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Foreword by Jianbing Peng 

It is a great pleasure to write this Foreword for Dr. Lizhou Wu’s book on Rainfall 
Infiltration in Unsaturated Soil Slope Failure. I have ever taken a part in guiding the 
research and enjoyed our discussions on rainfall-caused landslides. 

Rainfall-induced landslides pose hazards to human safety and economic devel-
opment in the world. The complex geological environments and variable precipi-
tation lead to difficulties in the assessments of slope stabilities. Lizhou’s research 
group has performed a lot of fundamental researches on the scientific problems of 
rainfall-induced slope failure. 

This book by Lizhou Wu and Jianting Zhou bring many creative studies on rainfall 
seepage and slope failure mechanisms using both numerical techniques and analytical 
methods. The authors are particularly successful in addressing the analytical and 
numerical solutions of linear and nonlinear infiltrations related to the investigation of 
rainfall-induced unsaturated soil slope failures. It proposes creative novel methods 
for investigating the linear and nonlinear systems of rainfall infiltration inducing 
unsaturated soil slope failure. The analytical solutions to water infiltration consider 
vegetation root and coupling effects, which deserve further research. These methods 
in the book are applicable not only to unsaturated infiltration issues, but also to 
rainfall-caused landslides. 

I am pleased to witness the publication of this book. Students, engineers, and 
researchers who focus on the unsaturated infiltration and slope stability can benefit 
a lot from this book. I am confident that this book will serve as an important source 
of reference for future studies on rainfall-caused landslides. 

Jianbing Peng 
Academician of Chinese Academy 

of Sciences 
Chang’an University 

Xi’an, China

v



Foreword by Huiming Tang 

The book titled Rainfall Infiltration in Unsaturated Soil Slope Failure by Lizhou 
Wu and Jianting Zhou is a welcomed addition that provides an engineering method-
ology for a challenging problem of interest the world over. Virtually, many countries 
encounter serious geological hazards including rainfall-triggered landslides. 

The book brings primary application areas of engineering which have been indi-
vidually successful within civil engineering, namely the modeling of rainfall infil-
tration and rainfall-induced landslides. The authors are well aware of the extensive 
research that has been undertaken in various parts of the world related to modeling 
rainfall infiltration. The development of numerical and analytical methods of rainfall 
seepage and slope stability is particularly well presented in this book. The authors are 
particularly successful in addressing the many components related to the assessment 
of rainfall-induced landslides. 

When addressing issues related to modeling rainfall-induced landslides, there is 
a need to understand reliable numerical solutions of the nonlinear seepage equa-
tions. The authors have also made a significant contribution in developing numerical 
methods related to the estimation of unsaturated seepage for investigating rainfall-
induced landslides. I believe that this book will also form an important reference 
book that will be in demand in university and other engineering libraries. 

Huiming Tang 
Chair Professor, China University 

of Geosciences 
Wuhan, China
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Foreword by Limin Zhang 

Rainfall-triggered landslides are a common disaster around the world. Their mecha-
nisms are still not well understood and their evaluating methods not well developed. 
Rainfall infiltration is particularly difficult to assess when soil slopes are in complex 
geological environments. Many methods including analytical and numerical solu-
tions have been developed to predict slope instability due to rainfall infiltration. 
The predicted slope performance may deviate from the reality because of neglecting 
complex infiltration processes and geoenvironments. Due to the high nonlinearity of 
the equations governing rainfall infiltration into slopes and the hydraulic property 
functions, the efficient and reliable solution of the infiltration equations related to 
rainfall-triggered landslides is a difficult task. 

This book by Lizhou Wu and Jianting Zhou combines the complex topics of 
analytical and numerical modeling of rainfall infiltration and seepage into unsaturated 
soil slopes along with the analysis of slope stability. Particular attention is given to 
understanding nonlinear unsaturated infiltration process. The authors have brought 
the many components related to rainfall-induced landslides in one nutshell. The 
authors have also made a significant contribution to the development of numerical and 
analytical methods related to the evaluation of unsaturated infiltration into soil slopes 
for stability analysis purposes. I am confident that this book will be an important 
reference to researchers, graduate students, and practicing engineers. 

Limin Zhang 
Chair Professor, Head of Department 

of Civil and Environmental 
Engineering 

The Hong Kong University of Science 
and Technology 

Hong Kong, China
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Preface 

Landslides pose immediate threats to the infrastructures such as buildings, roads, 
bridges, and geoenvironment in the mountainous areas. Rainfall is the primary 
trigger of landslides that frequently cause fatalities and large economic loss. 
Rainfall-induced landslides gain greater attentions as climate becomes more extreme. 

A number of complicated mechanisms of rainfall-caused landslides are involved 
in the analysis of slope stability due to rainfall. Studies on rainfall-induced land-
slides require good knowledge of not only mechanical properties of the soil, but also 
hydrologic behavior of the soil governed by the soil seepage properties. 

The primary objective of the book clearly presents rainfall infiltration and slope 
stability analysis methods using analytical and numerical approaches. Analytical 
solution can consider coupled infiltration and deformation in unsaturated soil slopes 
considering vegetable root. A series of improved linear or nonlinear iterative methods 
are developed to solve complex nonlinear infiltration equation, which improves the 
convergence rate, accuracy, and stability. These methods are applied to simulate 
rainfall infiltration-induced unsaturated soil slope failures. 

The improved numerical methods, nonlinear and linear iterative methods which 
can be used to address the related unsaturated infiltration problems are also presented. 
This book is an essential reading for researchers and graduate students who are inter-
ested in rainfall infiltration, slope stability, landslides, and geohazards in the fields 
of civil engineering, engineering geology, and earth science. The book is written to 
guide professional engineers and practitioners in slope engineering and geohazard 
management. This book can enhance their understanding of rainfall-induced land-
slides, help them analyze a specific problem, and prevent landslides and design 
engineering slopes according to the local soil and climate conditions. 

Lizhou Wu 
Jianting Zhou 

Chongqing Jiaotong University 
Chongqing, China
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Chapter 1 
Background 

Heavy rainfall in extreme climates often causes natural disasters such as floods, 
landslides, and debris flows. Rainfall-induced slope instabilities are major geolog-
ical natural disasters (Glade 1998; Dai et al. 1999; Iverson  2000; Lee and Pradhan 
2007; Li et al.  2016a, b; Wu et al.  2020) that can result in considerable loss of life 
and damage to infrastructure. Extreme events such as storms, which are becoming 
more severe because of climate change, can trigger fatal landslides. Storm-induced 
slope failures frequently occur because of rainfall infiltration, particularly in tropical 
areas (Fourie 1996; Cevasco et al. 2014). Global climate change in many moun-
tainous areas could lead to more severe fluctuations in rainfall, and trigger of soil 
slope deformations and even slope instability because of the alteration of intensity, 
frequency, and quantity of rainfall (Dixon and Brook 2007; Jeong et al. 2008). The 
influence of climate change on rainfall characteristics has the potential to alter the 
stability of unsaturated soil slopes. Rainfall infiltration causes a decrease in matric 
suction and an increase in moisture content and hydraulic conductivity in unsat-
urated soils. The rainfall intensity and duration, initial water table, and hydraulic 
conductivity are the parameters that significantly affect slope stability (Ng and Shi 
1998). An increase in pore-water pressure can reduce the effective stress and thereby 
weaken the shear strength of slopes. Complex geological environment and human 
engineering activities are also significant factors of slope instability under rainfall 
conditions. 

Rainfall-induced slope failures have been examined based on experimental 
modeling, analytical and numerical methods (Ng and Shi 1998; Iverson 2000; Chen 
et al. 2005; Wu et al.  2009, 2016, 2020; Zhu et al. 2019). Laboratory and field exper-
iments have been carried out to examine the infiltration mechanisms associated with 
rainfall-induced slope failures (e.g., Lee et al. 2011; Wu et al.  2015, 2017, 2018). 
Many numerical and analytical studies have investigated the hydraulic responses of 
slopes to rainfall infiltration and the stability of slopes under such conditions (Iverson 
2000; Cai and Ugai 2004; Wiles 2006; Ali et al. 2014; Zhu et al. 2022). Numerical 
analysis solves for the matric suction or pressure head distribution in a soil slope with

© The Author(s) 2023 
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2 1 Background

varying permeability, and considering different surface conditions of a soil. Many 
cases demonstrate that change in rainfall patterns may lead to slope failure due to 
infiltration. The results can provide an indication of the potential influence of climate 
change on shallow landslides in many mountainous areas (Kim et al. 2012). 

Slope stability problems are commonly encountered in engineering projects. 
Many slope failures are attributed to water infiltration (Cho and Lee 2002; Cai and 
Ugai 2004). Matric suction is crucial to the stability of soil slopes because dissipa-
tion of matric suction leads to decrease in shear strength of unsaturated soils. Slope 
failure is closely related to the rainfall-induced transient infiltration of slopes in 
unsaturated soils (Fredlund and Rahardjo 1993; Wu et al.  2020). Shallow landslides 
are related to periods of intense rainfall. Engineering activities can result in severe 
geological and environmental issues. Slope failures induced by engineering activities 
may occur and may progress into landslides. The internal mechanics of slope move-
ments are stress redistribution and the consequent changes in engineering–geological 
conditions (Marschalko et al. 2012). 

Landslide forecasting should take into account rainfall infiltration into soil slopes. 
The models in predicting the timing and location of landslides are related to dynamic 
water infiltration in soil slope. The coupled process in an unsaturated soil is of major 
interest because of its implications for disaster prevention and environmental issues. 
Analytical approaches have been developed to provide a basic understanding of 
unsaturated infiltration in terms of the coupling effect (Wu et al. 2020). Meanwhile, 
numerical approaches provide a powerful tool for solving complex, nonlinear infil-
tration into unsaturated soils. These numerical models effectively investigate the 
coupled hydro-mechanical problem involved in unsaturated rooted slope stability 
issues (Oka et al. 2010; Wu et al.  2020; Zhu et al. 2022). 

1.1 Rainfall Infiltration Equation 

According to the modified Green–Ampt model (Mein and Larson 1973), the water 
infiltration process in soils during uniform precipitation can be divided into two 
stages: a stage controlled by rainfall intensity and a stage controlled by pressure 
head. The infiltration rate (f a) determined by rainfall intensity (qr) can be written as: 

fa = qr cos β (1.1) 

where qr is the rainfall intensity; and β is the slope angle. 
The infiltration rate (f b) determined by the pressure head can be expressed as: 

fb = ks 
zf cos β + sf 

zf 
(1.2) 

where ks represents the permeability coefficient at saturation; sf represents the suction 
head of the wetting front; and zf represents the wetting front depth.
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If f a = f b, the water ponding time (tp) can be obtained as: 

tp = sf(θs − θi) 
cos2 β(qr/ks − 1)qr 

(1.3) 

where θ s and θ i are the saturated moisture content and initial moisture content, 
respectively. 

According to the water balance principle and Darcy law, wetting front movement 
during rainfall can be calculated as follows:

{
zf = [qr cos β] t 

(θs−θi) , t < tp 
dzf 
dt = 1 

(θs−θi)

[
ks 

zf cos β+sf 
zf

]
, t ≥ tp 

. (1.4) 

Equation (1.4) is the GA model suitable for slopes (Chen and Young 2006). 
A penetration test of saturated sand layers was conducted and found a quantitative 

relationship between the infiltration velocity of water in the soil and the head loss, 
namely Darcy law: 

q = −ks 
dH 

dL 
(1.5) 

where q is the flux (discharge per unit area, with units of length per time, m/s), H is 
the total water head, and L is the seepage length. 

When soil mass is unsaturated, most scholars believe that Darcy law can also be 
used for analyzing water movement in unsaturated soils. Richards (1931) extended 
the Darcy law of saturated soil to the unsaturated infiltration and introduced the 
continuity equation to derive the equation of motion of the unsaturated soil–water 
flow, namely the Richards’ equation. The permeability coefficient (k) is expressed 
as a function of matric suction, and Darcy’s law can be expressed as: 

q = k∇ H (1.6) 

where ∇ H is a hydraulic gradient, including two components of gravity and suction. 
Continuity equation: 

∂θ 
∂t 

= −∇  ·  q (1.7) 

Then: 

∇ ·  [k∇ H ] = 
∂θ 
∂t 

(1.8) 

Substituting Eq. (1.6) into Eq. (1.8), one can obtain:
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Fig. 1.1 1D rainfall 
infiltration model 

∇ ·  [k(h)∇(h + z)] = 
∂θ 
∂t 

(1.9) 

As shown in Fig. 1.1, the Richards’ equation governing one-dimensional vertical 
infiltration in unsaturated soils can be written as: 

∇ ·  [k(h)∇h] + 
∂k(h) 

∂z 
= 

∂θ 
∂t 

(1.10) 

1.2 Infiltration Equation for Unsaturated Slopes 

The 2D generalized RE for unsaturated infiltration is expressed as (Ku et al. 2017; 
Wu et al. 2020): 

∂ 
∂x

[
Kx (h) 

∂ H 
∂x

]
+ 

∂ 
∂z

[
Kz(h) 

∂ H 
∂z

]
= C(h) 

∂ H 
∂t 

(1.11) 

where Kz(h) and Kx (h) are the permeability coefficients along the vertical direction 
and lateral direction in unsaturated soils, respectively. To study the groundwater 
flow of the unsaturated slope (Fig. 1.2), the RE needs to be rotated. Total head can 
be written as: 

H = h + E (1.12) 

and elevation head E can be described as:
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Fig. 1.2 A slope infiltration model 

E = x sin β + z cos β (1.13) 

By substituting Eqs. (1.12) and (1.13) into Eq. (1.11), Eq. (1.11) can be 
re-expressed as: 

∂ 
∂x

[
Kx (h)

(
∂h 

∂x 
− sin β

)]
+ 

∂ 
∂z

[
Kz(h)

(
∂h 

∂z 
+ cos β

)]
= C(h) 

∂h 

∂t 
(1.14) 

According to Iverson’s model (2000), the modified RE only considers infiltration 
in the vertical direction, which can be given by: 

∂ 
∂z

[
Kz(h)

(
∂h 

∂z 
+ cos β

)]
= 

∂θ 
∂t 

(1.15) 

1.3 Linearized Richards’ Equation 

Combined with an exponential model, Eq. (1.15) is linearized. Here, a new parameter 
h∗ is defined as: 

h∗ = eαh − λ (1.16) 

where λ is the key parameter for solving the linearized Richards’ equation in the 
conversion method, which can be defined as a constant λ = eαhd (Tracy 2006; 
Liu et al. 2015); hd is the pressure head value when the soil is dry. The relative
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permeability coefficient is expressed as: 

K (h) = 
Kz(h) 
ks 

= eαh (1.17) 

Taking the derivative of Eq. (1.16) with respect to z, one can obtain: 

∂h∗ 

∂ z 
= αeαh ∂h 

∂ z 
(1.18) 

Equation (1.18) can be re-stated as follows: 

∂h 

∂z 
= 

1 

α 
e−αh ∂h

∗ 

∂ z 
(1.19) 

Furthermore, substituting Eq. (1.16) into Eq. (1.19), one can obtain: 

K 
∂h 

∂z 
= eαh

(
1 

α 
e−αh ∂h

∗ 

∂z

)
(1.20) 

Equation (1.20) can be rewritten as: 

K 
∂h 

∂z 
= 

1 

α 
∂h∗ 

∂z 
(1.21) 

Equation (1.17) can be derived from z again: 

∂ K 
∂ z 

= αeαh ∂h 

∂ z 
(1.22) 

Substituting Eq. (1.19) into Eq. (1.22), one can have: 

∂ K 
∂z 

= 
∂h∗ 

∂ z 
(1.23) 

An exponential model is employed to describe soil moisture (Gardner 1958): 

θ (h) = θr + (θs − θr)eαh (1.24) 

where θ(h) is volumetric water content; θr is the residual volumetric water content. 
The derivation of both sides of Eq. (1.24) with respect to time t has the following 

relationship: 

∂θ 
∂t 

= (θs − θr) 
∂ K 
∂t 

= (θs − θr) 
∂h∗ 

∂t 
(1.25)
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Substituting Eqs. (1.19), (1.23), and (1.24) into Eq. (1.10), the linearized Richards’ 
equation can be obtained: 

∂2h∗ 

∂z2 
+ α 

∂h∗ 

∂z 
= c 

∂h∗ 

∂t 
(1.26) 

where c = α(θs − θr)/ks. 
Equation (1.26) is also expressed as: 

Ka 
∂2h∗ 

∂z2 
+ Kθ 

∂h∗ 

∂ z 
= 

∂h∗ 

∂t 
(1.27) 

where Kθ = ks/(θs − θr), Ka = Kθ /α. 
The finite difference format of the linearized RE (Eq. 1.26) can be expressed as: 

Ka 
h∗n 
i+1 − 2h∗n 

i + h∗n 
i−1

Δz2
+ Kθ cos β 

h∗n 
i+1 − h∗n 

i−1 

2Δz
= 

h∗n 
i − h∗n−1 

i

Δt 
(1.28) 

where i,Δz,Δt , and n denote the nodal point, grid size, time step, and time level, 
respectively. 

It can be seen from Eqs. (1.26) and (1.27) that the nonlinear partial differential 
equation (Eq. 1.26) has been transformed into a linear partial differential equation. 
Once the linear partial differential equation is solved to obtain a numerical solution, 
the actual pressure head can be written as: 

h(z, t) = 
1 

α 
ln

(
h∗(z, t) + λ

)
(1.29) 

1.4 Unsaturated Soil Slope Stability Under Rainfall 

Shear strength is a fundamental material property that is required to address a variety 
of engineering problems including bearing capacity, slope stability, lateral earth 
pressure, pavement design, and foundation design. Recently, many researches have 
focused on the shear strength of unsaturated soils (Fredlund et al. 1996; Lu et al.  
2010). 

According to Mohr–Coulomb criterion and effective stress, the shear strength of 
saturated soils can be expressed as: 

τf = c' + σ ' tan ϕ' (1.30) 

where τf is the shear strength (kPa), c is the cohesion (kPa), σn is the normal stress 
acting on the failure surface (kPa), and ϕ is the angle of internal friction (°). Cohesion
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and cohesive shear strength are due to chemical bonding between soil particles and 
surface tension within the water films (Lu and Likos 2006). Frictional shear strength 
(σn tan ϕ) is owing to internal friction between soil particles that depends on the 
normal stress acting on the failure surface. 

Engineering practices indicate that the shear strength equation of saturated soils 
can meet the engineering requirements. The shear strength parameters are also influ-
enced by matric suction. With an increase in matric suction, c and ϕ increase, which 
depends on soil texture and structure. Soil shear strength significantly increases with 
an increase in net normal stress, matric suction, and the parameters of shear strengths. 

However, several phases of unsaturated soils make the shear strength equation 
of saturated soils difficult to apply. Therefore, some studies on the shear strength 
criteria of unsaturated soils have been carried out. There are main representative 
shear strength criteria here. 

Bishop (1959) developed a shear strength criterion for unsaturated soils: 

τf = c' + [
(σ − ua)f + χ (ua − uw)f

]
tan ϕ' (1.31) 

where τf is the shear strength of unsaturated soils; c' and ϕ' are the effective cohesion 
and friction angle, respectively; (ua − uw) is the matric suction; ua is the pore air 
pressure; uw is the pore-water pressure (h = uw/γ w, γ w = ρwg); and χ is the function 
of the degree of saturation. 

Based on two stress state variables, the following equation was developed to 
describe shear strength (Fredlund and Rahardjo 1993): 

τf = c' + (σ − ua)f tan ϕ' + (ua − uw)f tan ϕ
b (1.32) 

where ϕb is the internal friction angle due to the distribution of matric suction. 
Lu and Likos (2004) proposed a unified form of shear strength equation: 

τf = c' + χf(σ − ua)f tan ϕ' + χf(ua − uw)f tan ϕ
'

= c' + c'' + (σ − ua)f tan ϕ' (1.33) 

in which 

c'' = χf(ua − uw)f tan ϕ
' (1.34) 

The first two terms in Eq. (1.33), c' and c'', represent shear strength due to the 
so-called apparent cohesion in unsaturated soils. In an unsaturated soil, the third 
term represents frictional shearing resistance provided by the effective normal force 
at the grain contacts. The apparent cohesion captured by the first two terms includes 
the classical cohesion c' representing shearing resistance arising from interparticle 
physicochemical forces, and the second term c'' describing shearing resistance arising 
from capillarity effects. The term c'' is defined as capillary cohesion hereafter. Phys-
ically, capillary cohesion describes the mobilization of suction stress χ (ua − uw) in
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terms of shearing resistance. The relationship between capillary cohesion and the 
maximum suction stress at failure, χf(ua − uw)f is defined as shear strength also 
affects the water movement of the soils (Eudoxie et al. 2012). 

Slope failure in unsaturated soil regions induced by rainfall is due to shear strength 
of unsaturated soils (Fredlund and Rahardjo 1993; Lu and Likos 2004; Guzzetti et al. 
2008; Muntohar and Liao 2009). Both rainfall characteristics (rainfall intensity and 
duration) and soil permeability may influence failure mechanism. 

The soil slope stability was commonly followed by stability analysis according 
to the pressure head and/or the stress condition within the soil slope profile. Various 
techniques were employed to compute factor of safety (Fs), and the conventional 
limit equilibrium methods (Alonso et al. 2010). The limit equilibrium approach is 
mostly effective for slope failure with a small depth compared with their length and 
breadth. A slope sliding at a depth happens as the driving stress contributing to failure 
exceeds the anti-slip stress offered by the soil mass strength. Namely, sliding can 
occur at a particular depth as follows: 

Fs(z, t) = 
tan ϕ'

tan β 
+ 

c' − h(z, t)γw tan ϕb 

W sin β cos β 
(1.35) 

where Fs(z, t) is the safety factor over depth and time; W is the weight of the sliding 
mass; and γ w represents the unit weights of water. 

Equation (1.35) can be re-arranged as: 

h(z, t) = c'

γw tan ϕb 
− 

γsatz sin β cos β 
γw tan ϕb

(
Fs − 

tan ϕ'

tan β

)
(1.36) 

in which, γ sat represents the unit weight of the saturated soil. When Fs approaches 
1, the infinite soil slope reaches a limit state. Based on Eq. (1.36), the limit-state 
pore-water pressure head can be obtained. 

Rainfall-induced landslides may occur in unsaturated soils above the groundwater 
table, usually with shallow sliding surfaces parallel to the slope surface (Lu and Godt 
2008), which involves 2D and 3D problems. However, an infinite slope model is 
usually used as a simplified model of the 2D or 3D issues with simple geometry and 
ignores the stress concentration, the practice sometime demonstrates its effectiveness 
for assessing shallow slope stability (Michalowski 2018). 

Slope instabilities are often hydrologically initiated by the advancement of the 
wetting front alone (Muntohar and Liao 2010), a rise in groundwater level (Asch 
et al.1999; Montgomery et al. 2009), and positive pore-water pressure on the soil– 
bedrock boundaries (Baum et al. 2010). The most common mechanism for rainfall-
induced landslides occurs when the soil slides on a low-conductivity layer. Rain-
fall infiltration leads to a rise in the pressure head, resulting in positive pore-water 
pressures (Iverson 2000; Muntohar and Liao 2010). 

Generally, unsaturated soil slope failures happen most frequently during or after 
rain periods (Wu et al. 2020). The characteristics of water flow, change of pore-
water pressure, and shear strength of soils are the major parameters related to slope
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stability analysis involving unsaturated soils that are directly affected by the boundary 
conditions (i.e., infiltration and evaporation) at the soil–atmosphere interface. The 
relative importance of soil properties, rainfall intensity, initial water table location, 
and slope geometry in inducing instability of soil slopes under different rainfall was 
investigated through a series of studies. Soil properties and rainfall intensity were 
found to be the primary factors controlling the slope instability due to rainfall, while 
the initial water table location and slope geometry only played a secondary role 
(Rahardjo et al. 2007). 

The Green–Ampt model is a typical approximate infiltration model. Due to 
the simplicity and few parameters, the approximate infiltration model has become 
popular (Grimaldi et al. 2013). The classic GA model is only suitable for infiltration 
in horizontal soils. Therefore, modified GA models have been developed to describe 
the water infiltration in layered soils and slopes (e.g., Mein and Larson 1973; Chen 
and Young 2006; Kale and Sahoo 2011). Some modified infiltration models that 
account for rainwater redistribution have also been proposed (e.g., Corradini et al. 
1997; Dou et al. 2014). These infiltration models have been extended to regional 
rainfall-runoff models for the hydrological prediction of catchments (Yuan et al. 
2019). However, the actual infiltration process is very complicated and affected by 
many factors such as soil heterogeneity and rainfall conditions, and becomes diffi-
cult to be described accurately based on theoretical formulations (Srivastava et al. 
2020). These theoretical equations generally tend to overestimate the factor of safety 
of soil slopes, resulting in slides and geological hazards (Kim et al. 2012). Some 
intelligent methods have been developed to predict the water infiltration into soils 
using machine learning techniques (Sihag et al. 2018). 

Hydrological responses and slope factor of safety due to rainfall are concerned 
from a perspective of hydro-mechanical coupling. Coupled and uncoupled hydro-
mechanical behaviors in unsaturated soils have been carried out to characterize 
the physical responses of unsaturated infiltration (i.e., variation of soil moisture, 
matric suction, effective stress, shear strength, and slope stability) (Casini 2013). 
The coupled issues are strongly linked in unsaturated soil slopes due to water infil-
tration, and the coupled poromechanical model actually examines the behavior and 
stability of rooted soils subjected to rainfall (Kim et al. 2012). Pressure heads gener-
ated in the uncoupled analysis are employed to examine deformation or soil slope 
stability (Cai and Ugai 2004; Yoo and Jung 2006). The accuracy and computational 
efficiency of the uncoupled analysis highly depend on the selected time increments 
(Huang and Lo 2013). The soil hydraulic and mechanical responses are calculated 
simultaneously in the coupled analysis. The coupled analysis produced a reasonably 
well defined wetting front and a lower critical Fs for unsaturated soil slopes. The 
coupled investigation could produce more accurate assessment of soil slope stability 
due to water infiltration and demonstrate a better physical representation of water 
infiltration and stress variation within unsaturated soil slopes. 

More and more methods highlight the role of vegetation because of their inter-
ception role of the canopy and the root characteristics. Meanwhile, recent studies 
indicate that vegetation cannot control the rainfall-induced shallow landslide distri-
bution (Emadi-Tafti et al. 2021). Some researches focus on the effect of roots on
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root–soil composite strength, or saturated hydraulic conductivity (Alessio 2019). 
The more complex the root architecture is, the stronger the root-composite strength 
becomes, while the faster the rainfall infiltrates. It has generally been concluded that 
vegetation roots mechanically and hydrologically affect slope stability. The plant 
roots seem act as a positive function in root-composite strength, while a negative 
role in water infiltration. Plant roots have various architectures in different land 
ecosystems and climatic conditions (Ma et al. 2018). Increasing studies related to 
soil–root complex focus on the root architectures (Burylo et al. 2011; Li et al.  2016a, 
b). One major controversy exists, e.g., the plant roots play positive role and enhance 
slope strength (Arnone et al. 2016). The roots could advance rainfall infiltration, 
thus contributing an adverse effect on slope stability (Ghestem et al. 2011; Garg  
et al. 2015). The root–soil composite strength and the hydraulic conductivity are of 
utmost importance for the rooted soil slope stability. 
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Chapter 2 
Analytical Solution to Unsaturated 
Infiltration 

2.1 Introduction 

Rainfall infiltration in unsaturated soil slopes is a classic issue in geotechnical engi-
neering (Conte and Troncone 2012; Iverson  2000; Morbidelli et al. 2018). Factors 
influencing the soil slope stability due to rainwater infiltration comprise the rainfall 
characteristics, the saturated permeability coefficient, the geometry of the slope, and 
the boundary and initial soil moisture conditions (Ali et al. 2014; Wu et al.  2020). 

The spatial and temporal evolution of unsaturated infiltration involves a governing 
partial differential equation that is expressed by the Richards’ equation (1931). The 
equation is highly nonlinear because the hydraulic conductivity and the pressure head 
depend on matric suction or moisture content. A number of exact and approximated 
analytical solutions to the infiltration equation were derived in past studies (e.g., 
Parlange et al. 1997; Basha 2011). Analytical solutions of the linearized infiltration 
equation were derived as an integral (Chen et al. 2003), as a Laplace transforma-
tion (Zhan et al. 2013), and as a Green’s function (Basha 1999). While numerical 
approaches can effectively simulate complex nonlinear infiltrations into an unsatu-
rated soil (Tracy 2006; Wu et al.  2020), analytical solutions can verify these numer-
ical procedures. The incorporation of physically based infiltration expressions better 
quantifies the infiltration models and causes a more reliable prediction of the water 
infiltration (Basha 2011). Compared with numerical solutions, the analytical methods 
are widely used because they can accurately check numerical methods, and concisely 
represent the pressure head variations with rainfall infiltration (Godt et al. 2012; Wu  
et al. 2020). Several analytical solutions to Richards’ equation were obtained using 
integral transform methods (Laplace and Fourier algorithms) and others (Qin et al. 
2010). The interaction between soil infiltration and displacement was defined as 
hydro-mechanical coupling effect (Wu et al. 2020). The coupled equation is char-
acterized by strong nonlinearity; thus, linearization is required when solving the 
equation (Li et al. 2013; Zhu et al. 2022). To derive the analytical solution to infil-
tration equation considering the coupled hydro-mechanical effect, the soil–water
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characteristic curve (SWCC) is represented using an exponential form, and then the 
analytical solution of pressure head with arbitrary initial conditions can be developed 
using integral transformation and other methods (Li and Wei. 2018; Wu et al.  2009, 
2012, 2016, 2018, 2020). 

Many natural slopes are covered with vegetation, which can hydraulically and 
mechanically affect the slope stability (Lynch 1995; Leung et al. 2017). Vegetation 
root water uptake changes the pore-water pressure or pressure head of slopes, which 
is defined as the hydraulic effect of vegetation on slopes (Leung et al. 2015; Ni et al.  
2018; Wu et al.  2021). Water is transferred by roots from soil voids to upper stems 
and leaves. The root water uptake rate and hydraulic conductivities are influenced by 
a number of factors including the soil type, self-hydraulic resistance, and hydraulic 
resistance of surrounding soils (Nyambayo and Potts 2010). Based on exponential 
function SWCC, the analytical solutions for water unsaturated infiltration were devel-
oped using Green’s function (Ng et al. 2015). The effect of hydrological conditions 
on the stability of vegetated soil slopes was investigated (Liu et al. 2016; Wu et al.  
2022). 

This chapter is to derive an analytical solution incorporating both the root contribu-
tion and hydro-mechanical coupling. The governing equation considering vegetated 
root and coupled infiltration and deformation is developed. The analytical solution 
is obtained using Green’s function. Parametric analyses are carried out to investigate 
the effect of factors on the vegetated slope stability. 

2.2 1D Analytical Solutions for Unsaturated Seepage 

2.2.1 No Coupling 

The one-dimensional infiltration equation can be expressed as (Richards 1931): 

∂ 
∂z

[
K (h)

(
∂h 

∂ z 
+ 1

)]
= 

∂θ 
∂t 

(2.1) 

where h is the pressure head; z is the vertical direction; t is the rainfall time. 
Based on Gardner model (1958) and variable definition (h∗ = eαh − χ in Chap. 1, 

where α is the desaturation coefficient, χ = eαhd ), the linearized Richards’ equation 
can be obtained: 

∂2h∗ 

∂z2 
+ α 

∂h∗ 

∂z 
= c 

∂h∗ 

∂t 
(2.2) 

where c = α(θs − θr)/Ks. 
Tracy (2006) developed an analytical solution to transient infiltration in unsatu-

rated soils:
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ha(z, t) = 
1 

α 
ln

(
h∗ 
t (z, t) + h∗ 

s (z) + eαhd
)

(2.3) 

in which, 

h∗ 
s (z) =

(
1 − eαhd

) × (
1 − e−αz

)
/
(
1 − e−α L) (2.4) 

h∗ 
t (z, t) = 

2
(
1 − eαhd

)
Lc  

eα(L−z)/2 
∞∑

m=1 

(− 1)m
(

λm 

μm

)
sin(λmz)e

−μmt (2.5) 

where λm = mπ/L and μm =
(
α2/4 + λ2 

m

)
/c. 

For unsaturated slopes (Fig. 2.1), the governing equations are modified as follows: 

∂ 
∂z

[
Kz(h)

(
∂h 

∂ z 
+ cos β

)]
= 

∂θ 
∂t 

(2.6) 

where β is the slope angle. The analytical solution of the seepage equation along the 
z-axis can be expressed as: 

h∗ 
t (z, t) = 

2
(
1 − eαhd

)
Lc  

eα cos β(L−z)/2 
∞∑

m=1 

(− 1)m
(

λm 

μm

)
sin(λmz)e

−μmt (2.7) 

h∗ 
s (z) =

(
1 − eαhd

) 1 − e−α cos βz 

1 − e−α cos β L (2.8)

l 

O 

Layer, α, ks 

qt 

qb 

Top boundary 

Bottom boundary 

Impervious Zone 

l 

O 

z 
q 

Top boundary 

Bottom boundary 
h=0 

h 

z 

Fig. 2.1 Top and bottom flux boundaries for a soil profile with a finite thickness. The soil layer 
is between z = 0 and  z = l, where  z is the vertical coordinate: a impermeable boundary; and b 
groundwater level at the bottom 



18 2 Analytical Solution to Unsaturated Infiltration

2.2.2 Hydro-mechanical Coupling 

Based on Darcy’s law, mass and momentum conservation, the equation that governs 
1D hydro-mechanical coupling in unsaturated soils, including the consideration of 
increases in the water table, can be given by (Lloret 1987; Wu et al.  2020): 

∂ 
∂z

[
k 

∂ 
∂z 

(h + z)
]

=
(
nβwSrγw + n 

∂ Sr 
∂h

)
∂h 

∂t 
− Srαc 

∂εz 

∂t 
(2.9) 

∂ 
∂z

[
Eεv − 

E 

F 
(ua − uw)

]
+ [nSrρw + (1 − n)ρs]g = 0 (2.10) 

where εv (εv = εz for one-dimensional problem) is the total volumetric strain of the 
soil mass, which is greater than zero during compression and less than zero during 
swelling; n is the percentage of voids; Sr is the saturation; (ua − uw) is the  matric  
suction; αc is the hydro-mechanical coupling coefficient (0 ≤ αc ≤ 1), which is 
determined by the bulk modulus of the solid skeleton and the bulk modulus of the 
solid soil (Wu et al. 2020); E is the elastic modulus of the soil that takes account of 
alterations in the net normal stresses (Wu et al. 2020); F is the elastic modulus of the 
soil due to variations in matric suction, which is assumed to be a function of stress; 
βw is the compressibility of the fluid; ρw is the density of water; ρs is the density of 
the soil phase; and g is the acceleration of gravity. 

Equations (2.9) and (2.10) govern the coupling of 1D deformation and seepage 
in unsaturated soils and account for the groundwater table changes. 

On the assumption that pore-air pressure in the soil mass is kept constant; the 
derivative of Eq. (2.10) with respect to t can be written as: 

∂εv 

∂t 
= −γw 

F 

∂h 

∂t 
(2.11) 

From Eqs. (2.9) and (2.11), the following equation can be derived: 

∂ 
∂z

[
k 

∂ 
∂ z 

(h + z)
]

=
(

βw 
∂ρ 
∂h 

+ n 
dSr 
dh

)
∂h 

∂t 
+ 

γwSrαc 

F 

∂h 

∂t 
(2.12) 

Based on assumption that the coefficient of permeability and the moisture content 
vary exponentially with the pore-water pressure head, that is, k(h) = kseαh and θ (h) 
= θ seαh (h < 0,  t > 0). Here, ks is the saturated hydraulic conductivity, θ s is the volu-
metric moisture at saturation. Because Sr = θ (h)/θ s when the fluid compressibility 
is neglected (βw = 0), Eq. (2.12) can be written as follows: 

∂ 
∂z

[
k 

∂ 
∂z 

(h + z)
]

= Meαh ∂h 

∂t 
(t > 0) (2.13) 

where M = θ sα + γ wαc/F.
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With dimensionless variables Z = αz and T = α2kst/M introduced into a function 
of W (Z, T ) = eαh · eZ/2+T /4, Eq.  (2.13) can be rewritten as: 

∂W 

∂T 
= 

∂2W 

∂ Z2 
(2.14) 

The boundaries comprise a base and top one in Fig. 2.1. In the literature of 
analytical solutions, the base boundary was usually assumed to coincide with a 
stationary groundwater table and the pressure head was set zero (Wu et al. 2020). 
However, in this book, a zero flux is considered at the base boundary. The hydraulic 
boundary condition is given by: 

h

||||| z=0 
= 0 (2.15) 

or 

k 
∂h 

∂ z 
+ k

||||| z=0 
= 0 (2.16) 

The top boundary in Fig. 2.1 is controlled by pressure head or rainfall intensity 
(q) at the ground surface, and it is written as: 

h

||||| z=l 
= h0 (2.17) 

or 

k 
∂h 

∂z 
+ k

||||| z=l 
= q(t) (2.18) 

in which, l is the depth in the 1D unsaturated infiltration model. 
Based on a Fourier integral transformation (Ozisik 1989), the exact solution to 

Eq. (2.14) can be derived considering different boundaries (Wu et al. 2020). 

2.3 2D Analytical Solutions of Rainfall Infiltration 
in Unsaturated Soils 

The 2D Richards’ equation in mixed format is expressed as: 

∂ 
∂ x

[
Kx (h) 

∂h 

∂x

]
+ 

∂ 
∂z

[
Kz(h)

(
∂h 

∂z 
+ 1

)]
= 

∂θ 
∂t 

(2.19)
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Fig. 2.2 Schematic diagram of 2D transient seepage model in unsaturated soils 

in which, Kx and Kz are the hydraulic conductivities along x- and z-directions, 
respectively. 

Similarly, the 2D linearized Richards’ equation can be written as: 

∂2h∗ 

∂x2 
+ 

∂2h∗ 

∂z2 
+ α 

∂h∗ 

∂z 
= c 

∂h∗ 

∂t 
(2.20) 

The mathematical model is shown in Fig. 2.2. L and W represent the height and 
length, respectively. The normalized boundary conditions are as follows: 

h(0, z, t) = hd (2.21) 

h(W, z, t) = hd (2.22) 

h(x, 0, t) = hd (2.23) 

h(x, L , t) = ln
((
1 − eαhd

)
sin

(π x 
W

)
+ eαhd

)
/α (2.24) 

The normalized analytical solutions h∗
t (x, z, t) and h∗

s (x, z, t) for this two-
dimensional model and can be expressed as follows (Tracy 2006):
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h∗ 
t (x, z, t) = 

2
(
1 − eαhd

)
Lc  

sin
(π x 
W

)
eα(L−z)/2 

∞∑
m=1 

(− 1)m
(

λm 

μm

)
sin(λmz)e

−μmt 

(2.25) 

h∗ 
s (x, z, t) =

(
1 − eαhd

)
e 

α(L−z) 
2 sin

(π x 
W

) sinh(β1z) 
sinh(β1L) 

(2.26) 

where β1 =
√

α2/4 + (π/W )2 . 

2.4 Analytical Solution of Water Infiltration of Vegetated 
Slope Considering the Coupling Effects 

Coupling between water infiltration and mechanical deformation in unsaturated soils 
is central to many natural and man-made systems in civil and environmental engi-
neering. During water infiltration, the pore-water pressure or pressure head is redis-
tributed, on one hand by the hydraulic properties of the unsaturated soils including 
retention characteristics and permeability, and, on the other hand, by the external 
loading due to climate conditions (rainfall intensity, duration, and evapotranspira-
tion rate). Changes in the pore-water pressure or pressure head are generated by 
infiltration, which in turn modifies the hydraulic domain and induces deformations 
of the unsaturated soils. Alternatively, any variation in the mechanical loading can 
exert an effect on the infiltration process. It is indeed the hydro-mechanical coupled 
response of an unsaturated soil that is responsible for the most common instabilities 
associated with water infiltration: landslides and settlements, due to collapse or shear 
strength reduction (Thorel et al. 2011; Wu et al.  2020). 

Recently, ecological protection technologies have become popular for slope envi-
ronmental restoration and treatment (Tan et al. 2019; Broda et al. 2020). The stability 
analysis of vegetated slopes is a hot point in geotechnical engineering. Several 
studies have analyzed the stability of infinite vegetated slopes (Feng et al. 2020). 
However, few studies have been reported on the analytical solution of vegetated 
slope stability considering the hydro-mechanical coupling. Developing analytical 
solutions for water infiltration in unsaturated soil slopes is a significant issue in 
practical engineering. The main objective of this section is to derive an analyt-
ical solution considering both the root effect and hydro-mechanical behavior. The 
governing equation considering vegetated root and coupled infiltration-deformation 
is derived. The analytical solution is developed using Green’s function method, which 
is then compared with the numerical solution. Parametric analyses are performed to 
investigate the effect of factors on the infinite vegetated slope stability.
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2.4.1 Governing Equations of Rooted Unsaturated Soils 

To simplify the problem, the following assumptions are made: 

(1) The unsaturated slope is infinite, and the soil is isotropic and elastic. The ground-
water level is assumed parallel to the slope surface, and the groundwater level 
is fixed. 

(2) The growth direction of vegetation roots is perpendicular to the slope surface, 
and the root water uptake is simulated by adding a sink term (Raats 1979) to  
Richards equation. 

(3) Soil skeleton is compressible, while water is incompressible. 

An unsaturated soil slops with vegetation is shown in Fig. 2.3, L* is the thickness 
of a soil (m), L∗

1 is the depth of the rooted zone (m), L∗
2 is the thickness of the 

unrooted zone (m). The Richards’ equation in a reference coordinate system (oxz) 
can be expressed as: 

∂ 
∂x

[
k(h) 

∂h 

∂x

]
+ 

∂ 
∂z

[
k(h) 

∂h 

∂z 
+ k(h)

]
= C(h) 

∂h 

∂t 
(2.27) 

where h is the pressure head (m); k(h) is the hydraulic conductivity (m/s); C(h) = 
dθ/dh is the differential water capacity (m−1); θ is the volumetric water content; t 
is the infiltration duration (s). Equation (2.27) needs to be modified to be suitable 
for rooted soil slopes. The transformation relationship between the slope coordinate 
system (ox*z*) and the reference coordinate system (oxz) is described as follows: 

x∗ = x cos β − z sin β (2.28a) 

z∗ = x sin β + z cos β (2.28b)

Fig. 2.3 Graphical 
representation of 
rainfall-induced landslides 

Bedrock 

* 
1L 

* 
2L 

Rooted zone Unrooted zone 
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* z 
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z 
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Substituting Eq. (2.28) into Eq. (2.27), according to Assumption (1), the improved 
Richards’ equation for rainfall infiltration into soil slopes can be given by: 

∂ 
∂z∗

[
k(h) 

∂h 

∂z∗

]
+ 

∂k(h) 
∂z∗ cos β = C(h) 

∂h 

∂t 
(2.29) 

The sink term proposed by Raats (1979) is used to describe the water uptake of 
roots: 

S
(
z∗) = g

(
z∗)T (2.30) 

where g(z*) is the shape function of roots at depth z* ([m/s]−1); and T is the tran-
spiration rate (m/s), which is affected by weather and leaf area index. Substituting 
Eq. (2.30) into Eq. (2.29), according to Assumption (2), the modified Richards equa-
tion considering the water uptake by vegetation roots can be obtained (Wu et al. 
2022): 

∂ 
∂z∗

[
k(h) 

∂ψ 
∂z∗

]
+ 

∂k(h) 
∂z∗ cos β − S

(
z∗)⧼z∗ − L∗ 

2

⧽ = C(h) 
∂h 

∂t 
(2.31) 

where
⧼
z∗ − L∗

2

⧽ =
(
z∗ − L∗

2, z∗ ≥ L∗
2 

0, z∗ < L∗
2 
is the sign function. 

Equation (2.31) ignores the hydraulic coupling in unsaturated soils. According to 
the law of conservation of mass, the strict expression of the term C(h) ∂h 

∂t on the right 
side of Eq. (2.31) is  1 

ρ 
∂ 
∂t (ρnSr) (Kim 2000; Wu et al.  2020, 2022), where ρ, n, and Sr 

represent the density of water, soil porosity, and degree of saturation. Sr = (θ (h) − 
θ r)/(θ s − θ r), θ s is the saturated water content, and θ r is the residual water content. 
Then one can obtain: 

∂ 
∂t 

(ρnSw) = θ 
∂ρ 
∂t 

+ ρ 
∂ Sr 
∂t 

n + ρSr 
∂n 

∂t 
(2.32) 

the first term on the right side of Eq. (2.32) represents the water compression term, 
which is 0 according to Assumption (3); the second term is equivalent to C(h) ∂h 

∂t ; 
the third term represents the soil skeleton term, and ρSr ∂n ∂t = ρSrαc 

∂εv 
∂t , where αc is 

Biot’s hydro-mechanical coupling parameter (0 < αc ≤ 1), Ev is volumetric strain. 
Therefore, Eq. (2.31) can be rewritten as: 

∂ 
∂z∗

[
k(h) 

∂h 

∂ z∗

]
+ 

∂k(h) 
∂ z∗ cos β − S

(
z∗)⧼z∗ − L∗ 

2

⧽ = C(h) 
∂h 

∂t 
− Srαc 

∂εv 

∂t 
(2.33) 

Substituting Eq. (2.11) into Eq. (2.33), the governing equation considering the 
hydro-mechanical coupling in unsaturated soil slopes can be obtained:
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∂ 
∂z∗

[
k(h) 

∂h 

∂z∗

]
+ 

∂k(h) 
∂z∗ cos β − S

(
z∗)⧼z∗ − L∗ 

2

⧽ = C(h) 
∂h 

∂t 
+ 

γw(θ − θr)αc 

(θs − θr)F 
∂h 

∂t 
(2.34) 

2.4.2 Analytical Solutions 

According to Assumption (1), the bottom and surface boundary conditions of the 
slope are written as, respectively: 

h(0, t) = 0 t > 0 (2.35)

[
k(h) 

∂h(L∗, t) 
∂z∗ + k(h) cos β

]
= q cos β t > 0 (2.36) 

where q is the rain intensity (m/s). 
The hydraulic conductivity and the volumetric water content of unsaturated soils 

can be expressed as (Gardner 1958): 

k(h) = kseαh (2.37) 

θ (h) = θr + (θs − θr)eαh (2.38) 

where ks represents the saturated hydraulic conductivity (m/s); α is the desaturation 
coefficient (kPa−1). Substituting Eq. (2.38) into Eq. (2.34), one has: 

∂ 
∂ z∗

[
k 

∂h 

∂z∗

]
+ 

∂k 

∂z∗ cos β − S
(
z∗)⧼z∗ − L∗ 

2

⧽ = Meαh ∂h 

∂t 
(2.39) 

where M = (θ s − θ r)α + γ wαc/F. 
The soil–water uptake function (Eq. 2.30) can be simplified as (Lynch 1995): 

S
(
z∗) = T/L∗ 

1 (2.40) 

Substituting Eqs. (2.37), (2.38), and (2.40) into Eq. (2.39) leads to: 

∂2k 

∂ z∗2 + 
∂k 

∂z∗ α cos β − T/L∗ 
1

⧼
z∗ − L∗ 

2

⧽ = 
M 

Ks 

∂k 

∂t 
(2.41) 

Here, the variables are defined as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

Z = z∗ cos β 
H = L∗ cos β 
H1 = L∗ 

1 cos β 
H2 = L∗ 

2 cos β 
K = k/ks 
Qa = qa/ks 
Qb = qb/ks 
P = ks/M 

(2.42) 

where qa and qb represent the previous rain intensity (m/s) and current rain intensity 
(m/s). 

Substituting Eq. (2.42) into Eq. (2.41) leads to: 

∂2K 

∂ Z2 
+ 

∂ K 
∂ Z 

α − 
S(z∗/ cos β)

⧼
z∗/ cos β − L∗

2/ cos β
⧽

ks cos2 β
= 1 

P cos2 β 
∂ K 
∂t 

(2.43) 

By combining Eqs. (2.35), (2.36), and (2.43), the analytical solution of pressure 
head can be obtained using Green’s function as follows: 

Kste = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

exp(−αZ ) + Qa
[
exp(−αZ ) − 1

]
+ T 

Ks cos β H1

[
exp(−αZ) − 1

]
(H − H1), 

Z < H2 

exp(−α Z) + Qa
[
exp(−αZ ) − 1

] + T 

Ks cos β H1( [
exp(−α Z ) − 1

]
(H − Z ) + exp(−αZ )[

Z − H1 − α−1 exp(α Z ) + α−1 exp(α H1)
]
)
, 

Z ≥ H2 

(Steady-state) 

(2.44) 

K = Kste + 8 
α P 
ks 

cos2 β exp
[
α(H − Z ) 

2

]

× 
∞∑
i=1

[
λ2 
i + 0.25α2

]
sin(λi H ) sin(λi Z ) 

2α + α2 H + 4H λ2 
i 

G(t) (Transient) (2.45) 

where 

G(t) = 
t(

0 

(Qa − Qb)ks exp
[−P cos2 β

(
λ2 
i + 0.25α2

)
(t − τ )

]
dτ (2.46) 

λi is the ith root of the transcendental equation tan(λH) + (2λ/a) = 0. The tran-
sient solution changes with time. The “steady-state” infiltration evolves over formally 
infinite time, and thus the “steady-state” solution isn’t related to time. However, tran-
sient infiltration depends on time, and the analytical solution to transient infiltration is
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called transient solution. Rainfall infiltration into soil slopes is commonly a transient 
issue, thus transient solutions are greatly meaningful. 

When Qb is a constant, Eq. (2.45) can be simplified as: 

K = Kste1 − 8(Qa − Qb)α cos2 β exp
[
α(H − Z) 

2

]

× 
∞∑
i=1 

sin(λi H ) sin(λi Z ) exp
[−P cos2 β

(
λ2 
i + 0.25α2

)
t
]

2α + α2 H + 4Hλ2 
i 

(2.47) 

where 

Kste1 = 

⎧⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

exp(−αZ ) + Qb
[
exp(−αZ) − 1

]
+ T 

ks cos β H1

[
exp(−αZ) − 1

]
(H − H1), 

Z < H2 

exp(−αZ ) + Qb
[
exp(−αZ) − 1

] + T 

ks cos β H1 
·( [

exp(−α Z ) − 1
]
(H − Z) + exp(−αZ )[

Z − H1 − α−1 exp(αZ ) + α−1 exp(α H1)
]
)
, 

Z ≥ H2 

(2.48) 

The pore-water pressure head is calculated as follows: 

h = 
ln(K ) 

α 
(2.49) 

2.4.3 Comparison of Analytical and Numerical Solutions 

The finite element method is employed to obtain the numerical solutions to 
Eqs. (2.34)–(2.36). In this book, COMSOL software is employed to implement 
numerical solutions, which has been used in geotechnical, hydraulic, and civil 
engineering. 

The parameters adopted here are listed in Table 2.1, which includes the hydraulic 
parameters (ks, α, θ s, and θ r) (Liu et al.  2016). The parameters describe the hydraulic 
properties of loess, and the parameters of vegetation roots are determined according 
to the statistics of shrubs (Feng et al. 2020).

The analytical and numerical solutions of pressure head at t = 0 h, 20 h, and 30 h 
are shown in Fig. 2.4. The analytical solutions at t = 0 h are obtained by Eq. (2.44), 
and those at t = 20 h and 30 h are obtained by Eq. (2.45). According to the root mean 
square error RMSE and coefficient of determination (R2) shown in Fig. 2.4, it can be 
seen that RMSE between the numerical and analytical solutions is less than 0.005 m, 
and R2 is very close to 1. That is, the error between the numerical and analytical 
solutions is very small. Compared with the numerical solution, the analytical solution 
concisely describes the pressure head variations with rainfall infiltration.
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Table 2.1 Input parameters 
(Liu et al. 2016; Wu et al.  
2022) 

Parameters Symbol Value Unit 

Saturated hydraulic 
conductivity 

ks 1 × 10−6 m/s 

Desaturation 
coefficient 

α 0.025 kPa−1 

Slope angle β 30 ° 

Saturated water 
content 

θ s 0.47 – 

Residual water 
content 

θ r 0.05 – 

Suction-based 
modulus 

F 103 kPa 

Transpiration rate T 5.21 × 10−8 m/s 

Rain intensity q 5 × 10−7 m/s 

Soil thickness L* 5 M 

Depth of the rooted 
zone 

L∗
1 0.5 M

Fig. 2.4 Comparison of the 
analytical and numerical 
solutions 
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2.4.4 Parametric Analyses 

Factor of safety (Fs) is an important indicator used to assess the stability of slopes, 
and slopes with Fs greater than 1 are generally considered to be stable, and vice 
versa. Fs is calculated based on the limit equilibrium method and strength theory of 
rooted unsaturated soils (Fredlund and Rahardjo 1993; Ku et al.  2018), as follows:
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Fs = c + cr 
(L∗ − z∗)γ cos β sin β 

+ 
tan ϕ 
tan β 

− 
γwh[(θ − θr)/(θs − θr)] tan ϕ 

(L∗ − z∗)γ cos β sin β 
(2.50) 

where cr is the root cohesion (kPa), obtained by Wu–Waldron criterion (Wu 1976), 
i.e., cr = ς Ts, Ts is the root tensile strength (kPa), ς is the ratio of root cross-sectional 
area, which is 0.00025 in this book (Leung 2014). c and ϕ are the soil effective 
cohesion and effective frictional angle, while the rooted soil strength contributes to 
root cohesion. In this section, the effects of slope angle, rainfall intensity, transpiration 
rate, and suction-based modulus of elasticity on Fs and Fs ratio will be investigated. 
The Fs ratio, defined as the ratio of Fs during rainfall to the initial value (t = 0), 
shows the variations in Fs during rainfall and is also an important parameter for 
analyzing rainfall-include landslides. 

2.4.4.1 Effect of Slope Angle 

Here, the effects of slope angle on the pressure head, Fs and Fs ratio (defined as the 
ratio of Fs during rainfall to the initial value (t = 0)) are investigated. The parameters 
are as follows: Rain intensity is 0.7ks, the tensile strength of the roots is 10 MPa (this 
parameter is determined by the statistics of shrubs (Leung 2014)), the unit weight of 
the soil (γ ) is 20 kN/m3, the soil effective cohesion and effective frictional angle are 
18 kPa and 28°, and other parameters are listed in Table 2.1. 

Figure 2.5 represents the pressure head in slopes with slope angles of 10, 30, 
and 50° during rainfall. The conclusions can be drawn as follows (Fig. 2.5): (i) the 
pressure head of slopes decreases during rainfall; (ii) the pressure head in the shallow 
slope is more sensitive than that in the deep slope during rainfall; (iii) the smaller 
the slope angle, the larger the pressure head at the same position, which is mainly 
caused by the initial pressure head profile (the initial pressure head of the slope is 
negatively correlated with slope angle); (iv) the smaller the slope angle, the greater 
the variation in the pressure head at the same time, this is because the small slope 
angle has a positive effect on rainfall infiltration.

Fs (related to depth) with slope angles of 10, 30, and 50° during rainfall are 
described in Fig. 2.6a. Figure 2.6a states the following points: (a) Fs of the shallow 
slope is greater than that of the deep slope; (b) Fs decreases during rainfall, which 
can be explained in Fig. 2.5; (c) increase at z = 4.5 m due to the reinforcement effect 
of vegetation roots. Fs ratio Fs ratio with slope angles of 10, 30, and 50° during 
rainfall are represented in Fig. 2.6b. The larger the slope angle, the larger Fs ratio 
in Fig. 2.6b. This demonstrates that the larger the slope angle, the smaller Fs. In  
Fig. 2.6a, Fs suddenly the stability of a gentle slope is more sensitive to rainfall than 
that of the deep slope.
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Fig. 2.5 Effect of slope 
angle on the pressure head
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2.4.4.2 Effect of Rain Intensity 

The variations in the dimensionless rainfall intensity over the duration of the rainfall 
event for both coupled and uncoupled analyses are shown in Fig. 2.7. The parameters 
are ks = 10−5 m/s, θ s = 0.4, |F| = 5 × 103 kPa, and α = 0.01 cm−1 (Van Genuchten 
1980). The model height was 400 cm (Fig. 2.7). The value of F can be positive or 
negative. A negative F means an expansive soil where a suction decrease leads to soil 
volume increase, while a positive F denotes a collapsible soil where a soil suction 
decrease leads to soil volume decrease (Wu et al. 2020). Compared with the bottom 
boundary of a stationary groundwater table, the impermeable bottom boundary leads 
to more pronounced coupling effects in the lower part of the soil layer. It is also noted 
that the groundwater ponding occurs at the bottom boundary (t = 15 h, Fig. 2.7), 
particularly for an expansive soil (F < 0). Waterfall intensity plays a significant role 
in the advancement of the wetting front, and the pressure head profile moves more 
quickly as the rainfall intensity increases. The coupling effect is also closely linked 
with the rainfall intensity (Wu et al. 2020). 

Here, the effect of rain intensity on the pressure head, Fs and Fs ratio are investi-
gated. Figure 2.8 describes the pressure head of the slope with rainfall intensities of 
0.5ks, 0.7ks and 0.9ks. The remaining parameters are listed in Table 2.1. In Fig.  2.8, 
the smaller the rainfall intensity, the larger the pressure head at the same position.

Figure 2.9a, b describe Fs, and Fs ratio of the slope with rain intensities of 0.5ks, 
0.7ks, and 0.9ks, respectively. The variation in Fs with time and depth is similar 
to that in Fig. 2.6a. The larger the rain intensity, the smaller Fs or Fs ratio of the 
slope. The stability of the shallow slope is more sensitive to that the deep slope under 
conductivity is an important parameter of soil seepage capacity, different rainfall 
intensities (Fig. 2.6). Saturated hydraulic conductivity is an important parameter of 
soil seepage capacity. Figure 2.10 represents the influence of saturated hydraulic

Fig. 2.7 Changes in the 
pressure head profile over 
time under coupled and 
uncoupled states 
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Fig. 2.8 Effect of rainfall 
intensity on the pressure 
head
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conductivity on Fs and Fs ratio of rooted soil slopes. With increasing saturated 
hydraulic conductivity, Fs and Fs ratio at the same depth decrease. 

Fig. 2.9 Effect of rainfall 
intensity on the a Fs and b 
Fs ratio
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Fig. 2.10 Effect of saturated 
hydraulic conductivity on a 
Fs and b Fs ratio 
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2.4.4.3 Effect of Transpiration Rate 

The transpiration rate is an important parameter. The effect of transpiration rate on 
the pressure head, Fs and Fs ratio, is investigated here. The parameters are as follows: 
Rain intensity is 0.7ks, and other parameters are the same as those in Sect. 2.4.4.2. 

Figure 2.11 represents the pressure head of unsaturated soil slopes with transpi-
ration rates of 3, 4.5, and 6 mm/d. Transpiration rates depend on the vegetation and 
environmental conditions, and the transpiration rates are determined according to 
the statistics of shrubs (Leung and Ng 2013). The pressure head varies over time, 
and depth is the same as that in Sect. 2.4.4.1. The smaller the transpiration rate, the 
smaller the pressure head at the same position. The transpiration of vegetation reduces 
water content in slopes, causing an increase in soil suction. Figure 2.12a depicts Fs 

of slopes with transpiration rates of 3, 4.5, and 6 mm/d, respectively. The larger the 
transpiration rate, the larger safety factor of soil slopes. This is because the vegetation 
root uptake water reduces the water content of soil slopes. Figure 2.12b represents 
Fs ratio of slopes with transpiration rates of 3, 4.5, and 6 mm/d, respectively. The 
larger the transpiration rate, the smaller Fs ratio at the same position.
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Fig. 2.11 Effect of 
transpiration rate on the 
pressure head 
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Fig. 2.12 Effect of 
transpiration intensity on a 
Fs and b Fs ratio 
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2.4.4.4 Effect of the Suction-Based Modulus of Elasticity 

The suction-based modulus of elasticity (F) is key for hydro-mechanical coupling. 
The effect of suction-based modulus of elasticity on the pressure head, Fs, and Fs
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Fig. 2.13 Effect of 
suction-based elastic moduli 
on the pressure head 
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ratio, was investigated here. Three cases (F = 103 kPa, − 102 kPa, and no hydro-
mechanical coupling) are considered here. The governing equation without the hydro-
mechanical coupling is Eq. (2.31), and the boundary conditions are the same as those 
considering the coupling effect. The transpiration rate in this section is 4.5 mm/d, 
and the other parameters are kept unchanged as Sect. 2.4.4.3. 

Figure 2.13 represents the pressure head in soils with different suction-based 
moduli of elasticity. The variations of pressure head with suction-based modulus of 
elasticity are summarized as follows: (i) When F is positive, the hydro-mechanical 
coupling causes the increase of pore-water pressure head in the slope. Water flow 
in expansive soils is faster than that in collapsible soils. (ii) The effect of hydro-
mechanical coupling on the pressure head in the slope becomes obvious with the 
decrease of the absolute value F. 

Figure 2.14a represents Fs of soil slopes with different suction-based moduli of 
elasticity. Variation in safety factor with F is as follows: (i) When F is positive (nega-
tive), the hydro-mechanical coupling effect results in increases (decreases) of Fs. (ii) 
The effect of hydro-mechanical coupling on Fs becomes marked with decreasing 
absolute value of F.

Figure 2.14b describes Fs ratios of soil slopes with different suction-based moduli 
of elasticity. Figure 2.14b clearly demonstrates that small absolute value of F will 
significantly reduce the factor of safety of slopes. 

2.5 Discussions and Conclusions 

2.5.1 Discussions 

Fs ratios caused by the hydro-mechanical coupling effect of bare slopes (transpira-
tion rate is 0) and rooted slopes (transpiration rate is 4.5 mm/d) are compared. The
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Fig. 2.14 Effect of 
suction-based elastic moduli 
on a Fs and b Fs ratio
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evaporation of bare soils caused by temperature is ignored. The Fs ratios of the bare 
and rooted slopes at t = 20 h and 40 h are described in Fig. 2.15. The parameters 
are the same as those in Sect. 2.4.4.4. In Fig.  2.15a, Fs ratios of the rooted slope 
are smaller than those of the bare slope. The stability changes caused by the hydro-
mechanical coupling in rooted soil slopes are greater than those of bare slopes. A 
similar conclusion can be drawn from Fig. 2.15b.

It should be emphasized that the proposed analytical solution has two main limi-
tations: (i) This solution is only suitable for rooted slopes with uniform root archi-
tecture. Existing results (e.g., Ng et al. 2015; Liang et al. 2017) have indicated that 
vegetation roots have complex shape, including exponential root, triangular root, and 
uniform root. The book tries to obtain analytical solutions considering different root 
architecture functions in future work. (ii) The boundary condition of soil slopes is 
transformed from flow boundary to pressure head boundary due to saturated hydraulic 
conductivity less than rain intensity, which may affect the results of analytical solu-
tions. Although there still occur some limitations, the proposed analytical solution 
incorporates the root effect and hydro-mechanical coupling for the first time. In 
actual engineering, the proposed analytical solution can be easily applied to examine 
rainfall-induced landslides in rooted soil regions.
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Fig. 2.15 Fs ratios of the 
bare slope and vegetated 
slope: a t = 20 h, b t = 40 h
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Figure 2.16 represents the variations in the dimensionless rainfall intensity over 
the duration of the rainfall event for both the coupled and uncoupled conditions. The 
parameters used are ks = 10−5 m/s, θ s = 0.4, |F| = 5 × 103 kPa, and α = 0.01 cm−1 

(Van Genuchten 1980; Wu et al.  2020). The value of F can be positive or negative; 
a negative  F means an expansive soil where a suction decrease leads to soil volume 
increase, while a positive F denotes a collapsible soil where a suction decrease leads 
to soil volume decrease (Wu et al. 2020). When t = 1 h, the wetting front moves to 
a depth of 120 cm in both the uncoupled analysis and coupled analysis with F > 0.  
However, with F < 0 the wetting front reaches 180 cm in the coupled analysis. When 
t = 1 h, the difference in the pressure head for the coupled (F < 0) and uncoupled 
conditions is 27.5 cm at the upper boundary, and the maximum difference in the 
pressure head within the unsaturated zone is 75.1 cm at a soil depth of 340 cm. 
When t = 15 h, the difference in the pressure head at the top boundary between the 
coupled (F > 0) and uncoupled conditions is 13.7 cm, and the maximum difference 
in the pressure head within the soil is 61.8 cm at a depth of 160 cm. The coupling 
effect becomes more apparent with increasing time, particularly in the bottom part
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Fig. 2.16 Pore-water pressure profile for different boundaries 

of the soil layer. Compared with the case where the base boundary coincides with 
the stationary groundwater table (Wu et al. 2020), the case with zero flux at the base 
boundary leads to more pronounced coupling effects in the lower part of the soil 
column. It is also noted that groundwater ponding occurs at the base boundary (t = 
15 h, Fig. 2.16). 

As the infiltration time increases and the wetting front moves downward, the 
pressure head increases rapidly in the shallow depths of the unsaturated soils. Rainfall 
intensity plays an important role in the advancement of the wetting front, and the 
pressure head profile moves more quickly as the rainfall intensity increases. The 
coupling effect is also closely linked with the rainfall intensity. Other studies reported 
that the coupling effect is more noticeable in a shallow layer of an unsaturated soil 
(Wu et al. 2020). However, in this book, the coupling effect becomes more noticeable 
in the base layer, particularly with increasing time. As the rainfall accumulates at the 
base boundary, the coupled effect becomes more apparent there. Figure 2.16 describes 
the effect of boundary on the pressure profile considering the coupling effect. The 
boundary effect is more marked than the coupling. The zero-flux base boundary also 
leads to groundwater ponding in the lower part of the soils. The pressure head profile 
moves more quickly as the thickness of the soil layer decreases. 

2.5.2 Conclusions 

The governing equation considering hydro-mechanical coupling of unsaturated 
rooted slopes is derived. The analytical solution is obtained using Green’s function 
method. This solution is compared with the finite element method. The parametric 
studies were carried out to investigate the effect of slope angle, rain intensity, suction-
based elastic modulus, and transpiration rate on the pore-water pressure head and 
slope safety factor. The following conclusions can be obtained:
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(1) We have developed an analytical solution that described transient groundwater 
flow in unsaturated soils using a Fourier integral transform, in which the ground-
water level is allowed to advance, due to the zero flux boundary. The results 
indicate that the lower boundary condition plays a considerable role in the pres-
sure head profile and that the coupling effect is more pronounced for a zero-flux 
boundary than a zero-pressure-head boundary. The coupling effect becomes 
more noticeable when ponding occurs. 

(2) The proposed analytical solution is explicit and provides a basis for the numer-
ical solution for rainfall infiltration into rooted soil slopes. The proposed analyt-
ical solution is simple in form and has few input parameters, which is a simple 
and effective method for analyzing rainfall infiltration in vegetated slopes. 

(3) The larger the slope angle or rain intensity, the lower the pressure head, resulting 
in a smaller factor of safety for slopes. The larger the transpiration rate, the 
larger the pressure head, which causes an increase of safety factor of rooted soil 
slopes. The lower the absolute value of the suction-based elastic modulus, the 
more obvious the effect of hydro-mechanical coupling on the safety factor of 
rooted soil slopes. 
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Chapter 3 
Numerical Solutions to Infiltration 
Equation 

3.1 Introduction 

Unsaturated infiltration issues occur in many fields, such as rainfall-induced soil 
slope failures (Wu et al. 2020a, b; Jiang et al. 2022), solute migration simulation 
(Cross et al. 2020), and coal seam water injection and coalbed methane extraction 
(Wang et al. 2020). Among them, the Richards’ equation (Richards 1931) is the  
basic governing equation for the numerical simulation of unsaturated infiltration. 
The effective and reliable numerical solution of the Richards’ equation is of great 
significance to scientific research and production in related fields. Before the advent 
of computers, the investigations on unsaturated infiltration mainly focused on the 
analytical solution of the infiltration equation, that is, the method of directly solving 
differential equations using relevant mathematical means. The studies on analytical 
solutions under certain conditions still have very important theoretical and practical 
significance. Analytical solutions to the Richards’ equation can be obtained under 
some simplified conditions (Broadbridge et al. 2017). For example, Srivastava and 
Yeh (1991) employed an exponential model describing the soil-water character curve 
(SWCC) to derive transient analytical solutions for one-dimensional infiltration in 
homogeneous and layered soils. Parlange et al. (1999) solved a complex series solu-
tion of the one-dimensional Richards equation in order to obtain the infiltration flux. 
Tracy (2006) proposed two-dimensional and three-dimensional analytical solutions 
to rainfall infiltration into homogeneous soils based on exponential function. Wu 
et al. (2016, 2020a) used the Laplace transform method to obtain an analytical solu-
tion considering the coupling of infiltration and deformation in unsaturated soils 
during rainfall, and used it to analyze the stability of infinite unsaturated slopes due 
to rainfall infiltration. However, the permeability coefficients and soil–water char-
acteristic curves are very complex in reality, which leads to highly nonlinear partial 
differential equations analytical solutions of which are very difficult to obtain. There-
fore, numerical methods are often developed to solve the Richards’ equation under
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common conditions (Zha et al. 2017; Ku et al.  2018; Zeng et al. 2018; Zhu et al. 
2019; Eini et al.  2020). 

With the development of computer techniques, numerical methods, namely finite 
difference method (FDM) (Liu et al. 2017), finite element method (FEM) (Crevoisier 
et al. 2009), and the finite volume method (FVM) (Liu 2017; Eymard et al. 2006), are 
increasingly used in infiltration analysis. The discretization of the time derivative is 
usually performed using the backward difference method (Pop and Schweizer 2011). 
For example, Patankar (1980) summarized FVM for numerical dis-cretization of heat 
transfer and fluid flow. Wang and Anderson (1982) introduced the application of finite 
difference and finite element methods for numerical simulation of groundwater infil-
tration and pollution propagation. Šimůnek et al. (2009) applied the finite element 
method to numerically solve the Richards equation and developed the commer-
cial software Hydrus-1D. Zambra et al. (2011) constructed a finite volume method 
with high accuracy in space and time for solving nonlinear Richards equations. Ku 
et al. (2018) linearized the Richards’ equation and developed a numerical solution 
to the unsteady groundwater infiltration issue by the collocation Trefftz method. 
Zeng proposed a modified Richards’ equation and used FEM to more efficiently 
solve the variable saturated infiltration problem in heterogeneous soils. Chávez-
Negrete et al. (2018) proposed an improved FDM combined with an adaptive step-
size Crank–Nicolson method for solving the Richards’ equation. Li et al. (2022) 
established the convergence selection criteria of grid size and time step in finite 
element simulation of unsaturated infiltration, which can better enhance the numer-
ical accuracy. Of course, other advanced numerical methods have certain advantages 
in terms of computational accuracy, computational efficiency or ease of implemen-
tation under certain conditions when solving variable saturated infiltration issues. 
These methods include hybrid finite element methods (Bergamaschi and Putti 1999), 
cellular automata methods (Mendicino et al. 2006), FDM with non-orthogonal grids 
(An et al. 2010), finite analysis methods (Zhang et al. 2016), meshless methods 
(Herrera et al. 2009; Ku et al.  2021), and Chebyshev spectral methods (Wu et al. 
2020b). Table 3.1 lists the development of some classical numerical methods for 
solving Richards’ equation.

In this chapter, numerical solutions of water infiltration equation in unsaturated 
soils are examined. Some improved methods such as fractional-order and Chebyshev 
spectral methods will be applied to investigate nonlinear infiltration in homogeneous 
and layered soils. The results will be compared with software simulation. 

3.2 Numerical Solutions 

3.2.1 Finite Difference Method 

The FDM to solve Richards’ equation first divides the solution area into differential 
grids, replaces the continuous solution domain with a finite number of grid nodes,
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Table 3.1 Some studies on the numerical solution of Richards’ equation 

Methodologies Key improvements References 

Improved FEM (adaptive 
hp-FEM) 

FEM combines adaptively finite 
elements of different spatial 
diameters (h) and polynomial 
degrees (p) to maximize the  
convergence rate of the iterative 
method 

Solin and Kuraz (2011) 

Improved FVM Compared with FVM, 
improved method has better 
efficiency and accuracy 

Liu (2017) 

Generalized FDM Compared with FDM, the 
proposed method has higher 
accuracy 

Chávez-Negrete et al. (2018) 

Linearization, Chebyshev 
spectral method 

Compared with FDM, the 
proposed method has higher 
numerical accuracy 

Wu et al. (2020b) 

Linearization, modified 
meshless method 

The accuracy and stability of 
the proposed functions are 
higher than those of the 
classical time stepping scheme 

Ku et al. (2021) 

Mixed FEM and the method of 
lines 

The proposed method is easier 
to implement and is efficient 
and robust 

Fahs et al. (2009) 

FDM, modified Picard method 
combined with Anderson 
acceleration 

Anderson acceleration 
significantly improves 
convergence speed and 
robustness of the modified 
Picard iteration 

Lott et al. (2012) 

FEM, Picard method, 
Picard/Newton method, 
L-scheme 

A new scheme is proposed, the 
L-scheme/Newton method 
which is more robust and 
quadratically convergent 

List and Radu (2016) 

A linear domain 
decomposition method 

The proposed scheme is more 
stable than the Newton scheme 
while remaining comparable in 
computational time 

Seus et al. (2018) 

Finite analytic method This method can obtain more 
accurate numerical solutions 
and control the global mass 
balance better than modified 
Picard method 

Zhang et al. (2016) 

FEM, modified Picard method The proposed modifications do 
not degrade the simulated 
results, while they cause more 
robust convergence 
performances 

Zha et al. (2017)

(continued)
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Table 3.1 (continued)

Methodologies Key improvements References

Modified L-scheme The modified scheme is at least 
as fast as the modified Picard 
scheme, faster than the 
L-scheme, and is more stable 
than the Newton and the Picard 
scheme 

Mitra and Pop (2019)

and stores the variables to be solved (pressure head, water content, etc.) in each 
grid node. The differential term in the Richards’ equation is replaced by the corre-
sponding difference quotient, so that the partial differential equation is converted 
into an algebraic difference equation, and a differential equation system containing 
a finite number of unknown variables at discrete points is obtained, that is, a linear 
equation system. The solution of the linear equation system is obtained, and the 
numerical solution of the variables on the grid nodes is obtained. The principle is 
simple and easy to implement, and it is widely used. In Fig. 3.1, the distance along 
the z-axis is divided into N equal parts, the uniform grid step size is Δz, and the 
spatial derivative first-order central difference scheme can be expressed as:

(
∂h 

∂z

)
i 

= 
h∗ 

i+1 − h∗ 
i−1 

2Δz 
(3.1) 

where i represents the discrete grid nodes along the z-axis. 
The spatial derivative second-order central difference format is expressed as:

Fig. 3.1 Uniform grid and 
Chebyshev grid 
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(
∂2h 

∂z2

)
i 

= 
h∗ 

i+1 − 2h∗ 
i + h∗ 

i−1

Δz2 
(3.2) 

Additionally, the first-order backward difference format of the time derivative is 
given by:

(
∂h 

∂t

)
j 

= 
h∗ j − h∗ j−1

Δt 
(3.3) 

where Δt is the discrete time step, and j is the time node. 
Substituting Eqs. (3.1)–(3.3) into the Richards’ equation, one can obtain (Zhu 

et al. 2022a):

(
h∗ j 
i+1 − 2h∗ j 

i + h∗ j 
i−1

Δz2

)
+ α

(
h∗ j 
i+1 − h∗ j 

i−1 

2Δz

)
= c

(
h∗ j 
i − h∗ j−1 

i

Δt

)
1 ≤ i ≤ N − 1 

(3.4) 

When the steady-state infiltration is incorporated, its finite difference format can 
be simplified to:

(
h∗ 
i+1 − 2h∗ 

i + h∗ 
i−1

Δz2

)
+ α

(
h∗ 
i+1 − h∗ 

i−1 

2Δz

)
= 0 (3.5) 

The system of linear equations formed by Eqs. (3.4)–(3.5) can be further written 
in matrix form: 

Ah∗ = b (3.6) 

where A is a tridiagonal matrix of order (N − 1) × (N − 1); h∗ and b are both column 
vectors of order (N − 1) × 1, and the first and last elements of vector b already 
contain boundary conditions. Equation (3.6) can be solved by relevant linear itera-
tive methods, such as trigonometric decomposition method, Jacobi iterative method, 
Gauss–Seidel iterative method and relaxed iterative method. 

3.2.2 Finite Volume Method 

The finite volume method (FVM), also known as the control volume method, the 
basic idea is to divide the calculation area into a series of non-repetitive control 
volumes, and make a control volume around each grid point, and the differential 
equation is divided into a control volume. For each control volume integral, a system 
of linear equations to be solved is obtained. For the one-dimensional uniform grid 
coordinates in Fig. 3.1, the control volume here can be assumed to beΔz×1×1, that
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is, the distance in the other directions except the z-axis is unit length. Furthermore, by 
integrating the Richards’ equation over the uniform control volume, one can obtain: 

i+Δz∫
i 

t+Δt∫
t 

∂θ 
∂t 

dtdz = 
t+Δt∫
t 

i+Δz∫
i 

∂ 
∂z

[
Kz(h)

(
∂h 

∂z 
+ 1

)]
dzdt (3.7) 

Furthermore, the discrete equation is written as: 

K j i+1/2(h 
j 
i+1 − h j i )

Δz
− 

K j i−1/2(h 
j 
i − h j i−1)

Δz
+ K j i+1/2 − K j i−1/2 

= ΔzC j−1/2 
i 

h j i − h j−1 
i

Δt 
(3.8) 

where Ki+1/2 and Ki−1/2 are the harmonic mean values of the permeability 
coefficients of adjacent nodes: 

Ki+1/2 = 
2Ki Ki+1 

Ki + Ki+1 
(3.9) 

Ki−1/2 = 
2Ki Ki−1 

Ki + Ki−1 
(3.10) 

Equation (3.8) can be further simplified into the following matrix form: 

A
(
h j

)
h j = b

(
h j , h j−1

)
(3.11) 

For the solution of Eq. (3.8), the Picard iteration method is usually used to solve 
it. 

3.2.3 Finite Element Method 

The finite element method (FEM) divides the solution domain into different elements, 
including triangular elements, rectangular elements, and quadrilateral elements. The 
equivalent integral equation of the problem can be obtained based on the variational 
principle and the orthogonalization principle of the weight function, and then the 
corresponding linear equation system can be obtained and solved iteratively. Usually, 
the Richards’ equation solved by FEM is more than two-dimensional, then the two-
dimensional linearized Richards’ equation considering the x and z directions can be 
written as (Zhu et al. 2022b, c): 

∂2h∗ 

∂x2 
+ 

∂2h∗ 

∂z2 
+ α 

∂h∗ 

∂z 
= c 

∂h∗ 

∂t 
(3.12)



3.2 Numerical Solutions 47

Fig. 3.2 2D infiltration model and rectangular element grid 

As shown in Fig. 3.2, a rectangular element is used to divide the solution area. 
The number of discrete nodes along the x and z axes is N, then the discrete equation 
can be expressed in matrix form as follows: 

Gh∗ = −P 
h∗ j − h∗ j−1

Δt 
(3.13) 

where G represents the total conduction matrix on the left side of Eq. (3.12); P 
represents the storage matrix on the right side of Eq. (3.12); h∗ is the array of the 
node pressure heads. Among them, the rectangular element (Fig. 3.2) composed of 
nodes i, j, m, and n only contributes to the Lth row of G (L = i, j, m, and n). The Lth 
row elements of matrix G in a rectangular element can be given by: 

Ge 
L ,i = 

a∫
−a 

b∫
−b

(
∂ N e i 
∂x 

∂ N e L 
∂x 

+ 
∂ N e i 
∂ z 

∂ N e L 
∂z 

− αg N 
e 
i N 

e 
L

)
dxdz (3.14a) 

Ge 
L , j = 

a∫
−a 

b∫
−b

(
∂ N e j 
∂x 

∂ N e L 
∂x 

+ 
∂ N e j 
∂z 

∂ N e L 
∂z 

− αg N 
e 
j N 

e 
L

)
dxdz (3.14b) 

Ge 
L ,m = 

a∫
−a 

b∫
−b

(
∂ N e m 
∂x 

∂ N e L 
∂x 

+ 
∂ N e m 
∂z 

∂ N e L 
∂z 

− αg N 
e 
m N 

e 
L

)
dxdz (3.14c)
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Ge 
L ,n = 

a∫
−a 

b∫
−b

(
∂ N e n 
∂x 

∂ N e L 
∂ x 

+ 
∂ N e n 
∂z 

∂ N e L 
∂z 

− αg N 
e 
n N 

e 
L

)
dxdz (3.14d) 

where N e L represents the element basis function; and a and b are half the length and 
width of the rectangular element, respectively. N e L can be formatted as: 

N e i (x, z) = 
1 

4

(
1 − 

x 

b

)(
1 − 

z 

a

)
(3.15a) 

N e j (x, z) = 
1 

4

(
1 + 

x 

b

)(
1 − 

z 

a

)
(3.15b) 

N e m(x, z) = 
1 

4

(
1 + 

x 

b

)(
1 + 

z 

a

)
(3.15c) 

N e n (x, z) = 
1 

4

(
1 − 

x 

b

)(
1 + 

z 

a

)
(3.15d) 

Similarly, the Lth row elements of P can also be formed as: 

Pe 
L ,i = c 

a∫
−a 

b∫
−b 

N e i N 
e 
Ldxdz (3.16a) 

Pe 
L , j = c 

a∫
−a 

b∫
−b 

N e j N 
e 
Ldxdz (3.16b) 

Pe 
L ,m = c 

a∫
−a 

b∫
−b 

N e m N 
e 
Ldxdz (3.16c) 

Pe 
L ,n = c 

a∫
−a 

b∫
−b 

N e n N 
e 
Ldxdz (3.16d) 

Furthermore, the contributions of all rectangular elements are summed and assem-
bled to form matrices G and P. Generally, Eqs. (3.14)–(3.16) are solved using 
Gaussian integration method (Wang and Anderson 1982). The Gaussian integration 
method makes the definite integral equal to a weighted sum over a finite number of 
points, and for a quadratic polynomial, the general expression for the double integral 
is as follows:
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1∫
−1 

1∫
−1 

f (ε, η)dεdη = f (ε1, η1) + f (ε2, η1) + f (ε1, η2) + f (ε2, η2) (3.17) 

Among them, the four Gauss points are determined by ε1 = −  1/ 
√
3, ε2 = 1/ 

√
3, 

η1 = −  1/ 
√
3, η2 = 1/ 

√
3, and the ownership coefficients are all equal to 1. The 

integral of Eqs. (3.14)–(3.16) can be transformed into the form of Eq. (3.17) by the  
following variable transformation: 

ε = 
x 

b 
and η = 

z 

a 
(3.18) 

Then, dz = adε, dx = bdη, the integral limit is from− 1 to 1, and the interpolation 
function (Eq. 3.15) in the coordinates (ε, η) is transformed into: 

N 
e 
i (ε, η) = 

1 

4 
(1 − ε)(1 − η) (3.19a) 

N 
e 
j (ε, η) = 

1 

4 
(1 + ε)(1 − η) (3.19b) 

N 
e 
m(ε, η) = 

1 

4 
(1 + ε)(1 + η) (3.19c) 

N 
e 
n(ε, η) = 

1 

4 
(1 − ε)(1 + η) (3.19d) 

In summary, the integral transformation of Eqs. (3.14)–(3.16) is described as: 

a∫
−a 

b∫
−b 

f (x, y)dxdy = ab 
1∫

−1 

1∫
−1 

f (ε, η)dεdη (3.20) 

where f (ε, η) is the transformation of f (x, z) at the coordinate (ε, η). 

3.2.4 Numerical Approximation to the Fractional-Time 
Richards’ Equation 

Fractional Richards’ equations can be further divided into space fractional, time frac-
tional, and space–time fractional partial differential equations. The time fractional 
Richards’ equation is expressed as follows: 

C(h) 
∂γ h 

∂tγ = 
∂ 
∂ z

[
K (h)

(
∂h 

∂z 
+ 1

)]
(3.21)
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where γ is the order of the time derivative. When fractional order γ = 1, Eq.  (3.21) 
degenerates into the classical Richard equation. 

The Caputo fractional derivative with respect to the function f (x) can be defined 
as (Pachepsky et al. 2003): 

C 
0 D

γ 
x f (x) =

1

┌(n − γ )  

x∫
0 

f (n) (τ ) 
(x − τ)γ −n+1 

dτ (3.22) 

where C 0 D
γ 
x represents the γ -order Caputo fractional derivative; ┌ is the gamma 

function, and n is a positive integer (representing an integer derivative). In addition, 
the Riemann–Liouville (R-L) fractional derivative can be defined as (Su 2014): 

RL  
0 Dγ 

x f (x) =
1

┌(n − γ )  
dn 

dxn 

x∫
0 

f (τ ) 
(x − τ)γ −n+1 

dτ (3.23) 

where RL  0 Dγ 
x represents the γ -order R-L fractional derivative. 

It can be seen from Eqs. (3.22)–(3.23) that in the definition of R-L fractional 
derivative, the fractional integral is first obtained and then the integer derivative 
is obtained, while the definition of Caputo derivative is to first obtain the integer 
derivative, and then the fractional integral is calculated. There is a great connection 
between the two, and there are also essential differences, which are mainly reflected 
in the actual physical models. In the process of actually solving the initial value 
problem of differential equations, Caputo derivatives are more widely used and have 
more physical background than R-L derivatives. 

For the solution of Eq. (3.21), the finite difference method is used for numerical 
discretization, and meshing is conducted. Let η and Δz be the time and space steps, 
respectively. The simulation time is divided into M equal parts, and the z-axis is 
divided into N equal parts: 

tm = mη, m = 0, 1, . . .  M (3.24) 

zi = iΔz, i = 0, 1, . . .  N (3.25) 

For the left-hand fractional derivative term of Eq. (3.21), the Caputo fractional 
derivative is defined as: 

∂γ h(z, t) 
∂tγ

= 1

┌(1 − γ ) 

t∫
0 

∂h(z, τ  ) 
∂τ 

dτ 
(t − τ )γ

(3.26) 

The integral of the pressure head derivative in Eq. (3.26) can be directly 
approximated by the numerical differential equation, which is deduced as follows:
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∂γ h(z, tm) 
∂tγ

= 1

┌(1 − γ ) 

tm∫
0 

h′(τ )dτ 
(tm − τ )γ = 1

┌(1 − γ ) 

m−1∑
j=0 

t j+1∫
t j 

h′(tm − τ )dτ 
τ γ 

≈ 1

┌(1 − γ ) 

m−1∑
j=0 

h
(
tm − t j

) − h
(
tm − t j+1

)
η 

t j+1∫
t j 

τ −γ dτ 

= η−γ

┌(2 − γ ) 

m−1∑
j=0

(
hm− j − hm− j−1

)[
( j + 1)1−γ − j1−γ

]
(3.27) 

Equation (3.27) is further simplified as: 

∂γ h(z, tm) 
∂tγ

= η−γ

┌(2 − γ ) 

m−1∑
j=0 

b(γ ) 
j

(
hm− j − hm− j−1

)
(3.28) 

where b(γ ) 
j = ( j + 1)1−γ − j1−γ . 

For finite difference discretization on the right side of Eq. (3.21), one obtains: 

∂ 
∂z

[
K (h)

(
∂h 

∂z 
+ 1

)]
= 

K m+1 
i+1/2(h

m+1 
i+1 − hm+1 

i )

Δz2
− 

K m+1 
i−1/2(h

m+1 
i − hm+1 

i−1 )

Δz2 

+ 
K m+1 

i+1/2 − K m+1 
i−1/2

Δz 
(3.29) 

Ki+1/2 and Ki−1/2 can be expressed as: 

Ki+1/2 = 
2Ki Ki+1 

Ki + Ki+1 
(3.30) 

Ki−1/2 = 
2Ki Ki−1 

Ki + Ki−1 
(3.31) 

Combining Eqs. (3.28) and (3.29), the discrete format of the fractional-time 
Richards’ equation can be obtained as follows: 

η−γ

┌(2 − γ ) 
C(h)

m−1/2 
i 

m−1∑
j=0 

b(γ ) 
j

(
hm− j,i − hm− j−1,i

)

= 
K m i+1/2(h

m 
i+1 − hm i )

Δz2
− 

K m i−1/2(h
m 
i − hm i−1)

Δz2
+ 

K m i+1/2 − K m i−1/2

Δz 
(3.32)
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where C(h)
m−1/2 
i represents the average value of the specific moisture capacity 

(C(h)m i ) at the previous time step and the specific moisture capacity (C(h)
m−1,k 
i ) 

of the current iteration step (k ≥ 1) of the current time step. 
Equation (3.32) can be simplified into matrix form Ax = b, and then iteratively 

solved by Picard method. In order to evaluate the fitting effect of the proposed time 
fractional model, two indicators are selected, namely the root mean square error 
(RMSE) and the relative error (RE): 

RSE =
[

1 

N − 1 

N−1∑
i=1

(
hi − h∗ 

i 

h∗ 
i

)2
]0.5 

(3.33) 

RE = 100 ×
[

1 

N − 1 

N−1∑
i=1

(∣∣∣∣hi − h∗ 
i 

h∗ 
i

∣∣∣∣
)]

(3.34) 

where hi is the numerical solution of Richards’ equation, and h∗ 
i is the exact solu-

tion of Richards’ equation. The smaller the values of the two errors, the higher the 
computational accuracy of the proposed approach. 

3.3 An Improved Method for Non-uniform Spatial Grid 

In the numerical solution of Richards’ equation, FDM can be used for numerical 
discretization and iterative solution. However, to obtain a more reliable numerical 
solution, the space step size of conventional uniform grid (Fig. 3.1) is often small, 
particularly under some unfavorable numerical conditions, such as infiltration into 
dry and layered soils with greatly different permeability coefficients, this makes the 
calculation time-consuming and even the accuracy cannot be improved very well. 
The realization of unstructured space grids and dynamic grid methods in some studies 
is often complicated and inappropriate (Chávez-Negrete et al. 2018; Dolejší et al. 
2019). Therefore, this chapter proposes an improved FDM numerical discretization 
process using a non-uniform Chebyshev space grid, which is compared with the 
traditional uniform space grid. This method can provide a certain reference for the 
numerical simulation of unsaturated infiltration. 

(1) Uniform grid method 

The Richards’ equation is directly numerically discretized by the finite difference 
method of uniform grid, and one can gain (Zhu et al. 2020):

[
K j i+1/2(h 

j 
i+1 − h j i ) − K j i−1/2(h 

j 
i − h j i−1)

]
Δz2

+ 
K j i+1/2 − K j i−1/2

Δz 

= 
C j−1/2 
i

(
h j i − h j−1 

i

)
Δt 

(3.35)
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Comparing Eq. (3.29), it can be found that the mathematical meaning of 
Eqs. (3.35) and (3.29) is consistent. When its steady-state infiltration is considered, 
the FDM format can be simplified as (Zhu et al. 2020):

[
Ki+1/2(hi+1 − hi ) − Ki−1/2(hi − hi−1)

]
Δz2

+ 
Ki+1/2 − Ki−1/2

Δz
= 0 (3.36) 

(2) Improved Chebyshev space grid method 

Because the pressure head in the unsaturated infiltration problem often has a large 
change at the boundary and the soil layer interface, a finer mesh is usually required 
for densification. However, the uniform grid generates too many computing grid 
nodes in the process of densification, and the computation is time-consuming and 
even not accurate enough. Then, a Chebyshev grid coordinate is proposed as (Wu 
et al. 2020b; Zhu et al. 2020): 

zi = cos(iπ/N ) × 
L 

2 
+ 

L 

2 
, i = N , N − 1, . . . ,  0 (3.37) 

where L is the thickness of the soil layer. 
In Fig. 3.1, the Chebyshev grid nodes are only highly refined at the interface, 

greatly reducing the number of grid nodes. Furthermore, the FDM discrete format 
combined with the Chebyshev grid can be expressed as: 

1 

δzi

[
K j i+1/2(h 

j 
i+1 − h j i )

Δzi+1 
− 

K j i−1/2(h 
j 
i − h j i−1)

Δzi

]
+ 

K j i+1/2 − K j i−1/2 

δzi 

= C j−1/2 
i 

h j i − h j−1 
i

Δt 
(3.38) 

where Δzi represents the unequal spacing between the Chebyshev grid nodes; δzi is 
the unequal spacing of the computing nodes (Fig. 3.1). 

Equation (3.38) can also be simplified into a matrix form such as Eq. (3.13). Due 
to the nonlinear relationship between permeability coefficient and water content, the 
coefficient matrix A needs to be repeatedly evaluated by nonlinear iteration method 
after numerical discretization. Among them, Picard method is a more classical and 
practical nonlinear iterative method. Based on the Chebyshev grid discretization 
format of the Richards’ equation, a program for unsaturated infiltration was developed 
using the MATLAB (R2014a) language. 

3.3.1 Validation Example 

This test describes one-dimensional transient unsaturated infiltration in homogeneous 
unsaturated soil (Ku et al. 2018; Zhu et al. 2022a), the soil thickness L = 10 m,
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exponential model parameters are: α = 1 × 10−4, θ s = 0.50, θ r = 0.11, and the 
saturated permeability coefficient ks = 2.5 × 10−8 m/s. Furthermore, the boundary 
conditions can be given by: 

h(z = 0) = hd (3.39) 

h(z = 10) = 0 (3.40) 

To verify the computational accuracy of the proposed method, the following error 
indicators are used in the comparative analysis, namely the root mean square error 
(RSE), the relative error (RE), and maximum relative error (MRE): 

RSE =
[

1 

N − 1 

N−1∑
i=1

(
hi − h∗ 

i 

h∗ 
i

)2
]0.5 

(3.41) 

RE = 100 ×
[

1 

N − 1 

N−1∑
i=1

(∣∣∣∣hi − h∗ 
i 

h∗ 
i

∣∣∣∣
)]

(3.42) 

MRE = 100 ×
[
max

∣∣∣∣hi − h∗ 
i 

h∗ 
i

∣∣∣∣
N−1 

i=1

]
(3.43) 

where hi is the numerical solution of Richards’ equation and h∗ 
i is the exact solution 

of Richards’ equation. The smaller the values of the three errors, the higher the 
computational accuracy of the proposed method. The total simulation time was set 
to 5 h, the number of discrete nodes was set to 100, 150, and 200, and the time steps 
were set to 0.01, 0.02, and 0.04 h, respectively. 

In Fig. 3.3, the numerical solutions are derived using two grid methods under the 
conditions of Δt = 0.01 h and N = 200 and compared with the analytical solutions. 
The numerical solution obtained by the uniform grid method has a large deviation 
from the exact solution, particularly after t > 2 h (Fig. 3.3a), while the numerical 
solution obtained by the Chebyshev grid method is in good agreement with the 
analytical solution (Fig. 3.3b).

Figure 3.4a represents the maximum relative error (MRE) obtained by different 
grid methods at different time steps when the number of nodes N is 100. The MRE 
obtained by the Chebyshev grid method ranges from 0.6 to 3.5%, and it first decreases 
and then increases with the increase of time. When t < 4 h, the MRE decreases with 
decreasing time step. The MRE obtained by the uniform grid method ranges from 
1.3 to 49%, particularly when t > 1 h, the MRE increases over time and is much 
larger than that obtained by the Chebyshev grid.

Figure 3.4b shows the MRE obtained by different grid methods under different 
numbers of discrete grid nodes when the time step Δt = 0.01 h. It can be found that 
the MRE obtained by the uniform grid as time increases. In addition, the MRE of the 
two methods has a decreasing trend with the increase of the number of grid nodes N.
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Fig. 3.3 Comparison of numerical and analytical solutions obtained by different grid methods

In Table 3.2, the RSE of both methods and the RE of the uniform grid decrease 
with the increase of N, while the RE of the Chebyshev grid increases with increasing 
N. However, it can be seen from the numerical value that the RSE of the Chebyshev 
grid is nearly 100 times different from the uniform grid method, and the RE is 
more than 10 times different from the uniform grid method. This test indicates that 
the proposed Chebyshev grid method is not limited by the number of grid nodes
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Fig. 3.4 Comparison of the maximum relative error of different grid methods under different 
numerical conditions

to improve the accuracy, that is, the proposed method achieves higher numerical 
accuracy with fewer discrete nodes, and has a smaller computational cost.

3.3.2 Unsaturated Infiltration in Layered Soils 

The mathematical model is shown in Fig. 3.5. The model parameters of the two-layer 
soils are set to θ s = 0.35, θ r = 0.14, α = 8 × 10−3. The thickness of soil layer 1 and
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Table 3.2 Numerical accuracy at t = 5 h  

Condition RSE RE (%) 

N Uniform grid Chebyshev grid Uniform grid Chebyshev grid 

100 0.11 3.7e−3 5.01 0.050 

150 0.10 2.6e−3 3.53 0.122 

200 0.09 2.1e−3 3.05 0.148

soil layer 2 are both set to 5 m, the number of discrete nodes in each layer is 40, and 
the boundary conditions are consistent with Sect. 3.3.1, where hd = −  103 m. 

In layered soils, due to the influence of different soil types, different combina-
tions have a great influence on unsaturated infiltration. Table 3.3 lists the saturated 
permeability coefficients in different saturated soils. In order to further verify the 
applicability of the proposed grid method, it is assumed that the saturated perme-
ability coefficient of soil layer 1 is 10−1 m/s, and the saturated permeability coefficient 
of the second layer gradually changes from coarse sandy soil to clay in Table 3.3, the  
saturated permeability coefficient of the second layer ranges from 10−2 to 10−9 m/s. 

Fig. 3.5 Chebyshev grid of 
two layers in unsaturated soil 

Table 3.3 Typical 
permeability coefficient 
values for saturated soils 

Soil type Permeability coefficient (m/s) 

Clean gravel 1–10−2 

Coarse sand 10−2–10−4 

Fine sand 10−4–10−5 

Silty sand 10−5–10−7 

Clay < 10−8
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It can be seen from Fig. 3.6a that the numerical solutions obtained by the uniform 
grid and the Chebyshev grid are approximate, and both can well simulate the unsat-
urated infiltration process in case 2. Figure 3.6b depicts the numerical results of 
case 4. The ratio of the saturated permeability coefficients of the upper and lower 
soil layers is in the order of 104. The uniform grid cannot accurately represent the 
pressure head at the interface, but the numerical solution obtained by the Chebyshev 
grid can accurately describe the pressure head variation at the interface. In Fig. 3.6c, 
the Chebyshev grid can also accurately describe the variations in the pressure head 
at the interface under case 6 (Table 3.4).

Similar to the two-layer soil, the proposed improved grid method is applied to 
the three-layer unsaturated soils. The mathematical model is described in Fig. 3.7, 
where L1 = L3 = 4 m and L2 = 2 m. The number of discrete nodes in each layer of 
soil is 40, the parameter θ s is set to 0.46, the three-layer unsaturated soil permeability 
coefficient is listed in Table 3.5, and the boundary conditions can be expressed as: 
h(z = 0) = 0, h(z = 10 m) = −  1000 m. Other numerical conditions are consistent 
with the two-layered soils.

In Fig. 3.8, the proposed Chebyshev grid method can better characterize the pres-
sure head change between the two interfaces in case 11 compared to the uniform grid 
method. This test further demonstrates that the proposed Chebyshev grid method can 
obtain more reliable numerical solutions with fewer grid nodes under some unfavor-
able infiltration conditions, particularly when the saturated permeability coefficient 
changes greatly in layered soils.

3.4 Application of Chebyshev Spectral Method 
to Richards’ Equation 

3.4.1 Chebyshev Spectral Method 

The Chebyshev spectral method (CSM) was developed by Gottlieb et al. (1978). It is 
widely used to solve numerical problems expressed by partial differential equations. 
The advantage of the CSM is the use of non-uniform mesh discretization and the 
Chebyshev differentiation matrix to improve the accuracy of the numerical simula-
tion. In Fig. 1.2, the  N + 1 Chebyshev point coordinates in the interval [− 1, 1] can 
be expressed as: 

z j = cos( j π/N ), j = 0, 1, . . .  N (3.44) 

The first-order derivative of interpolation function p′(z) can be written as: 

p′(z) = DN h (3.45)
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Fig. 3.6 Comparison of 
numerical solutions under 
different cases

(a) Case 2 

(b) Case 4 

(c) Case 6 
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Table 3.4 Permeability coefficient for cases 1–8 

Case number 1 2 3 4 5 6 7 8 

Ks1 (m/s) 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1 

Ks2 (m/s) 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9

Fig. 3.7 One-dimensional infiltration model of three-layer unsaturated soil 

Table 3.5 Permeability coefficient for cases 9–13 

Case number 9 10 11 12 13 

Ks1 (m/s) 1 1 1 1 1 

Ks2 (m/s) 10−3 10−4 10−5 10−6 10−7 

Ks3 (m/s) 1 1 1 1 1

where z is represented as the N + 1-dimensional vector (z0, z1, . . . ,  zN )T , h repre-
sents the N + 1 dimensional vector (h0, h1, . . . ,  hN )

T composed of the pressure 
head, and DN is an (N + 1) × (N + 1) Chebyshev differentiation matrix. 

The expression of each element in Chebyshev differentiation matrix DN for any 
number of nodes (N + 1) is given by: 

(DN )00 = 
2N 2 + 1 

6 
, (DN )NN  = −  

2N 2 + 1 
6 

, (3.46a)
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Fig. 3.8 Comparison of numerical solutions for case 11

(DN ) j j  = 
−z j 

2
(
1 − z2 j

) , j = 1, . . . ,  N − 1 (3.46b) 

(DN )i j  = 
ci 
c j 

(−1)i+ j 

zi − z j 
, (i /= j)i, j = 0, . . . ,  N , (3.46c) 

where (DN )i j  represents the element in row i + 1 and column j + 1 of Chebyshev 
differentiation matrix DN for the first derivative and, 

ci =
{
2, i = 0, N 
1, i = 1, . . . ,  N − 1 

(3.47) 

To obtain the Chebyshev differentiation matrix for the second derivative, the 
matrix can be directly squared to DN . Similarly, Chebyshev differentiation matrices 
for higher-order derivatives can be obtained as follows: 

∂ 
∂ z 

→ DN (3.48a) 

∂2 

∂z2 
→ D2 

N (3.48b) 

∂3 

∂ z3 
→ D3 

N (3.48c)
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Because DN is obtained in the interval [− 1, 1], it is necessary to scale DN to 
other intervals, that is, 

∂ 
∂z 

→ 
2 

L 
DN (3.49a) 

∂n 

∂zn 
→

(
2 

L 
DN

)n 

(3.49b) 

Through the above process, the partial differential equation including the RE 
can be easily and efficiently solved. Thus, the governing equation (Eq. 2.1) can be 
rewritten as: 

1 

c 
D2 

N h
∗ + 

αg 

c 
DN h∗ = 

∂h∗ 

∂t 
(3.50) 

In Eq. (3.50), Eq. (2.1) has been transformed into an ordinary differential equation 
(ODE) by introducing Chebyshev differentiation matrices. In this book, the variable-
step four- and fifth-order Runge–Kutta method is used to solve Eq. (3.50), which is 
the ODE solver in MATLAB. Meanwhile, the 2D linear RE can also be solved using 
the same method. 

To evaluate the performance of the proposed method, an L2 norm is used to 
indicate the error of solution h∗: 

L2
(
h∗) = ∥∥h∗,a (z, t) − h∗(z, t)

∥∥
2 (3.51) 

where h∗,a(z, t) and h∗(z, t) are one-dimensional (1D) analytical and numerical 
solutions, respectively. Simultaneously, the numerical and analytical solutions with 
spatial and temporal grids can produce an absolute error defined as follows: 

errA
(
h∗) = h∗,a (z, t) − h∗(z, t). (3.52) 

3.4.2 Validation Example 

Test 1 represents transient infiltration in homogeneous unsaturated soils. In the math-
ematical model, the soil thickness (L) is assumed to be 10 m. The model parameters 
are θ s = 0.50, θ r = 0.11, α = 1 × 10−4, and ks = 9 × 10−5 m/h (Zhu et al. 2019). 
The governing equation is described as Eq. (2.1). 

When water infiltrates into a soil mass, ponding on the ground maintains the pres-
sure head at zero (Green and Ampt 1911). The upper and lower boundary conditions 
can be expressed as:
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h(z = 0, t) = hd (3.53) 

h(z = L , t) = 0 (3.54) 

The effect of Δz and N on the results of Test 1 was analyzed. The time step was 
set to 0.01 h. Different numbers of nodes or grid sizes, that is, N /Δz = 20/0.5 (m), 
N /Δz = 40/0.25 (m), and N /Δz = 80/0.125 (m) were selected to investigate the 
influence of the different methods on L2(h∗). The total simulation time was 5 h. 
Simultaneously, three different initial conditions h0 were chosen to evaluate their 
influence on the numerical accuracy and stability of the FDM and CSM. 

In Fig. 3.9, L2(h∗) of the CSM were consistently smaller than that of the conven-
tional FDM. The numerical accuracy increased as the mesh was refined, and the 
accuracy of the traditional FDM was significantly affected by the initial conditions. 
However, the proposed method (CSM) was less affected, and the numerical accuracy 
was stable in the order of 10−6–10−7 in this example. The result indicates that the 
CSM was more robustness than the FDM. Figure 3.10 demonstrates the comparison 
of the computed pressure head profiles with different grid sizes at t = 2 h. Compared 
with the analytical solution, it can be easily seen that the numerical accuracy of the 
CSM was less influenced by the grid sizes than that of the FDM (Fig. 3.10). That is, 
the CSM achieved better numerical results with fewer mesh nodes.

The pressure head profiles were obtained from the computed results over time 
under h0 = −  100,000 m (Fig. 3.11). The number of nodes or grid sizes was 40/0.25 
(m). Figure 3.11 illustrates that the numerical solutions of the CSM agree well with 
the analytical solutions over time, whereas the numerical solutions of the FDM have 
larger errors than the analytical solutions. In Fig. 3.12, the minimum absolute errors 
of the proposed CSM and the FDM are approximately 10−11 and 10−6, respectively. 
Consequently, the extended CSM is characterized by higher accuracy than traditional 
FDM with fewer nodes.

3.5 Conclusions 

This chapter first summarizes the commonly used spatial numerical discrete methods 
of Richards’ equation, including FDM, FVM, and FEM. Furthermore, this chapter 
proposes an improved FDM numerical discretization process using a non-uniform 
Chebyshev space grid and compares it with the numerical results and analytical 
solutions obtained from a conventional uniform space grid. Additionally, based on 
the non-uniform Chebyshev grid method, the Chebyshev spectral method is proposed 
to solve the Richards’ equation, and the following conclusions can be obtained:

(1) The proposed Chebyshev grid method, while keeping the number of discrete 
nodes unchanged, uses a cosine function to ingeniously densify the interfaces 
on both sides and then numerically solve it to obtain a more reliable numerical 
solution. The numerical results indicate that the numerical solutions obtained
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Fig. 3.9 Comparison of the 
calculation accuracy for 
solving 1D transient 
infiltration with different grid 
sizes and initial conditions 
using different methods: a h0 
= −  10 m; b h0 = −  
1000 m; c h0 = −  100,000 m

(a) h0 = -10 m 

(b) h0 = -1000 m 

(c) h0 = -100000 m 
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Fig. 3.10 Comparison of 
the computed profiles of the 
pressure head with different 
grid sizes at t = 2 h:  a
Δz = 0.5 m; b
Δz = 0.25 m; c
Δz = 0.125 m
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Fig. 3.11 Comparison of the calculation results (pressure head) from different methods when h0 
= −  100,000 m 

Fig. 3.12 Absolute error in the results computed using the CSM and FDM relative to the analytical 
solution for the 1D transient infiltration at different simulated times
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by this method are in good agreement with the analytical solutions under some 
unfavorable numerical conditions, such as infiltration into a dry soil. At the same 
time, the results illustrate that the proposed Chebyshev grid method can obtain 
higher numerical accuracy with a smaller number of nodes than the conventional 
uniform grid, and the computational cost is small.

(2) The Chebyshev spectral method (CSM) based on the discretization of Cheby-
shev grid is extended to simulate unsaturated infiltration in porous media. 
Chebyshev differential matrix can construct n-order Chebyshev differential 
matrix conveniently and quickly. This is the first time that the CSM has been 
used successfully to solve 1D and 2D transient infiltration problems in unsatu-
rated soils. Compared with the traditional FDM, the CSM was more efficient, 
and it achieved higher accuracy with a lower-resolution grid. The CSM was not 
sensitive to the initial conditions. 
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Chapter 4 
Improved Linear and Nonlinear Iterative 
Methods for Rainfall Infiltration 
Simulation 

4.1 Introduction 

The linear infiltration equations obtained by discretizing Richards’ equation need to 
be solved iteratively, including two approaches of linear and nonlinear iterations. The 
first method is to use numerical methods to directly numerically discretize Richards’ 
equations to obtain nonlinear ordinary differential equations and then use nonlinear 
iterative methods to iteratively solve, such as Newton’s method (Radu et al. 2006), 
Picard method (Lehmann and Ackerer 1998), and the L-method (List and Radu 
2016). Among them, Paniconi and Putti (1994) found that Newton’s method did not 
converge systematically, and sometimes the numerical results could be completely 
wrong. Casulli and Zanolli (2010) proposed a nested Newton method that can obtain 
quadratic convergence rates for arbitrary discrete time steps and all flow regimes. 
Brenner and Cancès (2017) introduced a new parameter to modify the Richards 
equation, which will be more robust when solving the equation using Newton’s 
method. The Picard method can be considered as a simplified Newton method, 
which linearly converges. Since Newton’s method increases algebraic complexity and 
computational cost for assembling the derivative terms in the Jacobian matrix (Zeng 
et al. 2018), the modified Picard method (Celia et al. 1990) has been widely studied 
for h-based and mixed forms of Richards’ equation. However, since the coefficient 
matrix in each iteration needs to be re-evaluate in the Picard method, there is compu-
tationally expensive (Farthing and Ogden 2017). Some unfavorable numerical condi-
tions such as water infiltration into dry and layered soils with very different hydraulic 
conductivities lead to numerical difficulties or even non-convergence in the conven-
tional Picard method (Zha et al. 2017). Therefore, there has been increasing attention 
on the improvement of numerical discretization and computational efficiency of the 
Picard method (Celia et al. 1990; Zhu et al. 2020). 

The second approach first needs to convert the Richards’ equation into a linearized 
partial differential equation (Wu et al. 2020a, b), and then numerical methods are 
utilized to perform numerical discretization to obtain a set of linear equations and
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solve them iteratively. The classical linear iterative methods can efficiently solve 
systems of linear equations, such as the classic Jacobi iterative method (Hagemam 
and Young 1981), Gauss–Seidel iterative method (GS), and successive overrelax-
ation method (SOR). The GS method is an improvement on the Jacobi method, 
which usually takes less computation time, but it still requires more iterations to 
obtain a numerical solution than the SOR method. The Chebyshev semi-iterative 
method (CSIM) can improve the iterative convergence rate by introducing Cheby-
shev polynomials (Arioli and Scott 2014), but the computational cost of CSIM in each 
iteration is lower than that of traditional GS. Additionally, the Krylov subspace itera-
tive method is also a common iterative method for solving linear equations, such as the 
conjugate gradient method, the generalized minimum residual method (GMRES), 
and the modified bi-conjugate gradient method (Dehghan and Mohammadi-Arani 
2016). Theoretical analysis indicated that Hermitian/skew-Hermitian splitting itera-
tive approaches (HSS) absolutely converge to a unique solution to a system of linear 
equations (Bai et al. 2010). HSS is an efficient linear iterative method for solving 
sparse non-Hermitian positive-definite equations (Dehghan and Shirilord 2019). 
Although HSS can converge unconditionally, it is time-consuming and imprac-
tical in real-world computation. Therefore, Bai et al. (2004) proposed the inexact 
Hermitian/skew-Hermitian splitting iterative approaches (IHSS) combined with the 
Krylov subspace iterative method to improve computational efficiency. However, 
IHSS is still time-consuming to solve linear equations for finer mesh discretization. 
Due to some shortcomings of conventional iterative methods, it is of great signif-
icance to improve numerical stability, accuracy, and convergence rate (Lott et al. 
2012; Deng and Wang 2017; Mitra and Pop 2019; Illiano et al. 2021; Su et al.  2022). 

The improvement methods for common accelerated convergence include extrapo-
lation, error correction, Chebyshev polynomial acceleration (Arioli and Scott 2014), 
and preconditioning technique (Benzi 2002). For example, Lott et al. (2012) studied 
the effectiveness of the improved Picard method by the Anderson acceleration method 
for the variable saturated flow problem. Arioli and Scott (2014) analyzed an improved 
iterative method of Chebyshev polynomials that can be applied to accelerate iterative 
optimization without losing numerical stability. Wang and Zhang (2003) proposed 
a class of parallel multi-step sequential preprocessing strategies, which can signifi-
cantly improve the computational efficiency and stability of solving linear equations. 
Briggs et al. (2000) proposed a multi-grid correction method to quickly eliminate 
the iterative error in the iterative process, thereby obtaining a faster convergence 
rate. Recently, preconditioning methods can effectively reduce the condition number 
of the iterative matrix of linear equations, thereby improving the computational 
convergence rate (Benzi 2002; Zhu et al. 2022a, b, c), including the left precondi-
tioning, right preconditioning, and two-side preconditioning (Liu et al. 2015). The 
preconditioning technique converts the original system of linear equations into a 
system that is easier to solve, thereby improving the convergence rate of the iterative 
process (Benzi 2002). 

With the higher accuracy of the numerical solutions to solve the infiltration 
problem, the scale of the system of algebraic equations increases, and then the calcu-
lation time also increases. Therefore, the numerical methods and iterative methods
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are constantly improving and innovating. The research based on traditional methods 
and newly developed and new algorithms is of great significance for the cross-
development of geotechnical engineering, geological engineering, and other majors. 
In this chapter, the Richards’ equation can be transformed into a linearized Richards’ 
equation using an exponential function. Furthermore, the numerical method is used to 
discretize the linear RE, and the linear and nonlinear iterative methods are employed 
to evaluate computational efficiency and accuracy using different iterative methods. 

4.2 A Chebyshev Semi-iterative Method 
with Preconditioner 

For the system of linear equations Ah = b obtained by numerically discreting 
Richards’ equation, the left preprocessing method is given by: 

M−1 Ah = M−1 b (4.1) 

Consequently, the condition number of M−1A is greatly reduced. 
Let A be a non-singular matrix. Matrix A can be split into A = D − Q, with D a 

non-singular matrix and is the diagonal matrix of matrix A. Then, if H = D−1Q has 
spectral radius less than 1.0, one obtains: 

A−1 =
( ∞Σ

k=0 

Hk

)
D−1 (4.2) 

Matrix M is defined as: 

M = D
(
I + H +  · · ·  +  Hm−1

)−1 
(4.3) 

where m is a natural number. Furthermore, matrix M is considered as a preconditioner 
to estimate the condition number of M−1A. From Eq.  (4.3) and A = D− Q, one can 
obtain: 

M−1 A = (
I + H +  · · ·  +  Hm−1

)
D−1 (D − Q) = I − Hm (4.4) 

If λ1, . . . , λn are the eigenvalue of matrix H, the eigenvalues of M are 1 − λm 
i . 

If D and A are symmetric positive-definite matrices, then the eigenvalues of H are 
real. Assuming that λ1 ≤  · · ·  ≤  λn < 1, then one can have:



74 4 Improved Linear and Nonlinear Iterative Methods for Rainfall …

cond
(
M−1 A

) = 
λmax

(
M−1A

)
λmin

(
M−1A

) = 

⎧⎪⎨ 

⎪⎩ 

1−λm 
1 

1−λm 
n 
, if λ1 ≥ 0 or  λ1 < 0, m is odd, 

1−σ m 
1−λm 

n 
, if λ1 < 0, |λn| ≥ |λ1|, m is even, 

1−σ m 
1−λm 

1 
, if λ1 < 0, |λ1| > |λn|, m is even, 

(4.5) 

where σ = mini |λi |. 
From Eq. (4.5), the condition number of matrix M−1A decreases with increasing 

m. Hence, the preprocessing can effectively decrease the condition number of this 
matrix and enhance the convergence rate. 

Based on the Chebyshev polynomial acceleration process and the Gauss– 
Seidel iterative method of preconditioning, this chapter develops an improved 
preconditioning Chebyshev semi-iterative method (P-CSIM). First, the improved 
Gauss–Seidel iterative format using the preconditioning (Eq. 4.3) is written as: 

hk+1 = GMhk + bM (4.6) 

where GM denotes an iterative matrix and sM denotes a column matrix of prepro-
cessing. Furthermore, the error vector for the general polynomial acceleration process 
of Eq. (4.6) is expressed as: 

εk = Qk(GM)ε0 (4.7) 

where Qk(GM) ≡ ak,0I+ak,1GM+· · ·+ak,kGk 
M is a matrix polynomial, and the only 

additional condition being
Σk 

i=0 ak,i = 1. The virtual spectral radius of the matrix 
Qk(GM) is then defined as: 

S(Qk(GM)) = max 
m(GM)≤x≤M(GM) 

|Qk(x)| (4.8) 

where M(GM) and m(GM) denote the algebraic maximum and minimum eigenvalues 
of GM, respectively. 

It can be proved that the matrix polynomial Qk(GM) that ensures S(Qk(GM)) 
reaches a minimum is unique and can be defined by a Chebyshev polynomial. Further-
more, it is needed to find the polynomial Pk(x), for  which  Pk(1) = 1, and satisfies 
the following conditions (Theorem 4.2.1 of Hagemam and Young 1981): 

max 
m(GM)≤x≤M(GM) 

|Pk(x)| ≤ max 
m(GM)≤x≤M(GM) 

|Qk(x)| (4.9) 

where Qk(x) satisfies Qk(1) = 1. Assume that the eigenvalues of GM are real 
numbers, m(GM) = α, and M(GM) = β. According to Theorem 2.2.1 of Hagemam 
and Young (1981, p. 21), let: 

α = λ1 ≤ λ2 ≤  · · ·  ≤  λn = β <  1, α /= β (4.10)
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To obtain Pk(x), a linear transformation is required as follows: 

r = 
2x − α − β 

β − α 
(4.11) 

Moreover, one can obtain: 

⎧⎪⎨ 

⎪⎩ 

r
||
x=α = −  1, r

||
x=β = 1, 

x = (β−α)r+(β+α) 
2 , 

Qk(x) = Qk

(
(β−α)r+(β+α) 

2

)
=: Pk(r ). 

(4.12) 

A new parameter z∗ is introduced as follows: 

z∗ = r |x=1 = 
2 − α − β 

β − α 
(4.13) 

Note that z∗ > 1 and Pk(z∗) = Qk(1) = 1. Here, Pk(x) can be defined as: 

Pk(x) ≡ Tk(r )/Tk
(
z∗) (4.14) 

Additionally, the kth Chebyshev polynomials on Tk(r ) for any non-negative 
integer k and r can be defined by the following 3-term recurrence equation (Arioli 
and Scott 2014):

(
T0(r ) = 1, T1(r) = r, 
Tk+1(r ) = 2rTk(r) − Tk−1(r ), k ≥ 1. 

(4.15) 

Using Theorem 4.2.1 (Hagemam and Young 1981), it is easy to prove that poly-
nomials Pk(x) satisfy the recurrence relation. Therefore, according to Eqs. (4.6), 
(4.14), and (4.15) and Theorem 3.2.1 (Hagemam and Young 1981, p. 41), the 3-term 
recurrence equations for the P-CSIM are written as:

(
h1 = γ

(
GMh0 + bM

) + (1 − γ )h0, 
hk+1 = ρk+1

[
γ
(
GMhk + bM

) + (1 − γ )hk
] + (

1 − ρk+1

)
hk−1 k ≥ 1, 

(4.16) 

in which 

γ = 2 

2 − β − α 
(4.17) 

ρk+1 = 
2r (1)Tk(r (1)) 
Tk+1(r (1)) 

(4.18) 

Equation (4.16) can be further expressed as:
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(
h1 = 2 

2−β−α

(
GMh0 + bM

) − α+β 
2−β−α h

0, 
hk+1 = 2 2GM−(α+β)I 

β−α 
Tk (z∗) 
Tk+1(z∗)h

k − Tk−1(z∗) 
Tk+1(z∗)h

k−1 + 4bM 
β−α 

Tk (z∗) 
Tk+1(z∗) k ≥ 1, 

(4.19) 

where Tk(z∗) is recursively calculated using Eq. (4.15); here, I is an identity matrix. 
From Eq. (4.19), the convergence rate of P-CSIM mainly depends on the accuracy 

in estimating the maximum and minimum eigenvalues β and α of the iterative matrix 
GM. This chapter assumes 0 < −α = β <  1 based on the basic assumptions 
of Hagemam and Young (1981). By the above processing, the proposed P-CSIM 
achieves a better convergence and computational efficiency in solving the linear 
algebraic equations. 

A brief implementation flowchart of P-CSIM is described in Fig. 4.1 (Zhu et al. 
2020). To compare the speed-up of the improved method, the speed-up ratio is defined 
as: 

SGS/P = 
TGS 

TP-CSIM 
(4.20) 

where TGSIM and TP-CSIM represent the computing times for GSIM and P-CSIM.

Fig. 4.1 Brief flowchart of P-CSIM 
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4.2.1 Numerical Tests 

The mathematical model, boundary conditions, and unsaturated soil parameters of the 
numerical tests are consistent with Chap. 3, and the analytical solutions are expressed 
as Eqs. (2.3)–(2.5). The total duration of the simulation was 5 h, and the convergence 
criterion was set to 10−8 for the different iteration schemes. In preprocessing, the 
expansion order m is set to 20. To verify the accuracy, efficiency, and robustness of 
the proposed method, the time steps were set to 0.01 h, 0.005 h, 0.002 h, and 0.001 h, 
respectively, and the grid sizes were set to 0.4 m, 0.2 m, and 0.1 m. 

Figure 4.2 demonstrates the relationship between expansion order m and the 
condition number for different time steps in this test. The condition number of 
coefficient matrix A increases with the time step. However, the condition number 
can be decreased to 1.0 through the preprocessing method. Additionally, Fig. 4.2a– 
d indicates that the condition number is close to 1.0 when m = 6, indicating that 
preprocessing effectively improves the ill-conditioning of the matrix. 

Table 4.1 sums up the iterations, the computing time obtained from the different 
iterative schemes with different grid sizes, and the time steps in this test. Compared 
with other methods, the improved P-CSIM has the lowest iterations and the least 
computational cost at different time steps and grid sizes. When Δz = 0.1, the

Fig. 4.2 Relationship between parameter m and condition number at different time steps 
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iterations of the P-CSIM are much smaller than that of other methods (Fig. 4.3a). 
Moreover, the speed-up ratio of P-CSIM relative to the other three methods at Δt = 
0.005 (Fig. 4.3b) shows that it is the largest with JIM, CSIM, and GSIM following 
in sequence. This result also demonstrates that the proposed P-CSIM represents a 
vast improvement over CSIM. 

RMSE reaches an order of 10−5 at t = 5 h (Fig. 4.4) and decreases with decreasing 
grid size for different iterative methods. Moreover, the accuracy of the proposed 
P-CSIM shows a slight improvement compared with that of GSIM and CSIM.

The results illustrate that the improved P-CSIM has better computational 
efficiency, stability, and accuracy than the other three iterative methods.

Table 4.1 Numerical results of different iterative methods (Zhu et al. 2020) 

Conditions Iterations Computing time (s)

Δz (m) Δt (h) JIM GSIM CSIM P-CSIM JIM GSIM CSIM P-CSIM 

0.4 0.01 13 10 10 2 0.0885 0.0471 0.0522 0.0203 

0.005 10 8 8 2 0.1461 0.0734 0.0790 0.0345 

0.002 8 7 7 2 0.2650 0.1523 0.1647 0.0669 

0.001 7 6 6 2 0.4482 0.2632 0.2899 0.1371 

0.2 0.01 29 19 17 3 0.2392 0.1047 0.1569 0.0562 

0.005 19 14 13 2 0.3184 0.1515 0.2388 0.0573 

0.002 12 10 9 2 0.4881 0.3156 0.3681 0.1137 

0.001 9 8 8 2 0.7564 0.4459 0.6684 0.2321 

0.1 0.01 85 49 39 5 1.1104 0.5001 1.0043 0.1409 

0.005 49 29 24 4 1.2838 0.6354 1.2199 0.2570 

0.002 25 17 16 3 1.6605 0.9149 2.0057 0.3988 

0.001 17 12 12 2 2.2653 1.2625 2.9351 0.5303 

Fig. 4.3 Numerical results of different iterative methods at t = 0.005 h: a iterations and b speed-up 
ratio 
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Fig. 4.4 Root mean squared error (RMSE) associated with several grid sizes at t = 5 h for the  
different iterative methods

4.3 Improved Gauss–Seidel Method 

When the first-order linear stationary iterative methods (Eq. 4.6) or other iterative 
schemes to solve linear equations are used, the iterative process may or may not 
converge. Even if it does, it may converge very slowly. In either condition, this chapter 
hopes to find an improved method to make non-convergent formats converge, and 
slow-convergent formats converge faster. The commonly used acceleration methods 
include extrapolation method, integral correction method, Chebyshev polynomial 
acceleration method, and preconditioning method. 

4.3.1 Integral Correction Method 

The integral correction method is similar to Anderson acceleration method (Walker 
and Ni 2011; Both et al.  2018). Firstly, the mutually different approximate solutions 
h1, h2, …  hc (c > 1) can be obtained according to the basic iterative method, and 
Ahi /= b (i = 1, 2, …, c). Then the information provided by hi can be used to 
construct the vector h so that it is closer to the exact solution of the linear equations 
than hi , that is, there is:

||b − Ah||2 < min 
1≤i≤c

||b − Ahi||2 (4.21)
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The vector h that satisfies Eq. (4.21) is the correction solution of the linear equa-
tions with respect to h1, h2, …  hc. The process of determining h is the correction 
process, then the integral correction model can be expressed as: 

⎧⎨ 

⎩ 
h = 

cΣ
i=1 

βihi , 
cΣ

i=1 
βi = 1,

||b − Ah||2 = min 
(4.22) 

Select arbitrarily s ∈ {1, 2, . . . ,  c}, then 

h = hs +
Σ
i /=s 

βi (hi − hs), 

r(h) = b − Ah = (b − Ahs) −
Σ
i /=s 

βi (Ahi − Ahs) = rs +
Σ
i /=s 

βi (ri − rs) 

(4.23) 

Denote 

δi = ri − rs, Qs =
[
δ1, . . . ,  δs−1, δs+1, . . . ,  δc

]
, 

ys = (β1, . . . , βs−1, βs+1, . . . , βc)
T 

Therefore, Eq. (4.23) can be rewritten as r(h) = rs + Qsys , so that, 

h = 
cΣ

i=1 

βihi = β1h1 + β2h2 +  · · ·  +  βchc (4.24) 

makes ||r(h)||2 = min, which is equivalent to ys ∈ Cc−1 makes ||rs + Qsys||2 = min, 
and its minimal norm solution can be expressed as: 

ys = −Q† 
s rs (4.25) 

where Q† 
s is the generalized inverse matrix of Qs . The parameter βs can be obtained 

by βs = 1 − Σ
i /=s βi , and then the correction solution h can be determined using 

Eq. (4.24). In particular, for c = 2, one can gain: 
⎧⎨ 

⎩ 
β1 = y2 = −Q† 

2r2 = −δ
† 
1r2 = − (r1−r2)H r2

||r1−r2||2 2 
β2 = 1 − β1 = (r1−r2)H r1

||r1−r2||2 2 
(s = 2) (4.26) 

⎧⎨ 

⎩ 
β2 = y1 = −Q† 

1r1 = −δ
† 
2r1 = − (r2−r1)H r1

||r2−r1||2 2 
β1 = 1 − β2 = (r2−r1)H r2

||r2−r1||2 2 
(s = 1) (4.27)
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It can be seen that the results of Eqs. (4.26) and (4.27) are consistent. Therefore, the 
improved Gauss–Seidel iterative method (IC(c)-GS) based on the integral correction 
method can be summarized as follows: 

(1) Input the matrix A, the right vector b, the initial vector h∗
0, the integer c, and s = c, and let k = 1. 

(2) Calculate h∗k 
i using Gauss–Seidel iterative method, i = 1, 2, …, c. 

(3) Calculate yk s and β
k 
s by Eq. (4.25). 

(4) Calculate h∗k = βk 
1 h

∗k 
1 + βk 

2 h
∗k 
2 +  · · ·  +  βk 

c h
∗k 
c . 

(5) If the accuracy meets the requirements, the calculation stops and h∗k is output 
as the approximate solution of the linear equations. Otherwise, let k = k + 1 
and return to step (2) to continue the next iteration. 

4.3.2 Multistep Preconditioner Method 

For a given system of linear equations, Ah∗ = b, the condition number may be used 
to evaluate whether a given non-singular matrix A is ill-conditioned. The condition 
number for a non-singular matrix A can be defined as: 

Cond(A) = ||A|| · ||A||−1 (4.28) 

where the matrix norm is the Frobenius norm. 
The preconditioning method can be an acceleration technique for the iterative 

solution of the system of linear equations. It can greatly improve the ill-condition of 
the original system of linear equations, thereby accelerating the convergence rate of 
the iterative method (Benzi 2002). The preconditioning process is usually to find the 
matrix M (preconditioner) for the linear equations Ah∗ = b. There are many choices 
and forms of M. The preconditioning on the left for Ah∗ = b can be written as: 

M−1 Ah∗ = M−1 b (4.29) 

Ah∗ = b is preconditioned from the right: 

AM−1 y = b, h∗ = M−1 y (4.30) 

The preconditioning on both sides of Ah∗ = b is: 

M−1 
1 AM

−1 
2 z = M−1 

1 b, h∗ = M−1 
2 z, M = M1M2 (4.31) 

Based on the preconditioner increasing the complexity of the iterative method, 
here the preconditioner should be simple to construct and greatly improve the conver-
gence rate of the iterative method. Therefore, the left preconditioning (Eq. 4.29) is  
adopted in this chapter. A symmetric Gauss–Seidel (SGS) preconditioner is written 
as:
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MSGS = (D − L)D−1 (D − U) (4.32) 

It is easy to know that combining the split matrix of the GS can quickly construct 
the preconditioner (Eq. 4.32). This preconditioning technique has almost no construc-
tion cost and is easy to implement. However, the result of one-step preconditioning 
is sometimes not good enough. Furthermore, a multistep SGS preconditioner is 
proposed to further obtain a sufficiently good and easier-to-solve system of the linear 
equations: 

mΠ
i=1 

M−1 
SGS 

i Ah∗ = 
mΠ
i=1 

M−1 
SGS 

i b (4.33) 

where m represents the number of steps of the multistep preconditioner. Generally, a 
multistep preconditioner with a small number of steps that can lead to good conver-
gence results in the iterative method, and a multistep preconditioner with a large 
number of steps may be more robust, but it may also cause higher computational 
cost of the iterative method. The empirical number of steps should be 2, 3, or 4, 
which can provide the preconditioning iterative method with good convergence rate. 
The Gauss–Seidel iterative method with multistep preconditioner (MP(m)-GS) can 
be summarized as follows: 

(1) Give the matrix A, the right vector b, the initial vector h∗
0, the filter parameter 

τ , and the number of steps m, and let A1 = A, k = 1. 
(2) Circularly calculate Ai+1: 

For (i = 1; i ≤ m; i++). 
Compute an SGS preconditioner M−1 

SGS 
i using Ai . 

Drop the small entries in the matrix M−1 
SGS 

i relative to the parameter τ . 
Compute Ai+1 = M−1 

SGS 
iAi . 

End the cycle. 
(3)

Πm 
i=1 M

−1 
SGS 

i is used as a preconditioner to perform left preconditioning on 
Ah∗ = b. 

(4) The GS is used to solve the preconditioned linear equations (Eq. 4.33). 
(5) If the accuracy is satisfied, the calculation stops and h∗k is output as the approx-

imate solution of the linear equations. Otherwise, let k = k + 1 and return to 
step (3) to continue the next iteration. 

The parameter τ can ensure the sparsity of the preconditioning matrix, thereby 
reducing the computational cost of the preconditioning process (Wang and Zhang 
2003). In this chapter, the parameter τ is uniformly set to 10−4. It can be easily found 
that when m = 0, MP(m)-GS completely degenerates to GS.
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4.3.3 Mixed Method 

The integral correction method utilizes the solution vector error correction to make 
the iterative method obtain a faster convergence rate, while the multistep precondi-
tioning method preprocesses the original system of linear equations into a more easily 
solved system of linear equations, making the subsequent iterative method more effi-
cient. The two methods are different. Therefore, the two methods are combined to 
propose an improved Gauss–Seidel iterative method (ICMP(m)-GS) with multistep 
preconditioner based on the integral correction method. The method is summarized 
as follows: 

(1) Give the matrix A, the right vector b, the initial vector h∗
0, the integer c, the filter 

parameter τ , and the number of steps m, and let k = 1. 
(2) Calculate M−1 

SGS 
i (i = 1, 2, …, m) cyclically, and drop the small entries in the 

matrix M−1 
SGS 

i relative to the parameter τ . 
(3)

Πm 
i=1 M

−1 
SGS 

i is used as a preconditioner to perform left preconditioning on 
Ah∗ = b, and GS is used to calculate h∗k 

i (i = 1, 2, …, c). 
(4) Calculate yk s and β

k 
s according to Eq. (4.25), and calculate h

∗k = βk 
1 h

∗k 
1 +βk 

2 h
∗k 
2 + 

· · ·  +  βk 
c h

∗k 
c . 

(5) If h∗k converges according to the convergence criterion, then stop; otherwise, 
go to step (3). 

To verify the calculation efficiency, the speed-up ratio is defined as: 

SGS/MP(m)-GS = TGS 
TMP(m)-GS 

(4.34) 

where TGS and TMP(m)-GS are the runtimes of GS and MP(m)-GS, respectively. 

4.3.4 Numerical Tests 

4.3.4.1 1D Steady-State Unsaturated Infiltration 

The mathematical model is shown in Fig. 1.1. The model parameters are: α = 8 × 
10−3, θ s = 0.35, θ r = 0.14, and hd = −  103 m. For the integral correction method, to 
test the influence of the parameter c on the improved iterative method, c is set to 2, 5, 
10, and 20. For the multistep preconditioning method, m is 1, 2, 3, and 4 to verify the 
effectiveness of the algorithm. In Fig. 4.5, the change in the space stepΔz has a small 
impact on the acceleration effect of the IC(c)-GS iterative method, while the change 
of the parameter c has a greater impact on it. When the parameter c is less than 10, the 
speed-up ratio of IC(c)-GS relative to the GS is relatively small. And when c ≥ 10, 
the speed-up ratio increases greatly. It can be found that the acceleration effects of c 
= 10 and c = 20 are roughly similar. Therefore, the parameter c of the IC(c)-GS is 
set to 10 in this chapter. In Fig. 4.6, the convergence rate of the Jacobi is the slowest,
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Fig. 4.5 Comparison of the speed-up ratio of IC(c)-GS relative to GS under different parameter c

followed by the GS, and the SOR is faster than the Jacobi and GS. It is easy to obtain 
that when c ≥ 10, the convergence rate of IC(c)-GS is faster than SOR. When m = 3 
and 4, the convergence rate of MP(m)-GS is also faster than SOR. For the proposed 
mixed method ICMP(m)-GS, it can be found from the enlarged convergence graph 
that its convergence rate is faster than SOR, IC(c)-GS, and MP(m)-GS, regardless of 
the value of m, and increases with the increase of m. 

In Fig. 4.7, the speed-up ratio of MP(m)-GS and ICMP(m)-GS relative to GS is 
very large whenΔz = 0.025 m, and the acceleration effect is much better than IC(c)-
GS. The acceleration effect of ICMP(m)-GS is better than MP(m)-GS. Additionally, 
the speed-up ratio of ICMP(m)-GS relative to GS increases slowly when the param-
eter m is 3 and 4, which is related to the increase of the convergence rate. In other 
words, the improved method ICMP(m)-GS increases the computational complexity 
and cost as increasing m, but the number of iterations does not greatly decrease. The 
numerical results are listed in Table 4.2. The number of iterations and running time 
of GS and ICMP(3)-GS increase as Δz decreases, but the number of iterations of 
ICMP(3)-GS is much smaller than that of GS, and the difference is about 10,000 
times. The running time of ICMP(3)-GS is much shorter than that of GS, and the 
difference is about 100 times.

4.3.4.2 1D Transient Unsaturated Infiltration 

The boundary conditions can be written as follows: 

h(z = 0) = hd (4.35)
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Fig. 4.6 Comparison of convergence rates for the different iterative methods

h(z = 10) = 0 (4.36) 

The parameters are set to: α = 1 × 10−4, θ s = 0.50, θ r = 0.11, and the saturated 
permeability coefficient ks = 2.5 × 10−8 m/s. The total simulation time is 10 h. 
To verify the calculation efficiency of the proposed method, the space step is taken 
as 0.05 m, 0.025 m, and 0.0125 m, and the time step is 0.2 h, 0.1 h, and 0.05 h, 
respectively. 

Figure 4.8 shows the changes in the condition number of the coefficient matrix A 
with and without the algorithm MP(m) under different numerical discrete conditions. 
The condition number of the coefficient matrix increases with the decrease of the
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Fig. 4.7 Effect of parameter m on the improved iterative methods MP(m)-GS and ICMP(m)-GS 
for Δz = 0.025 m 

Table 4.2 Numerical solutions of steady-state infiltration 

Conditions Number of iterations Running time (s)

Δz (m) GS ICMP(3)-GS GS ICMP(3)-GS 

0.0500 57,942 8 2.43 0.06 

0.0250 209,201 21 28.09 0.25 

0.0125 746,728 81 536.99 2.03

space step and decreases with the decrease of the time step. When the preconditioning 
method is not used, the condition number reaches in the order of 104. However, the 
condition number can be greatly reduced using the algorithm MP(m) and decrease 
with the increase of the parameter m. Particularly after using algorithm MP(4), the 
condition number even approaches 1.0, which indicates that the multistep precondi-
tioning process can effectively improve the ill-condition of the system of the linear 
equations.

Tables 4.3 and 4.4 list the average number of iterations and running time of the 
conventional iterative methods GS and SOR and the improved method ICMP(m)-
GS. First of all, it can be seen that the performance of SOR is better than that of 
GS. However, the number of iterations of SOR is not stable under a smaller space 
step. Compared with GS and SOR, the number of iterations and running time of the 
improved ICMP(m)-GS is less than that of the conventional method. The number 
of iterations increases with the decrease of Δz and decreases with the decrease 
of Δt . The running time increases as Δz and Δt decrease. At the same time, the
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Fig. 4.8 Condition number with and without the MP algorithm for different conditions a Δz = 
0.05 m and  b Δz = 0.025 m

Table 4.3 Number of iterations for solving steady-state infiltration 

Conditions Average number of iterations for each time step

Δz (m) Δt (h) GS SOR ICMP(1)-GS ICMP(2)-GS ICMP(3)-GS ICMP(4)-GS 

0.05 0.2 3071 274 13 6 3 2 

0.1 1639 222 9 5 3 2 

0.05 868 160 7 4 3 2 

0.025 0.2 11,262 545 32 11 5 3 

0.1 6019 401 20 8 4 3 

0.05 3185 403 14 6 4 2

performance of ICMP(m)-GS with m = 3 and 4 is much better than that of GS and 
SOR, and it has a very significant acceleration effect. Besides, the acceleration effect 
of the improved method ICMP(m)-GS also has certain rules under different grid 
sizes. In Fig. 4.9, with the decrease of the space step Δz and the increase of the time 
stepΔt , the speed-up ratio of ICMP(3)-GS relative to GS has a tendency to increase. 
In Fig. 4.10, the transient numerical solutions obtained by the ICMP(m)-GS method 
are also very consistent with the analytical solutions. This result further verifies that 
the proposed method has a faster convergence rate and a higher acceleration effect 
than the conventional methods. 

4.3.4.3 2D Transient Unsaturated Infiltration 

The geometry and boundary conditions for this example are illustrated in Fig. 2.2, 
where L = 1 m and W = 1 m. The soil was assumed to be silt. The parameters of 
soil were described by Liu et al. (2015) and included θ s = 0.35, θ r = 0.14, α = 8 × 
10−3, and ks = 9 × 10−4 m/h. The boundary conditions are as follows:
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Table 4.4 Running time for solving steady-state infiltration 

Conditions Running time (s)

Δz (m) Δt (h) GS SOR ICMP(1)-GS ICMP(2)-GS ICMP(3)-GS ICMP(4)-GS 

0.05 0.2 6.25 1.23 0.54 0.28 0.18 0.15 

0.1 6.66 1.60 0.74 0.43 0.29 0.23 

0.05 7.13 1.96 1.12 0.67 0.52 0.39 

0.025 0.2 72.2 6.08 4.29 1.49 0.86 0.59 

0.1 77.8 7.82 4.96 3.12 1.19 1.03 

0.05 82.6 13.1 7.18 3.08 2.16 1.40 

Fig. 4.9 Comparison of the speed-up ratios of ICMP(3)-GS relative to GS under different grid 
sizes

h(0, z, t) = hd (4.37) 

h(W, z, t) = hd (4.38) 

h(x, 0, t) = hd (4.39) 

h(x, L , t) = ln
((
1 − eαhd

)
sin

(π x 
W

)
+ eαhd

)
/α (4.40)
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Fig. 4.10 Comparison of the numerical solutions obtained using ICMP(m)-GS with analytical 
solutions

The total simulation time and time step are set to 5 h and 0.1 h, respectively. The 
pressure profile computed using ICMP(m)-GS at t = 5 h is presented in Fig. 4.11, 
which is consistent with the analytical solution of this issue.

In Fig. 4.12, the condition number of the coefficient matrix can be greatly 
reduced using the proposed algorithm MP(m) and decreases with the increase of 
m. Figure 4.13a demonstrates the number of iterations of ICMP(m)-GS and GS. 
The number of iterations of ICMP(m)-GS is much smaller than that of the GS and 
decreases as m decreases. For m > 2, the number of iterations decreases slowly. 
Figure 4.13b indicates that the running time of ICMP(m)-GS is less than that of 
the GS, and the difference between the running time of GS and ICMP(3)-GS is 
about 10 times. Additionally, it can be found that when Δx , Δz = 0.025 m, the 
running time of ICMP(3)-GS is slightly shorter than that of ICMP(4)-GS. This is 
because when m = 3, the condition number of the coefficient matrix has been greatly 
reduced (Fig. 4.12). Thus increasing m cannot improve the computation efficiency. 
This result further demonstrates that the proposed method ICMP(m)-GS can achieve 
a significant acceleration compared to the GS, particularly at a smaller grid size.
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Fig. 4.11 Numerical solutions obtained using ICMP(m)-GS for 2D transient infiltration problem 
at 5 h

Fig. 4.12 Relationship between the condition number and the parameter m for different grid sizes
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Fig. 4.13 Numerical results for this test: a number of iterations and b running time 

4.4 Nonlinear Iterative Methods and Improvements 

4.4.1 Newton and Picard Methods 

In Fig. 4.14, the Richards’ equation needs to be modified to satisfy rainfall infiltration 
into unsaturated soil slopes (Iverson 2000): 

∂ 
∂ z

[
K (h)

(
∂h 

∂ z 
+ cos β

)]
= 

∂θ 
∂t 

(4.41) 

where β is the slope angle.

Fig. 4.14 Schematic map of control volume method based on non-uniform grid nodes and 1D 
infiltration model for homogeneous soil slope 
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Finite volume method is used to discretize Eq. (4.41). First, the interval on the 
z-axis is divided into N equal parts, and the simulation time is divided into M equal 
parts. Furthermore, Eq. (4.41) is integrated as follows (Patankar 1980): 

i+Δz(
i 

t+Δt(
t 

∂θ 
∂t 

dtdz = 
t+Δt(
t 

i+Δz(
i 

∂ 
∂z

[
K (h)

(
∂h 

∂ z 
+ cos β

)]
dzdt (4.42) 

By simplification, one can gain: 

K j i+1/2

(
h j i+1 − h j i

)
Δz

− 
K j i−1/2

(
h j i − h j i−1

)
Δz

+
(
K j i+1/2 − K j i−1/2

)
cos β 

= ΔzC j−1/2 
i 

h j i − h j−1 
i

Δt 
, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ M + 1 (4.43) 

where i represents discrete nodes along the z-axis (except boundary nodes) and j 
represents time nodes. C is the specific moisture capacity, defined as C(h) = ∂θ/∂h; 
Ki+1/2 and Ki−1/2 represent the harmonic average of the hydraulic conductivity 
corresponding to adjacent nodes. 

Newton and Picard iterative methods to solve Eq. (4.43) are a popular linearization 
technique. Newton method based on the one-dimensional Richards’ equation in the 
form of pressure head (h) is expressed as:

(
A j,k + 

∂A j,k 

∂h j,k 
h j,k + 

C j,k

Δt 
+ 

1

Δt 

∂C j,k 

∂h j,k
(
h j,k − h j−1

) − 
∂F j,k 

∂h j,k

)
(
h j,k+1 − h j,k

) = F j,k − A j,k h j,k − 
C j,k

Δt

(
h j,k − h j−1

)
(4.44) 

where k is the number of iterations and A is a tridiagonal matrix, at node i, which is 
given by: 

Ai =
[
K j,k i−1/2

Δz 
, − 

K j,k i−1/2

Δz 
− 

K j,k i+1/2

Δz 
, 
K j,k i+1/2

Δz

]
(4.45) 

C and F can be written as follows at node i: 

Ci = −ΔzC j−1/2,k 
i (4.46) 

Fi =
(
K j,k i−1/2 − K j,k i+1/2

)
cos β (4.47) 

The modified Picard method (PI), also known as the fixed-point method (Schrefler 
and Zhan 1993), can be expressed as:
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(
A j,k + 

C j,k

Δt

)(
h j,k+1 − h j,k

) = F j,k − A j,k h j,k − 
C j,k

Δt

(
h j,k − h j−1

)
(4.48) 

It can be seen from Eq. (4.48) that the modified Picard method is a simplification of 
the Newton method, ignoring the derivative term in the Jacobian matrix. In addition, 
Eq. (4.48) can be further simplified into the standard Picard format:

(
A j,k + 

C j,k

Δt

)
h j,k+1 = F j,k + 

C j,k

Δt 
h j−1 (4.49) 

Newton’s method is quadratic convergent (Li 1993), but needs to calculate the 
first derivatives of matrices A and C and vector F, and the modified Picard method 
only converges linearly (Li 1993). Due to Newton’s method increases the alge-
braic complexity and computational cost of constructing derivative terms in Jacobian 
matrices, thus modified Picard method has been widely investigated for h-based and 
mixed form of Richards’ equations. Furthermore, there is still a large computational 
cost due to the need to recalculate the iteration matrix for each iteration in the Picard 
method (Farthing and Ogden 2017). For some unfavorable numerical conditions, 
such as infiltration into dry soils and/or layered soils with very different perme-
ability coefficients, this results in numerical difficulties or even non-convergence of 
conventional Picard methods (Zha et al. 2017). 

Normally, the uniform discrete process does not have good numerical convergence 
under some unfavorable numerical conditions, such as rainfall infiltration into dry 
soils (Zha et al. 2017). Therefore, a non-uniform grid in the form of Chebyshev is 
adopted (Wu et al. 2020). The coordinates in the two-layer soils in Fig. 4.14 can be 
expressed as follows: 

z1i = cos(i π/N1) × 
L1 

2 
+ 

L1 

2 
, i = N1, N1 − 1, . . .  0 (4.50) 

z2i = cos(i π/N2) × 
L2 

2 
+ 

L2 

2 
+ L1, i = N2 − 1, N2 − 2, . . .  0 (4.51) 

where L1 and L2 are the height of soil layers 1 and 2, respectively; i denotes non-
uniform grid nodes; and N1 and N2 represent the number of nodes in layers 1 and 
2, respectively. In addition, for the convenience of comparison and analysis, one can 
have N = N1+ N2. The discretized equation is now derived by integrating Eq. (4.41) 
over the non-uniform finite volume in Fig. 4.14 and over the time interval from t to 
t + Δt . Thus, 

iE(
iW 

t+Δt(
t 

∂θ 
∂t 

dtdz = 
t+Δt(
t 

iE(
iW 

∂ 
∂ z

[
K (h)

(
∂h 

∂z 
+ cos β

)]
dzdt (4.52) 

Furthermore, this chapter can obtain
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K j,k iE

(
h j,k+1 
i+1 − h j,k+1 

i

)
(δz)E 

− 
K j,k iW

(
h j,k+1 
i − h j,k+1 

i−1

)
(δz)W 

+
(
K j,k iE 

− K j,k iW

)
cos β 

= C j−1/2,k 
i (Δz)i 

h j,k+1 
i − h j−1 

i

Δt 
(4.53) 

According to Eqs. (4.43) and (4.53), the matrix form of the standard Picard 
iterative method can be abbreviated as follows: 

A
(
h j,k

)
h j,k+1 = f

(
h j,k , h j−1

)
(4.54) 

For the solution of Eq. (4.54), the system of linear equations is first derived and 
then solved by the basic linear solution methods. The Gaussian elimination method 
is usually effective. After solving Eq. (4.54) for the first time, the coefficient matrix 
in Eq. (4.54) is recalculated using this first solution, and the new linear equation is 
solved. The iteration process is terminated when the convergence measure is satisfied 
using l∞ norm as:

||||h j,k+1 − h j,k
||||∞||||h j,k||||∞ 

< ε (4.55) 

The standard Picard method according to Eq. (4.54) can be abbreviated as N-
PI. Generally, the Picard method combined with non-uniform grids has a slower 
convergence rate and lower calculation efficiency. To improve the convergence rate of 
N-PI, an improved Picard method based on non-uniform two-grid correction scheme 
(NTG-PI) is proposed in this book. In addition, the improved Picard method by the 
adaptive relaxation method (NAR-PI) is adopted for the comparative study. 

4.4.2 Improved Picard Method 

4.4.2.1 Adaptive Relaxed Picard Iterative Method (NAR-PI) 

The adaptive relaxation method can effectively improve the computational efficiency 
of the Picard method (Smedt et al. 2010). First, when k > 1, the adaptive relaxation 
method can be expressed in the following form: 

hk+1 ← hk + λk
(
hk+1 − hk

); λk ∈ (0, 2) (4.56) 

where λk is the relaxation coefficient of the kth iteration, and its size can be adjusted 
according to the generalized angle between the current iteration step increment Δh 
and the previous iteration step increment Δh:
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δ = arccos

(
Δh · Δh

||Δh||||||Δh
||||
)

(4.57) 

The angle δ in Eq. (4.57) represents the convergence trend of the numerical solu-
tion. An acute angle indicates better convergence, and an obtuse angle indicates 
oscillation. Therefore, when δ is an acute angle, λk should increase; when δ is an 
obtuse angle, λk should be appropriately reduced. After preliminary trial calculation, 
better calculation results can be obtained in the following forms (Smedt et al. 2010): 

λk = 

⎧⎨ 

⎩ 

√
2λk−1, δ  <  π/4 

λk−1, π/4 ≤ δ <  π/2 
λk−1/ 

√
2, δ  ≥ π/2 

(4.58) 

Therefore, the adaptive relaxed Picard iterative method based on the non-uniform 
grid (NAR-PI) can be summarized as follows: 

(1) Given the initial solution h0, and let k = 1. 
(2) Solve Eq. (4.54) and calculate the current iteration increment Δh. 
(3) Calculate the relaxation coefficient λk of the kth iteration: if k = 1, then λk = 1; 

otherwise, read the previous iteration increment Δh and relaxation coefficient 
λk−1, and obtain λk according to Eqs. (4.57)–(4.58). 

(4) Equation (4.56) is used to modify the calculated result under the current iteration 
step. 

(5) If Eq. (4.55) is satisfied, the iteration stops; otherwise, go to step 2. 

4.4.2.2 Improved Picard Method Based on the Two-Grid Correction 
Scheme (NTG-PI) 

The algebraic multigrid method can improve the computational efficiency of 
nonlinear iterative methods (Wang and Schrefler 2003). In this chapter, the non-
uniform two-grid correction scheme (NTG) is adopted to improve the computational 
efficiency of the classical Picard method. In Fig. 4.15, the non-uniform two-grid 
correction scheme is described.

First, the solution vectors of the fine and coarse grids are assumed to be hf and 
hc, respectively. In NTG, the Gauss–Seidel iterative method is usually used as the 
basic linear solution method instead of the Gaussian elimination method. The imple-
mentation steps of NTG-PI are expressed in detail as follows (Zhu et al. 2022a, 
b):

(1) Relax μ times using Gauss–Seidel relaxation for the fine grid with initial vector 
hf0. 

(2) Compute the fine-grid residual rf = f
(
hfμ

) − A
(
hfμ

)
hfμ and restrict it to the 

coarse grid by rc = Rrf and hc = Rhfμ , where R is the restriction operator 
from fine to coarse grids.
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Fig. 4.15 Schematic drawing of non-uniform two-grid correction scheme

(3) Solve the following residual equation for the coarse grid: 

A(hc )ec = rc (4.59) 

(4) Interpolate the coarse-grid error ec to the fine grid and correct the fine-grid 
approximation solution by: 

hfμ ← hfμ + I · ec (4.60)
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where I denotes the interpolation operator from coarse to fine grids. 
(5) Relax μ times using Gauss–Seidel relaxation for the fine grid with corrected 

vector hfμ, where μ usually takes a small natural number. μ is  set to 1 in this  
chapter. 

If hfμ converges according to Eq. (4.55), then stop; otherwise, go to step 1. Steps 
1 and 5 can eliminate the high-frequency components of the iteration error, while 
steps 2–4 can eliminate the remaining low-frequency smooth components. Through 
multiple cycles of the above steps, it is expected to eliminate the iteration error as 
soon as possible. And this makes the iterative method more efficient. In addition, 
it is needed to further define the interpolation (I) and restriction (R) operators. In 
Fig. 4.15, the restriction operator for nodes i can be expressed as: 

ui = 
(Δz)1 
(Δz)i 

u2i−1 + 
(Δz)2 
(Δz)i 

u2i + 
(Δz)3 
(Δz)i 

u2i+1 (4.61) 

The interpolation operator can be written as: 

u2i = ui (4.62) 

u2i+1 = (Δz)2 
(Δz)1 + (Δz)2 

ui + (Δz)1 
(Δz)1 + (Δz)2 

ui+1 (4.63) 

u2i+2 = ui+1 (4.64) 

4.4.3 Numerical Tests—1D Transient Unsaturated 
Infiltration 

This test simulates the 1D transient infiltration in homogeneous soils to verify the 
effectiveness of the proposed schemes. The mathematical model is described in 
Fig. 4.14. The boundary conditions and the parameters are kept unchanged. The 
total simulation time is 10 h. The parameter μ is set to 1. Additionally, the number 
of nodes is taken as 100, 200, and 400, and the time steps are taken as 0.1 h, 0.05 h, 
and 0.01 h, respectively. 

Figure 4.16a represents the maximum relative error (MRE) obtained by different 
methods under different time steps when the number of nodes N = 200. It can be 
seen that the range of MRE obtained by NTG-PI is between 0.35 and 4.6%. When t 
is less than 6 h, the MRE decreases as the time step decreases. However, the range 
of MRE obtained by PI is between 2.7 and 72%, which increases with the increase 
of t and is much larger than that obtained by NTG-PI. Figure 4.16b shows  the MRE  
obtained by different methods under different number of nodes when the time step
Δt = 0.01 h. It can be found that the MRE obtained by PI increases over time t. When
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Fig. 4.16 Comparison of the maximum relative error of different methods under different numerical 
conditions: a time step and b number of nodes N 

t is greater than 2 h, the error becomes larger and larger, while the MRE obtained 
by NTG-PI only ranges from 0.18 to 8%. In addition, the MRE of the two methods 
decreases as the number of nodes N increases. 

In Fig. 4.17, the numerical solutions obtained by the two methods under Δt = 
0.01 h and N = 200 are compared with the exact solutions. It can be found that 
there is a great deviation between the numerical solution obtained by PI and the 
exact solution, particularly after the time is greater than 4 h (Fig.  4.17a). On the 
contrary, the numerical solution obtained by NTG-PI is very consistent with the 
exact solution, and there is no large relative error as the time increases (Fig. 4.17b). 
When t = 10 h, the RSE of NTG-PI decreases with the increase of N and the decrease 
of Δt in Table 4.5, which seems to be better than that of PI. And the RE of NTG-PI 
is much smaller than that of PI, and the difference is about 100 times. In addition, 
Fig. 4.18 depicts the convergence rate of the proposed methods. It can be found 
that the convergence rate of the proposed method NTG-PI is faster than that of the 
conventional method N-PI. As the number of nodes N changes, the convergence rate 
of NTG-PI does not change much.

In Table 4.6, the speed-up ratio of the improved method NTG-PI relative to N-PI 
is much greater than that of NAR-PI relative to N-PI, with a difference of nearly 10 
times. Since the parameter μ is only 1, the computational efficiency of the proposed 
NTG-PI is higher. This test indicates that the proposed NTG-PI can obtain higher 
numerical accuracy with a smaller number of nodes and has a faster convergence 
rate while reducing the computational cost.
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Fig. 4.17 Comparison of the numerical solutions obtained using different methods with analytical 
solutions: a PI and b NTG-PI 

Table 4.5 Numerical accuracy of transient infiltration in homogeneous soils at t = 10 h 
Conditions RSE RE (%) 

N Δt (h) PI NTG-PI PI NTG-PI 

100 0.1 0.25 1.2e−02 18.33 0.42 

0.05 0.25 1.1e−02 18.84 0.035 

0.01 0.26 1.1e−02 19.24 0.27 

200 0.1 0.23 7.9e−03 16.17 0.69 

0.05 0.23 4.2e−03 16.69 0.30 

0.01 0.24 2.1e−03 17.10 0.0033 

400 0.1 0.19 7.9e−03 12.24 0.74 

0.05 0.19 3.9e−03 12.76 0.36 

0.01 0.19 8.9e−04 13.18 0.056

4.5 Conclusions 

This chapter first discusses the classical linear stationary iterative methods, such as 
Jacobi iterative method, Gauss–Seidel iterative method, and SOR iterative method. 
Then, combined with the preprocessing technology and error correction method, a 
series of improved iterative methods is proposed. The proposed methods have better 
computational performance in the simulation of rainfall infiltration and can obtain 
good application results. The main conclusions are as follows:

(1) Chebyshev semi-iterative method with polynomial preconditioner (P-CSIM) 
is developed. Compared with conventional iterative methods such as Jacobi 
and Gauss–Seidel methods, P-CSIM has less iterations and calculation time in
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Fig. 4.18 Comparison of convergence rates for the proposed schemes

Table 4.6 Speed-up ratio of 
two improved Picard methods 
relative to N-PI 

Time step Δt (h) Speed-up ratio 

SN-PI/NAR-PI SN-PI/NTG-PI 

0.1 3.33 46.69 

0.05 1.72 24.99 

0.01 1.07 14.12

simulating rainfall. Numerical results indicate significant speed-up, at least 50% 
increase compared to GSIM, and higher computational efficiency compared to 
CSIM and JIM.

(2) In the numerical solution of unsaturated infiltration, the numerical discrete 
condition plays a significant role in the convergence rate of the numerical solu-
tion, particularly under the small space step and large time step. Conventional 
iterative methods such as Jacobi and GS tend to converge very slowly and have 
low computational efficiency. For the accelerated improvement methods, the 
integral correction method uses the solution vector error correction to make the 
iterative method obtain a faster convergence rate, while the multistep precondi-
tioning method preprocesses the original system of linear equations into a more 
easily solved system of the linear equations, making the subsequent iterative 
method more effective. 

(3) The proposed ICMP(m)-GS is a mixture of the integral correction method and 
the multistep preconditioning method. The adjustment of the parameters c and 
m can not only greatly improve the ill-condition of the linear equations derived
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from the linearized Richards’ equation, but also obtain higher numerical accu-
racy. Numerical results show that compared with the conventional methods GS 
and SOR and the improved methods IC(c)-GS and MP(m)-GS, ICMP(m)-GS 
can improve the convergence rate to a greater degree and has higher computa-
tional efficiency and calculation accuracy. This method is relatively simple, and 
it has a good application prospect for simulating unsaturated infiltration. 

(4) In the conventional Picard method, the Gaussian elimination method is usually 
used to solve the system of linear equations. Although the solution obtained 
by this method is theoretically accurate, with the increase of the number of 
discrete nodes N, the calculation amount increases in the order of N3, and the 
computational efficiency significantly reduced. In the improved method NTG-
PI, the Gauss–Seidel iterative method is used instead of the Gaussian elimi-
nation method as the basic method, and its solution speed is faster. Numerical 
results demonstrate that the numerical solution obtained by the NTG-PI is in 
good agreement with the analytical solution under extremely dry initial condi-
tions. Compared with the conventional Picard method, NTG-PI can achieve 
higher numerical accuracy with fewer discrete nodes, while simulating rainfall 
infiltration with faster convergence. 
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Chapter 5 
Slope Stability Analysis Based 
on Analytical and Numerical Solutions 

5.1 Introduction 

Infiltration into soil slopes is a fundamental concern in civil engineering. Rainfall 
infiltration leads to changes in pore-water pressure and reduces matric suction in 
soils, making it one of the main triggers of slope failure (Rahimi et al. 2010; Ali  
et al. 2014; Wu et al.  2020). Slope instabilities caused by water infiltration are called 
rainfall-induced landslides (Xu and Zhang 2010; Wu et al.  2020). 

There are three methods that can be taken to investigate the effect of rainfall 
infiltration on pore-water pressure or pressure head profile and hence on unsaturated 
soil slope stabilities. The approaches include numerical simulation, field monitoring, 
and analytical analysis (Zhan et al. 2013). A number of numerical studies have been 
conducted to investigate the hydrodynamic behaviors of soil slopes due to rain-
fall infiltration and to estimate the influence on the slope stability (Ng and Shi 1998; 
Iverson 2000; Collins and Znidarcic, 2004; Kim et al. 2004; Zhang et al. 2005; Garcia 
et al. 2011; Ali et al. 2014). Factors affecting the soil slope stability due to rainwater 
infiltration comprise the rainfall characteristics, the saturated permeability coeffi-
cient, the geometry of the slope, and the boundary and initial soil moisture conditions 
(Ali et al. 2014). Laboratory and field experiments have been performed to investigate 
variations in matric suction due to rainfall infiltration to improve the understanding 
of the mechanism of rainfall-induced soil slope failures (Wu et al. 2015, 2017, 2020). 
Field monitoring is helpful in the study of the effects of rainfall infiltration on the 
slope stability, but it is a costly procedure (Zhan et al. 2013). 

The analytical methods involve theoretical infiltration and approximate infiltra-
tion models (Wu et al. 2022). In a theoretical infiltration model, the partial differ-
ential equation describing water infiltration in soils (i.e., the Richards’ equation) is 
proposed based on continuum mechanics, and the solution can be obtained through 
integral transformation or numerical methods (Srivastava and Yeh 1991; Zhu et al. 
2020, 2022).

© The Author(s) 2023 
L. Wu and J. Zhou, Rainfall Infiltration in Unsaturated Soil Slope Failure, 
SpringerBriefs in Applied Sciences and Technology, 
https://doi.org/10.1007/978-981-19-9737-2_5 

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9737-2_5&domain=pdf
https://doi.org/10.1007/978-981-19-9737-2_5


106 5 Slope Stability Analysis Based on Analytical and Numerical Solutions

The analytical method requires that certain assumptions be made regarding the 
closed-form equations that are derived. If the assumptions can be shown to be 
reasonable, then the analytical methodology becomes a simple and practical tool 
for studying possible pressure head distribution and the factor of safety of the slope. 

Coupled poromechanical approaches incorporating the unsaturated soils have 
been employed to analytically and numerically examine the hydrodynamic behav-
iors of partially or completely saturated slopes due to rainfall (Chen et al. 2005). 
These coupled poromechanical studies are in view of various constitutive models, 
which represent the mechanical response of the unsaturated soils using nonlinear 
elastic stress–strain relationships (Cho and Lee 2001; Zhang et al. 2005) or elasto-
viscoplastic and elastoplastic models. The coupled hydromechanical approach has 
been combined with a slope stability analysis according to finite element methods 
to examine the response of an unsaturated soil slope subjected to a rainstorm and to 
consider the variability in the soil properties (Zhang et al. 2005). Consequently, using 
the improved method proposed in the previous chapters, the infiltration equation of 
the unsaturated soil slope is solved, and the numerical and analytical solutions are 
applied to the slope model to study the effect of rainfall infiltration on the slope 
stability. 

The practical infiltration process is very complicated and affected by many factors 
such as soil profile and rainfall conditions and becomes difficult to be described 
accurately with theoretical formulations (D’Aniello et al. 2019; Srivastava et al. 
2020). 

Due to the nonlinearity of differential equations, numerical software packages 
are frequently needed to solve the complex problem of infiltration for predicting 
moisture movement and pore-water pressure change in unsaturated soils (Masoudian 
et al. 2019; Yang et al. 2018; Zhang et al. 2016). 

Numerical approaches often suffer from convergence and mass balance problems 
and also are inefficient and expensive in many conditions. To provide simplified 
solutions to the complex infiltration issue, a number of theoretical models based on the 
wetting front have been proposed (Iverson 2000; Conte and Troncone, 2008). A series 
of analytical approaches (Srivastava and Yeh 1991; Iverson  2000; Wu et al. 2022) 
was developed to calculate the pressure head change during rainfall. Unfortunately, 
these models can only be applied under the assumption that the rainfall intensity is 
a constant. However, in practice, there are often cases where the rainfall intensity is 
a variable function depending on duration. 

The objective of this chapter is to study the application of improved numerical 
methods to the slope stability assessment and to discuss the influence of various 
factors on the slope stability. Combined with the monitoring data of slope pore-water 
pressure in the Tung Chung area of Hong Kong, the book carried out a comparative 
study to verify the accuracy and practicability of the proposed improved method. 
The Xiaoba landslide in Guizhou, China, a typical rainfall-induced landslide, was 
investigated using numerical methods.
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5.2 Application of Unsaturated Soil Slope Stability Under 
Rainfall 

5.2.1 Application of Chebyshev Spectral Method in Slope 
Stability Analysis 

For unsaturated soil slopes (Fig. 5.1), the governing equations are modified as 
follows: 

∂ 
∂z

[
Kz(h)

(
∂h 

∂z 
+ cos β

)]
= 

∂θ 
∂t 

(5.1) 

where β is the slope angle. 
According to modified Eq. (2.34), the governing equation considering the 

hydromechanical coupling in soil slopes can be obtained: 

∂ 
∂z∗

[
K (h) 

∂h 

∂z∗

]
+ 

∂ K (h) 
∂z∗ cos β = C(h) 

∂h 

∂t 
+ 

αcγw(θ − θr) 
(θs − θr)F 

∂h 

∂t 
(5.2) 

The analytical solution of the infiltration equation along the z-axis can be expressed 
as: 

h∗ 
t (z, t) = 

2
(
1 − eαhd

)
Lc  

eα cos β(L−z)/2 
∞Σ

m=1 

(− 1)m
(

λm 

μm

)
sin(λmz)e

−μmt (5.3)

Fig. 5.1 Schematic diagram of a homogeneous unsaturated slope 
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h∗ 
s (z) =

(
1 − eαhd

) 1 − e−α cos βz 

1 − e−α cos β L (5.4) 

This application example simulated transient infiltration in an unsaturated slope 
using the Chebyshev spectral method (CSM). The slope thickness (L) and angle (β) 
are assumed to be 10 m and 33°, respectively (Fig. 5.1). The initial condition was 
unchanged at h(z, t = 0) = −10 m. The upper and lower boundary conditions of the 
soil can be expressed as h(z = 0) = −  10 m and h(z = L) = 0. 

For this example, this chapter selected sandy soil and silty loam. The experimental 
data (Brooks and Corey 1964; Lu and Likos 2004) and fitting curve of the two soils 
are shown in Fig. 5.2. The fitted parameters including ks, θ s, θ r, and α are listed in 
Table 5.1. The total simulation time was 2 h and N = 40. 

The pressure head calculated using the CSM was introduced into the infinite slope 
stability analysis, and the factor of safety (Fs) could be obtained (Iverson 2000; Liu  
et al. 2017): 

Fs = c'

zγt cos β sin β 
+ 

tan φ'

tan β 
− hγw tan φ'

zγt cos β sin β 
(5.5) 

where c' denotes the effective cohesion, φ' denotes the effective friction angle, γt 
denotes the unit weight of soil, γw denotes the unit weight of water, and z denotes 
the soil thickness. It was assumed that the unit weight of soil was 19 kN/m3, and the 
effective cohesiveness and effective friction angle of sandy soil and silty loam were 
0 kPa, 32° and 10 kPa, 20°, respectively (Lu and Likos 2004).

Fig. 5.2 Fitting curves of the SWCC: a sandy soil and b silty loam 

Table 5.1 Parameters of unsaturated soils for analysis 

Soil type ks (m/h) α θs θr 

Sandy soil 6.0 × 10−2 1.6 × 10−2 0.50 0.11 

Silty loam 1.5 × 10−3 8.0 × 10−3 0.46 0.14 
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The revised Fs for analyzing slope stability can be obtained as (Liu et al. 2017): 

Fs = c'

zγt cos β sin β 
+ 

tan φ'

tan β 
− 

hγw

(
θ−θr 
θs−θr

)
tan φ'

zγt cos β sin β 
(5.6) 

The profiles of the pressure head of the two soils over time were compared with 
the analytical solutions. Figure 5.3 shows that the computed results were in good 
agreement with the analytical solutions. The numerical findings for sandy soil and 
silty loam indicate that the accuracy of the absolute error can reach the order of 10−5 

and 10−6, respectively (Fig. 5.4). 

Fig. 5.3 Results comparison with the exact solution for unsaturated soil: a sandy soil and b silty 
loam 

Fig. 5.4 Absolute error of the computed results with the analytical solutions for unsaturated soil: 
a sandy soil and b silty loam
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Figure 5.5 demonstrates the computed results of Fs for different unsaturated soils. 
Additionally, the range of Fs for different soils is different, and Fs for silty loam is 
significantly smaller than that for sandy soil. Table 5.2 shows variations in Fs at 
different depths over the infiltration time for different soils. It can be seen that the 
factor of safety decreased with increasing depth and infiltration time. Fs for sandy 
soil was greater than 1.0 in Table 5.2, and Fs for silty loam was less than 1.0 at z 
= 9.263 m. Consequently, the stability of the slope of sandy soil was better than 
that of the slope of silty loam. The comparison of the computed results reveals that 
rainfall-induced landslides are closely related to soil types. 

Fig. 5.5 Computed results of Fs for unsaturated soil: a sandy soil and b silty loam 

Table 5.2 Variations in the factor of safety (Fs) at different depths over the infiltration time for 
different soils 

Conditions Factor of safety (Fs) 

Soil type z (m) 0.5 h 1 h 1.5 h 2 h  

Sandy soil 9.263 1.0828 1.0473 1.0315 1.0225 

8.247 1.2337 1.1590 1.1240 1.1038 

7.27 1.3519 1.2556 1.2071 1.1785 

Silty loam 9.263 0.9361 0.8743 0.8423 0.8219 

8.247 1.0546 1.0233 0.9928 0.9677 

7.27 1.0627 1.0585 1.0480 1.0348
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5.2.2 Application of P-CSIM in the Stability Analysis 
of Shallow Rainfall Slope 

The proposed P-CSIM is used to solve the Richards’ equation for the slope, then the 
numerical solution of the pressure head is substituted into the infinite slope model, 
and the stability of the slope is analyzed. The factor of safety of the slopes is calculated 
as Eqs. (5.5)–(5.6). 

5.2.2.1 Homogeneous Soil Slope 

The soil slope thickness is 150 cm, the slope angle is 33°, the initial condition for 
removing the boundary point is h(z, t = 0) = −  100 cm, and the boundary conditions 
are h(z = 0) = −  100 cm and h(z = L) = 0. The homogeneous unsaturated soil is 
assumed to be a sandy soil with a saturated permeability coefficient ks, residual volu-
metric water content θ r, and saturated volumetric water content θ s of 9 × 10−2 cm/h, 
0.08, and 0.43, respectively (Liu et al. 2017). The desaturation coefficient α is 1 × 
10−2. In addition, the unit weight, effective cohesiveness, and effective friction angle 
of the soil are 21.5 kN/m3, 4.6 kPa, and 30°, respectively (Lu and Likos 2004). 

Figures 5.6 and 5.7 represent the computed profile of the factor of safety and the 
pressure head for the homogeneous soil slope. The suction (negative pressure head) 
in shallow parts of the slope decreases with the increase of rainfall time. In addition, it 
is found that Fs decreases with the increase of rainfall time at the shallow slope zone. 
The unstable slope is mostly 130–150 cm deep, which may be strength deterioration 
and softening of the shallow layer caused by rainfall infiltration (Zhuang et al. 2018).

5.2.2.2 Two-Layer Soil Slopes 

For slopes of two-layer soils, the thickness of unsaturated Soil 1 (L1) and Soil 2 (L2) 
is assumed to be 130 cm and 20 cm, respectively (Fig. 5.8). The slope angle and 
boundary and initial conditions are the same as the slope for homogeneous soils. The 
physical parameter settings are listed in Table 5.3. It is assumed that Soil 1 is loess, 
and that the permeability coefficient of Soil 2 is greater than that of Soil 1.

The calculated results (Fig. 5.9) show that increase of the pressure head in layered 
unsaturated soils dominates slope stability. It can be found that the pressure head 
changes faster at the interface. Besides, because the permeability coefficient of the 
bottom layer is lower than that of the upper layer, the top layer (unsaturated Soil 2) 
may become unstable. Figure 5.10 demonstrates Fs profile of the two-layer unsat-
urated soil slope. It shows that unstable slope ranges from the interface to the soil 
surface after t = 10 h. Figure 5.11 indicates that Fs varies with duration at the inter-
face (z = 130 cm) for unsaturated soil slopes. It is found that Fs is strongly affected 
by duration, and that the upper layer of slope becomes unstable after t = 8.2 h.
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Fig. 5.6 Computed profile of pressure head for homogeneous unsaturated soil slopes 

Fig. 5.7 Computed profile of safety factor for homogeneous unsaturated soil slopes
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Fig. 5.8 Schematic diagram of two-layer soil slope model 

Table 5.3 Parameters used in two-layer soil slopes 

Parameters ks θs θr α 
Soil 1 (sand) 10−2 0.43 0.08 1 × 10−2 

Soil  2 (silty loam) 10−1 0.50 0.11 1 × 10−2

Accordingly, the results illustrate that the pressure head caused by rainfall infiltra-
tion is closely related to the soil layer, and the interface of the soil layer plays a key 
role in the slope stability related to rainfall infiltration.

5.2.3 Application of Improved Picard Method 
into Unsaturated Slopes 

In this example, this chapter investigates 1D transient infiltration into the two-layer 
soil slopes. The van Genuchten model is adopted here. In Fig. 5.8, the thickness of soil 
layer 1 (L1) and soil layer 2 (L2) is 3 m and 2 m, respectively, and the slope angle (β) 
is 33°. The governing equation is shown in Eq. (5.1). The VGM model parameters of 
the two soils are listed in Table 5.4 (Zha et al. 2013). The bottom boundary condition 
is groundwater table, defined as h(z = 0, t) = 0. The top boundary condition is given 
by (Wu et al. 2020):

[
K 

∂h 

∂z 
+ K

]
z=L1+L2 

= qt, t < tI (5.7)
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Fig. 5.9 Computed profile of pressure head for two-layer unsaturated soil slopes 

Fig. 5.10 Computed profile of safety factor for two-layer unsaturated soil slopes
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Fig. 5.11 Results of safety factor at the interface (z = 130 cm) for two-layer unsaturated soil slopes

Table 5.4 Parameter of van Genuchten model 

Soil texture ks (m/h) θs θr α n 

Glendale clay loam 5.46 × 10−3 0.4686 0.106 1.04 1.3954 

Berino loamy fine sand 2.25 × 10−1 0.3658 0.0286 2.8 2.239 

h|z=L1+L2 = ht, t ≥ tI (5.8) 

where tI represents ponding time; qt denotes the rainfall flux at the soil surface when 
the rainfall time is less than the ponding time; and ht denotes constant pressure head 
after the ponding time. Here, qt is assumed to be Ks2/4 and ht = 0. The initial 
condition is given by h(z, t = 0) = −z × 10 m. 

The total simulation time and time step are taken to be 2 h and 0.01 h, respectively. 
Let the number of nodes be N1 = 60 and N2 = 40. Furthermore, NTG-PI is applied 
to solve Eq. (5.1), where μ = 1 is adopted. The unit weight of the soil, the effective 
cohesion, and friction angle are 19.5 kN/m3, 4.6 kPa, and 30°, respectively. 

Figure 5.12 shows that the pressure head increases over duration, while the pres-
sure head at the interface has a greater increase. Compared with NTG-PI, the pressure 
head obtained by traditional method PI has a greater increase at the interface as the 
rainfall time increases. This may underestimate the safety factor of the interface for 
two-layer soil slopes (Fig. 5.13). Moreover, the results illustrate that the soil layer 
structure will affect the distribution of the pressure head in the two-layer soil slopes 
during rainfall. When the hydraulic conductivity of the lower soil is lower than that 
of the upper one, it is easy to form ponding at the interface and induce landslides.
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Fig. 5.12 Computed profile of pressure head for two-layer soil slopes 

Fig. 5.13 Computed profile of Fs for two-layer soil slopes
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Table 5.5 Parameters for different cases 

Case Ks (m/h) α β q 

1 3.6e−4 0.1 30 Ks 

3.6e−3 0.1 30 Ks 

3.6e−2 0.1 30 Ks 

2 3.6e−3 0.01 30 0.5 Ks 

3.6e−3 0.02 30 0.5 Ks 

3.6e−3 0.05 30 0.5 Ks 

3.6e−3 0.1 30 0.5 Ks 

3 3.6e−2 0.3 20 0.5 Ks 

3.6e−2 0.3 30 0.5 Ks 

3.6e−2 0.3 40 0.5 Ks 

3.6e−2 0.3 50 0.5 Ks 

3.6e−2 0.3 60 0.5 Ks 

4 3.6e−2 0.2 35 Ks 

3.6e−2 0.2 35 0.5 Ks 

3.6e−2 0.2 35 0.25 Ks 

5.2.4 Parameter Sensitivity Analysis of Slope Stability Under 
Rainfall 

The test uses the Gardner model, as described by Eqs. (1.13)–(1.15). The slope soil 
layer is assumed to be homogeneous soil, the mathematical model is depicted in 
Fig. 5.1, its thickness is assumed to be 2 m, and the saturated and residual water 
contents are set to 0.46 and 0.1. The distribution characteristics of saturated perme-
ability coefficient, desaturation coefficient α, slope angle, and rainfall q on pore-
water pressure are examined, and their influence on soil slope stability is discussed. 
The parameter settings of different conditions are shown in Table 5.5. For the slope 
stability analysis, the soil unit weight, effective cohesion, and effective internal fric-
tion angle are 19.9 kN/m3, 10 kPa, and 26°, respectively. The upper boundary is set 
as the flow boundary, the lower boundary is the groundwater level, its pressure head 
is set to 0, and the initial condition for removing the boundary points is h(z, t = 0) 
= −z m. 

5.2.4.1 Influence of Saturated Permeability Coefficient on Slope 
Stability 

Figure 5.14 depicts the effect of three different saturated permeability coefficients 
on the pressure head distribution in Case 1. With the increase of the saturated perme-
ability coefficient of the soil, the distribution of the pressure head moves faster, and
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(a) Ks = 3.6 e-4 (m/h)  (b) Ks = 3.6 e-3 (m/h) 

(c) Ks = 3.6 e-2 (m/h) 

Fig. 5.14 Influence of different saturated permeability coefficients on pressure head distribution 
(Case 1)

with the increase of the rainfall time, the change of the pressure head is large. The 
numerical results illustrate that in the numerical simulation of rainfall infiltration for 
soil slope, the size of the saturated permeability coefficient can directly affect the 
speed of the pressure head distribution. Figure 5.15 indicates that the increase of the 
saturated permeability coefficient has a great influence on the stability of the shallow 
soil slope. 

5.2.4.2 Influence of Desaturation Coefficient on Slope Stability 

Figure 5.16 depicts the effect of different desaturation coefficients on the pressure 
head distribution in Case 2. As the desaturation coefficient increases, the pres-
sure head distribution lags behind. At the same time, the curvature of the pressure 
head distribution becomes obvious with the increase of the desaturation coefficient.
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Fig. 5.15 Relationship 
between slope safety factor 
(z = 1 m) and saturated 
permeability coefficient

Figure 5.17 demonstrates that the slope safety factor decreases as the desaturation 
factor decreases.

5.2.4.3 Influence of Slope Angle on Slope Stability 

Figure 5.18 represents the effect of different slope angles on the pressure head distri-
bution in Case 3. As the slope angle increases, the pressure head distribution shifts 
gradually to the right. At the same time, the curvature of the pressure head distribu-
tion becomes obvious with the increase of the slope angle. Figure 5.19 shows that the 
slope angle has an inherent key effect on the slope safety coefficient, and the slope 
safety factor decreases continuously with the increase of the slope angle.

5.2.4.4 Influence of Rainfall on Slope Stability 

Figure 5.20 depicts the effect of different rainfall on the pressure head distribution 
in Case 4. With the increase of rainfall, the migration speed of the pressure head 
distribution increases, which means that the soil matric suction dissipates faster. At 
the same time, the curvature of the pressure head distribution becomes obvious with 
the increase of rainfall. Figure 5.21 verifies that the slope safety factor decreases with 
increasing rainfall.

To sum up, in the analysis of rainfall slope stability, the slope angle has an inherent 
key role in the factor of safety, and the saturation permeability coefficient, desatura-
tion coefficient, and rainfall all have a large influence on the distribution of pressure 
head. For the short-term rainfall period, when the desaturation coefficient is small 
and the saturated permeability coefficient is large, the larger the rainfall, the larger the 
rainwater infiltration depth, which will lead to the softening of the soil, the reduction
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(a) = 0.01 (b) = 0.02 

(c) = 0.05 (d) = 0.1 

Fig. 5.16 Influence of different desaturation coefficients on pressure head distribution (Case 2) 

Fig. 5.17 Relationship between the slope safety factor (z = 1 m) and the desaturation factor
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(a) 20° (b) 30° 

(c) 40° (d) 50° 

(e) 60° 

Fig. 5.18 Influence of different slope angles on pressure head distribution (Case 3)
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Fig. 5.19 Relationship between the slope safety factor (z = 0 m) and the slope angle

(c) q = Ks 

(a) q = Ks/4 (b) q = Ks/2 

Fig. 5.20 Influence of different rainfall on pressure head distribution (Case 4)
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Fig. 5.21 Relationship 
between the slope safety 
factor (z = 1 m) and  the  
rainfall

of the shear strength, and the shallow soil slope stability. As a result, factors such as 
desaturation coefficient, rainfall, permeability coefficient, and slope angle all affect 
the stability of unsaturated soil slopes. 

5.3 Rainfall Landslide Case Study—Tung Chung Landslide 

According to the improved method, a comparative study is carried out with the moni-
toring data of the pore-water pressure of a slope in Tung Chung, Hong Kong, to verify 
the application effect of the proposed method. The long-term rainfall monitoring in 
this area provides systematic data for investigating rainfall-induced landslides. Many 
researchers have conducted extensive and in-depth studies on landslides in the Lantau 
area, including field experiments, statistical analysis, and remote sensing interpreta-
tion (Zhang et al. 2016). The mathematical model of this application case is shown 
in Fig. 5.1. 

The measured data of rainfall and pressure head at monitoring point SP3 are shown 
in Fig. 5.22. The change of pressure head is basically consistent with the change of 
rainfall, which better reflects the change of infiltration boundary. The monitoring data 
can be divided into three periods according to the time of the rainfall peak. Among 
them, the calibration period is from 0 to 192 h (0:00 on June 8, 2001 to 0:00 on June 
16, 2001), and the Bayesian stochastic inversion of soil hydraulic parameters can 
be performed according to this stage (Yang et al. 2018). The model parameters and 
permeability coefficients of the two soil–water characteristic curves are shown in 
Table 5.6. After calibrating the soil hydraulic parameters by random back analysis, 
the error between the model calculated and measured values is very small (Yang 
et al. 2018). Numerical simulations are carried out for two rainfall periods in the 
verification period and compared with the monitoring data. The first period is 5 h



124 5 Slope Stability Analysis Based on Analytical and Numerical Solutions

(from 4:00 on June 27 to 9:00 on June 27), and the average rainfall is 1.4 cm/h. The 
second period is 5 h (from 1:00 on July 7 to 6 on July 7), and the average rainfall 
is 2.2 cm/h. The third period is 3 h (23:00 on July 15 to 2:00 on July 16), and the 
average rainfall is 2.4 cm/h. 

The water pressure meter SP3 is buried at a depth of 200 cm, and the groundwater 
table depth is 250 cm. The thickness of the soil layer (L) is 250 cm, and β is assumed 
to be 35°. The initial conditions and boundary conditions are expressed as follows:

[
K 

∂h 

∂z 
+ K cos β

]
z=L 

= q (5.9) 

h|z=0 = 0 (5.10) 

The space step is 2.5 cm, and the time step is 0.1 h. Figures 5.23 and 5.24 compare 
the results between the numerical solutions of the Richards’ equation of the VGM 
and Gardner models and the measured values in the first period. It can be found that 
the Richards’ equation described by the VGM model fits the measured values better. 
When t = 5 h, the relative error between the simulated and measured values is only 
1.23%.

Fig. 5.22 Measured data of rainfall and pressure head at monitoring point SP3 

Table 5.6 Soil–water characteristic curve and saturated permeability coefficient 

Model Ks (cm/h) θs θr α n 

Gardner 3.33 0.38 0.10 3.09e−3 – 

VGM 3.33 0.413 0.052 3.23e−3 1.58 
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Fig. 5.23 Comparison between the numerical solution of Richards’ equation for the VGM model 
and the measured value in the first period 

Fig. 5.24 Comparison between the numerical solution of Richards’ equation for the Gardner model 
and the measured value in the first period
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Fig. 5.25 Comparison between the numerical solution of Richards’ equation for the VGM model 
and the measured value in the second period

Figures 5.25 and 5.26 represent the comparison results between the numer-
ical solutions of the Richards’ equation of the VGM and Gardner models and the 
measured values in the second period. Compared with the Gardner model, the fitting 
effect of the Richards’ equation described by the VGM model and the measured 
values is still better. The relative error is 9.22% when t = 5 h.  

Figures 5.27 and 5.28 compare the numerical solutions of the Richards’ equation 
and the measured values of the VGM and Gardner models in the third period. When 
t = 3 h, the relative error between the simulated value and the measured value 
computed by the two models is 3.54% and 3.67%, respectively. The numerical results 
of Richards’ equation using the VGM model are closer to the measured values.

As shown in Table 5.7, in the three time periods, the overall root mean square 
error (RSE) and relative error (RE) of the VGM model and the measured data are 
both smaller than the values obtained by the Gardner model, which further indicates 
that the Richards’ equation described by the VGM model has a better fitting effect 
with the measured data. Numerical results illustrate that the proposed method can 
well simulate the time-varying response of pressure head in the rainfall infiltration 
of unsaturated soil slopes and has a good application effect.
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Fig. 5.26 Comparison between the numerical solution of Richards’ equation for the Gardner model 
and the measured value in the second period

Fig. 5.27 Comparison between the numerical solution of Richards’ equation for the VGM model 
and the measured value in the third period
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Fig. 5.28 Comparison between the numerical solution of Richards’ equation for the Gardner model 
and the measured value in the third period

Table 5.7 Error between the simulated and the measured values during the validation period 

Model First period Second period Third period 

RSE RE (%) RSE RE (%) RSE RE (%) 

Gardner 2.62e−1 18.87 3.44 229.8 1.79e−1 11.64 

VGM 4.93e−2 4.33 6.25e−1 47.74 7.85e−2 5.42 

5.4 Conclusions 

This chapter studies the application of Chebyshev spectral method in slope stability 
analysis and the application of improved iterative methods P-CSIM and NTG-PI in 
shallow rainfall slope stability analysis. In order to verify the accuracy and prac-
ticability of the proposed improved method, a comparative study was carried out 
combining the monitoring data of slope in the Tung Chung area of Hong Kong and 
the Xiaoba landslide area. The conclusions are drawn as follows: 

(1) The numerical results obtained by the CSM method are highly consistent with 
the transient analytical solution, which indicates that the proposed method 
is sufficiently accurate to handle transient infiltration problems associated 
with rainfall-induced landslides. The numerical solution obtained by the CSM 
method is introduced into the slope stability analysis to effectively evaluate the 
slope stability under rainfall conditions. The numerical solutions of the pressure 
head obtained by the improved methods P-CSIM and NTG-PI can effectively
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analyze the shallow landslides caused by rainfall. Combined with the rain-
fall data, a mathematical model was established for the monitoring points, the 
evolution process of the pressure head of the slope was solved by an improved 
iterative method, and the stability analysis of the unsaturated soil slope was 
carried out. The results indicate that the numerical solution is consistent with 
the measured value, and the relative error is small, showing a good applica-
tion prospect. The numerical solution to coupled water flow and deformation in 
two-layer unsaturated porous media is obtained using a finite element method. 

(2) A conceptual model of two-layer unsaturated soils is established to analyze the 
rainfall infiltration process under different conditions. A simplified analysis of 
an infinite slope is used to compute the factor of safety as a function of the depth 
of wetting front, and special attention is paid to the hydrological response at the 
interface between two layers of unsaturated porous media. 
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