foo()); (6)

}

Figure 3.23: Overview of exceptions in Java: checked exceptions have to be declared
(1), thrown (2) and handled (4)/(5); unchecked exceptions are thrown
implicitly by the JVM and do not have to be handled (3)/(6)
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1 class A {int x;}
2 void foo(String[] args) {
3 int secret = inputPIN(); // HIGH access
4 A benign = inputLOW();
5 A a = null;
6 if (benign != null) {
7 a = new A();
8 }
9 if (secret < 9999) {

10 a.x = 42;
11 }
12 print(0); // LOW output
13 }

(a) source code

entry

3

4

6

7

9

10

12

exit

(b) control-flow graph

Figure 3.24: Example for an information leak through exceptions

entry

4 6 3 9

7 10 12

data dep.

control dep.

Figure 3.25: program dependence graph for the example in Figure 3.24 – the
path from the high access in line 3 to 12 is highlighted in bold

Figure 3.24a shows an example for information flow that solely occurs
because of implicit exceptions. The control-flow graph can be seen in
Figure 3.24b and the program dependence graph in Figure 3.25.
With the assumption that the return values of inputPIN and inputLOW are
not statically determinable, the program in Figure 3.24a has a control-flow
graph like the one depicted in Figure 3.24b: In particular, this control-flow
graph has a control-flow edge from line 10 to the exit node since the field
access in line 10 may lead to a crash if a is null. If it fails, line 12 is not
executed because the program crashes with a NullPointerException. This
means that the value of secret influences whether line 12 is executed or
not.
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Consequently, the program dependence graph contains a control depend-
ency from line 9 to line 12 that, together with the data dependency from
line 3 to 9, constitutes a path from line 3 to line 12.
The example in Figure 3.24 shows that exceptions can induce a significant
amount of additional control-flow and, thus, additional control depend-
encies. The control-flow from line 10 to the exit for example induces
control-dependencies both from line 10 to 12 and from 9 to 12. If there
were statements after line 12, then all these statements would also be
control-dependent on both 9 and 10.
However, assume that inputLOW is never null. Then a cannot be null and
therefore the program cannot crash. If static analysis cannot prove that
inputLOW is never null, then it will report a false alarm. Therefore it can
be beneficial to perform additional analyses that enable to safely rule
out control-flow due to exceptions, e.g. by proving that certain pointer
variables cannot be null.
Joana performs an analysis that rules out impossible null pointer excep-
tions, both intraprocedurally and interprocedurally. Its capabilities are
illustrated in Figure 3.26:

• Since it is flow-sensitive with respect to a!=null, it finds out that the
field access in line 10 is safe.

• Moreover, it can detect that accesses such as the one in line 12 are
safe because the pointer variable is guaranteed to be initialized.

• It also is able to follow references passed as parameters to methods.
In particular, it tracks whether any of them may be null. Hence,
the analysis can find out that line 17 is safe. However, it is still
conservative enough to detect that accesses such as line 18 is not safe.

Details about Joana’s null pointer analysis can be found in the dissertation
of Graf [78].
Apart from that, within the scope of the RS3 project11, we also integrated
an analysis to rule out exceptions due to out-of-bounds array accesses. I
will briefly go into that in section 4.3.

11I will introduce and explain RS3 in chapter 4.
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1 class A {int x;}
2 void foo() {
3 int benign = inputLOW();
4 A a = null;
5 A b = new A();
6 if (benign > 1742) {
7 a = new A();
8 }
9 if (a != null) {

10 a.x = 42;
11 }
12 b.x = 42;
13 bar(b);
14 baz(b);
15 baz(null);
16 }
17 void bar(A a) {a.x = 42;}
18 void baz(A x) {a.x = 42;}

Figure 3.26: The capabilities of Joana’s null pointer analysis

3.4.4 Objects

For static information flow analysis, objects pose a number of challenges:

• They usually have fields through which information can flow. An
analysis that distinguishes between fields can be more precise than
an analysis that does not. The ability to differentiate between two
different fields of the same objects is also called field-sensitivity.

• In Java, objects can be aliased which means that the same location
in memory can be referenced by different access paths. Information
flow analysis has to take aliasing into account in order to ensure that
all information flows can be detected.

Figure 3.27 shows two example that illustrate these challenges. In Fig-
ure 3.27a we see a small program that stores high and low data within
the same object, but in different fields. Hence, the print-statement in line
8 does not reveal high data. Figure 3.27b shows why it is important to
handle aliasing properly: The print statement in line 10 obviously leaks
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the secret that was just stored in a1.x. Since after line 6, a1 and a3 refer to
the same object, line 14 is illegal as well. In contrast, line 12 does not leak
secret information since a1 and a2 refer to different objects and therefore
line 8 does not influence the value of a2.x.
Joana handles all the examples shown in Figure 3.27 properly by carefully
incorporating objects into its PDG representation. The full details can be
found in the dissertations of Hammer [86] and Graf [78].

3.4.4.1 Heap Dependencies

Central to this approach is the notion of heap dependencies that can be
defined with the help of points-to analysis. I have already explained the
basic intuition behind points-to analysis in subsection 3.4.2 and will go a
bit deeper into it in subsubsection 3.4.4.3.
Heap dependencies can occur between statements that store to or read
from the heap. A statement s2 is called heap-dependent on a statement s1
if s2 may use a heap location that s1 may have defined. For example, a

1 class A {int x; int y}
2 void foo() {
3 A a = new A();
4 a.y = 0;
5 int high = inputPIN();
6 a.x = high;
7 int low = a.y;
8 print(low); // OK
9 }

(a) fields

1 class A {int x;}
2 void bar() {
3 A a1 = new A();
4 A a2 = new A();
5 a2.x = 0;
6 A a3 = a1;
7 int high = inputPIN();
8 a1.x = high;
9 int out1 = a1.x;

10 print(out1); // ILLEGAL
11 int out2 = a2.x;
12 print(out2); // OK
13 int out3 = a3.x;
14 print(out3); // ILLEGAL
15 }

(b) aliasing

Figure 3.27: Two small example programs that illustrate aspects of objects that
need to be handled properly by a static information flow analysis
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statement y = a. f is heap-dependent on a statement b.g = z, if the fields f
and g are the same and if a and b may point to the same object.
For illustration, consider Figure 3.28 and Figure 3.29, respectively.
Figure 3.28 shows the data dependency graph of the code example in
Figure 3.27a. The statement low = a.y is heap-dependent on a.y = 0 since
the former reads from the same heap location that a.y = 0 has written
to. Also note that there is no heap dependency between the statements
from a.x = high to low = a.y. Although they both access the object that is
pointed to by a, they refer to different primitive fields within a. In Java, if
an object has two fields of primitive type12 with different names, they are
known to reside in different memory locations.
Another example can be seen in Figure 3.29, which shows the data de-
pendency graph of the code example in Figure 3.27b.
This example shows three heap dependencies. Most notably, the statement
out3 = a3.x is heap-dependent on a1.x = high. This is because the points-to
sets of a1 and a3 coincide and therefore have a non-empty intersection.
Hence, we conclude that a3.x in out3 = a3.x may refer to the same heap
location as a1.x in a1.x = high.
Note that the data dependency graphs in Figure 3.28 and Figure 3.29
are simplified. In fact, Joana represents field access not only by a single
node but by multiple nodes. Mainly this is done to be able to distinguish
between different information flow caused by field accesses. For example,
the operation that reads an object’s field’s value from the heap is represented

a = new A()

a.y = 0

low = a.y

print(low)

high = inputPIN()

a.x = high

✗
no heap

dependency

data dependency
heap dependency

Figure 3.28: Data dependency graph of Figure 3.27a

12The term primitive type is used in Java for non-object types like int, double, char or
boolean.
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a2 = new A()

a2.x = 0

out2 = a2.x

print(out2)

high = inputPIN()

a1 = new A()

a1.x = high

out1 = a1.x

print(out1)

a3 = a1

out3 = a3.x

print(out3)

data dependency
heap dependency

Figure 3.29: Data dependency graph of Figure 3.27b

by a structure as depicted in Figure 3.30. This structure consists of four
nodes: One node for the actual instruction, two nodes for the base object
and the field, respectively, and an additional artificial exit node. Such a
representation makes it possible to distinguish between three kinds of
information flow: For one, there are data dependencies from the base object
and the field to the actual instruction (the instruction uses both the base
object and the field to read its value). Secondly, a data-heap dependency to
the field node represents information flow through the heap. And last but
not least, the field access operation may fail because the base object is null.

base v2
3

field-get (v1 = v2.f)

dd (v2) dh (f)

dd (v1)

dd ddce

ce

v1 = v2.f
1

field A.f
2

exit
4

ce

cd cd

Figure 3.30: Joana’s PDG node structures corresponding to the operation that
reads an object’s field’s value from the heap (taken from [78, Figure
2.31])
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1 void foo() {
2 ...
3 bar(a);
4 ...
5 }
6 void bar(A a) {
7 int high = inputPIN();
8 a.x = high;
9 }

(a) exemplified code snippet

formal-in a

formal-out
field x

high = inputPIN()

a.x = high

actual-in a

actual-out a
field x

data dependency
heap dependency
parameter structure
parameter-in /-out

(b) relevant section of the PDG of the code in a

Figure 3.31: How Joana incorporates objects into its parameter passing structures

Only the base object and the exit node are involved in this exceptional
information flow.

3.4.4.2 Propagating Heap Access Across Procedures

In order to also model field accesses across procedural boundaries, Joana
incorporates them in the structures that represent interprocedural para-
meter passing. For every method m, additional formal parameter nodes
represent the field accesses performed by m or by any method called directly
or indirectly by m.
For this, Joana performs an interprocedural side-effect analysis: For each
method, all its field accesses are collected and summarized as formal
parameter nodes: Each of these additional parameter nodes represents
read or write access to a set of heap locations. Moreover, Joana relates
parameter nodes by parameter-structure edges: Roughly, parameter node
p is connected to a parameter node p′, if p′ represents a field of p. More
technically, parameter node p is connected to a parameter node p′ if the
heap locations of p′ contain a field that can be obtained by dereferencing
an object represented by p.
Consider Figure 3.31 for a simple example: Method bar writes the field x of
its parameter a. Hence, bar has a formal-out parameter node for the field
a.x. This node is propagated to callers, so for each of a’s call sites, there is
an actual-out parameter node corresponding to the formal-out parameter
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node for a.x. The formal-in node for bar’s parameter a is connected to the
formal-out node for a.x, since the latter represents accesses to the field x of
a.

3.4.4.3 Points-to Analysis

For the remainder of this section, I take a closer look at points-to analysis,
which is not only a tool for constructing precise call graphs but also a key
ingredient for analyzing information flows across the heap.
Points-to analysis as used by Joana is not a single, fully-determined
analysis but rather a family of possible concrete points-to analyses where
various aspects can be configured. Every choice has consequences with
respect to the Joana’s precision and runtime performance. Hence, the
choice of points-to analysis is important for practical applications of Joana
and deserve explanation. Particularly, I will illustrate that for demanding
analysis clients such as information flow analysis, there is no perfect choice
of points-to analysis.

Abstractions As I already mentioned in subsubsection 3.4.2.3, points-to
analysis is concerned with the computation of points-to graphs, which
are one-to-many relations between abstractions of pointer variables and
abstraction of concrete object instances. These abstractions can be thought
of as some kind of description generated from the static information
available in the program’s code.
Consider as an example Figure 3.32: Since n is a parameter, potentially
infinite List objects are created in the loop. A common approach for
points-to analyses is to represent all these objects by one abstract instance,
described by something like “any instance of List that is instantiated in
line 10”. Furthermore, the potentially infinitely many incarnations of the
local pointer variable pr are represented by one abstract pointer variable,
described by something like “the pointer variable pr at any point in the
method List::create”.

Sensitivities Like all static analyses, points-to analyses are subject to
several precision trade-offs. In the following, I look more closely at some
of them.
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1 class List {
2 int d;
3 List prev;
4 }

5 class Foo {
6 List create(int n) {
7 List cur = null;
8 for (int i = 0; i < n; i++) {
9 List pr = cur;

10 cur = new List();
11 cur.d = i;
12 cur.prev = pr;
13 }
14 return cur;
15 }
16 }

Figure 3.32: A code snippet that illustrates the abstractions in points-to analysis

Flow-sensitivity Recall the general descriptions in section 3.1: A flow-
sensitive points-to analysis takes into account the order of statements,
whereas a flow-insensitive points-to analysis does not. Flow-insensitive
points-to analyses usually compute one global points-to graph for the
whole program, whereas flow-sensitive points-to analyses result in a
separate points-to graph for each statement.
Figure 3.33 shows an example which highlights the effect of flow-sensitivity
in points-to analysis: We see two code snippets there which are identical
up to statement order. Flow-insensitive points-to analysis computes the
same points-to graphs for both of them, whereas flow-sensitive analysis
results in different points-to graphs.
Joana employs flow-insensitive points-to analysis. Some of the resulting
precision loss is recovered by using Static single assignment form (SSA) [47,
38, 42], an intermediate representation which is widely used in compilers
and program analysis tools. Specifically, it is employed by WALA and
Joana which is why I want to describe it briefly in the following. The
key property of SSA form is that every variable is assigned to at most
once. This simplifies some program analyses. For example, the reaching
definitions analysis described before becomes simpler because definitions
do not need to be deleted anymore.
Every program can be transformed into SSA form. This transformation is
usually performed on the given program’s control-flow graph. The idea
is to introduce a separate copy for each definition of a variable. At join
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a = new A();
b = new A();
a = b;
c = a;

(a)

a = new A();
b = new A();
c = a;
a = b;

(b)

a

b

c

A@1

A@2

(c)

a

b

c

A@1

A@2

(d)

a

b

c

A@1

A@2

(e)

Figure 3.33: Two code snippets (upper part) and their points-to graphs (lower
part) – c and d show the flow-sensitive points-to graphs at the end of
the code in a and b, respectively. The points-graph in e results from
flow-insensitive points-to analyses of both snippets.

x==5

y = 7 y = 18

print(y)

yes no x==5

y1 = 7 y2 = 18

y3 = Φ(y1,y2)
print(y3)

yes no

Figure 3.34: Example showing a simple program and its SSA form

points, where several control-flow paths meet, special statements called
Φ functions have to be inserted. An easy example is given in Figure 3.34:
The statement y3 = Φ(y1, y2) means that y3 is either y1 or y2, depending
on which control-flow path was taken before. Figure 3.35 shows the
control-flow graph of the running example in SSA form. At node 9, three Φ
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statements13 have to be inserted. For simplicity, I allow all these statements
to be contained in the same basic block and assume that they are executed
at the beginning of each loop iteration, just before the loop predicate is
evaluated.
Consider Figure 3.36 for an example of how SSA form can affect points-to
precision. It shows the code snippets of Figure 3.33 in SSA form and their
flow-insensitive points-to graphs. It can be seen that the points-to graphs

entry

1: read(n)

2: n <= 1 5: a1 = 0

3: print(n) 6: b1 = 1

7: c1 = a1 + b1

8: i1 = 0

15: print(c3)

9: i3 = Φ(i1,i2)
a3 = Φ(a1,a2)
b3 = Φ(b1,b2)
c3 = Φ(c1,c2)
i3 < n

10: a2 = b3

11: b2 = c3

12: c2 = a3 + b3

exit 13: i2 = i3 + 1

no

yes

yesno

Figure 3.35: The control-flow graph from Figure 3.3 in SSA form

13I use the symbol Φ here to be consistent with the literature. This is not to be confused
with the correspondence function for interprocedural control-flow graphs.

102



3.4 Joana: PDG-based Information Flow Control for Java

differ and are almost the same as the flow-sensitive graphs depicted in
Figure 3.33c and Figure 3.33d, respectively. Due to SSA form, it is made
explicit which definition of a is used in the last two lines. Since there are
two local variables for a now (one for each definition), there are also two
points-to sets.

Equality-Based vs. Subset-Based Another precision trade-off for
points-to analyses is whether they are equality-based [159] or subset-based
[16]. Equality-based points-to analyses do not take into account the
direction of assignments, whereas subset-based points-to analyses do.
An example for this can be found in Figure 3.37. The two code snippets
only differ in whether b is assigned to a or vice versa. Since subset-based
points-to analysis is sensitive to this difference, it produces two different
points-to graphs, whereas equality-based points-to analysis produces the

a1 = new A();
b = new A();
a2 = b;
c = a2;

(a)

a1 = new A();
b = new A();
c = a1;
a2 = b;

(b)

a1

a2

b

c

A@1

A@2

(c)

a1

a2

b

c

A@1

A@2

(d)

Figure 3.36: Effect of SSA form on flow-insensitive points-to analysis – The upper
part shows the code snippets from Figure 3.33 in SSA form and the
lower part the respective flow-insensitive points-to graph
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same points-to graph for both snippets. Joana uses subset-based points-to
analyses.

a = new A();
b = new A();
a = b;

(a)

a = new A();
b = new A();
b = a;

(b)

a

b

A@1

A@2
(c)

a

b

A@1

A@2
(d)

a

b

A@1

A@2
(e)

Figure 3.37: Subset-based (c, d) vs. equality-based (e) points-to analysis

Context-Sensitivity Finally, I want to consider the effect of context-
sensitivity on points-to analyses and their client analyses, specifically on
the heap dependency graph construction performed by Joana.
As already explained generally in section 3.1, a context-sensitive analysis
not only analyzes the individual statements of a program but also takes
into account their execution context14. For points-to analyses, the execution
context can include

• (a finite portion of) the runtime stack just before the execution (k-CFA
[155])

• the instance on which the method was called which contains the
statement (object-sensitivity [125])

• the instance on which the method was called which contains the
statement combined with the combination of the values of object-
valued parameters (cartesian product algorithm(CPA) [8])

14Note that context-sensitive points-to analysis is usually not fully context-sensitive. This
can be compared to the call string approach subsubsection 3.2.2.2 with limited stack depth.
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Usually, the context information is incorporated in the abstract descriptions
of pointers. The kind of used context information can have a profound
effect on client analyses, especially on Joana’s PDG construction algorithm.

This is illustrated by the example programs in Figure 3.38. Both programs
are secure, since the value they print is not affected by the secret input.
Let us first consider Figure 3.38a in more detail. If Joana analyzes this
program with context-insensitive analysis, it yields a heap dependency
graph like depicted in Figure 3.39a. This is caused by the fact that (a) the
points-to analysis performed by Joana is flow-insensitive, (b) after side-
effect analysis is performed for each method, the same access summary is
propagated to the callees without adapting it to the respective call site and

1 class A {
2 int x;
3
4
5
6 }
7 class CM1 {
8 void foo(int high) {
9 A a1 = new A(); // o1

10 a1.x = high;
11 A a2 = new A(); // o2
12 a2.x = 0;
13 modify(a1);
14 modify(a2);
15 int low = a2.x;
16 println(low);
17 }
18 void modify(A a) {
19 a.x++;
20 }
21 }

(a)

1 class A {
2 int x;
3 void modify() {
4 a.x++;
5 }
6 }
7 class CM2 {
8 void foo(int high) {
9 A a1 = new A(); // o1

10 a1.x = high;
11 A a2 = new A(); // o2
12 a2.x = 0;
13 A a = random()>0.5?a1:a2;
14 a.modify();
15 int low = a2.x;
16 println(low);
17 }
18
19
20
21

(b)

Figure 3.38: Two example programs showing the effect of context-sensitivity in
points-to analysis on information flow analysis
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a1.x = high

a2.x = 0

call
modify

a
x
in

x
out

call
modify

a
x
in

x
out

low = a2.x
(a) context-insensitive points-to

a1.x = high

a2.x = 0

call
modify

a
x
in

x
out

call
modify

a
x
in

x
out

low = a2.x
(b) 1-CFA

Figure 3.39: Relevant section of the heap dependency graph of Figure 3.38a with
different pointer analyses

(c) with context-insensitive points-to analysis, the parameter a of method
modify is described by the same abstract pointer, regardless of the call site.
Since both o1 and o2 may be passed to modify, a may point to both of them.
Hence, according to the points-to information, the field access in line 19
may access both o1.x and o2.x. This information is propagated to both
call sites of modify and, based on this information, Joana adds a heap
dependency: one from line 10 to the actual-in node for a.x at the call in
line 14 and one from the actual-out node for a.x at the call in line 13 to line
15. This constitutes a PDG path from line 10 to 15.
In contrast, such a mix-up does not occur when Joana analyzes the example
with 1-CFA. Here, a heap dependency graph such as the one depicted
in Figure 3.39b is obtained. The reason is that 1-CFA uses two different
abstract pointers for the parameter a of modify, one for each call site. This
way, both calls can be treated as if they called different methods, which
each operate exclusively on o1 and o2, respectively. In effect, the access
summaries become more precise, Joana does not add the spurious heap
dependencies, so that line 10 and line 15 are not connected via heap
dependencies. Note that object-sensitive points-to analysis yields the same
result as context-insensitive points-to because modify is only called on one
object.
However, there are also examples where no k-CFA helps: Such an example
is shown in Figure 3.38b. Again, this program is secure as it always prints
0, regardless of the high value.
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a1.x = high

a2.x = 0

call
modify

a
(o1,o2)

x
(o1.x,o2.x)

in

x
(o1.x,o2.x)

out

low = a2.x
(a) context-insensitive points-to

a1.x = high

a2.x = 0

call
modify

a
(o1,o2)

x
(o1.x)
out

x
(o2.x)

in

x
(o1.x)

in

x
(o2.x)
out

low = a2.x
(b) object-sensitive points-to

Figure 3.40: Relevant section of the heap dependency graph of Figure 3.38b with
different pointer analyses

As the return value of random() cannot be statically determined, the points-
to set of a contains both o1 and o2, with any points-to analysis. Hence both
o1 and o2 may be the receiver object of the call in line 14. Both context-
insensitive points-to and k-CFA merge o1 and o2 into the points-to set of the
this pointer in modify. In particular k-CFA uses only one abstract pointer
for this, since modify only has one call site. This leads to multiple spurious
heap dependencies and a false alarm, as can be seen in Figure 3.40a.
In contrast, object-sensitive points-to analysis uses two different abstract
pointers <o1,this> and <o2,this> for this and can distinguish between the
call on o1 and the call on o2. The points-to set of <o1,this> only contains o1

and the points-to set of <o2,this> only contains <o2,this>.
Technically, Joana treats o1::modify and o2::modify as two different meth-
ods. Hence, it also computes two distinct access summaries that are
both propagated to the only call site. In effect, Joana is able to keep the
accesses on o1 and o2 separate. The heap dependency graph, which is
shown in Figure 3.40b, does not contain the spurious heap dependencies
of Figure 3.40a and hence also not the unnecessary heap dependency path.
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1 class A {
2 B b;
3 void init(int x) {
4 B b = new B();
5 // <o1::init, o3>,
6 // <o2::init, o3>
7 b.x = x;
8 this.b = b;
9 }

10 }
11 class B {
12 int x;
13 }

13 class C {
14 void foo(int high) {
15 A a1 = new A(); // o1
16 A a2 = new A(); // o2
17 A a = random()>0.5?a1:a2;
18 a.init(high);
19 B b = a2.b;
20 int low = b.x;
21 print(low);
22 }
23
24 }

Figure 3.41: Effects of a context-sensitive heap model on Joana’s PDG construction

Additional context information can not only improve the representation of
abstract pointers, but also of abstract instances. A context-sensitive points-
to analysis that incorporates the context information in its representation
of abstract instances is said to employ a context-sensitive heap model. With a
context-sensitive heap model, more instances can be distinguished, which
again can be beneficial for client analyses like Joana’s PDG construction,
especially when dealing with nested object structures.
Consider the example in Figure 3.41. We assume that Joana uses object-
sensitive points-to analysis with a context-sensitive heap model. Because
of object-sensitive abstract pointers, the two possible calls of A::init in
line 18 are treated as calls to two different methods, o1::init and o2::init.
This additional context information is used to split up the creation site of B
in A::init. In o1::init, the local variable b points to <o1::init, o3> and in
o2::init, it points to <o2::init, o3>. Hence the write accesses to b.x in line
7 can be separated and Joana is able to conclude that the heap location
accessed in line 20 does not contain high information.
The examples I just presented not only show that context-sensitivity can
have a positive effect on Joana’s precision but also that there is no perfect
choice of points-to analysis. Indeed, Figure 3.38a is an example that
profits from the use of 1-CFA, whereas with object-sensitive points-to,
Joana reports a false alarm. In contrast, Joana can verify the security
of Figure 3.38b only with object-sensitive points-to, whereas no k-CFA
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provides enough context information to eliminate false alarms. Figure 3.41
illustrates the same phenomenon for context-sensitive heap models: Joana
does not report an illegal flow with object-sensitive points-to but no k-CFA
is sufficient for that. With a slight variation of Figure 3.41, we yield an
example analogous to Figure 3.38a whose security can be proven with
1-CFA, while object-sensitivity has no positive effect in comparison to
context-insensitive points-to.

Performance Impact of Points-to Analysis The examples also give an
idea of another important effect of the choice of points-to analysis, namely
the effect on the runtime performance of Joana. In my explanation of the
examples, I mentioned two important aspects of Joana’s modelling of
objects and handling of points-to analysis:

• Joana implements context-sensitivity in points-to analysis by treating
a method with different contexts as two different methods. That is, if
a method is analyzed in multiple points-to contexts, multiple copies
of it occur in the call graph and in Joana’s PDG.

• Joanaperforms an analysis of memory access for each method in each
points-to context and propagates summaries of these field accesses
from callee to caller, in order to construct the heap dependency graph.
These summaries are not only propagated to the direct, but also to
indirect callers. Hence, every procedure dependency graph contains
information about every field access performed by one of its direct
or indirect callers.

These two aspects can cause a substantial amount of PDG nodes repres-
enting field accesses, in particular at parameter nodes at call sites. For
example, this may lead to a significant rise in the memory and runtime
performance of summary edge computation.
Therefore, the choice of the points-to analysis and how Joana incorpor-
ates points-to information into its structures plays an important role for
applications such as those presented in chapter 3. For example, the case
study described in section 4.7 could only be verified with object-sensitive
points-to, and the PDG construction times differed significantly between
different choices of points-to analysis. I will discuss this in section 4.7.
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Listen, do you want to know a secret?
The Beatles 4

Applications of Joana to
Software Security

In this chapter, I report on several applications of Joanawithin the scope
of the Reliably Secure Software Systems priority program (RS3) that ran
from 2010 to 2017 and was funded by the German Research Foundation
(DFG). In particular, I will focus on the contributions of the programming
paradigms group of Prof. Dr.-Ing Gregor Snelting at KIT.
The chapter is organized as follows. In section 4.1 I give a general
introduction into the RS3 project and its motivations. After that, I describe
various collaborations with other groups of RS3. These collaborations can
be generally split into three categories:

• RS3 consisted of several sub-projects – the programming paradigms
group was part of the sub-project Information Flow Control for mobile
components. I describe this project and its contributions in section 4.2.

• Within RS3, three reference scenarios were developed. They served
as real-world examples where the several research groups who
participated in RS3 [3] could apply and combine their results. Our
group participated in two of the three reference scenarios:

– In section 4.3, I describe the Security in E-Voting scenario [41] and
how Joanawas combined with an interactive theorem prover
to prove certain cryptographic properties of a prototypical
electronic voting system.

– In section 4.4, I describe the reference scenario Software Security
for Mobile Devices [20] and particularly how Joanawas extended
to show information flow properties of Android applications.
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• In addition to such structural umbrellas like the reference scen-
arios, RS3 also fostered other collaborations of the several research
groups that were part of it. Our group participated in four such
collaborations:

– We took part in the development of the RS3 Information Flow Lan-
guage (RIFL), a language that makes it possible to specify security
requirements in a tool-independent, language-independent and
machine-readable way. I describe RIFL and Joana’s support for
it in section 4.5.

– As an application of RIFL, several RS3 research groups de-
veloped ifspec, a benchmark suite for information flow security.
Together with two other tools, Joana and its Android variant
Jodroid can be evaluated using ifspec. I go into the details of
ifspec in section 4.6.

– In section 4.7, I report on the SHRIFT approach, which shows
how a static information flow control tool like Joana can be
applied to improve the performance, precision and thus the
usability of system-wide usage control.

– Last but not least in section 4.8 I shortly report on a collaboration
with the Application-oriented Formal Verification group at KIT that
presents an approach to the modular security verification of
component-based systems in which Joanawas used to lower
the burden for a first-order theorem prover.

4.1 General Description and Motivation of RS3

In this subsection, I give an overview over the motivation, goals and
structure of the RS3 priority program. This overview is based on the
descriptions that were given on the website [6] of RS3 and on excerpts of
the program’s proposal, which also can be found on its website [4, 2].
The main thesis of RS3 was that there is a need for complementing
traditional approaches to IT security in order to give reliable security
guarantees for complex software systems.

RS3 In classical IT security approaches, mechanisms like authentication,
cryptographic protocols are used to ensure that only trusted entities (e.g.
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programs) may perform actions in a given system. Trust is usually provided
by some form of certificate that uses cryptographic signatures to prove the
given entity’s identity and integrity. Additionally, access control ensures
that a given entity may only perform allowed actions.
Together, these techniques create a zone that is to a great extent protected
from unknown and potentially malicious code. However, even with such
a zone it remains unclear what guarantees can be given with respect to
security. Once an entity has entered the trusted zone, it may perform
all allowed actions. For example, it may combine these actions to do
harm or to disclose information which are not supposed to be disclosed.
In consequence, trust-based and mechanism-oriented approaches cannot
protect from malicious entities that are falsely trusted.
Therefore, such approaches need to be complemented by property-oriented
solutions: Such solutions concentrate on (a) formalizing the security re-
quirements of a given system in the form of properties and (b) providing
methods for verifying that the given system enjoys these properties.
Focusing on properties and their verification offers a number of advantages:
Firstly, security properties can be rigorously analyzed (e.g. for contradic-
tions). Moreover, precise and well-defined security guarantees can be
given if a system can be rigorously shown to satisfy a given property.
Therefore, the main goal of RS3 was to develop concepts and techniques
that enable trustworthy certification of system-wide, technical security
requirements and which adequately respect the semantics of programs.
In order to achieve this goal, RS3 was driven by three guiding themes:

1. the development of precisely defined security properties; such proper-
ties enable to formalize and hence reason about security, requirements for
a given system, just like it is common for functional requirements.

2. the development of program analysis methods and tools for the verific-
ation of security properties; ideally, these techniques are sound, scalable
and usable, and

3. the development of concepts for understanding and certifying security
aspects in complex software systems.
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4.2 The Sub-Project “Information Flow Control
for Mobile Components”

Information Flow Control For Mobile Components (IFC4MC) was a sub-project
within RS3 that comprised the programming paradigms group at KIT
and the Software Construction and Verification group at the university of
Münster.
I focus on the KIT side of the projects. From our point of view, IFC4MC
was concerned with three main topics:

1. information flow properties that are suitable for modern program
structures like concurrent programs

2. enforcement of these properties using program dependence graphs

3. modularity of PDG-based program analyses

In the following, I give an overview of the achievements in the first two
items. The first two items were first tackled by Giffhorn [65, 66]. The third
item is considered in detail in the dissertation of Graf [78].

4.2.1 Information Flow Properties for Concurrent
Programs

The security properties that we were mainly concerned with are non-
interference-like. Generally, non-interference-like properties demand that
high input does not influence low-observable program behavior. For
sequential and deterministic batch-like programs, this essentially means
that if the program is applied to two states that only differ in high variables,
the result states also only differ in high variables.
However, this is insufficient for advanced programming language features
like concurrency. In contrast to sequential programs, concurrent, or multi-
threaded programs are composed of multiple threads, sub-programs that run
simultaneously and may or may not be executed on multiple processors.
A scheduler periodically distributes threads to the available processors.
Consequently, if no particular scheduler is assumed, concurrent programs
have to be considered as non-deterministic in the sense that a given input
may lead to multiple possible program behaviors. This has to be accounted
for when designing appropriate security properties.
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Figure 4.1a and Figure 4.1b show examples that illustrate different types
of possible information leaks in concurrent programs.
Figure 4.1a contains one simple explicit (A) and one simple implicit (B)
leak. These two types of information flow also can occur in sequential
programs. The example also contains a third leak (C) that can also be
considered an explicit information flow but crosses thread borders: It may
occur since statement (D) may be executed by thread t1 before the main
threads executes statement (C).
Another type of leak is shown in Figure 4.1b. This example neither contains
an explicit nor an implicit information leak. However, there are two output
statements which may be observed by a low attacker and whose execution
order may reveal something about high data: Observe that t2 is delayed
by a loop whose execution time directly depends on the high input pin.
Hence, if we assume a scheduler that after each step chooses the next active
thread by fair dice roll, then the larger the pin is, the more likely it is that
t1 executes its output statement before t2 does.
The notion that captures such considerations is probabilistic non-interference.
The idea here is to consider the probability distribution of possible program
behaviors. Probabilistic non-interference then demands that if two inputs

main:
pin = input(HIGH)
spawn t1
output(LOW, 42 * pin + 17) (A)
if (pin > 0) {
output(LOW, pin) (B)

}
output(LOW, x) (C)

t1:
x = pin (D)

(a)

main:
spawn t1
pin = input(HIGH)
while (pin > 0) {
pin--

}
spawn t2

t1: output(LOW, 0)
t2: output(LOW, 1)

(b)

Figure 4.1: Examples for different types of leaks that can occur in concurrent
programs: a shows explicit information flows within (A) and across
(C,D) thread borders and an implicit information flow (B); b shows a
truly probabilistic leak: the larger the value of pin the more likely it is
that 0 is output before 1

115



4 Applications of Joana to Software Security

only differ in high parts, then the probabilities of the resulting low-
observable program behavior is the same.
Let Tr be the set of program behaviors, also called traces, and I the set
of inputs. A trace can be thought of to be a sequence of operations that
accurately describes what a program does and how the memory contents
develop. Some operations are used for input and output. We assume that
input and output operations (also called input events and output events,
respectively) use different channels for high and low observers.
An input i ∈ I leads to multiple possible traces t ∈ Tr(i) ⊆ Tr. Each of these
traces has an occurrence probability15 Pi(t).
An attacker does not see the full trace but only its so-called low-observable
part. This is modeled by a function EL : Tr→ Tr that strips off the parts of
a trace that cannot be observed by a low attacker, like output events on
high channels or high parts of the memory.
The attacker also only sees some part of the input, namely those input
events that operate on the low channel. To model this, we overload EL to
EL : I→ I that strips off high parts of inputs.
Hence, if program P is run with input i and exhibits program behavior
t, then a low observer only sees the low part iL = EL(i) of that input and
observes that P exhibits tL = EL(t). From this, they can conclude that the
input must have been some i′ ∈ E−1

L (iL) and that some t′ ∈ E−1
L (tL) must

have been executed.
Now, probabilistic non-interference aims to ensure that the attacker cannot
learn anything from that. The argument goes as follows: Assume that
the attacker knows the probabilities Pi′(E−1

L (tL)) for all i′ ∈ E−1
L (iL) and

also assume that these probabilities differ. In other words, there are
i0, i1 ∈ E−1

L (iL) with Pi0(E
−1
L (tL)) > Pi1(E

−1
L (tL)). Then the attacker could

conclude that it is more likely that the full input is i0 than i1. In order
to deprive the attacker of this possibility, probabilistic non-interference
demands that Pi0(E

−1
L (tL)) = Pi1(E

−1
L (tL)) for all i0, i1 ∈ E−1

L (iL).
The example in Figure 4.1b clearly violates probabilistic non-interference:
The attacker may conclude from the low output 01 that the pin was
probably large and from 10 that it was probably small.

15In general, Pi assigns probabilities to sets of traces. We assume a countable set of traces,
hence all Pi are discrete probability distributions so that Pi is fully specified by specifying it
for single traces.
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main:
spawn t1
spawn t2

t1: output(LOW, 0)
t2: output(LOW, 1)

(a)

main:
spawn t1
spawn t2
pin = input(HIGH)
while (pin > 0) {
pin--

}
t1: output(LOW, 0)
t2: output(LOW, 1)

(b)

Figure 4.2: a: An example which passes Giffhorn’s criterion but not LSOD – b:
Giffhorn’s criterion allows access to high input before the first low-
observable non-determinism occurs

Probabilistic non-interference is in general hard to verify directly as it
requires to know probability distributions of traces which is why Giffhorn
also considered sufficient criteria for it. One such criterion is low-security
observational determinism (LSOD) [169], which essentially demands that a
program only has one low-observable low-behavior for a given low-part
of the input. If LSOD holds, then the probability distributions become
very simple and probabilistic non-interference can be easily verified.
Central to LSOD is the observation that non-determinism manifests itself
in the form of conflicts. Two operations form a conflict if they may be
executed in multiple orders. For instance, if two statements s1 and s2 are
composed concurrently then the scheduler may decide to run either of
them first so that both the execution orders s1, s2 and s2, s1 are possible.
Apart from the absence of explicit and implicit leaks, LSOD also demands
that there is no conflict of low-observable events. For instance, the example
Figure 4.1b is clearly rejected by LSOD since it contains two conflicting
low-output statements.
One particularly pleasant property of LSOD is that it is scheduler-
independent. This means that no assumptions on the scheduler are necessary
for probabilistic non-interference to hold. Therefore, a respective security
certificate can be re-used when changing the environment.
In his dissertation [65], Giffhorn showed that LSOD can be checked using
program dependence graphs.
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common dynamic
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Figure 4.3: Idea of the RLSOD improvement

However, LSOD is also very restrictive: It essentially forbids any low-
observable non-determinism, which is often the very motivation for
designing a system in a concurrent way in the first place. So, even a
program that does not access high data, like the one in Figure 4.2a, violates
LSOD if it contains conflicts.
This is why Giffhorn also proposed a slight improvement on LSOD. His
idea was to allow conflicts if they are not influenced by high data. One
example of this can be seen in Figure 4.2b.
In later work [40, 31], we took this as a starting point for improvements on
LSOD. The central idea here was to push the “influence sphere” of high
events on conflicts even further into the direction of conflicts. We observed
that, under some assumptions about the scheduler, more conflicts can be
considered benign. Key to this observation is the notion of common dynamic
ancestors (cda): For two statements m, n, a statement c is called common
dynamic ancestor of m and n if (a) c is a dominator for m and n, i.e. if every
control-flow path to m or n must traverse c first and (b) if c is guaranteed
to never execute concurrently to m and n. Hence, a common dynamic
ancestor of m and n is any point in the program which is guaranteed to be
executed before m and n.
Now the idea of RLSOD, which is sketched in Figure 4.3, is as follows: If c
is a common dynamic ancestor of two conflicting statements m and n, any
statement s that is guaranteed to be executed before c can only delay both
m and n but cannot determine in which order m and n are executed. Hence
s can safely be allowed to be influenced by high input. Consequently, it
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main:
pin = input(HIGH)
while (pin > 0) {
pin--

}
spawn t1
spawn t2
t1: output(LOW, 0)
t2: output(LOW, 1)

Listing 4.1: An example which passes RLSOD but not Giffhorn’s criterion

suffices to check that no statement s that lies on some control-flow path
between c and m or c and n may be influenced by high input.
As an example, consider the program in Listing 4.1: It contains a low-
observable conflict after high data is accessed, hence it is rejected by
Giffhorn’s criterion. However, this high access is guaranteed to execute
before t1 is spawned – a point in the program that is a common dynamic
ancestor of the two output statements. Such high access is allowed by
RLSOD and hence the conflict can be considered benign. As we showed in
Bischof et al. [31], this consideration works with every common dynamic
ancestor. Indeed, the RLSOD check can be specified with respect to a
function cda which assigns every two statements m, n a common dynamic
ancestor. The closer cda(m, n) is to m and n, the larger the portion of the
program on which influence of high input is allowed can be and, hence,
the more precise the check becomes.
An imprecise yet safe choice is to always use the start point of the program
as cda. With this choice of the cda function, the RLSOD check becomes
essentially Giffhorn’s criterion.

4.2.2 Modeling and Analyzing Concurrency in Program
Dependence Graphs

Basically, PDGs for multi-threaded programs can be obtained by com-
puting a PDG for each thread and connecting these sub-PDGs using
interference edges, an additional kind of edge that captures inter-thread data
dependencies.
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entry main

pin = input(HIGH) spawn t1 pin > 0

output(LOW,x)output(LOW,pin)

entry t1

x = pin

data dep.

control dep.

interference dep.

Figure 4.4: PDG of Figure 4.1a with interference edges

To illustrate this kind of dependency, consider again Figure 4.1a. The
information leak in statement (C) occurs because statement (D) may be
executed before statement (C) and therefore the high value pin is first
written into the variable x and then output to a low channel. This is a
special kind of data dependency that crosses thread borders and is called
interference dependency. The PDG of Figure 4.1a can be found in Figure 4.4.
As defined formally by Giffhorn [65, Definition 3.8], statement s2 is interfe-
rence-dependent on s1, if s2 may use a value which s1 computes and s1 and
s2 may happen in parallel. Two statements s1 and s2 may happen in parallel if
it is both possible that s1 is scheduled before s2 and that s2 is scheduled
before s1.
Due to decidability reasons, may-happen-in-parallel information must
be approximated. To yield a sound analysis, this approximation is con-
servative in the sense that the statically computed relation MHP has the
property:

s1 and s2 may happen in parallel =⇒ MHP(s1, s2)

That is, if ¬MHP(s1, s2), then only one execution order of s1 and s2 is
allowed. Conversely, however, it may be the case that MHP(s1, s2) holds
even though s1 and s2 can only occur in one particular execution order.
In his dissertation [65], Giffhorn describes a fairly sophisticated MHP
analysis that takes into account (a) definite execution orders that can be
inferred from the program’s control-flow and (b) thread creation and
joining.
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This MHP analysis can be further improved by also taking concurrency
control mechanisms like locks into account:
For example, in Java one can use synchronization on objects’ monitors, a
simple locking mechanism to achieve mutual exclusion, to ensure that for
critical sections one thread at a time can be active. Threads that are about
to enter such a critical section while another thread is active have to wait
until the active thread is finished. This way, the possible interleavings can
be restricted.
A MHP analysis that takes into account locking will consider less statements
to run in unspecified order and hence be more precise.
One static analysis formalism which can model concurrency and in partic-
ular locks is dynamic push-down networks (DPNs) [37, 118]. Roughly, DPNs
represent programs with multiple threads by a series of call stacks and are
able to model dynamic thread creation, unbounded recursion and finite
abstractions of thread-local and procedure-local state. Moreover, using tree
automata techniques, DPNs can be used to check whether a multi-threaded
program has lock-sensitive executions with given properties [63], like MHP
information. Furthermore, by iterated analysis [131], DPNs can also be
used to compute interference dependencies directly.
We combined DPNs and PDGs to remove interferences which in fact do
not occur due to locking [80]. This is especially beneficial in situations
where locking is actually used to impose definite execution orders.

4.3 Reference Scenario “Security in E-Voting”

In this section, I describe the reference scenario Security in E-Voting. This
description is based on various RS3 publications [5, 41, 115]. First, I give
a short motivation. After that, I give an overview of the contributions of
the reference scenario overall and the contributions of the programming
paradigms group in particular.

4.3.1 Motivation

In recent years, more and more elections are conducted electronically.
This includes national and municipal elections, as well as elections within
associations, societies, and companies. There are two main categories of
such systems: The first kind consists of electronic voting machines like
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recording electronic voting systems and scanners that are usually installed
in polling stations. The other kind is remote electronic voting systems that
are used by voters to vote over the internet using their own devices like
desktop computers or smart-phones.
Since elections are a critical part of democracies, it is crucial that they are
held in a way that satisfies some basic properties. Two such properties are:

Privacy The system ensures that the voters’ votes remain confidential.

Verifiability Voters have the possibility to check that their choices have
been properly counted.

In traditional elections, these properties are usually sufficiently ensured
by providing voting booths that are not observable from outside or by
making the counting public.
E-voting systems also aim for such properties and ideally, the developers
of E-Voting systems can be presumed to be benevolent. However, it is also
true that E-Voting systems are complex hardware and software systems
and as in all such systems programming errors can hardly be avoided.
Verification techniques and procedures are therefore used to ensure that
these systems enjoy particular security properties.
In this reference scenario, we consider the verification of privacy properties
of Java programs that use cryptographic operations, where the final aim is
to provide strong cryptographic guarantees on the code of a fully fledged
remote e-voting system which is designed to provide confidentiality of the
votes.

4.3.2 CVJ Framework

As a first step, Küsters, Truderung Graf and Scapin proposed the CVJ
framework for the cryptographic analysis of Java programs that use crypto-
graphic primitives [116, 114]. This framework enables existing tools that
can check non-interference properties for Java programs, but a priori cannot
deal with cryptography, to establish cryptographic indistinguishability
properties at the code level.
The CVJ framework combines techniques from program analysis and
universal composability [43, 134, 113], a well-established concept in cryp-
tography. CVJ works in two steps. The idea of the first step, which is

122



4.3 Reference Scenario “Security in E-Voting”

Figure 4.5: Visualization of the general approach employed to verify the security
of the E-Voting system [115, Figure 1]

illustrated on the left side of Figure 4.5, is to check non-interference prop-
erties for the Java program to be analyzed where cryptographic operations
such as encryption are performed within so-called ideal functionalities.
A given Java program Preal (the box on the left in Figure 4.5) that uses real
cryptographic primitives is transformed into a Java program Pideal (the
box in the middle of Figure 4.5), where the real cryptographic primitives
are replaced by idealized primitives. These idealized primitives provide
guarantees in face of unbounded adversaries and can often be formulated
without probabilistic operations. Therefore, they can be analyzed by
tools that cannot deal with security notions specific to cryptography
(probabilities, polynomially bounded adversaries). The results of the
CVJ framework imply that if Pideal is non-interferent, then the original
Java program Preal (using actual cryptographic operations) enjoys strong
cryptographic indistinguishability.
In addition to the reduction of a cryptographic verification task to an
ordinary non-interference check, the CVJ framework also consists of a
second step that is illustrated on the right side of Figure 4.5 and tackles
the problem that the systems to be analyzed are often open: They interact,
for example, with an untrusted (and unspecified) network. Analysis tools
such as Joana however can only deal with closed Java programs, in this
case the combination of the open system with one particular environment.
Therefore, the CVJ framework also provides a proof technique that en-
ables program analysis tools to verify non-interference properties of open
systems. Such an open system is non-interferent if the combination of
this system with any environment (which is closed) is non-interferent in
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Figure 4.6: Visualization of the hybrid approach

the ordinary sense. According to the CVJ framework, it is not necessary
to check ordinary non-interference for all environments, rather it suffices
to establish non-interference for a carefully designed family of environ-
ments. These environments only differ in their inputs, so that they can be
expressed as one parameterized environment (see box on right-hand side
of Figure 4.5).
Graf [78] shows that this works in particular for PDG-based tools such as
Joana.

4.3.3 The Hybrid Approach

In summary, the CVJ framework in principle enables a static analysis tool
that can verify unrestricted non-interference to perform cryptographic
analyses on programs using cryptographic primitives. However, an
automatic tool like Joana cannot be sound and completely precise at the
same time. Joana in particular may report false alarms, i.e. falsely reject a
program which is actually non-interferent.
To remedy this, Küsters et al. propose the hybrid approach [115], which
combines the strengths of automatic information-flow analysis tools with
the strengths of interactive theorem provers. This was joint work of the
groups of Küsters, Snelting and Beckert, to which I contributed the Joana
part of the verification of the case study. In our work [115], we demonstrate
the hybrid approach on a case study, a small prototypical e-voting system.
In this case study, we combined Joana with KeY [11], a theorem-prover
for Java.
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Figure 4.6 illustrates how the hybrid approach works: The task is to verify
non-interference of a given (Java-like) program and we assume that the
security of this program as-is cannot be verified using a given automatic
tool. The hybrid approach now works in two steps:

1. Additional code is added to the program which makes explicit to the
automatic tool that the falsely reported illegal flow is in fact not present.

2. It is shown that the modifications of step 1 satisfy the requirements for
a conservative extension. Apart from certain syntactical restrictions, this
means that the essential behavior of the program has not been changed by
the modification. This boils down to verifying a functional property of the
given program, a task that can be performed using an interactive theorem
prover.

For reference, I cite the definitions of extensions and conservativity here.

Definition 4.1 (Extension [115, Definition 1]). Let P = P[x⃗] be a deterministic
and closed (Jinja+16) program. An extension of P is a program P′ = P′[x⃗]
obtained from P in the following way. First, a new component M is added to P
consisting of some number of classes with the following properties:

(i) the methods and fields of the classes in M are static,

(ii) the arguments and the results of the methods of M are of primitive types,

(iii) the methods of M do not refer to classes defined in P (in particular, no methods
and fields of P are used in M),

(iv) all potential exceptions are caught inside M,

(v) all methods of M always terminate.

Second, P is extended by adding statements of the following form in arbitrary
places within methods of P:

16Jinja [105] is a java-like programming language which is equipped with a formal
semantics to make it accessible for reasoning with a theorem prover. Jinja+ [116] extends
Jinja by various features which are useful in the context of the CVJ framework.
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(a) (output to M)

(4.1) C. f (e1, . . . , en)

where C is a class in M with a (static) method f and e1, . . . , en are expressions
without side effects.

(b) (input from M)

(4.2) r = C. f (e1, . . . , en),

where C is a class in M, C. f is a (static) method with some (primitive) return
type τ, e1, . . . , en are expressions as above, and r is an expression that evaluates
without side effects to a reference of type τ. (Such an expression can, for example,
be a variable or an expression of the form o.x, where o is an object with field x.)

Definition 4.2 (Conservative extension [115, Definition 2]). An extension
P′[x⃗] of P[x⃗] is called a conservative extension of P[x⃗], if for all initial values a⃗
of high variables x⃗ the following is true in the run of P′[a⃗]: Whenever a statement
of the form (4.2) is executed, it does not change the value of r. That is, the value of
r right before the execution of the assignment coincides with the value returned
by the method call C. f (e1, . . . , en). As such, statement (4.2) is redundant.

Consider the example in Listing 4.2. We assume the security policy that
the initial value of secret must not influence the final value of pub and that
bar does not violate this policy. Then the program is secure: Although
secret is added to the result of the method foo in line 12, it actually has
no influence on it. This is because line 12 is only executed if secret==0,
but has no effect in this case. However, a static information flow tool like
Joana reports an illegal flow because it does not reason about values and
assumes that the final value of b (and therefore the final value of pub) may
be influenced by the initial value of secret. Now consider Listing 4.3. Here,
the program from Listing 4.2 has been modified in such a way that Joana
is able to verify non-interference: The value of b is saved (line 12) before it
is possibly incremented (line 13) and overwritten afterwards (line line 14).
Using a local killing definitions analysis [78], Joana is able to detect that b
is indeed overwritten in line 14 and can correctly verify that the modified
program is secure. According to the hybrid approach, it remains to be
shown that Listing 4.3 is a conservative extension of Listing 4.2. It is easy
to see that Listing 4.3 is an extension of Listing 4.2. It remains to be shown
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1 class Example {
2 static public int pub;
3 static private int a;
4 public static void main(int secret) {
5 a = 42;
6 bar(secret);
7 int b = foo(secret);
8 pub = b;
9 }

10 static int foo(int secret) {
11 int b = a;
12 if (secret==0) b+=secret;
13 return b;
14 }
15 static void bar(int secret) {
16 ...
17 }
18 }

Listing 4.2: A secure program for which Joana reports a false alarm (adapted from
[115], p. 309)

that this extension is indeed conservative. This boils down to proving that
in line 14 the value returned by M.get() equals the value of b just before
the execution of line 14. This can be done for example with an interactive
theorem prover like KeY.

4.3.4 Case Study: E-Voting Machine

Within the scope of our work [115], we demonstrated the hybrid approach
on a small prototypical e-voting machine, using Joana as automatic in-
formation flow control tool and KeY as a theorem prover for the subsequent
proof of conservativity.
We extended the program conservatively and proved a non-interference
property with Joana (and the CVJ framework). The size of the conservative
extension was 934 lines of code (LoC). The non-interference property that
Joana had to verify essentially says that the voters’ choices have no
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1 class Example {
2 static public int pub;
3 static private int a;
4 public static void main(int secret) {
5 a = 42;
6 bar(secret);
7 int b = foo(secret);
8 pub = b;
9 }

10 static int foo(int secret) {
11 int b = a;
12 M.set(b);
13 if (secret==0) b+=secret;
14 b = M.get();
15 return b;
16 }
17 static void bar(int secret) {
18 ...
19 }
20 }
21 class M {
22 static int x;
23 public static void set(int n) { x=n; }
24 public static int get() { return x; }
25 }

Listing 4.3: An extension of the program in Listing 4.2 which makes the absence of
illegal information flow explicit

influence to the low output of the system17. Joana could verify non-
interference of this program in about 18 seconds on a standard laptop
(Core i5 2.5GHz, 8GB RAM). To conduct the analysis, we wrote a small
driver program (about 60 LoC) which sets various configuration options
of Joana, initiates the PDG construction, identifies and annotates the
appropriate nodes in the PDG, and triggers the information flow analysis.

17For full details, I refer the interested reader to the original article [115].
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Apart from the adaptions to obtain the conservative extension, the further
small adaptions of the e-voting machine were necessary for Joana to verify
the system. In the following, I want to elaborate a bit on these adaptions.

1 for( int i=0; i<N; ++i ) {
2 switch( actions[i] ) {
3 case 0: // next voter votes
4 if (voterNr<numberOfVoters) {
5 int choice = secret ? choices0[voterNr]:choices1[voterNr];
6 vm.collectBallot(choice);
7 ++voterNr;
8 }
9 break;

10 [...]
11 }

Listing 4.4: A code snippet from the case study of [115] which needed to be adapted

Listing 4.4 shows a critical code snippet from the case study which needed
to be changed. The code is responsible for selecting a series of votes
according to a secret bit. It processes two arrays of votes and, depending
on secret, one of these arrays is chosen to be the array of votes that is
processed subsequently.
The problem for Joana is that it does not reason about values or array
bounds. As a consequence, it must assume that voterNr may be out of the
bounds of the arrays choices0 and choices1. This means that both branches
of the statement in line 5 may throw an ArrayIndexOutOfBoundsException.
Hence, all the program’s statements after line 5 are control-dependent on
both branches of 5.
Furthermore, both branches are control-dependent on the secret bit. As
a consequence, every statement which is executed after line 5, including
public outputs, is dependent on secret, so that Joana is not able to prove
any reasonable non-interference property.
However, the code snippet could be modified as shown in Listing 4.5.
Here, both possible choices are loaded from the two arrays in lines 5 and 6
before the actual decision is made in line 7.
Since we assume a single-threaded environment, neither choices0 nor
choices1 can change after lines 5/6, so that the code snippet in Listing 4.5
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1 for(int i=0; i<N; ++i ) {
2 switch( actions[i] ) {
3 case 0: // next voter votes
4 if (voterNr<numberOfVoters) {
5 int choice0 = choices0[voterNr];
6 int choice1 = choices1[voterNr];
7 int choice = secret ? choice0 : choice1;
8 vm.collectBallot(choice);
9 ++voterNr;

10 }
11 break;
12 [...]
13 }
14 }

Listing 4.5: A code snippet from Listing 4.4 with a small but critical modification

is equivalent to the one in Listing 4.4. Moreover, the fatal chain of
dependencies described before is prevented: Lines 5 and 6 may still throw
an ArrayIndexOutOfBoundsException but this is independent of secret. Plus,
line 7 does not throw any exception.
Listing 4.6 shows another critical code snippet that needed to be ad-
apted. The method is called only with valid values of votersChoice,
i.e. with values between 0 and numberOfCandidates - 1, where the field
numberOfCandidates coincides with votersForCandidates.length. Formally,
an exception is thrown if votersChoice is outside the desired range, but this
actually never happens for this program. Consequently, since votersChoice

is within the bounds of votesForCandidates, the array access succeeds.
For Joana, there are two problems here. Firstly, whether the exception
is thrown depends on the value votersChoice. This is a problem since

1 public int collectBallot(int votersChoice) throws InvalidVote {
2 if ( votersChoice < 0 || votersChoice >= numberOfCandidates ) {
3 throw new InvalidVote();
4 }
5 votesForCandidates[votersChoice]++;
6 }

Listing 4.6: Another critical code snippet from the E-Voting Machine case study
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votersChoice depends on the secret bit and Joana does not know here that
votersChoice is actually within bounds. Hence, as before, the program may
possibly crash dependent on the secret bit, which precludes any sensible
non-interference property. The other problem is very similar: Joana
assumes that the array access may fail and since votersChoice is considered
secret, Joanamust assume that the program may crash depending on the
secret value.
Our solutions to these problems were

1. remove lines 2 and 3; and

2. surround line 5 with a try..catch-block (with empty catch clause) which
catches all Throwables, which effectively suppresses all possible exceptions
which may occur there.

It remained to show that the method indeed never throws any exception if
called with valid values of votersChoice. This was done during the KeY
proof phase.
Apart from the two code snippets that I just discussed there were also
others which prevented Joana from showing the desired non-interference
property because of possibly invalid array accesses. This motivated us
to introduce a simple array analysis into the WALA framework18. This
analysis was implemented by a student researcher under my supervision.
It is based on the ABCD analysis by Bodík et al. [34] and can prove
at least for simple cases that array accesses are valid and that a crash
cannot happen19. It was integrated into WALA in 2016 [69] and Joana
can be configured to use it. Examples of what the analysis can and cannot
recognize can be found on Github [67, 68].

4.3.5 Spec Slicing

Within the scope of the case study, we observed in the KeY proof part
that there are situations in which a given KeY specification only covers a
small part of the program or, in other words, significant parts of the given

18In section 3.4, I mentioned that Joanamakes heavy use of WALA for analyzing Java
bytecode.

19Note that due to time constraints the analysis could not be applied to the E-Voting
reference scenario.
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program are irrelevant to the specification. KeY specifications tend to be
very complex and detailed and their proof may require a considerable
amount of manual interaction. This motivated us to develop a method to
decrease the amount of proof work that needs to be performed.

equivalent w.r.t. φ 
easier verifiable
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complex program 
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Figure 4.7: Visualization of spec slicing

We devised a general technique which we call spec slicing [41]. The idea
behind spec slicing is illustrated in Figure 4.7: If parts of the program do
not influence the final state with respect to the proof obligation, they can
be safely removed and functional verification can be performed on the
simpler program.
Verification of this simpler program can then be performed without any
loss of precision but with possibly much less effort. The identification and
removal of irrelevant program parts can be performed by an automatic
tool like Joana. We already applied this technique to the E-Voting machine
mentioned above: Parts of its implementation perform mere logging, which
does not affect the voting result and therefore does not have any influence
on the overall functional property which had to be verified. Using Joana,
we gained a simpler but equivalent program without logging, which
we verified using KeY to establish functional correctness for the whole
program.
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4.4 Reference Scenario “Software Security for
Mobile Devices”

The programming paradigms group also participated in the RS3 Reference
Scenario “Software Security for Mobile Devices” (SSMD). The goal of
this reference scenario was to develop an app store that offers apps with
security guarantees. The reference scenario combined several security
techniques developed in the scope of RS3, including static analysis with
PDGs and type systems, secure modeling and runtime enforcement. In
the following, I describe the context of the reference scenario and its main
result, the RS3 certifying app store. After that, I focus on the contributions
of the programming paradigms group. In the scope of this scenario, we
developed Jodroid, an extension of Joana with support for the specialties
of Android apps. I will describe the specifics of Jodroid and will elaborate
on the challenges which have already been addressed and also on the
challenges which remain open until this point.

4.4.1 Motivation

In today’s world, smartphones and other mobile devices are ubiquitous.
They are used to store and process a wide variety of personal and sensitive
data, including contacts, location, financial and health information and
hence can be considered security-critical infrastructure.
The most commonly used mobile operating system is Android, with a
market share of 86.6% at the end of 2019 [1] and currently over 2.8 million
apps in its app store [18]. The Android ecosystem offers a number of
security mechanisms, such as sandboxing of applications and a permission
system restricting access to critical resources. Moreover, applications
available on Google Play20 are scanned to detect malicious behavior. At
the same time, Android still has problems with security violations [162]
These commonly take the form of the application revealing the user’s
sensitive information [133] or behaving in a way that is unexpected and
harmful to the user [150].

20Google Play is Android’s native app store.
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This suggests that the security mechanisms employed in the Android
ecosystem are not sufficient for enabling security-aware end users of
Android devices to reliably enforce their personal security requirements.
The RS3 reference scenario “Software Security for Mobile Devices” aimed
to offer a solution to these security problems by proposing an app store
that provides user-definable security guarantees by integrating several of
static and dynamic program analysis and security enforcement techniques.

4.4.2 The RS3 Certifying App Store

The artifact of the SSMD scenario was the RS3 certifying app store. Its
architecture is shown in Figure 4.8. Basically, it follows a client-server
architecture.

Figure 4.8: Architecture of the RS3 certifying app store [20, Fig. 1]

The client consists of an app store app that the user can use to download the
Android applications, configure information flow policies (see Figure 4.9a)
and run and view the results of various information flow analyses (see
Figure 4.9b).
The app store integrates the different approaches of the various groups
which contributed to the reference scenario. These approaches range from
static analyses like PDGs and slicing or type systems to dynamic analyses
combined with runtime enforcement.
Joana, or more specifically its Android variant Jodroid, is integrated in
the server component: The user can specify an information flow policy
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and send an analysis request to the server. The server then computes the
app’s PDG and checks whether the given flow policy can be verified by
using a PDG-based security check. The internal format of the specification
is largely similar to the RS3 information flow language that I will consider in
section 4.5. There, I will also explain how Joana can be used to verify such
policies.

(a) client-side policy editor
(b) diagram showing the informa-

tion flows of an app

Figure 4.9: Screenshots from the client-side app store app of the RS3 certifying app
store (compare [120, Figure 1(b), Figure 1(d)] and [20, Figure 2])

4.4.3 Jodroid: Joana for Android

In the following, I describe Jodroid, an extension of Joana to support
Android apps. The following text is largely based on an earlier publica-
tion[123]. The initial version of Jodroid has been implemented within the
scope a diploma thesis under the supervision of our group [33].
The goal of extending Joana to handle Android apps poses several chal-
lenges. Among these challenges are the following:
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1. Although Android apps are developed in Java, they are not compiled
to Java bytecode but to Android’s own Dalvik bytecode.

2. Standard Java applications use a single entry point (main), but Android
apps have a multitude of possible entry points which are triggered by the
Android system throughout the execution of the app

3. Android apps employ intents, a message-passing mechanism to ex-
change data and start external apps’ components, which requires to also
analyze information flows between apps.

These challenges are not specific to Android. For example, many Java
applications with graphical user interfaces (GUI) also have multiple entry
points which handle user input. However, different frameworks require
different models specifying how these entry-points are used and Joana
has no naturally built-in mechanism to specify such models21. Similar
considerations can be made for intents: intents are comparable to other
message-passing mechanisms which are commonly found in client-server-
applications but currently Joana does not provide a general mechanism
which applies to a wide variety of message-passing mechanisms. We
therefore consider our work on extending Joana to Android as a starting
point to addressing these more general challenges.
In the following, I present the work we have already done to address the
challenges just sketched. In section subsubsection 4.4.3.1, I give a short
overview of architectural aspects of Android apps, in subsubsection 4.4.3.2,
I outline how we address the above mentioned challenges. After that, I
conclude in subsubsection 4.4.3.3 by giving an outlook on future work.

4.4.3.1 Overview of Android Applications

In the following, I briefly discuss the architecture of Android applications.
This overview is largely based on Android’s API documentation [72].
An Android application usually consists of multiple, loosely coupled
components. In the simplest case, these components can either be Activities,
Broadcast Receivers, Services or Content Providers. I now give a quick
summary of what these components do and which roles they play.

21This problem has been tackled in a bachelor’s thesis under my supervision [19].
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Figure 4.10: Illustration of how an implicit intent is delivered through the Android
system to start another activity (see [73, Figure 1]); The sending activity
[1] passes an action description, the Android system [2] selects an
appropriate receiver component and starts it [3].

• Activities: An activity is an application component that provides a
screen with which users can interact in order to do something. Each
activity is given a window in which to draw its user interface.

• Broadcast Receivers: A broadcast receiver responds to system-wide
broadcast announcements. Many broadcasts originate from the
system, but can also be initiated by arbitrary app components.
Broadcast receivers do not display a user interface. Typically, a
broadcast receiver is just a "gateway" to other components and is
intended to do a very minimal amount of work. For instance, it
might initiate a service to perform some work based on the event.

• Services: A service runs in the background to perform long-running
operations or to perform work for remote processes. It does not
provide a user interface. Another component, such as an activity,
can start the service and let it run or bind to it in order to interact
with it, using a special kind of inter-process communication.

• Content Providers: Content providers manage access to a structured
set of data. They encapsulate the data, and provide mechanisms for
defining data security. Content providers are the standard interface
that connects data in one process with code running in another
process.

Android components use intents to exchange messages with each other.
In particular, intents are used to start components. Intents can be explicit
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Figure 4.11: Overview of the architecture of Joana

or implicit. Explicit intents specify a receiver, whereas implicit intents
leave it up to the Android system and/or the user to resolve their receiver.
Figure 4.10 (taken from Android’s API documentation [73]) shows how
Android processes an implicit intent.

4.4.3.2 Approach

In this section, I explain how we address the challenges I mentioned in
subsection 4.4.3.
Dalvik front-end Figure 4.11 shows the general architecture of Joana. As
can be seen in Figure 4.11, the PDG builder of Joana only depends on
WALA’s analysis results and hence is decoupled from WALA’s front-end.
As a consequence, we only needed to adapt WALA’s front end to be able
to process Android apps. For this, we integrated the WALA front end code
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of SCanDroid [62], a security analysis tool which is also based on WALA.
This was a first step to extend Joana to handle also Android apps.
Life cycle modelling. Classic Java applications have a single entry point
and every execution of the application starts with an invocation of this
method. Clearly, this assumption is not met by Android apps: As we
already mentioned, Android apps have multiple callbacks, which may
be triggered by the user or the Android system as a reaction to certain
events. However, the order and the way these callbacks are triggered is
not arbitrary, but follows certain rules. More specifically, the components
of an Android app are driven by their life cycles. The life cycle of an activity
can be seen in Figure 4.12.

Figure 4.12: Lifecycle of an activity (see [74, Figure 1])

It is not an option to run a separate analysis for each entry point, since
there may be information flows which only occur if multiple callbacks
are executed in sequence. Listing 4.7 (adapted version of a sample from
DroidBench [61]) presents an example.
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1 public class MyActivity extends Activity {
2 static String addr =
3 "http://www.google.de/search?q=";
4 void onCreate(Bundle savedInstanceState) {
5 telephonyManager = (TelephonyManager)
6 getSystemService(
7 Context.TELEPHONY_SERVICE
8 );
9 /** retrieve secret data of telephone (source) */

10 imei = telephonyManager.getDeviceId();
11 /** extend request by secret data */
12 addr = URL.concat(imei);
13 }
14 void onStart() {
15 super.onStart();
16 try{
17 url = new URL(addr);
18 conn = (HttpURLConnection) url
19 .openConnection();
20 conn.setRequestMethod("GET");
21 conn.setDoInput(true);
22 /** send request to network (sink) */
23 conn.connect();
24 } catch(Exception ex){}
25 }
26 }

Listing 4.7: Example for an information flow across entry points

When onCreate() is executed, line 10 reads the IMEI of the phone and later,
upon the invocation of onStart(), line 23 sends the IMEI to a server on
the internet. However, such an information flow would not be detected
if onStart() and onCreate() were each analyzed in isolation, since neither
calls the other but both are called by the Android framework.
To cover such flows as well, our approach synthesizes an entry method
that simulates the Android framework by invoking all callbacks of the
given app.
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1 public class MyActivity extends Activity {
2 static String URL=
3 "http://www.google.de/search?q=";
4 void onCreate(Bundle savedInstanceState){
5 ...
6 conn.connect();
7 ...
8 }
9 void onStart() {

10 ...
11 imei = telephonyManager.getDeviceId();
12 URL = URL.concat(imei);
13 }
14 }

Listing 4.8: An example in which there is no information flow between entry points

In order to lose not too much precision, we take the life cycles of the app’s
components into account. Consider again Figure 4.12: When onCreate()

is called, either the activity has just been launched, or the app’s process
has been destroyed and re-created. In either case, onCreate() is called on a
fresh heap which cannot have been influenced by any other of the activity’s
entry points. Thus, it is safe to assume that none of the activity’s entry
points is called before onCreate. An example of how this assumption can
be exploited to rule out impossible information flows and thus leads to
increased precision is shown in Listing 4.8: In this variant of Listing 4.7,
the source is contained in onStart() and the sink is contained in onCreate().
Since onCreate is never executed after onStart, the sink cannot be influenced
by the source.

Intents. Our model also provides basic support for intents.
In order to incorporate the intents an application may react to, the ap-
plication’s manifest is inspected, the possible intent targets are resolved
and appropriate method calls are inserted into the artificial entry method.
Similarly, our approach handles intents which may be issued during the ex-
ecution of the application and whose target can be resolved to a component
within the same application. Listing 4.9 shows an example of an activity
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ShareActivity which declares the kinds of intents that it reacts to. It does
so by using an intent filter. An intent filter specifies a set of possible intents
an activity may react to. There are three aspects that can be used to specify
intents: actions, categories and data. For example, in Listing 4.9 the activity
ShareActivity can react to intents which specify android.intent.action.SEND

as action, belong to the category android.intent.category.DEFAULT and send
data of type text/plain. Note that in general, an intent filter may declare
multiple action, category and data items. If an intent filter declares multiple
action items, it matches all intents that match at least one of the declared
action items. The same rule applies to categories and data. In Listing 4.10,
we see exemplary code which issues an intent matching the intent filter
depicted in Listing 4.9. Jodroid handles such code in the following way:
It analyzes the app’s manifest and records for each activity the possible
intents it may react to.
Now suppose that during call graph construction, a piece of code like
Listing 4.10 is encountered. Jodroid then inspects the object passed as
parameter in the call in line 9. If the action can be resolved statically and
matches the intent filter of a given activity, the call is interpreted as a call
to the onCreate method of that activity.
This analysis can be improved by a static approximation of strings. Such
an approximation was implemented in the scope of a bachelor’s thesis
under my supervision [167] and can be integrated into Jodroid.

<activity android:name="ShareActivity">
<intent-filter>
<action android:name="android.intent.action.SEND"/>
<category
android:name="android.intent.category.DEFAULT"/>
<data android:mimeType="text/plain"/>

</intent-filter>
</activity>

Listing 4.9: An exemplary section of an app’s manifest where a component declares
that it reacts to certain intents – taken and adapted from the Android
documentation [73]
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1 public void foo() {
2 Intent s = new Intent();
3 s.setAction(Intent.ACTION_SEND);
4 s.putExtra(Intent.EXTRA_TEXT, "secret");
5 s.setType("text/plain");
6 // Verify that the intent will resolve to an
7 //activity
8 if (s.resolveActivity(getPackageManager()) != null) {
9 startActivity(s);

10 }
11 }

Listing 4.10: Example of how to invoke an activity using an implicit intent – taken
and adapted from [73]

4.4.3.3 Limitations and Future Work

Now, I elaborate on the work that is left to do.
At the moment, Jodroid cannot handle callbacks of graphical user in-
terfaces. The graphical user interfaces of Android apps are typically
described in separate files and these files also reference the callbacks which
are invoked on user input, e.g. when a button is pressed.
Hence, to also cover GUI callbacks, they have to be extracted from the
separate files and integrated into the artificial main method appropriately.
Another current limitation is that Jodroid only analyzes information flows
inside single apps, but no information flows between different apps.
This could be achieved by simply analyzing all the apps simultaneously.
However, such an analysis would have to be re-done each time an app is
added. Additionally, the analysis would have to be adapted in order not
to assume that all the apps under analysis share a single heap (normally,
different apps run in different virtual machines and hence have separate
heaps).
An alternative, more modular approach is outlined in Figure 4.13: First,
the intra-app flows in each single application are analyzed and summaries
are generated from these analysis results. After that, a communication graph
is built by connecting one app’s summary with another app’s summary if
one of the former app’s components may trigger one of the latter app’s
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components by issuing an intent. The paths of such a graph represent the
possible information flows between the apps.

4.5 RIFL

In this section, I report on RIFL (“RS3 Information Flow Language”) [57,
25], a joint effort of multiple researchers within the RS3 project. The
goal was to develop a language in which security requirements can be
expressed. One main design goal for RIFL was to be tool-independent, i.e.
not be tailored to a specific information-flow analysis. Tool-independence
enables to create case studies that are suitable for multiple tools, so that
multiple tools can be evaluated, compared and possibly even combined.
As a consequence of its tool-independence, RIFL is a semi-formal language:
It has a formally defined syntax with a specific intuition behind it, but no
fixed security semantics.
In the following, I describe the syntax of RIFL and the intended meaning
of a RIFL specification. For this, I will base on the technical report on RIFL
1.1 [25], to which I also contributed. Furthermore, I will report on Joana’s

Figure 4.13: Possible approach to capture inter-app flows
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support for RIFL and in particular will describe how a RIFL specification
maps to an information flow query for Joana.
As an application of RIFL, we also developed a benchmark suite for
information flow analysis tools. I will describe this benchmark suite and
some results from it in section 4.6.

4.5.1 Description of RIFL

In this subsection, I describe the syntax of RIFL and shed some light on
the intended meanings behind it. To keep the description brief, I will
refrain from showing the syntax explicitly but rather show examples on
which I explain the different elements. For further information, I refer the
interested reader to the technical report on RIFL 1.1 [25], which contains
all details.
Intuitively, a security requirement specification describes the allowed
information flows within a program. Such a description usually consists of

• information sources / sinks, i.e. locations at which the program imports
/ exports information,

• a set of domains together with a flow relation that specifies between
which domains information is allowed to flow, and

• a domain assignment which maps each source and sink to a domain.

A RIFL specification roughly consists of these ingredients. The syntax of
RIFL is XML-based and a Document Type Definition (DTD) is provided.
In order to enable re-use, RIFL is separated into a language-independent
part, which can be re-used for each concrete supported programming
language and a language-dependent part, which provides the respective
specifics for the supported languages. Currently,< the supported languages
are Java Source Code (JSC), JavaBytecode (JBC) and DalvikBytecode (DBC).
Joana and its Android-variant Jodroid support both Java Bytecode and
Dalvik Bytecode. In my descriptions, I will focus on Java Bytecode. The
DBC front-end is syntactically identical to JBC and the JSC front-end only
differs in the notation of method and field signatures.
In the following, I will describe the different parts of a RIFL specification.
This description is based on the technical report on RIFL 1.1 [25].
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4.5.1.1 Interface Specification

The interface specification declares where a program imports and exports
information. It specifies where in the program code a program reads input
from the environment (sources) and where it provides output (sinks) to the
environment.

eenvironment
application

source

sink

?
interface

Figure 4.14: RIFL’s program model
.

RIFL also provides a grouping mechanism. Sources and sinks can be
grouped into categories and categories can be organized in a hierarchy:
Categories may either contain sources or sinks or further categories.
A rough sketch of RIFL’s program model can be seen in Figure 4.14. A
program is basically regarded as a black-box which interacts with its
environment (for example, the operating system) through a well-defined
interface. This interface can be used to get data from outside (source) or
provide output to the environment (sink). A RIFL specification describes
exactly the parts of the environment which are used as sources and sinks
for the program.
An interface specification consists of multiple assignables. An assignable
has an identifier which is called a handle and contains either a source, a sink
or a category. The sources and sinks themselves are language-dependent
since they refer to explicit locations in the program’s code and are explained
later. A category has an identifier, its name, and may contain arbitrarily
many sources, sinks or further categories.
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It may appear redundant to have identifiers both for assignables and
categories. But this has the simple reason that an assignable may consist
of a single source or sink. Sources and sinks themselves do not have an
identifier. Instead, their containing assignable provides one through its
handle. The identifiers of categories and assignables are important since
they are used for referring from other parts of a RIFL specification.

Figure 4.15 shows the logical structure of an exemplary interface specifica-
tion. The corresponding RIFL representation can be found Listing 4.11. The
sources and sinks in this example are simplified. Their concrete structure
will be discussed later.
The specification declares the three handles fileshandle, HTTPhandle
and HTTPShandle. HTTPhandle and HTTPShandle each consist of one
sink (sendViaHTTP and sendViaHTTPS, respectively). The third handle
fileshandle consists of the single category files which contains one
bare sink storeToTmpFile and two sub-categories file-sources and
file-sinks, in which the source loadFromFile and the sink storeToFile
are located.

Figure 4.15: Logical structure of an exemplary interface specification – the actual
RIFL specification snippet can be found in Listing 4.11 – handles are
represented by octagons, categories by rectangles and sources/sinks
by ovals
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<interfacespec>
<assignable handle="locationhandle">
<category name="location">
<source name="getGPS" />
<source name="getNetworkLocation" />

</category>
</assignable>
<assignable handle="fileshandle">
<category name="files">
<category name="file-sources">
<source name="loadFromFile"/>

</category>
<category name="file-sinks">
<sink name="storeToFile" />

</category>
<sink name="storeToTmpFile"/>

</category>
</assignable>
<assignable handle="HTTPhandle">
<sink name="sendViaHTTP" />

</assignable>
<assignable handle="HTTPShandle">
<sink name="sendViaHTTPS" />

</assignable>
</interfacespec>

Listing 4.11: RIFL representation of the exemplary interface specification from
Figure 4.15

4.5.1.2 Security Domains and Flow Relation.

As usual in the information-flow world, RIFL uses security domains to
model different levels of confidentiality. A flow relation〜 ⊆ D×D over the
set D of security domains is used to describe the allowed flows. Formally,
a flow between security domains d1 and d2 is allowed according to the
given RIFL specification iff d1 〜 d2.
In RIFL, both the security domains and the flow relation are specified by
declaring mere lists. RIFL aims to make as much explicit as possible. All
pairs of domains which are related via〜 have to be listed explicitly. All
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domains occurring in the flow relation have to be declared in the <domain>-
section. The only implicit assumption made about the flow relation is that
it is reflexive. Consequently, transitive relations like lattices may lead to a
considerable rise of verbosity in a RIFL specification.
The specifications shown in Listing 4.12 describe a diamond lattice: On the
left-hand side, four security domains are declared, whereas the right-hand
side specifies the diamond lattice structure on them.

<domains>
<domain name="low" />
<domain name="mid1" />
<domain name="mid2" />
<domain name="high" />

</domains>

<flowrelation>
<flow from="low" to="mid1"/>
<flow from="low" to="mid2"/>
<flow from="low" to="high"/>
<flow from="mid1" to="high"/>
<flow from="mid2" to="high"/>

</flowrelation>

Listing 4.12: Specification of security domains and a flow relation in RIFL

Since RIFL makes the implicit assumption that the specified flow relation
is reflexive, declarations such as

<flow from="low" to="low"/>

need not be declared. However, it is neccessary to declare

<flow from="low" to="high"/>

since flow relations in RIFL do not need to be transitive.

4.5.1.3 Escape Hatches.

For the sake of completeness, I mention here that RIFL also supports a
form of declassification [144], namely what-declassification. This is realized
by the usage of escape hatches [143]. An escape hatch specifies that certain
information may be declassified to a given security domain.
Joana also supports a kind of declassification, where-declassification [87].
It does however not support the what-declassification mechanism imple-
mented by RIFL. Joana does not reject a RIFL specification containing
escape hatches, it rather ignores the escape hatches and hence treats such
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a specification as if they were not there. Consequently, it checks the
compliance of the given program with a stricter policy, which does not
hurt soundness.
For details on how escape hatches work in RIFL, I refer the interested
reader to the technical report of RIFL 1.1 [25].

4.5.1.4 Domain Assignment.

RIFL’s domainassignment describes a mapping of the declared sources
and sinks to the declared security domains. It employs the handles of
declared assignables to refer to the sources and sinks declared within that
assignable. In particular, if the assignable contains a category, then all
sources and sinks declared within that category (directly or indirectly) are
referred to by the handle of the assignable.
Listing 4.13 shows an example for a domain assignment, assuming the flow
relation from Listing 4.12 and the interface specification of Listing 4.11.
The third assign declaration refers to the assignable with the handle
fileshandle and hence assigns the security domain low to all sources and
sinks contained in fileshandle, namely storeToTmpFile, storeToFile and
loadFromFile.

<domainassignment>
<assign handle="locationhandle" domain="high" />
<assign handle="HTTPShandle" domain="high" />
<assign handle="fileshandle" domain="low" />
<assign handle="HTTPhandle" domain="low" />

</domainassignment>

Listing 4.13: Exemplary domain assignment in RIFL

4.5.1.5 Sources and Sinks

Sources and sinks in RIFL are language-specific, i.e. which kinds of sources
and sinks are available and the concrete syntax depend on the concrete
programming language. In RIFL, there are specializations for Java Source
Code, Java Bytecode and Dalvik Bytecode. In the following, I will focus
on Java and Dalvik Bytecode since the JBC and the JSC front-ends of
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RIFL support the same kinds of sources and sinks and only differ in the
syntax of method and field identifiers. Note that the Java Bytecode and
Dalvik Bytecode front-ends are syntactically identical, therefore I will only
consider the Java Bytecode front-end.

4.5.1.6 Method Parameters and Return Values.

In Figure 4.16, we see two views on Java methods that may be employed
when thinking about their role in specifying sources and sinks.

application
method called

from environment

formal parameters
are sources

return value
is sink

information passed from
outside via parameters

information passed to
outside via return value

environment
method called

from application

actual parameters
are sinks

return value
is source

information passed to
outside via parameters

information passed to
outside via return value

Figure 4.16: Two views on methods

On the left, we see an internal view. This is the view which is used for
application-internal methods which are called from the environment.
Examples for this include the main method of a simple Java application
or any callback of an Android app. When such an application-internal
method is called from the environment, its parameters can be used to pass
information from the environment to the application. In other words, using
the intuitions of RIFL, any parameter of an application-internal method can
be considered a source. Conversely, when the application-internal method
finishes, it passes its return value to the environment. In other words, the
return value of an application-internal method can be considered a sink.
On the right-hand side of Figure 4.16, we see the external view on a method.
This view is to be employed for external environment methods which are
called from the application. Examples for such usage of library methods
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include writing into or reading from files. Here, the application uses the
parameters of the external methods to pass information to the environment
(for example, the next line of text to be written) and the return value to
import information from the environment (the next line from a text file).
Since both views are valid in their respective context, method parameters
and return values can be both specified as sources and sinks. Table 4.1
summarizes the different usages of method parameters and return values
as sources and sinks.

source sink
application method
called from outside

parameters return value

call of environment
method

return value parameters

Table 4.1: Method parameters and return values as sources or sinks

4.5.1.7 Heap Locations.

A Java application may exchange information with the environment not
only through method parameters and return values but also through the
heap. RIFL supports the specification of the following kinds of heap
locations:

Object fields / static fields Fields of objects and static fields can be spe-
cified both as sources and sinks. The specification of an object field is to
be understood in an object-insensitive way. That means that if the object
field f of the class C is specified as a source, then o.f is considered a source
for all instances o of class C. Static fields are specified in the same way as
object fields.

Content and length of arrays Arrays are treated like objects with two
special fields content and length. That is, it is possible to e.g. specify the
contents of every int[] array as source or sink.

Fields of objects received as parameters of methods If an applica-
tion method receives its parameters from the outside through a parameter
of non-primitive type (i.e. an object), it may be unsuitable to treat the
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parameter itself as a source since it may only be a reference to heap loc-
ations which contain the actual information. Therefore, RIFL provides
the possibility to not only specify parameters but also reachable fields as
sources. Note that, until version 1.1, RIFL does not allow to specify fields
reachable from parameters of external method calls or from return values
of internal or external methods.

4.5.1.8 Exceptions.

In Java, exceptions constitute an implicit channel of information. This
especially applies to the communication between an application and its
environment through internal or external methods. Therefore, RIFL makes
it possible to specify exceptions as sources and/or sinks. The intuition is
that a method not only returns its ordinary return value but also whether
it has terminated abnormally and also the type of the occurred exception.
Applying the intuition expressed in Figure 4.16, RIFL considers exceptions
as sources for external methods and as sinks for internal methods. This
enables to express for example that a given parameter may not influence
whether a given application-internal method terminates abnormally.

4.5.2 Joana’s Support for RIFL

In the following, I will explain how Joana’s RIFL front-end works. In
particular I will carry out how a RIFL specification is interpreted by Joana
and how the translation of sources and sinks is performed. I will, as in
most parts of this thesis, consider only sequential programs.
Joana implements RIFL 1.1 in most parts. RIFL’s declassification is not
supported since Joana only supports a form of where-declassification [86]
but no what-declassification. Furthermore, Joana currently does not support
the specification of an array’s length as source or sinks. However, this has
only implementation reasons and should be fixable with reasonable effort.
The major part of Joana’s RIFL front-end consists of translating a RIFL
specification S = (D,〜, Src, Snk, dom) into queries answerable by Joana.
The objective is to check whether the RIFL specification S is satisfied.
Intuitively, a source s may influence a sink t only if information classified
as dom(s) is allowed to influence information classified as t. More formally,
this can be expressed as
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Algorithm 7: Routine for checking a RIFL policy
Input: a program p, a set Src of sources, a set Snk of sinks, a RIFL

specification with flow relation〜
Result: whether one of the given sources may influence one of

the given sinks although it must not according to〜
1 foreach s ∈ Src do
2 foreach t ∈ Snk do
3 if dom(s) ̸〜 dom(t)∧ s possibly influences t then
4 return false

5 return true

∀s ∈ Src. ∀t ∈ Snk. s possibly influences t =⇒ dom(s)〜 dom(t).

In RIFL, sources and sinks lie at the boundary between the application and
the environment. At a source, information enters the application from the
environment and at a sink it leaves the application to the environment.
With ordinary sources and sinks, it is not possible in RIFL to specify
sources or sinks which completely lie within the application. Furthermore,
once information is outside the application, it cannot be tracked by Joana
anymore. So if it leaves the application through a sink and immediately
enters it again unmodified through a source, it is treated like a fresh piece
of information with no connection to the piece of information that left the
application just before.
But if there can be no intermediate steps within the application, it is
sufficient to consider each pair (s, t) of sources and sinks individually.
A check routine is shown in Algorithm 7. It receives a program and a
RIFL specification and returns whether it can be verified that the program
satisfies the RIFL specification. If the assigned domains of s and t are
related, no checking is neccessary: Even if there were an information flow
between s and t, that would be permitted since their security domains
relate. Hence, an actual check is performed just for those (s, t), where
s ̸〜 t.
It remains to implement the check whether a source s possibly influences a
sink t using Joana. This is done in a two-step process:
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1. Translate s into a set NSrc of PDG nodes and t into a set NSnk of PDG
nodes.

2. s cannot influence t if

BS(NSnk)∩NSrc = ∅(4.3)

Wasserrab has shown [164, Theorem 6.1] that a check like the one expressed
by (4.3) is sufficient for guaranteeing non-interference. Note that such a
check can be replaced by other more sophisticated checks like RLSOD.
In the special case that the flow relation〜 on D forms a lattice, we can
also perform a single instance of Hammer’s IFC check [86] instead of
performing an individual check for each source-sink-pair.
In the following, I describe how the first step of the process sketched above
is performed, namely how RIFL sources and sinks are translated to PDG
nodes.

4.5.2.1 Mapping of method parameters, return values and
exceptional return values

Joana’s interprocedural PDG representation has special-purpose nodes
for method parameters and the return values, both at the caller’s and the
callee’s side. Hence, these kinds of RIFL sources and sinks can be mapped
directly to PDG nodes. The specifics are summarized in Table 4.2. By
using the term “root parameter”, I acknowledge the fact that Joana not
only has parameter nodes for the parameters themselves but also for fields
reachable from parameters which are read or written within the method,
either directly by the method itself or indirectly by called methods. Every
parameter node represents a sets of heap locations which may be modified
or read. Parameter nodes are connected via parameter structure edges: p is
connected to q via a parameter structure edge if a heap location represented
by q may be obtained by dereferencing one of p’s heap locations using a
field access operation. More details about this can be found in the PhD
thesis of Graf [78].

4.5.2.2 Mapping of static fields and object fields

Static and object fields do not have a single counterpart in Joana’s PDG
representation. Instead they are mapped to all corresponding heap access
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source sink
application method
called from outside

formal-in
node for
the (root)
parameter

formal-out
node for the
return value

call of environment
method

actual-out
node for the
return value

actual-in
node for
the (root)
parameter

Table 4.2: Method parameters and return values as sources or sinks on Joana’s
layer

source sink
non-static field all non-static

heap reads
all non-static
heap writes

static field static heap
reads

static heap
writes

Table 4.3: Static and non-static fields as sources or sinks on Joana’s layer

operations. The specifics are summarized in Table 4.3. Joana retains
sufficient information in its PDG for identifying all reading or writing
accesses of a given field and also whether these accesses are static or not.
For example, if an object field A.f is specified as a source, then all non-static
heap read operations on A.f are located.
How such a field read operation is represented in the PDG can be seen in
Figure 4.17. One of the nodes in this structure represents the actual access
to the heap (highlighted in blue). This node is selected as a source.
Accordingly, if an object field A.f is specified as a sink, then first all
write operations to this field are located and the actual field node in the
corresponding PDG structure (see Figure 4.18) is selected.
Static fields are handled analogously.

4.5.2.3 Mapping of arrays.

RIFL allows for the specification of the content and length of arrays as
sources and sinks. Since Joana’s RIFL front-end does not support lengths
of arrays as sources or sinks, I only consider the contents of an array.
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static field-get (v1 = A.f)

v1 = A.f

field A.f

dh (A.f)

dd (v1)

dd

ce

2

1

base v2
3

field-get (v1 = v2.f)

dd (v2) dh (f)

dd (v1)

dd ddce

ce

v1 = v2.f
1

field A.f
2

exit
4

ce

cd cd

array field-get (v1 = v2[v3])

base v2

dd (v2)

dh ([])

dd (v1)

dd
dd

ce
ce

dd (v3)

dd ce

v1 = v2[v3]
1

field [A]
2

3
index v3

5

exit
4

ce
ce

cd cd

Figure 4.17: Joana’s PDG node structures corresponding to the various heap
read operations (taken and adapted from [78, Figure 2.31]) – the
node to which a particular kind of source is mapped is highlighted
in blue.

Joanamodels arrays as classes with exactly one field for the contents of the
array. Individual array cells are not distinguished. Hence, array contents
can be handled analogously to object fields. The only difference is that one
has to be coarser when selecting the appropriate instructions: RIFL only
distinguishes arrays by element type. For example, it can be specified that
all int arrays are sources. In such a case, all reads on int arrays are located
and for each of them the actual content access node is selected (see the
bottom of Figure 4.17 and Figure 4.18, respectively).
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static field-set (A.f = v1)

A.f = v1

field A.f

dh (A.f)

dd (v1)

ce

dd

2

1

field-set (v2.f = v1)

dd (v2)

dh (f)

dd (v1)

ce

ce

dd

dd

base v2
3

field A.f
2

exit
4

v2.f = v1
1

ce

cd cd

array field-set (v2[v3] = v1)

base v2

dd (v2)

dh ([])

dd

dd

ce

dd (v3)

dd
ce

ce

dd (v1)

v2[v3] = v1
1

field [A]
2

3
index v3

5

exit
4

ce
ce

cd cd

Figure 4.18: Joana’s PDG node structures corresponding to the various heap
write operations (taken and adapted from [78, Figure 2.32]) – the
node to which a particular kind of sink is mapped is highlighted in
blue.

4.6 ifspec: An Information-Flow Security
Benchmark Suite

In the scope of our work on RIFL, we developed ifspec, a benchmark
suite for information flow analysis tools. This was joint work with RS3

researchers from the groups of Mantel at TU Darmstadt and Beckert at KIT,
with support from many other RS3 researchers. In the following, I will
describe the motivation behind and the structure of ifspec. Furthermore, I
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will show some of the results we have produced using ifspec. The following
text is based on the resulting publication [85], to which I contributed Joana
support.
Benchmark suites exist for various areas of computer science, like compiler
research, SAT/SMT solving, theorem proving or model checking. They
allow for the evaluation of a tool or technique with respect to different
quality metrics like performance, correctness, precision or completeness.
With such evaluable quality metrics, it is possible to compare different
tools. Hence, benchmark suites can be regarded as driving forces of
innovation and technical progress.
In a benchmark suite that assesses some form of correctness, samples
should contain some kind of specification of the expected behavior of the
benchmarked tool. For example, benchmark suites for compilers usually
consist of sample programs to be compiled together with several test cases
for the correctness of the compiled programs.If the compiled program fails
one of these test cases, there is evidence that the compiler does not behave
correctly. Hence, it is crucial to have such test cases in order for benchmark
suites that are evaluated with respect to correctness.
Ideally, the expectation is specified formally, so that it can be read and
processed automatically. For instance, the SPEC compiler benchmark suites
contain test drivers, which execute the compiled samples and compare
their actual outputs with expected values.
Formal specifications of expectations can also be found in benchmark
suites for SMT solving. Here the expectation concerns for example the
satisfiability of a given instance. SMT-Lib requires benchmark instances to
state their solvability in the metadata [24, §3.9.3].
In the area of information-flow security, we found two benchmark suites:
SecuriBench [148] and DroidBench [21, 61]. SecuriBench consists of several
web applications found “in the wild” with known vulnerabilities. Later,
SecuriBench Micro [149] was distilled from SecuriBench. SecuriBench
Micro consists of 122 very small web applications, each of which focuses
on a small set of vulnerabilities.
Although SecuriBench and SecuriBench Micro were developed to bench-
mark tools for the analysis of vulnerabilities in web applications, they are
also suitable for information-flow analysis tools since web vulnerabilities
can also be interpreted from an information-flow security perspective.
Indeed, SecuriBench Micro has been used to evaluate information-flow
analyzers targeting Java (e.g. [168]).
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Arzt et al. [21] presented DroidBench as a benchmark suite for comparing
their taint-analysis tool FlowDroid with existing tools for Android. The
original version consists of 35 small Android apps, each of which focuses
on some feature of Android. Of these 35 apps, 25 are insecure and 10 are
secure (according to an intuitive specification). Later, DroidBench was
extended considerably: The current DroidBench 2.0 consists of 119 apps,
99 of which are insecure and 20 of which are secure.
For a benchmark suite in information-flow security, such a formal spe-
cification consists of two parts: A formal specification of the security
requirements for the given sample and the ground truth, a short inform-
ation whether the given program satisfies this specification. Then, an
information-flow can be evaluated automatically as follows: First, it is
fed with the program and the requirements specification and performs its
security analysis. Then it outputs whether it deems the given program
secure or insecure with respect to the given specification. This output is
then compared with the expected output.
Neither SecuriBench Micro nor DroidBench provides a machine-readable
specification of the information-flow requirements. Instead, they provide
some hints in the comments of their samples.
With ifspec, we provide a collection of samples together with a machine-
readable specification so that tools can be evaluated and compared auto-
matically. We use RIFL to provide formal security requirements and a short
text file to indicate whether the program satisfies these formally specified
security requirements or not.
In detail, each sample consists of the following data:

Sample Kernel The sample kernel comprises the program itself together a
RIFL specification and a ground truth. The RIFL specification describes
formally what it means for this program to be secure. The ground
truth specifies whether the given program is expected to satisfy the RIFL
specification.

Sample Meta-Information The sample meta-information provides further
descriptions of the sample. For one, it associates the sample with a number
of tags, which serve as a categorization mechanism for the samples. An-
other meta-information is the minimal RIFL version that a benchmarked
tool must support to parse the RIFL specification. Lastly, since RIFL
has no formal semantics, each sample needs to provide some security
semantics that have been considered when classifying a sample as secure or

160



4.6 ifspec: An Information-Flow Security Benchmark Suite

insecure. For the classification of the samples in ifspec, we consider four
formal security properties: termination-insensitive non-interference for the
Abstract Dalvik Language (TIN-ADL) [121], sequential and probabilistic
non-interference (SN/PN) [31], and the flow*-predicate [27]. These are
sufficient for Joana, Jodroid, Cassandra and KeY, the four tools con-
sidered in this work. The security property TIN-ADL is enforced by
Cassandra[121], SN/PN is enforced by Joana as well as Jodroid for se-
quential (resp. concurrent) programs, and the flow*-predicate is enforced
by KeY[27].

Sample Interpretation The purpose of the sample interpretation is to
provide convincing arguments that the sample kernel is meaningful.
It consists of three parts:

• a description of the program itself,

• a description of the intuitive security requirements for this program,
i.e. what it means intuitively for this program to be secure, and

• a faithfullness argument that the RIFL specification matches the intuitive
security requirements.

The core of ifspec consists of 80 samples. The core samples have been
provided by RS3 researchers over the course of several years. Apart from
that, ifspec also comprises the 122 original samples of SecuriBench Micro
and 30 additional samples that were derived from them.
As an extension, ifspec incorporates a machine-processable version of
DroidBench 2.0. A second extension comprises examples whose RIFL
specification make use of declassification.
To demonstrate the usefulness of ifspec, we ran four information-flow
tools on its samples and reported and discussed our findings.
In the following, I summarize these discussions, with a focus on Joana’s
and Jodroid’s results.
We use terms that are commonly used to assess properties of classification
tools. In the following, I introduce these terms. An information-flow
tool that processes a sample produces two possible analysis results: Either
it considers the sample secure or it considers it insecure. We refer to
the former as a positive result (as in the analysis could not find a potential
information flow) and to the latter as a negative result (as in the analysis found
a potential information flow).
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ground truth analysis result combined

secure negative true negative
secure positive false positive
insecure negative false negative
insecure positive true positive

Table 4.4: The four possible analysis results when rated with respect to the
ground truth

Apart from that and as I already elaborated on, each of ifspec’s samples
comes with a ground truth which specifies the sample as secure or insecure.
Now, if we compare the analysis result with the actual ground truth, we
yield four possible combinations that can be thought of as “rated analysis
results”, i.e. the analysis result together with the assessment whether the
analysis result matches the sample’s ground truth.
The four possible combinations are listed in Table 4.4.
This can also be expressed in terms of the formalisms introduced in
section 3.1. Evaluating the analyses on a number of samples can be
thought of evaluating empirically the four sets

{P | P ̸|= ϕ∧P ⊬A ϕ} (true positive)
{P | P ̸|= ϕ∧P ⊢A ϕ} (false negative)
{P | P |= ϕ∧P ⊬A ϕ} (false positive)
{P | P |= ϕ∧P ⊢A ϕ} (true negative)

for a property ϕ that expresses that the given program is secure w.r.t. to
the specification22.
Let #S be the number of secure samples and #I be the number of insecure
samples, respectively. For a fixed analysis tool, we use #TP, #FP, #TN,
#FN to refer to the number of true positive, false positive, true negative
and false negative analysis results, respectively. Analogously, let #P be
the number of positive analysis results and #N be the number of negative
analysis results. Hence, we have

#S = #TN + #FP

22Note that ϕ has to express security instead of insecurity due to our usage of soundness.
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#I = #TP + #FN

#P = #TP + #FP

#N = #TN + #FN

Based on these numbers, several quantities can be derived that can be
useful in assessing an analysis tool. In our paper about ifspec, we used
two of them, recall and precision. These two quantities also have been used
to assess other information flow analysis tools like FlowDroid [21]23.

• The recall measures how many insecure samples yield a positive
analysis result.

recall =
#TP
#I

=
#TP

#TP + #FN

The recall always lies between 0 and 1. A recall of 0 means that the
analysis tool never returns a positive result for any insecure sample,
whereas a recall of 1 means that the analysis tool yields a positive
result for all insecure samples. Looking at the formula, we see that
the recall is low if the number of false negatives is high. In this sense,
one could say that the recall is a measure of soundness of an analysis
tool, at least for the given set of samples.

• The precision measures how many samples with positive analysis
result are actually insecure.

precision =
#TP
#P

=
#TP

#TP + #FP

The precision also lies between 0 and 1. A precision of 0 means that
the analysis never returns a positive result for an insecure sample or,

23Note that there are other metrics that may be more adequate in assessing an information
flow tools’ actual precision than the one defined in the following. However, also note that
the metrics we picked are supposed to be an example for evaluations that can be performed
with ifspec. Hence, such a discussion lies outside of the scope of this work.
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conversely, that all its positive results are false positives. Conversely,
a precision of 1 means that the analysis tool has no false positives. In
this sense, one could say that this quantity is a measure for actual
the precision of an analysis tool, at least for the given set of samples.

tool target language #samples #soap samples TP TN FP FN recall precision

Cassandra DBC 232 109 68+79 15 40+30 0 100% 67.7%
Joana JBC 232 0 139+0 35 50+0 8 94.6% 73.5%

Jodroid DBC 232 3 136+2 32 52+1 9 93.9% 72.3%
KeY JSC 232 208 7+138 12 5+70 0 100% 65.9%

Legend: JSC=Java source code, JBC=Java bytecode, DBC=Dalvik bytecode

Figure 4.19: Overview of benchmark results – cf. [85, Fig. 5]

Figure 4.19 shows the results of running the four analysis tools Cassandra,
KeY, Joana and Jodroid on ifspec. It lists the respective numbers of true
positives, true negatives, false positives and false negatives and also the
recall and precision values derived from these numbers.
Note that apart from returning a normal result, an analysis tool may also
crash for a given sample. This may be due to a bug but also due to the
fact that the sample uses a feature that cannot be treated by the respective
analysis tool. We interpreted such cases as positive results and call them
soundly over-approximated, or soap for short. The number of soap samples
are reported separately for each analysis tool, both the total number and
how many of false positives and true positives where due to sound over
approximation (denoted as +n).
In the following, I want to discuss Joana’s and Jodroid’s results in more
detail. Discussions of the other tools’ results can be found in our article on
ifspec [85].
The results of Joana match the ground truths for 174 of the samples in
ifspec. The 50 false positives are mainly caused by the fact that Joana
over-approximates actual program behavior. For instance, Joana does not
reason about values and does not rule out control flow which is actually
impossible due to algebraic invariants. Other sources of imprecision
include array handling (Joana does not distinguish between different cells
of the same array) and exceptional control flow.
The eight false negatives are due to two reasons. Seven false negatives
are caused by the usage of reflection: Joana tries to handle reflective code
but leaves it unresolved if it fails in doing so. The resulting PDG is then
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incomplete. The second reason is that Joana models static initializers
improperly: In one example, the leak is caused by the fact that in Java,
class initializers are executed lazily. Joana on the other hand assumes that
all class initializers are executed upfront and hence misses the leak because
it assumes that the leaking statement is executed at a time when no secret
information is available yet.
The benchmarking results for Jodroid show differences in 11 samples.
These appear to be caused by Jodroid’s Dalvik frontend, which not only
reads in the bytecode but also performs simple intraprocedural analyses on
it. In three examples, Joana could deliver a result while Jodroid crashed.
In five examples, Joana did not report a flow and JoDroid did. Possible
reasons for this may include differences in the handling of static initializers
and the analysis of exceptional control-flow. Three more differences appear
to stem from a bug in Jodroid’s modelling of multidimensional arrays.
We also ran Jodroid on the 119 DroidBench samples that are integrated
into IFSpec. JoDroid delivered the expected results on 67 of them (54
true positives, 13 true negatives) and unexpected results on 52 samples
(seven false positives, 45 false negatives) – this corresponds to a recall of
54.6% and a precision of 88.5%. The false negatives shed light on Jodroid’s
limits which I already elaborated on in subsection 4.4.3 (in particular
subsubsection 4.4.3.3): It currently only has rudimentary support for
Android features like intents and dynamic broadcast receivers and does
not detect entry points corresponding to graphical interfaces. Also, the
results clearly show that the stubs we used for Jodroid are insufficient as
they do not reflect the dependencies of the actual library methods.

4.7 SHRIFT– System-Wide HybRid Information
Flow Tracking

In the following, I report on SHRIFT, a collaboration with the group of
Pretschner at TU Munich. The general idea of the SHRIFT approach
is to use static information flow analysis to improve the precision and
runtime performance of a usage control and enforcement system. We also
implemented the approach using Joana and demonstrated it on a case
study.
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The following summary is largely based on the resulting publication [122].
I concentrate on the motivation for this work and a brief description on
its approach, with a focus on aspects of my contribution that were not
covered by the paper. For detailed results and their discussion, I refer the
interested reader to the original article.

4.7.1 Background and Motivation

Usage control [132] is an extension of access control. Apart from the
question “who is allowed to access this data?” it is also concerned with
usage policies (“how is this data allowed to be used after access has been
granted?”), data flow tracking mechanisms (“what is allowed to happen to
this data?” or “what must happen to this data?”) and runtime enforcement
mechanisms (“what happens if the policy is violated?”).
A major challenge for effective usage control is the fact that data may exist
in different representations and/or on different system layers. For example,
“don’t copy this picture” may mean don’t send an e-mail to which this picture
is attached in an e-mail client, don’t copy this file on the operating system
layer or don’t copy&paste this picture in an image editor.
As a possible solution to this challenge, it has been proposed (a) to model
usage control polices in a representation-independent language and (b)
to track and enforce these policies on multiple layers of abstraction using
a distributed approach [135]. However, multiple monitors running in
parallel and communicating with each other may incur a significant
runtime overhead and it may be the case that monitors are not available
for every layer of abstraction.
A remedy for the absence of a dedicated monitor is to rely on conservative
estimation: For example, if a dedicated monitor for a process is not
available, an OS-level monitor would treat the process as a “black box”
and assume that every output of the process may result from any sensitive
input this process has come in touch with. However, this may lead to a
phenomenon called label creep: Due to over-approximation, the system
falsely assumes that a piece of data is compromised with high data and
prevents necessary actions on it because according to the system’s policy,
they are not allowed. In the worst case, this may lead to an unusable
system.
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4.7.2 Approach

SHRIFT aims to improve on the “black box”-approach described above. Us-
ing a static information flow analysis, we compute an over-approximation
of the data flows between the sources and the sinks a given application
imports data from and exports data to, respectively. Then the application
is instrumented with a lightweight runtime monitor which, instead of
performing full data-flow tracking, consults the result of the static analysis
phase every time a sink is executed to report to the OS-level monitor a
list of sources which may have contributed to the piece of data which is
exported by the sink.
This way, SHRIFT may increase precision in comparison with the “black
box”-approach and at the same time reduce the runtime overhead of a
dedicated application runtime monitor communicating with the system’s
monitor.
We provided and exemplified an implementation of the SHRIFT approach
by using Joana as the static information flow analysis. Moreover, we
evaluated our approach in terms of precision gain with respect to the
black box approach and performance gain with respect to a fully dynamic
analysis. Our evaluation showed that by employing a lightweight runtime
monitor using the result of a static information flow analysis like Joana, it is
possible to obtain a significant performance gain in comparison with a fully
dynamic approach and being more precise than the black box approach
while at the same time retaining a reasonable amount of soundness.
We applied our approach to the following example24, which is visualized
in Figure 4.20:
A company enforces the policy “upon logout, delete every local copy of
customer data” to prevent clerks from working with outdated material. Upon
every login, a clerk must download from a central server a fresh version of the
customer data he is interested in. In this setting, a clerk uses the JZip application
to compress multiple customer data (E, F) into a single archive file (File 3),
which he then sends to the company server using JFTP.
This example illustrates that precision is crucial: If data-flow tracking is
imprecise, then not only customer data but also additional resources which
are vital to the system’s functionality, such as the Zipper’s configuration

24Here, I show a slightly adapted version of the scenario description in the original paper
[122, page 372].
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Figure 4.20: Example scenario on which we demonstrated our SHRIFT approach
(taken from [122, p. 372])

file, may be deleted. Moreover, it is important that the usage control system
is able to distinguish the two different channels FTP works with: A data
channel is used for the data to be sent (in this case the zipped customer
data), whereas a control channel is used for commands and credentials.
With the black box approach, once customer data has been read, every
write operation is assumed to contain customer data. Hence, even the
credentials written to the control channel by the client and the database
are subject to deletion.
In the following, I describe how Joana was used to execute the static
analysis phase.
Input for the static analysis is a list of sources and sinks to consider. It
is important to notice that usually the list of descriptors is provided to
the analysis by a security expert. In general, this list may depend on the
application under analysis, since an application can e.g. use JNI to call its
own native libraries.
In general, to be independent from the concrete application, we represent
sources and sinks as pairs (m, p) where m is a method and p is a parameter
of m. In the following, we call such pairs descriptors. A descriptor (m, p)
represents parameter p of every invocation of m in the application code. It
is notated in the format which is also used by Java’s class file format25. For
example, the descriptor (FileInputStream.read([B), param 1) represents the
byte array passed as first parameter to any call of the method read(byte[])

of class FileInputStream.
Consider the code snippet shown in Listing 4.14, taken from our running
example. Here, we want Joana to consider the first parameter of the

25See e.g. The Java Virtual Machine Specification, Java SE 8 Edition, §4.3.3.
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call at line 10 as a source and the first parameter of the call at line
11 as a sink. To a certain extent, the descriptors have to be chosen
manually, e.g. by reading the API documentation and then deciding which
methods/parameters are relevant. For example, one may consider all
variants of FileOutputStream.write() together with appropriate parameters
as sinks.

1 FileOutputStream fos = new FileOutputStream(file);
2 ZipOutputStream zos = new ZipOutputStream(fos);
3 List<String> fileList = this.generateFileList();
4 byte[] buffer = new byte[1024];
5 for (String file : fileList) {
6 ZipEntry ze = new ZipEntry(file);
7 zos.putNextEntry(ze);
8 FileInputStream in = new FileInputStream(file);
9 int len;

10 while ((len = in.read(buffer)) > 0)
11 zos.write(buffer, 0, len);
12 in.close();
13 }

Listing 4.14: Java code fragment for Zipper application

However, it may be the case that applications do not invoke source or sink
methods directly. Consider again Listing 4.14: In line 2, a FileOutputStream

is wrapped into a ZipOutputStream. When line 11 is executed, ultimately
FileOutputStream.write() will be called, but not directly from application
code. To also cover such cases, the descriptors have to be more general.
One approach is to list every method manually and explicitly. This may be
error-prone because methods may be missed. We chose another approach:
We list only methods of the most general I/O classes java.io.InputStream,
java.io.OutputStream, java.io.Reader and java.io.Writer. After that, they
are extended automatically using the following rule: If (m, p) is a source
descriptor and m′ overrides m, then also (m′, p) is a descriptor. This rule can be
implemented by analyzing the class hierarchy of the given program.
Still, this may not suffice. For example, JZip also contains a call to the
method Properties.load() which takes an input stream as parameter and
uses it to fill a properties table. This method is not included by the above
rule because Properties itself is not an I/O class. For this reason, the
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descriptors are again extended automatically by the following rule: If
(m, p) is a descriptor, m′ may call m and p′ is a parameter of m′, then (m′, p′)
is also a descriptor. This rule can be implemented using a call graph of the
application, which is also built and used during PDG construction, so it
can be reused here.
Once the descriptors have been extended, they can be used to find the
locations of the sources and sinks in the application and map them to
appropriate PDG nodes.
Joana then computes the outcome of this phase: a table that lists, for each
sink, all the sources that may influence this sink. An example is depicted
in listing 4.15.

1 <source>
2 <id>Source1</id>
3 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:191</location>
4 <signature>java.io.FileInputStream.read([B)I</signature>
5 <return/>
6 </source>
7 <source>
8 <id>Source2</id>
9 </source>

10 ...
11 <sinks>
12 <sink>
13 <id>Sink1</id>
14 </sink>
15 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:185</location>
16 <signature>java.util.zip.ZipOutputStream.write([BII)V</signature>
17 <param index="1"/>
18 </sink>
19 <flows>
20 <sink id="Sink1">
21 <source id="Source1"/>
22 </sink>
23 </flows>

Listing 4.15: Static analysis report listing sinks, sources and their dependencies

4.7.3 Results

In the following, I give a summary of the results of our evaluation of the
SHRIFT approach. I concentrate on the Joana part.
As Zipper application, we used JZip, a simple command-line application
written by us that uses the built-in ZIP functionality of the Java stand-
ard library and Apache Commons CLI [60] (Version 1.2) to implement
command-line features. Without libraries, it has 293 LoC.
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The FTP client JavaFTP was downloaded from SourceForge [109]. It does
not use any libraries apart from Java’s standard library and consists of
2082 LoC.
All measurements were conducted on a system with a 2.6 GHz Xeon-E5
CPU and 3GB of RAM. We ran Joana on JZip and JavaFTP with four
different points-to analyses. For each points-to analysis, we considered
two variants with respect to control dependencies. In variant DI (“direct
and indirect flows”), Joana built the normal PDG, including control-
dependencies. In variant D (“only direct flows”) it built a PDG without
control dependencies. This was realized by first building the normal graph,
removing control-dependencies and summary edges from this graph and
finally re-computing the summary edges.
Each run consists of four steps: First, Joana built the call graph of the
given program and extended the given sources and sinks as described in
subsection 4.7.2. Then, Joana built the program dependence graph and
identified sources and sinks in it according to the extended lists. Finally,
Joana used context-sensitive slicing to count the number of source-sink-
pairs that were connected in the PDG.

4.7.3.1 Performance

Table 4.5 shows the overall time that Joana took for each configuration,
along with rough estimates of the sizes of the respective PDGs. The times
for the D and DI variants are aggregated by reporting the time for the
slower variant. Note that although the D variant takes more time for the
PDG construction, it may take less time in the slicing phase since there are
less edges – the overall time for the D variant may therefore be roughly
the same or even smaller. The graph sizes are reported for the DI variant.
We can see that the points-to analysis has a massive impact on the graph
size and also on the overall time needed to perform the analysis. For
object-sensitive points-to, the number of edges can be 6.4-6.6 times as high
as for 0-1-CFA, resulting in an overall time that is 6.7-6.9 times as high.

4.7.3.2 Precision

Table 4.6 shows the number of source-sink-connections for both examples
for all considered configurations and variants, which we call flows for
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points-to graph size (DI) time (sec.)
#nodes #edges

Ja
va

FT
P

0-1-CFA 6.82× 104 8.65× 105 32
1-CFA 1.77× 105 1.95× 106 64
2-CFA 3.98× 105 4.54× 106 153

object-sensitive 3.06× 105 5.73× 106 220

JZ
ip 0-1-CFA 1.10× 105 1.44× 106 53

1-CFA 2.04× 105 2.13× 106 82
2-CFA 3.47× 105 3.61× 106 185

object-sensitive 4.50× 105 9.15× 106 353

Table 4.5: Overall time of static analysis phase and PDG sizes for JavaFTP and JZip

short. Moreover, Table 4.6 gives a simple and coarse estimation of the
precision gain obtained. This value is computed as

precision = 1− # f lows
#sources · #sinks

and compares the respective static analysis result to a conservative black
box approach where every source is assumed to possibly flow to every sink.
Such an approach would correspond to a static analysis with a precision
of 0. Hence, the higher the precision value, the larger the precision gain of
using the respective static analysis is26.
According to this measure, we see that the choice of points-to analysis
is crucial for Joana’s precision and has to be adapted to the application
under analysis. For JavaFTP in the DI variant, object-sensitive points-to
analysis makes the analysis 6.6 times as expensive as 0-1-CFA, without

26Note however, that the term “precision” is not entirely appropriate, since we deliberately
give up soundness in the D configurations. In [122], we argue why it may be appropriate to
ignore control dependencies for our application.

27The actual sources and sinks may vary with different points-to analyses because
Joana uses points-to analysis for call graph construction and particularly for the identifica-
tion of reachable code. Also, [122] reports 84% for JZip/object-sensitive/D, possibly due to
a typo in the paper.
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points-to #sources #sinks #flows (precision %)
DI D

Ja
va

FT
P

0-1-CFA 9 46 274 (38%) 214 (51%)
1-CFA 9 46 187 (58%) 119 (73%)
2-CFA 9 46 187 (58%) 118 (73%)

object-sensitive 9 46 272 (38%) 114 (74%)

JZ
ip 0-1-CFA 10 56 428 (24%) 321 (43%)

1-CFA 10 55 414 (25%) 257 (53%)
2-CFA 10 55 246 (55%) 123 (78%)

object-sensitive 10 55 239 (57%) 91 (83%)

Table 4.6: precision values for JavaFTP and JZip27

any precision gain. Also 2-CFA does not have any advantage over 1-CFA
although its runtime is 2.4 times as high. For JZip in the DI variant, on
the other hand, the higher costs seem to pay off. For the D variants, the
precision gain of a more precise points-to analysis is more visible. Joana
uses points-to analysis not only to construct its call graph but also heavily
for the computation of the heap dependencies. Hence it is plausible that
a more precise points-to results in more precise heap dependency and
therefore data dependency graph.

4.8 Modular Verification of Information Flow
Security in Component-Based Systems

In a collaboration with the group of Beckert at KIT [83], we also applied
Joana in the area of information flow security verification of component-
based systems.
In an instantiation of the approach proposed in the article, we used Joana
to verify user-provided service-level security properties. From these
properties, first-order formulas are generated that express that component-
level security follows from service-level security and that system-level
security follows from component-level security. These formulas can be
discharged using a first-order theorem prover like KeY.
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The approach is both modular with respect to services and components
and with respect to service-level security properties. This not only means
that the security of the whole can be derived from the security of its parts
but also that service-level properties verified by Joana can be re-used to
show different overall security properties.
We applied the approach to a case study, in which we verified the security
of a system implemented in Java.

4.9 Summary and Conclusion

In this chapter, I gave an overview of some of the activities within the
RS3 priority program, with a focus on the achievements of the program
paradigms group and the sub-project Information Flow for mobile components.
In section 4.2, I described the advances in our work on probabilistic non-
interference, particularly how we developed relaxed low-security observational
determinism (RLSOD), a criterion that (a) can be verified using PDGs and
control-flow checks, (b) improves the precision (under certain scheduling
assumptions) on earlier criteria based on observational determinism and
(c) enforces probabilistic non-interference.
After that, I reported on seven collaborations within RS3 in which Joana
was involved.
In section 4.3, I elaborated on how Joana and the KeY theorem prover can
be combined to verify cryptographic properties of a prototypical E-Voting
system.
In section 4.4, I presented Jodroid, an extension of Joana for Android apps
and showed how it was integrated into the RS3 certifying app store, the
artifact of the RS3 reference scenario Software Security for mobile devices.
Subsequently, in section 4.5, I reported on the joint work on the RS3

Information Flow Language (RIFL), a language to specify information-flow
properties in a language- and tool-neutral way. Then, I described Joana’s
RIFL support in subsection 4.5.2. An application of RIFL was shown
in section 4.6: RIFL was used to provide an information-flow security
benchmark suite that is also fully supported by Joana.
Last but not least, I elaborated on two other collaborations that showed
how a static information flow control tool like Joana can be applied (a)
to improve the precision and performance of usage control (section 4.7)
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and (b) to aid a theorem prover in the verification of information-flow
properties for component-based systems (section 4.8).
All in all, this chapter demonstrated that our progress and our collabora-
tions within the RS3 project contributed to the establishment of PDG-based
static analysis techniques in the realm of security analyses. Joana is a
matured tool whose theoretical foundation has been firmly stabilized. It
can be applied to a wide variety of scenarios, ranging from advanced
security checks of mobile apps over the verification of cryptographic
security properties to the improvement of usage control systems and
the simplification of theorem proving approaches to the verification of
component-based systems. With Joana’s support for RIFL and ifspec,
a well-founded baseline can be drawn that should drive and foster the
state-of-the art of static security analysis tools in the future.
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And in the end, the love you take
is equal to the love you make.
The Beatles 5

A Common Generalization Of
Program Dependence Graphs

and Control-Flow Graphs

In chapter 3, I considered the interprocedural versions of slicing on program
dependence graphs (PDGs) and data-flow analysis on control-flow graphs.
In subsection 3.3.4, I identified similarities and argued that slicing on PDGs
can be considered as a very simple data-flow analysis instance.
In this chapter, I am going to further develop these ideas. I will introduce
interprocedural graphs (IGs), a general graph model that is less restricted than
interprocedural control-flow graphs (ICFGs), yet still enables data-flow
analysis. Both interprocedural control-flow graphs and interprocedural
program dependence graphs can be considered as IGs. This makes
available a whole range of data-flow analyses for PDGs.
IGs generalize ICFGs as defined in subsubsection 3.2.1.2 in several aspects.
For one, the procedures of ICFGs each have only one entry and one exit.
IGs lift this restriction and allow for multiple entries and exits. Secondly,
in an ICFG, each call has exactly one corresponding return. In contrast,
IGs allow for arbitrary corresponding relations between calls and returns.
A third aspect in which IGs generalize ICFGs is that ICFGs – at least in the
context of classical data-flow analysis – usually make some reachability
assumptions. For data-flow analysis on IGs, these assumptions are not
neccessary.
The data-flow analysis variant I introduce in this chapter is also a gener-
alization of its counterpart on interprocedural control-flow graphs that
I already considered in subsubsection 3.2.2.2. These generalizations are
neccessary to properly consider slicing as a data-flow analysis.
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As I have carved out in subsection 3.3.4, two generalizations are necessary
to make this idea work. In the following, I am going to briefly describe
them.
The first generalization is concerned with the notion of interprocedurally
valid paths. Remember that subsubsection 3.2.2.2 introduced this notion
to characterize the properties of interprocedural paths considered by a
data-flow analysis (cf. page 56).
Intuitively, an interprocedurally valid path π respects call semantics. This
amounts to two properties. Firstly, if a procedure is called on π and it
returns later, then the call site to which it returns must match the call site
from which the call started in the first place. Secondly, if a procedure
returns on π, then π must also contain a matching call. The notions
developed in this chapter only require that the first property is satisfied.
This matches the notion of interprocedural validness that one usually
makes on PDGs to define slicing.
The second generalization is concerned with the fact that a slice is defined
usually not with respect to a fixed entry point but rather with respect to an
arbitrary node. In subsection 5.4.2, this leads to a version of the objective
function MOVP that has – unlike the version in subsubsection 3.2.2.2 (cf.
equation (3.8)) – not one argument, but two.
This chapter is organized in four parts. In section 5.1, I develop the notion
of valid sequences and important variants. I base these notions on classic
results from the theory of balanced parenthesis. My approach is to first
introduce intuitive definitions and then derive inductive definitions from
them. After that, in section 5.2, I present interprocedural graphs and
my notion of valid paths, which is based on the theory developed so far.
Next, section 5.3 presents data-flow analysis on interprocedural graphs.
Finally, I conclude this chapter in section 5.4 by showing a variety of use
cases for data-flow analysis on IGs, including already existing PDG-based
approaches and several graph-theoretic notions.

5.1 Nesting Properties of Symbol Sequences

In this section, I develop the notion of validness for symbol sequences. Valid
sequences form the basis of valid paths, which I will define in section 5.2
along with interprocedural graphs.
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Validness is concerned with symbol sequences that essentially consist
of opening and closing parentheses and connects two different ways
of assigning closing parentheses to opening parentheses. One of them
counts parentheses to assign every opening parenthesis at most one closing
parenthesis such that the part between the two is balanced. The other way
is expressed as a correspondence relation that is used to relate opening
parentheses and closing parentheses that are compatible. Validness then
demands that if two parentheses match, then they must be compatible
with respect to the correspondence relation.
This section is organized as follows: In subsection 5.1.1, I introduce
the matching relation that assigns each opening parenthesis in a given
sequence at most one closing parenthesis and vice versa. This relation
makes use of balanced sequences, which in turn can be characterized using
a formalization of the process of counting parentheses. It turns out
that relation-theoretic properties of the matching relation can be used to
characterize two different kinds of partially balanced sequences that become
important in defining the building blocks of valid sequences and paths.
Partially-balanced sequences are introduced in subsection 5.1.2. After
that, subsection 5.1.3 is concerned with the second kind of assigning
opening and closing parentheses to each other: It introduces a relation that
specifies which parentheses are compatible. Using this relation, I define
valid sequences. Additionally, I introduce valid counterparts for (partially-
)balanced sequences. Finally, after I have introduced valid sequences in
subsection 5.1.3, I derive inductive definitions for valid sequences and
their partially-balanced variants in subsection 5.1.4.

5.1.1 Balanced Sequences

In this section, I introduce balanced sequences. I do this according to Knuth
[107] with the help of two functions which formalize the process of counting
parentheses.
In the following I consider symbol sequences over E = Eintra ∪ Ecall ∪ Eret
where Eintra, Ecall and Eret are pairwise disjoint. Elements of Ecall are called
opening parentheses, call symbols or just calls. Elements of Eret are called closing
parentheses, return symbols, or just returns. Elements of Eintra are called inner
symbols. Later, the opening parentheses will model calls of procedures and
the closing parentheses will model returns from procedures. The inner
symbols will later model intraprocedural edges. With Callpos(π) := {i ∈

179



5 A Common Generalization Of Program Dependence Graphs and Control-Flow Graphs

range(π) | πi ∈ Ecall} and Retpos(π) := {i ∈ range(π) | πi ∈ Eret} I denote
the set of call and return positions in π, respectively.

Definition 5.1. Let π ∈ E⋆ be a symbol sequence.

1. The content c(π) of π is defined as follows:

c(ϵ) = 0

c(π · e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c(π) + 1 if e ∈ Ecall
c(π) − 1 if e ∈ Eret

c(π) if e ∈ Eintra

2. The deficiency d(π) of π is defined as follows:

d(ϵ) = 0

d(π · e) =
⎧⎪⎪⎨⎪⎪⎩

max{d(π),−c(π)} if e ∈ Ecall ∪ Eintra
max{d(π),−c(π) + 1} if e ∈ Eret

Given a symbol sequenceπ, the function c computes the difference between
the number of call symbols and the number of return symbols of a given
symbol sequence, wheres d computes the maximal shortage of call symbols
among the prefixes of π. I give some examples to illustrate how c and d
work.

Example 5.2. Let Eintra = {⋆}, Ecall = {(} and Eret = {)}.
1. For π1 = ()(⋆), we have

i 0 1 2 3 4
πi

1 ( ) ( ⋆ )
c(π≤i

1 ) 1 0 1 1 0
d(π≤i

1 ) 0 0 0 0 0

2. For π2 = ())), we have

i 0 1 2 3
πi

2 ( ) ) )
c(π≤i

2 ) 1 0 -1 -2
d(π≤i

2 ) 0 0 1 2
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3. For π3 = (()()), we have

i 0 1 2 3 4 5
πi

3 ( ( ) ( ) )
c(π≤i

3 ) 1 2 1 2 1 0
d(π≤i

3 ) 0 0 0 0 0 0

4. For π4 =)()((⋆, we have

i 0 1 2 3 4 5
πi

4 ) ( ) ( ( ⋆

c(π≤i
4 ) -1 0 -1 0 1 1

d(π≤i
4 ) 1 1 1 1 1 1

5. For π5 = ()(⋆(⋆, we have

i 0 1 2 3 4 5
πi

5 ( ) ( ⋆ ( ⋆

c(π≤i
5 ) 1 0 1 1 2 2

d(π≤i
5 ) 0 0 0 0 0 0

Remark 5.3 and Lemma 5.4 formalize important properties of c and d.

Remark 5.3. c is additive: c(π1 ·π2) = c(π1) + c(π2).

Proof. This follows by induction on π2. □

Lemma 5.4. For every π ∈ E⋆, we have

1. c(π) = |Callpos(π)| − |Retpos(π)|
2. d(π) = max{−c(θ) | θ ∈ Pre f ixes(π)}
3. d(π) ≥ 0

4. d(π) = 0 =⇒ c(π) ≥ 0

Proof. • The first two claims can be proven by a straightforward
induction on the length of π.

• For the third claim, we observe that (1) ϵ is always a prefix of π, (2)
c(ϵ) = 0 (by definition of c) and conclude from the second claim that
(3) d(π) ≥ −c(ϵ) = 0.

181



5 A Common Generalization Of Program Dependence Graphs and Control-Flow Graphs

• Since π is a prefix of itself, we may apply the second claim and
obtain d(π) ≥ −c(π) or, equivalently, −d(π) ≤ c(π). For d(π) = 0,
this implies c(π) ≥ 0.

□

Now I define what it means for a symbol sequence to be balanced. Intuitively,
in a balanced sequence we can match the call positions with the return
positions in a well-nested fashion.
However, initially I define balancedness as a mere property about the counts
of opening and closed parentheses in a symbol sequence. Balancedness
has two requirements: Firstly, there must be as many call symbols as return
symbols in π. Secondly, for every prefix of π there cannot be more return
symbols than call symbols. The first property guarantees that a bijective
function between the call positions and the return positions is possible,
while the second ensures that it is always possible to map each call position
to a later return position.
Going back to Example 5.2, we see that π1 and π3 are intuitively balanced,
whereas π2, π4 and π5 are not: π2 has more return symbols than call
symbols, while π5 has more call symbols than return symbols. Moreover,
as π4 starts with a return symbol, it cannot be extended to a balanced
sequence.
The examples show that the balancedness of sequences can indeed by
characterized using c and d.

Definition 5.5. A sequence π ∈ E⋆ is called balanced if c(π) = d(π) = 0.
The set of balanced symbol sequences is written as Bal(E).

The following lemma gives an easy characterization of balancedness which
we will make use of later.

Lemma 5.6. A sequence π ∈ E⋆ is balanced iff c(π) = 0 and c(θ) ≥ 0 for all
prefixes θ of π.

Proof. This follows easily from Definition 5.5 and Lemma 5.4. □

5.1.1.1 The Matching Relation

Now I introduce a relation νπ which relates opening and closing positions
in a symbol sequence π to each other. The relation was also introduced by
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0 1 2 3 4 5 6 7 8 9 10 11
(︂ (︂

e1 e2
)︂ (︂

e3 e4 e5
)︂

e6
)︂

Figure 5.1: An example sequence with its matching relation. The ei are inner
symbols, there is one call symbol “(” and one return symbol “)”.
Connected symbols are related by the matching relation.

Knuth [107], albeit not formally. An example for the intuition behind νπ
can be seen in Figure 5.1.

Definition 5.7. For a sequence π ∈ E⋆ we define the matching relation
νπ ⊆ Callpos(π) ×Retpos(π) by:

(i, j) ∈ νπ ⇐⇒ i < j∧πi ∈ Ecall ∧π j ∈ Eret ∧π]i, j[ is balanced

In the following, I am going to state three important properties of νπ
that reflect the intuitive expectations toward a properly defined matching
relation.
Firstly, Theorem 5.8 states that νπ never relates a call position to multiple
return positions or, conversely, a return position to multiple call positions
(compare Knuth[107, p. 271]).

Theorem 5.8. For any symbol sequence π ∈ E⋆, νπ is left- and right-unique.

Proof. We show left- and right-uniqueness separately.

right-uniqueness: Let (i, j) ∈ νπ and (i, j′) ∈ νπ. Assume, for the purpose
of contradiction, that j ≠ j′. Without loss of generality, we may assume
that j < j′. Since π]i, j

′[ is balanced, we know that d(π]i, j
′[) = 0. Because

π]i, j] is a prefix of π]i, j
′[, we get c(π]i, j]) ≥ 0 by Lemma 5.4. However, since

π j ∈ Eret and π]i, j[ is balanced (which means that c(π]i, j[) = 0), we also
have:

c(π]i, j]) = c(π]i, j[) − 1 = 0− 1 = −1

This is a contradiction, so the assumption must be false and it must be
j = j′.
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i i’ j’ j
(︂
. . .
(︂
. . .
)︂
. . .
)︂

i j i’ j’
(︂
. . .
)︂
. . .
(︂
. . .
)︂

Figure 5.2: Illustration of the different cases of well-nestedness of νπ

left-uniqueness: Let (i, j) ∈ νπ, (i′, j) ∈ νπ. Assume, for the purpose of
contradiction, i ≠ i′. Without loss of generality, assume i < i′. Since π]i, j[

is balanced, we have c(π]i, j[) = 0. Since both π]i,i
′[ and π]i,i

′] are prefixes
of π]i, j[, we have c(π]i,i

′[) ≥ 0 and c(π]i,i
′]) ≥ 0 by Lemma 5.4. In fact,

since πi′ ∈ Ecall, we even have c(π]i,i
′]) = c(π]i,i

′[) + 1 > 0. But then, using
Remark 5.3, we can conclude

c(π]i
′, j[) = c(π]i, j[) − c(π]i,i

′]) < c(π]i, j[) = 0,

so that c(π]i
′, j[) < 0, which contradicts the balancedness of π]i

′, j[.

□

Secondly, the one-sided totality properties of νπ can be used to assess
whether π is balanced or not. This is the statement of Theorem 5.9.

Theorem 5.9. For any symbol sequence π ∈ E⋆, the following conditions are
equivalent:

(a) π is balanced.

(b) νπ is left- and right-total, i.e. a bijective function Callpos(π)→ Retpos(π).

The third property, which is given in Theorem 5.10, states that νπ relates
call and return positions in a well-nested fashion.
More specifically, the respective sections between two matching position
pairs never overlap.
For an illustration, see Figure 5.2. Given two pairs (i, j), (i′, j′) ∈ νπ of call
and return positions that are related by νπ, the corresponding index ranges
[i, j] and [i′, j′] are either disjoint or one of them is contained in the other.

Theorem 5.10. Given π ∈ E⋆, assume that (i, j), (i′, j′) ∈ νπ. Then one of the
following statements is true:
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1. [i, j] ⊆ [i′, j′]

2. [i′, j′] ⊆ [i, j]

3. [i, j] ∩ [i′, j′] = ∅
Proofs for Theorem 5.9 and Theorem 5.10 can be found in section A.1 and
Theorem 5.9, respectively.

5.1.2 Partially-Balanced Sequences

Theorem 5.9 suggests that the totality properties of νπ can be used to
classify sequences with respect to their balancedness properties. This
motivates the following definition.

Definition 5.11. We denote by Le f t(E) ⊆ E⋆ the set of symbol sequences π such
that νπ is left-total and by Right(E) ⊆ E⋆ the set of symbol sequences π such that
νπ is right-total. If π ∈ Le f t(E)∪Right(E), we also call π partially balanced.

Remark 5.12.
Le f t(E)∩Right(E) = Bal(E)

Proof. This follows from Theorem 5.9. □

5.1.3 Valid Sequences

The property of balancedness only considers call and return symbols in
terms of their numbers. In particular, in a balanced path it is only ensured
that every call symbol is matched by a return symbol and vice versa.
However, it is not ensured that return symbols also correspond to their
matching call symbols.

0 1 2 3

π: ( [ ) ]

Figure 5.3: A balanced but invalid symbol sequence – positions related by νπ are
connected
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As a simple example, consider the symbol sequence depicted in Figure 5.3.
Here there are two distinct call symbols ( and [ and two distinct return
symbols ) and ]. We find that νπ = {(0, 3), (1, 2)}, hence π is balanced.
But the symbols at the positions related by νπ do not belong together. To
exclude such sequences, I introduce a correspondence relation Φ ⊆ Ecall ×Eret
that specifies which call symbols belong to which return symbols. In the
example, the obvious choice for Φ is {((, )), ([, ])}.
Definition 5.13. Let π ∈ E⋆ be a symbol sequence.

π is called valid if

∀(i, j) ∈ Callpos(π) ×Retpos(π).(i, j) ∈ νπ =⇒ (πi,π j) ∈ Φ

I will denote the set of valid symbol sequences as Val(E).

Basically, this property says that if a call has a matching return (in terms of
position in the path), this return actually corresponds to the call according
to the relation. The sequence from our example is invalid, since (0, 3) ∈ νπ
but (π0,π3) ∉ Φ.
In the following, I fix a correspondence relation Φ ⊆ Ecall × Eret.

Definition 5.14. Let π ∈ E⋆ be a symbol sequence.

1. π is called ascending if π is valid and νπ is left-total.

2. π is called descending if π is valid and νπ is right-total.

3. π is called same-level if π is both ascending and descending.

4. With AscSeq(E), DescSeq(E), SLSeq(E), I denote the sets of ascending,
descending and same-level sequences, respectively.

Example 5.15. Let Eintra = {⋆}, Ecall = {<a,<b} and Eret = {>a,>b}, Further-
more, assume that Φ = {(<a,>a), (<b,>b)} and consider

π1
de f
=<a>b

π2
de f
=<a<b>b>a

π3
de f
=<a<b>b>a>b
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π4
de f
=<a<a>a<b>b

π5
de f
=>b>b<a<a

1. Then π1 is invalid: We have (0, 1) ∈ νπ1 , but (<a,>b) ∉ Φ.

2. We have Callpos(π2) = {0, 1}, Retpos(π2) = {2, 3} and νπ2 = {(0, 3), (1, 2)}.
Now it is easy to see that π2 is valid and both left- and right-total. Hence, π2 is a
same-level sequence.

3. We have Callpos(π3) = {0, 1} and Retpos(π3) = {2, 3, 4}. Moreover, we have
νπ3 = {(0, 3), (1, 2)}. This means that π3 is valid and νπ3 is left-total, but not
right-total, since there is no i ∈ Callpos(π3) with (i, 4) ∈ νπ3 . Hence, π3 is
ascending, but not same-level.

4. Analogously, we see that π4 is valid and that νπ4 ⊆ {0, 1, 3} × {2, 4} is
right-total, but not left-total. Hence, π4 is descending, but not same-level.

5. Finally, νπ5 = ∅ ⊆ {0, 1} × {2, 3}, so π5 is trivially valid but neither left- nor
right-total. Hence, π5 is neither ascending nor descending.

Since the left- and right-totality of νπ is equivalent to the balanced-ness of
π, the same-level property can also be expressed using balanced-ness.

Theorem 5.16. π ∈ E⋆ is same-level if and only if it is balanced and valid.

Proof. By definition, π is same-level if and only if it is valid and νπ is
bijective. By Theorem 5.9, this is the case if and only if π is valid and
balanced. □

In the following, I show that valid, ascending and descending sequences
are closed under taking contiguous sub-sequences. This becomes clear
relatively quickly, if we think about cases in which the respective totality
properties are maintained: Taking an arbitrary sub-sequence of π can
only remove or shift the positions appearing in νπ. Hence, validness
is maintained by this operation. Left-totality may be destroyed, if we
take a suffix and potentially remove a return position by this. However,
taking prefixes maintains right-totality. Hence, we can conclude that
descending sequences are closed under taking prefixes. Analogously,
right-totality is maintained by taking suffixes since taking a suffix only
removes return positions and does not hurt the matching for the remaining
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return positions. Hence, ascending sequences are closed under taking
suffixes.
For the proof of Theorem 5.18, I need a technical lemma, which I state and
prove before I proceed with Theorem 5.18.

Lemma 5.17. If π = π1 ·π2 ·π3 ∈ E⋆, then

1. rangeπ(π2) = {i + |π1| | i ∈ range(π2)}
2. ∀i, j ∈ range(π2). (i, j) ∈ νπ2 ⇐⇒ (i + |π1|, j + |π1|) ∈ νπ
Proof. We observe that

π2 = π[|π1|,|π1|+|π2|−1],

which is equivalent to

∀i ∈ range(π2). πi
2 = π|π1|+i.

From this, both claims can be proven easily. □

Theorem 5.18. The following statements are true.

1. Valid sequences are closed under taking sub-sequences, in particular under
taking suffixes and prefixes.

2. Ascending sequences are closed under taking suffixes.

3. Descending sequences are closed under taking prefixes.

4. Taking a prefix of an ascending sequence or a suffix of a descending sequence
yields a valid sequence.

Proof. 1. If π is valid and π′ = π[i, j] is a sub-sequence of π, then π′ still
has the validity property, as can easily be seen.

2. Let π be ascending and π≥ j be a suffix of π. Write n = |π|. Let
k ∈ range(π≥ j) be a call position in π≥ j. Then (π≥ j)k = πk+ j. Because νπ
is left-total, there is a return position l ∈ range(π) such that (k + j, l) ∈ νπ.
From this, it follows that l ≥ k + j. Hence, we can write l = (l − j) + j,
so that l − j ∈ range(π≥ j). Then, (k + j, l) ∈ νπ implies (k, l − j) ∈ νπ≤ j by
Lemma 5.17. Thus, we have shown that νπ≥ j is left-total.
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3. Let π be descending and π≤ j be a prefix of π. Let

l ∈ Retpos(π≤ j) ⊆ Retpos(π)

be a return position in π≤ j. Due to right-totality of νπ, we find a k ∈
Callpos(π) such that (k, l) ∈ νπ. This means in particular that k < l. With
l ≤ j we get k ≤ j so that we can conclude (k, l) ∈ νπ≤ j . This proves that
νπ≤ j is left-total.

4. Both ascending and descending paths are valid and according to the
first statement, valid paths are closed under taking suffixes and prefixes.

□

5.1.4 Inductive Definitions

In this subsection, I derive inductive definitions for the various classes of
sequences that I have introduced so far. I start with characterizing balanced,
left-total and right-total and finally all sequences inductively. Afterwards,
I consider their valid counterparts and give inductive definitions for
same-level, ascending, descending and valid sequences.
Proofs for the following three theorems can be found in section A.3.

Theorem 5.19. Bal(E) is the least subset X of E⋆ with the following properties:

(Bal1)
ϵ ∈ X

(Bal2)
π ∈ X e ∈ Eintra

π · e ∈ X

(Bal3)
π ∈ X π′ ∈ X ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X

Theorem 5.20. Le f t(E) is the least subset X of E⋆ which has the following
properties:

(Le f t1)
ϵ ∈ X

(Le f t2)
π ∈ X e ∈ Eintra ∪ Eret

π · e ∈ X

(Le f t3)
π ∈ X π′ ∈ Bal(E) ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X
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Theorem 5.21. Right(E) is the least subset X of E⋆ which has the following
properties:

(Right1)
ϵ ∈ X

(Right2)
π ∈ X e ∈ Eintra ∪ Ecall

π · e ∈ X

(Right3)
π ∈ X π′ ∈ Bal(E) ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X

Next, Theorem 5.22 that every sequence can be split up into a left- and
right-total sequence in a specific way. This is a specific version of a theorem
already considered by Knuth (cf. [107, Lemma 1]). I am going to apply this
property in chapter 7.

Theorem 5.22. For every symbol sequence, there is i ∈ range(π) such that every
symbol sequence π ∈ E⋆ can be split up into π = π<i ·π≥i such that

π<i ∈ Le f t(E)(5.1)

π≥i ∈ Right(E)(5.2)
π ∉ Le f t(E) =⇒ i ∈ Callpos(π).(5.3)

Proof. Define the set of unfinished call positions in π as

Ucall
de f
= {i ∈ Callpos(π) | ∀ j ∈ range(π). (i, j) ∉ νπ}.

Now we make a case distinction on whether Ucall is empty or not. If
Ucall = ∅, then π ∈ Le f t(E). Then we can choose i = |π|.
Now consider the case thatUcall ≠ ∅. Let i ∈ Ucall be the least element of
Ucall. Now we show

π1
de f
= π<i ∈ Le f t(E)(1)

π2
de f
= π≥i ∈ Right(E).(2)

(1) Let i′ ∈ Callpos(π1) ⊆ Callpos(π). Then i′ < i and, due to the choice
of i, there must be j ∈ range(π) such that (i′, j) ∈ νπ. This implies π]i

′, j[

is balanced and hence that j ≤ i, since otherwise π]i
′, j[ would contain
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the unmatched call πi, in contradiction to the balancedness of π]i
′, j[. In

addition to j ≤ i we also observe j ≠ i, since πi ∈ Ecall and π j ∈ Eret and
Ecall ∩ Eret = ∅. Thus, we have j ∈ range(π1) and therefore (i′, j) ∈ νπ1 .

(2) We show π2 ∈ Right(E) by induction on π2 ∈ E⋆. This is clear for
π = ϵ. So let π2 = π′2 · e. Our induction hypothesis says that π′2 ∈ Right(E)
and we have to show that π2 ∈ Right(E) as well. We proceed with a
case distinction on e. If e ∈ Eintra ∪ Ecall, then we have π2 ∈ Right(E) by
Theorem 5.21. So we assume e ∈ Eret. Let j ∈ Retpos(π2). We have to find
i0 ∈ Callpos(π2) such that (i0, j) ∈ νπ2 . This follows from the induction
hypothesis if j ∈ Retpos(π′2), so we may assume j = |π2| − 1. In this
case, we choose i0 as the greatest unmatched call position in π2. Such a
position must exist since i is an unmatched call position in π and therefore
in π2. Furthermore, we have i0 < j. This is because Ecall ∩ Eret = ∅
and π j

2 = e ∈ Eret. Finally, we have to show that π]i0, j[
2 is balanced. By

Theorem 5.9, it suffices to show that π]i0, j[
2 contains neither unmatched

call positions nor unmatched returns positions. We show the two claims
separately:

• Assume, for the purpose of contradiction, that π]i0, j[
2 contains an

unmatched call position i1. This position would have the property
i1 > i0, which is a contradiction to the maximality of i0. Hence, such
a position cannot exist.

• Assume, for the purpose of contradiction, that π]i0, j[
2 contains an

unmatched return position and let j0 be the least such position.

Then π]i0, j0[
2 would be balanced. Firstly, it cannot contain unmatched

call positions, due to the maximality of i0. Secondly, it also cannot
contain unmatched return positions, due to the minimality of j0.
Moreover, we have i0 < j0, πi0

2 ∈ Ecall and π j0
2 ∈ Eret, so that we obtain

(i0, j0) ∈ νπ2 , a contradiction to the choice of j0 as unmatched return
position.

□

Corollary 5.23 (cf. [107], Lemma 1). Every symbol sequence π ∈ E⋆ can be
split up into π = π1 ·π2 such that νπ1 is left-total and νπ2 is right-total.

Proof. This is a direct consequence of Theorem 5.22. □
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5.1.4.1 Inductive Definitions for valid sequences

Before I actually derive and prove correct inductive definitions for the valid
variants of partially-balanced sequences, I compile a couple of observations
about the closure properties of same-level, ascending, descending and
valid sequences. Proofs can be found in section A.3.
Firstly, I observe that appending inner symbols does not do any harm.

Lemma 5.24. 1. Ifπ ∈ AscSeq(E) and e ∈ Eintra∪Eret, thenπ · e ∈ AscSeq(E).

2. If π ∈ DescSeq(E) and e ∈ Eintra ∪ Ecall, then π · e ∈ DescSeq(E).

3. If π ∈ SLSeq(E) and e ∈ Eintra, then π · e ∈ SLSeq(E).

Secondly, appending a same-level sequence destroys neither validness nor
the respective totality property of the matching relation.

Lemma 5.25. Letπ ∈ Val(E) andπ′ ∈ SLSeq(E). Then the following statements
hold:

1. π ·π′ is valid.

2. If π ∈ Bal(E), then π ·π′ is same-level.

3. If π ∈ Le f t(E), then π ·π′ is ascending.

4. If π ∈ Right(E), then π ·π′ is descending.

Lastly, same-level sequences are closed under surrounding with a corres-
ponding call-return pair.

Lemma 5.26. If π ∈ SLSeq(E), ecall ∈ Ecall, eret ∈ Eret and (ecall, eret) ∈ Φ,
then ecall ·π · eret ∈ SLSeq(E).

With these three observations in mind, it is now relatively clear how the
inductive definitions for the partially-balanced sequences have to be mod-
ified in order to obtain inductive definitions for their valid counterparts.
All we have to do is adapt the respective clause that is concerned with
appending balanced sequence to make sure that it maintains validity.
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Theorem 5.27. The same-level sequences are the least subset X of E⋆ with the
following closure properties:

(sl-seqempty)
ϵ ∈ X

(sl-seqintra)
π ∈ X e ∈ Eintra

π · e ∈ X

(sl-seqinter)
π ∈ X π′ ∈ X ecall ∈ Ecall eret ∈ Eret (ecall, eret) ∈ Φ

π · ecall ·π′ · eret ∈ X

Proof. By Theorem 2.19, we have to show that

1. SLSeq(E) satisfies sl-seqempty,sl-seqintra and sl-seqinter.

2. SLSeq(E) is contained in the least subset X0 ⊆ E⋆that satisfies
sl-seqempty,sl-seqintra and sl-seqinter.

We prove the two claims separately.

1. SLSeq(E) satisfies sl-seqempty, because ϵ is balanced by Bal1 and trivially
valid. Moreover, with Lemma 5.24 we see that SLSeq(E) also satisfies
sl-seqintra. Finally, Lemma 5.25 and Lemma 5.26 imply sl-seqinter.

2. By structural induction on π ∈ Bal(E) we show

∀π ∈ Bal(E). π ∈ Val(E) =⇒ π ∈ X0.

This implies SLSeq(E) = Bal(E)∩Val(E) ⊆ X0.

Bal1 If π = ϵ, then π ∈ X0 by sl-seqempty.

Bal2 Letπ = π′ · e withπ′ ∈ Bal(E) and e ∈ Eintra. Assume thatπ ∈ Val(E).
Then π′ ∈ Val(E) by Theorem 5.18. This implies π′ ∈ X0 by induction
hypothesis. With sl-seqintra, we get π = π′ · e ∈ X0.

Bal3 Let π = π′ · ecall · π′′ · eret with π′,π′′ ∈ Bal(E), ecall ∈ Ecall, eret ∈ Eret
and assume that π ∈ Val(E). Choose i, j such that π<i = π′, πi =

ecall, π]i, j[ = π′′ and π j = eret. Then we observe that (i, j) ∈ νπ by
definition. Since π ∈ Val(E), it follows that (ecall, eret) ∈ Φ. Furthermore,
by Theorem 5.18, both π′ and π′′ are valid. Application of the induction
hypothesis to π′ and π′′ yields π′,π′′ ∈ X0. Now we can apply sl-seqinter
obtain that π = π′ · ecall ·π′′ · eret ∈ X0.
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□

Theorem 5.28. The set of ascending sequences is the least subset X of E⋆ with
the following properties:

(asc-seqempty)
ϵ ∈ X

(asc-seqasc)
π ∈ X e ∈ Eintra ∪ Eret

π · e ∈ X

(asc-seqsl)
π ∈ X π′ ∈ SLSeq(E) ecall ∈ Ecall eret ∈ Eret (ecall, eret) ∈ Φ

π · ecall ·π′ · eret ∈ X

Proof. By Theorem 2.19, we have to show that

1. AscSeq(E) satisfies asc-seqempty,asc-seqasc and asc-seqsl, and

2. AscSeq(E) is contained in the least subset X0 ⊆ E⋆ that satisfies
asc-seqempty,asc-seqasc and asc-seqsl.

We prove the two claims separately.

1. AscSeq(E) satisfies asc-seqempty, because ϵ ∈ Le f t(E) by Le f t1 and ϵ
is trivially valid. Moreover, with Lemma 5.24 we see that AscSeq(E)
also satisfies asc-seqasc. Finally, Lemma 5.26 and Lemma 5.25 imply that
AscSeq(E) satisfies asc-seqsl.

2. Let X0 be the least subset of E⋆ that has the closure properties
asc-seqempty,asc-seqasc and asc-seqsl. By structural induction on π ∈
Le f t(E) we show

∀π ∈ Le f t(E). π ∈ Val(E) =⇒ π ∈ X0.

This implies AscSeq(E) = Le f t(E)∩Val(E) ⊆ X0.

Le f t1 If π = ϵ, then π ∈ X0 by asc-seqempty.

Le f t2 Let π = π′ · e with π′ ∈ Le f t(E) and e ∈ Eintra ∪ Eret. Assume that
π ∈ Val(E). Then π′ ∈ Val(E) by Theorem 5.18. With π′ ∈ Le f t(E), we can
apply the induction hypothesis and get π′ ∈ X0. With asc-seqasc, we get
π = π′ · e ∈ X0.
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Le f t3 Let π = π′ · ecall ·π′′ · eret with π′ ∈ Le f t(E), π′′ ∈ Bal(E), ecall ∈ Ecall,
eret ∈ Eret and assume that π ∈ Val(E). Define i, j such that π<i = π′,
πi = ecall, π]i, j[ = π′′ and π j = eret. Then we observe that (i, j) ∈ νπ by
definition. Since π ∈ Val(E), it follows that (ecall, eret) ∈ Φ. Furthermore,
by Theorem 5.18, both π′ and π′′ are valid. Application of the induction
hypothesis to π′ yields π′ ∈ X0. Furthermore, π′′ is both balanced and
valid, which means that π′′ ∈ SLSeq(E). Now we can apply asc-seqsl and
yield that π = π′ · ecall ·π′′ · eret ∈ X0.

□

Theorem 5.29. The set of descending sequences is the least subset X of E⋆ with
the following properties:

(desc-seqempty)
ϵ ∈ X

(desc-seqdesc)
π ∈ X e ∈ Eintra ∪ Ecall

π · e ∈ X

(desc-seqsl)

π ∈ X π′ ∈ SLSeq(E) ecall ∈ Ecall
eret ∈ Eret (ecall, eret) ∈ Φ

π · ecall ·π′ · eret ∈ X

Proof. The proof is very similar to the proof of Theorem 5.28. □

Theorem 5.30. The valid sequences are exactly the concatenations of the ascend-
ing and the descending sequences. In particular:

1. If π1 is ascending and π2 is descending, then π1 ·π2 is valid.

2. Every valid symbol sequence π ∈ E⋆ can be split up into π = π1 · π2 such
that π1 is ascending and π2 is descending.

Proof. I show both statements separately.

1. Let π = π1 · π2 and (i, j) ∈ νπ. First we observe that it must be
either i, j ∈ rangeπ(π1) or i, j ∈ rangeπ(π2): Assume, for the purpose
of contradiction, that this is not the case. Then, since i < j, it must
be i ∈ rangeπ(π1) and j ∈ rangeπ(π2). But note that π1 is ascending.
Hence, there is j′ ∈ rangeπ(π1) with (i, j′) ∈ νπ1 ⊆ νπ. But then we have
(i, j) ∈ νπ and (i, j′) ∈ νπ with j′ < j, in contradiction to Theorem 5.8.
Thus, the assumption must be false and we have either i, j ∈ rangeπ(π1) or
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i, j ∈ rangeπ(π2). In either case, it follows that (πi,π j) ∈ Φ, since both π1
and π2 are valid.

2. Let π be a valid symbol sequence. By Corollary 5.23, we can split up
π into π = π1 ·π2 such that νπ1 is left-total and νπ2 is right-total. Since π
is valid, by Theorem 5.18 both π1 and π2 are valid. It follows that π1 is
ascending and π2 is descending.

□

5.2 Interprocedural Graphs

In this section, I introduce the graph model over which I will later define
data-flow analyses. This graph model is intended to be general enough
to cover both the classical interprocedural control-flow graphs (cf. Defini-
tion 3.2) and also other graphs like program dependence graphs.

Definition 5.31. Given a finite set P of procedure labels, an interprocedural
graph

G = (N, Eintra, Ecall, Eret, P, Φ, Nentry, Nexit)

consists of

• a set of nodes N =
⋃︁

p∈P Np such that

∀p, p′ ∈ P. p ≠ p′ =⇒ Np ∩Np′ = ∅

• a set of intraprocedural edges Eintra =
⋃︁

p∈P Ep such that

∀p ∈ P. Ep ⊆ Np ×Np and ∀p, p′ ∈ P. Ep ∩ E′p = ∅

• sets Ecall, Eret ⊆ ⋃︁p,p′∈P Np ×N′p of call edges and return edges with
the property

Eintra ∩ Ecall = Eintra ∩ Eret = Ecall ∩ Eret = ∅,

• a correspondence relation Φ ⊆ Ecall × Eret, and
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• sets Nentry, Nexit ⊆ N of entry and exit nodes, respectively, such that

– every node with an incoming call edge is an entry node,

∀n ∈ N. (∃n′ ∈ N. ∃e ∈ Ecall. n′ e→ n =⇒ n ∈ Nentry),

– every node with an outgoing return edge is an exit node, and

∀n ∈ N. (∃n′ ∈ N. ∃e ∈ Eret. n e→ n′ =⇒ n ∈ Nexit),

– no node is an entry node and an exit node at the same time.

Nentry ∩Nexit = ∅.

I define Einter
de f
= Ecall ∪ Eret and call its elements interprocedural edges. I

refer to each (Np, Ep) as procedure graph. According to the definition of
interprocedural graphs, for each n ∈ N there is exactly one p ∈ P such that
n ∈ Np. I call p the procedure of n and write it as proc(n). Occasionally, I
will consider an interprocedural graph as a directed graph (N, E). Then I
ignore the additional structure and use

E
de f
= Eintra ∪ Ecall ∪ Eret.

In the rest of this thesis, I will assume that Nentry and Nexit are given but will
not mention them explicitly when specifying an interprocedural graph.

Definition 5.32. Let G = (N, Eintra, Ecall, Eret, P, Φ) be an interprocedural
graph. Then I define the following special nodes:

1. A call node is a node that has outgoing call edges. I write Ncall for the set of
call nodes.

2. A return node is a node that has incoming return edges. I write Nret for the
set of return nodes.

The following example shows that both interprocedural control-flow
graphs and interprocedural program dependence graphs are subsumed
by Definition 5.31.
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Example 5.33. 1. Interprocedural control-flow graphs according to Defini-
tion 3.2 can be considered as interprocedural graphs with the following additional
properties:

• Every procedure graph has exactly one entry node sp and exactly one exit
node ep.

• Φ is a bijective function, i.e. it is left-total, left-unique, right-total and
right-unique.

2. Interprocedural program dependence graphs as described in subsubsec-
tion 3.3.2.2 on page 65 can be considered as interprocedural graphs. We consider
parameter-in edges as elements of Ecall and parameter-out edges as elements of
Eret. Then the entry nodes are either ordinary procedure entries or formal-in
nodes. Exit nodes are either ordinary procedure exits or formal-out nodes. Call
nodes are either ordinary call nodes or actual-in nodes. Return nodes are either
ordinary return nodes or actual-out nodes.

Definition 5.34. Let G = (N, Eintra, Ecall, Eret, P, Φ) be an interprocedural
graph and let s, t ∈ N.

1. A path π ∈ Paths(G) is called

• same-level path if π ∈ SLSeq(E),

• ascending path if π ∈ AscSeq(E),

• descending path if π ∈ DescSeq(E), and

• valid path if π ∈ Val(E),

where SLSeq(E), AscSeq(E), DescSeq(E) are defined with respect to the corres-
pondence relation Φ.

2. I define

SL, ASC, DESC, VP : N ×N→ 2Paths(G)

by

SL(s, t)
de f
= SLSeq(E)∩ PathsG(s, t)

ASC(s, t)
de f
=AscSeq(E)∩ PathsG(s, t)
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DESC(s, t)
de f
=DescSeq(E)∩ PathsG(s, t)

VP(s, t)
de f
=ValSeq(E)∩ PathsG(s, t)

In the following, I will use these functions also as path sets. Particularly, I will
write SL for the set of paths π such that there is s, t ∈ N with π ∈ SL(s, t) –
analogously for ASC, DESC and VP.

By combining the inductive definitions of the valid sequences and their
partially-balanced variants with the inductive definition of Paths(G), I can
derive inductive definitions for SL, ASC, DESC and VP, respectively.

Theorem 5.35. SL is the least subset of N ×N × 2E⋆ with the following closure
properties:

(sl-empty)
ε ∈ X(s, s)

(sl-intra)
π ∈ X(s, t′) t′ e→ t e ∈ Eintra

π · e ∈ X(s, t)

(sl-sl)
π ∈ X(s, n) n

ecall→ n0 π′ ∈ X(n0, n1) n1
eret→ t (ecall, eret) ∈ Φ

π · ecall ·π′ · eret ∈ X(s, t)

Proof. According to Theorem 2.19, we need to show

1. SL has the closure properties sl-empty, sl-intra and sl-sl, and

2. SL ⊆ X0 where X0 is the least subset of N ×N × 2E⋆ with the closure
properties sl-empty, sl-intra and sl-sl.

We show both claims separately.

1. We show that SL has the properties sl-empty, sl-intra and sl-sl.

sl-empty Let s ∈ N. Then ϵ ∈ PathsG(s, s) by path-empty. Moreover,
ϵ ∈ SLSeq(E) by sl-seqempty. Together, it follows that ϵ ∈ PathsG(s, s) ∩
SLSeq(E) = SL(s, s).

sl-intra Let s, t′, t ∈ N, π ∈ SL(s, t′) and t′ e→ t with e ∈ Eintra. From
π ∈ SL(s, t′) we have π ∈ PathsG(s, t′) and π ∈ SLSeq(s, t′). From π ∈
PathsG(s, t′) and t′ e→ t we get π · e ∈ PathsG(s, t) and from π ∈ SLSeq(E)
and e ∈ Eintra we have π · e ∈ SLSeq(E) by sl-seqintra. Together we have
π · e ∈ PathsG(s, t)∩ SLSeq(E) = SL(s, t).
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sl-sl Let s, n, n0, n1, t ∈ N, ecall ∈ Ecall, eret ∈ Eret, π ∈ SL(s, n) and π′ ∈
SL(n0, n1) with n

ecall→ n0, n1
eret→ t and (ecall, eret) ∈ Φ. Then we have π · ecall ·

π′ · eret ∈ SLSeq(E) by sl-seqinter. Moreover, π · ecall · π′ · eret ∈ PathsG(s, t)
follows from SL(s, n) ⊆ PathsG(s, n) and SL(n0, n1) ⊆ PathsG(n0, n1) by
path-extend and Lemma 2.23.

2. Let X0 be the least subset of N ×N × 2E⋆ with the closure properties
sl-empty, sl-intra and sl-sl. Using the induction principle induced by
Theorem 5.27, we show

∀π ∈ SLSeq. ∀s, t ∈ N. π ∈ PathsG(s, t) =⇒ π ∈ X0(s, t)

Let π ∈ SLSeq and s, t ∈ N with π ∈ PathsG(s, t). Then we need to show
π ∈ X0(s, t).

sl-seqempty : If π = ϵ, then from π ∈ PathsG(s, t) we get s = t, hence
π ∈ X0(s, t) by sl-empty.

sl-seqintra : Assume π = π′ · e with π′ ∈ SLSeq and e ∈ Eintra. By
Lemma 2.24, from π ∈ PathsG(s, t) we yield t′ ∈ N with π′ ∈ PathsG(s, t′)
and t′ e→ t. By induction hypothesis, we get π′ ∈ X0(s, t′). This implies
π ∈ X0(s, t) by sl-intra.

sl-seqinter : Assume π = π′ · ecall · π′′ · eret with π′,π′′ ∈ SLSeq and
(ecall, eret) ∈ Φ. By splitting up π and applying Lemma 2.24 to

π ∈ PathsG(s, t), we obtain n, n0, n1 with π′ ∈ PathsG(s, n), n
ecall→ n0,

π′′ ∈ PathsG(n0, n1) and n1
eret→ t. By induction hypothesis, applied to π′

and π′′, we get π′ ∈ X0(s, n) and π′′ ∈ X0(n0, n1). This implies π ∈ X0(s, t)
by sl-sl.

□

Theorem 5.36. ASC is the least element X ∈ N ×N → 2E⋆ with the following
closure properties

(asc-empty)
ε ∈ X(s, s)

(asc-asc)
π∈X(s, t′) t′ e→ t e ∈ Eintra∪Eret

π · e ∈ X(s, t)

(asc-sl)
π∈X(s, n) n

ecall→ n0 π′∈SL(n0, n1) n1
eret→ t (ecall, eret)∈Φ

π · ecall ·π′ · eret∈X(s, t)
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Proof. This can be shown analogously to Theorem 5.35. □

Theorem 5.37. DESC is the least element X ∈ N ×N→ 2E⋆ with the following
closure properties

(desc-empty)
ε ∈ X(s, s)

(desc-desc)
π ∈ X(s, t′) t′ e→ t e ∈ Eintra ∪ Ecall

π · e ∈ X(s, t)

(desc-sl)
π ∈ X(s, n) n

ecall→ n0 π′ ∈ SL(n0, n1) n1
eret→ t (ecall, eret) ∈ Φ

π · ecall ·π′ · eret ∈ X(s, t)

Proof. This can be shown analogously to Theorem 5.35. □

Theorem 5.38. For all s, t ∈ N, VP(s, t) can be characterized as follows:

VP(s, t) = {π1 ·π2 | ∃n ∈ N.π1 ∈ ASC(s, n)∧π2 ∈ DESC(n, t)}
(valid-asc-desc)

Proof. This follows from Theorem 5.30, Lemma 2.23 and Lemma 2.24. □

Theorem 5.39. The following statemens are true.

1. Valid paths are closed under taking sub-paths, in particular under taking
suffixes and prefixes.

2. Ascending paths are closed under taking suffixes.

3. Descending paths are closed under taking prefixes.

4. Taking a prefix of an ascending path or a suffix of a descending path yields a
valid path.

Proof. This can be derived by combining Remark 2.25 and Theorem 5.18.
□

Theorem 5.40. For all s, t, t′ ∈ N, we have

∀π ∈ ASC(s, t). ∀π′ ∈ ASC(t, t′). π ·π′ ∈ ASC(s, t′)(5.4)
∀π ∈ DESC(s, t). ∀π′ ∈ DESC(t, t′). π ·π′ ∈ DESC(s, t′)(5.5)
∀π ∈ VP(s, t). ∀π′ ∈ SL(t, t′). π ·π′ ∈ SL(s, t′)(5.6)

201



5 A Common Generalization Of Program Dependence Graphs and Control-Flow Graphs

Proof. The first two statements can be shown using Lemma 2.23, The-
orem 5.20, Theorem 5.21 and the definitions of ascending and descending
paths.

For the third statements, by Theorem 5.38 it suffices to show the respective
property for descending paths. But this follows from Theorem 5.37.

□

With an additional regularity restriction of Φ, I can show that same-level
paths end in the same procedure that they started in.

Remark 5.41. Assume that the correspondence relation Φ has the following
property

(ecall, eret) ∈ Φ =⇒ proc(src(ecall)) = proc(tgt(eret))(5.7)

Then the following statement holds: If π is a same-level path from s to t, then
proc(s) = proc(t).

Proof. By induction on π ∈ SL(s, t). □

Table 5.1 shows an overview of some notions of validness in the literature.
The publications there can roughly be split into two groups: Those that
characterize valid paths as suffixes of descending paths and those that
characterize them as concatenations of ascending and descending paths.
While the former notion is sensible for contexts in which valid paths are
supposed to correspond to actual program executions28, the latter notion
is more general. According to Theorem 5.39, suffixes of descending paths
are always valid. Conversely, however, interprocedural graphs in general
may contain valid paths that are not suffixes of any descending path.
The two notions coincide if additional assumptions are made, as The-
orem 5.42 states. Note that such assumptions are not made for the rest of
this thesis.

Theorem 5.42. Let G = (N, Eintra, Ecall, Eret, P, Φ) be an interprocedural graph.
Assume that every procedure graph Gp has a distinguished entry sp and that the
following conditions hold:

28They are also called realizable paths for this reason.
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definition in literature notion of validness

[86, Definition 2.13] suffixes of descending paths
[137, p. 4] suffixes of descending paths
[164, p. 110ff] suffixes of descending paths
[136, Definition 2.3] suffixes of descending paths
[65, Definition 2.3] valid paths
[138, Definition 2.1] valid paths

Table 5.1: Notions of validness in the literature

There is a procedure main ∈ P such that the entry smain of Gmain reaches every sp
using a descending path.

∃main ∈ P. ∀p′ ∈ Proc. SL(smain, sp) ≠ ∅(main-reach)

In every procedure graph Gp, every node n ∈ Np is same-level reachable from sp.

∀p ∈ . ∀n ∈ Np. SL(sp, n) ≠ ∅(sl-reach)

For every return edge e, there is a corresponding call edge that enters the procedure
that e starts in:

∀e ∈ Eret. ∃e′ ∈ Ecall.(e
′, e) ∈ Φ ∧ tgt(e′) = sproc(src(e))(ret-call)

Then every valid path is the suffix of a descending path starting in smain:

∀π2 ∈ VP. ∀m, n ∈ N.(5.8)
π2 ∈ PathsG(m, n)
=⇒ ∃π1 ∈ PathsG(smain, m). π1 ·π2 ∈ DESC(smain, n).

Proof. It suffices to show that (5.8) holds for the ascending paths:

∀π2 ∈ ASC. ∀m, n ∈ N.(5.9)
π2 ∈ PathsG(m, n)
=⇒ ∃π1 ∈ PathsG(smain, m). π1 ·π2 ∈ DESC(smain, n).

Suppose that (5.9) is true and let π ∈ VP(m, n) be a valid path. Then by
Theorem 5.38, we obtain m0 ∈ N,π1 ∈ ASC(m, m0),π2 ∈ DESC(m0, n) such
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that π = π1 ·π2. Now we apply (5.9) to π1 and obtain σ ∈ PathsG(smain, m)
such that σ · π1 ∈ DESC(smain, m0). With π2 ∈ DESC(m0, n), we have
σ ·π1 ·π2 ∈ DESC(smain, n), as desired.
It remains to show (5.9). We proceed by induction on the number k of
unmatched return positions in π2 ∈ ASC.

base case (k = 0): If π2 has no unmatched return positions, then π2 ∈ SL,
because π2 ∈ ASC, which means that π2 has also no unmatched call
positions. Now let m, n ∈ N such that π2 ∈ SL(m, n) and let p = proc(m).
We apply (main-reach) to sp and obtain π′1 ∈ DESC(smain, sp). Moreover,
we apply (sl-reach) to m ∈ Np and obtain π′′1 ∈ SL(sp, m). Now consider

π1
de f
= π′1 ·π′′1 . With the help of Theorem 5.40, from π′1 ∈ DESC(smain, sp),

π′′1 ∈ SL(sp, m) and π2 ∈ SL(m, n), we conclude π′1 · π′′1 · π2 = π1 · π2 ∈
DESC(smain, n), as desired.

induction step (k→ k + 1): Let π2 be an ascending path with k + 1 un-
matched return positions. The induction hypothesis states that the claim
is true for all ascending paths with k unmatched return positions. Let
m, n ∈ N such that π2 ∈ ASC(m, n) and let j0 be the least unmatched return
position in π2. Then we write π2 as

π2 = π′2 · eret ·π′′2
where

π′2
de f
= π

< j0
2 ∈ PathsG(m, n0),

eret
de f
= π

j0
2 with n0

eret→ n1, and

π′′2
de f
= π

> j0
2 ∈ PathsG(n1, n).

for some n0, n1 ∈ N, eret ∈ Eret.

Due to the maximality property of j0, π′2 contains no unmatched return
positions. Moreover, it cannot contain any unmatched call position.
Assume, for the purpose of contradiction, that π′2 contains an unmatched
call position. Then the greatest such position is also a call position in π2,
which would be matched by the return position j0, in contradiction to
the choice of j0 as unmatched return position. Hence, the assumption is
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false, which means that all call positions in π′2 must be matched. Hence,
π′2 ∈ SL(m, n0). Moreover, π′′2 is a suffix of the ascending path π2 and
therefore ascending because of Theorem 5.39.

Now let p = proc(m). We apply (ret-call) to eret and obtain m0
ecall→ sp

such that (ecall, eret) ∈ Φ. Moreover, we apply (sl-reach) to m and obtain
π0 ∈ SL(sp, m). Now consider the path

θ
de f
= ecall ·π0 · eret ·π2 = ecall ·π0 · eret ·π′2 · eret ·π′′2

from m0 to n0: It is the concatenation of the same-level path ecall ·π0 · eret
and the ascending path π2 and therefore ascending itself. Moreover, it
contains k unmatched return positions because by choice of ecall, we have
(0, 1 + j0) ∈ νθ. Hence, we can apply the induction hypothesis to θ and
obtain σ ∈ PathsG(smain, m0) such that

σ · θ ∈ DESC(smain, n).

With
π1

de f
= σ · ecall ·π0,

we have π1 ·π2 = σ · θ ∈ DESC(smain, n), as desired.

□

5.3 Data-Flow Analysis on Interprocedural
Graphs

Next, I define data-flow analysis instances for interprocedural graphs. This
is a general and formal version29 of the notions I have already described
in subsubsection 3.2.2.1 on page 48.

Definition 5.43. A data-flow analysis instance F = (G, L, F,ρ) consists of

• an interprocedural graph G = (N, Eintra, Ecall, Eret, P, Φ),

29Note that Definition 5.43 omits the initial information init. I will discuss this slight
modification in subsection 9.2.2.
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• a complete lattice (L,≤),
• a set F ⊆ L→mon L that contains idL, is closed under function composition

and forms a complete lattice with point-wise ordering, and

• a function ρ : E → (L →mon L) which assigns a monotone transfer
function to each edge of G.

Instead of ρ(e) I will write fe. I extend this notation to arbitrary paths by
defining

fϵ
de f
= id(5.10)

fπ·e
de f
= fe ◦ fπ.(5.11)

Next, I want to introduce my generalized variant of the merge-over-all-
valid-paths solution MOVP. This version of MOVP is more general in two
aspects:

1. it not only considers paths that start in a fixed entry node, but takes the
starting node as additional argument,

2. it not only considers descending paths but also paths with an ascending
prefix.

Moreover, I explicitly do not make any assumptions about reachability.
Hence, the value MOVP(s, t) not only reflects the resulting value if we
merge the path functions for all valid paths from s to t, but it also commu-
nicates whether VP(s, t) is empty or not. In traditional data-flow analyses,
this is never the case because they only consider s, t where VP(s, t) is not
empty. However, ⊥F can still be a valid analysis result value, even if
VP(s, t) ≠ ∅.
Hence, in order to be able to distinguish between analysis results for
non-empty and empty path sets, I adjoin F with an additional element
⊠ that represents undefinedness. Before I discuss the properties of ⊠, I
give the definition of MOVP in Definition 5.44. Since I will also consider
Merge-Over-P-solutions for other sets of paths than VP, Definition 5.44 is
more general than needed right now.
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s t t′
fe

Figure 5.4: Example in which it is important that ⊠ kills everything – e is an
intraprocedural edge

Definition 5.44. Let P ⊆ Paths(G) be a set of paths. The Merge-Over-P-
solution

MOP : N ×N→ F⊠

is defined by
MOP(s, t) =

⨆︂

π∈P∩PathsG(s,t)

fπ.

Now I discuss the assumptions about and properties of ⊠ more closely.
Firstly, I assume that ⊠ is smaller than any element of F.

∀ f ∈ F⊠. ⊠ ≤ f(5.12)
∀ f ∈ F. ⊠ ≠ f(5.13)

This means that it never coincides with any fπ:

∀e ∈ E. fe ≠ ⊠(5.14)
∀ f , g ∈ F. f ◦ g ≠ ⊠(5.15)

These properties ensure that

MOVP(s, t) = ⊠ if and only if VP(s, t) = ∅.
Moreover, I extend the function composition on F to F⊠ in a way such that
⊠ kills every value already computed:

∀ f ∈ F⊠. f ◦⊠ = ⊠ ◦ f = ⊠.(5.16)

I make this assumption because I want to compose different values of
MOVP consistently without explicitly thinking about ⊠ or whether the
corresponding VP sets are empty or not. For illustration, consider the
graph in Figure 5.4. Since VP(s, t′) = ∅, we have MOVP(s, t′) = ⊠. (5.16)
ensures that I get the same result by computing fe ◦MOP(s, t).
Instead of adjoining F with ⊠, I could have made two alternative choices
that one could make to achieve the same goals. For one, I also could
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use partial functions N ×N→ F for my solution space. Then I could say
that (s, t) does not belong to the domain of MOVP if VP is empty. In my
approach, I communicate this by letting MOVP(s, t) be ⊠ in such cases.
The other approach would be to restrict F to only allow strict functions. A
function f : L→ L is called strict, if f (x) = ⊥L is equivalent to x = ⊥L. If
all f ∈ F are strict, then I can use λx.⊥ as bottom element of F to represent
the merge over the empty path set.
I decided to use ⊠ explicitly because I did not want to restrict the transfer
functions but also did not want to introduce additional notational overhead
for dealing with partial functions. I will make use of one additional
convention: At several places, I will use elements ψ : N ×N → F⊠ as
functions. Whenever I do this and do not explicitly discuss whether ψ = ⊠
or not, I will silently assume ψ ≠ ⊠. For instance, if I state equations such
as ψ(x) = y, then I will silently assume that ψ is indeed a function.
I conclude this section by considering distributivity, an important property
of transfer functions and frameworks. Distributivity ensures that the
constraint systems that I show in chapter 6 coincide with their respective
MOP solutions.

Definition 5.45. • Let L be a complete lattice and F ⊆ L →mon L be
a complete lattice of monotone functions that is closed under function
composition. Then

1. f ∈ F is called strict, if

f ◦ ⊥ = ⊥(5.17)

2. f ∈ F is called distributive, if

∀g, h ∈ F. f ◦ (g⊔ h) = f ◦ g⊔ f ◦ h(5.18)

3. f ∈ F is called positive-distributive, if

∀A ⊆ F.A ≠ ∅ =⇒ f ◦
⨆︂

A =
⨆︂
{ f ◦ g | g ∈ A}(5.19)

4. f ∈ F is called universally distributive, if it is strict and positive-
distributive, i.e. if

∀A ⊆ F. f ◦
⨆︂

A =
⨆︂
{ f ◦ g | g ∈ A}(5.20)
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5. F is called strict, distributive, positive-distributive, universally dis-
tributive if all f ∈ F have the respective property.

• A data-flow framework instance F = (G, L, F,ρ) is called strict, distribu-
tive, positive-distributive, universally distributive if F has the respective
property.

In the following, I will use “u.d.” to abbreviate the term “universally distributive”.

The data-flow framework instances that I consider in this thesis are
automatically strict because of (5.13), (5.12) and (5.16). Under these
assumptions, a data-flow analysis framework instance is universally
distributive if F⊠ is positive-distributive. However, it is worth mentioning
that this applies to F⊠ and not to F: In order for F⊠ to be positive-
distributive, F needs to be universally distributive. In this sense, adjoining
⊠ does not magically make F strict, but at least makes it possible to
distinguish reachable nodes from unreachable parts of the given graph.
In chapter 7, I will only consider data-flow analysis framework instances
F = (G, L, F⊠,ρ) in which F⊠ additionally satisfies (ACC). For such
instances, distributivity is equivalent to universal distributivity.

5.4 Example Instances

In this section, I want to discuss various data-flow analyses that can be
expressed and solved using the abstract data-flow framework presented
earlier.

5.4.1 Traditional Data-Flow Analyses on Interprocedural
Control-Flow Graphs

According to Example 5.33, interprocedural control-flow graphs can be
regarded as interprocedural graphs. Hence, all traditional data-flow
analyses in the sense of subsubsection 3.2.2.2 can be expressed as data-flow
analysis instances in the sense of Definition 5.43. The solution MOVP
defined in Definition 5.44 is more general, since it does not use the entry
smain of the main procedure as starting point but rather considers all paths
between arbitrary nodes s and t. Moreover, MOVP merges over all valid
paths and not over all descending paths and also takes reachability into
account. I already discussed this in subsection 5.4.2 and section 5.3.
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5.4.2 Slicing

As I already pointed out in subsection 3.3.4, slicing on program dependence
graphs can be expressed as reachability, a very simple data-flow analysis
instance. We can generalize this further by considering slicing on inter-
procedural graphs, which are a generalization of interprocedural program
dependence graphs according to Example 5.33.
Let G = (N, Eintra, Ecall, Eret, P, Φ) be an interprocedural graph.
As for IPDGs, the backwards slice of a node n ∈ N can be characterized
as the set of nodes which may reach n by a valid path. Analogously, the
forward slice can be characterized as the set of nodes which may be reached
by a valid path.

BS(n) = {m ∈ N | VP(m, n) ≠ ∅}(5.21)
FS(n) = {m ∈ N | VP(n, m) ≠ ∅}(5.22)

As in subsection 3.3.4, the reachability data-flow analysis instance
(G, L, F,ρ) is defined as follows:

L
de f
= {⊥,⊤}

F
de f
= {λx.⊥, id,λx.⊤}(5.23)

ρ
de f
= λe.id

Now, observe that
∀π ∈ VP(s, t). fπ = id

Hence, we have

MOVPF (s, t) =
⨆︂

π∈VP(s,t)

fπ =

⎧⎪⎪⎨⎪⎪⎩
id if VP(s, t) ≠ ∅
⊠ otherwise

This allows us to rewrite BS and FS as

BS(n) = {m ∈ N |MOVP(m, n) ≠ ⊠}
FS(n) = {m ∈ N |MOVP(n, m) ≠ ⊠}

So, by computing MOVP, we can extract BS and FS.
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5.4.3 Chopping

Chopping [48, 138] was proposed as a means to make slicing on PDGs
more focussed. Roughly, the idea is not to go back or forward from a single
node, but to consider all nodes that may lie on paths between two nodes.
Like slicing, chopping can also be considered on a general interprocedural
graph G = (N, Eintra, Ecall, Eret, P, Φ). Given s, t ∈ N, the chop between s
and t is defined as

CH(s, t)
de f
= {n ∈ N | ∃π ∈ VP(s, t). n ∈ nodes(π)},

where for a sequence of edges π ∈ E⋆, nodes(π) is the set of nodes that
occur in the symbol sequence:

nodes(π)
de f
= {n ∈ N | ∃i ∈ range(π). n = src(πi)∨ n = tgt(πi)}.(5.24)

Note that chops and slices actually have a strong connection. For s ≠ t,
we have s ∈ BS(t) if and only if CH(s, t) ≠ ∅. Hence, applications such
as slicing-based information flow control can also be expressed using
chopping.
Chopping can be expressed as a data-flow analysis instance as follows.

L
de f
= (2N,⊆)

F
de f
= {λX.(X ∩A)∪ B | A, B ∈ 2N}

fe(X)
de f
= X∪ {src(e), tgt(e)}

(5.25)

It can easily be seen that (G, L, F,ρ) is indeed a data-flow framework
instance with respect to Definition 5.43.
Moreover, using induction on the length of paths, we can show that

∀π ∈ PathsG(s, t). fπ(X) = X∪ nodes(π).(5.26)

Hence, we have
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CH(s, t) =
⋃︂

π∈VP(s,t)

nodes(π) { definition }

=
⋃︂

π∈VP(s,t)

fπ(∅) { by (5.26) }

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
⨆︂

π∈VP(s,t)

fπ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ (∅) { rewriting }

= MOVP(s, t)(∅). { definition }

Analogously, we can consider the edge chop

ECH(s, t)
de f
= {n ∈ N | ∃π ∈ VP(s, t). n ∈ edges(π)},(5.27)

where

edges(π)
de f
= {e ∈ E | ∃i ∈ range(π). e = πi.}(5.28)

Edge chops can be computed using the following data-flow analysis
instance.

L
de f
= (2E,⊆)

F
de f
= {λX.(X ∩A)∪ B | A, B ∈ 2E}

fe(X)
de f
= X∪ {e}

(5.29)

Like for node chops, it can be easily verified that this indeed satisfies
Definition 5.43.

5.4.4 Strong Bridges and Strong Articulation Points

Strong bridges [95] are a graph theoretical concept that describes the
connectivity properties of a given directed graph. Intuitively, a strong
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bridge is an edge that disconnects a graph if it is removed. Strong bridges
are interesting for applications such as slicing-based information flow
control. Consider a PDG G = (N, E) and two nodes s, t ∈ N. Remember
that slicing-based IFC works by computing the backwards slice BS(t) of
t and checking whether s ∈ BS(t) or not. If s ∉ BS(t), then it is definitely
not the case that s influences t in any way and if s ∈ BS(t), this may be the
case. Equivalently, we can also compute the chop CH(s, t) of s and t and
consider the chop graph Cs,t = (CH(s, t), ECH(s, t)). Now, suppose that Cs,t
contains a bridge and we can show that this bridge is actually not justified,
i.e. G would not contain it if it was obtained using a more precise analysis.
Then this means that s actually does not influence t. Hence, strong bridges
can be a tool for eliminating false alarms. This kind of reasoning has been
applied to PDGs by Beckert, Bischof et al. [26].
Strong bridges as considered by, e.g., Italiano et al. [95], can be generalized
to interprocedural graphs.
Given an interprocedural graph G = (N, Eintra, Ecall, Eret, P, Φ) and s, t ∈ N,
a strong bridge with respect to s and t is an edge e ∈ E such that e ∈ edges(π)
for all π ∈ VP(s, t).
The set of strong bridges is then defined as

SB(s, t) = {e ∈ E | ∀π ∈ VP(s, t). e ∈ edges(π)}.(5.30)

Note that this is dual to the edge chops defined in (5.27). Hence, a data-
flow analysis instance for expressing strong bridges can be obtained by
reversing the partial order used for the data-flow analysis defined by (5.29):

L = (2E,⊇)
F = {λX.(X ∩A)∪ B | A, B ⊆ E}

fe(A) = A∪ {e}
(5.31)

It is easy to see that F is indeed closed under composition and contains
the identity function. We also note that if f = λX.(X ∩ A1) ∪ B1 and
g = λX.(X∩A2)∪ B2, then

( f ⊔ g)(X) = f (X)∩ g(X) = (X ∩A3)∪ B3
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with A3 = (A1 ∩A2)∪ (A1 ∩ B2)∪ (A2 ∩ B1) and B3 = B1 ∩ B2.
Due to the finiteness of E, this makes F a complete lattice with respect to
the functional join induced by the join ∩ of (2E,⊇).
The node analogon to strong bridges are strong articulation point. A strong
articulation point is a node that disconnects a given graph if removed. A
data-flow analysis instance that is able to compute the strong articulation
points of a given graph can be specified as follows:

L = (2N,⊇)
F = {λX.(X ∩A)∪ B | A, B ⊆ N}

fe(A) = A∪ {src(e), tgt(e)}.
(5.32)

5.4.5 Restricting to Paths With Regular Properties

The reachability analysis shown in subsection 5.4.2 can be generalized
to language-restricted reachability. In this subsection, I am going to
demonstrate this for forward reachability and regular languages. I also
will show two special cases of this.
Remember that a finite automaton is a quintuple

A = (Q, A, q0, ∆0, QF).(5.33)

The components of are

• a set Q of states,

• an alphabet A,

• a distinguished state q0 ∈ Q which is called the initial state ofA,

• a set ∆0 ⊆ Q×A×Q of transition rules,

• a set QF ⊆ Q of final states.

Now, I recall the definition of the language recognized by a finite automaton
A = (Q, A, q0, ∆0, QF). For this, I define
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∆ : E⋆ → 2Q → 2Q

by

∆(ϵ, S) = S(5.34)
∆(π · e, S) = {q′ ∈ Q | ∃q ∈ ∆(π, S). q′ ∈ ∆0(q, e)}(5.35)

Then the language recognized byA can be defined as

L(A) = {π ∈ E⋆ | ∆(π, {q0})∩QF ≠ ∅}(5.36)

It is well-known that the regular languages are exactly the languages that
are recognized by a finite automaton.
Now let R ⊆ E⋆ be a regular language of edge sequences. I define the
R-restricted forward slice of s by

FS(s, R)
de f
= {t ∈ N | VP(s, t)∩R ≠ ∅}.(5.37)

In the following, I show how to compute FS(s, R) using a data-flow analysis
instance. For this, letA = (Q, E, q0, ∆0, QF) be a finite automaton with

L(A) = R.(5.38)

The idea is that the information computed at each node consists of the
set of states in Q that are reachable during a run ofA. Consequently, the
transfer functions are defined by ∆. Before I define this data-flow analysis
instance, I need some helping notions and observations. Firstly, I observe
that for each e ∈ E, the function λA. ∆(e, A) is monotone: If A ⊆ B, then
∆(e, A) ⊆ ∆(e, B). Secondly, for a complete lattice L and a set X ⊆ L→mon L
of monotone functions on X, I define cl(X) ⊆ L→mon L as the least (with
respect to set inclusion) subset Y of L→mon L that (a) contains X, (b) is a
complete lattice and (c) is closed under function composition. It is easy to
see that cl(X) is unique and always exists.
Now we are ready to define the data-flow analysis instance.
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L = 2Q(5.39)

F = cl({λA. ∆(e, A) : 2Q → 2Q | e ∈ E})(5.40)

fe = λA.∆(e, A) : 2Q → 2Q(5.41)

Theorem 5.46. For every s ∈ N, we have

FS(s, R) = {t ∈ N |MOVP(s, t)({q0})∩QF ≠ ∅}(5.42)

Proof. Let s ∈ N. Firstly, by induction on π ∈ E⋆, it can easily be shown
that

∀π ∈ E⋆.∀A ⊆ Q. fπ(A) = ∆(π, A).(5.43)

Secondly, we observe that

MOVP(s, t)({q0}) =
⋃︂

π∈VP(s,t)

fπ(q0).(5.44)

This follows from the definition of the given data-flow framework instance
and the definition of MOVP.
From (5.43) and (5.44), we can derive the claimed set equality.

t ∈ FS(s, R) ⇐⇒ VP(s, t)∩R ≠ ∅ { definition }
⇐⇒ ∃π ∈ VP(s, t). π ∈ R { rewriting }
⇐⇒ ∃π ∈ VP(s, t). ∆(π, {q0})∩QF ≠ ∅ { (5.38) }
⇐⇒ ∃π ∈ VP(s, t). fπ({q0})∩QF ≠ ∅ { (5.43) }
⇐⇒ MOVP(s, t)({q0})∩QF ≠ ∅ { (5.44) }

□

5.4.5.1 Barrier Slicing

A simple yet important special case of language-restricted slices is barrier
slicing. Barrier slicing was introduced for PDGs by Krinke [111] as a means
to make slicing more focussed. The idea is to introduce a barrier, i.e. a set
B of nodes that is not to be passed. In the following, I demonstrate that
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barrier slicing can be expressed as a regular language-restricted reachability
analysis instance on interprocedural graphs.
Given an interprocedural graph G = (N, Eintra, Ecall, Eret, P, Φ) (e.g., a
program dependence graph), the (backwards) barrier slice of t ∈ N with
respect to B is defined to be the set

BBS(t, B)
de f
= {s ∈ N | ∃π ∈ VP(s, t). nodes(π)∩ B = ∅}.(5.45)

Analogously, the forward barrier slice can be defined as

FBS(s, B)
de f
= {t ∈ N | ∃π ∈ VP(s, t). nodes(π)∩ B = ∅}.(5.46)

The property of being a sequence from E⋆ that avoids nodes from B can be
expressed as the language

A(B)
de f
= {π ∈ E⋆ | ∀i ∈ range(π). src(πi) ∉ B∧ tgt(πi) ∉ B}.(5.47)

It can easily be seen that A(B) is regular. Hence FBS(s, B) and BBS(t, B)
can both be determined using a regular language-restricted reachability
analysis.

5.4.5.2 Explicit Information Flow

As a second example for regular language restricted reachability analysis, I
want to consider a heuristic property of slices that I call explicit information
flow. This property is based on the observation that static helper analyses
may cause the insertion of spurious control dependencies. Such control
dependencies can easily lead to program dependence graphs in which
everything that happens after some critical statement is control-dependent
on this statement, solely because of the fact that this statement may fail
due to an exception that could not be ruled out.
As an example, consider Figure 5.5b. The array access does not fail and
hence the program should be secure. But with a static analysis that is too
imprecise to prove this, the resulting PDG contains a control dependency
between the array access and the print statement. Moreover, whether the
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1 int h = inputPIN();
2 int x;
3 if (h > 42) {
4 arr[i] = 17;
5 x = 17;
6 }
7 print(x);

(a)

1 int h = inputPIN();
2
3 if (h > 42) {
4 arr[i] = 17;
5
6 }
7 print("OK");

(b)

Figure 5.5: Analysis precision and control dependencies – assume that arr ≠ null
and 0 ≤ i < arr.length

array access happens depends on the secret value. Hence, in this PDG,
line 1 is connected to 7.
In contrast, the PDG of Figure 5.5a contains a path from the secret source
to the public sink, even if a static analysis could prove that the array access
never fails. The path has the property that it ends in a data dependency,
where as the Figure 5.5b does not.
Explicit information flow only considers PDG paths that end in a data
dependency. This way, PDG paths such as the one in Figure 5.5b are
ignored, whereas the path in Figure 5.5a is covered.
We also can ignore the path in Figure 5.5b by simply ignoring all control
dependencies (like we did in one variant of the SHRIFT approach in
section 4.7), but then we would also ignore the path in Figure 5.5a that is
in a sense more direct.
I consider explicit information flow as an example for a helper analysis
for the further analysis of a PDG’s valid paths. The setting that I have in
mind is that a PDG-based information flow control tool like Joana fails to
verify a given information flow requirement and the analyst tries to find
out why. If Joana succeeds to verify the requirement with restriction to
explicit information flow, then this may indicate that Joana’s exception
analysis is too imprecise.
In the following, I formally describe explicit information flow as a data-flow
analysis framework instance.
Given a program dependence graph G = (N, Eintra, Ecall, Eret, P, Φ), I de-
compose E into E = DD∪CD, where DD is the set of all data dependencies
and CD is the set of all control dependencies. Then, the explicit information
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q0 q1true

e ∈ DD

e ∈ DD

e ∈ CD

Figure 5.6: A finite automaton for explicit information flow analysis – P(e) is short
for {e ∈ E | P(e)}.

flow (forward) slice of s ∈ N consists of all nodes t such that at least one valid
path from s to t ends in a data dependency:

EIF(s)
de f
= {t ∈ N | VP(s, t)∩ E∗DD+ ≠ ∅}.

As E∗DD+ is a regular language, EIF is an instance of (5.37):

EIF(s) = FS(s, E∗DD+).

Figure 5.6 shows a finite automaton that recognizes E∗DD+.

5.4.6 Hammer’s Approach to IFC

In this section, I want to take a closer look at Hammer’s PDG-based
approach to IFC [86].
Hammer uses a finite lattice (L,≤), where the levels l ∈ L are confidentiality
levels; x ≤ y means that y is as confidential as or more confidential than x.
Partial functions P and R are used to annotate sources and sinks. Sources
have a provided level P(n) whereas sinks have required level R(n). For now,
we assume that dom(P)∩ dom(R) = ∅.
P and R are expanded to all nodes by defining

P′(n) =
⎧⎪⎪⎨⎪⎪⎩

P(n) if n ∈ dom(P)
⊥ otherwise

(5.48)

R′(n) =
⎧⎪⎪⎨⎪⎪⎩

R(n) if n ∈ dom(R)
⊤ otherwise

.(5.49)
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Intuitively, information leaving n has confidentiality level at least P(n) and
information entering n has at most confidentiality level R(n). The goal is to
propagate the confidentiality levels along the paths of G, or, respectively,
whether such a propagation is possible without contradiction.
The following monotone constraint system (compare [86, (4.7) on p. 102])
describes a function S : N → L that propagates confidentiality levels
from dom(P). Solutions of Constraint System 5.1 can be considered to
conservatively describe the information flows of the given program with
respect to the confidentiality specification given by P.

Constraint System 5.1.

x ∈ dom(P) y→G x

S(x) ≥ S(y)⊔ P(x)

x ∉ dom(P) y→G x

S(x) ≥ S(y)

To be able to assess whether the given program is secure with respect to
the complete security specification (P, R), Hammer introduces the notion
of maintaining confidentiality. For this, he states a further set of constraints
([86, (4.8) on p. 102]):

∀x ∈ dom(R). S(x) ≤ R(x).(5.50)

For G to maintain confidentiality, Hammer requires that Constraint Sys-
tem 5.1 and (5.50) are simultaneously satisfied ( [86, Definition 4.1]). Note
that the joint constraint system consisting of Constraint System 5.1 and
Equation 5.50 is not monotone: Constraint System 5.1 and (5.50) use ≤ in
different directions.
However, whether G maintains confidentiality can be checked by looking
at the least solution S of the monotone constraint system Constraint
System 5.1.

Lemma 5.47. The following two statements are equivalent:

1. G maintains confidentiality.

2. The least solution S of Constraint System 5.1 satisfies (5.50) .
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Proof. Since S is a solution of Constraint System 5.1, it is clear that G
maintains confidentiality if S also satisfies (5.50).
For the converse direction, assume that G maintains confidentiality. Then
there is a function S : N → L that satisfies both (5.1) and (5.50). Now,
consider the least solution S of (5.1). We have to show that S satisfies (5.50).
So let x ∈ dom(R). Then S(x) ≤ R(x). Moreover, since S is a solution of
(5.1) and S is the least solution of (5.1), we have S(x) ≤ S(x). Together, it
follows that S(x) ≤ R(x), as desired. □

Hammer does not state this directly, but suggests that he aims for the
least solution of Constraint System 5.1 by stating that “Equation (4.11) is
satisfied in the most precise way, and hence the risk that equation (4.8) is
violated is minimized, if the inequality for S turns into equality”30 [86,
p. 103] and later referring to the solution as least fixed-point (e.g. [86,
Theorem 4.2]).
The simple approach showed so far is conservative but not precise: In fact,
Constraint System 5.1 propagates provided levels along arbitrary paths
and not only along valid paths.
Hammer describes a slicing-based check that aims to solve this precision
problem. A PDG G is said to ensure non-interference with respect to R and
P, if

∀n ∈ N.
⨆︂

m∈BS(n)

P′(m) ≤ R′(n)

This amounts to computing

S(n) =
⨆︂

m∈BS(n)

P′(m)(5.51)

and checking that ∀n. S(n) ≤ R′(n).
As Hammer also notices, (5.51) can be computed using data-flow analysis.
In my notation, an appropriate data-flow analysis instance is given by the
following ingredients.

30Equation (4.11) is a simplified version of Equation (4.7) in [86] or Constraint System 5.1,
respectively.
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1. L is the security lattice

2. F = {λx. x⊔ l | l ∈ L}
3. ρ : e ↦→ fe is defined by

fe(x)
de f
= x⊔ P′(src(e))⊔ P′(tgt(e))(5.52)

Then

fπ(x) = x⊔
⨆︂

n∈nodes(π)

P′(n)(5.53)

and

MOVP(s, t)(x) = x⊔
⨆︂

π∈VP(s,t)

⨆︂

n∈nodes(π)

P′(n).(5.54)

Hammer provides an algorithm [86, Algorithm 7] to compute (5.51).
Specifically, this algorithm generates an appropriate subset of Constraint
System 5.1. (5.51) then turns out to be a solution of that system and can be
checked against an appropriate set of R constraints that is also generated
by the algorithm [86, Theorem 4.2].
Now I show how (5.51) can be extracted from (5.54).
For this, I note that

(5.55) BS(m) = {m} ∪
⋃︂

n∈N

⋃︂

π∈VP(n,m)

nodes(π).

This enables me to re-write (5.51) as follows.

S(n) =
⨆︂

m∈BS(n)

P′(m) { (5.51) }

= P(n)⊔
⨆︂

l∈N

⨆︂

π∈VP(l,n)

⨆︂

m∈nodes(π)

P′(m) { (5.55) }
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=
⨆︂

l∈N

⨆︂

π∈VP(l,n)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝P(n)⊔

⨆︂

m∈nodes(π)

P′(m)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ { re-writing }

=
⨆︂

l∈N

⨆︂

π∈VP(l,n)

fπ(P′(n)) { (5.53) }

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
⨆︂

l∈N

⨆︂

π∈VP(l,n)

fπ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ (P

′(n)) { re-writing }

=

⎛
⎜⎜⎜⎜⎜⎝
⨆︂

l∈N
MOVP(l, n)

⎞
⎟⎟⎟⎟⎟⎠ (P

′(n)). { Def. of MOVP }

Note that (5.51) does not define a solution to Constraint System 5.1, as
Constraint System 5.1 is too simplistic, hence demands too much. Hammer
proposes an algorithm based on two-phase slicing that generates a sub-
system of Constraint System 5.1 for which (5.51) indeed is a solution and
which still adequately describes the property of maintaining confidentiality.

5.4.6.1 IFC With Declassification

Hammer also supports a form of where-declassification, i.e. the specification
of points in the program where confidential information is transformed
into benign information which is allowed to be made available to lower
observers. For this, he introduces a set D ⊆ N of declassification nodes. If
information enters a declassification node d ∈ D with a level of at most r,
then d downgrades it (e.g. by sanitizing or removing classified information)
to level p ≤ r.
A declassification node has both a required and a provided level (cf. [86,
(4.18)]):

(5.56) x ∈ D =⇒ (x ∈ dom(P)∩ dom(R))∧R(x) ≥ P(x)

Hammer then adapts Constraint System 5.1 and (5.50) to also support
declassification nodes (cf. [86, (4.19)]). This leads to the following constraint
system.
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Constraint System 5.2.

x ∈ D y→G x

S(x) ≥ P(x)

x ∉ D y→G x

S(x) ≥ S(y)⊔ P′(x)

The check (5.50) is adapted accordingly (cf. [86, (4.20)]):

∀x ∈ dom(R) \D. S(x) ≤ R(x)∧∀x ∈ D.
⨆︂

y→G x
S(y) ≤ R(x).(5.57)

The approach is now just like the in the case without declassification: The
given program is considered secure if and only if the least solution S of
Constraint System 5.2 satisfies Equation 5.57. Hammer’s Algorithm 7
is also able to handle declassification nodes and generates appropriate
subsets of Constraint System 5.2 and (5.57) that can be used to compute
and check a solution (cf. [86, Theorem 4.6]).
In the following, I show how (5.57) can be expressed using a data-flow
analysis instance.
The complete lattices L and F stay the same as in the non-declassification
case, only the transfer functions need to be adapted. Note that Hammer
does not give a solution representation for the declassification case like
(5.51), so that I have to extract the transfer function from Constraint
System 5.2. The definition of fe particularly accounts for the case that both
src(e) and tgt(e) may be declassification nodes.

fe
de f
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

λx. x⊔ P′(src(e))⊔ P′(tgt(e)) if src(e) ∉ D∧ tgt(e) ∉ D
λx. P(tgt(e)) if tgt(e) ∈ D
λx. P(src(e)) if src(e) ∈ D∧ tgt(e) ∉ D

(5.58)

Next, I want to consider fπ more concretely: In the case that π contains no
declassification nodes, it is easy to see that

fπ = λx. x⊔
⨆︂

n∈nodes(π)

P′(n).(5.59)
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Hence, for D = ∅, (5.59) is compatible with the declassification-less instance
defined in (5.52).
To describe fπ if π contains declassification nodes, I need some additional
notations. First of all, I call an edge e such that src(e) ∈ D or tgt(e) ∈ D
a declassification edge. For π ∈ PathsG(s, t) such that nodes(π) ∩D ≠ ∅, I
define lastD(π) ∈ range(π) as the greatest i such that πi is a declassification

edge and q(π)
de f
= π≥lastD(π), the suffix of π that starts with the last declas-

sification edge occurring in π, and p(π)
de f
= π<lastD(π) as the corresponding

prefix.
With the help of q(π), I can show that fπ discards all provided levels up to
the last declassification node in q(π0).

Theorem 5.48. If nodes(π)∩D ≠ ∅, fπ can be characterized as follows:

src(q(π)0) ∈ D

∧tgt(q(π)0) ∉ D
=⇒ fπ = λx.

⨆︂

n∈nodes(π)

P′(n)(5.60)

tgt(q(π)0) ∈ D =⇒ fπ = λx.
⨆︂

e∈edges(π)

P′(tgt(e))(5.61)

Proof. First, we observe that it is enough to show (5.60) and (5.61) for fq(π):

src(q(π)0 <) ∈ D

∧tgt(q(π)0) ∉ D
=⇒ fq(π) = λx.

⨆︂

n∈nodes(q(π))

P′(n)(5.62)

tgt(q(π)0) ∈ D =⇒ fq(π) = λx.
⨆︂

e∈edges(q(π))

P′(tgt(e))(5.63)

The reason is that the right-hand sides of (5.62) and (5.63) are constant
functions, i.e. if (5.62) and (5.63) hold, then we have

∀x, y ∈ L. fq(π)(x) = fq(π)(y)(5.64)

Now assume that (5.62) and (5.63) are true and let x ∈ L. Then we have

fπ(x) = fp(π)·q(π)(x) { definition of p(π), q(π) }

= fq(π)( fp(π)(x)) { properties of f⋆ }
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= fq(π)(x). { (5.64) }

It remains to show (5.62) and (5.63). For this, we consider q(π) more
closely: It is not empty and consists of exactly one declassification edge
at the beginning, i.e. q(π)0 is a declassification edge and q(π)>0 contains
no declassification edges and hence no declassification nodes. Hence, for
every x ∈ L, we have

fq(π)(x) = fq(π)0·q(π)>0(x) { definition }

= fq(π)>0( fq(π)0(x)) { properties of f⋆ }

= fq(π)0(x)⊔
⨆︂

n∈nodes(q(π)>0)

P′(n) { (5.59) }

Now, (5.62) and (5.63) follow from the different cases in the definition
(5.58) of fq(π)0 . Because q(π)0 is a declassification edge, we do not need
to consider first case in (5.58). For the remaining two cases, we argue as
follows:

• If src(q(π)0) ∈ D∧ tgt(q(π)0) ∉ D, then we have

fq(π)0(x)⊔
⨆︂

n∈nodes(q(π)>0)

P′(n)

= P′(src(q(π)0))⊔
⨆︂

n∈nodes(q(π)>0)

P′(n) { (5.58) }

=
⨆︂

n∈nodes(q(π))

P′(n). { definition of nodes }

• If tgt(q(π)) ∈ D, then we have

fq(π)0(x)⊔
⨆︂

n∈nodes(q(π)>0)

P′(n)

= P′(tgt(q(π)0))⊔
⨆︂

n∈nodes(q(π)>0)

P′(n) { definition }

=
⨆︂

e∈edges(q(π))

P′(tgt(e)). { (⋆) }
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To conclude the proof, we need to justify the last step (⋆). Its validity
can easily be seen in the case that q(π)>0 = ϵ. For q(π)>0 ≠ ϵ, we
note

nodes(q(π)>0) = {tgt(e) | e ∈ edges(q(π))}.
Moreover, since q(π) is a path, we have

tgt(q(π)0) = src(
(︂
q(π)>0

)︂0
) ∈ nodes(q(π)>0).

Together, this implies

nodes(q(π)>0) = tgt(q(π)0)∪ {tgt(e) | e ∈ edges(q(π))}.
□

5.4.7 Least Distances

The problem of computing least distances can also be expressed as the
instance of a data-flow framework. Computing least distances can be
considered a flexible tool to help in PDG-based IFC analysis. By comput-
ing least distances, useful information about the valid paths of a given
interprocedural graph can be generated. Such information could be used
to classify the set of valid paths between two nodes, e.g. with respect to the
kinds of dependencies. For example, a least distances analysis could be
used to compute the minimum number of control dependencies between
two nodes s and t. If this number is 0, then s and t are connected via a
chain of data dependencies and the higher the number, the more control
dependencies are required to transmit information between s and t.
In the following, I describe the data-flow framework for least distances in
the simplest case that every edge is given a weight of 1.
Consider the set N ∪ {∞}, partially ordered by ⊑∞, which extends the
natural ordering ≥ on N such that∞ is the least element with respect to
⊑∞. Note that, in comparison to ≤, ⊑∞ is “upside down”.
With respect to ⊑∞, N∪ {∞} is a complete lattice: Since every non-empty
subset A ⊆N has a least element with respect to ≤, the least upper bound

227



5 A Common Generalization Of Program Dependence Graphs and Control-Flow Graphs

has the following characterization:

⨆︂
A =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if A = ∅
min A if A ≠ ∅ ∧∞ ∉ A
min (A− {∞}) if∞ ∈ A

The space F of transfer functions can be chosen as

F := {λx. x + d | d ∈N∞}
As can easily be seen, all f ∈ F are monotone, and F is closed under
arbitrary joins and function composition.
In the easiest setting, we give each edge the distance 1:

ρ(e)(x) = x + 1.

Now let G = (N, Eintra, Ecall, Eret, P, Φ) be an interprocedural graph. For a
path π ∈ Paths(G), fπ is then the function that adds the length of π to its
argument. Hence, if VP(s, t) ≠ ∅, MOVP(s, t) adds the minimal length of
a path between s and t to its argument. Generally, MOVP(s, t) ∈ F⊠ can be
characterized as follows31:

MOVP(s, t)(x) =

⎧⎪⎪⎨⎪⎪⎩
x + min{|π| | π ∈ VP(s, t)} if VP(s, t) ≠ ∅
⊠ otherwise

Note that although there are large similarities, the least-distances-along-
valid-paths problem cannot be cast as an instance of the traditional
shortest-paths problem on directed graphs for which there are estab-
lished approaches [56]. Knuth [108] considered a version of the least-
distances-problem that can be considered similar to our setting. Traditional
approaches compute the length of a shortest arbitrary path in the given
graph, while we are interested in the length of a shortest valid path. A

31As I pointed out in section 5.3, I always adjoin a the set F of transfer functions with an
additional element ⊠. For this particular instance, this is technically not necessary, because
λx.∞ has all the properties that I assume about ⊠.
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5.4 Example Instances
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Figure 5.7: A small example with Φ = {(e1, e2), (e3, e4)} which shows that the
shortest valid path may differ from the shortest arbitrary path. (b)
shows the shortest arbitrary path, which has length 3 and is invalid, (c)
shows the shortest valid path which has length 7.

simple example of this restriction is shown in Figure 5.7. In this example,
the shortest arbitrary path between s and t does not respect the corres-
pondence relation ϕ and therefore is invalid. The shortest valid path is
significantly longer because both of its sections that enter p′ have to leave
it through the corresponding return edge.
It is also worth noting that distance calculations on PDGs have been
considered before, e.g. by Krinke [110]. Consider a PDG with summary
edges. If every edge, including summary edges, is annotated with a weight,
a two-phase approach can be used to compute least weights along paths
including summary edges. In his description, Krinke [110] does not specify
the weight that he assigns to summary edges, but I suspect that he uses a
weight of 1. Hence, he consequently under-estimates the length of same-
level paths and, in the terminology of the data-flow framework instance
discussed in this section, computes an over-approximation32 of MOVP.
Hence, Krinke’s approach is correct and more precise than computing least
distances w.r.t. arbitrary paths, but it is imprecise w.r.t. MOVP.
The generalized algorithms that I present in chapter 7 can be used to (a)
annotate each summary edge between to nodes n0 and n1 with the length of

32Remember that the partial order is upside down.
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a shortest same-level path between n0 and n1 and then to (b) precisely compute
the least distances along valid paths.
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People asking questions, lost in confusion.
Well, I tell them there’s no problem,
only solutions.
John Lennon 6

Two Approaches to
Abstract Data-Flow Analysis

on Interprocedural Graphs

In this chapter, I describe versions of the functional approach and the call-
string approach to interprocedural data-flow analysis for my generalized
data-flow frameworks. For classical data-flow frameworks, I already
described these two approaches in chapter 3. The two approaches use dif-
ferent ideas to tackle a fundamental problem that arises in interprocedural
data-flow analysis, namely that arbitrary paths in interprocedural graphs
do not necessarily reflect valid calling and returning behavior of actual
program executions. In chapter 3, I already described this problem: An
arbitrary path may contain returns that do not return to the call site from
which the call started.
The idea of the functional approach is to first solve a helper problem whose
solution describes the data-flows along same-level paths. In a second step,
this helper solution is then used to describe the data-flows along realizable
paths.
In contrast, the call-string approach simulates the call stack usage of paths
in order to rule out paths with invalid calling and returning behavior.
Sharir and Pnueli [154] showed that both approaches lead to correct
approximations of MODESC in interprocedural control-flow graphs and,
for distributive frameworks, can compute MODESC exactly. However,
the unrestricted call-string approach uses stacks of unlimited height and
therefore does not lead to effectively solvable constraint systems. This is
why one usually uses k-bounded stacks, whose height is not greater than k
items, and which lead to a correct approximation.
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6 Two Approaches to Abstract Data-Flow Analysis on Interprocedural Graphs

In this chapter, I generalize these results. I describe versions of the
functional approach and the call string approach that are based on inter-
procedural graphs, the general graph model that I introduced in chapter 5.
Interprocedural graphs cover both interprocedural control-flow graphs
and program dependence graphs. Furthermore, I show that both the
functional approach and the unrestricted call-string approach enjoy the
same properties as in the classical case. Moreover, for the call-string
approach, I introduce stack abstractions, a general technique that makes it
possible to obtain correct approximations to the call-string approach. I
demonstrate the applicability of stack abstractions by using them to show
that my version of the call-string approach is correct for k-bounded stacks.
The following sections are structured as follows. In section 6.1, I make
some preparations and fixtures. After that, section 6.2 considers the
generalized functional approach. Lastly, I describe my version of the
call-string approach in section 6.3.

6.1 Preliminaries

In section 6.2 and section 6.3, I will specify several constraint systems
and examine the properties of their solutions. This section makes several
necessary preparations. Subsection 6.1.1 specifies the expressions that
appear in the constraint systems of this chapter and makes clear their se-
mantics. Subsequently, subsection 6.1.1 introduces correctness and precision
as quality criteria of solutions to constraint systems with respect to a given
MOP function.
For this chapter, I fix a data-flow analysis framework instance F =
(G, L, F⊠,ρ) in the sense of section 5.3.

6.1.1 Syntax and Semantics

First, I have to make clear my assumptions about the expressions and
their interpretations from which the constraint systems in this and the next
chapter are formed. The set of variables X will always become clear from
context and is left unspecified for the moment. Moreover, I assume that
the set F of function symbols contains

• a unary symbol f for every f ∈ F⊠ and
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• a binary symbol ◦.
In order to provide the semantics functional ⟦·⟧ : Expr(F , X)→ F⊠, I need
to specify the interpretation function α that assigns every function symbol
a function on with the appropriate number of inputs from F⊠. My obvious
choice for α is

α( f ) = f for all f ∈ F⊠

α(◦)( f , g) =

⎧⎪⎪⎨⎪⎪⎩
f ◦ g if f , g ∈ F
⊠ if f = ⊠∨ g = ⊠

6.1.2 Correctness and Precision of Solutions

The constraint systems that I will present in the following sections are
supposed to approximate MOP for respective path sets P. Definition 6.1
provides the main criteria for assessing the quality of a given function
relative to MOP.

Definition 6.1. Let P ⊆ Paths(G) be a set of paths, E ⊆ N ×N a set of node
pairs and A : N ×N→ F⊠ be a function. Then A is called

1. (P, E)-domain-correct if it yields a defined value for every (s, t) ∈ E that is
connected by a path in P:

∀s, t ∈ N. (s, t) ∈ E∧ PathsG(s, t)∩P ≠ ∅ =⇒ A(s, t) ≠ ⊠.

2. (P, E)-domain-precise if it does not yield a defined value for (s, t) ∈ E that is
not connected by a path in P:

∀s, t ∈ N. (s, t) ∈ E∧A(s, t) ≠ ⊠ =⇒ PathsG(s, t)∩P ≠ ∅.

3. (P, E)-correct if it over-approximates MOP on E:

∀s, t ∈ N. (s, t) ∈ E =⇒ A(s, t) ≥
⨆︂

π∈PathsG(s,t)∩P
fπ

4. (P, E)-precise if it does not exceed MOP on E:

∀s, t ∈ N. (s, t) ∈ E =⇒ A(s, t) ≤
⨆︂

π∈PathsG(s,t)∩P
fπ.
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6 Two Approaches to Abstract Data-Flow Analysis on Interprocedural Graphs

I call A just P-correct/precise, if it has the corresponding property with respect
to (P, N ×N).

Definition 6.1 is more general than needed in chapter 6: Specifically,
Definition 6.1 also takes solutions into account that are ≠ ⊠ only for a
part of N ×N. I will need this in chapter 7, which is concerned with
computing partial solutions. As my solutions not only give analysis values
but also communicate whether there is a value or not, an additional item of
comparison is the domain. Hence, Definition 6.1 also incorporates notions
that enable to compare the domains of solutions to the domains of objective
functions.
It is easy to see that P-correctness of a given function A can be verified by
simply showing that every fπ is incorporated in A. This will be my main
tool to prove correctness, so I note it here.

Remark 6.2. A function A : N ×N→ F⊠ is P-correct if and only if

∀s, t ∈ N. ∀π ∈ PathsG(s, t). (s, t) ∈ E∧π ∈ P =⇒ fπ ≤ A(s, t).

In order to show precision, I will use the argument that is formalized by
Remark 6.3.

Remark 6.3. LetC be a set of constraints over variables N×N andP ⊆ Paths(G).
Then l f p(FC) is P-precise if MOP is a solution of C.

6.2 The Functional Approach

This section describes the functional approach to solve a given inter-
procedural data-flow framework instance.
The pattern of the functional approach is analogous to the successive
construction of the same-level, the ascending, the descending and finally
the valid paths that we saw in chapter 5.
Each step considers a set P of paths (where P = SL, ASC, DESC, VP in
this order) and uses the results from earlier steps to specify a monotone
constraint system CP, whose solutions

XP : N ×N→ F⊠
are P-correct, i.e. are over-approximations of MOP. For simplicity, I say
that both CP and its solutions correctly describe the data transfer along paths
from P.
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6.2 The Functional Approach

6.2.1 Constraint Systems

The constraint systems themselves are constructed in a fashion that is
very similar to the inductive definitions of the corresponding path sets.
First, I introduce a constraint system to describe the data transfer along
same-level paths.

Constraint System 6.1.

XSL : N ×N→ F⊠

is a same-level-solution if it satisfies all constraints from the following system:
(sl-sol-(i))

XSL(s, s) ≥ id

(sl-sol-(ii))
t′ e→ t e ∈ Eintra

XSL(s, t) ≥ fe ◦XSL(s, t′)

(sl-sol-(iii))
n

ecall→ n0 n1
eret→ t (ecall, eret) ∈ Φ

XSL(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n)

For the sake of presentation, my notation of Constraint System 6.1 and
later constraint systems is somewhat sloppy. For one, I use the actual
functions from F and function composition where I actually mean their
corresponding function symbols. Also note that the XSL(_, _) actually
denote corresponding variables. Thirdly, I want to point out that the
clauses of Constraint System 6.1 – and most other constraint systems
shown in this thesis – are to be understood as rules that specify when to
include a constraint to the system. This is why in the following, I will refer
to these clauses as rules.
All in all, sl-sol-(iii) reads:

For all n
ecall→ n0 and n1

eret→ t with (ecall, eret) ∈ Φ, the system contains
the constraint XSL(s, t) ≥ feret◦XSL(s, n)◦ fecall◦XSL(s, n).

In the following, I want explain the intuition behind Constraint System 6.1.
It is supposed to specify a function XSL that correctly describes the data
transfer along same-level paths. More concretely, XSL(s, t) shall correctly
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approximate MOSL(s, t), i.e. incorporate all path functions fπ along same-
level paths π from s to t. Hence, it is natural to construct Constraint
System 6.1 in correspondence with the inductive definition of SL.
To illustrate this, I consider sl-sol-(iii) more closely. Let (ecall, eret) ∈ Φ

with n
ecall→ n0 and n1

eret→ t. In order to describe the data transfer along
same-level paths from s to t, we have to ensure that

XSL(s, t) ≥ feret ◦ fπ′′ ◦ fecall ◦ fπ′(6.1)

for all π′ ∈ SL(s, n) and all π′′ ∈ SL(n0, n1).
Suppose that XSL(n0, n1) describes the data transfer along same-level paths
from n0 to n1 and that XSL(s, n) describes the data transfer along same-level
paths from s to n. Then (6.1) can be satisfied for all π′ ∈ SL(s, n) and all
π′′ ∈ SL(n0, n1) if

XSL(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n).(6.2)

Rule sl-sol-(iii) specifies that Constraint System 6.1 contains a constraint

of the form (6.2) for all (ecall, eret) ∈ Φ with n
ecall→ n0 and n1

ecall→ t. The three
rules together cover all possibilities to construct a same-level path.
Next I use solutions XSL of Constraint System 6.1 to describe the data-
flow along ascending paths. The construction principle behind these two
constraint systems is the same as for Constraint System 6.1 and their
intuition can be explained similarly.

Constraint System 6.2. Let XSL : N ×N→ F⊠ be a function. Then

XASC : N ×N→ F⊠

is an ascending-path-solution (relative to XSL) if it satisfies all constraints from
the following system:
(asc-sol-(i))

XASC(s, s) ≥ id

(asc-sol-(ii))
t′ e→ t e ∈ Eintra ∪ Eret

XASC(s, t) ≥ fe ◦XASC(s, t′)

(asc-sol-(iii))
n

ecall→ n0 n1
eret→ t (ecall, eret) ∈ Φ XSL(n0, n1) ≠ ⊠

XASC(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XASC(s, n)
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At this point, I want to highlight yet another subtlety in Constraint
System 6.2 that applies to all constraint systems in this thesis that make use
of some helper functions. Unlike in Constraint System 6.1, XSL(n0, n1) in
the lower part of asc-sol-(iii) is not a variable but a constant. In particular,
if XSL(n0, n1) = f ∈ F, I actually mean f when I write XSL(n0, n1) in a
constraint. Furthermore, it is also worth mentioning that since the upper
part of asc-sol-(iii) is not part of the actual constraint but rather specifies
when to include the constraint, XSL(n0, n1) in the upper part is used as
value.
In particular, no constraint is contained in the same situation but
XSL(n0, n1) = ⊠. For the solutions of Constraint System 6.2, it is not
important whether XSL(n0, n1) ≠ ⊠ is demanded or not for a constraint to
be present. However, in chapter 7 I will make statements about variables
on the left-hand sides of constraints and I need this assumption in order
for these statements to make sense.
The data transfer along descending paths is described by Constraint
System 6.3, which is completely analogous to Constraint System 6.2.

Constraint System 6.3. Let XSL : N ×N→ F⊠ be a function. Then

XDESC : N ×N→ F⊠

is a descending-path-solution (relative to XSL) if it satisfies all constraints from
the following system:
(desc-sol-(i))

XDESC(s, s) ≥ id

(desc-sol-(ii))
t′ e→ t e ∈ Eintra ∪ Ecall

XDESC(s, t) ≥ fe ◦XDESC(s, t′)

(desc-sol-(iii))
n

ecall→ n0 n1
eret→ t (ecall, eret)∈ Φ XSL(n0, n1) ≠ ⊠

XDESC(s, t)≥ feret◦XSL(n0, n1)◦ fecall◦XDESC(s, n)

Finally, like valid paths are constructed from the ascending and descending
paths, the data transfer along valid paths are described using solutions of
Constraint System 6.2 and Constraint System 6.3. This directly leads to
Constraint System 6.4.
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Constraint System 6.4. Let

XASC : N ×N→ F⊠

and
XDESC : N ×N→ F⊠

be two functions. Then
XVP : N ×N→ F⊠

is a valid-path-solution (relative to XASC and XDESC) if it satisfies all constraints
from the following system:

(valid-sol)
XASC(s, n) ≠ ⊠ XDESC(n, t) ≠ ⊠

XVP(s, t) ≥ XDESC(n, t) ◦XASC(s, n)

6.2.2 Correctness and Precision

In the following, I show important properties of the solutions of the
constraint systems I just introduced. First, I show that the constraint
systems indeed meet their purpose, i.e. that their solutions correctly
describe the data transfer along the corresponding paths. Given the
construction principle behind the constraint system that I described at the
beginning of this section, this should be no surprise.
Before I start my actual proofs, I state two elementary properties about F
that I will need later at various places.

Remark 6.4. Function composition is monotone on F, both in the left and in the
right argument:

∀ f1, g1, f2, g2 ∈ F. f1 ≤ f2 ∧ g1 ≤ g2 =⇒ f1 ◦ g1 ≤ f2 ◦ g2(6.3)

Proof. This is an easy calculation. □

Remark 6.5. The function
⨆︂

: 2F → F(6.4)

is monotone in the following sense:

∀A, B ∈ 2F. A ⊆ B =⇒
⨆︂

A ≤
⨆︂

B.(6.5)
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I proceed with showing that solutions of Constraint System 6.1 are SL-
correct.

Theorem 6.6. Every same-level solution XSL is SL-correct.

Proof. We show
fπ ≤ XSL(s, t)

by induction on the definition of π ∈ SL(s, t).

1. For π = ϵ, we have fπ = id ≤ XSL(s, s) by definition and constraint
sl-sol-(i).

2. Let π = π′ · e with π′ ∈ SL(s, t′) and t′ e→ t. By induction hypothesis
we know

fπ′ ≤ XSL(s, t′)(IHintra)

Hence

fπ = fe ◦ fπ′ { by definition }
≤ fe ◦XSL(s, t′) { by (IHintra), (6.3) }
≤ XSL(s, t) { by constraint sl-sol-(ii) }

3. Let π = π′ · ecall · π′′ · eret with π′ ∈ SL(s, n), n
ecall→ n0, π′′ ∈ SL(n0, n1),

n1
eret→ t and (ecall, eret) ∈ Φ. By induction hypothesis we know

fπ′ ≤ XSL(s, t′)∧ fπ′′ ≤ XSL(n0, n1)(IHsl)

Hence

fπ = feret ◦ fπ′′ ◦ fecall ◦ fπ′ { by definition }

≤ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n) { (IHsl), (6.3) }

≤ XSL(s, t) { by sl-sol-(iii) }

□
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Next, I consider the ascending paths. Theorem 6.7 states that solutions of
Constraint System 6.2 are ASC-correct, provided that Constraint System 6.2
is defined with respect to an SL-correct function XSL. According to
Theorem 6.6, XSL may be obtained as a solution of Constraint System 6.1,
but could also be given in any other way – as long as it is SL-correct.

Theorem 6.7. If XSL is SL-correct and XASC is an ascending-path solution
relative to XSL, then XASC is ASC-correct:

XASC ≥MOASC

Proof. We show
∀π ∈ ASC(s, t). fπ ≤ XASC(s, t)

by induction on π ∈ ASC. The cases asc-seqempty and asc-seqasc are very
similar to the corresponding cases in the proof of Theorem 6.6, so we only
consider asc-seqsl.
Let π = π′ · ecall ·π′′ · eret where π′ ∈ ASC(s, n), n0, π′′ ∈ SL(n0, n1), n1

eret→ t
and (ecall, eret) ∈ Φ. By assumption, we know

fπ′′ ≤ XSL(n0, n1),(Asssl)

and, by induction hypothesis,

fπ′ ≤ XASC(s, n).(IHsl)

Furthermore, we know that fπ′′ ≠ ⊠ by (5.14) and (5.15). By (Asssl), this
means that also XSL(n0, n1) ≠ ⊠. Hence, using (6.3),

fπ = feret ◦ fπ′′ ◦ fecall ◦ fπ′ { definition }

≤ feret ◦XSL(n0, n1) ◦ fecall ◦XASC(s, n) { (Asssl), (IHsl) }

≤ XASC(s, t). { by asc-sol-(iii) }

□

Similar to Theorem 6.7, Theorem 6.8 states that solutions of Constraint
System 6.3 are DESC-correct, provided that Constraint System 6.3 is defined
with respect to an SL-correct function XSL. The proof is omitted as it is
completely analogous to the proof of Theorem 6.7.
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Theorem 6.8. If XSL is SL-correct and XDESC is a descending-path solution
relative to XSL, then XDESC is DESC-correct.

Finally, Theorem 6.9 states that any solution of Constraint System 6.4
with respect to an ASC-correct function XASC and a DESC-correct function
XDESC is VP-correct.

Theorem 6.9. Let XASC be a ASC-correct, XDESC be DESC-correct and XVP be
a valid-path solution relative to XASC and XDESC. Then XVP is VP-correct.

Proof. We show
∀π ∈ VP(s, t). fπ ≤ XVP.

by induction on π ∈ VP(s, t).
So let n ∈ N, π1 ∈ ASC(s, n) and π2 ∈ DESC(n, t). By assumption, we have

fπ1 ≤ XASC(s, n)∧ fπ2 ≤ XDESC(n, t)

Furthermore, we know that fπ1 ∈ F and fπ2 ∈ F using (5.14) and (5.15).
Hence we can conclude

fπ = fπ2 ◦ fπ1 { definition }

≤ XDESC(n, t) ◦XASC(s, n) { by assumption, monotonicity of ◦ }
≤ XVP { by constraint valid-sol. }

□

Next, I want to consider the question under which circumstances the
constraint systems not only correctly describe the data transfer along their
corresponding path set P but are also P-precise. For classical interproce-
dural data-flow analysis, this is the case if they are universally distributive
[154]. Such a result can also be given for my generalized setup.
Using the argument from Remark 6.3, it suffices to show that MOP is a
solution of the corresponding constraint system CP in order to guarantee
precision of l f p(FCP). This is stated and proven in Theorem 6.10.

Theorem 6.10. Assume that F⊠ is universally distributive. Then the following
statements are true:

1. MOSL is a same-level solution.
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2. If XSL is SL-precise, then MOASC is an ascending-path solution with respect
to XSL.

3. If XSL is SL-precise, then MODESC is a descending-path solution with respect
to XSL.

4. If XASC is ASC-precise and XDESC is DESC-precise, then MOVP is a valid-
path solution with respect to XASC and XDESC.

Proof. 1. We show that MOSL satisfies sl-sol-(i), sl-sol-(ii) and sl-sol-(iii).
sl-sol-(i) : For every s ∈ N, MOSL(s, s) ≥ id is satisfied because ϵ ∈
SL(s, s).

sl-sol-(ii) : Let s ∈ N, e ∈ Eintra, t′ ∈ N such that t′ e→ t. Then we have

SL(s, t) ⊇ {π′ · e | π′ ∈ SL(s, t′)}
This means that

MOSL(s, t) ≥
⨆︂
{ fπ′·e | π′ ∈ SL(s, t′)} { (6.5) }

=
⨆︂
{ fe ◦ fπ′ | π′ ∈ SL(s, t′)} { def. of fπ }

= fe ◦
⨆︂
{ fπ′ | π′ ∈ SL(s, t′)} { fe is u.d. }

= fe ◦MOSL(s, t′) { def. of MOSL }

sl-sol-(iii) : Let s ∈ N, ec ∈ Ecall, er ∈ Eret, and n, n0, n1 ∈ N such that
(ec, er) ∈ Φ, n

ec→ n0 and n1
er→ t. Then

SL(s, t) ⊇ {π1 · ec ·π2 · er | π1 ∈ SL(s, n),π2 ∈ SL(n0, n1)}.
This means that

MOSL(s, t)

≥
⨆︂
{ fer ◦ fπ2 ◦ fec ◦ fπ1 | π1 ∈ SL(s, n),π2 ∈ SL(n0, n1)}

{ (6.5), definition }

= fer ◦
⨆︂
{ fπ2 | π2 ∈ SL(n0, n1)} ◦ fec ◦

⨆︂
{ fπ1 | π1 ∈ SL(s, n)}

{ F is u.d. }
= fer ◦MOSL(n0, n1) ◦ fec ◦MOSL(s, n)

{ definition of MOSL }
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2. We show that MOASC satisfies the constraints from Constraint Sys-
tem 6.2 with respect to XSL.

asc-sol-(i) For every s ∈ N, MOASC(s, s) ≥ id is satisfied because ϵ ∈
ASC(s, s).

asc-sol-(ii) Let s, t, t′ ∈ N, e ∈ Eintra ∪ Eret with t′ e→ t. Then we have
π′ · e ∈ ASC(s, t) for every π′ ∈ ASC(s, t′). Hence,

{π′ · e | |π′ ∈ ASC(s, t′)} ⊆ ASC(s, t),

which translates to
⨆︂
{ fπ′·e | π′ ∈ ASC(s, t′)} ≤MOASC(s, t).

Thus we can conclude

MOASC(s, t)

≥
⨆︂
{ fπ′·e | π′ ∈ ASC(s, t′)} { see above }

=
⨆︂
{ fe ◦ fπ′ | π′ ∈ ASC(s, t′)} { definition }

= fe ◦
⨆︂
{ fπ′ | π′ ∈ ASC(s, t′)} { F⊠ is u.d. }

= fe ◦MOASC(s, t′). { definition }

asc-sol-(iii) Let s, t ∈ N, ec ∈ Ecall, er ∈ Eret with n
ec→ n0, n1

er→ t, (ec, er) ∈ Φ
and XSL(n0, n1) ≠ ⊠. Then, according to the closure properties of ASC,
we have π′ · ec · π′′ · er ∈ ASC(s, t) for all π′ ∈ ASC(s, n), π′′ ∈ SL(n0, n1).
Hence we have

{π′ · ec ·π′′ · er | π′ ∈ ASC(s, n),π′′ ∈ SL(n0, n1)} ⊆ ASC(s, t),

which, due to (6.3), implies that
⨆︂
{ fπ′·ec·π′′·er | π′ ∈ ASC(s, n),π′′ ∈ SL(n0, n1)}

≤MOASC(s, t).
(6.6)

We conclude as follows:

MOASC(s, t)
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≥
⨆︂
{ fπ1·ec·π2·er | π1 ∈ ASC(s, t′),π2 ∈ SL(n0, n1)}

{ see above }

=
⨆︂
{ fer ◦ fπ2 ◦ fec ◦ fπ1 |π1 ∈ ASC(s, t′),π2 ∈ SL(n0, n1)}

{ definition }

= fer ◦
⨆︂
{ fπ2 | π2 ∈ SL(n0, n1)} ◦ fec ◦

⨆︂
{ fπ1 |π1 ∈ ASC(s, t′)}

{ F⊠ is u.d. }
= fer ◦MOSL(n0, n1) ◦ fec ◦MOASC(s, n)

{ definition }
≥ fer ◦XSL(n0, n1) ◦ fec ◦MOASC(s, n).

{ XSL is SL-precise, (6.5) }

3. This is very similar to the proof of 2.

4. For every n ∈ N, we have

MOVP(s, t)

=
⨆︂
{ fπ2 ◦ fπ1 | π1 ∈ ASC(s, n),π2 ∈ DESC(n, t)}

{ definition }

=
⨆︂
{ fπ1 | π1 ∈ DESC(n, t)} ◦

⨆︂
{ fπ1 | π1 ∈ ASC(s, n)}

{ F⊠ is u.v. }
≥ XDESC(n, t) ◦XASC(s, n).

{ assumptions about XASC and XDESC, (6.3) }

□

6.3 The Call-String Approach

The basic idea of the call-string approach, which I already explained in
chapter 3, is to additionally simulate a call stack: Each time a procedure
is called, the call site is pushed to the stack, and each time the procedure
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returns, the call site it is supposed to return to is popped off the stack. Sharir
and Pnueli showed for classical interprocedural data-flow analysis that the
call string approach with unbounded stacks yields the same solution as the
functional approach [154]. However, unbounded stacks also lead to infinite
constraint systems and lattices that do not satisfy (ACC). This is why in
practice, one usually uses approximate approaches such as bounded stack
heights.
In this section, I will give a general and formal presentation of the call-
string approach under my more general assumptions. The general results
of this section will be that (a) I can achieve the same result as Sharir
and Pnueli under my more general assumptions and (b) that I provide
a general framework from which one can derive correctness results for
approximative call-string approaches that include but are potentially not
limited to bounded stack heights.
This section is divided into four subsections. In subsection 6.3.1, I introduce
the abstract concept of stack spaces, which provide enough structure to
simulate the calling behavior of interprocedural programs but are general
enough to at least cover both unbounded and bounded stack heights.
Given a stack space S, I then introduce the S-acceptable paths, i.e. the set
of paths of G that exhibit valid stack usage with respect to S. Moreover,
I define a monotone constraint system and prove a correctness and a
precision result for solutions of this system. These results are similar to
the corresponding results in section 6.2, but do not compare solutions to
MOVP but to the merge over all S-acceptable paths. In order to get results
with respect to MOVP, I need to relate the S-acceptable paths to VP for
specific stack spaces and this is the subject of the other subsections. As a
first step, I consider the space of unbounded stacks in subsection 6.3.2. For
this stack space, I can indeed show that the acceptable paths coincide with
VP. After that, in subsection 6.3.3, I describe a way that allows to transfer
correctness results between stack spaces. For this, I introduce the concept
of stack abstractions, which allows to relate two stack spaces using the more
general and well-known concept of galois connection. The main result of
subsection 6.3.3 is that if there is a stack abstraction between two stack
spacesS andS#, then allS-acceptable paths are alsoS#-acceptable. Finally,
subsection 6.3.4 gives an example of an application of this main result and
proves that the call-string approach using the space of k-bounded stacks
yields a correct approximation of MOVP.
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6.3.1 Stack Spaces

Definition 6.11 introduces stack spaces. A stack space is an abstract structure
that provides the interface needed by an interprocedural program to
implement procedure calls.

Definition 6.11. A stack space over the alphabet A is a partially ordered set
(S,≤) (whose elements are called stacks) with a distinguished element ϵ (the
empty stack) and functions

push : A× S→ S
pop : (S \ {ϵ})→ S
top : (S \ {ϵ})→ A

such that the following conditions hold:

ϵ is the greatest element w.r.t. ≤: ∀σ ∈ S. σ ≤ ϵ(EpsMax)
pop is monotone w.r.t. ≤ .(PopMon)
For every a ∈ A, push(a, ·) is monotone w.r.t. ≤ .(PushMon)

Pushing preserves non-emptiness:
∀a ∈ A. ∀σ ∈ S. σ ≠ ϵ =⇒ push(a, σ) ≠ ϵ

(PushNE)

Pushed elements can be found at the top:
∀a ∈ A. ∀σ ∈ S. push(a, σ) ≠ ϵ =⇒ top(push(a, σ)) = a

(TopPush)

Non-empty stacks can be expressed with push and pop:
∀σ ∈ S. σ ≠ ϵ =⇒ (∃a ∈ A. σ = push(a, pop(σ)))

(NEPushPop)

top is compatible with ≤:
∀σ′ ∈ S. σ ≠ ϵ∧ σ′ ≠ ϵ∧ σ ≤ σ′ =⇒ top(σ) = top(σ′)(TopVsLe)

∀a ∈ A. ∀σ ∈ S. push(a, σ) ≠ ϵ =⇒ σ ≤ pop(push(a, σ))(PopPushLe)

The axioms (TopPush), (NEPushPop) and (PushNE) should not be sur-
prising as they essentially describe how a stack works.
Additionally, stack spaces provide a partial order. The intuition behind ≤
is that a stack space not necessarily provides full and precise information
about actual call stacks but may only give partial and approximate inform-
ation. We can use ≤ to compare stacks with respect to the information
they provide: Given two stacks σ, σ′, σ ≤ σ′ is supposed to represent that
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σ′ does not provide more information than σ. The axioms (PushMon),
(PopMon) and (TopVsLe) specify that the main operations push, pop and
top are compatible with ≤.
A special case is the empty stack ϵ that provides no information. This
is formalized by (EpsMax). Finally, I want to give some explanation for
(PopPushLe). It considers a stack σ and an element a and compares σ to
the result of first pushing a to σ and then popping one element off the
top. Normally, one would expect that the result of these two subsequent
operations should be just σ. This is indeed the case for unbounded stacks
but in general, I cannot demand this since stack spaces are supposed
to also cover bounded stacks. For bounded stacks, which I will formally
show in Example 6.13, there is a k > 0 such that no stack is higher than
k. Consequently, such a stack can be full. If we push an element to a
full stack and want to preserve the top, we simply remove the element
at the bottom. Popping off the top element then does not yield the full
stack but only a prefix of it. This is why (PopPushLe) only demands that
σ ≤ pop(push(a, σ)).
The following two examples show to important stack spaces, namely the
spaces of unbounded and k-bounded stacks, respectively.

Example 6.12. Consider S∞ = (E⋆call,≤∞, ϵ∞, push∞, pop∞, top∞) with

σ ≤∞ σ′ de f⇐⇒ σ′ ∈ Pre f ixes(σ)

ϵ∞
de f
= ϵ (empty sequence)

push∞(e, σ)
de f
= e · σ

pop∞(e · σ) de f
= σ = (e · σ)≥1

top∞(e · σ) de f
= e = (e · σ)0

≤∞ is a partial order, as can easily be verified, and S∞ is a stack space over Ecall:

(EpsMax) ϵ is a prefix of every symbol sequence.

(PopMon) If e · σ′ is a prefix e′ · σ, then e = e′ and σ′ is a prefix of σ.

(PushMon) If σ′ is a prefix of σ, then e · σ is a prefix of e · σ′ for every e ∈ Ecall.

(PushNE) It is clear that σ ≠ ϵ implies a · σ ≠ ϵ.
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(TopPush) It is also easy to see that top∞(push∞(a, σ)) = top∞(a · σ) = a.

(NEPushPop) Every non-empty sequence σ can be expressed as e · σ≥1 for some
e ∈ Ecall.

(TopVsLe) If σ, σ′ are both not empty and σ is a prefix of σ′, then obviously
σ0 = σ′0.

(PopPushLe) For every σ ∈ E∞call, we have pop∞(push(a, σ)) = σ ≥∞ σ.

Example 6.13. For k ∈N, consider Sk = (E≤k
call,≤k, ϵk, pushk, popk, topk) with

σ ≤k σ
′ de f⇐⇒ σ′ ∈ Pre f ixes(σ)

ϵk
de f
= ϵ (empty sequence)

pushk(e, σ)
de f
= (e · σ)≤k

popk(e · σ)
de f
= σ

topk(e · σ)
de f
= e

Then Sk is a stack space over Ecall: This is trivial for k = 0, so that we only
consider the case that k > 0. ≤k is a partial order with greatest element ϵk, so that
EpsMax is satisfied.

(PopMon) See Example 6.12.

(PushMon) pushk(e, ·) is monotone with respect to ≤k because it is the com-
position of λσ. e · σ and λσ. σ≤k, which are both monotone with respect to
≤k.

(PushNE) Let σ ∈ E≤k
call with σ ≠ ϵ. Then pushk(e, σ) = (e · σ)≤k = e ·

(σ≤k−1) ≠ ϵ.

(TopPush) The argument from above shows in particular that

top(push(e, σ)) = e

for every σ ∈ E≤k
call, e ∈ Ecall.
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(NEPushPop) Let σ ∈ E≤k
call be non-empty. Then σ = e · σ≥1 for some e ∈

Ecall. Since σ ∈ E≤k
call, we have σ = σ≤k = (e · σ≥1)≤k = (e · popk(σ))

≤k =

pushk(e, popk(σ)).

(TopVsLe) See Example 6.12.

(PopPushLe) Let σ ∈ E≤k
call. We make a case distinction of whether |σ| < k or

|σ| = k:
• If |σ| < k, then |e · σ| ≤ k, which means that e · σ = (e · σ)≤k = pushk(e, σ).

Hence, popk(pushk(e, σ)) = popk((e · σ)≤k) = popk(e · σ) = σ.

• If |σ| = k, then pushk(e, σ) = e · σ<k, so that popk(pushk(e, σ)) = σ<k.
Since σ<k is a prefix of σ, this shows that σ ≤k popk(pushk(a, σ)).

In the following, I consider a fixed stack space

S = (Ecall, S,≤, ϵ, push, pop, top)

over Ecall.
Next, I want to introduce the paths in G that exhibit an acceptable stack
behavior with respect to S and the correspondence relation Φ. For this, I
use a function cs that takes as input an edge sequence π ∈ E⋆. This function
traverses π and simulates π’s usage of calls and returns with respect to S
and Φ. Each time a call edge is encountered, cs applies the push function
of S to the current stack. Each time a return edge is encountered, cs checks
whether the top of the current stack corresponds to the return edge with
respect to Φ. If so, the top is popped off using the pop function of S – if
not, cs concludes that π is unacceptable or invalid.
In summary, cs returns either a call stack that is left behind by π, e.g. π just
consists of a series of call edges, then the result of cs is the stack that consists
of these unfinished calls) or a special symbol ▼ that signals unacceptable
stack behavior. Occasionally, I will also call ▼ the invalid stack.
I extend S and ≤ by ▼ such that ▼ is the least element with respect to ≤ and

push : Ecall × S▼ → S▼(6.7)
pop : (S \ {ϵ})∪ {▼} → S▼(6.8)

such that

∀σ ∈ S. ∀e ∈ Ecall. push(e, σ) = ▼ ⇐⇒ σ = ▼(6.9)
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∀σ ∈ S. pop(σ) = ▼ ⇐⇒ σ = ▼(6.10)

That is, if push and pop are applied to valid stacks, the result is guaranteed
to be valid, and if they are applied to the invalid stack, the result stays
invalid.
With the help of ▼, I give the definition of cs in Definition 6.14.

Definition 6.14.
cs : Paths(G)→ S▼

is defined by

cs(ϵ) = ϵ

cs(π · e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cs(π) if e ∈ Eintra
push(e, cs(π)) if e ∈ Ecall
cs(π) = ϵ if e ∈ Eret and cs(π) = ϵ
pop(cs(π)) if e ∈ Eret ∧ cs(π) ∉ {▼, ϵ}

∧ (top(cs(π)), e) ∈ Φ
▼ otherwise

If a path π can be fully traversed without resulting in the invalid stack, I
call π S-acceptable33.

Definition 6.15. The S-acceptable paths are given by

APS(s, t)
de f
= {π ∈ PathsG(s, t) | cs(π) ≠ ▼}.

Next, I introduce Constraint System 6.5, which can be used to describe the
data-flows along paths from AP. Like the previous constraint systems, its
idea is to simulate what happens when we extend a path by one edge. In
addition to the application of the corresponding edge function, Constraint
System 6.5 also considers the effect of the edge on the stack – this is why
the variables in Constraint System 6.5 have an additional stack component.

Constraint System 6.5. Let S = (Ecall, S,≤, ϵ, push, pop, top) be a stack space
over Ecall. Then XS : N ×N × S→ F⊠ is a S-solution if it satisfies the following

33A similar definition can be found in the work of Sharir and Pnueli[154, p. 227].
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constraints:

(emptyS) XS(s, s, ϵ) ≥ id
(intraS)

e ∈ Eintra t′ e→ t

XS(s, t, σ) ≥ fe ◦XS(s, t′, σ)

(callS)
ecall ∈ Ecall t′

ecall→ t σ = push(ecall, σ
′)

XS(s, t, σ) ≥ fecall ◦XS(s, t′, σ′)

(ret
(1)
S )

eret ∈ Eret t′ eret→ t

XS(s, t, ϵ) ≥ feret ◦XS(s, t′, ϵ)

(ret
(2)
S )

t′ eret→ t (ecall, eret)∈ Φ pop(push(ecall, σ))= σ push(ecall, σ) ≠ ϵ

XS(s, t, σ) ≥ feret ◦XS(s, t′, push(ecall, σ))

Like for previous constraint systems, I want to make some remarks on
how to read and interpret Constraint System 6.5.
First of all, the set of variables of Constraint System 6.5 is N×N× S. Hence,
solutions to Constraint System 6.5 live in the complete lattice

N ×N × S→ F⊠

Moreover, I extend the function symbols and their interpretation function
to also cover the stack operations. Analogously to previous constraint
systems, for each occurrence of such a stack operation in a constraint in the
lower part of one of the rules, I actually mean the corresponding function
symbol. Regarding the upper part, I again want to remind the reader that
the upper part of the rules specifies conditions under which the constraint
in the lower part of the rule is contained in the set of constraints that makes
up Constraint System 6.5. As an example, consider (6.5): It contains a
constraint of the form

XS(s, t, σ) ≥ fecall ◦XS(s, t′, σ′)

for all s, t, t′ ∈ N, ecall ∈ E and σ, σ′ ∈ S such that e ∈ Ecall , t′
ecall→ t and

σ = push(ecall, σ′).
Theorem 6.16 gives a correctness result for Constraint System 6.5.
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Theorem 6.16. Let X : N ×N × S → F⊠ be a S-solution. Then for arbitrary
s, t ∈ N we have

(6.11) ∀π ∈ PathsG(s, t). π ∈ APS(s, t) =⇒ fπ ≤ X(s, t, cs(π))

In particular, X̃(s, t) =
⨆︁
σ∈S X(s, t, σ) defines a MOAPS-correct solution.

Proof. First assume that (6.11) is proven. Then

∀π ∈ APS(s, t). fπ ≤ X(s, t, cs(π)) ≤
⨆︂

σ∈S
X(s, t, σ) = X̃(s, t)

so that

MOAPS(s, t) =
⨆︂

π∈APS(s,t)

fπ ≤ X̃(s, t)

Now we prove (6.11) by induction on the length of paths. Let n ∈N. The
induction hypothesis is

∀π ∈ PathsG(s, t). |π| < n∧π ∈ APS(s, t) =⇒ fπ ≤ X(s, t, cs(π))(IH)

We show

∀π ∈ PathsG(s, t). |π|=n∧π ∈ APS(s, t) =⇒ fπ ≤ X(s, t, cs(π))(6.12)

by case distinction on n.

n = 0: clear by constraint emptyS.

n > 0: Letπ be a path from s to t with |π| = n > 0 andπ ∈ APS(s, t). Hence,
we can write π = π′ · e with π′ ∈ PathsG(s, t′) and t′ e→ t. Moreover, since
π ∈ APS(s, t), it must be π′ ∈ APS(s, t) as well (this follows from the
definition of cs). By definition, (IH), and (6.3), we see that

fπ ≤ fe ◦X(s, t′, cs(π′)).

Then we show

fe ◦X(s, t′, cs(π′)) ≤ X(s, t, cs(π))

by case distinction on e:
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• e ∈ Eintra: Then cs(π) = cs(π′) and hence

fe ◦X(s, t′, cs(π′)) ≤ X(s, t, cs(π′)) { constraint intraS }
= X(s, t, cs(π)) { since cs(π′) = cs(π) }

• e = ecall ∈ Ecall: Then cs(π) = push(ecall, cs(π′)) and hence we can
conclude

fecall ◦X(s, t′, cs(π′)) ≤ X(s, t, cs(π)))

by callS.

• e = eret ∈ Eret: By definition of cs and since cs(π) ≠ ▼ by assump-
tion, it must be either cs(π) = cs(π′) = ϵ or cs(π′) ∉ {▼, ϵ} and
(top(cs(π′), eret)) ∈ Φ. We consider each of these cases individually.

1. If cs(π′) = cs(π) = ϵ, we can make the following reasoning:

feret ◦X(s, t′, cs(π′)) = feret ◦X(s, t′, ϵ) { cs∞(π′) = ϵ }

≤ X(s, t, ϵ) { by ret(1)S }

= X(s, t, cs(π)) { cs(π) = ϵ }

2. If cs(π′) ∉ {▼, ϵ} and (top(cs(π′), eret)) ∈ Φ, then for ecall
de f
=

top(cs(π′)) we have (ecall, eret) ∈ Φ and cs(π) = pop(cs(π′)) (by
definition of cs), hence

cs(π′) = push(ecall, cs(π)) = push(ecall, pop(cs(π′)))(6.13)

by (NEPushPop) and (TopPush). Hence, we can apply ret(2)S and
conclude:

feret ◦X(s, t′, cs(π′))
= feret ◦X(s, t′, push(ecall, cs(π))) { (6.13) }

≤ X(s, t, cs(π)) { by ret(2)S }
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□

Theorem 6.16 states that MOAPS can be correctly approximated by com-
puting a solution of Constraint System 6.5 and subsequently joining over
all stacks.
In order to give a precision result for Constraint System 6.5, I need a variant
of MOAPS that has an additional stack component. This variant is defined
in Definition 6.17. MO(Stack)

APS
(s, t, σ) only merges over those paths that leave

behind stack σ.

Definition 6.17. The stack-based Merge-Over-All-S-Acceptable-Paths solution

MO(Stack)
APS

: N ×N × S→mon F⊠

is defined by
MO(Stack)

APS
(s, t, σ) =

⨆︂

π∈VP(s,t),cs∞(π)=σ
fπ

Now I show that Constraint System 6.5 is also able to precisely describe
MOAPS, provided that F is universally distributive.

Theorem 6.18. Let F be a universally distributive framework. Then MO(Stack)
AP

is anS-solution. In particular, for the leastS-solution X, we have X ≤MO(Stack)
AP .

Proof. We show that MO(Stack)
AP satisfies all the constraints of Constraint

System 6.5.

emptyS Let s ∈ N. Then MO(Stack)
AP (s, s, ϵ) = id. So, emptyS is satisfied.

intraS Let s, t, t′ ∈ N, e ∈ Eintra, t′ e→ t and σ ∈ S. Then for every
π′ ∈ APS(s, t′) with cs∞(π′) = σwe have π′ · e ∈ APS(s, t) and cs(π′ · e) =
cs(π′) = σ. This implies

MO(Stack)
AP (s, t, σ)

=
⨆︂
{ fπ | π ∈ APS(s, t), cs(π) = σ} { definition }

≥
⨆︂
{ fπ′·e | π′ ∈ APS(s, t′), cs(π′) = σ} { see above }
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=
⨆︂
{ fe ◦ fπ′ | π′ ∈ APS(s, t′), cs(π′) = σ} { definition }

= fe ◦
⨆︂
{ fπ′ | π′ ∈ APS(s, t′), cs(π′) = σ} { fe is u.d. }

= fe ◦MO(Stack)
AP (s, t′, σ) { definition }

callS Let s, t, t′ ∈ N, ecall ∈ Ecall, t′
ecall→ t and σ ∈ S. Then for every

π′ ∈ AP(s, t′) with cs(π′) = σ we have π′ · ecall ∈ APS(s, t) with cs(π′ ·
ecall) = push(ecall, cs(π′)) = push(ecall, σ). Hence

MO(Stack)
AP (s, t, push(ecall, σ))

=
⨆︂
{ fπ | π ∈ APS(s, t), cs∞(π) = push(ecall, σ)} { definition }

≥
⨆︂
{ fπ′·ecall

| π′ ∈ APS(s, t′), cs(π′) = σ} { see above }

=
⨆︂
{ fecall ◦ fπ′ | π′ ∈ APS(s, t′), cs(π′) = σ} { definition }

= fecall ◦
⨆︂
{ fπ′ | π′ ∈ APS(s, t′), cs(π′) = σ} { fecall is u.d. }

= fecall ◦MO(Stack)
AP (s, t′, σ) { definition }

ret
(1)
S Let s, t, t′ ∈ N, eret ∈ Eret, t′ eret→ t, σ ∈ S and π′ ∈ APS(s, t′) with

cs(π′) = ϵ. Then π′ · eret ∈ APS(s, t) and cs(π′ · eret) = ϵ. Hence, we may
conclude

MO(Stack)
AP (s, t, ϵ)

=
⨆︂
{ fπ | π ∈ APS(s, t), cs(π) = ϵ} { definition }

≥
⨆︂
{ fπ′·eret | π′ ∈ APS(s, t′), cs(π′) = ϵ} { see above }

=
⨆︂
{ feret ◦ fπ′ | π′ ∈ APS(s, t′), cs(π′) = ϵ} { definition }

= feret ◦
⨆︂
{ fπ′ | π′ ∈ APS(s, t′), cs(π′) = ϵ} { feret is u.d. }

= feret ◦MO(Stack)
AP (s, t′, ϵ) { definition }

ret
(2)
S Let σ ∈ S with push(ecall, σ) ≠ ϵ and pop(push(ecall, σ)) = σ. Fur-

thermore, let s, t, t′ ∈ N, ecall ∈ Ecall, eret ∈ Eret, t′ eret→ t, (ecall, eret) ∈ Φ, and
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π′ ∈ APS(s, t′) with cs(π′) = push(ecall, σ). Then π′ · eret ∈ APS(s, t) and
cs(π′ · eret) = pop(cs(π′)) = pop(push(ecall, σ)) = σ. This justifies that we
conclude

MO(Stack)
AP (s, t, σ)

=
⨆︂
{ fπ | π ∈ AP(s, t), cs(π) = σ} { definition }

≥
⨆︂
{ fπ′·eret | π′ ∈ AP(s, t′), cs(π′) = push(ecall, σ)} { see above }

=
⨆︂
{ feret ◦ fπ′ |π′ ∈ AP(s, t′), cs(π′) = push(ecall, σ)} { definition }

= feret ◦
⨆︂
{ fπ′ |π′ ∈ AP(s, t′), cs(π′) = push(ecall, σ)} { feret is u.d. }

= feret ◦MO(Stack)
AP (s, t′, push(ecall, σ)) { definition }

□

6.3.2 The Unbounded Stack Space

Up until now, we only have compared solutions to the abstract set APS.
The subject of this and the following subsection is to examine stack spaces
for which APS relates to VP in a meaningful way. From the results, I will
derive VP-correctness and VP-precision results in subsection 6.3.4
In this subsection, I consider the very important special case of the space
S∞ of unbounded stacks. My main result for this subsection is that the
S∞-acceptable paths coincide with the valid paths.
The proof is split up into two parts. In the first part, I show that every
valid path is S∞-acceptable. After that, I show every S∞-acceptable path
is valid.

6.3.2.1 Valid Paths Are S∞-Acceptable

Theorem 6.21 states that every valid path is S∞-acceptable. It makes use
of two elementary properties of cs∞ concerning same-level and ascending
paths.
The first property states that appending a same-level path does not change
the stack. This is not surprising as same-level paths are balanced and valid,
which means that for every call there is a return and that every return
corresponds to the innermost call.
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Lemma 6.19. If π′ is a same-level path, then

∀π ∈ Paths(G).cs∞(π ·π′) = cs∞(π)

Proof. Induction on π′ ∈ SL with arbitrary π. □

The second property, which is stated in Lemma 6.20, considers ascending
paths. Basically, an ascending path is like a same-level path with an excess
of return edges. Hence, if we start with an empty stack and have traversed
the same-level prefix, the stack is empty. Then traversing the rest of the
path leaves the stack empty. Note that this property also highlights a
specific characteristic of my treatment of stacks. Because I not only consider
descending paths, I have to handle the case of returning from an empty
stack, which is not a valid situation in a normal program. In my definition
of cs∞, I allow returning to any call site if the stack is empty, as long as
stack usage is acceptable in the case that the stack is not empty.

Lemma 6.20. If π is an ascending path, then cs∞(π) = ϵ.

Proof. By induction on π ∈ ASC.

• The claim is clear for π = ϵ.

• Suppose that the claim holds for π′ ∈ ASC(s, t′) and we have π =

π′ · e with e ∈ Eintra ∪ Eret and t′ e→ t. Then we distinguish two cases:

– If e ∈ Eintra, it follows that

cs∞(π′ · e) = cs∞(π′) { by definition }
= ϵ { by induction hypothesis }

– If e ∈ Eret, we know cs∞(π′) = ϵ by induction hypothesis and
can thus follow cs∞(π) = ϵ by definition of cs.

• Suppose that the claim holds for π′ ∈ ASC(s, n), we have n
ecall→

n0,π′′ ∈ SL(n0, n1), n1
eret→ t and (ecall, eret) ∈ Φ. Then we have

cs∞(π′ · ecall ·π′′ · eret) = cs∞(π′) { by Lemma 6.19 }
= ϵ { by induction hypothesis }
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□

With help of Lemma 6.19 and Lemma 6.20, I can prove acceptability of
valid paths.

Theorem 6.21. If π ∈ VP(s, t), then cs∞(π) ≠ ▼∞.

Proof. We use Theorem 5.30. Let π1 ∈ ASC(s, t′) be an ascending path
starting with s and ending in some arbitrary t′ ∈ N, then it suffices to prove

∀π2 ∈ DESC. ∀t ∈ N. π2 ∈ DESC(t′, t) =⇒ cs∞(π1 ·π2) ≠ ▼∞.

We prove this statement by induction on π2 ∈ DESC.

• If π2 = ϵ, then π1 · π2 ∈ ASC(s, t). Hence, cs∞(π1 · π2) = ϵ by
Lemma 6.20.

• Otherwise, we are in case desc-seqdesc or desc-seqsl and have π2 =
π′2 ·π′′2 for some π′2 ∈ DESC and either π′′2 ∈ Ecall or π′′2 ∈ SL.

In either case, we can apply the respective induction hypothesis and
get

cs∞(π1 ·π′2) ≠ ▼∞.(IH)

We consider these two cases separately.

– Let π′′2 = ecall ∈ Ecall, with t′′
ecall→ t′. Then , we can conclude

cs∞(π1 ·π2 · ecall)

= push∞(ecall, cs∞(π1 ·π2)) { definition }
≠ ▼∞ { (IH), (6.9) }

– Let π2 = π′2 ·π′′2 with π′2 ∈ DESC(t′, t′′) and π′′2 ∈ SL(t′′, t) for
some t′′ ∈ N. Then, we can conclude

cs∞(π1 ·π′2 ·π′′2 ) = cs∞(π1 ·π′2) { π′′2 ∈ SL, Lemma 6.19 }

≠ ▼∞. { (IH) }

□
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6.3.2.2 S∞-Acceptable Paths Are Valid

For the property that cs∞ only accepts valid paths, which I will show and
prove in Lemma 6.24, I need two additional properties of cs∞ that are also
of interest on their own.
The first property formally describes the possible shapes of a path π
for which cs∞(π) is not empty: Suppose that cs∞(π) = ecall · σ. Then
intuitively, it can only be the case that (a) some prefix of π left behind stack
σ, (b) then ecall was encountered and (c) the part after ecall is a same-level
path that leaves the stack unchanged. Lemma 6.22 states that this is indeed
the case.

Lemma 6.22. If π ∈ PathsG(s, t) and cs∞(π) = ecall · σ, then π can be split up
into π = π′ · ecall ·π′′ where cs∞(π′) = σ and π′′ is a same-level path.

Proof. We fix s ∈ N and prove the result for all π ∈ PathsG(s, t) with
arbitrary t ∈ N, e ∈ Ecall and σ ∈ E⋆call by induction on the length of
paths. Let n ∈ N and assume that the claim is true for all π′ with
|π′| < n. Let π0 ∈ PathsG(s, t), ecall ∈ Ecall, σ ∈ E⋆call such that |π0| = n and
cs∞(π0) = ecall · σ.
First we observe that n > 0, since cs∞(ϵ) = ϵ. So π0 = π · e for some e ∈ E.
We make a case distinction on e:

e ∈ Eintra: Then cs∞(π · e) = cs∞(π). Hence, we can apply the induc-
tion hypothesis on π and get a decomposition π = π′ · ecall · π′′ where
cs∞(π′) = σ and π′′ is a same-level path. Hence π · e = π′ · ecall · (π′′ · e) is
a decomposition of π · e with the desired properties: π′′ · e is a same-level
path, since e ∈ Eintra.

e ∈ Ecall: Then cs∞(π · e) = e · cs∞(π) = ecall · cs∞(π), so e = ecall and
σ = cs∞(π) ≠ ▼∞. Now we make a case distinction on whether cs∞(π) is
empty or not.

• If cs∞(π) is not empty, then cs∞(π) = e′ · σ′ for some e′ ∈ Ecall and
σ′ ∈ E⋆call. We apply the induction hypothesis on π and obtain π′ with
cs∞(π′) = σ′ and a same-level path π′′ such that

π = π′ · e′ ·π′′

Then

π · e = π′ · e′ ·π′′ · e = (π′ · e′ ·π′′) · e · ϵ(6.14)
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ϵ is a same-level path, so in order to show that 6.14 is a decomposition
of π · e with the desired properties, we only need to show cs∞(π′ · e′ ·
π′′) = cs∞(π) = e′ · σ′. But this can be seen as follows:

cs∞(π′ · e′ ·π′′) = cs∞(π′ · e′) { π′′ ∈ SL, Lemma 6.19 }
= e′ · cs∞(π′) { by definition of cs∞, e′ ∈ Ecall }
= e′ · σ′ { cs∞(π′) = σ′ }

• If cs∞(π) = ϵ, then σ = ϵ = cs∞(π) so that π · e = π · e · ϵ is a
decomposition with the desired properties.

e ∈ Eret: We have ecall ·σ = cs∞(π · e) = pop∞(cs∞(π)), so that by definition
cs∞(π) = e′ · (ecall · σ) for some e′ ∈ Ecall with (e′, e) ∈ Φ. We apply the
induction hypothesis on π (|π| < n) and get π′, π′′ such that cs∞(π′) =
ecall · σ, π′′ is a same-level path and

π = π′ · e′ ·π′′

Next we apply the induction hypothesis on π′ (|π′| < n) and get π′1, π′2
such that cs∞(π′1) = σ, π′2 is a same-level path and

π′ = π′1 · ecall ·π′2
That means π · e can be decomposed into

π · e = π′1 · ecall ·π′2 · e′ ·π′ · e = π′1 · ecall · (π′2 · e′ ·π′′ · e)(6.15)

Since (e′, e) ∈ Φ and π′′ is a same-level path, e′ · π′′ · e is a same-level
path. Since π′2 is also a same-level path, π′2 · e′ ·π′′ · e is a same-level path.
Furthermore, cs∞(π′1) = σ. In summary, 6.15 is a decomposition of π · e
with the desired properties.

□

The second property that will be needed in my proof of Lemma 6.24 is the
converse of Lemma 6.20: Empty stacks can only be left behind by ascending
paths. In particular, even though cs∞ allows returning to arbitrary call sites
in the face of the empty stack, apart from this exception, it still requires
that paths exhibit valid stack usage.
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Lemma 6.23. If π ∈ PathsG(s, t) with cs∞(π) = ϵ∞, then π ∈ ASC(s, t).

Proof. I prove the result by induction on the length of paths.
The induction hypothesis is

∀π ∈ PathsG. ∀s, t ∈ N. |π| < n∧π ∈ PathsG(s, t)∧ cs∞(π) = ϵ(IH)
=⇒ π ∈ ASC(s, t)

Let π ∈ PathsG with |π| = n and s, t ∈ N such that π ∈ PathsG(s, t).
Furthermore, assume cs∞(π) = ϵ. We need to show π ∈ ASC(s, t). For
this, we distinguish two cases:

n = 0: Then π must be empty and is hence ascending, so that the claim
holds in this case.

n > 0: Then π = π′ · e and π′ ∈ PathsG(s, t′) for some t′ ∈ N, e ∈ E, t′ e→ t.
Since cs∞(π) = ϵ, it cannot be the case that e ∈ Ecall, so we only need to
distinguish the cases e ∈ Eintra and e ∈ Eret:

e ∈ Eintra: Then cs∞(π) = cs∞(π′), so that cs∞(π′) = ϵ. Hence we may
apply (IH) to π′ and conclude π′ ∈ ASC(s, t′). Thus π = π′ · e ∈ ASC(s, t)
by asc-asc.

e ∈ Eret: By definition, cs∞(π) = ϵ implies that either cs∞(π′) = ϵ or that
cs∞(π′) = ecall for some ecall ∈ Ecall with (ecall, e) ∈ Φ.

In the former case, we may reason just as for the case “e ∈ Eintra”: Applying
(IH), we obtainπ′ ∈ ASC(s, t′) and appending a return edge to an ascending
path results in an ascending path.

In the latter case, we apply Lemma 6.22 and decompose π′ into π′ = π′′ ·
ecall · π′′′ such that cs∞(π′′) = ϵ and π′′′ is a same-level path. Then we
apply (IH) to π′′ and conclude that π′′ is an ascending path. Furthermore,
since (ecall, e) ∈ Φ and π′′′ is same-level, π = π′′ · ecall ·π′′′ · e is ascending
by asc-seqsl. With π ∈ PathsG(s, t), we get π ∈ ASC(s, t) by definition.

□

Lemma 6.24. If π ∈ PathsG(s, t) with cs∞(π) ≠ ▼∞, then π is a valid path.
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Proof. If cs∞(π) ≠ ▼∞, then cs∞(π) ∈ E⋆call, so we prove the claim by
induction on the length of cs∞(π). So let n ∈N.
The induction hypothesis is

∀π ∈ PathsG. |cs∞(π)| < n∧ cs∞(π) ≠ ▼∞ =⇒ π ∈ VP(IH)

Let π ∈ PathsG(s, t) with cs∞(π) ≠ ▼∞, |cs∞(π)| = n. We distinguish two
cases:

n = 0: Then cs∞(π) = ϵ. By Lemma 6.23, π ∈ ASC ⊆ VP.

n > 0: Then cs∞(π) = e · σ for some e ∈ Ecall. By Lemma 6.22, π can be
decomposed into π = π′ · e ·π′′ where cs∞(π′) = σ and π′′ is a same-level
path. In particular, cs∞(π′) ≠ ▼∞ and |cs∞(π′)| < n, so we may apply
(IH) and get that π′ ∈ VP. Furthermore, since e ∈ Ecall and π′′ and is
same-level, e ·π′′ is descending by Theorem 5.29. Furthermore, e ·π′′ is a
path because it is a sub-sequence of π and π is a path. Hence, e ·π′′ ∈ DESC
by Theorem 5.37.

Thus, π is the concatenation of a valid sequence and a descending sequence
and therefore valid by Theorem 5.30. With π ∈ PathsG, we get π ∈ VP by
definition.

□

6.3.2.3 Summary

After I have proven the two subset relations, I formally state the main
result of this subsection, namely that APS∞ coincides with VP, for later
reference.

Theorem 6.25. The valid paths are exactly the S-acceptable paths for S = S∞:

APS∞ = VP

Proof. “⊆” is shown by Lemma 6.24 and “⊇” by Theorem 6.21. □

As a corollary, I conclude that for distributive frameworks, the least
solution Constraint System 6.5 w.r.t. S∞ coincides with MOVP and hence
provides the same result as the functional approach. Thus, I can confirm
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the corresponding result, that Sharir and Pnueli [154, Theorem 7-4.6]
showed for classical data-flow analyses on interprocedural graphs in my
more general setting.

6.3.3 Stack Abstractions

In the last subsections, we have seen that Constraint System 6.5 correctly
and precisely describes the data-flows along the valid paths in the case
that Constraint System 6.5 is based on the stack space S∞ of unbounded
stacks. In this sense, the unbounded call-string approach coincides with the
functional approach.
In this and the next subsection, I examine general stack spaces. Specific-
ally, I present an approach for providing correctness results for general
stack spaces. Therefore, this subsection introduces the concept of stack
abstractions. A stack abstraction is a function between stack spaces that
preserves enough structure to maintain acceptability of paths. My main
result is that if a stack space S is related to a stack space S# via a stack
abstraction, then all S-acceptable paths are S#-acceptable. This enables to
conclude VP-correctness of MOAPS# from VP-correctness of MOAPS.
In subsection 6.3.4, I will apply this result to obtain a VP-correctness result
for MOAPSk

.
Stack abstractions make use of galois connections, a concept that is well-
known in mathematics and also static program analysis.
A galois connection can be seen as a generalization of inverse functions
for partial orders. Definition 6.26 can be found e.g. in [130, Section 4.3] or
[50, 7.23, p. 155].

Definition 6.26. Let (L,≤L) and (M,≤M) be two partially ordered sets and

α : L→M
γ : M→ L

be two monotone functions. Then (L,α,γ, M) is called a galois connection if
α ◦ γ ≤M idM and idL ≤L γ ◦ α.

Lemma 6.27 gives a simple characterization of galois connections, that I
will make use of occasionally in the following.
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Lemma 6.27. (L, M,α,γ) is a galois connection between the partially ordered
sets (L,≤L) and (M,≤M) if and only if α : L→M and γ : M→M are monotone
functions such that

∀l ∈ L. ∀m ∈M. α(l) ≤M m ⇐⇒ l ≤L γ(m)

Proof. See [130, Proposition 4.20]. Note that [130] actually assumes that
L and M are complete lattices, which is not necessary for the proof to be
valid. □

Next, Definition 6.28 introduces stack abstractions, the main concept of
this subsection.

Definition 6.28. A stack abstraction between two stack spaces

(S,≤, ϵ, top, push, pop)

and
(S#,≤#, ϵ#, top#, push#, pop#)

is a pair (α,γ) of functions

α :S▼ → S#
▼#

γ :S#
▼# → S▼

such that

(S▼,α,γ, S#
▼#) is a galois connection.(Gal)

γ(▼#) = ▼(Bot)

∀σ# ∈ S#. γ(σ#) = ϵ =⇒ σ# = ϵ#(Eps)

∀σ# ∈ S#. α(push(e,γ(σ#))) ≤# push#(e, σ#)(PushHom)

∀σ# ∈ S# − {ϵ#}. α(pop(γ(σ#))) ≤# pop#(σ#)(PopHom)

∀σ# ∈ S# − {ϵ#}. top(σ#) = top(γ(σ#))(TopHom)

Before I show an example of Definition 6.28, I want to discuss a bit the
intuition behind stack abstraction and their properties.
For this, consider a stack abstraction (S,α,γ, S#) between two stack spaces
S = (S,≤, ϵ, top, push, pop) and S# = (S,≤, ϵ, top, push, pop).
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A stack abstraction is supposed to “abstract away” from unnecessary
details in a stack space while still preserving enough structure to make
meaningful statements. For example, it shall enable to conclude from the
validness of cs(π), that cs#(π) is also valid, i.e. it shall be possible to prove
cs(π) ≠ ▼ =⇒ cs#(π) ≠ ▼.
First of all, (Gal) provides a formalization of the intuitive notion of abstrac-
tion. The function α, which is in the program analysis context also called
abstraction function, can be thought of “abstracting away the details” from
a concrete stack from S, whereas γ, also called concretization function, maps
an abstract stack to a corresponding concrete stack.
Intuitively, we expect two properties of abstractions and their concretiza-
tions. For one, if we abstract a stack and then concretize again, then we
get a concrete stack that provides at most as much as the original stack. In
particular, this stack should be comparable to the original stack. Secondly,
if we concretize an abstract stack and then abstract it, then we get a stack
that provides at least as much information as the original abstract stack.
This is exactly what is achieved by the galois connection provided by (Gal).
For every σ ∈ S, there is a corresponding stack α(σ) ∈ S#, which can be
thought of as “at most as detailed” as σ. This is to be understood in the
following sense: If we apply γ to α(σ), we arrive at a stack γ(α(σ)) with
σ ≤ γ(α(σ)).
Conversely, for every stackσ# ∈ S#, there is a corresponding stackγ(σ#) ∈ S
in S, which can be though of as “at least as detailed”. This is to be
understood in the following sense: If we apply α to γ(σ#), we arrive at a
stack α(γ(σ#)) ≤ σ#.
Next, I consider the other properties. (Gal) in connection with (Bot) and
(Eps) is strong enough to fully preserve ϵ and ▼, as Remark 6.29 shows.

Remark 6.29. For every stack abstraction, we have

α(ϵ) = ϵ#(6.16)

γ(ϵ#) = ϵ(6.17)

α(x) = ▼# ⇐⇒ x = ▼(6.18)

Proof. First, we consider (6.16) and (6.17). By (Gal), we have ϵ ≤ γ(α(ϵ)).
Since ϵ is the greatest element of S with respect to ≤, this means that
γ(α(ϵ)) = ϵ. Hence, α(ϵ) = ϵ# by (Eps). Again by application of (Gal), we
have ϵ ≤ γ(α(ϵ)) = γ(ϵ#), so γ(ϵ#) = ϵ by ≤-maximality of ϵ.
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Finally, we prove (6.18). For all σ# ∈ S# we have ▼ ≤ γ(σ#) since ▼ is the
least element of S▼. By (Gal) and Lemma 6.27, this means that α(▼) ≤ σ#

for all σ# ∈ S#, which implies α(▼) = ▼#. Conversely, for σ ∈ S▼ with
α(σ) = ▼# by (Gal) and (Bot) we have σ ≤ γ(α(σ)) = γ(▼#) = ▼, which
implies σ = ▼. □

The other properties in Definition 6.28 ensure that α and γ are well-behaved
with respect to the stack operations. Property (TopHom) ensures that the
top elements of a stack and its abstract versions are the same. The other
two properties consider two different ways to perform a push or pop
operation on abstract stacks: The first way applies the respective abstract
operation, whereas the second way first concretizes the stack, applies
the concrete operation and then abstracts the result. The two properties
(PushHom) and (PopHom) state that the first way must provide as most
as much information as the second way.
In the following, I give an important example of a family of stack abstrac-
tions. To support the uniform presentation of the following example, I

define A≤∞ de f
= A⋆ for an alphabet A, σ≤∞ de f

= σ for every σ ∈ A⋆ and

∞− 1
de f
= ∞. Furthermore, I assume that the natural order ≤ on N is

extended to N∞
de f
= N∪ {∞} by defining x ≤ ∞ for every x ∈N∞.

Example 6.30. For k, l ∈ N∞, l ≤ k, consider the two stack spaces Sk =

(E≤k
call,≤k, ϵk, pushk, popk, topk) and Sl = (E≤l

call,≤l, ϵl, pushl, popl, topl). Define
the functions αk,l and γk,l by

αk,l(σ) = σ≤l

αk,l(▼k) = ▼l

γk,l(σ) = σ

γk,l(▼l) = ▼k

Then (Sk,αk,l,γk,l,Sl) is a stack abstraction.

Proof. (Gal) (Sk,αk,l,γk,l,Sl) is a galois connection.

• For σ ∈ E≤k
call we have

σ ≤k σ
≤l { σ≤l is a prefix of σ }
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= γk,l(σ
≤l) { definition of γk,l }

= γk,l(αk,l(σ)) { definition of αk,l }

• For σ ∈ E≤l
call we have

αk,l(γk,l(σ)) = αk,l(σ) { definition of γk,l }

= σ≤l { definition of αk,l }

= σ { since σ ∈ E≤l
call }

≤l σ { Reflexivity of ≤l }

(Bot) clear by definition.

(Eps) This is clear since γk,l is the identity function.

(PushHom) Let σ ∈ E≤l
call. Then we have

αk,l(pushk(e,γk,l(σ))) = αk,l(pushk(e, σ)) { definition of γk,l }

= αk,l((e · σ)≤k) { definition of pushk }

= ((e · σ)≤k)≤l { definition of αk,l }

= (e · σ)≤l { l ≤ k }
= pushl(e, σ) { definition of pushl }

(PopHom) The claim is trivial for l = 0, so we may assume l > 0. For
e · σ ∈ E≤l

call \ {ϵ}, we have

αk,l(popk(γk,l(e · σ))) = αk,l(popk(e · σ)) { definition of γk,l }
= αk,l(σ)) { definition of popk }

= σ≤l { definition of αk,l }

= σ { σ ∈ E≤l−1
call ⊆ E≤l

call }

= popl(e · σ) { definition of popl }

(TopHom) Again, the claim is trivial for l = 0, so we only consider l > 0.
For e · σ ∈ E≤l

call \ {ϵ}, we have γk,l(σ) = σ and therefore topk(γk,l(σ)) =

topl(σ).
□
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After I have introduced stack abstractions and gave an example, I provide
the main result of this subsection in Theorem 6.31. If S and S# are two
stack spaces and α and γ form a stack abstraction between S and S#, then
every S-acceptable path is also S#-acceptable.
The proof of Theorem 6.31 is an easy consequence of the following key
property, which I will prove later.

Lemma 6.32. Let (S,α,γ, S#) be a stack abstraction between the stack spaces
(S,≤, ϵ, top, push, pop) and (S#,≤#, ϵ#, top#, push#, pop#) over Ecall. Then the
following statement is true for any π ∈ Paths(G):

α(cs(π)) ≤ cs#(π)(6.21)

Lemma 6.32 can be used to show the main result of this section.

Theorem 6.31. Let

S = (Ecall, S,≤, ϵ, top, push, pop)

and
S# = (Ecall, S#,≤#, ϵ#, top#, push#, pop#)

be two stack spaces over Ecall. Furthermore, let (S,α,γ, S#) be a stack abstraction
between S and S#. Then

∀s, t ∈ N. APS(s, t) ⊆ APS#(s, t)(6.19)

MOAPS ≤MOAPS#(6.20)

Proof. First, we show (6.19). Let π ∈ APS(s, t). Then cs(π) ≠ ▼ which
by Remark 6.29 implies α(cs(π)) ≠ ▼#. By Lemma 6.32 it follows that
α(cs(π)) ≤ cs#(π), which entails cs#(π) ≠ ▼#. Thus π ∈ APS#(s, t).
With (6.19), we see that MOAPS# joins over more paths than MOAPS. This
shows (6.20). □

All that is left to do for this subsection is to prove Lemma 6.32.

Lemma 6.32. Let (S,α,γ, S#) be a stack abstraction between the stack spaces
(S,≤, ϵ, top, push, pop) and (S#,≤#, ϵ#, top#, push#, pop#) over Ecall. Then the
following statement is true for any π ∈ Paths(G):

α(cs(π)) ≤ cs#(π)(6.21)
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Proof. First, we observe that

α(cs(π)) ≤ cs#(π) ⇐⇒ cs(π) ≤ γ(cs#(π))(6.22)

This follows from (Gal) and Lemma 6.27.
Next we show

∀π ∈ Paths(G). α(cs(π)) ≤ cs#(π)

by induction on the length of π. So let n ∈N, π ∈ Paths(G) with |π| = n.
The induction hypothesis is

(IH) ∀π′ ∈ Paths(G). |π′| < n =⇒ α(cs(π)) ≤ cs#(π)

By (6.22), this is equivalent to

(IH’) ∀π′ ∈ Paths(G). |π′| < n =⇒ cs(π′) ≤ γ(cs#(π′))

Now we make a case distinction on n.

n = 0: Then π = ϵ. Evaluation of both sides yields that they are equal:
α(cs(π)) = α(ϵ) = ϵ# and cs#(π) = ϵ#.

n > 0: Then π = π′ · e with |π′| = n− 1 and e ∈ Eintra ∪ Ecall ∪ Eret.

First we consider the case that cs(π′) = ▼. Then cs(π) = ▼ and hence, by
(6.18), α(cs(π)) = ▼# ≤ cs#(π).

Next assume cs#(π′) = ▼#. Then (IH) implies α(cs(π′)) ≤ ▼#. Hence,
α(cs(π′)) = ▼#, and this implies cs(π′) = ▼ by (6.18). As in the previous
case, we can conclude that α(cs(π)) ≤ cs#(π) also holds in this case.

Now we can assume cs(π′) ≠ ▼ and cs#(π′) ≠ ▼# and make a case
distinction on e:

e ∈ Eintra:

α(cs(π))
= α(cs(π′)) { by definition, e ∈ Eintra }

≤ cs#(π′) { (IH) }

= cs#(π) { by definition, e ∈ Eintra }
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e ∈ Ecall:

α(cs(π))
= α(push(e, cs(π′))) { by definition, e ∈ Ecall }

≤ α(push(e,γ(cs#(π′))) { (IH’), mon. of push(e, ·) and α }

≤ push#(e, cs#(π′)) { (PushHom) }

= cs#(π) { by definition, e ∈ Ecall }

case e ∈ Eret: By definition of cs, we distinguish two cases:

cs(π′) = ϵ: By (IH’), this implies ϵ ≤ γ(cs#(π′)). It follows that
γ(cs#(π′)) = ϵ. Hence cs#(π′) = ϵ# and, by definition of cs#, cs#(π) = ϵ#.

case cs(π′) ≠ ϵ By assumption, we have cs(π′) ∉ {▼, ϵ}.
First consider the case that (top(cs(π′)), e) ∉ Φ. Then cs(π) = ▼ by
definition of cs. Hence, we can justify (6.21) as follows:

α(cs(π)) = α(▼) { see above }

= ▼# { (6.18) }

≤ cs#(π). { cs#(π) ∈ S#, ▼# is the least element of S# }

Now we may assume that cs(π′) ∉ {▼, ϵ} ∧ (top(cs(π′)), e) ∈ Φ. Consider
the case that cs#(π′) = ϵ#. Then cs#(π) = ϵ#, so that α(cs(π)) ≤ cs#(π)
holds.

Now assume cs#(π′) ≠ ϵ#. Together with cs#(π′) ≠ ▼#, we have cs#(π′) ∉
{▼#, ϵ#}. By (IH’), we have cs(π′) ≤ γ(cs#(π′)). Since cs#(π′) ≠ ϵ#, it must
be γ(cs#(π′)) ≠ ϵ (by (Eps)).

Because cs#(π′) ≠ ϵ#, cs(π′) ≠ ϵ and γ(cs#(π′)) ≠ ϵ, we can conclude from
cs(π′) ≤ γ(cs#(π′)) that

top(cs(π′)) = top(γ(cs#(π′))) = top#(cs#(π′))

by (TopVsLe) and (TopHom)). Together with (top(cs(π)), e) ∈ Φ, it follows
that (top(cs#(π)), e) ∈ Φ, so that cs#(π) = pop#(cs#(π′)) by definition of
cs#. Now we can conclude
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α(cs(π))
= α(pop(cs(π′))) { definition of cs, assumptions }

≤ α(pop(γ(cs#(π′)))) { (IH’), mon. of pop and α }

≤ pop#(cs#(π′)) { (PopHom) }

= cs#(π) { definition of cs#, see above }

□

6.3.4 Effective and Correct Approximations of the
Unbounded Call-String Approach

In subsection 6.3.2, we saw that solutions of Constraint System 6.5 w.r.t.
S∞ enjoy the same correctness and precision results as the functional
approaches. Unfortunately, Constraint System 6.5 is not effective. For one,
Constraint System 6.5 w.r.t. S∞ is infinite. Secondly, the complete lattice
that forms the solution space of Constraint System 6.5 is

N ×N × S∞ → F⊠,

which does not satisfy the ascending chain condition. Particularly this
second fact makes it impossible to use algorithms such as Algorithm 8,
which rely on the ascending chain condition for termination.
However, in Example 6.13 I showed the family of (Sk)k∈N of stack spaces
that lead to finite versions of Constraint System 6.5 and to solution spaces
that satisfy the ascending chain condition. Hence algorithms like Algo-
rithm 8 are applicable to Constraint System 6.5 w.r.t. Sk. The idea of Sk,
which is at least since the work of Sharir and Pnueli [154] well-known in
the literature, is to only consider the k topmost stack elements, so that all
stacks are k-bounded. As Example 6.30 showed, S∞ and Sk are connected
via a stack abstraction, where the abstraction function projects a stack to
the k topmost items.
Consequently, the main result Theorem 6.31 from the last subsection
enables me to transfer the correctness result for S∞ to Sk.
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Corollary 6.33. 1. Let S be a stack space such that there is a stack abstraction
between S∞ and S. Then the following statements hold:

∀s, t ∈ N. VP(s, t) ⊆ APS(s, t)(6.23)
∀s, t,∈ N. MOVP(s, t) ≤MOAP(s, t)(6.24)

2. Let k, l ∈N∪ {∞} with l ≤ k. Then the following statements hold:

MOVP ≤MOAPSk
(6.25)

MOAPSk
≤MOAPSl

(6.26)

Proof. 1. (6.23) follows from Theorem 6.31 and Theorem 6.25. The second
statement (6.24) is an easy consequence of (6.23).

2. In Example 6.30 we have seen that (Sk,αk,l,γk,l,Sl) is a stack abstraction
if k, l ∈N∪ {∞} with l ≤ k. This means that we can apply (6.23) and (6.24)
to obtain the desired statements.

□

Together with Theorem 7.34, this entails that solutions of Constraint
System 6.5 w.r.t. Sk are VP-correct. Hence, using k-bounded stacks in
the call-strings approach is indeed correct. This is a generalization of the
corresponding result that was obtained by Sharir and Pnueli for classical
data-flow analyses on interprocedural control-flow graph [154, Theorem 7-
6.5]. For one, my assumptions about the given graph and its valid paths are
weaker (as I already explained in chapter 5). Moreover, there may be other
stack spaces than Sk that can be obtained from S∞ via a stack abstraction
and lead to an effective version of Constraint System 6.5. The theory that I
developed in this section provides a way to prove VP-correctness for all
these stack spaces.
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I have suffered for this book; now it’s your turn.
George Harrison 7

A Common Generalization of
Interprocedural

Data-Flow Analysis and Slicing

After chapter 6 introduced constraint systems for the functional and the call-
string approach to interprocedural data-flow analysis for interprocedural
graphs, this chapter is concerned with the effective solution of meaningful
portions of these constraint systems in order to compute correct and
possibly precise approximations to MOVP.
In chapter 3, I compared slicers such as Algorithm 5 and Algorithm 6
with algorithms to solve data-flow problems, such as Algorithm 3. My
conclusion was that although both algorithm groups are worklist-based,
they differ in what I coined as worklist policy. While the slicers usually
assume that worklist items just have been updated, update the values of
their successors and put them on the worklist if their value has changed,
Algorithm 3 acts on the assumption that worklist items have to be updated,
updates them using all their predecessors and then puts all successors on
the worklist. This difference becomes obvious if one considers how the two
approaches handle reachability. While slicers are reachability analyses and
naturally explore graphs iteratively using a reachability frontier, Algori-
thm 3 is geared towards situations where the goal is to compute values for
every variable and the usual assumption is that every variable is reachable.
Hence, Algorithm 3 proceeds rather clumsily if the analysis information
to be computed is reachability itself: It uses the rule “this variable is
reachable if one of its predecessors is reachable” and not – like it is natural
– “if this variable is reachable, then all its successors are reachable”. It
is possible to use Algorithm 3 for data-flow problems where reachability
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is part of the analysis result, even without modifications. However, this
necessitates modifications of the data-flow problems. Moreover, the initial
loop, which iterates through all variables cannot be eliminated – its task is
to assess that all unreachable variables are indeed unreachable because all
their predecessors are. I take a different path to integrate reachability and
data-flow analysis and modify Algorithm 3 in such a way that it is geared
towards reachability and computes the actual analysis result for reachable
variables as a side-product. Particularly, Algorithm 8, my modified version
of Algorithm 3, does not need to visit every variable at least once but only
the reachable variables.
The presentation and analysis of Algorithm 8 will be the subject of sec-
tion 7.1.
Moreover, section 7.1 considers reachability and partial solution on the
level of constraint systems. This is particularly necessary to be able to make
statements about the properties of Algorithm 8. Moreover, I investigate
under which circumstances the least solution of the restricted constraint
system coincides with the least solution of the full constraint system on
the reachable variables. This can also be seen as slicing of constraint systems.
It turns out that the modified version of Algorithm 3 is indeed capable of
computing such partial solutions.
Subsequently, I apply the theory developed in section 7.1 to the constraint
systems given in chapter 6 in order to obtain algorithms that compute
correct data-flow solutions on forward slices. Section 7.2 lays out the
setup and gives an overview of the general scheme. Then, section 7.3 and
section 7.4 consider the functional approach and the call-string approach,
respectively.

7.1 Integrating Reachability Into the Solution
Process

As was already mentioned at the very beginning of this chapter, the goal
of this section is to present Algorithm 8, a variant of Algorithm 3 that
additionally takes a set X0 of initial variables and solves only the part of
the given constraint system that is reachable from this initial set of variables.
This set cannot be chosen arbitrarily: The properties that X0 has to satisfy
in order for Algorithm 8 are one of the topics of this section. How X0 is
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chosen concretely is dependent on the context and will be discussed in
later sections of this chapter.
In the following, I consider a complete lattice L that satisfies the ascending
chain condition. The idea behind Algorithm 8 is that it starts with applying
the defining constraints of X0 and then proceeds by applying all constraints
that use variables from X0. Then it considers the variables whose values
have changed in the same way and continues this procedure until no more
value is changed. In the end, Algorithm 8 has computed a partial solution
of the given constraint system and explored the variables and constraints
that are reachable from X0 using a chain of def-use relations.
To make this idea work, I need a way to distinguish variables that have
been explored and whose solution value may be⊥L from those which have
not yet been explored and never will be34. For this purpose, I introduce a
fresh value ⊠ that represents undefinedness and extend L to L⊠. Moreover,
I also extend the interpretation so that it can also take ⊠ as input and
assume that the extended interpretation has the properties (7.1) and (7.2).
Remember from chapter 2 that FV(t) denotes the set of variables occurring
in t.

∀x ∈ L. ⊠ ≤ x(7.1)
∀x≥ t ∈ C. ∀ψ : X→ L⊠. ⟦t⟧(ψ) = ⊠(7.2)

⇐⇒ ∃x′ ∈ FV(t). ψ(x′) = ⊠.

These two properties ensure that reachable variables which are set to the
ordinary ⊥ element of L can be distinguished from those variables which
have not been reached yet or will never be reached. Particularly, the second
property ensures that reachability is maintained.
Also, the extension of L to L⊠ is always possible without destroying
important properties of L. L⊠ is still complete lattice that satisfies the
ascending chain condition.
Note that in general (7.2) restricts the possible interpretations, since (7.2)
essentially enforces that a constraint can be omitted if not all variables on
its right-hand side have defining constraints.

34Note that the unreachable variables do not actually exist in the memory of a machine
executing Algorithm 8. In practice, the reachability of a variable can be assessed by evaluating
whether Algorithm 8 already has assigned a value to this variable. Nevertheless, I need this
additional element ⊠ to reason theoretically about unreachable variables.
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However, the semantics functional ⟦·⟧ : Expr(F ⊠, X) → F⊠ that corres-
ponds to a data-flow framework instance F = (G, L, F,ρ) and that I
specified in section 6.1 satisfies both (7.1) and (7.2): (7.1) follows from
(5.12) and (5.13), while (7.2) can be shown by induction with the help of
(5.16) and (5.15).
Next, I want to give a formal definition of reachable constraints and
variables. For motivation, I give an example. Consider the constraint
system C that consists of the constraints

c1 : v1 ≥ f (v2, v3)

c2 : v2 ≥ g(v3)

c3 : v3 ≥ a
c4 : v4 ≥ h(v3, v5)

c5 : v4 ≥ b

where f , g, h, a, b are function symbols with appropriate interpretations
and the vi are variables.
If we start with v3 and follow the def-use chains in C, we see that c1, c2, c3
and c4 are the constraints from C that are reachable from v3. Moreover, the
reachable variables are v1, v2 and v3.
Also note that c4 is not really useful as it uses the variable v5, which does
not have any defining constraints in C. Hence, no solution of C needs to
assign v5 any defined value. Particularly, the least solution l f p(FC) must
map v4 to ⊠, which implies that l f p(FC)(v4) = l f p(FC\{c4})(v4). Similarly,
we can conclude that it is not really useful to start with variables that
have defining constraints with non-constant right-hand side, if one wants
to preserve the least solution for the reachable variables. For example,
if we start with v2, then we get the reachable constraints c1 and c2, but
both use v3, which is defined by neither c1 nor c2, so that l f p(FC)(v1) and
l f p(FC)(v2) both become ⊠ if we restrict C to {c1, c2}.
Given a variable set X0 ⊆ X, the following definition introduces the
sets Core(C, X0) and CoreVars(C, X0). The former captures the set of
constraints that are obtained by starting at X0 and following the def-
use chains in C, while the latter characterizes the variables defined by
constraints from Core(C, X0).
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Remember from chapter 2 that Vars(C) is the set of variables that occur
on the left-hand sides of constraints in C and that De f (x) is the set of
constraints for which x occurs on the left-hand side, respectively.

Definition 7.1 (core and core variables of a constraint system). Let C be a
constraint system and X0 ⊆ X be a set of variables.

1. Core(C, X0), the core of C with respect to X0, is defined as the least subset
C0 ⊆ C with the following closure properties:

∀x≥ t ∈ C. FV(t) = ∅ ∧ x ∈ X0 =⇒ x ≥ t ∈ C0(C-Base)
∀x≥ t ∈ C. FV(t) ≠ ∅(C-Step)
∧∀x′ ∈ FV(t). De f (x′)∩C0 ≠ ∅ =⇒ x≥ t ∈ C0

2. CoreVars(C, X0), the core variables of C, is defined as the least subset
Xc ⊆ Vars(C) that has the following closure properties:

∀x≥ t ∈ C. FV(t) = ∅ ∧ x ∈ X0 =⇒ x ∈ Xc(V-Base)
∀x≥ t ∈ C. FV(t) ≠ ∅ ∧ FV(t) ⊆ Xc =⇒ x ∈ Xc(V-Step)

The following two lemmas shed some light on the properties of Core and
CoreVars and will be of great use later.

Lemma 7.2.

Vars(Core(C, X0)) = CoreVars(C, X0)

Proof. ⊇: Show that Vars(Core(C, X0)) has the closure properties of
CoreVars(C, X0):

1. Let x≥ t ∈ C with FV(t) = ∅ and x ∈ X0. Then x≥ t ∈ Core(C, X0), i.e.
x ∈ Vars(Core(C, X0)).

2. Let x≥ t ∈ C with FV(t) ≠ ∅ and FV(t) ⊆ Vars(Core(C, X0)). Then for
every x′ ∈ FV(t), De f (x′) ∩ Core(C, X0) ≠ ∅. Hence, x≥ t ∈ Core(C, X0),
which means that x ∈ Vars(Core(C, X0)).

⊆: Define

C0
de f
= {x≥ t ∈ C | x ∈ CoreVars(C, X0)}
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Then

Vars(C0) = CoreVars(C, X0).(⋆)

This can be seen as follows:

• If x ∈ Vars(C0), then there is x≥ t ∈ C0. By definition, this means that
x ∈ CoreVars(C, X0).

• If x ∈ CoreVars(C, X0), then it can easily be seen that De f (x) ≠ ∅.
However, since x ∈ CoreVars(C, X0), it follows that De f (x) ⊆ C0, so
that x ∈ Vars(C0).

Next we show that Core(C, X0) ⊆ C0. From this, it follows that

Vars(Core(C, X0)) ⊆ Vars(C0) = CoreVars(C, X0).

To prove Core(C, X0) ⊆ C0, we show that C0 has the closure properties
(C-Base) and (C-Step).

1. If x≥ t ∈ C, FV(t) = ∅ and x ∈ X0, we have x ∈ CoreVars(C, X0) by
(V-Base), hence x≥ t ∈ C0 by definition.

2. Let x≥ t ∈ Cwith FV(t) ≠ ∅ and

∀x′ ∈ FV(t). De f (x′)∩C0 ≠ ∅.
Then

FV(t) ⊆ Vars(C0)
(⋆)
= CoreVars(C, X0).

Hence, x ∈ CoreVars(C, X0) by property (V-Step), which means that x≥ t ∈
C0 by definition of C0.

□

Lemma 7.3. Let C be a constraint system and X0 ⊆ X be a set of variables. Then
the following statements are equivalent:

x≥ t ∈ Core(C, X0)(1)
(FV(t) = ∅ ∧ x ∈ X0)∨ (FV(t) ≠ ∅ ∧ FV(t) ⊆ CoreVars(C, X0))(2)
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Proof. (1) =⇒ (2) Assume x≥ t ∈ Core(C, X0). Then either FV(t) = ∅
and x ∈ X0 or FV(t) ≠ ∅ and ∀x′ ∈ FV(t). De f (x′) ∩ Core(C, X0) ≠ ∅. In
the former case, (2) holds trivially. In the latter case, we conclude

∀x′ ∈ FV(t). x′ ∈ Vars(Core(C, X0)),

which is, due to Lemma 7.2, equivalent to

∀x′ ∈ FV(t). x ∈ CoreVars(C, X0).

(2) =⇒ (1) We prove the claim by case distinction.

1. Assume that

x ∈ X0 ∧ FV(t) = ∅.
Then x≥ t ∈ Core(C, X0) by (C-Base).

2. Assume that

FV(t) ≠ ∅ ∧ FV(t) ⊆ CoreVars(C, X0).

With the definition of Vars and Lemma 7.2, this implies

∀x′ ∈ FV(t). De f (x′)∩Core(C, X0) ≠ ∅.
Thus x≥ t ∈ Core(C, X0) by (C-Step).

□

Core(C, X) only eliminates useless constraints. Therefore, the least solution
of Core(C, X) must coincide with the least solution of C on the whole
variable set.

Lemma 7.4. Core(C, X) has the same least solution as C.

Proof. First, we show that the two least solutions must coincide on
Vars(Core(C, X)).
It is clear that l f p(FCore(C,X)) ≤ l f p(FC), since Core(C, X) ⊆ C.
Next, we observe

∀x ∈ X \Vars(Core(C, X)). l f p(FCore(C,X))(x) = ⊠.(7.3)
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The reason is that by definition, Core(C, X) has no defining constraints for
variables outside of Vars(Core(C, X)).
Finally, we show

(7.4) l f p(FC) ≤ l f p(FCore(C,X))

by fixed-point induction (cf. Corollary 2.7).
Let

P de f
= {ψ : X→ L | ψ ≤ l f p(FCore(C,X))}.

It is easy to see that const(⊠) ∈ P and that P is closed under arbitrary joins.
It remains to show that P is also closed under FC. For this, it suffices to
show

∀ψ ∈ P. ∀x≥ t ∈ C. ⟦t⟧(ψ) ≤ l f p(FCore(C,X))(x)

So let ψ ∈ P and x≥ t ∈ C. We have to show that

(7.5) ⟦t⟧(ψ) ≤ ⟦t⟧(l f p(FCore(C,X))) ≤ l f p(FCore(C,X))(x).

This follows from the two properties

⟦t⟧(ψ) ≤ ⟦t⟧(l f p(FCore(C,X)))(7.6)

and

⟦t⟧(l f p(FCore(C,X))) ≤ l f p(FCore(C,X))(x),(7.7)

which we are going to show in the following.

(7.6) By our assumption that ψ ∈ P, we have in particular

∀x′ ∈ FV(t). ψ(x′) ≤ l f p(FCore(C,X))(x
′).

From this, (7.6) can be shown using Lemma 2.10.

(7.7) We distinguish two cases:

1. x≥ t ∈ Core(C, X): Then (7.7) holds because l f p(FCore(C,X)) is a solution
of Core(C, X).
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2. x≥ t ∉ Core(C, X). Then it must be the case that

FV(t) ≠ ∅ ∧ ∃x′ ∈ FV(t). x′ ∈ X \Vars(Core(C, X)),

since otherwise the closure properties of Core(C, X) would immediately
imply x≥ t ∈ Core(C, X).

But then, due to (7.3), there must be one x′ ∈ FV(t) with

l f p(FCore(C,X))(x
′) = ⊠.

Now, (7.7) follows with (7.2) and (7.1).

□

Now I want to consider how Core behaves for X0 ≠ X.
The following lemma shows that Core(C, X0) can be obtained by first
computing Core(C, X) and then restricting the variables to X0. The first
step eliminates all constraints that do not contribute anything, while the
second step eliminates all constraints that may contribute to the solution
but depend on variables not in X0.

Lemma 7.5. ApplyingCore(_, X0) toC is the same as applying it toCore(C, X):

Core(C, X0) = Core(Core(C, X), X0).(7.8)

Proof. First, we observe that Core(C, X) is a subset of C and Core is
monotone in its first argument. This implies

Core(C, X0) ⊇ Core(Core(C, X), X0).

It remains to show “⊆”. For this, we show that Core(Core(C, X), X0) has
the properties (C-Base) and (C-Step) with respect to C and X0.

1. Let x≥ t ∈ C with FV(t) = ∅ and x ∈ X0. Then in particular x ∈ X.
Hence, by applying (C-Base) to x≥ t ∈ C and x ∈ X, we get

x≥ t ∈ Core(C, X).

Then we apply (C-Base) to x ∈ X0 and x≥ t ∈ Core(C, X) and get our
desired result

x≥ t ∈ Core(Core(C, X), X0).
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2. Let x≥ t ∈ Cwith FV(t) ≠ ∅ and

∀x′ ∈ FV(t). De f (x′)∩Core(Core(C, X), X0) ≠ ∅.
Since Core(C, X) ⊆ C and X0 ⊆ X, and due to the monotonicity of Core,
we have

Core(Core(C, X), X0) ⊆ Core(C, X),

so that we can weaken the second condition to

∀x′ ∈ FV(t). De f (x′)∩Core(C, X) ≠ ∅.
With (C-Step) for C and X, we conclude

x≥ t ∈ Core(C, X).

Another application of (C-Step), this time for Core(C, X) and X0, finally
yields

x≥ t ∈ Core(Core(C, X), X0)

□

The intuition of Core is that the least solution of Core(C, X0) coincides
with C on a relevant part of X, namely CoreVars(C, X0). But this is not
true for every choice of X0.

Example 7.6. Assume that Expr(F ,X) contains appropriate function symbols
for expressing subsets of {a, b} and set constraints over these sets. Moreover,
assume an appropriate interpretation.

1. Consider the following constraint system C:

x ⊇ y
x ⊇ {a}
y ⊇ {b}

Now consider X0 = {x}. Then we get

Core(C, X0) = {x ⊇ {a}}
CoreVars(C, X0) = {x}

l f p(FCore(C,X0)
)(x) = {a}

l f p(FC)(x) = {a, b}
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2. Consider the following constraint system C′.
y ⊇ x

x ⊇ {a}
y ⊇ {b}

Now consider X′0 = {x}. Then we get

Core(C′, X′0) = {x ⊇ {a}, y ⊇ x}
CoreVars(C′, X′0) = {x, y}

l f p(FCore(C′,X′0))(y) = {a}
l f p(FC′)(y) = {a, b}

The two examples each highlight a characteristic problem that prevents
Core(C, X0) from exhibiting the same least solution asC, if X0 is not chosen
appropriately.
In the first example, the problem is that the constraint x ⊇ y is not contained
in Core(C, X0), as it does not depend on a constant constraint that defines
x (or, more generally, a variable from X0).
In the second example, y ⊇ {b} is not included in Core(C′, X′0) because y
does not belong to X′0.
An appropriate choice of X0 hence ensures two things:

1. Every constraint in Core(C, X0) transitively depends on a constant
constraint defining some variable from X0.

2. If a variable v ∈ CoreVars(C, X0), then all constant constraints defining
v are contained in Core(C, X0).

In the following, I introduce definition-completeness as a property of con-
straint systems that ensures the coincidence of least solutions. After that, I
consider conditions on variable sets that ensure the definition-completeness
of the corresponding Core set.

Definition 7.7. C0 ⊆ C is called definition-complete if it has the property

∀x≥ t ∈ C. De f (x)∩C0 ≠ ∅ =⇒ De f (x) ⊆ C0
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Definition-completeness is indeed sufficient for the coincidence of the least
solutions on the core-variables. This is formally stated by Theorem 7.9.
Before I can prove that, I need a technical lemma that enables me to perform
the fundamental proof steps.

Lemma 7.8. If C0
de f
= Core(C, X0) is definition-complete, then

ψ ≤Vars(C0)
l f p(FC0) =⇒ FC(ψ) ≤Vars(C0)

FC(l f p(FC0))(7.9)

l f p(FC) ≤Vars(C0)
l f p(FC0)(7.10)

Proof. First, assume that (7.9). Then we can show (7.10) by fixed-point
induction (Corollary 2.7). Let

P de f
= {ψ : X→ L | ψ ≤Vars(C0)

l f p(FC0)}.
We need to show that const(⊠) ∈ P, that P is closed under arbitrary joins
and that P is closed under FC. The first two statements can easily be seen
and the third claim is proven by (7.9).
Now we prove (7.9). Assume ψ ≤Vars(C0)

l f p(FC0). We need to show that
FC(ψ) ≤Vars(C0)

FC(l f p(FC0)) and for this it is enough to show

∀x≥ t ∈ C. x ∈ Vars(C0) =⇒ ⟦t⟧(ψ) ≤ l f p(FC0)(x).

So let x≥ t ∈ Cwith x ∈ Vars(C0). SinceC0 is definition-complete, it must be
x≥ t ∈ C0. By Lemma 7.2 and Lemma 7.3, it follows that FV(t) ⊆ Vars(C0).
But according to our assumption this means that

∀x′ ∈ FV(t). ψ(x′) ≤ l f p(FC0)(x
′).

Using Lemma 2.10, this entails

⟦t⟧(ψ) ≤ ⟦t⟧(l f p(FC0)),(⋆)

and because l f p(FC0) satisfies x ≥ t we have

⟦t⟧(l f p(FC0)) ≤ l f p(FC0)(x).(⋆⋆)

From (⋆) and (⋆⋆) we get

⟦t⟧(ψ) ≤ l f p(FC0)(x),

as desired. □
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Theorem 7.9. If Core(C, X0) is definition-complete, then

l f p(FC) =CoreVars(C,X0)
l f p(FCore(C,X0)

)(7.11)

Proof. With C0
de f
= Core(C, X0), we need show

l f p(FC) ≤Vars(C0)
l f p(FC0)(7.12)

l f p(FC0) ≤Vars(C0)
l f p(FC)(7.13)

With the given assumptions, (7.12) follows directly from Lemma 7.8.
Hence, it remains to show (7.13), which can be justified as follows.
Core(C, X0) is a subset of C. Therefore, every solution of C is a
solution of Core(C, X0). Hence, l f p(FC) is a solution of Core(C, X0).
Since l f p(FCore(C,X0)

) is the least solution of Core(C, X0), this implies
l f p(FCore(C,X0)

) ≤ l f p(FC). Clearly, this also holds when restricting to
CoreVars(C, X0). □

Theorem 7.10 states conditions on X0 that characterize definition-
completeness. This is basically a formalization of the intuition given
in Example 7.6.

Theorem 7.10. Core(C, X0) is definition-complete if and only if it satisfies the
following two conditions:

∀x≥ t ∈ C. x ∈ CoreVars(C, X0)∧ FV(t) = ∅(i)
=⇒ x ∈ X0

∀x≥ t ∈ C. ∀x′ ∈ FV(t). x ∈ CoreVars(C, X0)(ii)
=⇒ x′ ∈ CoreVars(C, X0)

Proof. We show the two directions separately.

1. Assume that Core(C, X0) is definition-complete and let x≥ t ∈ C and
x ∈ CoreVars(C, X0). Then x ∈ Vars(Core(C, X0)) by Lemma 7.2, which
means that De f (x) ∩ Core(C, X0) ≠ ∅. Since Core(C, X0) is definition-
complete, this entails that x≥ t ∈ Core(C, X0).

Now we can show (i) and (ii) by considering the two cases FV(t) = ∅ and
FV(t) ≠ ∅:
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• If FV(t) = ∅, x≥ t ∈ Core(C, X0) implies x ∈ X0 by Lemma 7.3, which
shows (i).

• Assume that FV(t) ≠ ∅. Together with x≥ t ∈ Core(C, X0), we get
FV(t) ⊆ CoreVars(C, X0) by Lemma 7.3. This shows (ii).

2. Assume that (i) and (ii) hold and let x ∈ X with

De f (x)∩Core(C, X0) ≠ ∅ ∧ x≥ t ∈ De f (x).

Together with Lemma 7.2, this implies x ∈ CoreVars(C, X0).
Now we show x≥ t ∈ Core(C, X0) by case distinction on whether FV(t) = ∅
or not.
• If FV(t) = ∅, then with x ∈ CoreVars(C, X0) we get x ∈ X0 by (i). But

this means x≥ t ∈ Core(C, X0) due to (C-Base).
• If FV(t) ≠ ∅, then with x ∈ CoreVars(C, X0) we get

∀x′ ∈ FV(t). x′ ∈ CoreVars(C, X0)

by (ii). But by definition and Lemma 7.2 this is the same as

∀x′ ∈ FV(t). De f (x)∩Core(C, X0) ≠ ∅.
This implies x≥ t ∈ Core(C, X0) by (C-Step).

□

Now I am ready to present Algorithm 8, a variant of Algorithm 3 that also
uses a worklist approach to compute the solution of a given constraint
system, but at the same time also performs a reachability analysis. More
specifically, Algorithm 8 takes a set X0 of variables and, starting with X0,
traverses the constraint dependency graph from usage to definition.
In the following, I state and prove a correctness result for Algorithm 8.
This proof is a a variation of the correctness proof for the ordinary worklist
algorithm [130] that I already mentioned in chapter 2. This proof is
combined with correctness arguments for the reachability parts taken from
Takai [160]35.

35Tamai [160] also considers integrating reachability into graph problems that can be
encoded as constraint systems. They propose an algorithm whose worklist policy is the
same as the one for Algorithm 8 and their correctness proof works similarly as the proof of
Theorem 7.11. However, Tamai does not encode unreachability explicitly into the lattice.

286



7.1 Integrating Reachability Into the Solution Process

Algorithm 8: A variant of the worklist algorithm where the items
taken off the worklist have just been updated but changes have
not been propagated yet

Input: a monotone constraint system Cwith interpretation over
the variables X, a set X0 ⊆ X of initial variables

Result: a function X → L with properties as stated in The-
orem 7.11

1 A← const(⊠)
2 foreach x≥ t ∈ C s.t. x ∈ X0 ∧ FV(t) = ∅ do
3 A(x)←A(x)⊔ ⟦t⟧(A)
4 W ←W ∪ {x}
5 while W ≠ ∅ do
6 x← remove(W)
7 foreach x′ ≥ t ∈ C such that x ∈ FV(t) do
8 if ∀y ∈ FV(t). y ≠ x =⇒ A(y) ≠ ⊠ then
9 old←A(x′)

10 A(x′)←A(x′)⊔ ⟦t⟧(A)
11 ifA(x′) ≠ old then
12 W ←W ∪ {x′}

13 returnA

For abbreviation, I define

C0
de f
= Core(C, X0)

V0
de f
= Vars(C0)

Theorem 7.11. Algorithm 8 always terminates and upon termination, we have

(7.14) A(x) =

⎧⎪⎪⎨⎪⎪⎩
l f p(FC0)(x) if x ∈ V0

⊠ otherwise.

Moreover, if C0 is definition-complete with respect to Core(C, X), then

(7.15) A =V0 l f p(FCore(C,X)) = l f p(FC)
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Proof. First, assume that (7.14) has been shown and that C0 is definition-
complete with respect to Core(C, X). Then

A =V0 l f p(FC0) { (7.14) }

=V0 l f p(FCore(C,X)) { Theorem 7.9 }

= l f p(FC). { Lemma 7.4 }

It remains to show (7.14). This follows from the following three statements:

(A) Algorithm 8 terminates.

(B) Algorithm 8 maintains the invariant

{x ∈ X | A(x) ≠ ⊠} ⊆ V0

and upon termination, we have

{x ∈ X | A(x) ≠ ⊠} = V0.

(C) Algorithm 8 maintains the invariant

A ≤ l f p(FC0)

and upon termination, we have

A =V0 l f p(FC0).

For a proof of (A), see Lemma 7.12. (B) is going to be shown in Lemma 7.13
and, finally, I will prove (C) in Lemma 7.14. □

The remainder of this section consists of the three statements (A), (B), and
(C) that were left to show in the proof of Theorem 7.11.

Lemma 7.12. Algorithm 8 terminates.

Proof. It is sufficient to show that the main loop in the lines 5–13 is only

traversed finitely often. For this purpose, we define T
de f
= (X → L) × 2X.

Elements of T can be used to represent the state which is maintained by
the algorithm: The first component is the currently computed solution and
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the second component is the current worklist. Moreover, define on T the
relation

(A1, W1) ≤T (A2, W2)
de f⇐⇒ A1 >(X→L) A2 ∨ (A1 = A2 ∧W1 ⊆W2)

Then ≤T is a partial order and satisfies the descending chain condition,
since X → L satisfies the ascending chain condition and 2X is finite. Let
(A, W) ∈ T be the state of the algorithm at any time.
Now consider an iteration of the main loop. Let (Aold, Wold) and
(Anew, Wnew) be the state at the beginning and end of this itera-
tion, respectively. Now two cases are possible and we show that
(Anew, Wnew) <T (Aold, Wold) must hold in either case.
First, assume that Aold has not been changed in the iteration. Then we
haveAnew = Aold and the iteration has removed exactly one element of
Wold and did not add any elements to it, i.e. Wnew ⊊ Wold, which means
that

(Anew, Wnew) <T (Aold, Wold)

in this case.
Now assume thatAold has indeed been touched. Then this can only have
happened by executing line 10, which changesAold upwards. Hence, we
haveAold(x) < Anew(x) for some x ∈ X. This entails

(Anew, Wnew) <T (Aold, Wold),

as desired.
Now we have seen that (A, W) becomes strictly smaller in each iteration
of the main loop. Hence, since the partial order (T,≤T) satisfies the
descending chain condition, the main loop can only be traversed finitely
often, as desired. □

Lemma 7.13. 1. Algorithm 8 maintains the invariant

{x ∈ X | A(x) ≠ ⊠} ⊆ V0.

2. Upon termination, we have

{x ∈ X | A(x) ≠ ⊠} = CoreVars(C, X0).
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Proof. 1. For ψ : X→ L define

dom(ψ)
de f
= {x ∈ X | ψ(x) ≠ ⊠}.

Then we have to show that

dom(A) ⊆ V0(Inv)

holds after the execution of each statement in Algorithm 8. We only need
to consider executions of line 3 or 10, since all the other statements leave
A unchanged and therefore maintain (Inv) trivially.

So consider any execution of line 3 or 10 for a given constraint x ≥ t. Let
Aold be the value ofA before this execution,Anew be the value ofA after
this execution.

Assume that (Inv) holds forAold.

If the considered execution does not changeA, (Inv) is maintained trivially.
So assume that the considered execution indeed changesA. In this case
we have

dom(Anew) = dom(Aold)∪ {x},

i.e. we must show that x ∈ V0.

For an execution of line 3, this is indeed the case: This follows by (V-Base),
because line 3 is executed only if x ∈ X0 and FV(t) = ∅.
Next consider any execution of line 10. Then it must be the case that FV(t)
is not empty. Moreover, since the considered execution of line 10 changes
A, it cannot be the case thatAold(x) = ⊠. Otherwise, ⟦t⟧(Aold) would be
⊠ in the case that x ∈ FV(t), because of (7.2). Together with line 8, this
ensures that FV(t) ⊆ dom(Aold). By (Inv), this means that

∀y ∈ FV(t). y ∈ V0.

By Lemma 7.3, this entails x ≥ t ∈ C0, or, equivalently, x ∈ V0.

2. By induction on x ∈ V0, we show that for every x ∈ V0,A(x) is written
to at some point in Algorithm 8.
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(V-Base) The initial loop applies every constraint x ≥ t with x ∈ X0 and no
variables on the right-hand side. SinceA is only changed upwards, and
because of (7.2), this guarantees that upon termination, we haveA(x) ≠ ⊠
for every x ∈ X0 for which there is a constraint x ≥ t with FV(t) = ∅.
(V-Step) Consider a constraint x ≥ t such that

∅ ≠ FV(t) ⊆ V0.

By induction hypothesis, we may assume that for all y ∈ FV(t), A(y) is
written to for the first time at some point in Algorithm 8. Since FV(t) ≠ ∅,
we may further assume that there is an iteration in which this happens
for the last y0 ∈ FV(t). Particularly, at the beginning of this iteration,
A(y) ≠ ⊠ for all y ∈ FV(t) \ {y0} and A(y0) = ⊠ and at the end of this
iteration A(y) ≠ ⊠ for all y ∈ FV(t). This means that A(y0) is changed
in this iteration and since y0 ∈ FV(t), x is added to W. Hence, at the
end of the iteration, x ∈ W. Since Algorithm 8 terminates (Lemma 7.12),
x is eventually considered in some later iteration. We may assume that
A(x) = ⊠ at the beginning of this iteration, since otherwise our claim
follows trivially. Furthermore, we notice that

∀y ∈ FV(t).A(y) ≠ ⊠

is maintained until Algorithm 8 terminates. So, this property holds
particularly in the iteration in which x is removed from the worklist.
During this iteration, x ≥ t is eventually considered. Again, we assume
thatA(x) = ⊠ until x ≥ t is considered, since otherwise there is nothing to
show. Now, when x ≥ t is eventually processed, the check in line 8 passes
andA(x) is written to for the first time.

□

Lemma 7.14. 1. Algorithm 8 maintains the invariant

A ≤ l f p(FC0).

2. Upon termination, we have

A =V0 l f p(FC0).

Proof. We show the two statements separately.
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1. We have to show that

A ≤ l f p(FC0)(Inv)

is maintained by every execution of each statement in Algorithm 8. We only
need to consider executions of line 3 or 10, since all the other statements
leaveA unchanged and therefore maintain (Inv) trivially.

So consider any execution of 3 or 10. Let x ≥ t be the constraint that
is applied. First, we notice that line 3 is only executed if x ∈ X0 and t
contains no variables. Hence, x≥ t ∈ C0. Secondly, we see that line 10 is
only executed if

∀y ∈ FV(t).A(y) ≠ ⊠,

and this implies, according to the invariant in Lemma 7.13, that FV(t) ⊆ V0.
Hence, in both lines 3 and 10 we have x≥ t ∈ C0 and therefore

l f p(FC0)(x) ≥ ⟦t⟧(l f p(FC0)).(⋆)

LetAold be the value ofA before the execution andAnew be the value of
A after the execution of line 3 or 10. Then we have

Anew(x) = Aold(x)⊔ ⟦t⟧(Aold).(⋆⋆)

Now assume that (Inv) holds forAold. To show (Inv) forAnew, we only
need to considerAnew(x) since the rest is left unchanged.

Then, we can argue as follows:

Anew(x)
= Aold(x)⊔ ⟦t⟧(Aold) { (⋆⋆) }
≤ l f p(FC0)(x)⊔ ⟦t⟧(l f p(FC0)) { (Inv), Lemma 2.10 }

= l f p(FC0)(x) { (⋆) }

2. We show that the main loop of Algorithm 8 maintains the invariant

∀x≥ t ∈ C. x ∈ dom(A)(Inv)
∧ FV(t) ⊆ dom(A)

∧ FV(t)∩W = ∅
=⇒A(x) ≥ ⟦t⟧(A).
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This is sufficient: Upon termination, W is empty. Hence, the following
property holds:

∀x≥ t ∈ C. x ∈ dom(A)∧ FV(t) ⊆ dom(A) =⇒ A(x) ≥ ⟦t⟧(A).

Using Lemma 7.13, this is equivalent to

∀x ∈ V0. ∀x≥ t ∈ C. FV(t) ⊆ V0 =⇒ A(x) ≥ ⟦t⟧(A).(7.16)

Now consider any constraint x≥ t ∈ Core(C, X0). If x ∈ X0 and FV(t) = ∅,
then (7.16) trivially implies thatA satisfies x ≥ t. Next, consider the case
that FV(t) ≠ ∅ and

∀y ∈ FV(t). De f (y)∩C0 ≠ ∅.
ByLemma 7.3 and Lemma 7.2, it follows that FV(t) ⊆ V0. Again, by
application of (7.16) we see that x ≥ t is satisfied byA.

It remains to show that (Inv) holds at the beginning of the main loop and
is maintained by each of its iterations.

(Inv) holds just before the first iteration of the main loop: In the ini-
tialization loop, A was only updated for x ∈ X0 and only for those
constraints x ≥ t where FV(t) = ∅. Hence, if x≥ t ∈ Cwith FV(t)∩W = ∅
andA(x) ≠ ⊠ and ∀y ∈ FV(t).A(y) ≠ ⊠, it must be the case that x ∈ X0
and FV(t) = ∅. Due to the initialization,A(x) ≥ ⟦t⟧(A) holds since this
was ensured by the assignment in line 3 and could not be invalidated by
any other execution of this line.

(Inv) is maintained by any iteration: Let i be some iteration of the main
loop. LetAold and Wold be the values ofA and W at the beginning of this
iteration and Anew and Wnew the respective values at the end. Assume
that (Inv) holds at the beginning of i:

∀x≥ t ∈ C. x ∈ dom(Aold)(Invpre)

∧ FV(t) ⊆ dom(Aold)

∧ FV(t)∩Wold = ∅
=⇒ Aold(x) ≥ ⟦t⟧(Aold).

Now consider a constraint x≥ t ∈ CwithAnew(x) ≠ ⊠ and FV(t)∩Wnew =
∅ and FV(t) ⊆ dom(Anew). We have to showAnew(x) ≥ ⟦t⟧(Anew).
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First, we make two important observations: Firstly, it must be the case that

(7.17) Anew ≥ Aold.

Secondly, from FV(t)∩Wnew = ∅, we can conclude

(7.18) ∀y ∈ FV(t).Anew(y) = Aold(y).

Now we make a case distinction:

a) Aold(x) ≥ ⟦t⟧(Aold). Then we can show our claim as follows:

Anew(x)
≥ Aold(x) { (7.17) }
≥ ⟦t⟧(Aold) { assumption }
= ⟦t⟧(Anew) { (7.18), Lemma 2.10 }

b) Aold(x) ̸≥ ⟦t⟧(Aold). Then because of (Invpre), one of the following
statements must be true:

∃y ∈ FV(t).Aold(y) = ⊠(7.19)
Aold = ⊠(7.20)

FV(t)∩Wold ≠ ∅(7.21)

We consider each of these cases separately.

• For (7.19), we argue as follows:

⟦t⟧(Anew)

= ⟦t⟧(Aold) { (7.18) }
= ⊠ { (7.2) }
≤ Anew(x) { (7.1) }

• If (7.20) holds, then line 10 must have been executed for x ≥ t. After-
wards,A(x) could only have changed upwards, so we can conclude:

Anew(x)
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≥ Aold(x)⊔ ⟦t⟧(Aold) { see above }
≥ ⟦t⟧(Aold) { properties of ⊔ }
= ⟦t⟧(Anew) { (7.18), Lemma 2.10 }

• If (7.21) is true, then a variable x′′ was removed from W and every
x′ ≥ t′ with x′′ ∈ FV(t′) was considered and A(x′) was updated if
needed. Since x′′ ∈ Wold and FV(t) ∩Wold ≠ ∅ and FV(t) ∩Wnew = ∅
and x′′ was the only element which was removed from W, it must be
x′′ ∈ FV(t). Hence, line 10 was particularly executed for x ≥ t. Now
we can argue just as in case (7.20).

□

7.2 Integration of Interprocedural Slicing and
Interprocedural Data-Flow Analysis

This section gives an outline of sections 7.3 and 7.4, in which I am going to
apply the results from section 7.1 to the constraint systems that I showed
and discussed in chapter 6.
Section 7.3 is dedicated to the functional approach, while section 7.4
considers the call-string approach.
For my purposes, I fix a data-flow framework F = (G, L, F,ρ). Moreover,
I fix a set Src ⊆ N of source nodes.
The goal of the following sections is to derive algorithms that compute a
VP-correct solution on the forward slice of Src. I do this by instantiating
Algorithm 8 for solving relevant parts of the constraint systems that we
saw in chapter 6.
To be able to handle unreachability, I adjoin F with an element ⊠ and
extend F and ⟦.⟧ like outlined in section 5.3 and section 6.1, respectively.
In particular, this is compatible with (7.1) and (7.2), so that I can actually
apply the results from section 7.1 to the constraint systems chapter 6.
Next, I want to describe a recurring theme of the following sections. For
simplicity, I exclude the call-string approach for the moment. I will handle
its specifics in section 7.4.
Consider a constraint systemCP corresponding to a set of pathsP ⊆ PathsG.
Then I want to use an instantiation of Algorithm 8 to compute a solution
AP along the paths from P such that
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∀(s, t) ∈ V(P)
0 .AP(s, t) = l f p(CP)(s, t),

where

V(P)
0

de f
= {(s, t) ∈ N ×N | PathsG(s, t)∩P ≠ ∅}.

According to Theorem 7.11, Algorithm 8 computes such anAP forV(P)
0 =

CoreVars(CP, X0), where X0 ⊆ X is chosen appropriately andCore(CP, X0)
is definition-complete in Core(CP, X). Hence, the general steps of the
following sections will be

1. specify X0,

2. instantiate Theorem 7.11,

3. show that

CoreVars(CP, X0) = {(s, t) ∈ N ×N | PathsG(s, t)∩P ≠ ∅}
and, finally,

4. show that Core(CP, X0) is definition-complete in Core(CP, X).

7.3 Functional Approach

I want to remind the reader of Constraint System 6.4, which was defined
as follows:

(valid-sol)
XASC(s, n) ≠ ⊠ XDESC(n, t) ≠ ⊠

XVP(s, t) ≥ XDESC(n, t) ◦XASC(s, n)
Given XASC and XDESC, a valid-paths solution XVP could be obtained by
evaluating the equation

(7.22) XVP(s, t) =
⨆︂

n∈N
XDESC(n, t) ◦XASC(s, n).

One direct and naive strategy would be to first compute both XASC and
XDESC on the whole set N ×N and then use these functions to evaluate
(7.22). However, such an approach would perform a lot of unnecessary
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work: In fact, one only needs to compute XDESC(n, t) ◦XASC(s, n) for those
s, n, t ∈ N for which s ∈ Src, XASC(s, n) ≠ ⊠ and XDESC(n, t) ≠ ⊠.
We can reduce the amount of unnecessary work by first computing XASC
on dom(ASC) and then use XASC to compute an integral part of XVP.
Roughly, the idea is to compute a solution XNASC such that XVP can be
written as XASC ⊔XNASC. For this, I need to introduce another set of paths,
the non-ascending paths.

Definition 7.15. π ∈ PathsG(s, t) is called non-ascending if π can be written
as π1 ·π2 such that

π1 ∈ ASC(s, n)(i)
π2 ∈ DESC(n, t)(ii)

n ∈ Ncall(iii)
π1 ·π2 ∉ ASC(s, t)(iv)

I denote the set of non-ascending paths from s to t with NASC(s, t).

Definition 7.15 is motivated by the fact that any valid path is either
ascending or non-ascending. This is formalized by Lemma 7.16 and
Remark 7.17.

Lemma 7.16. If π ∈ VP(s, t), then either of the following is true:

1. π ∈ ASC(s, t)

2. There are c ∈ Ncall, π1 ∈ ASC(s, c) and π2 ∈ DESC(c, t) such that π = π1 ·
π2

Proof. Let π ∈ VP(s, t) \ASC(s, t). By Theorem 5.22 there is i ∈ range(π)
such that π<i ∈ Le f t(E), π≥i ∈ Right(E) and πi ∈ Ecall. Define

c
de f
= src(πi),

π1
de f
= π<i, and

π2
de f
= π≥i.

Then c ∈ Ncall, since πi is an outgoing call edge of πi. Moreover, because
π ∈ PathsG(s, t), we have π1 ∈ PathsG(s, c) and π2 ∈ PathsG(c, t). Lastly, by
Theorem 5.39, we have π1 ∈ Val(E) and π2 ∈ Val(E). In summary, π1, π2
and c have the desired properties. □
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Remark 7.17. π ∈ NASC(s, t) if and only if π ∈ VP(s, t) \ASC(s, t).

Proof. “⇐= ” is covered by Lemma 7.16.
So let π ∈ NASC(s, t). Then π ∈ VP(s, t) by Theorem 5.30 and since
π ∈ PathsG(s, t). Furthermore, π ∉ ASC(s, t) by Definition 7.15. □

Lemma 7.16 can be applied as follows: Since any valid path is either
ascending or non-ascending, we can obtain a valid-paths solution by
joining an ascending-paths solution with a solution XNASC that merges
over all non-ascending paths.
The rest of this section is dedicated to computing a valid-paths-solution
using the approach that I just sketched. First, subsection 7.3.1 considers the
computation of the least same-level solutionA(SL). Then, subsection 7.3.2
shows how to use a same-level solution such asA(SL) to compute the least
ascending-paths solutionA(ASC). After that, subsection 7.3.3 is dedicated
to the extension of a given ascending-paths solution like A(ASC) along
the descending paths to obtain the least non-ascending-paths-solution:
First, a constraint system is given that characterizes non-ascending-paths
solutions and then the usual scheme is used to compute the least non-
ascending-paths solutionA(NASC).
The last three subsections consider the combination of A(ASC) and
A(NASC). Subsection 7.3.4 shows that joiningA(ASC) andA(NASC) actually
yields a valid-paths-correct solution, provided thatA(ASC) andA(NASC)

are correct relative to their respective path sets. Moreover, it compares
the solution obtained by this approach with the original least valid-paths
solution. After that, subsection 7.3.5 integrates all the sections before in a
simple algorithm and shows its correctness. This algorithm uses the same
ideas as the two-phase slicer by Horwitz et al. that I already discussed
in chapter 3, however there are still some differences. Subsection 7.3.6
explores these differences, modifies the algorithm from subsection 7.3.5 in
such a way that it essentially becomes the two-phase slicer and sketches a
correctness proof.

7.3.1 Computing the Same-Level Solution

In the following, I consider the constraint system from Constraint Sys-
tem 6.1, which I denote with C(SL).
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I define

X(SL)
0

de f
= {(s, s) | s ∈ Nentry}(7.23)

C(SL)
0

de f
= Core(C(SL), X(SL)

0 )(7.24)

V(SL)
0

de f
= CoreVars(C(SL), X(SL)

0 )(7.25)

Algorithm 9 is an instantiation of Algorithm 8 for the constraint system

C(SL), using X(SL)
0 as set of initial variables.

The loop in lines 2–4 corresponds to the initialization loop in Algorithm 8. It
processes all constant constraints in Constraint System 6.1 whose left-hand

side is in X(SL)
0 .

The loop in lines 5–18 corresponds to the main loop Algorithm 8. All
constraints x ≥ u with (s, t) ∈ FV(u) are enumerated and the respective
A(SL)(x) is updated, just like in Algorithm 8. However, the constraint
enumeration loop in Algorithm 9 is split into three parts.
The first of these parts, in lines 7–9, enumerates all constraints of the form
sl-sol-(ii).
The other two parts are dedicated to constraint sl-sol-(iii). This is because
Algorithm 9 propagates from the right-hand side of a constraint to its
left-hand side. In contrast to sl-sol-(ii), there are two free variables on the
right-hand side of sl-sol-(iii)-constraints, so that (s, t) can occur at two
positions. To illustrate this, let us take a look at such a constraint. It has
the form

XSL(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n)

with n
ecall→ n0, n1

eret→ t and (ecall, eret) ∈ Φ.
Hence, each of the two variables on the right-hand side of a rule have to
be considered separately.
The loop in lines 10–13 takes care of the case that the variable currently
processed is (s, n) in the above situation, whereas the loop in lines 15–18
takes care of the other case: Here, the variable currently processed is
(n0, n1) in the above situation.
In summary, the two loops enumerate all constraints c of the form
sl-sol-(iii) with (s, t) ∈ FV(rhs(c)).

299



7 A Common Generalization of Interprocedural Data-Flow Analysis and Slicing

Algorithm 9: Algorithm for computing the least same-level
solution

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295

Result: least same-level solution for F , as stated in Theorem 7.18
1 A(SL) ← const(⊠)
2 foreach s ∈ Nentry do
3 A(SL)(s, s)← id
4 W = W ∪ {(s, s)}
5 while W ≠ ∅ do
6 (s, t)← remove(W)

7 foreach t′ ∈ N s.t. t e→ t′ ∧ e ∈ Eintra do
8 A(SL)(s, t′)←A(SL)(s, t′)⊔ fe ◦A(SL)(s, t)
9 W ←W ∪ {(s, t′)} ifA(SL)(s, t′) has changed

10 foreach (ec, er)∈Φ s.t. t
ec→ n0 ∧ n1

er→ t′ ∧A(SL)(n0, n1) ≠ ⊠ do
11 slSol← fer ◦A(SL)(n0, n1) ◦ fec

12 A(SL)(s, t′)←A(SL)(s, t′)⊔ s ◦A(SL)(s, t)
13 W ←W ∪ {(s, t′)} ifA(SL)(s, t′) has changed

14 foreach (ec, er)∈Φ s.t. a
ec→ s∧ t

er→ b do
15 foreach u ∈ Nentry s.t. A(SL)(u, a)≠⊠ do
16 slSol← fer ◦A(SL)(s, t) ◦ fec

17 A(SL)(u, b)←A(SL)(u, b)⊔ slSol ◦A(SL)(u, a)
18 W ←W ∪ {(u, b)} ifA(SL)(u, b) has changed

19 returnA(SL)

Now that the reader is convinced that Algorithm 9 is an instantiation of
Algorithm 8, I want to instantiate the correctness result of Algorithm 8 for
Algorithm 9.

For the moment, I assume that C(SL)
0 is definition-complete with respect

to C(SL). Then I can use Theorem 7.11 to prove the following correctness
result.
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Theorem 7.18. The following statements hold:

1. Algorithm 9 always terminates and upon termination, we have

A(SL)(s, t) =

⎧⎪⎪⎨⎪⎪⎩
l f p(FC(SL))(s, t) if (s, t) ∈ V(SL)

0
⊠ otherwise

(7.26)

2. Upon termination,A(SL) is always (SL,V(SL)
0 )-correct.

3. If F is u.d., thenA(SL) is (SL,V(SL)
0 )-precise.

Two things are left to do. Firstly, we have to characterize V(SL)
0 appro-

priately and secondly, we have to show that C(SL)
0 is indeed definition-

complete with respect to C(SL).

We start with the characterization ofV(SL)
0 . Ideally, considering the fact that

C(SL) is defined along the same-level paths of G, same-level reachability

should be the right property to characterize C(SL)
0 . Moreover, taking X(SL)

0

into account, we can only expect (s, t) ∈ V(SL)
0 if s ∈ Nentry.

Lemma 7.19 formally confirms thatV(SL)
0 indeed has the desired charac-

terization.

Lemma 7.19. V(SL)
0 and CoreVars(C, N ×N) can be characterized as follows:

V(SL)
0 = {(s, t) ∈ N ×N | SL(s, t) ≠ ∅} ∩Nentry ×N(7.27)

CoreVars(C, N ×N) = {(s, t) ∈ N ×N | SL(s, t) ≠ ∅}(7.28)

In particular,V(SL)
0 can be obtained from CoreVars(C, N ×N) by restricting the

first components to Nentry:

V(SL)
0 = CoreVars(C, N ×N)∩Nentry ×N(7.29)

Proof. The claim (7.29) follows directly from (7.27).
It remains to show (7.27) and (7.28). We only show (7.27), since the proof
for (7.28) is very similar.
We prove (7.27) by showing the two subset relations separately.
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1. In order to prove “⊇”, we show

∀π ∈ SL.∀(s, t) ∈ Nentry ×N. π ∈ SL(s, t)

=⇒ (s, t) ∈ V(SL)
0

by induction on π ∈ SL. So let π ∈ SL and (s, t) ∈ Nentry ×N such that
π ∈ SL(s, t).

a) Suppose that π = ϵ. Then we have s = t and s ∈ Nentry, so that

(s, t) = (s, s) ∈ X(SL)
0 . By sl-sol-(i), C(SL) contains the constraint

X(s, s) ≥ id,

which does not have variables on the right-hand side. Hence, (s, s) ∈
CoreVars(C(SL), X(SL)

0 ) by (V-Base).

b) Assume that π = π′ · e, where e ∈ Eintra, t′ e→ t and π′ ∈ SL(s, t′). Since
π′ ∈ SL(s, t′), we can apply the induction hypothesis to π′: s ∈ Nentry
implies that

(s, t′) ∈ V(SL)
0 .

By sl-sol-(ii), C(SL) contains the constraint

X(s, t) ≥ fe ◦X(s, t′).

Since (s, t′) ∈ V(SL)
0 we may apply (V-Step) and conclude

(s, t) ∈ V(SL)
0 .

c) Suppose that
π = π′ · ecall ·π′′ · eret

with π′ ∈ SL(s, n), π′′ ∈ SL(n0, n1), n
ecall→ n0, n1

eret→ t and (ecall, eret) ∈ Φ.
We apply the induction hypothesis to π′ ∈ SL(s, n) and conclude from
s ∈ Nentry that

(7.30) (s, n) ∈ V(SL)
0 .
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Moreover, note that n0 has an incoming call edge. Hence, we have
n0 ∈ Nentry. With π′′ ∈ SL(n0, n1) we can apply the induction hypothesis
to π′′ and obtain

(7.31) (n0, n1) ∈ CoreVars(C(SL), X(SL)
0 ).

Moreover, by sl-sol-(iii), C(SL) contains the constraint

X(s, t) ≥ feret ◦X(n0, n1) ◦ fecall ◦X(s, n).

With (V-Step), we conclude (s, t) ∈ V(SL)
0 from (7.30) and (7.31).

2. For “⊆”, we show

(s, t) ∈ V(SL)
0 =⇒ SL(s, t) ≠ ∅ ∧ s ∈ Nentry

by induction overV(SL)
0 = CoreVars(C(SL), X(SL)

0 ).

Let (s, t) ∈ V(SL)
0 . Let c ∈ C(SL)

0 with lhs(c) = (s, t). Our induction
hypothesis states

∀(x, y) ∈ FV(rhs(c)). SL(x, y) ≠ ∅ ∧ s ∈ Nentry

a) Suppose that FV(rhs(c)) = ∅. Then c must be of the form

XSL(s, s) ≥ id

Clearly, SL(s, s) ≠ ∅, since ϵ ∈ SL(s, s).

b) Suppose that FV(rhs(c)) ≠ ∅. Then c is either of the form sl-sol-(ii) or
sl-sol-(iii). We only consider sl-sol-(iii), since sl-sol-(ii) is similar.

So assume that c has the form

XSL(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n)

such that n
ecall→ n0, n1

eret→ t and (ecall, eret) ∈ Φ. From c ∈ C(SL)
0 , we conclude

(s, n) ∈ V(SL)
0 and (n0, n1) ∈ V(SL)

0 . Hence, we can apply the induction
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hypothesis to (s, n) and (n0, n1) and yield s ∈ Nentry, π′ ∈ SL(s, n) and
π′′ ∈ SL(n0, n1). These two paths can be used to obtain

π
de f
= π′ · ecall ·π′′ · eret ∈ SL(s, t),

as desired.

□

In order to complete the proof of Theorem 7.18, we show the definition-

completeness of C(SL)
0 with respect to Core(C(SL), N ×N).

Lemma 7.20. C(SL)
0 is definition-complete with respect to its superset

Core(C(SL), N ×N).

Proof. We use Theorem 7.10. Let c ∈ Core(C(SL), N ×N) with lhs(c) ∈
V(SL)

0 . Then we have to show

FV(rhs(c)) = ∅ =⇒ lhs(c) ∈ X(SL)
0(7.32)

FV(rhs(c)) ≠ ∅ ∧ x ∈ FV(rhs(c)) =⇒ x ∈ CoreVars(C(SL), X(SL)
0 )(7.33)

• For (7.32), assume that FV(rhs(c)) = ∅. Then c is of the form

XSL(s, s) ≥ id

From lhs(c) = (s, s) ∈ V(SL)
0 we get s ∈ Nentry by (7.27). Hence,

(s, s) ∈ X(SL)
0 .

• For (7.33), assume that FV(rhs(c)) ≠ ∅. Then there are two possible
shapes of c.

1. Let c be of the form sl-sol-(iii), i.e.

XSL(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XSL(s, n)

with n
ecall→ n0, n1

eret→ t and (ecall, eret) ∈ Φ.
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From lhs(c) = (s, t) ∈ V(SL)
0 , we conclude s ∈ Nentry by (7.27). Since

c ∈ C(SL)
0 , we have

XSL(s, n) ∈ CoreVars(C(SL), N ×N), and(⋆)

XSL(n0, n1) ∈ CoreVars(C(SL), N ×N).(⋆⋆)

We apply (7.29) and conclude from s ∈ Nentry, (⋆) and (⋆⋆) that

XSL(s, n) ∈ CoreVars(C(SL), X(SL)
0 ). Moreover, note that n0 ∈ Nentry,

since it has an incoming call edge. Hence, XSL(n0, n1) ∈ V(SL)
0 by

(7.29).

With (C-Step), it follows from (⋆) and (⋆⋆) that c ∈ C(SL)
0 , and, with

(V-Step), (s, t) ∈ V(SL)
0 . This concludes the proof of (7.33) for c.

2. The argument for the form sl-sol-(ii) is very similar.

□

7.3.2 Computing the Ascending Solution

In the following, I consider the constraint system from Constraint Sys-
tem 6.2, which I denote with C(ASC).
I define

X(ASC)
0

de f
= {(s, s) | s ∈ Src}(7.34)

C(ASC)
0

de f
= Core(C(ASC), X(ASC)

0 )(7.35)

V(ASC)
0

de f
= CoreVars(C(ASC), X(ASC)

0 )(7.36)

Algorithm 10 is a straight-forward instantiation of Algorithm 8 to solve
Constraint System 6.2 with respect to a function

XSL : N ×N→ F⊠.

This function could have been computed by Algorithm 9, but can also
have been obtained in any other way.
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Theorem 7.21 gives a correctness result for Algorithm 10. Similar to
Theorem 7.18, the first item in Theorem 7.21 directly follows from the

generic result Theorem 7.11, once I have shown that C(ASC)
0 is definition-

complete with respect to C(ASC). However, this first item only is concerned
with the relation between the result of Theorem 7.18 and the least solution
of C(ASC). In order to get full correctness and precision results, I need
additional requirements for XSL, relative to a set Ψ ⊆ N ×N.
In principle, there are multiple choices for Ψ. I just need to ensure that (a) Ψ
is large enough so that C(ASC) and Algorithm 10 never access XSL outside
of Ψ and that (b) the output of Algorithm 9 is indeed (SL, Ψ)-correct. The
following choice of Ψ has both properties:

(n0, n1) ∈ Ψ
de f⇔ (n0, n1) ∈ Nentry ×Nexit(7.37)

∧∃n, t ∈ N. ∃(ecall, eret) ∈ Φ. n
ecall→ n0 ∧ n1

eret→ t.

Property (a) can be seen by inspection of C(ASC) and Algorithm 10.
Moreover, Ψ also has property (b). (SL, Ψ)-correctness of A(SL) follows

from the (SL,V(SL)
0 )-correctness ofA(SL) and the fact that Ψ ⊆ Nentry ×N,

which entails

Ψ ∩ {(s, t) | SL(s, t) ≠ ∅} ⊆ Nentry ×N ∩ {(s, t) | SL(s, t) ≠ ∅} (7.27)
= V(SL)

0 .

Thus, if (s, t) ∈ Ψ with π ∈ SL(s, t), then (s, t) ∈ V(SL)
0 and hence, by

Theorem 7.18, fπ ≤ A(SL)(s, t).

A similar argument shows that (SL,V(SL)
0 )-precision of A(SL) implies

(SL, Ψ)-precision ofA(SL) for universally distributive frameworks.

Using an appropriate choice of Ψ and assuming that C(ASC)
0 is definition-

complete with respect to C(ASC), I can state the correctness property of
Theorem 7.21.

Theorem 7.21. Let XSL : N ×N → F⊠ be a function and let C(ASC) the set of
constraints in Constraint System 6.2 with respect to XSL. Consider XSL as input
for Algorithm 10.
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1. Algorithm 10 terminates and upon termination, we have

A(s, t) =

⎧⎪⎪⎨⎪⎪⎩
l f p(FC(ASC))(s, t) if (s, t) ∈ V(ASC)

0
⊠ otherwise

(7.38)

2. If XSL is (SL, Ψ)-correct, thenA is (ASC,V(ASC)
0 )-correct.

3. If XSL is (SL, Ψ)-precise and F is universally distributive, then A is

(ASC,V(ASC)
0 )-precise.

In the following, I am going to prove Theorem 7.21. Firstly, I assume that
item 1 is proven and consider items 2 and 3. In order to prove item 2, I
need to generalize Theorem 6.7: Remember that Theorem 6.7 states that
l f p(FC(ASC)) is ASC-correct if XSL is SL-correct. But an inspection of its
proof shows that actually (SL, Ψ)-correctness of XSL is sufficient for the
ASC-correctness of l f p(FC(ASC)). Hence, the proof of Theorem 6.7 actually
shows the following statement:

If XSL is (SL, Ψ)-correct, then l f p(FC(ASC)) is (ASC,V(ASC)
0 )-correct.

With (7.38), this shows item 2. With a similar argument, item 3 can be
shown.
Two things are left to be done. In order to complete the proof of The-

orem 7.21, I need to show that C(ASC)
0 is definition-complete with respect

to C(ASC). Moreover, I need to characterize V(ASC)
0 appropriately, to be

sure that Theorem 7.21 indeed proves Algorithm 10 correct.
Lemma 7.22 gives a characterization of CoreVars(C(ASC), N × N) and

V(ASC)
0 . Analogously to Lemma 7.19, it provides a strong connection to

ASC-reachability. Since C(ASC) is defined with respect to XSL, Lemma 7.22
has to make additional assumptions about XSL. However, for Lemma 7.22
to be valid, full SL-correctness or SL-precision of XSL is not neccessary. It
suffices to require that XSL ≠ ⊠ for the right points.

Lemma 7.22. Define dom(ASC)
de f
= {(s, t) ∈ N ×N | ASC(s, t) ≠ ∅}. Then the

following statements are true:

1. If XSL is (SL, Ψ)-domain-correct, then we have

dom(ASC)∩ Src×N ⊆ V(ASC)
0(7.39)
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Algorithm 10: Given a function XSL : N ×N → F⊠, computes the
least ascending solution with respect to XSL

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, a function XSL : N ×N→ F⊠

Result: the least ascending solution with respect to XSL, as stated
in Theorem 7.21

1 A← const(⊠)
2 foreach s ∈ Src do
3 A(s, s)← id
4 W ←W ∪ {(s, s)}
5 while W ≠ ∅ do
6 (s, t′)← remove(W)

7 foreach e ∈ Eintra ∪ Eret such that t′ e→ t do
8 A(s, t)←A(s, t)⊔ fe ◦A(s, t′)
9 W ←W ∪ {(s, t)} ifA(s, t) has changed

10 foreach (ecall, eret) ∈ Φ such that t′
ecall→ n0 ∧ n1

eret→ t ∧
XSL(n0, n1) ≠ ⊠ do

11 sameLevelIn f o← feret ◦XSL(n0, n1) ◦ fecall
12 A(s, t)←A(s, t)⊔ sameLevelIn f o ◦A(s, t′)
13 W ←W ∪ {(s, t′)} ifA(s, t) has changed

14 returnA

dom(ASC) ⊆ CoreVars(C(ASC), N ×N)(7.40)

2. If XSL is (SL, Ψ)-domain-precise, then we have

V(ASC)
0 ⊆ dom(ASC)∩ Src×N(7.41)

CoreVars(C(ASC), N ×N) ⊆ dom(ASC)(7.42)

3. V(ASC)
0 and CoreVars(C(ASC), N ×N) have the following connection:

V(ASC)
0 = CoreVars(C(ASC), N ×N)∩ Src×N.(7.43)

Proof. Regarding the first two items, we only show (7.39) and (7.41), since
(7.40) and (7.42) can be proven using very similar arguments.
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1. Assume that XSL is (SL, Ψ)-domain-correct. Then (7.39) is implied by
the statement

∀π ∈ ASC. ∀(s, t) ∈ Src×N. π ∈ ASC(s, t) =⇒ (s, t) ∈ V(ASC)
0 .(7.44)

We prove this statement by induction on π ∈ ASC. The proof is largely
similar to the corresponding part of the proof of Lemma 7.19. We only
highlight the parts where the assumptions about XSL are used. Hence,

we only consider the case that π = π′ · ecall · π′′ · eret with n
ecall→ n0,

n1
eret→ t, π′ ∈ ASC(s, n), π′′ ∈ SL(n0, n1) and (ecall, eret) ∈ Φ. Note that

(n0, n1) ∈ Ψ. With the (SL, Ψ)-domain-correctness of XSL this means that
XSL(n0, n1) ≠ ⊠. Hence, by asc-sol-(iii), C(ASC) contains a constraint

X(s, t) ≥ feret ◦X(n0, n1) ◦ fecall ◦X(s, n).

By induction hypothesis, we get (s, n) ∈ V(ASC)
0 . We conclude

X(s, t) ∈ V(ASC)
0

by (V-Base).

2. Assume that XSL is (SL, Ψ)-domain-precise. In order to show (7.42), we
prove

∀(s, t) ∈ V(ASC)
0 . ASC(s, t) ≠ ∅(7.45)

by induction on (s, t) ∈ V(ASC)
0 = CoreVars(C(ASC), X(ASC)

0 ). So let (s, t) ∈
V(ASC)

0 . Then there is c ∈ C(ASC)
0 with lhs(c) = (s, t). Because the other

cases are similar to the proof of Lemma 7.19, we only consider the case
that c is of the form

XASC(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XASC(s, n)

with (ecall, eret) ∈ Φ, n
ecall→ n0, n1

eret→ t and XSL(n0, n1) ≠ ⊠. Then we have
(n0, n1) ∈ Ψ. Since XSL is (SL, Ψ)-domain-precise, XSL(n0, n1) ≠ ⊠ implies
that there is π′′ ∈ SL(n0, n1). Furthermore, we may apply the induction
hypothesis to (s, n) and get π′ ∈ ASC(s, n). Together with the assumptions
about ecall and eret, we get π′ · ecall ·π′′ · eret ∈ ASC(s, t), as desired.
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3. In order to show (7.43), we consider the two subset relations separately.

• For ⊆, it is clear that

V(ASC)
0 ⊆ CoreVars(C(ASC), N ×N),

since Src×N ⊆ N ×N and CoreVars(C(ASC), _) is monotone.

It remains to show

∀(s, t) ∈ V(ASC)
0 .(s, t) ∈ Src×N.

The proof is a straight-forward induction alongV(ASC)
0 , where the

induction steps work by noticing that the first components of the
variables on the left-hand and right-hand sides of constraints in

V(ASC)
0 are the same.

• For ⊇, induction on (s, t) ∈ CoreVars(C(ASC), N ×N) shows that

∀(s, t) ∈ CoreVars(C(ASC), N ×N). (s, t) ∈ Src×N

=⇒ (s, t) ∈ V(ASC)
0 .

□

With Lemma 7.22, I can provide the last puzzle piece to the proof of

Theorem 7.21: The definition-completeness of C(ASC)
0 with respect to

Core(C(ASC), N ×N).

Lemma 7.23. C(ASC)
0 is definition-complete with respect to its superset

Core(C(ASC), N ×N).

Proof. Like in the proof of Lemma 7.20, we use Theorem 7.10. Consider

c ∈ Core(C(ASC), N ×N) with (s, t) = lhs(c) ∈ V(ASC)
0 . Then we have to

show

FV(rhs(c)) = ∅ =⇒ (s, t) ∈ X(ASC)
0(7.46)

(s′, t′) ∈ FV(rhs(c)) =⇒ (s′, t′) ∈ CoreVars(C(ASC), X(ASC)
0 )(7.47)
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As the other cases are very similar, we only consider the case that c ∈
Core(C(ASC), N ×N) is of the form

XASC(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XASC(s, n)

with (ecall, eret) ∈ Φ, n
ecall→ n0, n1

eret→ t, XSL(n0, n1) ≠ ⊠, and (s, t) ∈
CoreVars(C(ASC), X(ASC)

0 ). We need to show

(s, n) ∈ CoreVars(C(ASC), X(ASC)
0 ).

But note that

(s, n) ∈ CoreVars(C(ASC), N ×N), and(1)
s ∈ Src.(2)

Statement (1) is implied by c ∈ Core(C(ASC), N × N), while statement

(2) follows, by application of Lemma 7.22, from (s, t) ∈ V(ASC)
0 . Both

statements together imply (s, n) ∈ V(ASC)
0 by Lemma 7.22. □

7.3.3 Extending the Solution Along the Non-Ascending
Paths

Constraint System 7.1 is a modified version of Constraint System 6.3 that
describes the data flows along the non-ascending paths.
The constant constraints of Constraint System 7.1 use the values XASC(s, c)
with XASC(s, c) ≠ ⊠ to initialize the solution. Note that c can be restricted
to Ncall according to Lemma 7.16. The non-constant constraints then extend
the solution along the descending paths.

Constraint System 7.1. Given functions XASC, XSL : N × N → F⊠, the
function

XNASC : N ×N→ F⊠

is a non-ascending solution with respect to XASC and XSL if it satisfies all
constraints from the following system:
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(non-asc-(i))
t′ e→ t e ∈ Ecall XASC(s, t′) ≠ ⊠

XNASC(s, t) ≥ fe ◦XASC(s, t′)

(non-asc-(ii))
t′ e→ t e ∈ Eintra ∪ Ecall

XNASC(s, t) ≥ fe ◦XNASC(s, t′)

(non-asc-(iii))
n

ecall→ n0 n1
eret→ t (ecall, eret) ∈ Φ XSL(n0, n1) ≠ ⊠

XNASC(s, t) ≥ feret ◦XSL(n0, n1) ◦ fecall ◦XNASC(s, n)

Using a similar argument as in Theorem 6.7, I can prove that Constraint
System 7.1 indeed describes NASC-correct solutions, provided that XSL
and XASC enjoy their respective correctness properties.

Theorem 7.24. Let XSL : N ×N → F⊠ be SL-correct, XASC : N ×N → F⊠ be
ASC-correct and let XNASC be a NASC-solution with respect to XSL and XASC.
Then XNASC is NASC-correct.

Proof. Let s ∈ N, c ∈ Ncall and π1 ∈ ASC(s, c). Using a straight-forward
induction along π2 ∈ DESC with arguments similar to the ones in the proof
of, e.g., Theorem 6.6, we show

∀π2 ∈ DESC. ∀t ∈ N.
π2 ∈ DESC(c, t)∧π1 ·π2 ∉ ASC(s, t)
=⇒ fπ1·π2 ≤ XNASC(s, t).

Using Definition 7.15, this shows that

∀π ∈ NASC. ∀s, t ∈ N.π ∈ NASC(s, t) =⇒ fπ ≤ XNASC(s, t),

as desired. □

Moreover, for universally distributive frameworks and with the respective
precision requirements satisfied for XASC and XSL, the least solution of
Constraint System 7.1 coincides with MONASC. The proof is very similar
to the proof of Theorem 6.10 and is not repeated here.
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Algorithm 11: computes the least non-ascending solution on

V(NASC)
0 with respect to XASC and XSL

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, functions XSL, XASC : N ×N→ F⊠

Result: the least non-ascending solution with respect to XSL, as
stated in Theorem 7.26

1 A← const(⊠)
2 foreach (s, c) ∈ Src×N with XASC(s, c) ≠ ⊠ do
3 foreach e ∈ Ecall, t ∈ N such that c e→ t do
4 A(s, t)←A(s, t)⊔ fe ◦XASC(s, c)
5 W ←W ∪ {(s, t)}
6 while W ≠ ∅ do
7 (s, t)← remove(W)

8 foreach e ∈ Eintra ∪ Ecall such that t e→ t′ do
9 A(s, t′)←A(s, t′)⊔ fe ◦A(s, t)

10 W ←W ∪ {(s, t′)} ifA(s, t′) has changed

11 foreach (ecall, eret) ∈ Φ such that t
ecall→ n0 ∧ n1

eret→ t′ ∧
XSL(n0, n1) ≠ ⊠ do

12 sumIn f o← feret ◦XSL(n0, n1) ◦ fecall
13 A(s, t′)←A(s, t′)⊔ sumIn f o ◦A(s, t)
14 W ←W ∪ {(s, t′)} ifA(s, t′) has changed

15 returnA

Theorem 7.25. Let F be universally distributive. Furthermore, let XSL be
SL-precise and XASC be ASC-precise. Then MONASC is a NASC-solution with
respect to XSL and XASC.
In particular, l f p(FCNASC) is NASC-precise, if CNASC is defined with respect to
XASC and XSL.

All that remains to do is to instantiate Algorithm 8 appropriately and prove
the usual correctness result. The instantiation can be seen in Algorithm 11.
I fix two functions

XASC, XSL : N ×N→ F⊠,
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and let C(NASC) be the set of constraints defined by Constraint System 7.1,
with respect to XSL and XASC.
I define

X(NASC)
0

de f
= {(s, c) | s ∈ Src∧ c ∈ Ncall ∧XASC(s, c) ≠ ⊠}(7.48)

C(NASC)
0

de f
= Core(C(NASC), X(ASC)

0 )(7.49)

V(NASC)
0

de f
= CoreVars(C(NASC), X(ASC)

0 )(7.50)

Like before, an inspection of Constraint System 7.1 shows that Algori-
thm 11 is indeed an instance of Algorithm 8. Thus, assuming definition-

completeness of C(NASC)
0 in Core(C(NASC), N×N), I can give the following

correctness result for Algorithm 11.

Theorem 7.26. Let XSL, XASC : N ×N→ F⊠ be two functions and let CNASC
be the instance of Constraint System 7.1 with respect to XSL and XASC. Consider
XSL and XASC as input for Algorithm 11.

1. Algorithm 11 terminates and upon termination, we have

A(s, t) =

⎧⎪⎪⎨⎪⎪⎩
l f p(FCNASC)(s, t) if s ∈ V(NASC)

0
⊠ otherwise.

(7.51)

2. If XSL is (SL, Ψ)-correct and XASC is (ASC, Src ×N)-correct, then A is

(NASC,V(NASC)
0 )-correct.

3. If F⊠ is u.d., XSL is (SL, Ψ)-precise, and XASC is (ASC, Src ×N)-precise,

thenA is (NASC,V(NASC)
0 )-precise.

In the following, I sketch a proof for Theorem 7.26. First, assume that
the first item is shown. Then the second item follows if I can show that
l f p(FC(NASC)) is (NASC,V(NASC)

0 )-correct. But this can be concluded from
the (SL, Ψ)-correctness of XSL and the (ASC, Src×N)-correctness of XASC
with a similar argument as in the proof of Constraint System 7.1.
The third item in Theorem 7.26 can be shown similarly by adapting
Theorem 7.25 appropriately.
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It remains to characterize the variableV(NASC)
0 and to prove the defini-

tion-completeness of C(NASC)
0 in Core(C(NASC), N ×N). Lemma 7.27 gives

a characterization ofV(NASC)
0 that is analogous to Lemma 7.22.

Lemma 7.27. Define dom(NASC)
de f
= {(s, t) ∈ N ×N | NASC(s, t) ≠ ∅}. Then

the following statements are true:

1. If XSL is (SL, Ψ)-domain-correct and XASC is (ASC, Src×N)-domain-correct,
then we have

dom(NASC)∩ Src×N ⊆ V(NASC)
0(7.52)

dom(NASC) ⊆ CoreVars(C(NASC), N ×N)(7.53)

2. If XSL is (SL, Ψ)-domain-precise and XASC is (ASC, Src×N)-domain-precise,
then we have

V(NASC)
0 ⊆ dom(NASC)∩ Src×N(7.54)

CoreVars(C(NASC), N ×N) ⊆ dom(NASC)(7.55)

3. V(NASC)
0 and CoreVars(C(NASC), N ×N) have the following connection:

V(NASC)
0 = CoreVars(C(NASC), N ×N)∩ Src×N.(7.56)

Proof. 1. We only consider (7.52), since the proof of (7.53) is very similar.
Assume that XSL is (SL, Ψ)-domain-correct and that XASC is (ASC, Src×N)-
domain-correct. Let s, c ∈ N and π1 ∈ ASC(s, c). Then, we can show

∀π2 ∈ DESC. ∀t ∈ N. π2 ∈ DESC(c, t)∧π1 ·π2 ∉ ASC(s, t)

=⇒ (s, t) ∈ V(NASC)
0

by induction on π2 ∈ DESC. The details are very similar to the cor-
responding part of the proof of Lemma 7.22 and are omitted here. By
Definition 7.15, this implies (7.52).
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2. Assume that XSL is (SL, Ψ)-domain-precise and, moreover, that XASC is
(ASC, Src×N)-domain-precise. Then we can show

∀(s, t) ∈ V(NASC)
0 . (s, t) ∈ dom(NASC)∩ Src×N

by induction on (s, t) ∈ V(NASC)
0 . For each case, the argument uses a

combination of the respective induction hypothesis and the assumptions
about XSL and XASC to obtain an appropriate non-ascending path. The
details are very similar to Lemma 7.22 and I do not repeat them here. The
proof of (7.54) is similar.

3. This is completely analogous to the proof of (7.43).
□

Using Lemma 7.27, the definition-completeness of C(NASC)
0 with respect to

its superset Core(C(NASC), N ×N) can be shown. The proof is completely
analogous to the proofs of Lemma 7.23 and Lemma 7.20 and is omitted
here.

Lemma 7.28. Core(C(ASC), X0) is definition-complete with respect to its super-
set Core(CNASC, N ×N).

7.3.4 Combining the Ascending Solution and the
Non-Ascending Solution

Constraint System 7.2 combines two given functions XASC and XNASC by
simply joining them.

Constraint System 7.2. Given functions XASC, XNASC : N ×N → F⊠, the
function

XVP′ : N ×N→ F⊠

is an alternative valid-paths-solution with respect to XASC and XNASC if it
satisfies all constraints from the following system:

(vp’-(i))
XASC(s, t) ≠ ⊠

XVP′(s, t) ≥ XASC(s, t)
(vp’-(ii))

XNASC(s, t) ≠ ⊠

XVP′(s, t) ≥ XNASC(s, t)
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Constraint System 7.2 is so simple that I can give a clear and direct
characterization of l f p(FC(VP′)), which is easy to see:

(7.57) l f p(FC(VP′)) = XASC ⊔XNASC.

Alternative valid-paths solutions are indeed VP-correct, if XASC and XDESC
satisfy their respective correctness conditions. This is an easy consequence
of Remark 7.17, which is why I omit the proof.

Theorem 7.29. Let XASC, XNASC : N ×N → F⊠ be two functions. Then the
following statements hold:

1. Let XVP′ be an alternative valid-paths solution with respect to XASC and
XNASC. If XASC is ASC-correct and XNASC is NASC-correct, then XVP′ is
VP-correct.

2. If XASC is ASC-precise and XNASC is NASC-precise, then l f p(FCVP′ ) is
VP-precise.

In chapter 6, we considered Constraint System 6.4 as a characterization for
valid-paths solutions. For the following considerations, let C(VP) be the
set of constraints from Constraint System 6.4.
Note that Theorem 7.29 does not say anything about the relation of
l f p(FC(VP)) and l f p(FC(VP′)) in general, even if they are considered with

respect to the same helper solutions. As C(VP) and C(VP′) make different
choices about when they join and when they compose, we cannot expect
in general that they coincide36. In general, C(VP) and C(VP′) can simply
be seen as alternative approaches to characterize an over-approximation
to MOVP. This is especially relevant if F is not distributive and the
helper solutions are correct and as precise as possible (e.g. if they were
obtained using the algorithms from the previous sections), but also if the
helper solutions themselves are only over-approximations, even for the
distributive case.

36My conjecture is (a) that l f p(FC(VP) ) ≤ l f p(FC(VP′) ) under relatively general assumptions
and (b) that, under the same assumptions, there are examples for which l f p(FC(VP′) ) ̸≤
l f p(FC(VP) ), since C(VP) “joins later” than C(VP′). I will however not attempt to prove this
within the scope of this thesis.
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For distributive frameworks and the most precise helper solutions,
l f p(FC(VP′)) can be shown to coincide with l f p(FC(VP)).

Corollary 7.30. Assume that F is universally-distributive. Consider the follow-
ing constraint systems:

C(ASC) with respect to l f p(FC(SL))

C(DESC) with respect to l f p(FC(SL))

C(NASC) with respect to l f p(FC(SL)) and l f p(FC(ASC))

C(VP) with respect to l f p(FC(ASC)) and l f p(FC(DESC)), and

C(VP′) with respect to l f p(FC(ASC)) and l f p(FC(NASC)).

Then l f p(FC(VP)) = l f p(FC(VP′)).

Proof. By Theorem 6.7 and Theorem 6.10, l f p(FC(ASC)) is both ASC-correct
and ASC-precise. Moreover, Theorem 7.24 and Theorem 7.25 imply
that l f p(FC(NASC)) is both NASC-correct and NASC-precise. Hence, The-
orem 7.29 implies that l f p(FC(VP′)) is both VP-correct and VP-precise,
i.e.

l f p(FC(VP′)) = MOVP.

Analogously, using Theorem 6.7, Theorem 6.8, Theorem 6.10 and The-
orem 6.9, one can conclude

l f p(FC(VP)) = MOVP.

□

Lastly, I want to consider the connection between the domain of l f p(FCVP′ )
and forward slices. Remember that the forward slice FS(s) of a given node
s ∈ N is the set of nodes t ∈ N such that VP(s, t) ≠ ∅.
Theorem 7.31. Let XASC, XNASC : N ×N → F⊠ be two functions. Then the
following statements hold:
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1. Let XVP′ be an alternative valid-paths solution with respect to XASC and
XNASC. If XASC is ASC-domain-correct and XNASC is NASC-domain-correct,
then XVP′ is VP-domain-correct. In particular, we have

(7.58) ∀s ∈ N. FS(s) ⊆ {t ∈ N | l f p(FCVP′ )(s, t) ≠ ⊠}.

2. If XASC is ASC-domain-precise and XNASC is NASC-domain-precise, then
l f p(FCVP′ ) is VP-domain-precise. In particular, we have

(7.59) ∀s ∈ N. {t ∈ N | l f p(FCVP′ )(s, t) ≠ ⊠} ⊆ FS(s).

Proof. For given s ∈ N, we define

FSASC(s)
de f
= {t ∈ N | ASC(s, t) ≠ ∅}, and

FSNASC(s)
de f
= {t ∈ N | NASC(s, t) ≠ ∅}.

By Lemma 7.16, we have FS(s) = FSASC(s) ∪ FSNASC(s) for all s ∈ N.
Moreover, by definition we have

FSASC(s) ⊆ dom(XASC) if XASC is ASC-domain-correct,
FSASC(s) ⊇ dom(XASC) if XASC is ASC-domain-precise,

FSNASC(s) ⊆ dom(XNASC) if XNASC is NASC-domain-correct, and
FSNASC(s) ⊇ dom(XNASC) if XNASC is NASC-domain-precise.

From this, all claimed statements can be shown using (7.57). □

7.3.5 Putting It All Together

In this section, I combine the algorithms from the previous sections to yield
algorithms that compute the least alternative valid-paths solution with the
most precise helper solutions.
First, I show a simple algorithm that is always correct and then I consider
a variant that works for distributive frameworks.
The simple approach, which can be seen in Algorithm 12, takes the set
Src ⊆ N of source nodes as input and uses the pre-computed resultA(SL)

of running Algorithm 9 on X(SL)
0 .
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As its first step, Algorithm 12 invokes Algorithm 10 to compute the least
ascending-paths solutionA(ASC) with respect toA(SL). After that, it runs
Algorithm 11 to obtain the least non-ascending solution A(NASC) with
respect toA(SL) andA(ASC). Finally, it joinsA(ASC) andA(NASC) to obtain
its resultA(VP′).
For Algorithm 12 I can give the following simple correctness result.

Theorem 7.32. Consider

C(VP′) with respect to l f p(C(ASC)) and l f p(C(NASC))

C(NASC) with respect to l f p(C(ASC)) and l f p(C(SL)), and

l f p(C(ASC)) with respect to l f p(C(SL)).

Then Algorithm 12 has the following properties:

1. Algorithm 12 always terminates and upon termination, we have

(7.60) A(VP′)(s, t) =

⎧⎪⎪⎨⎪⎪⎩
l f p(FC(VP′))(s, t) if t∈V(ASC)

0 ∪V(NASC)
0

⊠ otherwise

2. Define F
de f
=
⋃︁

s∈Src FS(s). If F is universally distributive, then

(7.61) A(VP′) =F MOVP.

Algorithm 12: Computes the least alternative valid-paths solu-
tion on Src×N with respect to the most precise helper functions

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, least same-level solutionA(SL), node
set Src ⊆ N

Result: least alternative valid-paths solution, as stated in The-
orem 7.32

1 A(ASC) ← ComputeAscendingSolution(Src,A(SL))

2 A(NASC) ← ComputeNonAscendingSolution(A(SL),A(ASC))

3 A(VP′) ←A(ASC) ⊔A(DESC)

4 returnA(VP′)
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Proof. 1. (7.60) is an easy consequence of (7.57), considering the final value
ofA(VP′) in Algorithm 12.

2. Assume that F is universally distributive. Then (7.61) is an easy
consequence of

l f p(FC(VP′)) = MOVP, and(7.62)

V(ASC)
0 ∪V(NASC)

0 =
⋃︂

s∈Src

FS(s).(7.63)

These two facts follow from the universal distributivity of F , Theorem 7.29
and Theorem 7.31.

□

7.3.6 Towards the Two-Phase Slicer

Remember that Algorithm 6 works in two phases: The first visits all nodes
that are ASC-reachable from the given start nodes. It uses summary edges
to skip call edges and instead collects the call nodes on a second worklist
W2. The second phase starts with W2 and extends the set of visited nodes
along the descending paths of the given graph, using summary edges to
skip return edges.
I can employ this pattern in my more general setting. The result is Algo-
rithm 13, a variant of Algorithm 12 that integrates the two main steps of
Algorithm 12 and offers large similarities to Algorithm 6. This variant also
computes the alternative valid-paths solution on the forward slice of Src,
provided that the given framework F is distributive.
Like Algorithm 12, Algorithm 13 proceeds in two steps.
The first step, which is implemented by Algorithm 14, is a variant of
Algorithm 10 that computes the least ascending solution A(ASC) with
respect to the pre-computed least same-level solution and additionally
collects all (s, c) ∈ Src ×Ncall such that ASC(s, c) ≠ ∅ in a set W2, which
it also returns. It can easily be verified that Algorithm 14 has the same
properties as Algorithm 10 but additionally has the property that, upon
termination, W2 contains the set of all (s, c) ∈ Src ×N such that c ∈ Ncall
and ASC(s, c) ≠ ∅.
The second step, which is implemented by Algorithm 15, then takesA(ASC)

and W2 and executes a variant of Algorithm 11. Algorithm 15 differs from
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Algorithm 13: Computes the least alternative valid-paths solu-
tion on Src×N with respect to the most precise helper functions

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, least same-level solutionA(SL), node
set Src ⊆ N

Result: least alternative valid-paths solution
1 (A(ASC), W2)← ComputeAscendingSolution′(Src,A(SL))

2 A(VP′) ← ExtendAlongNonAscSolution′(A(SL),A(ASC), W2)

3 returnA(VP′)

Algorithm 11 in two key aspects: Firstly, it does not initialize the solution
with const(⊠), but rather initializes it with A(ASC) and secondly, it does
not have an initial loop. However, it also starts with a non-empty worklist
that, by the additional correctness property of Algorithm 15, contains all
(s, c) ∈ Src×N such that n ∈ Ncall and ASC(s, c) ≠ ⊠. It can be verified that
the initial loop is actually integrated in the main loop.
Assuming the distributivity of F , we can show that Algorithm 15 indeed
computes l f p(CVP′). The proof is analogous to the proof of Theorem 7.11
and proceeds in three steps, which I state here but omit the proofs.

1. Algorithm 15 always terminates.

2. Algorithm 15 maintains the invariant

{(s, t) ∈ Src×N | A(VP′)(s, t) ≠ ⊠} ⊆ V(ASC)
0 ∪V(NASC)

0

and upon termination, we have

{(s, t) ∈ Src×N | A(VP′)(s, t) ≠ ⊠} = V(ASC)
0 ∪V(NASC)

0

3. Algorithm 15 maintains the invariant

A(VP′) ≤ l f p(FC(ASC))⊔ l f p(FC(NASC))

and upon termination, we have

A(VP′) = l f p(FC(ASC))⊔ l f p(FC(NASC)) = l f p(FC(VP′)).
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The invariant in the last step actually uses the distributivity of F . My
conjecture, which I will not prove within the scope of this thesis is that (a)
Algorithm 13 always computes an over-approximation l f p(CVP′) and that
(b) there are non-distributive frameworks for whichA(VP′) > l f p(CVP′).

7.4 Call-String Approach

This section is dedicated to computing a VP-correct solution using a call-
string-based constraint system. The general pattern is the same as in the

Algorithm 14: Implementation of ComputeAscendingSolution’

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, least same-level solutionA(SL), node
set Src ⊆ N

Result: Ascending solutionA
set W2 ⊆ Src×N such that (s, n) ∈W2 implies that n ∈ Ncall and n
is ASC-reachable from Src

1 A← const(⊠)
2 foreach s ∈ Src do
3 A(s, s)← id
4 W ←W ∪ {(s, s)}
5 while W ≠ ∅ do
6 (s, t′)← remove(W)

7 foreach e ∈ Eintra ∪ Eret such that t′ e→ t do
8 A(s, t)←A(s, t)⊔ fe ◦A(s, t′)
9 W ←W ∪ {(s, t)} ifA(s, t) has changed

10 foreach (ecall, eret) ∈ Φ such that t′
ecall→ n0 ∧ n1

eret→ t ∧
XSL(n0, n1) ≠ ⊠ do

11 sumIn f o← feret ◦XSL(n0, n1) ◦ fecall
12 A(s, t)←A(s, t)⊔ sumIn f o ◦A(s, t′)
13 W2 ←W2 ∪ {(s, t′)}
14 W ←W ∪ {(s, t′)} ifA(s, t) has changed

15 returnA
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Algorithm 15: Implementation of ExtendAlongNonAscSolution’

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as
described on page 295, least same-level solutionA(SL),
node set Src ⊆ N, ascending solutionA(ASC), set W of call
nodes that are ASC-reachable from Src

Result: alternative valid-paths solutionA(VP′)

1 A(VP′) ←A(ASC)

2 while W ≠ ∅ do
3 (s, t)← remove(W)

4 foreach e ∈ Eintra ∪ Ecall such that t e→ t′ do
5 A(VP′)(s, t′)←A(VP′)(s, t′)⊔ fe ◦A(VP′)(s, t)
6 W ←W ∪ {(s, t′)} ifA(VP′)(s, t′) has changed

7 foreach (ecall, eret) ∈ Φ such that t
ecall→ n0 ∧ n1

eret→ t′ ∧
XSL(n0, n1) ≠ ⊠ do

8 sumIn f o← feret ◦XSL(n0, n1) ◦ fecall

9 A(VP′)(s, t′)←A(VP′)(s, t′)⊔ sumIn f o ◦A(VP′)(s, t)
10 W ←W ∪ {(s, t′)} ifA(VP′)(s, t′) has changed

11 returnA(VP′)

last sections. First, I am going to instantiate Algorithm 8 so that it solves
a sufficient portion of Constraint System 6.5. After that, I will state an
appropriate instance of Theorem 7.11. Lastly, I give a characterize the core
variables of the subsystem solved by the algorithm and convince myself
that the algorithm indeed solves a definition-complete subsystem.
I fix a stack space S = (Ecall, S,≤, ϵ, push, pop, top) such that S is finite. The
finiteness of S ensures that the complete lattice

N ×N × S→mon F⊠

satisfies the ascending chain condition.
Before I am able to instantiate Algorithm 8 to compute the least solution
of Constraint System 6.5, I need to modify Constraint System 6.5 a bit: In
Algorithm 8, constraints are applied by updating the left-hand sides for
given updated right-hand sides. However, Constraint System 6.5 does
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not present all constraints in such a form. Particularly, ret(2)S needs to be
transformed.
The ret(2)S -constraints have the form

(ret
(2)
S )

t′ eret→ t (ecall, eret)∈Φ pop(push(ecall, σ))=σ push(ecall, σ) ≠ ϵ

XS(s, t, σ) ≥ feret ◦XS(s, t′, push(ecall, σ))

I fix ecall ∈ Ecall and consider the following two sets:

A = {(σ, push(ecall, σ)) | σ ∈ S
∧ pop(push(ecall, σ)) = σ

∧ push(ecall, σ) ≠ ϵ}
B = {(pop(σ), σ) | σ ∈ S∧ σ ≠ ϵ∧ top(σ) = ecall}

The elements of A describe the relation between the two stacks appearing

on the left-hand side and the right-hand side of a ret(2)S -rule involving
ecall, whereas the elements of B describe this relation for a respective
transformed rule.
In the following, I am going to show that A = B by proving that they are
contained in each other.
So let (σ, push(ecall, σ)) ∈ A. Then we have

pop(push(ecall, σ)) = σ and push(ecall, σ) ≠ ϵ.

Define σ̃
de f
= push(ecall, σ). Then σ̃ ≠ ϵ, top(σ̃) = ecall and

pop(σ̃) = pop(push(ecall, σ)) = σ.

This means that

(σ, push(ecall, σ)) = (pop(σ̃), σ̃) ∈ B.

Conversely, let (pop(σ), σ) ∈ B. Then σ ≠ ϵ and top(σ) = ecall. Define

σ̃
de f
= pop(σ). Then

push(ecall, σ̃) = push(ecall, pop(σ)) = σ ≠ ϵ
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and
pop(push(ecall, σ̃)) = pop(σ) = σ̃.

This means that

(pop(σ), σ) = (σ̃, push(ecall, σ̃)) ∈ A.

The equality of A and B implies that the ret(2)S -constraints from Constraint

System 6.5 can be replaced by the following equivalent ret’(2)S -constraints:

(ret’(2)S )
eret ∈ Eret t′ eret→ t (ecall, eret) ∈ Φ σ ≠ ϵ top(σ) = ecall

XS(s, t, pop(σ)) ≥ feret ◦XS(s, t′, σ)

The replacement of ret(2)S by ret’(2)S in Constraint System 6.5 leads to
Constraint System 7.3.

Constraint System 7.3. Let S = (Ecall, S,≤, ϵ, push, pop, top) be a stack space
over Ecall. Then XS : N ×N × S →mon F is an S-solution if it satisfies the
following constraints:

(emptyS)
s ∈ N

XS(s, s, ϵ) ≥ id
(intraS)

e ∈ Eintra t′ e→ t

XS(s, t, σ) ≥ fe ◦XS(s, t′, σ)

(callS)
ecall ∈ Ecall t′

ecall→ t

XS(s, t, push(ecall, σ
′)) ≥ fecall ◦XS(s, t′, σ′)

(ret
(1)
S )

eret ∈ Eret t′ eret→ t

XS(s, t, ϵ) ≥ feret ◦XS(s, t′, ϵ)

(ret’(2)S )
eret ∈ Eret t′ eret→ t (ecall, eret) ∈ Φ σ ≠ ϵ top(σ) = ecall

XS(s, t, pop(σ)) ≥ feret ◦XS(s, t′, σ)

Lemma 7.33. Constraint System 6.5 and Constraint System 7.3 are equivalent:
X is a solution of Constraint System 6.5 if and only if it is a solution of Constraint
System 7.3.
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Proof. See the previous considerations. □

Now let C(S) be the set of constraints from Constraint System 7.3 with
respect to the abstract stack space S. Furthermore, I define

X(S)
0

de f
= {(s, s, ϵ) | s ∈ Src}(7.64)

C(S)0
de f
= Core(C(S), X(S)

0 )(7.65)

V(S)
0

de f
= CoreVars(C(S), X(S)

0 )(7.66)

Algorithm 16 is an instantiation of Algorithm 8 that is supposed to solve

C(S)0 . The initialization loop can be seen in lines 2–4 and the main loop in
lines 5–11. The body of the main loop enumerates all constraints c with
(s, t, σ) ∈ FV(rhs(c)) by inspecting the stack σ and the outgoing edge e and
determining which constraint to apply.

Assuming that C(S)0 is definition-complete in Core(C(S), N ×N × S), we
get the following correctness result for Algorithm 16.

Theorem 7.34. Algorithm 16 always terminates and upon termination, we have

(7.67) AS(s, t, σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
l f p(FC(S)0

)(s, t, σ) if (s, t, σ) ∈ V(S)
0

⊠ otherwise

Moreover, we have

(7.68) AS =V(S)
0

l f p(FCore(C(S),N×N×S)) = l f p(FC(S))

To fully establish the correctness and meaningfulness of Theorem 7.34, it

remains to show that C(S)0 is definition-complete in Core(C(S), N ×N × S)

and give an appropriate characterization ofV(S)
0 . I start with the latter.

The following lemma does not fully solve this task, but at least shows that

V(S)
0 is large enough37.

37My conjecture is that an appropriate converse can also be shown, once a suitable
formalization of reachability on N×N× S is available. I will however not consider this within
the scope of this thesis.
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Algorithm 16: Algorithm for computing the least S-solution

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, set Src ⊆ N of sources

Result: the least S-solution, as stated in Theorem 7.34
1 AS ← const(⊠)
2 foreach s ∈ Src do
3 AS(s, s, ϵ)← id
4 W ← {(s, s, ϵ)}
5 while W ≠ ∅ do
6 (s, t, σ)← remove(W)

7 foreach e ∈ E such that t e→ t′ do

8 σ′ ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ if e ∈ Eintra ∨ e ∈ Eret ∧ σ = ϵ

push(e, σ) if e ∈ Ecall
pop(σ) if σ ≠ ϵ∧ (top(σ), e) ∈ Φ
▼ otherwise

9 if σ′ ≠ ▼ then
10 AS(s, t′, σ′)←AS(s, t′, σ′)⊔ fe ◦AS(s, t, σ)
11 W ←W ∪ {(s, t′, σ′)} ifAS(s, t′, σ′) has changed

12 returnAS

Lemma 7.35. For all s, t ∈ N, we have

APS(s, t) ≠ ∅ ∧ s ∈ Src =⇒ ∃σ ∈ S. (s, t, σ) ∈ CoreVars(CS, X0)

Proof. We show the statement

∀π ∈ PathsG. ∀s, t ∈ N. π ∈ PathsG(s, t)∧ s ∈ Src∧ cs(π) ≠ ▼
=⇒ (s, t, cs(π)) ∈ CoreVars(CS, X0)

by induction on π ∈ PathsG.
So let π ∈ PathsG be a path with π ∈ PathsG(s, t), s ∈ Src and cs(π) ≠ ▼.

1. Assume that π = ϵ. Then s = t and (s, t, ϵ) = (s, t, cs(π)) ∈ X0 since
s ∈ Src. Furthermore, CS contains a constraint

XS(s, s, ϵ) ≥ id
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by emptyS. Thus, (s, t, ϵ) ∈ CoreVars(CS, X0).

2. Assume that π = π′ · e with π′ ∈ PathsG(s, t′) and t′ e→ t. By definition
of cs, cs(π) ≠ ⊠ implies that cs(π′) ≠ ⊠. Hence by induction hypothesis
we may assume

(s, t′, cs(π′)) ∈ CoreVars(CS, X0).

We observe that CS contains the constraint

XS(s, t, cs(π)) ≥ fe ◦XS(s, t′, cs(π′)).(⋆)

To see this, we make a case distinction on e.

e ∈ Eintra: Then cs(π) = cs(π′) and we obtain the constraint by intraS.

e ∈ Ecall: Then cs(π) = push(ecall, cs(π′)) and we obtain the constraint by
callS.

e ∈ Eret: Then one of the following statements holds:

cs(π) = cs(π′) = ϵ(1)
cs(π′) ≠ ϵ∧ (top(cs(π′)), e) ∈ Φ ∧ cs(π) = pop(cs(π′)).(2)

In case (1), we obtain the constraint by ret(1)S and in case (2) by ret’(2)S .

Since (s, t′, cs(π′)) ∈ CoreVars(CS, X0), constraint (⋆) is contained in
Core(CS, X0) and we obtain

(s, t, cs(π′)) ∈ CoreVars(CS, X0),

as desired.

□

To prove the definition-completeness, I need a connection betweenV(S)
0

and CoreVars(CS, N ×N × S). Its proof is analogous to the proof of, e.g.,
(7.43) in Lemma 7.22.

Lemma 7.36. For all s, t ∈ N and σ ∈ S, we have

V(S)
0 = CoreVars(CS, N ×N × S)∩ Src×N × S
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Now I can give the proof of the definition-completeness of V(S)
0 in

CoreVars(CS, N ×N × S).

Lemma 7.37. Core(CS, X0) is definition-complete with respect to its superset
Core(CS, N ×N × S).

Proof. We use Theorem 7.10. Let c ∈ Core(CS, N ×N × S) with lhs(c) ∈
CoreVars(CS, X0). Then we have to show

FV(rhs(c)) = ∅ =⇒ lhs(c) ∈ X0(7.69)
FV(rhs(c)) ≠ ∅ ∧ x ∈ FV(rhs(c)) =⇒ x ∈ CoreVars(CS, X0)(7.70)

We show the two claims separately.

(7.69): If FV(rhs(c)) = ∅, then c is of the form

XS(s, s, ϵ) ≥ id

Since (s, s, ϵ) = lhs(c) ∈ CoreVars(CS, X0), it must be the case that (s, s, ϵ) ∈
X0 by Lemma 7.36.

(7.70): Let FV(rhs(c)) ≠ ∅. Inspection of Constraint System 7.3 shows that
c is of the form

XS(s, t, σ) ≥ fe ◦XS(s, t′, σ′)

where t′ e→ t and (s, t, σ) = lhs(c). Note that the s on the right-hand
side is the same as on the left-hand side. Since c ∈ Core(CS, N ×
N × S), we have (s, t′, σ′) ∈ CoreVars(CS, N ×N × S). Moreover, since
(s, t, σ) ∈ CoreVars(CS, X0), we get s ∈ Src by Lemma 7.36. Thus
(s, t′, σ′) ∈ CoreVars(CS, X0) by Lemma 7.36.

□

Theorem 7.34 states that Algorithm 16 solvesC(S) for an appropriate subset
of N ×N × S. In particular, for every (s, t) ∈ Src×N such that AP(s, t) ≠ ∅,
there is some σ ∈ S such that the resultAS(s, t, σ) = l f p(FC(S))(s, t, σ). It
remains to establish a connection between l f p(FC(S)) and MOVP to be
fully convinced that Algorithm 16 indeed yields a (VP, Src ×N)-correct
solution.
Now define
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A(s, t)
de f
=
⨆︂

σ∈S
AS(s, t, σ).

Then the above considerations and Theorem 6.16 entail that

(7.71) AP(s, t) ≠ ∅ =⇒ A(s, t) ≥MOAP(s, t).

Moreover, if F is distributive, then by Theorem 6.18, I can refine this to

AP(s, t) ≠ ∅ =⇒ A(s, t) = MOAP(s, t)

Finally, if S is chosen appropriately, it follows from Corollary 6.33 that
Algorithm 16 can be used to compute a (VP, Src×N)-correct solution.

Theorem 7.38. Assume that there is a stack abstraction between S∞ and S. Let
AS be the result of Algorithm 16 and define

A(s, t)
de f
=
⨆︂

σ∈S
AS(s, t, σ).

ThenA is (VP, Src×N)-correct.

Proof. Assume (s, t) ∈ Src × N. Then we have to show MOVP(s, t) ≤
A(s, t). For VP(s, t) = ∅, there is nothing to show, so we may assume
VP(s, t) ≠ ∅. Because of our assumption about S, we may apply Corol-
lary 6.33 and yield VP(s, t) ⊆ AP(s, t) and

(7.72) MOVP(s, t) ≤MOAP(s, t)

Because VP(s, t) ≠ ∅, we get AP(s, t) ≠ ∅. Hence, we may apply (7.71) and
get

(7.73) MOAP(s, t) ≤ A(s, t)

(7.72) and (7.73) imply MOVP(s, t) ≤ A(s, t), as desired. □
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And I think it’s gonna be a long long time.
Elton John 8

Implementation and Evaluation

In the previous chapters, I theoretically developed and examined various
algorithms to conduct generalized interprocedural data-flow analysis on
interprocedural graphs. The purpose of this chapter is to demonstrate that
these theoretically stated algorithms also work in practice. To this end, I
implemented the algorithms in the Joana framework and conducted an
evaluation of both performance and precision.
This chapter is organized as follows. First, I am going to give an overview
of my implementation in section 8.1. The other sections are dedicated to
the evaluation.
Section 8.2 describes several aspects on the setup of my evaluation, partic-
ularly which samples and instances I chose. Then, I describe and discuss
the results of the performance evaluation in section 8.3. Lastly, section 8.4
is dedicated to the precision evaluation.

8.1 Notes on the Implementation

My implementation allows for arbitrary data-flow framework instances.
In order to enable evaluations and comparison with Joana’s summary
edge computation and slicers, my implementation works on Joana’s graph
data structure.
In the next subsections, I am going to consider several aspects of my
implementation in more detail. Subsection 8.1.1 is dedicated to my im-
plementation of the functional approach and subsection 8.1.2 considers
my implementation of the call string approach. Finally, in subsection 8.1.3,
I will conduct a worst-case complexity analysis on all implemented al-
gorithms.
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8.1.1 Functional Approach

As we still remember from previous chapters, the functional approach
consists of a preprocessing phase that computes same-level information,
and a two-phase algorithm that computes the actual data-flow analysis
solution using the same-level information. In the following, I will give a
brief overview of my implementations of both steps, in this order.
I implemented two variants of the same-level info computations, which
I will elaborate on in subsubsection 8.1.1.2 and subsubsection 8.1.1.3,
respectively. Before that, in subsubsection 8.1.1.1 I give some general hints
on how my implementations represent same-level information.
After having described my summary info computation implementations, I
consider my implementation of the actual two-phase data-flow analysis in
subsubsection 8.1.1.4.

8.1.1.1 Representing Same-Level Information

Recall that both the summary edge algorithm and the two-phase slicer
employ summary edges between actual-in and actual-out nodes in order to
avoid descending into callees.
My implementations of the generic same-level problem use a generalized
version of summary edges: In addition to the mere information that
there is a same-level path, my generalized summary edges in addition are
annotated with the result of the same-level solution for the given pair of
nodes.
More specifically, a common difference to Algorithm 9 is that expressions of
the form feret ◦A(SL)(n0, n1) ◦ fecall are stored separately in a map sumIn f o.
Moreover, my implementation of the generalized two-phase approach
assumes that sumIn f o is available. Practically, I persist sumIn f o in a
separate file using the JSON format [94].
I implemented two variants of Algorithm 9, consequent and optimized. I
discuss them briefly in the following.

8.1.1.2 Consequent Summary Info Computation

The consequent variant is very close to Algorithm 9 and only specifies an
order in which the worklist items are traversed. In the following, I give
some hints on how this ordering is chosen.

334



8.1 Notes on the Implementation

Remember that Algorithm 9 maintains pairs (s, t) of nodes on its worklist,
where s and t belong to the same procedure. The ordering aims to ensure
that callees are processed before callers. The idea is that, if we process a
given procedure p, we want to use the most recent summary information
to avoid re-computation. Hence we aim to ensure that the procedures
called by p are processed before p is processed. This works perfectly as
long as there are no recursive cycles in the call graph.
The ordering consists of two parts: The first part orders procedures on the
call graph, while the second part orders the nodes within a procedure.
The ordering on the call graph is obtained as follows.

1. We are given a call graph C = (P, E) of the given PDG G where P
consists of the procedures of the given PDG G and two nodes p and p′ are
connected by a directed edge p→ p′ if p contains a call of p′.

2. Reverse the edges of C and obtain graph C′ = (P, E′).

3. Compute the condensation of C′, that is, a graph C′′ = (S, E′′) such that
the nodes S ⊆ 2P of C′′ are the strongly connected components of C′ and
A→C′′ B if and only if ∃p ∈ A. ∃p′ ∈ B. p→C′ p′. Note that C′′ is acyclic
[59, p. 98].

4. Now sort C′′ topologically. This yields a total order <top of C′′.

5. By carefully enumerating the nodes in each SCC A in a well-defined
fashion, use <top to obtain a function i : P→N of G′ such that i(p) ≠ i(p′)
iff p ≠ p′ and i(p) < i(p′) if p and p′ belong to two different SCCs A and B
with A <top B.

Orderings within the procedures were obtained by enumerating the nodes
in depth-first order. Note that this relies on Joana’s node iteration order for
its internal PDG structure and therefore can be subject to non-determinism
on some level.

8.1.1.3 Optimized Summary Info Computation

Variant optimized, which is depicted in Algorithm 17, is based on the ob-
servation that Algorithm 9 actually computes a global same-level solution,
although it only needs a relatively small part of it, namely the summary
information for pairs of call nodes and their return counterparts. Instead,
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the optimized variant only maintains the actual summary information,
re-computes intraprocedural parts of the solution as needed and discards
non-essential parts of them as soon as possible. Also, instead of node
pairs that need to be updated, it maintains procedures that need to be
re-processed on its worklist.
Processing a procedure p means to completely re-compute the intra-
procedural result for p and to propagate this result to p’s callers. If this
propagation leads to a change in some summary information between
two nodes m and n, the procedure that contains m and n is scheduled for
re-computation by putting it on the worklist. For worklist ordering, a
callee-caller-ordering similar to the procedure ordering of the consequent
variant is used.
Initially, all procedures are put on the worklist to ensure that each intrapro-
cedural result is computed at least once.

8.1.1.4 Generalized Two-Phase Approach

For the two-phase approach, I implemented Algorithm 13, which can give
precision guarantees for distributive problems. My implementation is
relatively straight-forward. The most notable deviation from Algorithm 13
is that the implementation uses summary information instead of same-level
information, as described in subsubsection 8.1.1.1.

8.1.2 Call-string Approach

In my implementation of the call-string approach, I use a variant of Al-
gorithm 16 that exploits fundamental properties of program dependence
graphs with respect to their correspondence relation Φ.
Recall that Algorithm 16 uses stacks, i.e. sequences of call edges, to
remember to which caller the analysis shall return after exiting a given
procedure. If such a stack ecall · σ is given and the algorithm is about
to leave procedure p through the return edge eret, it needs to check that
(ecall, eret) ∈ Φ, i.e. that the top of the stack corresponds to eret, in order to
proceed with tgt(eret) and stack σ.
In a program dependence graph, we generally have (ecall, eret) ∈ Φ if and
only if src(ecall) and tgt(eret) belong to the same call site and tgt(ecall) and
src(eret) belong to the same procedure. Hence, for PDGs, the stack does
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not need to contain call edges, but only the call sites. A call site can be
represented by the node that describes the actual call instruction.
Hence, my implementation of Algorithm 16 uses sequences of call nodes
as stacks. Using sequences of call nodes instead of parameter edges as
stacks mainly saves a lot of space. This is especially beneficial for calls of
procedures with many parameters. With the ordinary stack representation,
all these parameters induce different, equivalent call stacks.

Algorithm 17: A variant of Algorithm 9 that trades re-
computation of intra-procedural results for a more compact
solution and worklist representation – for updateIntraprocResult,
see Algorithm 18

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295

Result: least summary information for F
1 procedure computeSumInfoOptimized
2 sumIn f o← const(⊠)
3 W ← Proc
4 while W ≠ ∅ do
5 p← remove(W)
6 foreach s ∈ Entriesp do
7 newResults← updateIntraprocResult(s, sumIn f o)
8 foreach t ∈ Exitsp do

9 foreach (ecall, eret) ∈ Φ and m, n s.t. m
ecall→ s∧ t

eret→ n
do

10 old← sumIn f o(m, n)
11 sumIn f o(m, n) ← sumIn f o(m, n) ⊔ feret ◦

newResults(s, t) ◦ fecall
12 if sumIn f o(m, n) ≠ old then
13 W ←W ∪ {proc(m)}

14 return sumInfo
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Algorithm 18: Intraprocedural part of Algorithm 17

Input: a data-flow framework instance F = (G, L, F⊠,ρ) as de-
scribed on page 295, s ∈ N, function sumInfo: N ×N→ F⊠

Result: updated version of sumIn f o on {s} × Exitsp
1 procedure updateIntraprocResult(s: N, sumInfo: N ×N→ F⊠)
2 Analysis← const(⊠)
3 W = W ∪ {s}
4 Analysis(s, s)← id
5 while W ≠ ∅ do
6 t← remove(W)

7 foreach t′ ∈ N such that t e→ t′ ∧ e ∈ Eintra do
8 old← Analysis(s, t′)
9 Analysis(s, t′)← Analysis(s, t′)⊔ fe ◦Analysis(s, t)

10 if Analysis(s, t′) ≠ old then
11 W ←W ∪ {t′}
12 foreach t′ ∈ N such that sumIn f o(t, t′) ≠ ⊠ do
13 old← Analysis(s, t′)
14 Analysis(s, t′) ← Analysis(s, t′) ⊔ sumIn f o(t, t′) ◦

Analysis(s, t)
15 if Analysis(s, t′) ≠ old then
16 W ←W ∪ {t′}

17 return Analysis ↾ {s} × Exitsp

8.1.3 Complexity Considerations

For data-flow frameworks (L, F) where F has finite height n, an asymptotic
upper bound on the time taken to execute Algorithm 8 can be given in terms
of the number of applications of constraints, as this is the most elementary
and most often executed operation in this algorithm. Any constraint on
a given system can be applied at most n times. Hence, the total number
of constraint applications is no more than O(|C| · n) = O(|C| · |F |). For
frameworks where F does not have finite height but satisfies (ACC), such
a bound cannot be given in the general case, so that the concrete instance
has to be taken into account.
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Next, I am going to give worst-case time bounds for the different algorithms
I presented in chapter 7. For simplicity, I assume that F has finite height.
Subsection 8.1.3.1 considers the algorithms of the functional approach,
while subsubsection 8.1.3.2 consider the call-string approach.

8.1.3.1 Functional Approach

8.1.3.1.1 Consequent Same-Level Problem Solver In order to give a
worst-case time bound, I give an upper bound for the size of the subset
C′SL of Constraint System 6.1 that is solved by Algorithm 9:

|C′SL|
≤ |Nentry|
+
∑︂

p∈Proc

|Nentry
p | · |Eintra

p |

+
∑︂

p∈Proc

|Nentry
p | · |Φ ∩ {(n ecall→ n0, n1

eret→ t) | proc(n) = proc(t) = p}|

where Nentry
p

de f
= Np ∩Nentry and Eintra

p
de f
= Ep ∩ Eintra.

The first term counts the number of constraints of the form sl-sol-(i):
C′SL contains such a constraint for every s ∈ Nentry. The second term
approximates the number of constraints of the form sl-sol-(ii): C′SL contains
such a constraint at most for every s ∈ Nentry and every e ∈ Eintra whose
source and target both lie in the same procedure as s. Finally, the third
term approximates the number of constraints of the form sl-sol-(iii):
C′SL contains such a constraint at most for every s ∈ Nentry and every
(ecall, eret) ∈ Φ such that src(ecall) and tgt(eret) lie in the same procedure as
s. The second and third terms are only approximations since they do not
take into account the reachability analysis performed by Algorithm 9.
|Nentry| can be bounded by |N| and |Eintra

p | can be bounded by |E|. Moreover,

|Φ ∩ {(n ecall→ n0, n1
eret→ t) | proc(n) = proc(t) = p}|

can be bounded by |E|2. In summary, an asymptotic upper bound to the
overall time needed by Algorithm 9 in terms of the size of the given PDG
G can be given by
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O(|F| · (|N|+ |N| · |E|+ |N| · |E|2)) = O(|F| · |N| · |E|2).

8.1.3.1.2 Optimized Same-Level Problem Solver For the optimized
same-level problem solver, I give a coarse yet simple upper bound that
only uses |N|, |E|, |F| and the number |P| of procedures in the given graph.
First, consider updateIntraprocResult. It consists of an instantiation
of Algorithm 8 that solves a part of Constraint System 6.1. Using the
argument from above, an invocation of updateIntraprocResult takes
no more than O(|F| · |E|2) constraint applications. Next, consider one
iteration of the main loop in Algorithm 17: It consists of no more than |N|
invocations of updateIntraprocResult and no more than |N| · |N| constraint
applications. Hence, one iteration of the loop does not take more than
O(|N| · |N| · |F| · |E|2 + |N| · |N|) = O(|N| · |N| · |F| · |E|2) rule applications. A
given procedure p can be put at most |N| · |N| · |F| times onto the worklist
(sumIn f o’s domain consists of pairs of nodes and every value can change
at most |F| times), hence the loop can be executed no more than |P| · |N|2 · |F|
times. All in all, Algorithm 17 executes no more than O(|P| · |N|4 · |F|2 · |E|2)
constraint applications.
Again, I would like to point out that this bound is indeed very coarse and
formally appears to be worse than the bound for the consequent same-level
problem solver. I suspect that it is possible to conduct a more elaborate
analysis and yield a tighter upper bound that is closer to the bound for the
consequent variant. The evaluation will show that the optimized variant
can perform better than the consequent variant in practice.

8.1.3.1.3 Generalized Two-Phase Approach For Algorithm 13, similar
considerations can be made as in paragraph 8.1.3.1.1. Hence, we arrive
at the same rough upper bound O(|F| · |N| · |E|2). However, there is one
important aspect that needs to be highlighted. The summary information
computation only needs to be conducted once and can then be incorporated
into the given graph. A usual approach is to insert summary edges into the
given graph and annotate them with the respective value of the same-level
analysis result. Then, Algorithm 13 does not operate on the same graph as
Algorithm 17, but on an extended graph with more edges. This lowers the
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upper bound of

|Φ ∩ {(n ecall→ n0, n1
eret→ t) | proc(n) = proc(t) = p}|

to |E| and the overall bound to O(|F| · |N| · |E|).
To put it more shortly, using the functional approach makes the actual
problem solver linear in the graph size, but may cause the graph’s number
of edges to increase quadratically. Note that this also applies to simple
slicing.

8.1.3.2 Call-String Approach

For the analysis of the call-string approach, I assume a fixed source
node s ∈ N and the stack space Sk for k ∈ N and consider the part of
Constraint System 6.5 where the variables have s as first component. A
closer look then shows that there is one constraint for every edge e ∈ E
and every stack σ ∈ Sk. This means that the size of the constraint system is
bounded to O(|E| · |Ecall|k) = O(|E|k+1), which results in an upper bound
of O(|F| · |E|k+1) for the costs of Algorithm 16.
As I mentioned in subsection 8.1.2, my implementation uses node sequences
instead of edge sequences to represent stacks which changes the bound to
O(|F| · |N|k+1).

8.2 Description of the Setup

In this section, I describe the setup of all my evaluations. Subsection 8.2.1
describes the environment of the evaluation. After that, subsection 8.2.2
gives an overview of the programs that I ran my analyses on. Lastly,
subsection 8.2.3 describes the data-flow framework instances that I selected
for this evaluation.

8.2.1 Evaluation Environment

The environment of my evaluation consists of the hardware and the
software of the setup that I used but not provided myself. An overview of
this is given in Table 8.1.
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CPU Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
Memory 512 GB RAM
Operating System Ubuntu 18.04.4 LTS
Kernel Version 4.15.0-72-generic
JDK openjdk version "11.0.7" 2020-04-14
JVM OpenJDK Runtime Environment

(11.0.7+10-post-Ubuntu-2ubuntu218.04)

Table 8.1: Characteristics of the machine used for performance evaluations

The machine that I ran my experiments on consisted of 80 cores. I ran
multiple experiments in parallel, in order to save time. This may have
slightly disturbed the results, however, I believe that this effect is negligible.

8.2.2 Samples

The programs I used for the evaluation are described in Table 8.2.
As a preliminary step to all evaluations, I used Joana to construct PDGs
without summary edges for all sample programs. I assumed a sequential
setting, i.e. I configured Joana to not analyze threads. Moreover, I used
context-insensitive points-to analysis, parameter modelling based on object
graphs [78] and interprocedural exception analysis.
Including all libraries added to the respective analysis scope, the example
programs have between 654k and 15.7M bytecode instructions. After
call graph construction, on average 95% were classified as unreachable.
Additionally, Joana pruned away 53% of the remaining instructions, so
that the parts of the programs that were covered by the resulting program
dependence graphs had between 1.6k and 119.3k bytecode instructions.
I divided the example programs in two groups: One group consists of four
very large programs, namely javap, dacapo-eclipse, hsqldb and freecs,
the other group consists of the rest of the programs. In the following, I
refer to these programs as large, and to the others as non-large.
The reason for this grouping is that the large programs performed substan-
tially worse than all other programs (across all algorithms and instances),
which is why I had to choose different evaluation parameters.
The sizes of the corresponding PDGs are shown in Table 8.3.

342



8.2 Description of the Setup

sample name description

ant Apache Ant (version 1.9.6), as found in Ubuntu
16.04.3 LTS

bibtex2website a tool for managing the publications of the pro-
gramming paradigms group

dacapo-antlr sample from the Dacapo benchmark suite (ver-
sion 2006-10-MR2) [32]

dacapo-eclipse sample from the Dacapo benchmark suite
dacapo-fop sample from the Dacapo benchmark suite
dacapo-hsqldb sample from the Dacapo benchmark suite
dacapo-luindex sample from the Dacapo benchmark suite
dacapo-lusearch sample from the Dacapo benchmark suite
dacapo-xalan sample from the Dacapo benchmark suite
eVotingMachine a case study from the E-Voting Reference Scen-

ario [115]
freecs a version of freecs (a chat server) that was also

used for previous evaluations [78]
hsqldb a version of hsqldb (a database engine) that was

also used for previous evaluations [78]
jasypt-decrypt decryption command-line tool from Jasypt[99]

(version 1.9.2)
jasypt-digest command-line tool from Jasypt for computing

message digests
jasypt-encrypt digest command-line tool from Jasypt
javap Java disassembler from Oracle’s JDK (version

1.7.0_80-b15)
jftp case study from Lovat et al. [122]
jzip case study from Lovat et al. [122]
jlex A Lexical Analyzer Generator for Java [29, 30]
lethal a demo program from lethal, a tree and hedge

automata library developed in a student’s pro-
ject at the University of Münster [98]

maven Apache Maven (version 3.3.9), as found in
Ubuntu 16.04.3 LTS

mixServer a case study from the E-Voting Reference Scen-
ario [163]

Table 8.2: Description of the sample programs used for this evaluation
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name no. PDG nodes no. PDG edges

mixServer 3865 21271
eVotingMachine 5655 33580

ant 7542 55397
bibtex2website 11031 71115

jftp 22550 170813
jlex 33525 254996

dacapo-hsqldb 37159 209545
dacapo-xalan 48387 279980

jzip 57637 349359
dacapo-fop 87453 507111

dacapo-luindex 140974 959292
jasypt-decrypt 154842 1020183
jasypt-encrypt 154868 1020173
jasypt-digest 162970 1075326

dacapo-lusearch 204374 1502063
lethal 218346 3559662

maven 238963 1795599
dacapo-antlr 344254 2677337

javap 827135 6907387
dacapo-eclipse 1129723 12031685

freecs 1497110 13494055
hsqldb 2001268 17497510

Table 8.3: Sizes of the PDGs in the sample considered for my evaluation

8.2.3 Instances

I considered the three data-flow framework instances reach (cf. subsec-
tion 5.4.2), explicit-info-flow (cf. subsubsection 5.4.5.2) and dist (cf.
subsection 5.4.7). Considering the reach instance enables me to compare
the performance of my generic algorithms with Joana’s hand-optimized
algorithms for summary edge computation and two-phase slicing. In-
stance dist has a lattice with unbounded height. Lastly, I included
explicit-info-flow (occasionally abbreviated by eif) as a simple ex-
ample for language-restricted reachability (cf. subsection 5.4.5) that does
not need additional parameters like a barrier.
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8.3 Performance Evaluation

In this section, I describe how I conducted my performance evaluation
and discuss its result.
My performance evaluation falls into two groups: Same-level problem
solvers and data-flow analyses. I consider the former in subsection 8.3.1,
while subsection 8.3.2 is dedicated to the latter.

8.3.1 Same-Level Problem Solvers

I evaluated both the consequent (cons) and the optimized (opt) variants
of the same-level problem solver for all three considered instances. For
comparison, I also evaluated the summary edge computation which Joana
performs currently as part of SDG construction. As I explained earlier, this
corresponds to the reach instance. This algorithm will be abbreviated as
classic. A graphical overview of the runtimes for the non-large programs
can be seen in Figure 8.1. For full results, see Table 8.5 and Table 8.6.
The remainder of this subsection is structured as follows: In subsubsec-
tion 8.3.1.1, I describe the method that I applied to conduct my measure-
ment. After that, I discuss various aspects of the results: Subsection 8.3.1.2
gives a general overview, subsubsection 8.3.1.3 describes how the graph
size influences the runtime of the algorithms, subsubsection 8.3.1.4 com-
pares the runtime performance of the different algorithms and subsubsec-
tion 8.3.1.5 discusses how the instance affects the runtime. Lastly, I give a
short summary in subsubsection 8.3.1.6.

8.3.1.1 Method

I ran the different algorithms m times, distributed over n JVM invocations.
For each of the m · n runs, I performed w warm-up iterations. An overview
of the choices of these parameters for the different samples and algorithms
is given in Table 8.4.
The times that I report for every sample, algorithm and instance are the
average times of the m · n runs.
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Figure 8.1: Runtime distributions for the various same-level problem solvers and
instances – a-c: only non-large, d-f: including large

8.3.1.2 General Impression of Runtimes and Error Discussion

Generally, for all instances and most programs, all algorithms finished
within reasonable time. For large programs, the runtimes ranged between
several minutes (classic/reach) and up to several hours (opt). Algorithm
cons was not able to finish its computation on the large programs within
the given time and space constraints.
In order to assess the quality of these averages, I also computed confidence
intervals for confidence levels 1− α = 0.95, assuming that the runtimes are
normally distributed [124, §4.2]. The radii of these intervals can be found
in the err columns of Table 8.5 and Table 8.6. With respect to this metric, it
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example group algorithm chosen parameters
m n w heap timeout

non-large all 10 10 3 32 GB 2 hourslarge reach

large opt 1 3 0 64 GB 12 hours
cons

Table 8.4: Overview of the chosen parameters for the evaluation of the different
same-level problem solvers – m is the number of JVM invocations, n is
the number of iterations per JVM invocation, w is the number of warmup
iterations before each iteration

can be said that the accuracy of the reported runtimes corresponds to the
number of runs performed to obtain the runtimes: For large programs and
non-classic algorithms, the error can be up to 27% relative to the reported
time. Conversely, for the rest of the configurations, errors tend to be small
(up to 8%, 1-2% on average). However, the benefit of performing more
runs on large programs is negligible with respect to the effort, since the
runtimes are an order of magnitude larger than for the non-large programs.
Also note that the runtimes are subject to distortions caused by continuous
optimizations and garbage collection performed by the JVM. Apart from
trying to distribute the runs over multiple JVM invocations, I do not
consider these issues in the scope of this thesis. For further information,
see Georges et al. [64].

8.3.1.3 Relationship Between Graph Size and Runtime

Figure 8.2 visualizes how the runtimes of the various same-level problem
solvers relate to the graph size. Graph size is measured in the number
of edges. We see that generally the runtime increases with the number
of edges. The regression appears to be somewhere between linear and
quadratic, although it is rather difficult to make a reliable statement
here since the number of programs is too small and has some notable
outliers. For example, all solvers consistently take longer on maven than on
dacapo-antlr, although maven’s PDG has fewer edges than dacapo-antlr’s
PDG (compare Table 8.3, Table 8.5 and Table 8.6). Conversely, hsqldb
performs better relative to freecs than the ratio of their respective graph
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sizes suggests. Still, the number of edges in a program dependence graph
appears to be a sufficiently reliable criterion for estimating the runtime of
the measured algorithms and does not contradict the theoretical complexity
analysis conducted in subsection 8.1.3, which suggests that the runtimes
of all same-level problem solvers grows no more than quadratically with
the number of edges.

8.3.1.4 Comparison of the Algorithms

Figure 8.3 shows how the different algorithms perform relative to each
other on the chosen set of programs and instances. For this, I computed for
each pair of algorithms (a1, a2) and each sample s the ratio of the runtimes
that a1 and a2 took on s. Figure 8.3 shows boxplots of the resulting
distributions.
Two key observations can be made here.

8.3.1.4.1 reach Instance For one, Joana’s hand-optimized summary
edge computation algorithm is clearly superior to the two generic al-
gorithms. It can be up to 10 times as fast as the opt variant. This
observation is not very surprising, since the summary edge computation
is tailored to the reach instance and was optimized especially to work on
large PDGs.

8.3.1.4.2 Comparison of Opt and Cons The other observation is that
the opt variant performs moderately faster than the cons variant. Apart
from the fact that for the majority of configurations, opt performed 2.5
to 3 times as fast as cons, opt was able to finish the computation on the
large samples for all instances within the given time and space constraints,
whereas cons was not. Recall from subsection 8.1.1 that the improvement
in opt mainly consists of a more compact worklist item representation:
The worklist contains procedures to be processed as opposed to pairs
of entry/exit nodes. This results in a much smaller worklist, hence less
memory consumption. The processing of a procedure consists of a complete
intraprocedural traversal and re-computation for all intra-procedural node
pairs. The price of this modification is that procedures are re-processed
even if only a small part of them changed – resulting in potentially lots
of spurious re-computations. This is also reflected in the runtime results.
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Figure 8.2: Relationship between graph size and runtime for the various same-level
problem solvers and instances
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Figure 8.3: Comparison between the evaluated algorithms for same-level compu-
tation – a and b compare classic with opt and cons, respectively, c–e
compare opt with cons

The opt variant is consistently faster than the cons variant, but only by
a moderately small constant factor. Moreover, opt is able to process
programs with rather large PDGs, whereas cons is not.

8.3.1.5 Comparison Between Different Instances

Figure 8.4 compares the different instances with respect to the additional
effort relative to the reach instance. For this purpose, I computed for each
program the ratio between the required runtime for the respective instance
and the reach instance. Figure 8.4 shows a boxplot of the distributions of
these ratios.

350



8.3 Performance Evaluation

0

0.5

1

1.5

2

(a) explicit-info-flow
0

2

4

6

(b) dist

opt cons

Figure 8.4: Additional effort of same-level computation for non-reach instances
(non-large programs)

For both generic algorithms, instance explicit-info-flow takes less ad-
ditional effort than dist. Moreover, it can be seen that algorithm opt
performs slightly better on dist: For cons, the majority of samples take at
least 2.5 times as much time as for reach. The corresponding factor for opt
is less than 2.

8.3.1.6 Summary

The key takeaways of the runtime evaluation of the same-level problem
solvers are:

• all evaluated problem solvers take more time on larger PDGs – the
runtimes appear to grow no more than quadratically with the number
of PDG edges

• Joana’s hand-optimized summary edge algorithm performs much
better than the generic algorithms on the reach instance,

• it is possible to solve the same-level problems for non-trivial data-flow
analyses on fairly large PDGs in reasonable time,

• more complex data-flow framework instances generally require more
time,
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• it is plausible that this additional work grows with the height of an
instance’s lattice, and

• the improved variant opt of the generic algorithm performs moder-
ately better than the consequent variant cons– in particular, it is able
to compute a result for fairly large PDGs, whereas cons is not.
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eif dist
name cons err cons err

mixServer 0.08 <0.01 0.09 <0.01
ant 0.30 0.01 0.41 0.01

eVotingMachine 0.17 0.01 0.33 0.01
bibtex2website 0.37 0.01 0.61 0.02

jftp 1.08 0.02 1.70 0.03
jlex 2.21 0.03 3.59 0.05

dacapo-hsqldb 3.11 0.05 14.88 0.16
dacapo-xalan 4.70 0.07 27.66 0.33

jzip 6.57 0.09 11.79 0.14
dacapo-fop 10.33 0.13 38.09 0.41

dacapo-luindex 39.41 0.60 107.71 1.02
jasypt-decrypt 44.93 0.56 112.53 0.78
jasypt-encrypt 45.91 0.64 149.28 1.20

jasypt-digest 46.05 0.56 137.91 1.06
dacapo-lusearch 69.56 0.78 228.65 2.96

lethal 313.85 2.46 423.53 5.76
dacapo-antlr 385.81 3.56 558.31 6.87

maven 421.70 4.73 1290.46 7.60
dacapo-eclipse − − − −

hsqldb − − − −
freecs − − − −
javap − − − −

Table 8.6: Performance results for the summary information computation, part 2

8.3.2 Data-Flow Solvers

I evaluated three data-flow solvers for all three instances:

• v2p– the generic two-phase approach Algorithm 13

• cs0– call-string approach with a depth of 0

• cs1– call-string approach with a depth of 1

Note that all evaluated instances are distributive, so that Algorithm 13
indeed produces a precise result.
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For comparison, I also evaluated Joana’s standard two-phase slicer for the
reach instance (v2p-classic). The full results can be found in Table 8.8
and Table 8.9. A graphical overview is shown in Figure 8.5.
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Figure 8.5: Overview of the runtime distributions of the evaluated data-flow
solvers; a–c: only non-large programs, d–f: including large programs

Next, in subsubsection 8.3.2.1, I am going to describe the method that I
used to obtain the results. After that, I will discuss several aspects of the
results. Subsection 8.3.2.2 gives a general impression, subsubsection 8.3.2.3
considers the influence of the graph size on the runtimes, subsubsec-
tion 8.3.2.4 compares the different data-flow analysis algorithms and
subsubsection 8.3.2.5 discusses the influence of the framework instances on
the runtimes. Finally, I sum up my observations in subsubsection 8.3.2.6.
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8.3.2.1 Method

In order to obtain a runtime measurement for the various data-flow solvers,
I took for each program p a sample Sp of n nodes from p’s PDG and then
followed the following recipe:

• For each instance i, algorithm a and node s ∈ Sp, run a’s instantiation
for i on p’s PDG and s m times38 (with w warm-up iterations) in a single

JVM fork. This results in m measured runtimes t(i,a,p,s)
1 , . . . , t(i,a,p,s)

m .

• Let time(i, a, p, s) = 1
m
∑︁m

k=1 t(i,a,p,s)
k be the average time along the m

runs. Then let [l(i, a, p), u(i, a, p)] be an estimation interval for the q-th
quantile of the times (time(i, a, p, s))s∈S for confidence level 1− α.

• Report the midpoint l(i,a,p)+u(i,a,p)
2 and u(i,a,p)−l(i,a,p)

2 as the time and
error for program p, instance i and algorithm a.

Table 8.7 gives an overview of the parameters I chose for each configura-
tion. For all configurations, I chose q = 0.5 (the median). To determine the
parameters l and u, I used a statistical method for conservatively determ-
ining estimates of confidence intervals of quantiles without assumptions
about the underlying distribution[124, §5.2.2].

8.3.2.2 General Impression of the Runtimes and Error Discussion

Generally, the measured runtimes show that the v2p solver delivers reas-
onably fast times for all programs under evaluation, although it is clearly
inferior to Joana’s classic slicer on the reach instance. The cs0 algorithm
was able to finish in all configurations, while the cs1 solver did not finish
on large program within a reasonable amount of time.
The errors show the same pattern as in the evaluation for the same-level
problem solvers: For most configurations, they are relatively small. For
the large programs, where the number of nodes and runs was smaller, they
can be very large. Hence, the times for the large programs must be read
with caution. Keeping this in mind, I will not further discuss errors in the
following.

38For v2p and v2p-classic, where most times tended to be very short, I let each iteration
run in a loop for at least 1 second and reported the average times.
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example group algorithm chosen parameters
n m w l u 1− α

non-large
v2p-classic 100 10 3 42 64 ≈ 0.95
v2p
cs0

non-large cs1 10 5 3 3 8 ≈ 0.89

large v2p-classic 100 10 3 42 64 ≈ 0.95
v2p

large cs0 10 5 3 3 8 ≈ 0.89

large cs1 (not evaluated)

Table 8.7: Overview of the chosen parameters for the evaluation of the different
data-flow solvers

8.3.2.3 Relationship Between Graph Size and Runtime

Figure 8.6 visualizes how the runtime of the various data-flow analysis
algorithms relate to graph size. Graph size is measured in the number of
edges.
Generally, it can be seen that the runtime increases with graph size. Both for
the classic slicer and the v2p algorithm, the runtime appears to be roughly
linear in the graph size, whereas the call-string algorithms suggest a super-
linear regression. We also see that there are outliers. For example, the times
for hsqldb is consistently much lower than the times for dacapo-eclipse,
although hsqldb is the program whose PDG has the highest number of
edges. A reason for this may be that the evaluated algorithms not only
solve a constraint system but also perform a reachability analysis and
their runtime is also affected by the size of their forward slices: If hsqldb
is less connected than dacapo-eclipse, its forward slices are smaller and
data-flow analyses on hsqldb take less time than on dacapo-eclipse.

8.3.2.4 Comparison of the Algorithms

Both callstring-based algorithms perform worse than the two-phase ap-
proach. This can be seen in Figure 8.7, which visualizes the distribution of
the respective runtime ratios. While cs0 shows roughly the same runtime
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Figure 8.6: Relationship between graph size and runtime for the various DFA
algorithms and instances
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Figure 8.7: Performance comparison between the call-string-based algorithms and
v2p

behavior as v2p for the reach and the explicit info flow instances, it can
however take up to twice as much time. The dist instance shows a clear
deviation – here cs0 generally takes twice as much time and can take up
to 3 or 4 times as much time.
The other evaluated callstring-variant cs1 shows a much worse behavior:
It runs 5-10 times as long as v2p and may take up to 60 times.

8.3.2.5 Comparison Between Different Instances

Another observation is that, like for the same-level problem solvers,
it appears that more complex instances require more effort. This can
be seen in Figure 8.8. It shows that the explicit-info-flow instance
take roughly twice as much time as reach. This is consistent among all
evaluated algorithm. The dist instance shows a more heterogeneous
picture. Figure 8.8 shows that at least twice as much effort is required for
dist relative to reach. However, this additional effort is much higher for
the callstring-based approaches and appears to grow with the depth of the
call-strings.

8.3.2.6 Summary

The key takeaways of the runtime evaluation of the data-flow problem
solvers are:
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Figure 8.8: Additional effort of DFA for complex instances relative to reach; a/b:
only non-large programs, c/d: including large programs
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• Joana’s hand-optimized slicer performs better than the generic
algorithms on the reach instance,

• it is possible to compute precise solutions to non-trivial interproce-
dural data-flow analyses on fairly large PDGs in reasonable time,

• more complex data-flow framework instance generally require more
time,

• it is plausible that this additional work grows with the height of an
instance’s lattice, and

• the call-strings approach performs much worse than the functional
approach and is not able to produce results in reasonable time even
for very small stack bounds.
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8 Implementation and Evaluation

classic v2p cs0 cs1
name time err time err time err time err

mixServer<0.01<0.01<0.01<0.01 <0.01 <0.01 <0.01<0.01
ant<0.01<0.01 0.02<0.01 <0.01 <0.01 0.02<0.01

eVotingMachine<0.01<0.01<0.01<0.01 <0.01 <0.01 0.01<0.01
bibtex2website<0.01<0.01 0.02<0.01 0.01 <0.01 0.05<0.01

jftp 0.03<0.01 0.08<0.01 0.06 <0.01 0.43 0.06
jlex 0.04<0.01 0.10<0.01 0.09 <0.01 0.54<0.01

dacapo-hsqldb 0.03 0.01 0.12 0.05 0.10 <0.01 0.45 0.07
dacapo-xalan 0.06<0.01 0.25 0.03 0.17 0.01 0.52 0.04

jzip 0.09<0.01 0.38<0.01 0.24 <0.01 0.98 0.02
dacapo-fop 0.13 0.01 0.50 0.05 0.57 <0.01 2.37 0.09

dacapo-luindex 0.22 0.04 1.15 0.19 1.15 0.13 7.68 0.29
jasypt-decrypt 0.31 0.01 1.72 0.03 1.87 0.07 8.37 0.36
jasypt-encrypt 0.31 0.02 1.73 0.09 1.80 0.06 8.49 0.25

jasypt-digest 0.33 0.01 1.78 0.08 1.90 0.04 8.50 0.31
dacapo-lusearch 0.39 0.02 1.77 0.11 2.49 0.03 12.99 0.26

lethal 0.64 0.02 4.19 0.14 4.68 0.36 35.66 2.42
dacapo-antlr 1.00 0.06 6.51 0.42 10.63 2.20115.31 5.51

maven 0.91 0.06 6.90 0.37 6.95 1.55 27.28 1.06
dacapo-eclipse 7.35 0.42 78.70 2.67 158.14 15.23 − −

hsqldb 12.51 0.65 93.57 12.04 511.14 159.47 − −
freecs 9.35 0.52 89.34 2.23 281.24 39.69 − −
javap 4.30 0.32 33.70 2.09 74.81 6.84 − −

Table 8.8: Runtime performance of the various data-flow solvers for reach
instance
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8 Implementation and Evaluation

8.4 Precision Evaluation

In my evaluation, I not only measured performance, but also the precision
of the considered data-flow analyses. In particular, I practically compared
the precision of cs0 and cs1.
It is not obvious how to measure precision of a data-flow analysis. Hence,
in subsection 8.4.1, I am going to consider this aspect more closely and
describe a general method that allows to practically assess the precision of
a given data-flow analysis. In subsection 8.4.2, I will present the results of
my precision evaluation and describe how I obtained them. After that, I
will discuss the result in subsection 8.4.3.

8.4.1 How to Measure the Precision of Data-Flow
Analyses

In program analysis theory, precision is usually a binary concept – a
program analysis is either precise with respect to a given ideal baseline, or
it is not.
However, for practical purposes, it is desirable to perceive precision
as comparative. With a comparative notion of precision, one can make
statements like “analysis A is more precise than analysis B”.
In chapter 6, we already encountered results that may be read as pointers
to comparative precision statements.
For example, in Corollary 6.33 we saw that the MOAPSk

is correct with
respect to MOAPSl

if k ≤ l. In other words, MOAPSl
is always at least

as precise as MOAPSl
if k ≤ l. Moreover, it is easy to give examples for

which MOAPSl
yields a result that is strictly more precise than the result

for MOAPSk
.

However, it is very challenging if not impossible to theoretically and
generally assess the precision of program analyses comparatively39.
It is therefore more promising to concentrate on practical evaluation that
usually evaluates the different analyses on a concrete sample of example
programs.

39According to Jansen [97], different approaches to interprocedural data-flow analyses are
comparable, but only in simple cases.
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One possibility to establish a comparative notion of precision is to quantify
it using some metric that assigns an analysis a number that assesses how
precise this analysis is. Then, the precision of multiple approaches can be
compared using this metric.
In chapter 4, we saw two examples for this. Firstly, in the scope of the
SHRIFT approach we compare different points-to analyses of Joana by
relating the number of reported information flows with the number that a
black box approach would report that just assumes that every sink depends
on every source. Secondly, in our work on ifspec, we compare the precision
of different information flow tools by relating the number of insecure
programs with the number of programs that were classified as insecure by
the respective tool.
In the following, I describe a method for practically evaluating the precision
of a given data-flow analysis approach. The method is independent of
instances and algorithms and only makes a few general assumptions. The
basic idea is to compute a metric that indicates how close a given solution
of a given data-flow analysis approach is to the respective section of the
MOVP solution. By computing this number for a multitude of solutions,
we get a distribution for the given analysis. Multiple analyses can then be
compared with respect to this distribution.
Let F = (G, L, F⊠,ρ) be a data-flow analysis framework and let D be a
data-flow analysis. Moreover, I fix a node s ∈ N. Analysis D takes s as
input and outputs a functionA(s) : N → F⊠. I want to compareA(s) with
the portion of MOVP where the first argument is s. Therefore, I introduce
the function MOVP(s) : N→ F⊠ that is defined by

MOVP(s)(t)
de f
= MOVP(s, t).

I assume that, regardless of s, D only produces (MOVP, {s} ×N)-correct
solutions, i.e. ∀t ∈ N. A(t) ≥ MOVP(s, t). Moreover, I assume that F
allows for practically evaluating MOVP, e.g. that it is distributive and
allows for an effective execution of Algorithm 9 and Algorithm 13.
A straight-forward way to assess the precision ofA(s) is to evaluate the
fraction of t for whichA(s)(t) coincides with MOVP(s)(t). I call this metric
the value precision and define it as follows:
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8 Implementation and Evaluation

vp(s)
de f
=
|{t ∈ dom(A(s)) | A(s)(t) = MOVP(s)(t)}|

|dom(A(s))| .

The function vp assumes values between 0 and 1 and measures the co-
incidence between A(s) and MOVP(s). A value of 0 means that A(s)

does not coincide at all with MOVP(s), where as a value of 1 means that
vp(s) perfectly coincides with MOVP(s). However, one issue of vp is that
it does not differentiate between the two main reasons for A(s)(t) and
MOVP(s)(t) to differ. For one, it may be the case that t ∈ dom(MOVP(s))

and Analysis(s)(t) ≠ MOVP(s)(t), i.e. that t is a node for which every
(MOVP, {s} ×N)-correct analysis must actually compute a result. The
second case is that t ∈ dom(A(s)) \ dom(MOVP(s)), i.e. thatA computes a
value for t, although this is not absolutely necessary for a context-sensitive
analysis (and therefore imprecise). To distinguish between these two cases,
I introduce two additional metrics, namely the relative slice size

ss(s)
de f
=
|dom(MOVP(s))|
|dom(A(s))| , and

the value precision on the common core

vpcc(s)
de f
=
|{t ∈ dom(MOVP(s)) |A(s)(t) = MOVP(s)(t)}|

|dom(MOVP(s))| .

Both ss(s) and vpcc(s) also assume values between 0 and 1 and larger value
reflect more precision – while ss focuses on the slice, vpcc focuses on values.
This is reflected by the equation

vp(s) = ss(s) · vpcc(s).(8.1)

The validity of (8.1) can be seen as follows: From t ∈ dom(MOVP(s)) and
A(s)(t) = MOVP(s)(t), it follows that t ∈ dom(A(s)). Hence, we can also
write vpcc as

vpcc(s) =
|{t ∈ dom(A(s)) |A(s)(t) = MOVP(s)(t)}|

|dom(MOVP(s))| ,
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and from this, Equation 8.1 follows by an easy calculation.
With help of (8.1), I can identify two important special cases. For one,
if vpcc(s) = 1, then A(s) assumes perfectly context-sensitive values on
dom(MOVP(s)) but may be too large (if ss(s) < 1). Secondly, if ss(s) = 1,
then dom(A(s)) coincides with dom(MOVP(s)) but may contain different
results (if vpcc < 1).

8.4.2 Results

In my precision evaluation I applied the methodology described in sub-
section 8.4.1 to obtain a practical precision comparison between the two
call-string approaches cs0 and cs1. I considered the programs from
Table 8.2 and the three instances reach, explicit-info-flow and dist
that I already considered for my performance evaluation. Note that all
instances are distributive and can be solved precisely using the functional
approach, so that I can use the v2p algorithm to provide MOVP-solutions.
For each of the programs and the instances, I evaluated all three metrics
vp, ss and vpcc for a sample of randomly selected nodes in the respective
program’s PDG. For the non-large programs, I took 100 nodes, whereas
for the large programs, I took 10 nodes.
The distributions of the evaluated metrics are shown in Figure 8.9.

8.4.3 Discussion

In the following, I want to briefly discuss the results that are visualized in
Figure 8.9. Generally, the ss distributions for cs0 and cs1 are very similar.
In particular, with respect to the relative slice size, cs1 offers only a little
precision gain in comparison with cs0. Notably, for the reach instance,
cs0 and cs1 differ only in their ss distributions. The values on the common
core coincide completely, so that vpcc is 1 for all measurements. This is
indeed no wonder because data-flow solutions for the reach instance can
assume exactly one value.
On the complex instances explicit info flow and dist, cs1 delivers more
precise results than cs0 on the common core. I suspect that the reason for
this is that the dist instance offers a larger space of possible values with
more possibility for the different data-flow analyses to differ. On the other
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Figure 8.9: Comparison of cs0 and cs1 with respect to precision; a – c: slice sizes,
d – f: value precision on common core, g – i: overall value precision

hand, we also see that vpcc for the dist instance offers more variability for
cs1 than for cs0.
All in all, we see that, based on this sample, cs0 and cs1 offer similar result
with respect to the amount of spurious values. Regarding the computed
values on the common core, cs1 tends to deliver a more precise value on
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the common core, especially for complex instances. It can be imagined
that call-string approaches with a higher bound deliver even more precise
results. However, with regards to the performance results, the question is
whether the precision gain is worth the additional effort.
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Looking through the bent-backed tulips,
to see how the other half live.
The Beatles 9

Discussion and Related Work

In this chapter, I critically discuss the approach that I developed in the last
chapters and compare it to the existing literature.
In section 9.2, I discuss restrictions of my approach and simplifications
that I deliberately applied for the sake of presentation. After that, I look at
some of the benefits of my approach and discuss possible improvements
in section 9.3. Lastly, in section 9.4, I consider other approaches that could
also be used to generalize slicing.
Before I start with the actual discussion, I want to give some general
remarks that may help to place the work in this thesis in the right context.

9.1 The Role of Data-Flow Analysis and Slicing
in Program Analysis

Schmidt and Steffen [146] propose the view that a multitude of program
analyses mainly consists of three steps: Given a program and an operational
semantics, the program is first transformed into a model that adequately
captures its semantics. This program model is usually some kind of labeled
transition system – i.e. a (possibly infinite) graph whose nodes represent
the program state and whose edges represent the possible state transitions.
The second step consists of an abstraction that abstracts from irrelevant
details or makes the model more tractable and still respects the semantics.
Lastly, this abstraction of the program model is analyzed with respect to
graph-theoretic properties.
If all steps indeed respect the given program semantics, graph theoretic
properties of the program model abstraction can indeed be mapped to
actual properties of the program.
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Following this view, both data-flow analysis and context-sensitive slicing
are techniques that operate as third step. That is, control-flow graphs
and program dependence graphs are abstractions of underlying program
models. One main result of chapters 5–7 is that program dependence
graphs and control-flow graphs can be seen as instances of the same general
graph model. However, this generalization ignores program semantics.
Whether or not the results that generalized data-flow analyses yield can be
transferred to actual program properties is out of the scope of this thesis.
For data-flow analyses on control-flow graphs, we can state that if they
are constructed properly, they can give semantic guarantees. However,
such a statement cannot easily be generalized to data-flow analyses on
interprocedural graphs, let alone transferred to program dependence
graphs. I will consider semantics more closely in subsection 9.2.4.
Hence, within the scope of this work, generalized data-flow analysis is to
be understood as an abstract technique for analyzing graphs with respect
to their path sets.

9.2 Simplification and Restrictions

In the following, I discuss some aspects that I chose to simplify for the sake
of presentation and uniformity. Moreover, I look at some of the restrictions
of generalized data-flow analysis on interprocedural graphs and discuss
possible ways to lift them.
The first two subsections are dedicated to the simplifications and the last
two subsections discuss the restrictions.

9.2.1 Forward Analysis vs. Backward Analysis

Forward analyses consider the propagation of data-flow information
along the paths of the given directed graph, in the direction given by the
graph’s edges. In contrast, backward analyses consider the propagation of
data-flow information against the direction given by the graph’s edges.
There are numerous program analyses that are naturally expressed as
backward data-flow analyses (cf. [130, Figure 2.6]). Another important
example of a backward analysis is slicing in its original formulation. As I
explained in subsection 3.3.1, program slicing was originally introduced
as a technique for focusing on the parts of a program that contribute to
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the value of a given variable at a given program location. This naturally
leads to the notion of backward slices. Hence, subsequent work on slicing
mainly focused on computing backward slices. Even the summary edge
computation was originally presented as a backward analysis [93, 137],
although this is not strictly necessary, since the property of same-level path
reachability is symmetric.
Although I mainly concentrated on forward analyses, all my considerations
apply to backward analyses as well. Adapting my framework to backward
analyses would result in algorithms that are even closer to the original
slicing and summary edge computation approaches.

9.2.2 Functional Level vs. Ordinary Level and Initial
Values

My representation of data-flow analyses uses an ordinary lattice L of
possible values and a lattice F that consists of monotone functions on L,
contains the identity function and is closed under function composition.
The goal function MOVP has values in F – i.e. it assigns a pair (s, t) a
function MOVP(s, t) that represents the transformation of data-flow facts
along all valid paths from s to t. After MOVP has been computed or
approximated, one can apply MOVP(s, t) to some value l ∈ L to yield the
transformed value MOVP(s, t)(l).
Classically, one is not interested in the function MOVP(s, t) but rather
the value MOVP(s, t)(init) for a specific element init ∈ L, called initial
information. This element is traditionally associated with the entry or exit
node of the procedure or program to be analyzed. Hence, it is customary
to include init into a data-flow instance and focus on the computation of
data-flow analysis solutions that aim to approximate MOVP(s, t)(init) for
t ∈ N. This is also how I introduced classical intra-procedural data-flow
analysis in subsubsection 3.2.2.1. If s is not a fixed node, then we can also
consider init as a function N→ L.
Both the functional and the call-string approach to interprocedural data-
flow analysis can in principle be formulated in this way: It is not hard to
come up with variations of Constraint System 6.5, Constraint System 7.1,
Constraint System 6.2 and the corresponding algorithms and correctness
results that employ the initial information. The only component that
requires the functional level is the same-level solution. The reason is that
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we want to use MOSL (or the least same-level solution, respectively) to “fill
the gap” between an entry node n0 and an exit node n1 (or between a call
node and a corresponding return node, respectively), without knowing the
value that arrives at n0. That is, we explicitly need a function that describes
the transformation of data-flow facts along same-level paths from n0 to n1.
I chose to completely stay on the functional level because it is required for
the same-level problem and I wanted my presentation to be uniform.

9.2.3 Concurrency

My analysis framework only considers nesting structures that occur in
sequential programs. For both control-flow graphs and program depend-
ence graphs, extensions have been proposed to support concurrency. In
the following, I want to discuss these extensions briefly.
For control-flow graphs, it has been shown that it is possible to support
simple parallelism constructs [151] and even dynamic thread creation [117]
and enable a limited yet important class of data-flow analyses.
Program Dependence Graphs have also been extended to support multi-
threading [110, 86, 65, 66]. As I briefly explained in subsection 4.2.2,
additional edges called interference edges model data dependencies across
thread borders. Multi-threaded PDGs can also be sliced using an iterated
two-phase slicing approach that was first described by Nanda et al. [129] and
later also considered by Hammer [86] and extended by Giffhorn [65]. The
basic idea is to employ an additional loop around the two-phase slicer that
invokes a two-phase slice each time an interference edge is encountered.
A possible generalization of my framework to concurrent PDGs would
be to formally characterize the paths that are traversed by the iterated
two-phase slicer and then establish a monotone constraint system that
characterizes the data-flow along these paths. A worklist algorithm that
solves this system could then turn out to be a generalization of Nanda’s
iterated two-phase slicer.
Note that for the iterated two-phase slicer, we cannot expect that the
iterated two-phase backward slice can be used to verify a non-interference-
like property (or a result such as the slicing theorem, respectively). As I
explained in subsection 4.2.1, additional dependencies have to be taken
into account to obtain such a result. However, I think it is possible to
re-formalize e.g. the RLSOD check, which I described in subsection 4.2.1,
in such a way that it performs a form of slicing instead of checking,
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possibly on an extension of the multi-threaded PDG by an additional type
of dependency. As for the iterated two-phase slicer, one could establish
a monotone constraint system that characterizes the data-flow along the
paths that are traversed by the RLSOD slicer.
In summary, I think that it is possible to extend my framework for multi-
threaded PDGs. However, such an extension would probably be specific
to PDGs and I suspect that the resulting data-flow analysis cannot be
unified with data-flow analysis for multi-threaded control-flow graphs as
described by Lammich and Müller-Olm et al. [117].

9.2.4 Semantics

Classic data-flow analyses have a strong connection to program semantics.
Control-flow graphs can be considered as static approximations of the
possible program executions. This connection can be used to formally
characterize the program properties that a given data-flow analysis verifies
[45].
Program Dependence Graphs can also be connected to program semantics,
albeit not that directly: As we saw in subsection 3.4.1, PDGs have been se-
mantically justified in the sense that equivalent programs have isomorphic
PDGs and the reachability instance, i.e. PDG-based slicing, has been shown
to verify non-interference. However, it is unclear how such results can be
extended to other data-flow analyses on PDGs.
In particular, it is not clear what a given data-flow analysis result along the
paths of a program’s dependence graph tells about the executions of that
program. For example, the least distances analysis from subsection 5.4.7
provides purely graph-theoretic information about the structure of the
given graph.
Hence, generalized data-flow analyses on interprocedural graphs per se
only compute properties of the given graph and additional arguments
are necessary to provide the connection to a reference semantics such
as program semantics. Nonetheless, I still think that such generalized
analyses can be useful. For example, the least distances analysis from
subsection 5.4.7 could be extended in such a way that it also constructs a
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shortest path40 that can serve as a “simplest witness” for the connectedness
of two nodes. Moreover, strong bridges or strong articulation points (as
described in subsection 5.4.4) can be computed in order to automatically
infer parts of a program dependence graph where it may be promising to
increase analysis precision.

9.3 Benefits and Possible Improvements of My
Approach

In this section, I discuss possible improvements and benefits of my ap-
proach.

9.3.1 Applicability of Existing Extensions and
Improvements

Generally, the approaches that I describe in this work are extensions of
the two approaches presented by Sharir and Pnueli [154]. As such, they
inherit all benefits and drawbacks.
The functional approach yields the most precise result but only works
effectively for a given data-flow framework instance F if the lattice of
functions of F satisfies the ascending chain condition and functions can
be encoded effectively.
In the literature, we can find several contributions that improve certain
aspects of the functional approach and that can also be applied in the
context that I consider here.
For example, Reps et al. [136] consider an important class of data-flow
problems that can be encoded particularly well. For this class, which
consists of data-flow analyses with a finite subset lattice and distributive
transformers, it is possible to encode the summary functions in such a way
that the whole data-flow analysis can be reduced to graph reachability.
Sagiv et al. [145] extend this work to data-flow problems in which the

40I suspect that such an algorithm would generally consist of two parts: (a) a two-phase
approach that treats the edge functions and same-level information as weights and works
analogously to a classic algorithm and (b) a second step that exploits same-level information
to iteratively replace summary edges by shortest same-level paths.
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data-flow facts are mappings from variables to lattice values but the
transformers still enjoy distributivity properties.
Moreover, one shortcoming of the functional approach of Sharir and Pnueli
is that it does not properly support local variables. Knoop and Steffen
[106] present a solution for this: They extend a given data-flow framework
instance by a stack component and additional transformers for modelling
parameter-passing. This technique works solely on the level of the data-
flow framework instance and therefore only needs little adaption of the
analysis approach itself.

9.3.2 Benefits of My Framework Compared to Adhoc
Approaches

My theory gives a formal characterization of the results of data-flow
analyses in terms of information transformers along certain path sets and
provides generic algorithms to generate these results. This is beneficial in
situations where algorithms on PDGs are considered that can be expressed
as data-flow analyses. Having available a general result that only needs to
be instantiated to a concrete framework instances eliminates the necessity
of a separate correctness argument.
One notable example is Hammer’s approach to information flow control,
which I considered in subsection 5.4.6. While Hammer notes that his
approach to IFC can be expressed as a data-flow analysis, he only applies
this fact in the intraprocedural case [86, p. 103]. For the interprocedural
case with declassification, he presents adapted versions of the well-known
summary edge algorithm [86, Algorithm 8/9] and the two-phase slicer
([86, Algorithm 7]) and gives dedicated correctness arguments (see [86,
Theorem 4.10] and [86, Theorem 4.4], respectively).
With my framework, such separate correctness arguments are not neces-
sary: It is only necessary to show that Hammer’s approach to IFC with
declassification can be performed by computing the MOVP solution of an
appropriate data-flow analysis (as I did in subsection 5.4.6). Then, e.g.,
Algorithm 9 and Algorithm 12 can safely be used to compute the least
solution, in connection with appropriate checks.
Another example, which I want to discuss at this point, is barrier slicing. I
already considered barrier slicing in subsection 5.4.5.
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Krinke [111] proposes a two-phase approach with a barrier-specific pre-
processing phase to compute context-sensitive barrier slices. The pre-
processing phase relies on the existence of summary edges. It starts with
the assumption that all summary edges are blocked, i.e. that all same-level
paths contain nodes from the given barrier. Then, it iteratively unblocks all
summary edges for which it can construct a barrier-free same-level path.
The following two-phase approach then uses only unblocked summary
edges and itself skips the barrier. While the correctness of Krinke’s
approach is intuitively plausible, he does not prove formally that his
approach indeed computes context-sensitive barrier slices. Moreover,
Krinke’s approach is tailored to the problem of computing barrier slices.
It is unclear how his approach needs to be adapted in order to compute
slices with other properties. As I pointed out in subsection 5.4.5, barrier
slicing can be viewed as an instance of a more general problem, namely the
problem of computing all nodes that are reachable using paths of a given
regular language. This means that barrier slices can be computed with the
help of Algorithm 9 and Algorithm 12, which both come with formally
proven correctness properties. Moreover, if we want to consider slices
with other regular properties, all that we need to do is change the data-
flow framework instance and use the algorithms for the other instance.
However, it is worth pointing out that this flexibility comes at a price, at
least when using the functional approach: Since summary information is
specific to the framework instance, it can only be re-used for problems of
the same instance. Moreover, the data-flow framework instance for barrier
slicing is dependent on the barrier. Hence, the summary information has
to be re-computed if the barrier changes. This problem was also noted by
Krinke [111, p. 4].
There are two potential remedies to this drawback of using a generic
approach. Firstly, one could use a call-string approach. Call-string
approaches are also generic but do not need barrier-specific pre-processing
phases. However, as we saw in chapter 8, they are significantly less
precise and considerably more costly. Secondly, one could try to use a
more elaborate data-flow framework instance. Such an instance would
propagate the information “this path skips the following nodes” – i.e.
node sets – instead of the binary information “this path skips the given
barrier”. I suspect that this would result in a more expensive summary
information computation phase, since its lattice is more complex, but
potentially increases the re-usability for a variety of barriers.

378



9.4 Alternative Approaches to Generalize Slicing

9.4 Alternative Approaches to Generalize
Slicing

In this thesis, I consider context-sensitive slicing on program dependence
graphs as a form of data-flow analysis on a generalized interprocedural
graph model. However, data-flow analysis is not the only technique that
can be unified with slicing. In the following subsections, I take a look at
three formalisms from the literature for which I suspect that they are also
suitable to represent program dependence graphs and context-sensitive
slicing.

9.4.1 Pushdown Systems

One alternative approach is to employ pushdown systems [36, 90]. Pushdown
systems are extensions of finite state machines that are able to represent
the control-flow in sequential programs with recursive procedure calls. A
configuration of a pushdown system consists of a control state and a stack.
The control state may assume finitely many values and the stack consists
of a (finite but arbitrarily long) list of stack symbols from a finite alphabet.
Possible transitions of a pushdown system may alter the control state and
manipulate the stack, depending on the stack’s top symbol.
An interprocedural (program dependence) graph G can be represented as
a pushdown system as follows: The possible control states are the nodes
of G, while the stack alphabet consists of the G’s call edges. The transitions
can then be defined in a similar fashion as the constraints from Constraint
System 6.5.
Pushdown systems can be analyzed with respect to their configuration
space: For any regular set C of configurations, the set pre⋆(C) of configur-
ations that reach C by a sequence of allowed transitions is also regular [36].
In particular, if C is given as a finite automaton, one can use a saturation
procedure to construct a finite automaton that accepts pre⋆(C). This result
can be applied to obtain a context-sensitive slicer that is more flexible than
classical two-phase slicing. The slicing criterion does not need to be a set
of plain nodes but can also encode regular properties about the possible
call stacks. A simple version of such a context-restricted slicer was already
considered by Krinke [112].
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The analysis of pushdown systems is not restricted to reachability. A
pushdown system P can also be equipped with weights and it is possible
to compute a form of merge-over-all-paths solution on the configuration
transition graph ofP [147]. The structure of these weights is largely similar
to the transfer functions considered in data-flow analysis. This idea, which
was already noted by Schwoon et al. [147], was further developed by Reps
et al. [139], who showed that weighted pushdown systems are general
enough to express important special cases of interprocedural data-flow
analysis.

9.4.2 Recursive State Machines

Another formalism to represent PDGs, which I want to briefly mention,
are recursive state machines [13]. Recursive state machines are a model
of sequential, imperative, recursive programs and consist of multiple
components, which may have multiple entries and exits. Slicing then can
be expressed as reachability analysis on recursive state machines. Such an
analysis can be performed using a functional approach [13].

9.4.3 Visibly Push-Down Languages

The valid paths considered in this thesis appear to be an example of
visibly push-down languages [15, 14]. Their key feature is that they are
recognized by a class of push-down automata that are restricted in their
stack manipulation operations. This restriction is still general enough to be
useful in program analysis – yet, visibly push-down languages enjoy nice
closure properties. For example, they are closed under intersection (unlike
general context-free languages) and union (unlike deterministic context-
free languages). Hence, by employing visibly push-down languages,
one could define and compute language-restricted slices with respect
to properties that are expressible by visibly push-down languages –
a generalization of the regular language-restricted slices considered in
subsection 5.4.5.

380



All things must pass.
George Harrison 10

Conclusion

10.1 Summary and Main Theses

In the following, I give a summary of this dissertation and revisit the main
theses stated in section 1.3.

10.1.1 Applications to Software Security

Summary Chapter 3 gave a general overview of static analysis tech-
niques and data structures, including data-flow analysis on control-flow
graphs and slicing on program dependence graphs. It also mentioned the
connection between slicing and information flow control. The last section
of chapter 3 described the PDG-based information flow control tool Joana
and several analysis techniques for object-oriented languages such as Java.
Subsequently, in chapter 4 I reported on the contributions of the program-
ming paradigms group at KIT to the priority program RS3.
I presented research results of the sub-project “Information Flow Control for
Mobile Components” concerning information flow control for concurrent
languages. In particular, I described a static PDG-based check to guarantee
probabilistic non-interference that was developed in our group within the
scope of RS3.
I also reported on the contributions of our group to two of the three reference
scenarios of RS3, namely “Security In E-Voting” and “Software Security
For Mobile Devices”. In the former, Joana is combined with a theorem
prover to verify cryptographic properties of prototypical electronic voting
systems, and in the latter, Joana provides static checks of user-defined
security policies in the server component of a secure app store.
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Lastly, I described several collaborations within RS3. In these collabor-
ations, we demonstrate that Joana can be used to increase the precision
and performance of dynamic usage control and to simplify the security
verification obligations in component-based systems. A third cooperation
is concerned with the development of RIFL, a machine-readable language
dedicated to the specification of security properties. RIFL specifications
can not only be read by machines, but also be checked by information flow
analysis tools. I contributed a Joana-back-end for RIFL. An application of
RIFL is ifspec, a benchmark for information flow analysis tools.

Main Thesis 1: PDG-based information flow control is useful, prac-
tically applicable and relevant. As shown in chapter 4, applications
of Joana range from highly relevant scenarios such as mobile security
and electronic voting systems to the support of both theorem provers and
dynamic usage control systems.

10.1.2 Systematic Approaches to Advanced Information
Flow Analysis

Summary In chapter 5, I developed a general notion of valid paths and
described a graph-based model and a data-flow framework that incorpor-
ates both interprocedural data-flow analysis on control-flow graphs and
PDG-based slicing as special cases. I discussed several examples from the
literature that can be expressed systematically within this framework.
Chapter 6 demonstrated that instances of the general framework developed
in chapter 5 can indeed be solved with the two classical approaches of Sharir
and Pnueli [154] – the functional approach and the call-string approach,
respectively. I specified monotone constraint systems whose least solutions
can be used to compute an over-approximation of the merge-over-all-valid-
paths (MOVP) solution given by the framework instance. Similar to
classic results, I showed that the functional approach and the unrestricted
call-string approach both fully characterize the MOVP solution. For the
call-string approach, I gave a sufficient criterion under which it yields a
correct over-approximation of MOVP using a possibly finite constraint
system. I showed that this criterion is in particular satisfied for call-strings
whose length is at most k.
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In chapter 7, I showed how the constraint systems developed in chapter 6
can be solved algorithmically. Here, I combined a classical worklist-based
solving algorithm with a reachability analysis that explores the relevant
core of the given constraint system. Given a set of variables to start with,
only the constraints that the initial variables may influence are solved,
provided that the initial variables satisfy a regularity condition. Roughly
speaking, this can be imagined as computing a (forward) slice of the given
constraint system. I instantiated the resulting algorithm multiple times to
obtain solving algorithms for the constraint systems of the functional and
the call-string approach. Using this method, I showed that the functional
approach can be performed analogously to the methods proposed by
Horwitz et al. [93, 137] for context-sensitive slicing: First, the same-level
problem needs to be solved. This can be understood as a generalization of
the summary edge computation. After that, a two-phase algorithm can
be used to solve the actual problem. I also showed that the call-string
approach can be performed using an appropriate instance of the general
algorithm.
Within the scope of this thesis, I not only developed a general framework
and its solution approaches theoretically, but also implemented it in Joana
and evaluated it to demonstrate that it is practically feasible. In chapter 8, I
presented my implementation and discussed some of the practical choices
I made. In addition, I discussed the methods and results of my evaluation.
Last but not least, in chapter 9 I discussed my approach and put it into
the context of related and similar work. I pointed out the restrictions
and possible improvements and extensions. Moreover, I discussed other
formalisms that also appear to be a natural generalization of context-
sensitive slicing.

Main Thesis 2: Data-flow analysis can be systematically applied to
program dependence graphs. The theory that I developed in chapters
5–7 proposes to view context-sensitive slicing as a special case of a gen-
eralized version of the classical technique of interprocedural data-flow
analysis. Particularly, this applies to earlier PDG-based approaches such
as Hammer’s IFC [86, 87] and Krinke’s barrier slicing [111, 110].
Hence, PDG-based approaches can profit from the advantages of a rich,
generic toolkit for systematically deriving sophisticated analyses: If a given
problem on a PDG can be expressed as a data-flow analysis instance, the

383



10 Conclusion

framework provides generic and re-usable solution algorithms with general
correctness guarantees that give formal descriptions of the solutions. This
also includes correctness arguments such as the ones given by Hammer
and Krinke for their respective problems.
Moreover, I demonstrated that generalized data-flow problems can be
described with both a functional approach and a call-string approach. The
resulting constraint systems can then be solved with a general solution
algorithm that integrates a classical worklist algorithm with a reachability
analysis. The instantiations of this algorithm for the functional approach
can be modified in a way such that they resemble a generalization of
the summary edge computation and the two-phase approach known for
context-sensitive slicing [93, 137], respectively.

Main Thesis 3: Data-flow analysis on PDGs can be practically con-
ducted. My evaluation demonstrates that it is also practically feasible
to solve complex data-flow analysis problems on program dependence
graphs. Moreover, it shows that the functional approach outperforms
the call-string approach with respect to both performance and precision.
A side product of the precision evaluation is the formal description of
an instance- and approach-independent method for the precision evalu-
ation of data-flow analyses. Future work can use this method to ensure
comparability.

10.2 Future Work

I want to close this thesis by giving an outlook on future work. I restrict this
outlook to the area of generalized data-flow analysis on interprocedural
graphs like program dependence graphs, to which I consider this thesis as
a starting point.

10.2.1 Approximation of Same-Level Information

One characteristic of the functional approach is that the two-phase al-
gorithm that solves the actual constraint system relies on a same-level
solution. The most precise same-level solution can be computed by an
algorithm like Algorithm 9 or Algorithm 17. The evaluation in chapter 8
shows that this can be quite expensive. However, my theory provides a
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remedy for the case that precision can be sacrificed. In fact, the correctness
properties in section 7.3 state that the algorithms for computing ascending
and non-ascending-path solutions still produce correct results if they are
fed with a same-level solution that is not as precise as possible. This
opens up a possibility for less precise yet faster ways to produce correct
same-level solutions.
An extreme example would be to simply use a same-level solution whose
value is always the greatest element ⊤. This is surely SL-correct because of
the maximality property of ⊤. More generally, we could exploit domain-
specific knowledge about the data-flow framework instance and use a
value for which we know that it is a universal upper bound of MOSL. For
example, consider the dist instance that was described in subsection 5.4.7
and evaluated in chapter 8: According to its definition we have ⊤ = 0.
Using such a simplified same-level information would amount to a distance
calculation that would assume that entries and exits of the same procedure
are connected by a path with length 0. Such a distance calculation would
result in statements like “nodes s and t are connected by a valid path that
has a length of at least n”, which are still correct if the length of same-level
paths is coarsely underestimated41.
Other approximations of same-level information are imaginable. One
variant, which I considered more closely within the scope of this thesis but
did not evaluate practically, uses a N-indexed family of constraint systems
Cn, so that for all n ∈N we have

l f p(Cn) ≥MOSL(a)
l f p(Cn+1) ≤ l f p(Cn)(b)

Property (a) ensures that we can correctly use any l f p(Cn) as same-level
information, while property (b) entails that we can get more precision by
just increasing n. A special case of this scheme uses constraint systems
Cn that are defined in a similar fashion as Constraint System 6.1, but
have a different sl-sol-(iii)-clause: Instead of recursively relying on the
solution characterized by the constraint system itself, it consults l f p(Ck)

41As I already briefly mentioned in subsection 5.4.7, Krinke [110] also considered distances
in system dependence graphs and since he does not provide details about how he computed
distances of same-level paths, I firmly suspect that he assigned summary edges a value of 1
(like any other edge), which also is a very coarse underestimation.
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for some k < n as a helper solution for same-level information42. Property
(a) ensures that this indeed characterizes a solution that is correct with
respect to MOSL. Every l f p(Cn) can then be computed by subsequently
computing l f p(C0), . . . , l f p(Cn−1) and then, finally, computing l f p(Cn).

10.2.2 Further Exploration of Stack Spaces and
MOVP-Correct Abstractions

In chapter 6, I introduced stack spaces as an abstract structure for rep-
resenting call stacks. The constraint system for the call-string approach
is parameterized with a given stack space. This enables me to not only
consider one call-string approach but multiple concrete instances that
differ only in the stack space parameter. I also provide stack abstractions
as a tool to relate two stack spaces. With the help of stack abstractions, I
state a sufficient criterion for when the call-string approach with respect
to a given stack space leads to a MOVP-correct solution. This criterion
requires that there has to be a stack abstraction from the stack space S∞ of
unbounded stacks to the given stack space. Examples for the satisfiability
of this criterion, and hence for stack spaces that lead to MOVP-correct
solutions, are the k-bounded stack spaces Sk.
There are two open questions in this context:

1. Is the criterion necessary for obtaining a MOVP-correct solution?

2. Are there, apart from the Sk, other stack spaces that lead to MOVP-
correct solutions?

If these two questions can be answered, we could either be assured that
there are no other stack spaces that lead to MOVP-correct solutions, or other
appropriate stack spaces could be found that offer a better compromise
between precision and performance.
Regarding the first question, stack abstractions as introduced in this work
have the restriction that they do not change the alphabet. It may be
sensible to explore whether and how this restriction can be lifted. If it is

42This idea can indeed be used to construct such a family (Cn)n∈N of constraint systems
from Constraint System 6.1 as follows: C0 demands X(s, t) ≥ ⊤ for all s, t ∈ N, and each Cn
is a copy of Constraint System 6.1 where the sl-sol-(iii)-clause is modified such that the
right-hand side relies on l f p(Cn−1) as a helper solution for same-level information.
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possible to obtain stack spaces with MOVP-correct solutions from S∞ via
such generalized stack abstractions, then it may also be possible to obtain
MOVP-correct stack spaces for which there is no ordinary stack abstraction,
so that the first question would have to be answered negatively.
I suspect that the answer to the second question is that there are indeed
stack spaces other than Sk that satisfy the criterion. It seems possible that
there are stack abstractions that do not apply the same bound to all stacks
but crop each stack depending on their content. More formally, given a
function d : E⋆call →N, one can define

α(σ) = σ≤d(σ)

γ(σ) = σ,

which should be a stack abstraction. Note that d has to be bounded so that
the resulting constraint system is finite.

10.2.3 Relation Between the Results of Data-Flow
Analysis on PDGs and Program Semantics

An important special case of my general data-flow framework is data-flow
analysis on PDGs. All the examples that are described in this thesis are
inherently graph-theoretic, i.e. they do not allow for conclusions about
semantic properties of the program represented by the PDG. From my
point of view, this gap needs to be examined further. Some interesting
questions in this area include:

• To what extent can data-flow analyses on PDGs be generated sys-
tematically from a given program’s semantics (as discussed in sub-
section 9.2.4)?

• What kind of properties can be examined or verified this way? To
what extent can a connection between the valid paths in a PDG and
the set of program executions be established?

• Or, respectively, do we need some other kind of program semantics
artifact that can serve as basis for a set of valid PDG paths?

• How does data-flow analysis on PDGs have to be adapted to make
such a connection possible?
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10.2.4 Generalization of Chopping

Chopping [96] was introduced as a generalization of slicing to enable
the extraction of more focused program parts. A chop has two nodes s
and t as parameter and is defined as the set of nodes that lie on valid
paths between s and t. Like for slicing, approaches for the computation of
context-sensitive chops have been proposed [138].
I think that it is possible to generalize chopping in a way that is similar to
how slicing was generalized in this thesis. The objective function of such
a generalization would take not two arguments, like MOVP, but three
arguments s, t and n. Its value MOVPch(s, t, n) could be defined as the
merge-over-all-valid paths from s to t that also contain n. Analogously
to MOVP, one could try to approximate MOVPch by means of monotone
constraint systems. I suspect that this can be done both with a functional
and a call-string approach. A benefit of such an analysis would be
significantly more detailed results, and hence more information than for
the slicing variant. For example, for the dist instance, one could yield
statements like “all paths from s to t that pass n have a length of at least k”
– that is, with the additional argument, one would get a whole spectrum
of results instead of just one.

10.2.5 Extensions to Concurrent Programs

As already discussed in chapter 9, the framework that I develop in this
thesis is restricted to sequential constructs. Hence, future work should
explore how this restriction can be lifted. Possible ideas for PDGs, which I
considered more closely in subsection 9.2.3, include (a) formalizing and
generalizing slicers for concurrent PDGs, like for example the iterated
two-phase slicer, and (b) examining and generalizing the constraint system
that are solved by IFC checkers on multi-threaded PDGs such as the RLSOD
approach [31].

10.2.6 Exploration of Other Generalizations of
Context-Sensitive Slicing

As already pointed out in subsection 9.4.1, other formalisms than data-
flow analysis could be considered as possible generalizations of context-
sensitive slicing. For example, Push-Down Systems enable slicers that
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allow for significantly more flexible queries. Such an approach could
also be generalized to an analysis that not only computes a slice, but also
computes data-flow analysis results (or weights, respectively).
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A
Proofs

A.1 Proof of Theorem 5.9

Lemma A.1. Let π ∈ Bal(E) be a balanced symbol sequence. Assume that
(i, j) ∈ νπ and that either of the following holds:

(i) i is the least call position.

(ii) j is the greatest return position.

Then both π<i and π> j are balanced.

Proof. We first consider case (i). Since π is balanced, we have c(π<i′) ≥ 0
for any i′ ≤ i. Furthermore, c(π<i) must be 0 because π<i contains no call
symbols. This together proves that π<i is balanced. Now we show that
π> j is balanced. It suffices to show that (1) c(π> j) = 0 and (2) c(π] j,k[) ≥ 0

for every k ∈] j, n− 1], where n
de f
= |π|.

We have c(π) = 0 since π is balanced. Moreover, we already have argued
that c(π<i) = 0. Furthermore, because (i, j) ∈ νπ, π]i, j[ is balanced, so we
have c(π]i, j[) = 0. Together we can conclude:

0 = c(π) = c(π≤ j) + c(π> j)

= c(π<i) + c(πi) + c(π]i, j[) + c(π j) + c(π> j)

= 0 + 1 + 0 + (−1) + c(π> j)

= 0 + c(π> j)

= c(π> j)
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A Proofs

It remains to show that c(π] j,k[) ≥ 0 for every k ∈] j, n − 1]. For this, note
that

c(π< j) = c(π<i) + c(πi) + c(π]i, j[) = 0 + 1 + 0 = 1

and c(π j) = −1.
Now pick any k ∈] j, n− 1]. Then we have

0 ≤ c(π<k)

= c(π< j) + c(π j) + c(π] j,k[)

= 1 + (−1) + c(π] j,k[)

= c(π] j,k[).

Now consider case (ii). We have c(θ) ≥ 0 for every prefix θ of π<i since
π is balanced and c(θ′) ≥ 0 for every prefix θ′ of π> j, since π> j does not
contain any return symbols. Furthermore, due to the balancedness of π]i, j[

we can derive

0 = c(π) = c(π<i) + c(πi) + c(π]i, j[) + c(π j) + c(π> j)

= c(π<i) + 1 + 0 + (−1) + c(π> j)

= c(π<i) + c(π> j)

Since both c(π<i) and c(π> j) are not negative, they must both be 0. In
summary, we have shown that both c(π<i) and c(π> j)must be balanced. □

Theorem 5.9. For any symbol sequence π ∈ E⋆, the following conditions are
equivalent:

(a) π is balanced.

(b) νπ is left- and right-total, i.e. a bijective function Callpos(π)→ Retpos(π).

Proof. (a) =⇒ (b)

We show that the claim

∀π ∈ E⋆. π balanced =⇒ νπ bijective
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A.1 Proof of Theorem 5.9

by strong induction on the number K ∈N of call symbols in π.

induction hypothesis: The claim is proven for all π′ which contain L < K
call symbols.

Let π ∈ E⋆ be a symbol sequence with K call symbols and assume that π
is balanced. Then, by Lemma 5.4, π also contains K return symbols. Let
n = |π| be the length of π.

If K = 0, i.e. if π does not contain any call or return symbols, then νπ is the
empty relation and therefore trivially fulfills the conditions of a bijective
function between empty sets.

Now assume that π contains K > 0 call and K return symbols. We show
left- and right-totality separately.

left-totality Let i ∈ range(π) be the least index such that πi = ecall ∈ Ecall.
Hence, we can write

π = π<i · ecall ·π>i(A.1)

First, we show that there must be a k ∈]i, n[ such that c(π]i,k]) < 0. This can
be seen as follows. First, due to the choice of i, π<i does not contain any call
symbols. Moreover, because π is balanced, we have c(π<i) ≥ 0. But this
means that π<i cannot contain return symbols either. Hence, c(π<i) = 0
and from this, we derive that c(π>i) < 0 by the following computation:

0 = c(π) { π balanced }

= c(π<i) + c(ecall) + c(π>i) { (A.1), additivity of c }

= c(πi) + c(π>i) { c(π<i) = 0 }

> c(π>i). { πi ∈ Ecall }

But by definition of c, c(π>i) < 0 implies that there must be k ∈]i, n[ such
that c(π]i,k]) < 0.

Now let j be the smallest k ∈]i, n[ such that c(π]i,k]) < 0. Obviously, we
have i < j. Moreover:

• π j ∈ Eret: If this were not the case, it would follow that

c(π]i, j−1]) < 0,

a contradiction to the choice of j.
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• For k′ ∈]i, j[, consider the prefix π]i,k
′] of π]i, j[. Then c(π]i,k

′]) ≥ 0, since
k′ < j and j was chosen to be the smallest k with c(π]i,k]) < 0.

• c(π]i, j[) = 0: From the previous fact we know already that c(π]i, j[) ≥ 0.
Furthermore, because 0 > c(π]i, j]) = c(π]i, j[) + c(π j) = c(π]i, j[) +
(−1), we can also conclude that c(π]i, j[) ≤ 0.

From the former two statements we conclude that π]i, j[ is balanced. Now
we have

π = π<i · ecall ·π]i, j[ · eret ·π> j

and have shown that π]i, j[ is balanced. Together with i < j and π j = eret ∈
Eret this entails (i, j) ∈ νπ.

Now, because π is balanced (by assumption) and due to the choice of i
we can apply Lemma A.1 and additionally conclude that π> j is balanced.
Since both π]i, j[ and π> j contain at most K − 1 call symbols, we can apply
the induction hypothesis to them and gain that ν

π]i, j[
and νπ> j are bijective,

so in particular left-total.

Let i′ ≠ i be another call position of π. Due to the choice of i, it must be
i′ > i and since π j ∈ Eret, we conclude that either i′ < j or i′ > j. If i′ < j
then by using that πi′ = (π]i, j[)i′−(i+1) and the left-totality of ν

π]i, j[
, we

obtain a j′ such that (i′ − (i + 1), j′) ∈ ν
π]i, j[

which means by Lemma 5.17
that (i, j′+ (i+ 1)) ∈ νπ. Similarly, we find a j′ with (i′, j′) ∈ νπ in the case
that i′ > j. This concludes the proof of the left-totality of νπ.

right-totality Let j ∈ range(π) be the greatest index such that π j ∈ Eret.
Then we have

0 ≥ c(π≤ j) = c(π< j) + c(π j) = c(π< j) − 1,

which means that c(π≤ j) > 0. Hence, by the properties of c, there must be a
k ∈ [0, j[ such that c(π[k, j[) > 0. We choose i to be the greatest such k. Then
we have i < j. Moreover, due to the maximality of i, we have c(π]i, j[) ≤ 0.
Lastly, we have

0 < c(π[i, j[) = c(πi) + c(π]i, j[).

Because c(π]i, j[) ≤ 0, this necessarily entails c(πi) > 0, i.e. c(πi) = 1, and
c(π]i, j[) = 0.
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A.1 Proof of Theorem 5.9

Now let k ∈]i, j[. Then we have

0 = c(π]i, j[) = c(π]i,k]) + c(π]k, j[),

but since k > i and because of the maximality property of i, it must be
c(π]k, j[) ≤ 0, which means that c(π]i,k]) ≥ 0.

Together this shows (i, j) ∈ νπ. By Lemma A.1 and the choice of j, π<i is
balanced. For the other return positions j′ < j we proceed similarly to
the left-totality part: We apply the induction hypothesis (noting that π]i, j[

and π<i contain less call symbols) and Lemma 5.17 to obtain i′ such that
(i′, j′) ∈ νπ.

(b) =⇒ (a) Let π ∈ E⋆ be a symbol sequence such that

νπ : Callpos(π)→ Retpos(π)

is a bijective function. We must show that π is balanced. By Lemma 5.6 it
suffices to show that

c(π) = 0(1)

∀i ∈ range(π). c(π≤i) ≥ 0(2)

Claim (1) is clear because of the bijectivity of νπ and the first statement in
Lemma 5.4.

It remains to show (2). We proceed by strong induction on i. Let i ∈
range(π). The induction hypothesis is

∀i′ < i.c(π≤i′) ≥ 0(IH)

We have to show c(π≤i) ≥ 0. For this, we make a case distinction on
whether i = 0 or not.

• If i = 0, the claim follows easily from the definition of c.

• Now assume i ≠ 0 and consider πi. For πi ∈ Eintra ∪ Ecall, we have
c(πi) ≥ 0. Moreover, by (IH), we have c(π≤i−1) ≥ 0. These two facts
entail c(π≤i) = c(π<i) + c(πi) ≥ 0.
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Now consider the case that πi ∈ Eret. Since νπ is bijective, there is
j < i such that π j ∈ Ecall and π] j,i[ is balanced. We conclude

c(π<i) = c(π< j)
⏞ˉ⏟⏟ˉ⏞
≥0 by (IH)

+ c(π j)
⏞⏟⏟⏞
=1

+ c(π] j,i[)
⏞ˉ̄⏟⏟ˉ̄⏞

=0

> 0.

This proves that c(π≤i) ≥ 0.
□

A.2 Proof of Theorem 5.10

Theorem 5.10. Given π ∈ E⋆, assume that (i, j), (i′, j′) ∈ νπ. Then one of the
following statements is true:

1. [i, j] ⊆ [i′, j′]

2. [i′, j′] ⊆ [i, j]

3. [i, j] ∩ [i′, j′] = ∅
Proof. For (i, j) = (i′, j′), the theorem is trivially true. If (i, j) ≠ (i′, j′),
then left- and right-uniqueness of νπ (Theorem 5.8) gives us i ≠ i′ ∧ j ≠ j′.
Also note that i ≠ j′ and j ≠ i′, because πi,πi′ ∈ Ecall and π j,π j′ ∈ Eret.
Since (i, j) ∈ νπ, π can be split up into

π = π<i ·πi ·π]i, j[ ·π j ·π> j,

where πi ∈ Ecall, π j ∈ Eret and π]i, j[ is balanced. Now, we make a case
distinction of where i′ lies relative to i and j and show for every case that
one of the three conditions from the claim must be true.

i′ < i : Then j′ cannot be in ]i, j[. Assume, for the purpose of contradiction,
that it were. Since π]i, j[ is balanced, we may apply Theorem 5.9 and find
i′′ such that (i′′, j′ − (i + 1)) ∈ ν

π]i, j[
. By shifting, we see that (i′′ + i +

1, j′) ∈ νπ. Since νπ is left-unique, this means that i′ = i′′ + i + 1. But,
since i + 1 > 0, it must be i′ > i, which contradicts the case we consider
currently. So, the assumption that j′ is in ]i, j[ is false. It follows that either
j′ < i or j′ > j. In the former case, since j′ > i′, we have [i, j] ∩ [i′, j′] = ∅
and in the latter case we have [i, j] ⊆ [i′, j′].
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i′ > i∧ i′ < j : First, we note that j′ > i. This follows from (i′, j′) ∈ νπ and
i′ > i. Moreover, we observe that j′ cannot be greater than j. This can be
shown analogously to the previous case, by shifting around, by using that
νπ is right-unique and by exploiting the balancedness of π]i, j[. In summary,
we have shown [i′, j′] ⊆ [i, j].

i′ > j : Since (i′, j′) ∈ νπ implies i′ < j′, it must also be j′ > j. So we have
[i, j] ∩ [i′, j′] = ∅.

□

A.3 Proof of Theorem 5.19

Lemma A.2. We have Eintra ⊆ Bal(E), Ecall ⊆ Right(E) and Eret ⊆ Le f t(E).

Proof. • For e ∈ Eintra, νe is both left- and right-total, since Callpos(e) =
Retpos(e) = ∅. This implies e ∈ Bal(E) by Theorem 5.9.

• For e ∈ Ecall, νe is right-total, since Retpos(e) = ∅.
• For e ∈ Eret, νe is left-total, since Callpos(e) = ∅.

□

Lemma A.3. Le f t(E), Right(E) and Bal(E) are all closed under concatenation.

1. If π,π′ ∈ Le f t(E), then π ·π′ ∈ Le f t(E).

2. If π,π′ ∈ Right(E), then π ·π′ ∈ Right(E).

3. If π,π′ ∈ Bal(E), then π ·π′ ∈ Bal(E).

Proof. 1. Let i ∈ range(π ·π′). Then either i ∈ range(π) or i = |π|+ i′ with
i′ ∈ range(π′). We consider each case separately:

a) If i ∈ range(π), then because π ∈ Le f t(E), there is j ∈ range(π) ⊆
range(π ·π′) with (i, j) ∈ νπ.

b) If i = |π|+ i′ with i′ ∈ range(π′), then because π′ ∈ Le f t(E), we find
j′ ∈ range(π′) with (i′, j′) ∈ νπ′ . Then (i′ + |π|, j′ + |π|) = (i, j′ + |π|) ∈
νπ·π′ by Lemma 5.17.

2. This follows by an analogous argument as the first statement.
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3. This is a consequence of Theorem 5.9 and the first two statements.
□

Lemma A.4. If π ∈ Bal(E), ecall ∈ Ecall and eret ∈ Eret, then ecall · π · eret ∈
Bal(E).

Proof. Let π ∈ Bal(E), ecall ∈ Ecall and eret ∈ Eret and define π′ de f
= ecall · π ·

eret. We show that

c(π′) = 0(A)
∀θ ∈ Pre f ix(π′). c(θ) ≥ 0(B)

This implies that π′ ∈ Bal(E) by Lemma 5.6.

(A) Since π ∈ Bal(E) we have c(π) = 0. This implies

c(π′) = c(ecall) + c(π) + c(eret) = 1 + c(π) + (−1) = 1 + 0 + (−1) = 0.

(B) Let θ ∈ Pre f ix(π′). The case θ = π′ is already covered by (A). Also,
c(ϵ) = 0 holds by definition. It remains the case that θ = ecall · θ′ for some
prefix θ′ of π. But π ∈ Bal(E), which implies c(θ′) ≥ 0 by Lemma 5.6. It
follows

c(θ) = c(ecall · θ′) = c(ecall) + c(θ′) = 1 + c(θ′) > 0.

□

Theorem 5.19. Bal(E) is the least subset X of E⋆ with the following properties:

(Bal1)
ϵ ∈ X

(Bal2)
π ∈ X e ∈ Eintra

π · e ∈ X

(Bal3)
π ∈ X π′ ∈ X ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X

Proof. First, we show that Bal(E) satisfies the properties Bal1, Bal2, Bal3. It
is clear that Bal(E) satisfies Bal1. Furthermore, Lemma A.2, Lemma A.3
and Lemma A.4 imply that it also has the properties Bal2 and Bal3.
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A.3 Proof of Theorem 5.19

It remains to show that Bal(E) is the least subset of E⋆ with properties Bal1,
Bal2, Bal3. For this, let X ⊆ E⋆ be a set of symbol sequences that satisfies
the closure properties Bal1, Bal2 and Bal3. We show Bal(E) ⊆ X by strong
induction on the lengths of symbol sequences. The induction hypothesis
for n ∈N is

∀π ∈ Bal(E).|π| < n =⇒ π ∈ X(A.2)

Now let π ∈ Bal(E), |π| = n. We show π ∈ X by a case distinction on
whether Retpos(π) = ∅ or not.

1. If Retpos(π) = ∅, then we also have Callpos(π) = ∅, because π is
balanced. Hence, π is either empty or solely consists of intraprocedural
symbols. Thus, π ∈ X can be derived by repeated application of Bal1 and
Bal2.

2. If Retpos(π) ≠ ∅, then let j be the maximum of Retpos(π). Since π is

balanced, there must be i ∈ range(π) with (i, j) ∈ νπ. With ecall
de f
= πi and

eret
de f
= π j, π can be decomposed into

π<i · ecall ·π]i, j[ · eret ·π> j

From (i, j) ∈ νπ it follows that π]i, j[ is balanced. From this, the balanced-
ness of π and the choice of j, we can conclude by application of Lemma A.1
that both π<i and π> j are balanced.

Since both π<i and π]i, j[ are balanced and shorter than π, we obtain π<i ∈ X
and π]i, j[ ∈ X by induction hypothesis. With Bal3 we get

π<i · ecall ·π]i, j[ · eret ∈ X(A.3)

Due to the choice of j, we have Retpos(π> j) = ∅. Since π> j is balanced,
this implies that Callpos(π> j) = ∅, too. Hence, from (A.3) we get

π<i · ecall ·π]i, j[ · eret ·π> j ∈ X

by repeated application of Bal2.

□
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A.4 Proof of Theorem 5.20

Definition A.5. For a given symbol sequence π ∈ E⋆, we define the set MRet(π)
of matched return positions as follows:

MRet(π)
de f
= { j ∈ Retpos(π) | ∃i ∈ range(π). (i, j) ∈ νπ}

Lemma A.6. Let π ∈ Le f t(E) such that MRet(π) ≠ ∅. Assume that j is the
greatest element of MRet and let i = ν−1

π ( j). Then the following statements hold:

1. Both π<i and π> j are left-total.

2. π> j consists only of symbols from Eintra ∪ Eret

Proof. We show the two statements separately.

1. Let i′ ∈ Callpos(π<i). Because Callpos(π<i) ⊆ Callpos(π) and π ∈
Le f t(E), we find j′ ∈ range(π) with (i′, j′) ∈ νπ. This j′ is a member
of MRet(π): j′ ∈ MRet(π). Due to the choice of j, we have j′ < j. With
Theorem 5.10 and i′ < i we get j′ < i. Therefore, (i′, j′) ∈ vπ<i . This shows
π<i ∈ Le f t(E).

2. This is an easy consequence of the maximality of j.

□

Theorem 5.20. Le f t(E) is the least subset X of E⋆ which has the following
properties:

(Le f t1)
ϵ ∈ X

(Le f t2)
π ∈ X e ∈ Eintra ∪ Eret

π · e ∈ X

(Le f t3)
π ∈ X π′ ∈ Bal(E) ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X

Proof. First, we observe that Le f t(E) has the closure properties Le f t1,
Le f t2, Le f t3. This is clear for Le f t1, the other two properties follow from
Lemma A.2, Lemma A.3, Lemma A.4 and Remark 5.12.
Next, let X ⊆ E⋆ be a set with the closure properties Le f t1, Le f t2 and Le f t3.
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A.4 Proof of Theorem 5.20

Now we show Le f t(E) ⊆ X by strong induction on the length of sequences
from E⋆.
For n ∈N, the induction hypothesis is

∀π ∈ E⋆.|π| < n∧π ∈ Le f t(E) =⇒ π ∈ X(A.4)

Now let π ∈ E⋆ be a symbol sequence with |π| = n and π ∈ Le f t(E). We
show π ∈ X by case distinction on whether MRet(π) = ∅ or not.

1. If MRet(π) = ∅, then Callpos(π) must be empty, too: Assume, for the
purpose of contradiction, that Callpos(π) contains some call position i.
Then i cannot be matched, because MRet(π) = ∅. But this is a contradiction
to π ∈ Le f t(E). Hence, the assumption is false and Callpos(π) = ∅.
Because Callpos(π) = ∅, π solely consists of symbols from Eintra ∪ Eret.
Hence, π ∈ X can be derived by repeated application of Le f t1 and Le f t2.

2. If MRet(π) ≠ ∅, then let j be the greatest element of MRet(π) and

i = ν−1
π ( j). With ecall

de f
= πi and eret

de f
= π j, π can be written as

π = π<i · ecall ·π]i, j[ · eret ·π> j

By definition,π]i, j[ is balanced. Plus, sinceπ ∈ Le f t(E) and due to the choice
of j, by application of Lemma A.6 we obtain π<i ∈ Le f t(E), π> j ∈ Le f t(E)
and that π> j consists only of symbols from Eintra ∪ Eret.

Equipped with these observations, we can finish the proof as follows:

a) Because |π<i| < |π| and π<i ∈ Le f t(E), we may apply (A.4) to π<i and
obtain that π<i ∈ X.

b) Now we apply Le f t3 to π<i ∈ X, π]i, j[ ∈ Bal(E), ecall ∈ Ecall and eret ∈ Eret
and get π<i · ecall ·π]i, j[ · eret ∈ X.

c) Finally, because π> j ∈ (Eintra ∪ Eret)
⋆, we obtain

π<i · ecall ·π]i, j[ · eret ·π> j ∈ X

by repeated application of Le f t2 to π<i · ecall ·π]i, j[ · eret ∈ X.

□
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A.5 Proof of Theorem 5.21

Lemma A.7. 1. If π ∈ Le f t(E) and π≥k is a suffix of π, then π≥k ∈ Le f t(E).

2. If π ∈ Right(E) and π≤ j is a prefix of π, then π≤ j ∈ Right(E).

Proof. 1. Consider an arbitrary π ∈ Le f t(E) and let π≥k be a suffix of π.
We need to show that νπ≥k is left-total. Let i ∈ Callpos(π≥k). Then we show
that there is j ∈ Retpos(π≥k) such that (i, j) ∈ νπ≥k .

First, we observe (π≥k)i = πk+i. Hence, we have i + k ∈ Callpos(π).
Because νπ is left-total, there is j′ ∈ Retpos(π) such that (i + k, j′) ∈ νπ.
Moreover, because j′ > k + i ≥ k, we can write j′ as j′ = ( j′ − k) + k. In
particular, we have j′ − k ∈ range(π≥k). With Lemma 5.17, it follows from
(i + k, ( j′ − k) + k) ∈ νπ that (i, j′ − k) ∈ νπ≥k , which concludes the proof.

2. Let π ∈ Right(E) and π≤ j be a prefix of π. Let

l ∈ Retpos(π≤ j) ⊆ Retpos(π)

be a return position in π≤ j. Due to right-totality of νπ, we find a k ∈
Callpos(π) such that (k, l) ∈ νπ. This means in particular that k < l. With
l ≤ j we get k ≤ j so that we can conclude (k, l) ∈ νπ≤ j . This proves that
νπ≤ j is right-total.

□

Lemma A.8. Let π ∈ Right(E) such that Retpos(π) ≠ ∅. Assume that j is the
greatest element of Retpos(π) and let i = ν−1

π ( j). Then both π<i ∈ Right(E) and
π> j ∈ Right(E).

Proof. Since j is the greatest return position, we have Retpos(π> j) = ∅.
Hence, π> j can only consist of symbols from Eintra ∪ Ecall, so that π> j ∈
Right(E) holds trivially. Furthermore, π<i ∈ Right(E) holds because
Right(E) is closed under prefixes (by Lemma A.7). □
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Theorem 5.21. Right(E) is the least subset X of E⋆ which has the following
properties:

(Right1)
ϵ ∈ X

(Right2)
π ∈ X e ∈ Eintra ∪ Ecall

π · e ∈ X

(Right3)
π ∈ X π′ ∈ Bal(E) ecall ∈ Ecall eret ∈ Eret

π · ecall ·π′ · eret ∈ X

Proof. First, we observe that Right(E) has the closure properties Right1,
Right2, Right3. This is clear for Right1, the other two properties follow
from Lemma A.2, Lemma A.3, Lemma A.4 and Remark 5.12.
Next, let X ⊆ E⋆ be a set with the closure properties Right1, Right2 and
Right3. We show Right(E) ⊆ X by strong induction on the length of
sequences from E⋆.
For n ∈N, the induction hypothesis is

∀π ∈ E⋆.|π| < n∧π ∈ Right(E) =⇒ π ∈ X(A.5)

Now let π ∈ E⋆ be a symbol sequence with |π| = n and π ∈ Right(E). We
show π ∈ X by case distinction on whether Retpos(π) = ∅ or not.

1. If Retpos(π) = ∅, then π does not contain any return symbols. Hence,
π is either empty or solely consists of symbols from Eintra ∪ Ecall. In both
cases, π ∈ X can be derived by repeated application of Right1 and Right2.

2. If Retpos(π) ≠ ∅, then let j be the greatest element of Retpos(π) and

i = ν−1
π ( j). This is well-defined because π ∈ Right(E). With ecall

de f
= πi and

eret
de f
= π j, π can be written as

π = π<i · ecall ·π]i, j[ · eret ·π> j

By definition, π]i, j[ is balanced. Plus, since π ∈ Right(E) and due to the
choice of j, application of Lemma A.8 yields that π<i ∈ Right(E).

Now we can finish the proof as follows:

a) Because |π<i| < |π| and π<i ∈ Right(E), we may apply (A.5) to π<i and
obtain that π<i ∈ X.
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b) Now we apply Right3 to π<i ∈ X, π]i, j[ ∈ Bal(E), ecall ∈ Ecall and
eret ∈ Eret and get π<i · ecall ·π]i, j[ · eret ∈ X.

c) Finally, we note that, due to the choice of j, π> j only contains symbols
from Eintra ∪ Ecall. Hence, we obtain

π<i · ecall ·π]i, j[ · eret ·π> j ∈ X

by repeated application of Right2 to π<i · ecall ·π]i, j[ · eret ∈ X.

□

A.6 Proof of Lemma 5.24

Lemma A.9. For π ∈ E⋆ and e ∈ E, we have νπ·e = νπ if one of the following
conditions is satisfied:

e ∈ Eintra ∪ Ecall(i)
e ∈ Eret ∧π ∈ Le f t(E)(ii)

Proof. By definition, it is clear that νπ ⊆ νπ·e. For the other inclusion we
assume either condition and show that νπ·e ⊆ νπ holds in both cases.

(i) Assume that e ∈ Eintra ∪ Ecall. Let (i, j) ∈ νπ·e. Then i < j and (π · e) j ∈
Eret. Since Eret ∩ (Eintra ∪ Ecall) = ∅, (π · e) j ∈ Eret implies that j ≠ |π|.
Hence j ∈ range(π). But with i < j this means that i ∈ range(π). Hence
(i, j) ∈ νπ.

(ii) Assume e ∈ Eret and π ∈ Le f t(E). Let (i, j) ∈ νπ·e. From (i, j) ∈ νπ·e
we get i < j so that i ∈ range(π). Moreover, π ∈ Le f t(E), hence there is
j′ ∈ range(π) with (i, j′) ∈ νπ ⊆ νπ·e. From Theorem 5.8, we get j = j′ and
thus (i, j) ∈ νπ.

□

Lemma 5.24. 1. Ifπ ∈ AscSeq(E) and e ∈ Eintra∪Eret, thenπ · e ∈ AscSeq(E).

2. If π ∈ DescSeq(E) and e ∈ Eintra ∪ Ecall, then π · e ∈ DescSeq(E).

3. If π ∈ SLSeq(E) and e ∈ Eintra, then π · e ∈ SLSeq(E).
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A.7 Proof of Lemma 5.25

Proof. 1. Let π ∈ AscSeq(E) and e ∈ Eintra ∪ Eret. Then π ∈ Le f t(E) ∩
Val(E). It follows thatπ · e ∈ Le f t(E) by Theorem 5.20. Moreover, νπ·e = νπ
by Lemma A.9. Thus, π · e ∈ Val(E) follows from π ∈ Val(E).

2. Let π ∈ DescSeq(E) and e ∈ Eintra ∪ Ecall. Then π ∈ Right(E) ∩Val(E).
It follows that π · e ∈ Right(E) by Theorem 5.21. Moreover, νπ·e = νπ by
Lemma A.9. Thus, validness of π · e follows from validness of π ∈ Val(E).

3. This follows from a combination of the first two statements.
□

A.7 Proof of Lemma 5.25

Lemma 5.25. Letπ ∈ Val(E) andπ′ ∈ SLSeq(E). Then the following statements
hold:

1. π ·π′ is valid.

2. If π ∈ Bal(E), then π ·π′ is same-level.

3. If π ∈ Le f t(E), then π ·π′ is ascending.

4. If π ∈ Right(E), then π ·π′ is descending.

Proof.
The first statement can be seen as follows: Let (i, j) ∈ νπ·π′ . Then either
j ∈ range(π) or there is j′ ∈ range(π′) with j = |π|+ j′. We show that
(i, j) ∈ Φ in either case.

1. Assume j ∈ range(π). Then i ∈ range(π) since i < j. Furthermore we
have (i, j) ∈ νπ by definition of νπ. This entails (i, j) ∈ Φ because π is valid.

2. Assume that j = |π|+ j′ for j′ ∈ range(π′). Since π′ is balanced and
hence right-total, there is i′ ∈ range(π′) with (i′, j′) ∈ νπ′ . By Lemma 5.17,
this means that (i′ + |π|, j) ∈ νπ·π′ and because νπ·π′ is right-unique, it
follows that i = i′ + |π′|. Since π′ is valid, we get

((π ·π′)i, (π ·π′) j) = (π′i
′
,π′ j

′
) ∈ Φ.

The other three statements are implied by the first statement and Lemma A.3
after noticing that SLSeq(E) ⊆ Bal(E), SLSeq(E) ⊆ Le f t(E) and SLSeq(E) ⊆
Right(E), respectively. □
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A.8 Proof of Lemma 5.26

Lemma 5.26. If π ∈ SLSeq(E), ecall ∈ Ecall, eret ∈ Eret and (ecall, eret) ∈ Φ,
then ecall ·π · eret ∈ SLSeq(E).

Proof. Define π′ de f
= ecall · π · eret. From π ∈ Bal(E), ecall ∈ Ecall, eret ∈ Eret,

we conclude that π′ ∈ Bal(E) by Lemma A.4. It remains to show that
π′ ∈ Val(E). Let (i, j) ∈ νπ′ . Then we show by case distinction on whether
i = 0 or not that (πi,π j) ∈ Φ.

1. If i = 0, then we must have j = |π′| − 1: Since νπ′ is left-unique by
Theorem 5.8, there can be only one j with (0, j) ∈ νπ′ . Furthermore, by
definition of νπ′ , we have (0, |π′| − 1) ∈ νπ′ :
• We have 0 < |π′| − 1, since |π′| ≥ 2.

• We have π′0 = ecall ∈ Ecall and π′|π
′|−1 = eret ∈ Eret

• We have π′]0,|π′|−1[ = π ∈ Bal(E) by assumption.

Thus (π′i,π′ j) = (π′0,π′|π
′|−1) = (ecall, eret) ∈ Φ by assumption.

2. Assume i ≠ 0. Then i ∈ [1, |π′| − 1[ because π′i ∈ Ecall and π′|π
′|−1 ∈ Eret

and Ecall ∩ Eret = ∅. Furthermore, j ∈]1, |π′| − 1[: j > 1 follows from 0 < i
and i < j. Moreover, since νπ′ is right-unique and (0, |π′| − 1) ∈ νπ′ and
i ≠ 0, we have j ≠ |π′| − 1. Hence, by Lemma 5.17 and because π is valid,
we get (π′i,π′ j) ∈ Φ.

□

428



B
List of Figures

1.1 A small code snippet with its control-flow graph and its
program dependence graph . . . . . . . . . . . . . . . . . . 2

1.2 Simple examples for illegal information flows . . . . . . . . 3
1.3 Visualization of the organization of this thesis . . . . . . . 9

2.1 Relationship between different chain conditions . . . . . . 17

3.1 Example for the impact of value-sensitivity . . . . . . . . . 42
3.2 Illustration of different sensitivities . . . . . . . . . . . . . . 43
3.3 An example program and its control-flow graph . . . . . . 44
3.4 Additional control-flow structure for procedure calls . . . 47
3.5 A code snippet and its control-flow graph . . . . . . . . . . 48
3.6 Illustration of the effect of non-distributivity on the difference

between MOP and MFP . . . . . . . . . . . . . . . . . . . . 53
3.7 The constraint system and its least solution for the reaching

definition analysis applied to the example from Figure 3.3 54
3.8 A small program with its interprocedural control-flow graph 56
3.9 Sketch of the idea of the functional approach . . . . . . . . 59
3.10 Visualization of data dependencies . . . . . . . . . . . . . . 63
3.11 Data dependency graph for the example from Figure 3.3 . 64
3.12 Illustration of control-dependencies . . . . . . . . . . . . . 65
3.13 Control dependence graph of the program in Figure 3.3 . . 65
3.14 The interprocedural PDG of the example in Figure 3.8a . . 66
3.15 A context-insensitive backwards slice . . . . . . . . . . . . 69
3.16 The interprocedural PDG of the example in Figure 3.8a with

summary edges . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.17 Applying the two-phase slicer to the example in Figure 3.14 75

429



B List of Figures

3.18 Illustration of a valid PDG path . . . . . . . . . . . . . . . . 77
3.19 Illustration of how the computation of the reachability solu-

tion along valid paths works . . . . . . . . . . . . . . . . . . 79
3.20 Illustration for the way in which the constraint systems for

slicing like Constraint System 3.4 contain irrelevant con-
straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.21 Illustration of the different work-flow policies of Algorithm 3
and Algorithm 4 . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.22 Call graphs for the program from Listing 3.1 resulting from
the application of different analyses . . . . . . . . . . . . . 88

3.23 Overview of exceptions in Java . . . . . . . . . . . . . . . . 91
3.24 Example for an information leak through exceptions . . . . 92
3.25 Program dependence graph for the example in Figure 3.24 92
3.26 The capabilities of Joana’s null pointer analysis . . . . . . 94
3.27 Two small example programs that illustrate aspects of objects

that need to be handled properly by a static information flow
analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.28 Data dependency graph of Figure 3.27a . . . . . . . . . . . 96
3.29 Data dependency graph of Figure 3.27b . . . . . . . . . . . 97
3.30 Joana’s PDG node structures corresponding to the operation

that reads an object’s field’s value from the heap . . . . . . 97
3.31 How Joana incorporates objects into its parameter passing

structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.32 A code snippet that illustrates the abstractions in points-to

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.33 Two code snippets (upper part) and their points-to graphs

(lower part) . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.34 Example showing a simple program and its SSA form . . . 101
3.35 The control-flow graph from Figure 3.3 in SSA form . . . . 102
3.36 Effect of SSA form on flow-insensitive points-to analysis . 103
3.37 Subset-based vs. equality-based points-to analysis . . . . . 104
3.38 Two example programs showing the effect of context-

sensitivity in points-to analysis on information flow analysis 105
3.39 Relevant section of the heap dependency graph of Fig-

ure 3.38a with different pointer analyses . . . . . . . . . . . 106
3.40 Relevant section of the heap dependency graph of Fig-

ure 3.38b with different pointer analyses . . . . . . . . . . . 107

430



B List of Figures

3.41 Effects of a context-sensitive heap model on Joana’s PDG
construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Examples for different types of leaks that can occur in con-
current programs . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 An example which passes Giffhorn’s criterion but not LSOD 117
4.3 Idea of the RLSOD improvement . . . . . . . . . . . . . . . 118
4.4 PDG of Figure 4.1a with interference edges . . . . . . . . . 120
4.5 Visualization of the general approach employed to verify the

security of the E-Voting system . . . . . . . . . . . . . . . . 123
4.6 Visualization of the hybrid approach . . . . . . . . . . . . . 124
4.7 Visualization of spec slicing . . . . . . . . . . . . . . . . . . 132
4.8 Architecture of the RS3 certifying app store . . . . . . . . . 134
4.9 Screenshots from the client-side app store app of the RS3

certifying app store (compare [120, Figure 1(b), Figure 1(d)]
and [20, Figure 2]) . . . . . . . . . . . . . . . . . . . . . . . . 135

4.10 Illustration of how an implicit intent is delivered through the
Android system to start another activity . . . . . . . . . . . 137

4.11 Overview of the architecture of Joana . . . . . . . . . . . . 138
4.12 Lifecycle of an activity (see [74, Figure 1]) . . . . . . . . . . 139
4.13 Possible approach to capture inter-app flows . . . . . . . . 144
4.14 RIFL’s program model . . . . . . . . . . . . . . . . . . . . . 146
4.15 Logical structure of an exemplary interface specification – the

actual RIFL specification snippet can be found in Listing 4.11 –
handles are represented by octagons, categories by rectangles
and sources/sinks by ovals . . . . . . . . . . . . . . . . . . . 147

4.16 Two views on methods . . . . . . . . . . . . . . . . . . . . . 151
4.17 Joana’s PDG node structures corresponding to the various

heap read operations . . . . . . . . . . . . . . . . . . . . . . 157
4.18 Joana’s PDG node structures corresponding to the various

heap write operations . . . . . . . . . . . . . . . . . . . . . . 158
4.19 Overview of benchmark results . . . . . . . . . . . . . . . . 164
4.20 Example scenario on which we demonstrated our SHRIFT

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.1 An example sequence with its matching relation . . . . . . 183
5.2 Illustration of the different cases of well-nestedness of νπ . 184

431



B List of Figures

5.3 A balanced but invalid symbol sequence – positions related
by νπ are connected . . . . . . . . . . . . . . . . . . . . . . . 185

5.4 Example in which it is important that ⊠ kills everything . . 207
5.5 Analysis precision and control dependencies . . . . . . . . 218
5.6 A finite automaton for explicit information flow analysis . 219
5.7 A small example which shows that the shortest valid path

may differ from the shortest arbitrary path . . . . . . . . . 229

8.1 Runtime distributions for the various same-level problem
solvers and instances . . . . . . . . . . . . . . . . . . . . . . 346

8.2 Relationship between graph size and runtime for the various
same-level problem solvers and instances . . . . . . . . . . 349

8.3 Comparison between the evaluated algorithms for same-level
computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

8.4 Additional effort of same-level computation for non-reach
instances (non-large programs) . . . . . . . . . . . . . . . . 351

8.5 Overview of the runtime distributions of the evaluated data-
flow solvers; a–c: only non-large programs, d–f: including
large programs . . . . . . . . . . . . . . . . . . . . . . . . . 355

8.6 Relationship between graph size and runtime for the various
DFA algorithms and instances . . . . . . . . . . . . . . . . . 358

8.7 Performance comparison between the call-string-based al-
gorithms and v2p . . . . . . . . . . . . . . . . . . . . . . . . 359

8.8 Additional effort of DFA for complex instances relative to
reach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

8.9 Comparison of cs0 and cs1 with respect to precision . . . . 368

432



C
List of Tables

4.1 Method parameters and return values as sources or sinks . 152
4.2 Method parameters and return values as sources or sinks on

Joana’s layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.3 Static and non-static fields as sources or sinks on Joana’s

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.4 The four possible analysis results when rated with respect to

the ground truth . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.5 Overall time of static analysis phase and PDG sizes for

JavaFTP and JZip . . . . . . . . . . . . . . . . . . . . . . . . 172
4.6 Precision evaluation for JavaFTP and JZip . . . . . . . . . . 173

5.1 Notions of validness in the literature . . . . . . . . . . . . . 203

8.1 Characteristics of the machine used for performance evalu-
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

8.2 Description of the sample programs used for this evaluation 343
8.3 Sizes of the PDGs in the sample considered for my evaluation 344
8.4 Overview of the chosen parameters for the evaluation of the

different same-level problem solvers . . . . . . . . . . . . . 347
8.5 Performance results for the summary information computa-

tion, part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
8.6 Performance results for the summary information computa-

tion, part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
8.7 Overview of the chosen parameters for the evaluation of the

different data-flow solvers . . . . . . . . . . . . . . . . . . . 357
8.8 Runtime performance of the various data-flow solvers for

reach instance . . . . . . . . . . . . . . . . . . . . . . . . . . 362

433



C List of Tables

8.9 Runtime performance of the evaluated data-flow solvers for
complex instances . . . . . . . . . . . . . . . . . . . . . . . . 363

434



D
List of Listings

3.1 An example which shows why dynamic dispatch must be
handled correctly . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 An example which passes RLSOD but not Giffhorn’s criterion 119
4.2 A secure program for which Joana reports a false alarm

(adapted from [115], p. 309) . . . . . . . . . . . . . . . . . . 127
4.3 An extension of the program in Listing 4.2 which makes the

absence of illegal information flow explicit . . . . . . . . . 128
4.4 A code snippet from the case study of [115] which needed to

be adapted . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.5 A code snippet from Listing 4.4 with a small but critical

modification . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.6 Another critical code snippet from the E-Voting Machine case

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.7 Example for an information flow across entry points . . . . 140
4.8 An example in which there is no information flow between

entry points . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.9 An exemplary section of an app’s manifest where a com-

ponent declares that it reacts to certain intents – taken and
adapted from the Android documentation [73] . . . . . . . 142

4.10 Example of how to invoke an activity using an implicit intent
– taken and adapted from [73] . . . . . . . . . . . . . . . . . 143

4.11 RIFL representation of the exemplary interface specification
from Figure 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.12 Specification of security domains and a flow relation in RIFL 149
4.13 Exemplary domain assignment in RIFL . . . . . . . . . . . 150

435



List of Listings

4.14 Java code fragment for Zipper application . . . . . . . . . . 169
4.15 Static analysis report listing sinks, sources and their depend-

encies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

436



E
List of Algorithms

1 Simple algorithm to compute the least solution of a monotone
constraint system . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Worklist algorithm for computing the least solution of a mono-
tone constraint system . . . . . . . . . . . . . . . . . . . . . . 27

3 A variable-oriented variant of Algorithm 2 . . . . . . . . . . 28

4 A simple intraprocedural backward slicer . . . . . . . . . . . 67
5 Summary Edge Algorithm proposed by Reps et al.– compare

[137, Figure 5] . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Backwards two-phase slicer proposed by Horwitz et al. [92] 73

7 Routine for checking a RIFL policy . . . . . . . . . . . . . . . 154

8 A variant of the worklist algorithm where the items taken off
the worklist have just been updated but changes have not
been propagated yet . . . . . . . . . . . . . . . . . . . . . . . 287

9 Algorithm for computing the least same-level solution . . . 300
10 Computation of the least ascending solution . . . . . . . . . 308
11 Computation of the least non-ascending solution . . . . . . 313
12 Computation of the least alternative valid-paths solution . . 320
13 Computation of the least alternative valid-paths solution with

respect to the most precise helper functions . . . . . . . . . . 322
14 Implementation of ComputeAscendingSolution’ . . . . . . . 323
15 Implementation of ExtendAlongNonAscSolution’ . . . . . . 324
16 Computation of the least S-solution . . . . . . . . . . . . . . 328

437



E List of Algorithms

17 A variant of Algorithm 9 that trades re-computation of intra-
procedural results for a more compact solution and worklist
representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

18 Intraprocedural part of Algorithm 17 . . . . . . . . . . . . . 338

438



Index

(P, E)-correct, 233
(P, E)-domain-correct, 233
(P, E)-domain-precise, 233
(P, E)-precise, 233
n e→ n′, 35

alphabet, 33
arity, 22
ascending chain, 16
ascending chain condition, 16

bound
greates lower, 14
least upper, 13
lower, 14
upper, 13

call node, 197
chain, 16
closed under F , 30
complete lattice, 15
constant, 22
constraint, 22

left-hand side, 22
constraint system, 22

core, 277

core variables, 277
corresponding functional of

a, 24
definition-complete, 283
least solution, 24
solution, 24

control dependency, 64
control-flow graph

intraprocedural, 45
correspondence relation, 186, 196

data dependency, 63
data-flow analysis instance, 205
descending chain, 16
descending chain condition, 16
directed graph, 35

set of paths, 36
distributive, 208

edge, 35
call, 196
interprocedural, 196
intraprocedural, 196
return, 196

expression, 22
free variables, 22

extensive, 15

439



Index

finite height, 17
fixed-point, 15
function symbol, 22

galois connection, 263

height
of a (finite) chain, 17
of a partial order, 17

inductively defined by F , 30
interpretation, 23
interprocedural graph, 196

letter, 33

monotone constraint, 22
monotone constraint system, 22
monotone function, 15

node, 35
entry, 197
exit, 197

operator, 30

partial order, 13
chain-complete, 17

path
S-acceptable, 250
ascending, 198
descending, 198
non-ascending, 297
same-level, 198
valid, 198

positive-distributive, 208

procedure graph, 197
procedure of a node, 197

range
of a sequence, 34
of a sub-sequence, 34

reductive, 15
relation

left-otal, 12
left-unique, 11
right-total, 12
right-unique, 12

return node, 197
right-hand side, 22

satisfaction
of a constraint, 24
of a constraint system, 24

sequence
set of prefixes, 34

solution
S-solution (modified), 326
S-solution, 250
alternative valid-paths, 316
ascending, 236
descending, 237
merge-over-P, 207
non-ascending, 311
same-level, 235
stack-based Merge-Over-All-
S-Acceptable-Paths, 254

valid-paths, 238
stack abstraction, 264
stack space, 246

cs function, 250
empty stack, 246
invalid stack, 249

440



Index

pop function, 246
push function, 246
top function, 246

strict, 208
symbol, 33
symbol sequence

i-th item, 34
ascending, 186
balanced, 182
concatenation, 34
content, 180
deficiency, 180
descending, 186
left-total, 185
length, 34
matching relation, 183
partially balanced, 185
right-total, 185
same-level, 186
sub-sequence, 34
valid, 186

universally distributive, 208

variable assignment, 23

441



I report on applications of slicing and program dependence 
graphs (PDGs) to software security. Moreover, I propose a 
framework that generalizes both data-flow analysis on con-
trol-flow graphs and slicing on program dependence graphs. 
Such a framework enables to systematically derive data-
flow-like analyses on program dependence graphs that go 
beyond slicing.

The main theses of my work are:
1.  PDG-based information flow control is useful,  

practically applicable and relevant.
2.  Data-flow analysis can be systematically applied to  

program dependence graphs.
3.  Data-flow analysis on PDGs can be practically conducted.
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