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To the children in my life



L’homme [. . .] passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.
Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,
Vaste comme la nuit et comme la clarté

Baudelaire , Les Fleurs du Mal
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Introduction: glimpses of the theory beneath
Monstrous Moonshine

When you are collecting mushrooms, you only see the mushroom itself. But if
you are a mycologist, you know that the real mushroom is in the earth. There’s an
enormous thing down there, and you just see the fruit, the body that you eat. In
mathematics, the upper part of the mushroom corresponds to theorems that you
see, but you don’t see the things that are below, that is: problems, conjectures,
mistakes, ideas, etc.

V. I. Arnold [17]

What my experience of mathematical work has taught me again and again, is that
the proof always springs from the insight, and not the other way around – and
that the insight itself has its source, first and foremost, in a delicate and obstinate
feeling of the relevant entities and concepts and their mutual relations. The guiding
thread is the inner coherence of the image which gradually emerges from the
mist, as well as its consonance with what is known or foreshadowed from other
sources – and it guides all the more surely as the ‘exigence’ of coherence is stronger
and more delicate.

A. Grothendieck.1

Interesting events (e.g. wars) always happen whenever different realisations of the same
thing confront one another. When clarity and precision are added to the mix, we call this
mathematics. In particular, the most exciting and significant moments in mathematics
occur when we discover that seemingly unrelated phenomena are shadows cast by the
same beast. This book studies one who has been recently awakened.

In 1978, John McKay made an intriguing observation: 196 884 ≈ 196 883. Monstrous
Moonshine is the collection of questions (and a few answers) that it directly inspired. No
one back then could have guessed the riches to which it would lead. But in actual fact,
Moonshine (albeit non-Monstrous) really began long ago.

0.1 Modular functions

Up to topological equivalence (homeomorphism), every compact surface is uniquely
specified by its genus: a sphere is genus 0, a torus genus 1, etc. However, a (real) surface
can be made into a complex curve by giving it more structure. For a sphere, up to

1 Translated in Geometric Galois Actions 1, edited by L. Schneps et al. (Cambridge, Cambridge University
Press, 1997) page 285.



2 Introduction

complex-analytic equivalence there is only one way to do this, namely the Riemann
sphere C ∪ {∞}. Surfaces of genus > 0 can be given complex structure in a continuum
of different ways.

Any such complex curve � is complex-analytically equivalent to one of the form
�\H. The upper half-plane

H := {τ ∈ C | Im τ > 0} (0.1.1)

is a model for hyperbolic geometry. Its geometry-preserving maps form the group SL2(R)
of 2× 2 real matrices with determinant 1, which act on H by the familiar(

a b
c d

)
. τ = aτ + b

cτ + d
. (0.1.2)

� is a discrete subgroup of SL2(R). By H here we mean H with countably many points
from its boundary R ∪ {i∞} added – these extra boundary points, which depend on �,
are needed for �\H to be compact. The construction of the space �\H of �-orbits in
H is completely analogous to that of the circle R/Z or torus R2/Z2. See Section 2.1.1
below.

The most important example is � = SL2(Z), because the moduli space of possible
complex structures on a torus can be naturally identified with SL2(Z)\H. For that �, as
well as all other � we consider in this book, we have

H = H ∪Q ∪ {i∞}. (0.1.3)

These additional boundary points Q ∪ {i∞} are called cusps.
Both geometry and physics teach us to study a geometric shape through the functions

(fields) that live on it. The functions f living on � = �\H are simply functions f :
H → C that are periodic with respect to �: that is,

f (A.τ ) = f (τ ), ∀τ ∈ H, A ∈ �. (0.1.4)

They should also preserve the complex-analytic structure of �. Ideally this would mean
that f should be holomorphic but this is too restrictive, so instead we require meromor-
phicity (i.e. we permit isolated poles).

Definition 0.1 A modular function f for some� is a meromorphic function f : H → C,
obeying the symmetry (0.1.4).

It is clear then why modular functions must be important: they are the functions living
on complex curves. In fact, modular functions and their various generalisations hold a
central position in both classical and modern number theory.

We can construct some modular functions for � = SL2(Z) as follows. Define the
(classical) Eisenstein series by

Gk(τ ) :=
∑
m,n∈Z

(m,n)�=(0,0)

(mτ + n)−k . (0.1.5)
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For odd k it identically vanishes. For even k > 2 it converges absolutely, and so defines
a function holomorphic throughout H. It is easy to see from (0.1.5) that

Gk

(
aτ + b

cτ + d

)
= (cτ + d)k Gk(τ ), ∀

(
a b
c d

)
∈ SL2(Z) (0.1.6)

and all τ . This transformation law (0.1.6) means that Gk isn’t quite a modular function
(it’s called a modular form). However, various homogeneous rational functions of these
Gk will be modular functions for SL2(Z) – for example, G8(τ )/G4(τ )2 (which turns out
to be constant) and G4(τ )3/G6(τ )2 (which doesn’t). All modular functions of SL2(Z)
turn out to arise in this way.

Can we characterise all modular functions, for � = SL2(Z) say? We know that any
modular function is a meromorphic function on the compact surface � = SL2(Z)\H.
As we explain in Section 2.2.4, � is in fact a sphere. It may seem that we’ve worked
very hard merely to recover the complex plane C ∼= SL2(Z)\H and its familiar com-
pactification the Riemann sphere P1(C) = C ∪ {∞} ∼= SL2(Z)\H, but that’s exactly the
point!

Although there are large numbers of meromorphic functions on the complex plane
C, the only ones that are also meromorphic at ∞ – the only functions meromorphic
on the Riemann sphere P1(C) – are the rational functions polynomial in z

polynomial in z (the others have
essential singularities there). So if J is a change-of-coordinates (or uniformising) function
identifying our surface � with the Riemann sphere, then J (lifted to a function on the
covering space H) will be a modular function for SL2(Z), and any modular function f (τ )
will be a rational function in J (τ ):

f (τ ) = polynomial in J (τ )

polynomial in J (τ )
. (0.1.7)

Conversely, any rational function (0.1.7) in J is modular. Thus J generates modular
functions for SL2(Z), in a way analogous to (but stronger and simpler than) how the
exponential e(x) = e2π i x generates the period-1 smooth functions f on R: we can always
expand such an f in the pointwise-convergent Fourier series f (x) =∑∞

n=−∞ an e(x)n .
There is a standard historical choice j for this uniformisation J , namely

j(τ ) := 1728
20 G4(τ )3

20 G4(τ )3 − 49 G6(τ )2

= q−1 + 744+ 196 884 q + 21 493 760 q2 + 864 299 970 q3 + · · · (0.1.8)

where q = exp[2π i τ ]. In fact, this choice (0.1.8) is canonical, apart from the arbitrary
constant 744. This function j is called the absolute invariant or Hauptmodul for SL2(Z),
or simply the j -function.

0.2 The McKay equations

In any case, one of the best-studied functions of classical number theory is the j-
function. However, its most remarkable property was discovered only recently: McKay’s
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approximations 196 884 ≈ 196 883, 21 493 760 ≈ 21 296 876 and 864 299 970 ≈
842 609 326. In fact,

196 884 = 196 883+ 1, (0.2.1a)

21 493 760 = 21 296 876+ 196 883+ 1, (0.2.1b)

864 299 970 = 842 609 326+ 21 296 876+ 2 · 196 883+ 2 · 1. (0.2.1c)

The numbers on the left sides of (0.2.1) are the first few coefficients of the j-function.
The numbers on the right are the dimensions of the smallest irreducible representations
of Fischer–Griess’s Monster finite simple group M.

A representation of a group G is the assignment of a matrix R(g) to each element g of
G in such a way that the matrix product respects the group product, that is R(g) R(h) =
R(gh). The dimension of a representation is the size n of its n × n matrices R(g).

The finite simple groups are to finite groups what the primes are to integers – they
are their elementary building blocks (Section 1.1.2). They have been classified (see
[22] for recent remarks on the status of this proof). The resulting list consists of 18
infinite families (e.g. the cyclic groups Zp := Z/pZ of prime order), together with 26
exceptional groups. The Monster M is the largest and richest of these exceptionals, with
order

‖M‖ = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053.

(0.2.2)

Group theorists would like to believe that the classification of finite simple groups is
one of the high points in the history of mathematics. But isn’t it possible instead that
their enormous effort has merely culminated in a list of interest only to a handful of
experts? Years from now, could the Monster – the signature item of this list – become
a lost bone in a dusty drawer of a forgotten museum, remarkable only for its colossal
irrelevance?

With numbers so large, it seemed doubtful to McKay that the numerology (0.2.1)
was merely coincidental. Nevertheless, it was difficult to imagine any deep conceptual
relation between the Monster and the j-function: mathematically, they live in different
worlds.

In November 1978 he mailed the ‘McKay equation’ (0.2.1a) to John Thompson. At
first Thompson likened this exercise to reading tea leaves, but after checking the next
few coefficients he changed his mind. He then added a vital piece to the puzzle.

0.3 Twisted #0: the Thompson trick

A nonnegative integer begs interpretation as the dimension of some vector space. Essen-
tially, that was what McKay proposed. Let ρ0, ρ1, . . . be the irreducible representations
of M, ordered by dimension. Then the equations (0.2.1) are really hinting that there is
an infinite-dimensional graded representation

V = V−1 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ · · · (0.3.1)
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of M, where V−1 = ρ0, V1 = ρ1 ⊕ ρ0, V2 = ρ2 ⊕ ρ1 ⊕ ρ0, V3 = ρ3 ⊕ ρ2 ⊕ ρ1 ⊕ ρ1 ⊕
ρ0 ⊕ ρ0, etc., and the j-function is essentially its graded dimension:

j(τ )− 744 = dim(V−1) q−1 +
∞∑

i=1

dim(Vi ) qi . (0.3.2)

Thompson [525] suggested that we twist this, that is more generally we consider what
we now call the McKay–Thompson series

Tg(τ ) = chV−1 (g) q−1 +
∞∑

i=1

chVi (g) qi (0.3.3)

for each element g ∈ M. The character ‘chρ’ of a representation ρ is given by ‘trace’:
chρ(g) = tr(ρ(g)). Up to equivalence (i.e. choice of basis), a representation ρ can be
recovered from its character chρ . The character, however, is much simpler. For exam-
ple, the smallest nontrivial representation of the Monster M is given by almost 1054

complex matrices, each of size 196 883× 196 883, while the corresponding character is
completely specified by 194 integers (194 being the number of ‘conjugacy classes’ in M).

For any representation ρ, the character value chρ(id.) equals the dimension of ρ, and
so Tid.(τ ) = j(τ )− 744 and we recover (0.2.1) as special cases. But there are many
other possible choices of g ∈ M, although conjugate elements g, hgh−1 have identical
character values and hence have identical McKay–Thompson series Tg = Thgh−1 . In fact,
there are precisely 171 distinct functions Tg . Thompson didn’t guess what these functions
Tg would be, but he suggested that they too might be interesting.

0.4 Monstrous Moonshine

John Conway and Simon Norton [111] did precisely what Thompson asked. Conway
called it ‘one of the most exciting moments in my life’ [107] when he opened Jacobi’s
foundational (but 150-year-old!) book on elliptic and modular functions and found that
the first few terms of each McKay–Thompson series Tg coincided with the first few
terms of certain special functions, namely the Hauptmoduls of various genus-0 groups
�. Monstrous Moonshine – which conjectured that the McKay–Thompson series were
those Hauptmoduls – was officially born.

We should explain those terms. When the surface �\H is a sphere, we call the group �
genus 0, and the (appropriately normalised) change-of-coordinates function from �\H
to the Riemann sphere C ∪ {∞} the Hauptmodul for �. All modular functions for a
genus-0 group � are rational functions of this Hauptmodul. (On the other hand, when �
has positive genus, two generators are needed, and there’s no canonical choice for them.)

The word ‘moonshine’ here is English slang for ‘insubstantial or unreal’, ‘idle talk
or speculation’,2 ‘an illusive shadow’.3 It was chosen by Conway to convey as well the

2 Ernest Rutherford (1937): ‘The energy produced by the breaking down of the atom is a very poor kind of
thing. Anyone who expects a source of power from the transformation of these atoms is talking
moonshine.’ (quoted in The Wordsworth Book of Humorous Quotations, Wordsworth Editions, 1998).

3 Dictionary of Archaic Words, J. O. Halliwell, London, Bracken Books, 1987. It also defines moonshine as
‘a dish composed partly of eggs’, but that probably has less to do with Conway’s choice of word.
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impression that things here are dimly lit, and that Conway and Norton were ‘distilling
information illegally’ from the Monster character table.

In hindsight, the first incarnation of Monstrous Moonshine goes back to Andrew Ogg
in 1975. He was in France discussing his result that the primes p for which the group
�0(p)+ has genus 0, are

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
(The group �0(p)+ is defined in (7.1.5).) He also attended there a lecture by Jacques
Tits, who was describing a newly conjectured simple group. When Tits wrote down the
order (0.2.2) of that group, Ogg noticed its prime factors coincided with his list of primes.
Presumably as a joke, he offered a bottle of Jack Daniels whisky to the first person to
explain the coincidence (he still hasn’t paid up). We now know that each of Ogg’s groups
�0(p)+ is the genus-0 modular group for the function Tg , for some element g ∈ M of
order p. Although we now realise why the Monster’s primes must be a subset of Ogg’s,
probably there is no deep reason why Ogg’s list couldn’t have been longer.

The appeal of Monstrous Moonshine lies in its mysteriousness: it unexpectedly asso-
ciates various special modular functions with the Monster, even though modular functions
and elements of M are conceptually incommensurable. Now, ‘understanding’ something
means to embed it naturally into a broader context. Why is the sky blue? Because of the
way light scatters in gases. Why does light scatter in gases the way it does? Because
of Maxwell’s equations. In order to understand Monstrous Moonshine, to resolve the
mystery, we should search for similar phenomena, and fit them all into the same story.

0.5 The Moonshine of E8 and the Leech

McKay had also remarked in 1978 that similar numerology to (0.2.1) holds if M and
j(τ ) are replaced with the Lie group E8(C) and

j(τ )
1
3 = q−

1
3 (1+ 248 q + 4124 q2 + 34 752 q3 + · · · ). (0.5.1)

In particular, 4124 = 3875+ 248+ 1 and 34 752 = 30 380+ 3875+ 2 · 248+ 1,
where 248, 3875 and 30 380 are all dimensions of irreducible representations of E8(C).
A Lie group is a manifold with compatible group structure; the groups of E8 type play
the same role in Lie theory that the Monster does for finite groups. Incidentally, j

1
3 is

the Hauptmodul of the genus-0 group �(3) (see (2.2.4a)).
A more elementary observation concerns the Leech lattice. A lattice is a discrete

periodic set L in Rn , and the Leech lattice� is a particularly special one in 24 dimensions.
196 560, the number of vectors in the Leech lattice with length-squared 4, is also close
to 196 884: in fact,

196 884 = 196 560+ 324 · 1, (0.5.2a)

21 493 760 = 16 773 120+ 24 · 196 560+ 3200 · 1, (0.5.2b)

864 299 970 = 398 034 000+ 24 · 16 773 120+ 324 · 196 560+ 25 650 · 1, (0.5.2c)



The Moonshine of E8 and the Leech 7

where 16 773 120 and 398 034 000 are the numbers of length-squared 6- and 8-vectors
in the Leech. This may not seem as convincing as (0.2.1), but the same equations hold
for any of the 24-dimensional even self-dual lattices, apart from an extra term on the
right sides corresponding to length-squared 2 vectors (there are none of these in the
Leech).

What conceptually does the Monster, E8 and the Leech lattice have to do with the
j-function? Is there a common theory explaining this numerology? The answer is yes!

It isn’t difficult to relate E8 to the j-function. In the late 1960s, Victor Kac [325] and
Robert Moody [430] independently (and for entirely different reasons) defined a new
class of infinite-dimensional Lie algebras. A Lie algebra is a vector space with a bilinear
vector-valued product that is both anti-commutative and anti-associative (Section 1.4.1).
The familiar vector-product u × v in three dimensions defines a Lie algebra, called
sl2, and in fact this algebra generates all Kac–Moody algebras. Within a decade it was
realised that the graded dimensions of representations of the affine Kac–Moody algebras
are (vector-valued) modular functions for SL2(Z) (Theorem 3.2.3).

Shortly after McKay’s E8 observation, Kac [326] and James Lepowsky [373] inde-
pendently remarked that the unique level-1 highest-weight representation L(ω0) of the
affine Kac–Moody algebra E8

(1) has graded dimension j(q)
1
3 . Since each homogeneous

piece of any representation L(λ) of the affine Kac–Moody algebra X�
(1) must carry

a representation of the associated finite-dimensional Lie group X�(C), and the graded
dimensions (multiplied by an appropriate power of q) of an affine algebra are modular
functions for some � ⊆ SL2(Z), this explained McKay’s E8 observation. His Monster
observations took longer to clarify because so much of the mathematics needed was still
to be developed.

Euler played with a function t(x) := 1+ 2x + 2x4 + 2x9 + 2x16 + · · · , because it
counts the ways a given number can be written as a sum of squares of integers. In his study
of elliptic integrals, Jacobi (and Gauss before him) noticed that if we change variables by
x = eπ iτ , then the resulting function θ3(τ ) := 1+ 2eπ iτ + 2e4π iτ + · · · behaves nicely
with respect to certain transformations of τ – we say today that Jacobi’s theta function
θ3 is a modular form of weight 1

2 for a certain index-3 subgroup of SL2(Z). More
generally, something similar holds when we replace Z with any other lattice L: the theta
series

L (τ ) :=
∑
n∈L

eπ i n·nτ

is also a modular form, provided all length-squares n · n are rational. In particular, we
obtain quite quickly that the theta series of the Leech lattice, divided by Ramanujan’s
modular form �(τ ), will equal J (τ )+ 24.

For both E8 and the Leech, the j-function arises from a uniqueness property (L(ω0) is
the only ‘level-1’ E8

(1)-module; the Leech lattice� is self-dual), together with the empir-
ical observation that SL2(Z) has few modular forms of small level. In these examples,
the appearance of the j-function isn’t as significant as that of modularity.
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Monster, lattices, affine algebras, ... Hauptmoduls, theta functions, ...

structures
algebraic modular

stuff??MOONSHINE??

Fig. 0.1 Moonshine in its broader sense.

0.6 Moonshine beyond the Monster

We’ve known for many years that lattices (quadratic forms) and Kac–Moody algebras are
related to modular forms and functions. But these observations, albeit now familiar, are
also a little mysterious, we should confess. For instance, compare the non-obvious fact
that θ3(−1/τ ) = √

τ
i θ3(τ ) with the trivial observation (0.1.6) that Gk(−1/τ ) = τ k Gk(τ )

for the Eisenstein series Gk . The modularity of Gk is a special case of the elementary
observation that SLn(Z) parametrises the change-of-bases of n-dimensional lattices. The
modularity of θ3, on the other hand, begs a conceptual explanation (indeed, see the quote
by Weil at the beginning of Section 2.4.2), even though its logical explanation (i.e. proof)
is a quick calculation from, for example, the Poisson summation formula (Section 2.2.3).
Moonshine really began with Jacobi and Gauss.

Moonshine should be regarded as a certain collection of related examples where
algebraic structures have been associated with automorphic functions or forms.

Grappling with that thought is the theme of our book. Chapters 1 to 6 could be (rather
narrowly) regarded as supplying a context for Monstrous Moonshine, on which we focus
in Chapter 7. From this larger perspective, illustrated in Figure 0.1, what is special about
this single instance called Monstrous Moonshine is that the several associated modular
functions are all of a special class (namely Hauptmoduls).

The first major step in the proof of Monstrous Moonshine was accomplished in the mid-
1980s with the construction by Frenkel–Lepowsky–Meurman [200] of the Moonshine
module V � and its interpretation by Richard Borcherds [68] as a vertex operator algebra.
A vertex operator algebra (VOA) is an infinite-dimensional vector space with infinitely
many heavily constrained vector-valued bilinear products (Chapter 5). It is a natural,
though extremely intricate, extension of the notion of a Lie algebra. Any algebra A can
be interpreted as an assignment of a linear map A⊗ · · · ⊗A→ A to each binary tree;
from this perspective a VOA V associates a linear map V ⊗ · · · ⊗ V → V with each
‘inflated’ binary tree, that is each sphere with discs removed.

In 1992 Borcherds [72] completed the proof of the original Monstrous Moonshine
conjectures4 by showing that the graded characters Tg of V � are indeed the Hauptmoduls
identified by Conway and Norton, and hence that V � is indeed the desired representation

4 As we see in Chapter 7, most Moonshine conjectures involving the Monster are still open.
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Vertex operator algebrasstructures
algebraic modular

stuff

Fig. 0.2 The algebraic meaning of Moonshine.

V of M conjectured by McKay and Thompson. The explanation of Moonshine suggested
by this picture is given in Figure 0.2. The algebraic structure typically arises as the
symmetry group of the associated VOA – for example, that of V � is the Monster M.
By Zhu’s Theorem (Theorem 5.3.8), the modular forms/functions appear as graded
dimensions of the (possibly twisted) modules of the VOA. In particular, the answer this
framework provides for what M, E8 and the Leech have to do with j is that they each
correspond to a VOA with a single simple module; their relation to j is then an immediate
corollary to the much more general Zhu’s Theorem.

It must be emphasised that Figure 0.2 is primarily meant to address Moonshine in
the broader sense of Figure 0.1, so certain special features of, for example, Monstrous
Moonshine (in particular that all the Tg are Hauptmoduls) are more subtle and have
to be treated by special arguments. These are quite fascinating by themselves, and are
discussed in Chapter 7. Even so, Figure 0.2 provides a major clue:

If you’re trying to understand a seemingly mysterious occurrence of the Monster,
try replacing the word ‘Monster’ with its synonym ‘the automorphism group of the
vertex operator algebra V �’.

This places the Monster into a much richer algebraic context, with numerous connections
with other areas of mathematics.

0.7 Physics and Moonshine

Moonshine is profoundly connected with physics (namely conformal field theory and
string theory). String theory proposes that the elementary particles (electrons, photons,
quarks, etc.) are vibrational modes on a string of length about 10−33 cm. These strings
can interact only by splitting apart or joining together – as they evolve through time,
these (classical) strings will trace out a surface called the world-sheet. Quantum field
theory tells us that the quantum quantities of interest (amplitudes) can be perturbatively
computed as weighted averages taken over spaces of these world-sheets. Conformally
equivalent world-sheets should be identified, so we are led to interpret amplitudes as
certain integrals over moduli spaces of surfaces. This approach to string theory leads
to a conformally invariant quantum field theory on two-dimensional space-time, called
conformal field theory (CFT). The various modular forms and functions arising in Moon-
shine appear as integrands in some of these genus-1 (‘1-loop’) amplitudes: hence their
modularity is manifest.
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Conformal field theoriesstructures
algebraic modular

stuff

Fig. 0.3 The stringy picture of Moonshine.

Many aspects of Moonshine make complete sense within CFT, something which helps
make the words of Freeman Dyson ring prophetic:

I have a sneaking hope, a hope unsupported by any facts or any evidence, that
sometime in the twenty-first century physicists will stumble upon the Monster
group, built in some unsuspected way into the structure of the universe [167].

All that said, here we are, sometime in the twenty-first century, and alas the Monster
still plays at best a peripheral role in physics. And some aspects of Moonshine (e.g. the
Hauptmodul property) remain obscure in CFT. In any case, although this is primarily
a mathematics book, we often sit in chairs warmed by physicists. In particular, CFT
(or what is essentially the same thing, perturbative string theory5) is, at least in part, a
machine for producing modular functions. Here, Figure 0.2 becomes Figure 0.3. More
precisely, the algebraic structure is an underlying symmetry of the CFT, and its graded
dimensions are the various modular functions. VOAs can be regarded as an algebraic
abstraction of CFT, since they arise quite naturally by applying the Wightman axioms
of quantum field theory to CFT. The lattice theta functions come from bosonic strings
living on the torus Rn/L . The affine Kac–Moody characters arise when the strings live
on a Lie group. And the Monster is the symmetry of a string theory for a Z2-orbifold of
free bosons compactified on the Leech lattice torus R24/�.

Physics reduces Moonshine to a duality between two different pictures of quantum field
theory: the Hamiltonian one, which concretely gives us from representation theory the
graded vector spaces, and another, due to Feynman, which manifestly gives us modularity.
In particular, physics tells us that this modularity is a topological effect, and the group
SL2(Z) directly arises in its familiar role as the modular group of the torus.

Historically speaking, Figure 0.3 preceded and profoundly affected Figure 0.2. One
reason the stringy picture is exciting is that the CFT machine in Figure 0.3 outputs much
more than modular functions – it creates automorphic functions and forms for the various
mapping class groups of surfaces with punctures. And all this is still poorly explored.
We can thus expect more from Moonshine than Figure 0.2 alone suggests. On the other
hand, once again Figure 0.3 can directly explain only the broader aspects of Moonshine.

5 Curiously, although nonperturbative string theory should be physically more profound, it is the perturbative
calculations that are most relevant to the mathematics of Moonshine.
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0.8 Braided #0: the meaning of Moonshine

In spite of the work of Borcherds and others, the special features of Monstrous Moon-
shine still beg questions. The full conceptual relationship between the Monster and
Hauptmoduls (like j) arguably remains ‘dimly lit’, although much progress has been
realised. This is a subject where it is much easier to speculate than to prove, and we are
still awash in unresolved conjectures. But most important, we need a second indepen-
dent proof of Monstrous Moonshine. In order to clarify the still murky significance of
the Monster in Moonshine, we need to understand to what extent Monstrous Moonshine
determines the Monster. More generally, we need to go beneath the algebraic explanation
of Moonshine in order to find its more fundamental meaning, which is probably topolog-
ical. Explaining something (Moonshine in this case) with something more complicated
(CFT or VOAs here) cannot be the end of the story. Surely it is instead a beginning.

To Poincaré 125 years ago, modularity arose through the monodromy of differential
equations. Remarkably, today CFT provides a similar explanation, although the rele-
vant partial differential equations are much more complicated. The monodromy group
here is the braid group B3, and the modular group SL2(Z) arises as a homomorphic
image.

Today we are taught to lift modular forms for SL2(Z) to the space L2(SL2(Z)\SL2(R)),
which carries a representation of the Lie group SL2(R). However, SL2(R) is not simply

connected; its universal cover S̃L2(R) is a central extension by Z, and the corresponding
central extension of SL2(Z) – the fundamental group of SL2(Z)\SL2(R) – is the braid
group B3. By all rights, these central extensions should be more fundamental. Indeed,
modular forms of fractional weight, such as the Dedekind eta, certainly see B3 more
directly than they do SL2(Z) (Section 2.4.3). Similar comments hold for other � – for
example, the congruence subgroup �(2) lifts to the pure braid group P3.

The best approach we know for relating the Monster and the Hauptmodul property is
Norton’s action ofB3 on G × G. This associates a genus-0 property with ‘6-transposition
groups’, which in turn points to a special role for M, as the Monster is expected to be
essentially the largest such group (Section 7.3.3). Incidentally, the number ‘6’ arises here
because the principal congruence subgroup �(N ) is genus 0 iff N < 6.

For these reasons and others we explore on the following pages, we expect a new
proof for Moonshine to involve the braid group B3. The modular groups SL2(Z) and
PSL2(Z) arise only indirectly as quotients. We also identify other promising places
to look for alternate arguments for Moonshine – for example, the partial differential
equations of CFT are built from the heat kernel, which has a long historical association
with modularity.

0.9 The book

Borcherds’ paper [72] and the resulting Fields medal close the opening chapter of the
story of Moonshine. Now, 25 years after its formulation in [111], we are in a period of
consolidation and synthesis, flames fanned I hope by this book.
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Most of us might liken much of our research to climbing a steep hill against a stiff
breeze: every so often we stumble and roll to the bottom, but with persistence we eventu-
ally reach the summit and plant our flag amongst the others already there. And before our
bruises fade and bones mend, we’re off to the next hill. But perhaps research in its purest
form is more like chasing squirrels. As soon as you spot one and leap towards it, it darts
away, zigging and zagging, always just out of reach. If you’re a little lucky, you might
stick with it long enough to see it climb a tree. You’ll never catch the damned squirrel,
but chasing it will lead you to a tree. In mathematics, the trees are called theorems. The
squirrels are those nagging little mysteries we write at the top of many sheets of paper.
We never know where our question will take us, but if we stick with it, it’ll lead us to a
theorem. That I think is what research ideally is like. There is no higher example of this
than Moonshine.

This book addresses the theory of the blob of Figure 0.1. We explore some of its
versatility in Chapter 6, where we glimpse Moonshine orthogonal to the Monster. Like
moonlight itself, Monstrous Moonshine is an indirect phenomenon. Just as in the theory
of moonlight one must introduce the sun, so in the theory of Moonshine one must go well
beyond the Monster. Much as a book discussing moonlight may include paragraphs on
sunsets or comet tails, so do we discuss fusion rings, Galois actions and knot invariants.
The following chapters use Moonshine (Monstrous and otherwise) as a happy excuse to
take a rather winding little tour through modern mathematics and physics. If we offer
more questions and suggestions than theorems and answers, at least that is in Moonshine’s
spirit.

This is not a textbook. The thought bobbing above my head like a balloon while
writing was that the brain is driven by the qualitative – at the deepest level those are the
only truths we seek and can absorb. I’m trying to share with the reader my understanding
(such as it is) of several remarkable topics that fit loosely together under the motley
banner Moonshine. I hope it fills a gap in the literature, by focusing more on the ideas
and less on the technical minutiae, important though they are. But even if not, it was a
pleasure to write, and I think that comes across on every page.

This book is philosophic and speculative, because Moonshine is. It is written for both
physicists and mathematicians, because both subjects have contributed to the theory.
Partly for this reason, this book differs from other mathematics books in the lack of
formal arguments, and differs from other physics books in the lack of long formulae.
Without doubt this will froth many mouths. Because the potential readership for this
story is unusually diverse, I have tried to assume minimal formal background. Hence
when you come to shockingly trivial passages or abrasively uninteresting tangents, please
realise they weren’t written for you.

In modern mathematics there is a strong tendency towards formulations of concepts
that minimise the number and significance of arbitrary choices. This crispness tends to
emphasise the naturality of the construction or definition, at the expense sometimes of
accessibility. Our mathematics is more conceptual today – more beautiful perhaps – but
the cost of less explicitness is the compartmentalism that curses our discipline. We have
cut ourselves off not only from each other, but also from our past. In this book I’ve tried
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to balance this asceticism with accessibility. Some things have surely been lost, but some
perhaps have been gained.

The book endures some glaring and painful omissions, due mostly to fear of spousal
reprisals were I to miss yet another deadline. I hope for a second edition. In it I would
include a gentle introduction to geometric Langlands. I’d correct the total disregard here
for all things supersymmetric – after all, most of the geometric impact of string theory
involves supersymmetry. The mathematical treatment of CFT in Chapter 4 is sparser than
I’d like. Section 5.4 was originally planned to include brief reviews of the chiral algebras
of Beilinson–Drinfel’d [48] and the coordinate-free approach to VOAs developed in
[197]. Cohomological issues arise in every chapter, where they are nonetheless quietly
ignored. The lip-service paid to subfactors does no justice to their beautiful role in the
theory.

I will probably be embarrassed five years from now as to what today I feel is important.
But at worst I’ll be surprised five years from now at what today I find interesting. The
topics were selected based on my present interests. Other authors (and even me five years
from now) would make different choices, but for that I won’t apologise.

So let the chase begin. . .



1

Classical algebra

In this chapter we sketch the basic material – primarily algebra – needed in later chapters.
As mentioned in the Introduction, the aspiration of this book isn’t to ‘Textbookhood’.
There are plenty of good textbooks on the material of this chapter (e.g. [162]). What is
harder to find are books that describe the ideas beneath and the context behind the various
definitions, theorems and proofs. This book, and this chapter, aspire to that. What we
lose in depth and detail, we hope to gain in breadth and conceptual content. The range
of readers in mind is diverse, from mathematicians expert in other areas to physicists,
and the chosen topics, examples and explanations try to reflect this range.

Finite groups (Section 1.1) and lattices (Section 1.2.1) appear as elementary examples
throughout the book. Lie algebras (Section 1.4), more than their nonlinear partners the
Lie groups, are fundamental to us, especially through their representations (Section 1.5).
Functional analysis (Section 1.3), category theory (Section 1.6) and algebraic number
theory (Section 1.7) play only secondary roles. Section 1.2 provides some background
geometry, but for proper treatments consult [113], [104], [527], [59], [478].

Note the remarkable unity of algebra. Algebraists look at mathematics and science and
see structure; they study form rather than content. The foundations of a new theory are
laid by running through a fixed list of questions; only later, as the personality quirks of
the new structure become clearer, does the theory become more individual. For instance,
among the first questions asked are: What does ‘finite’ mean here? and What plays the
role of a prime number? Mathematics (like any subject) evolves by asking questions, and
though a good original question thunders like lightning at night, it is as rare as genius
itself. See the beautiful book [504] for more of algebra presented in this style.

1.1 Discrete groups and their representations

The notion of a group originated essentially in the nineteenth century with Galois, who
also introduced normal subgroups and their quotients G/N , all in the context of what we
now call Galois theory (Section 1.7.2). According to Poincaré, when all of mathematics
is stripped of its contents and reduced to pure form, the result is group theory.1 Groups
are the devices that act, which explains their fundamental role in mathematics. In physics
like much of Moonshine, groups arise through their representations. Standard references
for representation theory are [308], [219]; gentle introductions to various aspects of
group theory are [162], [421] (the latter is especially appropriate for physicists).

1 See page 499 of J.-P. Serre, Notices Amer. Math. Soc. (May 2004).
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1.1.1 Basic definitions

A group is a set G with an associative product gg′ and an identity e, such that each
element g ∈ G has an inverse g−1. The number of elements ‖G‖ of a group is called its
order, and is commonly denoted |G|.

If we’re interested in groups, then we’re interested in comparing groups, that is we’re
interested in functions ϕ : G → H that respect group structure. What this means is ϕ
takes products in G to products in H , the identity eG in G to the identity eH in H , and
the inverse in G to the inverse in H (the last two conditions are redundant). Such ϕ are
called group homomorphisms.

Two groups G, H are considered equivalent or isomorphic, written G ∼= H , if as far
as the essential group properties are concerned (think ‘form’ and not ‘content’), the two
groups are indistinguishable. That is, there is a group homomorphism ϕ : G → H that
is a bijection (so ϕ−1 exists) and ϕ−1 : H → G is itself a group homomorphism (this
last condition is redundant). An automorphism (or symmetry) of G is an isomorphism
G → G; the set Aut G of all automorphisms of G forms a group.

For example, consider the cyclic group Zn = {[0], [1], . . . , [n − 1]} consisting of the
integers taken mod n, with group operation addition. Write U1(C) for the group of
complex numbers with modulus 1, with group operation multiplication. Then ϕ([a]) =
e2π i a/n defines a homomorphism between Zn and U1(C). The group of positive real
numbers under multiplication is isomorphic to the group of real numbers under addition,
the isomorphism being given by logarithm – as far as their group structure is concerned,
they are identical. Aut Z ∼= Z2, corresponding to multiplying the integers by ±1, while
Aut Zn is the multiplicative group Z×n , consisting of all numbers 1 ≤ � ≤ n coprime to
n (i.e. gcd(�, n) = 1), with the operation being multiplication mod n.

Field is an algebraic abstraction of the concept of number: in one we can add, subtract,
multiply and divide, and all the usual properties like commutativity and distributivity
are obeyed. Fields were also invented by Galois. C, R and Q are fields, while Z is not
(you can’t always divide an integer by, for example, 3 and remain in Z). The integers
mod n, i.e. Zn , are a field iff n is prime (e.g. in Z4, it is not possible to divide by the
element [2] even though [2] �= [0] there). C and R are examples of fields of characteristic
0 – this means that 0 is the only integer k with the property that kx = 0 for all x in the
field. We say Zp has characteristic p since multiplying by the integer p has the same
effect as multiplying by 0. There is a finite field with q elements iff q is a power of a
prime, in which case the field is unique and is called Fq . Strange fields have important
applications in, for example, coding theory and, ironically, in number theory itself – see
Sections 1.7.1 and 2.4.1.

The index of a subgroup H in G is the number of ‘cosets’ gH ; for finite groups it
equals ‖G‖/‖H‖. A normal subgroup N of a group is one obeying gNg−1 = N for
all g ∈ G. Its importance arises because the set G/H of cosets gH has a natural group
structure precisely when H is normal. If H is a normal subgroup of G we write H� G;
if H is merely a subgroup of G we write H < G. The kernel ker(ϕ) = ϕ−1(eH ) of a
homomorphism ϕ : G → H is always normal in G, and Imϕ ∼= G/kerϕ.
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By the free groupFn with generators {x1, . . . , xn}we mean the set of all possible words
in the ‘alphabet’ x1, x−1

1 , . . . , xn, x−1
n , with group operation given by concatenation. The

identity e is the empty word. The only identities obeyed here are the trivial ones coming
from xi x

−1
i = x−1

i xi = e. For example, F1
∼= Z. The group F2 is already maximally

complicated, in that all the other Fn arise as subgroups.
We call a group G finitely generated if there are finitely many elements g1, . . . , gn ∈ G

such that G = 〈g1, . . . , gn〉, that is any g ∈ G can be written as some finite word in the
alphabet g±1

1 , . . . , g±1
n . For example, any finite group is finitely generated, while the

additive group R is not. Any finitely generated group G is the homomorphic image
ϕ(Fn) of some free group Fn , i.e. G ∼= Fn/ker (ϕ) (why?). This leads to the idea of
presentation: G ∼= 〈X |R〉where X is a set of generators of G and R is a set of relations,
that is words that equal the identity e in G. Enough words must be chosen so that kerϕ
equals the smallest normal subgroup of Fn containing all of R. For example, here is a
presentation for the dihedral group Dn (the symmetries of the regular n-sided polygon):

Dn = 〈a, b | an = b2 = abab = e〉. (1.1.1)

For two interesting presentations of the trivial group G = {e}, see [416]. To define a
homomorphism ϕ : G → H it is enough to give the value ϕ(gi ) of each generator of G,
and verify that ϕ sends all relations of G to identities in H .

We say G equals the (internal) direct product N × H of subgroups if every element
g ∈ G can be written uniquely as a product nh, for every n ∈ N , h ∈ H , and where
N , H are both normal subgroups of G and N ∩ H = {e}. Equivalently, the (external)
direct product N × H of two groups is defined to be all ordered pairs (n, h), with
operations given by (n, h)(n′, h′) = (nn′, hh′); G will be the internal direct product
of its subgroups N , H iff it is isomorphic to their external direct product. Of course,
N ∼= G/H and H ∼= G/N . Direct product is also called ‘homogeneous extension’ in
the physics literature.

More generally, G is an (internal) semi-direct product N×H of subgroups if all
conditions of the internal direct product are satisfied, except that H need not be normal
in G (but as before, N� G). Equivalently, the (external) semi-direct product N×θ H of
two groups is defined to be all ordered pairs (n, h) with operation given by

(n, h)(n′, h′) = (n θh(n′), hh′),

where h �→ θh ∈ Aut N can be any group homomorphism. It’s a good exercise to verify
that N×θ H is a group for any such θ , and to relate the internal and external semi-direct
products. Note that N ∼= {(n, eH )}, H ∼= {(eN , h)} ∼= G/N . Also, choosing the trivial
homomorphism θh = id. recovers the (external) direct product. The semi-direct product
is also called the ‘inhomogeneous extension’.

For example, the dihedral group is a semi-direct product of Zn with Z2. The group
of isometries (distance-preserving maps) in 3-space is R3×({±I } × SO3), where R3

denotes the additive subgroup of translations,−I denotes the reflection x �→ −x through
the origin, and SO3 is the group of rotations. This continuous group is an example of a
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Lie group (Section 1.4.2). Closely related is the Poincaré group, which is the semi-direct
product of translations R4 with the Lorentz group SO3,1.

Finally and most generally, if N is a normal subgroup of G then we say that G is an
(internal) extension of N by the quotient group G/N . Equivalently, we say a group G is
an (external) extension of N by H if each element g in G can be identified with a pair
(n, h), for n ∈ N and h ∈ H , and where the group operation is

(n, h)(n′, h′) = (stuff, hh′),

provided only that (n, eH )(n′, eH ) = (nn′, eH ).
That irritating carry in base 10 addition, which causes so many children so much grief,

is the price we pay for building up our number system by repeatedly extending by the
group Z10 (one for each digit) (see Question 1.1.8(c)).

A group G is abelian if gh = hg for all g, h ∈ G. So Zn is abelian, but the symmetric
group Sn for n > 2 is not. A group is cyclic if it has only one generator. The only cyclic
groups are the abelian groups Zn and Z. The centre Z (G) of a group is defined to be all
elements g ∈ G commuting with all other h ∈ G; it is always a normal abelian subgroup.

Theorem 1.1.1 (Fundamental theorem of finitely generated abelian groups) Let
G be a finitely generated abelian group. Then

G ∼= Zr × Zm1 × · · · × Zmh

where Zr = Z× · · · × Z (r times), and m1 divides m2 which divides . . .which divides
mh. The numbers r,mi , h are unique. The group G is finite iff r = 0.

The proof isn’t difficult – for example, see page 43 of [504]. Theorem 1.1.1 is closely
related to other classical decompositions, such as that of the Jordan canonical form for
matrices.

1.1.2 Finite simple groups

Theorem 1.1.1 gives among other things the classification of all finite abelian groups. In
particular, the number of abelian groups G of order ‖G‖ = n =∏

p pap is
∏

p P(ap),
where P(m) is the partition number of m (the number of ways of writing m as a sum
m =∑

i mi , m1 ≥ m2 ≥ · · · ≥ 0).
What can we say about the classification of arbitrary finite groups? This is almost

certainly hopeless. All groups of order p or p2 (for p prime) are necessarily abelian. The
smallest non-abelian group is the symmetric group S3 (order 6); next are the dihedral
group D4 and the quaternion group Q4 = {±1,±i,± j,±k} (both order 8). Table 1.1
summarises the situation up to order 50 – for orders up to 100, see [418]. This can’t be
pushed that much further, for example the groups of order 128 (there are 2328 of them)
were classified only in 1990. One way to make progress is to restrict the class of groups
considered.

Every group has two trivial normal subgroups: itself and {e}. If these are the only
normal subgroups, the group is called simple. It is conventional to regard the trivial
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Table 1.1. The numbers of non-abelian groups of order < 50

‖G‖ 6 8 10 12 14 16 18 20 21 22 24 26 27
# 1 2 1 3 1 9 3 3 1 1 12 1 2

‖G‖ 28 30 32 34 36 38 39 40 42 44 46 48
# 2 3 44 1 10 1 1 11 5 2 1 47

group {e} as not simple (just as ‘1’ is conventionally regarded as not prime). An alternate
definition of a simple group G is that if ϕ : G → H is any homomorphism, then either
ϕ is constant (i.e. ϕ(G) = {e}) or ϕ is one-to-one.

The importance of simple groups is provided by the Jordan–Hölder Theorem. By a
‘composition series’ for a group G, we mean a nested sequence

G = H0 > H1 > H2 > · · · > Hk > Hk+1 = {e} (1.1.2)

of groups such that Hi is normal in Hi−1 (though not necessarily normal in Hi−2), and
the quotient Hi−1/Hi (called a ‘composition factor’) is simple. An easy induction shows
that any finite group G has at least one composition series. If H ′

0 > · · · > H ′
�+1 = {e}

is a second composition series for G, then the Jordan–Hölder Theorem says that k = �

and, up to a reordering π , the simple groups Hi−1/Hi and H ′
π j−1/H ′

π j are isomorphic.
The cyclic group Zn is simple iff n is prime. Two composition series of Z12 = 〈1〉 are

Z12 > 〈2〉 > 〈4〉 > 〈12〉,
Z12 > 〈3〉 > 〈6〉 > 〈12〉,

corresponding to composition factors Z2, Z2, Z3 and Z3, Z2, Z2. This is reminiscent of
2 · 2 · 3 = 3 · 2 · 2 both being prime factorisations of 12. When all composition factors
of a group are cyclic, the group is called solvable. The deep Feit–Thompson Theo-
rem tells us that any group of odd order is solvable, as are all abelian groups and any
group of order < 60 (Question 1.1.2). The name ‘solvable’ comes from Galois theory
(Section 1.7.2).

Finite groups are a massive generalisation of the notion of number. The number n
can be identified with the cyclic group Zn . The divisor of a number corresponds to a
normal subgroup, so a prime number corresponds to a simple group. The Jordan–Hölder
Theorem generalises the uniqueness of prime factorisations. Building up any number by
multiplying primes becomes building up a group by (semi-)direct products and, more
generally, by group extensions. Note however that Z6 × Z2 and S3 × Z2 – both different
from Z12 – also have Z2,Z2,Z3 as composition factors. The lesson: unlike for numbers,
‘multiplication’ here does not give a unique answer. The semi-direct product Z3×Z2 can
equal either Z6 or S3, depending on how the product is taken.

The composition series (1.1.2) tells us that the finite group G is obtained inductively
from the trivial group {e} by extending {e} by the simple group Hk/Hk+1 to get Hk ,
then extending Hk by the simple group Hk−1/Kk to get Hk−1, etc. In other words, any
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finite group G can be obtained from the trivial group by extending inductively by simple
groups; those simple groups are its ‘prime factors’ = composition factors.

Thus simple groups have an importance for group theory approximating what primes
have for number theory. One of the greatest accomplishments of twentieth-century math-
ematics is the classification of the finite simple groups. Of course we would have preferred
the complete finite group classification, but the simple groups are a decent compromise!
This work, completed in the early 1980s (although gaps in the arguments are continually
being discovered and filled [22]), runs to approximately 15 000 journal pages, spread
over 500 individual papers, and is the work of a whole generation of group theorists (see
[256], [512] for historical remarks and some ideas of the proof). A modern revision is
currently underway to simplify the proof and find and fill all gaps, but the final proof is
still expected to be around 4000 pages long. The resulting list, probably complete, is:

� the cyclic groups Zp (p a prime);
� the alternating groups An for n ≥ 5;
� 16 families of Lie type;
� 26 sporadic groups.

The alternating group An consists of the even permutations in the symmetric group
Sn , and so has order(=size) 1

2 n!. The groups of Lie type are essentially Lie groups
(Section 1.4.2) defined over the finite fields Fq , sometimes ‘twisted’. See, for example,
chapter I.4 of [92] for an elementary treatment. The simplest example is PSLn(Fq ),
which consists of the n × n matrices with entries in Fq , with determinant 1, quotiented
out by the centre of SLn(Fq ) (namely the scalar matrices diag(a, a, . . . , a) with an = 1)
(PSL2(Z2) and PSL2(Z3) aren’t simple so should be excluded). The ‘P’ here stands for
‘projective’ and refers to this quotient, while the ‘S’ stands for ‘special’ and means
determinant 1.

The determinant det(ρ(g)) of any representationρ (Section 1.1.3) of a noncyclic simple
group must be identically 1, and the centre of any noncyclic simple group must be trivial
(why?). Hence in the list of simple groups of Lie type are found lots of P’s and S’s.

The smallest noncyclic simple group isA5, with order 60. It is isomorphic to PSL2(Z5)
and PSL2(F4), and can also be interpreted as the group of all rotational symmetries of a
regular icosahedron (reflections have determinant−1 and so cannot belong to any simple
group �∼= Z2). The simplicity of A5 is ultimately responsible for the fact that the zeros of
a general quintic polynomial cannot be solved by radicals (see Section 1.7.2).

The smallest sporadic group is the Mathieu group M11, order 7920, discovered in
1861.2 The largest is the Monster M,3 conjectured independently by Fischer and Griess

2 . . . although his arguments apparently weren’t very convincing. In fact some people, including the Camille
Jordan of Jordan–Hölder fame, argued in later papers that the largest of Mathieu’s groups, M24 , couldn’t
exist. We now know it does, for example an elegant realisation is as the automorphisms of Steiner system
S(5,8,24).

3 Griess also came up with the symbol for the Monster; Conway came up with the name. It’s a little
unfortunate (but perhaps inevitable) that the Monster is not named after its codiscoverers, Berndt Fischer
and Robert Griess; the name ‘Friendly Giant’ was proposed in [263] as a compromise, but ‘Monster’ stuck.
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in 1973 and finally proved to exist by Griess [263] in 1980. Its order is given in (0.2.2).
20 of the 26 sporadic groups are involved in (i.e. are quotients of subgroups of) the
Monster, and play some role in Moonshine, as we see throughout Section 7.3. We study
the Monster in more detail in Section 7.1.1. Some relations among M, the Leech lattice
� and the largest Mathieu group M24 are given in chapters 10 and 29 of [113]. We collect
together some of the data of the sporadics in Table 7.1.

This work reduces the construction and classification of all finite groups to under-
standing the possible extensions by simple groups. Unfortunately, group extensions turn
out to be technically quite difficult and lead one into group cohomology.

There are many classifications in mathematics. Most of them look like phone books,
and their value is purely pragmatic: for example, as a list of potential counterexamples,
and as a way to prove some theorems by exhaustion. And of course obtaining them
requires at least one paper, and with it some breathing space before those scoundrels on
the grant evaluation boards. But when the classification has structure, it can resemble
in ways a tourist guide, hinting at new sites to explore. The 18 infinite families in the
finite simple group classification are well known and generic, much like the chain of
MacDonald’s restaurants, useful and interesting in their own ways. But the eye skims
over them, and is drawn instead to the 26 sporadic groups and in particular to the largest:
the Monster.

1.1.3 Representations

Groups typically arise as ‘things that act’. This is their raison d’être. For instance, the
symmetries of a square form the dihedral group D4 – that is, the elements of D4 act on
the vertices by permuting them. When a group acts on a structure, you generally want
it to preserve the essential features of the structure. In the case of our square, we want
adjacent vertices to remain adjacent after being permuted.

So when a group G acts on a vector space V (over C, say), we want it to act ‘linearly’.
The action g.v of G on V gives V the structure of a G-module. In completely equivalent
language, it is a representation ρ of G on V ∼= Cn , that is as a group homomorphism
from G to the invertible matrices GLn(C). So a representation ρ is a realisation of the
group G by matrices, where multiplication in G corresponds to matrix multiplication:

ρ(gh) = ρ(g) ρ(h).

The identification of V with Cn is achieved by choosing a basis of V , so the module
language is ‘cleaner’ in the sense that it is basis-independent, but this also tends to make
it less conducive for practical calculations. The module action g.v is now written ρ(g)v,
where v is the column vector consisting of the components of v ∈ V with respect to the
given basis. If ρ(g) are n × n matrices, we say ρ is an n-dimensional representation.

For a practise example, consider the symmetric group

S3 = {(1), (12), (23), (13), (123), (132)}. (1.1.3)
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These cycles multiply as (13)(123) = (12). One representation of S3 is one-dimensional,
and sends all six elements of S3 to the 1× 1 identity matrix:

ρ1(σ ) = (1), ∀σ ∈ S3.

Obviously (1.1.3) is satisfied, and so this defines a representation. But it’s trivial, pro-
jecting away all structure in the group S3. Much more interesting is the defining repre-
sentation ρ3, which assigns to each σ ∈ S3 a 3× 3 permutation matrix by using σ to
permute the rows of the identity matrix I . For example

(12) �→
⎛⎝ 0 1 0

1 0 0
0 0 1

⎞⎠ , (13) �→
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ , (123) �→
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ .

This representation is faithful, that is different permutations σ are assigned different
matrices ρ3(σ ). From this defining representation ρ3, we get a second one-dimensional
one – called the sign representation ρs – by taking determinants. For example, (1) �→
(+1), (12) �→ (−1), (13) �→ (−1) and (123) �→ (+1).

The most important representation associated with a group G is the regular representa-
tion given by the group algebra CG. That is, consider the ‖G‖-dimensional vector space
(over C, say) consisting of all formal linear combinations

∑
h∈G αhh, where αh ∈ C.

This has a natural structure of a G-module, given by g.(
∑

αhh) =∑
h αh gh.

When G is infinite, there will be convergence issues and hence analysis since infinite
sums

∑
αhh are involved. The most interesting possibility is to interpret h �→ αh as a

C-valued function α(h) on G. Suppose we have a G-invariant measure dμ on this space
of functions α : G → C – this means that the integral

∫
gU α(h) dμ(h) will exist and equal∫

U α(gh) dμ(h) whenever the latter exists. For example, if G is discrete, define ‘
∫

G α dμ’
to be

∑
h∈G α(h), while if G is the additive group R, dμ(x) is the Lebesgue measure (see

Section 1.3.1). Looking at the g-coefficient of the product (
∑

h αhh)(
∑

k βkk), we get
the formula g �→∑

αhβh−1g , which we recognise as the convolution product (recall (α ∗
β)(x) = ∫

α(x)β(x − y) dy) in, for example, Fourier analysis. In this context, the regular
representation of G becomes the Hilbert space L2(G) of square-integrable functions
(i.e.

∫ |α|2dμ <∞); the convolution product defines an action of L2(G) on itself. Note
however that the L2(R)-module L2(R), for a typical example, doesn’t restrict to an
R-module: the action of R on α ∈ L2(R) by (x .α)(y) = α(x + y) corresponds to the
convolution product of α with the ‘Dirac delta’ distribution δ centred at x . We return to
L2(G) in Section 1.5.5.

Two representations ρ, ρ ′ are called equivalent if they differ merely by a change
of coordinate axes (basis) in the ambient space Cn , that is if there exists a matrix U
such that ρ ′(g) = Uρ(g)U−1 for all g. The direct sum ρ ′ ⊕ ρ ′′ of representations is
given by

(ρ ′ ⊕ ρ ′′)(g) =
(
ρ ′(g) 0

0 ρ ′′(g)

)
. (1.1.4a)
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The tensor product ρ ′ ⊗ ρ ′′ of representations is given by (ρ ′ ⊗ ρ ′′)(g) = ρ ′(g)⊗ ρ ′′(g),
where the Kronecker product A ⊗ B of matrices is defined by the following block form:

A ⊗ B =
⎛⎝ a11 B a12 B · · ·

a21 B a22 B · · ·
...

...
. . .

⎞⎠ . (1.1.4b)

The contragredient or dual ρ∗ of a representation is given by the formula

ρ∗(g) = (ρ(g−1))t , (1.1.4c)

so called because it’s the natural representation on the space V ∗ dual to the space V on
which ρ is defined. For any finite group representation defined over a subfield of C, the
dual ρ∗ is equivalent to the complex conjugate representation g �→ ρ(g).

Returning to our S3 example, the given matrices for ρ3 were obtained by having S3 act
on coordinates with respect to the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. If instead
we choose the basis {(1, 1, 1), (1,−1, 0), (0, 1,−1)}, these matrices become

(12) �→
⎛⎝ 1 0 0

0 −1 1
0 0 1

⎞⎠ , (13) �→
⎛⎝ 1 0 0

0 0 −1
0 −1 0

⎞⎠ , (123) �→
⎛⎝ 1 0 0

0 0 −1
0 1 −1

⎞⎠ .

It is manifest here that ρ3 is a direct sum of ρ1 (the upper-left 1× 1 block) with a
two-dimensional representation ρ2 (the lower-right 2× 2 block) given by

(12) �→
(−1 1

0 1

)
, (13) �→

(
0 −1
−1 0

)
, (123) �→

(
0 −1
1 −1

)
.

An irreducible or simple module is a module that contains no nontrivial submodule.
‘Submodule’ plays the role of divisor here, and ‘irreducible’ the role of prime number. A
module is called completely reducible if it is the direct sum of finitely many irreducible
modules. For example, the S3 representations ρ1, ρs and ρ2 are irreducible, while ρ3

∼=
ρ1 ⊕ ρ2 is completely reducible.

A representation is called unitary if it is equivalent to one whose matrices ρ(g) are
all unitary (i.e. their inverses equal their complex conjugate transposes). A more basis-
independent definition is that a G-module V is unitary if there exists a Hermitian form
〈u, v〉 ∈ C on V such that

〈g.u, g.v〉 = 〈u, v〉.
By definition, a Hermitian form 〈u, v〉 : V × V → C is linear in v and anti-linear in u,
i.e.

〈au + a′u′, bv + b′v′〉 = ab〈u, v〉 + ab′〈u, v′〉 + a′b〈u′, v〉 + a′b′〈u′, v′〉,
for all a, a′, b, b′ ∈ C, u, u′, v, v′ ∈ V , and finally 〈u, u〉 > 0 for all nonzero u ∈ V .
When V is finite-dimensional, a basis can always be found in which its Hermitian
form looks like 〈x, y〉 =∑i x i yi . Most representations of interest in quantum physics
are unitary. Unitary representations are much better behaved than non-unitary ones.
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For instance, an easy argument shows that finite-dimensional unitary representation is
completely reducible.

An indecomposable module is one that isn’t the direct sum of smaller ones. An inde-
composable module may be reducible: its matrices could be put into the form

ρ(g) =
(

A(g) B(g)
0 D(g)

)
,

where for some g the submatrix B(g) isn’t the 0-matrix (otherwise we would recover
(1.1.4a)). Then A(g) is a subrepresentation, but D(g) isn’t. For finite groups, however,
irreducible=indecomposable:

Theorem 1.1.2 (Burnside, 1904) Let G be finite and the field be C. Any G-module is
unitary and will be completely reducible if it is finite-dimensional. There are only finitely
many irreducible G-modules; their number equals the number of conjugacy classes
of G.

The conjugacy classes are the sets Kg = {h−1gh | h ∈ G}. This fundamental result
fails for infinite groups. For example, take G to be the additive group Z of inte-
gers. Then there are uncountably many one-dimensional representations of G, and
there are representations that are reducible but indecomposable (see Question 1.1.6(a)).
Theorem 1.1.2 is proved using a projection defined by certain averaging over G, as well
as:

Lemma 1.1.3 (Schur’s Lemma) Let G be finite and ρ, ρ ′ be representations.
(a) ρ is irreducible iff the only matrices A commuting with all matrices ρ(g), g ∈ G –

that is Aρ(g) = ρ(g)A – are of the form A = aI for a ∈ C, where I is the identity
matrix.

(b) Suppose both ρ and ρ ′ are irreducible. Then ρ and ρ ′ are isomorphic iff there is a
nonzero matrix A such that Aρ(g) = ρ ′(g)A for all g ∈ G.

Schur’s Lemma is an elementary observation central to representation theory. It’s proved
by noting that the kernel (nullspace) and range (column space) of A are G-invariant.

The character4 chρ of a representation ρ is the map G → C given by the trace:

chρ(g) = tr (ρ(g)). (1.1.5)

We see that equivalent representations have the same character, because of the fundamen-
tal identity tr(AB) = tr(B A). Remarkably, for finite groups (and C), the converse is also
true: inequivalent representations have different character. That trace identity also tells us
that the character is a ‘class function’, i.e. chρ(hgh−1) = tr(ρ(h) ρ(g) ρ(h)−1) = chρ(g)
so chρ is constant on each conjugacy class Kg . Group characters are enormously simpler
than representations: for example, the smallest nontrivial representation of the Monster

4 Surprisingly, characters were invented before group representations, by Frobenius in 1868. He defined
characters indirectly, by writing the ‘class sums’ C j in terms of the idempotents of the centre of the group
algebra. It took him a year to realise they could be reinterpreted as the traces of matrices.



24 Classical algebra

Table 1.2. The character table of S3

ch\σ (1) (12) (123)

ch1 1 1 1
chs 1 −1 1
ch2 2 0 −1

M consists of about 1054 matrices, each of size 196 883× 196 883, while its character
consists of 194 complex numbers. The reason is that the representation matrices have a lot
of redundant, basis-dependent information, to which the character is happily oblivious.

The Thompson trick mentioned in Section 0.3 tells us: A dimension can (and should)
be twisted; that twist is called a character. Indeed, chρ(e) = dim(ρ), where the dimension
of ρ is defined to be the dimension of the underlying vector space V , or the size n of the
n × n matrices ρ(g). When we see a positive integer, we should try to interpret it as a
dimension of a vector space; if there is a symmetry present, then it probably acts on the
space, in which case we should see what significance the other character values may have.

Algebra searches for structure. What can we say about the set of characters? First,
note directly from (1.1.4) that we can add and multiply characters:

chρ⊕ρ ′ (g) = chρ(g)+ chρ ′ (g), (1.1.6a)

chρ⊗ρ ′ (g) = chρ(g) chρ ′ (g), (1.1.6b)

chρ∗ (g) = chρ(g). (1.1.6c)

Therefore the complex span of the characters forms a (commutative associative) algebra.
For G finite (and the field algebraically closed), each matrix ρ(g) is separately diagonal-
isable, with eigenvalues that are roots of 1 (why?). This means that each character value
chρ(g) is a sum of roots of 1.

By the character table of a group G we mean the array with rows indexed by the
characters chρ of irreducible representations, and the columns by conjugacy classes Kg ,
and with entries chρ(g). An example is given in Table 1.2. Different groups can have
identical character tables: for instance, for any n, the dihedral group D4n has the same
character table as the quaternionic group Q4n defined by the presentation

Q4n = 〈a, b | a2 = b2n, abab = e〉. (1.1.7)

In spite of this, the characters of a group G tell us much about G – for example, its order,
all of its normal subgroups, whether or not it’s simple, whether or not it’s solvable . . .
In fact, the character table of a finite simple group determines the group uniquely [100]
(its order alone usually distinguishes it from other simple groups). This suggests:

Problem Suppose G and H have identical character tables (up to appropriate per-
mutations of rows and columns). Must they have the same composition factors?

After all, the answer is certainly yes for solvable G (why?).
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It may seem that ‘trace’ is a fairly arbitrary operation to perform on the matrices
ρ(g) – certainly there are other invariants we can attach to a representation ρ so that
equivalent representations are assigned equal numbers. For example, how about g �→
detρ(g)? This is too limited, because it is a group homomorphism (e.g. what happens
when G is simple?). But more generally, choose an independent variable xg for each
element g ∈ G, and for any representation ρ of G define the group determinant of ρ

ρ = det

(∑
g∈G

xg ρ(g)

)
.

This is a multivariable polynomial ρ , homogeneous of degree n = dim(ρ). The char-
acter chρ(g) can be obtained from the group determinant ρ : it is the coefficient of the
xgxn−1

e term. In fact, the group G is uniquely determined by the group determinant of
the regular representation CG. See the review article [315].

One use of characters is to identify representations. For this purpose the orthogonality
relations are crucial: given any characters ch, ch′ of G, define the Hermitian form

〈ch, ch′〉 = 1

‖G‖
∑
g∈G

ch(g)ch′(g). (1.1.8a)

Write ρi for the irreducible representations, and chi for the corresponding traces. Then

〈chi , ch j 〉 = δi j , (1.1.8b)

that is the irreducible characters chi are an orthonormal basis with respect to (1.1.8a). If
the rows of a matrix are orthonormal, so are the columns. Hence (1.1.8b) implies∑

i

chi (g) chi (h) = ‖G‖
‖Kg‖ δKg,Kh . (1.1.8c)

The decomposition of CG into irreducibles is now immediate:

CG ∼=
⊕

i

(dim ρi ) ρi ,

that is each irreducible representation appears with multiplicity given by its dimension.
Taking the dimension of both sides, we obtain the useful identity

‖G‖ =
∑

i

(dim ρi )
2.

The notion of vector space and representation can be defined over any field K. One
thing that makes representations over, for example, the finite field K = Zp much more
difficult is that characters no longer distinguish inequivalent representations. For instance,
take G = {e} and consider the representations

ρ(1) = (1) and ρ ′(1) =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠ .
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Fig. 1.1 Multiplication in the braid group B5.

Fig. 1.2 The relation σ2σ3σ2 = σ3σ2σ3 in B4.

These are certainly different representations – their dimensions are different. But over
the field Z2, their characters ch and ch′ are identical. Theorem 1.1.2 also breaks down
here. Unless otherwise stated, in this book we restrict to characteristic 0 (but see modular
Moonshine in Section 7.3.5).

1.1.4 Braided #1: the braid groups

Fundamental to us are the braid groups, especially B3. By an n-braid we mean n non-
intersecting strands as in Figure 1.1. We are interested here in how the strands interweave,
and not how they knot, and so we won’t allow the strands to double-back on themselves.
We regard two n-braids as equivalent if they can be deformed continuously into each
other – we make this notion more precise in Section 1.2.3. The set of equivalence classes
of n-braids forms a group, called the braid groupBn , with multiplication given by vertical
concatenation, as in Figure 1.1.

Artin (1925) gives a very useful presentation of Bn:

Bn = 〈σ1, . . . , σn−1 | σiσ j = σ jσi , σiσi+1σi = σi+1σiσi+1, whenever |i − j | ≥ 2〉.
(1.1.9)

Here σi denotes the braid obtained from the identity braid by interchanging the i th and
(i + 1)th strands, with the i th strand on top. See Figure 1.2 for an illustration.
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Of course B1 is trivial and B2
∼= Z, but the other Bn are quite interesting. Any non-

trivial element in Bn has infinite order. Let σ = σ1σ2 · · · σn−1; then σσi = σi+1σ , so the
generators are all conjugate and the braid Z = σ n lies in the centre of Bn . In fact, for
n ≥ 2 the centre Z (Bn) ∼= Z, and is generated by that braid Z . We’re most interested in
B3: then Z = (σ1σ2)3 generates the centre, and we will see shortly that

B3/〈Z2〉 ∼= SL2(Z), (1.1.10a)

B3/〈Z〉 ∼= PSL2(Z). (1.1.10b)

There is a surjective homomorphism φ : Bn → Sn taking a braid α to the permutation
φ(α) ∈ Sn , where the strand of α starting at position i on the top ends on the bottom
at position φ(α)(i). For example, φ(σi ) is the transposition (i, i + 1). The kernel of φ is
called the pure braid group Pn . A presentation for Pn is given in lemma 1.8.2 of [59].
We find that P2 = 〈σ 2

1 〉 ∼= Z and

P3 =
〈
σ 2

1 , σ
2
2 , Z

〉 ∼= F2 × Z. (1.1.10c)

Another obvious homomorphism is the degree map deg : Bn → Z, defined by
deg(σ±1

i ) = ±1. It is easy to show using (1.1.9) that ‘deg’ is well defined and is the
number of signed crossings in the braid. Its kernel is the commutator subgroup [BnBn]
(see Question 1.1.7(a)).

The most important realisation of the braid group is as a fundamental group (see
(1.2.6)). It is directly through this that most appearances of Bn in Moonshine-like phe-
nomena arise (e.g. Jones’ braid group representations from subfactors, or Kohno’s from
the monodromy of the Knizhnik–Zamolodchikov equation).

The relation of B3 to modularity in Moonshine, however, seems more directly to
involve the faithful action ofBn on the free groupFn = 〈x1, . . . , xn〉 (see Question 6.3.5).
This action allows us to regard Bn as a subgroup of AutFn .

As is typical for infinite discrete groups, Bn has continua of representations. For
instance, there is a different one-dimensional for every choice of nonzero complex num-
ber w �= 0, namely α �→ wdeg α . It seems reasonable to collect these together and regard
them as different specialisations of a single one-dimensional C[w±1]-representation,
which we could call wdeg, where C[w±1] is the (Laurent) polynomial algebra in w and
w−1.

The Burau representation (Burau, 1936) ofBn is an n-dimensional representation with
entries in the Laurent polynomials C[w±1], and is generated by the matrices

σi �→ Ii−1 ⊕
(

1− w w

1 0

)
⊕ In−i−1, (1.1.11a)

where Ik here denotes the k × k identity matrix. C[w±1] isn’t a field, but checking
determinants confirms that all matrices ρ(σi ) are invertible over it. The Burau represen-
tation is reducible – in particular the column vector v = (1, 1, . . . , 1)t is an eigenvector
with eigenvalue 1, for all the matrices in (1.1.11a), and hence Bn acts trivially on the
subspace Cv. The remaining (n − 1)-dimensional representation is the reduced Burau
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representation. For example, for B3 it is

σ1 �→
(−w 1

0 1

)
, σ2 �→

(
1 0
w −w

)
, (1.1.11b)

and so the centre-generator Z maps to the scalar matrixw3 I . Note that the specialisation
w = −1 has image SL2(Z) – in fact it gives the isomorphism (1.1.10a) – while w = 1
has image S3 and is the representation ρ2.

There are many natural ways to obtain the representation (1.1.11a). The simplest uses
derivatives ∂

∂xi
acting in the obvious way on the group algebra CFn . To any n-braid

α ∈ Bn define the n × n matrix whose (i, j)-entry is given by

wdeg ∂

∂x j
(α.xi ),

where α.xi denotes the action of Bn on Fn and where wdeg is the obvious representation
of Fn , extended linearly to CFn . Then this recovers (1.1.11a).

All irreducible representations of B3 in dimension ≤ 5 are found in [531]. Most are
non-unitary. For example, any two-dimensional irreducible representation is of the form

σ1 �→
(
λ1 λ2

0 λ2

)
, σ2 �→

(
λ2 0
−λ1 λ1

)
,

for some nonzero complex numbers λ1, λ2 (compare (1.1.11b)). This representation
will be unitary iff both |λ1| = |λ2| = 1 and λ1/λ2 = eit for π/3 < t < 5π/3. Not all
representations of B3 are completely reducible, however (Question 1.1.9).

Question 1.1.1. Identify the group PSL2(Z2) and confirm that it isn’t simple.

Question 1.1.2. If G and H are any two groups with ‖G‖ = ‖H‖ < 60, explain why
they will have the same composition factors.

Question 1.1.3. Verify that the dihedral group Dn (1.1.1) has order 2n. Find its compo-
sition factors. Construct Dn as a semi-direct product of Z2 and Zn .

Question 1.1.4. (a) Using the methods and results given in Section 1.1.3, compute the
character table of the symmetric group S4.
(b) Compute the tensor product coefficients ofS4. That is, if ρ1, ρ2, . . . are the irreducible
representations of S4, compute the multiplicities T k

i j defined by

ρi ⊗ ρ j
∼= ⊕k T k

i jρk .

Question 1.1.5. Prove that ch(g−1) = ch(g). Can you say anything about the relation of
ch(g�) and ch(g), for other integers �?

Question 1.1.6. (a) Find a representation over the field C of the additive group G = Z,
which is indecomposable but not irreducible. Hence show that inequivalent (complex)
finite-dimensional representations of Z can have identical characters.
(b) Let p be any prime dividing some n ∈ N. Find a representation of the cyclic group
G = Zn over the field K = Zp, which is indecomposable but not irreducible.
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Question 1.1.7. (a) Let G be any group, and define the commutator subgroup [G,G]
to be the subgroup generated by the elements ghg−1h−1, for all g, h ∈ G. Prove that
[G,G] is a normal subgroup of G, and that G/[G,G] is abelian. (In fact, G/[G,G] is
isomorphic to the group of all one-dimensional representations of G.)
(b) Show that the free groups Fn

∼= Fm iff n = m, by using Theorem 1.1.2.

Question 1.1.8. (a) Explicitly show how the semi-direct product Z3×θZ2 can equal Z6

or S3, depending on the choice of θ .
(b) Show that Z2×θ H ∼= Z2 × H , for any group H and homomorphism θ .
(c) Hence Z4 can’t be written as a semi-direct product of Z2 with Z2. Explicitly construct
it as an external group extension of Z2 by Z2.

Question 1.1.9. Find a two-dimensional representation of the braid group B3 that is not
completely reducible.

1.2 Elementary geometry

Geometry and algebra are opposites. We inherited from our mammalian ancestors our
subconscious facility with geometry; to us geometry is intuitive and has implicit meaning,
but because of this it’s harder to generalise beyond straightforward extensions of our
visual experience, and rigour tends to be more elusive than with algebra. The power and
clarity of algebra comes from the conceptual simplifications that arise when content is
stripped away. But this is equally responsible for algebra’s blindness. Although recently
physics has inspired some spectacular developments in algebra, traditionally geometry
has been the most reliable star algebraists have been guided by. We touch on geometry
throughout this book, though for us it adds more colour than essential substance.

1.2.1 Lattices

Many words in mathematics have multiple meanings. For example, there are vector fields
and number fields, and modular forms and modular representations. ‘Lattice’ is another
of these words: it can mean a ‘partially ordered set’, but to us a lattice is a discrete
maximally periodic set – a toy model for everything that follows.

Consider the real vector space Rm,n: its vectors look like x = (x+; x−), where x+ and
x− are m- and n-component vectors, respectively, and inner-products are given by x · y =
x+ · y+ − x− · y−. The inner-products x± · y± are given by the usual

∑
i (x±)i (y±)i .

For example, the familiar Euclidean (positive-definite) space is Rn = Rn,0, while the
Minkowski space-time of special relativity is R3,1.

Now choose any basisβ = {b(1), . . . , b(m+n)} in Rm,n . If we consider all possible linear
combinations

∑
i ai b(i) over the real numbers R, then we recover Rm,n; if instead we

consider linear combinations over the integers only, we get a lattice.

Definition 1.2.1 Let V be any n-dimensional inner-product space, and let {b(1),

. . . , b(n)} be any basis. Then L(β) := Zb(1) + · · · + Zb(n) is called a lattice.
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Fig. 1.3 Part of the A2 disc packing.

A lattice is discrete and closed under sums and integer multiples. For example, Zm,n is
a lattice (take the standard basis in Rm,n). A more interesting lattice is the hexagonal
lattice (also called A2), given by the basis β = {(

√
2

2 ,
√

6
2 ), (

√
2, 0)} of R2 – try to plot

several points. If you wanted to slide a bunch of identical coins on a table together as
tightly as possible, their centres would form the hexagonal lattice (Figure 1.3). Another
important lattice is I I1,1 ⊂ R1,1, given by β = {( 1√

2
; 1√

2
), ( 1√

2
; −1√

2
)}; equivalently, it

can be thought of as the set of all pairs (a, b) ∈ Z2 with inner-product

(a, b) · (c, d) = ad + bc. (1.2.1)

Different bases may or may not result in a different lattice. For a trivial example,
consider β = {1} and β ′ = {−1} in R = R1,0: they both give the lattice Z = Z1,0. Two
lattices L(β) ⊂ V and L(β ′) ⊂ V ′ are called equivalent or isomorphic if there is an
orthogonal transformation T : V → V ′ such that the lattices T (L(β)) and L(β ′) are
identical as sets, or equivalently if b′i = T

∑
j ci j b j , for some integer matrix C = (ci j ) ∈

GLn(Z) with determinant ±1.
This notion of lattice equivalence is important in that it emphasises the essential

properties of a lattice and washes away the unpleasant basis-dependence of Definition
1.2.1. In particular, the ambient space V in which the lattice lives, and the basis β, are
non-essential. The transformation T tells us we can change V , and C is a change-of-basis
matrix for which both C and C−1 are defined over Z.

For example, β = {( 1√
2
, 1√

2
), ( 1√

2
, −1√

2
)} in R2 yields a lattice equivalent to Z2. The

basis β ′ = {(−1, 1, 0), (0,−1, 1)} for the plane a + b + c = 0 in R3 yields the lattice
L(β ′) = {(a, b, c) ∈ Z3 | a + b + c = 0}, equivalent to the hexagonal lattice A2.

The dimension of the lattice is the dimension dim(V ) of the ambient vector space. The
lattice is called positive-definite if it lies in some Rm (i.e. n = 0), and integral if all inner-
products x · y are integers, for x, y ∈ L . A lattice L is called even if it is integral and in
addition all norm-squareds x · x are even integers. For example, Zm,n is integral but not
even, while A2 and I I1,1 are even. The dual L∗ of a lattice L consists of all vectors x ∈ V
such that x · L ⊂ Z. A natural basis for the dual L(β)∗ is the dual basis β∗, consisting
of the vectors c j ∈ V obeying bi · c j = δi j for all i, j . A lattice is integral iff L ⊆ L∗. A
lattice is called self-dual if L = L∗. The lattices Zm,n and I I1,1 are self-dual, but A2 is
not. We are most interested in even positive-definite lattices.

To any n-dimensional lattice L(β), define an n × n matrix A (called a Gram matrix)
by Ai j = bi · b j . Two lattices with identical Gram matrices are necessarily equivalent,
but the converse is not true. Note that the Gram matrix of L(β∗) is the inverse of the Gram
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An Dn Tn

E6E7E8

Fig. 1.4 The graphs with largest eigenvalue < 2.

matrix for L(β). The determinant |L| of a lattice is the determinant of the Gram matrix;
geometrically, it is the volume-squared of the fundamental parallelepiped of L defined by
the basis. This will always be positive if L is positive-definite. The determinant of a lattice
is independent of the specific basis β chosen; equivalent lattices have equal determinant,
though the converse isn’t true. An integral lattice L is self-dual iff |L| = ±1. If L ′ ⊆ L
are of equal dimension, then the quotient L/L ′ is a finite abelian group of order

‖L/L ′‖ =
√
|L ′|/|L| ∈ N. (1.2.2)

Given two lattices L , L ′, their (orthogonal) direct sum L ⊕ L ′ is defined to consist
of all pairs (x, x ′), for x ∈ L , x ′ ∈ L ′, with inner-product defined by (x, x ′) · (y, y′) =
x · y + x ′ · y′. The dimension of L ⊕ L ′ is the sum of the dimensions of L and L ′. The
direct sum L ⊕ L ′ will be integral (respectively self-dual) iff both L and L ′ are integral
(respectively self-dual).

An important class of lattices are the so-called root lattices An, Dn, E6, E7, E8 asso-
ciated with simple Lie algebras (Section 1.5.2). They can be defined from the graph
(‘Coxeter–Dynkin diagram’) in Figure 1.4 (but ignore the ‘tadpole’ Tn for now): label
the nodes of such a graph from 1 to n, put Aii = 2 and put Ai j = −1 if nodes i and j
are connected by an edge. Then this matrix A (the Cartan matrix of Definition 1.4.5)
is the Gram matrix of a positive-definite integral lattice. Realisations of some of these
are given shortly; bases can be found in table VII of [214], or planches I–VII of [84].
Of these, E8 is the most interesting as it is the even self-dual positive-definite lattice of
smallest dimension.

The following theorem characterises norm-squared 1,2 vectors.

Theorem 1.2.2 Let L be an n-dimensional positive-definite integral lattice.
(a) Then L is equivalent to the direct sum Zm ⊕ L ′, where L has precisely 2m unit

vectors and L ′ has none.
(b) If L is spanned by its norm-squared 2 vectors, then L is a direct sum of root lattices.

Theorem 1.2.2(b) gives the point-of-contact of Lie theory and lattices. The densest
packing of circles in the plane (Figure 1.3) is A2, in the sense that the centres of these
circles are the points of A2. The obvious pyramidal way to pack oranges is also the
densest, and likewise gives the A3 root lattice. The densest known sphere packings in
dimensions 4, 5, 6, 7, 8 are the root lattices D4, D5, E6, E7, E8, respectively.

The Leech lattice � is one of the most distinguished lattices, and like E8

is directly related to Moonshine. It can be constructed using ‘laminated lattices’
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([113], chapter 6). Start with the zero-dimensional lattice L0 = {0}, consisting of just
one point. Use it to construct a one-dimensional lattice L1, with minimal (nonzero) norm
2, built out of infinitely many copies of L0 laid side by side. The result of course is simply
the even integers 2Z. Now construct a two-dimensional lattice L2, of minimal norm 2,
built out of infinitely many copies of L1 stacked next to each other. There are lots of
ways to do this, but choose the densest lattice possible. The result is the hexagonal lattice
A2 rescaled by a factor of

√
2. Continue in this way: L3, L4, L5, L6, L7 and L8 are the

root lattices A3, D4, D5, E6, E7 and E8, respectively, all rescaled by
√

2.
The 24th repetition of this construction yields uniquely the Leech lattice � = L24. It

is the unique 24-dimensional even self-dual lattice with no norm-squared 2-vectors, and
provides among other things the densest known packing of 23-dimensional spheres S23

in R24. It is studied throughout [113]. After dimension 24, chaos reigns in lamination (23
different 25-dimensional lattices have an equal right to be called L25, and over 75 000
are expected for L26). So lamination provides us with a sort of no-input construction of
the Leech lattice. Like the Mandelbrot set, the Leech lattice is a subtle structure with an
elegant construction – a good example of the mathematical meaning of ‘natural’.

Question 1.2.1 asks you to come up with a definition for the automorphism group of
a lattice. An automorphism is a symmetry, mapping the lattice to itself, preserving all
essential lattice properties. It is how group theory impinges on lattice theory.

Most (positive-definite) lattices have trivial automorphism groups, consisting only
of the identity and the reflection x �→ −x through the origin. But the more interesting
lattices tend to have quite large groups. The reflection through the hyperplane orthogonal
to a norm-squared 2-vector in an integral lattice defines an automorphism; together, these
automorphisms form what Lie theory calls a Weyl group.

Typically the Weyl group has small index in the full automorphism group, though a
famous counterexample is the Leech lattice (which, as we know, has trivial Weyl group).
Its automorphism group is denoted Co0 and has approximately 8× 1018 elements. The
automorphism x �→ −x lies in its centre; if we quotient by this 2-element centre we get
a sporadic simple group Co1. Define Co2 and Co3 to be the subgroups of Co0 consisting
of all g ∈ Co0 fixing some norm-squared 4-vector and some norm-squared 6-vector,
respectively. These three groups Co1,Co2,Co3 are all simple. In fact, a total of 12
sporadic finite simple groups appear as subquotients in Co0, and can best be studied
geometrically in this context. Gorenstein [256] wrote:

. . . if Conway had studied the Leech lattice some 5 years earlier, he would have
discovered a total of 7 new simple groups! Unfortunately he had to settle for 3.
However, as consolation, his paper on .0[=Co0] will stand as one of the most
elegant achievements of mathematics.

1.2.2 Manifolds

On what structures do lattices act naturally? An obvious place is on their ambient space
(Rn , say). They act by addition. Quotient out by this action. Topologically, we have
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Fig. 1.5 A coordinate patch.

created a manifold (to be defined shortly); to each point on this manifold corresponds an
orbit in Rn of our lattice action.

Consider first the simplest case. The number n ∈ Z acts on R by sending x ∈ R
to x + n. The orbits are the equivalence classes of the reals mod 1. We can take as
representatives of these equivalence classes, that is as points of R/Z, the half-open
interval [0, 1). This orbit space inherits a topology (i.e. a qualitative notion of points
being close; for basic point-set topology see e.g. [481], [104]), from that of R, and
this is almost captured by the interval [0, 1). The only problem is that the orbit of
0.999 ≡ −0.0001 is pretty close to that of 0, even though they are at opposite ends of
the interval. What we should do is identify the two ends, i.e. glue together 0 and 1. The
result is a circle.

We say that R/Z is topologically the circle S1. The same argument applies to Rn/L ,
and we get the n-torus S1 × · · · × S1 (see Question 1.2.2).

The central structure in geometry is a manifold – geometries where calculus is possible.
Locally, a manifold looks like a piece of Rn (or Cn), but these pieces can be bent and
stitched together to create more interesting shapes. For instance, the n-torus is an n-
dimensional manifold. The definition of manifold, due to Poincaré at the turn of the
century, is a mathematical gem; it explains how flat patches can be sewn together to
form smooth and globally interesting shapes.

Definition 1.2.3 A C∞ manifold M is a topological space with a choice of open sets
Uα ⊂ M, Vα ⊂ Rn and homeomorphisms ϕα : Uα → Vα , as in Figure 1.5, such that
the Uα cover M (i.e. M = ∪αUα) and whenever Uα ∩Uβ , the map ϕα ◦ ϕ−1

β is a C∞

map from some open subset (namely ϕβ(Uα ∩Uβ)) of Vβ to some open subset (namely
ϕα(Uα ∩Uβ)) of Vα .

A homeomorphism means an invertible continuous map whose inverse is also contin-
uous. By a C∞ map f between open subsets of Rn , we mean that

f (x) = ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))

is continuous, and all partial derivatives ∂k

∂xi1 ···∂xik
f j exist and are also continuous.

This is the definition of a real manifold; a complex manifold is similar. An n-
dimensional complex manifold is a 2n-dimensional real one. A one-dimensional mani-
fold is called a curve, and a two-dimensional one a surface. ‘Smooth’ is often used for
C∞.
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Using ϕα , each ‘patch’ Uα ⊂ M inherits the structure of Vα ⊂ Rn . For instance, we
can coordinatise Vα and do calculus on it, and hence we get coordinates for, and can
do calculus on, Uα . The overlap condition for ϕα ◦ ϕ−1

β guarantees compatibility. For
example, the familiar latitude/longitude coordinate system comes from covering the
Earth with two coordinate patches Vi – one centred on the North pole and the other on
the South, and both stretching to the Equator – with polar coordinates chosen on each Vi .

More (or less) structure can be placed on the manifold, by constraining the overlap
functions ϕα ◦ ϕ−1

β more or less. For example, a ‘topological manifold’ drops the C∞

constraint; the result is that we can no longer do calculus on the manifold, but we can
still speak of continuous functions, etc. A conformal manifold requires that the overlap
functions preserve angles in Rn – the angle between intersecting curves in Rn is defined
to be the angle between the tangents to the curves at the point of intersection. Conformal
manifolds inherit the notion of angle from Rn . Stronger is the notion of Riemannian
manifold, which also enables us to speak of length.

It is now easy to compare structures on different manifolds. For instance, given two
manifolds M, M ′, a function f : M → M ′ is ‘C∞’ if each composition ϕ′β ◦ f ◦ ϕ−1

α is
a C∞ map from some open subset of Vα to V ′

β ; M and M ′ are C∞-diffeomorphic if there
is an invertible C∞-function f : M → M ′ whose inverse is defined and is also C∞.

Note that our definition doesn’t assume the manifold M is embedded in some ambient
space Rm . Although it is true (Whitney) that any n-dimensional real manifold M can be
embedded in Euclidean space R2n , this embedding may not be natural. For example, we
are told that we live in a ‘curved’ four-dimensional manifold called space-time, but its
embedding in R8 presumably has no physical significance.

Much effort in differential geometry has been devoted to questions such as: Given some
topological manifold M , how many inequivalent differential structures (compatible with
the topological structure) can be placed on M? It turns out that for any topological
manifold of dimension ≤ 3, this differential structure exists and is unique. Moreover,
Rn has a unique differential structure as well in dimensions ≥ 5. Remarkably, in four
(and only four) dimensions it has uncountably many different differential structures (see
[195])! Could this have anything to do with the appearance of macroscopic space-time
being R4? Half a century before that discovery, the physicist Dirac prophesied [139]:

. . . as time goes on it becomes increasingly evident that the rules which the math-
ematician finds interesting are the same as those which Nature has chosen . . . only
four-dimensional space is of importance in physics, while spaces with other dimen-
sions are of about equal interest in mathematics. It may well be, however, that this
discrepancy is due to the incompleteness of present-day knowledge, and that future
developments will show four-dimensional space to be of far greater mathematical
interest than all the others.

Given any open set U in a manifold M , write C∞(U ) for the space of C∞-functions
f : U → R. When U ⊆ Uα , we can use local coordinates and write f (x1, . . . , xn) (local
coordinates are often written with superscripts). A fundamental lesson of geometry (per-
haps learned from physics) is that one studies the manifold M through the (local) smooth
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Fig. 1.6 The tangent bundle of S1.

functions f ∈ C∞(U ) that live on it. This approach to geometry has been axiomatised
into the notion of sheaf (see e.g. [537]), to which we return in Section 5.4.2.

For example, identifying S1 with R/Z, the space C∞(S1) consists of the smooth
period-1 functions f : R → R, i.e. f (θ + 1) = f (θ ). Or we can identify S1 with the
locus x2 + y2 = 1, in which case C∞(S1) can be identified with the algebra C∞(R2) of
smooth functions in two variables, quotiented by the subalgebra (in fact ideal) consisting
of all smooth functions g(x, y) vanishing on all points satisfying x2 + y2 = 1; when
f (x, y), g(x, y) are polynomials, then they are identical functions in C∞(S1) iff their
difference f (x, y)− g(x, y) is a polynomial multiple of x2 + y2 − 1.

Fix a point p ∈ M and an open set U containing p. In Section 1.4.2 we need the notion
of tangent vectors to a manifold M . An intuitive approach starts from the set S(U, p) of
curves passing through p, i.e. σ : (−ε, ε) → Uα is smooth and σ (0) = p. Call curves
σ1, σ2 ∈ S(U, p) equivalent if they touch each other at p, that is

σ1 ≈p σ2 iff
d

dt
f (σ1(t))|t=0 = d

dt
f (σ2(t))|t=0, ∀ f ∈ C∞(U, p). (1.2.3a)

This defines an equivalence relation; the equivalence class 〈σ 〉p consisting of all curves
equivalent to σ is an infinitesimal curve at p. Equivalently, define a tangent vector to be
a linear map ξ : C∞(M) → R that satisfies the Leibniz rule

ξ ( f g) = ξ ( f ) g(p)+ f (p) ξ (g). (1.2.3b)

In local coordinates ξ =∑n
i=1 αi

∂
∂xi |x=p, where the αi are arbitrary real numbers. The

bijection between these two definitions associates with any infinitesimal curve v = 〈σ 〉p

the tangent vector called the directional derivative Dv : C∞(M) → R, given by

Dv( f ) = d

dt
f (σ (t))|t=0. (1.2.3c)

The tangent space Tp(M) at p is the set of all tangent vectors. Equation (1.2.3b)
shows that Tp(M) has a natural vector space structure; its dimension equals that of M .
These tangent spaces can be glued together into a 2n-dimensional manifold called the
tangent bundle T M . Figure 1.6 shows why T S1 is the cylinder S1 × R. However, this
is exceptional: although locally the tangent bundle T M of any manifold is trivial – that
is, each T Uα is diffeomorphic to the direct product Uα × Rn – globally most tangent
bundles T M are different from M × Rn .

A vector field is an assignment of a tangent vector to each point on the manifold,
a smooth map X : M → T M such that X (p) ∈ Tp(M). Equivalently, we can regard it
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Fig. 1.7 The flow of a vector field.

as a derivation X : C∞(M) → C∞(M), i.e. a first-order differential operator acting on
functions f : M → R and obeying X ( f g) = X ( f ) g + f X (g). For example, the vector
fields on the circle consist of the operators g(θ ) d

dθ for any smooth period-1 function g(θ ).
Let Vect(M) denote the set of all vector fields on a manifold M . Of course this is

an infinite-dimensional vector space, but we see in Section 1.4.1 that it has a much
richer algebraic structure: it is a Lie algebra. Vect(S1) is central to Moonshine, and in
Section 3.1.2 we start exploring its properties.

A vector field X on M can be interpreted as being the instantaneous velocity of a
fluid confined to M . We can ‘integrate’ this, by solving a first-order ordinary differential
equation, thus covering M with a family of non-intersecting curves. Each curve describes
the motion, or flow, of a small particle dropped into the fluid at the given point p ∈ M .
The tangent vector to the curve at the given point p equals X (p) – see Figure 1.7.
Equivalently, corresponding to a vector field X is a continuous family ϕt : M → M of
diffeomorphisms of M , one for each ‘time’ t , obeying ϕt ◦ ϕs = ϕt+s , where ϕt (p) is
defined to be the position on M where the point p flows to after t seconds.

So it is natural to ask, what can we do with a diffeomorphism α of M? Clearly, α gives
rise to an automorphism of the algebra C∞(M), defined by f �→ f α = f ◦ α. Using
this, we get an automorphism of Vect(M), X �→ Xα , given by Xα( f ) = (X ( f α))α

−1
, or

more explicitly, Xα( f )(p) = X ( f ◦ α)(α−1(p)). We return to this in Section 1.4.2.
One thing you can do with a continuous family of diffeomorphisms is construct a

derivative for the algebras C∞(M), Vect(M), etc. Defining a derivative of, say, a vector
field X requires that we compare tangent vectors X (p), X (p′) at neighbouring points
on the manifold. This can’t be done directly, since X (p) ∈ Tp M and X (p′) ∈ Tp′ M lie
in different spaces. Given a vector field X , and corresponding flow ϕt , define the Lie
derivative LX (Y ) ∈ Vect(M) of any vector field Y ∈ Vect(M) by

LX (Y )(p) = limt→0
Y ϕt (p)− Y (p)

t
∈ Tp M.

The Lie derivative LX ( f ) of a function f ∈ C∞(M) is defined similarly, and equals
X ( f ).
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Dual to the tangent vectors are the differential 1-forms. Just as the tangent spaces Tp(M)
together form the 2n-dimensional tangent bundle T M , so their duals T ∗p (M) form the 2n-
dimensional cotangent bundle T ∗M . At least for finite-dimensional manifolds, the vector
spaces T ∗p (M) and Tp(M), as well as the manifolds T ∗M and T M , are homeomorphic,
but without additional structure on M this homeomorphism is not canonical (it is basis-
or coordinate-dependent). If x = (x1, . . . , xn) �→ M is a coordinate chart for manifold
M , then ∂i := ∂

∂xi |p is a basis for the tangent space Tp M , and its dual basis is written
dxi ∈ T ∗p (M): by definition they obey dxi (∂ j ) = δi j .

Changing local coordinates from x to y = y(x), the chain rule tells us

∂

∂yi
=

n∑
j=1

∂x j

∂yi

∂

∂x j
, (1.2.4a)

and hence the 1-form basis changes by the inverse formula:

dyi =
n∑

j=1

∂yi

∂x j
dx j . (1.2.4b)

The main purpose of differential forms is integration (hence their notation). If we
regard the integrand of a line-integral as a 1-form field (i.e. a choice of 1-form for
each point p ∈ M), we make manifest the choice of measure. Rather than saying the
ambiguous ‘integrate the constant function “ f (p) = 1” along the manifold S1’, we say
the unambiguous ‘integrate the 1-form “ωp = dθ” along the manifold S1’. Likewise,
the integrands of double-, triple-, etc. integrals are 2-forms, 3-forms, etc., dual to tensor
products of tangent spaces. We can evaluate these integrals by introducing coordinate
patches and thus reducing them to usual Rn integrals over components of the differential
form. The spirit of manifolds is to have a coordinate-free formalism; changing local
coordinates (e.g. when moving from one coordinate patch to an overlapping one) changes
those components as in (1.2.4b) in such a way that the value of the integral won’t change.

A standard example of a 1-form field is the gradient d f of a function f ∈ C∞(M),
defined at each point p ∈ M by the rule: given any tangent vector Dv ∈ Tp(M), define
the number (d f )(Dv) to be the value of the directional derivative Dv( f )(p) at p.

A familiar example of a 2-form gp ∈ T ∗p (M)⊗ T ∗p (M) is the metric tensor on Tp(M).
Given two vectors u, v ∈ Tp, the number gp(u, v) is to be thought of as their inner-
product. A Riemannian manifold is a manifold M together with a 2-form field g, which is
symmetric and nondegenerate (usually positive-definite).5 Given a local coordinate about
p ∈ M , a basis for the tangent space Tp M is ∂

∂xi and we can describe the metric tensor
gp using an n × n matrix whose i j-entry is gi j (p) := gp( ∂

∂xi ,
∂
∂x j ), or in infinitesimal

language as ds2 =∑n
i, j=1 gi j dxi dx j , a form more familiar to most physicists.

5 Whitney’s aforementioned embedding of M into Euclidean space implies that any manifold can be given a
Riemannian structure, since a submanifold of a Riemannian manifold naturally inherits the Riemannian
structure. The Beautiful Mind of John Nash proved that any Riemannian structure on a given n-dimensional
manifold M can likewise be inherited from its embedding into some sufficiently large-dimensional
Euclidean space.
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Much structure comes with this metric tensor field g. Most important, of course, we
can define lengths of curves and the angles with which they intersect. In particular, the
arc-length of the curve γ : [0, 1] → M is the integral∫ 1

0

√
gγ (t)

(
dγ

dt
,

dγ

dt

)
dt,

a quantity independent of the specific parametrisation t �→ γ (t) chosen (verify this).
Also, we can use the metric to identify each T ∗p with Tp, just as the standard inner-

product in Rn permits us to identify a column vector u ∈ Rn with its transpose ut ∈ Rn∗.
Moreover, given any curve σ : [0, 1] → M connecting σ (0) = p to σ (1) = q, we can
identify the tangent spaces Tp(M) and Tq (M) by parallel-transport. Using this, we can
define a derivative (the so-called ‘covariant derivative’) that respects the metric, and a
notion of geodesic (a curve that parallel-transports its own tangent vector, and which
plays the role of ‘straight line’ here). In short, on a Riemannian manifold geometry in
its fullest sense is possible. See, for example, [104] for more details.

Many manifolds locally look like a Cartesian product A × B. A fibre bundle p : E →
B locally (i.e. on small open sets U of E) looks like F × V , where F ∼= p−1(b) (for
any b ∈ B) is called the fibre, and V is an open set in the base B. For example, the
(open) cylinder and Möbius stip are both fibre bundles with base S1 and fibre (0, 1) ⊂ R.
A section s : B → E obeys p ◦ s = id ., that is for each small open set V of B it is a
function V → F . A vector bundle is a fibre bundle with fibre a vector space F = V , for
example the tangent bundle T M is a vector bundle with base M and fibre ∼= Tp M . We
write�(E) for the space of sections of a vector bundle E . A line bundle is a vector bundle
with one-dimensional fibre (so the sections of a line bundle locally look like complex- or
real-valued functions on the base). A connection on a vector bundle E → B is a way to
differentiate sections (the covariant derivative). An example is a Riemannian structure
on the tangent bundle E = T B. See, for example, [104] for details and examples.

Felix Klein’s Erlangen Programm (so called because he announced it there) is a
strategy relating groups and geometry. Geometry, it says, consists of a manifold (the space
of points) and a group of automorphisms (transformations) of the manifold preserving
the relevant geometric structures (e.g. length, angle, lines, etc.). Conversely, given a
manifold and a group of automorphisms, we should determine the invariants relative to
the group. Several different geometries are possible on the same manifold, distinguished
by their preferred transformations.

For example, Euclidean geometry in its strongest sense (i.e. with lengths, angles, lines,
etc.) has the group of symmetries generated by rotations, reflections and translations –
that is any transformation of the form x �→ x A + a, where x, a ∈ Rn (regarded as row
vectors, say) and A is an orthogonal n × n matrix. If our context is scale-independent (e.g.
when studying congruent triangles), we can allow A to obey AAt = λI for any λ ∈ R.

More interesting is projective geometry. Here, angles and lengths are no longer invari-
ants, but lines are. Projective geometry arose from the theory of perspective in art. The
transformations of projective n-geometry come from projections Rn+1 → Rn .
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More precisely, consider real projective n-space Pn(R). We coordinatise it using homo-
geneous coordinates: Pn(R) = Rn+1′/ ∼ consists of (n + 1)-tuples of real numbers,
where we identify points with their multiples. The origin (0, 0, 0, . . . , 0) in (n + 1)-
space is excluded from projective space (hence the prime), as it belongs to all such lines.
A projective ‘point’ consists of points on the same line through the origin; a projective
‘line’ consists of planes through the origin; etc. By convention, any equation in homo-
geneous coordinates is required to be homogeneous (so that a point satisfies an equation
iff its whole line does). Complex projective space Pn(C) is defined similarly.

To see what projective geometry is like, consider first the projective line P1(R). Take
any point in (x, y) ∈ P1(R). If y �= 0 we may divide by it, and we get points of the
form (x ′, 1). These are in one-to-one correspondence with the points in the real line.
If, on the other hand, y = 0, then we know x �= 0 and so we should divide by x : what
we get is the point (1, 0), which we can think of as the infinite point ( 1

0 , 1). Thus the
real projective line P1(R) consists of the real line, together with a point ‘at infinity’.
Similarly, the complex projective line consists of the complex plane C together with a
point at infinity; topologically, this is a sphere named after Riemann.

More generally, Pn(R) consists of the real space Rn , together with a copy of Pn−1(R)
as the hyperplane of infinite points. These points at infinity are where parallel lines meet.
Intuitively, projective geometry allows us to put ‘finite’ and ‘infinite’ points on an equal
footing; we can see explicitly how, for example, curves look at infinity.

For example, the ‘parallel’ lines x = 0 and x = 1 in P2(R) correspond to the homo-
geneous equations x = 0 and x = z, and so to the points with homogeneous coordinates
(0, y, z) and (x, y, x). They intersect at the ‘infinite’ point (0, y, 0) ∼ (0, 1, 0). The
parabola y = x2 has only one infinite point (namely (0,1,0)), the hyperbola xy = 1 has
two infinite points ((1,0,0) and (0,1,0)), while the circle x2 + y2 = 1 doesn’t have any.
Intuitively, the parabola is an ellipse tangent to the line (really, circle) at infinity, while
the hyperbola is an ellipse intersecting it transversely.

Klein’s group of transformations here is the projective linear group PGLn+1(R), that is
all invertible (n + 1)× (n + 1) matrices A where we identify A with λA for any nonzero
number λ. It acts on the homogeneous coordinates in the usual way: x �→ x A. This
group mixes thoroughly the so-called infinite points with the finite ones, and emphasises
that infinite points in projective geometry are completely on a par with finite ones.

For example, the transformation A =
⎛⎝ 0 0 1

0 1 0
1 0 0

⎞⎠ maps the parabola y = x2 to the

hyperbola xy = 1, indicating that these are projectively identical curves.
Projective geometry is central to modern geometry. The projective plane can be

axiomatised, for example one axiom says that any two lines intersect in exactly one
point. A remarkable property of projective geometry is that any theorem remains a
theorem if the words ‘line’ and ‘point’ are interchanged.

In summary, there are many different geometries. Which geometry to use (e.g.
Euclidean, projective, conformal) in a given context depends on the largest possible
group of transformations that respect the basic quantities.
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Fig. 1.8 Two homotopic loops in π1 =∼ F4.

1.2.3 Loops

The last subsection used curves to probe the infinitesimal neighbourhood of any point
p ∈ M . We can also use curves to probe global features of manifolds.

Let M be any manifold, and put I = [0, 1]. A loop at p ∈ M is any continuous curve
σ : I → M with σ (0) = σ (1) = p. So σ starts and ends at the point p. Let �(M, p) be
the set of all such loops. Loops σ0, σ1 ∈ �(M, p) are homotopic if σ0 can be continuously
deformed into σ1, that is if there is a continuous map F : I × I → M with σi (�) :=
F(�, i) ∈ �(M, p), for i = 0, 1. This defines an equivalence relation on �(M, p). For
instance all loops in M = Rn are homotopic, while the homotopy equivalence classes
for the circle M = S1 are parametrised by their winding number n ∈ Z, that is by the
contour integral 1

2π i

∫
σ (I )

dz
z .

Let π1(M, p) denote the set of all homotopy equivalence classes for �(M, p). It has
a natural group structure: σσ ′ is the curve that first goes from p to p following σ , and
then from p to p following σ ′. More precisely,

(σσ ′)(t) =
{

σ (2t) if 0 ≤ t ≤ 1
2

σ ′(2t − 1) if 1
2 ≤ t ≤ 1

. (1.2.5)

For instance, the inverse σ−1 is given by the curve traversed in the opposite direction:
t �→ σ (1− t). The identity is the constant curve σ (t) = p. With this operation π1(M, p)
is called the fundamental group of M (the subscript ‘1’ reminds us that a loop is a map
from S1; likewise πk considers maps from the k-sphere Sk to M). As long as any two
points in M can be connected with a path, then all π1(M, p) will be isomorphic and we
can drop the dependence on ‘p’. When π1(M) = {e}, we say M is simply connected.

For example,π1(Rn) ∼= 1 andπ1(S1) ∼= Z. The complex plane C with n points removed
has fundamental group π1(C\{z1, . . . , zn}) ∼= Fn , the free group – Figure 1.8 gives two
paths homotopic to x4x−1

3 ∈ F4. The torus S1 × S1 has π1
∼= Z⊕ Z.

The braid group (1.1.9), as with any group, also has a realisation as a fundamental
group. Let Cn be Cn with all diagonals removed:

Cn = {(z1, . . . , zn) ∈ Cn | zi �= z j whenever i �= j}. (1.2.6)

Then it is easy to see that the pure braid group Pn is isomorphic to π1(Cn) – indeed,
given any braid α ∈ Bn , the value of the i th coordinate σ (t)i of the corresponding loop
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Fig. 1.9 Some trivial knots.

Fig. 1.10 The trefoil.

Fig. 1.11 A wild knot.

σ ∈ π1(Cn) will be the position of the i th strand when we take a slice at t through our braid
(t = 0 is the top of the braid, t = 1 the bottom). Now, the symmetric group Sn acts freely
(i.e. without fixed points) on Cn by permuting the coordinates:π.z = (zπ1, . . . , zπn). The
space Cn/Sn of orbits under this action has fundamental group π1(Cn/Sn) ∼= Bn .

Note that if f : M ′ → M is a homeomorphism, then it induces a group homomorphism
f∗ : π1(M ′) → π1(M). We return to this in Section 1.7.2.

By a link we mean a diffeomorphic image of S1 ∪ · · · ∪ S1 into R3. A knot is a link
with one strand – see Figures 1.9 and 1.10. Since S1 comes with an orientation, so does
each strand of a link. The reason for requiring the embedding f : S1 ∪ · · · ∪ S1 → R3

to be differentiable is that we want to avoid ‘wild knots’ (see Figure 1.11); almost every
homeomorphic image of S1 ∪ · · · ∪ S1 will be wild at almost every point.

Two links are equivalent, i.e. ambient isotopic, if continuously deforming one link
yields the other. The word ‘ambient’ is used because the isotopy is applied to the ambient
space R3. This is the intuitive notion of equivalent knots in a string, except that we glue
the two ends of the string together (we can trivially untie any knotted open string by
slipping the knot off an end). By a trivial knot or the unknot we mean any knot homotopic
to (say) the unit circle in the xy-plane in R3.

We choose R3 for the ambient space because any link in Rn , for n ≥ 4, is trivial,
and the Jordan Curve Theorem tells us that there are only two different ‘knots’ in R2
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, ,

Fig. 1.12 The Reidemeister moves I, II, III, respectively.

C− C0C+

Fig. 1.13 The possible (non)crossings.

(distinguished by their orientation). More generally, knotted k-spheres Sk in Rn are
nontrivial only when n = k + 2 [478].

It isn’t difficult to show [478] that two links are ambient isotopic iff their diagrams can
be related by making a finite sequence of moves of the form given in Figure 1.12. The
Reidemeister moves are useless at deciding directly whether two knots are equivalent, or
even whether a given knot is trivial. Indeed, this seems difficult no matter which method
is used, although a finite algorithm (by Häken and Hemion [283]) apparently exists. A
very fruitful approach has been to assign to a link a quantity (called a link invariant),
usually a polynomial, in such a way that ambient isotopic links get the same quantity.
One of these is the Jones polynomial JL , which can be defined recursively by a skein
relation. Start with any (oriented) link diagram and choose any crossing; up to a rotation
it will either look like the crossing C+ or C− in Figure 1.13. There are two things we
can do to this crossing: we can pass the strings through each other (so the crossing of
type C± becomes one of type C∓); or we can erase the crossing as in C0. In this way we
obtain three links: the original one (which we could call L± depending on the orientation
of the chosen crossing) and the two modified ones (L∓ and L0). The skein relation is

t−1 JL+ (t)− t JL− (t)+ (t− 1
2 − t

1
2
)

JL0 (t) = 0. (1.2.7)

We also define the polynomial J (t) of the unknot to be identically 1.
For a link with an odd number of components, JL (t) ∈ Z[t±1] is a Laurent polynomial

in t , while for an even number JL (t) ∈ √tZ[t±1]. For example, applying (1.2.7) twice,
we get that the Jones polynomial of the trefoil in Figure 1.10 is J (t) = −t4 + t3 + t .

Are the trefoil and its mirror image ambient isotopic? The easiest argument uses the
Jones polynomial: taking the mirror image corresponds to replacing t with t−1, and we
see that the Jones polynomial of the trefoil is not invariant under this transformation.6

6 More generally, a knot with odd crossing number will be inequivalent with its mirror image (the crossing
number is the minimum number of crossings needed in a diagram of the knot).
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Fig. 1.14 The link associated with a braid.

Fig. 1.15 A Markov move of type II.

The Reidemeister moves quickly prove JL (t) is a knot invariant, i.e. equivalent knots
have the same polynomial, although inequivalent knots can also have the same one.
But it was the first new knot polynomial in 56 years. It triggered discoveries of several
other invariants while making unexpected connections elsewhere (Section 6.2.6), and
secured for Jones a Fields medal. The problem then became that there were too many
link invariants. We explain how we now organise them in Section 1.6.2.

Braids and links are directly related by theorems of Alexander (1923) and Markov
(1935). Given any braidα we can define a link by connecting the i th spot on the bottom of
the braid with the i th spot on the top, as in Figure 1.14. Alexander’s theorem tells us that
all links come from a braid in this way. Certainly though, different braids can correspond
to the same link – for example, take any α, β ∈ Bn , then the links of α and βαβ−1 are
the same (slide the braid β−1 counterclockwise around the link until it is directly above,
and hence cancels, β). This is called a Markov move of type I. A Markov move of type
II changes the number of strands in a braid by ±1, in a simple way – see Figure 1.15.
Markov’s theorem [59] says that two braids α ∈ Bn , β ∈ Bm correspond to equivalent
links iff they are related by a finite sequence of Markov7 moves. In Section 6.2.5, we
explain how to use these two theorems to construct link invariants.

Question 1.2.1. Come up with a reasonable definition for the automorphism group of a
lattice. Prove that the automorphism group of a positive-definite lattice is always finite.

7 His father is the Markov of Markov chains.
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Question 1.2.2. Let x = (x1, x2) be any vector with nonzero coordinate x2. Write L(x)
here for the lattice Z (1, 0)+ Z x , and T (x) for the torus R2/L(x). Which x’s give
pointwise identical lattices (i.e. given x , find all y such that L(x) = L(y))? Verify that
all tori are diffeomorphic. Which tori T (x) are obviously conformally equivalent?

Question 1.2.3. If we drop the requirement in Definition 1.2.1 that the x (i) be a basis,
does anything really bad happen?

Question 1.2.4. Prove Theorem 1.2.2.

Question 1.2.5. Let L be an integral lattice. What is special about the reflection rα
through a vector α ∈ L with norm-squared α · α = 2? (The formula for the reflection rα
is rα(x) = x − 2x ·α

α·α α.)

Question 1.2.6. Prove from (1.2.7) that the Jones polynomial for a link and its mirror
image can be obtained from each other by the switch t ↔ t−1. Prove that the Jones
polynomial of a link is unchanged if the orientation of any component (i.e. the arrow on
any strand) is reversed.

Question 1.2.7. Find the Jones polynomial of the disjoint union of n circles.

1.3 Elementary functional analysis

Moonshine concerns the occurrence of modular forms in algebra and physics, and care is
taken to avoid analytic complications as much as possible. But spaces here are unavoid-
ably infinite-dimensional, and through this arise subtle but significant points of con-
tact with analysis. For example, the q1/24 prefactor in the Dedekind eta (2.2.6b), and
the central extension of loop algebras (3.2.2a), are analytic fingerprints. Lie group
representations usually involve functional analysis (see e.g. Section 2.4.2 where we
relate the Heisenberg group to theta functions). Much of functional analysis was devel-
oped to address mathematical concerns in quantum theory, and perhaps all of the rich
subtleties of quantum field theory can be interpreted as functional analytic technicali-
ties. For example, anomalies (which for instance permit derivations of the Atiyah–Singer
Index Theorem from super Yang–Mills calculations) can be explained through a careful
study of domains of operators [172]. Moreover, the natural culmination of the Jones
knot polynomial is a deep relation between subfactors and conformal field theories
(Section 6.2.6). The necessary background for all this is supplied in this section.

In any mature science such as mathematics, the division into branches is a convenient
lie. In this spirit, analysis can be distinguished from, say, algebra by the central role played
in the former by numerical inequalities. For instance, inequalities appear in the definition
of derivatives and integrals as limits. Functional analysis begins with the reinterpretation
of derivatives and integrals as linear operators on vector spaces. These spaces, which
consist of appropriately restricted functions, are infinite-dimensional. The complexity
and richness of the theory comes from this infinite-dimensionality.
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Section 1.3.1 assumes familiarity with elementary point-set topology, as well as the
definition of Lebesgue measure. All the necessary background is contained in standard
textbooks such as [481].

1.3.1 Hilbert spaces

By a vector space V , we mean something closed under finite linear combinations∑n
i=1 aiv

(i). Here we are primarily interested in infinite-dimensional spaces over the
complex numbers (i.e. the scalars ai are taken from C), and the vectors v are typi-
cally functions f . By a (complex) pre-Hilbert space we mean a vector space V with a
Hermitian form 〈 f, g〉 ∈ C (‘Hermitian form’ is defined in Section 1.1.3). All complex
n-dimensional pre-Hilbert spaces are isomorphic to Cn with Hermitian form

〈u, v〉 = u1v1 + · · · + unvn.

The analogue of Cn in countably many dimensions is �2(∞), which consists of all
sequences u = (u1, u2, . . .) with finite sum

∑∞
i=1 |ui |2 <∞. The reader can verify that

it is closed under sums and thus forms a pre-Hilbert space. Another example consists of
the C∞-functions f : Rn → C, say, with ‘compact support’ (that means that the set of
all x ∈ Rn for which f (x) �= 0 is bounded). The Hermitian form here is

〈 f, g〉 =
∫ ∞

−∞
· · ·
∫ ∞

−∞
f (x) g(x) dn x ; (1.3.1)

this pre-Hilbert space is denoted C∞cs (Rn). For instance, the function defined by

f (x) =
{

exp[ 1
x2−1 ] for − 1 < x < 1
0 otherwise

lies in C∞cs (R). A larger space, arising for instance in quantum mechanics, is denoted
S(Rn) and consists of all functions f ∈ C∞(Rn) that, together with their derivatives,
decrease to 0 faster than any power of |x |−1, as |x | → ∞. The space S is a pre-Hilbert
space, again using (1.3.1). It contains functions such as poly(x1, . . . , xn) e−x2

1−···−x2
n .

A pre-Hilbert space has a notion of distance, or norm ‖ f ‖, given by ‖ f ‖2 = 〈 f, f 〉.
Using this we can define limits, Cauchy sequences, etc. in the usual way [481]. We call
a subset X of V dense in V if for any f ∈ V there is a sequence fn ∈ X that converges
to f . For instance, the rationals Q are dense in the reals R, but the integers aren’t. Any
convergent sequence is automatically Cauchy; a pre-Hilbert space V is called complete
if conversely all Cauchy sequences in it converge.

Definition 1.3.1 A Hilbert space H is a complete pre-Hilbert space.

For example, each Cn is Hilbert, as is �2(∞). Most pre-Hilbert spaces aren’t Hilbert, for
example neither C∞cs (Rn) nor S(Rn) are. However, given any pre-Hilbert space V , there
is a Hilbert space H that contains V as a dense subspace. This Hilbert space H is called
the completion V of V , and is unique up to isomorphism. The construction of H from
V is analogous to the construction of R from Q, obtained by defining an equivalence
relation on the Cauchy sequences.
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The Hilbert space completion C∞cs (Rn) = S(Rn) is defined using the ‘Lebesgue mea-
sure’ μ, which is an extension of the usual notion of length to a much more general class
of subsets X ⊂ R than the intervals, and the ‘Lebesgue integral’

∫
f (x) dμ(x), which is

an extension of the usual Riemann integral to a much more general class of functions than
the piecewise continuous ones. For example, what is the length of the set X consisting
of all rational numbers between 0 and 1? This isn’t defined, but its Lebesgue measure is
easily seen to be 0. We won’t define Lebesgue measures and integrals here, because we
don’t really need them; a standard account is [481]. The completion of C∞cs (Rn) is the
Hilbert space L2(Rn) consisting of all square-integrable functions f : Rn → C ∪ {∞}.
The Hermitian form is given by 〈 f, g〉 = ∫Rn f (x) g(x) dμ(x). By f ‘square-integrable’
we mean that f is ‘measurable’ (e.g. any piecewise continuous function is measurable)
and 〈 f, f 〉 <∞. We must identify two functions f, g if they agree almost everywhere,
that is the set X of all x ∈ Rn at which f (x) �= g(x) has Lebesgue measure 0. This is
because any two such functions have the property that 〈 f, h〉 = 〈g, h〉 for all h.

All Hilbert spaces we will consider, such as L2(Rn), are separable. This means that
there is a countable orthonormal set X of vectors en ∈ H (so 〈en, em〉 = δnm) such that the
pre-Hilbert space span(X ) consisting of all finite linear combinations

∑
amem is dense in

H. That is, given any f ∈ H, f = limn→∞
∑n

i=1〈ei , f 〉 ei – we say that the topological
span of X is H. All infinite-dimensional separable Hilbert spaces are isomorphic to
�2(∞). The easy proof sends f ∈ H to the sequence (〈e1, f 〉, 〈e2, f 〉, . . .) ∈ �2(∞).

We are interested in linear maps. The first surprise is that continuity is not automatic. In
fact, let T : V1 → V2 be a linear map between pre-Hilbert spaces. Then T is continuous
at one point iff it’s continuous at all points, iff it is bounded – that is, iff there exists a
constant C such that ‖T f ‖ ≤ C ‖ f ‖, for all f ∈ V1. If V1 is finite-dimensional, then it
is easy to show that any linear T is bounded. But in quantum mechanics, for example,
most operators of interest are unbounded.

Another complication of infinite-dimensionality is that in practise we’re often inter-
ested in linear operators whose domain is only a (dense) subspace of H. For exam-
ple, the domains of the operators f (x) �→ x f (x) or f (x) �→ d

dx f (x) (the ‘position’ and
‘momentum’ operators of quantum mechanics – see Section 4.2.1) are proper subspaces
of L2(R). Those operators are well-defined though on S(R) (indeed, this is precisely
why the space S is so natural for quantum mechanics). Once again bounded operators
are simpler: if T is a bounded linear operator on some dense subspace V of a Hilbert
space H, then there is one and only one way to continuously extend the domain of T to
all of H.

The dual (or adjoint) V∗ of a pre-Hilbert space V is defined as the space of all
continuous linear maps (functionals)V → C. In general,V can be regarded as a subspace
of V∗, with f ∈ V being identified with the functional g �→ 〈 f , g〉; when V is a Hilbert
space H, this identification defines an isomorphism H∗ ∼= H.

The functionals for C∞
cs are called distributions, while those for S are tempered dis-

tributions. For example, the Dirac delta ‘δ(x − a)’ is defined as the element of S(R)∗

sending functions ϕ ∈ S(R) to the number ϕ(a) ∈ C. (Tempered) distributions F can all
be realised (non-uniquely) as follows: given a ∈ N and a continuous function f (x) of
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polynomial growth, we get a functional F ∈ S(R)∗ by

F(ϕ) =
∫

R

f (x)
daϕ

dxa
dx . (1.3.2)

A similar realisation holds for the spaces S(Rn) and C∞
cs (Rn). Of course distributions are

not functions, and we cannot rewrite (1.3.2) as
∫

g(x)ϕ(x) dn x for some function g. Note
that the Dirac delta is not well-defined on the completion L2(R) of S , since the elements
f ∈ L2(R) are equivalence classes of functions and hence have ambiguous function
values f (a). This beautiful interpretation of distributions like δ as linear functionals
is due to Sobolev and was developed by Schwartz, the 1950 Fields medalist. Another
interpretation, using formal power series, is given in Section 5.1.2.

Distributions can be differentiated arbitrary numbers of times, and their partial deriva-
tives commute (something not true of all differentiable functions). However, they usually
cannot be multiplied together and thus form only a vector space, not an algebra. For more
on distributions, see chapter 2 of [67] or chapter I of [244].

We’re most interested in unitary and self-adjoint operators. First, let’s define the
adjoint. Let T : V → H be linear, where V is a subspace of H. Let U be the set
of all g ∈ H for which there is a unique vector g∗ ∈ H such that for all f ∈ V ,
〈g∗, f 〉 = 〈g, T f 〉. Define the map (adjoint) T ∗ : U → H by T ∗(g) = g∗. The adjoint
T ∗ exists (i.e. its domain U is non-empty) iff V is dense in H. In particular, T ∗∗ need
not equal T . When V is dense in H, U is a vector space and T ∗ is linear. When T is
bounded, so is T ∗, and its domain U is all of H. Note that 〈g, T f 〉 = 〈T ∗g, f 〉 for all
f ∈ V, g ∈ U , but that relation doesn’t uniquely specify T ∗.

We call T self-adjoint if T = T ∗ (so in particular this implies that their domains V,U
are equal). This implies 〈T f, g〉 = 〈 f, T g〉, but as before the converse can fail. If T is
self-adjoint and unbounded, then its domain cannot be all of H.

A linear map T : H1 → H2 between Hilbert spaces H1,H2 is unitary if it is both onto
and obeys 〈T f, T g〉 = 〈 f, g〉. Equivalently, T ∗T = T T ∗ = 1. The surjectivity assump-
tion is not redundant in infinite dimensions (Question 1.3.2). A unitary map is necessarily
bounded. A famous example of a unitary operator is the Fourier transform f �→ f̂ , which,
as usually defined, maps S(Rn) onto itself; it extends to a unitary operator on L2(Rn).

To define limits, etc., one needs only a topology. This need not come from a norm,
and in general many different topologies can naturally be placed on a space. For an
artificial example, consider the real line R endowed with the discrete topology (in
which any subset of R is open): then any function f : R → R will be continuous, a
sequence xn ∈ R will converge iff there is some N such that xN = xN+1 = xN+2 = · · · ,
and R with this topology is again complete. In the topology coming from the Hermitian
form (1.3.1), S(Rn) is incomplete, however it is common to refine that topology some-
what. In this new topology, a sequence fm ∈ S(R) converges to 0 iff for every a, b ∈ N
we have

limm→∞supx∈R |x |b
∣∣∣∣da fm(x)

dxa

∣∣∣∣ = 0.
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This topology comes from interpreting S as the intersection of countably many Hilbert
spaces; with it, S is complete. When we speak of S(Rn) elsewhere in this book, we
always take its topology to be this one (or its higher-dimensional analogue). Similar
comments can be made for C∞

cs (Rn) – see chapter I of [244] for details. With these new
topologies, both S(Rn) and C∞

cs (Rn) are examples of nuclear spaces;8 although they are
not themselves Hilbert spaces (the completeness in Definition 1.3.1 must be in terms of
the norm topology), they behave in a more finite-dimensional way, as is indicated by the
Spectral Theorem given below. See, for example, [244] for more on nuclear spaces.

The Spectral Theorem tells us in which sense we can diagonalise self-adjoint and
unitary operators. To state it precisely, we need a small generalisation of the construction
of �2(∞). Consider any measure space (e.g. X = R or S1 with Lebesgue measureμ). Fix
n = 1, 2, . . . ,∞, and suppose that for each x ∈ X there is associated a copy Hn of Cn or
(if n = ∞) �2(∞). We want to define the (orthogonal) direct integral over x ∈ X of these
Hn’s. Consider all functions h : X → Hn , x �→ hx that aren’t too wild and that obey the
finiteness condition

∫
X ‖hx‖2 dμ <∞. As usual, we identify two such functions h, g if

they agree everywhere except on a subset of X of μ-measure 0. Defining a Hermitian
form by 〈h, g〉 = ∫X 〈hx , gx 〉 dμ, the set of all such (equivalence classes of) h constitutes
a Hilbert space denoted

∫
X Hn dμ (completeness is proved as for �2(∞)). It is trivial to

drop the requirement that the separable space Hn be fixed – see, for example, chapter 2
of [67] for details of the direct integral

∫
X H(x) dμ.

In finite dimensions any self-adjoint operator is diagonalisable. This fails in infinite
dimensions, for example both the ‘momentum operator’ i ∂

∂x and the ‘position operator’
f (x) �→ x f (x) are self-adjoint on the dense subspace S(R) of L2(R), but neither have
any eigenvectors anywhere in L2(R). So we need to generalise eigen-theory.

The statement of the Spectral Theorem simplifies when our operators act on S. So
let T : S(Rn) → S(Rn) be linear. Diagonalising T would mean finding a basis for S
consisting of eigenvectors of T . We can’t do that, but we get something almost as good.
By a generalised eigenvector corresponding to the generalised eigenvalue λ ∈ C, we
mean a tempered distribution F ∈ S∗ such that F(Tϕ) = λ F(ϕ) for all ϕ ∈ S. For each
λ, let Eλ ⊂ S∗ be the generalised eigenspace consisting of all such F . We say that the set
of all generalised eigenvectors ∪λEλ is complete if they distinguish all vectors in S, i.e.
if, for any ϕ, ϕ′ ∈ S, we have F(ϕ) = F(ϕ′) for all generalised eigenvectors F ∈ ∪λEλ

iff ϕ = ϕ′.

Theorem 1.3.2 (Spectral Theorem)
(a) Let U : S(Rn) → S(Rn) be unitary. Then U extends uniquely to a unitary operator
on all of L2(Rn). All generalised eigenvalues λ lie on the unit circle |λ| = 1. We can
express L2(Rn) as a direct integral

∫
|λ|=1 H(λ) dμ(λ) of Hilbert spaces H(λ) ⊆ Eλ, so

8 Nuclear spaces were first formulated by Grothendieck, who began his mathematical life as a functional
analyst before revolutionising algebraic geometry. The term ‘nuclear’ comes from ‘noyau’ (French for both
‘nucleus’ and ‘kernel’), since the Kernel Theorem is a fundamental result holding for them. The ‘L’ in both
�2 and L2 is in honour of Lebesgue, and the symbol S honours Schwartz.
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that U sends the function h ∈ L2(Rn) to the function Uh with λ-component (Uh)λ =
λ hλ ∈ H(λ). Moreover, the generalised eigenvectors are complete.
(b) Suppose A : S(Rn) → S(Rn) is self-adjoint. Then all generalised eigenvalues λ lie
on the real line R. We can express L2(Rn) as a direct integral

∫∞
−∞H(λ) dμ(λ) of Hilbert

spaces H(λ) ⊆ Eλ, so that for each h ∈ S(Rn), Ah has λ-component (Ah)λ = λ hλ.
Moreover, the generalised eigenvectors are complete.

For a simple example, consider the linear map U : L2(R) → L2(R) acting by trans-
lation: (U f )(x) = f (x + 1). This is unitary, but it has no true eigenvectors in L2. On
the other hand, each point λ = eiy on the unit circle is a generalised eigenvalue, corre-
sponding to generalised eigenvector Fλ given by Fλ(ϕ) = ∫∞

−∞ e−iyxϕ(x) dx . The direct
integral interpretation of L2 corresponds to the association of any f (x) ∈ L2 with its
Fourier transform fλ = f̂ (y) = ∫∞

−∞ eiyx f (x) dx . The completeness of the generalised
eigenvectors is implied by the Plancherel identity∫

| f (x)|2dx = 1

2π

∫
| f̂ (y)|2dy. (1.3.3)

The Spectral Theorem as formulated also holds for C∞
cs in place of S, and more gener-

ally for any rigged (or equipped) Hilbert space V ⊂ H ⊂ V∗, where H is separable and
V is nuclear (chapter I of [244]). They help provide a mathematically elegant formulation
of quantum theories.

1.3.2 Factors

von Neumann algebras (see e.g. [319], [177]) can be thought of as symmetries of a
(generally infinite) group. Their building blocks are called factors. Vaughn Jones initiated
the combinatorial study of subfactors N of M (i.e. inclusions N ⊆ M where M, N are
factors), relating it to, for example, knots, and for this won a Fields medal in 1990. In
Section 6.2.6 we describe Jones’s work and the subsequent developments; this subsection
provides the necessary background. Our emphasis is on accessibility.

Let H be a (separable complex) Hilbert space. By L(H) we mean the algebra of
all bounded operators on H (we write ‘1’ for the identity). For example, L(Cn) is the
space Mn(C) of all n × n complex matrices. Let ‘∗’ be the adjoint (defined in the last
subsection). Given a set S of bounded operators, denote by S′ its commutant, that is the
set of all bounded operators x ∈ L(H) that commute with all y ∈ S: xy = yx . We write
S′′ := (S′)′ for the commutant of the commutant – clearly, S ⊆ S′′.

Definition 1.3.3 A von Neumann algebra M is a subalgebra of L(H) containing the
identity 1, which obeys M = M∗ and M = M ′′.

This is like defining a group by a representation. A von Neumann algebra can also be
defined abstractly, which is equivalent except that (as we will see shortly) the natural
notions of isomorphism are different in the concrete and abstract settings (just as the
same group can have non-isomorphic representations).
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Of course L(H) is a von Neumann algebra. Given any subset S ⊂ L(H) with S∗ = S,
the double-commutant S′′ is a von Neumann algebra, namely the smallest one containing
S. The space L∞(R) of bounded functions f : R → C forms an abelian von Neumann
algebra on the Hilbert space H = L2(R) by pointwise multiplication. More generally
(replacing R with any other measure space X and allowing multiple copies of the Hilbert
space L2(X )), all abelian von Neumann algebras are of that form.

The centre Z (M) = M ∩ M ′ of a von Neumann algebra M is an abelian one. Using the
above characterisation Z (M) = L∞(X ), we can write M as a direct integral

∫
X M(λ) dλ

of von Neumann algebras M(λ) with trivial centre: Z (M(λ)) = C1. The direct integral,
discussed last subsection, is a continuous analogue of direct sum.

Definition 1.3.4 A factor M is a von Neumann algebra with centre Z (M) = CI .

Thus the study of von Neumann algebras is reduced to that of factors – the simple
building blocks of any von Neumann algebra. L(H) is a factor. In finite dimensions,
any (concrete) factor is of the form Mn(C)⊗ CIm acting in the Hilbert space Cn ⊗ Cm

(‘Im’ is the m × m identity matrix). Whenever the factor is (abstract) isomorphic to some
L(H), its concrete realisation will have a similar tensor product structure, which is the
source of the name ‘factor’. In quantum field theory, where von Neumann algebras arise
as algebras of operators (Section 4.2.4), a factor means there is no observable that can
be measured simultaneously (with infinite precision) with all others.

The richness of the theory is because there are other factors besidesL(H). In particular,
factors fall into different families:

Type In: the factors (abstract) isomorphic to L(H) (n = dimH).
Type II1: infinite-dimensional but it has a trace (i.e. a linear functional tr : M → C such
that tr(xy) = tr(yx)).
Type II∞: the factors isomorphic to II1 ⊗ L(H).
Type III: everything else.

Choosing the normalisation tr(1) = 1, the type II1 trace will be unique. This is a very
coarse-grained breakdown, and in fact the complete classification of factors is not known.
There are uncountably many inequivalent type II1 factors. Type III is further subdi-
vided into families IIIλ for all 0 ≤ λ ≤ 1. von Neumann regarded the type III factors
as pathological, but this was unfair (see Section 6.2.6). Almost every factor is isomor-
phic to type III1 (i.e. perturbing an infinite-dimensional factor typically gives you one
of type III1). Hyperfinite factors are limits in some sense of finite-dimensional factors.
There is a unique (abstract) hyperfinite factor of type II1, II∞ and IIIλ for 0 < λ ≤ 1;
we are interested in the hyperfinite II1 and III1 factors. Incidentally, the von Neumann
algebras arising in quantum field theory are always of type III1.

Discrete groups impinge on the theory through the crossed-product construction of
factors. Start with any von Neumann algebra M ⊂ L(H), and let G be a discrete group
acting on M (so g.(xy) = (g.x)(g.y) and g.x∗ = (g.x)∗). Let HG = H⊗ �2(G) be the
Hilbert space consisting of all column vectors ζ = (ζg)g∈G with entries ζg ∈ H and



Elementary functional analysis 51

obeying
∑

g∈G ‖ζg‖2 <∞. M acts on HG by ζ �→ π (x)(ζ ), where π is defined by

(π (x)(ζ ))g := (g−1.x)ζg. (1.3.4a)

In (1.3.4a), g−1.x is the action of G on M , and g−1.x ∈ M ⊂ L(H) acts on ζg ∈ H by
definition. Likewise, G acts on HG by ζ �→ λ(h)(ζ ), where λ is defined by

(λ(h)(ζ ))g := ζh−1g. (1.3.4b)

We can regard π and λ as embedding M and G in L(HG). The crossed-product is simply
the smallest von Neumann algebra containing both these images:

M×G := (π (M) ∪ λ(G))′′. (1.3.4c)

More explicitly (using the obvious orthonormal basis), any bounded operator ỹ ∈ L(HG)
is a matrix ỹ = (ỹg,h) with entries ỹg,h ∈ L(H) for g, h ∈ G, and where (ỹζ )g =∑

h∈G ỹg,h ζh (defining the infinite sum on the right appropriately [319]). Then for all
x ∈ M and g, h, k ∈ G, we get the matrix entries

π (x)g,h = δg,h h−1.x,

λ(k)g,h = δg,kh 1.

The crossed-product is now a space of functions y : G → M :

M×G ∼= {y : G → M | ∃ỹ ∈ L(HG) such that ỹg,h = h−1.(ygh−1 ) ∀g, h ∈ G}
(1.3.4d)

(see lemma 1.3.1 of [319]). In this notation the algebra structure of M×G is given by

(xy)(g) =
∑
h∈G

h−1.(xgh−1 yh), (1.3.4e)

(y∗)g = g−1.(yg−1 )∗. (1.3.4f)

Crossed-products allow for elegant constructions of factors. For example, the (von
Neumann) group algebra C×G is type II1, for any discrete group G acting trivially on
C and with the property that all of its conjugacy classes (apart from {e}) are infinite
(examples of such G are the free groups Fn or PSL2(Z)). Also, any type III1 factor is of
the form M×R, where M is type II∞ and the R action scales the trace.

A proper treatment of factors (which this subsection is not) would involve projections
onto closed subspaces, that is elements p ∈ M satisfying p = p∗ = p2. These span (in
the appropriate sense) the full von Neumann algebra. In the case of M = Mn(C), the
projections are precisely the orthogonal projections onto subspaces of Cn , and thus have a
well-defined dimension (namely the dimension of that subspace, so some integer between
0 and n). Remarkably, the same applies to any projection in any factor. For type II1 this
‘dimension’ dim(p) is the trace τ (p), which we can normalise so that τ (1) = 1. Then
we get that dim(p) continuously fills out the interval [0, 1]. For type II∞, the dimensions
fill out [0,∞]. For type III, every nonzero projection is equivalent (in a certain sense) to
the identity and so the (normalised) dimensions are either 0 or 1.
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Finally, one can ask for the relation between the abstract and concrete definitions of
M – in other words, given a factor M , what are the different representations (=modules)
of M , that is realisations of M as bounded operators on a Hilbert space H. For example,
for M of type In , these are of the form M ⊗ CM = M ⊕ · · · ⊕ M (m times) for m finite,
as well as M ⊗ �∞. We see the type In modules are in one-to-one correspondence with
the ‘multiplicity’ m ∈ {0, 1, . . . ,∞}, which we can denote dimM (H) and think of as
dim(H)/dim(M), at least when M is finite-dimensional. There is a similar result for
type II: for each choice d ∈ [0,∞] there is a unique module Hd , and any module H is
equivalent to a unique Hd . Finally, any two nontrivial representations of a type III factor
will be equivalent. For a general definition of dimM (H) and a proof of this representation
theory, see theorem 2.1.6 in [319].

For type II1, this parameter d =: dimM (H) is sometimes called by von Neumann’s
unenlightening name ‘coupling constant’. Incidentally, H1 is constructed in Ques-
tion 1.3.6.

Question 1.3.1. (a) Verify explicitly that the position f (x) �→ x f (x) and momentum i d
dx

operators are neither bounded nor continuous, for the Hilbert space L2(R).
(b) Verify explicitly that the position operator of (a) is not defined everywhere.

Question 1.3.2. Consider the shift operator S(x1, x2, . . .) = (0, x1, x2, . . .) in �2(∞).
Verify that S∗S = 1 but SS∗ �= 1.

Question 1.3.3. Apply the Spectral Theorem to the momentum operator i d
dx .

Question 1.3.4. Let V = { f ∈ C∞(S1) | f (0) = 0}.
(a) Verify that V is dense in H = L2(S1).
(b) Verify that D = i d

dθ obeys 〈D f, g〉 = 〈 f, Dg〉 for all f, g ∈ V .
(c) Construct the adjoint D∗ of D : V → H. Is D self-adjoint?
(d) For each λ ∈ C, define Vλ to be the extension of V consisting of all functions smooth
on the interval [0, 2π ] and with f (0) = λ f (2π ). Extend D in the obvious way to Vλ.
For which λ is D now self-adjoint?

Question 1.3.5. Let the free group F2 act trivially on C. Find a trace for C×F2. What is
the centre of C×F2?

Question 1.3.6. Let M be type II1. Prove M is a pre-Hilbert space by defining 〈x, y〉
appropriately (Hint: use the trace). Let L2(M) be its completion. Show that L2(M) is a
module over M .

1.4 Lie groups and Lie algebras

Undergraduates are often disturbed (indeed, reluctant) to learn that the vector-product
u × v really only works in three dimensions. Of course, there are several generalisations
to other dimensions: for example an antisymmetric (N − 1)-ary product (a determinant)
in N dimensions, or the wedge product of k-forms in 2k + 1 dimensions. Arguably the
most fruitful generalisation is that of a Lie algebra, defined below. They are the tangent
spaces of those differential manifolds whose points can be ‘multiplied’ together.
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As we know, much of algebra is developed by analogy with elementary properties
of integers. For a finite-dimensional Lie algebra, a divisor is called an ideal; a prime
is called simple; and multiplying corresponds to semi-direct sum (Lie algebras behave
simpler than groups but not as simple as numbers). In particular, simple Lie algebras
are important for similar reasons that simple groups are, and can also be classified (with
much less effort). One non-obvious discovery is that they are rigid: the best way to
capture the structure of a simple Lie algebra is through a graph. We push this thought
further in Section 3.3. For an elementary introduction to Lie theory, [92] is highly
recommended.

1.4.1 Definition and examples of Lie algebras

An algebra is a vector space with a way to multiply vectors that is compatible with the
vector space structure (i.e. the vector-valued product is required to be bilinear: (au +
a′u′)× (bv + b′v′) = ab u × v + ab′ u × v′ + a′b u′ × v + a′b′ u′ × v′). For example,
the complex numbers C form a two-dimensional algebra over R (a basis is 1 and i =√−1; the scalars here are real numbers and the vectors are complex numbers). The
quaternions are four-dimensional over R and the octonions are eight-dimensional over R.
Incidentally, these are the only finite-dimensional normed algebras over R that obey the
cancellation law: u �= 0 and u × v = 0 implies v = 0 (does the vector-product of R3 fail
the cancellation law?). This important little fact makes several unexpected appearances
[29]. For instance, imagine a ball (i.e. S2) covered in hair. No matter how you comb it,
there will be a part in the hair, or at least a point where the hair leaves in all directions, or
some such problem. More precisely, there is no continuous nowhere-zero vector field on
S2. On the other hand, it is trivial to comb the hair on the circle S1 without singularity:
just comb it clockwise, for example. More generally, the even spheres S2k can never be
combed. Now try something more difficult: place k wigs on Sk , and try to comb all k of
them so that at each point on Sk the k hairs are linearly independent. This is equivalent
to saying that the tangent bundle T Sk equals Sk × Rk . The only k-spheres Sk that can
be ‘k-combed’ in this way (i.e. for which there exist k linearly independent continuous
vector fields) are for k = 1, 3 and 7. This is intimately connected with the existence of C,
the quaternions and octonions (namely, S1, S3 and S7 are the length 1 complex numbers,
quaternions and octonions, respectively) [104].

Definition 1.4.1 A Lie algebra g is an algebra with product (usually called a ‘bracket’
and written [xy]) that is both ‘anti-commutative’ and ‘anti-associative’:

[xy]+ [yx] = 0; (1.4.1a)

[x[yz]]+ [y[zx]]+ [z[xy]] = 0. (1.4.1b)

Like most other identities in mathematics, (1.4.1b) is named after Jacobi (although he
died years before Lie theory was created). Usually we consider Lie algebras over C, but
sometimes over R. Note that (1.4.1a) is equivalent to demanding [xx] = 0 (except for
fields of characteristic 2).
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A homomorphismϕ : g1 → g2 between Lie algebras must preserve the linear structure
as well as the bracket – i.e. ϕ is linear and ϕ[xy] = [ϕ(x)ϕ(y)] for all x, y ∈ g1. If ϕ is
in addition invertible, we call g1, g2 isomorphic.

One important consequence of bilinearity is that it is enough to know the values of all
the brackets [x (i)x ( j)] for i < j , for any basis {x (1), x (2), . . .} of the vector space g. (The
reader should convince himself of this before proceeding.)

A trivial example of a Lie algebra is a vector spaceg with a bracket identically 0: [xy] =
0 for all x, y ∈ g. Any such Lie algebra is called abelian, because in any representation
(i.e. realisation by matrices) its matrices will commute. Abelian Lie algebras of equal
dimension are isomorphic.

In fact, the only one-dimensional Lie algebra (for any choice of field F) is the abelian
one g = F. It is straightforward to find all two- and three-dimensional Lie algebras (over
C) up to isomorphism: there are precisely two and six of them, respectively (though one of
the six depends on a complex parameter). Over R, there are two and nine (with two of the
latter depending on real parameters). This exercise cannot be continued much further –
for example, not all seven-dimensional Lie algebras (over C say) are known. Nor is it
obvious that this would be a valuable exercise. We should suspect that our definition of
Lie algebra is probably too general for anything obeying it to be automatically interesting.
Most commonly, a classification yields a stale and useless list – a phone book more than
a tourist guide.

Two of the three-dimensional Lie algebras are important in what follows. One of
them is well known to the reader: the vector-product in C3. Taking the standard basis
{e1, e2, e3} of C3, the bracket can be defined by the relations

[e1e2] = e3, [e1e3] = −e2, [e2e3] = e1. (1.4.2a)

This algebra, denoted A1 or sl2(C), deserves the name ‘mother of all Lie algebras’
(Section 1.4.3). Its more familiar realisation uses a basis {e, f, h} with relations

[e f ] = h, [he] = 2e, [h f ] = −2 f. (1.4.2b)

The reader can find the change-of-basis (valid over C but not R) showing that equations
(1.4.2) define isomorphic complex (though not real) Lie algebras.

Another important three-dimensional Lie algebra is the Heisenberg algebra9 Heis, the
algebra of the canonical commutation relations in quantum mechanics, defined by

[xp] = h, [xh] = [ph] = 0. (1.4.3)

The most basic source of Lie algebras are the n × n matrices with commutator:

[AB] = [A, B] := AB − B A (1.4.4)

(the reader can verify that the commutator always obeys (1.4.1)). Let gln(R) (respectively
gln(C)) denote the Lie algebra of all n × n matrices with coefficients in R (respectively

9 There actually is a family of ‘Heisenberg algebras’, with (1.4.3) being the one of least dimension.
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C), with Lie bracket given by (1.4.4). More generally, if A is any associative algebra,
then A becomes a Lie algebra by defining the bracket [xy] = xy − yx .

Another general construction of Lie algebras starts with any (not necessarily asso-
ciative or commutative) algebra A. By a derivation of A, we mean any linear map
δ : A→ A obeying the Leibniz rule δ(ab) = δ(a) b + a δ(b). We can compose deriva-
tions, but in general the result δ1 ◦ δ2 won’t be a derivation. However, an easy calculation
verifies that the commutator [δ1δ2] = δ1 ◦ δ2 − δ2 ◦ δ1 of derivations is also a derivation.
Hence the vector space of derivations is naturally a Lie algebra. IfA is finite-dimensional,
so will be its Lie algebra of derivations.

In particular, vector fields X ∈ Vect(M) are derivations. We can compose them X ◦ Y ,
but this results in a second-order differential operator. Instead, the natural ‘product’ is
their commutator [X, Y ] = X ◦ Y − Y ◦ X , as it always results in a vector field. Vect(M)
with this bracket is an infinite-dimensional Lie algebra. For example, recall Vect(S1) from
Section 1.2.2 and compare(

f (θ )
d

dθ

)
◦
(

g(θ )
d

dθ

)
= f (θ ) g(θ )

d2

dθ2
+ f (θ ) g′(θ )

d

dθ
,[

f (θ )
d

dθ
, g(θ )

d

dθ

]
= ( f (θ ) g′(θ )− f ′(θ ) g(θ ))

d

dθ
.

Incidentally, another natural way to multiply vector fields X, Y of vector fields, the Lie
derivative LX (Y ) defined in Section 1.2.2, equals the commutator [X, Y ] and so gives
the same Lie algebra structure on Vect(M).

1.4.2 Their motivation: Lie groups

From Definition 1.4.1 it is far from clear that Lie algebras, as a class, should be natural
and worth studying. After all, there are infinitely many possible axiomatic systems:
why should this one be anything special a priori? Perhaps the answer could have been
anticipated by the following line of reasoning.

Axiom Groups are important and interesting.
Axiom Manifolds are important and interesting.

Definition 1.4.2 A Lie group G is a manifold with a compatible group structure.

This means that ‘multiplication’μ : G × G → G (which sends the pair (a, b) to ab) and
‘inverse’ ι : G → G (which sends a to a−1) are both differentiable maps. The manifold
structure (Definition 1.2.3) of G can be chosen as follows: fix any open set Ue about the
identity e ∈ G; then the open set Ug := gUe will contain g ∈ G. The real line R is a
Lie group under addition: obviously, μ and ι defined by μ(a, b) = a + b and ι(a) = −a
are both differentiable. A circle is also a Lie group: parametrise the points with the angle
θ defined mod 2π ; the ‘product’ of the point at angle θ1 with the point at angle θ2 is
the point at angle θ1 + θ2. Surprisingly, the only other k-sphere that is a Lie group is S3
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(the product can be defined using quaternions of unit length,10 or by identifying S3 with
the matrix group SU2(C)). This is because it is always possible to ‘n-comb the hair’ on
an n-dimensional Lie group (Section 1.4.1) – more precisely, the tangent bundle T G of
any Lie group is trivial G × Rn , something easy to see using the charts Ug .

A complex Lie group G is a complex manifold with a compatible group structure.
For example, the only one-dimensional compact real Lie group is S1, whereas there are
infinitely many compact one-dimensional complex Lie groups, namely the tori or ‘elliptic
curves’ C/L , for any two-dimensional lattice L in the plane C. Thought of as real Lie
groups (i.e. forgetting their complex structure), elliptic curves all are real-diffeomorphic
to S1 × S1; they differ in their complex-differential structure. We largely ignore the
complex Lie groups; unless otherwise stated, by ‘Lie group’ we mean ‘real Lie group’.11

Many but not all Lie groups can be expressed as matrix groups whose operation is
matrix multiplication. The most important are GLn (invertible n × n matrices) and SLn

(ones with determinant 1).
Incidentally, Hilbert’s 5th problem12 asked how important the differentiability hypoth-

esis is here. It turns out it isn’t (see [569] for a review): if a group G is a topological
manifold, and μ and ι are merely continuous, then it is possible to endow G with a
differentiable structure in one and only one way so that μ and ι are differentiable.

In any case, a consequence of the above axioms is surely:

Corollary Lie groups should be important and interesting.

Indeed, Lie groups appear throughout mathematics and physics, as we will see again
and again. For example, the Lie groups of relativistic physics (Section 4.1.2) come
from the group O3,1(R) consisting of all 4× 4 matrices � obeying �G�t = G, where
G = diag(1, 1, 1,−1) is the Minkowski metric. Any such � must have determinant±1,
and has |�44| ≥ 1; these 2× 2 possibilities define the four connected components of
O3,1(R). The (restricted) Lorentz group SO+3,1(R) consists of the determinant 1 matrices
� in O3,1(R) with�44 ≥ 1. It describes rotations in 3-space, as well as ‘boosts’ (changes
of velocity). SO+3,1(R) has a double-cover (i.e. an extension by Z2) isomorphic to SL2(C),
which is more fundamental. Finally, the Poincaré group is the semi-direct product of
SO+3,1(R) with R4, corresponding to adjoining to SO+3,1(R) the translations in space-time
R4. The Lorentz group is six-dimensional, while the Poincaré group is 10-dimensional.

As said in Section 1.2.2, the tangent spaces of manifolds are vector spaces of dimension
equal to that of the manifold. The space structure is easy to see for Lie groups: choose
any infinitesimal curves u = 〈g(t)〉e, v = 〈h(t)〉e ∈ TeG, so g(0) = h(0) = e, and let
a, b ∈ R. Then au + bv corresponds to the curve t �→ g(at) h(bt).

Not surprisingly, G acts on the tangent vectors: let u ∈ ThG correspond to curve h(t),
with h(0) = h, and define gu for any g ∈ G to be the vector in TghG corresponding

10 Similarly, the 7-sphere inherits from the octonions a non-associative (hence nongroup) product,
compatible with its manifold structure.

11 Our vector spaces (e.g. Lie algebras) are usually complex; our manifolds (e.g. Lie groups) are usually real.
12 In the International Congress of Mathematicians in 1899, David Hilbert announced several problems

chosen to anticipate (and direct) major areas of study. His list was deeply influential.
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to the curve t �→ g(h(t)). This means that conjugating gug−1 for any element u ∈ TeG
gives another element of TeG, that is TeG carries a representation of the group G called
the adjoint representation.

This is all fine. However, we have a rich structure on our manifold – namely the group
structure – and it would be deathly disappointing if this adjoint representation were the
high-point of the theory. Fortunately we can go much further. Consider any u, v ∈ TeG,
where v = 〈g(t)〉e. Then g(t) u g(t)−1 lies in the vector space TeG for all t , and hence
so will the derivative. It turns out that the quantity

[uv] := d

dt
(g(t) u g(t)−1)|t=0 (1.4.5)

depends only on u and v (hence the notation). A little work shows that it is bilinear,
anti-symmetric, and anti-associative. That is, TeG is a Lie algebra!

In the last subsection we indicated that Vect(M) carries a Lie algebra structure, for any
manifold M . It is tempting to ask: when M is a Lie group G, what is the relation between
the infinite-dimensional Lie algebra Vect(G), and the finite-dimensional Lie algebra
TeG? Note that G acts on the space Vect(M) by ‘left-translation’, that is if X is a vector
field, which we can think of as a derivation of the algebra C∞(G) of real-valued functions
on G, and g ∈ G, then g.X is the vector field given by (g.X )( f )(h) = X ( f )(gh). Then
the Lie algebra TeG is isomorphic to the subalgebra of Vect(G) consisting of the ‘left-
invariant vector fields’, that is those X obeying g.X = X . Given any manifold M , the
Lie algebra Vect(M) corresponds to the infinite-dimensional Lie group Diff+(M) of
orientation-preserving diffeomorphisms of M ; when M is itself a Lie group, the left-
invariant vector fields correspond in Diff+(M) to a copy of M given by left-multiplication.

Fact The tangent space of a Lie group is a Lie algebra. Conversely, any (finite-
dimensional real or complex) Lie algebra is the tangent space TeG to some Lie group.

For example, consider the Lie group G = SLn(R). Let A(t) = (
Ai j (t)

)
be any curve in

G with A(0) = In . We see that only one term in the expansion of det A(t) can contribute
to its derivative at t = 0, namely the diagonal term A11(t) · · · Ann(t), so differentiating
det(A(t)) = 1 at t = 0 tells us that A′11(0)+ · · · + A′nn(0) = 0. Thus the tangent space
TIn G consists of all trace-zero n × n matrices, since the algebra like the group must be
(n2 − 1)-dimensional. We write it sln(R). Now choose any matrices U, V ∈ sln(R), and
let A(t) be the curve in SLn(R) corresponding to V . Differentiating A(t) A(t)−1 = In ,
we see that (A−1)′ = −A−1 A′A−1 and thus (1.4.5) becomes

[V U ] = A′(0) U I−1
n + In U

(−I−1
n A′(0) I−1

n

)
.

In other words, the bracket in sln(R) – as with any other matrix algebra – is given by the
commutator (1.4.4).

Given the above fact, a safe guess would be:

Conjecture Lie algebras are important and interesting.

From this line of reasoning, it should be expected that historically Lie groups arose first.
Indeed that is the case: Sophus Lie introduced them in 1873 to try to develop a Galois
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theory for ordinary differential equations. Galois theory can be used for instance to show
that not all fifth degree (or higher) polynomials can be explicitly ‘solved’ using radicals
(Section 1.7.2). Lie wanted to study the explicit solvability (integrability) of differential
equations, and this led him to develop what we now call Lie theory. The importance of
Lie groups, however, has grown well beyond this initial motivation.

A Lie algebra, being a linearised Lie group, is much simpler and easier to handle. The
algebra preserves the local properties of the group, though it loses global topological
properties (like compactness). A Lie group has a single Lie algebra, but a Lie algebra
corresponds to many different Lie groups. The Lie algebra corresponding to both R and
S1 is g = R with trivial bracket. The Lie algebra corresponding to both S3 = SU2(C)
and SO3(R) is the vector-product algebra (1.4.2a) (usually called so3(R)).

We saw earlier that many (but not all) examples of Lie groups are matrix groups, that
is subgroups of GLn(R) or GLn(C). The Ado–Iwasawa Theorem (see e.g. chapter VI of
[314]) says that all finite-dimensional Lie algebras (over any field) are realisable as Lie
subalgebras of gln(R) or gln(C). This is analogous to Cayley’s Theorem, which says any
finite group is a subgroup of some symmetric group Sn . Now, choose any Lie algebra
g ⊆ gln(C). Let G be the topological closure of the subgroup of GLn(C) generated by
all matrices eA for A ∈ g, where eA is defined by the Taylor expansion

eA =
∞∑

k=0

1

k!
Ak .

Then the Lie group G has Lie algebra g. Remarkably, the group operation on G (at
least close to the identity) can be deduced from the bracket: the first few terms of the
Baker–Campbell–Hausdorff formula read

exp(X ) exp(Y ) = exp

(
X + Y + 1

2
[XY ]+ 1

12
[[XY ]X ]+ 1

12
[[XY ]Y ]+ · · ·

)
.

(1.4.6)
See, for example, [475] for the complete formula and some of its applications.

We saw earlier that the condition ‘determinant= 1’ for matrix groups translates to
the Lie algebra condition ‘trace= 0’. This also follows from the identity det(eA) = etr A,
which follows quickly from the Jordan canonical form of A.

Of course all undergraduates are familiar, at least implicitly, with exponentiating
operators. Taylor’s Theorem tells us that for any analytic function f and any real number
a, the operator ea d

dx sends f (x) to f (x + a). Curiously, the operator log( d
dx ) also has a

meaning, in the context of, for example, affine Kac–Moody algebras [344].
The definition of a Lie algebra makes sense over any field K. However, the definition

of Lie groups is much more restrictive, because they are analytic rather than merely
linear and hence require fields like C, R or the p-adic rationals Q̂p. A good question is:
which Lie-like group structures do Lie algebras correspond to, for the other fields? A
good answer is: algebraic groups, which are to algebraic geometry what Lie groups are
to differential geometry. See, for example, part III of [92] for an introduction.

The main relationship between real Lie groups and algebras is summarised by:
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Theorem 1.4.3 To any finite-dimensional real Lie algebra g, there is a unique con-
nected simply-connected Lie group G̃, called the universal cover group. If G is any other
connected Lie group with Lie algebra g, then there exists a discrete subgroup H of the
centre of G̃, such that G ∼= G̃/H and H ∼= π1(G), the fundamental group of G.

The definitions of simply-connected andπ1 are given in Section 1.2.3. The universal cover
R̃ of the Lie algebra R is the additive group R; the circle G = S1 has the same Lie algebra
and can be written as S1 ∼= R/Z. The real Lie groups SU2(C) and SO3(R) both have Lie
algebra so3(R); SU2(C) ∼= S3 is the universal cover, and SO3(R) ∼= SU2(C)/{±I2} is the
3-sphere with antipodal points identified. π1(SL2(R)) ∼= S1, and its universal cover (see
Question 2.4.4) is an example of a Lie group that is not a matrix group.

So the classification of (connected) Lie groups reduces to the much simpler classifi-
cation of Lie algebras, together with the classification of discrete groups in the centre
of the corresponding G̃. The condition that G be connected is clearly necessary, as the
direct product of a Lie group with any discrete group leaves the Lie algebra unchanged.

Lie group structure theory is merely a major generalisation of linear algebra. The
basic constructions familiar to undergraduates have important analogues valid in many
Lie groups. For instance, in our youth we were taught to solve linear equations and invert
matrices by reducing a matrix to row-echelon form using row operations. This says that
any matrix A ∈ GLn(C) can be factorised A = B P N , where N is upper-triangular with
1’s on the diagonal, P is a permutation matrix and B is an upper-triangular matrix. This
is essentially the Bruhat decomposition of the Lie group GLn(C). More generally (where
it applies to any ‘reductive’ Lie group G), P will be an element of the so-called Weyl
group of G, and B will be in a ‘Borel subgroup’. For another example, everyone knows
that any nonzero real number x can be written uniquely as x = (±1) · |x |, and many
of us remember that any invertible matrix A ∈ GLn(R) can be uniquely written as a
product A = O P , where O is orthogonal and P is positive-definite. More generally, this
is called the Cartan decomposition for a real semi-simple Lie group. This encourages us
to interpret a linear algebra theorem as a special case of a Lie group theorem . . . a squirrel.

1.4.3 Simple Lie algebras

The reader already weary of such algebraic tedium won’t be surprised to read that the
typical algebraic definitions can be imposed on Lie theory. The analogue of direct product
of groups here is direct sum g1 ⊕ g2, with bracket [(x1, x2), (y1, y2)] = ([x1 y1]1, [x2 y2]2).
Semi-direct sum is defined as usual. The analogue of normal subgroup here is called
an ideal: a subspace h of g such that [gh] := span{[xy] | x ∈ g, y ∈ h} is contained in
h. A Lie group N is a normal subgroup of Lie group G iff the Lie algebra of N is an
ideal of that of G. Given an ideal h of a Lie algebra g, the quotient space g/h has a
natural Lie algebra structure; if ϕ : g1 → g2 is a Lie algebra homomorphism, then the
kernel ker(ϕ) is an ideal of g1 and the image ϕ(g1) is a subalgebra of g2 isomorphic
to g1/ker(ϕ). The name ‘ideal’ comes from number theory (Section 1.7.1). The centre
Z (g) := {x ∈ g | [xg] = 0} of g always forms an ideal, as does [gg].
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A simple Lie algebra is one with no proper ideals. It is standard though to exclude
the one-dimensional Lie algebras, much like is often done with the cyclic groups Zp.
A semi-simple Lie algebra is defined as any g for which [gg] = g; it turns out that g

is semi-simple iff g is the (Lie algebra) direct sum ⊕igi of simple Lie algebras gi . A
reductive Lie algebra g is defined by the relation [gg]⊕ Z (g) = g; g is reductive iff g is
the direct sum of a semi-simple Lie algebra with an abelian one. Of course simple Lie
algebras are more important, but semi-simple and reductive ones often behave similarly.

The finite-dimensional simple Lie algebras constitute an important class of Lie alge-
bras. Although it is doubtful the reader has leapt out of his chair with surprise at this
pronouncement, it is good to see explicit indications of this importance.

Simple Lie algebras serve as building blocks for all other finite-dimensional Lie alge-
bras, in the following sense (called Levi decomposition – see, for example, chapter III.9
of [314] for a proof): any finite-dimensional Lie algebra g over C or R can be writ-
ten as a vector space in the form g = r⊕ h, where h is the largest semi-simple Lie
subalgebra of g, and r is called the radical of g and is by definition the maximal ‘solv-
able’ ideal of g. This means g is the semi-direct sum of r with h ∼= g/r. A solvable Lie
algebra is the repeated semi-direct sum by one-dimensional Lie algebras; more con-
cretely, it is isomorphic to a subalgebra of the upper-triangular matrices in some gln .
Levi decomposition is the Lie theoretic analogue of the Jordan–Hölder Theorem of
Section 1.1.2.

It is reassuring that we can also see the importance of simple Lie algebras geometri-
cally: given any finite-dimensional real Lie group that is ‘compact’ as a manifold (i.e.
bounded and contains all its limit points), its Lie algebra is reductive. Conversely, any
reductive real Lie algebra is the Lie algebra of a compact Lie group.

In our struggle to understand a structure, it is healthy to find new ways to capture
old information. Let us begin with a canonical way to associate linear endomorphisms
(which the basis-hungry of us can regard as square matrices) to elements of the Lie
algebra g. Define the ‘adjoint operator’ ad x : g→ g to be the linear map given by
(ad x)(y) = [xy]. In this language, anti-associativity of the bracket translates to the facts
that: (i) for each x ∈ g, ad x is a derivation of g; and (ii) the assignment x �→ ad x
defines a ‘representation’ of g, called the adjoint representation (more on this next
section).

The point is that there are basis-independent ways to get numbers out of matrices. The
Killing form κ : g× g→ C of a (complex) Lie algebra g is defined by

κ(x |y) := tr(ad x ◦ ad y), ∀x, y ∈ g. (1.4.7a)

By ‘trace’ we mean to choose a basis, get matrices, and take the trace in the usual way;
the answer is independent of the basis chosen. The Killing form is symmetric, respects
the linear structure of g (i.e. is bilinear) and respects the bracket in the sense that

κ([xy]|z) = κ(x |[yz]), ∀x, y, z ∈ g. (1.4.7b)

This property of κ is called invariance (Question 1.4.6(b)).
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Table 1.3. Freudenthal’s Magic Square: the Lie algebra g(A1,A2)

Ai R C quat oct

R so3(R) su3(R) sp3(R) F4

C su3(R) su3(R)⊕ su3(R) su6(R) E6

quat sp3(R) su6(R) so12(R) E7

oct F4 E6 E7 E8

Let A, B be two n × n real matrices; then

tr(AB) =
n∑

i=1

Aii Bii +
∑

1≤i< j≤n

(Ai j B ji + A ji Bi j ),

which can be interpreted as an indefinite inner-product on Rn2
. Thus the Killing form

κ(x |y) should be thought of as an inner-product on the vector space g. It arose historically
by expanding the characteristic polynomial det(ad x − λI ) (Question 1.4.6(c)).

An inner-product on a complex space V has only one invariant: the dimension of the
subspace of null vectors. More precisely, define the radical of the Killing form to be

s(κ) := {x ∈ g | κ(x |y) = 0 ∀y ∈ g}.
By invariance of κ , s is an ideal. It is always solvable.

Theorem 1.4.4 (Cartan’s criterion) Let g be a (complex or real) finite-dimensional
Lie algebra. Then g is semi-simple iff κ is nondegenerate, i.e. s(κ) = 0.

Moreover, g is solvable iff [gg] ⊆ s(κ). The nondegeneracy of the Killing form plays
a crucial role in the theory of semi-simple g. For instance, it is an easy orthogonality
argument that a semi-simple Lie algebra is the direct sum of its simple ideals.

The classification of simple finite-dimensional Lie algebras over C was accomplished
at the turn of the century by Killing and Cartan. There are four infinite families Ar (r ≥ 1),
Br (r ≥ 3), Cr (r ≥ 2) and Dr (r ≥ 4), and five exceptionals E6, E7, E8, F4 and G2. Ar

can be thought of as slr+1(C), the (r + 1)× (r + 1) matrices with trace 0. The orthogonal
algebras Br and Dr can be identified with so2r+1(C) and so2r (C), respectively, where
son(C) is all n × n anti-symmetric matrices At = −A. The symplectic algebra Cr is

sp2r (C), i.e. all 2r × 2r matrices A obeying A� = −�At , where� =
(

0 Ir

−Ir 0

)
and

Ir is the identity. In all these cases the bracket is the commutator (1.4.4). The exceptional
algebras can be constructed using, for example, the octonions. For instance, G2 is the
algebra of derivations of octonions. In fact, given any pair A1,A2 of normed division
rings (soAi are R,C, the quaternions or the octonions), there is a general construction of
a simple Lie algebra g(A1,A2) (over R) – see, for example, section 4 of [29]. The results
are summarised in Freudenthal’s Magic Square (Table 1.3). The interesting thing here
is the uniform construction of four of the five exceptional Lie algebras. In Sections 1.5.2
and 1.6.2 we give further reasons for thinking of the exceptional Lie algebras as fitting
into a sequence – a nice paradigm whenever multiple exceptional structures are present.



62 Classical algebra

To verify that (1.4.2b) truly is sl2(C), put

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
. (1.4.8)

The names A, B, C , D have no significance: since the four series start at r = 1, 2, 3, 4,
they were called A, B,C, D, respectively. Unfortunately, misfortune struck: at random
B2
∼= C2 was called orthogonal, although the affine Coxeter–Dynkin diagrams (Fig-

ure 3.2) reveal that it is actually symplectic and only accidentally looks orthogonal. In
hindsight the names of the B- and C-series really should have been switched.

For reasons we explain in Section 1.5.2, all semi-simple finite-dimensional Lie alge-
bras over C have a presentation of the following form.

Definition 1.4.5 (a) A Cartanss matrix A is an n × n matrix with integer entries ai j ,
such that:

c1. each diagonal entry aii = 2;
c2. each off-diagonal entry ai j , i �= j , is a nonpositive integer;
c3. the zeros in A are symmetric about the main diagonal (i.e. ai j = 0 iff a ji = 0); and
c4. there exists a positive diagonal matrix D such that the product AD is positive-definite

(i.e. (AD)t = AD and xt ADx > 0 for any real column vector x �= 0).

(b) Given any Cartanss matrix A, define a Lie algebrag(A) by the following presentation.
It has 3n generators ei , fi , hi , for i = 1, . . . , n, and obeys the relations

r1. [ei f j ] = δi j hi , [hi e j ] = ai j e j , [hi f j ] = −ai j f j , and [hi h j ] = 0, for all i, j ; and
r2. (ad ei )1−ai j e j = (ad fi )1−ai j f j = 0 whenever i �= j .

‘ss’ stands for ‘semi-simple’; it is standard to call these matrices A ‘Cartan matrices’, but
this can lead to terminology complications when in Section 3.3.2 we doubly generalise
Definition 1.4.5(a). As always, ad e : g→ g is defined by (ad e) f = [e f ], so if ai j = 0
then [ei e j ] = 0, while if ai j = −1 then [ei [ei e j ]] = 0. It is a theorem of Serre (1966) that
g(A) is finite-dimensional semi-simple, and any complex finite-dimensional semi-simple
Lie algebra g equals g(A) for some Cartanss matrix A.

The terms ‘generators’ and ‘basis’ are sometimes confused. Both build up the whole
algebra; the difference lies in which operations you are permitted to use. For a basis, you
are only allowed to use linear combinations (i.e. addition of vectors and multiplication
by numbers), while for generators you are also permitted multiplication of vectors (the
bracket here).‘Dimension’ refers to basis, while ‘rank’ usually refers to generators. For
instance, the (commutative associative) algebra of polynomials in one variable x is
infinite-dimensional, but the single polynomial x is enough to generate it (so its rank
is 1). Although g(A) has 3r generators, its dimension will usually be far greater.

The entries of Cartanss matrices are mostly zeros, so it is more transparent to realise
them with a graph, called the Coxeter–Dynkin diagram.13 The diagram corresponding

13 The more common name ‘Dynkin diagram’ is historically inaccurate. Coxeter was the first to introduce
these graphs, originally in the context of reflection groups, but in 1934 he applied them also to Lie
algebras. Dynkin’s involvement with them occurred over a decade later.
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A2 A1 1A B 2 G2

Fig. 1.16 The rank 2 Coxeter–Dynkin diagrams.

to matrix A has r nodes; the i th and j th nodes are connected with ai j a ji edges, and if
ai j �= a ji , we put an arrow over those edges pointing to i if ai j < a ji .

For example, the 2× 2 Cartanss matrices are(
2 −1
−1 2

)
,

(
2 0
0 2

)
,

(
2 −2
−1 2

)
,

(
2 −1
−3 2

)
.

The third and fourth matrices can be replaced by their transposes, which correspond to
isomorphic algebras. Their Coxeter–Dynkin diagrams are given in Figure 1.16.

To get a better feeling for relations r1, r2, consider a fixed i . The generators e =
ei , f = fi , h = hi obey (1.4.2b). In other words, every node in the Coxeter–Dynkin
diagram corresponds to a copy of the A1 Lie algebra. The lines connecting these nodes
tell how these r copies of A1 intertwine. For instance, the first Cartan matrix given above
corresponds to the Lie algebra A2 = sl3(C). The two A1 subalgebras that generate it
(one for each node) can be chosen to be the trace-zero matrices of the form⎛⎝ � � 0

� � 0
0 0 0

⎞⎠ ,

⎛⎝ 0 0 0
0 � �

0 � �

⎞⎠ .

The Lie algebra corresponding to a disjoint union ∪iDi of diagrams is the direct
sum ⊕igi (Di ) of algebras. Thus we may require the matrix A to be indecomposable,
or equivalently that the Coxeter–Dynkin diagram be connected, in which case the Lie
algebra g(D) will be simple. Of the four in Figure 1.16, only the second is decomposable.

Theorem 1.4.6 (a) The complete list of indecomposable Cartanss matrices, or equiv-
alently the connected Coxeter–Dynkin diagrams, is given in Figure 1.17. The series Ar ,
Br , Cr , Dr are defined for r ≥ 1, r ≥ 3, r ≥ 2, r ≥ 4, respectively.
(b) The complete list of finite-dimensional simple Lie algebras over C are g(D) for each
of the Coxeter–Dynkin diagrams in Figure 1.17.

This classification changes if the field – the choice of scalars – is changed. As always,
C is better behaved than R because every polynomial can be factorised completely over
C (we say C is algebraically closed). This implies every matrix has an eigenvector
over C, something not true over R. Over C, each simple algebra has its own sym-
bol Xr ∈ {Ar , . . . ,G2}; over R, each symbol corresponds to a number of inequivalent
algebras. See section VI.10 of [348] or chapter 8 of [214] for details. For example, ‘A1’
corresponds to three different real simple Lie algebras, namely the matrix algebras sl2(R),
sl2(C) (interpreted as a real vector space) and su2(C) ∼= so3(R). The simple Lie alge-
bra classification is known in any characteristic p > 7 (see e.g. [559]). Smaller primes
usually behave poorly, and the classification for characteristic 2 is probably hopeless.
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Fig. 1.17 The Coxeter–Dynkin diagrams of the simple Lie algebras.

Simple Lie algebras need not be finite-dimensional. An example is the Witt algebra
Witt, defined (over C) by the basis14 �n , n ∈ Z, and relations

[�m�n] = (m − n)�m+n. (1.4.9)

Using the realisation �n = −ie−inθ d
dθ , Witt is seen to be the polynomial subalgebra of the

complexification C⊗ Vect(S1) (i.e. the scalar field of Vect(S1) is changed from R to C).
Incidentally, infinite-dimensional Lie algebras need not have a Lie group: for example,
the real algebra Vect(S1) has the Lie group Diff(S1) of diffeomorphisms S1 → S1, but
its complexification C⊗ Vect(S1) has no Lie group (Section 3.1.2). The Witt algebra is
fundamental to Moonshine. We study it in Section 3.1.2.

Question 1.4.1. Let G be a finite group, and CG be its group algebra (i.e. all formal
linear combinations

∑
g agg over C). Verify that CG becomes a Lie algebra when given

the bracket [g, h] = gh − hg (extend linearly to all of CG). Identify this Lie algebra.

Question 1.4.2. Let K be any field. Find all two-dimensional Lie algebras over K, up to
(Lie algebra) isomorphism.

Question 1.4.3. Prove the Witt algebra (1.4.9) is simple.

Question 1.4.4. Prove the Lie algebraic analogue of the statement that any homomor-
phism f : G → H between simple groups is either constant or a group isomorphism.

Question 1.4.5. The nonzero quaternions a1+ bi+ cj+ dk, for a, b, c, d ∈ R, form a
Lie group by multiplication (recall that i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i
and ki = −ik = j). Find the Lie algebra.

Question 1.4.6. (a) Verify that ad [xy] = ad x ◦ ad y − ad y ◦ ad x , for any elements x, y
in a Lie algebra g.
(b) Verify that the Killing form is invariant (i.e. obeys (1.4.7b)) for any Lie algebra.

14 In order to avoid convergence complications, only finite linear combinations of basis vectors are typically
permitted in algebra. Infinite linear combinations would require taking some completion.
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(c) Let g be n-dimensional and semi-simple. Choose any x ∈ g. Verify that the coefficient
of λn−2 in the characteristic polynomial det(ad x − λI ) is proportional to κ(x |x).

Question 1.4.7. Consider the complex Lie algebra g(A), for A =
(

2 −1
−1 2

)
, defined

in Definition 1.4.5(b).
(a) Prove that a basis for g is {ei , fi , hi , [e1e2], [ f1 f2]} and thus that g is eight-
dimensional. Prove from first principles that g is simple.
(b) Verify that the following generates a Lie algebra isomorphism of g with sl3(C):

e1 �→
⎛⎝ 0 1 0

0 0 0
0 0 0

⎞⎠ , f1 �→
⎛⎝ 0 0 0

1 0 0
0 0 0

⎞⎠ , h1 �→
⎛⎝ 1 0 0

0 −1 0
0 0 0

⎞⎠ ,

e2 �→
⎛⎝ 0 0 0

0 0 1
0 0 0

⎞⎠ , f2 �→
⎛⎝ 0 0 0

0 0 0
0 1 0

⎞⎠ , h2 �→
⎛⎝ 0 0 0

0 1 0
0 0 −1

⎞⎠ .

Question 1.4.8. Show that property c3 can be safely dropped. That is, given a Z-matrix
A obeying c1, c2 and c4, show that there is a Cartan matrix A′ such that the Lie algebra
g(A) (defined as in Definition 1.4.5(b)) is isomorphic to g(A′).

Question 1.4.9. Are Vect(R) and Vect(S1) isomorphic as Lie algebras?

1.5 Representations of simple Lie algebras

The representation theory of the simple Lie algebras can be regarded as an enormous
generalisation of trigonometry. For instance, the facts that sin(nx)

sin(x) can be written as a
polynomial in cos(x) for any n ∈ Z, and that

sin(mx) sin(nx)

sin(x)
= sin((m + n)x)+ sin((m + n − 2)x)+ · · · + sin((m − n)x)

for any m, n ∈ N are both easy special cases of the theory. Representation theory is
vital to the classification and structure of simple Lie algebras, and leads to the beautiful
geometry and combinatorics of root systems. The relevance of Lie algebras to Moonshine
and conformal field theory – which is considerable – is through their representations.
The book [219] is a standard treatment of Lie representation theory; it is presented with
more of a conformal field theoretic flavour in [214].

1.5.1 Definitions and examples

Although we have learned over the past couple of centuries that commutativity can
be dropped without losing depth and usefulness, most interesting algebraic structures
obey some form of associativity. In fact, true associativity (as opposed to, for example,
anti-associativity) really simplifies the arithmetic. Given the happy accident that the
commutator [x, y] := xy − yx in any associative algebra obeys anti-associativity, it is
tempting to seek ways in which associative algebras A can ‘model’ or represent a given
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Lie algebra. That is, we would like a map ρ : g→ A that preserves the linear structure
(i.e. ρ is linear) and sends the bracket [xy] in g to the commutator [ρ(x), ρ(y)] in A.

In practise groups often appear as symmetries, and algebras as their infinitesimal gen-
erators. These symmetries often act linearly. In other words, the preferred associative
algebras are usually matrix algebras, and so we are interested in Lie algebra homomor-
phisms ρ : g→ gln . The dimension of this representation is the number n.

Completely equivalent to a representation is the notion of ‘g-module M’, as is the case
for finite groups (Section 1.1.3). A g-module is a vector space M on which g acts (on
the left) by product x .v, for x ∈ g, v ∈ M . This product must be bilinear, and must obey
[xy].v = x .(y.v)− y.(x .v). We use ‘module’ and ‘representation’ interchangeably.

Lie algebra modules behave much like finite group modules. Let ρi : g→ gl(Vi ) be
two representations of g. We define their direct sum ρ1 ⊕ ρ2 : g→ gl(V1 ⊕ V2) as usual
by

(ρ1 ⊕ ρ2)(x)(v1, v2) = (ρ1(x)(v1), ρ2(x)(v2)), ∀x ∈ g, vi ∈ Vi . (1.5.1a)

Lie algebras are special in that (like groups) we can multiply their representations: define
the tensor product representation ρ1 ⊗ ρ2 : g→ gl(V1 ⊗ V2) through

(ρ1 ⊗ ρ2)(x)(v1 ⊗ v2) = (ρ1(x)v1)⊗ v2 + v1 ⊗ (ρ2(x)v2), ∀x ∈ g1, vi ∈ Vi .

(1.5.1b)

Recall that the vector space V1 ⊗ V2 is defined to be the span of all v1 ⊗ v2, so the
value (ρ1 ⊗ ρ2)(x)(v) on generic vectors v ∈ V1 ⊗ V2 requires (1.5.1b) to be extended
linearly. It is easy to verify that (1.5.1b) defines a representation of g; the obvious but
incorrect attempt (ρ1(x)v1)⊗ (ρ2(x)v2) would lose linear dependence on x . As usual,
the dimension of ρ1 ⊕ ρ2 is dim(ρ1)+ dim(ρ2), while dim(ρ1 ⊗ ρ2) is dim(ρ1) dim(ρ2).

A rich representation theory requires in addition a notion of dual or contragredient.
Recall that the dual space V ∗ is the space of all linear functionals v∗ : V → C. Given a
g-module V , the natural module structure on V ∗ is the contragredient, defined by

(x .v∗)(u) = −v∗(x .u), ∀x ∈ g, v∗ ∈ V ∗, u ∈ V . (1.5.1c)

This defines ρ∗(x)v∗ ∈ V ∗ by its value at each u ∈ V . In terms of matrices, (1.5.1c)
amounts to choosing ρ∗(x) to be −ρ(x)t , the negative of the transpose of ρ(x). The
negative sign is needed for the Lie brackets to be preserved.

The definition of unitary representation ρ for finite groups says each ρ(g) should
be a unitary matrix. Since the exponential of a Lie algebra representation should be a
Lie group representation, we would like to say that a unitary representation ρ of a Lie
algebra should obey ρ(x)† = −ρ(x) for any x ∈ g, where ‘†’ is the adjoint (complex
conjugate-transpose), that is to say all matrices ρ(x) should be anti-self-adjoint. This
works for real Lie algebras, but not for complex ones: if ρ(x) is anti-self-adjoint, then
ρ(ix) = iρ(x) will be self-adjoint!

The correct notion of unitary representation ρ : g→ gl(V ) for complex Lie alge-
bras is that there is an anti-linear map ω : g→ g obeying ω[xy] = −[ωx, ωy], such
that ρ(x)† = ρ(ωx). ‘Anti-linear’ means ω(ax + y) = aω(x)+ ω(y). Equivalently, ρ is



Representations of simple Lie algebras 67

unitary if the complex vector space V has a Hermitian form 〈u, v〉 ∈ C on it, such that

〈u, ρ(x)v〉 = 〈ρ(ωx)u, v〉. (1.5.2)

For the case of real Lie algebras, ωx = −x works. For the complex semi-simple Lie
algebra g(A) of Definition 1.4.5, the most common choice is ωei = fi , ω fi = ei , ωhi =
hi (this is the negative of the so-called Chevalley involution).

A submodule of a g-module V is a subspace U ⊆ V obeying g.U ⊆ U . The obvious
submodules are {0} and V ; an irreducible module is one whose only submodules are
those trivial ones. Schur’s Lemma (Lemma 1.1.3) holds verbatim, provided G is replaced
with a finite-dimensional Lie algebra g, and ρ, ρ ′ are also finite-dimensional.

Finding all possible modules, even for the simple Lie algebras, is probably hopeless.
For example, all simple Lie algebras have uncountably many irreducible ones. However,
it is possible to find all of their finite-dimensional modules.

Theorem 1.5.1 Let g be a complex finite-dimensional semi-simple Lie algebra of rank
r . Then any finite-dimensional g-module is completely reducible into a direct sum of
irreducible modules. Moreover, there is a unique unitary irreducible module L(λ) for
each r-tuple λ = (λ1, . . . , λr ) of nonnegative integers, and all irreducible ones are of
that form.

Let P+ = P+(g) denote the set of all r -tuples λ of nonnegative integers; λ ∈ P+ are
called dominant integral weights. The module L(λ) is called the irreducible module
with highest weight λ. We explain how to prove Theorem 1.5.1 and construct L(λ) in
Section 1.5.3, but to get an idea of what L(λ) looks like, consider A1 from (1.4.2b). For
any λ ∈ C, define x0 �= 0 to formally obey h.x0 = λx0 and e.x0 = 0. Define inductively
xi+1 := f.xi for i = 0, 1, . . . The span of all xi , call it M(λ), is an infinite-dimensional
A1-module: the calculations h.xi+1 = h.( f.xi ) = ([h f ]+ f h).xi = (−2 f + f h).xi and
e.xi+1 = e.( f.xi ) = ([e f ]+ f e).xi = (h + f e).xi show inductively that h.xm = (λ−
2m)xm and e.xm = (λ− m + 1)m, xm−1. The linear independence of the xi follow from
these. M(λ) is called a Verma module with highest weight λ, and x0 its highest-weight
vector.

Is M(λ) unitary? Here, ω interchanges e and f , and fixes h. The calculation

〈xi , xi 〉 = 〈 f.xi−1, xi 〉 = 〈xi−1, e.xi 〉 = (λ− i + 1)〈xi−1, xi−1〉 (1.5.3)

tells us that the norm-squares 〈xi , xi 〉 and 〈xi−1, xi−1〉 can’t both be positive, if i is
sufficiently large. Thus no Verma module M(λ) is unitary.

Now specialise to λ = n ∈ N := {0, 1, 2, . . .}. Since e.xn+1 = 0 and h.xn+1 = (−n −
2)xn+1, M(n) contains a submodule with highest-weight vector xn+1, isomorphic to
M(−n − 2). xn+1 is called a singular or null vector, because by (1.5.3) it has norm-
squared 〈xn+1, xn+1〉 = 0. In other words, we could set xn+1 := 0 and still have
an A1-module – a finite-dimensional module L(n) := M(n)/M(−n − 2) with basis
{x0, x1, . . . , xn} and dimension n + 1. This basis is orthogonal and L(n) is unitary.

For example, the basis {x0, x1} of L(1) recovers the representation sl2(C) of (1.4.8).
The adjoint representation of Section 1.5.2 is L(2).
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The situation for the other simple Lie algebras Xr is similar (Section 1.5.3). On the
other hand, non-semi-simple Lie algebras have a much more complicated representa-
tion theory. They have finite-dimensional modules that aren’t completely reducible. For
example, given any finite-dimensional representation ρ : g→ gl(V ) of any solvable Lie
algebra g, a basis can be found for V such that every matrix ρ(x) will be upper-triangular
(i.e. the entries ρ(x)i j will equal 0 when i > j) – see Lie’s Theorem in section 4.1 of
[300]. This implies that any finite-dimensional irreducible module of a solvable g is one-
dimensional, and thus a finite-dimensional representation ρ will be completely reducible
iff all matrices ρ(x) are simultaneously diagonalisable. See Question 1.5.2.

1.5.2 The structure of simple Lie algebras

Representation theory is important in the structure theory of the Lie algebra itself, and
as such is central to the classification of simple Lie algebras. In particular, any Lie
algebra g is itself a g-module with action x .y := (ad x)(y) = [xy] – the so-called adjoint
representation. In this subsection we use this representation to associate a Cartan matrix
to each semi-simple g.

Consider for concreteness the g = sln(C), the Lie algebra of all trace-0 n × n matrices,
for n ≥ 2. Let h be the set of all diagonal trace-0 matrices. Then the matrices in h

commute with themselves, so h is an abelian Lie subalgebra of g. Restricting the adjoint
representation of g, we can regard g as an (n2 − 1)-dimensional h-module. Unlike most
h-modules, this one is completely reducible.

In particular, let E(ab) be the n × n matrix with entries (E(ab))i j = δaiδbj , that is with
0’s everywhere except for a ‘1’ in the ab entry. Since E(ab) E(cd) = δbc E(ad), we get

[E(ab), E(cd)] = δbc E(ad) − δad E(cb). (1.5.4a)

Now, a basis for h is Aa = E(a,a) − E(a+1,a+1) for a = 1, . . . , n − 1. Thus

[Aa, E(cd)] = (δad + δa+1,c − δac − δa+1,d )E(cd) (1.5.4b)

and the basis {E(cd)}1≤c �=d≤n ∪ {Aa}1≤a<n of g simultaneously diagonalises all endomor-
phisms ad Aa . In other words, this representation ad h decomposes into a direct sum of
one-dimensional h-modules. Define functionals α(cd) ∈ h∗ by

α(cd)(Aa) = δad + δa+1,c − δac − δa+1,d .

Then we can write

g = ⊕1≤c �=d≤nCE(cd) ⊕ span{Aa}1≤a<n = ⊕α∈�gα ⊕ h, (1.5.4c)

where � = {α(cd)}1≤c �=d≤n and gα(cd) = CE(cd). The functional α = α(cd) is called a root
because α(A) is the eigenvalue of the operator ad A on the eigenspace CE(cd) and thus
is a root of the characteristic polynomial of ad A. We avoid calling 0 (the functional for
h) a root because it behaves differently, for example g0 = h has dimension n − 1 but all
other gα have dimension 1. In Section 3.3.1 we identify 0 though as a precursor to the
so-called imaginary roots of Kac–Moody algebras.
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From the identity

(ad A)[xy] = [(ad A)x, y]+ [x, (ad A)y]

(which holds in any Lie algebra), or more concretely from (1.5.4a), we see that the
decomposition (1.5.4c) defines a grading [gα, gβ] ⊆ gα+β , for any roots α, β ∈ �, where
we put gα+β = {0} if α + β �∈ �. In fact, a little more care verifies that equality always
holds:

[gα, gβ] = gα+β, ∀α, β ∈ �. (1.5.4d)

In Question 1.5.3 you compute the Killing form (1.4.7a). We find that κ(E(ab)|E(cd)) =
0 unless (d, c) = (a, b), and that κ is positive-definite when restricted to the real (n − 1)-
dimensional space hR spanned over R by A1, . . . , An−1.

The roots α1 = α(1,2), . . . , αn−1 = α(n−1,n) form a basis � for the dual space h∗, and
are called simple roots. Explicitly, the root α(cd) ∈ � is

α(cd) =
{

αc + αc+1 + · · · + αd−1 if c < d
−αd − αd+1 − · · · − αc−1 if c > d

.

Note that for each root α = α(ab), the elements eα := E(ab), fα := E(ba), hα := Aa − Ab

span a copy of sl2. In particular, the sl2’s coming from the simple roots αi generate all
of sln(C), thanks to the grading (1.5.4d). For each αi , α j ∈ �, let

ai j = αi (hα j ) =
⎧⎨⎩

2 if i = j
−1 if |i − j | = 1
0 otherwise

.

This defines a Cartan matrix A. To verify that g(A) is sln(C), do calculations such as

[eαi [eαi eαi±1 ]] ∈ g2αi+αi±1 = {0}.
This analysis continues to hold for any semi-simple g. The space h of diagonal matrices

becomes any subalgebra of g, all of whose elements x have diagonalisable operator ad x .
Any maximal such Lie subalgebra is called a Cartan subalgebra. Since almost every
polynomial has distinct roots, almost every matrix is diagonalisable; for semi-simple g,
almost every ad x is diagonalisable. A Cartan subalgebra is necessarily abelian.

Given a Cartan subalgebra h, we get a root-space decomposition

g = ⊕α∈�gα ⊕ h (1.5.5a)

as in (1.5.4c), by simultaneously diagonalising all ad h. The α ∈ � ⊂ h∗ are called roots
as before; the root spaces gα are defined to be the simultaneous eigenspaces

gα := {x ∈ g | [hx] = α(h)x}. (1.5.5b)

The gα are always one-dimensional and define a grading as in (1.5.4d). The Killing form
κ is a nondegenerate inner-product, with κ(gα|gβ) = 0 unless β = −α. The finite set �
of roots is called the root system; the full algebra g can be reconstructed directly from�.
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Each g has uncountably many possible Cartan subalgebras. They are related by auto-
morphisms of g – in fact ‘inner automorphisms’exp(ad x) (Section 1.5.4) – so they yield
equivalent root systems �. Let N (h) denote the set of all inner automorphisms that map
the space h onto itself, and let C(h) = exp(ad h) denote the set of all inner automor-
phisms that fix h pointwise. Then C(h) is a normal subgroup of N (h), and the quotient
N (h)/C(h) of these continuous groups is a finite group called the Weyl group W . It is a
symmetry of the data of g, as we will see.

The Killing form identifies h and its dual (this is the raising/lowering of indices familiar
to any physicist, or transpose familiar to everyone else). We thus get an inner-product on
the dual space h∗, positive-definite on the real span of the roots. For increased readability,
we write (β|β ′) in place of κ(β|β ′), for β, β ′ ∈ h∗. The Weyl group W acts on h∗; in
particular it is generated by the reflections

rα(β) = β − 2
(β|α)

(α|α)
α (1.5.5c)

through each root α ∈ � (recall Question 1.2.5). The Weyl group W permutes the roots
and preserves the Killing form. Each reflection rα fixes the hyperplane orthogonal to α.
Removing those hyperplanes decomposes h∗ into connected components, one for every
element of W . Choose one at random and call it the positive chamber C .

The Z-span of the roots α ∈ � is called the root lattice of g; it is positive-definite, the
orthogonal direct sum of copies of Z and the lattices An, Dn, E6, E7, E8 of Section 1.2.1,
all appropriately scaled. The Weyl group is a group of automorphisms of the root lattice,
normal and of small index in the full automorphism group.

Let α1, . . . , αr be the roots orthogonal to the walls of the positive chamber C , with
the sign of each αi chosen so that (αi |C) is positive. Then those αi form a basis � for
h∗, called a base; the αi are called simple roots. Moreover, given any root α ∈ �, either
α or −α lies in Nα1 + · · · + Nαr – we say α is positive or negative, respectively. The
root-space decomposition (1.5.5a) can be written in the form

g = η+ ⊕ h⊕ η−, (1.5.5d)

called a triangular decomposition, where η± is the sum of the positive (negative) root
spaces. The grading implies [hh] = 0, [η±η±] ⊆ η±, [hη±] ⊆ η±. Any Lie algebra with
a triangular decomposition has Verma modules, as we will see [432].

Once we have a base �, we get a Cartan matrix A (and hence a Coxeter–Dynkin
diagram) through the formula

ai j = 2
(αi |α j )

(α j |α j )
.

For each simple root αi ∈ �, we get elements ei ∈ gαi , fi ∈ g−αi , hi ∈ h that span a
copy of sl2(C), and together these 3r elements generate all of g. In fact, these are the
elements referred to in Definition 1.4.5(b), and g is isomorphic to that Lie algebra g(A).
The cardinality r of any base is called the rank of g. Incidentally, an arrow between
vertices i, j in a diagram always points towards the simple root of smaller norm.

Thus we get a Coxeter–Dynkin diagram from g by making two arbitrary choices: a Car-
tan subalgebra h and a positive chamber C . Different choices are related by symmetries
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Table 1.4. The simple roots and fundamental weights for the classical algebras

Algebra Simple root αi Fundamental weight ωi

Ar ei − ei+1, 1 ≤ i ≤ r
∑i

j=1 e j − i
r+1

∑r+1
j=1 e j

Br ei − ei+1, 1 ≤ i < r e1 + · · · + ei , 1 ≤ i < r

2er
1
2 (e1 + · · · + er )

Cr

√
2(ei − ei+1), 1 ≤ i < r 1√

2
(e1 + · · · + ei ), 1 ≤ i ≤ r√

2er

Dr ei − ei+1, 1 ≤ i < r e1 + · · · + ei , 1 ≤ i < r − 1

er−1 + er
1
2 (e1 + e2 + · · · + er−2 + er−1 − er ), i = r − 1

1
2 (e1 + e2 + · · · + er ), i = r

(inner automorphisms) of g, and the resulting diagram is uniquely determined. This
is a powerful paradigm: to understand and classify a rigid structure, find and study a
combinatorial characterisation. Later we apply this strategy to conformal field theories.

These choices though should disturb the mathematician in us. Perhaps the presence
of the Weyl group in the following is a hint that we are doing Lie theory badly. Just
as the vector space ‘symmetry’ GLn is the artificial consequence of choosing a basis,
so is the Weyl group the bad karma caused by selecting one positive chamber over all
others. Probably an approach based on Vogel’s universal Lie algebra (Section 1.6.2) will
ultimately be preferable.

In any case, we are most interested in the Killing form and Weyl group restricted
to h∗. Given simple roots αi , define fundamental weights ωi ∈ h∗ to be the dual basis
(ωi |α j ) = δi j . They lie on the edges of the chamber C . Their Z-span is the lattice dual
to the root lattice, called the weight lattice. Denote by P+ the intersection of the weight
lattice with C , so λ ∈ P+ if and only if λ =∑r

i=1 λiωi where each Dynkin label λi lies
in N. These λ ∈ N, called dominant integral weights, are the r -tuples of Theorem 1.5.1.

Table 1.4 gives the αi and ωi for the classical algebras, using an orthonormal basis of
Rr (Rr+1 for Ar ). Nodes are labelled as in Figure 1.17 – this is the labelling used in, for
example, [328] but not by all other authors. The table makes manifest the Killing form
on h∗, and is useful in the study of affine Kac–Moody algebras (Section 3.2). More data
for the simple Lie algebras, including the exceptional ones (avoided here for reasons of
brevity), can be found in section 6.7 of [328], chapter 7 of [214], and especially pages
265–90 of [84].

The Weyl group of g = sln(C) is the symmetric group Sn and acts on h∗ by permuting
the subscripts: σ

∑
i hiωi =

∑
i hiωσ i . Figure 1.18 gives the root systems of the semi-

simple Lie algebras of rank 2. A choice of simple roots is indicated by the numerals ‘1’
and ‘2’. In Figure 1.19 a portion of the weight lattices of g = sl2(C) and g = sl3(C) are
displayed, along with simple roots and fundamental weights, and the Weyl reflections
ri = rαi through the simple roots. Note theS2

∼= {±1} symmetry of the A1 weight lattice,
and the S3 symmetry of the A2 weight lattice.
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Fig. 1.18 The root systems of the rank 2 algebras.
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Fig. 1.20 Cvitanović’s Magic Triangle.

The first hint that the exceptional Lie algebras are not especially exceptional (i.e. that
they fall into a common series) is Freudenthal’s Magic Square (Table 1.3). A second
is Cvitanović’s Magic Triangle [126], [129] (Figure 1.20). The clearest example of
a family of Lie algebras is An , where in fact the representation rings of smaller An

embed in those of the larger (the characters are the Schur polynomials in infinitely many
variables, appropriately restricted). For example, the formulae L(ω1)⊗ L(ωk) = L(ω1 +
ωk)⊕ L(ωk+1) and dim L(ωk) = ( n+1

k

)
hold for all k and An , although, for example,

L(ω2) = L(0) and L(ω3) = 0 for A1. Something similar (though more complicated)
happens for the ‘exceptional series’, i.e. the Lie algebras in the bottom row of the Magic
Triangle. For instance, the decomposition of various powers g⊗k of the adjoint modules
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into irreducibles take the same form (e.g. g⊗ g = L(0)⊕ Y2 ⊕ Y ∗2 ⊕ g⊕ X2, where for,
for example, g = G2, F4, E8, respectively we have Y2 = L(2ω1), L(2ω1), L(2ω7), Y ∗2 =
L(2ω2), L(2ω4), L(ω1),g = L(ω1), L(ω1), L(ω7) and X2 = L(3ω2), L(ω2), L(ω6)), and
the dimension of the adjoint representation is given by the uniform equation dim g =
2(5h∨ − 6)(h∨ + 1)/(h∨ + 6), where h∨ is the dual Coxeter number of Section 3.2.3.
For more examples, see [126], [129] and references therein.

Note that the exceptional series is nested:

A1 ⊂ A2 ⊂ G2 ⊂ D4 ⊂ F4 ⊂ E6 ⊂ E7 ⊂ E8.

Taking any pair h ⊂ g, the corresponding entry in the Magic Triangle is the centraliser
c of h in g, and the number there is the dimension of an irreducible module of c, unique
up to outer automorphism, defined by the decomposition of g as a c⊕ h-module. For
simplicity Figure 1.20 is watered-down by using Lie algebras in place of Lie groups
(e.g. the 0’s along the top diagonal are really finite groups) – see [129] for details. This
exceptional series is explained by Vogel’s universal Lie algebra (Section 1.6.2).

1.5.3 Weyl characters

Let g be any complex finite-dimensional semi-simple Lie algebra. The analysis of the last
subsection on the adjoint representation can be generalised to the other finite-dimensional
g-modules. Recall the notation introduced last subsection. Let �+ be the positive roots.
For each α ∈ �+, choose eα ∈ gα , fα ∈ g−α and hα ∈ h as before, and write ei , fi , hi

for these corresponding to the simple root αi ∈ �. Let ωi be the fundamental weights,
as before.

For all representations ρ : g→ gl(V ) of interest to us, in particular all of the finite-
dimensional ones, the matrices ρ(h) for h ∈ h will be simultaneously diagonalisable.
The analogue of (1.5.4c) is the weight-space decomposition

V = ⊕β∈�(ρ)Vβ, (1.5.6a)

where these functionalsβ ∈ �(ρ) ⊂ h∗ are called the weights ofρ. For example, the non-
zero weights of the adjoint representation ad g are the roots. For any finite-dimensional
ρ, the β all lie in the weight lattice Zω1 + · · · + Zωr . These weight spaces

Vβ := {v ∈ V | h.v = β(h)v ∀h ∈ h} (1.5.6b)

will no longer be one-dimensional in general – the dimension dim Vβ is called the
multiplicity of β in ρ. The grading (1.5.4d) now becomes

fαVβ ⊆ Vβ+α, eαVβ ⊆ Vβ−α. (1.5.6c)

The weight-space decomposition, or equivalently the weights β ∈ �(ρ) and their mul-
tiplicities, uniquely determines any finite-dimensional module (up to equivalence). The
Weyl group W acts on weights via (1.5.5c), and preserves multiplicities:

dim Vβ = dim Vwβ, ∀w ∈ W, β ∈ �(ρ). (1.5.6d)
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Fig. 1.21 The weights of representations of A1.

In Section 3.2.3 we learn that this innocent symmetry (1.5.6d) is a key to the appearance
of modularity in affine Kac–Moody algebras.

For an example, recall the Verma module M(λ) for sl2(C) constructed in Section 1.5.1.
Strictly speaking we should write λω1 for the highest weight λ. This representation has
weights (λ− 2 j)ω1 for j = 0, 1, 2, . . . , all with multiplicity 1. Moreover, the unitary
module L(n) = L(nω1) has weights (n − 2 j)ω1 for j = 0, 1, . . . , n, again all with mul-
tiplicity 1. The weight-spaces L(n)m are C x(n−m)/2. The Weyl group W ∼= Z2 acts here
by sending iω1 to −iω1. See Figure 1.21 for the weights of A1-representations L(3ω1)
and L(4ω1). We label weights in the same Weyl orbit with the same letter.

Given any functional λ =∑r
i=1 λiωi ∈ h∗, a highest-weight module M with highest

weight λ is a g-module generated by a nonzero vector v ∈ M obeying

eα.v = 0, ∀α ∈ �+, (1.5.7a)

hi .v = λiv, 1 ≤ i ≤ r. (1.5.7b)

Of course by linearity (1.5.7b) implies that hα.v = (λ|α)v for all positive roots α (not just
the simple ones), and more generally h.v = λ(h)v ∀h ∈ h. The module M is generated
by v in the sense that M is the span of all vectors of the form

x(1) · · · x(m).v := x(1).(· · · (x(m).v) · · · ),
as the vectors x( j) range over all of g. This v is called the highest-weight vector. The
g-modules of greatest interest to us are the highest-weight ones. The name comes from
the fact that for all μ ∈ �(λ) except μ = λ, λ− μ lies in the positive chamber C .

By the Verma module M(λ) we mean the largest or universal or free g-module with
highest weightλ. Any other g-module with highest weightλ can be constructed from this.
To make this more precise, we first define the analogue here of the group algebra CG.

As we know, a basis for g is eα, fα for all positive roots α ∈ �+, together with the
elements hi . The universal enveloping algebra U (g) is the largest associative algebra
generated by those ‖�‖ + ‖�‖ symbols eα, fα, hi , which obey all identities of the form
xy − yx = [xy] for all x, y ∈ g. More precisely, U (g) is the quotient of the free asso-
ciative algebra on those ‖�‖ + ‖�‖ symbols, with the ideal generated by all elements
xy − yx − [xy]. The starting point for the theory of U (g) is:

Theorem 1.5.2 (Poincaré – Birkhoff–Witt) A basis for U (g) is the set of monomials(∏
α

f mα

α

)(∏
α

enα
α

)(
r∏

i=1

h pi

i

)
,

for all choices of integers mα ≥ 0, nα ≥ 0, pi ≥ 0.
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The basis element corresponding to mα = nα = pi = 0 is denoted 1. The associative
algebra U (g) is not commutative, so to define the products

∏
α we must make some arbi-

trary ordering of the positive roots�+ – it doesn’t matter how we do this. The Poincaré–
Birkhoff–Witt Theorem holds for any Lie algebra (not necessarily semi-simple). See the
proof and discussion in chapter III of [348]. That those monomials span U (g) is clear;
more difficult is to show that they are linearly independent.

In Section 6.2.3 we use U (g) to construct quantum groups. Here what is significant
is that its representation theory is identical to that of g. This isn’t deep: the matrices
ρ(x), for x ∈ g, generate an associative (matrix) algebra. Thus we have replaced the
task of finding modules of the non-associative algebra g with the simpler but equiva-
lent task of finding modules of the associative (though infinite-dimensional) algebra
U (g). The relation between g and U (g) is quite analogous to that between G and
CG, except that CG is somewhat simpler due to G already having an associative
product.

Let J (λ) be the left-ideal of U (g) generated by all eα and all hi − λi 1. This means

J (λ) =
{∑

α

xαeα +
∑

i

yi (hi − λi 1) | xα, yi ∈ U (g)

}
.

The Verma module M(λ) can now be defined to be the quotient of U (g) by J (λ). It is
a (left) U (g)-module, and hence a g-module. By the Poincaré–Birkhoff–Witt Theorem,
the infinite set of elements of the form

v{m} :=
(∏

α

f mα

α

)
v, (1.5.8a)

for all integers mα ≥ 0, forms a basis for M(λ). The action of eα, fα, hi ∈ g on these
vectors v{m} is obtained using the commutation relations of g together with (1.5.7).
In particular, we find that v{m} is an eigenvector for all operators hi , and corresponds
to weight λ−∑α mαα. Thus the weight-space decomposition of the Verma module
M(λ) is

M(λ) =
⊕

α′∈Nα1+···+Nαr

M(λ)λ−α′ , (1.5.8b)

where M(λ)λ−α′ has basis consisting of all v{m} with α′ =∑
α∈�+ mαα.

The Verma module M(λ) is indecomposable but may or may not be reducible (see
Question 1.5.5). The general way to handle modules that aren’t completely reducible
is to use quotients, exactly as we did with the composition series for finite groups.
In particular, M(λ) always has a unique maximal submodule K (λ) �= M(λ), and for
it the quotient L(λ) := M(λ)/K (λ) is irreducible. More generally, every U (g)-module
with highest weight λ can be obtained by quotienting M(λ) by some submodule; the
quotient L(λ) can thus be regarded as the smallest U (g)-module with highest weight
λ, and is the module in which we are primarily interested. In particular, the finite-
dimensional irreducible modules named in Theorem 1.5.1 are precisely these quotients
L(λ).
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Fig. 1.22 The weights of modules of A2.

This maximal submodule K (λ) is the space of all null-vectors. For dominant integral
weights λ ∈ P+, it is the span of all vectors of the form(∏

α

f cα
α

)
( fi )

λi+1v,

for any choice of integers cα ∈ N, and any i .
Figure 1.22 gives the weights for A2-modules L(ω1 + ω2), L(2ω1) and L(2ω2). We

denote a weight β =∑
i βiωi by its Dynkin labels βi ∈ Z. All multiplicities in Fig-

ures 1.21 and 1.22 are 1 except for L(ω1 + ω2)(0,0), which has multiplicity 2. Incidentally,
L(ω1 + ω2) is the adjoint representation, while L(2ω1) and L(2ω2) are contragredient.

As usual, it is hard to compare modules directly: ρ and ρ ′ could be equivalent (i.e.
differ merely by a change-of-basis) but look very different. Or given some module, we
may wish to decompose it into the direct sum of irreducible modules L(λ(i)). For finite
groups, we use characters to clarify their representation theory, projecting away the
extraneous basis-dependent details; Weyl showed that something similar works here.

The character of a g-module V , with weight-space decomposition (1.5.6a), is

chV (z) :=
∑

β∈�(V )

dim Vβ eβ(z), (1.5.9a)

for any z ∈ h. If we coordinatise h and h∗ by z =∑
i zi hi and β =∑

i βiωi , we can use

β(z) =
r∑

i=1

βi zi
2

(αi |αi )
. (1.5.9b)

For example, for the A1-module L(nω1) we find

chL(nω1)(zh) =
n∑

i=0

e(n−2i)z = e(n+1) z − e−(n+1)z

ez − e−z
, (1.5.10a)

where we obtained the formula on the right by summing the geometric series. Note that
its numerator and denominator are alternating sums over the Weyl group S2 of A1. By
comparison, the character for the Verma module M(λω1) is

chM(λω1)(zh) =
∞∑

i=0

e(λ−2i)z = eλz

1− e−2z
. (1.5.10b)
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More generally, the Verma module M(λ) for g has character

chM(λ)(z) = eλ(z)∏
α∈�+ (1− e−α(z))

. (1.5.10c)

The Weyl character formula expresses the character of any finite-dimensional irre-
ducible module L(λ) for any semi-simple g as a fraction: the numerator is an alternating
sum over the Weyl group W , and the denominator is a product over positive rootsα ∈ �+.
More precisely,

chλ(z) := chL(λ)(z) = e−ρ·z
∑

w∈W det(w) ew(λ+ρ)·z∏
α∈�+ (1− e−α(z))

, (1.5.11)

where ρ =∑r
i=1 ωi here is the Weyl vector. For a proof see, for example, chapter 14

of [214]. This formula and its generalisations have profound consequences (see Sec-
tion 3.4.2).

Finite groups have only finitely many irreducible modules, while Lie algebras have
infinitely many. Otherwise their theory is quite analogous, and in particular Lie algebra
characters work as effectively as finite group characters.

Theorem 1.5.3 Let g be a finite-dimensional semi-simple Lie algebra, and M, N
two finite-dimensional modules. Then chM (z) = chN (z) for all z ∈ h iff M and N
are equivalent as g-modules. Moreover, chM⊕N (z) = chM (z)+ chN (z), chM⊗N (z) =
chM (z) chN (z) and chM∗ (z) = chM (z).

As before, the characters are also enormously simpler than the modules themselves:
for example, the smallest nontrivial representation of g = E8 is a map from C248 to
the space of 248× 248 matrices, while its character is a function C8 → C. But why is
Weyl’s definition (1.5.9a) natural? How did he come up with it?

He used the relation with groups. Consider for concreteness g = Ar . Given any rep-
resentation ρ, the map ex �→ eρ(x) is a representation of the Lie group G = SLr+1(C)
corresponding to g (the exponential eA of a matrix is defined by the usual power series,
and always converges). The trace of the matrix eρ(x) is the group character value at
ex ∈ G, so we define it to be the algebra character value at x ∈ g. Again, it suffices to
restrict to representatives of each conjugacy class of G, because the character is a class
function. Now, almost every matrix is diagonalisable (since almost any n × n matrix has
n distinct eigenvalues), and so we shouldn’t lose much by restricting x ∈ g to diagonal-
isable matrices. Hence we may take our conjugacy class representatives to be diagonal
matrices x ∈ g, i.e. to x ∈ h. So the Lie algebra character can be chosen to be a function
of z ∈ h. Finally, the trace of the matrix eρ(x) is the sum (with multiplicities) of its eigen-
values, which gives us (1.5.9a). This is the intuition behind Weyl’s definition (1.5.9a) of
character.

However, different diagonal matrices can be conjugate. For instance in A1,(
0 −1
1 0

) (
a 0
0 b

) (
0 −1
1 0

)−1

=
(

b 0
0 a

)
,
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so ezh and e−zh lie in the same G = SL2(C) conjugacy class and chM (z) = chM (−z).
This z �→ −z symmetry is the Weyl group action on the Cartan subalgebra h = Ch. Each
character chL(λ) of any semi-simple g is similarly invariant under the Weyl group of g,
thanks to (1.5.6d).

At first glance, it may seem that the Weyl character formula (1.5.9a) is not very
practical, at least for large rank. For instance, the numerator of (1.5.9a) for E8 would
involve an alternating sum over the Weyl group, which has about 700 million elements!
On the other hand, one alternating sum is very easy to compute: a determinant is an
alternating sum over the symmetric group (the Weyl group of the A-series). Since all
Weyl groups have symmetric subgroups of relatively small index, the numerators and
denominators of (1.5.9a) actually can be computed quite effectively.

It is common practise in physics to use dimensions to specify irreducible modules.
For example, the defining representation of sl3(C) is denoted 3, and its contragredient
by 3. This is a terrible habit, as many unrelated modules can have identical dimension.
For instance, sl5 has six different irreducible modules with dimension 175: namely L(λ)
withλ = (1, 2, 0, 0), (1, 1, 0, 1), (0, 3, 0, 0) and their contragredients (0,0,2,1), (1,0,1,1),
(0,0,3,0). The practise should rather be to use highest weights, not dimensions, when
labelling finite-dimensional modules.

1.5.4 Twisted #1: automorphisms and characters

A fundamental theme of this book is twisting by automorphisms. As we see later, it is
central to conformal field theory and string theory, as well as vertex operator algebras,
and is implicit in the definition of the McKay–Thompson series Tg . Its role in finite-
dimensional Lie theory is more elementary, but can be regarded as a toy model for
several of this book’s most important subsections.

Let g be any Lie algebra over C. An automorphism γ of g is an endomorphism (i.e.
an invertible linear map γ : g→ g) that obeys

γ [x, y] = [γ x, γ y], ∀x, y ∈ g.

Write Aut(g) for the group of automorphisms of g. When γ ∈ Aut(g) has order n <∞,
it is diagonalisable on the space g (why?). Hence we can write g as a direct sum

g = ⊕n−1
k=0gk (1.5.12a)

of eigenspaces of γ , where

γ x = ξ k
n x, ∀x ∈ gk (1.5.12b)

(as always, ξn denotes the root of unity exp[2π i/n]). Because γ is an automorphism,
(1.5.12a) defines a Zn-grading on g, in the sense that

[gk, g�] ⊆ gk+�. (1.5.12c)

The γ -invariant space g0 is a subalgebra of g, and the other subspaces gk are g0-modules.
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For example, let g = sl3(C) and choose the usual basis e1, e2, e12 := [e1e2], f1, f2,
f12 := [ f1 f2], h1, h2. There is an order-2 automorphism γ of sl3, corresponding to the
left–right symmetry of the A2 Coxeter–Dynkin diagram. It exchanges e1 and e2; therefore

γ e12 = [γ e1, γ e2] = [e2e1] = −e12.

Continuing in this way, we find that γ exchanges f1 and f2, as well as h1 and h2, and
sends f12 to − f12. Thus

g0 = span{e1 + e2, f1 + f2, h1 + h2},
g1 = span{e1 − e2, e12, f1 − f2, f12, h1 − h2}.

The reader can verify that the Lie subalgebra g0 is isomorphic to sl2(C), while g1 is the
irreducible five-dimensional A1-module.

Every Lie algebra has nontrivial automorphisms. For instance, let x ∈ g be such that
the operator ad x on g is nilpotent, that is there is some integer k such that

(ad x)k y := [x[x · · · [xy] · · · ]] = 0, ∀y ∈ g.

For instance, any x = ei or x = f j works when g is semi-simple. Then exp(ad x) (defined
by the usual power series expansion) is a well-defined invertible operator on g and is
in fact an automorphism. These automorphisms exp(ad x) together generate a normal
subgroup of Aut(g) called the inner automorphisms of g. The quotient of Aut(g) by the
inner automorphisms defines a group called the outer automorphisms.

For example, for g = sln(C) the inner automorphisms form a group isomorphic to
PGLn(C) ∼= GLn(C)/{C× In}, and the group of outer automorphisms is Z2 for n > 2
(and {1} for n = 2). The outer automorphism takes a matrix x ∈ sln(C) to −xt .

As an aside, the group of inner automorphisms of a simple Lie algebra over C is
always a simple group (though infinite). It could be hoped that the same would be true if
instead we consider Lie algebras over a finite field Fq . Indeed this is the case (except for
five small counterexamples, involving the fields F2 and F3). This gives rise to nine of the
infinite families of finite simple groups of Lie type (Section 1.1.2); the seven remaining
ones are various twists of these groups.

Given any two Cartan subalgebras h1, h2 of a simple algebra g, an inner automorphism
can be found mapping h1 to h2 (we say the inner automorphisms act transitively on the
set of Cartan subalgebras). Moreover, for any choice of Cartan subalgebra h, if we
take the subgroup of inner automorphisms mapping h to itself, and quotient it by the
subgroup of inner automorphisms fixing h pointwise, then we get the Weyl group of g.
This means that (modulo an inner automorphism) an automorphism of g permutes the
simple roots; conversely, this permutation uniquely determines it. In other words, the
outer automorphisms for semi-simple g are in a natural one-to-one correspondence with
the symmetries of the Coxeter–Dynkin diagram. These are the most important choices
of automorphisms, for our purposes, as the fixed-point subalgebras g0 are maximally
large.

In particular, the fixed-point subalgebra g0 for g = sl2n , when γ is taken to be the outer
automorphism permuting ei and e2n−i (the order-2 diagram symmetry), is isomorphic
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to sp2n
∼= Cn . Likewise, taking g to be (respectively) A2n+1, Dn, D4 and E6 and taking

γ to be the diagram symmetry of order 2, 2, 3 and 2, yields a fixed-point subalgebra g0

isomorphic to so2n+1 = Bn , so2n−1
∼= Bn−1, G2 and F4, respectively.

The automorphism group Aut(g) permutes the g-modules, through the formula

ργ (x) = ρ(γ x).

Sometimes ργ and ρ are isomorphic as g-modules. In this case there is a matrix A ∈
GL(V ), where V is the underlying space of ρ and ργ , such that

ρ(γ x) = A−1ρ(x)A, ∀x ∈ g.

Let us assume for convenience that ρ is irreducible. Then by Schur’s Lemma this matrix
A will be well defined up to a scalar multiple.

In fact, for g semi-simple and γ corresponding to a diagram symmetry, and ρ the
module L(λ), ργ will be the module L(γ λ), where γ acts on weights by permuting
Dynkin labels. Thus ργ ∼= ρ iff γ λ = λ. In this case there is a canonical choice of
matrix A, sending weight-space L(λ)β to weight-space L(λ)γβ , given by

em1 · · · emk .vλ �→ eγm1 · · · eγmk .vλ.

Recall Thompson’s trick: twisting the graded dimension (0.3.2) to get the McKay–
Thompson series Tg of (0.3.3). Here, this becomes the γ -twisted or twining character

chγλ (h) := trV A exp[ρ(h)] =
∑
β=γβ

tr(Aβ) exp[β(h)], (1.5.13)

where we can restrict the sum to all weights β ∈ �(L(λ)) that are fixed by γ , and where
Aβ is the restriction of A to the weight-space L(λ)β . The term ‘twining’, introduced
in [213], is short for ‘intertwining’. In terms of the basis (1.5.8a) for the weight-spaces
L(λ)β , Aβ is a permutation matrix when β is fixed by γ (only these β survive in (1.5.13)).

For example, consider first g = D4 and γ the diagram automorphism interchanging
the third and fourth nodes. The dominant weight λ = (1, 0, 0, 0) is invariant under γ .
The D4-representation L(λ) is eight-dimensional, with all weight-spaces L(λ)β having
dimension 1. It is thus easy to compute the twisted character chγλ : it has a term with coef-
ficient 1 for each γ -invariant weight β = (±1, 0, 0, 0), (0,±1, 0, 0). For a more com-
plicated example, consider D4 again, but with the order-3 automorphism (‘triality’) and
the invariant dominant weight λ = (0, 1, 0, 0): this D4-representation is 28-dimensional
but only its weights β = (0,±1, 0, 0),±(1,−1, 1, 1),±(1,−2, 1, 1), (0, 0, 0, 0) are
triality-invariant. Of those, the weight-spaces are all one-dimensional except for
L(0, 1, 0, 0)(0,0,0,0), which is four-dimensional. A basis for that weight-space consists
of

f3 f2 f4 f1 f2.v, f4 f2 f3 f1 f2.v, f4 f2 f3 f4 f2.v, f2 f3 f4 f1 f2.v.

The map A(0,0,0,0) cyclically permutes the first three basis vectors, but fixes the fourth.
Thus the twisted character has seven terms, each with coefficient 1. For similar calcula-
tions with small-rank algebras, the concrete bases given in [383] are useful.
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If we restrict to h in the Cartan subalgebra of the fixed-point subalgebra g0, the result
will lie in the character ring of g0. Thus the twisted character chγλ is a virtual character for
the fixed-point subalgebra g0, that is, it is a linear combination over Z of true characters.
However, chγλ itself need not be a true character of g0.

For example, recall the example g = D4, weight λ = (1, 0, 0, 0), and γ interchanging
nodes 3 and 4. Then the fixed-point subalgebra g0 is B3 and the twisted character chγλ
is the virtual B3 character chB

(1,0,0) − chB
(0,0,0) (Question 1.5.8(a)). On the other hand, the

other D4 example has fixed-point subalgebra G2, and the twisted character equals the
true character L(0, 1).

Surprisingly, chγλ is always a true character for the algebra g
op
0 obtained by reversing

the arrows in the diagram of g0. gop is called the orbit Lie algebra in [213].
For example, when g = D4 and λ = (1, 0, 0, 0), we find (Question 1.5.8(b)) that the

twisted character chγ(1,0,0,0) equals the character chC
(1,0,0) of the orbit Lie algebra g

op
0 .

More generally, we find:

Theorem 1.5.4 [213] Let g be semi-simple and finite-dimensional, and let γ be the
automorphism of g corresponding to a Coxeter–Dynkin diagram symmetry. Let λ ∈
P+(g) be any dominant integral weight fixed by γ . Then the twisted character chγλ
defined in (1.5.13), restricted to the Cartan subalgebra of the fixed-point subalgebra g0,
is a virtual character of g0 and a true character χλ of the orbit Lie algebra g

op
0 , for some

λ ∈ P+(gop
0 ).

A weight λ ∈ P+(A2n) fixed by the order-two diagram symmetry looks like λ =
(λ1, . . . , λn, λn, . . . , λ1); likewise, λ ∈ P+(A2n−1) fixed by the order-two diagram sym-
metry looks like λ = (λ1, . . . , λn−1, λn, λn−1, . . . , λ1); while a weight λ ∈ P+(Dn+1)
fixed by the n − 1 ↔ n diagram symmetry looks like λ = (λ1, . . . , λn, λn). The orbit
Lie algebra g

op
0 here is Cn for A2n or Dn+1, and Bn for A2n−1. In all three cases, λ has

Dynkin labels (λ1, . . . , λn).
The proof of Theorem 1.5.4 follows that of the Weyl character formula. Although

Theorem 1.5.4 is not itself important for us, the obvious generalisation holds for affine
algebras (Theorem 3.4.1), and provides a striking special case of the important orbifold
construction in string theory and vertex operator algebras.

In hindsight it is easy to see that g
op
0 is the more natural algebra: for modules, h∗ is

more relevant than h since that is where the weights live. Consider, for example, D4

again, with diagram symmetry 3 ↔ 4. Then a γ -invariant weight looks like β1ω1 +
β2ω2 + β3(ω3 + ω4). Using Table 1.4, we see that these vectors {ω1, ω2, ω3 + ω4} have
the same inner-products with each other that the fundamental weights of C3 have (up to
a global factor of 2, which is merely conventional).

Incidentally, some version of these remarks holds for finite groups. Let γ be an
automorphism of a finite group G; then γ permutes the irreducible representations
of G, ρ �→ ρ ◦ γ , as before. Choose any irreducible representation ρ ∼= ρ ◦ γ and let
A be the isomorphism. The γ -twisted character of ρ is the trace chγρ (g) := tr A ρ(g).
It won’t be a class function of G – for example, for the inner automorphism g �→
h−1gh, chh

ρ(g) = chρ(hg). But this calculation shows that it suffices to consider outer
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automorphisms. In particular, diagram automorphisms of finite reductive groups should
be interesting in this context.

1.5.5 Representations of Lie groups

We are more interested in (complex) Lie algebras, but (real) Lie groups do occasionally
arise. Once again, it is their representation theory that is of greatest interest to us.

Let G be a real finite-dimensional Lie group, and let H be a complex Hilbert space.
Let B(H) be the group of bounded linear operators with bounded inverse – boundedness
is equivalent to continuity (Section 1.3.1). A representation or module of G on H is a
homomorphism π : G → B(H) such that the map G → H, defined by g �→ π (g)v, is
continuous for every v ∈ H. We call two modules π, π ′ equivalent if there is a bounded
operator A : H→ H′, with bounded inverse, such that A−1π ′(g)A = π (g) for all g ∈ G.
The module π is unitary if each operator π (g) is unitary, that is surjective and

〈π (g)v, π (g)v′〉 = 〈v, v′〉, ∀v, v′ ∈ H.

The module π is irreducible if there is no closed nontrivial subspace V , such that
π (g)V ⊆ V for all g ∈ G. Most important are the irreducible unitary modules, and
these together form a topological space called the unitary dual Ĝ of G.

For example, all one-dimensional modules of the additive group G = R are of the

form x �→ eiαx for any α ∈ C; it will be unitary iff α ∈ R. The map x �→
(

1 x
0 1

)
is

a representation of R that is not irreducible (consider V = C× {0} ⊂ C2 = H). The
one-dimensional modules of the group G = S1 are eiθ �→ einθ for n ∈ Z, and all are
unitary. The unitary duals of R and S1 are R and Z, respectively.

Continuity is an important requirement. For instance, let {bβ}β∈B be a basis for R
treated as a vector space over Q (so B is uncountable). Then for any choice of complex
numbers αβ , the assignment

∑
β rβbβ �→

∏
β eirααβ defines a (rather chaotic) group (for

rβ ∈ Q) homomorphism R → C×. Continuity of π is needed in order to obtain from π

a module of the Lie algebra g of G.
Call a vector v ∈ H smooth if g �→ π (g)v is a smooth function from G to H. The

space H∞ of smooth vectors forms a dense G-invariant subspace of H; if H is finite-
dimensional, H∞ equals H. Recall that the Lie algebra g is the tangent space TeG, and
the exponential map exp sends g to G. For any v ∈ H∞ and x ∈ g, define

δπ (x)v = d

dt

(
π (etx )v

)
t=0 . (1.5.14)

This defines a g-module onH∞ called the derived module. Of course, a (complex) module
of the real Lie algebra g lifts to a complex module of its complexification gC := C⊗R g.

The theory simplifies enormously if G is compact (for simplicity we also assume
connectivity). Then G is a subgroup of the unitary group Un(C). Moreover:

Theorem 1.5.5 (Peter–Weyl) Let G be a connected compact finite-dimensional Lie
group. Any module π of G is equivalent to a unitary one, is completely reducible, and
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δπ is a module of the reductive Lie algebra gC = C⊗ g. Any irreducible G-module is
finite-dimensional, and the derived module for gC is also irreducible as a Lie algebra
module.

The unitary dual Ĝ is thus a countable discrete space. The key to proving Theorem 1.5.5
is that it is possible to average (integrate) over the group. This G-invariant Haar measure
plays the role here of the ubiquitous

∑
g∈G in the finite group theory. For example, a

G-invariant Hermitian form on H is obtained by averaging any given Hermitian form
over its translates – compactness of G is needed to show that integral converges. See,
for example, chapter II.9 of [92] for an elementary proof of Theorem 1.5.5.

If G is simply-connected as well as compact and connected, then any irreducible
module of gC lifts to one of G. Otherwise, G = G̃/Z , where G̃ is the universal cover
and Z is some discrete subgroup of G̃ (Theorem 1.4.3), and a gC-module will lift to one
on G iff, once it is lifted to G̃, it is trivial on Z . If it isn’t trivial on Z , it would be a
projective representation for G (Section 3.1.1).

An elementary example of this is provided by the modules of R ∼= S̃1 and S1 ∼= R/Z,
given earlier. More interesting is to compare the universal cover SU2(C) of the group

SO3(R) ∼= SU2(C)/

〈(−1 0
0 −1

)〉
. Their complexified Lie algebra gC is sl2(C), whose

irreducible modules correspond to highest weights λ ∈ P+ = {0, ω1, 2ω1, . . .}. Each of
these exponentiates to an irreducible module of SU2(C). In particular, the SU2(C)-module
corresponding to highest weight λ = nω1 can be realised as the space of homogeneous
polynomials p(z1, z2) of degree n, with SU2(C) action given by(

a b
c d

)
· p(z1, z2) = p(az1 + cz2, bz1 + dz2). (1.5.15)

This will be a module of SO3(R) iff

(−1 0
0 −1

)
acts trivially, i.e. iff p(z1, z2) =

p(−z1,−z2) for all p, i.e. iff n is even. Physicists call n/2 the ‘spin’, and the mod-
ules with n odd are called ‘spinors’. See, for example, chapter 20 of [214] for more
on this. More generally, the dominant weight λ =∑n−1

i=1 λiωi ∈ P+ gives a module of
PSLn(C) ∼= SLn(C)/Zn iff n divides

∑
iλi .

Let G be any compact simply-connected connected Lie group, and g its (real) Lie alge-
bra. The simply-connected connected complex Lie group associated with the complex
Lie algebra gC is called the complexification GC of G. For example, the complexification
of SUn(C) is SLn(C). Weyl’s unitary trick says that the irreducible modules of G, g, gC

and GC are all in natural bijection, using the derived module, complexification of the
algebra module, ‘exponentiation’ of an algebra module to a simply-connected Lie group
and restriction. Depending on the context, it is sometimes more convenient to look at the
modules of G, gC or GC.

All of the irreducible modules of a compact connected Lie group G are constructed
explicitly by the Borel–Weil Theorem. It suffices of course to consider simply-connected
G. Take G = SUn(C) for concreteness. Let B be the upper-triangular matrices in GC =
SLn(C). It is called the Borel subgroup and is a maximal solvable subgroup in GC. Given
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a dominant integral weight λ =∑
λiωi , put t = λ1 + 2λ2 + · · · + (n − 1)λn−1 and

μ =
(

n−1∑
i=1

λi − 1

n
t,

n−1∑
i=2

λi − 1

n
t, . . . , λn−1 − 1

n
t,−1

n
t

)
∈ Rn.

Let �(λ) be the space of holomorphic functions f (g) on GC (regarded as a complex
manifold) such that

f (gb) = bμ1
1 · · · bμn

n f (g), ∀g ∈ GC, b =
⎛⎝ b1 ∗ ∗

0
. . . ∗

0 0 bn

⎞⎠ . (1.5.16)

Then this is a GC-module (namely, one induced from a one-dimensional B-module),
and it is easy to identify its weights since the maximal torus T (the exponentiation of
the Cartan subalgebra h of gC, i.e. the diagonal determinant-1 matrices) is contained in
B: we find that �(λ) is the contragredient of the highest-weight representation V (λ).
From this picture, the Weyl character formula arises through fixed-point formulae for
the GC-action on GC/B [83].

The geometry of this construction is quite pretty (see e.g. section 23.3 of [219] or [83]).
Geometrically, the space GC/B ∼= G/T is a flag variety whose points are the various
choices 0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn of subspaces, where dim Vi = i . Then �(λ) is the
space of holomorphic sections of a line bundle GC ×B C on GC/B naturally associated
with λ. Similar comments apply to any other G. Something similar happens for the
Virasoro algebra, where the flag manifold is replaced by the moduli space of curves
(Section 3.1.2).

As discussed in Section 1.1.3, the natural analogue of the group algebra for a Lie
group G is the space L2(G) of functions f : G → C, with convolution product. The
main importance of these spaces of functions is that they are natural G-modules, using
right translation: (h. f )(g) := f (gh). For example, consider G = S1, so f ∈ L2(S1) can
be regarded as a function f (x) with period 2π . We find that L2(S1) decomposes into the
infinite direct sum

L2(S1) = ⊕n∈ZV (n)

of irreducible one-dimensional modules V (n). More precisely, L2(S1) will be a com-
pletion of this algebraic direct sum. This means that any ‘vector’ f ∈ L2(S1) can be
written as

∑
n∈Z fn where each summand fn ∈ V (n). Now, V (n) consists of those func-

tions fn on which eiy ∈ S1 acts as (eiy . fn)(x) := fn(x + y) = eiyn fn(x) – in other words
fn(x) = cn einx for some complex number cn . Using the orthogonality of the einx , we
can explicitly construct the projection operator L2(S1) → V (n), and we find

cn = 1

2π

∫ 2π

0
f (x) e−inx dx,

which we recognise as the Fourier transform f̂ (n) of f .
More generally, for arbitrary compact G, the Peter–Weyl Theorem tells us that the

matrix entries π (g)i j of the irreducible representations of G are dense in the space
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of functions on G. More precisely, the Fourier transform associates with a function
f ∈ L2(G), a matrix-valued function f̂ (π ) on the unitary dual Ĝ, defined by

f̂ (π ) =
∫

G
f (g)π (g) dg,

where as usual we’re using the Haar measure on G, normalised so that the volume of G
is 1. Then for any f ∈ L2(G),

f (g) =
∑
π∈Ĝ

dimπ tr
(

f̂ (π )π (g)†
)
.

As is familiar from the abelian case, the convolution product is sent to the ordinary
(matrix) product: f̂1 ∗ f2(π ) = f̂1(π ) f̂2(π ). We also get a unitary isomorphism between
L2(G) and what we can call L2(Ĝ) (the space of these matrix-valued f̂ ), called the
Plancherel formula: ∫

G
| f (g)|2 dg =

∑
π∈Ĝ

(dimπ ) tr
(

f̂ (π ) f̂ (π )†
)
.

The representation theory of noncompact Lie groups is completely different. This can
already be seen for the additive group G = R, which has a continuum of irreducible
unitary modules (namely eiαx for all α ∈ R). The unitary dual Ĝ can involve both con-
tinuous and discrete parts, and can have a wild topology. Once again, a unitary module
is completely reducible into irreducible unitary ones, but for a general noncompact G
a direct integral (Section 1.3.1), rather than a direct sum, will be needed, and for wild
groups the uniqueness of this decomposition will be lost.

Any connected Lie group is (up to central extensions) the semi-direct product of
a solvable Lie group with a semi-simple Lie group – this is the Levi decomposition
(see e.g. appendix B in [348]). The representation theory of solvable groups is quite
well understood, using the orbit method. It relates the unitary dual to certain orbits of
G on the dual g∗ of the Lie algebra g of G (see [346] for an excellent introduction,
although section 2 of [563] may be more accessible to physicists). Physically, this is just
geometric quantisation: G is a symmetry of a physical system; the classical phase space
is a symplectic manifold on which G acts (these are essentially the coadjoint orbits);
quantum mechanically we would like this to correspond to a Hilbert space carrying a
unitary representation of G. Geometric quantisation tries to do for quantum theories what
the symplectic geometry of Hamiltonian mechanics does for classical ones: provide an
elegant and natural mathematical formulation.

The effect of the semi-direct product on the unitary dual is also under control. How-
ever, the representation theory of the (noncompact real) semi-simple groups is poorly
understood. See [349] for a modern review.

For example, the Heisenberg group H consisting of all matrices⎛⎝ 1 a b
0 1 c
0 0 1

⎞⎠ , ∀a, b, c ∈ R,
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is simply-connected and solvable. Its irreducible unitary modules are given in Theo-
rem 2.4.2 below, and we can naturally identify its unitary dual with the xy-plane in R3

together with the z-axis. On the other hand, SL2(R) is a semi-simple noncompact group,
topologically equivalent to the interior of a solid torus; its unitary irreducible modules
are described in Section 2.4.1, and its unitary dual consists of three one-dimensional
families (the principal, spherical principal, and complementary series) and a countable
family (the discrete series).

Question 1.5.1. Interpret the trigonometric identities given at the beginning of this sec-
tion, in terms of the character theory of A1.

Question 1.5.2. Classify all two-dimensional representations of the abelian Lie algebra
g = C2. Which of these are completely reducible?

Question 1.5.3. Let g = sln(C). From first principles, compute the Killing form
κ(Aa|Ecd ), κ(Aa|Ab), κ(Eab|Ecd ).

Question 1.5.4. In effect, Question 1.4.7 defines a representation g of sl3(C).
(a) Find the weight-space decomposition of this representation of sl3(C), as well as the
corresponding character.
(b) Find the root-space decomposition of sl3(C), i.e. the weight-space decomposition of
the adjoint representation of sl3(C). Also compute the character.

Question 1.5.5. Recall the Verma modules M(λ) for A1 constructed in Section 1.5.1.
(a) Prove that each M(λ) is indecomposable (i.e. cannot be written as the direct sum of
two submodules).
(b) When λ �∈ N, prove that M(λ) is irreducible. Thus L(λ) = M(λ) for these λ.
(c) Whenλ = n ∈ N, find all submodules. Verify that the maximal one has highest weight
vector xn+1.

Question 1.5.6. Let g = sl2(C).
(a) Set C := e f + f e + 1

2 h2 ∈ U (g). Show that C is in the centre of U (g). (C is called
the quadratic Casimir of g; there is an analogue for any semi-simple g.)
(b) Given any irreducible module π of g, prove that Z := 2π ( f )π (e)+ π (h)+ 1

2π (h)2

is a scalar multiple of the identity.

Question 1.5.7. Let G = SU(2). Then g = sl2(C) (which is the complexification of the
Lie algebra of G) acts naturally on the space C∞(G) of all smooth complex-valued
functions on G. In particular, g can be identified as the space of all left-invariant first-
order differential operators. Prove that U (g) can be identified with the space of all
left-invariant finite-order differential operators on C∞(G).

Question 1.5.8. (a) Verify the claim in Section 1.5.4 that g = D4 with L(1, 0, 0, 0) has
twisted character restricting to B3-character ch(1,0,0) − ch(0,0,0) and C3-character ch(1,0,0).
(b) Repeat this calculation for g = A4 and λ = (1, 0, 0, 1).

Question 1.5.9. (a) In Section 1.5.5 we gave a module of SU2(C) using degree n poly-
nomials. Find the derived module for the Lie algebra sl2(C), find its weight-spaces, and
prove the equivalence with L(nω).
(b) Work out the Borel–Weil representation �(λ) for SU2(C), for any λ = nω1, n ∈ N.
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1.6 Category theory

The only difficulty in understanding categories is in realising that they have no real
content. They’re just a language, highly abstract like the more familiar set theory, but
one that can be both natural and suggestive. It tries to deflect some of our instinctive
infatuation with objects (nouns), to the mathematically more fruitful one with structure-
preserving maps between objects (verbs).

Category theory is intended as a universal language of mathematics, so all concepts
should be translated into it. Much as beavers, who as a species hate the sound of running
water, plaster a creek with mud and sticks until alas that cursed tinkle stops, so do category
theorists devise elaborate and obscure definitions in an attempt to capture a concept that
to most of us seemed perfectly clear before they got to it. But at least sometimes this
works admirably – for instance no one can be immune to the charm of treating knot
invariants with braided monoidal categories.

1.6.1 General philosophy

A category C consists of two kinds of things. One are the objects, and the other are the
arrows (or morphisms). An arrow, written f : A → B, has an initial and a final object
(A and B, respectively). We let Hom(A, B) denote all arrows A → B in the category.
Arrows f, g can be composed to yield a new arrow f ◦ g, if the final object of g equals
the initial object of f . Maps between categories are called functors if they take each
object (respectively, arrow) of one to the objects (respectively, arrows) of the other, and
preserve composition. A gentle introduction to the mathematics of categories is [370];
the standard reference is [397].

The standard category is called Set, where the ‘objects’ are sets, and the arrows from A
to B are functions f : A → B. Many algebraic categories are of that form, with objects
being sets with certain structure, and the arrows being structure-preserving maps. A
typical example is Vect, where the objects are vector spaces over some fixed field and
the arrows are linear maps. A rather trivial example of a functor F :Vect→ Set sends a
vector space to its underlying set – F simply ‘forgets’ the vector space structure on V
and ignores the fact that the arrows f in Vect are linear.

Geometric categories often employ the idea of cobordism. For instance, fix a manifold
M ; let the objects be points p ∈ M , and the arrows p → q be homotopy equivalence
classes of paths σ in M from p to q . Composition of arrows is given by (1.2.5). This cat-
egory is called the fundamental groupoid of M – note that Hom(p, p) = π1(M, p).
A higher-dimensional example is called Riem: its objects are disjoint unions of
(parametrised) circles S1, and the arrows are (conformal equivalence classes of) cobor-
disms, that is (Riemann) surfaces whose boundaries are those circles. Composition of
arrows in Riem amounts to sewing the surfaces along the appropriate boundary circles.
A final example of a geometric category is Braid: its objects are any finite number
(possibly 0) of ‘hooks’, Hom(m, n) is empty unless m = n, in which case the arrows are
the n-braids β ∈ Bn . Such categories, where arrows consist of equivalence classes, are
called quotient categories [397].
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Fig. 1.23 The definition of product and sum.

For a baby example of the translation of the familiar into category theory, consider
the usual definition of a one-to-one function: f (x) = f (y) only when x = y. Category
theory replaces this with the right cancellation law: call an arrow f : A → B ‘one-to-
one’ if for any object C and any arrows g, h ∈ Hom(C, A), f ◦ g = f ◦ h implies g = h.
The reader can easily verify that in Set this agrees with the usual definition. What does
this redefinition gain us? It certainly doesn’t seem any simpler. But it does change the
focus from the argument of f to the global functional behaviour of f , and a change
of perspective can never be bad. It allows us to transport the idea of one-to-one-ness to
arbitrary categories. For instance, in the category Riem, all arrows are ‘one-to-one’.

Or consider the notion of product. In category theory, we say that the triple (P, a, b) is a
product of objects A, B if a : P → A and b : P → B are arrows, and if for any f : C →
A, g : C → B, there is a unique arrow h : C → P such that f = a ◦ h and g = b ◦ h. See
the left diagram in Figure 1.23. This notion unifies several constructions (each of which is
the ‘product’ in an appropriately chosen category): Cartesian product of sets; intersection
of sets; multiplication of numbers; the logical operator ‘and’; direct product; infimum
in a partially ordered set; etc. Sum can be defined similarly, by reversing the orientation
of all the arrows in the diagram for product (see the right diagram in Figure 1.23).
This unifies the constructions of disjoint union, ‘or’, addition, tensor product, direct
sum, supremum, etc. Of course the specific construction of sum and product depends
sensitively on the category. For example, in the category Ab-Group, where objects are
abelian groups and arrows are homomorphisms, the sum of the cyclic groups Z2 and
Z3 is their direct product Z2 × Z3

∼= Z6, while in the category Group, where objects
are groups and arrows homomorphisms, the direct sum of Z2 and Z3 is PSL2(Z)! See
Question 1.6.3.

This generality of course comes with a price: it can wash away all of the endearing
special features of a favourite theory or structure. There certainly are contexts where,
for example, all human beings should be considered equal, but there are other contexts
where the given human is none other than your mother and must be treated as such.

1.6.2 Braided monoidal categories

This book tries to identify the natural context for Moonshine. Categories more than
sets provide the most appealing language for this context. The starting point for this
formulation is braided monoidal categories. Standard references include chapter 1 of
[534], chapter 1 of [32] and chapter XIII of [338].
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Fig. 1.24 The associativity pentagon.

Let us try to translate the vector space tensor product into category theoretic language.
The result, called a monoidal or tensor category, was obtained by MacLane (1963).

Let Ui , Vi , i = 1, 2, 3, be vector spaces, and choose any linear maps f j : U j → U j+1,
g j : Vj → Vj+1, j = 1, 2. Then the composition of the tensor product maps f j ⊗
g j : U j ⊗ Vj → U j+1 ⊗ Vj+1 is given by ( f2 ⊗ g2) ◦ ( f1 ⊗ g1) = ( f2 ◦ f1)⊗ (g2 ◦ g1).
This is exactly the same as saying that ‘⊗’ is a functor between the categories Vect× Vect
and Vect, where the Cartesian product of categories has the obvious meaning.

The tensor product should be associative up to isomorphism: for any objects U, V,W ,
there should be an isomorphism aU V W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ) (called the
associativity constraint). It should obey a consistency condition coming from the iso-
morphism ((U ⊗ V )⊗W )⊗ X ∼= U ⊗ (V ⊗ (W ⊗ X )); that is, there are two ways of
computing that isomorphism in terms of associativity, and the resulting isomorphisms
should agree:

(idV ⊗ aV W X ) ◦ aU,V⊗W,X ◦ (aU V W ⊗ idX ) = aU,V,W⊗X ◦ aU⊗V,W,X . (1.6.1)

This is called the pentagon axiom, thanks to its depiction in Figure 1.24.
Moreover, tensoring any object V with the one-dimensional vector space (call it ‘1’)

must give back V , so there are isomorphisms lV : 1⊗ V → V , rV : V ⊗ 1 → V . These
are required to be consistent with the associativity constraint, by requiring the triangle
axiom

rV ⊗ idW = (idV ⊗ lW ) ◦ aV 1W . (1.6.2)

A monoidal category [397] is any category C possessing such a functor ⊗, with unit 1
and invertible arrows lV , rV , aU V W satisfying (1.6.1) and (1.6.2). Of course Vect with
tensor products is monoidal, as is Set with disjoint union. Braid is monoidal; the tensor
product of an n-braid with an m-braid is the (n + m)-braid obtained by placing the two
braids side-by-side. There are numerous other examples. The word ‘monoidal’ comes
from ‘monoid’, meaning a group-like structure without inverses.

MacLane proved two things. The first is coherence, which says that (1.6.1) and (1.6.2)
are sufficient. Remarkably, any other consistency condition we may care to write down
will be redundant. To give a random example, the identity involving a’s, l’s and r ’s
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Fig. 1.25 The hexagon equation.

saying that the isomorphisms coming from U ⊗ ((V ⊗W )⊗ (1⊗ (X ⊗ Y ))) ∼= (U ⊗
(V ⊗W ))⊗ (X ⊗ Y ) must agree can be derived from the pentagon and the triangle.

Secondly, MacLane proved that any monoidal category C is (monoidally) equivalent
to a monoidal category Cstrict where the associativity constraints are identity maps. Such
a monoidal category is called strict; in it we can drop all associativity constraints as
trivial, and with them all braces ‘(’ and ‘)’ in our tensor products.

Now that we’ve handled associativity of the tensor product, let’s turn next to com-
mutativity. We can’t expect anything like MacLane’s strictness to apply here – although
the vector spaces U ⊗ V and V ⊗U are naturally isomorphic, they are not equal. We
proceed though in the same way.

For any objects U, V , we have an invertible arrow (called a commutativity constraint)
cU V : U ⊗ V → V ⊗U . Some natural relations are

cU ′V ′ ◦ ( f ⊗ g) = (g ⊗ f ) ◦ cU V , (1.6.3a)

cV U ◦ cU V = idU⊗V , (1.6.3b)

cU,V⊗W = cU V ◦ cU W . (1.6.3c)

The isomorphism (U ⊗ V )⊗W ∼= (W ⊗U )⊗ V , or more explicitly the equation

(cU W ⊗ idV ) ◦ (idU ⊗ cV W ) = cU⊗V,W , (1.6.3d)

is called the hexagon axiom (see Figure 1.25).
Any monoidal category with commutativity constraints cU V obeying (1.6.3) is called

a symmetric monoidal category (MacLane, 1965). Vect is an example. Another is the
categories Rep g or Rep G of finite-dimensional g- or G-modules, for a Lie algebra g (or
Lie group G), with tensor product. In fact, Tannaka–Krein duality states that a monoidal
category with both product and sum, that looks like Rep G (e.g. it has a unit object
1, a contragredient, and all objects decompose intoa sum of simple ones), is Rep G
for a unique such group G. See, for example, section 9.4 of [398] for details and a
generalisation.

In 1985, Joyal and Street [321] suggested to drop the symmetry condition (1.6.3b).
The resulting categories they call braided monoidal, for reasons that will be clear shortly.
They also pointed out that there is a very convenient graphical calculus in such categories,
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Fig. 1.26 The graphical calculus.
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Fig. 1.27 The hexagon axiom revisited.

Fig. 1.28 The commutativity constraint c43 in Braid.

which elegantly keeps track of all relations. Namely, write arrows vertically and tensor
products horizontally. Composition is given by vertical concatenation. The left-most
diagram in Figure 1.26 represents the arrow f ⊗ g where f ∈ Hom(U, V ) and g ∈
Hom(W, X ), while the commutativity constraint cU V is depicted as in the right-most.
The associativity constraint aABC is ignored as we identify it with the identity. So we
label strands with objects, which can change labels only at a box (‘coupon’). The hexagon
axiom takes the form of Figure 1.27, which we recognise as two equivalent braids. One
immediate consequence is that the category Braid described last subsection is braided
monoidal, provided we define cmn as in Figure 1.28.

In terms of the graphical calculus, MacLane’s symmetry condition (1.6.3b) would
permit us to slip one strand through another, reducing the content of a braid (i.e. some
combination of commutativity constraints) to that of its underlying permutation.

Joyal–Street also proved coherence for braided monoidal categories, that is equations
(1.6.2a), (1.6.2c) and (1.6.3) are sufficient to establish the well-definedness of other
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Fig. 1.29 The Yang–Baxter equation.

isomorphisms involving associativity and commutativity. For a famous example, U ⊗
V ⊗W ∼= W ⊗ V ⊗U yields the Yang–Baxter equation

(cV W ⊗ idU )◦(idV ⊗ cU W )◦(cU V ⊗ idW ) = (idW ⊗ cU V )◦(cU W ⊗ idV )◦(idU ⊗ cV W ),
(1.6.4)

which corresponds graphically to the braid equivalence of Figure 1.29 (compare Fig-
ure 1.2). We return to the Yang–Baxter equation in Section 6.2.3.

It’s not a coincidence that Figure 1.29 is a braid equivalence – it must be, since Braid
is a braided monoidal category. Conversely, any braid equivalence yields an equation
holding in any braided monoidal category. Braid is the least-common divisor of all
braided monoidal categories, the one with commutativity constraints and nothing else,
obeying the minimum possible relations – it is universal or free. More precisely:

Theorem 1.6.1 [321] Let C be any (strict) braided monoidal category, and A any
object in it. Then there exists a unique braided monoidal functor F : Braid → C with
F(1) = A and F(c1,1) = cA,A.

A ‘braided monoidal’ functor is one preserving the braided monoidal structure in the
obvious way. The object ‘1’ of Braid denotes one hook, which generates via tensoring
all other objects in Braid. This important theorem relates topology and algebra.

The simplest example (in fact too simple) of such universality is the freeness of Z: given
any group G with one generator g, there is a unique group homomorphism ϕ : Z → G
sending 1 ∈ Z to g ∈ G. Any such G defines an invariant for Z: the integer n is assigned
the invariant ϕ(n). We call it an invariant, because equal integers must get assigned
the same G-value, even if they look different (e.g. 3 and 2− 1+ 2 superficially look
different, but will be assigned the same G-value ϕ(3) = ϕ(2− 1+ 2)). For example,
the invariant ϕ for G = Z2 = {[0], [1]} assigns [0] to any even n ∈ Z and [1] to any
odd n. Because ϕ is structure-preserving, computing this invariant is relatively easy. Of
course integer invariants are not terribly exciting, because it is so easy to determine if
two integer expressions (involving arbitrary sums and subtractions) are equal.

Likewise, the universality of Braid means that, given any braided monoidal category
C and any braid β ∈ Bn , we get a braid-invariant F(β) ∈ HomC(A⊗n , A⊗n ). Here the
object A⊗n of C means A ⊗ · · · ⊗ A (n times). It is not so difficult to determine directly
whether two braids are the same (ambient isotopic) – for example, by ‘combing the braid’
(see e.g. pages 24–5 of [59]) – and thus these braid invariants are also not intrinsically
valuable. But they are a stepping stone to something that is.
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Fig. 1.30 A typical ribbon in Hom ((+,−), (−,−,+,+)).

Fig. 1.31 Evaluation, coevaluation and twist.

Theorem 1.6.1 implies that, in any braided monoidal category C, the braid group Bn

acts on both HomC(U⊗n , V ) and HomC(U, V⊗n ) and the pure braid group Pn acts on
both HomC(U1 ⊗ · · · ⊗Un, V ) and HomC(U, V1 ⊗ · · · ⊗ Vn) (why?). Thus the groups
governing braided monoidal categories are the braid groups Bn and Pn , while those of
symmetric monoidal categories are the symmetric groups Sn (hence their names).

If we continue with our project of categorising tensor product, we will be rewarded. We
can introduce the notion of duals A∗ of objects (in the sense of the dual vector space), duals
of arrows f ∗ (the analogue of transpose of matrices), the evaluation map A∗ ⊗ A → 1
(the evaluation f (a) of a functional f ∈ A∗ on a vector a ∈ A), coevaluation 1 →
A∗ ⊗ A (let bi be a basis of vector space A and b∗i ∈ A∗ the dual basis, then the element∑

i b∗i ⊗ bi ∈ A∗ ⊗ A is independent of the choice of basis). These obey the obvious
relations (see, for example, chapter 1 of [534]) and the result is called a ribbon category;
in place of the formal definition it suffices to give the universal ribbon category.

The objects of Ribbon are ordered n-tuples A = (a1, . . . , an) of signs, ai = ±, for
n ≥ 0 (n = 0 is the empty object ∅). Hom(A, B) consists of isotopy classes of knotted
linked twisted oriented strips, called ribbons. A strip can start at position i on the top
(or position j on the bottom) only if ai = +1 (or b j = −1, respectively); similarly, it
can end at i or j only if ai = −1 or b j = +1 – see Figure 1.30. Braiding is as before.
The dual of (a1, . . . , an) is (−an, . . . ,−a1), and the dual of a ribbon is given by rotation
through 180◦. The evaluation and coevaluation are given in Figure 1.31.

We use ribbons (strips) rather than links (strands) because the 360◦ turn depicted on
the right of Figure 1.31 cannot be straightened without introducing a twist in the strip.
Up to isotopy, a ribbon can be thought of as braided knotted strands (the spine of each
strip) together with an integer assigned to each strand (saying how much that strip is
twisted).
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As on the left of Figure 1.26, it is very useful to colour ribbons. Let S be any set; by
RibbonS we mean the category with objects ((A1, s1), . . . , (Ak, sk)) for Ai ∈ S, si ∈ {±}.
The arrows are as before except now they are coloured with A ∈ S; if the ribbon has
endpoints, they must be of the form (A, s) and (A, s ′) where the signs s, s ′ are as
before.

Two isotopic ribbons define an identity holding in any ribbon category:

Theorem 1.6.2 [473] Let C be a (strict) ribbon category and let S be the set of
its objects. Then there exists a unique ribbon functor F : RibbonS → C such that
F(A,+) = A and F(A,−) = A∗.

By the usual arguments, any ribbon category C gives us (isotopy) invariants of braided
knotted ribbons. The most interesting (because it is the simplest) special case con-
cerns any ribbon R ∈ HomRibbon(∅, ∅) without ends: the invariant F(R) will lie in
HomC(F(∅), F(∅)). This gives an invariant for any link, by drawing its ribbon with zero
twist for each strip. Of course some ribbon categories give a complete link invariant
(why?).

Unlike for braids, we have no effective way to determine if linked ribbons or links
are ambient isotopic (but see [283]), so these invariants are topologically interesting.
For example, they permit an easy proof that the trefoil and its mirror image are not
ambient isotopic, something that took a clever argument from Dehn to do originally. The
functoriality property of F makes them relatively easy to compute.

It is far from obvious that there are any nontrivial calculationally practical examples
of ribbon categories, independent of Ribbon. Fortunately though there are: although
Ribbon is geometric, there are several ribbon categories coming from algebra (namely
representation theory). In fact, there are now so many that the main value of Theorem 1.6.2
is organisational, conceptually gathering together a plethora of link invariants that have
been accumulating since the 1980s, starting with the Jones polynomial.

This treatment can and should be pushed much further, starting with the direct sum
U ⊕ V of objects. See [534], [398], [353] for more details and developments. The
refinement called modular category is the one of greatest relevance to the mathematics
and physics related to Moonshine. We return to categories in Section 4.4.1.

Vogel [547] defined a monoidal category D′, which looks like the category of modules
of a Lie algebra. He calls it the Universal Lie algebra, since given any simple Lie
(super)algebra g, there is a unique functor fromD′ to the category of g-modules satisfying
certain natural properties. Roughly, Vogel assigns each such Lie (super)algebra a different
point on the projective plane, from which much of its data can easily be computed. For
example, the A-series corresponds to the projective coordinates [n, 2,−2], while the
exceptional series (the bottom row of Figure 1.20) falls on the line [−2, a + 4, 2a + 4].
The ‘universal decompositions’ and dimension formulae described in Section 1.5.2 arise
because they hold for D′.

Question 1.6.1. A variety is a solution set to a system of polynomial equations over some
ring R. Interpret this as a functor from a category of rings to a category of sets.



Elementary algebraic number theory 95

Question 1.6.2. (a) Find what (if anything) product and sum (in the sense of Figure 1.23)
are in the category Set.
(b) Same question for the category Riem.

Question 1.6.3. (a) Show that in the category Ab-Group (where objects are abelian
groups and arrows are group homomorphisms), sum and product are identical.
(b) Show that in the category Group, product is direct product, but sum is not.

Question 1.6.4. Let L be any lattice (Section 1.2.1). Define a category whose objects are
elements of L , with Hom(v, v) = C and Hom(v,w) = {0} whenever v �= w. Composi-
tion of arrows is multiplication. Complete the construction of a ribbon category for this
category, where the braiding cv,w is eiv·w.

1.7 Elementary algebraic number theory

The coefficients of the McKay–Thompson series Tg are always integers, as are the fusion
multiplicitiesN c

ab in RCFT. But non-integers often lurk in the shadows, secretly watching
their more arrogant brethren the integers strut. One of the consequences of their presence
can be the existence of certain Galois symmetries. The Galois theory of cyclotomic fields
plays a background role in Moonshine, much as it does for finite groups and modular
forms. We sketch the basics in this section.

Galois automorphisms are a generalisation of complex conjugation. If in your prob-
lem complex conjugation seems interesting, then there is a good chance other Galois
automorphisms will play a role.

1.7.1 Algebraic numbers

Euler and Lagrange were the first to show that ‘weird’ (complex) numbers could tell us
about the integers, but it took Gauss (c. 1831) to do this with care and subtlety. For an
example of this idea, suppose we are interested in the equation n = a2 + b2. Consider
for concreteness 5 = 22 + 12. We can write this as 5 = (2+ i)(2− i), so we are led
to consider complex numbers of the form a + bi, for a, b ∈ Z. These are now called
‘Gaussian integers’.

Fact Let p ∈ Z be any prime number. Then p factorises (i.e. is composite) over the
Gaussian integers iff p = 2 or p ≡ 1 (mod 4).

Now suppose p �≡ 3 (mod 4) is prime, and factorise it p = (a + bi)(c + di). Then
p2 = (a2 + b2)(c2 + d2), so a2 + b2 = c2 + d2 = p. Conversely, suppose p = a2 + b2,
then p = (a + bi)(a − bi). Thus:

Consequence15 Let p ∈ Z be any prime number. Then p = a2 + b2 for a, b ∈ Z iff
p = 2 or p ≡ 1 (mod 4).

15 This result was first stated by Fermat in one of his infamous margin notes (another is discussed shortly),
and was finally proved a century later by Euler. For a one-line proof see Question 1.7.1.
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Now we can answer the question: when can n be written as a sum of two squares n =
a2 + b2? Write out the prime decomposition n =∏

pap . Then n = a2 + b2 has a solution
iff ap is even for every p ≡ 3 (mod 4). For instance, 60 = 22 · 31 · 51 cannot be written
as the sum of two squares, but 90 = 21 · 32 · 51 = {(1+ i)3(1+ 2i)}{(1− i)3(1− 2i)}
can (e.g. 90 = (−3)2 + 92). In fact we can find and count all solutions.

More generally, let K be any subfield of C (usually we take K = Q) and α1, . . . , αn

be any complex numbers. We discussed ‘field’ in Section 1.1.1. By L = K(α1, . . . , αn)
we mean the smallest field containing K and all αi . In other words, L consists of all
rational functions poly/poly of the αi , with coefficients in K. Then L can be thought of
as a vector space over K; write [L : K] ≤ ∞ for the dimension of that vector space. We
say L is an extension of the base-field K of degree [L : K]. The most interesting case is
when the degree [L : K] is finite. In this case we can find a single number α ∈ L such
that L = K[α], where as always we write R[x] for all polynomials in x with coefficients
in R. Then α will be a zero of a monic polynomial p(x) ∈ K[x] and of degree [L : K],
called the minimal polynomial of α. Such α are called algebraic, and such extensions
K[α] are called finite. The finite extensions most relevant for this book are discussed in
Section 1.7.3.

Numbers of course arise throughout science in their role as coordinates; less appre-
ciated is that observing the specific kinds of numbers that arise can provide profound
structural information. This is very much how algebraic number theory impinges on the
areas considered in this book. For an elementary example, recall that Euclid’s books
are filled with geometric constructions, particularly those involving straight-edge (i.e.
drawing the line passing through two points) and compass (i.e. drawing the circle with
given centre and radius). The reader can discover for herself how to trisect line seg-
ments and double the area of a square, using only straight-edge and compass. But some
problems weren’t solved back then: for example, how to trisect an angle or double the
volume of a cube. To solve these, consider coordinates. Suppose we start with N points
(xi , yi ). We can construct the line joining any two of those points, and the circle centred
at some (xi , yi ) with some radius |(x j , y j )− (xk, yk)|; we can construct new points only
as intersections of these lines and circles. Now, if we let K denote the field generated
from Q by all 2N coordinates xi , yi , then the equations of our lines and circles will
have coefficients belonging to K. The coordinates of the intersection of any two such
lines will lie in K, while that of the intersection of a line with a circle, or of two cir-
cles, will lie in an extension L1 of K of degree [L1 : K] = 2. Continuing in this way,
we see that any construction, no matter how involved, can only construct points whose
coordinates lie in some extension L of K of degree a power of 2. Now, given an angle
θ , defined by points (0,0), (1,0) and (cos(θ ), sin(θ )), trisecting θ means constructing the
point (cos(θ/3), sin(θ/3)). Butα = cos(θ/3) obeys cos(θ ) = 4α3 − 3α, i.e. cos(θ/3) lies
(generically) in a degree-3 extension of K = Q[cos(θ ), sin(θ )]. Thus we cannot trisect
that angle, using only a compass and straight-edge, for most θ (e.g. θ = 60◦).

The degree [L : K] is a (rather crude) invariant of the field extension L ⊃ K. We
have just seen the power of this simple invariant; in the next subsection we refine it
considerably, giving it a group structure.
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Consider ‘Fermat’s Last Theorem’, which asserts that there are no positive integer
solutions to the equation xn + yn = zn , for n > 2. It is tempting, as Fermat himself
probably did, to factorise this into

n−1∏
j=0

(
x + ξ

2 j+1
2n y

) = zn,

where ξm = exp[2π i/m], and to try to show from this that each a + ξ
2 j+1
2n b has an

‘integral’ nth root, if x = a, y = b, z = c is an integral solution. We return to Fermat’s
Last Theorem in Section 2.2.1.

These examples should give the reader some appreciation for the value of using non-
integers to study integers, and also provide some impetus for extending the tools and
notions of high school number theory (primes, divisibility, etc.) to complex numbers.
The result is algebraic number theory. A classic introduction is [282]; the book [515] is
filled with concrete examples.

Euler worked with numbers of the form �+ m
√

n, for �,m, n ∈ Z, and regarded them
as generalised integers, carrying over (without proof) their divisibility laws, etc. from
the usual integers. However, it was soon learned that care must be taken. For a simple
example, the factorisation 2 = (n −√n2 − 2)(n +√n2 − 2) holds for all n ∈ Z, so what
should the ‘unique prime factorisation’ of 2 be?

The basic theory was developed in the nineteenth century, by Kummer, Dedekind,
Frobenius and others. Take the base field K to be Q for convenience, and fix a finite
extension L = Q[α]. Any z ∈ L is algebraic, i.e. satisfies am zm + am−1zm−1 + · · · +
a0 = 0 for some ai ∈ Z (not all zero). The L-integers are those numbers z ∈ L that satisfy
zm + am−1zm−1 + · · · + a0 = 0 for some ai ∈ Z (i.e. am = 1). The sum and products of
L-integers are L-integers, and so we call the set RL of all these L-integers the ring
of integers. For example, when L = Q,Q[i],Q[

√
2] and Q[

√
5], respectively, the ring

of integers are Z,Z+ iZ,Z+√2Z, and

{(m + n
√

5)/2 |m, n ∈ Z, m − n ∈ 2Z},
respectively. All elements of L are quotients of L-integers, just as all r ∈ Q equal a/b
for a, b ∈ Z.

What should prime mean here? The obvious guess would be any number γ ∈ RL

whose only divisors β are trivial, i.e. the only β ∈ RL with γ /β ∈ RL are units or γ
times units. Units are the analogue here of ±1: an L-integer u is a unit iff u−1 is also an
L-integer. The only problem with this definition of prime is that unique factorisation is
usually lost. For example, in L = Q[

√−26], the L-integers are Z+√−26Z; we have
the equation

33 = 27 = (1+√−26)(1−√−26)

and yet, as the reader can easily verify, both 3 and 1±√−26 are primes by our definition.
Incidentally, most finite extensions L have infinitely many L-units (e.g. (1+√2)n is a
unit of Q[

√
2] for any n ∈ Z).
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The correct definition of prime (Dedekind, 1871) is a gem. Replace the single L-
integer γ ∈ RL with the set of all multiples RLγ =: (γ ) of that number. This washes
away the irritating ambiguity due to units. Any subset I ⊆ RL closed under RL-linear
combinations (i.e. for which

∑
ai zi ∈ I for all zi ∈ I and ai ∈ RL) is called an ideal of

RL. For example, (γ ) is always an ideal, though for typical rings RL, most ideals won’t
have a single generator. Consider any ideals I, J of RL. By the product of ideals we
mean

I J =
{∑

ai bi | ai ∈ I, bi ∈ J
}
.

A prime ideal is defined to be any nonzero ideal P �= RL such that I J = P for ideals
I, J only if I = RL or J = RL. In RL, any prime ideal P is maximal (and conversely):
the only ideals I satisfying P ⊂ I ⊂ RL are I = P, RL. Although unique factorisation
usually won’t hold for L-integers, it always holds for ideals: any nonzero ideal I of the
ring RL of integers can be written uniquely as a product of prime ideals.

For example, the prime ideals of Z are (p) for p prime, and this reduces to the
usual unique factorisation of integers. The unique factorisation of the ideal (27) in
the field Q[

√−26] is (27) = P3
+P3

−, where P± := (3, 1±√−26) = (3) ∩ (1±√−26).
Thus neither (3) = P+P− nor (1±√−26) = P3

± are prime.
We are thus led to picture L-integers as ideals of the ring RL. In fact the name ‘ideal’,

now standard in algebra, was chosen because it corresponds to an ideal – as opposed to
true – number.

This reinterpretation of integers as ideals has a striking geometric parallel. We are
taught to study a geometric space X through the functions f ∈ C[X ] that live on it.
In this language, what should play the role of a point x ∈ X? Given any point a ∈ X ,
we can evaluate these functions f (x) at x = a. Algebraically, this corresponds to a
homomorphism C[X ] → C. Those homomorphisms, via their kernels, are essentially
in one-to-one correspondence with ideals of the ring C[X ], and thus we should identify
points x ∈ X with certain ideals in C[X ]. Looking at concrete examples such as X = Cn ,
we find that ideals correspond more generally to submanifolds (subvarieties) in X , and
that maximal ideals correspond to points. This unexpected and deep connection between
number theory and geometry is a great illustration of the effectiveness of abstract algebra.

1.7.2 Galois

Evariste Galois was a brilliantly original French mathematician. Born shortly before
Napoleon’s ill-fated invasion of Russia, he died shortly before the ill-fated 1832 uprising
in Paris. His last words: ‘Don’t cry, I need all my courage to die at 20’.

Galois grew up in a time and place confused and excited by revolution. He was known
to say ‘if only I were sure that a body would be enough to incite the people to revolt,
I would offer mine’. On 2 May 1832, after frustration over failure in love and failure
to convince the Paris mathematical establishment of the depth of his ideas, he made
his decision. A duel was arranged with a friend, but only his friend’s gun would be
loaded. Galois died the day after that bullet perforated his intestine. At his funeral it was
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discovered that a famous general had also just died, and the revolutionaries decided to
use the general’s death rather than Galois’ as a pretext for an armed uprising. A few days
later the streets of Paris were blocked by barricades, but not because of Galois’ sacrifice:
his death had been pointless [529].16

Galois theory in its most general form is the study of relations between objects defined
implicitly by some conditions.17 For example, the objects could be the solutions to a given
differential equation. Or the objects could be the different points π−1(p) ⊂ Y sitting
above a given point p ∈ X in a cover π : Y → X . In the most familiar incarnation of
Galois theory, the objects are the zeros of certain polynomials.

Look at complex conjugation: wz = w z and w + z = w + z. Also, x = x for any
x ∈ R. So we can say that z �→ z is a structure-preserving map C → C (called an auto-
morphism of C) fixing the reals. We say that complex conjugation belongs to the Galois
group Gal(C/R) of C over R; apart from complex conjugation, it contains only the
identity automorphism.

A way of thinking about the automorphism z is that it says that, as far as the real
numbers are concerned, i and −i are identical twins. Algebra alone can’t tell that i is in
the upper half-plane, or that going from 1 to i is going counterclockwise about 0, while
1 to −i is clockwise.

Let L be any field containing Q. The Galois group Gal(L/Q) is the set of all
automorphisms=symmetries of L that fix all rationals.

For example, L = Q[
√

5] is the field of all numbers of the form a + b
√

5, where
a, b ∈ Q. Let’s try to find its Galois group. Let σ ∈ Gal(F/Q). Then σ (a + b

√
5) =

σ (a)+ σ (b)σ (
√

5) = a + b σ (
√

5), so once we know what σ does to
√

5, we know
everything about σ . But 5 = σ (5) = σ (

√
52) = (σ (

√
5))2, so σ (

√
5) = ±√5 and again

there are precisely two possible Galois automorphisms here (one is the identity). As far
as the arithmetic of Q is concerned, ±√5 are interchangeable.

Consider more generally any extension L of the base field K of degree n = [L :
K] <∞. As mentioned in the last subsection, these are always of the form L = K[α],
where α is the root of a monic polynomial p(x) of degree n with coefficients in K.
This means any z ∈ L is expressible as a polynomial in α with coefficients in K, of
degree < n. Hence, any automorphism σ ∈ Gal(L/K) is uniquely specified by the value
σ (α) ∈ L. Since σ (p(x)) = p(σ x), σ must send α to one of the n roots of p(x). Thus
‖Gal(L/K)‖ ≤ [L : K]. Extensions L for which Gal(L/K) is maximally large (i.e. of
order n) are the most interesting and are called Galois: they are the extensions for which
all roots of p(x) are in L.

16 Apparently this treatment of Galois’ life has been disputed. But surely the main purposes of history are for
supplying a context and motivation, for its sheer entertainment value, and for drawing Lofty Morals. And
at least when they are successful, it is probably wisest if neither motivation nor entertainment nor Morality
be investigated too closely. . .

17 This is the dynamic point of view, but the reader should be warned that there is an alternate interpretation.
Abstracting out the more structural side of Galois theory, many authors regard Galois theory as ultimately
a contravariant functorial correspondence associating to some objects A, B, . . . (e.g. groups) other objects
K , L , . . . (e.g. fields invariant under the group action) in such a way that A⊂B corresponds to K⊃L.
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Let L ⊃ K be a finite Galois extension, and write G := Gal(L/K). The classical
Galois Theorem sets up a natural bijection between fields J, L ⊃ J ⊃ K, and subgroups
H of G. In particular, to the field J associate the subgroup H = Gal(L/J), and to the
subgroup H associate the space (in fact field) J = LH of all elements z ∈ L fixed by all
σ ∈ H . Then [J : K] = ‖G/H‖, and the extension J ⊃ K is Galois iff H is normal in
G, in which case Gal(J/K) ∼= G/H .

We saw earlier the power of the numerical invariant [L : K]. We should think
of Gal(L/K) as a group-valued refinement of degree. For an application, suppose
for contradiction that we have a general formula for the zeros of any polynomial
an xn + an−1xn−1 + · · · + a0 of degree n. For n = 2 we have the quadratic formula
(which involves square-roots), and we’ve all seen the formula for n = 3 (which
involves square-roots and cube-roots). Does there exist a formula for any n, involv-
ing taking arbitrary nested roots of rational expressions in the coefficients ai ? Let
K = Q[a0, . . . , an, ξ1, ξ2, . . .] – we include in K all roots of unity so that all exten-
sions below will be Galois. Then the first kth root we come to in our formula will move
us into a Galois extension K1 of K, with Galois group Gal(K1/K) ∼= Zk . If the hypothet-
ical formula involves a second radical, requiring us to take say an �th root of a rational
expression in K1, then this takes us into a Galois extension K2 of K1, with Galois group
Gal(K2/K1) ∼= Z� – that is, Gal(K2/K) is an extension of the cyclic group Z� by Zk .
Continuing in this way until all roots in our hypothetical formula are exhausted, we would
find that the zeros of the general degree-n polynomial would lie in a Galois extension L
of K whose Galois group is obtained by repeatedly extending by cyclic groups. Such a
group is called solvable (Section 1.1.3) for this reason. It is easy to see that Gal(L/K)
here is in fact the symmetric group Sn , and that Sn is solvable iff n ≤ 4 (recall that A5

is simple!). Thus a general formula for the roots of a general polynomial of degree n,
involving nested radicals, can exist only for n ≤ 4.

Every area of mathematics has a Galois-type theory. In geometry, for instance, covers
f : M → N of a fixed manifold N are in one-to-one correspondence with subgroups
H ∼= π1(M) of the fundamental group G := π1(N ); γ ∈ π1(N ) belongs to H iff γ lifts
to a closed loop in M . When the subgroup H is normal, G/H is naturally isomorphic
to the group of all homeomorphisms α : M → M satisfying f ◦ α = f (these α are
called covering transformations). See the beautiful book [363]. The question ‘What is
the Galois theory for von Neumann algebras?’ led Jones to subfactor theory M ⊃ N – for
instance, his index [M : N ] ∈ R ∪ {∞} plays the role of the degree [L : K] ∈ Z ∪ {∞}.
Just as the degree [L : K] can be refined into the Galois group Gal(L/K), the Jones index
can be refined into a topological field theory (see Section 6.2.6).

Galois theory is reminiscent, at least qualitatively, of Gödel’s Incompleteness Theo-
rem. In mathematics we generally start with a model (e.g. Euclidean geometry or the
natural numbers) that we try to capture implicitly by an axiomatic system. Gödel’s
Theorem tells us that there are infinitely many different models compatible with the
given axiomatic system, regardless of how many axioms we include. Each of these
is obtained by realising in incompatible ways the undefined terms of the axiomatic
system.
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Of course it is the model and not the axiomatic system in which most mathematics
occurs. For example, we don’t criticise Wiles’ work on Fermat’s Last Theorem on the
grounds that his proof assumes N is embedded in C, even though this transcendental
interpretation of N surely is not a consequence of Peano’s axioms (the axiomatic system
describing the natural numbers). Likewise, [459] gives a simple statement about N; it is
easy to prove using standard arguments involving R, but neither it nor its negation can
be proved using only Peano’s axioms.

1.7.3 Cyclotomic fields

We are primarily interested in a simple class of numbers: those in the cyclotomic exten-
sions of Q. These are the fields Q[ξn], consisting of all polynomials amξ

m
n + am−1ξ

m−1
n +

· · · + a0 in the root of unity ξn := exp[2π i/n], for all ai ∈ Q. For instance, cos(πr ),
sin(πr ) and

√
r are cyclotomic numbers for any r ∈ Q. In particular,

cos
(

2π
m

n

)
= ξm

n + ξ−m
n

2
, (1.7.1a)

sin
(

2π
m

n

)
= ξm

n − ξ−m
n

2i
, (1.7.1b)

√
p = cp

p−1∑
n=0

ξ n2

p , (1.7.1c)

for any nonzero m, n ∈ Z, and any odd prime p, where cp = 1 or −i for p ≡ ±1
(mod 4), respectively ((1.7.1c) is called a Gauss sum). Only countably many complex
numbers are cyclotomic, i.e. lie in ∪∞n=1Q[ξn], so almost every complex number is not
cyclotomic.

Cyclotomic numbers are the numbers in the character tables of finite groups, the values
of Lie group characters at elements of finite order, the values of quantum-dimensions in
RCFT, and the matrix entries in the SL2(Z)-representation coming from rational VOAs.
The theory is deeply entwined with that of modular forms and functions, as we see
in Section 2.3.3. The key property of cyclotomic numbers, which accounts for their
ubiquity, has to do with their Galois groups.

As usual, an automorphism σ ∈ Gal(Q[ξn]/Q) is uniquely determined by what it does
to the generator ξn . Since ξ n

n = 1, we see that σ must send ξn to another nth root of 1, ξ�n
say; in fact σ (ξn) must be another ‘primitive’ nth root of 1, that is �must be coprime to n.
So Gal(Q[ξn]/Q) is isomorphic to the multiplicative group Z×n of numbers between 1 and
n coprime to n. To see what σ does to some z ∈ Q[ξn], we find the � ∈ Z×n corresponding
to σ and write z as a Q-polynomial p(ξn): then σ z = p(ξ�n ). For example,

σ
(
cos(2πa/n)

) = σ

(
ξ a

n + ξ−a
n

2

)
= ξ a�

n + ξ−a�
n

2
= cos(2πa�/n).

The defining property of cyclotomic numbers is a central result of classical number
theory:
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Theorem 1.7.1 (Kronecker–Weber) Let L be a finite Galois extension of Q with
abelian Galois group Gal(L/Q). Then L is contained in some cyclotomic extension
Q[ξn].

The proof is quite complicated. Conversely, any cyclotomic extension Q[ξn] of Q is
finite Galois and has abelian Galois group. In fact, the degree of Q[ξn] is given by
Euler’s φ-function:

[Q[ξn] : Q] = φ(n) := n
∏
p|n

p − 1

p
.

The minimal polynomial of ξn is called the nth cyclotomic polynomial; a manifestly
integral construction for it is given in [64]. Its zeros are ξ i

n for each i coprime to n.
The ring of cyclotomic integers RQ[ξn ] is simply Z[ξn]. For all n �= 1, 2, 4, Q[ξn] has

infinitely many units: for example, (ξ i
n − 1)/(ξn − 1) is a unit of infinite order, for any

1 < i < n − 1 coprime to n. Unique factorisation at the level of numbers (as opposed to
ideals, which always holds) fails in all but 30 cyclotomic fields (Q[ξ23] is the first field
for which it fails).

Kronecker’s Jungentraum (‘dream of youth’) [546] proposes that just as all abelian
extensions of Q are obtained by adjoining to Q the values of a transcendental function
(namely exp[2π iz]) at certain algebraic numbers (namely z ∈ Q), something similar
should happen for abelian extensions of other finite extensions K. This is still far from
understood in general, but we know that any abelian extension of K = Q[

√−d] is
contained in an extension of K by a root of unity, square-roots of integers, and the
j-function (0.1.8) evaluated at (a +√b)/2 for some a, b ∈ Z.

Question 1.7.1. [572] (a) Show that a prime p ≡ 3 (mod 4) cannot be written in the form
a2 + b2 for integers a, b.
(b) Let p ≡ 1 (mod 4) be prime. Define

Sp = {(x, y, z) ∈ Z3 | x > 0, y > 0, z > 0, x2 + 4yz = p}.
Verify that for any (x, y, z) ∈ Sp, both x �= y − z and x �= 2y. Define a map L on Sp by

L(x, y, z) =
⎧⎨⎩

(x + 2z, z, y − x − z) if x < y − z
(2y − x, y, x − y + z) if y − z < x < 2p
(x − 2y, x − y + z, y) if x > 2y

Verify that L is an involution (i.e. L(L(x, y, z)) = (x, y, z)), and that L has exactly one
fixed point. Show that this implies that the cardinality ‖Sp‖ must be odd, and thus that
the involution (x, y, z) �→ (x, z, y) must also have a fixed point. Conclude that any prime
p ≡ 1 (mod 4) has a solution p = a2 + b2.

Question 1.7.2. Suppose we are given two points P, Q in the plane, distance 1 apart.
Determine whether it is possible, using only a straight-edge and compass, to construct a
point R collinear with P and Q such that the distance between P and R is 2−1/3. What
if the distance between P and R is instead required to be 2−1/4?
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Question 1.7.3. Let K = Q[21/3]. Show that Gal(K/Q) is trivial.

Question 1.7.4. Let L = Q[
√

2,
√

3].
(a) Find an α such that L = Q[α].
(b) Find Gal(L/Q). Is L Galois?
(c) For each subgroup H of Gal(Q[

√
2,
√

3]/Q), find the corresponding extension J.

Question 1.7.5. (a) Show that the values ch(g) of characters are always cyclotomic inte-
gers. After reading this section, can you add anything to your answer to Question 1.1.5?
(b) Let G be any finite group. Prove: G is simple iff for all irreducible characters ch of
G, ch(a) = ch(e) only when a = e.

Question 1.7.6. Find all rational numbers r such that cos(2πr ) ∈ Q.
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Modular stuff

This chapter introduces modular functions and forms, a subject central to the remainder
of the book. Some earlier parts of this chapter are beautifully covered in [414].

Section 2.1 supplies the underlying geometry, but can be skimmed on a first reading.
In spite of this background material, the theory of modular forms and functions discussed
in Sections 2.2 and 2.3 will probably appear as somewhat arbitrary to the uninitiated
reader. Section 2.4.1 addresses some of this apparent artificiality, by developing the
broader context of automorphic forms.

As explained in the introductory chapter, Moonshine involves unexpected occurrences
of modularity. The modularity of Moonshine functions follows from Zhu’s Theorem
(Theorem 5.3.8). However, the complexity of the underlying mathematics begs the ques-
tion: Can modularity be established in a more elementary way? The simplest example of
Moonshine involves theta functions. Hence we explore the limits and potentials of four
classical strategies for proving the modularity of theta functions: Poisson summation,
Dirichlet series, the heat kernel and representations of Heisenberg groups (Sections 2.2.3,
2.3.1, 2.3.4 and 2.4.2, respectively).

Moonshine has really only been worked out in genus 1,1 but conformal field theory
tells us that there is an analogue for every genus (Section 6.3.1). It will be much more
complicated, but it will be more rewarding because the number theoretic side is much less
developed. In other words, we will find traces of, for example, the Monster in automorphic
forms for the higher mapping class groups �g,n and Sp2n(Z). We include Sections 2.1.4
and 2.3.5 in anticipation of this most natural and significant future development.

2.1 The underlying geometry

2.1.1 The hyperbolic plane

The birth of hyperbolic geometry is one of the most remarkable and instructive in the
history of mathematics. Euclid’s Fifth Postulate2 was noticeably more complicated than
the other axioms, looking more like a theorem than a self-evident proposal. Indeed, its
converse was a theorem proved by Euclid. For example, compare it with Euclid’s First

1 There are two possible meanings of ‘genus’ in a phrase like ‘higher genus Moonshine’. Ordinary
Monstrous Moonshine is genus 0 in the sense that the j-function is a Hauptmodul, i.e. a function on a
sphere. It is genus 1 in the sense that the argument τ of j parametrises different tori. In this paragraph we
are anticipating Moonshine’s extension to higher genus in this second sense.

2 Also called the Parallel Postulate, it is equivalent to the simpler statement: Given any line L and a point p
not on L, there is a unique line parallel to L that passes through p.
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Fig. 2.1 Several parallel lines in the hyperbolic plane H.

Postulate: There is a unique line passing through any two points, or Euclid’s Fourth
Postulate: All right angles are equal. For centuries, starting with Archimedes, math-
ematicians (both professional and amateur) tried to prove it from the other axioms.
Finally in 1868 Beltrami established its independence by finding models for the hyper-
bolic plane, proving the conjecture of Gauss, Bolyai and Lobachevski as to the existence
(i.e. internal consistency) of this non-Euclidean geometry. (More precisely, Beltrami’s
models reduced the question of the consistency of hyperbolic geometry to the consis-
tency of Euclidean geometry.) Far from being an artificial construct, we’ve now learned
that hyperbolic geometry is far more important than Euclidean geometry, at least in two
and three dimensions.

In place of the Euclidean plane R2, consider the upper half-plane

H := {(x, y) ∈ R2 | y > 0} = {τ ∈ C | Im τ > 0}. (2.1.1)

The angles between intersecting curves in H are measured as in R2 (namely, take the
angle between the two Euclidean lines tangent to the curves at the point of intersection).
However, the hyperbolic lines consist of all half-lines perpendicular to the x-axis, together
with all semi-circles with centre on the x-axis (see Figure 2.1). All axioms of Euclidean
geometry hold here (e.g. between any two distinct points there passes a unique line),
except for the Parallel Postulate: there are always infinitely many hyperbolic lines parallel
to a given hyperbolic line L and passing through a given point p �∈ L .

It is possible to prove from the other axioms that the remaining possibility (namely
that there are no lines parallel to line L through point p) cannot occur. Nevertheless,
there is a second kind of non-Euclidean geometry, called spherical geometry. In place of
R2 we have the sphere S2, and lines now are great circles. If we identify antipodal points
±p ∈ S2, then we get a geometry satisfying most of Euclid’s axioms. The exceptions are
that we can’t speak unambiguously of the portion of a line between two points, and the
Parallel Postulate (there are no parallel lines). Spherical geometry is older than Euclid –
we needed it, for example, in our study of the night sky.

In Euclidean R2 the metric (infinitesimal length-squared) is given by ds2 = dx2 + dy2,
and so the arc-length of a curve γ : [0, 1] → R2 is

length(γ ) :=
∫ 1

0

√
γ ′1(t)2 + γ ′2(t)2 dt.

On H the arc-length of a curve γ : [0, 1] → H becomes

lengthH :=
∫ 1

0

√
γ ′1(t)2 + γ ′2(t)2

γ2(t)
dt =

∫ 1

0

|γ ′(t)|
Im γ (t)

dt. (2.1.2)
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Define the hyperbolic distance distH(p, q) between two points p, q ∈ H to be the infimum
infγ lengthH(γ ) of the arc-lengths of all paths γ between p = γ (0) and q = γ (1). Just
as the shortest path (geodesic) between two points in Euclidean geometry is the line
segment between them, so in hyperbolic geometry it is the hyperbolic line segment.

The ‘boundary’ for R2 can be thought of as the circular horizon of ‘points at infinity’,
parametrised by angle, and every line touches this circle at two points. Likewise, the
boundary of H can be thought of as the circle R ∪ {∞}, and again every line touches
this circle at two points. This circle will appear as the infinitely distant horizon to beings
living in H. The point ‘∞’ here is often written i∞ to emphasise its relation to the
vertical lines. The difference is that in R2, all parallel lines share the same two points at
infinity; in H, parallel lines share at most one point at infinity.

The most compelling model of the hyperbolic plane is perhaps the Poincaré disc

D := {z ∈ C | |z| < 1}.
Here, angles are again as in R2, but lines consist of diameters of the boundary circle
|z| = 1, together with the intersection of D with circles hitting the boundary |z| = 1 at
right angles. The metric is |dz|2/(1− |z|2)2, and the ‘points at infinity’ form the boundary
circle |z| = 1. The equivalence with H is given by the isometry τ �→ τ−i

τ+i taking H onto D.
It may seem strange that both models H and D of hyperbolic geometry have a distorted

notion of length and line. Is there any way to realise hyperbolic geometry, using a surface
embedded in R3 inheriting the usual metric and angle of R3? Hilbert proved the answer
is No: There is no complete surface in R3 with constant negative curvature (see e.g.
page 51 of [527]). Nash’s Theorem (footnote 5 in chapter 1) implies though that there
will be an embedding of the hyperbolic plane in some Rn (n = 5 works). ‘Complete’
means that any Cauchy sequence converges, so there aren’t any points missing. To find
the curvature of a surface at a point, first find the smallest and largest circles hugging
the surface the closest at that point; the curvature is the inverse product r−1 R−1 of their
radii. For example, a sphere of radius r has constant curvature r−2. A surface with 0
curvature is (locally) flat in one direction – for example, a cylinder or torus has constant
curvature 0. The small and large circles for a surface � with negative curvature have
centres on opposite sides of the tangent plane Tp�, like a saddle curving up from front
to back, but curving down from side to side. The hyperbolic plane has constant negative
curvature (Theorem 2.1.4(b)).

What is the significance of the word ‘hyperbolic’ here? It was chosen by Klein, partly
because sinh and cosh appear in many formulae, but also because of another model
of H. Consider the hyperboloid x2

1 + x2
2 − x2

3 = −1, embedded in Minkowski space
R2,1 (so it is a Minkowski sphere of radius i). It consists of two sheets; let’s focus on
the upper one (where x3 ≥ 1). As a surface in R2,1, it inherits its notions of angle and
metric ds2 = dx2

1 + dx2
2 − dx2

3 – in particular this induced geometry is equivalent to
the hyperbolic plane. The lines here consist of the intersection of planes through the
origin with the upper sheet (when those intersections are non-empty). Stereographic
projection from the point (0, 0,−1) conformally maps the upper sheet onto the Poincaré
disc D× {0}.
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Just as the area of a region R ⊂ R2 is given by the double integral
∫

R dx dy, so is the
hyperbolic area of region R ⊂ H given by

areaH(R) :=
∫

R

dx dy

y2
. (2.1.3a)

This just says that the hyperbolic area of the infinitesimal rectangle [x, x + dx]× [y, y +
dy] is the product dx

y × dy
y of hyperbolic length with hyperbolic height. This area formula

fails for macroscopic rectangles, if for no other reason than that there are no macroscopic
rectangles! In fact, one of the most remarkable formulae of geometry must be the expres-
sion, originally due to Lambert (1766),3 for the area of a triangle T in terms of its interior
angles α1, α2, α3:

areaH(T ) = π − α1 − α2 − α3. (2.1.3b)

More generally, the area of an n-sided hyperbolic polygon is (n − 2)π −∑i αi . From
this we obtain the non-existence of rectangles. These formulae apply even in the limiting
case where some vertices lie on the boundary R ∪ {i∞}. In particular, the area of any
hyperbolic triangle is bounded above (even though H itself has infinite area)!

Klein proposed to study geometry using the group of symmetries of whichever geo-
metric quantities are important to the context (Section 1.2.2). The group Isom(R2) of
isometries (i.e. distance-preserving maps) of R2 consists of all translations x �→ x + a,
all orthogonal maps (rotations and reflections) x �→ x A where AAt = I , and all combi-
nations x A + b thereof. Likewise, the group Isom(H) of hyperbolic isometries consists
of all Möbius, or fractional linear, transformations

z �→ az + b

cz + d
, ∀a, b, c, d ∈ R with ad − bc = 1, (2.1.4a)

together with the reflection z �→ −z, and all combinations thereof. As in the Euclidean
case, Isom(H) is a three-dimensional real Lie group, with two connected components;
the component Isom+(H) containing the identity consists of (2.1.4a), and is isomorphic
to

PSL2(R) := SL2(R)/

{
±
(

1 0
0 1

)}
. (2.1.4b)

As in the Euclidean case, isometries preserve the absolute value |θ | of angles; maps
α ∈ Isom+(H) preserve the angles themselves and so are conformal. Isometries preserve
area and send hyperbolic lines to hyperbolic lines. PSL2(R) preserves everything of
geometric significance and is thus the group of symmetries of the hyperbolic plane.

Likewise, the group Isom+(S2) of symmetries of spherical geometry is PSL2(C), acting
on the Riemann sphere P1(C) by Möbius transformations. The symmetries PSL2(R) of
H are precisely those transformations in PSL2(C) that send H to itself. The only reason
this action by Möbius transformations of the 2× 2 matrices on P1(C) or H ∪ {i∞}might
not look strange to us, is because familiarity breeds numbness. Much more natural is

3 This is the same Lambert who proved the irrationality of π and e.
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the action of n × n matrices on Cn , and this induces their action on Cn−1 (together
with a codimension-2 set of ‘points at infinity’) by interpreting Cn as homogeneous
coordinates for Cn−1 (Section 1.2.2). Specialising to n = 2 gives us the action (2.1.4a).
In Section 2.4.1 we interpret (2.1.4a) using the multiplication of matrices in SL2(R).

A model for n-dimensional hyperbolic geometry is the upper half-space Hn := {(xi ) ∈
Rn | xn > 0}, which is conformally equivalent to the interior of the unit n-ball, or to the
upper (i.e. xn+1 > 0) sheet of the hyperboloid x2

1 + · · · + x2
n − x2

n+1 = −1. Euclidean
angle is used, but the metric is ds2 = (dx2

1 + · · · + dx2
n )/x2

n . Hyperbolic lines con-
sist of half-lines and semi-circles perpendicular to the boundary hyperplane x0 = 0;
hyperbolic planes in Hn consist of half-planes and half-spheres perpendicular to the
boundary hyperplane x0 = 0. The hyperboloid model makes it clear that the isome-
tries Isom(Hn) of hyperbolic n-space is isomorphic to the group of those matrices
A ∈ On,1(R) with An+1,n+1 ≥ 1. The group Isom+(Hn) of conformal isometries is the
Lorentz group SOn,1(R)+, obeying in addition the condition det(A) = 1. Of course the
Lorentz group SO3,1(R)+ is more famous in its incarnation as the symmetry of special
relativity (Section 4.1.2). By identifying the boundary plane of H3 with C, the group
Isom+(H3) ∼= SO3,1(R)+ can be naturally identified with the Möbius transformations
PSL2(C).

Recall Hilbert’s theorem from a few paragraphs ago. Although no surface embedded
in R3 can provide a model of the full hyperbolic plane, they can provide a model of
a piece of that plane (i.e. be ‘incomplete’). This is accomplished by any surface of
constant negative curvature. For example, consider the ‘tractrix’ – the path traced by a
stone, initially placed at (0,1), pulled (‘tractored’) by a string of length 1 as we walk
along the x-axis. Take the tractrix in the xy-plane and rotate it about the x-axis; the result
is called the ‘pseudo-sphere’, and is a surface of constant negative curvature in R3. More
generally, by a hyperbolic surface we mean a surface that is also a metric space (i.e. it
has a notion of distance between points, and of arc-length), which is locally isometric to
H (i.e. the open sets Vα in Definition 1.2.3 are taken to be in H ⊂ R2, and the transition
functions ϕαβ are in Isom(H)). The pseudo-sphere is an example of a hyperbolic surface
different from the hyperbolic plane; crocheting constructs several other examples [284].
Similarly, we can define hyperbolic manifolds of arbitrary dimension. We conclude this
subsection with the classification of all hyperbolic surfaces. But first we need the notion
of a Fuchsian group.

As was discussed in Section 1.2.2, tori S1 × S1 arise from the quotient R2/L of
the plane by a two-dimensional lattice. This construction is equivalent to the familiar
depiction of a torus as a parallelogram with opposite sides identified. We discuss the
Riemann surfaces in more detail next subsection, but a genus-g surface can be depicted
by identifying appropriate sides in a 4g-gon (see Figure 2.2 for the situation with a
genus 2 surface). This arises from making 2g circular cuts into the surface and flattening
it out. But can we also interpret that 4g-gon as corresponding to some quotient of R2,
generalising the R2/L construction of a torus? The answer is no – the group Isom(R2)
doesn’t have a rich enough supply of discrete subgroups. We can interpret the 4g-gon
as a quotient, but of the hyperbolic plane and not the Euclidean one.
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Fig. 2.2 A genus 2 surface and its octagon.

Definition 2.1.1 A Fuchsian group is a discrete subgroup � of SL2(R), i.e. one with

inf {(a − 1)2 + b2 + c2 + (d − 1)2} > 0, where the infimum is over all

(
a b
c d

)
�= I

in �.

We identify a subgroup � of SL2(R) with its canonical projection � into PSL2(R), since
these give rise to identical surfaces. Examples of Fuchsian subgroups are

G N =
{(

cos(πk/N ) sin(πk/N )
− sin(πk/N ) cos(πk/N )

)
| 0 ≤ k < N

}
, ∀N = 1, 2, . . . ,

GZ =
{(

1 k
0 1

)
| k ∈ Z

}
,

and the modular group SL2(Z). The latter is certainly the most interesting of these.
Let � be a Fuchsian group. Most points z ∈ H (i.e. all but at most countably many)

are fixed only by the identity in � (why?). Let z0 ∈ H be any of those generic points.
Define the set

D�(z0) := {w ∈ H | distH(z0, w) < distH(γ.z0, w) for all γ ∈ �, γ �= ±I } .
So D�(z0) is the intersection of a number of hyperbolic half-planes. This set D = D�(z0)
is called a fundamental domain of �, as it satisfies the following properties: (i) it is open;
(ii) each orbit �.z intersects D in at most one point, and every orbit intersects the closure
of D in at least one point; (iii) the boundary ∂D of D in H consists of at most countably
many hyperbolic line segments. (In fact, as long as � is finitely generated, D can be
chosen with boundary consisting of only finitely many segments.)

For example, a fundamental domain for G N consists of the points lying between any
pair of hyperbolic lines intersecting at i with angle 2π/N . A fundamental domain for GZ

is {z ∈ H | − 1
2 < Re z < 1

2 }. Choosing z0 = 2i, we get the fundamental domain D for
SL2(Z) depicted in Figure 2.3: the vertical sides are Re z = ± 1

2 , and the circle is |z| = 1.
Applying � to a fundamental domain D will tile the hyperbolic plane – see Escher’s

Circle Limit I,II, . . . for examples. Since� ⊂ Isom+(H), each of these tiles is an identical
copy (a congruent translate) of D. All this holds as well in hyperbolic n-space – for
example, an analogue of SL2(Z) for H3 is SL2(Z+ iZ).
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R

D

Fig. 2.3 Two fundamental domains for SL2(Z).

Just as we constructed the torus by identifying opposite sides of the parallelogram, so
we can obtain a surface by identifying the appropriate sides of the fundamental domain
of a Fuchsian group �. This surface will be a realisation of the orbit space �\H (we
write � on the left because it acts on the left). Provided no γ ∈ � has fixed points in
H (except for the trivial maps γ = ±I ), the orbit space �\H will inherit the hyperbolic
geometry of H and be a hyperbolic surface.

Theorem 2.1.2 Any complete hyperbolic surface � is isometric to a surface of the
form �\H where � is a torsion-free Fuchsian subgroup of PSL2(R). Two such sub-
groups �1, �2 define isometric surfaces �1\H and �2\H iff α�1α

−1 = �2 for some
α ∈ PSL2(R).

‘Torsion-free’ means that all nontrivial elements of � have infinite order – see Question
2.1.2(b). Almost all surfaces with a conformal or metric or complex structure are�\H for
some Fuchsian subgroup �. An unexpected revelation of Thurston’s Programme is that
something similar happens in three dimensions – see the review [497]. Any surface of
genus g ≥ 2 supports uncountably many different hyperbolic structures. By contrast, the
Mostow Rigidity Theorem (1973) tells us that a connected compact oriented manifold
of dimension n ≥ 3 supports only one.

2.1.2 Riemann surfaces

Manifolds M, N are homeomorphic if there is a continuous map M → N with continu-
ous inverse. Compact connected orientable surfaces are characterised, up to homeomor-
phism, by the genus g ∈ N. A sphere is genus 0, a torus genus 1, and the double-torus
of Figure 2.2 is genus 2. The surface of a wine glass or fork is topologically a sphere,
while coffee mugs and keys are (usually) tori. A ladder with n rungs has genus n − 1.
The surface of a pair of pants is genus 2, while that of a sweater is genus 3.

A torus can be realised in many different ways. One is the Cartesian product S1 × S1

of circles (lay one circle horizontally, then from each point on it place a vertical circular
rib perpendicular to it, filling out the torus’s surface). A complex curve of the form
y2 = ax3 + bx2 + cx + d is a torus (at least if the points at infinity are included), as is
the quotient C/L of the complex plane with a two-dimensional lattice L (Section 1.2.1).



The underlying geometry 111

(r, s)

(0,1)

Fig. 2.4 Diophantus’ argument.

If we drop the requirement that our surface be compact, then up to homeomorphism it
is uniquely specified by two numbers: the genus g as above, and the number of punctures
(or boundary components) n. For instance, a sphere with one puncture is homeomorphic
to an open disc or equivalently the plane C. We see this when we pop a balloon: the
sphere becomes a rather jagged-edged disc. A sphere with two punctures is a cylinder or
annulus.

The non-orientable surfaces have a very similar classification. For example, if we could
create a P2(R)-shaped balloon, then popping it would create a jagged-edged Möbius band.
We always require orientability in this book.

The surfaces we encounter have more structure than mere topology. If the surface
� is in fact smooth (Section 1.2.2), then we are interested in their classification up to
diffeomorphism. In this case though nothing changes, the surface is again parametrised
by the genus and number of punctures: any surface � has a unique differential structure
compatible with its topology. In order to obtain a finer distinction between the surfaces,
we need to further enrich their structure. The easiest way to do this is by introducing a
metric onto the tangent spaces, or give the surface a complex or conformal structure. More
on the resulting Riemann surfaces shortly. Nevertheless, the genus remains the single
most important invariant distinguishing Riemann surfaces. There are many qualitative
differences captured by genus – we will give three of them.

Diophantus [45] was a mathematical giant who lived in Alexandria in the second or
third century a.d. He seems to have been the first Greek to regard fractions as legitimate
numbers, and he was the first to use negative numbers (though only in intermediate
arithmetical calculations, so probably didn’t believe their ontological reality), and the
first to invent an abstract symbolism for algebra. The following (expressed in modern
language) is how Diophantus found all Pythagorean triples, that is the integer solutions
to a2 + b2 = c2.

First, it’s enough to look for all rational solutions to the circle x2 + y2 = 1. Then the
integers a, b, c can be recovered by clearing denominators. Consider a line through the
point (0, 1) that intersects the circle at another rational point (r, s) (see Figure 2.4). Clearly
this line must have rational (or infinite) slope s−1

r . Conversely, consider any line through
(0,1) with rational slope u: its equation will be y = ux + 1. Where does it intersect the cir-
cle? We get 1 = x2 + (ux + 1)2 = (u2 + 1)x2 + 2ux + 1, i.e. x ((u2 + 1)x + 2u) = 0.
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So apart from our original point (0, 1), it will also intersect the circle at

(x, y) =
( −2u

u2 + 1
,

1− u2

u2 + 1

)
.

As long as u is rational, so will be this point. Thus Diophantus found a parametrisation
of all rational points on the circle, and hence all Pythagorean triples.

His method is far more general than this, as he knew. In fact, consider any nondegen-
erate conic. To find all rational points on it, we first find one rational point, and then
consider all lines with rational slope through that point. This will exhaust all rational
points on the curve. Thus if a conic has one rational point (it might have none), then it
will have infinitely many, and all can be found explicitly.

Why won’t this trick work for other equations of this sort? For example, Fermat’s Last
Theorem challenges us to find a nontrivial rational solution to xn + yn = 1, for n > 2.
If we draw a line through the obvious solution (x, y) = (0, 1), we simply get a mess.
What’s so special, geometrically, about conics?

The modern way (due to Bezout in the eighteenth century) to think about this is
to regard the given equation, say x2 + y2 = 1, as an equation relating two complex
numbers (x, y) ∈ C2. The result will be a complex curve, that is a real surface. To which
complex curve does x2 + y2 = 1 correspond? The real curve (a circle) is parametrised
by x = cos θ and y = sin θ , and a moment’s deliberation will convince oneself that
permitting θ to take complex values will exhaust all points on the complex curve. So
write x = 1

2 (w + w−1) and y = i
2 (w − w−1) for anyw ∈ C exceptw = 0; this identifies

the complex curve x2 + y2 = 1 with the complex plane punctured at 0, that is a cylinder.
The unit circle in R2 is merely the slice of this cylinder in C2 by the plane passing through
the two real axes of C2. A different slice will produce, for instance, an hyperbola.

More generally, any polynomial in x, y defines a noncompact surface in C2. For
example, a nondegenerate cubic y2 = x3 + ax2 + bx + c is a once-punctured torus –
explicitly, the quotient C′/(Z+ τZ), where C′ means deleting from C the lattice points
Z+ τZ, is equivalent in every sense one could want (e.g. conformally) to the cubic

y2 = 4x3 − 60G4(τ )x − 140G6(τ ),

where the Eisenstein series Gk(τ ) is defined in (0.1.5). Similarly, the complex curve
x3 + y3 = 1 corresponds to the torus C/(Z+ τZ) with three points removed.

In any case, we can now answer our question: What is so special geometrically about
the conics, that Diophantus’ method works for them? The answer: They are (punctured)
spheres, that is have genus 0.

It will always seem that some points ‘at infinity’ are missing from these complex
curves. Kepler back in 1604 knew that adding such points simplifies the geometry. We
do this by projectifying the given equation (Section 1.2.2). For example, x2 + y2 = 1
corresponds to the homogeneous equation x2 + y2 = z2, where we identify (x, y, z) and
(λx, λy, λz) for λ �= 0. The two ‘infinite’ points, that is the points with z = 0, are then
(1,±1, 0). Similarly, the three missing points on the Fermat curve x3 + y3 = 1 have
homogeneous coordinates (x, y, z) = (1,−ξ, 0) for any third root of unity ξ . We see
that in homogeneous coordinates the ‘infinite points’ don’t look so bad.
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Fig. 2.5 Addition of points on a hyperbola.
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Fig. 2.6 Addition of points on a cubic.

Another special property of conics (avoiding the infinite points) is that they are additive
groups. Fix any point e on the conic C (it will be the identity); given any two finite
points p, q on the conic, the sum p + q ∈ C is defined to be the intersection with C
of the line through e parallel to the line through p and q (Figure 2.5). Associativity
follows from Pascal’s Theorem concerning hexagons inscribed in conics. For example,
choosing the identity e = (1, 0) and the parametrisation (x(t), y(t)) = (cos(t), sin(t)) of
the circle x2 + y2 = 1, this addition of points corresponds to addition of angle t . The same
conclusion holds for the hyperbola x2 − y2 = 1, with e = (1, 0) and parametrisation
t �→ (cosh(t), sinh(t)) of the x > 0 branch. See Question 2.1.3.

Better known is the addition of points on a nondegenerate (projective) cubic C . Fix
any e ∈ C (again it will play the role of identity), and choose any points p, q ∈ C . Let
r ∈ C be the intersection with C of the line through p, q; the sum p + q is defined to
be −r , that is the intersection with C of the line through r and e (see Figure 2.6). This
also is commutative and associative, provided we include the points at infinity. Addition
continues to work when the cubic is complexified, and that’s how to make sense of it: the
resulting surface is a torus, equivalent to one of the form C/(Z+ τZ) for some τ ∈ C,
and this addition on the cubic lifts to ordinary addition on C. Incidentally, the addition
of points is only one of a number of senses in which conics are toy models for the much
richer theory of elliptic curves (i.e. cubics with a marked point e) [372].

The simplest quantitative distinction between surfaces of different homeomorphism
type (g, n) is the fundamental groupπ1, defined in Section 1.2.3. For example,π1(S2) = 1
since S2 is simply connected, and π1 of a torus is Z⊕ Z. Let �g be a compact genus
g > 0 surface. Then π1(�g) has presentation

π1(�g) ∼= 〈
α1, . . . , αg, β1, . . . , βg |α1β1α

−1
1 β−1

1 · · ·αgβgα
−1
g β−1

g = 1
〉
. (2.1.5a)

The generators αi , β j are chosen as in Figure 2.2 (α1 = a, β1 = b, etc.). The easiest way
to read off the genus from (2.1.5a) is to compute the abelianisation π1/[π1, π1] (which
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equals incidentally the first homology group H1(�g,Z)); as is clear from (2.1.5a), it is
the abelian group Z2g generated by αi , β j . On the other hand, the fundamental group of
a genus-g surface �g,n with n > 0 punctures is free (see e.g. page 64 of [103]):

π1
(
�g,n

) ∼= F2g+n−1. (2.1.5b)

The preceding discussion indicates the significance of genus. Now let’s impose more
structure. A Riemann surface is a connected orientable surface with a conformal struc-
ture, together with a choice of orientation. Equivalently, a Riemann surface can be defined
as a complex analytic curve: any polynomial equation in x, y ∈ C inherits the conformal
and differential structure of C. This is because locally the conformal maps in R2 are
precisely the locally holomorphic maps in C with nonvanishing derivative (theorem 14.2
of [481]). A third possible definition is that Riemann surfaces consist of those connected
2-manifolds with a complete metric with constant curvature. As mentioned above, its
homeomorphism class is given by its genus g and number of punctures n, and the surface
is compact iff n = 0. We are primarily interested in compact Riemann surfaces.

Any topological surface can be made into a Riemann surface, usually in a continuum
of inequivalent ways (Section 2.1.4). We identify two Riemann surfaces if they are
conformally equivalent, or holomorphically equivalent, or isometric. In Section 2.1.4
we discuss the classification of Riemann surfaces up to conformal equivalence.

The basic example of a Riemann surface is the complex plane C. Also important
is the complex projective line P1(C) = C ∪ {∞}; stereographic projection verifies that
it is topologically a sphere, called the Riemann sphere. Now, a meromorphic function
f : D → C by definition is holomorphic everywhere except for isolated poles; if f has
poles at zi , then defining f (zi ) = ∞ gives a conformal map f : D → P1(C) between
Riemann surfaces (perhaps it is this picture, in which zi is sent to the ‘north pole’
∞, which is the origin of the term ‘pole’). Likewise, we can extend the domain of
a function f on C to P1(C), provided it is meromorphic at ∞. For example, if p is a
polynomial of degree n, then p has a pole of degree n at∞, and we obtain a holomorphic
map p : P1(C) → P1(C). By comparison, the functions ez and cos(z) have essential
singularities at∞ and so cannot be extended to P1(C).

Historically, Riemann surfaces were introduced by Riemann to supply the maximal
domain (via analytic continuation) of a holomorphic function. The problem is that many
of the most natural complex functions are multivalued, for example f (z) = √z or g(z) =
log z or other inverses of nice functions. As we move counterclockwise along the unit
circle |z| = 1, starting at z = 1, the value f (z) = √z changes continuously from f (1) =
1 to f (1) = −1, and the value of g(z) = log z changes continuously from g(1) = 0 to
g(1) = 2π i. To Riemann, we should regard f (z) as a holomorphic function on a double
cover D = Db ∪ Dt of the complex plane, and g(z) is holomorphic on a helix. As we
move along the circle, the argument z of f (z) moves from the bottom sheet Db ∼= C
to the top sheet Dt ∼= C, and if we continue a second time around the circle, we return
from the sheet Dt to Db. To identify D homeomorphically, cut both Db and Dt from 0
to∞, and glue the θ = 0+ slit of Db to the θ = 0− slit of Dt and vice versa. The result
is homeomorphic to a sphere with one puncture, corresponding to the point at infinity.
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Note that f : D → C is well-defined and holomorphic; it is an example of what we will
shortly call a cover of C, ramified at z = 0.

The remainder of this subsection describes an important realisation (called uniformi-
sation) of any Riemann surface. The idea is simple. There are two different connected
real curves, up to homeomorphism, and they are the line R and the circle S1. The circle
can be realised as S1 ∼= R/Z. We call R the ‘universal cover’ S̃1 of S1, because it is
simply-connected; Z here is the fundamental group π1(S1). See also Theorem 1.4.3.

The same works with surfaces. For example, the sphere with two punctures (a cylin-
der) and a torus both have universal cover homeomorphic to C; the cylinder itself is
homeomorphic to S1 × R and the torus to C/(Z+ iZ), where Z and Z+ iZ are isomor-
phic to their fundamental groups. Let’s make these ideas more precise, and incorporate
as well the conformal structure.

Definition 2.1.3 Let �∗, � be two Riemann surfaces. We say that �∗ covers � by
f if f : �∗ → � is a holomorphic map from �∗ onto �. If in addition f is locally
conformal, we call f a conformal or unramified cover. If f : �∗ → � is a conformal
cover, and �∗ is simply-connected, then we call �∗ a universal cover of �.

Let Uα ⊂ �, ϕα : Uα → Vα ⊂ C be a family of coordinate charts for � (Defini-
tion 1.2.3); by local coordinates we mean the complex numbers z ∈ Vα . In local coordi-
nate z about point p∗ ∈ �∗, a cover f sends a neighbourhood of p∗ to one of f (p∗) ∈ �
with local coordinates a + czn+ higher terms, for some constants a and c �= 0. To be
conformal, this order n must always be 1 (otherwise we say f is ramified at p∗).

If f : �∗ → � is a conformal cover, then the fundamental group π1(�∗) is naturally
isomorphic to a subgroup of π1(�) (Section 1.7.2). In this way, the covers�∗ of� (up to
homeomorphism) are in one-to-one correspondence with conjugacy classes of subgroups
of π1(�). A universal cover �̃ is the ‘largest’ and most important cover, and is unique up
to conformal equivalence. It can be identified as the space of all homotopy-equivalence
classes of paths on � with fixed initial point p ∈ �. For example, visualise a ‘point’
p̃ on S̃1 as a curve starting at 1 ∈ S1 and ending at eiθ (0 ≤ θ < 2π ), and wrapping
around the circle (i.e. crossing 1 ∈ S1) n times; the identification of S̃1 with R comes
from identifying this path with the number θ + 2πn ∈ R.

We are now ready to state the basic result of this subsection.

Theorem 2.1.4 (Uniformisation Theorem)

(a) Up to conformal equivalence, the only simply-connected Riemann surfaces (i.e. the
only candidates for a universal cover) are the sphere S2 = P1(C) = C ∪ {∞}, the
plane C and the upper half-plane H.

(b) Let� be any Riemann surface, and let �̃ be its universal cover. Then� is conformally
equivalent to �̃/�, where � ∼= π1(�) is a subgroup of the automorphisms of �̃ that
act on �̃ without fixed points. A metric can be chosen for � with constant curvature
+1, 0,−1, respectively, if �̃ = S2,C,H, respectively. Two surfaces �̃/�, �̃′/�′

are conformally equivalent iff the universal covers �̃ and �̃′ are the same, and �

and �′ are conjugate subgroups in Aut(�̃).
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Table 2.1. The universal covers of the genus g surfaces with n punctures

g\n 0 1 2 ≥3

0 S2 C,H C,H H
1 C H H H
≥2 H H H H

Of course H and C are homeomorphic, but they aren’t conformally equivalent (replacing
H with the disc D, this follows from Liouville’s Theorem: a bounded holomorphic func-
tion on C must be constant). Part (a) is due to Klein, Poincaré and Koebe. These three
possibilities for �̃ correspond respectively to the three geometries: spherical, Euclidean
and hyperbolic. The group of automorphisms of �̃ is just Isom+. The condition that �
acts without fixed points (apart from the identity in�) is significant – fixed points change
the geometry. A famous example of an orbit space with fixed points is SL2(Z)\H, which
has conical singularities at i and eπ i/3.

Table 2.1 gives the universal cover of any Riemann surface, as a function of the genus
and number of punctures. We see there that almost every surface is hyperbolic: the
generic geometry in two dimensions is hyperbolic.

The Uniformisation Theorem easily proves Picard’s Theorem (‘the range f (C) of any
holomorphic nonconstant function f : C → C can omit at most one point from C’). The
proof, which the reader can fill in, uses Liouville’s Theorem together with the fact that
the universal cover of the twice-punctured plane is D.

2.1.3 Functions and differential forms

The last subsection gives several equivalent notions of a Riemann surface. Here we
see that any compact Riemann surface is the locus of a homogeneous polynomial
f (a, b, c) = 0 in the complex projective plane P2(C).

We study a manifold through the functions living on it. Two manifolds differing merely
by a single point can have a completely different family of functions. For instance, we all
know many examples of holomorphic functions on C. But the only functions holomorphic
on C and also holomorphic at ∞ are the constants. More generally, any noncompact
Riemann surface � has several functions f : �→ C holomorphic everywhere, while
if � is compact, the only holomorphic functions f : �→ C are the constants. We are
more interested in compact �.

Given any Riemann surface �, let K(�) denote all the meromorphic functions f :
�→ C – equivalently, all holomorphic functions f : �→ P1(C) (by convention we
discard the constant function f ≡ ∞). Let Uα ⊂ �, ϕα : Uα → Vα ⊂ C be a family of
coordinate charts for �. Then f ∈ K(�) iff each f ◦ ϕ−1

α is a meromorphic function of
the local coordinate z ∈ Vα .

For example, K(P1(C)) consists of all rational functions f (z) = poly(z)
poly(z) , while K(C) is

much larger. This space K(�) is in fact always a field; its algebraic structure determines
the surface � (up to conformal equivalence) and naturally mirrors all aspects of �. A
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compact Riemann surface � has genus 0 iff K(�) ∼= C(z), the field of rational functions
in some variable z. For positive genus, two generators are needed.

Theorem 2.1.5 Let � be a compact Riemann surface of genus g > 0. Choose any
nonconstant function f ∈ K(�). Then there exists another nonconstant function g ∈
K(�), such that K(�) = C( f )[g], i.e. for some n ∈ N, any h ∈ K(�) can be written in
the form h =∑n−1

i=0 ai ( f ) gi , where ai (z) are rational. Moreover, there is an irreducible
polynomial P(z, w) such that P( f, g) = 0, and such that K(�) is isomorphic as a field
to the quotient C(z, w)/(P(z, w)) of the algebra of rational functions in z, w by the
ideal generated by polynomial P. Moreover, writing P as a homogeneous polynomial in
three variables, � is conformally equivalent to the complex curve P = 0 in the complex
projective plane P2(C).

For a proof and more material on Riemann surfaces, see [180]. It is nontrivial that
we can embed any Riemann surface into the complex projective plane. In fact, most
complex n-tori Cn/L (where L ⊂ Cn is a 2n-dimensional lattice), for n > 1, cannot be
embedded in any projective space (Section 6.3.2). The plane curve P = 0 will typically
have ‘singularities’, that is points where all three partial derivatives vanish, where the
curve self-intersects transversely. These singularities can be ‘blown up’, that is the two
intersecting ‘complex strands’ (i.e. open discs in C) can be separated, but this requires
the complex curve to be embedded in P3, not P2.

Every geometric feature (except the choice of orientation) of the surface � has an
algebraic analogue in K(�), and hence the geometry of� can be studied via algebra. For
example, a C-algebra homomorphism F : K(�′) → K(�) lifts to a holomorphic map F̃ :
�→ �′. This general observation is the starting point of both algebraic geometry and
noncommutative geometry. For example, the space of smooth complex-valued functions
on a manifold M will be an infinite-dimensional commutative algebra, since the target
C is a commutative algebra. Connes suggests that we study a noncommutative algebra
as if it too is the algebra of functions on some manifold. The hope is that this should be
directly relevant to quantum theories, since we access space-time only indirectly, via the
functions (‘quantum fields’) living on it. We seem to get into problems in quantum field
theory when we take too literally the (naive and improbable) intuition that space-time
is anything like a manifold. In any case calculus in noncommutative geometry formally
resembles quantum mechanics (e.g. the role of coordinates is played by self-adjoint
operators – observables – and infinitesimal distance ds by the fermion propagator).

For a concrete example of Theorem 2.1.5, consider the torus Tτ = C/(Z+ τZ). A
meromorphic function f : Tτ → C lifts to a meromorphic function (which we also
call f ) on C, with periods 1 and τ . That is, f ∈ K(Tτ ) iff f : C → C is meromor-
phic and f (z + m + nτ ) = f (z) ∀z ∈ C, ∀m, n ∈ Z. Any such doubly-periodic mero-
morphic function is called an elliptic function, for fairly obscure reasons.4 We know

4 One of the more carefree creative outlets for mathematicians is through their happy role as nomenclators.
Elliptic functions first arose historically as the functional inverse of a certain class of integrals called
‘elliptic integrals’. This class got its name since it included the integral computing arc-lengths of ellipses.
Likewise, the name ‘elliptic curve’ for a genus-1 complex curve arose since the functions living on it are
those elliptic functions. There is however no direct relation between ellipses and elliptic curves.
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any nonconstant f ∈ K(Tτ ) must have at least one pole in the ‘fundamental parallel-
ogram’ Pτ with corners at 0, τ, 1, 1+ τ . Moreover, the contour integral

∫
C f about

the parallelogram C = ∂Pτ vanishes by periodicity, so the sum of residues of f inside
Pτ must vanish. Hence any nonconstant elliptic function must have at least two poles
in Pτ .

We can construct an elliptic function by averaging f (z) =∑
m,n g(z + m + nτ ) for

any function g over each orbit z + Z+ τZ. As the simplest possibility for a noncon-
stant elliptic function would have a single pole of order 2 at the lattice points, it is
tempting to take g(z) = z−2. Unfortunately, for large m, n, (z + m + nτ )−2 is close to
(m + nτ )−2, and so its sum over all m, n won’t converge. Thus we are led to consider its
‘regularisation’

p(z) := z−2 +
∞∑

m,n=−∞
′{(z + m + nτ )−2 − (m + nτ )−2} (2.1.6a)

function, called the Weierstrass function (although Eisenstein knew of it years earlier),
where

∑′ here means to avoid m = n = 0. Its derivative

p′(z) = −2
∞∑

m,n=−∞
(z + m + nτ )−3 (2.1.6b)

is also elliptic. Being meromorphic functions on a compact Riemann surface, p and p′

must be polynomially related: we find

p′(z)2 = 4(p(z)− e1)(p(z)− e2)(p(z)− e3), (2.1.6c)

where e1 = p(1/2), e2 = p(τ/2) and e3 = p((1+ τ )/2). This is shown by verifying that
(p− e1)(p− e2)(p− e3)/p′ has no poles and hence must be constant. Together, p and
p′ generate K(Tτ ): we can write any elliptic function f ∈ K(Tτ ) as R1(p)+ p′ R2(p),
where R1(p(z)) is the even part ( f (z)+ f (−z))/2 of f and p′(z) R2(p(z)) the odd part.
Tτ is conformally equivalent to the projective curve with ‘finite’ points (p(z), p′(z), 1) ∈
P2(C), together with the ‘infinite’ point (0, 1, 0) corresponding to the pole of p and p′ at
z = 0.

One way to embed Riemann surfaces into projective space uses theta functions:

θr,s(τ, z) :=
∑
m∈Z

exp[π iτ (m + r )2 + 2π i (m + r )(z + s)], (2.1.7a)

for any r, s ∈ Q. These functions and their generalisations are central to Moonshine, but
for now note that they converge for all (τ, z) ∈ H× C to a function holomorphic in both
τ and z. These θr,s are nearly doubly-periodic in z: if r, s ∈ 1

N Z then

θr,s(τ, z + Nm + τNn) = exp[−π iN 2n2τ − 2π iNnz] θr,s(τ, z), (2.1.7b)

for all m, n ∈ Z. Apart from a constant root of unity, θr,s depends only on the values of r
and s mod 1. Enumerate the N 2 pairs (ri , si ) ∈ 1

N ZN × 1
ZN

ZN . Then for any N and any



The underlying geometry 119

τ ∈ H, the map from Tτ to PN 2−1(C) defined in homogeneous coordinates by

z �→ (θr1,s1 (τ, N z), θr2,s2 (τ, N z), . . .) ∈ PN 2−1(C)

is well defined (to see that this N 2-tuple can never be the 0-vector, find explicitly the zeros
of θr,s). This map is one-to-one, that is it embeds the torus Tτ as a complex submanifold
of PN 2−1(C). We can specify this submanifold more explicitly (in the simplest case,
namely N = 2) by the homogeneous polynomials

θ0,0(τ )2z2
1 = θ0,1/2(τ )2z2

2 + θ1/2,0(τ )2z2
3, θ0,0(τ )2z2

4 = θ1/2,0(τ )2z2
2 − θ0,1/2(τ )2z2

3,

where (z1, z2, z3, z4) ∈ P3(C) are homogeneous coordinates and θr,s(τ ) = θr,s(τ, 0). The
fact that the image of Tτ satisfies those equations follows from the Riemann theta iden-
tities. Moreover, any elliptic function f : Tτ → C can be written in the form

f (z) = c
∏

1≤i≤�

θ0,0(τ, z − ai )

θ0,0(τ, z − bi )
,

for arbitrary complex numbers ai , bi , c subject to the relation
∑

i ai =
∑

i bi . The Weier-
strass p-function can be written

p(z) = − d2

dz2
θ1/2,1/2(τ, z)− π2

3
.

For any k ∈ Z, a holomorphic (respectively meromorphic) k-form ω (Section 1.2.2)
on a complex curve � looks like f dzk in local coordinates, where f is holomorphic
(respectively meromorphic). If we change local coordinates z1 �→ ϕ2(ϕ−1

1 (z1)), then
(1.2.4b) becomes

fβ(zβ) = dk zα
dzk

β

fα(zα). (2.1.8)

For example, dz is a meromorphic (but not holomorphic) 1-differential on P1(C) (it has a
pole of order 2 at∞). LetHk(�) be the vector space of holomorphic k-forms, andMk(�)
be the space of meromorphic ones. Given any ω,ω′ ∈Mk(�), ω′ not identically 0, the
ratio ω/ω′ lies in the function field K(�). Of course, as vector spaces M0(�) = K(M).
For any surface � and integer k, Mk(�) is infinite-dimensional, but for any compact
surface � and any integer k, the Riemann–Roch theorem implies that Hk(�) is always
finite-dimensional and may be 0.

2.1.4 Moduli

In physics, the phase space lets us consider all possible states of a physical system; the
actual time-evolution of a given instance of that system will be a curve in phase space.
Likewise, we often want to consider simultaneously families of manifolds, rather than
fix a single manifold. For example, last subsection we treated all tori Tτ simultaneously.
The role of phase space is played by a moduli space, the space of orbits of a group of
diffeomorphisms of a geometric structure placed on a manifold. A path on the moduli
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space connecting orbits [p] and [q] is a continuous deformation from the geometric
structure on p to that on q .

The notion of moduli space for surfaces is due to Riemann, who also computed
its dimension. The idea is to consider the space M(�0) of all conformal equivalence
classes of Riemann surfaces homeomorphic to a given surface �0. As �0 is completely
characterised by the genus g and number n of punctures, we also denote this by Mg,n .
With a few exceptions mentioned shortly, Mg,n has complex dimension 3g − 3+ n.
However, these moduli spaces usually aren’t manifolds (they have conical singularities).
It was for this reason that Teichmüller introduced a cover, now called the Teichmüller
space Tg,n . The moduli space is recovered by the quotient Mg,n = Tg,n/�g,n , where�g,n

is a discrete group called the mapping class group (see Definition 2.1.6). Teichmüller
space is much better behaved than the moduli space – it is a complex manifold (except
for certain small g, n), and as a real manifold is diffeomorphic to R6g−6+2n .

As we shall see, there’s a small number of pairs (g, n) that don’t behave com-
pletely generically for one reason or another: namely, (0, 0), (0, 1), (0, 2), (0, 3), (0, 4),
(1, 0), (1, 1) and (2,0). We mention some of their individual peculiarities below.

In order to anticipate the definitions, consider a torus T (so g = 1, n = 0). For con-
creteness (this doesn’t lose any generality), restrict to tori coming from a parallelogram
in the complex plane C, with one pair of opposite sides labelled ‘1’, and the other
pair labelled ‘2’; the torus is recovered by first identifying the opposite sides labelled
‘1’, and then identifying the opposite sides labelled ‘2’ (changing this order changes
the shape – though not the conformal class – of the torus). By translating, rotating and
rescaling this parallelogram, we can put the vertices at 0, 1, τ and τ + 1, for some τ ∈ H,
where the horizontal sides are labelled ‘1’, which continuously deforms the torus without
changing its conformal equivalence class. This is the best we can do, if we restrict to
continuous deformations. The resulting parameter space, namely the upper half-plane
H, is the Teichmüller space T1,0 for the torus. The torus corresponding to τ ∈ H is
Tτ = C/(Z+ Zτ ).

However, different points τ in H can correspond to conformally equivalent tori. For
example, we can cut the torus open along the seam ‘2’, twist the open arm m complete
turns, and then sew it back up. This amounts to replacing parameter τ with τ + m. As
long as m is an integer, this is a conformal diffeomorphism of the torus (if m isn’t an
integer, this map isn’t even continuous). Thus the points τ + Z all correspond to the same
conformal structure. Similarly, cutting open seam ‘1’ and giving the upper cap n complete
twists before resewing corresponds to replacing the parallelogram 0, 1, τ and τ + 1
with the parallelogram 0, 1+ nτ , τ and (n + 1)τ + 1 – after putting it into canonical
form, this replaces τ with τ/(nτ + 1). Both these twists are called Dehn twists. We can
also switch the roles of sides ‘1’ and ‘2’, which replaces τ with −1/τ (why?). More
generally, the tori corresponding to parameters τ and aτ+b

cτ+d are conformally equivalent,

for any

(
a b
c d

)
∈ SL2(Z). This accounts for all redundancies in the parametrisation

by H of the conformal equivalence classes of tori. The orbit space SL2(Z)\H is the
‘moduli space’ M1,0 for the torus. Note that M1,0 has conical singularities at the orbits
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[τ ] = [i] and [e2π i/3], corresponding to those tori with additional automorphisms. This
happens in higher genus too. Indeed, any finite group G is the automorphism group of
some surface of sufficiently high genus. For example, there will be a compact Riemann
surface with automorphism group exactly the Monster M, though it will have genus at
least 9.6× 1051.

Definition 2.1.6 Let�0 be a fixed Riemann surface. Consider all pairs (�, f ), where f
is an orientation-preserving homeomorphic map of �0 onto �. Write (�, f ) ∼ (�′, f ′)
if there exists a conformal homeomorphism h : �→ �′ such that the homeomor-
phism f ′−1 ◦ h ◦ f : �0 → �0 is homotopic to the identity. The set of these equivalence
classes is the Teichmüller space T(�0). The mapping class group �(�0) is the quotient
Homeo+(�0)/Homeo0(�0) of the group of orientation-preserving self-homeomorphisms
f of �0, by the (normal) subgroup consisting of those homotopic to the identity.

For example, �1,0 = SL2(Z) and T1,0 = H; as we explain in Section 2.2.4, the moduli
space M1,0 is a punctured sphere. Because C/(Z+ τZ) can also be interpreted as a
torus with a special point, namely the additive identity 0, we also have T1,1 = H and
�1,1 = SL2(Z). For a different reason, we also have T0,4 = H and �0,4 = SL2(Z).

The basic idea, illustrated above, is that the Teichmüller space Tg,n accounts for
‘continuous’ conformal equivalences, while the mapping class group �g,n contains the
left-over ‘discontinuous’ ones. To help make this important but abstract definition more
accessible, consider the following artificial example. Let X = R2, and suppose the addi-
tive group G = Z× R acts on X by addition. Then G is a disconnected Lie group
with connected components Gn := {n} × R for each n ∈ Z; the component G0 is the
one containing the identity (0, 0). The group π0 = G/G0

∼= Z interchanges the compo-
nents in the obvious way. We can mod out first by the continuous part G0 of G (which
should be relatively easy), then by the discontinuous π0: the orbit space X/G is then
(X/G0)/π0 = R/Z = S1. Of course, here X plays the role of the infinite-dimensional
space of all conformal structures, G plays the role of all conformal homeomorphisms,
and X/G is the moduli space. The identity component G0 corresponds to the homeo-
morphisms homotopic to the identity, π0 is the mapping class group and X/G0 is the
Teichmüller space.

The mapping class groups are central to our story, so we’ll try to make them more
accessible. More details and proofs are provided in [56], [270], [60] and chapter 4 of
[59]. A simple presentation of the mapping class group �g,n for n = 0, 1 – the cases of
greatest interest to us – is given in [550].
�g,n acts like a braid group. For example, any f ∈ Homeo+(�) permutes the n punc-

tures, so the same is true of γ ∈ �g,n; the ‘pure’ mapping class group P�g,n consists of
those γ ∈ �g,n that fix each puncture. Then P�g,n is normal in �g,n and has quotient
�g,n/P�g,n = Sn .

A braid group Bn(�) can be associated with any surface � in the obvious way [59].
For genus g ≥ 2 and any n ≥ 0, the group �g,n is an extension of Bn(�g), by the group
�g,0. For genus g = 1 and n ≥ 2, �1,n is an extension of the quotient Bn(�1)/Z (Bn(�1))
by PSL2(Z), where the centre Z (Bn(�1)) ∼= Z2. For genus g = 0 and n ≥ 3, the group
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�0,n is isomorphic to the quotient Bn(S2)/Z (Bn(S2)), where Z (Bn(S2)) ∼= Z2. For any
n, �0,n is a homomorphic image (i.e. a quotient) of the braid group Bn .

Let � be a compact Riemann surface. To any simple closed loop γ in �, we can
define the Dehn twist about γ , by cutting out from � a neighbourhood of the loop
homeomorphic to a cylinder, giving one end of this cylinder an integral twist, and gluing
it back. The Dehn twists about the 2g elementary loops ai , b j defined in Section 2.1.2
generate the mapping class group of �.

Teichmüller space need not be connected. In particular, there are three different kinds
of twice-punctured spheres: one is flat and has conformal structure given by the cylinder
C/Z; one is the punctured disc 0 < |z| < 1 and corresponds to the half-cylinder H/〈z �→
z + 1〉; and finally, we have the family of annuli Ar := {r < |z| < 1}, which are all of
the form H/〈z �→ λz〉 for λ > 1. Thus T0,2 and M0,2 consist of two isolated points and
an open line segment (0, 1) say. �0,2

∼= Z2 consists of the identity, and the inversion
through 0 that exchanges the two boundary circles. Similarly, both T0,1 and M0,1 consist
of two isolated points.

The mapping class group usually (but not always) acts faithfully on Teichmüller space
(a faithful action means that the only group element that acts trivially is the identity
element). �1,0 = �1,1 = �0,4 are exceptions: −I ∈ SL2(Z) acts trivially on H. Also,
consider the thrice-punctured sphere P1(C)/{z1, z2, z3}. As is well known, Aut(S2) ∼=
PSL2(C) can conformally move any three points to any other three points, so we can send
z1, z2, z3 ∈ P1(C) respectively to 0, 1,∞. Thus T0,3 consists of a single point. However,
we could have moved, for example, z2, z1, z3 instead to 0, 1,∞, respectively. A total of
six different choices could have been made, corresponding to the mapping class group
�0,3 = S3, which acts trivially on Teichmüller space.

Mg,n is simultaneously the moduli space of: (i) conformal equivalence classes of real
surfaces; (ii) complete Riemannian metrics of constant negative curvature on real sur-
faces; and (iii) complex-analytic structures on complex curves. This is an accident of
small dimensions, for example the Mostow Rigidity Theorem says that in three dimen-
sions the moduli space of (ii) consists of a single point.

A different approach to moduli spaces ties in with Sections 2.3.5 and 6.3.2. First,
by the Siegel upper half-space Hg we mean the space of all symmetric g × g complex
matrices � whose imaginary part Im(�) is positive-definite – that is, vt Im(�) v > 0 for
any nonzero column vector v ∈ Rg . Hg is a higher-genus generalisation of H. The role of
the group SL2(Z) here is played by the symplectic group Sp2g(Z), that is the group of all

determinant 1 2g × 2g matrices M satisfying Mt

(
0 I
−I 0

)
M =

(
0 I
−I 0

)
, where

I = Ig and 0 are, respectively, the g × g identity and g × g zero matrices. The familiar

action

(
a b
c d

)
.τ = aτ+b

cτ+d is replaced by the action

(
A B
C D

)
.� = (A�+ B)(C�+ D)−1, ∀

(
A B
C D

)
∈ Sp2g(R), ∀� ∈ Hg.

(2.1.9a)
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The generalisation of the Jacobi theta function (2.1.7a) is Siegel’s theta function

θ (�, z) =
∑
n∈Zg

exp(π i nt�n + 2π i n · z), (2.1.9b)

which converges for all � ∈ Hg and z ∈ Cg .
Where does Hg come from? Associate with a compact genus-g surface�g its Jacobian

variety, as follows. The space H1(�g) of holomorphic 1-forms is g-dimensional, so let
{ω1, . . . , ωg} be a basis. Fix any base-point p ∈ �g; then we get a map from�g × · · · ×
�g to Cg by integrating:

(q1, . . . , qg) �→
g∑

i=1

(∫
Ci

ω1,

∫
Ci

ω2, . . . ,

∫
Ci

ωg

)
,

where Ci is any path on �g from p to qi . Of course the result depends on which paths
Ci are chosen, and so isn’t well defined as a function of qi ’s alone. However, consider
the set L of all possible values (

∫
C ω1, . . . ,

∫
C ωg) ∈ Cg , where C runs over all possible

closed loops in �g passing through P . Then our ill-defined map �g × · · · ×�g → Cg

will become well-defined (i.e. independent of the choice of path Ci ) if we replace the
target Cg with Cg/L . It isn’t hard to show that L is a 2g-dimensional lattice (in fact a
basis is given by the values on the 2g loops we call αi , β j in (2.1.5a)), and so Cg/L
is a 2g-dimensional torus, called the Jacobian variety Jac(�g). This map �g × · · · ×
�g → Cg/L is holomorphic and surjective (‘Jacobi Inversion’). Restricting it to the
diagonal embedding q �→ (q, . . . , q) ∈ �g × · · · ×�g , we get a one-to-one conformal
embedding q �→ F(C, . . . ,C) of �g into Jac(�g). When g = 1, �1 and Jac(�1) are
identical; when g > 1 the embedding is into a proper submanifold of the Jacobian (check
dimensions).

Now, we can select our basis ωi of 1-forms so that the integral
∫
αi
ω j equals δi j .

This choice means that our lattice L contains Zg . The remaining basis vectors of L
are (

∫
βi
ω1, . . . ,

∫
βi
ωg) ∈ Cg , and it can be shown (the ‘Riemann bilinear relations’)

that these basis vectors will be column vectors of a symmetric g × g matrix � whose
imaginary part is positive-definite – that is, the period matrix� lies in Hg . So the lattice L
becomes Zg +�Zg and the Jacobian becomes T� := Cg/(Zg +�Zg), where we regard
vectors in Zg and Cg as column vectors. Different choices of bases correspond to the
Sp2g(Z)-orbit of �.

So every surface�g corresponds to an Sp2g(Z)-orbit in Hg . The Schottky Problem asks
which points in Hg arise as period matrices. Call this subset Cg . Our moduli space Mg,0

can be identified with Cg/Sp2g(Z) and Sp2g(Z) is a homomorphic image (or quotient)
of �g,0. Since the symplectic group Sp2g(Z) is much more accessible than the mapping
class group �g,0, the main difficulty is to find a nice characterisation of Cg and the kernel
of �g,0 → Sp2g(Z). For a formal solution to the Schottky problem, see e.g. [12].

The moduli space Mg,n is rarely compact. A very naturalway to compactify Mg,n , due
to Deligne and Mumford, is fundamental to conformal field theory. Consider first the
complex curve w2 = (z − 2) (z + 1− α) (z − 1− α), where α is a parameter. Provided
α �= 0,±1, this is a genus-1 nonsingular curve, conformally equivalent to the torus
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(c)(b) (d)
(a)

Fig. 2.7 The surface w2 = (z − 2)(z + 1− α)(z + 1+ α).

C/(Z+ τZ) where

j(τ ) = (α2 + 3)2 − (2α2 − 2)3

(2− 1+ α)2(2+ 1− α)2(1− α − 1+ α)2
.

We know that M1,0 is real-diffeomorphic to a sphere with one point removed. As we vary
α, we move through M1,0, and as α→ 0 we approach the missing point. What happens
to the curve in that limit? In Figure 2.7(a)–(c) we intersect our curve, for α = 1/2, 1/4, 0,
respectively, with the plane R2 ⊂ C2. Figure 2.7(d) gives a picture of the complex curve
at α = 0: it is a pinched torus. We call the nonsmooth point (z, w) = (−1, 0) a node. This
is the surface to which the boundary point of M1,0 corresponds. Including it, compactifies
M1,0 to M1,0

∼= S2.
More generally, we add to each moduli space Mg,n the surfaces � with nodes. These

are connected compact spaces where the neighbourhood of any point either looks like
C (i.e. � is smooth there) or like zw = 0 at (0, 0) (these are the nodes). We say � has
type (g, n) if unpinching each node results in a genus-g surface with n punctures – for
example, Figure 2.7(d) has type (1,0). We require these surfaces to have the following
property: when you delete all nodes and the surface falls into connected pieces, none of
those pieces is a sphere with one or two punctures (the only exception is that we also
allow a torus with one node). These surfaces are called stable, because they have a finite
automorphism group (this terminology is explained by visualising a marble versus a dice
on a tabletop). As we know, the larger the automorphism group, the worse the singularity
is in moduli space.

The moduli space Mg,n is compactified if we include the conformal equivalence
classes of stable type (g, n) surfaces with nodes. The resulting space Mg,n is called the
moduli space of stable surfaces. A nice review is given in [447]. For example, the moduli
space M0,4 is also a sphere with one missing point. That missing point corresponds to
pinching a sphere with four punctures into two spheres, each with two punctures.

Moduli spaces of curves seem first to have been introduced into string theory and con-
formal field theory by Polyakov in 1981, and have played an important role there ever
since. We are actually more interested in an enhanced moduli space, obtained by decorat-
ing Riemann surfaces with additional structure. Many more or less equivalent alternatives
have appeared in the literature. In particular, let � be a compact genus-g surface, possi-
bly with nodes, with n marked points pi ∈ � (none of which are at a node). About each
point pi is chosen a local coordinate zi , vanishing at pi , identifying a neighbourhood
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Fig. 2.8 The Dehn twists on the torus with one marked point.

of pi with a neighbourhood of 0 in C (see section 2.1 of [530] for details). We call
this data (�, {pi }, {zi }) an enhanced surface of type (g, n). It is essentially equivalent
to removing a disc from � about pi and choosing a parametrisation about the boundary
circle. We call two enhanced surfaces (�, {pi }, {zi }) and (�′, {p′i }, {z′i }) equivalent if
there is a conformal equivalence h : �→ �′ such that h(pi ) = p′i and z′i (hx) = zi (x)
locally about pi . The resulting moduli space M̂g,n will be infinite-dimensional, but the
mapping class group �̂g,n will be an extension of the usual �g,n by Zn .

These groups �̂g,n are of great interest to us – for example, a rational conformal field
theory gives a projective finite-dimensional representation of each of them. This yields
the braid group representations in quantum groups or Jones subfactor theory, as well as
the modularity of Moonshine. They are discussed, with many examples, in section 5.1
of [32] (where they are denoted �g,n , and what we call �g,n is denoted there �n

g ). For
example, �̂1,1 is the braid group B3, a central extension of SL2(Z) by Z. It is generated
by the Dehn twists depicted in Figure 2.8. We return to this in Sections 4.3.3, 5.3.4
and 7.2.4.

The main reason we prefer extended surfaces to ordinary Riemann surfaces is that
there are canonical ways to sew them together. This sewing operation is fundamental in
conformal field theory, because it permits us to decompose a higher-genus surface into
discs and ‘pairs-of-pants’ (Section 4.4.1).

Question 2.1.1. How would a hyperbolic mathematician model the Euclidean plane?

Question 2.1.2. (a) Let γ =
(

a b
c d

)
∈ SL2(R), γ �= ±I . We can regard γ as a map

from the extended upper-half plane H ∪ R ∪ {∞} to itself. Show that:

(i) |a + d| = 2 iff γ has exactly one fixed point on the boundary R ∪ {∞}, iff γ can
be conjugated in SL2(R) to the translation z �→ z + t ;

(ii) |a + d| > 2 iff γ has exactly two distinct fixed points on the boundary R ∪ {∞},
iff γ can be conjugated in SL2(R) to the dilation z �→ λz;

(iii) |a + d| < 2 iff γ has exactly one fixed point in H, iff γ can be conjugated in
SL2(R) to the rotation z �→ cos(θ )z+sin(θ )

− sin(θ )z+cos(θ ) about i with fixed point i.

(b) Suppose � is a Fuchsian group. Prove that γ ∈ � has a fixed point in H iff γ has
finite order.

Question 2.1.3. Explain how the addition of points on a conic is a degenerate case of the
addition of points on a cubic.
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Question 2.1.4. Find all rational solutions (r, s) to r2 − 2rs + r + 2s − s2 = 0. Verify
that, for the choice of identity e = (0, 0) and addition defined as in Figure 2.6, the rational
points form a subgroup. As an abstract group, what is this subgroup isomorphic to?

Question 2.1.5. Using the conformal map z �→ (x, y) = (p(z), p′(z)) between C/(Z+
τZ) and the cubic y2 = 4(x − e1)(x − e2)(x − e3), verify that the addition of points on
the cubic corresponds to the addition z1 + z2 (mod Z+ τZ) in C.

Question 2.1.6. Identify M0,4 with a space of S3-orbits in C \ {0, 1}.
Question 2.1.7. Let G be a finite group. Define

K (g, h) = 1

‖G‖
∑
ρ

dim(ρ) chρ(gh−1),

for g, h ∈ G, where the sum is over all irreducible representations ρ of G.
(a) Verify that K (g, h) = δg,h .
(b) For any γ ∈ N, take f : G2γ → G by

f (g1, h1, . . . , gγ , hγ ) = g1h1g−1
1 h−1

1 g2h2g−1
2 h−1

2 · · · gγ hγ g−1
γ h−1

γ .

Define I =∑
(gi ,hi )∈G2γ K ( f (gi , hi ), e). By evaluating I in two ways, obtain the formula

‖Hom(π1(�γ ),G)‖ = ‖G‖2γ−1
∑
ρ

dim(ρ)2−2γ ,

where �γ is a compact genus-γ surface.

2.2 Modular forms and functions

Number theory, at its most elemental level, is concerned with finding integer solutions
to various (systems of) equations. It is truly remarkable how this seemingly pedestrian
pursuit has resulted in the creation of the richest and deepest mathematics. Indeed, it
is tempting to suspect that beneath any spot on the mathematical turf, no matter how
remote or seemingly barren, is a gemstone merely requiring hard work and discerning
fingertips to unearth.

2.2.1 Definition and motivation

As we saw in several different contexts in Section 2.1, the group SL2(R) of 2× 2 matrices
with real entries and determinant 1 acts on the upper half-plane H = {τ ∈ C | Im(τ ) > 0}
by Möbius transformations (2.1.4a). For example, the matrices s :=

(
0 −1
1 0

)
and

t :=
(

1 1
0 1

)
correspond to the functions τ �→ −1/τ and τ �→ τ + 1, respectively.

Consider � = SL2(Z), the subgroup of SL2(R) consisting of the matrices with integer
entries. It is generated by s and t :

SL2(Z) =
〈(

0 −1
1 0

)
,

(
1 1
0 1

)〉
= 〈s, t | s4 = e, (st)3 = s2〉. (2.2.1a)
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Because −I ∈ SL2(Z) yields the trivial map in H, weare also interested in the group

PSL2(Z) = SL2(Z)/{±I } = 〈s, t | s2 = (st)3 = e〉 =: Z2 ∗ Z3, (2.2.1b)

the free product of Z2 with Z3. Groups like � act on the extended upper half-plane
H := H ∪ {i∞} ∪Q in the obvious way (e.g. s interchanges 0 and i∞). The extra points
{i∞} ∪Q are called cusps because of the hyperbolic triangle R in Figure 2.3, which
points at one of them. Cusps correspond to tori with a single node (Figure 2.7(d)), and
compactify the moduli space M1,0.

Recall Definition 0.1: a modular function for�is a meromorphic function f : H → C,
symmetric with respect to �. A related definition is:

Definition 2.2.1 A modular form f for � = SL2(Z) of weight k ∈ Q and multiplier
μ : �→ C, |μ| = 1 is a holomorphic function f : H → C, which is also holomorphic
at the cusps Q ∪ {i∞} and obeys the transformation law

f

(
aτ + b

cτ + d

)
= μ

(
a b
c d

)
(cτ + d)k f (τ ), ∀

(
a b
c d

)
∈ �. (2.2.2)

For fractional k we choose the branch of the kth power to be the principal one (so xk > 0
when x > 0). For number-theoretic purposes, we require the values of μ to be roots of
unity. Writing μ(t) = e2π ih , we can expand f in powers of q: f (τ ) = qh

∑∞
n=−∞ anqn .

By ‘meromorphic at i∞’ we mean that all but finitely many negative n have an = 0,
so f has a pole of finite order at q = 0; by ‘holomorphic at i∞’ we mean h ≥ 0 and
an = 0 for all negative n. Meromorphicity or holomorphicity at the other cusps is implied
by that at i∞, because of (2.2.2) and the fact that all cusps lie in the same SL2(Z)-
orbit.

For the significance, which is considerable, of the condition that f be meromorphic at
the cusps, see Question 2.2.1. The moduli spaces M1,0, M1,1 and M0,4 all are SL2(Z)\H.
The cusps Q ∪ {i∞} of H correspond to pinched tori or spheres (Section 2.1.4). Mero-
morphicity at the cusps says f respects this surface degeneration in the appropriate
way.

If the weight k is an integer, the multiplier μ will necessarily be a one-dimensional
representation of �; when k is rational, μ will be a projective representation. We define
projective representations, and explain what to do with them, in Section 3.1.1. An intrigu-
ing implication for fractional k is described in Section 2.4.3.

The function f is called a modular form because f (τ ) d−k/2τ is a holomorphic (−k/2)-
form on the space SL2(Z)\H; by contrast, a modular function f is a meromorphic function
on the space SL2(Z)\H.

The easiest examples of modular forms of weight k ≥ 4 (k even) are the Eisenstein
series Gk defined in equation (0.1.5). It is conventional to normalise them as follows:

Ek(τ ) := 1

2ζ (k)
Gk(τ ) = 1− 2k

Bk

∞∑
n=1

σk−1(n) qn ∈ Z[q], (2.2.3a)
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where Bk are the Bernoulli numbers, defined by the generating function x
ex−1 =∑∞

k=0 Bk
xk

k! , and where σk−1(n) and the Riemann zeta function ζ (s) are defined by

σm(n) =
∑
d|n

dm, (2.2.3b)

ζ (s) =
∞∑

n=1

n−s =
∏

p prime

(1− p−s)−1 (2.2.3c)

(see Section 2.3.1). The Ek and Gk have multiplier μ ≡ 1.
Indeed, the Eisenstein series generate all modular forms for SL2(Z) with trivial multi-

plierμ. More specifically, the span of all such modular forms (over all k) is a ring graded
by k (i.e. the product of modular forms of weight k and k ′ is one of weight k + k ′). This
ring is generated (over C) by the Eisenstein series E4(τ ) and E6(τ ) – that is, any level
k modular form f can be written as a polynomial (homogeneous in the obvious sense)
in E4 and E6. Moreover, E4 and E6 are algebraically independent, so that polynomial
is unique. Using this we can readily compute the dimension of (and find a basis for) the
space of weight k modular forms. For instance, a basis for the weight 24 modular forms
is {E4

6 , E2
6 E3

4 , E6
4}.

The definition of modular forms seems fairly arbitrary. For example, one may ask how
significant the upper half-plane H is, or where the factor (cτ + d)k in (2.2.2) comes from.
We confront this in Section 2.4.1. But for now note that Definition 2.2.1 (like Definition
0.1 before it) also makes perfect sense if SL2(Z) is replaced by any Fuchsian group �
that sends the cusps Q ∪ {i∞} to themselves. The only (minor) complication is that the
cusps may not lie in the same orbit. See, for example, [352] for the proper definition. We
are interested in � commensurable with SL2(Z), that is, � ∩ SL2(Z) has finite index in
both � and SL2(Z). Typical choices for � are the congruence subgroups

�(N ) :=
{(

a b
c d

)
∈ SL2(Z) |

(
a b
c d

)
≡ ±

(
1 0
0 1

)
(mod N )

}
, (2.2.4a)

�0(N ) :=
{(

a b
c d

)
∈ SL2(Z) | c ≡ 0 (mod N )

}
, (2.2.4b)

for any N ∈ N. Incidentally, for N > 1, �(N )/{±1} is always free (i.e. isomorphic to
some Fm), while �0(N ) may or may not be free.

It is not at all obvious that modular forms and functions should be interesting, but in
fact they are unavoidable in modern number theory. For example, consider the question
of writing numbers as sums of squares. We can write 5 = 12 + (−2)2 = (−1)2 + 12 +
02 + 12 + (−1)2, to give a couple of trivial examples. Let Nn(k) be the number of ways
we can write the integer n as a sum of k squares, counting order and signs. For example,
N5(1) = 0 (since 5 is not a perfect square), N5(2) = 8 (since 5 = (±1)2 + (±2)2 =
(±2)2 + (±1)2), N5(3) = 24, etc. Their generating functions are:5

∞∑
n=0

Nn(k) xn = θ (x)k,

5 A fundamental principle in mathematics is: whenever you have a subscript with an infinite range, make a
power series (called a generating function) out of it.
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where

θ (x) = 1+ 2x + 2x4 + · · · =
∑
n∈Z

xn2

is called a theta function. It turns out that θ transforms nicely with respect to SL2(Z),
once we make the change-of-variables x = exp[π iτ ] (what we usually call

√
q). Write

θ3(τ ) for θ (x). Then θ3 is clearly invariant under the action of

(
1 2
0 1

)
, and a little work

(done next subsection) shows that

(
0 −1
1 0

)
takes θ3(τ ) to

√
τ
i θ3(τ ). Together those

two modular transformations generate the group

�θ :=
〈(

0 −1
1 0

)
,

(
1 2
0 1

)〉
=
{(

a b
c d

)
∈ SL2(Z) | ac ≡ bd ≡ 0 (mod 2)

}
.

(2.2.5)

θ3 is a modular form of weight 1
2 and nontrivial multiplier for �θ .

Jacobi introduced that important change-of-variables x = exp[π iτ ] two centuries ago,
in his analysis of elliptic integrals. His theory is poorly remembered today, which is very
disheartening considering how much of modern mathematics is touched by it. Have a
look at the book [94], written over a century ago; the style of mathematics in our time
is rather different from that in Jacobi’s, and we’ve lost a little in innocence what we’ve
gained in power. See also the beautiful book [414]. Let’s briefly sketch Jacobi’s theory.

Just as we could develop a theory of ‘circular functions’ (i.e. sine, etc.) starting from
the integral s(a) = ∫ a

0
dx√
1−x2 , so we can develop a theory of ‘elliptic functions’ starting

from the elliptic integral F(k, a) = ∫ a
0

dx√
(1−x2)(1−k2x2)

. Inverting s(a) gives a function

both more useful and with nicer properties than s(a): we call it sin(u). Similarly, for
any k the elliptic function sn(k, u) is defined by u = F(k, sn(k, u)). Just as we can
define a numerical constant π by sin( 1

2π ) = 1 (i.e. 1
2π =

∫ 1
0

dx√
1−x2 ), we get a function

K (k) = ∫ 1
0

dx√
(1−x2)(1−k2x2)

. Just as sin(u) has period 4( 1
2π ), so sn has u-period 4K (k). sn

also turns out to have u-period 4i K (k ′) where k ′ = √1− k2 – today we take this as the
starting point and define an elliptic function to be doubly periodic or, what is the same
thing, to be a function on a torus (Section 2.1.3).

Theta functions aren’t elliptic functions, but they are closely related, as we see in
Section 2.1.3. In Jacobi’s language, we have

θ3

(
i K (k ′)
K (k)

)
=
√

2K (k)

π
.

The ‘modular transformation’ τ �→ −1
τ

interchanges the ‘modulus’ k with the ‘comple-
mentary modulus’ k ′, and is completely natural in Jacobi’s theory. The important formula
θ3(−1

τ
) = √

τ
i θ3(τ ) is trivial here. Closely related to this is Poincaré’s remarkable path

to modular functions (Section 3.2.4).
Surprisingly, many seemingly innocent questions can be dragged (usually with effort)

into the richly developed realm of elliptic curves and modular forms, where they are often
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solved. For instance, we all know the ancient Greeks were interested in Pythagorean
triples: integer solutions a, b, c to a2 + b2 = c2, or equivalently right-angle triangles
with rational side-lengths (Section 2.1.1).

There are two ways of pushing this. One is to ask which n ∈ Z can arise as areas of
these rational right-angle triangles. It turns out n = 5 is the smallest one: a = 3

2 , b = 20
3 ,

c = 41
6 works (5 = 1

2 ( 3
2 )( 20

3 ) and ( 3
2 )2 + ( 20

3 )2 = ( 41
6 )2). This is a hard problem – just try

to show n = 1 cannot work. The number n = 157 works, though the simplest triangle
has a and b as quotients of integers of size around 1025, and c as the quotient of integers
around 1047. Although this problem was studied by the ancient Greeks and also by the
Arabs in the tenth century, it was finally cracked in the 1980s by first translating it into
the question of whether the elliptic curve y2 = x3 − n2x has infinitely many rational
points.

The other extension of Pythagorean triples is more famous: find all integer solutions
to an + bn = cn . 350 years ago Fermat wrote in the margin of a book he was reading (the
book was describing at that point Diophantus’classification of Pythagorean triples) that
he had found a ‘truly marvelous’ proof that for n > 2 there are no nontrivial solutions, but
that the margin was too narrow to contain it. This result came to be known as ‘Fermat’s
Last Theorem’6 and despite considerable effort no one has succeeded in rediscovering his
proof. Most people believe that Fermat soon realised his ‘proof’ wasn’t valid, otherwise
he would have alluded to it in later letters. In any case, a very long and complicated proof
was finally achieved in the 1990s: the ‘Taniyama–Shimura conjecture’ says that a certain
function associated with any elliptic curve over Q will be modular; if an + bn = cn

for some n > 2 and nonzero integers a, b, c, then the elliptic curve y2 = x3 + (an −
bn)x2 − anbn will violate that conjecture; finally, Wiles proved the Taniyama–Shimura
conjecture.

A certain interpretation of modular functions also indicates their usefulness, and
explains the adjective ‘modular’. The moduli space of tori is SL2(Z)\H (Section 2.1.4).
So if we have a complex-valued function F on the set of all tori, which associates the
same value to conformally equivalent tori (an example is the genus-1 partition function
(4.3.8b) in conformal field theories), then F is a function F : H → C, symmetric with
respect to SL2(Z).

Likewise, suppose we are interested in meromorphic functions f : �→ C living on
some surface �.We know from the last section that almost every surface � is a quotient
� = �\H, for some Fuchsian group �. Then f can be lifted to a meromorphic function
on H with symmetry �.

What is the meaning of the Fourier expansion? Think of the parameter q as the local
coordinate about the cusp i∞. The Fourier expansion is simply the local expansion of
f about that cusp. There is a similar expansion about any other cusp x ∈ Q. In the case
of SL2(Z), all cusps are equivalent, but for smaller groups the cusps typically fall into

6 It was called his ‘Last Theorem’ because it was the last of his 48 margin notes to be proved by other
mathematicians – a different margin note is discussed in Section 1.7. The story of Fermat’s Last Theorem is
a fascinating one, but alas this footnote is too small to do it credit. See for instance the excellent book [508].
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several distinct orbits, and the corresponding expansions carry independent information.
These coefficients are often quite interesting (e.g. they may give the numbers of solutions
to various equations, or the dimensions of certain subspaces). The modular form f is a
holomorphic interpolation between this local information.

2.2.2 Theta and eta

Two modular forms that appear throughout the following are the Jacobi theta function
θ3 and the Dedekind eta function η:

θ3(τ ) := 1+ 2
∞∑

m=1

qn2/2 =
∞∏

n=1

(
1+ q (2n−1)/2)

)2
∞∏

n=1

(1− qn), (2.2.6a)

η(τ ) := q1/24
∞∏

n=1

(1− qn) = q1/24
∞∑

m=−∞
(−1)mq (3m2+m)/2. (2.2.6b)

The equality in (2.2.6a) comes from the denominator identity (3.4.5b) for A(1)
1 , while that

in (2.2.6b) comes from Euler’s pentagonal identity; in both cases the first expressions are
more important. We saw θ3 last subsection. Unlike the Eisenstein series, its modularity is
not obvious. It can be established though in a number of ways, the most familiar perhaps
being Poisson summation. This says that for any rapidly decreasing smooth function
g : R → C (g is in the Schwartz space S(R) of Section 1.3.1),∑

n∈Z

g(n) =
∑
m∈Z

ĝ(m), (2.2.7a)

where ĝ is the Fourier transform of g:

ĝ(y) =
∫ ∞

−∞
e−2π ixy g(x) dx . (2.2.7b)

Choose g(x) = e−π t x2
with t ∈ R, so τ = it ∈ H; then ĝ(y) = √1/t e−πy2/t and we

obtain (by analytic continuation to all τ ∈ H) the transformation formula for θ3 under
τ �→ −1/τ :

θ3

(−1

τ

)
=
√
τ

i
θ3(τ ). (2.2.7c)

θ3 is a modular form for �θ (2.2.5) of weight 1/2 and nontrivial multiplier. Both Poisson
summation and its application to (2.2.7c) are due to Gauss. In Question 2.2.4 you are
asked to prove Poisson summation, and next subsection we try to understand what it is
saying. In Sections 2.3.1, 2.3.4 and 2.4.2 we give alternate proofs of (2.2.7c).

The modularity of η can be summarised by

η(τ + 1) = ξ24 η(τ ), (2.2.8a)

η

(−1

τ

)
=
√
τ

i
η(τ ), (2.2.8b)

where ξ24 = exp[2π i/24].
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More generally, we get the complicated transformation law

η

(
aτ + b

cτ + d

)
= μ(a, b, c, d)

√
cτ + d η(τ ), ∀

(
a b
c d

)
∈ SL2(Z), (2.2.8c)

where, for c > 0, μ(a, b, c, d) = exp(π i ( a+d
12c − 1

2 − s(d, c))) for the Dedekind sum

s(d, c) =
c−1∑
i=1

i

c

(
di

c
−
⌊

di

c

⌋
− 1

2

)
. (2.2.8d)

For c = 0, the transformation follows immediately from (2.2.8a), while for c < 0 an
analogue to (2.2.8c) holds. The denominator of the rational number s(d, c) will always
divide 6c;μwill always be a 24th root of 1. Although Dedekind sums have many special
properties [468], we find in Section 2.4.3 a much cleaner way to write (2.2.8c). In any
case, η is a modular form for SL2(Z) of weight 1

2 and nontrivial multiplier.
Once again, (2.2.8a) is immediate from the definition (2.2.6b) and isn’t deep. There

are several arguments in the literature that establish (2.2.8b), including Poisson sum-
mation applied to the series in (2.2.6b). Here is another, which is instructive for other
reasons. In the following paragraph, let’s not be distracted by mere analytic concerns,
like convergence or interchanging integrals and infinite sums.

Fix τ = it , t > 0. The expression

−1

4

∫
(θ3(ist)− 1)(θ3(is/t)− 1) ds (2.2.9a)

is manifestly invariant under the transformation t �→ 1/t . Applying the transformation
(2.2.7c) to θ3(is/t) and expanding out both θ3’s, we get

−1

4

∫ ( ∞∑
�=1

2e−πst�2

)(√
t

s

(
1+ 2

∞∑
n=1

e−π tn2/s

)
− 1

)
ds (2.2.9b)

= −
∞∑
�=1

∞∑
n=1

∫ √
t

s
e−πst�2−π tn2/sds + 1

2

∞∑
�=1

∫
eπst�2

ds − 1

2

∞∑
�=1

∫ √
t

s
e−πst�2

ds.

Now, replace the indefinite integral here with
∫∞

0 . The third term in the right-side of
(2.2.9b) is independent of t (to see this, change variables: y = ts) and so is a constant.
The second term can be evaluated explicitly:

1

2

∞∑
�=1

∫ ∞

0
e−πst�2

ds = 1

2

∞∑
�=1

1

π t�2
= 1

2π t

π2

6
= π

12t
. (2.2.9c)

To simplify the first term of (2.2.9b), replace s with x2 and apply the identity

e−2
√

ab = 2

√
a

π

∫ ∞

0
e−ax2−bx−2

dx

(this is identity 3.325 of [258]) with a = π t�2, n = π tn2. The first term becomes

−
∞∑
�=1

∞∑
n=1

1

�
e−2π t�n = −

∞∑
n=1

log(1− e−2π tn).
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Putting these together, we get

−1

4

∫ ∞

0
(θ3(ist)− 1)(θ3(is/t)− 1) ds = log η(it)+ π t

12
+ π

12t
+ C

for some constant C .
Two unfortunate remarks should probably be made regarding this calculation. First, it

would imply (2.2.8b) holds without the prefactor
√
τ/i. Second, the constant C diverges,

as does the integral in (2.2.9a). Calculations like this mellow somewhat one’s disdain for
analysis. The way to proceed is to ‘regularise’ (2.2.9a) by subtracting from the integrand
near s = 0 the term s−1 responsible for the divergence. This results in the identity

log η(it) = −1

4

∫ ∞

1
(θ3(ist)− 1)(θ3(is/t)− 1) ds − 1

4

∫ 1

0
(θ3(ist)− 1)(θ3(is/t)− 1)

−s−1 ds − π t

12
− π

12t
− 1

4
log t. (2.2.9d)

In Question 2.2.5 the reader is asked to fill in the details, proving (2.2.9d) and thus
(2.2.8b). We see from this argument that the mysterious power 1/24 in (2.2.6b), required
for the modularity of η, in fact equals ζ (2)/(2π )2.

At least in spirit, this calculation is reminiscent of the regularisation of Feynman
integrals in quantum field theory (Section 4.2.3). For example, the Dedekind eta arises
in the calculation of the one-loop partition function of a boson compactified on a circle
(see e.g. section 8 of [246]). The normalisation factor there involves the product of the
nonzero eigenvalues of the Laplacian ∂2

∂x2 + ∂2

∂y2 on the torus C/(Z+ τZ): namely the

modulus-squared |D|2 of

D(τ ) =
∏

(m,n)�=(0,0)

π

τ2
(n − τm), (2.2.10a)

where τ2 = Im(τ ) > 0. This expression diverges enthusiastically, but it is to be inter-
preted using the substitutions (zeta-function regularisation)

∞∏
n=1

a = aζ (0) = a−
1
2 ,

∞∏
n=1

nα = e−αζ
′(0) = (2π )α/2,

∞∏
n=1

an = aζ (−1) = a−
1
12 ,

(2.2.10b)
where ζ here is the Riemann zeta function (2.2.3c). It is found that

D(τ ) = 2τ2 η(τ )2. (2.2.10c)

In this ‘derivation’ of η, the exponent 1/24 in (2.2.6b) equals−ζ (−1)/2. Since the values
ζ (−1) and ζ (2) are related by the functional equation (2.3.2), they are indeed equiva-
lent. Also, note that (2.2.10a) obeys D(τ + 1) = D(τ ) and D(−1/τ ) = D(τ )/τ , while
(2.2.10c) obeys D(τ + 1) = eπ i/6 D(τ ) and D(−1/τ ) = −iD(τ )/τ . Thus the identifi-
cations (2.2.10b) don’t preserve modular behaviour. It is somewhat reminiscent of the
−s−1 regularisation in (2.2.9), which breaks the t ↔ 1/t symmetry.

Prefactors qm as in (2.2.6b) are very common, as we shall see later with the characters
of Kac–Moody algebras or vertex algebras. In Monstrous Moonshine, this is the q−1 with
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which the j-function begins. These factors are a little mysterious – for example, why
start the grading in (0.3.1) at−1 rather than 0 – and there are several explanations (Sec-
tions 3.1.2, 3.2.3 and 5.3.4). The point of our little digression into string theory is to intro-
duce its term conformal anomaly for this factor qm . In physics, an anomaly is a symmetry
of a classical system that is broken in its quantisation. Here, the τ �→ τ + 1 symmetry
(an aspect of conformal invariance) of D(τ ) is broken by regularisation, an anomaly.

We see in (2.2.3a) that the coefficients of the q-expansion of Eisenstein series are
interesting. In fact, we are usually more interested in the coefficients of a modular form
than in the function itself. A classic example of this is the theta series of a lattice. Let
L ⊂ Rn be any n-dimensional positive-definite lattice (Section 1.2.1), and choose any
vector t ∈ Rn . Define

t+L (τ ) :=
∑

x∈t+L

qx ·x/2. (2.2.11a)

In words, the coefficient of qr is the number of vectors in t + L with length
√

2r . For
example, Z = θ3. Let L be rational (i.e. for all u, v ∈ L we have u · v ∈ Q) and t have
finite order m in L (i.e. mt ∈ L). Then Poisson summation again yields

t+L

(−1

τ

)
= (τ/i)n/2

√|L|
m−1∑
k=0

ξ k
m ks+L0 (τ ), (2.2.11b)

where (as always) ξm := exp[2π i/m], s ∈ L∗ satisfies s · t ≡ 1
m (mod 1) (why must such

a vector s always exist?) and where L0 = {u ∈ L∗ | u · t ∈ Z}. In particular,

L

(−1

τ

)
= (τ/i)n/2

√|L| L∗ (τ ). (2.2.11c)

Definition 2.2.2 Let I be a finite set, and suppose for each i ∈ I we have a function
fi (τ ) meromorphic in H and with q-expansion fi (τ ) =∑

r∈Q ar,i qr , such that for each
N only finitely many r < N have nonzero coefficients ar,i . We call the set { fi (τ )}i∈I a
vector-valued modular function for SL2(Z) with multiplier ρ : SL2(Z) → GLI (C) if, for
each A ∈ SL2(Z) and i ∈ I, we have

fi

(
aτ + b

cτ + d

)
=
∑
j∈I

ρ(A)i j f j (τ ).

The strange condition on the ar,i simply says that each fi is meromorphic at τ = i∞.
Vector-valued modular forms are studied in, for example, [350]. By the usual argument,
ρ will be a ‖I‖-dimensional representation of SL2(Z). We are interested in the case
when the matrices ρ(A) are unitary. In this case, at least when the functions fi (τ )
are linearly independent, a vector-valued modular function for SL2(Z) defines a flat,
holomorphic, Hermitian vector bundle over M1,0: namely, the diagonal quotient (H×
span{ fi (τ )})/PSL2(Z). The fibre above any point in M1,0 will be ‖I‖-dimensional,
except possibly for the singular points [i] and [eπ i/3]. The fi are holomorphic sections
of this bundle.
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A classical property of theta functions, apparently due in this generality to Hecke
in 1940, anticipates beautifully what we see later in this book in more and more
generality.

Theorem 2.2.3 Let L ⊂ Rn be any n-dimensional positive-definite lattice.
(a) Suppose for all v ∈ L that v · v ∈ Q. Let t ∈ Rn be any vector with finite order in

L: i.e. mt ∈ L for some nonzero m ∈ Z. Then the theta series L+t (τ ), divided by
η(τ )n, is a modular function for some �(N ).

(b) Suppose further that L is an even lattice (i.e. all v · v lie in 2Z), and let L∗ be its dual.
Write ti + L, i = 1, . . . , M, for the finitely many cosets in L∗/L. Define a column
vector !χL (τ ) with i th component ti+L (τ )/η(τ )n. Then !χL forms a vector-valued
modular function for SL2(Z).

For the proof of part (a), see theorem 20 of [456]. Part (b) follows quickly from (2.2.11b)
and (2.2.8). This theorem can be interpreted as being a special case of Theorem 3.2.3
below, when g is the affinisation of the reductive (abelian) Lie algebra Cn . Note, however,
that the functions in (2.2.11a) are linearly dependent, and so the matrices ρ(A) are not
uniquely defined by (b). The easiest way to get linear independence is by adding variables
(Section 2.3.2).

The Leech lattice� (Section 1.2.1) is to lattices much as the Moonshine module V � is
to VOAs (see Section 7.2.1 below). It has no length-squared 2-vectors, and has precisely
196 560 length-squared 4-vectors – a number remarkably close to the monstrous 196 883.
Indeed its theta function�(τ ), when divided byη(τ )24, equals J (τ )+ 24. Is this another
example of Moonshine, on par with McKay’sequation (0.2.1a)?

Indeed it is. However, for the Leech lattice �, we can quickly identify �(τ ) in terms
of J (τ ) (see Question 2.2.7). Although the 196 560 ≈ 196 884 coincidence is thus easy
to explain, it nevertheless turns out to be an instructive example of Moonshine.

2.2.3 Poisson summation

Theta series (2.2.11a) are sums, over periodic sets, of the exponential of a quadratic
polynomial. According to the argument given last subsection, two ingredients go into
their modularity: together with Poisson summation (2.2.7a), we also needed the fact
that the Fourier transform of the Gaussian e−t x2

is essentially itself. Poisson summation
requires the infinite periodic sum. There are many other simple functions f that are
likewise nearly invariant under Fourier transform: for example, the Fourier transform
over R2 of f (x, y) = eix3/y y−2/3sign(y) is i f (x,−y/27). For several other examples,
see [176]. To see how to use this to get ‘cubic’ analogues of theta functions (which will
transform nicely with respect to SL3(Z)), as well as possible applications to physics, see
the intriguing review [462] and references therein.

What is the other ingredient, Poisson summation, really saying? Meaning arises from
a natural embedding of the particular into a more general context, so let’s try to generalise
Poisson summation.
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First, let G be a group – we require it to be a topological group (separable and locally
compact). As defined in Section 1.5.5, its unitary dual Ĝ consists of all unitary irreducible
representations. For example, the unitary duals of R and Z can be identified with R and
S1, respectively, while the unitary dual of compact groups (like finite G or G = S1)
consists of a discrete set of points. When the group is abelian, the representations π ∈ Ĝ
are all one-dimensional; the dual Ĝ itself forms an abelian group, and Pointrjagin duality

says that the double-dual ˆ̂G is isomorphic to G. For example, the representations in R̂
look like ψλ(x) = e2π iλx for each λ ∈ R, so R̂ ∼= R. When G is non-abelian, Pointrjagin
duality becomes the more abstract Tannaka–Krein duality of Section 1.6.2.

Let us begin with abelian groups. Let � be a (discrete) subgroup of an abelian group
G, such that the quotient �\G is compact. The theta series modularity arguments last
subsection correspond to the choices G = R and � = Z and, more generally, G = Rn

and � = L; of course the circle Z\R and the n-torus L\Rn are compact.
The Fourier transform f �→ f̂ for the group G – explicitly, f̂ (ψ) = ∫

G f (x)ψ(x) dx –
is a unitary map taking Schwartz functions on G to Schwartz functions on the dual Ĝ.
Incidentally, the integrals here and below are with respect to the invariant Haar measure
(Section 1.5.4). Then the classical Poisson summation (2.2.7a) becomes∫

�

f (γ ) dγ =
∫
�⊥

f̂ (ψ) dψ, (2.2.12)

where �⊥ consists of all ψ ∈ Ĝ such that ψ(γ ) = 1 for all γ ∈ �. The integrals here
reduce to sums, thanks to discreteness. It is through �⊥ that the dual lattice L∗ enters
into (2.2.11c). Since Z⊥ = Z, we find that (2.2.12) is indeed a generalisation of (2.2.7a).

(2.2.12) is too easy a generalisation to help us much.The meaning of Poisson summa-
tion, and of (2.2.12), becomes a little clearer when we generalise to non-abelian groups.
Let � now be an arbitrary discrete closed subgroup of a separable locally compact group
G. G and � may or may not be abelian. For simplicity we assume that the coset space
�\G is compact. Then �\G has a finite invariant measure, and the space L2(�\G) of
square-integrable functions forms a Hilbert space (Section 1.3.1). The regular represen-
tation R of G on L2(�\G) is defined by (R(x) f )(y) = f (yx), as usual, and is unitary.
This representation decomposes as a direct sum of irreducible unitary representations:

L2(�\G) = ⊕π∈Ĝmππ,

where the numbers mπ ≥ 0 are the (finite) multiplicities.
Even though R is infinite-dimensional, we can define a character for it as follows. For

any sufficiently nice function φ on G (e.g. φ smooth and of compact support), define the
operator R(φ) = ∫

G φ(y) R(y) dy on L2(�\G) by

(R(φ) f )(x) =
∫

G
φ(y) f (xy) dy.

This assignment φ �→ R(φ) forms a representation of the algebra of smooth functions
with compact support, with multiplication given by convolution φ ∗ φ′. The trace of an
operator is defined to be the sum of its eigenvalues. It can be shown that the trace tr R(φ)
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exists, and in fact equals∑
π∈Ĝ

mπ trπ (φ) =
∑
γ∈T

vol(�γ \Gγ )
∫

Gγ \G
φ(x−1γ x) dx, (2.2.13)

where T is a set of conjugacy class representatives in �, and �γ and Gγ are the sta-
bilisers of γ in � and G, respectively (e.g. �γ = {g ∈ � | gγ g−1 = γ }). The left side of
(2.2.13) is obviously spectral, that is involves eigenvalues. The right side is geometric;
the integral over Gγ \G is called an ‘orbital integral’. Equation (2.2.13) has an immediate
generalisation: replace the regular representation R of G on L2(�\G) with any represen-
tation of G induced from a finite-dimensional unitary representation ρ of �. The trivial
representation of � yields the regular representation R. [20] gives the straightforward
proof of (2.2.13) as well as other generalisations.

In the abelian case (e.g. G = Rn, � = L), all mπ = 0 or 1 and �⊥ consists of all
π ∈ Ĝ with mπ = 1, and (2.2.13) reduces to (2.2.12). In effect we have reinterpreted
the Fourier transform f̂ (ψ) by fixing ψ ∈ Ĝ and varying the function f , as a sort
of character value for the (possibly infinite-dimensional) irreducible representation ψ .
Another special case of (2.2.13) is to take the group G to be finite, in which case it
reduces to Frobenius reciprocity. Interesting finite group applications are described in
chapters 22–25 of [522].

Equation (2.2.13) is called the Selberg trace formula; there is a more complicated
version (due in fuller generality to Arthur) when �\G is noncompact (in which case
there are continuous parts to the spectrum). Selberg (a 1950 Fields medalist) was most
interested in the case where G = SL2(R) and, for example, � = SL2(Z), which has
noncompact quotient. For this G he found explicit expressions for the orbital integrals,
and the resulting trace formula has powerful consequences.

The Selberg trace formula (2.2.13) can be thought of as an expression for the character
of the regular representation of G on L2(�\G). This expression is geometric in the
sense that for typical groups, the quantities on the right-side typically have geometric
interpretations (e.g. for G = SL2(R), and� a Fuchsian group acting without fixed points,
the orbital integrals can be expressed using lengths of closed geodesics on the compact
Riemann surface�\H). Of course these orbital integrals, and hence much of the potential
geometry, are trivial in the abelian group case used last section.

Although Poisson summation, and its generalisations like the Selberg trace formula,
play a central role in the theory of automorphic forms and Langlands programme, they
have only played sporadic roles so far in Moonshine and conformal field theory. For
example, [130] applies the Selberg trace formula to string theory, to find the trace of
the heat kernel. Orbital integrals also play a fundamental role in the approach [346] to
understand group representations via coadjoint orbits; I. Frenkel extended this method
to express the characters of affine Kac–Moody algebras as orbital integrals [198], and
in this way obtained new proofs of the Macdonald identities. It seems unlikely though
that Poisson’s and Selberg’s formulae can provide a unified explanation of all modu-
larity proofs in Moonshine. A rigorous proof in mathematics may be too slick, much
as a painting can be too photographic. It seems to this author that, although Poisson
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summation permits a quick proof of theta function modularity, it doesn’t tell us why it’s
true. A conceptual proof should open the door to natural generalisations of the given
theorem, by underscoring the confluence of properties needed for that theorem to hold.

2.2.4 Hauptmoduls

Let’s identify the orbit space SL2(Z)\H, by studying the fundamental domain D of
Figure 2.3. Apart from the boundary of D, every SL2(Z)-orbit will intersect D in one and
only one point. But what should we do about the boundary? Well, the edge Re(τ ) = − 1

2
gets mapped by the translation T : τ �→ τ + 1 to the edge Re(τ ) = 1

2 , so we should
identify these, i.e. glue them together. The result is a cylinder running off to infinity,
with a strange lip at the bottom. The inversion S : τ �→ −1/τ tells us how we should
close that lip: identify ieiθ and ie−iθ . This seals the bottom of the cylinder, so we get an
infinitely tall cup with a strangely puckered base. In fact the top of this cup is also capped
off, by the cusp i∞. So what we have (topologically speaking) is a sphere. It inherits
the smoothness of H except for conical singularities at the fixed points i and eπ i/3. The
cusps are responsible for compactness. This interpretation of SL2(Z)\H means that a
modular function for SL2(Z) can be reinterpreted as a meromorphic complex-valued
function on this sphere. There is a canonical sphere in complex analysis, namely the
Riemann sphere P1(C) = C ∪ {∞}. The meromorphic functions on the Riemann sphere
must be rational, that is of the form f (w) = some polynomial P(w)

some polynomial Q(w) , where w is the complex
parameter on the Riemann sphere. So a modular function f (τ ) for SL2(Z) is simply some
rational function P/Q evaluated at the change-of-local-parameters, or at the uniformising
function w = c(τ ) that maps us from our sphere �\H to the Riemann sphere. There are
many different choices for this function c(τ ), but the standard one is the j-function:7

j(τ ) :=
(
1+ 240

∑∞
n=1 σ3(n) qn

)3

q
∏∞

n=1(1− qn)24
= E8 (τ )3

η(τ )24
= q−1 + 744+ 196 884 q + · · ·

(2.2.14)
(see also (0.1.8)), where σ3 is in (2.2.3b), E8 is the theta series of the E8 root lattice
(2.2.11a) and η is the Dedekind eta (2.2.6b). Thus, any modular function for SL2(Z) can
be written as a rational function f (τ ) = P( j(τ ))/Q( j(τ )) in the j-function. Conversely,
any such function is modular.

This is analogous to (and much stronger than) saying that any function g(x) periodic
under x �→ x + 1 is really a function on the unit circle S1 ⊂ C evaluated at the uni-
formising function x �→ e2π ix , and hence has a Fourier expansion

∑
n gn exp[2π inx].

We can generalise the argument that led to j . Recall (2.2.4).

Definition 2.2.4 Call a discrete subgroup � of SL2(R) a congruence subgroup if it
contains some �(N ). Call it of moonshine-type if it contains some �0(N ), and obeys(

1 t
0 1

)
∈ � ⇒ t ∈ Z. (2.2.15)

7 Historically, j was the standard choice, but in Monstrous Moonshine the preferred choice would be the
function J = j – 744 with zero constant term.
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The congruence subgroups are relatively rare among finite index subgroups of SL2(Z),
but their theory is much better developed. Let f be a modular function for a congruence
subgroup �. Then we can expand f as a Laurent series in q1/N . We analyse this as
before: look at the orbit space � = �\H; because � is not too big, � will be a Riemann
surface; because � is not too small, � will be compact.

We call � ‘genus g’ if its surface� has genus g. If � is a subgroup of �(1) = SL2(Z),
and without loss of generality we have −I ∈ �, then the genus is given by

g = 1+ n

12
− n2

4
− n3

3
− n∞

2
, (2.2.16)

where n is the index ‖�(1)/�‖ of � in �(1), and where nk (k = 2, 3,∞) is the number
of �-orbits of order-2k fixed points. For the easy proof from the Hurwitz formula, see
proposition 1.40 of [505]. Note that n∞ is the number of punctures of�\H. For example,
for � = SL2(Z) we have n = 1 = n2 = n3 = n∞ and we recover our result that the
genus is 0. The values n, n2, n3, n∞ for all �(N ) and �0(N ) are given in Section 1.6
of [505].

For example, � = �0(2) and � = �0(25) are both genus 0 (with 2, respectively 6,
punctures), while �0(50) is genus 2 with 12 punctures and �0(24) is genus 1 with 7
punctures. Once again, we are interested here in the genus-0 case. As before, this means
that there is a uniformising function J� that is a modular function for �, and all other
modular functions for � can be written as a rational function in it. Because of (2.2.15),
we can choose J� to look like

J�(τ ) = q−1 + a1(�) q + a2(�) q2 + · · ·
So J� , the Hauptmodul for �, plays exactly the same role for � that J := j − 744 plays
for SL2(Z). For example, �0(2), �0(13) and �0(25) are all genus 0, with Hauptmoduls

J2(τ ) = q−1 + 276 q − 2048 q2 + 11202 q3 − 49152 q4 + 184024 q5 + · · · ,
(2.2.17a)

J13(τ ) = q−1 − q + 2 q2 + q3 + 2 q4 − 2 q5 − 2 q7 − 2 q8 + q9 + · · · , (2.2.17b)

J25(τ ) = q−1 − q + q4 + q6 − q11 − q14 + q21 + q24 − q26 + · · · (2.2.17c)

The smaller (sparser) the modular group, the smaller the coefficients of the Hauptmodul.
In this sense, the j-function is optimally bad among the Hauptmoduls: for example, for
it a23 ≈ 1025.

In Theorem 2.1.5 we see what happens in genus > 0: two generators, not one, are
needed, although they will be polynomially related.

As is mentioned in Chapter 0, Monstrous Moonshine is interested directly in genus-0
groups. We construct certain functions associated with the Monster, and it turns out
unexpectedly that these functions are actually Hauptmoduls.

An obvious question is, how many genus-0 groups (equivalently, how many Haupt-
moduls) are there? It turns out that �0(p) is genus 0, for a prime p, iff p − 1 divides 24.
Thompson [526] proved that for any g, there are only finitely many genus-g groups of
moonshine type. Cummins [121] has shown that there are in fact exactly 6486 genus-0
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groups of moonshine type. 616 of these have Hauptmoduls with integer coefficients
ai (�), and all of the remainder have q-coefficients in some cyclotomic field.

Question 2.2.1. How important are the conditions at the cusps for the definition of
modular functions or forms? For example, describe all functions f holomorphic on C,
symmetric with respect to SL2(Z) (i.e. f (γ.τ ) = f (τ ) for all γ ∈ SL2(Z)), but which
need not be holomorphic or even meromorphic at the cusps (i.e. f may have an essential
singularity there).

Question 2.2.2. Show that if f is a modular form of weight k, and 3 doesn’t divide k,
then f (e2π i/3) = 0.

Question 2.2.3. Suppose f is a modular form, not identically 0, for some �, with multi-
plier μ and integral weight k. Prove that μ must be a one-dimensional representation of
�. Where does the proof go wrong if k is fractional?

Question 2.2.4. Prove Poisson summation (2.2.7a). (Hint: x �→ f̃ (x) =∑
n∈Z f (n + x)

is periodic, so can be Fourier expanded. Compute f̃ (0) in two different ways.)

Question 2.2.5. By modifying slightly the argument beginning with (2.2.9a), prove
(2.2.9d) and thus (2.2.8b).

Question 2.2.6. Let L be any self-dual positive-definite lattice. Then L (τ ) is a polyno-
mial in θ3(τ ) and E8 (τ ) (you can assume this, which is proved for instance in [503]).
Using this fact, show that the theta function for any self-dual positive-definite lattice of
dimension < 24 is uniquely determined by the numbers N1, N2 of norm-squared 1- and
2-vectors.

Question 2.2.7. Let L be a positive-definite 24-dimensional even self-dual lattice. Prove
that L (τ )/η(τ )24 = J (τ )+ cL for some constant cL . Find that constant.

Question 2.2.8. Find the genus of �(2), using (2.2.16).

2.3 Further developments

2.3.1 Dirichlet series

One of the most remarkable formulae in science is surely

1+ 2+ 3+ 4+ · · · = − 1

12
. (2.3.1)

Of course the right side is the value at s = −1 of the Riemann zeta function (2.2.3c).
The expressions in (2.2.3c) converge absolutely when Re(s) > 1, where ζ is then holo-
morphic, and ζ has a unique holomorphic extension to all of C, except for a simple pole
at s = 1 (the harmonic series). Equation (2.3.1) is used in quantum field theory in the
context of zeta function regularisation (2.2.10); it is related to the q1/24 in the Dedekind
eta function (2.2.6b) and the normalisation C/12 in Lie brackets (3.1.5a) of the Virasoro
algebra.



Further developments 141

The equality of the infinite sum and product in (2.2.3c) is merely an analytic reformu-
lation of unique factorisation in Z, but it shows crucially the relation between ζ (s) and
the primes. For a trivial example, taking logs of (2.2.3c) quickly gives the divergence of∑

1/p.
As important as analytic continuation and the product expansion are, more important

for us is the functional equation

�(1− s) = �(s), (2.3.2)

where �(s) := π−s/2�(s/2) ζ (s), using the Gamma function

�(s) := (2π )s
∫ ∞

0
e−2πy ys−1dy.

Indeed, Hecke discovered that (2.3.2) is equivalent to modularity (2.2.7c).

Theorem 2.3.1 (Hecke, 1936) Let f (τ ) =∑∞
n=0 ane2π inτ/d and φ(s) =∑∞

n=1 ann−s ,
where |an| < Cnc for some constants d,C, c. Define �(s) = (2π/d)−s�(s)φ(s). Then
the following two statements are equivalent:
(i) f (−1

τ
) = (

τ
i

)k
f (τ );

(ii) �(k − s) = �(s), and �(s)+ a0
s + a0

k−s is holomorphic and bounded in each
vertical strip in H.

Proof: The key idea of the proof is that �(s) and f (τ ) are related by the Mellin
transform:

�(s) =
∫ ∞

0
xs−1 ( f (ix)− a0) dx, (2.3.3a)

f (ix)− a0 = 1

2π i

∫
Re(s)=a

x−s �(s) ds, (2.3.3b)

for any constant a > 0 sufficiently large.
To prove (ii) from (i), write

∫∞
0 = ∫ 1

0 +
∫∞

1 in (2.3.3a), so we get the sum �(s) =
�0 +�∞. Note that�∞(s) is clearly holomorphic everywhere, andφ0(s) is holomorphic
when Re(s) is sufficiently large. Then, using (i), for those s

�0(s) =
∫ 1

0
xs−1 ( f (ix)− a0) dx =

∫ ∞

1
x−s−1xk f (ix) dx − a0

s

= �∞(k − s)− a0

s
− a0

k − s
.

Therefore �0(s) extends holomorphically everywhere, except for simple poles at s = 0
and s = k, and �0(s) = �∞(k − s)− a0s−1 − a0(k − s)−1 holds ∀ s �= 0, k. Thus

�(k − s) = �0(k − s)+�∞(k − s)

=
(
�∞(s)− a0

k − s
− a0

s

)
+
(
�0(s)+ a0

s
+ a0

k − s

)
= �(s).
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To prove (i) from (ii), shift the vertical contour Re(s) = a > 0 in (2.3.3b) to the left,
to Re(s) = b < 0, and pick up residues −a0 at s = 0 and x−ka0 at s = k:

f (ix)− a0x−k = 1

2π i

∫
Re(s)=b

x−s�(s) ds = 1

2π i

∫
Re(s)=k−b

x−(k−s)�(s) ds

= x−k ( f (i/x)− a0).

Therefore f (i/x) = xk f (ix), and (i) follows by analytic continuation.

When f is a modular form, we callφ the Dirichlet series or L-function corresponding to
f (the term L-function is usually reserved for thoseφwhich also have product expansions
as in (2.2.3c)). The modular form corresponding to the Riemann zeta function ζ (s) is
f (τ ) = 1

2θ3(τ ). Theorem 2.3.1 applies with k = 1
2 , d = 2 and�(2s) = �(s), and relates

(2.3.2) directly to (2.2.7c). Another famous example, due to Ramanujan, is f = η24. Its�
is holomorphic everywhere and its φ has a product form

∏
p(1− τ (p)p−s + p11−2s)−1,

where τ here is the so-called Ramanujan tau-function (see e.g. (3.4.6)).
Mysteriously, we can associate Dirichlet series to many of the basic objects of arith-

metic – modular forms, number fields, algebraic varieties, etc. – in such a way that
basic operations performed on, and relations between, the Dirichlet series correspond to
natural operations on, and relations between, the arithmetic objects. In its most general
form, this is Langlands functoriality. For a famous special case, given an elliptic curve E
defined over Q, its L-function keeps track of the number of points on E as we vary its field
of definition from Q to the finite fields. The Taniyama–Shimura Conjecture states that E
is modular, i.e. that this L-function is the Dirichlet series of a modular form of weight 2.
As we know, Wiles et al. proved Taniyama–Shimura and hence Fermat’s Last Theorem.

See [456] for a clear treatment of the material of this subsection. We have been hurried
since there is at this point no evidence for its direct relevance to Moonshine. There are
many generalisations of Theorem 2.3.1. Let us mention one. Generators for the groups
SL2(Z) and�θ are given in (2.2.1a) and (2.2.5), so Theorem 2.3.1 gives a Dirichlet series
characterisation for f to be a modular form for those groups. When � is smaller (say
� = �(N )), to which Dirichlet series conditions does the modularity of f translate? The
list of generators is far more complicated. An answer is provided by Weil’s Converse
Theorem (Section 2.3.3).

2.3.2 Jacobi forms

The general quadratic polynomial in one variable x looks like ax2 + bx + c, so we
might try to generalise θ3(τ ) by replacing n2τ with an2τ + bnz + cu. Consider then the
function

θ3(τ, z, u) =
∑
n∈Z

eπ iτn2+2π izn+2π iu, (2.3.4)

where τ, z, u ∈ C. We’ve seen these kinds of functions before in (2.1.7a). The 2π i’s in
front of z and u are conventional. As before, convergence requires τ ∈ H. Obviously,
the u-dependence is rather trivial and is retained only for book-keeping.
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Fix τ ∈ H and u ∈ C, and consider this as a function of z ∈ C. It has period 1 and
quasi-period τ :

θ3(τ, z + mτ + �, u + mz + m2τ/2) = θ3(τ, z, u), ∀m, � ∈ Z, (2.3.5a)

and thus is a function living (projectively) on the torus C/(Z+ τZ).
Next, fix z, u ∈ C and consider θ3 as a function of τ ∈ H. Completing the square τn2 +

2nz = τ (n + z
τ

)2 − z2

τ
and restricting τ, z to the imaginary axis, Poisson summation

(2.2.7a) and analytic continuation gives us

θ3(τ, z, u) =
√

i

τ
θ3

(−1

τ
,

z

τ
, u − z2

2τ

)
, (2.3.5b)

valid for all τ ∈ H and z, u ∈ C.

Definition 2.3.2 [170] By a Jacobi form for SL2(Z) of weight k and index m we mean
a holomorphic function f : H× C → C satisfying

f

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)k exp

[
2π i

mcz

cτ + d

]
f (τ, z), (2.3.6a)

f (τ, z + �τ + n) = exp[−2π im (�2τ + 2�z)] f (τ, z), (2.3.6b)

for all

(
a b
c d

)
∈ SL2(Z) and �, n ∈ Z. Moreover, f must have a Fourier expansion of

the form

f (τ, z) =
∑
n∈N

∑
r∈Z, r2≤4mn

cn,r e2π i (nτ+r z). (2.3.6c)

Similarly, we call θ3(τ, z, 0) a Jacobi form of weight 1
2 and index 0 for�θ . The Weierstrass

p-function p(τ, z) in (2.1.6a) is a Jacobi form for SL2(Z) of level 2 and index 1 (Question
2.3.1). A Jacobi form is a natural blend of the notions of modular form and elliptic
function: the parameter τ ∈ H tells us where on the moduli space of tori we are, and the
parameter z lives on that torus. Given such classical examples, it is hard to understand
why their theory was developed only in the 1980s. The introduction of the index m in
Definition 2.3.2 may be somewhat unexpected, but is explained in Section 2.4.1.

We can generalise the example (2.3.4) to lattices (and in fact to translates of lattices).
Let L be an n-dimensional lattice in Rn . Define

L (τ, z, u) =
∑
v∈L

exp[π iτ v · v + 2π i z · v + 2π iu], (2.3.7)

where z ∈ Cn , u ∈ C and τ ∈ H. The z-periods of L fill out the dual lattice L∗, and the
z-quasi-periods fill out τ L∗. Provided L is a rational lattice, we get the obvious analogue
of (2.2.11c), again from Poisson summation. To make L into a Jacobi form for some
�(N ) at weight n and index 0, it suffices to embed z ∈ C into Cn along any nonzero dual
weight vector u∗ ∈ L∗: i.e. L (τ, zu∗, 0) will be a Jacobi form.

As any string theorist knows, there are several different lattices L , L ′ that have the
same theta function: L (τ ) = L ′ (τ ). Perhaps the most famous example of this is the
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pair of even self-dual lattices of dimension 16 (namely, D+
16 and E8 ⊕ E8 [113]). Actually

there are lattice examples in every dimension ≥ 3 [108]. However, their Jacobi forms
are unique in the strongest form possible (see Question 2.3.2).

Writing theta functions as Jacobi forms is crucial to their interpretation as heat kernels,
or using Heisenberg groups, as we see in Sections 2.3.4 and 2.4.2. In Theorem 3.2.3 we
find that the characters of affine Kac–Moody algebras are Jacobi forms of weight and
index 0. Indeed, they are rational functions of lattice Jacobi forms (2.3.7).

An obvious question to ask is, to any modular form f (τ ), is there a Jacobi form
f (τ, z) for the same group and at the same weight such that f (τ, 0) = f (τ, z)? And
if so, is this Jacobi form unique? It turns out that every weight-k modular form f , at
least for SL2(Z), can be lifted to a Jacobi form for the same weight and group, at index
m = 1. This Jacobi form is far from unique, even at m = 1. In fact, the redundancy has
the same dimension as the space of weight-k + 2 cusp forms for SL2(Z). This fact is a
consequence of theorem 3.5 in [170].

2.3.3 Twisted #2: shifts and twists

Recall the classical Jacobi theta functions θ1 = θ 1
2 ,

1
2
, θ2 = θ 1

2 ,0
, θ3 = θ0,0, θ4 = θ0, 1

2
,

using the notation of (2.1.7a). These obey simple modular transformation rules, most
concisely stated in vector notation as⎛⎜⎜⎝

θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ + 1, z) =

⎛⎜⎜⎝
eπ i/4 0 0 0

0 eπ i/4 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ, z), (2.3.8a)

⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠(−1

τ
,

z

τ

)
= eπ iz2/τ

√
τ

i

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
θ1

θ2

θ3

θ4

⎞⎟⎟⎠ (τ, z). (2.3.8b)

That is, these θi define a vector-valued Jacobi form for SL2(Z) (Definition 2.2.2). The q-
expansions of θ1 and θ4 have negative coefficients; we can make ‘positive’ combinations
of these theta functions that have almost as nice transformations under SL2(Z):

θ[0](τ, z) = θ3(τ, z)+ θ4(τ, z)

2
= 1+ q2(r2 + r−2)+ q8(r4 + r−4)+ · · · ,

(2.3.9a)

θ[1](τ, z) = θ1(τ, z)+ θ2(τ, z)

2
= q1/8r1/2(1+ qr−2 + q3r2 + q6r−4 + · · · ),

(2.3.9b)

θ[2](τ, z) = θ3(τ, z)− θ4(τ, z)

2
= q1/2((r + r−1)+ q4(r3 + r−3)+ · · · ),

(2.3.9c)

θ[3](τ, z) = θ2(τ, z)− θ1(τ, z)

2
= q1/8r1/2(r−1 + qr + q3r−3 + q6r3 + · · · ),

(2.3.9d)
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where r = e2π iz . Note that θ[i] has the geometric interpretation as the theta series (2.2.11a)
of the translate 2Z+ i

2 .
We regard θ1, θ2, θ4 as Z2-twists and -shifts of θ3. More generally, the parameter

r ∈ 1
N Z in θr,s corresponds to a ZN -shift, and s ∈ 1

N Z to a ZN -twist. A far-reaching
generalisation of this simple construction is studied in Section 5.3.6; the analogue there
of the positive combinations (2.3.9) is the characters for a vertex operator algebra. In
Monstrous Moonshine the twists of J (τ ) are the McKay–Thompson series Jg(τ ), and its
more general shifts and twists are the Norton series of Maxi-Moonshine (Section 7.3.2).
Physically, this corresponds to the orbifold construction (Section 4.3.4). There, the pos-
itive linear combinations have the direct interpretation as graded dimensions of sectors
of the conformal field theory.

As always, the clearest example is provided by lattices (Section 1.2.1). Let L be an
integral positive-definite lattice and let r, s be two vectors in Q⊗ L . As in (2.1.7a), write

L;r,s(τ, z) =
∑
x∈L

eπ iτ (x+r )·(x+r )eπ i (z+s)·(2x+r ), (2.3.10a)

where as before z ∈ C⊗ L . Then L;r,s will be a Jacobi form for some subgroup of
SL2(Z), as is (2.3.7). In fact, if L is even and self-dual, we can be much more explicit.

For any r, s ∈ Q⊗ L , and any

(
a b
c d

)
∈ SL2(Z), we have

L;r,s

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)n/2 exp

[
π i

cz

cτ + d

]
L;ar+cs,br+ds(τ, z),

(2.3.10b)
where n is the dimension of L .

As usual, certain positive combinations of theseL;r,s have a direct (geometric) inter-
pretation. Again let L be self-dual, and suppose the vector s ∈ Q⊗ L has order m in L
(so ms ∈ L). Then there will be a vector s ′ ∈ L such that s · s ′ ≡ 1

m (mod 1). For any
integer k, and vector r ∈ Q⊗ L , we get this generalisation of (2.3.9):

1

m

m−1∑
j=0

exp

[
2π i j

(
s · r − k

m

)]
L;r, js = L0+r+ks ′ , (2.3.10c)

the theta series of a translate of the lattice L0 = {v ∈ L | v · s ∈ Z}.
In the orbifold construction of vertex operator algebras and chiral conformal field

theory, the role of vectors r, s is played by automorphisms g, h in some group G, and
the role of the sublattice L0 in (2.3.10c) is played by the vertex operator subalgebra VG

fixed by G. However, as we see in Section 4.3, full conformal field theory or string theory
involves the interplay of two vertex operator algebras; the orbifold construction there
involves in addition a reconstruction of a new full conformal field theory from VG . We
address this further in Sections 4.3.4 and 5.3.6.

This reconstruction is again beautifully illustrated by lattices. Let L be any rational
lattice and T = {ti } be a finite set of vectors in Q⊗ L . Then by L{T } we mean the set

L{T } =
{

x +
∑

i

�i ti | �i ∈ Z, x ∈ L ,

(
x +

∑
i

�i ti

)
· t j ∈ Z ∀ j

}
.
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Then L{T } is a lattice rationally equivalent to L (i.e. there is an orthogonal transfor-
mation T : Q⊗ L{T } → Q⊗ L). Conversely, if L1 and L2 are rationally equivalent
integral lattices, then there is a finite set T = {t1, . . . , tm} ⊂ Q⊗ L1 such that L1{T } is
isomorphic to L2 [238]. Clearly the theta series of L{T } is the average of L;r,s for a
finite number of r, s in the Z-span of T . The important special case is when L is self-dual;
then L{T } will also be self-dual provided all ti · t j ∈ Z. In this case,

L{T } =
⋃
�i∈Z

(
L0 +

∑
i

�i ti

)
,

where L0 = {x ∈ L | x · ti ∈ Z}. Call two self-dual lattices L1, L2 neighbours if there is
some vector t with integer length-square t · t such that 2t ∈ L1, and L2 and L1{t} are iso-
morphic. Then any two self-dual lattices, with equal dimensions n+ + n− and signature
n+ − n−, will be neighbours of neighbours of · · · of neighbours of each other [238].

Another way to collect some of these results is through Dirichlet characters, which are
important in the classical theory of modular forms. A Dirichlet character is a function
χ : Z → C, with some period N , such that χ (a) �= 0 iff a is coprime to N , and for
all a, b ∈ Z χ (ab) = χ (a)χ (b). Dirichlet introduced these χ in his proof that there are
infinitely many primes in any arithmetic series a, a + b, a + 2b, . . . , provided only that
a and b are coprime (clearly a necessary condition). He proved this by twisting the
Riemann zeta function (2.2.3c) by χ :

L(χ, s) =
∞∑

i=1

χ (n) n−s =
∏

p

(1− χ (p)p−s)−1. (2.3.11)

Given the lesson of Section 2.3.1, it should also be interesting to Dirichlet-twist modular
forms.

Modular forms and functions for the principal congruence subgroup �(N ) can be
defined as in Definitions 2.2.1 and 0.1, except now there are several orbits of cusps, and

we have invariance under only

(
1 N
0 1

)
, so the q-expansion takes the form

f (τ ) =
∑
n∈Z

ane2π i nτ/N =
∑
n∈Z

anqn/N . (2.3.12)

Given any Dirichlet character χ , we can twist this function f and obtain

fχ (τ ) =
∑
n∈Z

χ (n) anqn/N . (2.3.13)

Then if f is a modular form for �(N ), fχ will be a modular form of the same weight for
some �(M). It isn’t very deep that modularity should be preserved – see Question 2.3.4
for one such argument. Theorem 14 in [456] provides a generalisation. The Dirichlet
twist takes on a clear algebraic significance in the context of automorphic representations
(Section 2.4.1).

A deeper use of Dirichlet twists is Weil’s Converse Theorem (see e.g. theorem 17 of
[456] or page 64 of [90]), which characterises modular forms for �(N ) by generalising
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Theorem 2.3.1, using infinitely many Dirichlet twists. It is a ‘converse’ in that it gener-
alises the converse of (i)⇒ (ii). Applications of this are given in sections 1.9 and 1.10
of [89].

A more surprising example of twisting is by Galois automorphisms. Let FN be the
space (in fact field) of all modular functions for �(N ), with q-expansion as in (2.3.12),
where each coefficient ai lies in the cyclotomic field Q[ξN ] (recall Section 1.7.3). This
field FN is explicitly constructed in section 6.2 of [505]. Clearly, j(τ ) lies in each FN . It
can be shown that FN is a Galois extension over Q( j), with Galois group

Gal(FN/Q( j(τ ))) ∼= GL2(ZN )/{±1} (2.3.14a)

(see Section 1.7.2 for definitions). For any matrix A ∈ GL2(ZN ), we can find an

integer � ∈ Z×N (namely � = det(A)) and a matrix B =
(

a b
c d

)
∈ SL2(Z) such that

A = B

(
1 0
0 �

)
(mod N ). Then the action of A ∈ GL2(ZN ) on a modular function f (τ )

is given by

A. f (τ ) = (σ� f )

(
aτ + c

bτ + d

)
, (2.3.14b)

σ�
∑
n∈Z

anqn/N =
∑
n∈Z

σ�(an) qn/N , (2.3.14c)

where σ� ∈ Gal(Q[ξN ]/Q) sends ξN to ξ�N . This Galois action plays a technical but
important role in both Moonshine (e.g. Question 7.3.3) and rational conformal field
theory (e.g. Section 6.1); see Section 6.3.3 for some speculation.

2.3.4 The remarkable heat kernel

Various topological proofs of modularity, inspired by conformal field theory, have arisen
in recent years. For instance [24], [203] and section 6 of [502] all provide proofs for
η(τ ). These suggest the thought that, more generally, modularity – hence Moonshine –
may be a topological effect (Section 7.2.4). The oldest and perhaps most fundamental
observation along these lines is the relation between theta function modularity and the
heat kernel.

Fourier determined that the rate of flow of heat energy in a material is proportional
to the gradient of the temperature, and thus wrote down the diffusion or heat equation,
which in one dimension looks like

∂

∂t
u(t, x) = 1

4π

∂2

∂x2
u(t, x), ∀x ∈ R, ∀t > 0 (2.3.15a)

(the harmless normalisation 1/4π is introduced for later convenience). Suppose that
the initial distribution of heat in the infinite rod is f (x) = limt→0u(t, x). Then Fourier
analysis tells us how to find a solution u(t, x) for all times t . Letting

û(t, α) = 1

2π

∫ ∞

−∞
u(t, y) e−iαy dy, f̂ (α) = 1

2π

∫ ∞

−∞
f (y) e−iαy dy,
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the equation to be solved has been transformed to ∂ û/∂t = −α2û/4π , with initial con-
dition f̂ , which has the solution û(t, α) = f̂ (α) e−α

2t/4π . We can now find u by using
the inverse transform:

u(t, x) = 1

2π

∫ ∞

−∞
eiαx−α2t/4π

∫ ∞

−∞
f (y) e−iαy dy dα.

But

1

2π

∫ ∞

−∞
eiαz−α2t/4πdα = t−1/2e−π z2/t =: K (t, z).

Thus u(t, x) is given by the convolution

u(t, x) =
∫ ∞

−∞
K (t, x − y) f (y) dy. (2.3.15b)

We see that K (t, x) is itself a solution to the heat equation, with initial condition f (x) =
δ(x), the Dirac delta. Physically, K corresponds to an infinitely hot spot placed at position
x = 0 at time t = 0, on an otherwise uniform, infinitely long rod. This fundamental
solution K (t, x) is called the heat kernel or propagator for R.

What has this to do with the theta function? Consider the specialisation θ3(it, x), where
t, x ∈ R, t > 0. Note that

∂

∂t
θ3(it, x) = 1

4π

∂2

∂x2
θ (it, x),

so θ3 is a solution to the heat equation. Also, in the t → 0 limit, θ3(0, x) becomes the
distribution

∑∞
n=−∞ δ(x − n) (this is proved by evaluating limt→0

∫ 1
0 θ3(it, x) f (x) dx ,

but is merely the statement that
∑

n e2π imx =∑
m δ(x − m)). Thus θ3 plays the same role

on the circle R/Z that K (t, x) played on the line R: θ3 is the heat kernel for the circle.
But we can obtain this kernel in another way, by averaging the heat kernel K (t, x) for
R:

∞∑
n=−∞

t−1/2e−π (x−n)2/t = t−1/2e−πx2/tθ3

(
i

t
,

x

it

)
.

Equating this to θ3(it, x) recovers (2.3.15b).
As with Poisson summation, the notion of heat kernel can be generalised considerably.

For example, let M be a compact n-dimensional Riemannian manifold and let � be the
Laplacian. In local coordinates,

�(x) = −
n∑

i, j=1

gi j (x)
∂2

∂xi∂x j
,

where gi j (x) is the metric. The heat equation on M is

∂

∂t
u(t, x) = −�u(t, x), x ∈ M, t > 0,

with initial condition f (x) = limt→0u(t, x). This can be solved formally by the expres-
sion u(t, x) = e−t� f (x). In fact e−t� makes sense as an operator on L2(M), for any t ∈ C
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with Re(t) > 0. By the heat kernel K (t, x, y) for M we mean as before the solution to
the heat equation with initial condition δ(x, y), or equivalently K (t, x, y) generates the
solution (e−t� f )(x) = ∫

M K (t, x, y) f (y) dy to the heat equation with arbitrary initial
condition f . The heat kernel always exists and is unique, and is analytic for t > 0. In
fact the heat kernel can be expressed as

K (t, x, y) =
∑

n

e−λn t φn(x)φn(y),

where λn ≥ 0 are the (discrete) eigenvalues of the Laplacian � with (orthonormal)
eigenfunctions φn ∈ C∞(M) ⊂ L2(M). Incidentally, K is the kernel of the operator
e−t� in the sense of the Schwartz kernel theorem. For t small,

K (t, x, y) = (4π t)−n/2e−d(x,y)2/4t
∞∑

i=0

t i fi (x, y)

where d(x, y) is the distance between x, y ∈ M , and fi are certain functions. In the
language of quantum field theory, the heat kernel K (t, x, y) equals 〈x |e−t�|y〉. The heat
kernel stores geometric information on M , and interpolates between the identity operator
of L2(M) at t = 0 and the projection onto the kernel of � as t →∞.

For example, for M = Rn the heat kernel is K (t, x, y) = (4π t)−n/2 exp[−|x −
y|2/4t], so for any n-dimensional lattice L ⊂ Rn the heat kernel of the n-torus Rn/L is

(4π t)−n/2
∑
v∈L

exp[−|x − y − v|2/4t].

But it also equals (normalising the arguments appropriately) 1√|L|L∗ , and so we recover
the modularity of (2.3.7).

The natural generalisation of the M = Rn calculation is performed by [231]. In partic-
ular, let G be a connected, noncompact reductive Lie group, let K be a maximal compact
subgroup, and let � be a discrete subgroup of G such that the quotient �\G is compact.
Then two expressions for the heat kernel, and its trace, on the space�\G/K are obtained.
In the special case of G = Rn and � being a lattice, the trace formula reduces to the
usual formula expressing L (−1/τ ). The naturality of this construction �\G/K will be
clear after reading Section 2.4.1. Moreover, [181] proves the Macdonald identities using
the heat equation on compact Lie groups.

Further generalisations are possible (see e.g. [52]). For example, degree 1 and 0 terms
can be added to the Laplacian�, and we can consider more generally differential opera-
tors on sections of line bundles over M , rather than on M . Heat kernel techniques can be
used to prove various formulations of the Atiyah–Singer Index Theorem, and equivariant
analogues of the theory yield the Atiyah–Bott fixed-point theorem. The strategy typically
followed by these applications is to consider the integral I (t) = ∫

M K (t, f (y), x) dy for
some map f : M → N , where K is the heat kernel on N . The t → 0 limit collapses the
integral to an integral or sum over f −1(x). But a global expression for I (t) can often
be found, for example using representation theory or geometry; taking its t → 0 limit



150 Modular stuff

yields an identity between the local integral
∫

f −1(x) and some global data of M and N .
See, for example, [389]. Question 2.1.7 is essentially an example of this strategy – what
we call K (g, h) there is the heat kernel at t = 0 of the finite group G.

Some of the many applications and occurrences of the heat kernel are collected in
[320]. But can the heat kernel be directly relevant to Moonshine? This seems very
possible. After all, the Atiyah–Bott fixed-point theorem yields an elegant proof of the
Weyl character formula for compact Lie groups. In the conformal field theories associated
with Lie groups (namely, the Wess–Zumino–Witten models), the heat kernel is used to
explicitly construct the flat Knizhnik–Zamolodchikov connection on spaces of chiral
blocks [288] (more on this starting in Section 3.2.4). This is significant because, according
to conformal field theory, it is the monodromy of the Knizhnik–Zamolodchikov equation
that is responsible (in genus 1) for the modularity of the affine algebra characters.

To this author’s knowledge, heat kernel methods have never been used directly in the
context of Monstrous Moonshine, but surely they can be used to prove at minimum the
modularity of the McKay–Thompson series, and to help us understand a little better
the geometry of Monstrous Moonshine. It seems possible that equivariant heat kernel
methods could provide a geometric umbrella under which herd the more interesting
examples of Moonshine.

2.3.5 Siegel forms

Vaughn Jones considered how one von Neumann algebra can be embedded in another
(e.g. itself), and the result – subfactor theory – is profoundly interesting. This success
suggests the following analogue of Galois theory:

The Jones Programme Study the ways in which one infinite beast can be embedded
in another.

Let’s probe this thought with the simplest infinite beast this author can think of: lattices
(Section 1.2.1). Let L ⊂ Rn, L ′ ⊂ Rn′ be lattices of dimension n and n′, respectively. Fix
bases {x (1), . . . , x (n)}, {y(1), . . . , y(n′)} and construct the n × n matrix M , whose columns
are the x (i). An embedding of L ′ into L is a linear map ϕ : L ′ → L that preserves all
inner-products. It is determined by the values ϕ(y( j)) =∑

i ϕ j i x (i). The coefficients ϕ j i

all lie in Z and form an n′ × n matrix (ϕ). Now, ϕ preserves all inner-products, iff
ϕ(y(i)) · ϕ(y( j)) = y(i) · y( j) ∀i, j , iff

(ϕ) Mt M (ϕ)t = Mt M. (2.3.16)

Let N (L ′, L) be the number of these embeddings, i.e. the number of n′ × n Z-matrices
(ϕ) satisfying (2.3.16). This number will be 0 unless n′ ≤ n.

For example, N (Z, L) equals the number of unit vectors in L . Thus, if L is integral,
the generating function

∑∞
k=0 N (

√
kZ, L) xk is the theta function L (τ ), for x = eπ iτ .

We might hope that the numbers N (L ′, L) are coefficients of some other modular-like
function.



Further developments 151

Construct a multi-variable generating function as follows. Fix an n-dimensional inte-
gral lattice L . Let xi j , 1 ≤ i, j ≤ n, be variables. Consider

ThL (xi j ) :=
n∑

n′=0

∑
[L ′]

∑
Z{β1,...,βn}=L ′

N (L ′, L)

Aut(L ′)

∏
1≤i, j≤n

x
βi ·β j

i j . (2.3.17a)

The sum over [L ′] is of all isomorphism classes of n′-dimensional even lattices. For each
of these classes, fix a representative L ′ ⊂ Rn . The {βi } run over all possible ordered
n-tuples of lattice vectors that span L ′. There is an equivalent but cleaner way to write
(2.3.17a). Let An be the set of all n × n positive semidefinite matrices A with integer
entries and even integers down the diagonal. These are precisely the matrices Ai j =
βi · β j . Then

ThL (xi j ) =
∑

A′∈An

N (L ′, L)
∏

1≤i, j≤n

x
A′i j

i j , (2.3.17b)

where L ′ is any lattice realising the matrix A′ of inner-products.
In any case, this generating function ThL , after making the change-of-variables xi j =

eπ iTi j , is a Siegel modular form! We return to it shortly.
Let’s try to find a version of modular forms where H is replaced by a higher-

dimensional space. Start with L (τ, z) in equation (2.3.7), but reinterpret this as a
function of the complex matrix T := τ A, with entries Ai j = b(i) · b( j) for a basis b(i)

of the lattice L . We thus get

(T, z) :=
∑
n∈Zn

exp[π in · T n + 2π in · z]. (2.3.18)

How far can we extend the domain T ? We may as well restrict to symmetric matrices T .
For which symmetric matrices T does (2.3.18) converge to a holomorphic function? We
know from (2.3.7) that it does whenever T = x A + iA for any positive-definite matrix A
and real number x , but there is no need to restrict to such T . Indeed, it is straightforward
to obtain that (2.3.18) converges to a holomorphic function for any z ∈ Cn and any T in
the Siegel upper half-space Hn defined in Section 2.1.4.

Of course, (2.3.18) is quasi-periodic in the z variable:

(T, z + m) = (T, z), ∀m ∈ Zn (2.3.19a)

(T, z + T m) = exp[−π i m · T m − 2π i m · z](T, z), ∀m ∈ Zn. (2.3.19b)

The Siegel theta function (T, z) is an easy generalisation of the Jacobi theta function
(2.3.7). What makes it so remarkable is its symmetries as a function of T :

((AT + B)(CT + D)−1, (CT + D)t−1z)

= ξγ det(CT + D)
1
2 exp[π i z · (CT + D)−1z)](T, z) (2.3.20)

for all γ =
(

A B
C D

)
∈ Sp2n(Z) for which all diagonal entries of At C and Bt D are

even. Call this subgroup �n
θ , in analogy with (2.2.5). The numbers ξγ ∈ C are certain

eighth roots of unity.
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We defined Sp2n(Z) in Section 2.1.4. The modularity of (T, z) is proved much the
way that modularity of θ3 was proved. The analogue of (2.2.1a) is

Sp2n(Z) =
〈 (

I A
0 I

)
,

(
B 0
0 Bt−1

)
,

(
0 −I
I 0

)
| ∀A ∈ Mn×n(Z),

A = At , ∀B ∈ GLn(Z)

〉
. (2.3.21)

If we insist the matrices A in (2.3.21) have even diagonals, then we generate �n
θ . Ver-

ifying invariance of (T, z) under

(
I A
0 I

)
and

(
B 0
0 Bt−1

)
is routine; use Poisson

summation for

(
0 −I
I 0

)
. The argument is given in detail in chapter 2.5 of [439].

Section 2.1.4 relates Hn to Riemann surfaces of genus n. As we recall, the possible
period matrices � of a given surface form an Sp2n(Z)-orbit in Hn . The Jacobian of
the surface is Cn/(Zn +�Zn). Quasi-periodicity (2.3.19) embeds these Jacobians into
projective space. Most points in Hn (at least for n > 2) aren’t period matrices of surfaces,
and as we recall the moduli space Mn,0 can be identified with Cn/Sp2n(Z) for some subset
Cn in Hn .

We should thus regard(T, z), Sp2n(Z) and Hn as the genus n versions of θ3, SL2(Z) ∼=
Sp2(Z) and H, where τ becomes an n × n matrix. The hyperbolic geometry of H becomes
symplectic geometry on Hn (see e.g. section 4 of [395]). As mentioned in footnote 1 of
this chapter, the future will find Moonshine expanding into higher genus. The calculations
will be far more complicated, and this is presumably the reason for the delay. One of the
only explicit works in this direction is [533], which looks at the lattice↔ theta function
example of Figure 0.1 (or equivalently the bosonic string compactified on a torus) at
genus 2. As expected, Siegel modular forms play a dominant role. See also [9] for
some calculations with multi-loop heterotic strings, which heavily involve Siegel theta
functions.

Definition 2.3.3 Let � ⊂ Sp2n(Z) (n > 1) have finite index. Then a Siegel modular
form of weight k and level � is a holomorphic function f on Hn such that

f ((AT + B)(CT + D)−1) = det(CT + D)k f (T ), ∀
(

A B
C D

)
∈ �.

A growth condition at the cusps (requiring holomorphicity) is automatically satisfied
when n > 1. Another simplification of higher genus is that any subgroup� ⊂ Sp2n(Z) of
finite index includes some congruence group �n(N ) := {A ∈ Sp2n(Z) | A ≡ I (mod N )}
with finite index.

For example, (T, z)2 is a modular form of weight 1 and level �n(4). Eisenstein
series for Sp2n(Z) can be defined in the obvious way, as a sum of det(CT + D)−2k over
appropriately defined pairs {C, D} of matrices (see e.g. section 14 of [395] for details).
A final example plays the same role for (T, z) that L (τ ) played for θ3(τ ): let L be
any m-dimensional rational lattice and let A be its Gram matrix, then

L (T, Z ) :=
∑

N

exp[π i tr(N t T N A)+ 2π itr(N t Z )],
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where T ∈ Hn , Z is an n × m complex matrix, and the sum is over all n × m Z-matrices.
This is a specialisation of  for Sp2nm(Z), and is a Siegel modular form of weight m/2
for some �n(M) (see e.g. chapter 2.6 of [439]). We met L in (2.3.17).

Finally, let us describe the analogue of Fourier expansion here. For convenience take�
to be Sp2n(Z). Then a modular form f for � obeys the periodicity f (T + B) = f (T ) for
all n × n Z-matrices B. Together with holomorphicity, this means f has an expansion

f (T ) =
∑
M≥0

a(M) exp[2π i tr(T M)], (2.3.22)

where the sum is over all positive-semidefinite symmetric n × n matrices M with entries
Mii ∈ Z and Mi j ∈ 1

2 Z. These numbers a(M) play the role of Fourier coefficients here.
For example, (2.3.17b) gives the Fourier expansion of L (T ).

Question 2.3.1. Prove that the Weierstrass p function (2.1.6a) is a Jacobi form for SL2(Z)
with weight k = 2 and index m = 1.

Question 2.3.2. Let L , L ′ be two n-dimensional rational lattices in Rn , and let u, u′ ∈ Rn

be vectors of finite order for L and L ′, respectively.
(a) Prove: If L+u(τ, z) = L ′+u′ (τ, z) for all τ ∈ H, z ∈ Cn , then L + u = L ′ + u′ as
sets.
(b) Prove that L and L ′ are isomorphic (Section 1.2.1) iff there exists an orthogonal map
T ∈ On(R) such that L (τ, z) = L ′ (τ, T z) for all τ ∈ H, z ∈ Cn .

Question 2.3.3. Let L be any integral lattice of dimension n. For each m = 0, 1, 2, . . . , let
L (m) denote all the vectors u ∈ L with norm-squared u · u = m. Each automorphismω of
L permutes the vectors in L (m), so for each m we get a ‖L (m)‖-dimensional representation
α(m) of Aut(L) by permutation matrices. Thus, for each ω ∈ Aut(L), we can twist L as
follows: define


(ω)
L (τ ) :=

∞∑
m=0

χ(m)(ω) exp[π iτm],

where χ(m) is the character of the representation α(m). For example, (id)
L = L and


(−id)
L (τ ) = 1. Prove that, for each ω ∈ Aut(L), (ω)

L will be a modular form for some
�(N ) and some weight 0 ≤ k ≤ n/2, and that k = n/2 iff ω = id .

Question 2.3.4. Let f be a modular form of weight k, for some �(N ).
(a) Prove that, for each choice of r ∈ Q, the function g(τ ) := f (τ + r ) is a modular
form of level k, for some �(M) (M depending on r ).

(b) For any field F, prove that SL2(F) is generated by the matrices

(
1 r
0 1

)
, for r ∈ F,

together with

(
0 −1
1 0

)
. From this, prove that if f is a modular form for�(N ) of weight

k, then for any

(
a b
c d

)
∈ SL2(Q), the function h(τ ) := f ( aτ+b

cτ+d ) will be a modular form

of weight k for some �(M) (M depending on a, b, c, d).
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2.4 Representations and modular forms

According to I. M. Gel’fand, mathematics of any kind is representation theory.8

This section applies this beautiful strategy to modular forms.

There are at least formal similarities between quantum theory and modular forms. Wigner
taught that a particle should be identified with a unitary representation of SL2(C) or
SL2(R), in (3+ 1)- or (2+ 1)-dimensional space-time, respectively. In this section we
associate modular forms to unitary representations of SL2(R), and the picture generalises
naturally to, for example, SL2(C). Could there be some cross-fertilisation between the
methods and ideas of quantum field theory and modular forms?

In the 1962 International Congress of Mathematicians, I. M. Gel’fand remarked some-
what cryptically that there is an intriguing analogy between the scattering matrix of quan-
tum mechanics and zeta functions. Ten years later the idea was exploited and clarified
by Faddeev and Pavlov, who applied the Lax–Phillips scattering theory to the theory of
automorphic forms. For example, poles of the scattering matrix (which in quantum field
theory would correspond to particles) correspond to zeros of the Riemann zeta function.
Their work is generalised in [371], where we find for instance a new proof of the Selberg
Trace Formula for SL2. These applications are significant, and hopefully a small hint of
things to come. See also [562].

2.4.1 Automorphic forms

Definitions 0.1 and 2.2.1 of modular functions and forms for SL2(Z) should seem very
arbitrary. In mathematics we attack arbitrariness through generalisation. A good gener-
alisation helps us to see the meaning of each feature, and puts the whole theory into a
broader perspective. Of course we can generalise these definitions by replacing SL2(Z)
with other Fuchsian groups � < SL2(R), but this is too obvious to be helpful.

Much more valuable is to understand the relation between H and G = SL2(R). In
particular, an easy calculation shows that our action of G on H is transitive. That is,
any point in H can get mapped to any other point in H by a matrix in G. In particular,

γx+iy =
(√

y x/
√

y
0 1/

√
y

)
∈ G sends i to x + iy. We call H a homogeneous space for G.

Moreover, the subgroup of G fixing i ∈ H, say, is K = SO2(R). Thus

H ∼= SL2(R)/SO2(R) = G/K . (2.4.1a)

More precisely, we have the Iwasawa decomposition(
a b
c d

)
= y−1/2

(
y x
0 1

)(
cos θ sin θ

− sin θ cos θ

)
, (2.4.1b)

x + iy = ai+ b

ci+ d
, eiθ = d − ic

|d − ic| . (2.4.1c)

In fact SO2(R) is the unique (up to conjugation) maximal compact subgroup of G.

8 See the quotation on page 840 of Proc. ICM (American Mathematical Society, Providence 1987), edited by
A. M. Gleason.
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In mathematics we try to find hidden structure, and that is the spirit in which (2.4.1a)
should be read. The key here was the transitive action: an expression like (2.4.1a) arises
whenever one has a homogeneous space. Note that the action γ.τ of G on H now reduces
to matrix multiplication: γ γτ K .

Do modular forms respect (2.4.1a)? Can we lift modular forms f : H → C into func-
tions φ f : G → C? Yes, and in fact we gain something in the process. Use (2.4.1b):

φ f

(
a b
c d

)
= f

(
ai+ b

ci+ d

)
(ci+ d)−k = f (x + iy) yk/2 eiθk, (2.4.2a)

where k is the weight of f . Then for any A ∈ SL2(Z) and α ∈ R, we get

φ f

(
A

(
a b
c d

)(
cos α sin α

− sin α cos α

))
= φ f

(
a b
c d

)
e−ikα. (2.4.2b)

The point of multiplication by (ci+ d)−k is now clear: it makes φ f left-invariant with
respect to SL2(Z) = �. Thus we’ve sacrificed K -invariance and �-covariance, for K -
covariance and �-invariance. This is significant, because compact Lie groups like K are
much easier to handle than infinite discrete groups like SL2(Z).

In particular, we find that the right multiplication in (2.4.2b) defines a one-dimensional
representation of K on Cφ f . We know that the finite-dimensional irreducible K -
representations are parametrised by a nonnegative integer, and all are one-dimensional.
Thus we get an algebraic interpretation for the parameter k in Definition 2.2.1: it is the
highest weight of a representation of the maximal compact subgroup SO2(R) of SL2(R).

We also get a representation of SL2(R) on the left side, given by φ f �→ φ f ◦ γ−1.
The vector space here is the infinite-dimensional function space given by the C-span of
the SL2(R)-orbit of φ f . The result is an irreducible representation of SL2(R), which is
constant on � = SL2(Z). This representation is unitary – in fact it is a subrepresentation
of the regular representation of G on the Hilbert space L2(�\G).

As an aside, note that everything generalises very naturally to Siegel modular
forms. There, G is Sp2n(R), � is Sp2n(Z) or a similar discrete group like �n

θ , and
K = SO2n(R) ∩ Sp2n(R) ∼= Un(C). Once again, Hn

∼= G/K . For Jacobi forms, G is a
semi-direct product of SL2(R) with the Heisenberg group (it is constructed next subsec-
tion), and K is SO2(R)× S1: once again G/K ∼= H× C, as it should. The weight k and
index m in Definition 2.3.2 parametrise the irreducible one-dimensional representations
of SO2(R) and S1, that is to say K . Thus the index of a Jacobi form has a natural algebraic
interpretation, as it should.

So the generalisation of modular forms and functions is starting to be clearer. We are
looking for functions on the space �\G, for discrete subgroups � of real Lie groups
G, and we should study them via the representation of G they generate. The relation
between modular forms and representation theory was accomplished in the 1950s by
Gel’fand and Fomin. Let’s make it more precise.

The unitary irreducible representations of G = SL2(R) were classified by Bargmann
[44]. His motivation was physics (the Lorentz group). Of course there is the one-
dimensional identity representation. The remaining irreducible unitary representations
are all infinite-dimensional, and fall into three series: the principal series P±s for s ∈ R,
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the complementary series Cs for 0 < s < 1, and the discrete series D±n for n = 2, 3, . . .
In addition, G has many irreducible non-unitary representations. See, for example, chap-
ter 1.3 of [243] for explicit realisations of all the unitary representations. For example,
the discrete series D+n consists of holomorphic functions f on H, with Peterssen Her-
mitian form 〈 f, g〉 = ∫H f (τ )g(τ )yn−1dx dy, and action f �→ (−cτ + a)−n f

(
dτ−b
−cτ+a

)
.

Obviously our G-representation associated with� f is isomorphic toD+k . What f ’s come
from the other G-representations?

Associated with the principal series are functions such as this analogue of the Eisen-
stein series, called a Maass form:

E(τ, s) =
∑

m,n∈Z

′ ys

|mτ + n|2s
, s ∈ C.

This may look less strange when one considers the formula Im(γ.τ ) = y/|cτ + d|2.
For fixed τ ∈ H, the Maass form is absolutely convergent for Re(s) > 1 and has a
meromorphic extension to all s ∈ C. For fixed s ∈ C, it is invariant under SL2(Z). It is
not a holomorphic function of τ , and so cannot be a modular form in the usual sense, but
holomorphicity in Definitions 0.1 and 2.2.1 is a feature we must be prepared to lose, since
most real Lie groups G aren’t complex manifolds. In fact we lost the holomorphicity of
f when we wrote (2.4.2a). What takes its place?

What is holomorphicity, other than the solution to differential equations (the Cauchy–
Riemann equations, or the Laplacian ∂2

∂x2 + ∂2

∂y2 on R2)? The Maass forms aren’t holo-

morphic, but they are eigenfunctions of the Laplacian on H, namely−y2 ( ∂2

∂x2 + ∂2

∂y2 ). By
the Laplacian on H we mean a second-order differential operator that is invariant under
all isometries SL2(R).

We are thus led to the role of differential operators. These can be understood as follows.
Whenever we have a Lie group representation, we also get an associated action of the
Lie algebra (the derived module of Section 1.5.5). The Lie algebra will typically act as
first-order differential operators; on L2(G) it acts by Lie derivatives. More precisely, to

X ∈ sl2(R) we get the action f (g) �→ d
dt f (get X )|t=0. For example,

(
0 1
−1 0

)
∈ sl2(R)

corresponds to ∂
∂θ

, using the parametrisation of (2.4.1a). An action of sl2(R) implies an
action of the universal enveloping algebra U (sl2(R)), in our case simply by composing
differential operators to get ones of higher order. As always, the centre Z (U (sl2(R)))
naturally plays a fundamental role. Here, it is generated by the second-order operator

y2

(
∂2

∂x2
+ ∂2

∂y2

)
− y

∂2

∂x ∂θ
.

This is how the Laplacian arises, algebraically. By definition, it commutes with all oper-
ators, so studying its eigenspaces helps decompose L2(�\G) – we used a similar idea
in decomposing Lie algebra modules into weight-spaces. Understanding that decompo-
sition is essentially equivalent to understanding the space of modular forms for �, and
can be called the harmonic analysis of automorphic forms.
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We have only scratched the surface, but this discussion and the following definition
should give the reader a glimpse of the resulting theory.

Definition 2.4.1 Let � be a discrete subgroup of a real semi-simple Lie group G, and
let K be a maximal compact subgroup of G. Let χ be a one-dimensional representation
of K . We call a smooth function f : G → C an automorphic form for � if:

(i) f (γ gk) = χ (k) f (g) for all γ ∈ �, g ∈ G, k ∈ K ;
(ii) f is an eigenfunction of every operator in Z (U (g));

(iii) f obeys a certain growth condition.

The term ‘automorphic form’ (going back to Klein in 1890) is much older than this
definition. Here, g is the Lie algebra of G and Z (U (g)) is the centre of its universal
enveloping algebra, which will be isomorphic to a polynomial algebra in r variables,
where r is the rank of g. As mentioned above, the differential equations in (ii) take
the place of holomorphicity. The growth condition is too technical to give here, but
for SL2(Z) it reduces to holomorphicity at the cusps. For more on the relation between
automorphic forms and representations, see, for example, [89].

All modern material on automorphic functions uses the language of adèles and idèles,9

which unify and simplify the theory (at the expense of making it more abstract). How-
ever, since they have no role in the remaining material of this book, we only sketch
their motivation, and remain true here to the spirit of this not-completely-self-contained
subsection.

Projective or inverse limits are the way algebra ‘integrates’ an infinite tower of struc-
tures into a single structure. A classic – and relevant – example is divisibility by powers
of primes. We say that a given integer n is divisible by pa if the canonical projection
Z → Zpa (‘reduce mod pa’) sends n to 0. Now, the rings Zpa and Zpb are related by a
homomorphism Zpa → Zpb , provided a ≥ b. So we get a tower

· · · → Z/p3Z → Z/p2Z → Z/pZ → 0.

The corresponding integrated structure is the projective limit lim←Zpa =: Ẑp, the p-adic
integers, which can be realised as formal power series

∑∞
a=0 an pn , ai ∈ Z/pZ. Doing

arithmetic on them amounts to treating all Z/paZ simultaneously – in this sense it is the
integration of all Zpa . For example,

√
2 = 3+ 1 · 7+ 2 · 72 + 6 · 73 + · · ·

in Ẑ7. The p-adic rationals Q̂p are the field of fractions of Ẑp, or equivalently the formal
Laurent series

∑∞
i=−N ai pi , pi ∈ Z/pZ. They are to the ordinary rationals much as

R =: Q̂∞ is: a completion, on which calculus can be defined. For a readable introduction
to the p-adics, see [257]. Projective limits play a huge role in Section 6.3.3.

The more intuitive notion of limit, namely the injective or direct limit, arises when all
arrows are reversed (i.e. when we have a sequence of embeddings rather than projections),

9 Idèles were introduced by Chevalley in 1935 to remove some of the analysis being used with L-functions,
etc. The word comes from ‘ideal’. Adèles were introduced in 1945 as an additive version of idèles.
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and is the algebraic analogue of taking derivatives. The prototypical example is the
space of smooth functions FM (U ) on an open patch of a manifold M : the direct limit
lim→FM (U ), as U → {p}, is isomorphic to the space of germs at p.

The modern theory of automorphic forms collects together the Q̂p into the additive
group of adèles A and multiplicative group of idèles A×. The adèles are defined to
be the group of all sequences (x∞, x2, x3, x5, . . . , x p, . . .), where x∞ ∈ R, x p ∈ Q̂p,
and for all but finitely many p, x p ∈ Ẑp. The idèles are defined similarly, and we
obtain

A× ∼= Q× × R×> ×
∏

Ẑ×p ,

where
∑∞

i=0 ai pi ∈ Z×p if a0 �= 0. The rationals Q embed in each Q̂p, and so embed

diagonally in A (r �→ Ẑp for any prime p not dividing the denominator of r ). There
are many generalisations of A and A×, for example we can replace Q by other number
fields. But what good are they? What have they to do with modular forms?

There are many situations where the level of a modular form is variable. For example,
any A ∈ SL2(Q) takes a modular form for �(N ) to one for some other �(N ′) (see
Question 2.3.4). We have natural maps from the surface �(n)\H to any �(d)\H, when
d divides n. Collecting together this tower of surfaces �(n)\H into a single structure
amounts to taking the limit space Ĥ := lim←�(n)\H. Functions on Ĥ include ratios f/g
of modular forms of the same weight but different levels. Much as

lim←R/nZ ∼= A/Q

as topological groups, we get

Ĥ ∼= SL2(Q)\SL2(A)/K∞, (2.4.3)

where K∞ consists of all sequences of matrices (A, I2, I2, . . .) where A ∈ SO2(R) ⊂
SL2(R) and the I2’s are the identity matrices in each SL2(Q̂ p). In Section 4.3.3 we
discover Ĥ naturally in nonperturbative string theory.

Similarly, a Dirichlet character (see Section 2.3.3) can be thought of as a continuous
one-dimensional representation on Q×\A×, and the Galois group of a finite abelian
extension of Q can be thought of as a subgroup of Q×\A×.

The Langlands conjectures suggest that the n-dimensional representations of the abso-
lute Galois group Gal(K/K) of a field K (such as Q) correspond to ‘automorphic repre-
sentations’ of GLn(A), where A here is the group of adèles of K. This correspondence
can be seen through the corresponding L-functions. For GL1 and K = Q, this correspon-
dence involves the Kronecker–Weber Theorem and Dirichlet characters. For GL2 this
relates two-dimensional representations of Galois groups to modular forms. A recent
accessible introduction to the Langlands Programme is [90]. Although there are hints
of some sort of relation between the Langlands conjectures and Moonshine in its more
general sense, these are still too speculative to go into here. However, Section 6.3.3 may
whet one’s appetite.
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2.4.2 Theta functions as matrix entries

The relationship between representation theory and modular forms discussed last section
is quite democratic in the sense that it exists at the level of the vector space of modular
forms. Democracy is all well and good, but we are not equally interested in all modular
forms – some have names!

The Jacobi theta function θ3(τ, z) is the unique quasi-periodic entire function, in the
sense that any entire function f : C → C obeying f (z + 1) = f (z) and f (z + τ ) =
a e−2π iz for some constants τ ∈ H and a ∈ C is a constant multiple of the function

f (z) = 1+
∞∑

n=−∞
eπ i (n2−n)τa−ne2π inz .

For an elementary analytic proof see section 1.1 of [439]. From this uniqueness, all
properties of θ3 can be quickly derived. In this section we sketch a striking algebraic
version of this argument.

Starting in the 1960s, theta functions were interpreted as matrix entries in a represen-
tation of the Heisenberg group. The motivation was pure Moonshine:

A force d’habitude, le fait que les séries thêta définissent des fonctions modulaires
a presque cessé de nous étonner. Mais l’apparition du groupe symplectique comme
un deus ex machina dans les célèbres travaux de Siegel sur les formes quadratiques
n’a rien perdu encore de son caractère mystérieux. Le but de ce mémoire, et de ceux
qui lui feront suite, n’est pas, bien entendu, d’élucider définitivement la question,
mais de jeter un peu de lumière sur certains aspects de cette théorie qui étaient
restés dans l’ombre jusqu’à présent. [555a]10

The resulting explanation of the transformation θ3(−1/τ ) = √
τ
i θ3(τ ) can be extended

to many other functions arising in Moonshine. First let us sketch the basic idea, before
giving details and generalisations.

The starting point is the thought of realising special functions as matrix entries of
Lie group representations. An elementary example of this involves the representation of
S1 = U1(R) as rotations in R2:

θ �→
(

cos θ sin θ

− sin θ cos θ

)
. (2.4.4)

The basic properties of sin(θ ) and cos(θ ) (e.g. angle-sum formulae, or even-oddness)
can quickly be derived from this. We want to do something similar with θ3.

Begin by recalling the full variable dependence of θ3(τ, z, u), given in (2.3.4). For
fixed u we get a Jacobi form, and for fixed τ and u we get an elliptic function for the

10 ‘By force of habit, the fact that theta series define modular forms has nearly ceased to amaze us. But the
appearance of the symplectic group as a deus ex machina in the famous work of Siegel on quadratic forms
has still lost none of its mysterious character. The goal of this paper, and of those which follow it, is not of
course to clarify definitively the question, but rather to shed a little light on certain aspects of this theory
which have remained in the dark up to now.’
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torus C/(Z+ Zτ ). This leads us to consider two translation operators on the space of
(say) entire functions f : C → C, as follows. Fix τ ∈ H and define

(Sb f )(z) = f (z + b), (2.4.5a)

(Ta f )(z) = exp[π ia2τ + 2π iaz] f (z + aτ ), (2.4.5b)

for any a, b ∈ R. In this way, for each fixed τ ∈ H, R2 acts on the space of entire
functions – the role of τ being primarily to parametrise different isomorphisms between
the additive groups R2 and C. However, an easy calculation shows that Ta and Sb don’t
commute, rather Sb ◦ Ta = exp[2π i ab] Ta ◦ Sb. So the group 〈Ta, Sb〉 generated by all
Ta’s and Sb’s is the semi-direct product of S1 with R2, consisting of all pairs [λ, x] for
λ ∈ C, |λ| = 1 and x = (x1, x2) ∈ R2, and operation

[λ, x] · [μ, y] = [λμ exp[2π ix2 y1], x + y].

This group is called the Heisenberg group H . Then (2.4.5) says that θ3 is a vector in a
space carrying a representation of H . Now, it turns out that all irreducible representations
(π,H) of H are essentially isomorphic. A more natural and useful way to see θ3 in any
such representation (π,H) is by defining a vector fτ ∈ H and distribution μZ such that
the Hermitian product

〈π[1,x] fτ , μZ〉 = c eπ ix1 (τ x1+x2) θ3 (τ, x1τ + x2) (2.4.6)

for some nonzero constant c. The exponential factor on the right side of (2.4.6) simplifies
the quasi-periodicity of the right side.

We will see that SL2(R) acts as automorphisms on the Heisenberg group H . Hence
for any γ ∈ SL2(R), we get a new representation πγ of H by [λ, x] �→ πγ.[λ,x]. This
representation must be isomorphic toπ , so there is a (unitary) operator Rγ onH such that
πγ.[λ,x] = Rγ ◦ π[λ,x] ◦ R−1

γ . The assignmentγ �→ Rγ defines a projective representation
of SL2(R) on H. Modularity of θ3 now follows from the calculation

〈π[1,x] fτ , μZ〉 = 〈Rγ π[1,x] fτ , Rγ μZ〉 = 〈πγ.[1,x] Rγ fτ , Rγ μZ〉, (2.4.7)

together with the computation of Rγ fτ and Rγ μZ for the γ ∈ �θ < SL2(Z). Let us now
fill in the details.

For reasons that will be clear shortly, it is preferable to work instead of [λ, x] with the
realisation of the group H given by all pairs (λ, x) with operation

(λ, x) · (μ, y) = (λμ exp [π i (x1 y2 − x2 y1)] , x + y) .

The isomorphism between these realisations of H is given by the correspondence

(λ, x) ←→ [λ−1 exp[π ix1x2], x].

This group H is a three-dimensional real Lie group corresponding to the Heisenberg Lie

algebra Heis defined in (1.4.3). It is a quotient by Z ∼=
〈⎛⎝ 1 0 1

0 1 0
0 0 1

⎞⎠〉 of the group H̃
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of upper-triangular matrices ⎛⎝ 1 a c
0 1 b
0 0 1

⎞⎠ ∈ SL3(R).

H̃ is the (unique) simply-connected Lie group with Lie algebra Heis; it isn’t important
that we’re focusing on H rather than its universal cover H̃ . The group H and its (2n + 1)-
dimensional versions (the obvious extension of R2n by S1) were studied originally in the
context of quantum mechanics, hence their name.

The representation theory of these groups was established around 1930. Let π be a
unitary irreducible representation of H , in a Hilbert space H. Recall from Section 1.5.5
that this means π is a homomorphism from H into the group of unitary operators of
H; moreover, for each f ∈ H, the map from H to H given by (λ, x) �→ π(λ,x) f is
continuous. First note that by Schur’s Lemma (the analogue here of Lemma 1.1.3), the
central element (λ, 0) ∈ H will act in H by a scalar multiple λn for some n ∈ Z.

Theorem 2.4.2 (Stone–von Neumann) Let π be a unitary irreducible representation
of H, obeying π(λ,0)( f ) = λn f .
(i) If n �= 0, then π is infinite-dimensional and any other unitary irreducible

representation π ′ of H obeying π ′(λ,0)( f ) = λn f will be unitarily equivalent to π .
(ii) If n = 0, then π is one-dimensional and unitarily equivalent to (λ, x) �→ ei a·x ∈ C

for some vector a ∈ R2.

We’re interested in the case n = 1; see, for example, theorem 1.2 in [440] for a proof
of this special case. There are many different realisations for this unique irreducible
representation. The simplest (sometimes called the Schrödinger representation) uses the
Hilbert spaceH = L2(R). The action of (λ, x) ∈ H on f ∈ L2(R) is given by the unitary
operator U(λ,x) defined by

(U(λ,x) f )(y) = λ exp [π i (2yx2 + x1x2)] f (y + x1).

This is (essentially) the exponential of the defining representation (4.2.5) of Heis. Inci-
dentally, the action of Sb, Ta in (2.4.5) on entire functions extends to an n = −1 repre-
sentation of H ; this representation is anti-linearly equivalent to the Schrödinger repre-
sentation.

We want to recover the theta function naturally from the n = 1 representation. As
always, ‘natural’ means free of arbitrary choices, such as a specific realisation of the
n = 1 representation, or a specific basis of the underlying Hilbert space. Begin with any
realisation (π,H) of the n = 1 representation of H .

As we see in Section 1.5.5, a unitary representation U of a Lie group G on a space H
induces a representation δU (the derived module) of the corresponding Lie algebra g on
a dense subspace H∞ of H by anti-Hermitian operators. For example, the representation
(2.4.4) of U1(R) acts on the Hilbert spaceH = L2(S1)⊕ L2(S1) of all pairs

( f (θ )
g(θ )

)
. To see

how the corresponding Lie algebra u1(R) = R acts, decompose (2.4.4) into irreducibles
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(i.e. diagonalise):(
cos θ sin θ

− sin θ cos θ

)
=
(

1 i
i 1

)−1 ( eiθ 0
0 e−iθ

)(
1 i
i 1

)
.

Thus the Lie algebra u1(R) acts as

x �→
(

1 i
i 1

)−1 ( ix d
dθ 0

0 −x i d
dθ

)(
1 i
i 1

)
=
(

0 −x d
dθ

x d
dθ 0

)
.

The domain of these operators isn’t the whole of the Hilbert space H, but it does contain
the dense subspace consisting of the infinitely differentiable functions.

Similarly, our representation π of H on H induces an anti-Hermitian represen-
tation δπ of Heis on a dense subspace H∞ of H. If we write ex1 A = (1, (x1, 0)),
ex2 B = (1, (0, x2)) and etC = (e2π it , 0), then using the Baker–Campbell–Hausdorff for-
mula (1.4.6), these generators obey [A, B] = C, [A,C] = [B,C] = 0. As an example,
in the Schrödinger n = 1 representation on spaceH = L2(R), these become the ‘momen-
tum operator’ δUA f = d f

dx , the ‘position operator’ (δUB f )(x) = 2π ix f (x) and the cen-
tral term δUC f = 2π i f . In this example, the dense subspace H∞ is the Schwartz space
S(R) (Section 1.3.1) consisting of infinitely differentiable, rapidly decreasing functions.

We are now ready to define the two vectors fτ , eZ in (2.4.6). Consider the subspace
Wτ consisting of all f ∈ H for which (δπA − τδπB) f is defined, and equals 0. This can
be thought of as a holomorphicity condition ∂

∂ z̄ f = 0 (recall τ corresponds to
√−1).

We know that Wτ will be one-dimensional for our choice of π , since it manifestly is for
the Schrödinger representation U : there, Wτ = Ceπ iτ y2

. Choose any nonzero fτ ∈ Wτ .
The map σ (n) := ((−1)n1n2 , n) defines a homomorphism Z2 → H , and obeys (ρ ◦

σ )(n) = n for the obvious projection ρ : H → R2 – we say ρ ‘splits over Z2’. Define
V to be the common 1-eigenspace of all Uσ (n). More precisely, let V consist of all
(tempered) distributions μ ∈ H∗

0 with the property that, for all n ∈ Z2 and all f ∈ H∞,
〈πσ (n) f, μ〉 = 〈 f, μ〉. For example, in the Schrödinger representation, we must have
e2π in2 yμ(y + n1) = μ(y) for all n ∈ Z2. Note that μ(y) = �n∈Zδ(y + n) satisfies that,
and using test functions f (y) = e2π imy it quickly follows that thisμ is unique up to scalar
multiplication. Therefore, for our representation π , V will also be one-dimensional.
Choose any nonzero μZ ∈ V . It encodes quasi-periodicity.

Thus we obtain, in the Schrödinger representation,

〈U(1,x) fτ , μZ〉 =
〈

eπ i (2yx2+x1x2)eπ iτ (y+x1)2
,
∑

n

δ(y + n)

〉
,

which simplifies to the right side of (2.4.6) with c = 1. Therefore, by uniqueness of π
and basis independence of the Hermitian product〈 , 〉, we get that (2.4.6) holds regardless
of the realisation (π,H) and vectors fτ , μZ we choose.

The reader can verify that quasi-periodicity is automatic (Question 2.4.3). The mod-
ularity is of course more difficult (and more interesting). To do this, we need to describe
the action of SL2(R) on the space H (which we can take to be L2(R)).
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Any γ ∈ SL2(R) defines an automorphism of H by (λ, x) �→ (λ, γ.x), by

γ.x =
(

0 −1
1 0

)−1 ( a b
c d

)(
0 −1
1 0

)(
x1

x2

)
=
(

dx1 − cx2

−bx1 + ax2

)
. (2.4.8)

The precise form of this action is chosen so that (2.4.10a) below will involve the usual
Möbius action of SL2(R) on H. We can twist by γ and thus get a new representation
(π ′,H) of H , defined by π ′(λ,x) f = π(λ,γ.x) f . Obviously π ′ is also irreducible and has
central parameter n = 1, so by the Stone–von Neumann Theorem must be unitarily
equivalent to π . That is, there exists a unitary operator Rγ on the Hilbert space H that
intertwines π and π ′: Rγ π = π ′Rγ . The assignment γ �→ Rγ is only defined up to a
constant, and so we get a projective representation of SL2(R) on H. As we learn in
Section 3.1.1, projective representations become true representations when we centrally
extend. In particular, we get a true representation when we replace SL2(R) with a double-
cover called the metaplectic group Mp2(R).

The metaplectic group is the unique connected double-cover of SL2(R). It can be
thought of as a way of keeping track of which branch of the square-root we’re on in
equations like (2.3.5b), and this provides its easiest realisation. Define Mp2(R) to be
the set of all pairs (γ, s), where γ ∈ SL2(R) and s = s(τ ) is a choice of holomorphic
square-root of cτ + d . Since there are two choices for s (differing by a sign), this is
indeed a double-cover. The group operation is

(γ, s(τ ))(γ ′, s ′(τ )) = (γ γ ′, s(γ ′.τ ) s ′(τ )), (2.4.9)

as can be seen by calculating from (2.3.6) with k = 1/2.
Returning to the γ -twistπ ′ of the representationπ of H , it is possible to choose unitary

operators R(γ,s), for each (γ, s) ∈ Mp2(R), such that R(γ,s)π = π ′R(γ,s) and (γ, s) �→
R(γ,s) defines a representation of the metaplectic group Mp2(R).

Recalling the definition of fτ and μZ as eigenvectors, it isn’t difficult to see that

R(γ,s) fτ = s(τ )−1 fγ.τ , ∀(γ, s) ∈ Mp2(R), (2.4.10a)

R(γ,s)μZ = μ(γ,s)eZ, ∀(γ, s) ∈ �̃θ = {(γ, s) ∈ Mp2(R) | γ ∈ �θ }, (2.4.10b)

where γ.τ is the usual action (2.1.4a) and where μ : �̃θ → C∗ is some one-dimensional
representation (with values in eighth roots of unity). See chapter 8 of [440] for the
detailed calculation. We now immediately obtain from (2.4.6) and (2.4.7) that

c eπ ix1 (τ x1+x2)θ3 (τ, x1τ + x2) = 〈π(1,γ .x) Rγ fτ , Rγ μZ〉 = s(τ )−1〈π(1,γ .x) fγ.τ , μ(γ,s)eZ〉
= c s(τ )−1μ(γ,s) exp

[
π i (dx1 − cx2)

(
aτ + b

cτ + d
(dx1 − cx2)+ (−bx1 + ax2)

)]
× θ3

(
aτ + b

cτ + d
, (dx1 − cx2)

aτ + b

cτ + d
+ (−bx1 + ax2)

)
, (2.4.11)

for all γ =
(

a b
c d

)
∈ �θ , which simplifies down to the desired modularity (2.3.5b).

Last subsection we learned that SL2(R) acts transitively on H. Using this and (2.4.10a),
we can refine (2.4.6) and write θ3 as a matrix entry of a unitary representation of the
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obvious semi-direct product of Mp2(R) with H . We obtain

c eπ ix1 (τ x1+x2) θ3 (τ, x1τ + x2) = √ci+ d 〈π(1,x) R(γ,s) fτ , μZ〉, (2.4.12)

where τ = bd+ac+i
c2+d2 , for γ =

(
a b
c d

)
∈ SL2(R).

This argument is far longer and more technically difficult than the other proofs of
theta function modularity given in this chapter, and it is easy to get lost in the details.
But it is a remarkable argument, and much more conceptual than, for example, Poisson
summation. The modular group SL2(Z) (or rather its subgroup �θ ) arises here as a group
of automorphisms of H transforming in a controlled way the vectors fτ and μZ. The
intrinsically algebraic nature of the argument means it generalises easily, and with little
extra effort we could have given the proof for Siegel theta functions. (Nonholomorphic)
Eisenstein series can also be constructed and studied in a similar way (by first lifting
to SL2(R)). But as with the previous modularity proofs, new ideas would be needed to
generalise it beyond these classical functions into a general device providing uniform
proofs of modularity for Moonshine functions. In the next subsection though we explain
why it might after all have something to do with Moonshine.

2.4.3 Braided #2: from the trefoil to Dedekind

The decomposition (2.4.1b) says that SL2(R) is topologically homeomorphic to R2 × S1,
i.e. the interior of a solid torus (or if one prefers, the complement of S1 in R3). In
remarkable work in the context of computing k2(Z) (see Section 2.5.1), Quillen showed
that the space SL2(Z)\SL2(R) is naturally diffeomorphic to the complement of the trefoil
knot in the sphere S3 (see pages 84–5 of [419] for the elementary argument). Namely,
the Eisenstein series a = G4, b = G6 in (0.1.5) identify the space GL2(Z)\GL2(R) of
two-dimensional lattices with the complement of the complex curve 20a3 − 49b2 = 0
(which corresponds to degenerate lattices); the intersection of 20a3 − 49b2 = 0 with the
sphere |a|2 + |b|2 = 1 in C2 (to get instead SL2(Z)\SL2(R)) is then identified with the
trefoil (the (2,1)-torus knot, drawn in Figure 1.10). Now, in Section 2.4.1 we lift modular
forms for SL2(Z) to the space L2(SL2(Z)\SL2(R)): thus, for example, the j-function
is a complex-valued function on the complement of the trefoil. More generally, as we
will see later, the characters of an affine algebra, or vertex operator algebra, or rational
conformal field theory, are vector-valued functions on the complement of the trefoil. The
cusps of H can be interpreted as rational points on the trefoil. Can modular forms and
functions somehow see this topological trefoil? The answer is yes!

First, the fundamental group of the complement of the trefoil is easy to compute using
the Wirtinger presentation (Section 6.2.5), and is naturally isomorphic to the braid group
B3. This suggests the following picture. Write G for SL2(R), G̃ for its universal cover
and � for SL2(Z). Then

G̃
π−→G

q−→�\G. (2.4.13)



Representations and modular forms 165

Of course π is surjective and has kernel π1(G) ∼= Z. G̃ is also the universal cover of
the trefoil-complement �\G, and the kernel of this surjective map q ◦ π is the central
extensionπ1(�\G) ∼= B3 of the modular group SL2(Z). The mapB3 → SL2(Z) is simply
the reduced Burau representation (1.1.11b) specialised to w = −1 (recall (1.1.10a)).

So what does this mean for modular forms? Recall from Section 2.2.1 that modular
forms for SL2(Z) have multiplier μ that carries a projective representation of SL2(Z) –
it will be a true representation only when the weight k is an integer. As we emphasise in
Section 3.1.1, projective representations become true representations when one centrally
extends. Especially when the weight is fractional, the role of SL2(R) really should be

played by the more fundamental Lie group S̃L2(R), and likewise the modular group
SL2(Z) should be replaced by its central extension B3.

For a good example, recall the Dedekind eta function η(τ ) of (2.2.6b). As we see
in (2.2.8), it is a modular form for SL2(Z) of weight 1

2 , whose multiplier μ is quite
complicated as a function on SL2(Z). But B3 is the more fundamental transformation
group underlying η(τ ). Indeed, in terms of B3, the multiplier is trivial to describe:

μ(β) = exp

[
2π i

24
degβ

]
, (2.4.14)

where the degree of a braid is the length of its word in σ1, σ2 (Section 1.1.4). More
generally, the multiplier for any modular form for SL2(Z) will be similar, with ‘24’
replaced by some other rational. Surely this algebraic interpretation of Dedekind sums
in terms of B3 is related to the topological interpretation of Dedekind sums reviewed and
explored in [24]; see also [23], [43].

Of course the multiplier of η is almost as trivial if we write

(
a b
c d

)
∈ SL2(Z) as

a monomial in the generators S, T , but finding that monomial isn’t easy. On the other
hand, finding ‘degβ’ by looking at the braid β is easy: just count the crossings in β, with
signs. The multiplier, as a function of β, is far simpler than as a function of a, b, c, d.
Our topological considerations have been rewarded!

Likewise, the multiplier in the vector-valued Jacobi form (2.3.8) (again of weight
1
2 ) defines a four-dimensional projectivere presentation of SL2(Z), given by the tensor
product of the one-dimensional representation exp[2π i degβ/8] of B3, with a true four-
dimensional representation of SL2(Z).

Of course the metaplectic group was introduced last subsection for essentially the

same reason (Mp2(R) is also a quotient of S̃L2(R)). Indeed, since most modular forms
arising in the literature have weight in 1

2 Z, the metaplectic group is a large enough central

extension, and S̃L2(R) may seem like overkill. But modular forms with fractional weight
exist in abundance for arbitrarily large denominator (see e.g. [303] for examples). The
important ‘one-point functions on a torus’ (Section 4.3.2) in conformal field theory
(CFT), to which family the Moonshine functions naturally belong, can form vector-
valued modular forms of arbitrary rational weight. We will see in Section 7.2.4 how
nicely the CFT machinery accommodates this universal B3 action, and also how other
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considerations in (Monstrous) Moonshine are trying to focus our attention on the relation
of B3 to modular functions.

The braid group B3 is at least as relevant for the nonholomorphic automorphic forms
of SL2(Z), alluded to in Section 2.4.1. For a simple example, [379] studies the Maass
cusp forms u(τ ) (with weight 0), identifying them with ‘period functions’ ψ(z); the
exact symmetry u(−1/τ ) = u(τ ) becomes ψ(1/z) = z2sψ(z), where s is the ‘spectral
parameter’ of u. This transformation of the ψ’s, with the factor z2s , is what one would
expect from the braid group (compare (7.2.4)).

We should regard B3 as the universal symmetry of (not necessarily holomorphic)
modular forms for SL2(Z). If instead we have modular forms for some subgroup � of
SL2(Z), then the role of B3 is replaced by its subgroup that projects (via the reduced
Burau representation (1.1.11b) specialised to w = −1) to �. For instance, the principal
congruence subgroup�(2) corresponds to the pure braid groupP3. It would be interesting
to find the topological interpretation of �0(p)+ in (7.1.5) and the other modular groups
appearing in Monstrous Moonshine.

The lesson of Section 2.4.1 is that, whenever we have some sort of modularity for,
for example, SL2(Z), we should lift the domain to that of the relevant Lie group (e.g.
SL2(R)). This should be especially valuable for providing perspective and clarity when
we are investigating a new modular-like phenomenon. To give one example among many,
[519] introduces nonholomorphic deformations of familiar modular forms relevant to
strings on a pp-wave background (a 1-parameter deformation of flat space-time). Of
more direct relevance to us is the question: Is it natural to regard the modular functions
(characters) of RCFT, VOAs and Moonshine as functions on SL2(R)?

The lesson of this subsection is that an SL2(Z)-action may become simpler when
lifted to its central extension B3. The braid group provides a clean universal formulation
especially appropriate when metaplectic groups or other central extensions of SL2(Z)
arise. Mathematics thrives on having alternate interpretations for the same phenomemon:
here we replace the matrix group SL2(Z) (or its subgroups) with the topologically defined
B3 (or its subgroups). Some things will be easier in one formalism, and presumably other
things in the other (e.g. the multipliers μ are much easier for B3). It is tempting to apply
this to the so-called S-duality of superstrings (Section 3.2.5). Are there other ways
modular forms for SL2(Z) see the trefoil?

The modularity argument of Section 2.4.2 has never been applied to Monstrous Moon-
shine, to this author’s knowledge. But one hint that it might be the shadow of such a
device is that the braid group lurks here. In particular, there is an action of B3 on G × G,
for any group G (Question 2.4.4); the action (2.4.8) of SL2(Z) on H is really this action
of B3 on R2 – it factors through to SL2(Z) because R2 is abelian. In Section 7.3.3
we use this same action, this time applied to M×M, to identify the group-theoretic
property of the Monster M that could be responsible for the genus-0 properties of the
McKay–Thompson series Tg .

Another hint, perhaps more substantial, of its relevance to Moonshine-like phenomena
is the repeated appearance of Maslov indices in the study of gluing anomalies in three-
dimensional topological field theory (see chapter IV of [534]). This suggested to Turaev
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an intimate relation of topological field theory with the Segal–Shale–Weil representations
of the metaplectic groups. These representations also appear in the context of braids and
subfactors [252] – metaplectic representations arise naturally there when constructing
knot invariants from braids. Much of the mathematical background is developed in [387],

where we also learn that the universal cover S̃L2(R) can easily be expressed using Maslov
indices.

Question 2.4.1. Use the decomposition (2.4.1b) to find a (noncanonical) group structure
on H, inherited from that of SL2(R).

Question 2.4.2. Show that uniqueness of the representation in Theorem 2.4.2 fails if
H is replaced with infinitely many coupled Heisenberg groups. (This is a major com-
plication for quantum field theory, as we see in Section 4.2.2 in the context of Haag’s
Theorem.)

Question 2.4.3. Verify that any function of the form F(x) = 〈π(1,x) f, μZ〉, for any f for
which F is defined, necessarily obeys F(x + n) = (−1)n1n2 eπ i (n1x2−n2x1) F(x). HenceμZ

is responsible for the quasi-periodicity (2.3.5a) of θ3.

Question 2.4.4. (a) Let G be a finite group. Verify that we obtain a right braid group B3

action on the Cartesian product G × G × G, by defining

(g, h, k).σ1 = (ghg−1, g, k), (g, h, k).σ2 = (g, hkh−1, h), (2.4.15a)

where σi are the usual generators of B3 (recall (1.1.9)). Also, verify that there is a right
B3-action on G × G, generated by

(g, h).σ1 = (g, gh), (g, h).σ2 = (gh−1, h). (2.4.15b)

(b) Let C ⊆ G × G consist of all pairs (g, h) where gh = hg. Show that this B3 action
takes C to itself, and that its restriction to C actually defines an action of SL2(Z)
on C .
(c) Extend the B3 actions of (a) to Bn actions on Gn and Gn−1.

Question 2.4.5. (a) Show that SL2(R) is isomorphic to the group

SU1,1(C) :=
{(

α β

β α

)
∈ SL2(C)

}
,

by showing they are conjugate in SL2(C).
(b) Verify that SU1,1(C) is isomorphic to the set of all pairs (γ, θ ), where |γ | < 1 and
−1 < θ ≤ 1, with group operation (γ, θ )(γ ′, θ ′) = (θ ′′, θ ′′) where

γ ′′ = γ + γ ′e−2π iθ

1+ γ γ ′e−2π iθ
, θ ′′ = θ + θ ′ + 1

2π i
log

γ + γ ′e−2π iθ

1+ γ γ ′e−2π iθ
(mod 2).

(c) Using (b), realise the universal cover S̃L2(R) of SL2(R).

(d) Realise B3 as a subgroup of S̃L2(R).
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2.5 Meta-patterns in mathematics

2.5.1 Twenty-four

There are lots of ‘meta-patterns’ in mathematics, i.e. collections of seemingly different
problems that have similar answers, or structures that appear more often than we would
have expected. Once one of these meta-patterns is identified it is always helpful to under-
stand what is responsible for it, to see what simple structure or basic lemma underlies it.
Why are groups so important in mathematics and science? Because they are the devices
through which we ‘act’ on sets, spaces, etc. Mathematics is not above metaphysics;
like any area it grows by asking questions, and changing one’s perspective – even to a
metaphysical one – should suggest new questions.

To give a trivial example, years ago while the author was writing up his PhD thesis
he noticed in several places the numbers 1, 2, 3, 4 and 6. For instance cos(2πr ) ∈ Q for
r ∈ Q iff the denominator of r is 1, 2, 3, 4 or 6. Likewise, the theta function Z+r (τ ) for
r ∈ Q can be written as

∑
aiθ3(biτ ) for some ai , bi ∈ R iff the denominator of r is 1, 2,

3, 4 or 6. This pattern is easy to explain: they are precisely those positive integers n with
Euler totient φ(n) ≤ 2, that is there are at most two positive numbers less than n coprime
to n. The various incidences of these numbers can usually be reduced to this φ(n) ≤ 2
property. For example, the number field Q[cos(2π a

b )] (see Section 1.7.1), considered as
a vector space over Q, has dimension φ(b)/2.

A more interesting meta-pattern involves the number 24 and its divisors (especially
8). One sees 24 wherever modular forms naturally appear. For instance, we see it in
the critical dimensions in string theory: the bosonic string lives in a background space-
time of dimension 24+ 2, while the fermionic string lives in 8+ 2 dimensions. Another
example: the dimensions of even self-dual positive-definite lattices must be a multiple
of 8 (e.g. the E8 root lattice has dimension 8, while the Leech lattice has dimension 24).
The meta-pattern 24 is also easy to understand: the fundamental problem for which it
is the answer is the following one. Fix n, and consider the congruence x2 ≡ 1 (mod n).
Certainly in order to have a chance of satisfying this, x and n must be coprime. The
extreme situation11 is when every number x coprime to n satisfies this congruence: that
is,

gcd(x, n) = 1 ⇐⇒ x2 ≡ 1 (mod n). (2.5.1)

The reader can try to verify the following simple fact: n obeys this extreme situation
(2.5.1) iff n divides 24. What does this congruence property have to do with these other
occurrences of 24? The elementary argument for even self-dual positive-definite lattices
involves the construction L{T } of Section 2.3.3 and is sketched in Question 2.5.1.

The ‘24’ appearing in the q1/24 of η is the same as the 24 in c/24 appearing in,
for example, (3.1.10); in both cases they come from ζ (−1) = −1/12 or equivalently

11 This is a standard trick in mathematics: when some sort of bound is established, look at the extremal cases
that realise that bound. If your bound is a good one, it should be possible to say something about those
extremal cases, and having something to say is always of paramount importance. This strategy is used, for
instance, in the definition of normal subgroup in Section 1.1.1 and of simple-currents in Section 6.1.1.
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ζ (2) = π2/6. Are these the same as the 24 in (2.5.1)? Note from the right side of (2.2.6b)
that

η(τ ) = Z+ 1
12

(12τ )−Z+ 5
12

(12τ ).

Using this identity, the fact that η(τ + 1) is a constant multiple of η(τ ) is indeed related
to (2.5.1). Moreover, this ‘1/24’ is directly related to the abelianisation

SL2(Z)/[SL2(Z),SL2(Z)] ∼= Z12 (2.5.2)

of SL2(Z): writing η(−1/τ )2 = aτη(τ )2 and η(τ + 1)2 = bη(τ )2, the multiplier s �→
a, t �→ b must define a one-dimensional representation of SL2(Z), since η2 has weight
1 (recall Question 2.2.3); for any group G, and in particular SL2(Z), the abelianisation
G/[GG] is isomorphic to the group of all one-dimensional representations of G. This
argument forces b to be some12th root of unity, and a to be b3.

Perhaps the most intriguing ‘24’ occurs as a K-theoretic invariant of the integers. K -
theory is a generalised (co)homology theory, and as such associates a sequence of abelian
groups Ki (X ) to the object X , which can capture some subtle aspects of X . When X is
a ring, the definition of these invariants Ki (X ) is quite involved, and their calculation
is very difficult (see e.g. [419] – for example, for X = Z the groups are known only
for 0 ≤ i ≤ 5, where they equal Z,Z2,Z2,Z48, 0,Z, respectively. K0(Z) ∼= Z says that
the projective Z-modules are the free Z-modules Zn , while K1(Z) ∼= Z2 tells us that the
Euclidean domain Z has only two units (namely, ±1). The first interesting group in this
list is Z48, which arises naturally here as an extension of Z24. Thus 24 (or 48) is a number
intimately associated with Z. This author knows no direct connection with our definition
(2.5.1) of 24, but there is a conjectural relation of ‖K4n−2(Z)torsion‖/‖K4n−1(Z)torsion‖
with values ζ (1− 2n) of the Riemann zeta function (see e.g. [230a]). In particular,
K3(Z) ∼= Z48 is related to ζ (−1) = − 1

12 , which in turn is related to our 24.

2.5.2 A–D–E

A much deeper and still not-completely-understood meta-pattern is called A–D–E (see
[16] for a discussion and examples). The name comes from the simply-laced Lie algebras,
i.e. the simple finite-dimensional Lie algebras whose Coxeter–Dynkin diagrams – see
Figure 1.17 – contain only single edges (i.e. no arrows). These are the A�- and D�-series,
along with the E6, E7 and E8 exceptionals. The observation is that many other problems,
which don’t have anything directly in common with simple Lie algebras, have a solution
that falls into this A–D–E pattern. Of course, for an object to be meaningfully labelled
X� at least some of the data associated with the algebra X� should reappear in some form
in that object. Let’s look at some examples.

Consider any even positive-definite integral lattice L (Section 1.2.1). The smallest
possible nonzero length-squareds in L will be 2, and the vectors of length-squared 2 are
special and are called roots (Question 1.2.5). It is important in lattice theory to know
the lattices that are spanned by their roots; it turns out these are precisely the orthogonal
direct sums of lattices called An , Dn and E6, E7 and E8 (Theorem 1.2.2). They carry
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those names for a number of reasons. For example, the lattice called Xn has a basis
{α1, . . . , αn} with the property that the Gram matrix Ai j := αi · α j is the Cartan matrix
(see Section 1.4.5) for the Lie algebra Xn . Also, the group generated by reflections in
the roots of the lattice Xn is naturally isomorphic to the Weyl group of the Lie algebra
Xn . Moreover, to any simple Lie algebra there is canonically associated a lattice called
the root lattice; for the simply-laced algebras, these are isomorphic to the lattice of the
same name. Incidentally, the root lattices for the non-simply-laced simple Lie algebras
are (up to rescalings) orthogonal direct sums of the simply-laced root lattices.

A famous A–D–E example is due to McKay.12 Consider any finite subgroup G of
the Lie group SU2(C) (i.e. the 2× 2 unitary matrices with determinant 1). For example,
there is the cyclic group Zn of n elements generated by the matrix

Mn =
(

exp[2π i/n] 0
0 exp[−2π i/n]

)
.

There are also the (doubles of) dihedral groups Dn , and the binary tetrahedral, binary
octahedral and binary icosahedral groups of orders 24, 48 and 120, respectively. Let
Ri be the irreducible representations of G. For instance, for Zn , there are precisely n
of these, all one-dimensional, given by sending the generator Mn to exp[2π ik/n] for
each k = 1, 2, . . . , n. Now consider the tensor product G ⊗ Ri , where we interpret G ⊂
SU2(C) here as a two-dimensional representation. By Theorem 1.1.2 we can decompose
that product into a direct sum ⊕ j mi j R j of irreducibles (the mi j here are multiplicities).
Now create a graph with one node for each Ri , and with the i th and j th nodes (i �= j)
connected with precisely mi j directed edges i → j . If mi j = m ji , we agree to erase the
double arrows from the mi j edges. Then McKay [411] observed that this graph, for any
of these finite G < SU2(C), is a distinct extended Coxeter–Dynkin diagram of A–D–E
type (these are all listed in Figure 3.2). For instance, the cyclic group with n elements
yields the extended graph of An−1.

How was McKay led to his remarkable correspondence? He knew that the sum of the
labels ai = 1, 2, 3, 4, 5, 6, 4, 2, 3 associated with each node of the extended E8 diagram
(Figure 3.2) equals 30, the Coxeter number of E8. So what do their squares add to?
120, which he recognised as the cardinality of one of the exceptional finite subgroups of
SU2(C), and that got him thinking . . .

A deep example of A–D–E , due to Arnol’d, are the simple singularities. A singularity
or critical point of a smooth function f : Cn → C is a point z ∈ Cn where all first partial
derivatives ∂i f vanish. For example, f (z) = zk+1 has a singularity at z = 0 for any integer
k ≥ 1. We identify singularities if locally they merely differ by a change-of-coordinates –
see, for example, [19] for details. For example, any singularity of f : C → C is equivalent
to one of the form f (z) = zk+1. A simple singularity is an isolated singularity and behaves
like the poles f (z) = z−n of usual complex analysis – again see [19] for the precise
definition. For example, z2

1 + zk+1
2 is simple but z4

1 + 3z2
1z2

2 + z4
2 is not (the coefficient

‘3’ can be deformed, yielding a continuum of inequivalent singularities).

12 He is the same John McKay we celebrated in Chapter 0.
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Table 2.2. The simple singularities in C2

Name Ak Dk E6 E7 E8

Representative x2 + yk+1 x2 y + yk−1 x3 + y4 x3 + xy3 x3 + y5

Table 2.2 lists the simple singularities in C2 up to equivalence. In higher dimensions we
get the same list, with the extra variables coming in as z2

3 + · · · + z2
n . These singularities

can be related to McKay’s A–D–E as follows. The group SU2(C) acts on C2 in the
obvious way (matrix multiplication). If G is a discrete subgroup of SU2(C), then consider
the ring of polynomials in two variables w1, w2 invariant under G. It turns out it will
have three generators x(w1, w2), y(w1, w2), z(w1, w2), which are connected by one
polynomial relation (syzygy). For instance, take G to be the cyclic group Zn , then
we’re interested in polynomials p(w1, w2) invariant under w1 �→ exp[2π i/n]w1, w2 �→
exp[−2π i/n]w2. Any such invariant p(w1, w2) is clearly generated by (i.e. can be written
as a polynomial in) w1w2, wn

1 and wn
2 . Choosing instead the generators x = wn

1−wn
2

2 ,

y = w1w2, z = i w
n
1+wn

2
2 , we get the syzygy yn = −(x2 + z2). For any G, generators

x, y, z can always be found so that the syzygy will be one of the polynomials in Table 2.2
(with ‘+z2’appended), and this will give the equation of the algebraic surface C2/G as a
two-dimensional complex surface in C3. For example, the complex surfaces C2/Zn and
{(x, y, z) ∈ C3 | x2 + y2 + zn = 0} are equivalent.

There are other ways these singularities can be associated with A–D–E . Given a
surface � ⊂ C3 with a single singularity, a resolution �̃ is a smooth surface without
singularities that agrees with � away from the singularity (again see [19] for details). A
minimal resolution is one through which any other resolution must factor. The minimal
resolution exists and is unique. For example, the A1 singularity x2 + y2 + z2 = 0 has
the resolution

�̃ = {(x, y, z, (a, b)) ∈ C3 × P1(C) | x2 + y2 + z2 = 0, xb = ya}.
For (x, y) �= (0, 0), xb = ya uniquely determines the homogeneous coordinates (a, b),
but the singularity (x, y) = (0, 0) is blown up into the sphere P1(C); the points on the
sphere parametrise the different (complex) directions in which the singularity can be
approached.

More generally, given a minimal resolutionπ : �̃→ � of a simple singularity,π−1(0)
will be a union of r spheres ∪Ci . duVal [165] noticed that these classes [Ci ] form a basis
of the homology group H2(�̃,Z), on which there is defined a Z-valued intersection form;
this form makes H2(�̃,Z) into a negative-definite lattice isomorphic (up to a factor of√−1) to the root lattice of Xr , where [Ci ] map to a basis of simple roots. The Weyl
group of Xr is isomorphic to the so-called monodromy group of the singularity (see [19]
for details).

Incidentally, the McKay correspondence refers to the strategy of describing the geom-
etry of the resolution of the orbifold singularities Cn/G for finite subgroups G of SLn(C),
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Fig. 2.9 The connected multigraphs with largest eigenvalue 2.

through the representation theory of G. See [254] for the n = 2 story (i.e. for the sim-
ple singularities) and [471] for fascinating speculations on what happens in dimension
n > 2.

Arguably the first A–D–E classification goes back to Theaetetus, who classified the
regular solids in 400 b.c. For instance, the tetrahedron can be associated with E6 while
the cube is matched with E7. This A–D–E is only partial, as there are no regular solids
assigned to the A-series, and to get the D-series one must look at ‘degenerate regular
solids’, that is the regular polygons.

The closest we have to an explanation of the A–D–E meta-pattern would seem to
be graphs of small eigenvalues. Consider any multigraph G – that is, we allow multiple
edges (there can be more than one edge connecting two vertices) and loops (an edge
running from a node to itself), but all edges are undirected. We can also assume without
loss of generality that G is connected. Assign a positive number ai to each node. If this
assignment has the property that for each i , 2ai =

∑
a j where the sum is over all nodes

j adjacent to i (counting multiplicities of edges), then we call it ‘pf2’. The column
vector (a1, . . . , an)t will be a strictly positive eigenvector (called the Perron–Frobenius
eigenvector) of the adjacency matrix of G, with eigenvalue 2. A multigraph has a pf2
assignment iff the eigenvalue λ of its adjacency matrix with largest absolute value |λ| is
λ = 2 (see Theorem 2.5.1 below). For instance, for the multigraph ◦=◦, corresponding

to adjacency matrix

(
0 2
2 0

)
, the assignment a1 = 1 = a2 is pf2 but the assignment

a1 = 1, a2 = 2 is not. The question is, which multigraphs have a pf2 assignment? The
answer is given in Figure 2.9. The names An

(1) to E6
(1) there come from Figure 3.2;

the names 0A0
n and D0

n are invented. We see that the pf2 multigraphs without loops
are precisely the extended Coxeter–Dynkin diagrams of A–D–E type, and their pf2
assignments are unique (up to constant proportionality) and are given by the labels ai of
the corresponding affine algebra (i.e. the numbers attached to the graphs in Figures 2.9
and 3.2).
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The unextended diagrams have a similar depiction. For them, we assign positive
numbers ai to each node so that 2ai ≥

∑
j a j , where as before we sum over all adjacent

j . We also require that for at least one vertex i , we don’t get an equality. Call this a
pf2− assignment. A multigraph G has a pf2− assignment iff the absolute value |λ| of
each eigenvalue λ of its adjacency matrix is < 2. In Figure 1.4 we list all multigraphs
for which there is a pf2− assignment.

Perron–Frobenius theory studies the eigenvectors/eigenvalues of nonnegative matri-
ces. We revisit this theory elsewhere in the book. The basic result is:

Theorem 2.5.1 (Perron–Frobenius) Let A be an n × n matrix with real nonnegative
entries Ai j ≥ 0 (1 ≤ i, j ≤ n).
(a) Let ρ(A) := maxλ|λ| be the maximum of the absolute values of the eigenvalues of A.

Then ρ(A) is itself an eigenvalue of A, called the ‘Perron–Frobenius eigenvalue’, and
it has an eigenvector (a1, . . . , an)t ≥ 0 (i.e. each ai ≥ 0), called a ‘Perron–Frobenius
eigenvector’.

(b) If it is not possible to simultaneously permute the rows and columns of A so that A
takes the form

A =
(

B C
0 D

)
for submatrices B,C, D (such a matrix A is called ‘irreducible’), then the Perron–
Frobenius eigenvector is strictly positive and is unique up to scalar multiples.

(c) Suppose A is irreducible in the sense of (b), and B is an n × n matrix obeying
0 ≤ Bi j ≤ Ai j ∀i, j . Then ρ(B) ≤ ρ(A), with equality iff B = A.

See, for example, [420] for a proof and further results of this kind. In our case A is the
adjacency matrix of a connected multigraph and so, being symmetric, is irreducible in
the sense of (b). The classification of all pf2 and pf2− multigraphs follows by repeatedly
applying Theorem 2.5.1(c) (see Question 2.5.2).

What do eigenvalues have to do with the other A–D–E classifications? Consider a
finite subgroup G of SU2(C). Take the dimension of the equation G ⊗ Ri = ⊕ j mi j R j :
we get 2di =

∑
j mi j d j , where d j = dim(R j ). Hence the dimensions of the irreducible

representations define a pf2 assignment for each of McKay’s graphs, and hence those
graphs must be of A–D–E type (provided we know mi j = m ji and mii = 0).

Or consider lattices: let αi be a basis of a positive-definite lattice, with all norm-
squareds αi · αi = 2. Then by the Cauchy–Schwarz inequality, αi · α j ∈ {0,±1} for
i �= j . For i < j , if αi · α j = +1 then replace α j with α j − αi . What this means is that
we can assume that each αi · α j ∈ {0,−1} for i �= j . Put Ai j = αi · α j and B = 2I − A.
Then B is a symmetric N-matrix with zeros down the diagonal, and is easily seen to have
Perron–Frobenius eigenvalue < 2. Thus B falls into the A–D–E pattern.

Suggestion There are two different, though related, fundamental A–D–E patterns:
namely, the pf2 and pf2− multigraph classifications. Any other instance of an A–D–E
pattern reduces to one or the other of these.
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Fig. 2.10 The tree corresponding to p = 3, q = 4, r = 5.

This suggestion should be treated with some caution – as simple singularities illustrate,
the same area may realise both types of A–D–E patterns, depending on the specific ques-
tions asked. In particular, duVal corresponds to Figure 1.4 and McKay to Figure 2.9.
What relates these is that one of the nodes in the McKay graph (namely, that correspond-
ing to the identity) is distinguished, and when it is deleted duVal’s graph is recovered.
We return to singularities in Section 3.2.5.

We encounter other A–D–E’s later in this book. One of these (Theorem 6.2.2) is the
only instance of A–D–E known to this author that hasn’t yet been related to pf2 or
pf2−.

Incidentally, it is commonly suggested that a possible explanation for A–D–E may
be the set of all triples p, q, r ∈ N for which

1

p
+ 1

q
+ 1

r
> 1. (2.5.3)

Then (1, q, r ), (2, 2, r ) and (2, 3, 3), (2, 3, 4), (2, 3, 5) (corresponding to Aq+r−1,

Dr+2, E6,7,8, respectively) exhausts all solutions except for p = 1, q �= r . However, this
is not as fundamental as the graph explanation suggested above. In particular, given any
triple obeying (2.5.3), construct the tree consisting of three strings leaving a common
central vertex, of lengths p − 1, q − 1, r − 1, respectively (see Figure 2.10). Give this
graph the assignment indicated in the figure – that is, label the i th vertex from the end of
the first (respectively second, third) string i

p (respectively i
q ,

i
r ). Then inequality (2.5.3)

is precisely the statement that this assignment is pf2−, and thus that the graph will be
of (unextended) A–D–E type. The reverse implication, showing that any pf2− graph G
will necessarily correspond to a triple obeying (2.5.3), is much less elementary.

What comes after A–D–E? Natural candidates should be the graphs with largest
eigenvalue ρ = 3, say. For the same reason that those with ρ = 2 arise in so many
contexts, those with ρ = 3 surely will too. The difference is that the number and variety
of graphs grows dramatically with the largest eigenvalue ρ. The list of graphs with
ρ = 2 has such a simple and tight structure that different situations will automatically
share a family resemblance, provided only that they depend critically on graphs with
ρ = 2. For instance, the eigenvalues of any graph with ρ = n must be character values
of an n-dimensional representation of SUn , if the graph is to have a chance at being the
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McKay graph of a finite subgroup of SUn; although this is automatic for n = 2, it is a
severe constraint for n ≥ 3. A different ρ = 3 situation can carry with it its own severe
constraints, which would thus overwhelm the presence of the ρ = 3 graphs. We could
say that ρ = 2 is a dominant gene, while ρ = 3 is recessive; this is why A–D–E is so
ubiquitous, and why there seems to be no effective successor meta-pattern to A–D–E .
(But see Section 6.3.2.)

For a final meta-pattern, consider ‘modular functions’. After all, they appear in many
places and disguises. Maybe we shouldn’t regard their ubiquity as fortuitous. Instead,
perhaps there’s a deeper common ‘situation’ that is the source for that ubiquity. Two-
dimensional lattices, perhaps? Riemann surfaces? The braid group B3?

Question 2.5.1. Let L ⊂ Rn be an even self-dual n-dimensional lattice. Assume there
exists an orthonormal basis ei of Rn and a number k such that the orthogonal lattice
2k(Ze1 ⊕ · · · ⊕ Zen) is a sublattice of L (this is true for any self-dual L – see theorem 3.15
of [238]).
(a) Let L ′ be the orthonormal lattice Ze1 ⊕ · · · ⊕ Zen . Then the abelian group L/(L ∩

L ′) must be isomorphic to Z2k1 × · · · × Z2km for 0 < km ≤ · · · ≤ k1 ≤ k. Generators
ω1, . . . , ωm ∈ L for it can be chosen so that ωi = 1

2ki

∑
j ωi j e j , where ωi j ∈ Z, such

that
∑

i ciωi ∈ L ′ for ci ∈ Z iff 2ki divides ci for each i . Prove that there exist vectors
r1, . . . , r j ∈ L ′ such that ri · ω j ≡ 1

2ki
δi j (mod 1).

(b) Let x =∑
i 2ki−km r2

i ωi = 1
2km

∑
j x j e j , so x ∈ L and x j ∈ Z. Prove that each x j is

odd (Hint: consider
∑

i ωi j r j − ei ).
(c) Conclude from (2.5.1) that 8 must divide the dimension n.

Question 2.5.2. Using Theorem 2.5.1(c), prove that the multigraphs in Figures 1.4 and
2.9 exhaust all connected multigraphs whose eigenvalues λ all obey |λ| ≤ 2.

Question 2.5.3. Why are there no loops in the McKay graph corresponding to any finite
subgroup of SL2(C)? Why don’t these McKay graphs have directed edges?

Question 2.5.4. The classifications in Figures 1.4 and 2.9 depend on the requirement
that the matrices be symmetric, i.e. that the multigraphs have no arrows. Find all 2× 2
nonnegative integer matrices whose eigenvalues λ all obey |λ| ≤ 2.
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Gold and brass: affine algebras and generalisations

This chapter introduces the nontwisted affine algebras – infinite-dimensional Lie algebras
of considerable mathematical and physical interest – and searches for generalisations
that preserve and enhance those special features. The affine algebras supply classic
examples of Moonshine, in that the characters of their integrable modules are vector-
valued Jacobi functions for SL2(Z). They thread through the remainder of the book,
guiding all subsequent mathematical developments. Their Lie groups are discussed in
Section 3.2.6.

Algebraically, the affine algebras naturally generalise to the Kac–Moody algebras
(Section 3.3.1), although that generalisation seems to lose some of their magic. In turn,
the Kac–Moody algebras generalise naturally to the Borcherds–Kac–Moody algebras
(Section 3.3.2), which play a significant role in Borcherds’ proof of Monstrous Moon-
shine through their denominator identities (Section 3.4.2). Two other natural generalisa-
tions of affine algebras are described elsewhere in Section 3.3. In Section 3.4.1 we study
an important special case of what we later call the orbifold construction, and in the final
subsection we touch on a more recent and tangential development.

The Virasoro algebra (Section 3.1.2) plays a prominent structural role in conformal
field theory (Chapter 4) and vertex operator algebras (Chapter 5); its relation to moduli
spaces is a fundamental source of Moonshine itself.

3.1 Modularity from the circle

3.1.1 Central extensions

Let V be any (complex) vector space, and let GL(V ) denote the group of all invertible
linear maps V → V . A projective representation of a group G is a map P : G → GL(V )
such that P(e) = I (the identity), and given any elements g, h ∈ G, there is a nonzero
complex number α(g, h) such that

P(g) P(h) = α(g, h) P(gh). (3.1.1a)

We call P an α-representation. So just as a (true) representation is a group homomor-
phism R : G → GL(V ), a projective representation defines a group homomorphism P
from G into the projective group PGL(V ) := GL(V )/{C× I } (hence the name); con-
versely, given a homomorphism π : G → PGL(V ), arbitrarily choosing a ‘section’, that
is a representative P(g) ∈ GL(V ) in each equivalence class π (g) ∈ PGL(V ), defines a
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projective representation of G. A projective representation P is a true representation iff
α(g, h) = 1 for all g, h ∈ G.

Projective representations are plentiful. For example, the multiplier μ in Defini-
tion 2.2.1 is a projective representation of SL2(Z) whenever the weight k is rational.
Quasi-periodicity (2.3.5a) is a projective representation of the abelian group C2 on the
space of functions f : C → C. In quantum physics (Section 4.2) the state of a system
is completely described by a nonzero vector v in a Hilbert space. However, any nonzero
multiple λv describes a physically identical state. Thus projective representations arise
naturally also in quantum physics, where they are called ‘ray representations’.

Note that associativity

α(h, k)α(g, hk) P(ghk) = P(g) (P(h) P(k)) = (P(g) P(h)) P(k)

= α(g, h)α(gh, k) P(ghk)

tells us that

α(h, k)α(g, hk) = α(gh, k)α(g, h), ∀g, h, k ∈ G. (3.1.1b)

This equation may remind the reader of a two-cocycle condition, hinting of the relevance
of cohomology. Indeed, this function α : G × G → C× is called a 2-cocycle and group
cohomology organises the projective representations.

Two projective representations Pi : G → GL(Vi ) are (linearly) equivalent if there
is a vector space isomorphism ϕ : V1 → V2 such that ϕ−1 ◦ P1 ◦ ϕ = P2. Equivalent
projective representations must have the same 2-cocycle α. For a given α, the number of
inequivalent irreducible α-representations of G equals the number of conjugacy classes
of α-regular elements g ∈ G (g is called α-regular if α(g, h) = α(h, g) for all h ∈
CG(g)). Hence this number is at most the number of inequivalent irreducible true G-
representations.

We call projective representations Pi : G → GL(Vi ) projectively equivalent when
there is a function β : G → C× and a vector space isomorphism ϕ : V1 → V2 such that

ϕ−1(P1(ϕ(g))) = β(g) P2(g), ∀g ∈ G.

The 2-cocycles of projectively equivalent projective representations are related by

α2(g, h) = α1(g, h)β(gh)β−1(g)β−1(h).

β plays the role of a coboundary, so the 2-cocyclesαi of projectively equivalent projective
representations lie in the same cohomology class [α] ∈ H 2(G,C×), and H 2(G,C×) clas-
sifies the projectively inequivalent projective representations. H 2(G,C×) is an abelian
group, called the Schur multiplier, and is finite when G is finite. The point of converting
a problem into algebraic topology is that machinery (and experts!) are available to help
compute these groups. For example, H 2(Zn,C×) = H 2(SL2(Z),C×) = H 2(M,C×) =
{0} while H 2(Co1,C×) ∼= Z2. This implies, for instance, that any projective representa-
tion of the Monster M is projectively equivalent to a true representation of M.
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Projective representations of Lie algebras are defined similarly: P : g→ End(V ) is
linear, and equations (3.1.1) become

[P(x), P(y)] = P([x, y])+ c(x, y) I, (3.1.2a)

c(x, y) = −c(y, x), (3.1.2b)

c([xy], z) = c([yz], x)+ c([zx], y) = 0, (3.1.2c)

where the 2-cocycle c is complex-valued and I is the identity endomorphism.
Geometrically, projective representations often arise from the following fundamental

construction. Let L→ M be any line bundle with connection ∇ over some manifold M
(Section 1.2.2). Let ϕ : g→ Vect(M) be a homomorphism from some Lie algebra g to
the Lie algebra of vector fields on M . The map x �→ ∇ϕ(x), sending x ∈ g to the covariant
derivative in the direction ϕ(x), associates with each x ∈ g a differential operator on the
space of sections of L. Since

[∇X ,∇Y ] = ∇[X,Y ] + R(X, Y ) I

for each vector field X, Y , where R is the curvature of the connection, this map defines a
projective representation of g on the space�(L) of sections of L, with cocycle c = R. As
we will see later this chapter, the central extensions of both the Witt and the loop algebras
can be interpreted in this way [13]. This construction is well known in physics, where it
falls under the slogan ‘curvature is a local anomaly’ (by contrast, global anomalies are
monodromy effects like modularity).

A standard trick (central extensions) converts projective representations into true rep-
resentations. Let G be any group, and let A be any abelian group. By a central extension
Ĝ of G by A, we mean that A can be identified with a subgroup of the centre of Ĝ,
and the quotient Ĝ/A is isomorphic to G. For example, the dihedral group D4 is a
central extension (by Z2) of a central extension (by Z2) of a central extension (by Z2)
of {e}.

Let P be a projective representation of a group G, and assume for simplicity that
no operator P(g) is a scalar multiple a I of the identity. Let Ĝ be the group consisting
of all operators a P(g), for a ∈ C× and g ∈ G. Then Ĝ is a central extension of G by
C×, and Ĝ is defined by a faithful representation in V . The projective representation
of G has been transformed into a true representation of the larger group Ĝ. The spe-
cific situation for finite groups and the most common finite-dimensional Lie groups is
simpler:

Theorem 3.1.1 (a) Let G be a finite group. Then there is a central extension G̃ of G by its
Schur multiplier H 2(G,C×), with the following property: any projective representation
P : G → GL(V ) of G lifts to a true representation P̃ : G̃ → GL(V ) of G̃.
(b) Let G be a connected, finite-dimensional semi-simple Lie group over R or C, and
let G̃ be its universal cover group (which is a central extension of G by the fundamental
group π1(G)). Then any continuous finite-dimensional projective representation P :
G → GL(V ) of G lifts to a true representation P̃ : G̃ → GL(V ) of G̃.
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Conversely, a true representation of G̃ restricts to a projective representation of G. The
central extension G̃ in Theorem 3.1.1(a) is a finite group (e.g. for C̃o1 take the Conway
group Co0), and in (b) is a Lie group of the same dimension as G (see Theorem 1.4.3). For
Lie groups there is a topological (π1) as well as cohomological (H 2) obstacle to the trivi-
alisation of projective representations. The assumption in (b) that G be semi-simple was
made only to guarantee that the Schur multiplier of G would be trivial. The conclusion to
Theorem 3.1.1(b) also holds for certain non-semi-simple Lie groups, such as the Poincaré
group important to relativistic physics. On the other hand, the Galilei group, which plays
the same role in pre-relativistic physics, has nontrivial Schur multiplier. In this case, the
relevant cover will be a Lie group of higher dimension. The simplest example of this
phenomenon is the additive group C2, and its central extension the three-dimensional
Heisenberg group (see Question 3.1.3). It is through projective representations of C2

that the Heisenberg group and algebra arise in both theta functions (Section 2.4.2) and
quantum physics (Section 4.2). Similarly, the Galilei group must act on nonrelativis-
tic wave-functions (i.e. solutions to the Schrödinger equation (4.2.1)) projectively –
this is a consequence of the nontriviality of the Schur multiplier of the Galilei group
(Question 4.2.1).

Incidentally, the Schur multiplier H 2(G,C×) of a finite group G appears in another
context. Consider any presentation of G, with say m generators and n relations. The
finiteness of G requires that m ≤ n. The Schur multiplier of G is a finite abelian group,
so let h be its number of generators as in Theorem 1.1.1. Then n − m ≥ h.

We are primarily interested in one-dimensional central extensions ĝ of Lie algebras
g, that is a vector space ĝ = g⊕ CC together with the brackets

[ab]new = [ab]old + c(a, b) C, (3.1.3a)

[aC] = 0. (3.1.3b)

The element C is called the central term. Equivalently, we have

0 → C → ĝ→ g→ 0, (3.1.3c)

together with the requirement that the image CC of C in ĝ is in the centre of ĝ. The short
exact sequence (3.1.3c) says that there is an ideal in ĝ (namely the image of the second
arrow) isomorphic as a Lie algebra to C, and that when this ideal is projected out (by the
third arrow) we recover g.

The exact sequence (3.1.3c) has the charm of not requiring an explicit splitting of
ĝ into a g-part g (namely, a lift of the Lie algebra g onto a subspace g) and a C-part
C C . The point is that there are many possible splittings: for example, given any such
splitting ĝ = g⊕ C C , choose a linear map f : g→ C; then a new splitting is obtained
by replacing the subspace g with the span of the a + f (a) C , as a runs through g. Modern
mathematics abhors arbitrary choices, and so would encourage us to delay the choice of
such a splitting as long as Good Fortune permits. Of course this is merely the current
century-long fad, and there are advantages and disadvantages to it, and indeed physics
prefers the opposite choice.
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ĝ will be a Lie algebra iff the function c : g× g→ C obeys (3.1.2b), (3.1.2c); as
before, c is called the 2-cocycle associated with the extension (3.1.3). The trivial 2-
cocycle c ≡ 0 always works, in which case ĝ is merely the Lie algebra direct sum g⊕ C.

We regard two extensions ĝ1, ĝ2 as equivalent if there is a Lie algebra isomorphism
ϕ : ĝ1 → ĝ2 that sends the ideal CC1 of ĝ1 onto CC2 ⊂ ĝ2. One way (but not the only
way) to get equivalent extensions is to change the splitting ĝ = g⊕ CC , as mentioned
before. In the language of Lie algebra cohomology (see e.g. [183] for a mathematical
treatment, or [27] for a physically motivated one), f : g→ C is a 2-coboundary, and the
resulting 2-cocycles c1, c2 define the same class in the cohomology space H 2(g). There
are other ways though to obtain equivalent extensions – for example, the central term
can be rescaled – so H 2(g) is in general too fine to serve as a ‘moduli space’ of one-
dimensional central extensions of g, but it gives a very useful partial answer. For example,
H 2(g) is trivial for any finite-dimensional semi-simple Lie algebra g, which means any
such g has only trivial central extensions (see Question 3.1.4).

For a concrete example, consider the n-dimensional abelian Lie algebra h = Cn , with
basis {e1, . . . , en}. A one-dimensional central extension ĥ of h is uniquely determined
by n2 numbers αi j ∈ C defined by [ei e j ] = αi j C , where C ∈ ĥ is central (all other
brackets of ĥ are determined by bilinearity and [ei C] = 0). Anti-commutativity requires
αi j = −α j i , and anti-associativity is automatically satisfied. Thus each choice of an anti-
symmetric n × n matrix A = (αi j ) defines a one-dimensional central extension ĥA of
h = Cn , and conversely. The dependence of this argument on an arbitrary choice of basis
ei means there is redundancy here: in particular, two such central extensions ĥA and ĥB ′

define isomorphic Lie algebras iff there is an invertible matrix B such that A′ = B ABt .
The reader can verify that any anti-symmetric matrix A is equivalent in this sense to

the direct sum of k copies of

(
0 1
−1 0

)
, and � = n − 2k copies of (0), where 2k is the

rank of A. Thus we get a different one-dimensional central extension of Cn , for each
k = 0, 1, . . . , 'n/2(. When A is invertible (i.e. k = n/2), we call ĥ a Heisenberg algebra;
as simple a (non-simple!) Lie algebra as it is, it’s one of the most important.

3.1.2 The Virasoro algebra

Recall the Witt algebra Witt in (1.4.9). For each choice of α, β ∈ C, we get a module
Vα,β , with basis vk , k ∈ Z, given by

�n.vk = −(k + α + β + βn) vk+n. (3.1.4a)

This can be obtained from the derived module (Section 1.5.5) coming from the natural
action of a subgroup of the diffeomorphism group Diff(S1) on the space of differential
‘forms’ p(z) zα (dz)β , where p(z) ∈ C[z±1] are Laurent polynomials. Clearly, Vα+m,β

∼=
Vα,β for any m ∈ Z.

As usual, we are interested in unitary modules (Section 1.5.1), and for this we need
an anti-homomorphism ω of Witt. Up to an automorphism of Witt, the unique choice
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is ω�n = �−n . Then for this choice, Vα,β is unitary iff both Re(β) = 1/2 and α + β ∈ R
[334]. These modules are also irreducible.

The element �0 ∈Witt is obviously special and plays the role of energy operator
(Hamiltonian) in the application to physics. The most interesting Witt-modules are
unitary ones with diagonalisable �0. In this case the eigenvalues of �0 will necessarily
be real, and should have the physical interpretation of energy. Unfortunately, the only
nontrivial unitary irreducible Witt-modules with �0 diagonalisable are those Vαβ . This is
unfortunate because the eigenvalues of �0 in any Vαβ have no upper or lower bound. For
reasons of stability, physics wants energy to be bounded below. The space Vαβ is infinite-
dimensional, but �0 defines on it a natural grading into finite-dimensional subspaces, and
so we are led to formally define its graded-dimension to be

trVαβq�0 =
∑
k∈Z

qk+α+β. (3.1.4b)

Unfortunately this never converges.
Central extensions are a common theme in infinite-dimensional Lie theory.1 Their

raison d’être is always the same: a richer supply of representations. The Virasoro algebra
Vir is the one-dimensional central extension Vir =Witt⊕ C C with brackets

[Lm Ln] = (m − n)Lm+n + δn,−m
m (m2 − 1)

12
C, (3.1.5a)

[LmC] = 0. (3.1.5b)

As always, we avoid convergence issues by defining Vir to consist of only finite linear
combinations of these basis vectors. Incidentally, a common mistake in the physics liter-
ature is to regard C as a number: it is in fact a vector, though in most modules of interest
to, for example, mathematical physics it is mapped to a scalar multiple cI of the identity.

The reason for the strange-looking (3.1.5a) is that we have little choice: Vir is the
unique nontrivial one-dimensional central extension of Witt (Question 3.1.5). The factor
1
12 there is conventional, but arises naturally in the realisations of Vir by normal-ordered
operators in Fock spaces (see (3.2.13), (3.2.14) for such a calculation). In fact, the normal-
ordering prescription is somewhat arbitrary and actually we are much more interested
in a slightly different basis of Vir, with L0 replaced by L0 − C/24. This is the com-
bination appearing in almost every expression for characters from this point on. Where
does this −C/24 come from? With this modified L0, the brackets (3.1.5a) simplify
(Question 3.1.8). According to conformal field theory or vertex operator algebras, this
new basis corresponds to a change in topology (see Section 5.3.4), which can be calcu-
lated using the Atiyah–Singer Index Theorem [8], so physically the ‘conformal anomaly’
term−c/24 is a Casimir effect. But the best algebraic explanation for this−c/24 is given
Section 3.2.3.

As before, L0 ∈ Vir is the energy operator, and so we want irreducible Vir-modules
where L0 is diagonalisable and its eigenvalues are bounded below. Let v be any eigenvec-
tor of L0 in such a module, say L0v = Ev, and suppose Lnv �= 0 for some n > 0. Then

1 On the other hand, the finite-dimensional simple Lie algebras do not have nontrivial central extensions.
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L0(Lnv) = −nLnv + Ln L0v = (E − n)Lnv and thus (Ln)�v will be an eigenvector of
L0 whose eigenvalue E − n� has real part going to −∞ as �→∞. Thus any Vir-
module whose L0-eigenvalues have real part bounded below must be a highest-weight
module.

More precisely, because Vir has a triangular decomposition (recall (1.5.5d))

Vir− ⊕Vir0 ⊕Vir+ = span{Ln}n<0 ⊕ span{L0,C} ⊕ span{Ln}n>0,

we can mimic the construction of highest-weight modules in Section 1.5.3. In particular,
for any h, c ∈ C, the Verma module M(c, h) is the universal Vir-module generated by a
vector v �= 0 obeying

L0v = hv, Cv = cv, Lnv = 0, ∀n > 0.

The pair (c, h) is the highest weight; c is the central charge and h the conformal weight.
As before, it can be more explicitly defined using the universal enveloping algebra, or
equivalently by inducing the module from Vir0 ⊕Vir+ to all of Vir. By the Poincaré–
Birkhoff–Witt Theorem 1.5.2, M(c, h) has a basis given by all vectors

L−i1 L−i2 · · · L−inv,

for all integers i1 ≥ i2 ≥ · · · ≥ in ≥ 1. Any other Vir-module with highest weight (c, h)
is a homomorphic image of M(c, h), or equivalently the quotient of M(c, h) by some
ideal.

Each Verma module M(c, h) is indecomposable, but may not be irreducible. However,
they all have a unique nontrivial irreducible quotient V (c, h), which is then the unique
irreducible Vir-module with highest weight (c, h).

The anti-linear anti-homomorphism (‘adjoint’) of Vir sends Ln to L−n , and fixes
C . The only unitary irreducible Vir-modules where L0 is diagonalisable and all its
eigenspaces are finite-dimensional are certain Vα,β in (3.1.4a) (these are Vir-modules
with C acting trivially), as well as certain highest-weight modules V (c, h) and their
duals, the lowest-weight modules V (c, h)�. In fact, V (c, h) (and V (c, h)�) are unitary
iff either: (i) both c ≥ 1 and h ≥ 0; or (ii) c and h fall into the discrete series, i.e. for
m, r, s ∈ N with 1 ≤ s ≤ r ≤ m + 1,

c = cm := 1− 6

(m + 2)(m + 3)
, h = hm;rs := ((m + 3)r − (m + 2)s)2 − 1

4(m + 2)(m + 3)
. (3.1.6)

These V (c, h) are called positive-energy representations since the spectrum of L0 is
positive. Thus the only unitary irreducible Vir-modules with L0 diagonalisable, with
finite-dimensional L0-eigenspaces, and with the L0-spectrum bounded below, are the
V (c, h) in (i) and (ii). They are the building blocks of the most interesting affine algebra
representations, vertex operator algebra modules and conformal field theories.

For unitary V (c, h), we have V (c, h) = M(c, h) when both c > 1 and h > 0, or
when c = 1 and 2

√
h �∈ Z. In these cases, by analogy with (3.1.4b), V (c, h) has
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graded-dimension

dimV (c,h)(q) := trV (c,h)q
L0 = qh

∞∏
n=1

(1− qn)−1, (3.1.7a)

as the infinite product gives the generating function for the partition numbers:

∞∏
n=1

(1− qn)−1 =
∞∑

m=1

p(m)qm (3.1.7b)

where p(m) is the number of ways to write m as a sum m = a1 + a2 + · · · + ak for posi-
tive integers 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak . Unlike (3.1.4b), this converges whenever |q| < 1.
In fact, we recognise (3.1.7b) as (up to a factor of q1/24) the reciprocal of the Dedekind
eta η(τ ) (2.2.6b), once we change variables by q = e2π iτ – we saw last chapter that η(τ )
is a modular form for SL2(Z). In fact we obtain

dimV (c,h)
(
e2π i (τ+1)

) = e2π i (h− 1
24 )dimV (c,h)(e

2π iτ ), (3.1.7c)

dimV (c,h)e
−2π i/τ =

√
i

τ

∫ ∞

−∞
exp[2π ihh′] dimV (c,h)e

2π iτ dh′. (3.1.7d)

This is our first glimpse of modularity from a graded dimension, though it certainly won’t
be our last. But η(τ ) arises here through elementary combinatorics, so it is tempting to
dismiss this modularity as accidental. This however would be an error.

What should be the characters of these Vir-modules? For simple Lie algebras, we
define the character as a trace over formal exponentials of elements of the Cartan subal-
gebra. The analogue of the Cartan subalgebra here is Vir0 = CL0 ⊕ C C , so the character
of V (c, h) should be

chc,h(zL , zC ) := trV (c,h)e
2π izL L0+2π izC C , (3.1.8)

which equals e2π iczC times the graded-dimension of V (c, h) (with q = e2π izL ).
The characters of the discrete series (3.1.6) are calculated in [477], and again converge

for |e2π izL | < 1. Moreover, they obey a much more interesting modularity than do the

graded-dimensions in (3.1.7): let

(
a b
f d

)
∈ SL2(Z) act on Vir0 by

(zL , zC ) �→
(

azL + b

f zL + d
, zC + f z2

L + (d − a)zL − b

24 ( f zL + d)

)
; (3.1.9)

then chcm ,hm;rs (zL , zC ) is fixed by some �(N ) (recall (2.2.4a)), and for each fixed m
(i.e. fixed central charge c), the span over all 1 ≤ s ≤ r ≤ m + 1 of the characters
chcm ,hm,rs is invariant under SL2(Z). They furnish a good example of modular data
(Definition 6.1.6). This SL2(Z) action (3.1.9) is a little complicated; if instead we spe-
cialise to the variables zL = τ and zC = −τ/24, then each

chcm ;hm;rs (τ ) := chcm ;hm;rs (τ,−τ/24) = e−2π i c/24 trV (c,h)e
2π izL L0 (3.1.10)

is a modular function for some�(N ) for τ ∈ H, and for fixed m the characters chcm ;hm;rs (τ )
form a vector-valued modular function for SL2(Z) (Definition 2.2.2).
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The best explanation for the mysterious-looking discrete series (3.1.6) will probably
come from the orbit method [563], but the analysis is still incomplete. At least part of
the discrete series of the Virasoro algebra has been related to (co)homology theory of
the universal cover of SL2(R), given a discrete topology [164]. This should be explored
further.

The characters of the non-unitary V (c, h), for c, h ∈ R, have most of the properties
of those of the unitary ones, and it is unfair to completely ignore them. For example,
for c, h ∈ R the modules V (c, h) have a contravariant nondegenerate Hermitian form
〈�, �〉, apart from the positive-definiteness condition. Lie algebras typically have too
many representations and some criterion is needed that isolates the interesting ones, but
unitarity is too restrictive here.

As we know, the Lie algebra Vect(S1) of vector fields on the circle contains the real Witt
algebra WittR (i.e. the span over R of the generators �n in (1.4.9)) as a dense ‘Laurent
polynomial’ subalgebra. The connected real Lie group naturally associated with Vect(S1)
is the group Diff+(S1) of orientation-preserving diffeomorphisms S1 → S1 of the circle.
As a group, Diff+(S1) is simple [286] but as a manifold it is not simply connected: its
universal cover D̃iff(S1) is the group of all diffeomorphisms φ : R → R of the real line
satisfying the periodicity condition φ(x + 2π ) = φ(x)+ 2π . The centre of the universal
cover is Z (namely φn(x) = x + 2πn) and D̃iff(S1)/Z ∼= Diff+(S1).

Nontrivial central extensions of Diff+(S1) by a circle are explicitly constructed in, for
example, section 6.8 of [465] and appendix D.5 of [295]; these all have a Lie algebra
isomorphic to the real Virasoro algebra VirR (i.e. the R-span of the generators Lm,C of
(3.1.5)).

Lie theory for the Virasoro and Witt algebras (and more generally the Lie algebra
Vect(M) of vector fields on any manifold M) is much more complicated than the finite-
dimensional semi-simple theory described in Chapter 1. For example, although the ‘expo-
nential’ map exp: Vect(S1) → Diff+(S1) is defined here (by first integrating the vector
field to its flow), it is neither locally one-to-one nor locally onto (proposition 3.3.1 of
[465]). By comparison, the exponential map of compact Lie groups is locally one-to-one
and globally onto. Moreover, the complex Lie algebra C⊗ Vect(S1) does not have a
corresponding Lie group. After all, although a vector field on S1 corresponds to a path
in the space of maps (in fact diffeomorphisms) S1 → S1, and these form a group by
composition, a complex vector field on S1 corresponds to a path in the space of maps
S1 → C and these won’t form a group. Segal [502] suggests that the complex Lie semi-
group C0,2 defined in Section 4.4.1 is the closest we can come to the complexification
of Diff+(S1).

We have two fairly general frameworks in which to understand Lie group representa-
tions: Borel–Weil and the orbit method (a.k.a. geometric quantisation). There is, as we
recall from Section 1.5.5, a general philosophy that says the representations of a group
G (here Diff(S1)) are in one-to-one correspondence with certain orbits of the coadjoint
action of G on the Lie algebra g of G (here Witt). As mentioned earlier, Witten [563]
explored this possible relation for the Virasoro algebra. For example, the homogeneous
space Diff(S1)/S1 appears as an orbit, and can be associated with ghosts in string theory.
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The main motivation would be to find a new interpretation for the discrete series (3.1.6),
which is a little mysterious from the algebraic point of view. Witten identified the orbits
to which these should correspond, but couldn’t quantise those orbits (this is a common
curse of the orbit method).

The space Diff(S1)/PSL2(R) is also a coadjoint orbit. Something special happens
here when we replace Diff(S1) with the larger group QS(S1) of quasi-symmetric home-
omorphisms of S1: then QS(S1)/PSL2(R) is called the universal Teichmüller space T.
Every Teichmüller space Tg,n (recall Section 2.1.4) is naturally contained in T. Like-
wise, Diff(S1)/PSL2(R) naturally embeds in T (every diffeomorphism of S1 is quasi-
symmetric), and intersects each Tg,n transversely. See the reviews [460], [168] for def-
initions and references. Given this, an intriguing answer to the challenge suggested
by Manin in Section 5.4.1 is to consider the reparametrisations of strings using quasi-
symmetric homeomorphisms rather than diffeomorphisms; see [460] for some physical
speculations.

Pursuing an analogue of Borel–Weil is at least as interesting. Recall that for G compact,
we get an action of G on line bundles on the flag manifold GC/B, and this accounts
for the special (i.e. finite-dimensional) representations of G. Manin [402] suggested that
something similar happens to Vir, with now the moduli spaces of curves playing the
role of the flag manifold. This thought was made much more precise in [357], [49], [13].
Consider the enhanced moduli space M̂g,n of Section 2.1.4, where each of the n marked
points on the genus-g surface is given a local coordinate zi . A copy of Witt for each
marked point acts naturally on M̂g,n: the vector field z�i ∂/∂zi , for � ≥ 1, changes the
coordinate zi ; ∂/∂zi moves the i th point; and finally z�i ∂/∂zi for � ≤ −1 can change the
conformal structure of the surface. This action fills out the tangent space to any point on
M̂g,n , i.e. we get a surjective Lie algebra homomorphism from Witt to the tangent space
at any point on M̂g,n , and from this we can derive the central extension geometrically
by considering determinant line bundles (a nice introduction to this important object is
[192]) over M̂g,n .

Pushing this much further would force us into the complexities (and riches) of alge-
braic geometry and D-modules (see [116] for a gentle introduction to the simplest D-
modules). A far-reaching generalisation of the Borel–Weil Theorem is the equivalence
of categories established by Beilinson–Bernstein and Brylinski–Kashiwara: given a Lie
group G with semi-simple Lie algebra g, their ‘localisation functor’ relates an algebraic
category, whose objects include the Verma modules of g, with a topological category of
D-modules (i.e. sheaves of modules over a ring of differential operators over the flag
manifold GC/B). Describing this would take us far afield (see [80], [417] for reviews
and references). In conformal field theory, the Virasoro algebra, moduli spaces Mg,n ,
and mapping class groups �g,n take the place of g, GC/B and the Weyl group [402],
[530]. [49] relates Virasoro modules to D-modules on the enhanced moduli space M̂g,n .

In any case, this deep relation between moduli spaces of curves and Vir is significant
to Moonshine, because of its relation to the analogues of the Knizhnik–Zamolodchikov
(KZ) equations in any conformal field theory at any genus. We elaborate on this elsewhere
(starting in Section 3.2.4), but for now let us say that ‘chiral blocks’ are sections over
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the moduli spaces M̂g,n , and satisfy a system of partial differential equations saying
roughly that they respect this Vir action. The monodromy of those equations gives
rise to projective actions of the mapping class groups on the spaces of chiral blocks.
Now, the chiral blocks of the space M1,1 (or rather M̂1,1) are vertex operator algebra
characters (including for instance (3.1.10)), and �1,1

∼= SL2(Z) (or rather its central
extension �̂1,1

∼= B3) acts on them. This is conformal field theory’s explanation for the
modularity of these characters. Thus the Virasoro algebra, through its action on the M̂g,n ,
lies at the heart of Moonshine.

Question 3.1.1. (a) Let G = Z2 × Z2. Define a map P : G → GL2(C) by

P(0, 0) =
(

1 0
0 1

)
, P(1, 0) =

(
0 1
−1 0

)
,

P(0, 1) =
(

i 0
0 −i

)
, P(1, 1) =

(
0 −i
−i 0

)
Verify that P is a projective representation of G.
(b) Let Q be the order 8 ‘quaternion group’, given by the following relations:

Q = {±1,±i,±j,±k | − 1 = (±i)2 = (±j)2 = (±k)2, ij = k = −ji, −1 is in centre}.
Show that there is a homomorphism ϕ : Q → G with kernel {±1}.
(c) Show that there is a true representation R of Q such that

P(x) = δ(x) R(r (x)), ∀x ∈ G,

where r (x) ∈ ϕ−1(x), and where δ : G → C×.

Question 3.1.2. Identify G = S1 with R/Z, and for any class [x] ∈ R/Z, choose the
unique representative 0 ≤ x < 1. Verify that for any complex number α, the map [x] �→
αx defines a one-dimensional projective representation of S1. Find the corresponding
true representation on the universal cover G̃ of S1.

Question 3.1.3. For this question, let G be the additive group C2. Define the function
α : G × G → C× by α(z, w) = exp[z2w1 − z1w2]. Verify that α obeys the 2-cocycle
condition (3.1.1b), and construct the corresponding central extension.

Question 3.1.4. Find all one-dimensional central extensions of the Lie algebra A1.

Question 3.1.5. Show that there are only two one-dimensional central extensions of the
Witt algebra, up to isomorphism. (Hint: first show, changing basis if necessary, that
[L0, Ln] = −nLn . Then consider anti-associativity of [L0[Lm Ln]].)

Question 3.1.6. (a) The group PSL2(R) acts naturally on the unit disc |z| < 1 by Möbius
transformations. Use this to embed PSL2(R) naturally in Diff+(S1), and find the corre-
sponding Lie subalgebra of Vect(S1).
(b) The group SL2(R) naturally acts on the space of semi-infinite rays R≥(x, y) in R2 with
endpoint at the origin (0, 0). Find this action, and use it to embed SL2(R) in Diff+(S1).
Find the corresponding Lie subalgebra of Vect(S1).
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Question 3.1.7. Prove that the Lie algebra of derivations of the algebra C[x±1] of Laurent
polynomials is Vect(S1).

Question 3.1.8. Find the constant α ∈ C for which the new basis L ′n = Ln + α δn,0C of
Vir has especially simple brackets [L ′m, L ′n].

3.2 Affine algebras and their representations

The theory of nontwisted affine Kac–Moody algebras (usually called affine algebras) is
very analogous to that of the finite-dimensional simple Lie algebras. Nothing infinite-
dimensional tries harder to be finite-dimensional than affine algebras. Their construction
is so trivial that it seems surprising anything interesting and new can happen here. But
a certain ‘miracle’ happens. . .

Standard references for the theory of affine algebras are [328], [337], [214], [551].
We will ignore here an interesting part of the story: the KP hierarchy [423].

3.2.1 Motivation

Generalisations are too easy; they should be justified before they are endured. Here we
describe the original justifications for the study of Kac–Moody algebras.

Each simple finite-dimensional Lie algebra has, as we know, a Weyl group, which is
a symmetry of most of the data of the algebra (e.g. the weight multiplicities of finite-
dimensional modules) and which encodes much (but not all) of the structure of the
algebra. These Weyl groups are a very special sort of group: they are generated by
reflections (namely those through the simple roots).

Associated with any vector α ∈ Rn , the reflection rα through α, sending α to −α and
fixing the hyperplane perpendicular to α is given by (1.5.5c). More abstractly, a reflection
r is simply an involution (i.e. order 2: r2 = e). A finite reflection group is a finite group
generated by reflections. Coxeter studied these as symmetries of a regular solids.

For example, the dihedral group Dn (the group of symmetries of a regular n-gon) is
a finite reflection group, consisting of n reflections and n rotations, and is generated by
any two neighbouring reflections. The symmetric group Sn is a finite reflection group: it
acts on an orthonormal basis ei of Rn by permuting the subscripts, and is generated by
the transpositions (i, i + 1), which are reflections rαi through the vector ei − ei+1.

Finite reflection groups have remarkably simple presentations.

Definition 3.2.1 A Coxeter group G is a group with a set R of generators, whose
complete list of relations is

(rr ′)m(r,r ′) = e, ∀r, r ′ ∈ R,

where m(r, r ) = 1 and the other m(r, r ′) all lie in {2, 3, . . . ,∞}. (The value m(r, r ′) = ∞
means that rr ′ has infinite order.)

The geometry of Coxeter groups is quite pretty – see, for example, [301], [84]. In Sec-
tion 7.1.1 we describe a generalisation due to Conway, and its relation to the Monster M.
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Fig. 3.1 The indecomposable finite Coxeter groups.

The list of finite Coxeter groups and finite reflection groups coincide. They are most
easily described by the associated Coxeter graph: put a node for each generator r ∈ R,
and connect two nodes with an edge labelled m(r, r ′). To increase readability, erase the
edge and label if m(r, r ′) = 2, and erase the label (but keep the edge) if m(r, r ′) = 3. The
complete list of finite Coxeter groups (Coxeter, 1935) is given by arbitrary disjoint unions
of the graphs of Figure 3.1. The group given by An is the symmetric group Sn+1, and
I2(n) is the dihedral group Dn . The group H3 is the symmetry group of the icosahedron,
and is isomorphic to Z2 ×A5.

Figure 3.1 should remind us of Figure 1.17. Indeed, Figure 3.1 includes the Weyl
groups of all simple finite-dimensional Lie algebras. More precisely, the Weyl groups
consist of all finite Coxeter groups that obey the crystallographic condition: for all
distinct r, r ′ ∈ R, m(r, r ′) ∈ {1, 2, 3, 4, 6}. Geometrically, the crystallographic condition
says that the Coxeter group stabilises a lattice in Rn (see also Question 1.7.6). As we
recall, the Weyl groups stabilise the corresponding root lattice.

Most Coxeter groups are infinite. As a graduate student, Robert Moody asked that,
since the finite-dimensional semi-simple Lie algebras correspond to finite crystallo-
graphic Coxeter groups, what is the class of Lie algebras that correspond more generally
to any Coxeter group? Presumably they should have a theory very similar to that of
the semi-simple ones. The partial answer to Moody’s beautiful question is that the Lie
algebras corresponding to the (possibly infinite) crystallographic Coxeter groups are
the Kac–Moody algebras! In fact, much of the interest in the affine algebras is due ulti-
mately to their Weyl groups. We still don’t know the Lie algebras corresponding to the
noncrystallographic groups.

Victor Kac’s road to these algebras was quite different. Let g be a complex Lie algebra.
By a Z-grading we mean that we can write the vector space g as g = ⊕∞n=−∞gn , such
that [gm, gn] ⊆ gm+n for all m, n ∈ Z. We call g a simple Z-graded Lie algebra if, in
addition, g does not contain any nontrivial Z-graded ideal.

It is probably hopeless to classify all simple Z-graded Lie algebras – there are too many
of them. However, decades earlier, Cartan had studied vector fields (i.e. derivations) on
polynomial algebras, and found four infinite families that were simple Z-graded, with
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the dimension dim(gn) bounded above by some polynomial in n. We say that these Z-
graded algebras have polynomial growth. Kac conjectured, and Olivier Mathieu proved,
the complete list of such algebras.

Theorem 3.2.2 [409] The simple Z-graded Lie algebras of polynomial growth are:
(a) the finite-dimensional simple Lie algebras;
(b) the loop algebras (possibly twisted);
(c) Cartan’s four families; and
(d) the Witt algebra Witt.

The proof is long and complicated. We’ve already met the finite-dimensional g and
the Witt algebra. Cartan’s algebras are defined explicitly in, for example, [409]. The
‘loop algebras’ are constructed next subsection (there are six infinite families and seven
exceptionals).

What we call the affine algebras – our main interest this chapter – are the central
extensions of these loop algebras. Of course, such algebras cannot be simple because
of their centres, and for this reason aren’t in Mathieu’s list. In any case, the affine
algebras (together with the Virasoro algebra) answer a technical but natural algebraic
question.

A couple of years after their mathematical introduction [325, 430], the nontwisted
affine algebras were discovered independently in string theory [42], under the name
current algebras.

The Lie algebras (a)–(d) in Mathieu’s list are truly extraordinary, especially regarding
their representation theory. The simplest of Cartan’s families are the Weyl algebras, which
are the differential operators on the algebra C[x1, . . . , xn] of polynomials, generated
by multiplication operators x1, . . . , xn and partial derivatives ∂/∂x1, . . . , ∂/∂xn . Their
modules are the simplestD-modules and have deep connections throughout mathematics
and physics (see [116], [80] for an introduction).

3.2.2 Construction and structure

Let g be any simple finite-dimensional Lie algebra. The affine algebra g = g(1) is
essentially the (polynomial) loop algebra Lpolyg = C[t±1]⊗ g, defined to be all pos-
sible ‘Laurent polynomials’

∑
n∈Z antn where each an ∈ g and all but finitely many

an = 0. Treat t here as a formal variable. The bracket in Lpolyg is the obvious one: e.g.
[atn, btm] = [ab]tn+m . Geometrically, Lpolyg is the Lie algebra of polynomial maps
S1 → g (to see this realisation, think of t = e2π iθ ). This explains the name, and also sug-
gests several generalisations (e.g. take any manifold in place of S1). But the loop algebra
is simplest and best understood of these geometric Lie algebras, and the only one we
consider in any depth (but see Section 3.3). Note that Lpolyg is infinite-dimensional.
Its Lie groups are the loop groups, consisting of all maps of S1 to a Lie group for g

(Section 3.2.6).
We saw S1 before, in the discussion of the Witt algebra, so we may expect the Virasoro

and affine algebras to be related. In fact, the Witt algebra acts on the affine algebras
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as derivations. By definition, a derivation D is a linear map that obeys the product
rule for derivatives: D([xy]) = [(Dx)y]+ [x(Dy)]. The easiest examples are the ‘inner
derivations’: D = ad(x). All derivations of g are inner, but the loop algebra Lpolyg has
several non-inner ones. In particular, because Lpolyg consists of all (polynomial) maps
S1 → g, the vector fields Vectpoly(S1), and hence the Witt algebra Witt, act on it. More
precisely, using the realisation � j = −t j+1d/dt of the basis vectors of (1.4.9), we get
the action

� j .(atn) = −t j+1 d

dt
(atn) = −nat j+n. (3.2.1)

This relation between Witt and Lpolyḡ plays an important role in the whole theory.

The loop algebra has a unique nontrivial one-dimensional central extension L̂polyg =
Lpolyg⊕ CC , defined by

[tm x, tn y] = tm+n[x, y]+ mδm,−n κ(x |y) C (3.2.2a)

for all x, y ∈ g and m, n ∈ Z, where κ(x |y) is the invariant bilinear form (Killing form)
of g. Thus L̂polyg has the same relation to Lpolyg that Vir has to Witt. Incidentally,
[344] relates the central extensions (3.2.2a) and (3.1.5) to logarithms of differential
operators.

In addition, for a technical reason (namely, to make the simple roots linearly indepen-
dent, so weight spaces can be finite-dimensional), a further noncentral one-dimensional
extension is usually made. The result: by the affine algebra g = g(1) we mean the exten-
sion of L̂polyg by the derivation �0 := t d

dt . The Witt algebra also acts naturally on g

(Question 3.2.3). The superscript ‘(1)’ denotes the fact that the loop algebra was twisted
by an order-1 automorphism, in other words that it is nontwisted. It is called ‘affine’
because of its Weyl group, as we shall see.

For example, elements in A1
(1) are triples (a(t), w, x) where w, x ∈ C and a(t) =∑

n∈Z antn , for all an ∈ sl2(C) and only finitely many an �=
(

0 0
0 0

)
. The Lie bracket

is

[(a(t), w, x), (a′(t), w′, x ′)] =(∑
m,n

tm+n[am, a′n]+ x
∑

n

na′ntn − x ′
∑

m

mamtm,
∑

m

m tr(ama′−m), 0

)
. (3.2.2b)

Each object associated with g has an analogue here: Coxeter–Dynkin diagram, Weyl
group, weights, . . . For instance, the affine Coxeter–Dynkin diagram (Figure 3.2) is
obtained from that of g (Figure 1.17) by adding one node, labelled with an ‘x’. We have
included the labels ai and (where different from ai ) colabels a∨i , whose significance is
given next subsection.

The Cartan subalgebrahplays the same role here that it does in Chapter 1: decomposing
modules into weight spaces. It can be chosen to be h⊕ CC ⊕ C�0, where h is a Cartan
subalgebra of the semi-simple algebra g. In fact, g has a triangular decomposition g =
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Fig. 3.2 The nontwisted affine Coxeter–Dynkin diagrams.

g+ ⊕ h⊕ g− (recall (1.5.5d)) where

g± =
(
t±1C[t±1]⊗ (g∓ ⊕ h)

)⊕ C[t±1]⊗ g± (3.2.3a)

and g = g+ ⊕ h⊕ g− is a triangular decomposition of g. Given h, we obtain the root-
space decomposition of g, as in (1.5.5a):

g = h⊕
⊕
n∈Z

⊕
α∈�

tngα ⊕
⊕

n∈Z\0
tnh (3.2.3b)

where g = h⊕⊕αgα . We return to (3.2.3) when we study g-modules next subsection,
but for now note that if g has rank r , then the root spaces tnh of g have dimension r
while all tngα have dimension 1. The latter, which act like root spaces in g, are called
real, while the former are called imaginary.

This loop algebra construction can be twisted. Let g again be any simple and finite-
dimensional Lie algebra and let g be the corresponding affine algebra. Choose any
symmetry α of the Coxeter–Dynkin diagram of g, of order N say, and extend this into
an automorphism of g as in Section 1.5.4. We can further extend α to an automorphism
of g, by requiring α to fix C and �0, and send atn to α(a)ξ−n

N tn . Then the fixed-point
subalgebra g0 of g is

g0 =
{∑

n

antn + wC + x�0

∣∣ an ∈ gn mod N

}
, (3.2.4)

where gi are the eigenspaces of α in g (recall (1.5.12)). This Lie algebra g0 is called
a twisted affine algebra and is denoted g(N ). All twisted affine algebras are listed in
Figure 3.3, with their colabels. Twisted affine algebras behave very analogously to the
nontwisted ones, and also have a significant role in the theory (Section 3.4.1).
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Fig. 3.3 The twisted affine Coxeter–Dynkin diagrams.

3.2.3 Representations

The loop algebra Lpolyg has no interesting modules, which is why we centrally extend it
and introduce the affine algebras g = g(1). No interesting g-module is finite-dimensional.
However, g has a triangular decomposition (3.2.3a), so highest-weight modules exist.
Weights λ ∈ h∗ here are triples (λ, k, u) ∈ h

∗ × C2; a weight vector v obeys

h.v = λ(h) v, C.v = kv, �0.v = uv.

Define the Verma module M(λ, k, u) and the irreducible highest-weight module
L(λ, k, u) – our greatest interest – as in Section 1.5.3. Given any highest-weight module
M , the central term C acts as a multiple k I of the identity; this constant k is a funda-
mental invariant of the representation called the level of M . On the other hand, the value
of u is irrelevant (at least when the level is not 0) – see Question 3.2.4.

A highest-weight module M is infinite-dimensional but comes with a grading M =
⊕∞n=0 Mu+n into eigenspaces of �0. Because �0 commutes with g, these spaces Mu+n are
all g-modules, and the lowest, namely Mu , has highest weight λ. Using this we can define
the graded-dimension as in (3.1.4b). However, the �0-spaces of Verma modules will be
infinite-dimensional, as will those of L(λ, k, u) unless λ ∈ P+(g). There are two ways
to proceed: either find a more suitable grading, or (more important) consider instead the
character.

Defining these characters requires decomposing our modules into weight-spaces, and
for this we should fix a basis for h∗. A basis for h is h1, . . . , hr (the usual basis for
h) together with h0 := C −∑r

i=1 a∨i hi and −�0 (a∨i are the colabels of Figure 3.2).
The reason for introducing h0 will be clearer in Section 3.3.1. The dual basis for h∗,
corresponding to h0, . . . , hr ,−�0, is written ω0, . . . , ωr , δ. Recall from Sections 1.4.3
and 1.5.2 the Killing form κ(h|h′) and (λ|μ) for g; its analogue for affine algebras
(Question 3.2.5) obeys

κ(z + a�0 + uC |z′ + a′�0 + u′C) = κ(z|z′)− au′ − ua′, (3.2.5a)(
r∑

i=0

λiωi + bδ |
r∑

j=0

μ jω j + dδ

)
=
(

r∑
i=1

λiωi |
r∑

j=1

μ jω j

)
+

r∑
i=0

(dλi + bμi ) .

(3.2.5b)
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The level k is recovered from the weight λ by the formula

k = (δ|λ) =
r∑

i=0

a∨i λi . (3.2.5c)

A useful formula gives the evaluation λ(h):(
r∑

i=0

λiωi + bδ

)
(z + τ�0 + uC) =

(
r∑

i=1

λiωi

)
(z)+ ku − τb. (3.2.5d)

In this notation, the roots of g are α − (θ |α)ω0 + nδ for any root α of g (these are
the real roots, and have multiplicity 1), as well as nδ (the imaginary roots, with multi-
plicity equal to the rank r of g). The root θ =∑r

i=1 aiαi is called the highest root of g,
where ai are the labels of g (Figure 3.2). The positive roots are any of these with n > 0,
together with α − (θ |α)ω0 for positive roots α. The simple roots are αi := αi − (θ |αi )ω0

for 1 ≤ i ≤ r , together with α0 := δ −∑r
i=1 aiαi . Note that the adjoint representation

of an affine algebra is not a highest-weight representation (why?). Many of these com-
ments will make more sense when we associate a Coxeter–Dynkin diagram to g in
Section 3.3.1.

The weight-spaces for the Verma modules, and hence any highest-weight module M ,
are always finite-dimensional and so we can define their character chM as in (1.5.9a).
For an easy example, the Verma module M(λ, k, 0) = M(λ) has character

chM(λ)(h) = eλ(h)
∏
α>0

(
1− e−α(h)

)−multα
, (3.2.6)

where ‘multα’ denotes the dimension of the root-space gα (which now may be> 1). We
can obtain convergent graded dimensions by specialising this in any number of ways;
the most obvious (called the principal gradation) chooses h ∈ h so that eαi (h) = x for all
simple roots αi (0 ≤ i ≤ r ), and eω0(h) = 1 (x is a formal variable). In other words, the
principal grading of a vector with weight λ−∑r

i=0 niαi is
∑

i ni less than the grading
of λ – this gradation keeps track of how many ‘creation operators’ fi (using notation
introduced in Section 3.3.1) are applied to the ‘vacuum’ v in order to create the given state.

For example, the affine algebra A1
(1) has positive roots 2ω1 − 2ω0 + nδ (for n ≥ 0)

as well as mδ and −2ω1 + 2ω0 + mδ (for m > 0). All root multiplicities are 1. The
simple roots areα1 = 2ω1 − 2ω0 andα0 = δ − α1. A highest-weightλ looks likeλ0ω0 +
λ1ω1, with level λ0 + λ1. Applying the principal gradation to the A(1)

1 -Verma module,
its character (3.2.6) specialises to the principally-graded dimension

dimpg
M(λ)(x) = xλ1/2

∞∏
n=0

(
1− x−(1+2n)

)−1
∞∏

m=1

(1− x−2m)−1
∞∏

m=1

(
1− x−(−1+2m)

)−1

= e−π iλ1τ η(2τ )/η(τ )−2, (3.2.7)

where we write x = e−2π iτ and recall the Dedekind eta function from (2.2.6b). Thus
once again we find the remarkable fact that graded dimensions of Verma modules have
something to do with the modular group SL2(Z) (compare (3.1.7)). Something similar
happens for the highest-weight representations of any affine algebra!
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Nothing particularly deep is happening here. The modularity of dimpg arises here
for free, simply from the combinatorics. Indeed, for any affine algebra, the specialised
product of (3.2.6) is the generating function for some partition-like function as in (3.1.7b),
and these have nice modular behaviour (by arguments like those used in Section 2.2.2).

More precisely, in the Verma module we get a free action of the creation operators of
a Heisenberg subalgebra, coming from the central extension of the loop algebra of the
Cartan subalgebra h. Thus the modular group arises in affine algebra characters because
of a Heisenberg algebra action. However, much as the discrete series (3.1.6) of Vir-
modules behaves simpler than the other unitary Vir-modules, discretising the integral
in (3.1.7d), certain families of g-modules have especially nice modular properties. What
makes this work is the Weyl group. It is this conjunction of the Heisenberg subalgebra
with the affine Weyl group that makes affine algebras so special.

The analogue for g of the finite-dimensional modules of g are called the integrable
highest-weight modules. Technically speaking, an integrable representation π is one
where all x ∈ g± are locally nilpotent, that is, for each v ∈ V there is a number nx (v) such
that π (x)nx (v)v = 0. In particular, this means eπ (x) is well-defined as an operator on the
module by its Taylor series – in infinite dimensions most operators can’t be exponentiated.
These modules are called integrable because they are precisely those highest-weight
modules that can be ‘integrated’ to a projective module of the corresponding loop group
(Section 3.2.6). The integrable modules are precisely the unitary ones.

The highest weight λ =∑r
i=0 λiωi is integrable iff each λi ∈ N. Hence the set of all

integrable level k highest weights is

Pk
+(g) :=

{
r∑

i=0

λiωi | λi ∈ N, k =
r∑

i=0

a∨i λi

}
. (3.2.8)

Simple formulae for the cardinality ‖Pk
+(g)‖ exist for all algebras (Question 3.2.6) –

for example, for Ar
(1) it is ‖Pk

+‖ =
( k+r

r

)
. The most important weight in Pk

+(g) is kω0,
often denoted ‘0’ in the literature. The module L(kω0) has a vertex operator algebra
structure (Section 5.2.2) and corresponds to the vacuum sector in conformal field theory
(Section 6.1.1).

The �0-eigenspaces of an integrable representation L(λ) are all finite-dimensional
representations of g, and thus we can define its character chL(λ) as in (1.5.9a), although
just as for the Virasoro algebra in (3.1.10) it proves to be more convenient to ‘normalise’
it:

χλ(h) := e−(hλ−cλ/24) δ(h)
∑

β∈�(L(λ))

dim L(λ)β eβ(h), (3.2.9a)

where L(λ) = ⊕L(λ)β is the weight-space decomposition of L(λ), h ∈ h, and

hλ := (λ|λ+ 2ρ)

2 (k + h∨)
, (3.2.9b)

cλ := k

k + h∨
dim g (3.2.9c)
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Fig. 3.4 The Weyl group of A2
(1) acting on level-2 weights.

are called the conformal weight and central charge, respectively, of L(λ). The quantity
h∨ =∑r

i=0 a∨i is called the dual Coxeter number and ρ =∑r
i=0 ωi the Weyl vector.

The algebraic meaning of hλ and cλ involves the Virasoro algebra and is given shortly;
δ(h) plucks out the coefficient 2π iτ of �0 (recall (3.2.5d)). We are assuming in (3.2.9b)
that the highest-weight component u has been set to 0 (Question 3.2.4). We discuss
the normalisation (the exponential involving hλ − cλ/24) later in this subsection. As in
(1.5.11), the character χλ can be written as an alternating sum over the Weyl group W ,
over a ‘nice’ denominator (namely the product in (3.2.6)). The difference is that W is
now infinite.

See Figure 3.4 for the Weyl group of A2
(1) (projected to h

∗
), and Question 3.2.7 for

some simple calculations. Much of the interest in affine algebras can be traced to the
‘miracle’ that their Weyl groups are a semi-direct product Q∨×W of translations in a
lattice Q∨ (the r -dimensional ‘co-root lattice’ of g) with the (finite) Weyl group W of
g. More precisely, for any root α of g define the co-root α∨ by α∨ = 2α/(α|α); by the
co-root lattice Q∨ ⊂ h

∗ ⊂ h∗ of g we mean the Z-span of these co-roots. For any vector
β ∈ Q∨, define the map

tβ(μ) = μ+ (μ|δ)β − ((μ|β)+ (β|β) (μ|δ)/2) δ, (3.2.10a)

∀μ ∈ h∗. It is straightforward to verify tβ tγ = tβ+γ , and thus these deserve the name
‘translations’. Any element of the Weyl group W of g can be written uniquely as a pair
(tβ, w) for some β ∈ Q∨ and some w ∈ W , and

(tβ, w) ◦ (tβ ′ , w
′) = (

tβ tw(β ′), ww
′). (3.2.10b)

As in (1.5.6d), weights μ ∈ �(L(λ)) in the same Weyl orbit of an integrable module
have the same multiplicities. One thing this implies is that χλ will be of the form ‘theta
series’/denominator. In particular, the lattice is Q∨, and the ‘(β|β)δ’ term in (3.2.10a)
provides the quadratic form in the lattice theta series. As we know from (2.3.10), theta
series are modular forms, and this is the second complementary reason the modular
group SL2(Z) makes an appearance (the first was the combinatorics of the free action of
the Heisenberg subalgebra of creation operators). To make this more precise, consider
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the highest weight λ = λ0ω0 + λ1ω1 ∈ Pk
+(A(1)

1 ). Then

χλ(2π i (z + τ�0 + uC)) = 
(k+2)
λ1+1 (τ, z, u)−

(k+2)
−λ1−1(τ, z, u)


(2)
1 (τ, z, u)−

(2)
−1(τ, z, u)

, (3.2.11a)

(n)
m (τ, z, u) := e−2π inu

∑
�∈Z+ m

2n

exp[2π inτ�2 − 2
√

2π in�z]. (3.2.11b)

Any g has an analogue of (3.2.11), the Weyl–Kac character formula

χλ(2π i (z + τ�0 + uC)) =
∑

w∈W ε(w)(k+h∨)
w(λ1+ρ)(τ, z, u)∑

w∈W ε(w)(h∨)
w(ρ)(τ, z, u)

, (3.2.11c)

where both the numerator and denominator involve an alternating sum over the finite
Weyl group W of g, and where the theta series in (3.2.11c) involves a sum over the
lattice Q∨ shifted by some weight and appropriately rescaled. For example, the Weyl
group of A1 is S2 and its co-root lattice Q∨ is

√
2Z. The key variable in (3.2.11) is the

modular one τ – the main role of the other variables is to ensure linear independence.
The character χλ converges for any choice of τ ∈ H, z ∈ Cr and u ∈ C.

Thus the denominator of the character of an irreducible integrable g-module L(λ) is
a modular form, by virtue of the combinatorics of Verma modules. The numerator is a
modular form, by virtue of the structure and action of the affine Weyl group. Together
they give a modular function.

Theorem 3.2.3 [333] Let g be finite-dimensional and simple, and let g = g(1) be
the corresponding affine algebra. Define χλ(τ, z, u) = χλ(2π i (z + τ�0 + uC)). Fix any
level k ∈ N. Then for any integrable weight λ ∈ Pk

+(g), χλ(τ, 0, 0) is a modular function
for some congruence subgroup �(N ). Moreover, define a column vector !χ (τ, z, u) with
entries χλ(τ, z, u) for each λ ∈ Pk

+(g). Then there is a unitary representation ρ of SL2(Z)
such that

!χ
(

aτ + b

f τ + d
,

z

f τ + d
, u − f (z|z)

2( f τ + d)

)
= ρ

(
a b
f d

)
!χ (τ, z, u),

for any

(
a b
f d

)
∈ SL2(Z).

We say that the characters χλ define a vector-valued Jacobi form for SL2(Z), with multi-
plierρ (recall Definition 2.2.2). This modularity of affine characters is fundamental to this
book, and a prototypical example of much of what follows. The complex matrices ρ(A)
here are examples of modular data (Sections 6.1.2 and 6.2.1). A �(N ) that uniformly
works in Theorem 3.2.3 is to let N be the least common multiple of all denominators of
hλ − c/24 (these will always be rational), as λ runs through the finite set Pk

+(g).

We can now explain McKay’s observation (0.5.1) that the coefficients of j(τ )
1
3

are related to the E8 Lie group. j
1
3 (τ ) equals the character χω0 (τ, 0, 0) of the inte-

grable E (1)
8 -module. The q-coefficients (q = e2π iτ ) of j

1
3 (τ ) are thus dimensions of the



Affine algebras and their representations 197

�0-eigenspaces of L(ω0), which are automatically E8-modules. Because P1
+(E (1)

8 ) =
{ω0}, all modularity properties of the character j

1
3 are a direct consequence of Theorem

3.2.3.
All of this assumes the underlying finite-dimensional Lie algebra g is semi-simple.

When it is merely reductive (i.e. the direct sum of copies of the one-dimensional abelian
algebra u1, with a number of simple Lie algebras), something different happens. For
example, consider the affinisation of u1 (the oscillator algebra). It has basis C, an (n ∈ Z)
and obeys relations

[C, an] = 0, [am, an] = mδm,−nC. (3.2.12a)

Its irreducible unitary modules are parametrised by a highest weight λ ∈ R, and are
Verma modules M(λ). In particular, any λ ∈ R defines a different irreducible unitary
module. They can be realised in the space of polynomials C[x1, x2, . . .] by the operators
C.p(x) = p(x), a0.p(x) = λ p(x), and for all n ≥ 1

an p(x) = ∂

∂xn
p(x), a−n p(x) = nxn p(x). (3.2.12b)

Note that the level k here is 1 (why can we demand k = 1?). The reader can verify that
this representation has (normalised) character

χλ(τ ) = qλ
2/2/η(τ ). (3.2.12c)

These characters aren’t linearly independent (since χ−λ = χλ), but the reader can work
out the usual remedy. Their modularity is discussed in Section 6.2.2. In the language
of conformal field theory, the unitary modules of the oscillator algebra u1

(1) are quasi-
rational while the integrable modules of affine algebras are rational. Nevertheless, the
oscillator algebra (studied in detail in [334]) is a convenient toy model for the affine
algebras.

Last subsection we saw that Witt acts naturally on loop algebras by derivations. Does
Witt act on affine modules? Consider the oscillator algebra for simplicity. We will have
a universal Witt action on u1

(1)-modules M if we can construct the basis �n of (1.4.9) out
of the operators am of (3.2.12a), that is realise the �n in the universal enveloping algebra
U (u1

(1)) (or some completion thereof). We are led to consider quadratic combinations
in the am , since that is the simplest after linear ones (which won’t work), and also
since �0 has the interpretation of a Hamiltonian, which always contains a quadratic part.
Define

tm =
∑
i∈Z

a−i am+i . (3.2.13a)

Being an infinite sum, convergence won’t be automatic, but let’s ignore that for now.
Then

[tm, an] =
∑
i∈Z

a−i [am+i , an]+ [a−i , an]am+i = −nam+nC − nCam+n = −2nam+nC.

(3.2.13b)
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In, for example, a highest-weight module, C acts as a scalar k, and so (at least for k �= 0)
�m := 1

2k tm mimics the action of the standard Witt action �m = −tm+1d/dt on the loop
algebra Lpolyu1. This looks promising. We compute from (3.2.13b)

[�m, �n] = (2k)−2
∑
i∈Z

[tm, a−i ]an+i + (2k)−2
∑
j∈Z

a− j [tm, an− j ]

= (2k)−1
∑
i∈Z

iam−i an+i + (2k)−1
∑
j∈Z

(−n − j)a− j am+n+ j = (m − n)�m+n,

establishing that indeed the �m form a realisation of Witt in U (u1
(1)).

Unfortunately, the sum in (3.2.13a) doesn’t converge. Take M to have highest-weight
vector v with highest weight (λ, k). Then

t0.v =
∑
i≤−1

(ai a−i − iC).v + a0a0.v +
∑
j≥1

a− j a j .v = k2v + k

(∑
j≥1

j

)
v, (3.2.13c)

which diverges. This means (3.2.13a) must be modified. The simplest correction can
be written Tm :=∑

i∈Z : a−i am+i :, where the normal-ordering : aman : is defined to
equal either aman or aman , depending on whether or not m ≤ n. For m �= 0, Tm = tm ,
but T0.v = k2v. Indeed, each operator Tm will be defined on any Fock space. We find
that

Lm := (2k)−1
∞∑

i=−∞
: a−i am+i : (3.2.14a)

satisfies both

[Lm, an] = −nam+n, (3.2.14b)

[Lm, Ln] = (m − n)Lm+n + m3 − m

12
δm,−n. (3.2.14c)

Thus any highest-weight u1
(1)-module is simultaneously a Vir-module with central

charge c = 1. Thus this nonzero central charge arises as an analytic effect.
Using (3.2.12a), this normal-ordering (3.2.14) doesn’t change Ln = �n , for n �= 0, but

shifts the divergent �0 by the infinite multiple
(∑∞

i=1 i
)

of C . There is nothing particularly
special about this normal-ordering; for example, for any fixed � we could have replaced
the condition ‘m ≤ n’ with ‘m ≤ n + �’, and nothing would have changed except L0

would have been shifted by some other multiple of C . This is a clue to understanding what
is so special about the−c/24 shifts in, for example, (3.1.10) or (3.2.9a). The arbitrariness
of the normal-ordering can be removed by reinterpreting (‘regularising’) the divergent
term in (3.2.13c) as kζ (−1) (recall (2.3.1)). Equivalently, this amounts to replacing the
normal-ordered L0 with L0 − C/24. This is the algebraic ‘explanation’ for the naturality
of the shift, and hence the pervasive appearance of −c/24: simply put, algebra prefers
L0 − C/24 over all other combinations L0 + αC (recall Question 3.1.8). It should thus
not come as a complete surprise that so too does SL2(Z). Incidentally, this ‘24’, ζ (−1),
the special dimensions 8+ 2 and 24+ 2 in string theory and the 24 of Section 2.5.1 are
all directly related.
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More generally, Bloch [63] considered other algebras of differential operators on S1.
In particular, in place of �n = −tn+1d/dt he considers

�(r )
n = (−1)r+1(td/dt)r tn(td/dt)r+1.

He obtains a (projective) realisation of these �(r )
n by normal-ordering operators in a Fock

(or highest-weight) module, exactly as we do here. The analogue of (m3 − m)/12 in
the bracket [L (r )

m , L (s)
n ] is a polynomial of degree 2r + 2s + 3 in m. As before, we want

to remove this arbitrary choice of normal-ordering. Naively dropping it introduces the
divergence 12r+1 + 22r+1 + · · · , so as before replace it with the Riemann zeta value
ζ (−1− 2r ), i.e. replace L (r )

0 with L (r )
0 + (−1)rζ (−1− 2r )C/2. Then the polynomial

in m becomes the monomial (r + s + 1)!(r + s + 1)!m2r+2s+3/(2(2r + 2s + 3)!). This
appearance of ‘zeta function regularisation’ in algebra has been interpreted and gener-
alised in the vertex operator algebra framework (see [375] for a review).

Identical comments hold for affine algebras. Choose a basis xa of g, orthonormal with
respect to the Killing form: κ(xa|xb) = δab. Then for λ ∈ Pk

+(g), (3.2.14) become

Lm := 1

2(k + h∨)

∑
j∈Z

∑
a

: (t− j xa)(tm+ j xa) :, (3.2.15a)

[Lm, xtn] = −nxtm+n, ∀x ∈ g, (3.2.15b)

[Lm, Ln] = (m − n)Lm+n + cλ
m3 − m

12
δm,−n. (3.2.15c)

Thus the g-module L(λ) is also automatically a completely reducible Vir-module. Each
irreducible Vir-submodule has central charge cλ and conformal weight h ∈ hλ + N
(see (3.2.9)). In L(λ), the Virasoro generator L0 and the derivation �0 of g are related
by L0 = hλ I d + �0. Equation (3.2.15a), known as the Sugawara construction, should
remind us of the quadratic Casimir � := 1

2

∑
a xa xa of g, that is, the simplest nontrivial

element in the centre of U (g); it acts on the irreducible g-module L(λ) as multiplication
by the scalar (λ|λ+ 2ρ) (recall (3.2.9b)). The shift by the dual Coxeter number h∨ in
(3.2.15a) arises algebraically as the eigenvalue of � in the adjoint representation of g;
its physical significance is discussed in Section 6.2.1.

The integrable modules of twisted affine algebras Xr
(N ) (recall Figure 3.3) behave

similarly. As we know from (3.2.4), Xr
(N ) is obtained from the nontwisted affine algebra

g = Xr
(1) and an order-N symmetry α of the Coxeter–Dynkin diagram of Xr . The

integrable highest-weight X (N )
r -modules L(λ) are parametrised by (r + 1)-tuples λ ∈ Pk

+
as in (3.2.8), where the co-labels a∨i are now given in Figure 3.3. These modules also
have weight-space decompositions as in (1.5.6a) and characters χλ as in (3.2.9a). Their
characters are also modular (see theorem 13.9 of [328] for details).

Theorem 3.2.4 [333] The characters χλ, λ ∈ Pk
+(A(2)

2r ) form a vector-valued Jacobi
function for SL2(Z), as in Theorem 3.2.3. For g = A2r−1

(2), Dr+1
(2), E6

(2) and D4
(3),

respectively, define g′ = Dr+1
(2), A2r−1

(2), E6
(2), D4

(3) and N = 2, 2, 2, 3; then the char-
acters χλ, λ ∈ Pk

+(g), form a vector-valued Jacobi function for �0(N ) (recall (2.2.4b)),
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and for each λ ∈ Pk
+(g),

χλ

(−1

τ
,

z

τ
, u − (z|z)

2τ

)
∈ spanμ′∈Pk+(g′) χμ′

( τ
N
,

z

N
, u
)
.

3.2.4 Braided #3: braids and affine algebras

According to conformal field theory, the modularity of, for example, affine algebra
characters arises through the monodromy of a system of partial differential equations (the
Knizhnik–Zamolodchikov equations for a torus with one puncture). In this subsection
we anticipate this important idea by considering the simpler and better-known situation
of a sphere. See also [355], [174]; the basic idea of differential equation monodromy is
nicely described in [363].

Theorem 3.2.5 Consider a simply-connected open region D in C. Consider the dif-
ferential equation

d2w

dz2
+ P(z)

dw

dz
+ Q(z)w = 0, (3.2.16a)

where P(z) and Q(z) are holomorphic in D. For any point z0 ∈ D, and any α, β ∈ C,
there is a unique function w(z), holomorphic in D, satisfying the initial conditions

w(z0) = α, (3.2.16b)
dw

dz
(z0) = β. (3.2.16c)

Hence the solutions w to (3.2.16a) form a two-dimensional space, parametrised by
α, β ∈ C. For a proof of this theorem, see, for example, chapter XII of [307].

What if D is not simply-connected? One way to proceed would be to make D simply-
connected by cutting it. For example, if D is C with n points z1, . . . , zn removed, then
we can cut D along a non-self-intersecting polygonal path connecting z1, . . . , zn and
∞, avoiding the point z0. Call D′ the resulting simply-connected subregion of D. Then
a holomorphic function on D restricts to a holomorphic function on D′; however, most
holomorphic functions on D′ won’t extend continuously to D.

The other way to proceed is to consider the (simply-connected) universal cover π :
D̃ → D (recall Section 2.1.2). We can then identify D with D̃/G for some group G
isomorphic to the fundamental group π1(D); each γ ∈ G is an automorphism of D̃
shuffling the points z̃ ∈ π−1(z) above each z ∈ D. Functions h holomorphic on D lift to
functions h ◦ π holomorphic on D̃, although a typical function h̃ on D̃ won’t correspond
to a well-defined function on D. However, π−1(D′) ⊂ D̃ consists of several connected
open components, one for each γ ∈ π1(D), and through this there is a many-to-one
correspondence between the holomorphic functions on D′ and those on D̃.

Let’s return to the situation of Theorem 3.2.5, except with D now being non-simply-
connected (although still connected). Then there is a unique solution w to (3.2.16) in
D′. Writing P̃ = P ◦ π and Q̃ = Q ◦ π , and choosing any z̃0 ∈ π−1(z0), we can lift the
equations (3.2.16) to D̃ and again we obtain a unique solution w̃, this time holomorphic
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in D̃. The space of solutions w on D′, w̃ on D̃, are both two-dimensional. But we get
more: both spaces carry naturally an action of the fundamental group π1(D), called
the monodromy representation. More precisely, each automorphism γ ∗ ∈ G ∼= π1(D)
carries a solution w̃ of (3.2.16a) to another solution w̃ ◦ γ ∗ – it preserves α, β but
changes the choice z̃0 ∈ π−1(z0). It corresponds to an analytic continuation of w across
the polygonal path cut out from D, along closed paths γ corresponding to γ ∗.

A simple example should make this clear. Consider

d2w

dz2
+ z−1 dw

dz
= 0. (3.2.17a)

Here, D is the punctured plane C \ {0} so we can take D′ to be C with the negative
real axis removed. The fundamental group π1(D) is Z, and the universal cover D̃ is
the infinite spiral staircase. Two solutions to (3.2.17a) in D′ are w = log z and w = 1.
Analytically extend w(z) = log z along the unit circle starting at z0 = 1 and running
counterclockwise: as we cross the negative real axis continuity requires the value ofw to
be shifted by 2π i from its previous ‘principal’ value. More generally, the path γ ∗ = n,
winding n times around the origin, would pick up a monodromy of 2π in. On the other
hand, the constant solutionw(z) = 1 is of course unchanged under analytic continuation.
In terms of our basis {log z, 1}, we thus obtain the monodromy representation

n �→
(

1 2π i n
0 1

)
. (3.2.17b)

We are interested here in a slightly more complicated situation than that of
Theorem 3.2.5. Let g be any finite-dimensional semi-simple Lie algebra and choose
n distinct points z1, . . . , zn in C. Recall the space Cn defined in (1.2.6). Choose a basis
xa of g, orthonormal with respect to the Killing form κ . For each i , choose a finite-
dimensional g-representation Ri , acting on a space Vi . Fix some complex number γ �= 0.
By the Knizhnik–Zamolodchikov (or KZ) equations we mean

∂w

∂zi
= γ

∑
j �=i

∑
a

Ri (xa)⊗ R j (xa)

zi − z j
w, 1 ≤ i ≤ n, (3.2.18a)

wherew : Cn → V1 ⊗ · · · ⊗ Vn , and where Ri (xa), R j (xa) act on the i th, j th components
of the multilinear form w.

We recognise in (3.2.18a) the quadratic Casimir� =∑
a xa xa discussed after (3.2.15).

Physically (i.e. in the context of conformal field theory),w is a chiral block on the sphere
P1(C) with n + 1 distinct marked points (namely z1, . . . , zn and zn+1 = ∞) for a Wess–
Zumino–Witten model (Section 4.3.2). Geometrically (see e.g. [338]),

1

2
d− γ

∑
j,i

i �= j

∑
a

Ri (xa)⊗ R j (xa)
dzi − dz j

zi − z j
(3.2.18b)

defines a connection (Section 1.2.2) on the trivial vector bundle Cn ×W , for W =
V1 ⊗ · · · ⊗ Vn . An easy calculation verifies this connection is flat (i.e. has 0 curvature).
The partial differential equations (3.2.18a) say that w is a horizontal or parallel section.



202 Affine algebras and generalisations

In other words, restricting to a simply-connected subregion C′n of Cn , the unique solution
w(z1, . . . , zn) to (3.2.18a) satisfying some initial condition w(z(0)) = w(0) is obtained
geometrically by parallel-transporting the vector w(0) along any path γ in C′n connecting
z(0) to the desired point (z1, . . . , zn).

Our context here is thus analogous to that of Theorem 3.2.5: parallel transport plays
the role of analytic continuation, and the flatness of Cn corresponds to the Monodromy
Theorem of complex analysis (e.g. theorem 16.15 of [481]). The result is that the space
of solutions to (3.2.18a) carries a representation of the fundamental group π1(Cn), i.e.
of the pure braid group Pn . We get an action of the full braid group through ‘half-
monodromies’: a braidβ ∈ Bn will take a solutionw of (3.2.18a) to a solution of (3.2.18a)
with values in Vβ1 ⊗ · · · ⊗ Vβn , where β acts on the indices {1, . . . , n} through the
natural homomorphism φ : Bn → Sn described in Section 1.1.4. In particular, if all Vi

are isomorphic, the space of solutions of (3.2.18a) will carry a representation of the full
group Bn .

The infinitely many irreducible finite-dimensional modules of a simple Lie algebra
naturally span a symmetric monoidal category (recall Section 1.6.2 for definitions); its
character ring is isomorphic to a polynomial ring in r variables, where r is the rank of the
algebra. On the other hand, the finitely-many level-k irreducible integrable modules of a
nontwisted affine algebra span a braided monoidal category (in fact ribbon and modular
categories); the corresponding character ring is called a fusion ring and is described
in Section 6.2.1. The key ingredient in this category – the braiding – comes from this
braid group monodromy. In Section 6.2.2 we see that this braid group monodromy,
and associated braided monoidal category, generalise to the modules of sufficiently nice
vertex operator algebras, and this (or if you prefer, conformal field theories) serves as
the natural context for the modularity in Moonshine.

There are many other occurrences of the braid group in the mathematics and physics
neighbouring Moonshine, and most of these are directly related to this KZ monodromy
on a sphere. For example, the knot invariants arising from subfactors and quantum groups
come from braid group representations, and Drinfel’d and Kohno have proved that these
representations are the same ones coming from KZ monodromy.

On the other hand, the relation of the braid group B3 to SL2(Z) and its modular
functions, which we have seen already in Section 2.4.3 and which we argue later plays a
fundamental role in Monstrous Moonshine, does not have a direct relation to this braid
group monodromy. But we will see later that modularity too is due to monodromy of
a system of partial differential equations – the analogue of these KZ equations for a
once-punctured torus – defining a flat connection on the extended moduli space M̂1,1.
The solutions of these equations are spanned by the affine algebra characters (or more
generally the vertex operator algebra one-point functions). The associated monodromy
group is the mapping class group of M̂1,1, which is readily seen to be B3.

Intriguingly, this means that we’ve come full circle. Poincaré’s 125-year-old path
to modular functions (see [259] for a review) was differential equations of the form
(3.2.16a). Let f (z), g(z) be a basis for the space of solutions, and write ξ (z) = f (z)/g(z).
Note that the monodromy group acts on ξ by Möbius transformations: ξ �→ aξ+b

cξ+d .
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Poincaré found that, at least in some cases, when we invert ξ (z) and write z as a function
of ξ , then z will be a modular function for some discrete subgroup of SL2(R), acting on
ξ ∈ H.

A simple example is Legendre’s equation

d2 y

dk2
+ 1− 3k2

k (1− k2)

dy

dk
− y

1− k2
= 0.

This has the elliptic periods K (k) and K ′(k) = K (k ′) as solutions (recall Section 2.2.1).
It is more convenient to change variables to z = k2, when this equation becomes

d2w

dz2
+ 1− 2z

z (1− z)

dw

dz
− w

4z (1− z)
= 0. (3.2.19a)

Then K ′(z) = K (1− z), since k2 + k ′2 = 1. The domain D is the plane with z = 0 and
z = 1 removed; its fundamental group π1 is the free group F2 = 〈σ0, σ1〉 generated
by counter-clockwise loops σk about z = k. It turns out that K (z) is holomorphic at
z = 0, but K ′(z) has a logarithmic singularity there: K ′(z)+ 1

π
K (z) log z is holomor-

phic at z = 0. Thus as we go counter-clockwise in a small circle about z = 0, K (z) is
unchanged but K ′(z) becomes K ′(z)− 2iK (z). Hence, as we go counter-clockwise in a
small circle about z = 1, K ′(z) is unchanged but K (z) becomes K (z)+ 2iK ′(z). Thus in
terms of the basis {K (z), iK ′(z)} of solutions to (3.2.19a), the monodromy representation
becomes

σ0 �→
(

1 2
0 1

)
, σ1 �→

(
1 0
2 1

)
. (3.2.19b)

For the details of this calculation, see chapter 14.5 of [486]. The image of (3.2.19b)
is precisely the congruence subgroup �(2), which indeed is isomorphic to F2. Now,
Poincaré would have us invert the function iK ′(z)/K (z). That ratio turns out to always
be in H, and so denote it τ (z). Expressing z = k2 as a function of τ , we obtain

z(τ ) = θ2(τ )4

θ3(τ )4
. (3.2.19c)

Indeed, we know from (2.3.8) that (3.2.19c) is invariant under �(2).
It is remarkable to recover in this way the group �(2), its action on H and a mod-

ular function for �(2) (in fact, �(2) is genus-0 and θ4
2 /θ

4
3 generates all of its modular

functions). There are many other examples of this kind, for example

w′′ + z−1w′ +
(

31

144
z − 1

36

)
z−2 (z − 1)−2w = 0

yields in this way the j-function. See [516] for more on the deep relation between
modular forms and hypergeometric functions. The relations between affine algebras,
the KZ equation and hypergeometric functions is explored in [541]. The Riemann–
Hilbert problem asks that all linear representations of mapping class groups arise as
monodromies; see the appendix of [259] for a history of this problem and chapter VIII
of [80] for the modern treatment and generalisation using D-modules.
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Thus Poincaré, like conformal field theory over a century after him, finds it natural to
interpret modularity using differential equation monodromy!

3.2.5 Singularities and Lie algebras

In this subsection we quickly review the geometry underlying the associations of sin-
gularities to simple Lie algebras (duVal) and affine Lie algebras (McKay), which are
described in Section 2.5.2. This is related to mirror symmetry and provides a new expla-
nation for the modularity of affine algebra characters.

Let � be a finite subgroup of SU2(C). Then the orbifold C2/� has a critical point at

the fixed point (0, 0); the minimal resolution X� = C̃2/� is a smooth noncompact real
4-manifold with an ALE (‘asymptotically locally Euclidean’) hyper-Kähler structure.
An ALE manifold is Riemannian, with a metric tending quickly to the Euclidean one as
r →∞. Physically, they correspond to positive-definite self-dual solutions to Einstein’s
gravitation equations in a vacuum (‘gravitational instantons’). Conversely, any ALE
hyper-Kähler manifold is diffeomorphic to some X� for a unique �. The details are
reviewed in [362].

Kronheimer–Nakajima [362] use the Atiyah–Singer Index Theorem to directly relate
the duVal and McKay data associated with a simple singularity. Let X be an ALE hyper-
Kähler manifold and � < SU2(C) the corresponding finite group. Then asymptotically
at infinity, X is flat and in fact looks like R4/�. Given any vector bundle E over X ,
the fibre over∞ defines a �-module R via monodromy. Kronheimer–Nakajima take E
to be R⊗R∗, where R is the tautological vector bundle, because its index vanishes.
Then the monodromy representation R decomposes as

∑
i ρi ⊗ ρi , where ρi are the

irreducible representations of �. The Index Theorem provides an expression for the
numbers

1

‖�‖
∑

γ∈�,γ �=e

chρi (γ ) chρ∗j (γ )

2− chρ(γ )
,

for i, j = 0, 1, . . . , n, as an integral over X involving the intersection matrix, where ρ
is the defining two-dimensional representation of � < SL2(C). From this they quickly
establish the equivalence of duVal’s observation that the intersection matrix is the neg-
ative of the n × n Cartan matrix, with McKay’s interpretation of the (n + 1)× (n + 1)
Cartan matrix as coefficients of the product ρ ⊗ ρi .

The first direct relation between simple singularities and the Lie algebras Ar , Dr , Er

was established by Brieskorn [86]. Let g� be the finite-dimensional simple Lie algebra
associated with �, and G� the corresponding Lie group. Let W be its (finite) Weyl
group, and choose any Cartan subalgebra h. Then Brieskorn obtained the singularity
C2/� and its resolution by studying the map g� → h/W , sending x = xs + xn ∈ g�
(this decomposition of x is just the Jordan canonical form [300]) to the orbit of the
semi-simple part xs under the adjoint action of G� – these orbits are parametrised by
h/W (Section 1.5.2).
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More relevant for us is Nakajima’s geometric realisation of affine algebras and their
integrable representations (see e.g. his review [445]). Let E be an anti-self-dual Yang–
Mills instanton over X with gauge group Uk(C). These bundles E are associated with
three discrete invariants: the monodromy representation R as above; the first Chern class
c1(E); and the instanton number ch2(E) ∈ N.

The monodromy R is a k-dimensional representation of �. Decompose R into irre-
ducibles: R =∑

i λiρi , where the multiplicities λi ∈ N. Then taking dimensions we
obtain k =∑n

i=0 aiλi , where ai = dim ρi . According to the McKay correspondence, ai

are the labels of the corresponding nontwisted affine algebra g� , and so λ =∑
i λiωi is

a level-k integrable highest weight of g� .
Nakajima proceeds to construct not only g� from the geometric data, but also the

g�-module L(λ). The singularity at (0, 0) of C2/� resolves locally into n copies of
the sphere P1(C). These give a basis of H2(X,Z); Nakajima identifies them with the
usual basis hi of a Cartan subalgebra of the finite-dimensional algebra g� and their
intersection form with the Killing form. Thus the dual vectors c1(E) are weights. The
number ch2(E) is identified with an eigenvalue of the derivation δ = L0. The other
generators ei , fi of g� can be interpreted likewise. The moduli space M(k) of Uk(C)-
instantons on X has a finite-dimensional connected component M(k)λ,μ,n for every
choice of monodromy λ, c1 = μ and ch2 = n. The infinite-dimensional cohomology
space H �(M(k)) carries a natural though reducible module of the affine algebra g� .
However, the middle-dimensional cohomology

⊕μ,n H d (M(k)λ,μ,n), d = 1

2
dim(M(k)λ,μ,n) (3.2.20)

is isomorphic to L(λ), with each summand being a weight-space (the middle-dimensional
cohomology spaces are generally the most interesting – for example, the pairing defines
a bilinear form, here the Killing form, on them).

This construction generalises considerably [445]. It also has a natural interpretation in
string theory. The Bogomol’nyi–Prasad–Sommerfeld (‘BPS’) states generally form an
algebra closely related to Borcherds–Kac–Moody algebras (Section 3.3.2) [276]. Inside
this BPS algebra for the heterotic string on the torus T 4 is the associated affine algebra.
This string theory is dual to that of a type IIA string on a K3 surface (X� is essentially
a noncompact K3), where Nakajima’s construction is very natural. So string theory
interprets Nakajima’s cohomological construction of affine algebras as a manifestation
of mirror symmetry [276]. In this context, Vafa–Witten suggested that the modularity of
affine algebra characters may have to do with S-duality [540], an SL2(Z)-symmetry of
the heterotic string. It seems unlikely though that this can account for the modularity in
arbitrary RCFT. We revisit mirror symmetry [291] in Section 7.3.8.

Physically, instantons are configurations for which the classical action (4.1.3) has a
local minima. This means that in the corresponding quantum theory, we should per-
turb about them just as we do about the vacua. See the review [159] on instantons in
supersymmetric theories. It turns out that (not necessarily holomorphic) modular forms
appear naturally in this context, with the modular group arising again through S-duality.
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Recalling Section 2.4.3, we can ask: Can S-duality sometimes be extended naturally into
a B3 symmetry? This may provide a universal simplification, for example, for fractional
instantons.

3.2.6 Loop groups

This brief subsection introduces the Lie groups of the affine algebras, by translating the
previous subsections into this geometric language. See the book [465] for more details.
Loop groups appear directly in Wess–Zumino–Witten string theory, and in the study of
certain differential equations (solitons), but otherwise the affine algebra is mathematically
prior. From our (limited) perspective, the geometric insight gained isn’t obviously worth
the analytic subtleties.

Choose any compact Lie group G, and let g be its Lie algebra. By the loop group LG
we mean all smooth maps S1 → G, and by the loop algebra Lg we mean all smooth
maps S1 → g. The loop group LG has a group structure given by pointwise product,
and in fact it forms an infinite-dimensional Lie group with Lie algebra Lg.

Think of G as a subgroup of Un(C), as we can. The polynomial loop group LpolyG is
the set of all loops γ ∈ LG that can be written in the form

γ (z) =
∞∑

m=−∞
am zm,

i.e. as a matrix-valued function, where z ∈ S1 and each am is an n × n complex matrix,
with all but finitely many am = 0. Note that LpolyG is indeed a group – for example,
inverse is given by γ (z)−1 =∑

m a†
m z−m ∈ LpolyG. However, note that Lpoly S1 consists

of the monomials azm for some constants m ∈ Z and a ∈ S1 ⊂ C (to see this, multiply
γ (z) by γ (z)†; the result is a Laurent polynomial in z with coefficients in C, which
identically equals 1 for uncountably many z ∈ C). Thus Lpoly S1 has Lie algebra iR �=
Lpoly S1. For semi-simple G, however, LpolyG has Lie algebra Lpolyg, as we’d like.

The loop group LG is generally better behaved than LpolyG. For example, we know
the exponential map exp: g→ G is onto and locally one-to-one. The exponential map
Lg→ LG is defined in the obvious way (as the exponential of a matrix-valued function),
and it is locally (but not globally) both one-to-one and onto. On the other hand, the
exponential of a Laurent polynomial will usually not be a Laurent polynomial, and so
the exponential map doesn’t exist for polynomial loops. By way of comparison, as we
mentioned in Section 3.1.2, exp : Vect(S1) → Diff(S1) is neither locally one-to-one nor
locally onto (in fact its image is nowhere dense).

Diff(S1) acts naturally on LG, by changing the parametrisation of the loop (for simple
G, the only other automorphisms of LG come from the loop group of Aut(G)).

To enrich the representation theory of LG, we centrally extend LG by S1. For simple
G, LG has an inequivalent central extension L̃Gn for each n = 0, 1, 2, . . . , and these
exhaust all of them. L̃G0

∼= S1 × LG is the trivial extension; L̃G1 is the unique simply-
connected such extension. L̃Gn is obtained from L̃G1 by quotienting by the order-n
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subgroup of the centre S1. The Lie algebra of any L̃Gn , n > 0, is isomorphic to the
unique nontrivial central extension of the loop algebra Lg.

We’re interested in continuous projective representations ofLG by bounded operators
in a Hilbert space H. We want these as usual to be Z-graded. But an S1 action is the
same as a Z-grading. More precisely, consider the group S1 of rigid rotations Rθ in LG –
that is, a loop γ (t) ∈ LG gets sent to the loop (Rθγ )(t) = γ (t − θ ) for some fixed
0 ≤ θ < 2π . We can decompose this S1 action on H Fourier-like into (the completion
of) a direct sum

⊕∞�=−∞H(�)

of subspaces H(�) on which Rθ acts like e−i�θ . In other words, e−iL0θ represents Rθ .
We require H(�) to vanish for all � sufficiently close to−∞. Because of the conformal

field theory interpretation given next chapter, these eigenvalues � are thought of as energy,
and these representations are called positive energy representations. Any such projective
representation of LG lifts to one of the semi-direct product of this S1 with any central
extension L̃Gn . This double S1-extension of LG corresponds to the double C-extension
of the (polynomial) loop algebra performed in Section 3.2.2.

Let G be semi-simple. Any projective representation H of LG of positive energy
is unitary and hence is completely reducible into a discrete direct sum of irreducible
representations. The above action of S1 (through the operators e−iL0θ ) extends to a
projective action of Diff+(S1). The L0-eigenspacesH(�) of any irreducible representation
H are all finite-dimensional. We can refine these eigenspaces by choosing a maximal
torus T of G (it will be isomorphic to S1 × · · · × S1 (r times), where r is the rank of
G). We can diagonalise this action of S1 × T × S1, where the first S1 is from the rigid
rotations, and the second from the central extension; then

H(n) = ⊕μ∈P+(g)H(n, μ, k)

is the corresponding diagonalisation into weight spaces. Of course we are rediscover-
ing the weight-space decomposition in, for example, (3.2.9a). The ‘rigid rotation’ S1

corresponds to the extension of the loop algebra Lpolyg by the derivation −�0, and the
projective Diff+(S1) action corresponds to the Virasoro action (3.2.15). The maximal
torus S1 × T × S1 of the double extension of LG corresponds to the (real) Cartan subal-
gebra h of g(1). Given any irreducible projective representation of LG of positive energy,
then the derived projective representation of Lg, restricted to Lpolyg, is an integrable
highest-weight representation L(λ) of g(1). Conversely, any such representation of g(1)

lifts (‘integrates’) to a projective representation of positive energy of LG.
Any irreducible projective representation of LG lifts to a true representation of the

simply-connected L̃G1. It lifts to a true representation of L̃Gn iff n divides the level k.
The analogue of Borel–Weil applies here much as in Section 1.5.5; the role of the

symmetric space G/T is played here by the infinite GrassmannianLG/T (see chapter 11
of [465]). The irreducible representations also fit in well with Kirillov’s orbit method
[198].



208 Affine algebras and generalisations

It is tempting to hope more generally that the group Map(M,G), for any manifold
M and compact G, should be a relatively accessible class of infinite-dimensional Lie
groups. However, the theory is much more difficult than LG = Map(S1,G) and little is
known about their representations (see chapter 3 and section 9.1 in [465]).

Question 3.2.1. Define A to be the space of all differential operators of the form∑
m,n∈Z am,n xmdn/dxn , where all am,n ∈ C and all but finitely many am,n equal 0. Define

a Lie algebra structure on A in the obvious way. Prove that A is a simple Z-graded Lie
algebra of polynomial growth.

Question 3.2.2. For a manifold X and Lie algebra L, when is Map(X, L) a simple Lie
algebra?

Question 3.2.3. Show that the Witt algebra acts on the affine algebra g(1) as derivations.

Question 3.2.4. Show that a highest-weight representation of a nontwisted affine Lie
algebra g = Xr

(1) with highest weight (λ, k, u) is isomorphic as a g-module to one with
highest weight (λ, k, 0), when k �= 0.

Question 3.2.5. Classify all invariant symmetric bilinear forms for A1
(1).

Question 3.2.6. Compute the cardinality ‖Pk
+‖ for all series Ar

(1), Br
(1),Cr

(1), Dr
(1).

(Hint: this can always be done using one or two binomial coefficients.)

Question 3.2.7. The affine Weyl group of A1
(1) has two generators, which we call here

ω and t . These act on Z2 as follows:

ω(a, b) = (−a, b + 2a), t(a, b) = (3a + 2b,−2a − b).

(a) Find a formula for the action of tn on (a, b). Find the orders of ω and t , and the
determinants det(ω) and det(t).
(b) Let β = (a, b) ∈ Z2 obey k := a + b > 0. Write ρ = (1, 1). Show that the affine
Weyl orbit of β + ρ intersects

Pk+2
++ := {(1, k + 1), (2, k), . . . , (k, 2), (k + 1, 1)}

in at most one point, and that the orbit fails to intersect Pk+2
++ iff β + ρ is fixed by some

nontrivial element of the affine Weyl group.

3.3 Generalisations of the affine algebras

Affine algebras are fascinating because they draw together so many different areas of
mathematics and physics. Like anything else, they embed into assorted families in plenty
of ways, each embedding preserving some properties and losing others. But do they
embed into a much larger family of algebras that are also of interest outside Lie theory?

Generalisation is not the point of mathematics, and in fact, one must be honest, is
usually rather dry. The challenge is to generalise in a rich and revealing direction. One
of the more reliable ways of doing this is closure. Suppose we like to perform a certain
activity, which unfortunately sometimes results in our toys being flung from our sandbox.
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Then we build a bigger sandbox. When we divide integers, we don’t always get integers,
so we construct the rationals. When we take limits of rationals, we don’t always get
rationals, so we construct the reals. When we take square-roots of reals, we don’t always
get reals, so we construct the complex numbers.

Another appealing strategy for generalisation – analogy – was followed by Moody at
the birth of Kac–Moody algebras (Section 3.2.1). However this strategy, even in the hands
of a master, will not always be successful. This section reviews various generalisations
of affine algebras, all obtained through analogy. Most important for our story are the
Borcherds–Kac–Moody algebras, which have played a key role for instance in the proof
of the Monstrous Moonshine conjectures.

3.3.1 Kac–Moody algebras

Recall the presentation r1, r2 of simple Lie algebras given in Definition 1.4.5, defined in
terms of a Cartan matrix c1–c4. From the point of view of generators and relations, the
step from ‘finite-dimensional simple’ to ‘Kac–Moody’ is rather easy: the only difference
is that we drop the ‘positive-definite’ condition c4 (which was responsible for finite-
dimensionality). That is:

Definition 3.3.1 (a) A CartanK M matrix A is any �× � integral matrix A obeying c1,
c2, c3 (see Definition 1.4.5(a)), together with

c4′ there exists a positive diagonal matrix D such that the product AD is symmetric (i.e.
(AD)t = AD).

(b) Given any CartanK M matrix A, the Kac–Moody algebra g = g(A) is the Lie
algebra with generators ei , fi , hi , subject as before to the relations r1 and r2 (see
Definition 1.4.5(b)).

What we call Kac–Moody algebras are usually called symmetrisable Kac–Moody alge-
bras in the literature. The adjective ‘symmetrisable’ emphasises the requirement c4′,
which we shall always assume; dropping it means losing the invariant bilinear form,
among other things. What we call ‘CartanK M matrix’ here is usually called ‘generalised
symmetrisable Cartan matrix’, but although that use of the word ‘generalised’ is tradi-
tional, it is now inappropriate (see Definition 3.3.4 below). More generally, appending
‘generalised’ to a term is an unimaginative empty cop-out that should be banned.

The theory of Kac–Moody algebras is quite parallel to that of the finite-dimensional
simple Lie algebras. They are also generated by (finitely many) A1 subalgebras. Most
entries of A again are zero, so it is most convenient to graphically represent A using
the Coxeter–Dynkin diagram (recall their definition in Section 1.4.3). As before, we
may without loss of generality take the CartanK M matrices to be indecomposable (i.e.
consider connected diagrams).

Lemma 3.3.2 ([328], section 4.3) Let A be an indecomposable CartanK M matrix.
Then exactly one of the following possibilities holds:
(Fin) det(A) �= 0 – there exists a column vector u > 0 such that Au > 0;
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(Aff) the nullspace (i.e. 0-eigenspace) of A is one-dimensional – there is a column vector
u > 0 such that Au = 0;
(Hyp) there is a column vector u > 0 such that Au < 0.

If the CartanK M matrix A is of finite type, then the corresponding Lie algebra g(A)
is finite-dimensional and simple. If the matrix A is of affine type, then the algebra
g(A) is infinite-dimensional, but has a Z-grading g(A) =∑

j g j into finite-dimensional
subspaces g j where dimensions dim(g j ) grow at most polynomially with j (see Sec-
tion 3.2.1). The affine algebras come in two flavours – nontwisted and twisted –
and are listed in Figures 3.2 and 3.3. For A of hyperbolic type, again g(A) has a
Z-grading into finite-dimensional subspaces g j , but their dimensions dim(g j ) grow
exponentially with j . We are mostly interested in the nontwisted affine algebras
(Section 3.2). Relatively little is known about the hyperbolic ones (but see Section 3.4.3).

The relation between the realisation in Section 3.2.2 of an affine algebra as a loop
algebra and the presentation of Definition 3.3.1(b) is as follows. Consider for simplicity

A1
(1). The relevant CartanK M matrix is A =

(
2 −2
−2 2

)
; then g(A) ∼= Lpoly(A1)⊕

CC , with the isomorphism identifying

e1 �→
(

0 1
0 0

)
, f1 �→

(
0 0
1 0

)
, h1 �→

(
1 0
0 −1

)
,

e0 �→
(

0 t
0 0

)
, f0 �→

(
0 0

t−1 0

)
, h0 �→ C −

(
1 0
0 −1

)
.

More generally, the central term C of the affine algebra is given by C =∑
i a∨i hi . Note

though that we are missing the derivation �0; we will return to that shortly.
For indecomposable A, g(A) is simple iff the determinant det(A) �= 0. When det(A) =

0, g(A) has a centre of dimension �− m where m is the rank of the matrix A.
The basic structure theorem for Kac–Moody algebras is:

Theorem 3.3.3 Let g = g(A) be a symmetrisable Kac–Moody algebra (over R). Then:
(a) g has triangular decomposition g = g+ ⊕ h⊕ g− where g+ is the subalgebra gener-

ated by the ei , g− is generated by the fi and h = span{hi } is the Cartan subalgebra;
(b) g has a root space decomposition – formally calling ei degree αi and fi degree−αi

and defining gα to be the subspace of degree α ∈ Zα1 + Zα2 + · · · , we get h = g0

and g± = ⊕α∈�±gα , where [gα, gβ] ⊂ gα+β and �− = −�+;
(c) there is an involution ω on g for which ωei = fi , ωhi = −hi and ωgα = g−α;
(d) dim gα <∞ and dim g±αi = 1;
(e) there is an invariant symmetric bilinear form (·|·), that is ([ab]|c) = −(b|[ac]), such

that for each root α �= 0 the restriction of (·|·) to gα × g−α is nondegenerate and
(gα|gβ) = 0 whenever β �= −α;

(f) there is a linear assignment α �→ hα ∈ h such that for all a ∈ gα , b ∈ g−α we have
[a, b] = (a|b) hα .

These α are called roots and the αi simple roots, as before. The roots α can be regarded
as linear functionals on h, in such a way that for any x ∈ gα and h ∈ h, we have [hx] =
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α(h) x . The involution in (c) is the Cartan involution, and is needed in defining unitary
representations. The bilinear form in (e) is the generalisation here of the Killing form.
For simple roots αi , hαi in (f) is hi , and is sometimes denoted α∨i and called a co-root.
The field was taken to be R here for convenience (Question 3.3.1).

When det(A) = 0, the bilinear form restricted to h will be degenerate and the simple
roots interpreted as linear functionals on h will be linearly dependent. To get around
this, extend the Cartan subalgebra by dim(Null(A)) = �− m more vectors. Call he the
resulting (2�− m)-dimensional space. Extend the bilinear form to he so that it becomes
nondegenerate, and the domain of the simple roots αi ∈ h∗ to all of he so they become
linearly independent. Up to equivalence, there is a unique way to do this. The space
g(A)e := g(A)+ he is given a Lie algebra structure by extending the relations of Defi-
nition 3.3.1(b) to include

[hh′] = 0, ∀h, h′ ∈ he, (3.3.1a)

[hei ] = αi (h), ∀h ∈ he, (3.3.1b)

[h fi ] = −αi (h), ∀h ∈ he. (3.3.1c)

For a CartanK M matrix A of affine type, g(A)e is isomorphic to the corresponding algebra
g = g(N ) we defined in Section 3.2.2: the extra vector is the derivation �0. Whenever
det(A) = 0, g(A)e and not g(A) is the correct algebra to consider. Write g(A)e := g(A)
when det(A) �= 0. Theorem 3.3.3 holds for g(A)e, provided h there is replaced with he.

Unlike the finite-dimensional case, some root multiplicities mult(α) := dim gα may
be > 1. The roots of g(A)e come in two flavours: real (with (α|α) > 0) and imaginary
(with (α|α) ≤ 0). The simple roots are all real. Real roots behave exactly like the roots
of finite-dimensional g: for example, mult(α) = 1 and the only multiples of α that are
also roots are ±α. Imaginary roots behave more like the nonroot 0 ∈ h∗: for example,
mult(α) ≥ 1 and any multiple Zα is also a root.

The Weyl group W here is generated by the reflections through the simple roots αi , or
equivalently by reflections through all real roots. It has the usual properties: for example,
root multiplicities are constant within the W -orbits.

A Kac–Moody algebra g(A)e has all the familiar representation-theoretic definitions
and properties. For any weights λ ∈ he∗, Verma modules M(λ) and the irreducible
highest-weight module L(λ) are defined as usual. In particular, highest-weight mod-
ules are spanned by vectors of the form

fim fim−1 · · · fi1v, (3.3.2)

where v is the highest-weight vector. Weight-space decompositions hold as before, and
characters chM (h) are defined as in (1.5.9a). The character of the Verma module M(λ)
again equals (3.2.6). Integrability is defined by the locally nilpotent condition (Sec-
tion 3.2.3); again, L(λ) is integrable iff all Dynkin labels λ(hi ) ∈ N, iff L(λ) is unitaris-
able. The character of an integrable L(λ) is given by the Weyl–Kac character formula

chL(λ) =
∑

w∈W det(w) ew(λ+ρ)

eρ
∏

α>0(1− e−α)mult(α)
. (3.3.3)
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This is identical to the Weyl character formula (1.5.11), except that the sum and product
are infinite, and the multiplicities of (imaginary) root spaces can be > 1. For affine
algebras, it reduces to (3.2.11c).

Apart from the affine and finite-dimensional simple algebras, the other Kac–Moody
algebras have yet to make a real impact on other areas of mathematics and mathematical
physics. However, [127] and [171] anticipate that the hyperbolic Kac–Moody algebras
E10 and E11 will appear in M-theory, the still-hypothetical physics underlying strings.

3.3.2 Borcherds’ algebras

In his efforts to prove the Monstrous Moonshine conjectures, Borcherds further gener-
alised affine algebras. It is easy to associate a Lie algebra to a matrix A, but which class
of matrices will yield a deep theory? Borcherds found such a class by holding in his hand
a single algebra – the fake Monster Lie algebra (Section 7.2.2) – which acted much like
a Kac–Moody algebra, even though it had imaginary simple roots.

Definition 3.3.4 (a) A CartanBK M matrix A is a (possibly infinite) matrix A = (ai j ),
ai j ∈ R, obeying

gc1. either aii = 2 or aii ≤ 0;
gc2. ai j ≤ 0 for i �= j , and ai j ∈ Z when aii = 2; and
gc3. there is a diagonal matrix D with each dii > 0 such that D A is symmetric.

(b) The universal Borcherds–Kac–Moody algebra ĝ = ĝ(A) is the Lie algebra with gen-
erators ei , fi , hi j , subject to the relations [71]:

gr1. [ei f j ] = hi j , [hi j ek] = δi j aikek and [hi j fk] = −δi j aik fk , for all i, j ;
gr2. (ad ei )1−ai j e j = (ad fi )1−ai j f j = 0, whenever both aii = 2 and i �= j ; and
gr3. [ei e j ] = [ fi f j ] = 0 whenever ai j = 0.

As before, the adjective ‘symmetrisable’ is usually appended in the literature. Unfor-
tunately, the name ‘Borcherds’ is often replaced with the abomination ‘generalised’.
Note that for each i , span{ei , fi , hii } is isomorphic to sl2(C) when aii �= 0 and to
Heis (recall (1.4.3)) when aii = 0. Immediate consequences of the definition are that:
(i) [hi j hmn] = 0; (ii) hi j = 0 unless the i th and j th column of A are identical; (iii) the
hi j for i �= j lie in the centre of ĝ. Setting all hi j = 0 for i �= j gives the definition
of the Borcherds–Kac–Moody algebra g = g(A) [69]. This central extension ĝ of g is
introduced for its role in Theorem 3.3.6 below. If A has no zero columns, then ĝ equals
its own universal central extension [71]. Because a Borcherds–Kac–Moody algebra can
satisfy fewer relations, it typically contains a large free Lie subalgebra [323] (a free Lie
algebra is analogous to a free group).

A universal Borcherds–Kac–Moody algebra differs from a Kac–Moody algebra in that
it is built up from Heisenberg algebras as well as A1, and these subalgebras intertwine in
more complicated ways. Nevertheless, much of the theory for finite-dimensional simple
Lie algebras continues to find an analogue in this much more general setting (e.g.
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root-space decomposition, Weyl group, character formula, . . . ). This unexpected feature
is the point of Borcherds–Kac–Moody algebras.

To get a feel for these algebras, let us prove a few simple results concerning the hi j . Note
first that, using the above relations together with anti-associativity, we obtain [hi j hk�] =
δi j (a jk − a j�)hk�. Comparing this with [hk�hi j ] = −[hi j hk�], we see that bracket must
always equal 0. Hence all h’s pairwise commute, and hi j = 0 unless the i th and j th
columns of A are identical.

The basic structure theorem is that of Kac–Moody algebras (Theorem 3.3.3):

Theorem 3.3.5 [69] Let g = g(A) be a Borcherds–Kac–Moody algebra (over R).
Then:
(a) g has triangular decomposition g = g+ ⊕ h⊕ g− where g+ is the subalgebra

generated by the ei , g− is generated by the fi and h = span{hi } is the Cartan
subalgebra;

(b) g has a root space decomposition – formally calling ei degree αi and fi degree−αi ,
and defining gα to be the subspace of degree α ∈ Zα1 + Zα2 + · · · , we get h = g0

and g± = ⊕α∈�±gα , where [gα, gβ] ⊂ gα+β and �− = −�+;
(c) there is an involution ω on g for which ωei = fi , ωhi = −hi and ωgα = g−α;
(d) dim gα <∞ and dim g±αi = 1;
(e) there is an invariant symmetric bilinear form (·|·) such that for each root α �= 0, the

restriction of (·|·) to gα × g−α is nondegenerate and (gα|gβ) = 0 whenever β �= −α;
(f) there is a linear assignment α �→ hα ∈ h such that for all a ∈ gα , b ∈ g−α , we have

[a, b] = (a|b) hα .

The condition that g be symmetrisable (i.e. condition gc3) is necessary for the existence
of the bilinear form in Theorem 3.3.5(e). As in Section 3.3.1, it is common to add
derivations. In particular, define Di (a) = ni a for any a ∈ gn1α1+···; then each linear map
Di is a derivation, and adjoining these to h defines an abelian algebra he. The simple
root αi can be interpreted as the element of he∗ obeying α j (hi ) = ai j and α j (Di ) = δi j .
The role of the derivations is to make these simple roots linearly independent. Construct
the induced bilinear form (·|·) on he∗, obeying (αi |α j ) = di ai j (see [322] for details).

The properties in Theorem 3.3.5 characterise Borcherds–Kac–Moody algebras (see
e.g. [72] for a proof):

Theorem 3.3.6 Let L be a Lie algebra (over R) satisfying the following conditions:
(i) L has a Z-grading ⊕i Li , and dim Li <∞ for all i �= 0;

(ii) L has an involution ω sending Li to L−i and acting as −1 on L0;
(iii) L has a contravariant bilinear form (·|·) such that (Li |L j ) = 0 if i �= − j , and

such that −(a |ω(a)) > 0 if 0 �= a ∈ Li for i �= 0.
Then there is a homomorphism π from some ĝ(A) to L whose kernel is contained in the
centre of ĝ(A), and L is the semi-direct product of the image of π with a subalgebra of
the abelian subalgebra L0. That is, L is obtained from ĝ by modding out some of the
centre and adding some commuting derivations.
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Conversely, any (real) Borcherds–Kac–Moody algebra obeys conditions (i), (ii) and (iii).
For example, let L = sl2(R) and recall (1.4.2b). Then L has Z-grading L−1 ⊕ L0 ⊕ L1 =
Ce ⊕ Ch ⊕ C f ,ω(x) = −xt and (x |y) = tr(xy). Theorem 3.3.6 tells us that Borcherds–
Kac–Moody algebras are the ultimate generalisation of simple Lie algebras, in the sense
that any further generalisation will lose some basic structural ingredient.

Let"re be the set of all real simple roots, i.e. all αi with aii = 2; the remainder are the
imaginary simple roots α ∈ "im . The Weyl group W of ge is generated by the reflections
rαi : he∗ → he∗ for each αi ∈ "re: ri (λ) = λ− λ(hi )αi . It is a crystallographic Coxeter
group (Section 3.2.1). The real roots of ge are defined to be those in W ("re); all other
roots are called imaginary. For all real roots, dim (ge)α = 1 and (α |α) > 0.

Integrable highest-weight modules are defined as before: namely, each eα, fα must
act locally nilpotently for all real roots α. More precisely, V = ⊕μ∈he∗Vμ where the
weight-space Vμ :={v ∈ V | h.v = μ(h)v}, with dim Vμ <∞, and whenever aii = 2,
(ei )k .v = 0 = ( fi )k .v for all v ∈ V and all sufficiently large k. By the character we
mean the formal sum chV :=∑μ∈he∗ (dim Vμ) eμ. Let P+ be the set of all weights λ ∈ he∗

obeying λ(hi ) ∈ N whenever aii = 2, and λ(hi ) ≥ 0 for all other i . Define the highest-
weight ge-module L(λ) in the usual way as the quotient of the Verma module by the
largest proper graded submodule. Choose ρ ∈ he∗ to satisfy (ρ |αi ) = 1

2 (αi |αi ) for all
i , and define Sλ = eλ+ρ

∑
s ε(s) es where s runs over all sums of imaginary simple roots

and ε(s) = (−1)m if s is the sum of m distinct mutually orthogonal imaginary simple
roots, each of which is orthogonal to λ, otherwise ε(s) = 0. Then we get the Weyl–Kac–
Borcherds character formula:

chL(λ) =
∑

w∈W ε(w)w(Sλ)

eρ
∏

α∈�+ (1− e−α)multα
(3.3.4)

(compare (3.3.3)). Sλ is the correction factor due to imaginary simple roots.
Thus Borcherds’ algebras strongly resemble Kac–Moody ones and constitute a natural

and nontrivial generalisation. The main differences are that they can be generated by
copies of the Heisenberg algebra as well as sl2(R), and that there can be imaginary
simple roots. For more on their theory, see, for example, [328] chapter 11.13, [272],
[322], [469]. Interesting examples are the Monster Lie algebra (Section 7.2.2), whose
(twisted) denominator identity supplied the relations needed to complete the proof of
the Monstrous Moonshine conjectures, and the fake Monster [70]. A Borcherds–Kac–
Moody algebra can be associated with any even Lorentzian lattice, and also with any
Calabi–Yau manifold [275]. Of course it is a broad enough class that almost all of
them will be uninteresting; an intriguing approach to identifying the interesting ones is
sketched at the end of Section 3.4.3.

We know simple Lie algebras arise in both classical and quantum physics, and the
affine Kac–Moody algebras are important in conformal field theory, as we see next
chapter. Borcherds–Kac–Moody algebras have appeared in the physics literature in the
context of BPS states in string theory (see [275]), and as a possible symmetry of M-theory
[285].
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3.3.3 Toroidal algebras

As mentioned in Section 3.2.6, replacing the loop algebra S1 → g with more general
spaces M → g has a very different theory and seems much more complicated. The
most obvious generalisation of affine algebras, which has a chance of retaining some
of their special properties, is to replace the loop algebra S1 → g with a space of maps
S1 × · · · × S1 → g. As S1 × · · · × S1 (n times) is topologically the n-dimensional torus,
these are called toroidal algebras. We will try to mimic the theory of loop algebras as
far as we can. If nothing else, we will identify some features responsible for making the
earlier theory so special.

Let g be a simple finite-dimensional Lie algebra. Choose any n ≥ 1, and let g̃ be
the multi-loop algebra, i.e. tensor product g⊗ C[t±1

0 , . . . , t±1
n ] of g with Laurent poly-

nomials in formal variables ti . Then g̃ is a Lie algebra with Zn+1-grading into finite-
dimensional subspaces. The following theory treats as distinguished one of these n + 1
variables, namely t0. To complete the construction of the toroidal algebra, we take the
universal central extension 0 → K→ g̃⊗K→ g̃→ 0 of the multi-loop algebra g̃,
and then adjoin sufficiently many derivations (as we’ve done throughout this chap-
ter). However, both of these extensions are infinite-dimensional. More precisely, write
di = ti d/dti for the degree-derivation for variable ti . Let D∗ denote the algebra of deriva-
tions ⊕n

i=1C[t±1
0 , . . . , t±1

n ]di ⊕ Cd0. The resulting Lie algebra structure on the space
g̃⊕K⊕D∗ is uniquely determined up to a 2-cocycle τ : D∗ ×D∗ → K, which defines
how the bracket of derivations contributes a central term. There is a two-dimensional
space of these τ ; choosing any of them defines a toroidal Lie algebra gτ . Adding D∗
reduces the centre from the infinite-dimensional K to an (n + 1)-dimensional space. See
[53] for more details of the construction of gτ .

The role of the Virasoro algebra (which as we know is a central extension of
Der(C[t±1]) = Vect(S1)⊗ C) is here replaced by an abelian extension [173] of the com-
plex vector fields on a torus or equivalently of Der(C[t±1

0 , . . . , t±1
n ]). It is a Lie algebra

Vτ parametrised by the 2-cocycle τ , defined on the space K⊕ Der(C[t±1
0 , . . . , t±1

n ]).
Vτ acts for instance on the Verma modules of gτ . We will be more interested in the Lie
subalgebra vτ = K⊕D∗ of gτ . The modules constructed below carry a projective action
of the Witt algebra C[t±1

0 ]d0, as in the affine setting.
Affine algebras exist for their (integrable) modules and in particular their characters, so

we need to find an interesting class of modules for the toroidal algebras. This isn’t easy to
do, but major progress was made in [53]. Let Lτ be an irreducible highest-weight module
of level k �= 0, for the affine algebra g(1), and let W be any finite-dimensional module
for glN . Then [53] constructs an irreducible gτ -module Mλ,W that has finite-dimensional
homogeneous spaces with respect to the natural Zn+1-grading, and thus has a character.
More precisely, they first obtain a vτ -module by applying a Verma-like construction to
W ⊗ C[t±1

1 , . . . , t±1
n ], and then they take the irreducible quotient MW as usual; finally,

they define a gτ -module structure on the tensor product Mλ,W := Lλ ⊗ MW . In [54] they
show that these are modules of a ‘near-vertex operator algebra’ (see Definition 5.1.3(c))
closely related to affine algebra vertex operator algebras at generic level. From this,



216 Affine algebras and generalisations

their characters can be computed, and familiar modular forms arise. This is promising
because interesting Lie algebra modules seem to be the ones that arise as modules of
related structures (e.g. Lie groups or vertex operator algebras). It is too easy to be a Lie
algebra module. On the other hand, these are surely not the best gτ -modules – they have
only found the analogue of generic L(λ), but not yet the analogue of the ‘integrable’
modules. Their characters are like (3.1.7a), but we would like to identify modules with
characters analogous to the discrete series. By analogy with better-understood algebras,
we should look for modules with maximal numbers of ‘null vectors’ quotiented out.

It may seem artificial to choose a distinguished direction (namely the 0th), but to
some extent this is inevitable. It is an elementary consequence of Schur’s Lemma (recall
Lemma 1.1.3) that in these irreducible gτ -modules, the centre span{K0, . . . , Kn} should
act as scalars, and thus an n-dimensional subspace must act trivially. These representa-
tions are designed so that K0 is nontrivial but the other Ki act trivially.

What is natural to pursue from, for example, an algebraic point of view, and what is
a successful theory from that point of view, is not necessarily of more general interest.
It is from this broader, multidisciplinary standpoint that we (unfairly) judge the value
of these generalisations. There is a large class of gτ -modules (namely those described
above) whose characters have (fairly weak) modularity properties, but this seems to
arise solely from the well-milled Heisenberg algebra combinatorics and it isn’t clear yet
that they have independent value. Possible physical relevance in Wess–Zumino–Witten
models in more than two space-time dimensions is explored in, for example, [306]. The
jury is still out on the greater relevance of toroidal algebras to, for example, Moonshine
or physics, and certainly more work is needed.

3.3.4 Lie algebras and Riemann surfaces

The previous subsection emphasises the difficulties of higher-dimensional analogues
of loop algebras. Perhaps the best generalisation of the affine algebras, particularly in
the sense of retaining and enriching automorphic properties of the characters, asso-
ciates infinite-dimensional Lie algebras to each Riemann surface with marked points.
This theory has been developed in a series of papers by Krichever–Novikov, Bremner,
Schlichenmaier, Sheinman and others – see [491] for a list of references. The starting
point is a reinterpretation of the Laurent polynomials

∑
antn ∈ Lpolyg. Before, we inter-

preted the formal variable t as a point on the unit circle S1 ⊂ C, but now we regard t
as lying in the punctured plane C\{0}, or equivalently the twice-punctured Riemann
sphere P′(C). Similarly, the Witt algebra Vect(S1) can be interpreted as the Lie algebra
of meromorphic vector fields on P′(C) with possible poles only at 0 and∞.

Let � be any Riemann surface of genus g, and choose p > 1 distinct ordered points
P = (z1, . . . , z p), zi ∈ �. In the language of string theory described next chapter, we
can think of � as being a world-sheet corresponding to p asymptotic incoming or
outgoing strings (Section 4.3.1). Let A�,P be the space of functions meromorphic on �,
with possible poles only at P , and let L�,P be the space of meromorphic vector fields
on �, again with possible poles only at P . The bracket of L�,P comes from the Lie
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derivative, as usual with vector fields, while the bracket of A�,P is taken to be trivial.
Let g be any simple finite-dimensional Lie algebra. The loop algebra Lpolyg is replaced
with g�,P := A�,P ⊗ g, with bracket [

∑
i fi ⊗ xi ,

∑
j g j ⊗ y j ] =

∑
i, j fi g j [xi y j ]. The

Laurent polynomials C[t±1] are replaced with A�,P . The Witt algebra is replaced with
L�,P . Just as Witt acts on Lpolyg by derivations, so does L�,P act on g�,P .

There are some subtle differences with the more familiar loop algebras. The loop
algebras have an important Z-grading. These higher-genus algebras L�,P and g�,P
have instead an almost-grading by Z, in the sense that L�,P (say) can be decomposed
L�,P = ⊕(L�,P )n as a vector space into finite-dimensional subspaces (L�,P )n , such that

[(L�,P )m, (L�,P )n] ⊆ ⊕m+n+M
�=m+n+L (L�,P )�

for some fixed integers L , M ∈ Z. This would be a true grading if M = L = 0. The
algebra g�,P behaves similarly. The subspaces (L�,P )n and (g�,P )n are defined by con-
sidering orders of poles (and splitting P into incoming and outgoing points).

In the loop algebra situation, for g simple, there is a unique nontrivial central extension.
On the other hand, g�,P typically has several. However, only one will be compatible with
the almost-grading, and so that is the one we choose. Call it ĝ�,P . Similarly, we get a
unique central extension L̂�,P of L�,P , which in the special case of a sphere with one
incoming and one outgoing puncture is Vir.

Verma modules, etc. for ĝ�,P can be defined as before using the universal enveloping
algebra, and are parametrised by p = ‖P‖ highest weights λ(1), . . . , λ(p) ∈ h∗ and a
complex number k (the level). For these modules W(λ,k), λ = (λ(1), . . . , λ(p)), there is an
analogue of the Sugawara construction (3.2.15), which shows that each of these ĝ�,P -
modules W(λ,k) is simultaneously a L̂�,P -module, in perfect analogy with the affine
situation.

Physically, these algebras ĝ�,P and L̂�,P should be regarded as higher-genus global
symmetries for, for example, the Wess–Zumino–Witten models discussed next chapter.
Locally, that is in terms of local coordinates at each marked point zi , we get a copy of the
affine algebra g(1) and Virasoro algebra Vir. A module for, for example, ĝ�,P similarly
specialises to the g(1)-module L(λ(i)) at each point zi ∈ P .

The theory is still a work in progress – see, for example, [491], [492] and references
therein. But it can be expected that for each positive level k and choice of �, and
p highest weights λ(i) ∈ Pk

+(g), a number of level-k representations of ĝ�,P will be
singled out (the exact number being given by Verlinde’s formula (6.1.2)), and these will
‘transform covariantly’ with respect to the mapping class group of �\P . Obviously this
is an exciting direction that should be pursued, with direct relevance to higher-genus
Moonshine (Section 6.3.1).

Question 3.3.1. (a) Define D =∏
α∈�+ (1− e−α)mult(α). Verify ri (D) = e−αi D.

(a) Find a vector r ∈ h such that w(er D) = ε(w) er D.

Question 3.3.2. Let A be a CartanBK M matrix, and g the corresponding universal
Borcherds–Kac–Moody algebra.
(a) Prove hi j lies in the centre.
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(b) Suppose the i th and j th rows of A are identical. Then show that hii − h j j is in the
centre of g.

Question 3.3.3. In what ways (if any) do Theorems 3.3.3, 3.3.5, 3.3.6 change if the field
is C and not R?

Question 3.3.4. Prove that for any Lie algebra L obeying conditions (i), (ii), (iii) of
Theorem 3.3.6, L0 will be an abelian subalgebra.

3.4 Variations on a theme of character

3.4.1 Twisted #3: twisted representations

In this subsection we complete the introduction of the twisted character which we began
in Section 1.5.4. These are to the usual character what the McKay–Thompson series
are to the j-function. In Section 5.3.6 we generalise this construction, but as always
the special case of affine algebras is particularly pretty and significant. The reader is
encouraged to reread Section 1.5.4 for background.

Let’s start with a twisted affine algebra g(N ), obtained as in (3.2.4) from the nontwisted
algebra g = g(1) and an order-N symmetry α of the Coxeter–Dynkin diagram of g.
Consider any integrable highest-weight g(N )-module L(λ), λ ∈ Pk

+(g(N )). Think of this
as a representation ρ. We can extend ρ linearly to g, by defining

ρ(xtn) = ξ i−n
N ρ(xtn), (3.4.1a)

for x in the α-eigenspace (g)i (Section 1.5.4). This isn’t a true representation of g – it’s
called a twisted representation of g, as it obeys

[ρ(xtn), ρ(ytm)] = ξ
i+ j−n−m
N ρ([xtn, ytm]), (3.4.1b)

when x ∈ (g)i and y ∈ (g) j . Thus a true representation of the twisted affine algebra g(N )

corresponds to a twisted representation of the nontwisted algebra g(1). In Section 5.4.6
we extend this notion of twisted representation to vertex operator algebras.

Twisted representations are vaguely reminiscent of projective representations. But a
projective representation becomes a true representation when the algebra is extended,
while a twisted representation becomes a true representation when the algebra is shrunk.
Groups most naturally have projective representations, vertex operator algebras most
naturally have twisted ones, and affine algebras have both.

Consider more generally any symmetry α of the Coxeter–Dynkin diagram of g. As
in Section 3.2.2, α extends to an automorphism of g (e.g. α(ei ) = eαi , and α fixes the
centre and derivation). Because of this, α permutes the g-modules as in Section 1.5.4.
In particular, α takes the highest-weight module L(λ) to L(λα), where (λα)i = λαi , and
moreover takes weight-space L(λ)μ to weight-space L(λα)μα . All of this generalises to
any Borcherds–Kac–Moody algebra.

Now supposeλα = λ, that isλ is a fixed point ofα. Then L(λ) and L(λ)α are isomorphic
as g-modules, so let τα be a linear isomorphism of the space L(λ) that intertwines their
g-actions: that is, α(x).v = x .τα(v) in terms of the g-action of L(λ). Because L(λ) is
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irreducible, τα is uniquely determined up to a scalar multiple; scaled appropriately, it will
permute all vectors of the form (3.3.2). By the α-twisted character or twining character
χα
λ we mean

χα
λ (h) = exp

[(
−hλ + cλ

24
+ k (d − dorb)

24h∨

)
δ

]
trL(λ)ταeh

= exp

[(
−hλ + cλ

24
+ k (d − dorb)

24h∨

)
δ

] ∑
μ=αμ

tr(τα)eμ(h), ∀h ∈ h (3.4.2a)

where d and dorb are the dimensions of the semi-simple Lie algebras g and gorb (the
algebra gorb is defined in Theorem 3.4.1) and hλ, cλ are in (3.2.9). As in (3.2.9a), the
normalisation here is chosen to make modularity simplest – see (3.4.2b) below. As we see
from (3.2.5d), the vector δ ∈ h∗ in (3.4.2a) isolates the coefficient 2π iτ of the derivation
�0.

Theorem 3.4.1 [213] Let g = Xr
(1) be a nontwisted affine algebra, and let α be a

symmetry of the Coxeter–Dynkin diagram of g. Then for any integrable highest-weight
λ of g, with αλ = λ, the α-twisted character χα

λ (h), restricted to any h ∈ h fixed by α,
equals some true character χλ̃(h) of the ‘orbit Lie algebra’ gorb = ((gop)0)op.

‘gop’ is the affine Kac–Moody algebra whose Coxeter–Dynkin diagram is that of g

except with all arrows reversed. Note that gorb is not a subalgebra of g, although its
Cartan subalgebra horb can be identified with that h0 of the fixed-point subalgebra g0.
What is special about gorb is that there is a natural map Pα (see Section 3.3 of [213] for its
precise construction) sending g-weights fixed by α to the weights of gorb, and preserving
all inner-products. The weight λ̃ in Theorem 3.4.1 is Pα(λ). The normalisation in (3.4.2a)
is exactly what one would expect for a character of gorb:

horb
λ̃
− corb

24
= hλ − c

24
+ k (d − dorb)

24h∨
. (3.4.2b)

For example, consider g = A2n−1
(1) and g = A2n

(1), respectively, with α being the left–
right reflection symmetry (‘charge-conjugation’) ‘C’ fixing the 0th node. Then the orbit
Lie algebra gorb is the twisted affine algebras Dn+1

(2) and A2n
(2), respectively. For g =

sln
(1) with a cyclic symmetry (‘simple-current’) ‘J n/d ’ of order d (so d divides n),

gorb = sln/d
(1). The map Pα in these examples is

PC : λ0ω0 +
n−1∑
i=1

λi (ωi + ω2n−i )+ λnωn �→
n∑

j=0

λiω
orb
i ,

PC : λ0ω0 +
n∑

i=1

λi (ωi + ω2n−i ) �→
n∑

j=0

λiω
orb
i ,

PJ n/d :
n/d−1∑

i=0

λi
(
ωi + ωi+n/d + · · · + ωi+n−n/d

) �→ n/d−1∑
j=0

λiω
orb
i .



220 Affine algebras and generalisations

The map Pα is not mysterious. For example, forg = sl2n
(1) andα = C , the fundamental

weights ωorb
i of gorb are the obvious basis for the C-invariant weights of g, namely

ωorb
i = ωi + ω2n−i (for 1 ≤ i < n) together with ωorb

0 = ω0 and ωorb
n = ωn .

The most important case in Theorem 3.4.1 is the degenerate one. The Coxeter–Dynkin
diagram of sln

(1) has an order-n cyclic symmetry J . In this case, an α-fixed point looks
like λ = (λ0, λ0, . . . , λ0) for λ0 = k/n, and the α-twisted character χα

λ (h), restricted to
h fixed by α, equals the τ -independent function exp[2π i (λ(h)+ ku)] – that is, only the
top weight-space survives.

A good question in Lie theory is always rewarded with a beautiful answer.
Theorem 3.4.1 holds more generally for any Borcherds–Kac–Moody algebra. The proof
follows that of the Weyl–Kac–Borcherds character formula.

We get from Theorems 3.4.1 and 3.2.4 that the twisted characters are modular func-
tions, and obey an analogue of Theorem 3.2.3. As an isolated example, this is rather
surprising, but it fits into a much larger context (Section 5.3.6). We also find there how
modular transformations relate the twisted characters to twisted representations – it is
quite analogous to (2.3.10b). From this greater context of vertex operator algebra mod-
ules and characters twisted by automorphisms, the modularity of these twisted characters
is not so surprising. What is more surprising is positivity, that is, the q-expansion has
positive integer coefficients. This is true, for instance, for only two-thirds of the McKay–
Thompson series Tg . See Section 7.3.5, especially Conjecture 7.3.3, for an analogous
result for the Moonshine module V �.

3.4.2 Denominator identities

A very useful formula for the characters of simple finite-dimensional Lie algebras g is the
Weyl character formula (1.5.11). It is rare indeed when the trivial special case of a theorem
or formula is interesting. But that happens here. Consider the trivial representation: i.e.
x �→ 0 for all x ∈ g. Then the character (1.5.9a) is identically 1: ch0 ≡ 1. Thus the
character formula tells us that a certain alternating sum over the Weyl group W equals
a certain product over positive roots α ∈ �+:∏

α∈�+

(
1− e−α(z)

) = e−ρ(z)
∑
w∈W

ε(w) ew(ρ)(z). (3.4.3)

Here, z lies in the Cartan subalgebra h, and the Weyl vector ρ isω1 + · · · + ωr . Equation
(3.4.3) is called a denominator identity. For the smallest simple algebra A1, (3.4.3) is
trivial: 1− e−z = e−z/2(ez/2 − e−z/2). For A2 we get a sum of six terms equalling a
product of three terms, and the complexity continues to rise from there.

In particular, look at g = sln(C). We can realise the roots, etc. of g in terms of an
orthonormal basis {ei } of Cn as follows: the positive roots are ei − e j for 1 ≤ i < j ≤ n;
the Cartan subalgebra h is the hyperplane orthogonal to

∑
i ei ; the Weyl group is the

symmetric group Sn , acting on Cn and hence h by permuting the ei ; the Weyl vector
ρ = 1

2

∑
i (n + 1− 2i)ei . Write z =∑

i zi ei ∈ h and xi = e−zi (so
∏

i xi = 1). Then the
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left side of (3.4.3) becomes∏
1≤i< j≤n

(1− e−zi+z j ) = x−1
2 x−2

3 · · · x1−n
n

∏
1≤i< j≤n

(x j − xi ).

The right side of (3.4.3) becomes∏
j

x (n+1−2 j)/2
j

∑
π∈Sn

ε(π )
∏

i

x−(n+1−2i)/2
π i = x−1

2 x−2
3 · · · x1−n

n

∑
π∈Sn

ε(π )
∏

i

x i
π i .

Thus the denominator identity for sln(C) is simply the formula for the determinant of
the Vandermonde matrix

det

⎛⎜⎜⎜⎝
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xn

1 xn
2 · · · xn

n

⎞⎟⎟⎟⎠ = ∏
1≤i< j≤n

(x j − xi ). (3.4.4)

In the early 1970s Macdonald [396] generalised these finite denominator identities to
infinite identities, corresponding to the extended Coxeter–Dynkin diagrams. The simplest
of his was known classically as the Jacobi triple product identity:

∞∏
m=1

(1− x2m)(1− x2m−1 y)(1− x2m−1 y−1) =
∞∑

n=−∞
(−1)n xn2

yn. (3.4.5a)

To Macdonald these were purely combinatorial, but soon Kac, Moody and others rein-
terpreted his formulae as denominator identities for nontwisted affine algebras, that is
substituting λ = 0 into the Weyl–Kac character formula (3.3.3).

For example, parametrise the Cartan subalgebra of A1
(1) by zα1 + z�0 + uC ; then

(3.2.5d) says (mα1 + nδ)(zα1 + τ�0 + uC) = 2mz − nτ . The positive roots of A1
(1) are

α1 + nδ (n ≥ 0), −α1 + nδ (n ≥ 1) and nδ (n ≥ 1). The Weyl group acts on the Weyl
vector ρ by tnα1ρ = ρ + 2nα1 − (2n2 + n)δ and tnα1rα1ρ = ρ + (2n − 1)α1 − (2n2 −
n)δ. Thus the A1

(1) denominator identity is

∞∏
n=0

(1− rqn)
∞∏

n=1

(1− r−1qn)
∞∏

n=1

(1− qn) =
∞∑

m=−∞
(−1)mr−mq (m2+m)/2, (3.4.5b)

where q = e−τ and r = e−2z . Equation (3.4.5a) is recovered from (3.4.5b) by setting
x = √q and y = qr−1.

Freeman Dyson is a famous quantum physicist, but started his academic life in number
theory and still enjoys it as a hobby. Dyson [166] found a curious formula for the
Ramanujan τ -function, defined by

∑∞
n=1 τ (n)qn = η(q)24 := q

∏∞
m=1(1− qm)24:

τ (n) =
∑∏

1≤i< j≤5(ai − a j )

1! 2! 3! 4!
, (3.4.6)

where the sum is over all 5-tuples ai with ai ≡ i (mod 5) obeying
∑

i ai = 0
and

∑
i a2

i = 10n. Using this, an analogous formula can be found for η24. Dyson
knew that similar formulae were also known for ηd for the values d = 3, 8, 10, 14,
15, 21, 24, 26, 28, 35, 36, . . .
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What was ironic was that Dyson found (3.4.6) at the same time that Macdonald was
finding his own identities. Both were at Princeton then, and would often chat a little
when they bumped into each other after dropping off their daughters at school. But they
never discussed work. Dyson didn’t realise that his strange list of numbers has a simple
interpretation: they are precisely the dimensions of the simple Lie algebras! 3 = dim(A1),
8 = dim(A2), 10 = dim(C2), 14 = dim(G2), etc. In fact these formulae for ηd are none
other than (specialisations of) the Macdonald identities. For example, Dyson’s formula
is the denominator formula for A4

(1) (24 = dim(A4)). If they had spoken, they would
surely have anticipated the affine algebra denominator identity interpretation.

Incidentally, no simple Lie algebra has dimension 26, so the formula for η26 can’t
correspond to any of Macdonald’s identities. Its algebraic meaning is still uncertain.

Macdonald certainly didn’t close the book on denominator identities. Any algebra with
a character formula analogous to (1.5.11) (e.g. Borcherds–Kac–Moody algebras (3.3.4))
will have one. Kac and Wakimoto [336] use denominator identities for Lie superalgebras
to obtain nice formulae for various generating functions involving sums of squares, sums
of triangular numbers (triangular numbers are numbers of the form 1

2 k(k + 1)), etc. For
instance, the number of ways n can be written as a sum of 16 triangular numbers is

1

3 · 43

∑
ab (a2 − b2)2,

where the sum is over all odd positive integers a, b, r, s obeying ar + bs = 2n + 4 and
a > b.

The most important application of denominator identities from our perspective is
Borcherds’ use of them (Section 7.2.2) in proving the Monstrous Moonshine conjectures.
Indeed, this possibility was what motivated his introduction of the Borcherds–Kac–
Moody algebras. Other applications are discussed next subsection.

Explicitly writing down denominator identities for Borcherds–Kac–Moody algebras
tends to be quite difficult, because their root multiplicities are hard to find. The denom-
inator identity of the Monster Lie algebra m is a remarkable identity originally due to
Zagier, but discovered independently by Borcherds and others:

p−1
∏
m>0
n∈Z

(1− pmqn)amn = J (z)− J (τ ), (3.4.7a)

with p = e2π iz , where the powers ‘ai ’ are the coefficients of the q-expansion of the
modular function J (τ ) =∑

i ai qi . This yields infinitely many nontrivial polynomial
identities in the coefficients an – for example, comparing third-degree terms on both
sides gives

a4 =
(a1

2

)
+ a3. (3.4.7b)

In fact, (3.4.7a) is older than m and is proved independently (Hecke operators permit a
quick proof); turning the logic around, it is used to tell us the root multiplicities of m.
This is its direct use in the proof of the Monstrous Moonshine conjectures.
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Unfortunately, the numerator of the Weyl character formula for L(λ) rarely has a
product formula. However, certain specialisations of the numerator can manifestly equal
certain (λ-dependent) specialisations of the denominator, and thus inherit the product
expansion of the latter. Consider a simple example: any finite-dimensional An-module
L(λ) has a character satisfying

chL(λ)(tρ) = x (n+1)t(λ)/2
∏

1≤i< j≤n+1

x j y j − xi yi

y j − yi
, (3.4.8a)

for any t ∈ C, where x = et and yi = exp[(i −∑n
j=i λ j )t]. Similar formulae hold for

all Kac–Moody algebras [374]. In particular, from these we obtain instantly Weyl’s
dimension formula for finite-dimensional semi-simple Lie algebras:

dim L(λ) =
∏
α>0

(α|λ+ ρ)

(α|ρ)
. (3.4.8b)

3.4.3 Automorphic products

In Section 2.4.1 we explain the important notion of lifting a modular form f : H → C for
a discrete subgroup� of G = SL2(R). The result is an automorphic function φ : G → C
obeying the transformation (2.4.2b).

Borcherds discovered an unexpected way to lift (meromorphic) modular forms for
discrete � in SL2(R) to much larger Lie groups. His starting point was (3.4.7a), where
the coefficients of a modular function appear in the exponents of a product expansion.
In hindsight, another example of this phenomenon is the product formula(2.2.6b) for η:

η(τ ) = q1/24
∞∏

n=1

(1− qn)1, (3.4.9)

where the powers ‘1’ are the coefficients of the q-expansion of the modular form θ3(τ )/2.
Moreover, both (3.4.7a) and (3.4.9) are the denominators of the Monster algebra m

and the affine algebra u1
(1) (recall (3.2.12c)). Are these hints of a much more general

phenomenon?
Indeed. Borcherds found a far-reaching generalisation of (3.4.7a):

Theorem 3.4.2 [76] Suppose f (τ ) =∑
n anqn is a meromorphic modular form for

SL2(Z) of weight −s/2, holomorphic in H (so its only possible pole is at the cusp), and
with integer coefficients an. We require s = 0, 8, 16, . . . ; if s = 0 we also require that 24
divides a0. Let v0 ∈ Rs+1,1 be a generic vector of negative norm. Then there is a unique
lattice vector ρ ∈ I Is+1,1 ⊂ Rs+1,1 such that

F(v) = e−2π i ρ·v ∏
r∈I Is+1,1, r ·v0>0

(1− e−2π i r ·v)a−r ·r/2 (3.4.10)

can be analytically extended to a meromorphic modular form on Hs+1,1 of weight a0/2
for the group Os+2,2(Z)+.
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Since f in Theorem 3.4.2 has nonpositive weight and is holomorphic in H, it will
necessarily have poles at the cusps Q ∪ {i∞} (unless it is constant). The set I Is+1,1

is the unique even self-dual lattice of signature (s + 1, 1) (Section 1.2.1). Os+2,2(R) is
the group of (s + 4)× (s + 4) matrices A with real entries, which obey AD At = D for
D = diag(1, . . . , 1,−1,−1). By a modular form for Os+2,2(Z)+, we mean the following.
First, the imaginary norm vectors in Rs+1,1 lie in two disjoint cones; denote by C the cone
containing −v0. The analogue of the upper half-plane H is here the set Hs+1,1 ⊂ Cs+1,1

consisting of all vectors v with imaginary part Im(v) ∈ C . Then

F(v + λ) = F(v), ∀λ ∈ I Is+1,1, (3.4.11a)

F(w(v)) = ±F(v), ∀w ∈ Aut(I Is+1,1)+, (3.4.11b)

F

(
2v

v · v
)
= ±

(v · v
2

)a0/2
F(v), (3.4.11c)

for appropriate choice of signs, where Aut(I Is+1,1)+ are the automorphisms of the lattice
I Is+1,1 that send the cone C to itself. The transformations on Hs+1,1 given in (3.4.11)
generate a subgroup of Os+2,2(Z), denoted Os+2,2(Z)+. Now F can be lifted to the Lie
group Os+2,2(R)+ in the usual way. This lifting of a modular form for a subgroup � of
SL2(R) to automorphic forms for Os+2,2(R)+ is called a Borcherds lift.

Of course (3.4.7a) is recovered from taking f (τ ) = j(τ )− 744; then s = 0, and the
real Lie group O2,2(R) is essentially SL2(R)× SL2(R) – that is, they share the same Lie
algebra (recall Theorem 1.4.3) – with each SL2(R) contributing a copy of H and SL2(Z).

We can recover from F more familiar modular forms by restricting the domain of F
to multiples τv of imaginary norm vectors v in I Is+1,1. For example, we get:

Theorem 3.4.3 [76] Let f (τ ) =∑∞
n=−∞ anqn be any meromorphic modular form for

�(4), holomorphic in H but possibly with poles at the cusps, and with integer coefficients
an. We require an = 0 unless n ≡ 0, 1 (mod 4). Then for some choice of h ∈ Z/12,

F(τ ) = qh
∞∏

n=1

(1− qn)an2

is a meromorphic modular form of weight a0, with all poles and zeros at cusps.

For example, (3.4.9) (or rather its square) is recovered by taking f (τ ) = θ3(2τ ). Modular
forms for SL2 arise here because O1,2(R) is essentially SL2(R).

In this section we find several examples of product expansions of modular forms,
Jacobi forms, etc. coming from the denominators of characters. An exciting development
is provided by Gritsenko and Nikulin [264], [265]. Given any hyperbolic Kac–Moody
algebra of rank n ≥ 3 with certain properties (making them close in spirit to semi-
simple Lie algebras), there exists a Borcherds–Kac–Moody algebra of the same rank
with identical real roots (hence Weyl group, which will be a subgroup of On−1,1(R)),
but with precisely the imaginary simple roots needed so that its denominator is an
automorphic form for On,2(R). It is reminiscent of Macdonald’s identities: he found he
needed to introduce extra factors to get modularity (namely the third product in (3.4.7b)),
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and we now interpret those as due to the imaginary roots of the corresponding affine
algebra.

Most Borcherds–Kac–Moody algebras are of course not interesting; those that are (e.g.
the Monster and fake Monster Lie algebras) have automorphic denominator identities.
Thus this provides a systematic construction of what should be interesting Borcherds–
Kac–Moody algebras. It is known that there are only finitely many such hyperbolic
Kac–Moody algebras, and so this is a finite family of Borcherds–Kac–Moody algebras.
Clearly, we should study their representation theory, and compute the characters of their
‘interesting’ (presumably integrable) modules. In analogy with affine algebras, we may
hope that the numerators of those characters will also be automorphic.

Relations of these automorphic forms with mirror symmetry and string theory are
beyond this book, but see, for example, [266], [342], [275], [276], [434]. The review
article [358] is a good treatment of many of the topics of this subsection.

Question 3.4.1. Let f (q) =∑
n=0 anqn , with a0 = 1. Verify that, at least formally (i.e.

without any regard to convergence), this can be written as f (q) =∏∞
n=1(1− qn)bn for

some unique numbers bn . If all an are integers, then so are all bn .

Question 3.4.2. Prove (3.4.8a) and the Weyl dimension formula (3.4.8b) for sln .

Question 3.4.3. Express the character χλ of any integrable representation λ of A1
(1),

specialised appropriately, as an infinite product.
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Conformal field theory: the physics of Moonshine

This chapter presents the physical context for Moonshine. Rather than diving into a
conventional discourse of conformal field theory (CFT), it might be more helpful to
take several steps back and begin with Galileo. Physics even more than mathematics is
interwoven with history. Our treatment of CFT is sketchy but should supply the reader
with all that is necessary to appreciate the absolutely profound role physics has played in
Moonshine and other aspects of ‘pure’ mathematics in recent years. It is hoped that this
chapter will make it easier for the interested reader to pursue more standard treatments
of CFT and string theory. It is written primarily with the mathematician in mind.

The third section explores the physics of CFT, and the fourth describes some mathe-
matical formulations. CFT is to a generic quantum field theory what finite-dimensional
semi-simple Lie algebras are to generic Lie algebras. Background for both sections
is provided by the review of classical and quantum physics sketched in the first two
sections.

For a mathematician studying physics, important to keep in mind is that physics has
been driven historically more by its predictive power than by conceptual concerns (with
a few remarkable exceptions, such as Einstein’s general relativity). Given enough time,
however, the theory becomes polished to a state of pristine mathematical elegance, as
classical mechanics amply demonstrates. In particular, one has the sense that quantum
theory is ad hoc and rather unsound – and it is both – but these features are due to
the historical accident that we were born too close to its inception. Much more impor-
tant is what it can teach mathematics, which is considerable. The essence of quantum
field theory is completely accessible to mathematicians and, as mathematics of the late
twentieth century shows, should at least in its broad strokes be part of their standard
repertoire.

A special feature of classical physics is that the behaviour of a system – for example,
its trajectory in phase space – becomes much simpler when looked at infinitesimally.
The simple universal regularities are captured by differential equations; the complicated
incidental features of a specific situation are relegated to the initial conditions. Among
mathematicians, this central role of partial differential equations in classical physics was
responsible for what had been a near-identification of their study with the subject they
call mathematical physics. It was largely with the arrival of string theory that a much
richer range of mathematics became relevant to physics, and it is this happy development
that made this book possible.

Almost every facet of Moonshine fits comfortably into CFT, where it often was discov-
ered first. Some have questioned though the necessity of involving such a complicated
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beast, or the closely related ‘vertex operator algebras’ of the next chapter, in our mathe-
matical explanation of Moonshine. Although CFT has been an invaluable guide so far,
they would argue, perhaps we are a little too steeped in its lore. Undoubtedly there is
truth in this, but CFT still has new insights to share. It is an integral part of Moonshine’s
future as much as its past. Sections 4.3 and 4.4 are central to the whole book.

4.1 Classical physics

4.1.1 Nonrelativistic classical mechanics

Temporarily forget what you know of physics. One of the most blatant empirical facts
must be that anything in motion on Earth eventually slows to a stop. On the other hand,
stars and planets clearly behave otherwise, therefore earthly laws can’t apply directly to
the Heavens. Those observations are fundamental to Aristotelian physics. The starting
point, however, for classical physics is Newton’s First Law: the remarkable thought (due
to Galileo, 1632) that anything anywhere will continue to move in a straight line and at
constant speed, unless something (by definition a force) acts on it. Although in isolation
it has no real content, it presents a powerful strategy for analysing Nature. For example,
to first approximation the Moon travels in a circle about the Earth; rather than trying to
conceive of some strange mechanism responsible for pushing or dragging the Moon in
its nonlinear orbit, the First Law instead leads us to imagine some ‘force’ that always
pulls the Moon towards the Earth. This second possibility is much more promising of
course, and led Newton to his theory of gravitation.

Classical mechanics describes systems with finitely many degrees of freedom. The
configuration (snapshot, instantaneous state) of a classical system at an instant t of
time can be identified with the precise values of all degrees of freedom (e.g. position
coordinates) at that time. The basic challenge is to predict the configuration at later
times. This amounts to setting up and solving a system of differential equations, called
the equations of motion of the system.

Consider a system of N particles, with positions xi = (xi1, xi2, xi3). The 3N degrees
of freedom are the position coordinates xi j . The equations of motion, which determine
the trajectories of the N particles by giving their response to the stimulus, are

mi
d2

dt2
xi = Fi , (4.1.1)

where Fi is the net force experienced by the i th particle and the proportionality constant
mi is called its mass. Dots are used to denote time derivatives: for example, velocity is
ẋ and acceleration is ẍ. Note that (4.1.1) is compatible with Newton’s First Law.

In general the force Fi can be a function of all positions x j , velocities v j and time t –
for example, air resistance is approximately proportional to v2

i . We will restrict attention
to the typical ones (from which can be derived all others), which are of the form

(Fi ) j = − ∂

∂xi j
V (x1, . . . , xN )
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Fig. 4.1 The harmonic oscillator.
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Fig. 4.2 Singular motion of five gravitationally interacting particles.

for some real-valued function V called the potential. These are called conservative forces
because they conserve (keep constant) energy. The potential has units of energy, and the
sign is introduced so that V contributes positively to total energy. In quantum mechanics
the potential V is more fundamental than the force F.

For example, Newton’s gravitational potential is V = −∑i< j G mi m j

|xi−x j | , where G is a
positive constant. Einstein found it profoundly significant that the gravitational ‘charge’
mi here is numerically (though certainly not conceptually) identical to the ‘inertial’ mass
mi in (4.1.1) (see Section 4.1.2).

For a one-dimensional example, consider a harmonic oscillator – for example, the
spring in Figure 4.1. Hooke’s Law says that the force F = −k (x − x0), where k is a
positive constant and x0 is the resting length of the spring. Hence−k (x − x0) = mẍ , so

x = x0 + a cos

(√
k

m
t

)
+ b sin

(√
k

m
t

)
= x0 + A cos

(√
k

m
t + B

)
. (4.1.2)

This force is conservative, with potential V = 1
2 k (x − x0)2. This elementary system

is fundamental to theoretical physics, as it describes small oscillations about stable
equilibrium states (i.e. points at which all forces Fi vanish). Indeed, if dV/dx vanishes
at x = x0, for some potential V , then the Taylor expansion of V (x) would begin like
a0 + a2(x − x0)2, and so it would behave like a harmonic oscillator. We encounter the
harmonic oscillator repeatedly in the following pages; in classical field theory these
humble oscillations describe, for example, sound waves, and in quantum field theory
they are the particles.

The mathematical difficulties faced by quantum field theory are notorious, but remark-
ably singular behaviour occurs in classical mechanics as well. For one example, con-
sider five point particles interacting gravitationally, positioned as in Figure 4.2. Particle 5
moves horizontally between the orbiting pairs 1 and 2, and 3 and 4. It is possible [485] to
arrange for particle 5 to zip back-and-forth between those pairs, picking up speed, until
in a finite time it reaches infinite speed without ever colliding with the other particles.
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Many other examples of singular behaviour in classical mechanics are possible [485]; it
is not known yet how typical they are among all possible motions.

Later in this section and the next, we touch on other mathematical difficulties plagu-
ing our physical theories. Generally speaking, these difficulties of classical and quan-
tum physics have to do with probing space to arbitrarily high precision. Whenever we
push scientific theories far beyond their established realm of reliability, our arrogance
inevitably gets us punished.1 The infinitesimal structure of space and time is surely
such an unjustified speculative extrapolation. Unfortunately, all our physics is built on
it. It is tempting to guess that when we understand how the illusion of a macroscopic
four-dimensional space-time continuum arises from more fundamental concepts, these
mathematical difficulties should become more tractable.

We know from our childhood that global properties can arise from second-order
differential equations (‘The shortest distance between two points is a straight line’).
Hamilton’s principle says that the solution to the equation of motion mẍ = − d

dx V ,
subject to the boundary conditions x(t1) = x1, x(t2) = x2, is the path t �→ x(t) obeying
the given boundary conditions, for which the action

S :=
∫ t2

t1

(
1

2
m ẋ(t)2 − V (x(t))

)
dt (4.1.3)

is stationary (minimal if |x1 − x2| and |t1 − t2| are both small). The integrand is called
the Lagrangian L = T − V , where T = 1

2 mẋ2 is the kinetic energy. The combination
T + V for the stationary path x(t) will be independent of the time t , and is called the
energy. Historically, a hard lesson to learn (even for men like Gauss and Hertz) was that
energy is an abstract mathematical notion and not a measure of some physical quantity
(see the excellent discussion in chapter 4, vol. I of [188]).

This observation leads to a formulation of classical physics called Lagrangian mechan-
ics, which will be central to our discussion of quantum field theory in Section 4.2 (in
quantum theory concepts like force, velocity and acceleration cease to play fundamental
roles). The possible configurations of our physical system can be regarded as forming
a manifold, called the configuration space M. For example, for a rigid body such as
a potato, the configuration space is R3 × SO3(R) ∼= R3 × P3(R):R3 gives its centre-of-
mass, and P3(R) its orientation. The behaviour of a system is regarded geometrically
as a parametrised path t �→ q(t) on M, called the trajectory. Let qi be a complete set
of local coordinates on M, obtained by restricting to some open set Uα ⊂M (recall
Definition 1.2.3). The qi represent the degrees of freedom of the system. The Lagrangian
L = T − V is a function of qi and q̇ j – that is, a function on the tangent bundle TM.
In particular, in order to capture the kinetic energy T , which usually will be quadratic in
the q̇i , we typically want M to be Riemannian, with T proportional to the norm-squared
q̇ · q̇. The potential V will be a differentiable function on M. The equations of motion

1 Examples abound. There is, for instance, the famous remark of Lord Kelvin in 1899 that all of physics has
been finished. Socrates’ theory near the end of Phaedo as to the nature of the Earth makes a merry read. In
mathematics recall the humbling experiences of Russell’s Paradox and Gödel’s Incompleteness Theorem.
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in the coordinate patch Uα are the Euler–Lagrange equations

d

dt

(
∂L

∂q̇i

)
= ∂L

∂qi
, (4.1.4)

which say that the action (4.1.3) is stationary for the physical solutions qi (t). Equation
(4.1.4) is obtained from the calculus of variations by varying qi .

To solve a physical system in Lagrangian mechanics, the first task would be to choose
good local coordinates qi on the configuration space M, then to express the kinetic and
potential energies in terms of qi and q̇i , and finally to write down and solve the corre-
sponding partial differential equations (4.1.4). Lagrangian mechanics (and Hamiltonian
mechanics, to be discussed shortly) are essentially equivalent to Newtonian mechan-
ics (4.1.1). Their appeal though should be clear to any mathematician: by freeing the
formulation from adherence to a specific choice of coordinates, the formal structure of
classical mechanics becomes more evident. This is especially valuable when extensions
of the theory are needed – for example, when handling enormous numbers of particles
in statistical mechanics, or when we were struggling to obtain the laws of quantum
mechanics.

Returning to the harmonic oscillator, take q = x − x0. Then L = T − V = 1
2 m q̇2 −

1
2 k q2 and the Euler–Lagrange equation (4.1.4) yields the differential equation mq̈ =
−k q . The configuration space is R, and trajectories consist of segments [−A, A]
traversed periodically. Energy T + V = 1

2 k A2 is constant on each trajectory.
The pervasive habit of writing physical quantities with ‘units’ (metres, seconds, . . . )

leads us into thinking of those mysterious entities as real and indispensable. In fact,
many would regard as profound, or at least meaningful, the following question: What
is the number of fundamental units in physics? However, Lagrangian mechanics should
have led us to a somewhat more sophisticated understanding of units. Units themselves
have no fundamental significance; choosing units is a special case of selecting a coor-
dinate patch on the configuration space (together with a choice of time parameter). The
common and useful practise of rejecting or anticipating formulae based on unit consider-
ations (‘dimensional analysis’) merely captures some homogeneity information stored in
the Lagrangian, and is the analogue here of the conservation laws of the following para-
graphs. In particular, suppose we’ve selected a coordinate patch ϕ : U → Rn , q �→ (qi ),
and we want to change the scales (i.e. units) on each coordinate axis (which as expres-
sions of nationalistic pride is fairly common). That is, we choose nonzero constants λi

and consider the rescaling qi �→ q ′i = λi qi of local coordinates, as well as t �→ t ′ = λ0t .
This has two consequences. Firstly, we can write locally L(q ′i , q̇ j

′, t ′) = L ′(qi , q̇ j , t),
that is, we can continuously deform the Lagrangian. Inevitably, some choices of units
will simplify L and hence ease the resulting arithmetic. Secondly and more importantly,
it typically will be possible to absorb the rescalings λi into the various ‘physical con-
stants’, that is, the parameters in L , which will tell us invariance properties of L and
hence of the equations of motion (4.1.4). This is how to obtain the convenient and well-
known meta-theorem that says the units of each term of any physical expression should
agree.
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For example, note that the harmonic oscillator Lagrangian is invariant under the rescal-
ings q �→ λ1q, t �→ λ0t, k �→ λ−2

1 k and m �→ λ2
0λ
−2
1 m; we see that each term of the

solution (4.1.2) has a well-defined and consistent scaling behaviour (as they must). Also,
for a preferred choice of λi , the Lagrangian simplifies to q̇2 − q2. For another example,
note that the gravitational Lagrangian L = 1

2 m (ẋ2
1 + ẋ2

2 + ẋ2
3 )+ G mM

r is invariant under
the rescaling xi �→ λxi , t �→ λ0t , provided m rescales like λ−2λ2

0m and G M rescales like
λ3λ−2

0 . In all cases, this scaling behaviour can be taken as defining the ‘units’ of the cor-
responding quantity – our definition here that the units of L be trivial differs from the
usual one (where L has units of ‘energy’), but this is merely a matter of convention.

This discussion should lead us to suspect that other invariance properties of L may
yield other ‘meta-theorems’, generalising in a way the dimensional analysis. Indeed that
is beautifully the case. By a symmetry of our system, we mean a diffeomorphism α of
the configuration space M respected by the physics:

L(α(q), α̂(q̇)) = L(q, q̇),

where α̂(q̇) is the induced map (derivative) on the tangent space with i th component∑
j
∂α(q)i

∂q j
q̇ j . Note that, unlike the rescalings considered in the previous paragraph, here

we’re requiring that L and hence all the physical constants be unchanged by α. Then
q(t) is a possible trajectory (i.e. a solution of (4.1.4)) iff α(q(t)) is.

Now, suppose we have a continuous family αs of symmetries, that is a one-parameter
subgroup s �→ αs in the Lie group of symmetries. This symmetry can be used to vary
the coordinates qi , q̇ j – and hence the action S (4.1.3) – infinitesimally. What does
Hamilton’s principle (δS = 0) tell us here? The answer (Noether’s Theorem2) is remark-
able: continuous symmetries yield conservation laws! Define the quantity (‘charge’)

Q := ∂L

∂q̇

(
∂αs(q)

∂s

)
∈ R.

This expression is meaningful because the ‘generalised momentum’ p := ∂L
∂q̇ is a section

of the cotangent bundle T ∗M, while the derivative ∂αs (q)
∂s of the path αs(q) (q fixed)

defines a section of the tangent bundle TM. Less formally, suppose αs sends qi to
qi + s fi (q, q̇, t), keeping only first order in the parameter s; then α̂s sends q̇i to q̇i + s d fi

dt ,
to first order, and Q =∑

i pi fi . In either case, an easy calculation from (4.1.4) shows
that Q is constant along each trajectory, that is Q is ‘conserved’. (A deeper reason for
this is that the Poisson bracket (4.1.6a) gives the space of solutions to (4.1.4) a symplectic
structure.)

For example, the gravitational potential V = −G m1m2
|x1−x2| is invariant with respect to

translations αs(x) = x+ sa for any fixed vector a ∈ R3. The charge Q here is a · p
where p is the ‘total momentum’ m1

dx1
dt + m2

dx2
dt . Varying a, we find that momentum

is conserved. We could say that the independence of the physics on absolute position

2 As is typical, this designation is a little unfair: Noether published this in 1918, but Jacobi already knew in
1842 the connection between translation symmetry and momentum conservation, and rotational symmetry
and angular momentum.
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implies conservation of momentum. Likewise, independence of the physics on absolute
time implies conservation of energy. In classical mechanics, Poincaré showed that all
conservation laws are due to an underlying symmetry: if Q is conserved, then the Poisson
bracket {Q, q}P of (4.1.6a) generates the corresponding symmetry. What is fundamental
here isn’t the Lie group action on TM, but rather the infinitesimal generators (Lie algebra
action), which need not be derived from a Lie group symmetry.

Another formulation of classical physics, useful for extensions to statistical and quan-
tum mechanics, is Hamiltonian mechanics. Recall the generalised momenta pi = ∂L

∂q̇i
.

Together, the variables qi , p j parametrise a 2n-dimensional manifold, the cotangent bun-
dle T ∗M, called phase space. The Hamiltonian H (qi , p j ) is the quantity

∑
i pi q̇i − L ,

expressed in variables qi , pi . Typically, it equals the total energy. The equations of motion
here, obtained by varying both qi and p j , are Hamilton’s equations:

q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
, (4.1.5)

that is 2n first-order differential equations, rather than the n second-order differential
equations of Lagrangian mechanics (4.1.4). Although Hamiltonian mechanics is not
always equivalent to Lagrangian mechanics, it is for typical systems. Because Hamilton’s
equations (4.1.5) are first-order, the configuration of the physical system at any time t
is uniquely determined by the point in phase space it occupies at a given instant t0.
Thus phase space serves as a moduli space for physics. A more careful treatment of
Hamiltonian mechanics requires the language of symplectic geometry – see, for example,
[15] for details.

In classical mechanics the observables, that is the physically measurable quantities
such as position, momentum or energy, are by definition real-valued smooth functions
A(q, p) on phase space. It is through the observables that a physical theory is compared
to experiment. The observables C∞(T ∗M) form an infinite-dimensional Lie algebra,
with bracket (in local coordinates) given by the Poisson bracket

{A, B}P :=
∑

i

(
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
(4.1.6a)

(see Question 4.1.2). Then Hamilton’s equations (4.1.5) imply

dA

dt
= {A, H}P , (4.1.6b)

where on the left A is evaluated on a trajectory (q(t), p(t)). The term ‘first integral’
refers to any observable that is constant along each trajectory; the first integrals form a
Lie subalgebra of dimension< 2dimM in the observables C∞(T ∗M). Equation (4.1.6a)
may seem obscure, but it is essentially equivalent to the natural bracket [X, Y ] of vector
fields on a manifold – see corollary 5, page 217 of [15] for details. As we see in the next
section, algebra arises in quantum field theory through the analogue there of Poisson
bracket.

For example, recall the harmonic oscillator. The generalised momentum p = mq̇ is
the usual momentum. The Hamiltonian H = 1

2m p2 + 1
2 kq2 is the energy. Hamilton’s
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equations tell us q̇ = p/m and ṗ = kq. Phase space is the plane R2, with ellipses as
trajectories. The basic Poisson bracket {q, p}P = 1 says the observables q, p, 1 span
Heis (recall (1.4.3)).

4.1.2 Special relativity

The fundamental theoretical advance of the nineteenth century was Maxwell’s electro-
magnetism (Section 4.1.3), which unified light, electricity and magnetism. Although both
Newtonian mechanics and Maxwell’s theory were enormously successful, they were in
some conflict. For instance, in Maxwell’s theory is obtained the formula

c := speed of light = 1√
ε0μ0

,

where ε0, μ0 are numerical constants associated with the vacuum. This seems to suggest
that the speed of light is itself a constant, independent of the observer. However Newton –
and common sense – would have us believe that the speed at which light, or anything
else, travels is variable. If light is emitted from a headlight with speed c, and a bug
approaches the oncoming car with speed v, then surely to it that light travels with speed
v + c.

The standard resolution in the nineteenth century was to regard Maxwell’s equations
as valid only with respect to a substance called the aether. The aether would be the stuff
in which light-waves wave (propagate) – it would be to light what air is to sound. This
aether concept was getting increasingly awkward as the century turned. Einstein’s act of
genius here was to flip the logic and trust Maxwell’s message. Thus, the speed of light
is the same for all observers: the light from that approaching car strikes the bug with the
same speed c it left the headlights. Special relativity consists of the modifications this
message implies for Newtonian physics. Indeed what we call magnetism can be thought
of as a relativistic correction to the electrostatic force; Maxwell’s electromagnetism was
the first relativistic theory, created years before Einstein’s birth.

The word ‘special’ in ‘special relativity’ arises because the equations are simplest
and fundamental only for a certain class of privileged observers called ‘inertial’ –
uniformly moving observers for which Newton’s First Law holds. A car rounding a
corner is certainly not inertial, but a coasting isolated spaceship could be treated as one
to good approximation. Special relativity also applies to accelerating observers, provided
one works infinitesimally. Physically speaking, general relativity (Section 4.1.3), which
removes this preferential treatment of inertial observers, is a mathematically elegant
global integration of the equivalence principle and locally applied special relativity.

An inertial observer is simply a choice of fixed basis in R4; the coordinates (x, t)
with respect to this basis, of a point (‘event’) x in R4 (‘space-time’), have the physical
interpretation to that observer as space and time coordinates. Not every choice of basis
is permitted: we require them to be orthonormal in the sense that the straight-line tra-
jectory (‘world-line’) (x(t), t) traced in space-time R4 by a beam of light is required to
satisfy (x(t)− x(0)) · (x(t)− x(0)) = c2t2 – this is what we mean by the speed of light
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being constant. Thus we are led to endow space-time R4 with the indefinite Minkowski
metric η = (ημν) = diag(1, 1, 1,−c2). We write x2 for x · x =∑4

μ,ν=1 xμxνημν and

x2 =∑3
μ,ν=1 xμxν . Basis transformations between inertial observers belong to the Lie

group O3,1(R). As mentioned in Section 1.4.2, it has four connected components; the
component containing the identity is the Lorentz group SO+3,1(R). Its universal cover
SL2(C) and their semi-direct products with translations R4 (the Poincaré group and its
double-cover) also arise in physics. Thus in special relativity space and time are coupled,
just as in Euclidean geometry the x, y, z coordinates are coupled (i.e. their independent
objective significance is denied). The disturbing dissimilarity between our qualitative
experiences of time and space is ignored by Einstein’s theory. Discovering what relation
this dissimilarity has to the different signs in the metric, or to the apparent magnitude
of c, clearly should be a fundamental task. By contrast, in Newtonian mechanics space-
time R4 factorises globally as R3 × R, and the basis transformations are taken from
O3(R)× {±1}.

That Maxwell’s equations are invariant under the Lorentz group was known before
Einstein. Einstein’s contribution was to interpret the Lorentz group as giving the trans-
formation of physical space and time. For example, the space-time transformation �

between two observers with parallel spatial coordinate axes but travelling with uniform
relative velocity v = (v, 0, 0), according to Einstein and Newton, is

� =

⎛⎜⎜⎜⎝
1√

1−v2/c2
0 0 v√

1−v2/c2

0 1 0 0
0 0 1 0
v/c2√
1−v2/c2

0 0 1√
1−v2/c2

⎞⎟⎟⎟⎠ , (4.1.7a)

� =

⎛⎜⎜⎝
1 0 0 v

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (4.1.7b)

respectively. Note that in the limit c →∞, (4.1.7a) tends to (4.1.7b). Physically, matrix
(4.1.7a) says that the lengths of moving objects shrink, and their clocks run more slowly.
This is not some illusion, optical or otherwise. For example, the muon is an unstable
elementary particle with an average lifespan of 2× 10−6 seconds when at rest. When
travelling at speed v, it will last on average 2× 10−6/

√
1− v2/c2 seconds. It will travel

further than it would have if (4.1.7b) had been the correct transformation, and because
of that will be able to participate in interactions that would have been too distant for a
muon behaving nonrelativistically. Other physical quantities transform similarly – for
example, the parameter m playing the role of relativistic mass equals m0/

√
1− v2/c2,

for some constant m0 called rest-mass. Now, expand this out using the binomial series:

m = m0 + 1

2
m0

v2

c2
+ 3

8
m0

v4

c4
+ · · ·
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Multiplying by c2, we recognise the second term as kinetic energy and we are led to
suspect that mc2 is the relativistic analogue of kinetic energy – that is, E = mc2 for a
free particle.3

In order to compare observations, we need to understand how the physical quantities
change when we switch inertial observers, that is, how they transform with respect
to the Lorentz group SO+3,1(R). Typically, they transform like matrix entries of SO+3,1-
representations. For example, the 4-vector (x, t) transforms with respect to the defining
representation of the Lorentz group, as does the energy-momentum 4-vector (p, E/c2),
and thus its Minkowski norm-squared p2 − E2c−2 is an observer-independent quantity
(a Lorentz scalar) and equals −m2

0c2. It is conventional to denote with superscripts the
components of any such 4-vector: for example, (x, t) = (x1, x2, x3, x4).

Writing equations of motion presents us with a challenge: in Newtonian physics we
always want to differentiate or integrate with respect to time; however, relativity teaches
that we shouldn’t treat time distinctly from the spatial coordinates. Moreover, ‘dt = dx4’
transforms like a component of a 4-vector, which isn’t necessarily what we want. The
solution is that the infinitesimal norm-squared dx2 − c2dt2 =: −c2dτ 2 is O3,1-invariant,
defining the ‘proper time’ τ , and so we should differentiate/integrate with respect to τ .
Physically, τ is the time coordinate in the (usually only infinitesimally inertial) reference
frame in which the particle is at rest. The Lagrangian L is a Lorentz scalar, and the action
(4.1.3) becomes

∫
L dτ . For example, the Lagrangian for a free particle (‘free’ means

no forces act on it, so the potential V is 0) can be taken to be

L = 1

2
m0

((
dx
dτ

)2

− c2

(
dx4

dτ

)2
)
.

The Hamiltonian, being energy, transforms like time.
But what if there are several particles: which proper times τi do we use? The τ for the

centre-of-mass, perhaps? In fact, this is a serious problem. The ‘No-Interaction Theorem’
(beginning with [124]) says that there can be no direct Lorentz-invariant interaction
between particles, except through forces localised at a point causing an instantaneous
change of velocity that don’t change the number of particles. As there do seem to be
unstable elementary particles (e.g. the muon) and gravity for instance isn’t localised to a
point, we have a problem. The obvious solution is to copy the first relativistic interaction
theory, namely Maxwell’s, and use fields (Section 4.1.3).

Special relativity says that the speed of light is fundamental to space-time. Modern
physics helps us to accept this seeming glorification of light, by saying that there is a
special speed c, and any particle with zero rest-mass m0 (such as the photon, which
mediates light) will always travel at that speed. But perhaps more can be said. Surely
space-time is not a fundamental physical quantity; eventually it will be recognised as a
fairly macroscopic epiphenomenon, and it will be understood how it arises operationally.

3 The equivalence of matter and energy was proposed 50 years before Einstein, by Mendeleev, the father of
the periodic table. Although his reasons were correct, his proposal was ignored and forgotten.
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For instance, we can measure distance using rigid bodies called metersticks and time
using quartz watches, but both this rigidity and periodicity are electromagnetic phe-
nomena. Perhaps the constancy of the speed of, for example, light will be understood
ultimately as a reflection of this circularity.

Einstein found the special treatment of inertial observers quite artificial. But it seems
that accelerating observers can experience interesting phenomena. For instance, consider
an observer S standing at the North Pole and an inertial observer T hovering above her, so
T watches S uniformly spinning at the rate of one cycle every 24 hours. Let’s assume for
simplicity that the Earth’s equator is a perfect circle; to T , the ratio of its circumference
to the diameter of the Earth at the equator should be π . However, if S was to measure
precisely the circumference and the diameter, she would find their ratio for this ‘circle’
to be (very slightly) greater than π . The reason for this is because S’s observations must
be consistent with T ’s: (4.1.7a) tells us that lengths parallel to the motion (such as S’s
metersticks along the equator as seen by T ) will dilate by some factor

√
1− v2/c2, while

lengths perpendicular to the motion (e.g. the diameter) will remain unchanged. Likewise,
S will find that her wristwatch will tick more quickly than a clock placed on the equator,
even though both are at rest relative to her. Thus both geometry and physics change for
non-inertial observers! (For a fairly convincing argument that gravity requires curved
space-time, see section 7.3 of [422].)

In fact relaxing the inertial observer restriction provided Einstein with the key to
his remarkable explanation of gravity. As mentioned earlier, the gravitational ‘charge’
numerically equals the mass m seen in formulae such as F = ma or T = 1

2 mv2 – this is
precisely what Galileo’s Pisa experiment was designed to verify. There are other ‘forces’
with this same property, for example the pull we feel when riding a merry-go-round. This
got Einstein thinking: perhaps gravity is as fictitious as a centrifugal force? When we
are in free-fall – whether in an orbiting spaceship or in an elevator suddenly decoupled
from its cable – it is as if we are free of gravity, much as we are suddenly free of the
centrifugal force when we step off the merry-go-round. This is the equivalence principle,
which constitutes the only new physical content of general relativity. We are led to the
thought that the gravitational ‘force’ experienced while sitting in a chair isn’t due to
the matter in the Earth pulling us towards it, but rather merely a consequence of the
chair interfering with our natural inertial motion, just as does a car rounding a corner.
All observers are physically valid, but awkward choices (such as me in a chair or in a
turning car) introduce fictitious forces such as gravity. Everything tries to move in as
straight a line, and with as constant a speed, as possible (at least if it’s not under the
influence of a true force like magnetism); that astronomical effect we call ‘gravity’ is
merely a consequence of the fact that ‘straight’ has only a local significance. Space-time
is not the vector space R4, but rather a nontrivial (curved) four-dimensional pseudo-
Riemannian manifold. Gravity is the convergence or twisting of nearby geodesics; what
we perceive as the elliptical revolution of the Earth about the Sun is merely the gentle
entwining of the Earth’s geodesic with the Sun’s (Figure 4.3). General relativity, which
we discuss briefly at the end of the next subsection, makes these thoughts mathematically
precise.
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time

Sun

Earth

Fig. 4.3 The revolution of the Earth about the Sun.

4.1.3 Classical field theory

In physics, a ‘field’ is as in ‘vector field’ rather than ‘number field’. It means a function
of (usually) space-time, or more precisely a section of some vector bundle whose base is
space-time. The most familiar example is Newton’s gravitational field, namely the grav-
itational potential V (x, t). Another example is Maxwell’s electromagnetic field F(x, t),
which is matrix-valued.

Until now, we’ve been interested in particle dynamics, and the fields were auxiliary.
To analyse how object A gravitationally influences object B, we first calculate how A
influences the gravitational field, and then how the gravitational field influences B. In
classical field theory, the field is a mechanical system in its own right – for example,
it carries energy much like a fluid. It allows us to avoid the No-Interaction Theorem of
relativistic dynamics. In quantum field theory discussed in the next section, the field is
primary and the particle becomes an auxiliary phenomenon called a quantum, apparent
only asymptotically.

A cherished physical principle, going back at least to Faraday, is called locality. The
idea is that the only way we can directly affect something, is by nudging it. In order to
influence something not touching us, we must propagate a disturbance from us to it, such
as a sound-wave in air or a ripple in water. Special relativity sharpened locality into the
requirement that no disturbance or influence can travel faster than light, so that space-
time points (x, t), (x′, t ′) that are space-like separated (i.e. obey (x− x′)2 > c2 (t − t ′)2)
are causally independent.4 As Faraday himself noted, locality leads to the concept of
field. This is the main purpose for both classical and quantum fields – they provide a
natural vehicle for realising locality.

Before, configuration space was finite-dimensional, with coordinates (q1, . . . , qN ).
Now our coordinates have a continuous index, qx = q(x), and configuration space
is a space of functions. The Lagrangian in particle dynamics looks like

∑
i Ti −∑

i, j Vi j . Now the sums are replaced by integrals and the Lagrangian becomes

4 Strictly speaking this isn’t a consequence of relativity, and in fact some physicists have entertained the
possible existence of particles (‘tachyons’) that travel faster than light. These would behave curiously (e.g.
they slow down the more energised they become), but like us they would require infinite energy to
reach the speed of light – sadly, once a tachyon, always a tachyon. The difficulties facing the existence of
tachyons are causality paradoxes. If P and Q are two space-like separated events, then there are reference
frames in which P occurs before Q, and others in which Q occurs before P (why?). Hence if we had a gun
that shot tachyonic bullets, then to some observers our victim would die before we pulled the trigger.
Though not a logical contradiction, it is distinctly odd. Almost all physicists dismiss tachyons and
faster-than-light influences as science fiction.
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L = ∫ ∫ ∫
L dx dy dz for some function L called the Lagrangian density. L is a function

of the fields φ(x, y, z, t) and their partial derivatives ∂xφ, etc. (together with contribu-
tions from particles). In field theory, L is more elementary and fundamental than L .
Locality takes the form here of requiring that L only involves one space-time point. For
each field φa there is a field equation

∂

∂t

∂L
∂(∂tφa)

+
∑

i

∂

∂xi

∂L
∂(∂iφa)

= ∂L
∂φa

, (4.1.8)

which describes the behaviour of the field. Additional equations (4.1.4) exist for each
particle degree-of-freedom qi present. The easiest example is the one-dimensional con-
tinuous Hooke’s Law (e.g. vibrations in a rod). Our field here will be the amplitude
φ(x, t) of the vibration at a point x on the rod. The Lagrangian density is

L(x, t) = 1

2

{
μ

(
∂φ

∂t
(x, t)

)2

− y

(
∂φ

∂x
(x, t)

)2
}
,

where μ is a constant called the mass density and y is a constant playing the role here
of k. The first term is the kinetic energy density and the second (up to a sign) is the
strain, or potential energy, in the rod. The field equation (4.1.8) gives usμ ∂2φ

∂t2 − y ∂2φ

∂x2 =
0. This is easy to solve; physically it corresponds to a wave propagating with speed
v = √y/μ.

Define the momentum π (x, t) = ∂L
∂(∂tϕ) conjugate to each field ϕ(x, t). Then the field

equations (4.1.8) can be written as Poisson brackets involving Dirac deltas:

{ϕ(x, t), π (x′, t)}P = δ(x− x′), (4.1.9a)

{ϕ(x, t), ϕ(x′, t)}P = {π (x, t), π (x′, t)}P = 0. (4.1.9b)

In special relativity, the Lagrangian density L transforms trivially (i.e. is a ‘scalar’)
under the Lorentz group, and the fields φa span various representations R of the Lorentz
group: that is, φ′a(x ′) =∑

b R(�)abφ
b(x) where primes denote quantities in the refer-

ence frame (or R4-basis) obtained from the unprimed one using Lorentz transformation
�.

An example important to physics (but not to us) is electromagnetism. The electro-
magnetic field has components Fμν := ∂Aν

∂xμ − ∂Aμ

∂xν , where A4 is the electric potential and
A = (A1, A2, A3) is the magnetic potential. This field F transforms in a six-dimensional
representation of the Lorentz group. The Lagrangian density is

L = −1

4

∑
μ,ν,α,β

Fμν Fαβ (η−1)μα(η−1)νβ − 1

c

∑
μ

jμ (η−1)μν Aν =:
−1

4
FμνFμν− 1

c
jμAμ,

where j is the electric current 4-vector describing the distribution and motion of charged
particles. The matrix η−1 arises here in its Riemannian role defining an inner-product.
The second expression is much more transparent, and uses η±1 to lower/raise indices,
and summing over repeated indices. Of course to the Lagrangian must be added the
(relativistic) kinetic energy of the particles or fields. The resulting field equations, called
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Maxwell’s equations, tell us for instance how charged particles create an electromagnetic
field.

We see in Section 4.1.1 that even the simplest classical systems can have singular
solutions, so the situation for classical field theory can only be worse. Most famous is the
self-energy of charged particles in electromagnetism, discussed beautifully in chapter 28,
vol. II of [188]: a charged particle localised to a point has infinite mass coming from the
electromagnetic field. To see this, imagine that we hold half an electron in our left hand
and the other half in our right; to make the electron whole we would have to connect these
two repulsive halves, and an easy calculation (namely the integral− ∫ 0

1 r−1dr = ∞) says
this requires infinite energy. This problem persists in its quantisation.

A remarkable classical field theory is Einstein’s general relativity, in which space-
time is a pseudo-Riemannian manifold with metric tensor g(x), locally (but not glob-
ally) equivalent to the Minkowski metric η. Ignoring for convenience other forces, the
Lagrangian density for a single particle is

L(x) = 1

2
m0

∑
μ,ν

gμν(x)
dxμ

dτ

dxν

dτ
δ4(x − x(τ ))+ c3

16πG

√
−det gR, (4.1.10)

where G is Newton’s gravitational constant and R is a geometric quantity (a measure
of the radius of curvature of space-time at x). δ4 is the highly singular Dirac delta. The
numerical constant c3/16πG, establishing the coupling strength between space-time and
matter, is chosen so that Einstein’s theory agrees with Newton’s in the appropriate limit.
Varying the particle’s coordinates xμ yields the geodesic equation

d2xμ

dτ 2
+
∑
ν,κ

�μ
νκ

dxν

dτ

dxκ

dτ
= 0,

describing the straightest possible curves in the manifold (�μ
νκ are the Christoffel sym-

bols). Varying the metric g yields Einstein’s field equations

Rμν − 1

2
Rgμν = 8πG

c4
Tμν. (4.1.11)

Rμν are components of the Ricci tensor and Tμν are those of the stress-energy tensor
defined below. The left side is geometrical, depending on first and second partial deriva-
tives of gμν , while the right side is physical, depending on the matter fields. Einstein’s
field equations (4.1.11), which tell us how matter and energy curve space-time, consist
of 10 coupled nonlinear second-order partial differential equations for the components
gμν .

The relation between symmetries and conserved quantities in field theory takes the
following form (generalised in Question 4.1.1). Suppose the Lagrangian density L is
invariant under a continuous symmetry αs . Associate with αs the 4-vector

jμ(x) = ∂L
∂(∂φ/∂xμ)

(
∂αs(φ)

∂s

)
, (4.1.12a)
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for μ = 1, 2, 3, 4, called the ‘current’. Then j(x) is conserved, that is it obeys

∂μ jμ :=
4∑

μ=1

∂ jμ

∂xμ
= 0. (4.1.12b)

This equation tells us to think of j4(x) as the density of some abstract fluid, and j(x) =
( j1(x), j2(x), j3(x)) as its velocity at each space-time point x . Equation (4.1.12b) tells
us that this ‘fluid’ is neither created nor destroyed, so that the total quantity (‘charge’)
Q(t) = ∫

j4(x) dx1 dx2 dx3 (if the integral exists) is constant: dQ
dt = 0.

For example, the invariance of the Lagrangian density L with respect to time and
space translations xν �→ xν + aν gives us the ‘current’ T μν(x) (one for each ν) called
the stress-energy tensor. The ‘charges’ Qν here are the total momentum and energy. Or
consider the full Lagrangian density for the coupling of the electromagnetic field F to a
complex scalar field φ with mass m, charge e and potential V :

L = −1

4

∑
FμνFμν +

∑(
∂

∂xμ
− ieAμ

)
φ

(
∂

∂xμ
+ ieAμ

)
φ − m2φ∗φ − V (φ∗φ).

(4.1.13)

The terms only involving φ and φ∗ form the Lagrangian for the field φ alone, while
the terms involving both φ and A define the interaction. Note that there is a U1 group
symmetry of L, which acts trivially on F and A but acts on φ by αs(φ) = eieαφ. Then
Q is indeed proportional to e. We return to this example next section.

Question 4.1.1. (a) Prove the following generalisation of Noether’s Theorem. Suppose
we have a continuous family αs of diffeomorphisms of configuration space such that

L(αs(q), α̂s(q̇)) = L(q, q̇)+ d

dt
�(q, q̇),

for some function �. First, verify that q(t) is a possible trajectory iff αs(q(t)) is. Next,
verify that the quantity

Q = ∂L

∂q̇

(
∂αs(q)

∂s

)
−�

is constant along any trajectory.
(b) The Lagrangian for a free Newtonian particle is L = 1

2 mẋ2. Take αs(x) = x+ s a for
some constant vector a ∈ R3. Find � here, and verify that the ‘charge’ Q is m x(0).

Question 4.1.2. Verify that the space C∞(T ∗M) of observables, with bracket given by
(4.1.6a), defines a Lie algebra, and that the first integrals form a Lie subalgebra.

4.2 Quantum physics

We tend to have a naive view of progress in science, namely that the old theory gets
superseded by a new theory that is better in every meaningful respect: any phenomenon
the older theory could explain, and any question the older theory could answer, the
new theory would explain and answer at least as accurately; moreover, there would
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be phenomena and questions that the older theory avoids but the newer, better theory
handles adroitly. In reality, progress in science (in contrast to progress in technology) has
much in common with progress in popular music or in, say, America’s ability to elect
great presidents. Copernicus’ circular orbits match observation worse than Ptolemy’s
epicycles. More significantly, Copernicus required the Earth to move at incredible speeds,
which mysteriously no experiment could ever detect (e.g. when we jump straight up, we
come straight down). Ptolemy himself rejected the heliocentric hypothesis for these and
several other good reasons. It was only after Galileo explained the role of inertia, after
Copernicus’ time, that Copernicus’ unoriginal idea became scientifically reasonable. Of
course to us today all motion is relative and the proceedings of that Great Debate belong in
the voluminous Library-of-Dead-Religions. For another example, Aristotelian physics
regarded friction as fundamental and the pendulum as complicated derived motion,
whereas Newtonian physics regarded the pendulum as simple and friction as compound.
In fact, classical physics never successfully explained friction – our present explanation
requires quantum mechanics to correctly handle the relevant molecular forces (namely
the van der Waals forces, which are residuals of the underlying electromagnetic forces).
At least in part, ‘progress’ in science is a sociological phenomenon, a mantra bubbling
on the lips of scientists as they pursue questions they are willing and able to address.

In any case, the conceptually and mathematically elegant classical mechanics has
been superseded by the fairly incoherent quantum physics. A century has passed since
the birth of the quantum, and although almost all physicists today regard quantum theory
as having successfully transcended classical physics, it is dangerous to conclude much
from this. But one thing is certain: mathematics has been a great beneficiary of this
‘transcendence’.

4.2.1 Nonrelativistic quantum mechanics

For fixed time t , the state of a single particle in quantum mechanics can be captured
by a complex-valued wave-function x �→ ψ(x, t). Its interpretation is rather different
from ‘state’ in classical physics: the quantity |ψ(x, t)|2 is the probability density that the
particle is at position x at time t . Probability arises here not because of uncertainty of
our knowledge, nor because of unavoidable disturbances caused by our heavy-handed
measuring processes. Rather, it is a fundamental ingredient of quantum reality. God’s
analysis too would stop at this probability.

Recall the discussion of Hilbert spaces in Section 1.3.1, in particular the rigged
Hilbert space S(Rn) ⊂ L2(Rn) ⊂ S(Rn)∗, where the Schwartz space S(Rn) consists of
all smooth functions falling off with their derivatives to 0 quickly as |x | → ∞ and where
the Hilbert space L2(Rn) consists of the square-integrable functions with inner-product

〈φ,ψ〉 :=
∫

Rn

φ(x)ψ(x) dnx.

For each time t , the span of the possible time-slices (states) ψ(�, t) form the Schwartz
space S = S(R3), while their topological span forms the Hilbert space H = L2(R3).
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We require the wave-function ψ to be normalised: 〈ψ,ψ〉(t) = 1 ∀t . Observables here
correspond to self-adjoint operators Â : S → S. For example, the operator associated
with measuring the i th coordinate of position takesψ �→ xiψ , while energy is associated
with the operator i� ∂

∂t (we can use (4.2.1) below to express it using spatial derivatives)
and the i th component of momentum with the operator −i� ∂

∂xi
.

The role of phase space is (loosely) played here by the projectification S/C, since the
physical states corresponding to nonzero multiples cψ are the same. This is significant
because it tells us that groups can act on S via projective representations, and still be
well-defined. This persists in all quantum theories and has many consequences. Not all
ψ ∈ S though are actually physical states – for example, it appears that every physical
state must have a definite electric charge, that is be an eigenvector of some charge
operator, and of course most ψ ∈ S aren’t.

There are two independent ways the wave-function evolves in time. The first way is
through Schrödinger’s equation, which is the linear partial differential equation

i�
∂ψ

∂t
= − �2

2m
∇2ψ + V (x)ψ, (4.2.1)

where V is the potential energy (which acts multiplicatively onψ), � is Planck’s constant
and ∇2 is the Laplacian ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
. Schrödinger’s equation governs the determin-

istic, unitary evolution of ψ occurring between measurements. It is standard to choose
units so that Planck’s constant � equals 1 (recall the discussion in Section 4.1.1); however,
in units natural to our familiar macroscopic world (e.g. metres, kilograms and seconds)
its magnitude (about 10−34) emphasises just how invisible quantum effects are to us.

Schrödinger’s equation can be formally integrated, and we obtain

ψ(x, t) = U (t)ψ(x, 0), (4.2.2)

where U (t) = exp[−iĤ t/�] is a unitary operator on S (hence H) for the Hamiltonian
operator Ĥ given by the right side of (4.2.1). Conversely, we could have anticipated
(4.2.1) by the following reasoning. The time evolution (4.2.2) should be given by a lin-
ear operator U (t) independent ofψ (so U (s) U (t) = U (s + t)), which preserves the nor-
malisation: ‖U (t)ψ(x, 0)‖ = ‖ψ(x, t)‖ = 1. This implies that U (t) = exp[iH ′t], that is
∂ψ/∂t = iH ′ψ , for some self-adjoint operator H ′. For physical reasons we would expect
H ′ to have something to do with energy, that is the classical Hamiltonian H , since energy
is the conjugate observable to time just as momentum is to position. Indeed, Schrödinger’s
equation (4.2.1) comes from the nonrelativistic formula for energy (E = 1

2m p2 + V ),
together with the quantum mechanical substitutions E �→ i� ∂

∂t and p �→ −i�∇.
The second type of wave-function evolution is indeterministic and discontinuous,

and occurs at the instant t0 when a measurement is made. Let Â be the self-adjoint
operator corresponding to the observable being measured. Assume for simplicity that
its spectrum (i.e. its set of eigenvalues) is discrete and nondegenerate. Then there is an
orthonormal set {ψa(x)} ⊂ S of eigenvectors spanningH (topologically). So Âψa = aψa

and 〈ψa, ψb〉 = δab. If ψ is the wave-function of the particle being observed, write
ψ(x, t0) =∑

a caψa(x). The result of the observation will be one of the eigenvalues a,
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a0 say, but which one cannot be predicted in advance. All that can be said is that |ca|2 is the
probability that a will be the one observed. Nothing was responsible for the given eigen-
value a0 arising – two completely identical quantum systems can (and usually will) yield
different observed values. At time t0 the wave-function ψ suffers a spontaneous and dis-
continuous change ψ �→ ψa0 (or more generally the orthogonal projection of ψ into the
a0-eigenspace). For times immediately after t0, the wave-function then proceeds to evolve
by (4.2.1). This second type of evolution is necessary for the experimental consistency
of the theory: experimental results can be reproduced! It is a truly physical evolution,
and not merely book-keeping reflecting a change in our knowledge of the system.

For example, the simultaneous eigenvalues p = (p1, p2, p3) ∈ R3 of the three momen-
tum operators correspond to eigenfunction ψp(x, t) = eip·x/�, while the simultaneous
eigenvalues a = (a1, a2, a3) ∈ R3 of the position operators have eigenfunctions given
by the three-dimensional Dirac delta δ3(x− a). These spectra aren’t discrete and (gener-
alised) eigenfunctions aren’t square-integrable (rather they are tempered distributions –
Section 1.3.1), because exact position and momentum observations in quantum theory are
nonphysical idealisations (e.g. probing infinitesimal distances requires infinite energy).
Moreover, since the position and momentum operators don’t share any eigenvectors, it
is meaningless to speak simultaneously of the (numerical) position and momentum of a
particle: in quantum mechanics a particle cannot have a well-defined trajectory.

This framework generalises in the obvious ways. For n particles, the wave-functionψ
looks like ψ(x1, . . . , xn, t) and on the right side of (4.2.1) the Laplacian ∇2 get replaced
by the sum of n Laplacians ∇2

i , one for each xi .
This treatment of many particles indicates a weak point of quantum mechanics. Exper-

iment tells us that the number of elementary particles can change, for example, a muon
can decay into an electron and two neutrinos. It is rather difficult to believe that the
fundamental equation of motion in physics changes discontinuously with time, but that
is how quantum mechanics would model the decay of, for example, the muon: at some
time t0 the wave-function would acquire six more variables and Schrödinger’s equation
six more terms. The way out (Section 4.2.2) simultaneously handles all numbers of
particles.

The fascinating measurement problem of quantum physics, present in any quantum
theory, is the struggle to understand this dichotomy of wave-function evolutions. What is
so special about measurement, that it should obey special laws? After all, surely a mea-
surement is merely a certain kind of physical process. Many remarkable elaborations
have been proposed by respected physicists, for example, that the universe splits into
different ‘parallel universes’ after each measurement, or that a measurement involves the
imposition of mind on matter. Precisely what constitutes a measurement? Any quantum
measurement involves the amplification of a microscopic quantum property or effect to
a macroscopic one. What does quantum physics tell us about the macroscopic (classical)
world? The linearity of Schrödinger’s equation implies that linear combinations (‘super-
positions’) of solutions will again be solutions. Now, microscopic superpositions are
well-observed and fundamental to the theory; during a quantum measurement (if not at
other times) macroscopic superpositions should be unavoidable. However, what would
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Fig. 4.4 The golf ball experiment.

a macroscopic superposition look like? Why have we never observed the superposition
of, for example, a live and dead cat? We are led to the suspicion that quantum physics is
incompatible with our most elementary qualitative observations of (macroscopic) phys-
ical reality.

To make this more precise, consider the situation depicted in Figure 4.4, where a
machine randomly putts golf balls towards two barriers, one behind the other. When
a hole is cut into the first barrier, as in Figure 4.4(a), the balls that reach the second
barrier (i.e. pass through the hole) will impact it at roughly the same spot – the tra-
jectories of golf balls over short distances are approximately linear. And if we cut two
holes into the first barrier, we will get the result depicted in Figure 4.4(b). (We ignore
all balls that get stopped by the first barrier.) Now suppose that whenever we avert our
eyes for a few minutes, the golf balls make instead the impact pattern of Figure 4.4(c).
That unbelievable phenomenon would suggest that changing the nature of our obser-
vation can dramatically affect golf ball trajectories. Classically, there is no evidence of
this.

Of course that is precisely what occurs in the remarkable two-slit experiment, where
electrons are fired at a screen. The electron wave-function ψ is the normalised super-
position 1√

2
(ψa + ψb) of wave-functions corresponding to travel through the a-slit or

the b-slit. Individually, the wave-functions ψa(x, t) and ψb(x, t) both give rise to the
probability density (for the arrival spot on the screen behind the two slits) we would
expect from the golf balls of Figure 4.4(a). However, their superposition ψ gives rise
to probabilities 1

2 |ψa + ψb|2 �= 1
2 |ψa|2 + 1

2 |ψb|2 – the two possible paths of the electron
interfere with each other, much as they would if an electron were, for example, a water
ripple. If we were to try to detect which slit the electron goes through, say by setting
up a detector at each slit (as in Figure 4.4(b)), this additional measurement would first
‘collapse’ ψ into either ψa or ψb (with equal probabilities). The resulting probability
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density for the arrival spot would be the particle-like |ψa|2 or |ψb|2, respectively (or
1
2 |ψa|2 + 1

2 |ψb|2 if we don’t keep track of which slit the electron passed through).5

So why can’t macroscopic states interfere? The special feature (‘decoherence’) of
a macroscopic system seems to be that it is under unavoidable continuous interaction
with the environment, through gravity if nothing else. Macroscopically distinct states
(e.g. different pointer positions on an instrument, or golf balls rolling through different
holes) couple differently to the environment, and so the macroscopic system becomes
thoroughly and irreversibly entangled with the environment. This entanglement is essen-
tially irreversible because any interaction that succeeded in untangling the coupling of the
state with the environment would require enormous numbers (1027 or so) of degrees of
freedom to conspire appropriately. This has the effect of making the macroscopic states
essentially ‘decohere’ from each other, that is, the interference terms 1

2ψAψB + 1
2ψBψA,

when expanded into the disordered microscopic degrees of freedom, get averaged away
to zero. To get the flavour of decoherence, consider the wave-functions ψA,B describing
classical objects A, B. They are actually functions of 1027 or so space variables xi j , but
because they are macroscopic we would expect them effectively to be functions of our
familiar three-dimensional space. Moreover, they would be essentially localised in this
space, so |ψA(x, t)+ ψB(x, t)|2 = |ψA(x, t)|2 + |ψB(x, t)|2, provided A and B are sit-
uated a macroscopic distance apart (i.e. provided the supports of the effective functions
ψA and ψB are disjoint). This is decoherence.

Of course alone this doesn’t resolve the measurement problem. At best decoher-
ence can only explain why macroscopically distinct states in superpositions don’t ‘see’
each other. A (perhaps overly zealous) application of quantum mechanics insists that
macroscopic superpositions must occur; from this, the ‘Many-Worlds’ interpretation is
inevitable. The explanation for the mysterious wave-function collapse then would be that
measurement entangles the quantum system ψq =∑

ciψ
q
i with a macroscopic system

ψc – that is, via Schrödinger’s equation, the decoupled wave-functionψqψc relevant just
prior to measurement would be replaced with the coupled wave-function

∑
ciψ

q
i ψ

c
i just

after. Each coupled state (‘world’) ψq
i ψ

c
i in this superposition would decohere from the

others, and so the various quantum states ψq
i could no longer ‘see’ each other. It would

be as if at the moment of measurement, the universe split into parallel universes, one
for each possible experimental outcome. The ‘Many-Worlds’ interpretation is quantum
mechanics in its purest form; in this framework measurement is a physical process sub-
ject only to Schrödinger’s equation, and neither wave-function collapse nor the splitting
of universes actually occurs. The price of this demystification of measurement is a real-
ity in which almost everything is hidden from us, including infinitely many near-copies
of ourselves.6 A derivation of sorts of the probability rule is also possible within this
framework.

5 We shouldn’t over-emphasise this ‘wave–particle duality’. ‘Waves’ and ‘particles’ are classical metaphors;
an electron is neither. Even the name ‘wave-function’ for ψ is an anachronism going back to de Broglie’s
hypothesis that an electron behaves like a wave with wavelength h/p.

6 In defence of this uncomfortable aspect of Many-Worlds, Nature – unlike us – clearly loves enormous
numbers of nearly identical copies. Consider blades of grass in a field, or water molecules in a lake (or
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We’ve only sketched one possible interpretation. There are many others. For instance,
the presence of probability in quantum mechanics strongly suggests that we are ignor-
ing certain degrees of freedom – after all, this is what probability signifies in classical
mechanics. It is possible to formulate quantum mechanics as a deterministic classical
theory, by introducing ‘hidden variables’. In the case of one particle, these hidden
degrees of freedom would be the position coordinates x(t) of the particle. The coor-
dinates x(t) obey a differential equation involving the wave-function ψ , which in turn
obeys Schrödinger’s equation. A similar formulation can be made for any number of
particles. However, ‘Bell’s Theorem’ says that any multi-particle hidden variables the-
ory must possess the notorious feature called ‘nonlocality’. This means that an influence
(e.g. measurement) done on one particle can instantaneously affect the state of a dis-
tant particle. Nonlocality in a theory warns of possible difficulties in making the theory
relativistic.

The approaches to the quantum measurement problem illustrate the desperate imagi-
nation that squirts from our pores when we’re backed into a corner. See the book [556]
for more details, examples and references to the literature. Like any other metaphysical
doctrine, an interpretation is chosen not for its approximation to Truth, but because we
find intriguing (and publishable!) the avenues of study it suggests.

For a one-dimensional example of a quantum system, consider once again the harmonic
oscillator. The potential is V = − k

2 x2, so Schrödinger’s equation here reads

i�
∂ψ

∂t
= − �2

2m

∂2ψ

∂x2
+ k

2
x2 ψ. (4.2.3a)

Because the potential V is independent of time, this is separable into energy eigenstates:
write ψ(x, t) = e−iEt/�ψE (x), where

− �2

2m

d2ψE

dx2
+
(

k

2
x2 − E

)
ψE = 0. (4.2.3b)

In order for ψ to be normalisable, we require the boundary conditions ψ(x, t) → 0

as |x | → ∞; this implies (with a little work) that E = (n + 1
2 )�
√

k
m for n ∈ N, that is

energy is quantised and bounded from below.

A useful idealisation is the step-function potential V (x) =
{

0 if x < 0
V0 otherwise

, where

V0 is constant. Solving the corresponding one-dimensional Schrödinger’s equation with
the requirement that both ψ and its derivative ∂ψ

∂x be continuous at x = 0, we obtain

ψ(x, t) = e−iEt/�

{
A exp(ip+x/�) for x > 0

exp(ip−x/�)+ B exp(−ip−x/�) for x < 0
,

where p+ =
√

2m (E − V0) and p− =
√

2m E are the classical momenta (at least for
E > V0), and A = 2 p−

p++p−
and B = p−−p+

p++p−
. Physically, this describes a wave (energy

perhaps research publications?). Or more to the point, consider the uncountably many moments making up
each life.
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eigenstate) travelling to the right from x = −∞, with energy E > 0; it hits the wall at
x = 0, part of it continuing to positive x and some of it reflecting back to negative x . If
we were to measure whether or not reflection happened, we would find that reflection
happened with probability |B|2 = 1− |A|2. Note that we get some very nonclassical
behaviour: classically, when E > V0 the whole wave would be transmitted to positive
x , but here some of the wave is reflected, even when V0 < 0! It is as if we are about
to tumble over Niagara Falls in a barrel, only to bounce back the instant we reach the
precipice. Related to this is quantum tunnelling (Question 4.2.2).

Quantum mechanics was born around 1926 when Schrödinger obtained (4.2.1) and,
simultaneously, when Heisenberg and others developed an equivalent formulation.
Unlike Schrödinger’s picture, in Heisenberg’s the state $ of the system is regarded as
constant in time, and the time-evolution is carried by the observables Â. It is completely
analogous to the two attitudes towards observables carried in classical mechanics: we
can view an observable A(q, p) as a time-independent C∞-function on phase space, or
we can regard it as a function A(q(t), p(t)) of time. The equivalence between these two
pictures of quantum mechanics is straightforward: the Heisenberg state $ ∈ S can be
taken to be the wave-function ψ(�, 0) at time t = 0, while the Heisenberg operator Â(t)
corresponds to Schrödinger’s operator Â via the relation Â(t) = U (t)−1 ÂU (t), where
U (t) = exp[−iĤ t/�] as before. Differentiating, we find that the equation of motion in
Heisenberg’s picture is given by commutation with Ĥ :

d

dt
Â(t) = − i

�

[
Â(t), Ĥ

]
. (4.2.4)

In relativistic quantum theory, Heisenberg’s picture is more convenient because time
doesn’t play as privileged a role. In particular, just as U (t) describes translations in time,
a unitary operator V (x) describes translations in space, and so we can regard the state$ as
independent also of space. More generally, we have a unitary (projective) representation
(a,�) �→ U(a,�) of the Poincaré group, acting on the infinite-dimensional space of states.

Equation (4.2.4) should look familiar: it is formally identical to the classical evolution
(4.1.6b) of observables, provided we replace the Poisson bracket of classical observables
there with the commutator of the quantum observables (up to the factor i�). Other
examples of this are the calculations {x, p}P = 1 and [̂x, p̂] = i�I . In other words,
the process (‘quantisation’) of going from classical mechanics to the corresponding
quantum mechanics defines a representation of the Lie algebra C∞(T ∗M) (with Poisson
bracket) into the Hilbert spaceH. However, this quantisation is clouded somewhat by the
observation that the classical space C∞(T ∗M) is also an associative commutative algebra
using pointwise product ( f g)(y) = f (y) g(y) of the functions, and that this product is
also important as it is how we can build up general observables from the elementary
ones xi , p j . Unfortunately, there is no direct analogue of this second product for the
space of self-adjoint operators on H (or S). The closest would be the operation A ∗ B =
1
2 (AB + B A), which makes the space of quantum operators into a (non-associative)
Jordan algebra, originally named after the quantum physicist Pascual Jordan but now
part of standard algebraic repertoire.
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An alternate, rather intriguing approach to quantisation seeks to formulate quantum
mechanics in terms of a one-parameter deformation of the pointwise product algebra
A = C∞(T ∗M) (see [141] for a review). In particular, let A[[λ]] denote the space of
all formal power series in λ with coefficients in A. We add these power series term
by term in the obvious way, but the product in A[[λ]] is more complicated (though
necessarily associative). Expand out the product: f � g =∑∞

k=0 Ck( f, g) λk , where for
each f, g,Ck( f, g) ∈ A. Because it is a deformation we require C0( f, g) to equal the
usual pointwise product f g. In order to relate this to quantum mechanics, we also
require that the coefficient C1( f, g)− C1(g, f ) of the leading term in the commutator
f � g − g � f be the Poisson bracket 2{ f, g}P . We think of the deformation parameter
λ as equalling i�/2. The main appeal of this approach to quantum mechanics is that
classical and quantum mechanics are placed on the same page, so rigorous sense can be
made of the statement that we recover classical physics from the � → 0 limit. However,
it can be criticised for making classical mechanics logically prior to quantum mechanics,
when the reverse would seem more natural. Also there are some quantum mechanical
systems that don’t seem to have a classical analogue. Kontsevich was awarded his Fields
medal in 1998 in part for his proof that such a deformation exists not only for any phase
space X = T ∗M (this was known before), but more generally for any differentiable
manifold X on which can be defined a Poisson bracket (a Lie algebra structure for
C∞(X )).

Consider the harmonic oscillator in Heisenberg’s picture. The possible states span a
space S, dense in a Hilbert space H. Define the operators

â = (km)1/4

√
2�

[̂
x + 1√

km
îp

]
, â† = (km)1/4

√
2�

[̂
x − 1√

km
îp

]
(4.2.5)

acting on S. These are called annihilation and creation operators, respectively. Note that
[̂a, â†] = I , the identity operator. Hence I, â, â† define a representation of Heis (1.4.3)
on the infinite-dimensional space S. Let’s find a more explicit realisation of this repre-
sentation. This requires identifying the vacuum state |0〉 ∈ S, that is an eigenvector of the
Hamiltonian Ĥ with minimal eigenvalue (i.e. a state with lowest energy), normalised so
that ‖|0〉‖ = 1. Physically, the vacuum denotes the ground state, containing no particles.

The energy operator, that is the Hamiltonian, becomes Ĥ = p̂2

2m + x̂2

2 = (̂a †̂a + 1
2 ) �

√
k
m

(as usual it is time-independent). The vacuum obeys â|0〉 = 0 (why?) and has energy

E0 = 1
2 �
√

k
m (i.e. that is its Ĥ -eigenvalue). Assume that the vacuum is nondegener-

ate, that is the eigenspace associated with energy E0 has dimension 1 – a degenerate
vacuum would correspond to a number of non-interacting equivalent oscillators work-
ing in parallel. This assumption implies that the vacuum vector will be unique up to
a phase eiα|0〉 (choose one), and that the vacuum state is well-defined. Define vectors
|n〉 := (n!)−

1
2 (̂a†)n|0〉. This curious notation is due to Dirac: the functional 〈�| ∈ S∗

is called a bra, the vector |�〉 ∈ S a ket, and the evaluation 〈�|�〉 ∈ C a bra(c)ket.
This bracket also captures inner-products, using the adjoint |�〉† = 〈�|. Note that |n〉
has norm 1, and it is an eigenvector of Ĥ with eigenvalue En := (2n + 1)E0. Construct
the operator N̂ = â †̂a, then N̂ |n〉 = n |n〉. We are to think of N̂ as a number operator, as



Quantum physics 249

??

2
1

1 1

2

2 1

2

(c)(b)(a)

1 2 or 1

21 or 2

Fig. 4.5 A collision of two identical particles.

it counts the number of quanta (or excitations or quantum particles) in the given state.
We say that the operator â† creates a quanta, and â annihilates a quanta. The vectors
|n〉 (n = 0, 1, 2, . . .) form an orthonormal set; the state space S here consists of all∑∞

n=0 cn |n〉 with
∑

nm |cn| <∞ for all m, while the Hilbert space H here consists of
all
∑

cn |n〉 with
∑ |cn|2 <∞. In this algebraic way we can recover all of the physics.

When our system consists of a number of subsystems (e.g. different particles), the
collective Hilbert spaceH will be given by the tensor productH1 ⊗ · · · ⊗Hn of the indi-
vidual Hilbert spaces (this was implicit in our treatment of measurement, where the two
subsystems were the observed and the observer). Given vectors vi ∈ Hi , we are to think
of the ‘diagonal’ vector v1 ⊗ · · · ⊗ vn =: |v1, . . . , vn〉 as describing the situation where
subsystem i is in state vi . However, as we know, a typical vector u in the tensor product
H won’t be of this diagonal form. Only for such states |v1, . . . , vn〉 do the subsystems
themselves possess well-defined states. Even if the system begins in diagonal form (e.g.
we start with two distant particles), it will lose this as soon as the subsystems interact.
In this way, interacting systems lose their independent existence. This entangling of
quantum subsystems doesn’t occur in classical mechanics.

Something special, and also nonclassical, happens when the subsystems are identical
(i.e. the subsystems obey identical laws, and differ only in incidental characteristics such
as position). The collective Hilbert space H now is smaller than the full tensor product:
it will be the symmetric product of n copies of the subsystem H1. More precisely, H is
spanned by ‘symmetric’ vectors of the form |v1, . . . , vn〉 := 1√

n!

∑
σ∈Sn

vσ1 ⊗ · · · ⊗ vσn .
The physical reason for this is given in Figure 4.5. The first two diagrams represent
classically distinct scatterings, but in quantum mechanics trajectories don’t exist and
we can’t tell whether it is particle 1 or rather particle 2 moving northwest after the
collision – Figure 4.5(c) applies. The labels ‘1’ and ‘2’ have no physical significance
here: the vectors |v1, v2〉 and |v2, v1〉 now correspond to the same state – namely, the
one where one of the particles (we cannot ask which) is in state v1 and the other is
in state v2 – and should be identified. Perhaps we can say that here is the precise pen
with which This August Personage signed That Important Document, but we cannot say
(pointing) that this electron here was part of the pen at that Propitious Moment. An easy
combinatorial consequence of this is that the identical particles here (but not those in the
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next paragraph!) tend to clump into similar states. This is responsible, for instance, for
the existence of the laser.

Recall however that proportional vectors in the space S correspond to physically
equivalent states. Thus it merely suffices to identify, for example, |v1, v2〉 and |v2, v1〉 up
to a scalar factor. The preceding paragraph describes the bosons like photons of light
(named after S. N. Bose, who with Einstein first considered their statistical mechan-
ics). The next simplest possibility, describing the fermions such as electrons, obeys
|v1, v2〉 = −|v2, v1〉. Their Hilbert space is spanned by antisymmetric vectors of the
form |v1, . . . , vn〉 := 1√

n!

∑
σ∈Sn

(−1)σ vσ1 ⊗ · · · ⊗ vσn , where ‘(−1)σ ’ equals±1 for an
even/odd permutation σ , respectively. Note that antisymmetry forbids two fermions
from sharing the same state. This simple fact is directly responsible for the remarkable
diversity of chemical compounds, for if electrons obeyed instead the bosonic possibility
|v1, v2〉 = +|v2, v1〉, then there wouldn’t be a chemical difference between the elements
hydrogen, helium, lithium, . . . It is also responsible for large-scale structure, for example,
why we don’t fall through the floor.

These bosonic and fermionic ‘statistics’ correspond to the two one-dimensional repre-
sentations of the symmetric group Sn , but there are other possibilities (e.g. parastatistics,
which involves higher-dimensional representations of Sn , and braid statistics, which
can occur when space-time is two-dimensional – both are discussed in, for example,
chapter IV of [269]). However, only bosons and fermions seem to arise in Nature (except
perhaps for some compound systems). Assuming this, a deep result of quantum field the-
ory (Fierz and Pauli’s Spin-Statistics Theorem – for a proof see section 4-4 of [518])
relates statistics to the Poincaré group. In particular, particles in relativistic quantum
mechanics carry a representation of the universal cover of the Poincaré group. When
that representation reduces to a representation of the Poincaré group itself, that is when
spatial rotations through 2π correspond to the identity (we say the ‘spin’ is an integer),
then the particle is a boson. Otherwise, that is when rotations through 2π correspond to
−I (so the spin is a half-integer), the particle will be a fermion. A connection between
spin and statistics can be anticipated by the observation that the simple exchange of
locations of two objects involves an implicit rotation by 2π of one relative to the other.
We discuss this further in Section 4.3.5 below.

An important formulation of quantum physics is due to Feynman, and starts from an
observation of Dirac: the infinitesimal quantum mechanical amplitude is governed by the
value of the classical action (4.1.3). Suppose we know the wave-function x �→ ψ(x, ti )
at some fixed initial time ti . Then ψ at some other time t f is given by

ψ(x′′, t f ) =
∫

K (x′′, x′; t f − ti )ψ(x′, ti ) d3x′, (4.2.6a)

where K , called the ‘propagation kernel’, is the amplitude for a particle to go from
position x′ at time ti to position x′′ at time t f . The point is that K is given by the
‘path integral’

∫
exp(i S(x)/�)Dx over all paths x : t �→ x(t) with endpoints x(ti ) =

x′, x(t f ) = x′′. For each choice of path x(t), S(x) here is the classical action
∫ t f

ti
L(x, ẋ) dt .

Integrals over spaces of paths arise here for much the same reason that the entries of
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Fig. 4.6 Feynman diagrams in quantum mechanics.

powers An of a matrix could be described as sums over length-n walks through the
entries of A. The path integral formulation intuits that the particle takes every conceivable
trajectory from (x′, ti ) to (x′′, t f ), and each of these (appropriately weighted) contributes
to the amplitude K and hence probability |K |2. The precise mathematical meaning of
Feynman’s path integral is a little elusive, but attempts to define it in terms of, for
example, Wiener integrals have been made. It is probably simplest though to regard it
heuristically, as is done in Section 4.4.1.

Consider the classical limit � → 0 of (4.2.6a): using the stationary phase approxi-
mation, the dominant path x′(t) in the Feynman integral is one that satisfies the Euler–
Lagrange equation (4.1.4). This provides an explanation for the mysteriously teleological
Hamilton’s principle of classical mechanics, discussed in Section 4.1.1.

The perturbative approach to quantum theories is particularly transparent in the path
integral formalism. Write the Lagrangian as the sum L = L0 + λLint of the free part L0

and the interaction part λLint = −λV ; the ‘coupling constant’ λ is a numerical constant
(hopefully small), and we aim to expand the kernel K (and hence the wave-function ψ)
in a Taylor expansion in λ. Explicitly, we have

K (x′′, x′; t f − ti ) =
∫

exp

[
i

�

∫ t f

ti

(L0 − λV ) dt

]
Dx

=
∫

exp

[
i

�

∫ t f

ti

L0 dt

] ∞∑
n=0

(−iλ/�)n

n!

(∫ t f

ti

V (x(t)) dt

)n

Dx.

(4.2.6b)

We can represent this pictorially. The n = 0 term describes a particle propagating freely
from (x′, ti ) to (x′′, t f ); the Feynman diagram for this term is given in Figure 4.6(a). The
n = 1 term describes a particle propagating freely from (x′, ti ) to some intermediate point
(x, t1), at which instant the potential V acts multiplicatively, and then the particle resumes
free propagation to the final position (x′′, t f ); we then integrate over all intermediate times
(and finally over all paths x(t)). The Feynman diagram is given in Figure 4.6(b), where the
integration over t1 is implicit. The kink there is called a ‘vertex’ – this is the same word as
in vertex operator algebra. Likewise, the λn term corresponds to a Feynman diagram with
n vertices, corresponding to the n integrals

∫
V dt j in (4.2.6b). The factor n! in (4.2.6b)
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is removed by taking these intermediate times in the order ti < t1 < · · · < tn < t f , as
the diagrams suggest. In this way, we have replaced the actual physical situation, where
of course the interaction V is always present, with a situation where the interaction is
only present at discrete moments of time. It is as if the particle only interacts with V at
the vertices. These are called virtual interactions, as they are mathematical artifacts and
don’t correspond directly to actual events in Nature.

We’ll say more about perturbations and Feynman diagrams later. Typically, the sum
(4.2.6b) won’t converge, but the first few terms (when interpreted correctly) give good
comparison with experiment. Conformal field theory – the physics of Moonshine – arises
from the perturbative expansion of the quantum field theory called string theory.

Its treatment of measurement demonstrates that quantum mechanics is heuristic and
idealised, and not at all in its finished form. But just as classical physics achieved a pro-
found understanding of the concept of ‘rest’, and relativity provided a deep reanalysis of
space and time, so is quantum mechanics forcing us to reconsider the seemingly harmless
notion of observation. After all, we never observe an object, but rather the interaction
between objects. Also profound, quantum mechanics teaches us that interacting subsys-
tems become entangled, and physically this means that the whole is indeed much more
than the disjoint union of its parts.

4.2.2 Informal quantum field theory

It is surprising that the next three natural tasks – namely, to bring in special relativity, to
handle the experimental fact that the number of elementary particles can change, and to
quantise classical field theories – are all accommodated by quantum field theories, the
quantum theories of systems with infinitely many degrees of freedom. The sketch we
provide here won’t seem very satisfactory, but this is roughly the treatment to be found in
physics textbooks. We avoid as too tangential most calculational issues and many tech-
nicalities (e.g. the quirks of fermions). Section 4.2.4 provides a more careful axiomatic
treatment of quantum field theory, but knowing the informal physics background, at
least in its broader strokes, is essential. A dated though otherwise excellent treatment of
quantum field theory, somewhat in our style, is [479]; modern and masterful is [555].

To the working physicist, quantum field theory is the following conceptual hierarchy.

(i) Experiment. The experimenter measures half-lives of particles and scattering
cross-sections. How well does experiment compare to theory?

(ii) Amplitudes. These observable quantities depend on the magnitude-squared of the
appropriate transition amplitude |in〉 → |out〉. Unfortunately, transition
amplitudes are too hard to calculate from the theory, except in infinite time
(t →±∞) limits, which by definition are the entries of the S-matrix. Those
limits, though mathematically dubious, are physically intuitive. So the theoretician
needs to compute the S-matrix.

(iii) Correlation functions. The typical way to compute S-matrix entries is using
correlation functions, via the so-called reduction formulae. So the theoretician
wants to compute correlation functions.
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(iv) Feynman diagrams. Typically, correlation functions are calculated ‘perturbatively’
by Taylor-expanding in some coupling constant. Each term in this (usually
divergent) infinite series is computed separately using Feynman diagrams.

Moonshine is interested in the correlation functions of a class of extremely symmetrical
and well-behaved quantum field theories called rational conformal field theories – these
theories are so special that their correlation functions can be computed exactly and
perturbation is not required. But before we turn to them, let’s flesh out some of this
hierarchy.

It would seem trivial to make quantum mechanics consistent with special relativity.
Consider, for simplicity, a free particle of mass m. Recall that Schrödinger’s equation
(4.2.1) corresponds to the nonrelativistic energy E = 1

2m p2. Since relativistic energy
satisfies E2 − p2c2 = m2c4, the natural guess for the relativistic Schrödinger equation
would be (

�2 ∂
2

∂t2
− �2c2∇2 + m2c4

)
φ(x, t) = 0. (4.2.7)

This is called the Klein–Gordon equation, and was proposed independently by
Schrödinger, Klein and Gordon shortly after (4.2.1) was written down.7 They expected
it to describe the relativistic wave-function φ of a free ‘scalar’ particle (i.e. φ(x) is
invariant under the action of the Lorentz group SO+3,1(R) on x), but such a theory is sick
(see Question 4.2.4): for example, it suffers from negative probabilities and the energy
eigenvalues have no lower bound (this means that we won’t have a vacuum state |0〉,
which is bad). The way to make (4.2.7) into a sensible physical theory is to interpret it
as a quantum field theory.

Quantum field theory is far deeper than quantum mechanics, both physically and
mathematically. Witten predicts [566] that one of the major themes of twenty-first century
mathematics will involve coming to grips with quantum field theory.

Let � ⊂ H ⊂ �∗ be a rigged Hilbert space; � is the span of the states in the theory,
and is constructed below, while H is their topological span. We obtained nonrelativistic
quantum mechanics by replacing classical observables by operators, so we would expect
that the fields ϕ(x) in quantum field theories are operator-valued functions of space-time.
Unfortunately this is too optimistic, even in the simplest free theories. Rather, the correct
statement is that quantum fieldsϕ are operator-valued distributions of space-time: for any
states u, v ∈ �, the matrix entries 〈u, ϕv〉 of ϕ are tempered distributions of space-time.
In other words, the Schwartz space S = S(R4) is a space of test functions of space-time
that ‘smear’ the fields; the values ϕ( f ), for each f ∈ S, are (unbounded) linear operators
�→ �. Nevertheless, it is traditional to write ϕ(x), as if the fields were functions of
space-time, and informally think of ϕ( f ) as the integral

∫
R4 f (x)ϕ(x) d4x . Unlike the

wave-functions of quantum mechanics, a quantum field is not directly a probability

7 Apparently, Schrödinger first derived the relativistic equation, noticed that it didn’t work but that its
nonrelativistic approximation (4.2.1) looked good, and so first published the approximation! See the
historical discussion on page 4, vol. I of [555].



254 Conformal field theory

amplitude; rather, it is a linear combination of operators that increase or decrease by one
the numbers of particles in any state.

Let ϕ1, . . . , ϕn be the complete list of quantum fields in the theory. All operators (e.g.
observables) occurring in the theory are constructed from these fields. More precisely,
locality says that any operator at a given space-time point x is a function of fields and
their derivatives, all evaluated at that point.

The mathematical meaning of a theory being (special-)relativistic is that its quantities
transform nicely with respect to (i.e. in projective representations of) the Lorentz and
Poincaré groups SO+3,1 and R4×SO+3,1. As in Theorem 3.1.1, those projective represen-
tations are true representations of the universal covers SL2(C) and R4×SL2(C), respec-
tively. Firstly, the state space H carries a unitary representation (a,�) �→ U(a,�) of the
universal cover of the Poincaré group. These operators U(a,�) send the state space� onto
itself; on�, we can write U(a,I ) =: exp[−i

∑
μ aμPμ/�], where the self-adjoint operators

Pμ are the observables for momentum and (up to a constant) energy. In particular, c2 P4 is
the Hamiltonian density. The absence of tachyons (footnote 4 in this chapter) says that the
simultaneous eigenvalues (p, p4) of the energy-momentum operators P1, P2, P3, P4 all
have nonpositive Minkowski norm-squared

∑
μ pμ pμ = p2 − c2(p4)2 =: −m2c2. This

parameter m is constant in any irreducible representation of R4×SL2(C), and is called
the (rest-)mass.

The span of the fields ϕi carries a projective representation of all symmetries of the
theory. In particular, there is an n-dimensional representation V of SL2(C), governing
how the n fields transform relativistically: that is,

U(a,�) ϕi ( f ) U−1
(a,�) =

n∑
i=1

V (�−1)i j ϕ j ((a,�)−1. f ) (4.2.8a)

holds in �, where the Poincaré transformation (a,�) ∈ R4×SL2(C) acts on test func-
tions by ((a,�). f )(x) = f (�x + a). The inverses on the right side are needed in order
for (4.2.8a) to be consistent with U(a′,�′) ◦U(a,�) = U(a′,�′)◦(a,�). Restricting to trans-
lations R4, the derived representation of (4.2.8a) becomes the important equation of
motion

∂μϕ(x) = i

�
[Pμ, ϕ(x)]. (4.2.8b)

Since the finite-dimensional representations of SL2(C) are completely reducible, we can
collect the fields together that form irreducible representations, parametrised by Dynkin
label λ1 = N. Mysteriously, physicists prefer to use spin s = λ1/2.

In classical field theory, the particles and fields are phenomenologically independent
even though they mutually influence each other. In quantum field theory, particles are
secondary, arising from fields, as we see shortly. A great definition, due to Wigner, is:

Definition 4.2.1 A particle is an irreducible projective representation of the Poincaré
group, with real mass m and energy c2 p4 ≥ 0, in the space H of states of the theory.

More precisely, the spectra (p, p4) of the energy-momentum operators Pμ in an irre-
ducible representation are required to obey p2 ≤ c2(p4)2; the mass m ≥ 0 is the constant
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√
c2(p4)2 − p2. Only the vacuum has 0 energy. Unlike the mass, the energy varies within

the irreducible representation, and for a particle of mass m is never less than mc2.
Subatomic experiments suggest that there are elementary (i.e. noncomposite) particles,

for instance electrons. Each species of elementary particle in the theory arises from an
irreducible SL2(C)-module in the span of the fields ϕi . In particular, a particle with spin
s ∈ 1

2 N requires 2s + 1 fields ϕi1 , . . . , ϕi2s+1 , called its components. Other symmetries of
the theory combine with SL2(C) to form higher-dimensional representations. For exam-
ple, in quantum electrodynamics,8 ‘parity’ (i.e. the space-reflection x �→ −x) collects the
two-component ‘left-’ and ‘right-handed’ electrons into an irreducible four-dimensional
representation, while in the Standard Model parity is no longer a symmetry, but the left-
handed electron and neutrino transform together as components in a four-dimensional
representation of the symmetry group SU3 × SU2 × U1, while the right-handed electron
forms a two-dimensional representation by itself.

A Lagrangian density L(x) here is a self-adjoint operator, invariant under SL2(C),
built up polynomially from the various ϕi and ∂μϕi , all evaluated at the same space-time
point x . Each field ϕi obeys the corresponding Euler–Lagrange equation (4.1.8). As in
classical field theory, define the ‘canonical momentum field’ πi (x) = ∂L/∂(∂4ϕi ) (not to
be confused with the momentum operators Pμ). The equal-time commutation relations

[ϕi (x, t), π j (x′, t)] = i� δi jδ(x− x′), (4.2.9a)

[ϕi (x, t), ϕ j (x′, t)] = [πi (x, t), π j (x′, t)] = 0 (4.2.9b)

are obtained from the classical Poisson brackets (4.1.9) via standard (‘canonical’) quan-
tisation. When both ϕi , ϕ j are fermionic (i.e. have fractional spin), then (4.2.9) should
be replaced with anti-commutation relations. For simplicity, we consider only bosonic
fields.

Because disturbances shouldn’t travel faster than light, measurements occurring at
space-time points x, x ′ that are space-like separated (i.e. (x − x ′)2 > 0) should be inde-
pendent. Quantum theory translates this into the statement that the corresponding observ-
ables O(x),O′(x ′) should commute: [O(x),O′(x ′)] = 0 when (x − x ′)2 > 0. Since the
observables are built out of the fields ϕi , this is closely related to the commutation
relations (4.2.9). Nevertheless, the relations (4.2.9) are controversial, as we’ll see.

To see how to use the field equations and (4.2.9), consider for example the density

L(x) = −1

2

(
m2c4�−2φ(x)2 + c2∂μφ(x) ∂μφ(x)

)
, (4.2.10a)

where φ = φ† is self-adjoint. (We will see shortly that this L has to be modified slightly
to be physically sensible.) The field equation here is the Klein–Gordon equation (4.2.7).
It can be solved by a trick: the Fourier transform of φ from ‘position-space’ into

8 Quantum electrodynamics (‘QED’ for short) is the quantum theory of Maxwell’selectromagnetism applied
to electrons, positrons (the anti-particle of the electron) and photons (the particle of light). QED is
subsumed by the Standard Model, the quantum field theory describing all known physics except for gravity.
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‘momentum-space’ converts the Klein–Gordon equation into decoupled classical simple
harmonic oscillator equations, so the field φ can be formally written

φ(x, t) =
∫ √

�

(2π )32ωp

[̂
a(p) exp

[
i

�
p · x− iωpt

]
+ â(p)† exp

[
− i

�
p · x+ iωpt

] ]
d3p, (4.2.10b)

where ωp = �−1 p4 = c�−1
√

p2 + m2c2. If φ were a real-valued function, (4.2.10b)
would give the general solution, for arbitrary coefficients obeying â(p) = â(p)† ∈ C.
Here the coefficients are operators, with â(p)† the adjoint of â(p) (hence the notation).
The canonical momentum is π = ∂4φ. Solving (4.2.10b) for â(p) and â(p)† in terms of
φ, equations (4.2.9) become[̂

a(p), â(p′)†
] = δ3(p− p′),

[̂
a(p), â(p′)

] = [̂
a(p)†, â(p′)†

] = 0. (4.2.10c)

This trick of switching from position variables to momentum variables is common in
field theory, and it isn’t surprising that it should simplify the mathematics: the momentum
degrees of freedom are uncoupled because the theory is translation-invariant (Noether’s
Theorem!). If instead φ is not self-adjoint, then we should expand φ into independent
coefficients a(p), b(p)†.

How do we accommodate particles in quantum field theory? First note that the particle
interpretation pertains directly to state vectors v ∈ �, and not the fields – for example,
our universe corresponds to some vector |universe〉 ∈ �. There are, for example, only
four electron fields (i.e. one component for each internal degree of freedom); all of the
nearly infinitely many electrons in the universe are created by those fields in a way
we’ll describe shortly. The number of electrons is an observable quantity, and hence an
eigenvector of the ‘electron-number’ operator N̂e. Thus a typical vector v ∈ � will not
have a well-defined number of (say) electrons.

The most important vector in � is the vacuum state |0〉 ∈ �, which contains zero
particles of each type. It is fixed by the representation of the universal cover of the
Poincaré group, i.e. U(a,�)|0〉 = |0〉, so in particular the state |0〉 has total momentum
0 and energy 0. As before, it is unique up to scalar multiplication, nondegenerate and
has norm 1: 〈0|0〉 := ‖|0〉‖2 = 1. (Actually, in quantum field theories with spontaneous
symmetry breaking, such as the Standard Model, the vacuum will be degenerate, but we
will ignore this possibility here.)

The particle interpretation is simplest in the free scalar field theory (4.2.10). Equa-
tions (4.2.10b) and (4.2.10c) tells us to think of the free field φ as infinitely many
independent quantum harmonic oscillators (4.2.5), one for each possible momentum.
The analogue of the one-particle state |1〉 there should be the one-particle state |p〉
with momentum p and energy ωp�, defined by |p〉 := â(p)† |0〉. The problem is that its
normalisation

‖|p〉‖2 = 〈0| â(p)̂a(p)†|0〉 = δ(0),
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obtained using (4.2.10c), is infinite. This is why a quantum field φ is an operator-valued
distribution. The one-particle states can’t have well-defined momenta, but rather are
‘wave-packets’, linear combinations (‘superpositions’) of those momentum states |p〉
constructed using test functions f . In particular, let f be in the Schwartz space S(R3k).
The k-particle states in � are of the form

| f 〉 :=
∫
· · ·
∫

f (p1, . . . ,pk) â(p1)† · · · â(pk)† |0〉 d3pk · · · d3p1.

The state | f 〉 is an eigenvector of the number operator N̂φ =
∫

â(p)†̂a(p) d3p, with eigen-
value k. The operators â(p) again are annihilation operators and take a k-particle state to
a (k − 1)-particle state. Together, all these k-particle states, for k = 0, 1, . . . , span the
space �. The commutation relation [a†, a†] = 0 means that the particles obey bosonic
statistics, that is both f ∈ S(R3k) and its symmetrisation 1

k!

∑
σ∈Sk

f (pσ1, . . . ,pσk)
define physically identical states.

Just as a pendulum in classical mechanics undergoes small oscillations about its (ver-
tical) stationary equilibrium position, so does the vacuum in quantum field theory. The
oscillations of the quantum vacuum are the electrons, photons, etc. observed in Nature.
This particle concept is the kinematics of quantum field theory.

In these free theories, the k particles in | f 〉move independently and freely. The notion
of wave-packets explains the tracks of particles in the cloud chambers of high-energy
experiments: such tracks seem to indicate that the particle has, to a good approximation,
both a well-defined position and momentum. By contrast, the (nonphysical) momentum
eigenstates |p〉 are diffused throughout the universe.

Similarly, particles in any free quantum field theory arise by interpreting the Fourier
coefficients of the fields as creation and annihilation operators (theories with interactions
are considered shortly). Now, any operator can be expressed as an integral of sums and
products of these creation and annihilation operators (see section 4.2 of [555] for a proof).
For example, the free scalar theory (4.2.10) has energy–momentum operators

Pμ = 1

2

∫
pμ

(̂
a(p)†̂a(p)+ â(p) â(p)†

)
d3p.

Since [N̂φ, P4] = 0, we see from (4.2.4) that in this free theory the number of particles
won’t change. It can change only when we include interactions.

Note that in the free scalar theory Pμ|0〉 = 0 for μ = 1, 2, 3, as it should, but P4|0〉,
which gives the energy of the vacuum, is

P4|0〉 =
∫

�ωp

(
â(p)† â(p)+ 1

2

)
|0〉 d3p = 0+ �

2

∫
ωpd3p|0〉,

so is divergent. This is a typical infinity in quantum field theory, but is easy to remedy, as
it tells us that the Hamiltonian densityH(p) (hence our original Lagrangian densityL(x))
is off by an additive (infinite) constant. It isn’t surprising in hindsight that the naive guess
(4.2.10a) for L(x) runs into problems: for one thing, classical energy is only defined up
to an additive constant; for another, the order in which the numerical coefficients a, a†

appear in classical expressions for energy doesn’t matter, while the order of the operators
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â, â† in quantum mechanics certainly does. Replacing L(x) and H(p) with their ‘normal
orders’ :L: and :H:, respectively, gives the vacuum zero energy and doesn’t otherwise
change the physics. The normal order :O: of an operator O given by an integral over p’s
of a product of â(p)’s and â(p)†’s is obtained by moving all annihilation operators â(p)
to the right of all creation operators â(p)†. This has the effect of making the evaluation of
operators on states as simple as possible. For example, the Hamiltonian density becomes

: Pμ :=
∫

pμ â(p)†̂a(p) d3p.

The same procedure works in any quantum field theory to give the vacuum zero energy,
with a minor change when there are fermions. We also used normal-ordering in, for
example, (3.2.14a) to remove an analogous infinity in Lie theory.

The existence of negative energy states, which we recall was a serious sickness for
relativistic quantum mechanics, is handled naturally in quantum field theory. Return for
simplicity to the scalar theory, but now with φ �= φ†. The positive energy coefficients
a(p) of φ annihilate a positive energy particle; the negative energy coefficients b(p)†

create a positive energy particle. The particle annihilated by the field φ is not quite
the same as the particle created by φ: The various parameters describing particles will
either be the same (e.g. mass) or opposite (e.g. electric charge), for these two kinds of
particles. That is, the pair φ, φ† of fields is associated with pairs of particles; one of
these we arbitrarily call the anti-particle. Physically, an anti-particle can be interpreted
as the corresponding particle ‘travelling backwards in time with negative energy’, and
that is how it is depicted in Feynman diagrams. When φ = φ†, the particle is its own
anti-particle.

This is how particles arise in free quantum field theories. The physically interesting
quantum field theories have interactions, that is additional terms in L(x) corresponding
to potential energy. Experiments (e.g. the cloud chambers) tell us that a particle inter-
pretation is still appropriate there. A typical experiment begins and ends with several
particles separated by macroscopic distances; interactions occur only at intermediate
times when some particles are microscopically separated. What we observe are the ini-
tial (‘incoming’) and final (‘outgoing’) states, and the transition probabilities |〈out|in〉|2.
Now, macroscopically separated particles should behave independently to good accu-
racy. Thus these initial and final states are described by the corresponding free theory,
at least in the limits t →∓∞. A particle interpretation applies directly only to these
asymptotic states.

In particular, to each field ϕi in a quantum field theory9 there are fields ϕin
i and ϕout

i .
The field equations (4.1.8) for the ϕi of course include interaction effects, whereas
the asymptotic fields ϕin

i , ϕ
out
i obey the free field equations, such as the Klein–Gordon

equation (4.2.7). Because P4|0〉 = 0, the vacuum is constant in time (‘stable’) and is its

9 Many of the following comments assume the associated particle is stable and can exist in isolation of the
other particles, at least asymptotically. This is the case, for example, for an electron, but not the muon or
quark, which are also elementary and have their own fields. See the literature for the necessary
modifications.
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own incoming and outgoing asymptotic state. All other incoming states are built up from
the vacuum |0〉 and ϕin by the process described earlier. The collection of all incoming
states spans the space �. Similarly, |0〉 and ϕout

i create all outgoing states, and these also
span�. Thus the ‘in-fields’ ϕin

j describe the (hypothetical) physics that would occur if the
initial particles never interacted; the field ϕ j interpolates between these free initial and
final asymptotic situations (up to a multiplicative constant, as we’ll see), and embodies
the true physics by carrying the dynamical information of the system.

As mentioned earlier, experiments obtain information on the transition amplitudes
〈out|in〉 between (prepared) initial states and the (observed) final states, and the compli-
cated machinery of quantum field theory is designed to compute these. These inner prod-
ucts can be thought of as matrix entries of an operator S, the S(cattering)-matrix, which
defines the equivalence ϕout = S−1ϕinS between the algebras of in-fields and of out-
fields, and the equivalence |in〉 = S|out〉 between the corresponding incoming and outgo-
ing states. Without going into the technical details, the so-called ‘Lehmann–Symanzik–
Zimmermann reduction formulae’ (see e.g. section 7.2 of [479], or section 5-1-3 of [310])
express the transition amplitudes in terms of an n-fold integral

∫
d4x1 · · · d4xn over space-

time, of ‘n-point (correlation) functions’, or ‘Green’s functions’, or ‘vacuum-to-vacuum
expectation values’ of ‘time-ordered products’ of the physical fields:

〈ϕ j1 (x1) · · ·ϕ jn (xn)〉 := 〈0|T (ϕ j1 (x1) · · ·ϕ jn (xn))|0〉. (4.2.11)

We will usually use the statistical term ‘correlation function’, standard in conformal field
theory. The symbol ‘T ’ here reorders the fields ϕ ji (xi ) in increasing order of the time
x4

i , and is needed to guarantee convergence. The number n here is the total number of
particles in |in〉 and |out〉 together.

In classical physics, Noether’s Theorem associates with a continuous symmetry a
conserved current jμ(x) and a conserved charge Q. Now, a symmetry of a classical system
may become broken in quantisation – this is called an anomaly (see e.g. section 11-5 of
[310]). Usually an anomaly is bad news, but a harmless anomaly important to us is the
soft breaking of the conformal symmetry in CFT. It is measured by a parameter called
the central charge or conformal anomaly c (Section 4.3.1).

When a symmetry survives quantisation, the analogue of Noether’s Theorem here
is the Ward identities (see e.g. section 10.4 of [555]), which are differential equations
satisfied by the correlation functions. They take the form

∂

∂xμ
〈 jμ(x)ϕ j1 (x1) · · ·ϕ jn (xn)〉 = −i

∑
i

δ(x − xi ) 〈ϕ j1 (x1) · · ·Giϕ ji (xi ) · · ·ϕ jn (xn)〉,
(4.2.12)

where Gi is the associated representation of the symmetry on the field ϕ ji .
The typical, and only general, way to compute correlation functions is perturbation

theory. The correlation functions (4.2.11) play the role here of the propagation kernel K
in (4.2.6a); their path integral expression looks like

〈ϕ j1 (x1) · · ·ϕ jn (xn)〉 = 1

Z

∫
φ j1 (x1) · · ·φ jn (xn) exp[iS(φ)/�]Dφ, (4.2.13a)
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Fig. 4.7 Some two-point Feynman diagrams in the φ4 model.

where S is the classical action (4.1.3) and the integral
∫
Dφ is over the space of complex-

valued functions R3 → C (one such ‘wave-function’ for each field ϕi in the theory). The
normalisation factor 1/Z in (4.2.13a) is

Z =
∫

exp[iS(φ)/�]Dφ, (4.2.13b)

called a partition function for statistical reasons. We’re glossing over technicalities, but
the technicalities are (too) easily found in the literature. Once again the mathematical
meaning (such as it is) of (4.1.13a) is best ignored; more important are the heuristics it
suggests for perturbation.

For that purpose consider a toy model: a single self-adjoint scalar field φ = φ†, with
φ4 interaction term: L = − 1

2

∑
μ ∂μφ∂

μφ − 1
2 m2 − λ

4!φ
4 (for typographical clarity we

adopt here the usual conventions c = � = 1). As always, the equations are simpler if we
Fourier-transform to momentum space. The two-point function yields

〈φ(p1)φ(p2)〉 = (2π )4δ4(p1 + p2)

{
i

p2
1 − m2

− limε→0
λ(

p2
1 − m2

)2

∫
1

(2π )4

d4 p

p2 − m2 + iε
+ O(λ2)

}
. (4.2.13c)

The Dirac delta factor expresses momentum conservation. The integral in (4.2.13c)
doesn’t converge – this infinity is analogous to the infinite self-energy of the electron
in classical electromagnetism (Section 4.1.3), and provides the first example of renor-
malisation, as we will see shortly. The first two terms within the braces of (4.2.13c)
correspond to the first two diagrams in Figure 4.7. The second diagram can be inter-
preted as a particle emitting a pair of virtual particles, which then annihilate themselves.
The four-point function 〈φ(p1)φ(p2)φ(p3)φ(p4)〉, computed to λ1 accuracy, includes
the diagrams of Figure 4.8.

The Feynman rules describe how to go from the finitely many Feynman diagrams
at each perturbation order λk , to the corresponding integral expressions. Any book on
quantum field theory (e.g. [310] or [555]) describes them in detail, as they are how the
theory makes practical contact with experiment. We will make only general remarks.
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Fig. 4.8 Some four-point Feynman diagrams in the φ4 model.

Fig. 4.9 A typical fourth-order term in the scattering of two electrons.

We can write (4.2.13a) symbolically as∫
φ j1 (x1) · · ·φ jn (xn) exp[iS(φ)/�]Dφ =

∑
G

c(G)
∫ ∏

e

dpe

∏
ν

ϑvδ, (4.2.13d)

where the sum is over all Feynman diagrams G with the external lines (i.e. edges with
a free endpoint) corresponding to the fields φ ji in the n-point function. The numeri-
cal quantity c(G) is combinatorial. For each internal edge e there is a ‘propagator’, a
momentum pe and an integral over pe. At each vertex ν there is an operator ϑν , which
is proportional to the coupling constant, as well as a Dirac delta δ, which expresses
momentum conservation at that vertex. Thus each vertex contributes a factor of the cou-
pling constant (which is assumed to be small). The vertices in Figures 4.7 and 4.8 are
all of valence 4, because the only interaction term in the Lagrangian density L here is
φ4. More interesting (and physically relevant) quantum field theories involve several
types of particles, with several different interaction terms in the Lagrangian, and so the
corresponding Feynman diagrams have several types of edges (one for each kind of
particle) and several kinds of vertices (one for each term in the interaction Lagrangian).
For example, in QED (footnote 8 in this chapter) the interaction term is−eψ A/ψ , where
e is the coupling constant (proportional to the charge of the electron) and where ψ is the
(multi-component) field of the electron, ψ (essentially the adjoint of ψ) can be thought
of as the positron field and A/ can be identified with the photon field. A vertex here must
consist of three particles: a single incoming or outgoing photon, with an incoming and
outgoing electron or positron. A typical Feynman diagram involved in the calculation of
the four-point function 〈ψ(p1)ψ(p2)ψ(p′1)ψ(p′2)〉 is shown in Figure 4.9. It describes
the virtual event where the incoming electrons (the bottom two solid lines) exchange
a virtual photon (the horizontal wavy line), which in transit spontaneously breaks into
an electron–positron pair, which then annihilate, returning the photon. All vertices in
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Fig. 4.10 Feynman diagrams contributing to the mass shift.

Figure 4.9 are consistent with the interaction term; as there are four of them there, that
diagram contributes to the e4 term.

In order for an expansion in λn (or en) to make sense, the individual terms should tend
to 0 with n. Embarrassingly, in a typical quantum field theory most individual terms are
infinite! A simple example is the two-point function (4.2.13c) at one loop – the problem
there is that the integrand doesn’t go to 0 fast enough for large p. A different infinity
provides a clue how to make sense of these perturbative expansions.

We know from free field theory that the term− 1
2 m2φ2 in the φ4 Lagrangian is a kinetic

energy term, and so it is tempting to identify m there with the mass of the φ particle.
However, that parameter m is not directly observable. The (squares of the) true masses of
the particles are defined to be the corresponding eigenvalues of the operator

∑
μ PμPμ

(again ignoring �’s and c’s). The easiest way to compute these eigenvalues is through
the two-point function 〈φ(p1)φ(p2)〉 (called the propagator of φ): by nonperturbative
arguments (see e.g. section 10.2 of [555]), the propagator of φ should equal the Dirac
delta (2π )4δ4(p′ + p′′) times a meromorphic function with a simple pole at p′2 = m2

φ (the
physical mass-squared of the particle)10 with residue i. In the φ4 theory, the propagator
to zeroth order (corresponding to the free theory) is i/(p′2 − m2), ignoring the Dirac
delta factor. However, the perturbative expansion contains geometric series that change
the pole. In particular the sequence of diagrams in Figure 4.10 contributes to shifting the
denominator, and hence the pole, of the propagator. We call the nonphysical parameter
m appearing in the Lagrangian the ‘bare mass’, in contrast to the true observed mass
mφ = m − δm that is ‘dressed’ with the cloud of virtual particles arising by virtue of the
interaction terms.

The actual values of m and δm can be ignored, since in any physically relevant expres-
sion they appear only in the combination m − δm, which can be replaced by the measured

10 There is some evidence (by studying the ‘running coupling constant’) that the propagator of the photon in
QED has, in addition to the pole at mass zero (corresponding to the massless photon), a pole at imaginary
mass. This would correspond to a tachyon (footnote 4 in this chapter) called the Landau ghost, which
presumably shouldn’t exist. This calculation could indicate a fundamental inconsistency with QED at high
energies, but more conservatively may merely indicate a collapse of the perturbative approximation at
high energies. Even if each term in the perturbative expansion of QED can be made finite and well-defined
(which at present requires ad hoc constructions like ‘infrared cut-offs’), the full sum over all perturbative
orders probably won’t converge in any sense. Indeed, the perturbative expansion is a power series in the
coupling constant e; if it converged for some small (positive) value of e, then it should also converge for
some negative values of e, which for physical reasons is impossible. More generally, many suspect that a
consistent quantum field theory must be ‘asymptotically free’ (i.e. the particles act as if they are free of
interactions when the momenta are large). QED is not asymptotically free, but the Standard Model is.
However, the Standard Model has other problems (due to the Higgs scalar field) and many suspect that it
too is inconsistent.
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value mφ of the physical mass. This is an example of renormalisation, and in itself is a
standard and uncontroversial ingredient in any physical theory.

However, the mass shift δm can be calculated perturbatively, and in a typical quantum
field theory is infinite. Thus in order to account for the observed masses of the particles,
the mass parameters in the Lagrangian would also be infinite, which is silly. Nevertheless,
the renormalisation scheme given in the previous paragraph works to give sensible and
accurate answers.

Likewise, the fields φ and coupling constants λ – in short, everything! – appearing in
the Lagrangian are also unobservable. The coupling constants λ are renormalised anal-
ogously to mass, using the observed strengths of the corresponding interaction, and as
usual the rescaling is by an infinite factor. The physical ‘renormalised’ fields, properly
interpolating between the incoming and outgoing free fields, are scalar multiples Z1/2

φ φ

of the Lagrangian ‘bare’ fields. This follows, for example, by the residue (call it Zφ i) of
the propagator: it must equal i, but in a theory with interactions we’ll have Zφ �= 1 (in fact
typically Zφ is infinite). In short, the equal-time commutation relation (4.2.9a) (obeyed
by the bare fields) and the residue i of the propagator (necessarily satisfied by the physical
fields) are incompatible, and so the bare fields aren’t physical. Once again it is not sur-
prising that we must renormalise; what is disturbing is that the renormalisation is infinite.

Quantum field theory makes sense of (i.e. systematically removes) the infinities arising
in perturbation theory by a combination of two procedures. The first, called regularisation
(Section 4.2.3), introduces some new parameter, call it �, and replaces the divergent
quantity by a limit as � goes to∞, say, of finite quantities. This nonphysical parameter
� may be a large momentum cutoff (which corresponds to a small distance cutoff),
although more sophisticated cutoffs are common. As long as � is finite, the calculation
will also be finite, but it will depend on � (as well as the various parameters m, λ, . . . in
the Lagrangian). However, if we choose (‘renormalise’) those parameters m, λ, . . . so as
to depend on � in such a way that the physically relevant quantities are independent of
� (or at least have a finite limit), we can then take the limit �→∞ and get a sensible
answer (even though the bare parameters m, λ, . . . will diverge in that limit). We then
take those ‘sensible answers’ to be the predictions of the theory.

In order to remove all infinities, it may be necessary to introduce new bare parameters
by adding new terms to L. A quantum field theory is called renormalisable if this
procedure terminates, that is if all Feynman diagrams will be finite after introducing only
finitely many regularisors�i and renormalising the finitely many Lagrangian parameters
appropriately. Theφ4 model, QED and the Standard Model are all renormalisable. On the
other hand, a quantum field theory for gravity in four dimensions, in the spirit of general
relativity, is doomed to be nonrenormalisable. Renormalisability is a strong constraint
on a theory – for example, it forbids fields with high spin and interaction terms involving
many derivatives or products of many fields. For example, the only interaction terms
allowed in the Lagrangian of a renormalisable four-dimensional quantum field theory of
a single self-adjoint scalar φ are φi for 1 ≤ i ≤ 4 and

∑
∂μφ ∂

μφ.
A nonrenormalisable theory can always be renormalised (i.e. its divergences all

removed) by adding infinitely many new terms to the Lagrangian (along with infinitely
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many regularisors �i ). The problem is that to fix the renormalised values of all those
new coupling constants, we would need to perform infinitely many experiments. It would
thus appear (and is often argued) that renormalisability would be a necessary condition
for a physically relevant, predictive quantum field theory. Such a nonrenormalisable
theory would display behaviour that is sensitive to the detailed structure at a much more
microscopic level. This behaviour would appear random at the scale on which we are
trying to focus. For a macroscopic example, consider the propagation of cracks in glass.

On the other hand, it is possible that all but finitely many of those new parameters will
arise in perturbation terms that will be insignificant until the energies of the particles are
sufficiently large (e.g. they could involve new particles with very large masses). That is,
the contributions from all but finitely many of those parameters could be exponentially
suppressed and thus be ignored. Such a theory would be essentially predictive as long as
we kept the energies of the collisions far less than the masses of these new and irrelevant
particles. Such a nonrenormalisable theory would describe the low energy limit of a more
fundamental theory – its nonrenormalisability arises because there is pertinent physics
that is not yet accounted for, which occurs at a smaller, deeper scale. For example,
quantum gravity could be the low-energy limit of string theory.

In other words, nonrenormalisability could be the norm, as presumably all of our
theories are merely limits of deeper ones. A renormalisable theory is merely one in
which the deeper physics involves a much higher energy scale (equivalently, a smaller
distance scale) than the ones attained in our present experiments. It is a happy accident
that the Standard Model is renormalisable. For example, QED applied to a hydrogen
atom (an electron moving about a proton) is renormalisable, but is nonrenormalisable
when applied instead to a deuteron (an electron moving about a proton–neutron nucleus).
The difference is that the physics describing the single proton concerns much smaller
distances (approximately 10−13 cm) and higher energies than that describing the elec-
tron’s motion in hydrogen (which involves distances on the order of 10−8 cm), while the
physics describing the deuteron nucleus also occurs at roughly the same 10−8 cm scale.

On a conceptual level, this renormalisation scheme is clearly unsatisfactory. The infini-
ties appearing throughout renormalisation tell us that the fields and parameters appearing
inL are not only nonphysical, but are also nonmathematical. The former is not surprising;
the latter gives powerful evidence that the Lagrangian approach to quantum field theory
should be avoided. Nevertheless, it works: not only does it permit unambiguous numeri-
cal predictions from the Standard Model, but those predictions match up admirably with
experiment.

It is easy to get the impression that, whatever its value may be to the pragmatic working
physicist, renormalisation should best be avoided by the much more delicately disposed
mathematician. Indeed much effort, though with comparatively little success, has been
directed at nonperturbative quantum field theory. However, there are many situations
where the mathematics arising in perturbation is fascinating. For example, the modular
forms arising in string theory, and the Riemann surfaces of conformal field theory, arise
directly in the perturbation expansion of string theory. Kreimer, Broadhurst and Connes
(see [105], [361] and references therein) are studying the knot theoretic, Hopf algebraic
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and number theoretic structure arising in perturbative quantum field theory. Perturbative
Chern–Simons theories give both Vassiliev link invariants [38] and Gromov–Witten
invariants (see e.g. the review [403]), depending on how it is perturbatively expanded.
We know that what we call perturbative quantum field theory has direct relevance to both
mathematics and physics; what hasn’t been worked out yet in a conceptually satisfying
manner is its precise relationship with ‘true’ quantum field theory (whatever that is).

This relationship is still mysterious after half a century of work. But recall that
Newton’s calculus took well over a century to make mathematical sense, even though
it gave good physics from the beginning. Dirac’s use of his delta functions was a much
humbler example, but still took several years before Schwartz mathematically legit-
imised them as distributions. Attempts to make direct sense of quantum field theory are
discussed in Section 4.2.4. We are not merely discussing here the rigorous proof of phys-
ical conjectures that are almost certainly true – the importance of that activity is easy
to overestimate. Rather, we are speaking of making coherent, of finding the meaning
of, quantum field theory. There have also been several proposals for a new mathematics
underlying quantum field theory. For example, we have the Barrett and Crane interpre-
tation of Feynman diagrams as morphisms in a tensor category (dynamics here comes
from representations of the Poincaré group thought of as a 2-category), or Connes’ non-
commutative geometry (where the geometry of space-time is replaced with an algebra
of functions). Some of these approaches are discussed in [28].

Of course quantum field theory cannot be identified with perturbative quantum field
theory. There are important nonperturbative effects, which cannot be seen in the pertur-
bative expansion. Typical examples are quantum effects due to topologically nontrivial
extended solutions to the classical field theory, such as magnetic monopoles (particles
carrying magnetic charge) and instantons (solutions concentrated near a point in space-
time rather than along a world-line as happens for particles).

There are other challenges to the coherence of quantum field theory as it is prac-
tised today. A famous example is Haag’s Theorem (1955), which is rigorously proved
in the context of the Wightman axioms (see e.g. [518]). It says that, given the assump-
tions built into the picture of quantum field theory sketched above, the S-matrix is
very ill-defined unless the theory is free (which isn’t physically interesting). We know
(Theorem 2.4.2) that there is a unique irreducible unitary representation of the finite-
dimensional Heisenberg algebras, but this breaks down for infinite-dimensional ones
(Question 2.4.2). Thanks to the equal-time commutation relations (4.2.9), the space-
smeared fields ϕ j ( f ) of a quantum field theory define at each time t a unitary repre-
sentation of an infinite-dimensional Heisenberg algebra (just use countably many test
functions f with disjoint support). For a fixed quantum field theory, the representations at
different times t are unitarily equivalent via the time-evolution operator U (t) := e−iHt/�,
so each theory defines a unique fixed representation. Haag’s Theorem tells us that the
representations for different values of the coupling constant will be equivalent only if
the theories are equivalent. So if our theory is nontrivial, its Heisenberg representation
will be different from that of the free theory, that is from that of our so-called asymptotic
t →±∞ theories. Thus the limits U (±∞) can’t be well defined, and the justification
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for quantum field theory as interpolating between incoming and outgoing states must be
dropped (or at least seriously weakened).

One escape is to throw away the equal-time commutation relations (Section 4.2.4).
After all, we know that the renormalised (physical) fields won’t satisfy them. Also, it
seems highly dubious to claim that (4.2.9) are physically relevant, if (4.2.9) permits us to
smear fields only in the space direction. We should also smear in the time direction, which
means we can no longer speak of equal-time relations and the simplicity of (4.2.9) will
be lost. On the other hand, (4.2.9) are important, for example, for the usual interpretation
of the number operator, and hence are central to the particle interpretation.

The attitude taken by most practitioners of quantum field theory towards these various
mathematical difficulties is much like that taken by the author of this book towards
most of Life’s Little Crises: avoidance. ‘Tomorrow they may just go away.’ After all,
this strategy worked fine with those monsters haunting the night-time shadows of our
childhood.

There are formal similarities between quantum field theory and (classical) statisti-
cal mechanics. More precisely, path integral expressions in quantum field theory in
d-dimensional space-time are the same as, or at least analogous to, thermal averages in
statistical mechanics in d + 1 space-time dimensions, when the time t is replaced by
−ik/T where k is Boltzmann’s constant and T is the temperature. The weak coupling
limit in quantum field theory corresponds to the high-temperature limit. Quantum fluctu-
ations about a classical solution correspond to statistical fluctuations about a thermody-
namic equilibrium. We won’t have much more to say about this connection, though it has
been extremely fruitful. For example, spontaneous symmetry breaking in the Standard
Model, needed to give masses to particles like the electron, is a phase transition. The
Klein–Gordon equation, governing as we know scalar fields, also describes excitations
of a dense plasma, or of vortex motions in liquid helium. Conformal field theories, as we
shall see next section, can arise both from quantum field theories (string theories) and
from statistical mechanics. Incidentally, the transition to imaginary time has an important
place in quantum field theory, where it is called ‘Wick rotation’, and is related to the
holomorphicity of the Wightman functions discussed in Section 4.2.4.

The operators in both classical and quantum mechanics form an algebra. This cannot
be directly true in quantum field theory, because the product of distributions is not usually
a distribution. It does not make mathematical sense to multiply fields ϕ1(x), ϕ2(y) at the
same space-time point x = y. Nevertheless, the Lagrangian density, as well as the equal-
time commutation relations and many other familiar expressions in quantum field theory,
do precisely that. Kenneth Wilson proposed the operator product expansion (OPE) as
a way to make sense of this. As it is a standard tool of conformal field theory, we
defer its treatment to Section 4.3.2. Wilson intended this OPE to be an alternative to the
problematic (4.2.9), but as too often happens, his attempt at reformation was absorbed
into The System and has become one of its standard tools. The other way to make the
operators into an algebra is to smear them, and that is the approach taken by Wightman.

Modern quantum field theory is based on the notion of a gauge symmetry. To help
understand this important concept, consider the following toy model: a two-dimensional
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classical particle (x(t), y(t)), with equations of motion

d2

dt2
x(t)+ u(t) x(t) = 0 = d2

dt2
y(t)+ v(t) y(t), (4.2.14a)

for some fixed functions u, v. Writing z = x + iy and w = u + iv, this becomes the
simpler

d2

dt2
z(t)+ w(t) z(t) = 0. (4.2.14b)

Of course, this system has a U1(C) symmetry, corresponding to a rotation of the z-plane:
for any fixed eiθ ∈ U1(C), z(t) is a solution of (4.2.14b) iff eiθ z(t) is a solution. We
call this a global (as opposed to local) symmetry, because eiθ must be constant if it is
to define a symmetry of (4.2.14b). However, we can rewrite our system so that U1(C)
becomes a local (time-dependent) symmetry. Introduce a function A(t) (which will serve
as a book-keeping or compensating device) and replace each derivative d/dt in (4.2.14b)
with the differential operator d/dt − iA(t), so (4.2.14b) becomes(

d

dt
− iA(t)

)(
d

dt
− iA(t)

)
z(t)+ w(t) z(t) = 0. (4.2.14c)

This system (4.2.14c) has a local U1(C) symmetry: for any smooth function θ : R →
U1(C), (z(t), A(t)) is a solution to (4.2.14c) iff (eiθ (t)z(t), A(t)+ d

dt θ (t)) is a solution
to (4.2.14c). Physically, this local symmetry corresponds to the freedom of rotating the
system (or the observer) differently at each moment of time. We know from elementary
physics that doing this requires introducing the centrifugal forces intimate to all amuse-
ment park aficionados. Indeed, we can think of (4.2.14c) as being the equation of motion
of a particle z under the influence of a new external force described by A, in addition to
the original force described by w. This is the origin of the ‘new external force’ A.

For historical reasons, local symmetries such as the U1(C) of (4.2.14c) are called
‘gauge symmetries’ (gauge here means calibration or scaling). What is significant here
is that ‘gauging’ a global symmetry associates with it a new force; changing the gauge
(e.g. rotating the z-plane) is indistinguishable from the action of an apparent force (e.g.
a centrifugal one). In the trivial example given above, the force is globally ‘fictitious’
and the gauging process (4.2.14b)→ (4.2.14c) involves no new physics, since we can
always solve A(t)+ θ̇ (t) = 0 for θ and thus ‘gauge away’ the force A.

Remarkably, all fundamental forces in Nature (namely, gravity, electromagnetism,
and the strong and weak nuclear forces) can be obtained by gauging a global sym-
metry. Consider first special relativity (Section 4.1.2) and for simplicity a single free
particle x(t). There, the Poincaré group acts as a global symmetry. It says that the laws
of physics shouldn’t depend on the choice of origin and inertial observer (coordinate
axes). It is a global symmetry, in the sense that once those two choices are made, all
observers (regardless of the space-time point x they animate) must agree to use that
same origin and coordinate axes in comparing their observations, in order to have a
symmetry. This rigidity, this global collaboration, seems physically artificial. What hap-
pens if we gauge this symmetry? That is, permit each observer (i.e. each space-time
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point) to independently choose an origin and coordinate axes. What does that anarchy
mean for our description of the relativistic particle? Simply that its coordinates will have
changed: x(t) �→ x ′(t) = α(x(t)) where α : R3,1 → R3,1 encapsulates our new gauge.
We require this global change of variables to be invertible, that is to be a diffeomorphism
of Minkowski space. So our choice of gauge reduces to a choice of diffeomorphism α.
Making the equation of motion independent of that choice α requires introducing book-
keeping functions, Aλ

μν , so that the original equation of motion d2xλ/dt2 = 0 becomes

d2x ′λ

dt2
−
∑
μ,ν

Aλ
μν

dx ′μ

dt

dx ′ν

dt
= 0.

Requiring this equation to be equivalent to the original one, we recognise that the com-
ponents Aλ

μν are (up to a sign) none other than the Christoffel symbols �λ
μν , and that

the equation of motion is simply the geodesic equation. The new force corresponding
to these A’s is identified by Einstein’s equivalence principle with gravity. The question
of whether gravity can be ‘gauged away’, that is whether it is globally fictitious and our
calculations have been merely a formal mathematical game, reduces to the question of
whether space-time is globally flat. It is here – allowing for the suddenly natural possi-
bility that space-time is not flat – that new physics enters. The real purpose of gauging
the symmetry of Minkowski space-time (Einstein’s requirement of ‘general covariance’)
was to lead us to the idea of curved space-time and the associated force (which by
independent reasoning we identify with gravity). More generally, gauging is a guide for
introducing a new force into a theory with a global symmetry: the so-called principle of
minimal interactions.

Gauging works similarly in quantum field theory. QED results from gauging the U1(C)
symmetry of free theories. The global U1 symmetry, ψ(x) �→ eiθψ(x), corresponds to
the ambiguity of defining the phase of, for example, the electron field ψ . Once we
make the choice at one space-time point, then we must be consistent at all other points.
Incidentally, that global symmetry leads to the conservation of global electric charge, by
Noether’s Theorem. Gauging it means the phase can be changed arbitrarily at each point,
that is θ can depend on x . The associated book-keeping field Aμ(x) corresponds to the
force we call electromagnetism, and the gauge symmetry implies local conservation of
charge. For example, in the case of a charged scalar particle, the Klein–Gordon equation
(4.2.7) gauges to ∑

μ,ν

ημν(∂μ − iAμ)(∂ν − iAν)φ − m2φ = 0.

It is straightforward to construct a Lagrangian from the original (free) one, which yields
the new equations of motion: for example, the free Lagrangian

∑
(∂μφ†)(∂μφ)+ m2φ†φ

for a scalar field with charge e yields∑
μ

(∂μ + ieAμ)φ† (∂μ + ieAμ)φ + m2φ†φ.

But how should we think of Aμ? As another elementary field in the theory. But that
means we should add a new term to the gauged Lagrangian, containing partial derivatives
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of A (otherwise the Euler–Lagrange equations (4.1.8) would be trivial). The simplest
gauge-invariant, Lorentz-invariant way to do this is (4.1.13) (with V = 0),where Fμν =
∂μAν − ∂ν Aμ is called the field strength. This is the correct Lagrangian describing the
QED of a charged scalar particle. Changing the gauge is indistinguishable from the
matter field moving through an electromagnetic field. The associated perturbation theory
involves, in Feynman’s language, the exchange of virtual particles associated with this
new Aμ field – those new particles are called photons.

General relativity tells us to expect a geometric picture here, and indeed that is the
case. We think of the matter fields as being sections of a fibre bundle with base R3,1 and
fibre U1(C); the electromagnetic field Aμ defines a connection for this bundle and Fμν
is the curvature tensor.

Similarly, the Standard Model is a gauge theory associated with the gauge group
SU3(C)× SU2(C)× U1(C). SU3 here corresponds to the strong nuclear force, respon-
sible, for example, for the binding of quarks together to form protons and neutrons, and
the binding of protons and neutrons together to form nuclei. SU2 × U1 describes a unifi-
cation of electromagnetism with the weak nuclear force (which describes, for example,
the decay of the neutron). What this symmetry group SU3 × SU2 × U1 means physically
is less clear than it was for general relativity (or QED), and so the Standard Model lacks
the conceptual clarity of Einstein’s masterpiece. For example, many believe a deeper
quantum field theory will involve a larger gauge group, such as E6.

Describing other important ingredients of the Standard Model – the fundamental fields
and how they transform under SU3 × SU2 × U1 – would drag us even further from the
main thread of this book. For detailed treatments of the Standard Model see, for example,
[310], [555]. Although its comparison with experiment has been fabulous, it is surely not
the ‘final theory’. For one thing, it suffers from all the conceptual and mathematical flaws
mentioned in this subsection. Also, it has 18 free parameters – for example, the electron
mass – which must be experimentally determined and (depending on how one counts)
there are 61 ‘elementary’ particles in the theory. The Standard Model is an effective
theory, valid only for a relatively narrow range of physics. The question is, how different
from it will the theory superseding it look?

Quantum field theory challenges our concept of matter. In Newtonian physics reality
obtained its solid objective structure from an inert unanalysable ‘stuff’, from which all
substance came; though it could change form (e.g. ice to water), it was the clay on which
the Laws of Physics acted. As we moved into the twentieth century we learned that this
clay could be transformed into energy (‘E = mc2’), and that it is composed of atoms
that are mostly empty space. Quantum field theory goes a step beyond: the particles
composing atoms are to empty space like sound waves are to air. Bertrand Russell was
more accurate than he thought when, in 1956, he compared matter to Lewis Carroll’s
Cheshire Cat which gradually faded until nothing was left but the grin – matter’s grin,
Russel speculated, was caused by amusement at those who still think it’s there.

Likewise, our notion of force has changed from Newton’s definition F = ma, to some-
thing that more generally changes the state of a particle, and that is due not to an active
agent but to an indirect effect like a well-hidden symmetry – a further movement of
physics away from the prerelativistic infatuation with intuitive space and time.
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4.2.3 The meaning of regularisation

The mathematics of classical physics (symplectic geometry) is well understood, while
that of quantum field theory isn’t. But it’s already clear that, mathematically speaking,
quantum field theory is by far the more profound. Much as mechanics helped develop
calculus, our standard tool for studying finite-dimensional systems, we can expect quan-
tum field theory to supply us one day with sophisticated new tools for studying infinite
dimensions. We are already seeing hints of this.

To a theoretical physicist, quantum field theory is a recipe book, an infinite sequence
of finite calculations. To a mathematician, these recipes seem ad hoc, and surprisingly
classical and finite-dimensional for something that is emphatically neither. A hundred
years from now we’ll look back at that recipe book much as a modern doctor reflects
on medieval medicine: this herb is antiseptic, that incantation is mostly harmless, but
leeches and blood-letting were simply bad ideas.

Of all these recipes, those connected with renormalisation and regularisation generate
the most ire. For example, even mathematical stoics cannot be unmoved by the substi-
tution (2.3.1). Yet it is in these places where most of the magic lives, as for example the
derivation of the Atiyah–Singer Index Theorem from anomaly cancellation indicates.

It isn’t difficult for a mathematician to appreciate the inevitability of some form of
renormalisation. Consider, for example, the two-body Lagrangian

L = 1

2
m1ẋ1

2 + 1

2
m2ẋ2

2 + G
m1m2

|x1 − x2| . (4.2.15a)

We can integrate out one of the particles, since the centre-of-mass m1x1 + m2x2 is
constant (without loss of generality, say it equals 0). The resulting one-particle system
is

L = 1

2
mẋ2 + k

|x| , (4.2.15b)

where m = m1(m1 + m2)/m2 and k = Gm1m2
2/|m2 + m1|. We say that the mass and

coupling constants – the ‘bare’ parameters in (4.2.15a) – have been ‘renormalised’.
Something similar happens whenever we integrate away degrees-of-freedom, or

account for some effect (e.g. the unavoidable geometric series in Figure 4.10): the new
parameters will be readjusted or renormalised compared to the old ones. This is com-
pletely noncontroversial. What is disturbing about renormalisation in quantum field
theory is that you are asked to add/subtract/multiply/divide infinite quantities. Regulari-
sation is the procedure of obtaining precise numbers from such an ill-defined operation.

In some sense, regularisation also arises in mathematics. We see it in our Dedekind
eta calculation in (2.2.9), or the Virasoro action on affine algebra modules in (3.2.13).
Sometimes analytic concerns become significant (e.g. the natural integrals or series one
would naively write down turn out to diverge). If those concerns are ignored, we obtain
incorrect answers (such as η(−1/τ ) = η(τ ), or an action of the Witt algebra on affine
algebra modules). Of course what we must do is go back and do the analysis properly.
Regularisation is merely a symptom of sloppy analysis. It isn’t supposed to be the place
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where the magic appears. The magic was there all along. But the penalty of pretending
that (semi-)classical calculations can capture quantum field theory is the introduction of
regularisation schemes. The classical calculations fail to pick up that magic, which is
then forced to arise in that final step. It’s like trying to straighten a Möbius band: as you
move your hand around the strip, trying to keep the paper vertical, the twist is relegated
to a smaller and smaller portion of paper until eventually the paper tears. That tear is
called regularisation. The problem isn’t inherent to quantum field theory, the problem is
with the fantasy that we can treat quantum field theory semi-classically.

Feynman once asked why the same tricks work over and over in physics. Regularisa-
tion is Nature’s way of telling us that they don’t quite. Unfortunately, we don’t yet know
how to go back and do the quantum field theory calculations properly. But regularisa-
tion must supply some deep hints. For instance, the presence of infinite renormalisation
seems to suggest that quantum field theory should be formulated without Lagrangians.
Perhaps another hint is that the point∞ is the difference between the (Riemann) sphere
and the (complex) plane, suggesting that regularisation can be interpreted as a (global)
topological effect. In [105], [106], a projective limit of certain Lie groups, corresponding
to the Hopf algebra of Feynman graphs, acts on the coupling constants of renormalis-
able quantum field theories, and contains the renormalisation group as a one-parameter
subgroup; dimensional regularisation can in some theories be interpreted as the index
theorem in noncommutative geometry.

4.2.4 Mathematical formulations of quantum field theory

Making rigorous sense of quantum field theory is very difficult, as several comments
made earlier should indicate. Even the free theories are very subtle; theories with inter-
actions are filled with unresolved problems (Section 4.2.2). One thing is clear: quantum
field theory as it is typically practised today (i.e. the informal theory) is mathematically
incoherent.

However, quantum field theory is a part of mathematics in the sense that important
aspects of it have been encoded axiomatically and several examples (mathematically
if not physically interesting) have been rigorously constructed. Mathematicians under-
appreciate just how accessible quantum field theory is. The purpose of this subsection is
to briefly describe two of the most influential of these mathematical treatments. These
lead to two different formulations of conformal field theories, which we study in later
chapters. The fundamental difficulty in the subject lies in rigorously constructing nontriv-
ial examples of quantum field theories within these formulations. Only the very simplest
theories (e.g. the free ones) have been rigorously constructed.

The simplest and best-known mathematical treatment of quantum field theory, the
Wightman axioms [518], was first formulated in the 1950s by Gårding and Wightman.
Lagrangians and the equal-time commutation relations (4.2.9) are avoided, and instead
attention is focused on the interpolating renormalised ‘physical’ fields. This makes rigour
much easier to attain, but contact with the particle interpretation is more difficult. One
unexpected gain is the holomorphicity of the vacuum-to-vacuum expectation values.
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According to Wightman, a quantum field theory consists of the data collected in the
following seven axioms w.i–w.vii. For convenience, put c = � = 1. Naturally, there is
much overlap with the preceding material – the main clarification provided here is what
from Section 4.2.2 can (and should?) be avoided.

w.i. (relativistic state space) Let H be a separable Hilbert space, carrying a continuous
unitary representation U(a,�) of the universal cover R4×SL2(C) of the Poincaré group.
Define the self-adjoint operators Pμ by U(a,I ) = exp[i

∑
μ Pμaμ]; they mutually com-

mute so we can speak of simultaneous eigenstates. All the (simultaneous) eigenvalues
pμ of Pμ are required to satisfy the conditions p4 ≥ 0 and

∑
μ pμ pμ ≤ 0.

w.ii. (vacuum) There is a state |0〉 ∈ H, unique up to scalar multiple, invariant under
all U(a,�).

w.iii. (fields) There is a space D ⊂ H, dense in H and containing |0〉. There are a finite
number ϕ1, . . . , ϕM of operator-valued tempered distributions over space-time R4, such
that for any ‘test function’ f ∈ S(R4), each ϕi ( f ) is an operator from D to D. The set
of fields ϕi is closed under adjoint (i.e. ϕ†

i equals some ϕ j ).

w.iv. (covariance of fields) For all (a,�) ∈ R4×SL2, U(a,�)(D) = D. Equation
(4.2.8a) holds in D, and so the matrices V (�) define an M-dimensional SL2(C)-
representation.

Physically, the vectors in H (or rather the rays) are interpreted as the possible states
of the theory, and the ϕi are the (renormalised interpolating) quantum fields. We discuss
tempered distributions and the Schwartz space S in Section 1.3.1, and the Poincaré and
Lorentz groups and their doubles in Section 4.1.2. If there are any other symmetries of
the theory, then H will also carry a unitary projective representation of those groups. The
energy–momentum operators Pμ, generating space-time translations, exist because of
the assumed unitarity of the U ’s. They mutually commute because their exponentiations
U(a,I ) do. Up to a factor of c2, the eigenvalue p4 is the energy of the state and

√−∑ pμ pμ

its mass m. We call the vector |0〉 ∈ D in w.ii the vacuum, and normalise it so that
〈0|0〉 = 1.

Postulating a common domain D is necessary because (Section 1.3.1) unbounded
operators on a Hilbert space aren’t defined everywhere (think of differentiation on the
space of square-integrable functions L2(R)). We see from w.iii that D certainly contains
the vectors obtained from the vacuum |0〉 by applying all polynomials in the smeared
fields ϕi ( f ), and we learn in w.vi below that those vectors p(ϕ( f ))|0〉 are indeed dense
in H. To some approximation, D can be identified with that subspace (see page 98 of
[518]).

w.v. (local commutativity) For any pair of test functions f, g ∈ S(R4) satisfying
f (x) g(x) = 0 whenever (x − y)2 ≥ 0 (in other words, the supports of f and g are
space-like separated), then for any fields ϕi , ϕ j , a sign ± (depending on i, j) can be
chosen so that on D

[ϕi ( f ), ϕ j (g)]± := ϕi ( f )ϕ j (g)± ϕ j (g)ϕi ( f ) = 0.
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w.vi. (completeness) The vacuum is cyclic for the smeared fields. That is, polynomials
in the smeared fields ϕi ( f ), applied to the vacuum |0〉, form a subspace dense in H.

Completeness w.vi implies irreducibility of the smeared field operators, in the fol-
lowing sense (inspired by Schur’s Lemma): if B : D→ D is a bounded operator
satisfying

〈u, Bϕi ( f )v〉 = 〈ϕi ( f )∗u, Bv〉, ∀u, v ∈ D, ∀ f ∈ S(R4), ∀i = 1, . . . , M

(so in this weak sense B commutes with all ϕi ), then B is a constant multiple of the
identity. Completeness corresponds here to the remark in Section 4.2.2 that any operator
in the theory can be expressed as a function of the smeared fields.

Physically, local commutativity w.v concerns the quantum mechanical fact that mea-
surements localised at space-time points x and y should commute (i.e. be simultaneously
measurable without mutual interference) when x and y are space-like separated. It is a
consequence of the axioms which sign to take, as is discussed below.

A final axiom is needed to make content with particles (that is to say, with experiment).
As it is more technical, it is often avoided in treatments of Wightman’s axioms, and we
too will be sketchy. The basic idea is that any single particle state |λ〉 ∈ H (as usual,
λ = λ(p) describes the decomposition of the state into momentum eigenstates |p〉) will
be an eigenvector for the operator

∑
μ PμPμ, with eigenvalue −m2c2 independent of λ

(m is the mass of the particle). On the other hand, eigenstates |λ1, . . . , λn〉 of
∑

PμPμ
corresponding to n > 1 particles will have eigenvalue varying continuously with theλi . In
other words, considering the spectral decomposition of the self-adjoint operator

∑
PμPμ

in H, the single particle states |λ〉 correspond to the discrete part of the spectrum. Call
H(1) the Hilbert space they span – it is a proper subspace of H. There need be no direct
relation between the number of elementary fields ϕi and the types of single particles. For
example, in the Standard Model quarks correspond to elementary fields but not particles,
and protons are particles without a corresponding elementary field. We can now construct
incoming |λ1, . . . , λn〉in and outgoing |λ1, . . . , λn〉out n particle states, corresponding in
the t →∓∞ limits to tensor products |λ1〉 ⊗ · · · ⊗ |λn〉 – see section II.V of [269] for
the detailed construction. Then the final axiom is:

w.vii. (asymptotic completeness) The incoming particle states |λ1, . . . , λn〉in topolog-
ically span H, as do the outgoing particle states |λ1, . . . , λn〉out.

Unfortunately, this treatment requires all particles in the theory to have nonzero mass,
and so isn’t realistic. For example, in quantum electrodynamics the photon is massless
and the electron is always surrounded by a cloud of photons, so the single electron states
don’t belong to a discrete eigenspace of the operator

∑
PμPμ, but rather the eigenvalue

varies continuously with upper bound−m2c2 corresponding to the mass of the electron.
For a more sophisticated treatment of the particle concept within quantum field theory,
see chapter VI in [269].

The role of the n-point functions (4.2.11) are played here by the Wightman func-
tions, which are also vacuum-to-vacuum expectation values but aren’t time-ordered. Let
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ϕi1 , . . . , ϕin be n fields, not necessarily distinct. Define Wn to be the inner-product

Wn(x1, . . . , xn) := Wϕi1 ,...,ϕin
(x1, . . . , xn) := 〈0|ϕi1 (x1) · · ·ϕin (xn)|0〉.

Of course, to make sense of this expression we must smear the points xi , that is,
replace them with test functions fi . Thus Wn is a complex-valued function of S(R4)×
· · · × S(R4). Thanks to Schwartz’s Nuclear Theorem, Wn has a unique extension to a
tempered distribution on S(R4n), and it is this extension that is studied. Nevertheless,
the inaccurate and occasionally misleading notation Wn(x1, . . . , xn) is too standard to
change.

It is possible to convert the data and properties in w.i–w.vii into constraints on the
Wightman functions. For example, the relativistic invariance of the vacuum leads to the
expression, valid for any (�, a),

M∑
j1,..., jn=1

Vi1 j1 (�) · · · Vin jn (�) Wϕ j1 ,...,ϕ jn
(x1, . . . , xn)

= Wϕi1 ,...,ϕin
(�x1 + a, . . . , �xn + a). (4.2.16)

As always of course, everything should be smeared, that is evaluated at fi ∈ S(R4) (or
f ∈ S(R4n)). In its unsmeared form, (4.2.16) suggests that Wn is actually a ‘generalised
function’ wn(ξ1, . . . , ξn−1) of the differences ξi = xi − xi+1; the precise statement and
proof for smeared Wn is given in pages 39–40 of [518].

A central result (due to Wightman) is the Reconstruction Theorem: these vacuum-to-
vacuum functions Wn uniquely determine the quantum field theory. More precisely, if
a collection of tempered distributions Wn satisfies all of the ‘obvious’ properties (such
as the covariance (4.2.16)) that the set of all Wightman functions should obey, then the
Hilbert space H and the various fields ϕi obeying axioms w.i–w.vi can be constructed,
and moreover any quantum field theory realising the given Wightman functions will be
equivalent to the one constructed. The general proof is notationally laborious though
fairly straightforward (it is closely related to the Gel’fand–Naimark–Segal construction
of a Hilbert space Hρ and a representation πρ of a C∗-algebra A, associated with a
functional ρ : A→ C). See section 3-4 of [518] for the explicit statement and proof for
the theory of a single free boson. The Reconstruction Theorem does not tell us when
w.vii (i.e. the particle interpretation) holds.

Wightman also proved another remarkable property of his functions: each ‘gener-
alised function’ wn(ξ1, . . . , ξn−1) is the limit as zi → ξi of a holomorphic function
wn(z1, . . . , zn−1) of complex variables zi ∈ C4. The domain of holomorphicity con-
tains the following points: Re(zi ) can be arbitrary but yi := Im(zi ) lies in the forward
light-cone (i.e. y4

i > 0 and yi · yi < 0). So the distributions Wn(x1, . . . , xn) are boundary
values of the holomorphic functions wn(z1, . . . , zn−1). The proof of this is not difficult,
and involves writing wn(z1, . . . , zn−1) as the Laplace transform of the Fourier trans-
form of wn(ξ1, . . . , ξn−1). Physically, this amounts to holomorphically extending from
real time (i.e. the Minkowski space-time of physics) to imaginary time (i.e. Euclidean
space-time, with better analytic properties).
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As mentioned earlier, the choice of sign in w.v is fixed. In particular, if ϕ1 and ϕ2 have
spins s1 and s2, then we take the sign −(−1)(2s1)(2s2). In small space-time dimensions
alternatives to bosons and fermions are possible – see section 4.3.5 below – but these
exotic possibilities are precluded here by the local commutativity axiom.

Apart from free theories, very few quantum field theories obeying the Wightman
axioms have been constructed. In 1953, Thirring rigorously constructed the first inter-
acting theories, but these live in two-dimensional space-time. In the 1960s and 1970s
several nontrivial theories with interactions (e.g. a single scalar with φ4 interaction term)
were constructed in three and especially two space-time dimensions. One of the $1 mil-
lion Clay Institute problems (see http://www.claymath.org/) is to rigorously construct
four-dimensional gauge quantum field theories. Quite probably there are easier ways of
becoming a millionaire.

In the 1960s Haag and Kastler proposed a different axiomatic approach to quantum
field theory, which although more abstract and complicated, appears to be more flexible.
We will only sketch it here – see the excellent book [269] for a complete treatment, as
well as several insights into general quantum field theory. This approach avoids fields,
focusing instead on the algebra of observables – as the existence of very different-looking
but equivalent field theories emphasises, it is the observables and not the fields that have
a direct physical meaning. Remarkably, the entire physical content of the theory can be
recovered from these algebras of observables.

Their starting point is to associate with each bounded open set O in space-time R3,1,
a von Neumann algebra A(O) of bounded operators on a fixed Hilbert space H. This is
the same state space H as in the Wightman axioms, but its role here is much more minor.
The self-adjoint elements in A(O) correspond to the measurements performable within
the region O, and so O1 ⊂ O2 implies A(O1) ⊂ A(O2). If fields ϕ were present, A(O)
would be obtained from polynomials in the smeared fields ϕ( f ), for test functions with
support in O. Conversely, one may hope to define fields ϕ(x) by sending O→ {x}. Thus
this approach is related to that of Wightman, and it shares with the latter the near-absence
of nontrivial examples.

Question 4.2.1. The nonrelativistic analogue of the Poincaré group is the Galilei group,
generated by all translations (�x,�t), all rotations R ∈ SO3 and all ‘boosts’ in velocity
�v ∈ R3, as in (4.1.7b). Galilean invariance for nonrelativistic quantum mechanics says
that, for any element α = (R,�v,�x,�t) of the Galilei group, a wave-function ψ(x)
satisfies Schrödinger’s equation (4.2.1) iff the corresponding transformed wave-function
ψ ′(x ′) (whatever that is) satisfies

i�
∂ψ ′(x ′)
∂t ′

= − �2

2m
∇′2ψ ′(x ′)+ V (x′)ψ ′(x ′),

where x ′ = α.x = (t�v + Rx+�x, t +�t) as usual. Show that the obvious trans-
formation formula ψ ′(x ′) = ψ(x) (corresponding to a nonrelativistic scalar) fails
here. Rather than transforming in a representation of the Galilei group, ψ must
transform in a projective representation. Show that the transformation law ψ ′(x ′) =
exp[i�α(x)/�]ψ(x) works, where �α(x) = m (�v) · x+ m

2 (�v)2 t .

http://www.claymath.org/
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Question 4.2.2. Let V0 be a constant. Solve the one-dimensional Schrödinger equation

(4.2.1) for the potential V (x) =
{

V0 for − 1 < x < 1
0 otherwise

, with the condition that both

ψ and ∂ψ be continuous at x = ±1.

Question 4.2.3. (a) The vacuum |0〉 for the harmonic oscillator is the state with minimum
possible energy. Find its normalised wave-function φ(x, t). (See equations (4.2.3).)
(b) Use your answer in (a) to find the average value (expectation value)

∫
ψ∗ x̂4ψ of the

observable x̂4 in the vacuum.
(c) Now do the same calculation using the Heisenberg picture (4.2.5): calculate the
expectation value 〈0|x̂4|0〉 using creation/annihilation operators.

Question 4.2.4. (a) In nonrelativistic quantum physics, the current density is j(x) =
i

2m (ψ∇ψ − (∇ψ)ψ) and the probability density is ρ(x) = |ψ(x)|2. Verify that they
obey the equation of continuity ∂ρ/∂t + ∇ · j = 0. (The equation of continuity says that
the spatial integrals

∫
ρ(x, t) d3x are independent of t .)

(b) Suppose φ was a wave-function obeying the Klein–Gordon equation (4.2.7). The
relativistic version of (j, ρ) is jμ(x) = i

2m (φ ∂μφ − (∂μφ)φ). Verify that this obeys the
relativistic equation of continuity

∑
μ ∂μ jμ = 0, but that the corresponding probability

density j4 is not positive. (This is the first sickness of relativistic quantum physics based
on the Klein–Gordon equation. The reason for these negative probabilities is that j4

involves a time derivative, due to the Klein–Gordon equation being second order in
time.)
(c) Verify that φk(x) = exp[−i

∑
kμxμ] satisfies the Klein–Gordon equation and is also

an eigenfunction of energy and momentum, provided k and m are related in a certain
way. Verify that negative energy solutions to the Klein–Gordon equation do exist. (This
is the second, related sickness.)

Question 4.2.5. Mathematically speaking, bounded operators are much nicer than
unbounded ones. Explain why, physically speaking, we don’t lose any generality restrict-
ing to bounded self-adjoint observables.

4.3 From strings to conformal field theory

In this section we introduce rational conformal field theory (RCFT), as it is known in
physics. Standard references for this material are the book [131] and the review articles
[239], [209], [224]. We also touch on one of its motivations: string theory. A more
mathematical treatment of RCFT is provided in the following section.

We essentially identify conformal field theory (CFT) and perturbative string theory,
but this is an oversimplification. For instance, a string theory exists simultaneously on
several Riemann surfaces, and the corresponding amplitudes are added together. These
surfaces correspond to the various terms in a perturbative expansion (a Taylor series
in the string tension parameter T ) of the true physical amplitudes. In string theory, the
quantities for each surface are of no direct significance by themselves, any more than the
term ‘196 884q’ by itself means anything special to SL2(Z). In CFT, on the other hand,
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the Riemann surface is fixed – for example, the theory on the torus could be realised
by a statistical mechanical model on the plane where the fields obey doubly-periodic
boundary conditions. In fact, it is the deep connection to string theory that gave conformal
field theorists the compulsion to explore their theories in arbitrary genus.

Conformal field theory and string theory have impacted remarkably on mathemat-
ics. For instance, five of the twelve Fields medals awarded in the 1990s were to men
(Drinfel’d, Jones, Witten; Borcherds, Kontsevich) whose work directly concerned aspects
of CFT. Probably no other structure has affected so many areas of mathematics in so
short a time. Moonshine (and this book) have been deeply influenced by CFT.

The impact so far on physics has been less profound. String theory is still our best
hope for a unified theory of everything, and in particular a consistent theory of quantum
gravity. It goes through periods of boom and periods of bust, not unlike the breathing of
a snoring drunk, and it is still too early to draw any definite conclusions.

However, recall Dirac’s quote in Section 1.2.2 about the deep relation between math-
ematics and physics. For example, the inverse-square law (‘force is proportional to
|x − y|−2’) is so mathematically elegant that it must play a role in physics, at least in
certain limiting situations. We see it in Newton’s gravitation, and the Coulomb force
between electric charges, and we now understand it to be the effective macroscopic
theory associated with a massless boson in an abelian gauge theory. The same, it can be
argued, should be true with string theory.11

4.3.1 String theory

The Standard Model describes the quantum theory of the electromagnetic, weak and
strong forces. It ignores the force that to us plodding behemoths is the most blatant:
gravity. The direct approach to quantising gravity fails: the resulting quantum field
theory is easy to write down but it is nonrenormalisable and computationally useless.
This strongly suggests that new physics should be entering in at high energies (= small
distances). Indeed, naive calculations involving general relativity (which relates energy
densities to the space-time metric) suggest that as we zoom in on space-time at distances
of around 10−33 cm (the so-called Planck length), the virtual quantum oscillations will
change the topology of space-time. Far from being a continuum (manifold), space-time
at small scales would seem to be some sort of quantum foam.

Because this issue is so fundamental, there are several approaches to resolving it. One
of these is string theory, which was created by accident in 1968, where it was applied to
the wrong problem, and gave, it was soon realised, the wrong answers. The explosion
of interest in it as a theory of quantum gravity, and everything else, began in 1984.

The electron is a particle, that is, it can be localised to a point. The Standard Model,
say, contains several other equally fundamental particles, each distinguished by different
abstract assignments (e.g. representations) attached to that point. In string theory, the

11 I owe this thought to Peter Goddard.
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(a) (b)

Fig. 4.11 Some two-loop Feynman diagrams of (a) particles and (b) strings.

fundamental object is a string (i.e. a finite curve of length approximately 10−33 cm).
Depending on the particular theory, this string can be open or closed, oriented or unori-
ented.

There are several advantages to having extended objects. One is that the particle zoo
is simplified, as those abstract assignments can be modelled geometrically using the
changing shape of the string. For example, the difference between a string realising an
electron, and a string realising a photon, is in how it oscillates. In place of the several
dozen ‘elementary particles’ of the Standard Model, we have only one string, whose
precise physical properties at a given time depend not only on its momentum but also its
vibrational mode. Likewise, the possible interactions are simplified. Recall that to each
term in a particle Lagrangian L, we have a possible vertex for the Feynman diagrams of
perturbation theory. On the other hand the interactions of strings are purely topological:
for example, a single string can split into two, or two join into one. Most importantly,
a theory of quantum gravity seems to arise naturally and seems far better behaved than
other quantum theories of gravity.

The weary reader may wonder whether future physicists could initiate new ‘revo-
lutions’ by replacing strings with membranes or other higher-dimensional manifolds.
Such a reader may find some solace in the No-Go theorem described in chapter 2.1.1
of [261]. Nevertheless, modern string theory interprets D-branes (membranes where the
endpoints of open strings reside) as dynamical objects in their own right, correspond-
ing to higher-energy semi-classical solutions. Just as for low-energy approximations we
study perturbations about a vacuum, for higher-energy approximations we need to study
perturbations about D-branes. It is hoped (though with little justification) that together
those perturbative patches cover all of parameter space.

The Lagrangian of a free particle says that the classical particle travels in such a way
that its arc-length is minimised. The natural analogue for a string says that the classical
string tries to minimise the area of the surface (‘world-sheet’) it traces out. This Nambu–
Goto action describes what we now call the bosonic string. An equivalent formulation,
called the Polyakov action, expresses it as an integral over moduli space.

We are interested in perturbative string theory. Recall (4.2.13d). Figure 4.11 gives
some two-loop Feynman diagrams arising in the scattering of two particles/strings. As
usual, we take the incoming and outgoing states to be asymptotic (this simplifies things
considerably). For simplicity, make the particle theory φ3 (so the diagrams are trivalent)
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Fig. 4.12 Dissecting a surface into pairs-of-pants.

Fig. 4.13 The punctured surface corresponding to Figure 4.11(b).

and the string closed. For the particle, both diagrams in (a) would contribute a term. For
the string, the equality in (b) reflects the fact that in Polyakov’s formulation, conformally
equivalent world-sheets correspond to the same term in the perturbative expansion, and
should only be counted once. This is why the Feynman sum reduces to an integral over
moduli space (in this case M2,4).

In any quantum field theory, each vertex v contributes some operator ϑv to that per-
turbation summand. To what does this correspond in (b)? We obtain our ‘vertices’ by
dissecting our world-sheet into spheres with three legs (‘pairs-of-pants’), as in Fig-
ure 4.12. The operator in string theory is called a vertex (intertwining) operator. It
is a local operator describing the absorption or emission of a string state by another.
Surprisingly, these vertex operators are central to the rest of our story.

Because we’re really interested in asymptotic t →±∞ initial/final states, the exter-
nal tubes of the world-sheets are semi-infinite. We can conformally shrink those tubes
into punctures (one for each incoming/outgoing string), so Figure 4.11(b) becomes Fig-
ure 4.13. The easiest example of this map is also the most important: send a cylindrical
world-sheet, with local coordinates−∞ < t < 0 and 0 ≤ θ < 2π , to the complex plane
using (t, θ ) �→ z = et−iθ ; then the cylinder goes to the unit disc and t = −∞ corresponds
to the puncture at z = 0. It thus suffices to consider world-sheets that are compact sur-
faces, with marked points indicating the external lines. The data of those external string
states are stored in the appropriate vertex operator attached to that point. This is one of
the remarkable features of string theory: that space-time string amplitudes (in, for exam-
ple, 26 dimensions) can be expressed as correlation functions (4.2.11) in a point-particle
quantum field theory in two dimensions, where the fields are vertex operators.

String theory is important to Moonshine because modular functions arise there. That
amplitudes in string theory could be modular functions was known almost from the
very beginning, and by 1971 we even knew the modern geometric explanation: one-loop
vacuum-to-vacuum amplitudes in string theory are path integrals

∫
Z(torus) d[torus] over
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conformal equivalence classes of tori; because the moduli space of tori is H/SL2(Z)
(Section 2.1.4), this makes the modularity of Z(τ ) := Z(C/(Z+ τZ)) manifest. The
meromorphicity of the amplitudes at the cusps follows from the good behaviour (‘fac-
torisation’) of the amplitudes when the surface is deformed into one with nodes (Sec-
tion 2.1.4). In short, modular forms and functions appear very naturally in perturbative
string theory. Elsewhere, especially Section 7.2.4, we study why this is in more depth.

The modularity (Theorem 3.2.3) of the affine algebra characters χλ arises from strings
living on the corresponding compact simply-connected Lie group G (this is the so-called
Wess–Zumino–Witten model). Likewise, quadratic moonshine (i.e. the modularity of
theta functions) arises from the theory of strings living on the torus Rn/L . There is also
a string theory responsible for the modularity of the j-function (0.1.8). Much of the
remainder of this book tries to explain this.

It is often argued that string theory makes no experimental predictions, other than
the dimension of space, which it over-estimates by a factor of 3. This is perhaps a little
unfair. String theory predicts a world qualitatively much like that we observe: a world with
quantum gravity governed by Einstein’s equations at the low-energy, long-distance limit,
and gauge groups large enough to include the Standard Model with its zoo of particles.
String theory also seems more finite than usual quantum field theories. Unlike the 18
adjustable parameters of the Standard Model, and the fairly arbitrary choices of gauge
groups and particles possible in quantum field theories, there is a unique (M-)theory!

But that too is a little dishonest. There are enormous numbers of classical solutions,
and each of these serves as a possible vacuum to perturb about. Each choice of vacuum
corresponds to a different effective dimension of space-time, gauge group, etc. – different
physics. So the problem for the perturbative approach is which vacuum to choose. This
isn’t so strange: the dynamic role of the vacuum is also important in the Standard Model,
where the vacuum is less symmetric than the Lagrangian, and this gives rise to the
masses of particles, etc. Also, we know that perturbation theory is only an approximation
(probably ill-defined) to the full quantum theory, where for instance we have quantum
tunnelling between different vacua. To really understand the effective physics and thus
make precise experimental predictions would require a truly nonperturbative treatment
of string theory, and this is difficult (D-branes are our most reliable probe for this). In fact,
when we have large numbers of strongly interacting strings, the string picture probably
ceases as a good way of capturing the physics. But these issues, though important for
physics, don’t concern Moonshine.

Whether a believer, sceptic or agnostic, one must concede that string theory is truly
remarkable. To Witten, physics without strings is like mathematics without complex
numbers: just as the particle traces out a real curve (its world-line), the string traces out
a complex curve (its world-sheet). Standard string theory books are [261], [463].

4.3.2 Informal conformal field theory

A conformal field theory is a quantum field theory, usually on a two-dimensional
space-time, whose symmetries include the conformal transformations. The first
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two-dimensional CFT (the c = 1/2 free fermion) was constructed by Thirring in 1953.
CFT really took off in the 1980s, starting with [50]. It arises in string theory, as well as
the statistical mechanics describing certain phase transitions. Higher-dimensional CFT
appears in the so-called AdS/CFT correspondence (see e.g. [5]).

The relation between CFT and string theory is that CFT lives on the world-sheet �
traced by the strings as they evolve (colliding and separating) through time. Of course,
a quantum string only collides and separates in the virtual sense of a Feynman diagram,
and so CFT arises in perturbative string theory. More precisely, each term in the Feynman
perturbation expansion of S-matrix entries in closed string theory will be a correlation
function in a CFT living on the world-sheet. The world-sheets of these scattering strings
have a boundary component for every incoming and outgoing string, as in Figure 4.11(b).
Any such surface is conformally equivalent to a compact Riemann surface�with marked
points p1, . . . , pn (one for every incoming and outgoing string), as in Figure 4.13. For
reasons we will explain shortly, we also require a choice of local coordinate zi for each
pi – that is, an explicit identification of a neighbourhood of pi ∈ � with one of 0 ∈ C, so
that zi = 0 is the coordinate for pi . We discuss the moduli space M̂g,n of these ‘enhanced
surfaces’ in Section 2.1.4.

This space-time � can be any conformal surface, and we identify conformally equiv-
alent �. We restrict to compact orientable �, although we don’t fix an orientation on
it. Because of the string theory interpretation, it is tempting but incorrect to give each
such � a Lorentzian metric (i.e. locally dt2 − dx2), but for compact � such a metric
exists only for the torus. Instead, we give each � the usual Euclidean signature (i.e.
locally dx2 + dy2 = dz dz) of Riemann surfaces. We think of the same CFT as living
simultaneously on all such �. This leads inevitably to a moduli space formulation.

The simplest indication why two dimensions are so special for CFT is that the space
of local conformal transformations, which forms a Lie algebra isomorphic to son+1,1(R)
in Rn for n > 2, becomes infinite-dimensional in two dimensions. More precisely, if
f (z) is any holomorphic map with nonzero derivative f ′(z0) at some point z0 ∈ C, then
f is conformal in a neighbourhood of z0 (the converse is also true – see, for example,
theorem 14.2 in [481]). Similarly, anti-holomorphic maps preserve the absolute value
of angles but reverse the sign. This is essentially the statement that the Lie algebra of
conformal Killing vector fields in Rn is infinite-dimensional iff n = 2 (see chapter 1
of [495] for a definition and proof); when n = 2 it contains two commuting copies of
the Witt algebra Witt (1.4.9) (one copy for the holomorphic maps and one for the anti-
holomorphic ones), arising as dense polynomial subalgebras in this conformal algebra.
In our approach, this is how the Virasoro algebra arises. As mentioned in Section 3.1.2,
n copies of Witt act on the enhanced moduli space M̂g,n , either by changing the local
coordinate zi , moving the insertion point pi or changing the complex structure of �.

The CFT literature is very sloppy when discussing the conformal group in two dimen-
sions. In spite of numerous published claims to the contrary, it is not the conformal group
of R2 versus that of Rn (n > 2) that singles out two dimensions. The conformal group
is isomorphic to the finite-dimensional SOn+1,1(R) in any Rn . Although we can identify
R2 with C, and although holomorphic functions f are locally conformal (provided we
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avoid the zeros of f ′), these f don’t form a group. Although the conformal group of
R2 ∼= C (or its compactification S2, if we permit poles) is finite-dimensional, the con-
formal group of ‘Minkowski space’ R1,1 (or better, its compactification S1 × S1 – one
S1 for each null-direction x1 ± x2) is infinite-dimensional, and for S1 × S1 consists of
two copies of Diff+(S1)× Diff+(S1), where Diff+(S1) isthe oriented diffeomorphism-
group of the circle (Section 3.1.2). Thus its Lie algebra is Witt⊕Witt. If one wants an
infinite-dimensional conformal group in CFT, one must put a Minkowski metric on the
cylinder or plane.

The subtle and poorly understood role of two dimensions for the conformal group is
carefully discussed in [495]. Also interesting is how it arises in Segal’s picture (Sec-
tion 4.4.1). For the interplay and representation theories of Witt, its central extension
Vir and the real Lie group Diff+(S1), see Section 3.1.2.

On the cylindrical world-sheet in string theory, given a Minkowski metric, the standard
light-cone coordinates would be t ± x , where t is time and x is a periodic angle parameter.
The solutions to the classical equations of motion on the cylinder would be functions
of t ± x (i.e. left- and right-moving disturbances travelling at the speed of light). As
always, the Hamiltonian is proportional to the generator ∂/∂t of time translations. The
Euclidean version (which is what we use) is w,w = t ∓ ix , and so the left- and right-
movers become holomorphic/anti-holomorphic functions of the cylindrical coordinate
w = t − ix . As is traditional but slightly disturbing, w and w are usually to be treated as
independent complex variables; we will return to this subtle point shortly. By a formal
application of the chain rule, the Hamiltonian in the Euclidean picture will be

∂

∂t
= ∂w

∂t

∂

∂w
+ ∂w

∂t

∂

∂w
= ∂

∂w
+ ∂

∂w
.

In CFT, we prefer to use compact surfaces with marked points, so we should confor-
mally map the semi-infinite tubes of the world-sheets to punctures on a compact surface.
Locally, such a map looks like z = exp(w). This conformally maps our Euclidean cylin-
der to the punctured plane C \ 0. Likewise, z = exp(w) becomes to the right-moving
coordinate. We can now write the Hamiltonian Witt generators �n = z̄n+1∂z :

∂

∂t
= z

∂

∂z
+ z

∂

∂z
= −�0 − �0.

Basic data in the CFT are the quantum fields ϕ(z, z) – the vertex operators of last
subsection – centred at z = z = 0 on the Riemann sphere � = P1(C). The notation
ϕ(z, z) emphasises that these fields may depend neither holomorphically nor anti-
holomorphically on z. These ϕ are ‘operator-valued distributions’ on �, acting on the
space H of states for the punctured plane (i.e. corresponding to a propagating string);
as usual in quantum field theory, they create the various states by acting on the vacuum
|0〉 ∈ H. As usual, H comes with a Hermitian product, which allows us to compare
|in〉 with |out〉; in a physical theory it should be positive-definite (a theory without
this positive-definiteness is called non-unitary). When we say ϕ(z, z) is ‘centred at 0’,
we mean that the matrix entry 〈u, ϕ(z, z)v〉 will be a Laurent polynomial in the local
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coordinates z and z, for any u, v ∈ H, with a singularity only at 0 (unless the outgoing
state u isn’t the vacuum, in which case infinity can also be singular).

In a CFT, anything that looks like a quantum field is called a quantum field. In the
quantum field theories of Section 4.2, only the finitely many generating fields (e.g. the
ones appearing in the Lagrangian) are usually called quantum fields.

Any quantum field theory has a state-field correspondence: to a field ϕ is associated
its incoming state, that is the t →−∞ limit of ϕ|0〉. Typically, different fields can
correspond to the same state. In CFT though, this correspondence becomes a bijection:
to a given field ϕ(z, z) on P1(C), we associate the state ϕ(0, 0) |0〉 = v ∈ H (recall that
z = et−ix ). Let ϕv denote the unique field corresponding to state v.

As for any quantum field theory, solving a CFT requires calculating all n-point corre-
lation functions (4.2.11):

〈ϕv1 (z1, z1)ϕv2 (z2, z2) · · ·ϕvn (zn, zn)〉�;p1,...,pn , (4.3.1a)

for any choice of enhanced surface (�, pi , zi ) and states vi ∈ H. We think of ϕvi (zi , zi )
as being centred at pi ; the local coordinates zi , zi describe it as an ‘operator-valued
distribution’ on � about pi . Simplest is the sphere � = P1(C), because then we can fix
a global variable w, and choose zi = w − pi . In this case the time-ordering of (4.2.11),
necessary for convergence, becomes the radial-ordering

|p1| < |p2| < · · · < |pn|, (4.3.1b)

because of our map et−ix . The interpretation of n-point functions for other surfaces is
more subtle and will be discussed shortly.

The partition functions Z� (4.2.13b) correspond to vacuum-to-vacuum string ampli-
tudes, and are functions on the moduli space of �. For example, a sphere is the world-
sheet traced by a closed string spontaneously created from and then reabsorbed into the
vacuum. As usual in quantum field theory, we can organise these amplitudes by how
many internal ‘loops’ are involved (i.e. the genus of the surface): topologically, 0-loop
(i.e. ‘tree-level’) world-sheets are spheres, 1-loop world-sheets are tori, etc. The 0-loop
contribution isn’t very interesting (all spheres are conformally equivalent), but we’ll see
shortly that the 1-loop partition function contains considerable information.

Next we describe two general tools introduced by Kenneth Wilson in the 1960s (see
e.g. [558]). The first is the operator product expansion (OPE). The idea is to replace the
ill-defined product ϕ1(x)ϕ2(x) of quantum fields by

ϕ1(x)ϕ2(x ′) =
∞∑

n=0

Cn(x − x ′) On(x), (4.3.2)

so the singularity structure as x ′ → x becomes manifest. The singular terms of (4.3.2)
are physically the relevant ones. Here, the On are fields in the theory, and are express-
ible as polynomials in the fields ϕi and their various derivatives. The coefficients Cn

are complex-valued functions with singularities of the form |x |−p (for p > 0) or log|x |,
with the more singular coefficients Cn corresponding to simpler fields On . Equation
(4.3.2) is meant to hold for x ′ close to x , in the weak sense of matrix entries, that is
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correlation functions (4.3.1a). The significance of (4.3.2) to (4.3.1a) should be clear. A
derivation and clarification of this fundamental concept (4.3.2) is made in (5.1.6), in the
context of vertex operator algebras. The scalar quantum field theory in four dimensions,
with φ4 interaction term, is worked out in detail in section 13-5-1 of [310], where we
find for example that the only singular coefficient in the OPE of φ(x)φ(y) is propor-
tional to log(x2). The reader may find helpful the discussion of OPE given in lecture 3
of [567].

The OPE can be made more explicit here because CFT (unlike most theories) is
scale-invariant, and this is Wilson’s second tool. We apply it separately to z and z. Scale-
invariance means we have a unitary representation s �→ U (s) of the multiplicative group
R×> of positive real numbers, which is a symmetry of the Lagrangian; an eigenfield
ϕ transforms by U (s)−1ϕ(z, z) U (s) = shϕ(sz, z) for some real number h (the ‘scal-
ing dimension’ or conformal weight of ϕ). Similarly, scaling z yields an independent
conformal weight h. Scale-invariance requires that the coefficient Cn in (4.3.2) scales
like

Cn(sz, sz) = s−h1−h2+h(n)s−h1−h2+h(n)Cn(z, z),

where h(n) is the conformal weight of On . Since

U (s)−1∂zϕU (s) = ∂

∂z
shϕ(sz, z) = shs

∂

∂(sz)
ϕ(sz, z) = sh+1(∂zϕ)(sz, z),

the field ∂zϕ has conformal weight h + 1. Thus the possible conformal weights of the
fields On lie in Nh1 + Nh2. This means that (4.3.2) involves only finitely many singular
coefficients Cn . We see this more explicitly in (5.1.6).

Recall that, classically, a continuous symmetry implies by Noether’s Theorem the exis-
tence of a conserved current and conserved charges. In the case of the conformal symme-
try of CFT, the conserved current is the stress–energy tensor, which has nonzero compo-
nents T (z) := Tzz(z) and T (z) := Tzz(z). The conserved charges Ln := 1

2π i

∮
T (z)zn−1dz

satisfy

T (z) =
∑
n∈Z

Ln z−n−2 (4.3.3)

(and similarly for Ln). In a quantum field theory, these arise in the Ward identities (4.2.12).
Here these say, roughly, that taking a derivative of a correlation function 〈· · · 〉� with
respect to a component of the metric on � is equivalent to inserting some component of
T (z) into that correlation function. The OPE of the field T (z) with itself can be computed:

T (z) T (z′) = c

2
(z − z′)−4 id + 2 (z − z′)−2 T (z)+ · · · , (4.3.4)

where we display only the singular terms. The number c is called the (holomorphic)
central charge of the CFT. From this we obtain (see (5.1.6c)) the commutation relations
for the modes Ln , and we recover (3.1.5a). In other words, the modes Ln define a
representation of the Virasoro algebra on H. Likewise, the modes Lm also define a
representation of the Virasoro algebra (say with central charge c). These two copies of
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Vir commute: [Ln, Lm] = 0. From the Hermitian product we get that c, c and all the
conformal weights h are nonnegative real numbers.

Thus, just as the usual quantum field theories (e.g. the Standard Model) carry projec-
tive representations of the Poincaré algebra, a CFT carries a projective representation of
its conformal algebra, that is, of two commuting copies of the Witt algebra. Hence we
get the true representation of Vir⊕Vir on H defined above. A nonzero central charge
c (which is typical) amounts physically to a soft breaking of the conformal symmetry –
an anomaly – caused by considering CFT on a surface with curvature. More precisely,
the correlation functions (4.3.1a) of a CFT will always be invariant under complex
diffeomorphisms of the surface �, but in genus > 1 when c �= 0 the correlation func-
tions change under local rescalings of the metric. The central charge can be interpreted
physically [3] as a Casimir (vacuum) energy, something which depends on space-time
topology.

As we have seen, everything in CFT comes in a combination of strictly holomorphic
(left-moving) and strictly anti-holomorphic (right-moving) quantities. Here, ‘holomor-
phic’ is in terms of the two-dimensional space-time � (which locally looks like C), or
the local parameters on the appropriate moduli space (which usually locally looks like
C∞). These holomorphic and anti-holomorphic building blocks are called chiral. A CFT
is studied by first analysing its chiral parts, and then determining explicitly how they
piece together to form the physical quantities. For the applications of CFT to Moonshine,
the chiral parts and not the full CFT are what’s important. More generally, almost all
attention in CFT by mathematicians has focused on the chiral data.

Let V consist of all the holomorphic fields ϕ(z), and V the anti-holomorphic ones. For
example, V contains T (z). Both V and V are closed under the OPE (4.3.2), and so form
algebras called the chiral algebras of the theory. In the next chapter these algebras are
axiomatised. V and V mutually commute and the symmetry algebra of the CFT is often
identified with V ⊕ V . However, the vacuum is not invariant under most of V ⊕ V; we
say this symmetry is ‘spontaneously broken’. Under the state-field correspondence, V
and V correspond to subspaces V and V of the state space H. We call the quantum fields
ϕ(z) ∈ V (chiral) vertex operators.

Since L0 acts like−z∂z , the scaling operator U (s) defined earlier is s−L0 . The Virasoro
operators L0, L±1 are special in that they generate the three-dimensional conformal group
SL2(C) of the (Riemann) sphere. We have

sL0ϕv(z) s−L0 = shϕv(sz), (4.3.5a)

ex L−1ϕv(z) e−x L−1 = ϕv(z + x), (4.3.5b)

ex L1ϕv(z) e−x L1 = (1− xz)−2hϕv

(
z

1− xv

)
, (4.3.5c)

for any v ∈ V , provided L0v = hv (we say v has conformal weight h) and L1v = 0.
Such states v are called conformal quasi-primaries. If in addition v satisfies Lnv = 0
for all n > 0, then v is called a conformal primary state. They are precisely the lowest-
weight states (Section 3.1.2) for the irreducible Vir-submodules of state-space H; H
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will be the direct integral (Section 1.3.1) over all conformal primaries of the associated
lowest-weight Vir-modules. Equations (4.3.5) are generalised in (5.3.15).

More generally, the state-spaceH carries a representation of the symmetry algebraV ⊕
V , and decomposes into a direct integral of irreducibleV ⊕ V-modules (proposition 3.1 of
[187]). A rational conformal field theory (RCFT) is one whose state-spaceH decomposes
into a finite sum

H = ⊕M ⊗ N , (4.3.6a)

where M and N are irreducible modules of the chiral algebrasV andV , respectively. One
of the summands in (4.3.6a) is V ⊗ V . The rational ones are the CFTs we are interested
in; the name ‘rational’ was chosen because for them the central charge c and all conformal
weights h are rational numbers. The chiral algebras of an RCFT will have only finitely
many irreducible modules M ; for later convenience let� = �(V) denote the set of these.
The M ∈ � are called chiral primaries even though they don’t necessarily correspond
to a unique vector in H. It is more convenient to write (4.3.6a) in the equivalent form

H = ⊕M∈�,N∈�ZM,N M ⊗ N , (4.3.6b)

where ZM,N are multiplicities (many of which may be 0). It turns out (because V is max-
imal) that Z will be a permutation matrix. This decomposition (4.3.6b) is reminiscent of
the decomposition of a group algebra into irreducible modules. A beautiful interpretation
in terms of Frobenius algebras in category theory is given in [211].

An important class of RCFT are the Wess–Zumino–Witten (WZW) models. These
correspond to strings living on a compact Lie group G. Their mathematics is especially
pretty, and any natural question seems to have an elegant Lie-theoretic answer. The chiral
algebra V is closely related to the affine Kac–Moody algebra g(1) associated with G
(Section 5.2.2); its modules M ∈ � can be identified with the integrable highest-weight
modules L(λ) at a level k determined by c and (3.2.9c).

As with everything else in CFT, the correlation functions (4.3.1a) can be expressed in
terms of purely chiral quantities called conformal or chiral blocks

F = 〈I1(v1, z1) I2(v2, z2) · · · In(vn, zn)〉(�;p1,...,pn ;M1,...,Mn ) . (4.3.7)

Once again,� is a compact Riemann surface with marked points pi ; to each point pi we
assign a local coordinate zi as before, and also a choice of irreducible module Mi ∈ �.
The statevi is taken from Mi , and the fieldsIi (vi , zi ), centred at pi , are called intertwining
operators and generalise the vertex operators ϕv ∈ V . See Definition 6.1.9 (roughly, each
Ii (vi , zi ) is an operator-valued distribution sending vectors in some module to another).
In the case of higher genus �, (4.3.7) cannot be taken too literally, and the study of
higher-genus chiral blocks is more difficult [573], [296]; roughly, the points pi are first
taken in the same coordinate patch of �; the function is then extended holomorphically.
It will need branch-cuts in � to be well-defined.

To solve a given RCFT, it suffices to:

(a) construct all possible chiral blocks (4.3.7); and
(b) reconstruct the correlation functions (4.3.1a) from those chiral blocks.
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In its broad strokes, part (a) was explained in work of Moore–Seiberg [436] (and more
carefully in [32]) – see Section 6.1.4. In deep work, Huang is pursuing the explicit
solution to (a) for all sufficiently nice chiral algebras V (see e.g. [295] for the genus-0
story and [296] for genus-1). Likewise, in a series of papers written by Fuchs, Schweigert
and collaborators, topological field theories (Section 4.4.3) are used to find a solution to
(b) (see the reviews [211], [496]).

In CFT the Ward identities (4.2.12) are especially useful, since the symmetries are
so considerable. For example, they imply that it suffices to evaluate the chiral blocks
(4.3.7) when all vi are conformal primaries. Recall that Witt acts on moduli spaces (Sec-
tion 3.1.2); this lifts to one of Vir on chiral blocks, and the resulting partial differential
equations are the KZ equations of Section 3.2.4. Their monodromy is what makes the
chiral blocks so interesting, especially to Moonshine.

The most important example of chiral block is for the torus C/(Z+ τZ) with one
marked point (it doesn’t matter where), assigned V-module M1 = V and state v1 = |0〉.
Taking any operatorI1 intertwining some M ∈ �(V) with itself, the corresponding chiral
block (up to a constant multiple) will be the graded dimension

χM (τ ) := trM e2π iτ (L0−c/24), (4.3.8a)

where c is the central charge and L0 is the Virasoro generator corresponding to energy.
We explain in Section 5.3.4 how this arises. Using (4.3.6), the 0-point correlation function
for the torus – the 1-loop partition function Z – becomes

Z(τ, τ ) := trHe2π i [τ (L0−c/24)−τ (L0−c/24)] =
∑

M∈�,N∈�
ZM,N χM (τ )χN (τ ). (4.3.8b)

This is a very typical decomposition of a physical correlation function into chiral blocks.
The reviews [496], [216] provide careful explanations of why sometimes we treat z

and z as independent, and other times we must treat one as the complex conjugate of the
other. In short, from the point of view of chiral data, the single space-time � of the full
CFT is really two disjoint copies with opposite orientation (the Schottky double). For
example, the torus with modular parameter τ ∈ H is paired with the one with parameter
−τ ∈ H. As in (4.3.8b), the correlation functions of the full CFT involve both modular
parameters, but at the chiral level the two tori don’t see each other.

In particular, for a given choice (�; {pi }; {Mi }), an RCFT assigns a finite-dimensional
space B

(g,n)
{pi },{Mi } of chiral blocks. Each chiral block depends multi-linearly on the vi ∈ Mi ,

and meromorphically on the zi , though branch-cuts in� between pi will be needed. The
dimension of this space B

(g,n)
{pi },{Mi } is called the Verlinde dimension, and is given by

Verlinde’s formula (6.1.2) below.
For example, consider a WZW model associated with an affine algebra g = g(1) and

level k ∈ N. Fix an extended surface (�, pi , zi ). We have a copy of g at each pi , built
in the usual way (Section 3.2.2) from the loop algebra g⊗ C[z±1

i ]. The chiral primaries
M ∈ � are the integrable highest weights λ ∈ Pk

+(g); to each point pi choose some
λ(i) ∈ Pk

+(g). The associated space B of chiral blocks is constructed in [530], and these
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have an important geometric interpretation as spaces of generalised theta functions (see
chapter 10 of [495]).

The affine algebra characters χλ of (3.2.9a), as well as the j-function (0.1.8) are
examples of chiral blocks. As we see next subsection, the spaces B

(g,n)
{pi },{Mi } naturally

carry a representation of the mapping class group �̂g,n , and this is the source of the
relation of the braid group to subfactors, as well as the modularity of Moonshine. In
particular, the RCFT characters (4.3.8a) transform nicely under SL2(Z): for example,

χM (−1/τ ) =
∑
N∈�

SM,N χN (τ ), (4.3.9a)

χM (τ + 1) =
∑
N∈�

TM,N χN (τ ), (4.3.9b)

where S, T are finite complex matrices. This T matrix is given by

TM,N = e2π i (hM−c/24)δM,N , (4.3.10)

where hM is a real number (called the conformal weight) associated with the chiral pri-
mary M ∈ �. The matrix S is, however, more complicated (Section 6.1.2). For example,
the matrix T for the WZW models involves the quadratic Casimir of g, while the matrix
S involves characters of G evaluated at elements of finite order.

The simplest class of RCFT are the minimal models, which have the smallest possible
chiral algebra (generated only by the identity field and the stress–energy field T (z)) and
nevertheless still have a finite decomposition (4.3.6a). They are well understood (see e.g.
[131]).They are the RCFT with central charge 0 < c < 1, and correspond to the discrete
series (3.1.6) of Vir.

The smallest nontrivial minimal model is the Ising model. It has central charge c = 0.5.
The associated chiral algebra has three irreducible modules, which we label� = {0, ε, σ }
as in [131]. Their graded dimensions (4.3.8a) are

χ0(τ ) = q−1/48 (1+ q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + · · · ), (4.3.11a)

χε(τ ) = q23/48 (1+ q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + · · · ), (4.3.11b)

χσ (τ ) = q1/24 (1+ q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + · · · ), (4.3.11c)

where as always q = e2π iτ . From this we can read off the conformal weights h0 =
0, hε = 1/2, hσ = 1/16, and hence the T matrix of (4.3.9b):

T =
⎛⎝ e−π i/24 0 0

0 e23π i/24 0
0 0 eπ i/12

⎞⎠. (4.3.11d)

The matrix S is more difficult to find, but it equals

S = 1

2

⎛⎝ 1 1
√

2
1 1 −√2√
2 −√2 0

⎞⎠. (4.3.11e)
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Fig. 4.14 The moduli space of conformal field theories with central charge c = 1.

The 1-loop partition function Z(τ ) of (4.3.8b) is

Z(τ ) = |χ0(τ )|2 + |χε(τ )|2 + |χσ (τ )|2.

The CFT corresponding to open string perturbation – boundary CFT – is also interest-
ing (see e.g. the review [461]). In this direction, see the proposals in [215], [458] (building
on the α-induction of subfactors [65]). For instance, the 1-loop partition function cor-
responds to a Frobenius algebra (Section 4.4.3) in the modular category of modules of
the associated chiral algebra, and the boundary CFT data arise as a ‘category module’.
However, boundary CFT isn’t so relevant for Moonshine and will mostly be ignored in
this book.

The space of CFTs can be probed using ‘marginal operators’ – fields ϕv with con-
formal weight (h, h) = (1, 1) obeying certain other properties (see e.g. [137] and [246]
section 8.6). A given CFT can be deformed (changing its spectrum but not central charge
c), provided it contains such a field. If the given CFT has n marginal operators, then the
space of CFTs in its neighbourhood is expected (typically) to look like an n-dimensional
real manifold. When the given CFT has more marginal operators than the neighbouring
ones, the space of CFTs at that point may look like two manifolds intersecting trans-
versely, or it can mean an orbifold singularity where you get different realisations for the
same CFTs. The RCFTs are special points in this space. The space of known c = 1 CFTs
is drawn in Figure 4.14. Points on the horizontal and vertical lines are parametrised by

a radius
√

2
−1 ≤ rorb, rc ≤ ∞; these two half-lines intersect at rorb = 1/

√
2, rc =

√
2.

The known rational c = 1 CFT consists of the three isolated theories T(etrahedral),
O(ctahedral) and I(cosahedral), together with those theories with r2

orb ∈ Q or r2
c ∈ Q.

The fourth isolated point, RW, is irrational and described in [483]. Theories with radii
rc and r ′c = 1/(2rc) are equivalent, as are those with radii rorb and r ′orb = 1/(2rorb) (this
is an example of ‘T-duality’, and arises from the extra marginal operator possessed by

the rc =
√

2
−1

and rorb =
√

2
−1

theories). The intersection point also has two, while the
isolated points have no marginal operators, and the remainder have one (which permits r
to be continuously varied). The moduli space for CFT with central charge c < 1 consists
of countably many isolated points [91]. Very little is known about the moduli space for
c > 1.
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4.3.3 Monodromy in CFT

One way to make conformal symmetry manifest is to make the relevant physical quan-
tities be holomorphic functions of (or more precisely, sections of bundles over) the
appropriate moduli spaces. Let V be the chiral algebra of an RCFT and let � label its
(finitely many) irreducible modules, that is the chiral primaries. Let 0 denote the one
corresponding to the subspace V of H. Let’s investigate more closely what chiral blocks
(4.3.7) are.

In any RCFT, there are differential equations that the chiral blocks must satisfy. The
most well known of these are the Knizhnik–Zamolodchikov (or KZ) equations. We studied
these for WZW models at genus 0 in Section 3.2.4. Good expositions of this material are
given in [355], [207], [186]. Differential equations can also be found using null vectors
[50], and using the Ward identities.

Return to the Ising model, introduced last subsection. We know its chiral blocks in
genus-0 with two or three marked points (Question 4.3.5). Consider now four marked
points on the Riemann sphere, at positions wi ∈ C ∪ {∞}. The chiral block will be the
product of the quantity ∏

1≤i< j≤4

(wi − w j )
−hi−h j+ 1

3

∑
k hk (4.3.12a)

with some function of the cross-ratio

w := (w1 − w2)(w3 − w4)

(w1 − w3)(w2 − w4)
. (4.3.12b)

We can simplify this using the Möbius symmetry of the Riemann sphere to move wi to
0, w, 1,∞, respectively. If we label all four marked points with the primary field σ ∈ �,
then the space of chiral blocks is two-dimensional, spanned by

F1(w) =
√

1+√1− w√
2 (w(1− w))1/8

, (4.3.13a)

F2(w) =
√

1−√1− w√
2 (w(1− w))1/8

. (4.3.13b)

The fractional powers tell us these chiral blocks have branch-point singularities – that
is, to get a holomorphic function on the w-plane, we need to make semi-infinite cuts.
Nevertheless, we can analytically continue these functions along any curve. Take a point
w0 so that 0 < |w0| < 1, and consider the circle w(t) = w0 e2π it for 0 ≤ t ≤ 1. Nothing
special happens to the numerator of the Fi (w): its values at t = 0 and t = 1 are equal.
The denominator however picks up a factor e2π i/8, and thus both blocks Fi (w) pick up
a net factor of e−2π i/8. We call this the monodromy about w = 0 (Section 3.2.4).

Consider next their monodromy about w = 1. Here our circle will be w(t) = 1+
w0e2π it , again for w0 small. Note that the numerators of F1 and F2 switch, and the
denominators again pick up a factor of e2π i/8. Thus this monodromy can be written(

F1(w)
F2(w)

)
�→
(

0 e−2π i/8

e−2π i/8 0

)(
F1(w)
F2(w)

)
.
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In Section 3.2.4 we explain how to think of this. Reintroducing the four coordinates wi ,
the chiral blocks Fi will be holomorphic on the universal cover C̃4 of the configuration
space C4 of (1.2.6). Analytically continuing along any closed path γ in C4 (across any
of those branch cuts) defines an action of the fundamental group π1(C4) on the space
B(0,4) of chiral blocks. This group π1(C4) is the pure braid group of the sphere with four
strands. An element β of the full braid group of the sphere maps the space B

(0,4)
m1,m2,m3,m4

to B
(0,4)
mβ1,mβ2,mβ3,mβ4 , where βi is the associated permutation, so in our example (4.3.13)

the full braid group acts. We can recover the usual planar braid groups P3 and B3 here
by fixing one of the four points at say∞, and letting the others wander around.

Equivalently, as a ‘function’ on the configuration space, the chiral blocks form (multi-
valued) holomorphic sections of a projective flat vector bundle. What this means is that
each chiral block satisfies a system of partial differential equations (the KZ equations)
describing how to parallel-transport it around the configuration space, and flatness says
it will locally depend only on the moduli space parameters (and not on the path chosen).
Globally, however, there will be monodromy [437], [32], [355].

More generally, a chiral block F on an enhanced surface � is a multi-valued function
on the corresponding moduli space. To make it well defined, F can be lifted to the corre-
sponding Teichmüller space. There will be an action of the corresponding mapping class
group �̂g,n coming from monodromy (a projective action, if as usual the central charge
c is nonzero). How to centrally extend these �̂g,n so that the projective representation
becomes a true one is discussed, for example, in [404]. This picture, which is explained
quite clearly in [32] and is developed further in, for example, Section 7.2.4, encompasses
not only the braid group monodromy of the KZ equation (Section 3.2.4) but also the
modular group action (4.3.9) on the graded dimensions (4.3.8a). It is the source of the
modularity in Moonshine.

Although the chiral blocks themselves are multi-valued functions on the moduli spaces
M̂g,n , conformal invariance requires that the n-point correlation functions (4.3.1) them-
selves be well-defined functions on M̂g,n . For example, even though the graded dimen-
sions χM transform as in (4.3.9), the 1-loop partition function in (4.3.8b) is SL2(Z)-
invariant. See also Question 4.3.7.

As we know from Section 2.2.1, there is more to being a modular form or function
than transforming nicely with respect to SL2(Z). The behaviour at the cusps of H is
also crucial, as it says our function lives on a compact space. Something similar also
holds in RCFT. The analogue of cusps for the other moduli spaces – that is, the surfaces
corresponding to the extra points needed for compactification – are surfaces with nodes
(Section 2.1.4). What we need is nice behaviour of chiral blocks as we move in moduli
space towards surfaces with nodes, that is, as we shrink a closed curve about a handle
on our surface down to zero radius. This is given by (4.4.3) and is called factorisation
[203], [539]. It connects the moduli spaces of different topologies, and tells us CFT is
defined on a ‘universal tower’ of moduli spaces (Sections 3.1.2 and 6.3.3).

Incidentally, it is tempting to try to extend this formalism to the ‘surfaces of infinite
genus’ given by projective limits lim←�\H (see Section 2.4.1). The discrete groups �
appearing in each such limit must all be commensurable (i.e. intersections of any two of
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them should have finite index in both), in order for the limit to be defined. In Section 2.4.1
we describe the most famous piece of such a limit: the modular tower lim←�(N )\H,
so important to number theory. The assignment of, for example, chiral blocks to such
‘surfaces’ may be built up from those of each �\H, in a relatively straightforward way;
because of this, perhaps we could interpret the string-theoretic data for lim←�\H as
the (nonperturbative?) contribution (‘sum’) associated collectively with all world-sheets
�\H appearing in that limit. In any case, we are led to speculate from (2.4.3) that both
CFT and the theory of vertex operator algebras (and indeed Moonshine itself) may extend
quite nicely to the p-adics Q̂p. Some moves in this direction are [562], [520]. To a number
theorist, the usual perturbation about a vacuum would correspond to the infinite prime,
but would mysteriously ignore the contributions from all the finite primes. It would be
interesting to see if nonperturbative phenomena like D-branes can be sensed by these
projective limits.

As discussed at the end of Section 2.2.1, the analogue of q-expansions, for chiral
blocks and partition functions in higher genus, are expansions about surfaces with
nodes. A natural projectively flat connection on these spaces B(g,n) of chiral blocks
is given by the stress–energy tensor T (z) [203], [530]; this connection is responsi-
ble for the KZ equations, and is the analogue here of the Witt action on moduli
spaces, and the meaning of T (z) insertions into correlation functions discussed in
Section 4.3.2.

4.3.4 Twisted #4: the orbifold construction

To particles, a space-time singularity is a problem; to strings, it is merely a region where
stringy effects are large. The most tractable way to introduce such singularities is by
quotienting (‘gauging’) by a finite group. This construction plays a fundamental role
for CFTs and vertex operator algebras; it is the physics underlying what Norton calls
generalised Moonshine (Section 7.3.2). This is where finite group theory touches CFT.

Let M be a manifold and G a finite group of symmetries of M . The set M/G of G-orbits
inherits a topology from M , and forms a manifold-like space called an orbifold. Fixed
points become conical singularities. For example, {±1} acts on M = R by multiplication.
The orbifold R/{±1} can be identified with the interval x ≥ 0. The fixed point at x = 0
becomes a singular point on the orbifold, that is, a point where locally the orbifold does
not look like some open n-ball (open interval in this one-dimensional case). For other
examples, see Question 4.3.8.

Orbifolds were introduced into geometry in the 1950s as spaces with mild singularities;
recalling Definition 1.2.3, they are Vα/Gα patched together, where Vα ⊂ Rn is open and
Gα is a finite group. They were introduced into string theory in [143], which greatly
increased the class of background space-times in which the string could live and still be
amenable to calculation. This subsection briefly sketches the corresponding construction
for CFT; our purpose is to motivate Section 5.3.6.

For concreteness think of a closed string whose world-sheet � ⊂ M is a torus, since
the 1-loop partition function (4.3.8b) is the easiest way to obtain the spectrum (4.3.6)



From strings to conformal field theory 293

of the theory. Think of � being parametrised by z ∈ C/(τZ+ 2πZ), with τ being the
time-period of the 1-loop and 2π being the space-period of the closed string. Here, G
is a finite group of symmetries of the theory – it acts not only on space-time M , but
also on the internal states of the string (i.e. the state-space H carries a representation
of G). Assume for now that G is abelian and that H = V ⊗ V . For example, this is
satisfied by the WZW theory for E8

(1) at level 1, or strings living on the torus Rn/L for
an even self-dual n-dimensional lattice L . Consider first the chiral data. The orbifold
chiral algebra Vorb is the subalgebra VG of V consisting of all G-invariant fields. More
difficult to answer is what the orbifold state-space Horb looks like.

In the case of a point particle, a 1-loop world-line x(t) ∈ M/G would be a circle, the
motion x(t) would be periodic (say with period T ); lifting x(t) to M , we would require that
x(T ) = g.x(0) for some g ∈ G. The closed string also requires this twisted periodicity
in the time direction, but being closed it will similarly have a twisted periodicity in the
space direction. Thus we are led to consider string processes satisfying the boundary
conditions

x(z + τ ) = g.x(z), x(z + 2π ) = h.x(z). (4.3.14a)

The strings satisfying x(2π ) = h.x(0) form the h-twisted sectorVh – these twisted sectors
are the special feature of strings living on orbifolds. They don’t live in the original
chiral space V , and are hard to construct; in particular, there isn’t a systematic twisted
analogue of the vertex operator construction (i.e. exponentials of free fields) of untwisted
sectors.

The contribution of the processes (4.3.14a) to the 1-loop path integral will be

Z(g,h)(τ ) := trVh g e2π iτ (L0−c/24), (4.3.14b)

for reasons that will become clearer next section (the trace comes from obtaining the
torus by sewing together the inner and outer boundaries of an annulus). Each (finite-
dimensional) L0-eigenspace in Vhcarries a representation of the group 〈g〉, so that is
the matrix to substitute into the trace (4.3.14b). The modular group SL2(Z) acts on the
cycles (homology H1) of the torus in the usual way, which gives the behaviour of Z(g,h)

under modular transformations:

Z(g,h)

(
aτ + b

cτ + d

)
= Z(ga hc,gbhd )(τ ). (4.3.14c)

Actually, we will find shortly that in general this transformation has to be modified
slightly.

The twisted sector Vh is an irreducible (twisted) module for the original chiral algebra
V (Section 5.3.6). In terms of the orbifold chiral algebra VG , Vh will be a true module,
though not an irreducible one. Its decomposition (‘branching rules’) into irreducible
VG-modules is

Vh = ⊕ρVh
ρ ⊗ ρ, (4.3.15a)

where the sum is over all irreducible G-representations ρ (when G is non-abelian, this
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will be modified slightly). Plugging this into (4.3.14b) gives the equivalent expressions

Z(g,h)(τ ) =
∑
ρ

chρ(g)χ(h,ρ)(τ ), (4.3.15b)

χ(h,ρ)(τ ) := trVh
ρ
e2π iτ (L0−c/24) = 1

‖CG(h)‖
∑
g∈G

chρ(g)Z(g,h)(τ ). (4.3.15c)

The graded dimension χ(h,ρ), unlike Z(g,h), has a q-expansion with coefficients in N,
but Z(g,h) has the simpler modular behaviour, in perfect analogy to t+L versus L;r,s

(compare (2.2.11) and (2.3.10)).
An important example of this orbifold construction is the Moonshine module V �

(Sections 5.3.6 and 7.2.1). Its starting point is the chiral algebraV(�) for the torus R24/�,
where � is the Leech lattice. The symmetry group G corresponds to the centre {±1} of
Aut(�). The graded dimension of the untwisted sector V(�) is Z(1,1)(τ ) = J (τ )+ 24,
and has −1-twisted graded dimension

Z(−1,1)(τ ) = q−1
∞∏

n=0

(1− q2n+1)24 = q−1 − 24+ 276q − 2048q2 + · · ·

The −1-twisted sector V(�)−1 has untwisted/twisted graded dimension

Z(±1,−1) = 212q1/2
∞∏

n=0

(
1∓ q (2n+1)/2

)−24

= q1/2 ± 98304q + 1228800q3/2 ± 10747904q2 + · · ·
The Moonshine module V � consists of the sectors V(�)1

+ ⊕ V(�)−1
+ and so has graded

dimension

χV � (τ ) = χ(1,+)(τ )+ χ(−1,+)(τ )

= 1

2

(
Z(1,1)(τ )+ Z(−1,1)(τ )+ Z(1,−1)(τ )− Z(−1,−1)(τ )

) = J (τ ). (4.3.16)

So far we have discussed only the chiral orbifold CFT – our main interest. The state-
space (4.3.6) of the full orbifold CFT can look like

Horb = ⊕Vg
ρ ⊗ Vg

ρ. (4.3.17)

There are other possibilities for Horb; a systematic but far from exhaustive source is
provided by discrete torsion [136]. The lattice construction L{T }of Section 2.3.3 (applied
to indefinite lattices L) is this orbifold construction ofHorb, coming largely from discrete
torsion. The construction of V � is a heterotic version (i.e. with trivial ‘anti-holomorphic’
chiral algebra V). In any case, the full orbifold theory will typically involve most sectors
Vg
ρ . Modular invariance (4.3.14c) is one way to see the necessity of this; another is string

dynamics (see figure 8.1 in [463], vol. I).
There are three significant generalisations of this orbifold construction as outlined

above. Non-abelian orbifold groups G are at least as interesting to us (e.g. Maxi-
Moonshine concerns V �/M), and introduce new subtleties. For example, using (4.3.14a)
to evaluate x((z + τ )+ 2π ) = x((z + 2π )+ τ ) requires hg.x(z) = gh.x(z). That is, we
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should limit ourselves to boundary conditions (4.3.14a) whose pairs (g, h) commute.
Moreover, consider the h-twisted sector x(2π ) = h.x(0); hitting both sides with g ∈ G
yields (gx)(2π ) = (ghg−1).(gx)(0), that is, the twisted sectors Vh and Vghg−1

are nat-
urally isomorphic. In fact, Z(g,h) = Z(kgk−1,khk−1) for any k ∈ G, so we should identify
each boundary condition (g, h) with all simultaneous conjugations (kgk−1, khk−1). This
will be clearer in Sections 5.3.6 and 6.2.4. The sums in (4.2.15) are over all g ∈ CG(h)
and all irreducible CG(h)-representations ρ, where CG(h) is the centraliser of h in G.

For the second generalisation, note that g ∈ CG(h) takes the sector Vh to Vghg−1 = Vh

so (as in Section 1.5.4) we get a linear map φ(h)
g : Vh → Vh . So far we have implicitly

assumed that these assignments g �→ φ(h)
g define a representation of CG(h). But Vh are

chiral data and so group actions, etc. may be projective. That is, we only know that
g �→ φ(h)

g defines a projective representation of CG(h). In this case, (4.3.14c) must be
replaced by

Z(g,h)

(
aτ + b

cτ + d

)
= γ Z(ga hc,gbhd )(τ ), (4.3.18)

for some root of unity γ . See [138], and Section 5.3.6 below, for details. For example,
the Maxi-Moonshine orbifold V �/M will necessarily be of that projective type [408].

For the final generalisation, we have discussed orbifolding the CFTs with one chiral
primary (i.e. with‖�‖ = 1) only because they are simpler. The behaviour of more typical
multi-primary orbifolds is analogous (Section 5.3.6). For example, the horizontal line
of c = 1 CFTs in Figure 4.14 corresponds to bosons compactified on a circle of radius
r , while the vertical line there corresponds to bosons on the orbifold S1/Z2 (see the
treatment in [246]); most of these theories have infinitely many chiral primaries (i.e.
aren’t rational). The WZW theory for A1

(1) at level 1 is a c = 1 theory with two chiral
primaries corresponding to a string living on S3; we can orbifold this rational theory
by any of the finite subgroups of SU2(C). These subgroups fall into an A–D–E pattern
(Section 2.5.2). Orbifolding by the (cyclic) A-series of subgroups gives the c = 1 theories
rc = n/

√
2, and by the (dihedral) D-series gives the c = 1 theories rorb = n/

√
2. The

(tetrahedral) E6-, (octahedral) E7- and (icosahedral) E8-subgroups give us the isolated
theories T , O , I of Figure 4.14.

Choose any CFT H and tensor it with itself n times to get a new CFT H⊗n . The
orbifold H⊗n/Sn is called a permutation orbifold. Requiring that H⊗n/Sn possesses the
standard CFT properties imposes highly nontrivial conditions on the chiral data of H.
See, for example, [37] for applications of this powerful theoretical tool.

4.3.5 Braided #4: the braid group in quantum field theory

Much of Moonshine is implicit in two-dimensional CFT. What is the most distinctive
physical feature of two-dimensional quantum field theory?

In three or more dimensions, the rotation group SOn(R) is non-abelian. We know
everything about the finite-dimensional unitary projective representations of this simple
Lie group: there are countably many, namely the highest-weight representations of its
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universal cover Spinn(R). Physically, we know these fall into two families (‘superse-
lection sectors’), depending on what happens after a rotation by 2π : the true represen-
tations of SO2(R) (the ‘integer-spin’ bosons) and those that are merely projective (the
‘half-integer spin’ fermions).

In two dimensions, this familiar picture collapses, as the rotation group SO2(R) is
isomorphic to S1 and has universal cover R. The unitary representations are parametrised
by the ‘unitary duals’ Ŝ1 ∼= Z and R̂ ∼= R, respectively. In particular, the element x ∈ R
is sent to the 1× 1 matrix e2π iαx for ‘spin’ α ∈ R̂ = R. The behaviour (monodromy) of
these representations under rotations by 2π again determines the physics, and instead of
the boson/fermion alternative, we get superselection sectors parametrised by R̂/Ŝ1 ∼= S1.

The different physics of bosons and fermions is revealed by the spin–statistics rela-
tion. Define as in (1.2.6) the configuration space Cn(Rd ) of n distinct points x (i) in Rd ,
consisting of n copies of Rd with all diagonals x (i) = x ( j) deleted. We are interested in
these describing the positions of n identical particles, so for each permutation σ ∈ Sn

identify (x (1), . . . , x (n)) ∈ Cn(Rd ) with (x (σ1), . . . , x (σn)). A closed loop in Cn(Rd )/Sn

corresponds to an explicit rearrangement of the n particles. It is important to note that,
for any n, d , the space of trajectories will be disconnected. In Feynman’s formalism,
this means we have the freedom to introduce relative factors between the corresponding
disjoint path integrals. By unitarity these factors should be phases (complex numbers of
modulus 1), and consistency requires them to define a representation of the fundamental
group π1(Cn(Rd )). For d > 2 this fundamental group is the symmetric group Sn , and so
there are only two possible choices for these relative phases, corresponding to the two
one-dimensional representations of Sn: all +1’s, or det(σ ). The spin–statistics theorem
[518] tells us that +1 corresponds to bosons and det(σ ) to fermions.

In two dimensions, the fundamental group is the braid group Bn , and its one-
dimensional unitary representations are parametrised by t ∈ R/Z and defined by σi �→
e2π it . This t parametrises the different consistent assignments of phases to the disjoint
integrals in the Feynman expressions. Again, the spin–statistics theorem relates this
phase assignment to spin: this t is the same as the spin α (mod 1). This is called braid
statistics for obvious reasons. Such particles are called plektons (after the Greek word
for ‘braid’) or anyons (since they can have any spin).

One-dimensional representations of Sn or Bn are the simplest. Higher-dimensional
representations would indicate an internal structure and are considered in, for example,
parastatistics. In Section 4.3.3 we see how higher-dimensional representations arise in a
similar way in CFT. See, for example, [204], [191] for some general treatments of braid
statistics in CFT. Possible physical realisations of braid statistics are reviewed in [557],
[345]. In particular, subjecting certain semiconductors to large magnetic fields and cold
temperatures yields the so-called fractional quantum Hall effect, and its quasi-particles
provide an actual realisation of anyons. Since braid statistics is a topological effect,
it is intimately related to the Aharanov–Bohm effect (a notorious topological effect in
quantum theories).

So two dimensions are special for quantum field theory. We know four dimensions are
special in differential geometry [195]. For example, in any Rn all differential structures
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are equivalent, except n = 4 where there are uncountably many inequivalent ones
(Section 1.2.2). Are those two dimensions related to these four dimensions, and are
they related to the apparent four-dimensionality of macroscopic space-time? This isn’t
clear to this author.

The possibility of braid statistics arises in two dimensions because the space-like
vectors in two-dimensional space-time are disconnected. The other special features of
two dimensions are all related to this. As we discuss in Section 4.3.2, the space of local
conformal transformations is finite-dimensional in n dimensions, except for n = 2 where
it is infinite. The light-cone minus the origin is also disconnected in two dimensions, and
this implies the existence of infinitely many conserved currents.

What makes four dimensions special in differential geometry is the behaviour of
embedded 2-discs (many proofs in n dimensions are based on understanding that
behaviour). A generic map of a disc into an n-manifold has self-intersections that are one-
dimensional if n = 3, which consist of isolated points if n = 4, and are non-existent if
n ≥ 5. Also, the Seiberg–Witten equations (so useful for studying 4-manifolds) exploit
the fact that the rotation algebra so4

∼= so3 ⊕ so3 (corresponding to a group SO4(R)
homeomorphic to S3 × P3(R)) is nonsimple, while in all other dimensions n > 2 son is
simple.

Question 4.3.1. (a) Consider the free scalar theory in d dimensions, given by Lagrangian
L = − 1

2

∑
μ ∂μφ ∂

μφ. Assuming scale-invariance of L, deduce the scaling dimension
of φ.
(b) This theory is massless. What happens when the mass term is introduced?

Question 4.3.2. Prove that when p + q �= 2, the infinitesimal conformal symmetries
of Rp,q form a finite-dimensional Lie algebra, but that it is infinite-dimensional when
p + q = 2. (That is, write xμ �→ xμ + εμ(x); we’re interested in those infinitesimal εμ

for which the metric ds2 goes to a multiple of itself.)

Question 4.3.3. Let � be a Riemann surface of genus g with n discs removed. Suppose
it is dissected into N ‘pairs-of-pants’ (i.e. spheres with three discs removed). Prove that
this dissection is possible only if n + 2g > 2, in which case N = n + 2g − 2.

Question 4.3.4. Assuming (4.3.5) and the state-field correspondence, prove L1v = 0 and
L0v = hv.

Question 4.3.5. Suppose L1vi = 0 and L0vi = hivi . Compute the chiral blocks

〈ϕv1 (z1)ϕv2 (z1)〉 =
{

C12 |z1 − z2|−2h1 if h1 = h2

0 otherwise
,

〈ϕv1 (z1)ϕv2 (z2)ϕv3 (z3)〉 = C123

|z1 − z2|h1+h2−h3 |z2 − z3|h2+h3−h1 |z1 − z3|h1+h3−h2

for constants C12,C123, using (4.3.5).

Question 4.3.6. Describe the monodromy (if any) about w = ∞ of the chiral blocks in
(4.3.13).



298 Conformal field theory

Σ

<>

<

Fig. 4.15 A morphism � : C1 → C2.

Question 4.3.7. Find the sesquilinear combinations
∑

i=1,2 ci jFi (w)F j (w) of the chiral
blocks in (4.3.13), which are invariant under the various monodromies. (The physical
correlation functions will be of that form.)

Question 4.3.8. Describe the following orbifolds: (a) (R/Z)/{±1}; (b) (C/(Zτ +
Z))/{±1}; (c) (C/(Z+ iZ) \�)/Z2, where � is the diagonal x + ix , and Z2 acts by
identifying (x, y) and (y, x).

4.4 Mathematical formulations of conformal field theory

In Sections 4.3.2 and 4.3.3 we gave a quick standard sketch of the basics of CFT,
introducing the reader to the main notions. In this section, as well as Chapter 5 and Sec-
tion 6.1, we explore certain aspects of CFT more carefully, clarifying them considerably.
Surprisingly, many of these aspects are fundamental to Moonshine.

4.4.1 Categories

A deeply influential formulation of CFT is due to Graeme Segal [500], [502], [498]; see
also [241]. It is motivated by string theory (Section 4.3.1) and is phrased using category
theory (Section 1.6.1). According to Segal, a CFT is a functor S from a category C of
Riemann surfaces (the world-sheets) to the category Hilb of Hilbert spaces (the state-
spaces).

The objects of category C are finite disjoint unions Cn of n circles, for all n ≥ 0. We
fix a parametrisation on these circles – that is, a smooth identification t of each circle C
with R/Z; this induces an orientation on C . A morphism Cm → Cn is a (not necessarily
connected) Riemann surface � with boundary ∂� consisting of m + n parametrised
circles; exactly n of those boundary circles come with parametrisations consistent with
the orientation of� induced from its complex structure. We think of these n as ‘outgoing’
strings and the remaining m as ‘incoming’ ones. For example, in Figure 4.15 the solid
circles are outgoing and the dashed one is incoming. We identify two such morphisms
� : Cm → Cn , �′ : Cm → Cn if there is a conformal map f : �→ �′ such that the
parametrisations ti and t ′i ◦ f of the boundaries ∂� and ∂�′ agree.

The space Hom(Cm,Cn) is topological, with a connected component C� for each
homeomorphism class [�] of (not necessarily connected) surfaces with boundary having
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Fig. 4.16 An example of sewing.

m + n components. For example, Hom(C0,C0) has one component for every choice of
n0 spheres, n1 tori, . . . , ng compact genus-g surfaces, . . . , provided

∑
g ng <∞.

Finally, the composition �′ ◦� of morphisms � : Cm → Cn , �′ : Cn → C p is
obtained by sewing together the surfaces � and �′ along the circles in Cn by using the
parametrisation to identify corresponding points on the boundaries. In fact, this sewing
construction is the main reason we require these boundary circles to be parametrised.

Recalling Definition 2.1.6, this space C� can be regarded as the quotient of the space
of complex structures on �, by the group of all diffeomorphisms of � that are the
identity on the boundary ∂�. Thus, C� is an infinite-dimensional moduli space. Write
Cg,k for the component of Hom(Cm,Cn) corresponding to connected genus-g surfaces
(with k = m + n punctures) – this is the most interesting part of C� . Recall the enhanced
moduli space M̂g,kdefined in Section 2.1.4; provided only that k > 0, Cg,k is a finite-
dimensional complex manifold, unlike M̂g,k , and can be expressed as a bundle over M̂g,k

with infinite-dimensional fibre (page 453 of [502]). The mapping class group for Cg,k is
the �̂g,k of Section 2.1.4, that is an extension of �g,k by k copies of Z.

The most important space is that C0,2 of annuli. We get the easy homeomorphism

C0,2
∼= (0, 1)× (Diff+(S1)× Diff+(S1))/S1. (4.4.1)

The interval (0,1) arises because any annulus is diffeomorphic to r ≤ |z| ≤ 1 for some
0 < r < 1. The two copies of Diff+(S1) correspond to reparametrisations of the two
boundary circles – this is where the two copies Ln, Lm of Vir arise. We factor out by S1

since rotations are the only holomorphic automorphisms of r ≤ |z| ≤ 1.
A CFT is (among other things) a projective representation of category C: to each object

Cn we assign a vector space S(Cn), and to each morphism � : Cm → Cn a linear map
S : S(Cm) → S(Cn), such that for any objects Cm,Cn,C p and morphisms �′ : Cm →
Cn , � : Cn → C p, we obtain the functorial sewing axiom

S(� ◦�′) = c(�,�′)S(�) ◦ S(�′) (4.4.2)

for some nonzero c(�,�′) ∈ C. More precisely, S(Cn) is the tensor product H⊗ · · ·
⊗H =: H⊗n of the state-space H of our CFT, and H⊗0 := C. Here, H is something like
the space L2(LM) of wave-functions on the loop-space LM := { f : s ′ → M}, where
M is the space-time in which the string lives. Convergence in the Figure 4.16 sewing
operation described below requires the operator S(�) to be trace class.



300 Conformal field theory

The idea is for S(�) to mimic the Feynman path integral (4.2.13a), while avoiding
the latter’s analytic challenges. In string theory, the incoming state |in〉 consists of a
choice of string state for each of the m circles, so |in〉 ∈ H⊗m ; similarly |out〉 ∈ H⊗n .
Segal’s operator S(�) is none other than the (finite) scattering matrix, or the time-
evolution operator eiHt (holomorphically extended to imaginary time): the desired string
amplitude is〈out|S(�)|in〉. This is what Segal is trying to capture formally.

If � is the disjoint union of surfaces �1 and �2, then S(�) = S(�1)⊗ S(�2). That
the fundamental identity (4.4.2) should hold can be seen by cutting open a Feynman path
integral: an integral over all paths starting from α at time 0 toω at time 1 can be expressed
as the integral over all possible μ of all paths starting from α at t = 0 to μ at t = 0.5,
and all paths fromμ at t = 0.5 to ω at t = 1. This is just matrix multiplication, as (4.4.2)
suggests. A physical description of sewing can be found, for instance, in section 9.3
of [253]. To construct the projective factor in (4.4.2), Segal uses the ‘determinant line
bundle’ [192] (see e.g. [498], [502] for details). An alternate approach to central charge
c �= 0 within the Segal formalism is given in lecture 2 of [241].

Another kind of sewing occurs when two oppositely oriented boundary components
of � are sewn together, increasing the genus by 1, as is illustrated in Figure 4.16.
Algebraically, this corresponds to taking a trace or a sum using the Hermitian form. (To
see why this is compatible with (4.4.2), interpret matrix multiplication as a trace of the
tensor product of the matrices.)

Segal’s use of surfaces with boundary differs from that of Section 4.3.2. Usually,
quantum field theory restricts to the (easier to calculate) limiting case where the incoming
and outgoing states are at t = ∓∞. This is the strategy followed in Section 4.3. Segal
is instead trying to capture the string amplitudes for finite times, because it makes the
Vir action manifest, as we’ll see shortly. The relation of Segal’s picture with that of
enhanced compact surfaces is made in pages 6–7 of [295].

The multiplication C0,2 × C0,2 → C0,2 makes the annuli space C0,2 into an infinite-
dimensional complex Lie semi-group (it has no identity and inverses). Its multiplication
is described explicitly in section 9 of [448], but to get a taste for it, forget temporarily
the parametrisations on the boundary circles: then the sewing of annuli r < |z| < 1 and
r ′ < |z| < 1 obviously yields the annulus rr ′ < |z| < 1, and so this annulus semi-group
is isomorphic to that of the interval (0, 1) under multiplication. Recall from Section 3.1.2
that the complex Lie algebra Witt has no Lie group, or equivalently that the real Lie
group Diff+(S1) has no complexification. The semi-group C0,2 should be regarded as
the complexification of Diff+(S1); it plays the same role for Diff+(S1) that the punctured
disc 0 < |z| < 1 plays for S1. One hint of this is (4.4.1). Another (proposition 3.1 of
[502]) is that there is a one-to-one correspondence between positive energy projective
representations of Diff+(S1) (recall their definition in Section 3.1.2) and holomorphic
projective representations of C0,2. The positive energy representations of Diff+(S1) are
the only ones with a hope to extend to C0,2, and all of them are necessarily projective.
By a conjecture of Kac, these are all highest-weight modules.

In applications to string theory (namely in the presence of ‘ghosts’), the positive-
definiteness of the Hermitian product in the Hilbert space H should be weakened. Also,
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one may wish to supersymmetrise the state-spaces, that is, give them a Z2-grading (in
order to include fermions). See [502] for some comments along these lines.

Note that there is an action of C0,2 on each C� – in fact, one for each boundary circle.
This semi-group action amounts to lengthening the arms of each end (equivalently,
shrinking the boundary circle); physically, this corresponds to time evolution t →∞
of outgoing states, or time devolution t →−∞ of incoming states. We are used to
time evolution being a unitary (hence invertible) process, but here time is imaginary,
that is, space-time is Euclidean, so time evolution is a contraction. As mentioned in
Section 4.2.4, Euclidean space-time is better behaved mathematically than the more
physical Minkowski space-time, though in a healthy quantum field theory they should
be equivalent.

This semi-group action is the integration of the action of Witt on the moduli spaces
(Section 3.1.2). By (4.4.2), this action means that each space S(C�) carries a projective
C0,2-representation. In particular, we get an action of C0,2 on the state-spaceH, projective
if c �= 0. This is how we recover the representation of Vir⊕Vir onH that is so important
in Section 4.3.2.

The higher-genus behaviour of an RCFT is determined from the lower-genus
behaviour, by composition of ‘arrows’ (i.e. the sewing together of surfaces) in cate-
gory C, as we see in Figures 4.12 and 4.16. Note that several different sewings can yield
the same surface. That they must each give the same answer turns out to be a powerful
constraint on CFT, called duality (Section 6.1.4).

Thanks to sewing, a CFT is uniquely determined by the chiral algebras V,V; the
1-loop partition function (which gives the spectrum of the theory, i.e. the structure of H
as a V ⊕ V-module); and the OPE (4.3.2) (see e.g. section 4 of [502]).

The simplest interesting example here is the ‘tree-level creation of a string from
the vacuum’, i.e. � : C0 → C1. In this case the world-sheet looks like a bowl, that is
homeomorphic with a disc D, and so is associated with a linear map S(D) : C → H.
Equivalently, S(D) is the assignment of the vector S(D)(1) in H to D. In the case of
the standard unit disc (i.e. where D = {z ∈ C | |z| ≤ 1} and the parametrisation of the
boundary S1 is simply θ �→ e2π iθ ), this vector is called the vacuum state |0〉. In section 9
of [502] it is explained how to recover the stress–energy tensors T (z), T (z), by deforming
the complex structure on the disc; this idea is borrowed from CFT.

For another important example, a surface � : C2 → C1, that is a pair-of-pants, cor-
responds to a bilinear map H⊗H→ H, and makes H into an algebra. Choosing �

appropriately, this gives the OPE (4.3.2). A different choice defines the physical vertex
operators (this is explicitly given on page 770 of [241]).

Finally, suppose the initial and final objects here are both C0, so the world-sheets� are
closed Riemann surfaces. Segal’s functor S(�) is a linear map C → C, so is completely
determined by its value at 1 ∈ C. This value S(�)(1) =: Z(�) ∈ C is the partition
function. Consider now � a torus. Up to conformal equivalence, � can be written as
the quotient �τ := C/(Z+ Zτ ), and so the 1-loop partition function Z(�τ ) becomes a
function on H. As we know, �τ and �α.τ are conformally equivalent when α ∈ SL2(Z),
and so Z must be modular invariant. We can construct a torus by sewing together the two
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ends of a cylinder, or equivalently an annulus Aq = {z ∈ C | |q| ≤ |z| ≤ 1} for q ∈ C
where the boundaries are parametrised by qe2π iθ and e2π iθ . We know that this recovers�τ

up to conformal equivalence, if q = e2π iτ . Then S(Aq ) = q L0 q L0 and so by the sewing
axiom (with c = 0 for convenience) the torus partition function becomes

Z(τ ) = trHq L0 q L0 .

It must be invariant under the usual action of SL2(Z). Of course, if the central charge is
nonzero, then the sewing axiom picks up a multiplicative factor that recovers (4.3.8b).
See page 768 of [241] for details.

So far Segal is addressing general CFT. He defines an RCFT – our main interest – as a
modular functor B. It assigns to each surface� its space of chiral blocks (4.3.7). Let� be
a finite set of labels – this parametrises the irreducible modules of chiral algebra V . One
of these labels, call it 0, is distinguished (it corresponds to the vacuum, and was called V
in Section 4.3.2). We require that � has an involution i �→ i∗, called charge conjugation
and related to complex conjugation. By a labelled Riemann surface with boundary (�,α)
we mean to assign a label αi ∈ � to each (parametrised) boundary circle of �. These
are the objects in a category Riem�. The morphisms are ‘holomorphic collapsing maps’
(see section 5 of [502]), which sew together pairs of boundary circles in the usual way.
The target is the category Vect f of finite-dimensional vector spaces, since the spaces of
chiral blocks live there; morphisms are linear transformations.

Definition 4.4.1 [502] A modular functor is a functor B from Riem� to Vect f , such
that:

(i) B takes the disjoint union � ∪�′ to B(�)⊗B(�′).
(ii) B(�) = B(−�), where ‘−�’ means that we reverse the orientation of all

boundary circles of � (i.e. interchange incoming with outgoing circles), and also
replace each label αi with its conjugate α∗i .

(iii) Suppose surface � is obtained from surface �′ by cutting along a closed curve.
For each label i ∈ �, let �i be the surface � labelled the same as �′, except its
two additional circles are both given the label i . Then

⊕i∈�B(�i ) ∼= B(�′). (4.4.3)

(iv) If D is the standard disc then B(D) is C if the boundary is labelled 0, and {0}
otherwise.

(v) Finally, if �w is a family of surfaces varying holomorphically with a parameter w,
then the spaces B(�w) fit together to form a holomorphic vector bundle.

We won’t spell out precisely what condition (v) means (roughly, it says that the chiral
blocks are holomorphic functions on the moduli space), but certainly it implies that the
dimension of B(�) only depends on the orientations of the boundary circles and the
labels, and not on the complex structure of �. We discuss chiral blocks in Section 4.3.3.
Their most important property is that they carry a projective representation of the mapping
class group of �. The definition of modular functor using closed surfaces with marked
points, as well as an alternate approach to c �= 0, is given in chapter 5 of [32].
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Fig. 4.17 A natural depiction of an identity g1g2g3g4g5g6 = e.

There are still no known examples of modular functors, though it is expected that
any sufficiently nice vertex operator algebra will yield one. Nevertheless, this picture of
RCFT is incomplete, as it only captures some elements of the chiral halves of an RCFT.
For instance, the modular functor corresponding to Monstrous Moonshine is trivial. The
1-loop partition function (4.3.8b) is important data for the RCFT, but its presence here
is obscure (to this author at least), as more generally is the explicit relation between the
full CFT and the two chiral halves.

4.4.2 Groups are decorated surfaces

This short subsection motivates topological field theory and can be skipped on first
reading.

Fix a group G. We can think of G as a set of identities g1g2 · · · gk = e. Conjugating
by g1, we observe

g1g2 · · · gk = e iff g2g3 · · · gk g1 = e. (4.4.4)

Thus, an identity ‘g1 · · · gk = e’ in G really should be written circularly, as in Figure 4.17.
In other words, we can think of G as a way to assign to each polygon, whose sides are
labelled consecutively by elements gi of G, a number P(g1, g2, . . . , gk) ∈ {0, 1}. We
assign ‘1’ to a given labelled polygon if, starting anywhere on the circumference and
reading counterclockwise, the product of the labels equals e; otherwise assign ‘0’ to it.
We get a dihedral symmetry,

P(g1, g2, . . . , gk) = P(g2, . . . , gk, g1), (4.4.5a)

P(g1, g2, . . . , gk) = P
(
g−1

k , . . . , g−1
2 , g−1

1

)
, (4.4.5b)

corresponding to the symmetries of the k-gon.
Of course not every assignment of 0’s and 1’s to labelled polygons will come from

groups. Most importantly, we have

P(g1, . . . , gm, h1, . . . , hn) =
∑
g∈G

P(g1, . . . , gm, g)P(g−1, h1, . . . , hn). (4.4.5c)

This can be depicted pictorially as the dissection rule of Figure 4.18. We also get the
normalisation rule ∑

g∈G

P(g1, . . . , gk, g) = 1. (4.4.5d)

This polygonal definition is completely equivalent to the usual one of a group:
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Fig. 4.19 Associativity in a group.

Proposition 4.4.2 Let S be a set and let "(S) be the set of all polygons labelled
with elements of S. Suppose P : "(S) → {0, 1} obeys all equations (4.4.5), where for
g ∈ S,‘g−1’ denotes the unique element of S satisfying P(g, g−1) = 1. Define e ∈ S by
P(e) = 1 and the multiplication ‘gh’ by P(g, h, (gh)−1) = 1. Then this defines a group
structure on S compatible with the values P of the polygons in "(S).

Thus, knowing the values of 1-gons, 2-gons and triangles fixes all other values. Asso-
ciativity is equivalent to Figure 4.19, and all other generalised associativity relations
can be derived from it. The entire group structure is encoded in a few polygons – the
rest are redundant – and indeed that is how a group is usually defined. But there is an
aesthetic appeal to considering this global (albeit highly redundant) structure provided
by all identities in G, and this charm is lost if we focus only on the banal building blocks.
It is reminiscent of interpreting the presentation (1.1.9) as a group of braids.

Nevertheless, this rephrasing of the definition of a group is unsatisfactory for several
reasons. It seems artificial that the values P are always either 0’s or 1’s. Why should
we limit the right side of (4.4.4) to being e – for example, any central element will
work equally well. Can we consistently sew together two sides of the same polygon,
and get more interesting topologies? What does the normalisation condition really mean
group-theoretically? These thoughts lead to the following construction.

Fix a group G and irreducible character ch (Section 1.1.3). A polygon whose sides
are labelled with elements gi of G is assigned the complex number P(g1, . . . , gk) =
ch(e)
‖G‖ ch(g1 · · · gk) (recall that ch(e) is the dimension of ch). Equation (4.4.5a) continues

to hold, while (4.4.5b) becomes P(g1, . . . , gk) = P(g−1
k , . . . , g−1

1 ). Equation (4.4.5c)
follows from the generalised orthogonality relation (theorem 2.13 in [308])

1

‖G‖
∑
g∈G

chi (gh) ch j (g
−1) = δi j

chi (h)

chi (e)
,
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valid for irreducible chi , ch j . The ‘normalisation condition’ (4.4.5d) should be replaced
by ∑

g∈G

|P(g1, . . . , gk, g)|2 = ch(e)2

‖G‖ ,

where ch =∑
mi chi expresses ch as a sum of irreducible characters. We see that, as

before, two consecutive arcs, labelled g, h, can always be replaced by a single arc labelled
gh; so a polygon can always be replaced with a disc. Moreover, the label on a disc depends
only on the conjugacy class.

More generally, we can use any character of the form ch =∑
chi (e) chi , where we

sum over any subset of the irreducible characters; thenP = ch/‖G‖works. For instance,
the original assignment (with values in {0, 1}) corresponds to the character ch of the
regular representation of G. The normalisation condition (4.4.5d) is thus seen to be a
consequence of orthogonality of characters.

There is no need to stop here. The dissection rule applied to an annulus labelled with
conjugacy classes Kg, Kh (h inner, g outer) implies it is assigned ch(g) ch(h); more
generally, a disc with n smaller discs removed will have value ch(g)ch(h1) · · · ch(hn).
In these more general settings, the orientation of the boundary circle should be made
explicit (here they’re all taken to be counter-clockwise). A torus with a disc removed,
and the boundary circle labelled Kg , has value ‖G‖

ch(e) ch(g).
Likewise, any surface with (oriented) punctures labelled by conjugacy classes can be

assigned a well-defined complex number. This is, in fact, a slightly enhanced topological
field theory (Question 4.4.4).

4.4.3 Topological field theory

The essence of mathematics involves seeing that two different-looking things are actually
(from the appropriate perspective) the same. What are different ways of going from point
a to point b? In algebra these are functions, the simplest being linear; in geometry, these
are cobordisms; in physics, this is time evolution. A topological field theory is their
identification.

This subsection strays a little from the main thread of this book, and so we will only
sketch the basic idea. The following definition, that topological field theory is a monoidal
functor from the cobordism category to Vect f , is due to Atiyah and was heavily influenced
by Segal’s definition of CFT (Section 4.4.1). Topological field theory is a beautiful
language that has elegantly formulated several deep mathematical ideas (e.g. Morse
theory, the Jones polynomial, Donaldson invariants) – see the reviews [25], [564], [62],
[534], [32]. The first topological field theories were constructed in physics by Schwarz
(1978) and Witten (1982) (see [62] for references). Physically, a topological field theory
should arise from the large-distance limit of any quantum field theory with mass gap.

Definition 4.4.3 [25] A topological field theory in d + 1 dimensions assigns to each
compact oriented smooth d-dimensional manifold� a finite-dimensional complex vector
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space T (�), and to each compact oriented (d + 1)-dimensional manifold M with bound-
ary �, a vector T (M) ∈ T (�), such that:

(i) T (�∗) = T (�)∗, where �∗ denotes � with opposite orientation, and T (�)∗ is
the dual space.

(ii) T takes the disjoint union �1 ∪�2 to T (�1)⊗ T (�2).
(iii) If ∂Mi = � ∪�i (disjoint union) and M is obtained from M1 and M2 by sewing

along a common boundary component �, as in Figure 4.20, then
T (M) = T (M2) ◦ T (M1).

(iv) T takes the empty d-manifold ∅ to C.
(v) T (� × I ) is the identity endomorphism of T (�), where I is the unit interval.

(vi) If f : �→ �′ is a homeomorphism, then there is a vector space isomorphism
T f : T (�) → T (�′); if F : M → M ′ is a homeomorphism, then

TF |∂M (T (M)) = T (M ′).

Some technicalities are implicit here; see section 4.2 of [32] for any needed clarifications.
The book [534] is also helpful. If the boundary of M is �, and we write � as the
disjoint union �1 ∪�2, then T (�) = T (�1)⊗ T (�∗2 )∗ and thus the ‘vector’ T (M) can
be regarded as a linear map T (�∗2 ) → T (�1). This functional interpretation is implied
in (iii) and (v).

M plays the role here of space-time, and� that of space (i.e. a space-like time-slice of
M). T (�) is the space of all states at the given instant, while the map Z(M) is the time-
evolution operator eiHt . Condition (iv) can be interpreted as saying that the Hamiltonian
H is 0, so the only evolution is topological.

Question 4.4.6 asks for a proof of the homotopy invariance of T . This means that
the mapping class group of �, that is the group of components of the group Diff+(�)
of orientation-preserving diffeomorphisms, acts on the space T (�). This is obviously
important to us.

Condition (iv) is needed to eliminate the trivial theory. If M is a closed manifold (i.e.
it has no boundary), then T (M) ∈ T (∅) = C. Thus a topological field theory assigns a
numerical invariant to closed (d + 1)-dimensional manifolds.

Let � be any d-manifold and put M1 = � × I , M2 = �∗ × I . Sewing these together
along corresponding copies of �, we get M = � × S1. From (v) we get that T (Mi ) are
the identity maps T (�) → T (�) and T (�)∗ → T (�)∗, respectively. But we can also
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think of them as vectors in T (�)⊗ T (�)∗ and T (�)∗ ⊗ T (�), so these vectors must
be
∑

i ei ⊗ e∗i and
∑

j e∗j ⊗ e j , respectively, where ei is any basis of T (�) and e∗i is the
dual basis. Thus

T (� × S1) =
〈∑

i

ei ⊗ e∗i ,
∑

j

e∗j ⊗ e j

〉
= dim(T (�)). (4.4.6a)

Now, we know that ‘dimension’ can be twisted into ‘character’ whenever a group is
present. So let γ lie in the mapping class group and define � ×γ S1 to be the (d + 1)-
dimensional manifold obtained by sewing � × I to �∗ × I by identifying the boundary
�∗ × 0 with � × 0 and γ (�)× 1 with � × 1. Repeating the earlier calculation yields

T (� ×γ S1) =
〈∑

i

Tγ (ei )⊗ e∗i ,
∑

j

e∗j ⊗ e j

〉
= tr(Tγ ). (4.4.6b)

Theorem 4.4.4 A topological field theory in 1+ 1 dimensions is equivalent to a finite-
dimensional commutative associative algebra A over C with unit 1, together with a
linear map tr: A → C such that the bilinear form (a, b) �→ tr(ab) is nondegenerate.

Nondegenerate here means that the only a ∈ A with tr(ab) = 0, ∀b ∈ A, is a = 0. Such
an algebra A is called a Frobenius algebra – see, for example, chapter 2 of [353].
Frobenius algebras were introduced by Frobenius in 1903. The association of a Frobenius
algebra to a (1+1)-dimensional topological field theory is straightforward. The vector
space A is given by T (S1). The boundary of the disc D can be thought of as ∂D = S1

or ∂D = ∅ ∪ (S1)∗, the former interpretation defines a vector 1 := T (D) ∈ A, while the
latter defines the map tr:= T (D) : A → C. The product structure on A comes from T
applied to a pair-of-pants, with boundary S1 ∪ (S1 ∪ S1)∗. The various properties obeyed
by multiplication, 1 and tr follow inductively from the various pictures – it’s a good idea
for the reader to work these out. The proof that a Frobenius algebra defines a unique
and well-defined topological field theory is based on the fact that any surface can be
obtained by sewing together discs, cylinders and pairs-of-pants; the only difficulty is
verifying well-definedness: as we know, the same surface can be decomposed this way
in many different ways. The details of this proof are given in section 4.3 of [32]; see
also section 3.3 of [353] for a more pedagogical treatment. This proof is practise for
Section 6.1.4, where we do the same for RCFT.

Our symbol ‘�’ in Definition 4.4.3 is due to the special importance of d = 2. In
his analysis of the Jones polynomial, Witten discovered the explicit relation between
topological field theory in 2+ 1 dimensions and CFT (in the usual two dimensions):
the spaces T (�) are the spaces B(�) of chiral blocks. The relation between CFT and
(2+ 1)-dimensional topological field theory is carefully explained in chapter 5 of [32]. In
particular, the association of a modular functor with a topological field theory is easy, but
(according to [32]) the association of a topological field theory with each modular functor
is only conjectural at present. (2+ 1)-dimensional topological field theory has been used
recently in a series of papers (see [211] for a review) for constructing (boundary) RCFT
correlation functions.
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4.4.4 From amplitudes to algebra

The final rigorous approach to CFT we sketch reconstructs the chiral theory directly
from the vacuum-to-vacuum amplitudes. The physical appeal of this approach is that
it starts with ‘observational’ data. For us, it’s excellent motivation for the material of
the next chapter. We focus on the chiral halves of RCFT – the parts of CFT of greatest
interest to mathematics.

A chiral half of a CFT on a sphere consists of a state-space H and a collection

〈Y (ψ1, a1) Y (ψ2, z2) · · · Y (ψn, zn)〉 (4.4.7)

of correlation functions, where zi lie in the Riemann sphere P1(C) = C ∪ {∞}. To avoid
circularity, restrict (4.4.7) to states ψi in some (typically finite-dimensional) subspace
Hgen that generates H. For now, all we need to know about these correlation functions
(4.4.7) is that they are multi-linear in the states ψi , symmetric under permutation of ψi

and analytic in the points zi , except possibly for poles when zi = z j . At this point the
notation in (4.4.7) is purely formal, so for example ‘Y (ψi , zi )’ has no meaning. Our first
task is to associate with the states ψ ∈ Hgen , vertex operators Y (ψ, z).

Let O be any open set in P1(C), with the property that its complement is path-
connected and contains a disc. A counterintuitive result of axiomatic quantum field theory
(the Reeh–Schlieder Theorem [518], [269]) says that the states

∑
ϕ1( f1) · · ·ϕn( fn) |0〉

generated from the vacuum |0〉 by fields ϕi smeared by test-functions fi localised to O ,
will be dense in H. This observation motivates the following construction.

Define the space VO formally spanned by all words Y (ψ1, z1) · · · Y (ψn, zn) |0〉, where
ψ ∈ Hgen and zi ∈ O , zi pairwise distinct, and we require any word to be bilinear and
symmetric in theψi . We want to complete these infinite-dimensional spaces (i.e. include
the limits of certain sequences), topologise them (i.e. decide when vectors are ‘close’) and
identify vectors that are physically indistinguishable (i.e. quotient by null-vectors). We
can do all three, using the amplitudes (4.4.7) to define a bilinear pairing VO × VO ′ → C,
for any open set O ′ in the complement of O:(∑

i

Y
(
ψ

(i)
1 , z(i)

1

)
· · · Y

(
ψ

(i)
m(i) , z(i)

m(i)

)
|0〉,

∑
j

Y
(
φ

( j)
1 , w

( j)
1

)
· · · Y

(
φ

( j)
n( j) , w

( j)
n( j)

)
|0〉
)

�→
∑
i, j

〈
Y
(
ψ

(i)
1 , z(i)

1

)
· · · Y

(
φ

( j)
n( j) , w

( j)
n( j)

)〉
(4.4.8)

for all ψ (i)
k , φ

( j)
� ∈ Hgen , z(i)

k ∈ O , w( j)
� ∈ O ′. A topology on say VO ′ is obtained by

defining this pairing to be continuous. We identify vectors in VO ′ by quotienting by
those vectors in VO ′ that are orthogonal to all of VO . This pairing (4.4.8) also allows us
to complete the space VO ′ . The resulting space turns out to be independent of O ′ – call
it VO . See [227] for details.

If O1 ⊂ O2, then we get a natural continuous embedding of VO2 into VO1 . The role
here of the space H of states is played by this collection V of topological vector spaces,
just as the role of the algebra A of observables in quantum field theory is played in
algebraic quantum field theory by the net A(O) (Section 4.2.4). However, if O ⊂ P1(C)
contains ∞ but not 0, then we can define the modes ψ(n), for ψ ∈ Hgen , in the usual
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way and from this get a Fock space HO ⊂ VO spanned by all (ψ1)(n1) · · · (ψk)(nk )|0〉. It
is easy to see that it is dense in VO and independent of the choice of O . This Fock space
will be the VOA (Definition 5.1.3) of the CFT.

It is now easy to define the vertex operators Y (ψ, z). Choose any ψ ∈ Hgen and
z ∈ O , and any subset O ′ ⊂ O with z �∈ O ′. Then the operator Y (ψ, z) : VO → VO ′

is
defined by ∑

i

Y
(
ψ

(i)
1 , z(i)

1

)
· · · Y

(
ψ

(i)
m(i) , z(i)

m(i)

)
|0〉

�→
∑

i

Y (ψ, z) Y
(
ψ

(i)
1 , z(i)

1

)
· · · Y

(
ψ

(i)
m(i) , z(i)

m(i)

)
|0〉

(there is a little work to see that this operator lifts from VC to VO – again see [227]).
Note that we automatically obtain commutativity: the identity

Y (ψ, z) Y (φ,w) = Y (φ,w) Y (ψ, z)

holds in VO provided z, w ∈ O , z �= w, ψ, φ ∈ Hgen (compare va4 in Definition 5.1.3).
So far we have assumed only the most basic properties of the amplitudes (4.4.7). The

full splendour of CFT begins to reveal itself once we impose Möbius invariance, which
says that it shouldn’t matter how we identify the sphere P1(C) with the complex coordi-
nates C ∪ {∞}. This invariance implies the usual Möbius covariance of the amplitudes
and vertex operators. It allows us to extend the definition of vertex operators to, for
example, VO , and to establish Jacobi’s identity (5.1.7a). Although this is where things
start getting interesting, this is where we leave off.

We know the state-space H of the CFT is a module for the chiral algebra. This is
recovered in this formalism through the two-point functions, which are of the form〈

Y ′′(ϕ2, w2) Y (ψ1, z1) · · · Y (ψm, zm) Y ′(ϕ1, w1)
〉
, (4.4.9)

where the states ψi lie in Hgen as before, and ϕ j lie in spaces W j (which we can take to
be dual to each other, although this isn’t necessary). We can construct spaces WO much
as before, generated by∑

i

Y (ψ1, z1) · · · Y (ψm, zm) Y ′(ϕ1, w1) |0〉,

and interpret the symbol Y ′(ϕ1, w1) as a vertex operator sending WO →WO ′
, much as

before. This leads quite naturally to the notion of a VOA-module (Definition 5.3.1).
An observation that will be helpful in Section 5.3.2 in motivating Zhu’s algebra is that

each representation corresponds to a linear functional on the chiral algebra:

Proposition 4.4.5 [429], [227] The amplitudes (4.4.9) define a representation of the
chiral algebra V , provided that for each open O with path-connected complement, and
each states ϕ j ∈W j and points wi �∈ O, there is a state v = v(ϕ1, ϕ2, w1, w2) ∈ VO

satisfying

〈Y ′′(ϕ2, w2) Y (ψ1, z1) · · · Y (ψm, zm) Y ′(ϕ1, w1)〉 = 〈Y (ψ1, z1) · · · Y (ψm, zm) v〉
for all choices of zi ∈ O, ψi ∈ Hgen.
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The proof of the proposition isn’t difficult (see theorem 6 in [227]). This proposition
permits us to characterise the representations of a chiral algebra by states v. It turns out
that these v, which can be interpreted as linear functionals on the Fock space HO ′

using
the pairing (4.4.8), vanish on a certain large subspace 0O ′

w1,w2
of HO ′

, and so define linear
functionals on the quotientHO ′

/O O ′
w1,w2

. In the case of a rational CFT, this quotient space
will be finite-dimensional and is called Zhu’s algebra (Section 5.3.2).

Question 4.4.1. What is the value B(S2) that Segal’s functor associates with the sphere?

Question 4.4.2. Suppose labelled surfaces � and �′ are sewed end-to-end (so the corre-
sponding labels match, and the corresponding circle orientations are opposite), to pro-
duce a new labelled surface �′′. Construct a canonical map B(�)⊗B(�′) → B(�′′).
If B(�),B(�′),B(�′′) are all nonzero, can that map be identically 0?

Question 4.4.3. (a) Let A be any annulus with oppositely oriented boundary circles.
Prove B(A) = {0}, unless both circles are given the same label i ∈ �, in which case
B(A) = C.
(b) If T is any torus, prove that B(T ) has dimension equal to the cardinality of �.

Question 4.4.4. Find a relation between the assignments Pχ to surfaces with punctures
labelled with conjugacy classes of G, and two-dimensional topological field theory.

Question 4.4.5. (a) If M is the disjoint union of M1 and M2, what is T (M) in terms of
T (Mi )?
(b) What does T send the empty (d + 1)-manifold ∅ to?

Question 4.4.6. Prove that if f : �→ �′ is a homeomorphism homotopic to the identity,
then the linear map T f of (vi) is the identity.

Question 4.4.7. Classify all topological field theories of dimension d = 0.
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Vertex operator algebras

Vertex operator algebras (VOAs) are a mathematically precise formulation of the notion
of chiral algebra (Section 4.3.2), the symmetry algebra of conformal field theory. They
constitute the simplest expression we have of the machine that associates the Monster
M with the Hauptmoduls. VOAs were first defined by Borcherds, and their theory has
since been developed by a number of people. We begin with the rather complicated
definition, before turning to our greatest interest: their representation theory. The final
section sketches some relations of vertex algebras to geometry. See, for example, [201],
[330], [197], [376] for more complete treatments; a more physically minded introduction
is provided in [242].

Vertex operator algebras are not a type of operator algebra; rather, they are an algebra
of vertex operators. Vertex operators arose first in string theory back in the early 1970s
as a device for computing string amplitudes. They appeared independently in the mathe-
matical literature (starting with [377]) in order to realise affine Kac–Moody algebras and
their modules as algebras of differential operators. Today, just as we define a ‘vector’
to be an element of a vector space, we define a ‘vertex operator’ to be a formal power
series Y (u, z) appearing in a vertex algebra.

5.1 The definition and motivation

5.1.1 Vertex operators

In bosonic string theory, the vertex operator (Section 4.3.1) corresponding to the absorp-
tion of a tachyon with momentum k = (kμ) at world-sheet position z and space-time
position X (z) = (Xμ(z)) is the normal-ordered expression V (k, z) = :eik·X (z) :. Write

Xμ(z) = xμ − ipμ log(z)+ i
∑
n �=0

1

n
αμn z−n,

where xμ and pμ are classically the position and momentum of the string’s centre-of-
mass, and α

μ
n its oscillation coordinates. Then the vertex operator is (chapter 2.2 of

[261])

V (k, z) = exp

(
k ·
∑
n≥1

α−n

n
zn

)
zk·p−1eik·x exp

(
−k ·

∑
n≥1

αn

n
z−n

)
. (5.1.1a)

Independently, Lepowsky and Wilson realised the affine algebra A1
(1) using differ-

ential operators (they tried to do this because finite-dimensional Lie algebras often act
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as differential operators, for example, on the space of functions on an associated Lie
group):

Theorem 5.1.1 [377] A basis for the affine algebra A1
(1) consists of the operators

1, yn,
∂

∂yn
, Yk ∀n ∈

{
1

2
,

3

2
,

5

2
, . . .

}
, k ∈ 1

2
Z,

thought of as operators on the space C[y1/2, y3/2, y5/2, . . .] of polynomials in the yn (we
are ignoring the derivation in A1

(1)). The differential operators Yk are the homogeneous
components of the formal generating function

Y (z) =
∑
k∈ 1

2 Z

Yk zk = exp

(∑
n

yn

n
zn

)
exp

(
−2

∑
n

∂

∂yn
z−n

)
. (5.1.1b)

In particular, (ignoring the derivation �0) A1
(1) is spanned by a central term C , as well as

e ⊗ tm, f ⊗ tm, h ⊗ tm for each m ∈ Z (Section 3.2.2). In Theorem 5.1.1, 1 corresponds
to C . For each n ∈ N+ 1/2, the operators yn and ∂/∂yn correspond (up to numerical
proportionality factors) respectively to e ⊗ t∓n−1/2 + f ⊗ t∓n+1/2, and Y±n corresponds
to −e ⊗ t±n−1/2 + f ⊗ t±n+1/2. For k ∈ Z, the operator Yk corresponds to h ⊗ t k (for
k �= 0) and h ⊗ 1− C/2 for k = 0.

It was Garland who first recognised the formal resemblance between these tran-
scendental expressions (5.1.1a) and (5.1.1b). Note that when expanded out they both
involve a sum over powers of z, unbounded in both the positive and negative directions.
Doubly-infinite series scream of convergence difficulties. The fractional indices n, k in
Theorem 5.1.1 are a signature of what we today call twisted vertex operators.

The geometric meaning of the vertex operator is perhaps best explained in the context
of the loop group (Section 3.2.6). Suppose the loop group LS1 acts on some space H.
For each 0 ≤ s ≤ 2π and ε > 0, consider the loop γ εs ∈ LS1 defined by

γ εs (t) =
{

1 ∈ S1 for |s − t | ≥ ε

exp
(
π i s−t

2ε

) ∈ S1 for s − ε < t < s + ε
,

for all 0 ≤ t < 2π . In words, γ ε
s stays at the identity 1 ∈ S1 for all time t , except for

a small interval around t ≈ s where the loop rapidly winds around S1 once. This loop
corresponds to some operator on H; the limit (appropriately taken) as ε → 0 is an
operator-valued distribution on H called a vertex operator (see chapter 13 of [465] for
details).

5.1.2 Formal power series

As we saw last chapter, the basic object of quantum field theory is the quantum field.
It is tempting to think of it as a choice of operator Â(x) at each space-time point x , but
‘function’ (or ‘section of a vector bundle’ for that matter) is too narrow a concept even
in free theories.
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The analytic way to make sense of ‘functions’ like quantum fields is through dis-
tributions, and this was the approach taken in Section 4.2.4. We will describe now
the algebraic alternative. These two approaches are not equivalent: you can do some
things in one approach that you can’t do in the other, at least not without difficulty
(Section 5.4.1). But as always the algebraic approach is considerably simpler techni-
cally – there are no convergence concerns to address – and it is remarkable how much
can still be captured. It was first created around 1980 by Garland and Date–Kashiwara–
Miwa to make sense of doubly-infinite series like (5.1.1), and is now the language of
VOAs. Good introductions to the material in this subsection are [201], [330], [376].

Keep in mind that in CFT we are trying to capture operator-valued ‘functions’ on
two-dimensional Euclidean space-time (Section 4.3.2). Locally space-time looks like
C; as explained in Section 4.3, we like to compactify the external legs – for exam-
ple, for an incoming string tracing a cylindrical world-sheet, the space-time point
(x, t) is associated with the complex number z = et+ix , so time t = −∞ corresponds
to z = 0.

Let W be any vector space. Define W[[z±1]] to be the set of all formal series∑∞
n=−∞wnzn , where the coefficientswn lie in our space W . We don’t ask here whether a

given series converges or diverges; z is merely a formal place-keeping variable. We will
also be interested in the space W[z±1] of Laurent polynomials, that is, expressions of
the form

∑N
n=−M wnzn . W[[z±1]] itself forms a vector space, using the obvious addition

and scalar multiplication.
Our aim here is to describe quantum fields, so we want our formal series to be operator-

valued. To do this, choose W to be a vector space of operators (matrices if you prefer):
W = End(V), for some space V . We are actually interested in V being the infinite-
dimensional state-space of the theory, but in the following examples we take V = C,
that is power series with numerical coefficients.

We can now multiply our formal series in the obvious way. For example, consider
V = C, and take c(z) = z21 − 5z100 and d(z) =∑∞

n=−∞ zn . Then

c(z) d(z) =
∑
n∈Z

zn+21 − 5
∑
n∈Z

zn+100 =
∑
n∈Z

zn − 5
∑
n∈Z

zn = −4d(z).

This simple calculation tells us many things.

(i) We can’t always divide: c(z) d(z) = −4d(z) shows that the cancellation law fails
and that C[[z±1]] isn’t even an integral domain.

(ii) Try to compute the square d(z)2: we get infinity. That is, you can’t always
multiply in W[[z±1]].

(iii) Working out a few more multiplications of this kind, we find that f (z) d(z) = f (1)
× d(z) for any f for which f (1) exists (e.g. any Laurent polynomial f ∈W[z±1]).
Thus d(z) is what we have called the Dirac delta δ(z − 1) centred at z = 1. (You
can think of it as the Fourier expansion of the Dirac delta, followed by a change of
variables.) So of course it makes perfect sense that we couldn’t work out d(z)2 –
we were trying to square the Dirac delta, which we know is impossible!
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There is a certain divergence of notations here: should δ be written additively (i.e.
δ(z − 1)), in the familiar way, or should it be written multiplicatively (i.e. δ(z)), in the
more honest way? Throughout this chapter we use the multiplicative notation. So we get

δ(z) :=
∞∑

n=−∞
zn. (5.1.2)

In fact, the best notation of all would be the awkward δ(z) dz, since the Dirac delta
centred at z = a is

∑
n zna−n−1 = a−1δ(z/a).

Making contact with Section 1.3.1, the Laurent polynomials (EndV)[z±1] play the
role here of the smooth functions C∞

cs with compact support, and the formal power
series (EndV)[[z±1]] play the role of its dual. So these power series f ∈ (EndV)[[z±1]]
are formal distributions – this is why f (z) usually diverges. The evaluation f (p) of a
distribution f ∈ (EndV)[[z±1]] on the test function p ∈ (EndV)[z±1] is given by the
‘formal residue’ Resz( f (z) p(z)) ∈ EndV , where

Resz

(∑
n∈Z

bnzn

)
= b−1. (5.1.3a)

The idea is that, up to a factor of (2π i)−1, this would equal the contour integral of
g(z) =∑

bnzn around a small circle about z = 0, at least for meromorphic g. Hence
Resz obeys many of the familiar properties of integrals, such as integration by parts:

Resz(g ∂z f ) = −Resz( f ∂zg), (5.1.3b)

where ∂z f is the formal (term-by-term) derivative of f (z). For example, the formal
distribution a−k−1(∂k

z δ)(z/a) takes the test function f (z) to the value (−1)k(∂k
z f )(a).

Because of the usefulness of the notion of residue, we write

f (z) =
∑
n∈Z

anzn =:
∑
m∈Z

a(m)z
−m−1, (5.1.3c)

where a(m) = Resz(zm f (z)) = a−m−1 is called a mode.
Similar remarks hold for several variables zi . The distributions are the formal series

f (z1, . . . , zk) =
∑
ni∈Z

an1,...,nk zn1
1 · · · znk

k =
∑
mi∈Z

a(m1,...,mk )z
−m1−1
1 · · · z−mk−1

k

in W[[z±1
1 , . . . , z±1

k ]], and the test functions f (z1, . . . , zk) ∈W[z±1
1 , . . . , z±1

k ] consist
of those power series with only finitely many nonzero terms. The Dirac delta centred at
z1 = z2 is given by z−1

2 δ(z1/z2) = z−1
1 δ(z2/z1).

But we must not get overconfident:

Paradox 5.1 Consider the following product:

δ(z) =
[(∑

n≥0

zn

)
(1− z)

]
δ(z) =

(∑
n≥0

zn

)
[(1− z) δ(z)] =

(∑
n≥0

zn

)
[0 δ(z)] = 0.

When physicists are confronted with ‘paradoxes’ such as this, they respond by tread-
ing with care when they are involved in a calculation reminiscent of the paradoxes,
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and otherwise trusting their instincts. Mathematicians typically over-react: after kicking
themselves for walking head first into a ‘paradox’, they devise a rule absolutely guar-
anteeing that the paradox will always be safely avoided in the future. We will follow
the mathematicians’ approach, and in the next few paragraphs describe how to avoid
Paradox 5.1 by forbidding certain innocent-looking products.

Recall that we are actually interested in the space W = End(V). We call infinitely
many linear mapsw(i) ∈ End(V) algebraically summable if for every vector v ∈ V , only
finitely many values w(i)v ∈ V are different from 0. In other words, fixing a basis for
V , only finitely many of the matrices w(i) have a nonzero first column, only finitely
many have a nonzero second column, etc. The usual notation ‘

∑
i w

(i)’ will denote the
well-defined endomorphism sending each v ∈ V to that effectively finite sum

∑
i w

(i)v.
Consider a family (possibly infinite) of formal seriesw(i)(z) ∈W[[z±1]]. We certainly

have a well-defined sum
∑

i w
(i)(z) if for each fixed n, the set {w(i)

n } (as i varies) of maps
is algebraically summable. We shall call such a sum algebraically defined, and write

∑
i

w(i)(z) =
∑
n∈Z

(∑
i

w(i)
n

)
zn.

All other sums are forbidden. Likewise, we certainly have a well-defined product∏m
i=1 w

(i)(z) of finitely many formal power series if for each n, the set{
w(1)

n1
w(2)

n2
· · · w(m)

nm

}∑
ni=n

(vary the ni subject to the constraint
∑

i ni = n) is algebraically summable. Again, call
such a product algebraically defined and set it equal to

m∏
i=1

w(i)(z) =
∑
n∈Z

( ∑
n1+···+nm=n

w(1)
n1
w(2)

n2
· · · w(m)

nm

)
zn,

where the second sum is over all m-tuples (ni ) obeying
∑

i ni = n. All other products
(e.g. all infinite ones) are forbidden. An algebraically defined product is necessarily
associative.

There are certainly more general ways to have a well-defined product or sum. For
example, according to our rule, the series

∑
n 2−n would be forbidden. In this way we

avoid the more complicated realm of convergence issues. In short, we are doing algebra
here, and don’t want to be distracted by the dust clouds kicked up by mere analytic
concerns. Such restrictions are common in infinite-dimensional algebra (recall footnote
14 in chapter 1). The product of a distribution f ∈W[[z±1

1 , . . . , z±1
k ]] with a test function

p ∈W[z±1
1 , . . . , z±1

k ] is always defined, and will be a distribution. The explanation of
Paradox 5.1 is that although (

∑
zn)(1− z) exists and equals 1, and (1− z) δ(z) exists

and equals 0, the triple product (
∑

zn)(1− z)δ(z) is forbidden.
A consequence of our algebraic approach is that the product z

1
2 δ(z) does not equal

1
1
2 δ(z) = δ(z) – their formal power series are very different. In hindsight this ‘failing’ is

understandable: it is artificial here to prefer the positive root of 1 over the negative root.
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Proposition 5.1.2 Let W be any vector space, and f ∈W[[z±1
1 , z±1

2 ]]. Then (z1 −
z2)N f (z1, z2) = 0 for some integer N ≥ 1, iff

f (z1, z2) =
N−1∑
j=0

c j (z2) ∂ j
z2
δ(z1/z2),

where c j (z2) = Resz1 ((z1 − z2) j f (z1, z2)) ∈W
[[

z±1
2

]]
.

Proof: First, (z1 − z2) f (z1, z2) = 0 iff am−1,n = am,n−1 ∀m, n, iff am,n = a0,m+n

∀m, n, iff

f (z1, z2) =
(∑

n∈Z

a0,nzn+1
2

)
δ(z1/z2).

Also, for any j ≥ 1,

(z1 − z2) ∂ j
z2

(
z−1

2 δ(z1/z2)
) = (z1 − z2)

∑
n∈Z

n (n − 1) · · · (n − j + 1)z−n−1
1 zn− j

2

= j ∂ j−1
z2

(
z−1

2 δ(z1/z2)
)
.

Hence

(z1 − z2) f (z1, z2) =
M∑

j=0

b j (z2) ∂ j
z2

(
z−1

2 δ(z1/z2)
)

has general solution

f (z1, z2) =
M∑

j=0

1

j + 1
b j (z2) ∂ j+1

z2

(
z−1

2 δ(z1/z2)
)
.

For reasons given next subsection, we call any formal distributions a(z), b(z) mutually
local if f (z1, z2) := [a(z1), b(z2)] satisfies the condition in Proposition 5.1.2. In a vertex
algebra or VOA (Definition 5.1.3), all fields are mutually local.

We need ways to make new formal power series from old ones. First, for any n ∈ Z,
we define the binomial formula to hold:

(z1 + z2)n :=
∑
k∈N

(n

k

)
zn−k

1 zk
2, (5.1.4a)

where we define
( n

k

) = n(n − 1) · · · (n − k + 1)/k! for any n. Equation (5.1.4a) lets us
define, for any formal power series f (z) =∑

n anzn ∈W[[z±1]],

f (z1 + z2) :=
∑
n∈Z

∑
k≥0

an

(n

k

)
zn−k

1 zk
2 ∈W

[[
z±1

1 , z2
]]
. (5.1.4b)

Paradox 5.2 Expand (1− z)−1 in a formal series in z to get
∑

n≥0 zn, and (1− z)−1 =
−z−1 (1− z−1)−1 in a formal series in z−1 to get −∑n<0 zn. Subtract these equal
expressions; we presumably should get 0, but we actually get δ(z) . Similarly, applying
(5.1.4a) to (1+ z)−1 = (z + 1)−1 again gives us the contradiction 0 = δ(z).
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The analytic explanation is that the left expansions in Paradox 5.2 converge only for
|z| < 1, while the second converges for |z| > 1, so it would be naive to expect their formal
difference to be 0. We see from this that it really matters in which variable we expand
rational functions. The seemingly harmless (5.1.4a) is actually a convention saying that
we’ll expand in positive powers of the second variable. For instance, at first glance

z−1
0 δ

(
z1 − z2

z0

)
− z−1

0 δ

(
z2 − z1

−z0

)
= z−1

2 δ

(
z1 − z0

z2

)
(5.1.5)

is nonsense; it only holds if you expand the terms in positive powers of z2, z1 and z0

respectively. A rational function by itself does not define a unique formal power series.
When we need to be explicit, we write ιz( f ) to expand a rational function f in positive
powers of z (i.e. for expanding it about z = 0). For example,

ιz

(
1

w − z

)
− ιz−1

(
1

w − z

)
= δ(z/w).

Recall the operator product expansion (OPE) of quantum fields (4.3.2), introduced
to interpret pointwise products. Here we can study this more explicitly. For most pairs
a(z), b(z) ∈ (EndV)[[z±1]], the naive product a(z) b(z) will not be algebraically defined.
It is easy to prove directly from Proposition 5.1.2 (see theorem 2.3 of [330]) that if
(z1 − z2)N [a(z1), b(z2)] = 0, then

a(z1) b(z2) =
N−1∑
j=0

c j (z2)

(z1 − z2) j+1
+ :a(z1) b(z2) : (5.1.6a)

separates a(z1)b(z2) into its singular and regular parts, where

:a(z1) b(z2) :=
(∑

n≥0

anzn
1

)
b(z2)+ b(z2)

(∑
n<0

anzn
1

)
, (5.1.6b)

c j
(k)(z2) =

N−1∑
�=0

j!

�! ( j − �)!
a( j−�−k) b(�). (5.1.6c)

By 1/(z1 − z2) j+1 in (5.1.6a) we mean to expand z2 in powers from− j to∞. The point
of (5.1.6a) is that the normal-ordered product (5.1.6b) is algebraically defined even at
z1 = z2 (Question 5.1.6) so any singular behaviour of a(z1) b(z2) as z1 → z2 is captured
by the finitely many series c j . Equations (5.1.6) are the desired relation in CFT between
the singular part of the OPE of quantum fields and the commutators of modes, mentioned
in Section 4.3.2. The clarity that vertex algebras bring to quantum field theory (especially
CFT) alone makes its definition worth all the pain.

5.1.3 Axioms

We are now prepared to introduce the important new structure called vertex operator
algebras (VOAs). Although VOAs are natural from the CFT perspective and appear to
be an important and rapidly developing area in mathematics, their definition is difficult
and nontrivial examples are not easy to find.
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A VOA is an infinite-dimensional graded vector space V = ⊕n≥0Vn with infinitely
many bilinear products u ∗n v respecting the grading (in particularVk ∗n V� ⊆ Vk+�−n−1),
obeying infinitely many constraints. We can collect all these products into one generating
function: to each u ∈ V associate the formal power series (a vertex operator)

Y (u, z) :=
∑
n∈Z

u(n)z
−n−1 ∈ (EndV)[[z±1]].

For each u ∈ V , the coefficients u(n) (called modes (5.1.3c)) are maps from V to V . The
product u ∗n v is now written u(n)v := u(n)(v). The bilinearity of ∗n translates into two
things: that u �→ Y (u, z) is linear, and that each function v �→ u(n)v is itself linear (i.e.
u(n) is an endomorphism of V).

Definition 5.1.3 (a) Let V be a graded vector space V = ⊕∞n=−∞Vn such that each
subspace Vn is finite-dimensional. Suppose we have a linear assignment u �→ Y (u, z) =∑

n∈Z u(n)z−n−1 from V into (EndV)[[z±1]] and a distinguished vector 1 ∈ V in V0,
obeying the following properties ∀u, v ∈ V:

va1. (grading) For u ∈ Vk , u(n) is a linear map from V� into Vk+�−n−1;
va2. (vacuum) Y (1, z) is the identity (i.e. 1(n)v = δn,−1v);
va3. (state-field correspondence) Y (u, 0)1 exists and equals u;
va4. (locality) (z1 − z2)M [Y (u, z1), Y (v, z2)] = 0 for some integer M = M(u, v);
va5. (regularity) there is an N = N (u, v) such that u(n)v = 0 for all n ≥ N.

Any such triple (V, Y, 1) is called a vertex algebra. The distributions Y (u, z) are called
vertex operators, and the vector 1 is called the vacuum.
(b) A vertex algebra (V, Y, 1) is called a vertex operator algebra (VOA) if there is a
distinguished vector ω ∈ V2 such that

voa1. (conformal symmetry) Ln := ω(n+1) forms a Vir-module, whose central term C
in (3.1.5) acts as c idV for some c ∈ C;

voa2. (conformal weight) L0v = nv whenever v ∈ Vn;
voa3. (translation generator) Y (L−1v, z) = ∂zY (v, z);
voa4. (CFT type) V0 = C1 and Vn = {0} for all n < 0.

The vectorω is called the conformal vector, and c is called the central charge, conformal
anomaly or rank. The grading n of u ∈ Vn is called its conformal weight.
(c) A quadruple (V, Y, 1, ω) is called a near-VOA if all axioms of a VOA are satisfied,
except for voa4, and in addition the homogeneous subspaces Vn are allowed to be
infinite-dimensional.

We prefer the more descriptive name ‘conformal vertex algebra’ to the historical ‘ver-
tex operator algebra’, although it is probably too late to dislodge the latter name. We
study the Virasoro algebra in Section 3.1.2, where we discuss its relation to conformal
transformations. We are more interested in VOAs than vertex algebras, since the Virasoro
algebra is essential for the relation of V to higher genus and in particular to modular
functions. The central charge c is an important invariant of V . The original axioms
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[68] by Borcherds didn’t involve Vir nor require dim(Vn) <∞. The conformal axioms
voa1–voa3 were introduced in [201] along with the name ‘vertex operator algebra’.
Although voa4 holds for most important VOAs and yields the richest theory, it is not
standard and is included here for simplicity. Note though that with it, va5 becomes redun-
dant and can be dropped. The name ‘near-VOA’ is not standard; we need the notion in
Section 7.2.2.

In the physics literature, the vacuum 1 is often denoted |0〉, and in place of the expansion
Y (u, z) =∑

n u(n)z−n−1 for u ∈ Vk appears the expression
∑

n u{n}z−n−k (so Ln = ωins).
This new expansion cleans up some formulae a little; it has the disadvantage though of
artificially favouring the ‘homogeneous’ vectors u ∈ Vk .

By Proposition 5.1.2, the peculiar-looking va4 simply says that the commutator
[Y (u, z1), Y (v, z2)] of two vertex operators is a finite linear combination of derivatives
of various orders of the Dirac delta centred at z1 = z2; this powerful locality axiom is at
the heart of a vertex algebra. A recommended exercise is to show that in a VOA, M = 4
works in va4 for u = v = ω; more generally see Question 5.1.4.

By V = ⊕Vn here, we mean that any vector u ∈ V can be expressed as a finite
sum

∑
n u(n) of homogeneous vectors u(n) ∈ Vn . To emphasise this finiteness, the

notation

V =
∐
n∈N

Vn

is often used. Note that in a vertex algebra, any series Y (u, z)v will be a finite sum – that
is, the infinite sum Y (u, z) is algebraically defined (Section 5.1.2).

An immediate consequence of va1, va2 and voa2 is that 1 ∈ V0 and ω ∈ V2 – we
needn’t assume these.

Let V be a vector space with a linear map Y : V → EndV , such that Y (u) Y (v) =
Y (v) Y (u). Also, assume that there exists a distinguished vector 1 ∈ V such that Y (1) is the
identity, and such that Y (u) 1 = u for all u ∈ V . It isn’t hard to identify such a structure.
Given any u, v ∈ V , define the ‘product’ u ∗ v to be the value Y (u) v. The linearity
of Y : V → EndV , as well as the linearity of each map Y (u), yields the distributivity
laws. Also, 1 ∗ u = Y (1) u = I u = u and u ∗ 1 = Y (u) 1 = u, so 1 is a unit. Evaluating
Y (u) Y (v) = Y (v) Y (u) on the right by w, gives

u ∗ (v ∗ w) = Y (u) (Y (v)w) = Y (v) (Y (u)w) = v ∗ (u ∗ w).

Substitutingw = 1 gives u ∗ v = v ∗ u, that is the product is commutative. Likewise, u ∗
(v ∗ w) = u ∗ (w ∗ v) = w ∗ (u ∗ v) = (u ∗ v) ∗ w, so the product is associative. Thus
a vertex algebra is an analogue of a commutative associative algebra with unit, where
there is a product u ∗z v = Y (u, z) v at each point z in a punctured disc. A vertex algebra
isn’t as obscure as it may first look.

Theorem 5.1.4 The following are equivalent:
(i) V is a commutative vertex algebra, i.e. Y (u, z1) Y (v, z2) = Y (v, z2) Y (u, z1) for

all u, v ∈ V;
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(ii) V = ⊕∞n=0Vn is a Z-graded commutative associative algebra with unit and
derivation, with each dim(Vn) <∞;

(iii) V is a vertex algebra where each vertex operator Y (u, z) involves only
nonnegative powers of z, i.e. u(n) = 0 for all n ≥ 0.

Proof: The equivalence (i)⇔ (ii) was essentially established in the previous paragraph.

(i)⇒ (iii): Consider the equality∑
n∈Z

u(−n−1)v zn
1 = Y (u, z1)v = Y (u, z1) Y (v, z2) 1|z2=0

= Y (v, z2) Y (u, z1) 1|z2=0 =
∑
n≥0

v(−1)u(−n−1) 1 zn
1 .

Since the expression on the right side involves nonnegative powers of z1 only, the same
must hold for the left side.

(i)⇐ (iii): For any power series f (z1, z2) =∑∞
m,n=0 amnzm

1 zn
2 ∈W[[z1, z2]], Proposi-

tion 5.1.2 implies that (z1 − z2)M f (z1, z2) = 0 ⇒ f (z1, z2) = 0, since each residue of
f (z1, z2) will be 0. Applying this to f (z1, z2) = [Y (u, z1), Y (v, z2)] gives the desired
result.

Locality va4 can be rewritten in the form (see Section 3.2 of [376])

z−1
0 δ

(
z1 − z2

z0

)
Y (u, z1) Y (v, z2) − z−1

0 δ

(
z2 − z1

−z0

)
Y (v, z2) Y (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
Y (Y (u, z0)v, z2), (5.1.7a)

where the formal series are expanded appropriately. This embodiment of commutativity
and associativity in the vertex algebra is called the Jacobi identity since it plays an
analogous role in VOAs as the Jacobi identity plays in Lie algebras. It corresponds
directly to the duality of the sphere with four points removed (namely Figure 6.3(a)).
Expanding it out, the coefficient in front of z�0zm

1 zn
2 gives Borcherds’ identity:∑

i≥0

(−1)i

(
�

i

) (
u(�+m−i) ◦ v(n+i) − (−1)�v(�+n−i) ◦ u(m+i)

)
=
∑
i≥0

(m

i

)
(u(�+i)v)(m+n−i). (5.1.7b)

Specialising (5.1.7b) to � = 0 and m = 0, respectively, gives us

[u(m), v(n)] =
∑
i≥0

(m

i

)
(u(i)v)(m+n−i), (5.1.7c)

(u(�)v)(n) =
∑
i≥0

(−1)i

(
�

i

) (
u(�−i) ◦ v(n+i) − (−1)�v(�+n−i) ◦ u(i)

)
. (5.1.7d)

In any vertex algebra, define an endomorphism T : V → V by

T u = u(−2)1. (5.1.8a)
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This is the derivation of Theorem 5.1.4(ii). Indeed, applying (5.1.7d) to it and using va2,
we get Y (T u, z) = ∂zY (u, z). Thus in any VOA, voa3 says

L−1u = u(−2)1. (5.1.8b)

Moreover, (5.1.7c) tells us that any u ∈ V2 automatically obeys [u(0), Y (v, z)] =
Y (u(0)v, z). Thus in any VOA

[L−1, Y (u, z)] = ∂zY (u, z).

More generally, a more subtle argument (see e.g. proposition 3.1.19 of [376]) shows that
in any vertex algebra, we have

Y (u, z)v = ezT Y (v,−z)u.

These equations also allow us to compute explicitly the grading of u(n)v in a VOA,
recovering va1: let u ∈ Vk, v ∈ V�, then

L0(u(n)v)=ω(1)(u(n)(v))=u(n)(ω(1)v)+(ω(1)u)(n)v+(ω(0)u)(n)v = (k + �− n − 1)u(n)v.

Duality (5.1.7a) also implies (see section 3.8 of [376])

Y
(
u(−m)v, z

) = 1

(m − 1)!
:
(
∂m−1

z Y (u, z)
)

Y (v, z) :, (5.1.9a)

Y
(
u(n)v, z

) = Resz1 (z1 − z)n[Y (u, z1), Y (v, z)], (5.1.9b)

where m ≥ 1 and n ≥ 0. As we see next section, this is quite useful as a way of obtaining
the full VOA from a small number of generators.

Unexpectedly, modular functions arise in VOA theory through the generating functions
of the dimensions of the homogeneous spaces:

trVq L0 =
∞∑

n=0

dimVn qn. (5.1.10a)

We also see this important theme in, for example, Section 3.1.2. As in (3.1.10), a small
refinement should be made: by the graded dimension χV (τ ) of V we mean

χV (τ ) := trVe2π iτ (L0−c/24) = q−c/24
∞∑

n=0

dimVn qn, (5.1.10b)

where as always q = e2π iτ . The reason for the q �→ τ change-of-variables here will
turn out to be the same as why Gauss and Jacobi introduced it into Euler’s generating
function 1+ 2x + 2x4 + 2x9 + · · · : both the graded dimension of V and Euler’s gen-
erating function are naturally associated with tori. Explanations for the now-familiar
−c/24 shift are given in Sections 3.2.3 and 5.3.4. Incidentally, the term character is
also used in the literature for χV (τ ), but Section 5.3.3 contains our diatribe against this
misnomer.

Section 1.5 illustrates the usefulness of the Killing form in Lie theory. Similarly,
our VOAs all have a nondegenerate invariant bilinear form [199] – a bilinear pairing
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(u|v) ∈ C for u, v ∈ V , such that

(Y (u, z)v|w) = (
v|Y (ezL1 (−z−2)L0 u, z−1)w

)
, ∀u, v, w ∈ V. (5.1.11a)

That this complicated definition is right is explained in remark 5.3.3 of [199] and equa-
tion (54) of [242]. For such a form, the homogeneous spaces Vm are mutually orthog-
onal, symmetry (u|v) = (v|u) holds, and we recover familiar RCFT formulae such as
(Lnu|v) = (u|L−nv). It is known (section 3 of [380]) that there is a unique invariant
bilinear form (up to a scalar factor), provided that V is simple (defined in Section 5.3.1)
and

L1V1 = 0 (5.1.11b)

– both conditions are always satisfied by our VOAs. In this case the bilinear form restricted
to each space Vn will be nondegenerate. The most convenient normalisation is

(1|1) = −1, (5.1.12a)

because for this choice the bilinear form on the homogeneous space V1 becomes

(u|v) = u1v, ∀u, v ∈ V1. (5.1.12b)

The invariant bilinear form plays an important role in CFT as well as Moonshine.
By a vertex operator superalgebra we mean there is a Z2-grading of V = V0̄ ⊕ V1̄ into

even and odd parity subspaces, and for u, v both odd the commutator in, for example,
Axiom va4 is replaced by an anti-commutator. Their basic theory is very similar to that
of VOAs (see e.g. [330]). For instance, we write

χV (τ ) := χV0̄
(τ )− χV1̄

(τ ).

Although we occasionally allude to vertex operator superalgebras (e.g. in Sections 5.4.2
and 7.3.5), we won’t develop their theory.

In RCFT,V would be the ‘Hilbert space of states’ (more carefully,V is a dense subspace
of it), and z = et+ix would be a local complex coordinate on a Riemann surface. L0

generates time translations, and so its eigenvalues (the conformal weights) are energy. For
each state u, the vertex operator Y (u, z) is a meromorphic (chiral) quantum field. Y (ω, z)
is the stress–energy tensor T . Physically, the requirement that Vn = 0 for n < 0 says that
the vacuum 1 = |0〉 is the state with minimal energy. Also, z = 0 in va3 corresponds
to the time limit t →−∞. The most important axiom, va4, says that quantum fields
commute away from z1 = z2, and so are local. It is equivalent to the duality of chiral
blocks in CFT, discussed in Sections 4.3.2, 4.4.1, 6.1.4.

In Segal’s language (Section 4.4.1), Y (u, z) appears quite naturally. Consider the
virtual event of two strings combining to form a third. To first order (i.e. the tree-level
Feynman diagram), this would correspond in Segal’s language to a ‘pair-of-pants’, or
a sphere with three punctures, two of which are negatively oriented (corresponding to
incoming strings) and the other positively oriented. We can think of this as the Riemann
sphere C ∪ {∞}; put the punctures at ∞ (outgoing) and z and 0 (incoming). Segal’s
functor T associates with this a z-dependent homomorphism ϕz : V × V → V , where



Basic theory 323

ϕz(u, v) = Y (u, z)v ∈ V . Incidentally, the symbol ‘Y ’ could have been chosen because
of this ‘pair-of-pants’ picture (time flows from the top of the ‘Y ’ to the bottom).1

By voa1, any VOA is a Vir-module. For most VOAs, this module is highly reducible.
By a conformal primary v of conformal weight k we mean Lnv = 0 for all n > 0
and L0v = kv for some k. These states are especially well behaved. Any such pri-
mary generates a highest-weight module for Vir, on the space spanned by the elements
L−n1 · · · L−nmv. The VOAs we are interested in are generated by the conformal primaries
together with the operators Ln , in the sense that V can be decomposed into a direct sum
(usually infinite) of highest-weight Vir-modules.

Question 5.1.1. Theorem 5.1.1 actually provides a realisation for a highest-weight rep-
resentation of A1

(1). Identify that representation.

Question 5.1.2. Using the notion of algebraic summability, write down an algebraic defi-
nition of limz1→z2 F(z1, z2) valid for formal power series F(z1, z2) ∈W[[z±1

1 , z±1
2 ]] real-

ising the intuition of substituting in z1 = z2. Prove that limz1→z2 F(z1, z2) ‘algebraically
exists’ iff the product F(z1, z2) δ(z1/z2) does, in which case F(z1, z2) δ(z1/z2) =
F(z2, z2) δ(z1/z2).

Question 5.1.3. (a) Given any formal power series F(z) ∈W[[z±1]], prove that

ew
d
dz F(z) = F(z + w).

(b) Prove (5.1.5).

Question 5.1.4. (a) Let V be any VOA, and u, v ∈ V . Then for any k ∈ Z, prove that

(z1 − z2)k [Y (u, z1), Y (v, z2)] =
∑
�≥0

1

�!

(
∂�z2

z−1
1 δ(z2/z1)

)
Y
(
u(k+�)v, z2

)
.

(b) Let u ∈ Vm, v ∈ Vn be homogeneous vectors in any vertex algebra V . Prove that
M(u, v) = m + n works in va4.

Question 5.1.5. (a) Prove that in any vertex algebra, the vacuum 1 is translation-invariant,
i.e. T 1 = 0.
(b) In any VOA, verify that the span of L−1, L0, L1 is the Lie algebra sl2(C). Verify that
the vacuum is invariant under it.

Question 5.1.6. Prove that for any a, b, c in a vertex algebra V , every coefficient zn of
:a(z) b(z) : u involves a finite sum, and for all but finitely many negative n this sum is 0.

5.2 Basic theory

A VOA is a remarkably rich algebraic structure, with infinitely many heavily constrained
products. In this section we continue to work out the easy consequences of the axioms.

1 But it wasn’t. Remarkably, the actual historical reason is that Y comes after X, and X was the name
arbitrarily chosen in [201] for a pre-vertex operator. The symbol Y first appeared in their chapter 8;
Borcherds used the symbol Q.
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The deep role of the Virasoro algebra remains hidden in this section. We also associate
VOAs with lattices and affine algebras.

5.2.1 Basic definitions and properties

For any u ∈ Vn , define o(u) = u(n−1). Then va1 tells us o(u) preserves each grade, that
is it maps each homogeneous space Vm to itself. In particular, every space Vn has an
algebraic structure defined by u × v = o(u) v. In the CFT literature, these are called the
zero-mode algebras (because u(n−1) = u{0}).

Typically, the zero-mode algebras Vn are quite complicated. However, consider
V1. Put � = m = n = 0 in (5.1.7b) and hit it with any w ∈ V: we get u(0)(v(0)w)−
v(0)(u(0)w) = (u(0)v)(0)w. If we now formally write [xy] := x(0) y, then this becomes
[u[vw]]− [v[uw]] = [[uv]w], which is one of the forms of the Lie algebra Jacobi iden-
tity (1.4.1b). Thus our bracket will be anti-associative if it is anti-commutative, in which
case V1 will be a Lie algebra. But is it anti-commutative? From (5.1.9) we get

u(n)v =
∑
i≥0

1

i!
(−1)i+n+1(L−1)i (v(n+i)u) (5.2.1)

so u(0)v ≡ −v(0)u (mod L−1V). However, from va1, voa4 and Question 5.1.5, we get

(L−1V)1 = L−1(V0) = L−1(C1) = {0}.
Thus, in any VOA, V1 is a finite-dimensional Lie algebra. Each homogeneous space Vn

is a module for V1.
Given any u, v ∈ V1, u(1)v ∈ V0 = C1, and so define (u|v) ∈ C by (u|v) 1 = u(1)v.

From (5.2.1), (u|v) = (v|u), so (�|�) defines a symmetric bilinear form on V1. We would
like (�|�) to respect the Lie algebra structure, that is be [��]-invariant. We compute from
(5.1.7) and va2

([uv]|t) 1 = −v(0)((u|t)1)+ (u|[vt]) 1 = (u|[vt]) 1, (5.2.2)

that is ([uv]|t) = (u|[vt]) and (�|�) is indeed [��]-invariant. Of course, this bilinear
form is identical with that of (5.1.12b), and so provided (5.1.11b) is satisfied, it will be
nondegenerate.

The existence of this bilinear form severely restricts the possibilities for the Lie algebra
V1. Such Lie algebras are called self-dual and are precisely those for which the Sugawara
construction (3.2.15) works. They are studied, for instance, in [415], [189], [384] –
see also example 2.1 in [156]. If we also demand that the VOA be weakly rational
(Definition 5.3.2), then V1 will be reductive (i.e. a direct sum of simple and trivial Lie
algebras) [156].

The affinisation V1
(1) of the Lie algebra V1 also appears naturally in the VOA V . In

particular, the modes u(n), for all u ∈ V1 and n ∈ Z, have the commutators

u(m) ◦ v(n) − v(n) ◦ u(m) = ([u, v])(m+n) + m (u|v)δm+n,01(−1).

Thus these u(n), together with centre C1(−1) and derivation L−1, span a V1
(1)-module.
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More generally, in Section 7.2.2 we need to obtain a Lie algebra from a near-VOA V .
As before, we obtain a Lie algebra structure on V/L−1V , and it has an invariant bilinear
form if we restrict to V1/L−1V0. In the situations we will be interested in, this algebra is
too large, but it can be reduced as follows. Define

PV n := {u ∈ Vn | Lmu = 0 for all m > 0}, (5.2.3)

i.e. the conformal primaries with conformal weight n. Then a straightforward calculation
verifies thatPV 1/(L−1V0 ∩ PV 1) is itself a Lie algebra, with the usual bracket. Through
the map u �→ u(0), this Lie algebra acts on V and this action commutes with that of Lm .
These associations of Lie algebras to (near-)VOAs are due to Borcherds [68].

By an automorphism (or symmetry) α of a VOA V we mean an invertible linear map
α : V → V obeying

α(Y (u, z) v) = Y (α(u), z)α(v),

together with α(1) = 1 and α(ω) = ω. This is how group theory arises in VOAs. The
automorphism group can be finite (e.g. Aut(V �) = M) or infinite (e.g. Aut(V(�)) ∼=
(R×)24×Co0), but it can be finite only if V1 = 0 (Question 5.2.2). Conjecturally, at least
when V is sufficiently nice, Aut(V) will be finite if (and only if) V1 = 0.

Similar arguments (Question 5.2.3) show that when V1 = 0, V2 is a commutative non-
associative algebra with product u × v := u(1)v ∈ V2 and identity element 1

2ω. Moreover,
an ‘associative’ bilinear form can be defined on V2 (Question 5.2.3). For example, the
Moonshine module V � satisfies V �

1 = 0 (Section 7.2.1), and V �

2 is none other than the
Griess algebra [263] extended by an identity element.

The operators u(0), u ∈ V , are derivations (i.e. infinitesimal automorphisms) of V ,
that is

[u(0), Y (v, z)] = Y (u(0)(v), z), (5.2.4)

and so exp(u(0)) is an automorphism of V if it is defined. This is important to the BRST
cohomology construction (Question 5.2.4), borrowed from string theory.

5.2.2 Examples

Unlike more classical algebraic structures, VOAs are notorious for having no easy exam-
ples. In this section we construct families of them, in the most direct way possible. This
explicitness has the drawback of making the constructions seem ad hoc. The reader inter-
ested in seeing the naturality of these constructions should consult the more sophisticated
treatments in, for example, [330], [376].

Recall from (3.2.12a) the oscillator algebra g = u1
(1), with basis consisting of an ,

n ∈ Z, together with the central term C . For any nonzero level k ∈ C, we get a ‘vacuum
module’ V(g, k) defined to have basis consisting of the formal combinations

a−m1 · · · a−mr 1 (5.2.5a)
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for r ≥ 0, where m1 ≥ m2 ≥ · · · ≥ mr ≥ 1. Using the actions C1 = k1, an1 = 0 for
n ≥ 0, we see V(g, k) has a u1

(1)-module structure. Of course u1 embeds into V(g, k) by
x ∈ u1 goes to xa−11.

We claim that V(u1
(1), k) has a VOA structure, for k �= 0. For the assignment of vertex

operators, it suffices by (5.1.9) to define Y (x, z) for x ∈ u1: we get the ‘current’

Y (xa−11, z) := x
∑
n∈Z

anz−n−1. (5.2.5b)

All other vertex operators follow from (5.1.9). For example, for m ≥ 1,

Y (a−m1, z) = 1

(m − 1)!
∂m−1

z

∑
n

anz−n−1.

The unique singular term in the OPE (5.1.6) of the basic current with itself is

Y (a−11, z1) Y (a−11, z2) = C

(z1 − z2)2
+ · · · (5.2.5c)

The Sugawara construction (3.2.14a) says here that the conformal vector is

ω = 1

2k
a−1 a−1 1, (5.2.5d)

which makes V(g, k) into a (highly reducible) Vir-module with central charge c = 1.
We also get the commutation relations

[Lm, an] = −nam+n. (5.2.5e)

In particular, the grading, given as we know by L0, assigns the basis vector (5.2.5a)
conformal weight m1 + · · · + mr , so the current (5.2.5b) has conformal weight 1.

There is an obvious generalisation to any abelian Lie algebra h = Cd with a choice
of nondegenerate inner product on the space h (this defines the central term of the affine
bracket (3.2.12a)). Namely, replace a with an orthonormal basis a1, . . . , ad of Cd ; the
basis of the VOA is built up from all the operators ai

−n as in (5.2.5a). These VOAs

V(h(1), k) are often called Heisenberg VOAs, because h
(1)

is a Heisenberg algebra (i.e.
a Lie algebra h with [h, h] equal to the centre of h). It turns out (Question 5.2.6) that

the VOA V(h
(1)
, k) is independent of the choice of level k, provided k �= 0, and also

the choice of inner product, provided it is nondegenerate. We will let V(Cn) denote the
Heisenberg VOA with level k = 1 and standard inner product on the abelian Lie algebra
h = Cn .

The generalisation to any affine algebra g = g(1) [68], [201], [202], [384] is also
straightforward. To any level k ∈ C, k �= −h∨ (h∨ the dual Coxeter number of g), we get
a natural VOA structure V(g, k) on the Verma module M(kω0) associated with highest
weight kω0, with central charge (3.2.9c). For example, from the Sugawara construction
(3.2.15), the conformal vector is

ω = 1

2(k + h∨)

∑
i

ai
(−1)b

i
(−1)1, (5.2.6)
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where ai , b j ∈ g are bases for g, dual with respect to the Killing form on g: (ai |b j ) = δi j .
Any pair of dual bases give the sameω – the element 1

2

∑
i ai bi in the universal enveloping

algebra U (g) is simply the Casimir operator, and lies in the centre of U (g). The only
important difference here from the Heisenberg VOA is that sometimes there are ‘null
vectors’, that is the Verma module M(λ) may not be irreducible. In fact, maximal numbers
of null vectors is the signature of the most interesting levels, namely k ∈ N. We should
quotient out all null vectors: by V(g, k) we mean the VOA structure (5.2.6) on the
irreducible g-module L(kω0) defined in Section 3.2.3. Most interesting (because of its
representation theory – Section 5.3) is V(g, k) when k ∈ N, what we will call integrable
affine VOAs.

The Lie algebra V1 associated with these affine algebra VOAs V = V(g, k) is isomor-
phic to the reductive Lie algebra g. Its affinisation, defined last subsection, equals g.

The forbidden level k = −h∨ is called the critical level and is very interesting in its
own way. The conformal structure is lost (the conformal vector (5.2.6) won’t exist), but
the Möbius symmetry remains. The affine algebra vertex algebras at critical level have a
highly nontrivial centre, and through it are related to geometric Langlands (see e.g. the
discussion in section 17.4 of [197]). For this reason, it should be interesting to study it
from the context of CFT.

Another relatively simple class of VOAs are associated with lattices [68], [201].
The simplest possibility is an n-dimensional positive-definite lattice L (Section 1.2.1),
all of whose inner products a · b are even integers. By C{L} we mean the (infinite-
dimensional) group algebra of the additive group L , written using formal exponentials:
for each vector v ∈ L , we have a basis vector ev of C{L}, which multiply by euev = eu+v .
Let h = C⊗ L ∼= Cn be the underlying complex vector space of L , interpreted as an
abelian Lie algebra. It inherits the inner product of L . The underlying vector space of the
VOA V(L) is V(h)⊗ C{L}, where V(h) is the Heisenberg VOA constructed earlier. The
vertex operator Y (h ⊗ 1, z), for h ∈ V(h), equals the vertex operator Y (h, z) in V(h).
Less clear is how to define the vertex operators Y (1⊗ eα, z), but once we know how
the affine algebra h(1) acts on the group algebra C{L}, they will be heavily constrained
by the OPEs (5.1.6a). Define htm .eα = (h|α) δm,0eα , for any h ∈ h and α ∈ L , where
we identify α ∈ L with the corresponding vector in h = C⊗ L . Then the OPE (5.1.6a)
tells us (as usual displaying only the singular terms)

h(z1) Y (1⊗ eα, z2) = (h|α)

z1 − z2
Y (1⊗ eα, z2)+ · · ·

From this, and the pairwise locality of these vertex operators, we derive the formula

Y (1⊗ eα, z) = eα exp

(
−
∑
j<0

z− j

j
α j

)
exp

(
−
∑
j>0

z− j

j
α j

)
zα0 .

In the usual way, this determines all vertex operators Y (h ⊗ eα, z). The vacuum is 1× 1
and conformal vectorω isω ⊗ 1; the central charge c though now equals the dimension n
of L . The vectors h ⊗ 1 for h ∈ h have conformal weight 1, while 1⊗ eα have conformal
weight (α|α)/2.
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The construction is the same for any even positive-definite lattice L (i.e. all norm-
squareds are even), except that the group algebra C{L} should be ‘twisted’ so that
eαeβ = (−1)(α|β)eβeα . If instead L is an odd positive-definite lattice (i.e. an integral lattice
with some vectors of odd norm-square), the same construction yields vertex operator
superalgebras (i.e. VOAs except the locality axiom va4 can involve anti-commutators).
For example, L = Z describes two fermions.

Repeating this construction for an indefinite even lattice L will yield a near-VOA. To
see this, note that the conformal weight of 1⊗ eα is (α|α)/2. If we regard V(L) as graded
by L rather than by Z, we obtain a grading into finite-dimensional subspaces.

There are several ways to construct new VOAs from old ones. For example, one
can take the direct sum of VOAs with equal central charge (this doesn’t change the
central charge), or tensor products of arbitrary VOAs (the central charge adds) – see
section 3.12 of [376]. The orbifold construction mods out by discrete symmetries: for a
finite group G of symmetries of a VOA V , let VG denote the subspace of V fixed by G;
then VG is a vertex operator subalgebra of V – see Sections 4.3.4 and 5.3.6.

Finally, Goddard–Kent–Olive (GKO) coset construction [250] mods out by continuous
symmetries. In particular, let (V, Y, 1, ω) and (V ′, Y, 1, ω′) be VOAs with V ′ ⊂ V . So
V ′ would be a vertex operator subalgebra of V except the conformal vectors need not
be equal. Assume, however, that ω′ ∈ V2 and L1ω

′ = 0. The coset construction finds a
VOA structure on the centraliser

CV (V ′) := {v ∈ V | [Y (v, z1), Y (u, z2)] = 0 ∀u ∈ V ′}
= {v ∈ V | vnu = 0 ∀u ∈ V ′, n ∈ Z}. (5.2.7)

The equality in (5.2.7) follows from Question 5.2.5. Then (CV (V ′), Y, 1, ω − ω′) is a
VOA with central charge c − c′. In the VOA language, this was developed in [202]; see
also the lucid treatment in section 3.11 of [376].

A conjecture of Moore and Seiberg [436], [437] states that every RCFT arises from
orbifold and coset constructions applied to lattice and affine algebra theories (generously
enough interpreted). They speculate that this would be the analogue here of Tannaka–
Krein duality (Section 1.6.2). We seem a long way from proving this optimistic guess,
even in a more limited context of sufficiently nice VOAs.

The most famous VOA is the Moonshine module V �, constructed in 1984 in a tour
de force by Frenkel–Lepowsky–Meurman [200]. It has central charge c = 24, with
V � = V �

0 ⊕ V �

1 ⊕ V �

2 ⊕ · · · , where V �

0 = C1 is one-dimensional, V �

1 = {0} is trivial and
V �

2 = (Cω)⊕ (Griess algebra) is (1+ 196883)-dimensional. Its automorphism group is
precisely the Monster M. Thus each graded piece V �

n is a finite-dimensional M-module.
It has graded dimension J , and is the space (0.3.1) lying in the heart of Conway and
Norton’s Monstrous Moonshine (see Sections 4.3.4 and 7.2.1).

A formal parallel exists between integral lattices L and VOAs V [201], [248]. The
dimension n of L corresponds to the central charge c of V . An even lattice corresponds
to a VOA while an odd lattice corresponds to a vertex operator superalgebra. As we
see in the next section, the determinant |L| relates to a measure of how many irre-
ducible modules the VOA has. The norm-

√
2 vectors in L correspond to the vectors in
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V1 – indeed, the norm-
√

2 vectors in a lattice L are special because they generate a Cox-
eter subgroup in Aut(L); the vectors in V1 are special because they generate a continuous
subgroup (a Lie group) of Aut(V). In particular, the Leech lattice � and the Moonshine
module V � play analogous roles (Section 7.2.1). Analogies of these kinds are always
useful in their easy role as squirrels. The battle-cry ‘Why invent when one can profitably
copy?’ is heard not only in Hollywood.

Question 5.2.1. Let V be a VOA, and let a finite group G act as automorphisms on
V , so each space Vn is a (finite-dimensional) G-module. Prove that for each n, Vn is a
G-submodule of Vn+1. (Hint: Consider the map L−1.)

Question 5.2.2. In any VOA, define a map eo(v) : V → V for each v ∈ V1, and show that
for v �= 0 it defines a nontrivial automorphism of V . Verify that eV1 generates a normal
subgroup of Aut(V), and hence that Aut(V) will be uncountable if V1 �= 0.

Question 5.2.3. Suppose a VOAV hasV1 = 0. For u, v ∈ V2, define u × v = u1v. Verify
that V2 is commutative with this product, with identity ω/2. Define a C-valued bilinear
form on V2 and discover how it is compatible with ×.

Question 5.2.4. Let V be a vertex algebra, and suppose u ∈ Vk satisfies (u(0))2 = 0. Prove
that V (u) = ker u(0)/im u(0) is itself a vertex algebra.

Question 5.2.5. Prove that [Y (u, z1), Y (v, z2)] = 0 iff unv = 0 for all n ≥ 0.

Question 5.2.6. (a) Suppose both V, V ′ are complex n-dimensional vector spaces
together with choices of nondegenerate inner-products. Verify that the Heisenberg VOAs
V(V (1), k) and V(V ′(1), k ′) are isomorphic as VOAs, provided only that k, k ′ are both
nonzero.
(b) Let g = g(1) be the nontwisted affine algebra associated with a simple finite-
dimensional Lie algebra g, and let k �= k ′ be two complex numbers, both distinct from
the critical level−h∨. When are the affine algebra VOAsV(g, k) andV(g, k ′) isomorphic
as VOAs?
(c) Let L , L ′ be two positive-definite lattices, all of whose inner-products u · v are even
integers. When are the lattice VOAs V(L) and V(L ′) isomorphic as VOAs?

Question 5.2.7. Find an even indefinite lattice L such that the near-VOA V(L) has finite-
dimensional homogeneous spaces V(L)n for all n ∈ Z.

5.3 Representation theory: the algebraic meaning of Moonshine

We know affine algebras have modules (namely the integrable ones) with interesting
characters. However they have many other modules that are far less interesting, even
if we restrict to highest weight ones with positive integer level. What general principle
distinguishes the interesting ones from the generic? Of the uncountably many level k ∈ N
highest-weight Xr

(1)-modules, the integrable ones are precisely those that are unitary.
It is tempting then to guess that unitarity is the key principle. However, the reason to
doubt its fundamental role is that there are RCFTs (e.g. the Yang–Lee model with central
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charge c = −22/5, see section 7.4.1 of [131]) whose graded dimensions obey all of the
properties the affine characters do, but whose modules are not unitary.

The key feature possessed by the integrable affine modules is that they are unexpectedly
small – that is, the null vectors in the associated Verma module, all of which are quotiented
away, are maximally numerous. In other words, they are also modules of a sufficiently
nice (‘rational’) VOA. The appearance of an affine algebra here is not directly significant,
rather it is the appearance of that rational VOA. Modules of those VOAs may or may
not be unitary. VOAs serve as the unifying mathematics underlying the modules singled
out by Moonshine.2

The raison d’être of VOAs are their modules, and in Moonshine we are primarily
interested in their graded dimensions and characters. It is to this important topic – the
algebraic meaning of Moonshine – that we finally turn. See also [199], [376].

5.3.1 Fundamentals

A module of a VOA V is a vector space on which V acts, in such a way that this action
preserves all possible structure. More precisely:

Definition 5.3.1 [199] Let V be a VOA. A weak V-module (M, YM ) is an N-graded
vector space M = ⊕n∈N M[n], and a linear map YM : V → End M[[z±1]], written
YM (u, z) =∑

n∈Z u(n)z−n−1, such that for any u ∈ Vk , the mode u(n) is a linear map
from M[�] into M[k+�−n−1],

YM (1, z) = idM , (5.3.1a)

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1) YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2) YM (u, z1)

= z−1
2 δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2), (5.3.1b)

where each mode u(n) operates on M. The YM (u, z) are also called vertex operators. A
weak V-module (M, YM ) is called a V-module if in addition it comes with a grading
M = ⊕α∈C Mα , with Mα = 0 for Re(α) sufficiently negative, obeying

Mα = {x ∈ M | L0x = αx} (5.3.1c)

(the eigenvalue α is again called the conformal weight of y ∈ Mα), and all homogeneous
spaces Mα are finite-dimensional.

We are interested in V-modules. For the VOAs of interest to us (see Definition 5.3.2),
the conformal weights are always rational (hence the name). Definition 5.3.1 uses the
Jacobi identity (5.1.7a) rather than the simpler locality va4 because, although locality and
the Jacobi identity are equivalent for VOAs, for modules the Jacobi identity is stronger
(see chapter 4 of [376]).

2 Victor Kac expresses a related position by isolating locality as the key principle [329].
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As before, the modes Ln = ω(n+1) of the conformal vector ω ∈ V yield on M a rep-
resentation of the Virasoro algebra Vir, with the same central charge c as V . In analogy
with (5.1.10b), the graded dimension of a V-module M is defined to be

χM (τ ) := trM e2π iτ (L0−c/24) = q−c/24
∑
α∈C

dim Mα qα. (5.3.2)

It is fundamental to the whole theory that these χM are modular, at least for ‘nice’ V and
M (see Theorem 5.3.8 below). The automorphism group of V acts on each homogeneous
space Mα – that is, each Mα carries a representation of Aut(V), and so the q-coefficients
of χM (τ ) are dimensions of Aut(V)-representations (famous examples being (0.2.1)).

It is straightforward [199], [376] to write down the definitions of V-module homomor-
phism, direct sum of V-modules, submodule, irreducible module (no nontrivial submod-
ule), completely reducible module (i.e. M can be written as a direct sum of irreducible
V-modules), etc. Invariant bilinear forms can be defined for modules as in (5.1.11a), and
have analogous properties [199], [380].

The easiest example of a V-module, of course, is V itself, called the adjoint module.
If V is irreducible as a V-module, it is called simple (see Definition 6.2.3). All VOAs of
interest in this book are simple. An example of a nonsimple vertex algebra is the affine
algebra vertex algebra at critical level k = −h∨.

The notion of tensor product – called fusion M × N – for VOA modules is unexpect-
edly subtle. For example, the infinite-dimensional adjoint module V should have trivial
fusions, just like the one-dimensional Lie algebra module C has trivial tensor products.
See, for example, [298], [222], [382] for various approaches. Fusion products in a weakly
rational VOA can be decomposed into irreducible modules as usual:

M × N ∼= ⊕P∈�(V) N P
M N P, (5.3.3)

where the multiplicities N P
M N are called fusion coefficients. These numbers are most

easily defined (via Schur’s Lemma) as the dimension of the space of intertwiners [199]
(Definition 6.1.9). For semi-simple Lie algebras, the tensor product of modules defines
a symmetric monoidal category (Section 1.6.2); for nice VOAs, the fusion of modules
defines a braided monoidal category and the structure constants N P

M N a fusion ring
(Section 6.2.2).

Definition 5.3.2 [574] A VOA V is called weakly rational if every V-module is com-
pletely reducible,V has only a finite number of irreducible modules, and every irreducible
weak V-module is a V-module.

Let �(V) denote the set of irreducible V-modules. Most of our VOAs will be weakly
rational. The term ‘weakly rational’ is not standard; rational is sometimes used. However,
a rational VOA should enjoy all properties of the chiral algebra of a RCFT, which is why
we reserve the term ‘rational’ for the stronger notion presented in Definition 6.2.3.

Lemma 5.3.3 [574] Let V be a weakly rational VOA, and let M be any irreducible
V-module. Then there is a number h ∈ Q such that the homogeneous subspace Mh is
nonzero, and such that if Mα �= 0 for some α ∈ C, then α − h ∈ N.
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The proof isn’t difficult – see page 244 of [574] for a more general argument. We call
h = h(M) the conformal weight of M , and the space Mh = M[0] the lowest-weight space
of M . For example, the conformal weight h(V) of the adjoint module is 0. The lowest-
weight space Mh generates the whole module, in the sense (5.1.9a) that M is spanned
by vectors of the form (u1)(n1) · · · (uk)(nk ) y for ui ∈ V and y ∈ Mh . The lemma implies
that for such a module M , we have χM (τ + 1) = e2π i h(M)χM (τ ) as formal power series.

In both finite group theory and Lie theory, given any module M , a module structure
can also be found on the vector space dual M∗ of M in a straightforward way. This
module is called the dual or contragredient of M . Something similar happens for VOAs.
However, the naive dual of an infinite-dimensional space tends to be too large (recall
that in infinite dimensions, the double-dual (V ∗)∗ properly contains V ), so here we take
instead the restricted dual M� of M , defined by

M� = ⊕α(Mα)∗. (5.3.4a)

The explicit V-module structure on M� (see section 5.2 of [199]) is quite complicated
and closely related to the definition of invariant bilinear form in (5.1.11a). Note that

χM� (τ ) = χM (τ ) (5.3.4b)

even though M� and M are usually non-isomorphic as V-modules. Thus our graded
dimensions (5.3.2) won’t always distinguish modules, something that was independently
observed in the context of Monstrous Moonshine, as we’ll see. We return to this bother-
some but not unexpected fact in Section 5.3.3. The more obscure term ‘contragredient’
is usually used for M�, as ‘dual’ has too many unfortunately independent meanings.
The notion of contragredient module plays a large role in RCFT: roughly, M� is the
anti-particle of M , and they are related by charge-conjugation C .

All VOAs V of interest to us have an anti-linear involution u �→ u∗ such that the
invariant bilinear form (u|v) of (5.1.11a) satisfies

(u|v∗) = (v|u∗), ∀u, v ∈ V. (5.3.5a)

The notion of unitary module M is important in physics: it is a V-module in which the
bilinear form on M satisfies

(ux |y)M = (x |u∗y)M , ∀u ∈ V, x, y ∈ M. (5.3.5b)

Consider first the lattice VOAV(L) constructed in Section 5.2.2, where L is a positive-
definite even lattice (recall the definitions in Section 1.2.1). It is weakly rational, and its
irreducible modules are parametrised naturally by the cosets L∗/L , where L∗ ⊇ L is the
dual lattice to L [144]. The explicit construction of these modules M[t], for [t] ∈ L∗/L ,
is very similar to that of the VOA VL itself – see section 6.5 of [376]. Thus the number
‖�(V(L))‖ of its irreducible modules is given by the determinant |L| of the lattice.
The adjoint module is M[0]. The module M[t] has contragredient M[−t] and graded
dimension

χM[t](τ ) = t+L (τ )

η(τ )n
, (5.3.6)
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where n is the dimension of L , η is the Dedekind eta function (2.2.6b) and t+L is the
theta series of (2.2.11a). The fusion product here is M[t] × M[t ′] = M[t + t ′].

The Heisenberg VOAs are not weakly rational. For example, V(C) has a distinct
irreducible module M(λ) (namely the Verma module V (λ) of (3.2.12b)) for every λ ∈ C.
The adjoint module is M(0), and the contragredient of M(λ) is M(−λ). Only the modules
with λ ∈ R are unitary. The graded dimension of M(λ) is given in (3.2.12c).

However, if g is a simple Lie algebra and g = g(1) is the associated nontwisted affine
algebra, then the VOA V(g, k) will be weakly rational iff the level k lies in N. Just as the
VOA V(g, k) is the g-module L(kω0) with additional structure, the irreducible V(g, k)-
modules can be identified with the g-modules L(λ), for level-k integrable highest weights
λ ∈ Pk

+(g) [202]. In particular, the VOA graded dimension will equal the corresponding
specialised affine algebra characters χλ(2π iτ�0) = χλ(τ, 0, 0) of (3.2.11c). The usual
tensor product L(λ)⊗ L(μ) of affine algebra modules is less interesting than the fusion
product L(λ) × L(μ) – in the former, levels add and the tensor product coefficients T ν

λμ

can be infinite, while the latter is studied in Section 6.2.1.
A weakly rational VOA is called holomorphic if it has a unique irreducible module.

As usual this terminology comes from RCFT: a holomorphic VOA can be the left-
moving chiral algebra of a CFT with trivial right-moving chiral algebra, so the physical
correlation functions (4.3.1a) of such a CFT would be holomorphic (at least locally,
when all insertion points zi are distinct). Thus the lattice VOA V(L) is holomorphic iff
the lattice L is self-dual. The most famous example of a holomorphic VOA though is the
Moonshine module V � [145]. In fact, its holomorphicity is one of the keys to Monstrous
Moonshine (see Question 5.3.4).

5.3.2 Zhu’s algebra

In many ways a VOA resembles a Lie algebra, and this analogy has often been exploited
to flesh out the theory of VOAs. However, the representation theory of the weakly rational
VOAs resembles that of a finite group.

Consider for concreteness the symmetric group G = S3. Its representation theory is
captured by its group algebra CG (Section 1.1.3), that is the formal span of the ele-
ments σ ∈ G = {(1), (12), (23), (13), (123), (132)}, where G acts by left multiplication.
The associative algebra CG is semi-simple, and so is a direct sum of matrix algebras:
here,

CG ∼= M1×1 ⊕ M1×1 ⊕ M2×2, (5.3.7a)

where the first summand M1×1 contains one copy of the trivial one-dimensional irre-
ducible representation ρ1(σ ) = 1, the second summand M1×1 contains one copy of
the ‘sign’ one-dimensional irreducible representation ρs(σ ) = (−1)σ , and the four-
dimensional algebra M2×2 contains a continuum of copies of the two-dimensional irre-
ducible representation ρ2. More precisely, the three subspaces of the group algebra CG
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specified by (5.3.7a) are

V1 = C{(1)+ (12)+ (23)+ (13)+ (123)+ (132)} ∼= ρ1, (5.3.7b)

Vs = C{(1)− (12)− (23)− (13)+ (123)+ (132)} ∼= ρs, (5.3.7c)

V2 = C{(1)− (123), (1)− (132), (12)− (23), (12)− (13)} ∼= ρ2 ⊕ ρ2. (5.3.7d)

Incidentally, the different copies of the irreducible module ρ2 in the subspace V2 are
parametrised by the projective line P1(R) ∼= S1: choosing a nonzero point x in

C{(1)− (12)+ (23)− (132), (23)− (13)+ (123)− (132)}, (5.3.7e)

and hitting with arbitrary σ ∈ G, spans a copy V2(x) of the two-dimensional module ρ2,
and V2(x) ∩ V2(x ′) = {0} unless x and x ′ are complex multiples of each other, in which
case V2(x) and V2(x ′) are equal as sets. On the other hand, choosing a generic element
of V2 (respectively CG) will span all of V2 (respectively CG).

The representation theory of a finite group G is equivalent to that of the associative
algebra CG. Likewise, for semi-simple Lie algebras g there is also an associative algebra,
generated by g, which classifies all irreducible g-modules: the universal enveloping
algebra U (g) (Section 1.5.3). However, it is infinite-dimensional, reflecting the fact that
g has infinitely many inequivalent irreducible modules.

Remarkably, weakly rational VOAs V have (like finite G), a finite-dimensional asso-
ciative semi-simple algebra, denoted A(V), which classifies the finitely many irreducible
V-modules. As we know, the full module M can be generated from its lowest-weight
space Mh , by repeatedly acting by modes of V , and so it suffices to study Mh . Now, the
zero-modes o(u), defined at the beginning of Section 5.2.1, act on each homogeneous
space Mα; Zhu’s algebra A(V) is the algebra of zero-modes, as seen by the lowest-weight
spaces Mh . A more formal construction, which will begin next paragraph, is due to Zhu
[574], although it was anticipated in physics [429], [87]. Similar to the above, each
irreducible V-module M corresponds to a linear functional fM on V (Section 4.4.4); a
certain large subspace O(V) of V lies in the kernel of all functionals fM ◦ o(v) ∀v ∈ V ,
so each of these defines a well-defined functional on the quotient A(V) := V/O(V). The
quotient A(V) has a product u ∗ v making it into an associative algebra; the space of
functionals fM ◦ o(v) carries a module action of A(V), and as such can be identified with
the dual M∗

h of the lowest-weight space of M . Conversely, any (irreducible) right-module
for A(V) is the lowest-weight space of an (irreducible) V-module M . This physically
motivated treatment of Zhu’s algebra is fleshed out in [227].

Zhu’s treatment is similar. For u, v ∈ V , where u ∈ Vk , define a product

u ∗ v = Resz

(
Y (u, z) v

(z + 1)k

z

)
, (5.3.8a)

or equivalently, in terms of the modes,

(u ∗ v)(n) =
∑
m≥k

u(−1−m) ◦ v(m+n) +
∑

m≤k−1

v(m+n) ◦ u(−1−m). (5.3.8b)
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Extend ∗ linearly to all u ∈ V . Let O(V) be the subspace of V spanned by elements

(L−1u + L0u) ∗ v, ∀u, v ∈ V. (5.3.8c)

By Zhu’s algebra A(V) we mean the quotient V/O(V).
The point of these definitions is that, on the lowest-weight space Mh of any irreducible

V-module M , a straightforward calculation (see page 250 of [574]) verifies that

o(u ∗ v) = o(u) ◦ o(v). (5.3.9a)

Using (5.1.8b), (5.1.7d) and va2, we see that

o(L−1u + L0u) = 0 (5.3.9b)

identically on V . Together, (5.3.9) tell us o(u) = 0 on each lowest-weight space Mh ,
for any u ∈ O(V). Thus for any class [u] ∈ A(V), the zero-mode o(u) is a well-defined
operator on each Mh .

Theorem 5.3.4 [574] Let V be a weakly rational VOA (recall Definition 5.3.2) and let
A(V) = V/O(V) be Zhu’s algebra. Then A(V) is a finite-dimensional, associative and
semi-simple algebra, isomorphic as an algebra to the matrix algebra

A(V) ∼= ⊕M∈�(V) Mn(M)×n(M),

where �(V) is the set of all irreducible V-modules, and n(M) is the dimension of the
lowest-weight space Mh.

In other words, there is a one-to-one correspondence between the irreducible modules
of A(V) and V; the irreducible A(V)-modules can in fact be naturally identified with
the lowest-weight spaces Mh of the irreducible V-modules. It is almost identical to
what happens with the group algebra of a finite group. Note that the dimension n(M) is
the coefficient of the first nontrivial term n(M) qh−c/24 of the graded dimension χM .
The hard part of the proof of Theorem 5.3.4 is establishing that an irreducible A(V)-
module lifts to an irreducible V-module (the basic idea is sketched above). Incidentally,
there are non-weakly rational VOAs (coming from ‘logarithmic’ CFTs) with Zhu’s
algebra A(V) finite-dimensional but not semi-simple.

For example, Zhu’s algebra A(V �) for the Moonshine module V � is one-dimensional,
while the integrable affine VOA V(g, k) at level k ∈ N has Zhu’s algebra

A(V(g, k)) ∼= ⊕λ∈Pk+(g) MdimL(λ)×dimL(λ),

where L(λ) is a highest-weight g-module (to get λ, drop λ0 from λ). In general though,
it is hard to compute A(V) (unless the V-modules are already known!) because we lose
the grading – expressions like L−1u + L0u are not homogeneous.

The definition (5.3.8a) of the product ‘∗’ in Zhu’s algebra can be modified to give the
more familiar ‘normal-ordered product’ (recall (5.1.6))

u · v = Resz(Y (u, z) vzk−1) = u(−1)v (5.3.10a)
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for u ∈ Vk , or equivalently in terms of modes

(u · v)(n) =
∑
m≥0

u(−1−m) ◦ v(m+n) +
∑

m≤−1

v(m+n) ◦ u(−1−m). (5.3.10b)

Let O2(V) be the span of all elements of the form u(−2)v, and A2(V) the quotientV/O2(V).
Then A2(V) is a graded commutative associative algebra with product ‘·’. It also has a Lie
algebra structure, with bracket given by [uv] = u(0)v; together, the Lie and associative
products define a commutative Poisson algebra. Its main role in VOA theory is in a
finiteness condition:

Definition 5.3.5 [574] A VOA V is said to be C2-cofinite if the A2(V) = V/O2(V) is
finite-dimensional.

Most of the important weakly rational VOAs (e.g. the Moonshine module, the lattice
VOAs, the affine algebra VOAs at positive integer level) satisfy this condition. The term
‘C2-cofinite’ comes from Zhu’s name for what we call O2(V). It has several conse-
quences. Most importantly, the graded dimensions χM (τ ) of a C2-cofinite VOA con-
verge to functions holomorphic in the upper half-plane H (theorem 4.4.2 of [574]). A
C2-cofinite VOA will have well-defined finite fusion coefficients (5.3.3) (see theorem 13
in [229]).

It is conjectured that a VOA is weakly rational if and only if it is C2-cofinite, but
although this would significantly simplify the definition of weakly rational, it seems
difficult to prove. Weakly rational VOAs satisfy dim A2(V) ≥ dim A(V) (generalised
in lemma 3 of [229]), but inequality can occur – for example, the integrable affine
algebra VOA V(E8

(1), 1) has a one-dimensional Zhu’s algebra but A2(V) is at least
249-dimensional [224].

A C2-cofinite VOA is finitely generated in the sense that there will be finitely many
vectors u1, . . . , un ∈ V (namely, choose ui to be the lifts to V of a basis of A2(V)) such
that V is spanned by all vectors of the form

ui1
(−m1) · · · uik

(−mk )1, (5.3.11a)

where m1 > · · · > mk > 0 [229]. Something similar (but weaker) holds for V-modules.
Using this we quickly obtain a growth estimate: given any C2-cofinite VOA V , there
is a constant C > 0 such that, for any irreducible V-module M , the dimension of the
homogeneous space Mα is bounded above by

dim Mα < CM eC
√
α−h, (5.3.11b)

for some constant CM , where as always h = h(M) is the conformal weight of M . The
constant C depends only on dim A2(V), while CM is essentially dim Mh , adjusted slightly
to ensure (5.3.11b) also holds for small α.

Various interesting generalisations of Zhu’s algebras have appeared in the literature
[149], [150], [229], [410]. From our point of view, these algebras play a crucial technical
role in the statement and proof of the modularity of VOA characters.
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5.3.3 The characters of VOAs

The next four subsections mark a climax for the book, as we discuss the modularity of
the graded dimensions (5.1.10b), (5.3.2). We also explain why this was anticipated by
physicists. But first let’s reflect on the notion of character.

Calling the quantities χV (τ ) and χM (τ ) ‘characters’, as is common in the literature, is
a misnomer – they are merely graded dimensions. Defining characters for an algebraic
object is as much art as science. The beautiful success of the character theory of semi-
simple and Borcherds–Kac–Moody Lie algebras hides the nontrivial intuition that went
into the original definitions. Presumably the starting point was that the characters of
finite groups are given by the trace. Also, exponentiation associates a Lie group with
a Lie algebra. Putting this together leads to the character of (1.5.9a). The characters of
(Borcherds–)Kac–Moody algebras then follow by analogy. Unfortunately, the situation
for VOAs isn’t nearly as clear.

The main properties we may hope a character χM to obey are: it specialises to
dimension (or graded dimension); it distinguishes inequivalent modules; and it respects
direct sum and tensor product (fusion for us), in the sense that χM⊕N = χM + χN and
χM × N = χMχN . We would also expect the VOA characters in the special case of the
integrable affine VOA V(g, k) to equal the corresponding affine algebra characters χλ in
(3.2.9a) (recall that theV(g, k)-modules can be identified with the integrable g-modules).

This wish-list is hopelessly optimistic for even the nicest VOAs. The graded dimen-
sions χM(λ)(τ ) for the integrable affine VOA V(g, k) will not respect the fusion product:

χM(λ) × M(μ)(τ ) �= χL(λ)⊗L(μ)(τ ) = χL(λ)(τ )χL(μ)(τ ) = χM(λ)(τ )χM(μ)(τ ),

where L(λ)⊗ L(μ) denotes the tensor product of g-modules. On the other hand, fusion
respects the asymptotic dimensions: for all sufficiently nice VOAs V , the limit

D(M) = limτ→0
χM (τ )

χV (τ )
, (5.3.12)

called the quantum dimension of M ∈ �(V), satisfies D(M × N ) = D(M)D(N ).
‘Sufficiently nice’ here means any C2-cofinite weakly rational VOA V obeying the addi-
tional very common property that of all irreducible V-modules M ∈ �(V), a unique one
realises the smallest conformal weight minM∈�(V)h(M) (in the most familiar examples
the unique minimal conformal weight belongs to the adjoint module M = V).

Recall from (5.3.4b) that the graded dimensions χM (τ ) of inequivalent V-modules can
be equal. A further example occurs whenever an even positive-definite lattice L has an
automorphism α; then any pair M[t], M[αt] of V(L)-modules will have identical graded
dimension. However, such equalities need not always have an easy algebraic explanation:
for example, in Monstrous Moonshine two McKay–Thompson series (namely, T27A(τ ) =
T27B(τ ), corresponding to unrelated elements of order 27) accidentally coincide for no
obvious reason. None of this is surprising, since dimensions certainly don’t uniquely
specify Lie algebra or finite group modules.

We certainly would like VOA characters to distinguish inequivalent V-modules, and
in fact be linearly independent. How to do this is clear from the study of lattice theta
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functions or affine algebra characters: in order to retain more information of the homo-
geneous spaces Mα than merely their dimensions, we must include more variables in
χM .

Definition 5.3.6 The character of a V-module M is the one-point function χM (τ, v)

χM (τ, v) := trM o(v) q L0−c/24 = q−c/24
∞∑

n=0

trMh+n o(v)qh+n. (5.3.13)

h = h(M) is the conformal weight of M , and o(v) is the zero-mode (Section 5.2.1) of
v ∈ V , which is an endomorphism on each homogeneous space Mh+n (so its trace can
be computed by choosing bases and writing o(v) as a matrix for each n). This function
χM arises naturally in CFT, as the one-point chiral block (Section 4.3.2) on the torus.
We explain shortly why it is associated with a torus – this is the source of its modularity.

Note that χM (τ, 1) equals the graded dimension χM (τ ). By definition, the dependence
of χM (τ, v) on v ∈ V is linear. Provided V is C2-cofinite, theorem 4.4.1 of [574] tells us
that, for each v ∈ V , χM (τ, v) is holomorphic for τ ∈ H. This is proved by finding and
studying a differential equation satisfied by χM (τ, v). Their modularity is established in
Section 5.3.5.

When V is weakly rational and C2-cofinite, the one-point functions are linearly inde-
pendent and thus distinguish inequivalent V-modules. In fact, we see from the proof of
theorem 5.3.1 in [574] that if VA is any lift from Zhu’s algebra A(V) to V , then the one-
point functions χM (τ, v) will remain linearly independent even if v is restricted to the
finite-dimensional subspace VA. For example, the graded dimensions χM (τ ) and χM� (τ )
are equal, but for v ∈ Vn the one-point functions obey

χM� (τ, v) = (−1)nχM (τ, v).

Although one-point functions (5.3.13) don’t directly respect the fusion product (but
recall (5.3.12)), they deserve the title ‘character’ as they are the simplest linearly inde-
pendent extension of graded dimension. However, since they depend linearly and not
exponentially on v, how can we reconcile them with the Jacobi theta functions (2.3.7)
and the affine algebra characters (3.2.9a)? Mindlessly defining a function

exp[2π iw] trM exp[2π i o(v)] q L0−c/24 (5.3.14)

for v ∈ V and w ∈ C will lose modularity.
The key is to realise that, although the exponential q = e2π iτ is topological in origin,

the exponential e2π iz in (2.3.7) and (3.2.9a) is Lie theoretic in origin. In particular:

Definition 5.3.7 Let V be a weakly rational C2-cofinite VOA. For any V-module M ∈
�(V), define the Jacobi character to be the quantity χ J

M (τ, v,w) given by (5.3.14), except
we restrict v to the Lie algebra V1.

Of course v = 0 and w = 0 recovers the graded dimensions. As we know, eo(v) is an
automorphism of M for v ∈ V1, and as we recall from the McKay–Thompson series
the graded trace of automorphisms is worthy of study. Question 5.3.5 asks the reader to
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verify that χ J
M recovers affine algebra characters. Of course the complex variable ‘w’ is

merely included for book-keeping. We return to Jacobi characters in Theorem 5.3.9.
If we hadn’t restricted v in Definition 5.3.7 to V1, then linear independence would

have been assured by that of the one-point functions χM (τ, v) (why?). In the familiar
examples (e.g. lattice or affine algebra VOAs) we still have linear independence of the
Jacobi characters, but it won’t hold for all other VOAs.

5.3.4 Braided #5: the physics of modularity

Let’s turn next to one of the central questions in the book: why should the VOA characters
χM have anything to do with modularity? In short, it is because they are toroidal chiral
blocks of RCFT, and the mapping class group �1,1 (which must act on those chiral
blocks) is SL2(Z). While filling in this explanation we’ll finally explain the shift ‘c/24’
appearing in the definition of the affine algebra characters and more generally the VOA
characters χM .

Lurking in the background of the following argument is the closed string, with period-1
arc-parameter σ and time-parameter t (recall Section 4.3.2). For the left-moving (holo-
morphic) sector it is convenient to introduce complex parameters σ − it and e2π i (σ−it),
which we now call z and w, respectively.

From the perspective of VOAs and CFT, the easiest way to realise the torus C/(Z+ Zτ )
for τ ∈ H, starting with the space C, is by first considering the map z �→ e2π iz (the ‘2π i’ is
merely a convenient normalisation). This is a holomorphic map sending neighbourhoods
of 0 to neighbourhoods of 1. It changes the global topology, however, sending the plane
C to the annulus C\{0}. Now it is simple to obtain our torus: we simply identify z and qz,
where as always q = e2π iτ . This is equivalent to taking the finite annulus {z ∈ C | |q| <
|z| < 1} and sewing together its two boundary circles by identifying z on the outer
circle with qz on the inner. The resulting torus is conformally equivalent to C/(Z+ Zτ )
(why?). The point is that the chiral blocks on the torus can be obtained from those of the
plane, through this construction of the torus from C. Let us now give the details.

Let V be any VOA. For any coordinate transformation z �→ w = f (z) sending 0 to
0, and holomorphic in a neighbourhood of 0, the Virasoro algebra lets us calculate its
effect on any vertex operator: we can write

Y (v, z) �→ T f ◦ Y (v, z) ◦ T−1
f (5.3.15a)

for some invertible linear map T f : V → V (see [223], [295] for the explicit and general
calculation). More precisely, there are ai ∈ C such that (see proposition 2.1.1 in [295])

f (z) = exp

[ ∞∑
n=0

anzn+1 d

dz

]
z (5.3.15b)

as formal power series, where ‘exp’ is defined by its Taylor series. Then we obtain

T f v = exp

[ ∞∑
n=0

an Ln

]
v (5.3.15c)
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(regularity va5 implies this map T f : V → V is always defined). When v is a conformal
primary of conformal weight k (recall (5.2.3)), the transformation is particularly nice:

T f ◦ Y (v, z) ◦ T−1
f = Y (v,w) ( f ′(z))k . (5.3.15d)

The other important special case is the stress–energy tensor T (z) = Y (ω, z):

T f ◦ Y (ω, z) ◦ T−1
f = Y (ω,w) ( f ′(z))2 + c

12
{ f (z), z}, (5.3.15e)

where { f, z} is the Schwarzian derivative

{ f, z} := f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (5.3.15f)

The factor ‘c/12’ in (5.3.15e) is the same as in (3.1.5a). The Schwarzian derivative
vanishes if and only if f is a Möbius transformation (i.e. if and only if f conformally
maps the Riemann sphere to itself), and so is a measure of how f changes the global
topology.

Provided f (z) is holomorphic near 0 and obeys f (0) = 0, a second VOA structure
can be defined on the vector space V as follows. The vertex operators are Y f (v, z) =
Y (T f v, f (z)), the vacuum is 1 f = T f (1) = 1, and conformal vector is ω f = T f (ω).
Let V f denote this second VOA. Then V and V f are isomorphic. (See [293] for a
generalisation dropping the f (0) = 0 condition.)

We are interested in the transformation w = f (z) = e2π iz − 1. Then everything sim-
plifies and we get

ω f = 4π2 (ω − c/24), (5.3.16a)

Y f (v, z) = Y (v,w) e2π izk, ∀v ∈ Vk . (5.3.16b)

Although V f is a VOA isomorphic to V sharing the same underlying space, modes and
conformal weights are quite different. We will use square brackets to indicate the modes
of V f , and denote its Virasoro generators by L[n] = (ω f )[n+1]. We find for instance that

L[−1] = 2π i (L−1 + L0), (5.3.16c)

L[0] = L0 +
∑
i≥1

(−1)n−1

n(n + 1)
Ln. (5.3.16d)

Although by the isomorphism of V and V f the homogeneous spaces Vn and V[n] must be
equal dimension, and in fact carry isomorphic representations of AutV , we only have
Vn = V[n] for n = 0 or if dimVn = 0. On the other hand, if v ∈ V is a conformal primary
of conformal weight k with respect to the operators Ln , then it will be one with respect
to the operators L[n] as well (see Question 5.3.2).

For a technical reason, we are also interested in the simple relation between the usual
power series modes L[n] of V f , and the Fourier modes L ′n of V , defined by

T (z) = Y (ω, z) = −
∞∑

m=−∞
L ′me2π imw.
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We get (recall Question 3.1.8)

L ′n = L[n]− δn,0
c

24
.

The occurrences of ‘−c/24’ in, for example, the characters of affine algebras and
VOAs can be traced back to its occurrence in (5.3.16a). Mathematically, it is a symptom
of the change of global topology, from the plane to an annulus. Physically this is inter-
preted as the Casimir energy of the cylinder [3]; see also the discussion in section 5.4
of [131].

Our map f mapped the plane to the annulus C\{−1}. To get the torus, we need to
identify z on the outer circle eiθ − 1, with the point q (z + 1)− 1 = qeiθ − 1 on the inner
circle. By the axioms of CFT (e.g. Section 4.4.1), this identification (‘sewing’) corre-
sponds to taking a trace. For simplicity consider first the vacuum-to-vacuum amplitude
(‘partition function’) on this torus, and write τ = s + it . The desired trace will be over
the full space of states H, and will be of the ‘propagator’ for the cylinder, which takes
the string and evolves it 2π t ahead in time and twists it 2πs arcwise. The infinitesimal
generator of twists is the corresponding momentum operator, call it P , and the infinites-
imal generator for time evolution is the Hamiltonian H , both in the z-coordinate frame.
Thus the partition function will be

Z(τ ) = trH exp[2π is P − 2π t H ].

To find, for example, the Hamiltonian, note that changing time by δt changes the w-
coordinate by the factor e−2πδt , so the Hamiltonian generates dilations in w (recall the
calculation in Section 4.3.2); similarly, the momentum operator generates rotations in
w. We obtain

P = L ′0 − L0
′ = L[0]− L[0]− c

24
+ c

24
,

H = L ′0 + L
′
0 = L[0]+ L[0]− c

24
− c

24
,

where we use bars to denote the anti-holomorphic quantities. Thus we obtain the familiar
expression for the partition function:

Z(τ ) = trHq L[0]−c/24 q L[0]−c/24 = trHq L0−c/24 q L0−c/24,

where the final equality follows from the isomorphism of VOAs V and V f . CFT or
string theory requires that Z(τ ) be a function only of the conformal equivalence class of
the torus C/(Z+ Zτ ) – in other words, Z(τ ) must be invariant under the action of the
modular group SL2(Z).

We are more interested here in the associated chiral quantities, since a VOA is the chiral
algebra of the theory. From the previous paragraph, together with the decomposition
(4.3.6) of H into modules of V ⊗ V ′, we can now read off the decomposition of Z(τ )
into chiral blocks (see (4.3.8b)) in a RCFT. Hence the chiral blocks for the torus are

trMq L0−c/24



342 Vertex operator algebras

– that is, they are simply the graded dimensions of the irreducible V-modules, includ-
ing the strange shift by c/24. RCFT requires that this space must carry a projective
representation of the mapping class group of the torus SL2(Z).

By the same reasoning, we can calculate the n-point chiral blocks on the torus. For
L[0]-homogeneous vectors ui ∈ V[ki ], they are simply

e2π iz1k1 · · · e2π iznkn trM YM (u1, e2π iz1 ) · · · YM (un, e2π izn ) q L0−c/24, (5.3.17a)

where ui ∈ V are the inserted states and zi ∈ C are the points of insertion. As usual,
the definition for nonhomogeneous vectors follows by linearity. By construction these
functions automatically have period 1 in each zi , and it is an easy calculation to verify
that they also have period τ in each zi , and thus the insertion points zi lie on the torus
C/(Z+ Zτ ), as they should. In particular, the reader can verify that the one-point chiral
blocks are indeed what we call the one-point functions: for u ∈ V[k],

e2π izk trM YM (u, e2π iz)q L0−c/24 = χM (τ, u), (5.3.17b)

hence the name of the latter. By the general principles of RCFT, the space of say one-point
chiral blocks should carry a projective representation of the mapping class group of the
once-punctured torus, i.e. SL2(Z) (recall (4.3.9)), called modular data (Section 6.1.2).
In Section 7.2.4 we find that a much larger group acts naturally on these one-point
functions.

In (5.3.17) we inserted states ui from only the vacuum sector. More generally, however,
the states ui can come from any sector, that is be vectors in any module M ∈ �(V). In
that case the vertex operators YM should be replaced by intertwinersY (Definition 6.1.9).
Although this generalisation is fundamental to VOAs and RCFT, it is less so for Mon-
strous Moonshine (since V � is holomorphic).

The point of this subsection is to see in some detail how physics (RCFT) anticipates
the statement and proof of Zhu’s Theorem, to which we now turn.

5.3.5 The modularity of VOA characters

The most important property of the one-point functions is their modularity:

Theorem 5.3.8 (Zhu [574]) Suppose V is a C2-cofinite weakly rational VOA (see
Definitions 5.3.2 and 5.3.5), and let �(V) be the finite set of irreducible V-modules.
Then there is a representation ρ of SL2(Z) by complex matrices ρ(A) indexed by V-
modules M, N ∈ �(V), such that the one-point functions (5.3.13) obey

χM

(
aτ + b

cτ + d
, v

)
= (cτ + d)n

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χN (τ, v) (5.3.18a)

for any v ∈ V obeying L[0] v = nv for some n ∈ N (see (5.3.16d)).

In particular, the graded dimensions (5.3.2) obey

χM

(
aτ + b

cτ + d

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χN (τ ), ∀
(

a b
c d

)
∈ SL2(Z). (5.3.18b)



Representation theory 343

In (5.3.18), the quantity ‘c’ is an entry of a matrix in SL2(Z) and should not be confused
with the central charge. As we saw last subsection, L[0] plays the role of L0 in a Virasoro
representation obtained from Ln by a change-of-variables z: V = ⊕nV[n], where n ∈ N
and V[n] is the eigenspace of L[0] with eigenvalue n. We can summarise (5.3.18a) by
saying that χM (τ, v) is a vector-valued modular form of weight n and multiplier ρ (recall
Definition 2.2.2). We will summarise the proof of Theorem 5.3.8 shortly; see [442] for
an independent argument.

One-point functions for the Moonshine moduleV = V� are studied in [155], where we
find that all meromorphic modular forms for SL2(Z) appear as some χV � (τ, v), provided
the obvious constraints (namely that they be holomorphic in H, have zero constant term
in their q-expansion and have at worst a simple pole at q = 0) are satisfied – clearly,
if the coefficient of qα in χM (τ ) is zero then it must vanish in all other χM (τ, v). Thus
although we see the Monster in the graded dimension of V �, we won’t see it in most
one-point functions of V �.

However, if v ∈ V is fixed by some subgroup Gv of the automorphism group ofV , then
the qα coefficient of χM (τ, v) relates to the representations of Gv and the eigenvalues of
o(v)|Mα

(see Question 5.3.3). Note that in each homogeneous space Vn �= 0 there will be
nonzero vectors invariant under the full automorphism group of V (why?). For example,
we read off from Table 7.3 that in the homogeneous spaces (V �)n of the Moonshine
module for 0 ≤ n ≤ 7, the M-invariant subspace has dimension 1, 0, 1, 1, 2, 2, 4, 4, 7,
respectively.

The representation ρ in Zhu’s Theorem is called modular data (Section 6.1.2). The

diagonal matrix ρ

(
1 1
0 1

)
is given in (4.3.10). The matrix S = ρ

(
0 −1
1 0

)
relates to

the fusion multiplicities N P
M N via Verlinde’s formula (6.1.1b) (at least for nice VOAs –

see Section 6.2.2). It is conjectured that, for sufficiently nice VOAs, the representation ρ
should be trivial on a congruence subgroup �(N ) (see the Congruence Property 6.1.7).
When this is true, each graded dimension χM (τ ) will be a modular function for that
�(N ).

If we weaken the hypothesis of weak rationality or C2-cofiniteness (recall that these
are conjectured to be equivalent) in Zhu’s Theorem, then we can still recover some kind
of modularity. In particular, physicists speak of quasi-rational CFTs, which are CFTs
with finite fusions; in examples it seems that they still obey some weakened form of
Zhu’s Theorem (see Section 6.2.2).

Note that Zhu’s Theorem is already strong enough to imply that the Moonshine module
V � must have graded dimension J (τ ). To see this, note that holomorphicity implies that

ρ(A) is a one-dimensional representation of SL2(Z). However, ρ

(
1 1
0 1

)
must be trivial

and thus

χV � (A.τ ) = χV � (τ ), ∀A ∈ SL2(Z).

We know χV � (τ ) must be holomorphic in H (all graded dimensions are), has constant
term 0 and a simple pole at the cusp. Therefore it equals J (τ ). See also Question 5.3.4.
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The proof of the Hauptmodul property for the other McKay–Thompson series Tg is much
more subtle, unfortunately.

Zhu’s Theorem rigorously generalises RCFT modularity to that of any sufficiently
nice VOA. Its proof is long and complicated, but follows closely the intuition of CFT.

Zhu first defines abstractly a space of sequences (S1, S2, . . .) of functions, where
each Sn maps n-tuples (a1, . . . , an) ∈ V⊗n to meromorphic functions of (z1, . . . , zn, τ ) ∈
Cn ×H. They obey several conditions, for example they are doubly-periodic in each
variable zi , with periods 1 and τ . Each function Sn is what we would call a chiral block
on the torus C/(Z+ Zτ ) with n marked points at zi ; it lies in the space B

(1,n)
V,...,V . Zhu’s

definition abstracts out the manifest properties of this space. It is immediate from his
definition that SL2(Z) acts on this space, in exactly the way we would expect from
CFT. Verlinde’s formula (6.1.2) tells us that the dimensions of these spaces should be
independent of the number n of punctures, and in fact CFT tells us that a canonical basis
for B

(1,n)
V,...,V should be

(a1, . . . , an) �→ trM
(
YM (a1, e2π iz1 ) · · · YM (an, e2π izn ) q L0

)
(5.3.19)

(appropriately normalised), for each irreducible V-module M . However, showing rigor-
ously that these functions (5.3.19) in fact satisfy his definition, and that they do indeed
span his space, are both more difficult. But we see that the modularity in Zhu’s Theorem
arises through that SL2(Z) action on the space of chiral blocks.

The modularity of the Jacobi characters χ J
M (τ, v,w) of Definition 5.3.7 is now easy.

Theorem 5.3.9 Let V be a weakly rational C2-cofinite VOA. Then the Jacobi charac-
ters χ J

M (τ, v,w) are holomorphic in H for any fixed v,w, and obey

χ J
M

(
aτ + b

cτ + d
,

v

cτ + d
, w − c

(v|v)

2(cτ + d)

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

χ J
N (τ, v,w),

(5.3.20)

for all

(
a b
c d

)
∈ SL2(Z), v ∈ V1, and w ∈ C, where ρ is as in Theorem 5.3.8 and

where the inner-product (v|v) is given by v(1)v = −(v|v)1.

Again, ‘c’ in (5.3.20) refers to a matrix entry and not the central charge. The transfor-
mation on the left side of (5.3.20) is exactly that of, for example, Jacobi theta functions.
Theorem 5.3.9 is an easy corollary of the main theorem of [426] (which in turn is a
corollary of the proof of Theorem 5.3.8 as given in [574]). In particular, define

Z M (τ, u, v) = trM e2π i (o(v)−(v|u)/2)q L0+o(u)−(c+12(u|u))/24, (5.3.21a)

for any u, v ∈ V1, so χ J
M (τ, v,w) = exp[2π iw] Z M (τ, 0, v). Then provided o(v)u = 0

(i.e. u and v commute in the Lie algebra V1), [426] obtained the transformation law

Z M

(
aτ + b

cτ + d
, u, v

)
=

∑
N∈�(V)

ρ

(
a b
c d

)
M N

Z N (τ, cv + du, av + bu), (5.3.21b)



Representation theory 345

for any

(
a b
c d

)
∈ SL2(Z). To prove (5.3.20), it suffices to prove it for the two generators(

1 1
0 1

)
and

(
0 −1
1 0

)
, and this follows directly from (5.3.21b). Holomorphicity of

Z M follows from Proposition 1.8 of [151].

5.3.6 Twisted #5: twisted modules and orbifolds

Last subsection we saw how the modularity of VOA modules permits a one-paragraph
proof that the graded dimension of the Moonshine module V � must equal J (τ ). How
about the other McKay–Thompson series? In this subsection we find that the notion of
V-module must be generalised to the equally fundamental notion of twisted V-modules.
Twisted modules are vaguely reminiscent of projective representations of groups, but
while a projective representation of G is a true representation of some central extension
of G, a twisted V-module is a true module of a vertex operator subalgebra of V . Most
groups don’t have twisted modules, and VOAs don’t seem to have a natural notion of a
projective module, but Lie algebras have a foot in each camp and as we see in Chapter 3
have both kinds of modules.

Far from being an esoteric development, twisted modules are crucial to Monstrous
Moonshine and absolutely central to the whole theory. In CFT and string theory, they
arise in the important orbifold construction (Section 4.3.4). Twisted modules of Lie alge-
bras – a baby example of twisted modules of VOAs – are discussed in Sections 1.5.4
and 3.4.1. Moonshine is the relation of VOAs to modular functions; the modular func-
tion analogue of this twisting has long been understood and also plays a central role
(Section 2.3.3).

Fix a VOA V and any automorphism g ∈ Aut(V) of order N . We can define g-
twisted modules [185], by blending together the definitions in Sections 3.4.1 and 5.3.1.
In particular, decompose V into eigenspaces of g: V = ⊕N−1

j=0 V j where V j = {v ∈
V | g.v = ξ

− j
N v}. A g-twisted V-module (M, YM ) has a C-grading M = ⊕α∈C Mα , with

dim Mα <∞, as in Definition 5.3.1, as well as a linear map V → End[[z±1/N ]], written
YM (u, z) =∑

r∈Z/N u(r )z−r−1, such that (5.3.1a), (5.3.1c) hold,

Y (u, z) =
∑

r∈− j/N+Z

u(r )z
−r−1, ∀u ∈ V j , (5.3.22a)

and (5.3.1b) becomes

z−1
0 δ

(
z1 − z2

z0

)
YM (u, z1) YM (v, z2)− z−1

0 δ

(
z2 − z1

−z0

)
YM (v, z2) YM (u, z1)

= z−1
2

(
z1 − z0

z2

)− j/N

δ

(
z1 − z0

z2

)
YM (Y (u, z0)v, z2), (5.3.22b)

where u ∈ V j . We say two g-twisted V-modules M, N are isomorphic if there is an
isomorphism ϕ : M → N satisfying YM (ϕv, z) = YN (v, z)ϕ for all v ∈ N . Note that an
e-twisted V-module (e being the identity of G) is an ordinary V-module.
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Any h ∈ Aut(V) permutes the twisted V-modules as follows. Let M be g-twisted, and
for each v ∈ V define

hYM (v, z) := YM (h.v, z).

Then (M, hYM ) is an h−1gh-twisted V-module. When h and g commute, we say the
module (M, YM ) is h-stable if (M, YM ) and (M, hYM ) are isomorphic. We call h ∈ Aut(V)
an inner automorphism of V , and write h ∈ Inn(V), if every untwisted V-module is
h-stable.

Now let M be an irreducible g-twisted V-module, and G any group of automorphisms
h ∈ Aut(V) commuting with g such that M is h-stable for all h ∈ G. Then for each h ∈
G, we get an automorphism ϕ(h) : M → M of M , satisfying ϕ(h) YM (v, z)ϕ(h)−1 =
YM (h.v, z). Hence we can perform Thompson’s trick (0.3.3) and write

Z(M, h; τ ) := q−c/24 trMϕ(h) q L0 . (5.3.23)

TheseZ(M, h)’s are the building blocks of the graded dimensions of various eigenspaces
of h in M : for example, if h has order m, then the subspace of M fixed by the automor-
phism ϕ(h) will have graded dimension m−1 ∑m

i=1 Z(M, hi ).
This assignment ϕ does not necessarily define a representation of G in End(M).

However, ϕ(h2)−1ϕ(h1)−1ϕ(h1h2) clearly commutes with all vertex operators YM (v, z)
and so by irreducibility of M is a scalar multiple cg(h1, h2)I of the identity. Equivalently,
ϕ is a projective representation of G:

ϕ(h1h2) = cg(h1, h2)ϕ(h1)ϕ(h2). (5.3.24)

For any h, k ∈ CG(g) (i.e. commuting with g), ϕ(khk−1) = αk,hϕ(k)ϕ(h)ϕ(k)−1 for
some scalar αk,h , and thus Z(M, khk−1; τ ) = αk,hZ(M, h; τ ) by the cyclic property
of trace. This means that, for fixed g, it suffices to restrict to one h from each CG(g)-
conjugacy class. By a similar argument (Question 5.3.6), we get thatZ(M, h; τ ) vanishes
identically, unless for all k ∈ CG(g) commuting with h, the 2-cocycle of (5.3.24) satisfies
cg(h, k) = cg(k, h). Thus we can further restrict to those h.

Conjecture 5.3.10 [136], [138], [152] Suppose V is a weakly rational VOA, with
exactly n irreducible V-modules M1, . . . , Mn. Fix any finite subgroup G of Inn(V).
Then:
(a) For any g ∈ Inn(V), there will be exactly n irreducible g-twisted V-modules

Mg
1 , . . . , Mg

n . Moreover, each Mg
i has a conformal weight hg

i ∈ Q as in Lemma 5.3.3,
and any g-twisted V-module is completely reducible into a direct sum of the Mg

i .

Labelling the modules appropriately, we get (Mg
i , hYMg

i
) ∼= (Mh−1gh

i , Y
Mh−1gh

i
). This

defines a projective representation ϕ(h) of the centraliser CG(g) as in (5.3.24).
(b) For each commuting pair g, h ∈ G, define Z i

(g,h)(τ ) := Z(Mg
i , h; τ ). Then each

Z i
(g,h)(τ ) is holomorphic in H, and is a modular function for (i.e. is fixed by) some con-

gruence subgroup. For any A =
(

a b
c d

)
∈ SL2(Z), there exist scalars a(A, g, h)i j
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such that

Z i
(g,h)

(
aτ + b

cτ + d

)
=

n∑
j=1

a(A, g, h)i j Z j
(ga hc,gbhd )(τ ). (5.3.25)

(c) LetVG be the vertex operator subalgebra consisting of all v ∈ V fixed by all elements
of G. Then the C-span of the graded dimensions of all nontwisted VG-modules will
equal that of allZ i

(g,h)(τ ) for commuting g, h ∈ G, and the total number of irreducible
VG-modules will equal n times the sum, over representatives g of all conjugacy
classes in G, of the number of inequivalent irreducible projective representations of
CG(g) with 2-cocycle cg as in (5.3.24).

(d) In the special case that V is holomorphic (i.e. n = 1), Inn(V) = Aut(V) and the
coefficients ai j in (5.3.25) are roots of unity. There is a 3-cocycle α ∈ H 3(G,U1(C))
such that the 2-cocycle cg of (5.3.24) is given by

cg(h1, h2) = α(g, h1, h2)α(h1, h2, g)α(h1, g, h2)∗.

Some progress towards this important conjecture is provided by, for example, [150].
Monstrous Moonshine is interested in the holomorphic case (i.e. n = 1), which is by far
the best understood; we return to it in Section 6.2.4. The number of irreducible projective
representations in (c) is described in Section 3.1.1. We find in (d) that the cohomology
group H 3(G,U1(C)) ∼= H 4(G,Z) (trivial action of G on the coefficients) classifies all
the possibilities for the orbifold; the analogous result for nonholomorphic VOAs is much
more subtle, being more sensitive to the structure of V , and is still poorly understood.

Part (c) leads us to a Galois theory for VG . But considering the depth of Jones’ Galois
theory for subfactors, and the ‘Galois theory’ for lattices sketched in Section 2.3.5, it
is clear that a far more interesting theory is possible for VOAs. It would certainly be
interesting to develop this.

The easiest examples of the orbifold construction are of a self-dual lattice VOAV(L) by
a subgroup G of the automorphism group of L (see e.g. [150]). We learn in Section 5.2.2
that there is a deep analogy between lattices and VOAs. This orbifold construction of
VOAs corresponds directly to the shift construction of lattices outlined in Section 2.3.3.

The most famous VOA, the Moonshine module V �, was the original orbifold. Frenkel–
Lepowsky–Meurman [201] obtained it as the orbifold of the Leech lattice VOA V(�)
by the ±1-symmetry of �. Since � is self-dual, V(�) is holomorphic. As predicted by
Conjecture 5.3.10, there is a unique −1-twisted V(�)-module. We discuss this orbifold
more in Sections 4.3.4 and 7.2.1; see also [201] for details.

Question 5.3.1. Let V be any VOA, and let W be a vector space and T : V →W be any
isomorphism of vector spaces. Use this linear map T to carry the VOA structure on V
to one on W .

Question 5.3.2. LetV be any VOA and letV[n] be the grading induced by L[0] in (5.3.16d).
Prove for any N ≥ 0, that

⊕N
n=0Vn = ⊕N

n=0V[n].
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Question 5.3.3. Find an expression for the coefficient of the qα term in the one-point
function χM (τ, v), using the representation theory of the stabiliser Gv < AutV and the
eigenvalues of the zero-mode o(v) restricted to the homogeneous space Mα .

Question 5.3.4. Let V be any holomorphic weakly rational C2-cofinite VOA with central
charge c = 24. Prove that its graded dimension χV (τ ) must equal J (τ )+ c, where the
constant c is dimV1.

Question 5.3.5. (a) Relate the Jacobi character χ J
V(L) of a lattice VOA V(L), for L

positive-definite and with even integer inner-products, and the theta seriesL of (2.3.7).
(b) Relate the Jacobi character χ J

M(λ) of an irreducible module of an integrable affine
VOA V(g, k), for g simple, with the affine algebra character χλ of (3.2.9a).

Question 5.3.6. Let M be g-twisted. Show that the seriesZ(M, h) of (5.3.23) is identically
0, unless h ∈ CG(g) has the property that, for all k ∈ CG(g) commuting with h, cg(h, k) =
cg(k, h). (Hint: first show that Z(M, hk) is identically 0 if cg(h, k) �= cg(k, h); then use
the 2-cocycle condition (3.1.1b).)

5.4 Geometric incarnations

Vertex (operator) algebras are a deep construct and, in spite of their complexity, are
here to stay. In this section we describe some connections with geometry. Section 5.4.1
describes the programme to rigorously construct CFTs in Segal’s sense (Section 4.4.1),
from VOAs. Section 5.4.2 reviews the geometric side of vertex operator superalgebras.

5.4.1 Vertex operator algebras and Riemann surfaces

The introductory chapter stated that the physics of Moonshine exploits the duality
between Hamilton’s and Feynman’s pictures of CFT. Manin put it this way back in
1985:

The quantum theory of (super)strings exists at present in two entirely different
mathematical fields. Under canonical quantization it appears to a mathematician as
the representation theory of algebras of Heisenberg, Virasoro, and Kac–Moody and
their superextensions. Quantization with the help of the Polyakov path integration
leads to the analytic theory of algebraic (super)curves and their moduli spaces,
to invariants of the type of the analytic curvature, etc. Establishment of direct
mathematical connections between these two forms of a single theory is a big and
important problem. [402]

Our best answer to Manin is the theory of geometric vertex operator algebras.
Note that any time we have an algebraic structure with a binary operation (e.g.

‘product’) ab, we can express multiple products using binary trees, which keep track of
the brackets. For example, the binary trees in Figure 5.1 correspond to the products XY
and A((BC)D), respectively. The external (i.e. valance 1) vertices are assigned vectors,
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X Y

A

B C

D

Fig. 5.1 Some binary trees.

A B C D
Fig. 5.2 Associativity.

while each internal vertex corresponds to a single product. Different algebraic structures
can be axiomatised from this ‘geometric’ point of view. For instance, if the product is
associative (e.g. we have a group), then it doesn’t matter where we place the brackets –
for example, the above ABCD-binary tree can be replaced with the tree in Figure 5.2.

More interesting for us are the geometrical axioms for Lie algebras [294]. Let V be any
Lie algebra. Then to any binary tree with n legs corresponds a linear map ϕ from n copies
V ⊗ · · · ⊗ V of the vector space V , to V . The map corresponding to the ABCD-binary
tree of Figure 5.1 takes the Lie algebra vectors A, B,C, D to the nested Lie bracket
[A[[BC]D]]. It is then fairly straightforward to encode all properties of the Lie algebra
in the language of trees. For example, anti-commutativity says that if we flip the two
descendents of an inner vertex of the tree – for example, in Figure 5.1 flipping D with
the 3-vertex tree containing B and C – then the corresponding maps ϕ differ by a factor
of −1. Gluing the root (uppermost vertex) of one tree to an external vertex of another
corresponds in the Lie algebra to inserting one nested bracket into the middle of another.
The only nontrivial property is anti-associativity (see Question 5.4.2). The result is a
formulation of Lie algebra that is completely equivalent to the usual algebraic one [294].

Now, if we ‘two-dimensionalise’ that definition of ‘geometric Lie algebra’, we get
something called a geometric VOA [295] that is equivalent to the ‘algebraic’ VOA of
Definition 5.1.3. In place of binary trees (Figure 5.1), we have spheres with tubes (Fig-
ure 5.3). Equivalently, a sphere with n tubes is the Riemann sphere with n marked points
and a choice of local coordinate at each point – an enhanced surface of type (0,n) (Sec-
tion 2.1.4). The moduli space of binary trees with n legs is a finite set, but the moduli
space of spheres with n tubes is an infinite-dimensional complex space. To each such
sphere with tubes we get a linear map ϕ from n copies of our vector space V (which
is our VOA) to V (or rather a certain completion of V – a complication caused by the
infinite-dimensionality of V). A geometric VOA satisfies meromorphicity requirements,
and most importantly the sewing axiom. In fact this map ϕ is Segal’s functor S described
in Section 4.4.1.
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X Y

A

B C

D

Fig. 5.3 The surfaces corresponding to Figure 5.1.

The point is that the resulting notion of geometric VOA is equivalent to that of algebraic
VOA [295], though it takes considerable effort to show this. Thus a VOA is an ‘algebra’
with a two-dimensional analogue of a binary operation. In particular, let Pw be the
simplest pair-of-pants, namely the Riemann sphere PC1 with marked points 0,∞ and w
and local coordinates given by z, 1/z and z − w (z being the global coordinate on C). Then
the formal series Y (u, w)v corresponds to S(Pw)(u ⊗ v). On the other hand, consider the
annulus, that is the Riemann sphere with marked points 0 and∞, with local coordinates
z and exp[−εz−1d/dz z−1]. Recalling the realisation −z−1d/dz = �−2 ∈Witt and the
formulaω = L−21, we can recover the conformal vectorω by differentiating with respect
to ε the map obtained from S. The Virasoro algebra is fundamental here, capturing
the effect of changing local coordinates (recall (5.3.15c)), and is responsible for the
meromorphicity in the geometric VOA. The Jacobi identity (5.1.7a) is obtained from
the sewing axiom. This equivalence relates formal power series (algebra) to distribution
theory (analysis). It proves that the chiral blocks 〈v, Y (u1, z1) · · · Y (un, zn)v′〉 will be
meromorphic, except for poles at zi = z j .

As mentioned before, a group corresponds to trees such as Figure 5.2. We can also
two-dimensionalise that, and obtain what Huang calls a vertex group [293]. The easiest
examples are C× and the enhanced moduli space M̂0,1. Vertex groups should be to VOAs
what Lie groups are to Lie algebras.

The motivation for this deep work is to construct examples satisfying Segal’s defini-
tions of CFT and modular functor. We know at present no nontrivial examples, although
the general belief is that any sufficiently nice VOA will provide one. Huang’s work [295]
establishes this for genus 0, and more recently he has pushed it to genus 1 [297].

We end this subsection on a more speculative note [560], [295]. According to Wit-
ten, to understand string theory conceptually, we need a new analogue of Riemannian
geometry. In contrast to the more classical ‘particle-math’, there is a more modern
‘string-math’. We have the real numbers (particle physics) versus the complex numbers
(string theory); binary trees versus spheres with tubes; Lie algebras versus VOAs; the
representation theory of Lie algebras versus RCFT, etc. What are the stringy analogues
of calculus, ordinary differential equations, Riemannian manifolds, the Atiyah–Singer
Index theorem, . . . ? Huang suggests that just as we could imagine Moonshine as a mys-
tery that is explained in some way by RCFT, perhaps the stringy version of calculus would
similarly explain the mystery of two-dimensional gravity, stringy ODEs would explain
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the mystery of infinite-dimensional integrable systems, stringy Riemannian manifolds
would help explain the mystery of mirror symmetry, and the stringy index theorem would
help explain the elliptic genus (for this latter possibility, consider the work of Tamanoi
reviewed next subsection).

What makes this more subtle is that complexification is not unique. To give a simple
example, S1 can be thought of as the real projective space P1(R) and as the Lie group
SO2(R). The obvious complexification of Pn(R) is Pn(C). An obvious complexification
of SOn(R) is SOn(C). But if we think of On(R) more geometrically as the real matrices
that preserve the quadratic form x2

1 + · · · + x2
n , then its complexification should be those

complex matrices that preserve the Hermitian form |x1|2 + · · · + |xn|2, i.e. Un(C). Thus
the complexifications of S1 in these cases would be the 2-sphere P1(C), the cylinder
SO2(C) (i.e. the multiplicative group C/{0}) and the 3-sphere SU2(C) (as a real Lie
group). So the specific complexification obtained depends on the context. In all cases,
the way to proceed is to convert the defining relations of the given object into symbols
that make sense over C.

What sense can we make of the statement that the complexification of a binary tree is a
sphere with punctures? Consider the simplest case: the segment 0 ≤ x ≤ 1. This can be
thought of geometrically as the locus (a, b, c) ∈ R3 satisfying a + b2 − 1 = a − c2 = 0.
Over the complex numbers the parameter ‘a’ is redundant, and this locus has the obvious
complexification w2 + z2 = 1. We know this is a sphere with two punctures, that is, a
cylinder as we would like it to be.

Incidentally, Arnol’d speculates that there is in fact a triality: the reals, the complex
numbers and the quaternions. He discusses several examples in [18], as well as some
applications of this thought. This suggests that there is a third structure, generalising
vertex algebras much as vertex algebras generalise Lie algebras.

5.4.2 Vertex operator superalgebras and manifolds

Through the work of Witten and others, we have discovered that much can be learned
about a space X, by studying a string theory living in X . Much of this is reviewed in [291].
For example, to a Calabi–Yau manifold X [299], [571] and an element of its complexified
Kähler cone, string theory associates two N = 2 superconformal field theories, called the
A and B models (which focus on respectively the Kähler and complex structures of X ).
To clarify (and rigorise) these ideas, Malikov–Schechtman–Vaintrob [401] suggested
how one may construct, given X , the vertex algebra of the N = 2 superconformal field
theory (the A model) associated with X . This work is clearly fundamental. We can only
sketch it here.

To any smooth complex variety X, reference [401] associates a sheaf of (N = 1) vertex
operator superalgebras, called the chiral de Rham complex MSV X . In other words, to
every open set U ⊂ X , there is a near-vertex operator superalgebra MSV X (U ) (the
‘space of sections of MSV X over U ’). Whenever sets U ⊂ V are open, there is a
surjective restriction map r V

U : MSV X (V ) →MSV X (U ), which is a homomorphism
of near-vertex operator superalgebras. We briefly discuss vertex operator superalgebras
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in Section 5.1.3. These near-vertex operator superalgebras are bi-graded, by commuting
operators L0 (the Hamiltonian) and J0 (the fermionic charge) with eigenvalues N and Z,
respectively. They form a complex in the sense that there is a differential Q B RST obeying
Q2

B RST = 0 and increasing fermionic charge by 1. When the open set U is homeomorphic
to an open ball in Cn , then MSV X (U ) is essentially the tensor product of n copies of
what string theory calls a bosonic (βγ ) ghost system (similar to the Heisenberg VOA),
with n copies of a (bc) fermionic ghost system. The physics of these ghost systems is
described in [463].

The prototypical example of ‘sheaf’ is the structure sheaf OX , which associates
with each open set U the space of functions f : U → C. The prototypical example of
‘complex’ is the de Rham complex, given by the space of differential forms on X , with
a differential d obeying d2 = 0 and taking p-forms to p + 1-forms. Of course the point
of a complex is to take the cohomology H∗ = ker d/im d. The books [537] are a read-
able introduction to algebraic geometry; in particular section 2.2 provides elementary
examples of sheaves, and section 6.1 treats sheaf cohomology. For a sheaf F over X ,
H 0(X,F) is always the global section F(X ), and it is common for the other Hi (X,F) to
all vanish. The name ‘chiral de Rham complex’ was chosen because the L0 = 0 subspace
can be identified with the familiar space of differential forms (‘chiral’ refers to the chiral
algebra of Section 4.3.2 or the chiral ring discussed in [291]).

In the case ofMSV X , the sheaf cohomology H∗(X,MSV X ) yields the global section
MSV X (X ), which is a near-vertex operator superalgebra. The case where X is Calabi–
Yau is the most interesting, as MSV X (X ) has N = 2 (rather than merely N = 1) super-
symmetry, which makes it much richer.MSV X (X ) is a fundamental invariant associated
with X , and much information of X can be recovered from it. For example, the usual de
Rham cohomology H ∗

DR(X ) of X is H∗(MSV X (X ); Q B RST ). For another example, the
elliptic genus (discussed shortly) of X equals trMSV X (X )q L0 y J0 [81].

Elliptic genus appeared in the mid-1980s in both string theory and topology. For
details see, for example, [287], [499], [523]. In Thom’s cobordism ring �, elements are
equivalence classes of cobordant manifolds, addition is connected sum and multiplication
is Cartesian product. The universal elliptic genus φ(M) is a ring homomorphism from
Q⊗� to the ring of power series in q , which sends n-dimensional manifolds with spin
connections (see [369] for the relevant geometry) to a weight n/2 modular form of �0(2)
with integer coefficients. Several variations and generalisations have been introduced, for
example, the Witten genus assigns spin manifolds with vanishing first Pontrjagin class
a weight n/2 modular form of SL2(Z) with integer coefficients. On a finite-dimensional
manifold M , the index of the Dirac operator (in the heat kernel interpretation) is a path
integral in supersymmetric quantum mechanics, that is an integral over the loop space
LM = {γ : S1 → M}; the string theory version of this is that the index of the Dirac
operator on LM should be an integral over L(LM), that is over smooth maps of tori
into M , and this (heuristically) is just the elliptic genus, and explains why it should be
modular.

The important rigidity property of the Witten genus with respect to any compact Lie
group action on the manifold is a consequence of the modularity of the characters of affine
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algebras (our Theorem 3.2.3) [388]. In physics, elliptic genera arise as partition functions
of N = 2 superconformal field theories [561]. The Witten genus (normalised by η8) of
the Milnor–Kervaire manifold M8

0 , an eight-dimensional manifold built from the E8

diagram, equals j
1
3 [287]. Also, the elliptic genus of even-dimensional projective spaces

P2n(C) unexpectedly has only nonnegative coefficients and in fact equals the graded
dimension of a certain vertex algebra [400]; this suggests interesting representation-
theoretic questions in the spirit of Monstrous Moonshine. Exciting developments are
described in [517], including relations with von Neumann (sub)factors.

Related to MSV X must be the work of Tamanoi [521]. The index of an operator d
is ker d − coker d; we can interpret this geometrically as the superdimension associated
with the ‘superpair’ (ker d; coker d) of vector spaces. This is what Tamanoi does with the
elliptic genus. In particular, to each closed Riemannian manifold X he associates a vertex
operator superalgebra T (X ), determined from its geometry. It has a nonnegative half-
integer grading and central charge N = dim X/2. The Riemannian metric of X yields
the conformal vector ω. In the special case of a Kähler manifold, the Kähler forms (i.e.
the closed real differential forms of type (1,1)) form a level 1 representation of the affine
algebra DN

(1). Again, the elliptic genus is recovered as the graded dimension of T (X ).
It is obviously desirable to relate these invariants T (X ) and MSV X (X ). We return to
elliptic genus in Section 7.3.7.

Question 5.4.1. Find a complexification for the Möbius band.

Question 5.4.2. In a non-associative algebra, the ambiguous product v1 · · · vn can only
be evaluated when the n − 1 pairs of brackets are placed. Let L be any Lie algebra. Prove
that for any n ≥ 3, L has an identity of the form

v1 · · · vn = v1vnv2v3 · · · vn−1 + · · · + v1 · · · vivnvi+1 · · · vn−1 + · · · + v1v2 · · · vn−1vn.

More precisely, for any choice of bracketing on the left, prove that there is a choice of
bracketing for each of the n − 1 terms on the right such that the resulting formula holds
for any vi ∈ L . For example, [[v1v2]v3] equals [[v1v3]v2]+ [v1[v2v3]] and [[v1[v2v3]]v4]
equals [[v1v4][v2v3]]+ [v1[[v2v4]v3]]+ [v1[v2[v3v4]]].
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Modular group representations throughout the realm

There are two aspects to Moonshine. The more general one is the unexpected presence
of modular group actions over a wide range of algebraic settings, and is now fairly well
understood. We have seen instances of this already with, for example, the characters
of affine algebras and VOAs. This chapter completes our treatment of these modular
actions. The more specific aspect – the association of Hauptmoduls to the Monster – is
still poorly understood and is the subject of the following chapter.

Much of this chapter is orthogonal to Monstrous Moonshine. For example, we dis-
cuss here fusion rings and modular data; both the fusion ring and modular data of the
Moonshine module V � are maximally trivial. Nevertheless, this chapter helps to paint
the general context of Monstrous Moonshine. In Section 7.2.4 we build on some of
the lessons from this chapter to speculate on a possible second proof of Monstrous
Moonshine.

6.1 Combinatorial rational conformal field theory

Recall the semi-simple Lie algebras: we study their structure and obtain their classifi-
cation by abstracting out combinatorial features (e.g. roots, Coxeter–Dynkin diagrams).
Of course this is easy to do with a finite-dimensional linear structure. RCFTs are infinite-
dimensional, but by definition their infinite-dimensional symmetry and implicit rigidity
again effectively reduces them to certain discrete structures. As we see next section, those
discrete structures are remarkable for their ubiquity in modern mathematics. See [208],
[207], [33], [131], [437], [236] for further background. As with all other chapters except
Chapter 7, we’ve tended to avoid giving original references, as these are voluminous and
can be recovered from the numerous review articles and books.

6.1.1 Fusion rings

Recall that the eigenvalues of a self-adjoint (equivalently, Hermitian) matrix are all
real. Consider the following scenario. Let A, B and C be n × n Hermitian matrices with
eigenvalues α1 ≥ α2 ≥ · · · ≥ αn , β1 ≥ · · · ≥ βn , γ1 ≥ · · · ≥ γn . What are the conditions
on these eigenvalues so that C = A + B? The answer consists of a number of inequalities
involving the numbers αi , β j , γk . Now discretise this problem:

Theorem 6.1.1 Letα1 ≥ α2 ≥ · · · ≥ αn ≥ 0,β1 ≥ · · · ≥ βn ≥ 0,γ1 ≥ · · · ≥ γn ≥ 0,
all be integers. Then the following are equivalent:
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(i) Hermitian matrices A, B and C = A + B exist with eigenvalues α, β, γ ,
respectively;

(b) the gln(C) tensor product multiplicity T γ

αβ is nonzero.

Recall from Section 1.5.1 that the finite-dimensional unitary irreducible modules of
the Lie algebra gln(C) ∼= C⊕ sln(C) are naturally labelled by pairs (a, λ) ∈ R× Nn−1,
where z �→ iaz is a representation of the abelian Lie algebra C, and λ = (λ1, . . . , λn−1)
is a highest weight for the simple Lie algebra sln . The eigenvalues α correspond to labels
a = αn and λi = αi − αi+1. The number T γ

αβ is the number of times the gln-module L(γ )
appears in the tensor product L(α)⊗ L(β) of modules. This remarkable theorem and
related results are discussed in the review article [218].

Now consider instead n × n unitary matrices with determinant 1. Any such matrix
D ∈ SUn(C) can be assigned a unique n-tuple δ = (δ1, . . . , δn) as follows. Write its
eigenvalues as e2π iδi , where δ1 ≥ · · · ≥ δn ,

∑n
i=1 δi = 0 and δ1 − δn ≤ 1. Let �n be

the set of all such n-tuples δ, as D runs through SUn(C). Note that D will have finite
order iff all δi ∈ Q, and that D will be a scalar matrix d I iff all differences δi − δ j ∈
Z. Of course, a sum of Hermitian matrices corresponds here to a product of unitary
matrices.

Theorem 6.1.2 [4] Choose any rational n-tuples α, β, γ ∈ �n ∩Qn. Then the follow-
ing are equivalent:
(i) there exist matrices A, B,C ∈ SUn(C), with C = AB, with n-tuples α, β, γ ;

(ii) there is a positive integer k such that all differences kαi − kα j , kβi − kβ j ,

kγi − kγ j are integers, and the fusion multiplicity N (k) kγ
kα,kβ of sln

(1) at level k is
nonzero.

We met the affine algebra sln
(1) = An−1

(1) and its modules in Section 3.2. Here,
kα corresponds to the level-k integrable highest weight λ ∈ Pk

+(A(1)
n−1) with Dynkin

labels λi = kαi − kαi+1. The sln
(1) fusion multiplicities are studied in Section 6.2.1.

Theorems 6.1.1 and 6.1.2 provide one instance of a general principle:

A result or construction valid for gln or sln tensor products should have an inter-
esting analogue for the sln

(1) fusion product.

The gln tensor product multiplicities are classical quantities, appearing in numerous
and varied contexts. The sln

(1) fusion multiplicities are equally fundamental, equally
ubiquitous, but less well understood.

Just as the tensor product multiplicities are structure constants of the character ring of
the Lie algebra, so do fusion multiplicities define a fusion ring, an aspect of Moonshine
complementary to Monstrous Moonshine.

Definition 6.1.3 A fusion ring R = R(β,N ) is a commutative ring R with unity 1,
together with a finite basis β = {xa | a ∈ �} (over Z) containing 1 = X0, such that:
f1. The structure constants N c

ab, defined by xa xb =
∑

c∈�N c
abxc, are all nonnegative

integers.
f2. There is a ring homomorphism x �→ x∗ stabilising the basis� (we write (xa)∗ = xa∗ ).
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f3. N 1
ab = δb,a∗ .

f4. ‘S = St ’ (we’ll explain this shortly, but it says R is self-dual in a strong sense).
The numbers N c

ab are called fusion multiplicities, the labels a ∈ � are called primaries,
0 ∈ � is called the vacuum and ‘∗’ is called charge-conjugation.

The only reason for distinguishing the basisβ from the labels� is that for fusion rings the
multiplicative notation (e.g. unit 1) is natural, but in the traditional examples of modular
data additive notation is used. The terminology here comes from RCFT.

An important ingredient of fusion rings, as with character rings, is their preferred
basis β. Abstract rings don’t come with a basis. Forgetting the basis β, fusion rings
aren’t interesting: for example, the algebra R ⊗Z C over C (i.e. the span over C of β,
retaining the same multiplication and addition) is isomorphic as a C-algebra to C‖�‖

with operations defined component-wise (see Lemma 6.1.4 below). This is reminiscent
of the character ring of the Lie algebra Xr , which is isomorphic (as a C-algebra) to a
polynomial algebra in r variables.

For each a ∈ �, define the fusion matrix Na by

(Na)b,c = N c
ab.

Note that the fusion matrix N0 equals the identity matrix I , and Na∗ = (Na)t (Question
6.1.1). The fusion matrices can be simultaneously diagonalised:

Lemma 6.1.4 (a) Given any fusion ring R = R(�,N ), there is a unique (up to
ordering of the columns) unitary matrix S, with rows parametrised by � and columns
by say �′, obeying both

S0i > 0, (6.1.1a)

N c
ab =

∑
i

Sai Sbi Sci

S0i
, (6.1.1b)

for all a, b, c ∈ � and i ∈ �′.
(b) All simultaneous eigenspaces of all the fusion matrices are of dimension 1, and are
spanned by each column S,,b.

The proof of Lemma 6.1.4 only involves f1–f3. The condition f4 can now be expressed by
requiring that the S of Lemma 6.1.4 (for some ordering of the columns) obey S = St (so
�′ = �). The proof of Lemma 6.1.4 is elementary – the fusion matrices commute with
each other and hence with their transposes, and so are simultaneously diagonalisable –
and analogues hold in much greater generality. Equation (6.1.1b) says that the bth column
S,,b of S is an eigenvector of each Na , with eigenvalue Sab

S0b
. From the unitarity of S, we

know that Sab
S0b
= Sac

S0c
can hold for all a ∈ �, only if b = c, which gives us part (b).

The matrix S acts a lot like the character table of a finite group; a general theorem
valid for character tables has a fusion ring analogue.

Note that a priori the rows (parametrising basis vectors) and columns (parametrising
eigenvectors) of S in Lemma 6.1.4 play entirely different roles. In a natural sense [236],
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the dual ring to R has structure constants given by replacing S in (6.1.1b) with its
transpose St . This is what underlies calling f4 a self-duality condition. In contrast, the
character ring of a finite group is fusion-like, is diagonalised by the character table, but its
dual involves multiplying conjugacy classes and is isomorphic to the character ring only
for abelian groups. The appearance of self-duality here may seem somewhat mysterious,
but some sort of self-duality is pervasive in the mathematics of this chapter. In particular,
Drinfel’d’s ‘quantum double’ construction (Section 6.2.3) generates algebraic structures
possessing fusion rings and modular data, by combining a given (inadequate) algebraic
structure with its dual in some way. An example is provided by Section 6.2.4, where the
true (self-dual) fusion ring of a finite group is built up out of the character ring and its
dual.

Fusion rings arise naturally in RCFT (Sections 4.3.2 and 6.1.4). The ‘primaries’ are
the chiral primaries, parametrising the irreducible modules of the chiral algebra V . The
fusion multiplicities N c

ab are the dimension of the space of chiral blocks B
(0,3)c
a,b on a

sphere with three punctures (two ‘incoming’ and 1 ‘outgoing’), where we label those
punctures with the primaries a, b, c. Equation (6.1.1b) is called Verlinde’s formula [542],
and S has an interpretation in terms of modular transformations of the characters (4.3.9a).
A similar formula gives the dimension of any space of chiral blocks:

dim B(g,n+m) b1,...,bm
a1,...,an

:= N (g,n+m) b1,...,bm
a1,...,an

=
∑
c∈�

(S0c)2(1−g) Sa1c

S0c
· · · Sanc

S0c

Sb1c

S0c
· · · Sbm c

S0c
. (6.1.2)

The depth of Verlinde’s formula (6.1.1b), (6.1.2), which is considerable, lies in this
modular interpretation given to S. The S matrix is called the modular matrix for this
reason. Historically [50], the fusion ring arose directly by interpreting the chiral OPE
symbolically in terms of products of V-families of chiral fields (see e.g. section 7.3 of
[131]).

Recall Perron–Frobenius theory from Section 2.5.2. The fusion matrices Na are non-
negative, and it is indeed natural to multiply them:

NaNb =
∑
c∈�

N c
abNc.

So we can expect Perron–Frobenius to tell us something interesting. By (6.1.1a), the
Perron–Frobenius eigenvalue of Na is Sa0

S00
; hence we obtain the important inequality

Sa0S0b ≥ |Sab| S00. (6.1.3a)

Unitarity of S applied to (6.1.3a) forces

mina∈�Sa0 = S00. (6.1.3b)

The quantum-dimension D(a) of (5.3.12) equals Sa0
S00

, and so is bounded below by 1.
The borderline case of (6.1.3b) are those primaries a ∈ �, called simple-currents

in RCFT, obeying Sa0 = S00. To any such simple-current j ∈ �, there is a phase
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ϕ j : �→ C and a permutation J of � such that j = J0 and

SJa,b = ϕ j (b) Sa,b, (6.1.4a)

N b
j,a = δb,Ja . (6.1.4b)

For example, we see from (4.3.11e) that ε is a simple-current for the Ising model, with
phases ϕε(0) = ϕε(ε) = 1 and ϕε(σ ) = −1.

It is clear what plays the role of the endomorphism ‘∗’ in the character ring of a finite
group: complex conjugation. So take the complex conjugate of (6.1.1b). We find that S
also simultaneously diagonalises the fusion matrices Na . Hence from Lemma 6.1.4(b)
there is a permutation of �, which we denote by C , and some αb ∈ C, such that

Sab = αb Sa,Cb.

Unitarity of S forces each |αb| = 1. Looking at a = 0 and applying (6.1.1a), we see that
the αb must be positive. Hence

Sab = SCa,b = Sa,Cb, (6.1.5)

so as a permutation matrix, C = S2. Comparing f3 to Verlinde’s formula (6.1.1b), we
find that C is charge-conjugation: Ca = a∗. Note that C , like complex conjugation, is
an involution, and that C00 = 1.

More generally, recall our discussion of cyclotomic fields and their Galois automor-
phisms from Section 1.7. The character values ch(g) of a finite group G lie in the
cyclotomic field Q[ξ ], for the root of unity ξ = ξ‖G‖. Write σ� for the automorphism of
Q[ξ ] defined by σ�(ξ ) = ξ�, for some integer � coprime to ‖G‖. Then σ� acts on the
character table by

σ�(ch(g)) = ch(g�) = chσ� (g), (6.1.6)

for some character chσ� of G (to see which one, use the fact [308] that every G-
representation is equivalent to a matrix representation with all entries in Q[ξ‖G‖]).

Theorem 6.1.5 [114] Choose any fusion ring, and let S be the associated modular
matrix. The entries Sab of the matrix S lie in some cyclotomic field Q[ξN ]. Given any
Galois automorphism σ ∈ Gal(Q[ξN ]/Q),

σ (Sab) = εσ (a) Saσ ,b = εσ (b) Sa,bσ (6.1.7)

for some permutation b �→ bσ of �, and some signs (parities) εσ : �→ {±1}.
This is a fundamental symmetry of fusion rings, or rather their modular matrices. For
example, for σ equal to complex conjugation, (6.1.7) reduces to (6.1.5). Equation (6.1.7)
is essentially the statement that the fusion multiplicities are rational numbers; the cyclo-
tomicity follows from Theorem 1.7.1 and depends crucially on self-duality f4. Any
property of charge-conjugation seems to have an analogue for any of these Galois sym-
metries, although it is usually more complicated.

What has a fusion ring to do with ‘modular stuff’? That is explained next.
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6.1.2 Modular data

Choose any even integer n > 0. The matrix

S =
(

1√
n

e−2π i mm ′/n

)
0≤m,m ′<n

(6.1.8)

is the finite Fourier transform. Define the diagonal matrix T by Tmm = exp(π im2/n −
π i/12). The assignment(

0 −1
1 0

)
�→ S,

(
1 1
0 1

)
�→ T (6.1.9)

defines an n-dimensional representation ρ of SL2(Z), using (2.2.1a). This is the simplest
(and least interesting) example of modular data. Verlinde’s formula (6.1.1b) associates
a fusion ring with (6.1.8). Here the labels are � = {0, 1, . . . , n − 1} and the fusion ring
is the ring of integers Z[ξn] with preferred basis

β = {
1, ξn, . . . , ξ

n−1
n

}
.

The fusion multiplicities are given by addition mod n.
This SL2(Z)-representation (6.1.9) is realised by modular functions in the following

sense. For each a ∈ {0, 1, . . . , n − 1}, define the functions

χa(τ ) = 1

η(τ )

∞∑
k=−∞

qn (k+a/n)2/2,

where as always q = e2π iτ and η(τ ) is the Dedekind eta function (2.2.6b). Then (4.3.9)
hold. Thus !χ = (χa)t

a∈� is a vector-valued modular function with multiplier ρ for SL2(Z)
(Definition 2.2.2).

Definition 6.1.6 Let � be a finite set of labels, one of which – denote it 0 – is
distinguished. Modular data are matrices S = (Sab)a,b∈�, T = (Tab)a,b∈� of complex
numbers such that:
md1. S, T are unitary and symmetric, and T is diagonal and of finite order. That is,

T N = I for some N.
md2. S0a > 0 for all a ∈ �.
md3. S2 = (ST )3.
md4. The numbers N c

ab defined by (6.1.1b) are nonnegative integers.

From the presentation (2.2.1a) of the modular group SL2(Z), we see that modular data
defines a representation of SL2(Z), as in (6.1.9). Modular data abstracts out the SL2(Z)
action arising in unitary RCFT (for non-unitary RCFT, md2 should be weakened). It is
a significant refinement of fusion rings. In particular, most fusion rings are not realised
by any modular data (Question 6.1.5), but those that are are always realised by at least
three sets of modular data.

We can generalise (6.1.8) using lattices (recall Section 1.2.1). If we write L for the
lattice

√
nZ, then L∗ = 1√

n
Z is the dual lattice, the labels {0, . . . , n − 1} parametrise the

cosets L∗/L , and the modular function χa is the theta series of the ath coset, normalised
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by η. More generally, any even lattice L defines modular data in this way. The vacuum
‘0’ will be [0] = L . The fusion multiplicities N [c]

[a],[b] equal the Kronecker delta δ[c],[a+b],
so the fusion product is given by addition in the finite group L∗/L . All primaries [a] ∈ �
are simple-currents (6.1.4), corresponding to permutation J[a]([b]) = [a + b] and phase
ϕ[a]([b]) = e2π ia·b. Charge-conjugation (6.1.5) is given by C[a] = [−a]. The Galois
action (6.1.7) here is also simple: there is a Galois automorphism σ� for any integer �
coprime to the determinant |L|; σ� takes [a] to [�a], and all parities ε�([a]) equal +1.
From our point of view, however, this lattice example is a little too trivial.

In RCFT (Section 4.3.2), the labels a ∈ � are the chiral primaries and ‘0’ is the vacuum
state. The matrix T equals (4.3.10). Charge-conjugation C is a symmetry in quantum
field theory that interchanges particles with their anti-particles (and so reverses charge,
hence the name). The modular data S, T arise through (4.3.9), where χa are the one-point
functions on a torus. The above lattice example corresponds to the string theory of m
free bosons compactified on the torus Rm/L , where m = dim L .

Every property of fusion rings should have an analogue in modular data. For example,
the analogue of (6.1.5) is

TCa,Cb = Tab, (6.1.10a)

which says that T and C = S2 = (ST )3 commute. The analogue of (6.1.4) is

TJa,Ja Taa = ϕ j (a) Tj j T00. (6.1.10b)

In all known examples, including all those associated with RCFT [37], Galois is
intimately connected with the existence of characters χa realising the modular data as
in (4.3.9), which are modular functions for a congruence subgroup (recall (2.2.4)). In
particular, for all these examples, we get the remarkable property:

Definition 6.1.7 (congruence property) Let S, T be modular data, and let ρ be the
associated SL2(Z)-representation. Let N be the order of the matrix T , so T N = I . Then
we say S, T obey the congruence property if the following are all satisfied: ρ is trivial
(i.e. with value I ) on the congruence subgroup �(N ), and so defines a representation of
the finite group SL2(ZN ); we have characters χa realising the modular data in the sense
of (4.3.9), and those characters are modular functions for �(N ); the entries Sab all lie
in the cyclotomic field Q[ξN ]; and finally, the Galois automorphism σ� corresponds to

the modular transformation

(
� 0
0 �−1

)
∈ SL2(ZN ), and so we get(

ρ

(
� 0
0 �−1

))
ab

= ε�(a) δb,aσ� , ∀a, b ∈ �, (6.1.11a)

Taσ� ,aσ� = (Taa)�
2
, ∀a ∈ �. (6.1.11b)

The finite group SL2(ZN ) arises as SL2(Z)/�(N ). The quantity ‘�−1’ denotes the mul-
tiplicative inverse of � (mod N ), and exists because gcd(�, N ) = 1. We return to the
congruence property in Section 6.3.3. Probably Definition 6.1.6 is so weak that some
‘sick’ S, T are examples. It is expected, however, that all reasonably healthy modular
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data, for example, modular data associated with nice CFTs, VOAs or modular categories,
would obey the congruence property (or at least something close to it). It is known [169]
that modular data obeying the congruence property will typically (always?) be realised
by some vector-valued modular function as in (4.3.9).

6.1.3 Modular invariants

Modular data axiomatises the appearance of SL2(Z) in unitary RCFT. Two places mod-
ular data directly impacts on RCFT are Verlinde’s formula (6.1.2) and the partition
function (4.3.8b).

Definition 6.1.8 Choose any modular data S, T . A modular invariant is a matrix Z ,
with rows and columns labelled by �, obeying:
mi1. ZS = SZ and ZT = TZ;
mi2. Zab ∈ N for all a, b ∈ �; and
mi3. Z00 = 1.

It will be convenient at times to rewrite ZS = SZ as SZS = Z (recall that S is unitary).
The easiest modular invariants are the identity Z = I and charge-conjugation Z = C .
More generally, Z is a modular invariant iff CZ is.

Modular invariants axiomatise the 1-loop partition functions Z(τ ) (4.3.8b) of RCFT.
More precisely, an RCFT consists of two VOAs, called chiral algebras. For convenience
we will take them to be isomorphic, though this is not necessary (when they aren’t isomor-
phic, the theory is called ‘heterotic’). The modular invariant describes how these VOAs
act on the state space H, that is how H decomposes into modules of the chiral algebras:

H = ⊕a,b∈�ZabHa ⊗Hb.

mi2 holds because the Zab are multiplicities. The adjoint module H0 ⊗H0 contains
the vacuum 1⊗ 1, and mi3 says there should be only one vacuum. Finally, the 1-loop
partition function Z(τ ), being a physical correlation function defined on the torus,
must be invariant with respect to the modular group SL2(Z) of the torus. Equivalently,
Z(τ ) = Z(−1/τ ) = Z(τ + 1). Applying (4.3.9) and the unitarity of S and T gives the
modular invariance condition mi1.

Perhaps it is because of their basic importance to RCFT, but the lists of modular
invariants associated with affine algebras (Section 6.2.1) are quite remarkable. They also
play natural roles for subfactors and VOAs, as we’ll see.

A second partition function, playing the same role for boundary CFT (the open string)
that Z(τ ) plays for bulk CFT (the closed string), is that corresponding to a cylinder. Its
coefficient matrices My

ax define a fusion ring representation (6.2.6), called a nim-rep
[47], [236]. Although they are a fascinating part of the bigger picture, we’ll say little
about them in this book.

Fix a choice of modular data. Commutation mi1 of Z with T is trivial to solve, since
T is diagonal: it yields the selection rule

Zab �= 0 ⇒ Taa = Tbb. (6.1.12)
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More subtle and valuable is commutation with S. In particular, each symmetry of S
yields a symmetry of Z , a selection rule telling us certain entries of Z must vanish, and
a way to construct new modular invariants.

First consider simple-currents j, j ′. Equation (6.1.4a) and positivity tell us

Z j, j ′ =
∣∣∣∣∣ ∑
c,d∈�

ϕ j (c) S0c Zcd Sd0 ϕ j ′ (d)

∣∣∣∣∣ ≤∑
c,d

S0cZcd Sd0 = Z00 = 1.

Thus Z j, j ′ �= 0 implies Z j, j ′ = 1, as well as the selection rule

Zcd �= 0 ⇒ ϕ j (c) = ϕ j ′ (d). (6.1.13a)

A similar calculation yields the symmetry

ZJ0,J ′0 �= 0 ⇒ ZJa,J ′b = Zab, ∀a, b ∈ �. (6.1.13b)

The most useful application of simple-currents to modular invariants is to their con-
struction. In particular, let j = J0 be a simple-current of order n. Then (by Question
6.1.7(b)) we can find integers r j and Q j (a) such that

ϕ j (a) = exp

[
2π i

Q j (a)

n

]
, Tj j T00 = exp

[
2π i r j

n − 1

2n

]
.

Now define the matrix Z[ j] by [489]

Z[ j]ab =
n∑

�=1

δJ �a,b δ

(
Q j (a)+ �

2n
r j

)
, (6.1.14)

where δ(x) = 1 when x ∈ Z and is 0 otherwise. This matrix will be a modular invariant
iff Tj j T00 is an nth root of 1. For instance, Z[0] = I .

Now look at the consequences of Galois. Applying the Galois automorphism σ to
Z = SZS yields, from (6.1.7) and Zab ∈ Q, the equation

Zab =
∑

c,d∈�
εσ (a) Sσa,c Zcd Sd,σb εσ (b) = εσ (a) εσ (b)Zσa,σb.

(Why must σ commute with complex conjugation?) Because Zab ≥ 0, this implies the
selection rule and symmetry

Zab �= 0 ⇒ εσ (a) = εσ (b), (6.1.15a)

Zσa,σb = Zab, (6.1.15b)

valid for any σ . Of all the equations (6.1.13) and (6.1.15), (6.1.15a) is the most useful.
The reader can try to construct modular invariants from certain special σ�.

6.1.4 The generators and relations of RCFT

In fundamental and influential work of the late 1980s, Moore and Seiberg [436], [437]
isolated the data (finite-dimensional vector spaces and linear transformations) defining
each chiral half of RCFT, and provided a complete set of relations they satisfy. Roughly,
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Fig. 6.1 A vertex.

they do for topological field theories in 2+ 1 dimensions what Theorem 4.4.4 does in
1+ 1 dimensions. Most of their work has been rigorously clarified in the important book
[32]. This section sketches the basic ideas.

Their goal is to understand the spaces B(�) of chiral blocks (Section 4.3.2). As in
Section 4.4.1, incoming strings are those boundary circles oriented oppositely to the
surface. We can change the orientation of a boundary circle provided we also replace its
label (a module M ∈ �(V)) with its charge-conjugate M� (5.3.4a). Thus, for instance,
the spaces B

(g,n+m) b1,...,bm
a1,...,an and B

(g,n+m)
a1,...,an ,b∗1 ,...,b∗m

are naturally isomorphic in this way.
We know from the proof of Theorem 4.4.4 that we can build up an arbitrary surface

with boundary by sewing together discs, cylinders and pairs-of-pants. Hence the basic
building block is the vertex in Figure 6.1. In the spirit of the diagrams of Section 1.6.2, it
can be written as the graph on the right. This vertex represents an intertwining operator –
the Ii in (4.3.7). They are a natural generalisation of vertex operators (in fact they are
often called that), and they generate the chiral blocks F in exactly the same way that
quantum fields generate correlation functions (4.3.1a).

Definition 6.1.9 [199], [436] Let V be a VOA, and let (Mi , Y i ), for labels i ∈ �, be
its irreducible modules. For any a, b, c ∈ �, an intertwining operator of type

( c
a b

)
is a

linear map

w �→ Y(w, z) =
∑
n∈Q

w(n)z
−n−1 (6.1.16)

for each w ∈ Ma, where each mode w(n) ∈ Hom(Mb, Mc) (hence the name ‘inter-
twiner’), such that for allwa ∈ Ma,wb ∈ Mb and v ∈ V ,wa

(n)(w
b) = 0 for all sufficiently

large n (depending on both wa, wb), and we have both

z−1
0 δ

(
z1 − z2

z0

)
Y c(v, z1)Y(wa, z2)wb− z−1

0 δ

(
z2 − z1

−z0

)
Y(wa, z2) Y b(v, z1)wb

= z−1
2 δ

(
z1 − z0

z2

)
Y(Y b(v, z0)wa, z2)wb,

d

dz
Y(wa, z) =Y(L−1w

a, z).

Let V
( c

a b

)
denote the space of all Y of the given type.
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Fig. 6.2 The braiding operator Bef

[
b

a

c

d

]
.

In short, the intertwining operator obeys all the properties the vertex operator YM obeys
in Definition 5.3.1. Of course the z-derivative in the definition completely specifies the
z-dependence of an intertwining operator. Note that the defining vertex operator Y (v, z)
of a VOA is an intertwining operator of type

( 0
0 0

)
, while the vertex operator YMa of the

module Ma is of type
( a

0 a

)
. Summing the formal power series in (6.1.16) over Q is a little

lazy here: the sum really is over n ∈ r + Z, where r = wtwc − wtwa − wtwb ∈ Q. The
analogue of the grading va1 here is that wtwa

(n) = wtwa − n − 1.
The dimension of the space of intertwiners is just the fusion multiplicities:

dim
(
V
( c

a b

))
= dim B

(
�

(0,3) c
ab

)
= N c

ab <∞. (6.1.17)

Given a surface� with m + n boundary circles, finding a basis for the space B(�b1,...,bn
a1,...,am

)
is now trivial, at this formal level: simply perform the following Feynman rules.

(i) Fix a basis for each space V
( c

a b

)
of intertwining operators.

(ii) Fix some dissection of � into pairs-of-pants, as in Figure 4.12 (it is more
convenient but not necessary to draw the corresponding trivalent graph).

(iii) Assign to each internal cut, or equivalently each internal edge of the trivalent
graph, a dummy label.

(iv) To each vertex in your dissection, bounded by labels a, b, c ∈ � (appropriately
oriented), choose an intertwining operator from the basis of the appropriate space
of intertwiners.

(v) ‘Evaluate’ the corresponding chiral block in (4.3.7) – this is a desired basis vector.
(vi) Repeat for each operator in your basis, and each possible value of all dummy

labels.

For example, consider the left-most dissection in Figure 6.2(a) of a sphere with four
boundary components. Let Y and Y ′ be any intertwining operators in V

( b
a e

)
and V

( e
d c

)
,

respectively. Then we get a chiral block

F = 〈wb,Y(wa, z)Y ′(wd , z′)wc〉, (6.1.18)

where Möbius invariance was used to send the b- and c-marked points to 0 and ∞.
Section 9.3 of [253] gives a more physical description of sewing. Incidentally, each
dissection corresponds to moving towards a ‘maximally degenerate’ boundary point on
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Fig. 6.3 The fusing operator Feg
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.

Mg,n (recall Section 2.1.4), that is deforming the surface ever more closely to a trivalent
graph.

For each dissection, the chiral blocks of (v) are linearly independent and form a basis
for the desired space B(�b1,...,bn

a1,...,am
). This linear independence implies a product formula

for fusion multiplicities, for any pair of dissections of each labelled surface. For instance,
the dissections in Figures 6.2(a) and 6.3(a) tell us the nontrivial fact that

N (0,4) b
acd = dim B

(
�

(0,4) b
acd

)
=
∑
e∈�

N b
ae N e

cd =
∑
f ∈�

N f
ac N b

d f =
∑
g∈�

N g
adN b

cg. (6.1.19)

These identities imply that the fusion ring of an RCFT, defined here formally to have
structure constants N c

ab, is both commutative and associative. All of these product for-
mulae can be quickly deduced from Verlinde’s formula (6.1.2).

As we’ve repeatedly mentioned, a given surface can be dissected in different ways.
Duality here is the statement that although each dissection of � produces a different
basis of chiral blocks, they must be bases for the same space B(�), that is there must
be invertible linear maps relating the chiral blocks of different dissections. Consider the
easy examples in Figures 6.2 and 6.3. There we’ve given three dissections of the (g, n) =
(0, 4) surface. The corresponding linear maps (actually matrices, given our explicit but

noncanonical bases) are denoted B

[
b c
a d

]
= ⊕e, f ∈�Bef

[
b c
a d

]
and F

[
b c
a d

]
=

⊕e,g∈�Feg

[
b c
a d

]
. For the purposes of manipulating identities, it is convenient to

represent these operators pictorially as in (b) (recall Section 1.6.2). Because of these
pictures, they are usually called braiding and fusing. They play the same role here as the
Clebsch–Gordon and Racah coefficients (or 3j- and 6j-symbols), respectively, play in
the Lie theory of the quantum mechanics literature. See also the treatment in chapter 16
of [214].

The proposition at the end of [278] gives us four basic ‘moves’ from which any two
dissections can be related. These occur for surfaces with

(g, n) = (0, 1), (0, 2), (0, 4), (1, 1) (6.1.20)

(namely, the surfaces that need at most one cut to unfold them into discs, cylinders or
pairs-of-pants). The one for (1,1) is given in Figure 6.4. The corresponding operator is
called S(a) because it corresponds to the modular transformation τ �→ −1/τ . The result
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a                                a

Fig. 6.4 The S-operator S(a).

Fig. 6.5 A typical identity.

of [278] is the key to proving that a few dualities generate all others. In particular, all
duality transformations can be written in terms of F, B, S, e2π ic/24.

These duality operators obey several identities, coming from surfaces (0, 5) and (1, 2)
(those requiring two cuts to decompose into pairs-of-pants). An example is Figure 6.5;
another is the Yang–Baxter equation (Figure 1.29). The reader is encouraged to write
these identities down explicitly. Figure 6.5 has the shape F B B = B F , while the Yang–
Baxter equation looks like B B B = B B B. Other identities are given in section 3 of
[437].

[436] argue, and [32] prove, that all mapping class group actions on the spaces B(�)
can be deduced from these relations. They also argue that Verlinde’s formula (6.1.2)
follows, by considering the space B

(1,2)
aa∗ .

For example, consider the Ising model (Section 4.3.2). Here� = {1, ε, σ }. Its modular
data S, T is given in (4.3.11), and a basis for the space of chiral blocks in B(0,4) σ

σσσ is given
in (4.3.13). Its fusion ring is defined by ε × ε = 1, ε × σ = σ and σ × σ = 1⊕ ε.
Recall that these blocks assume that the four points z1, . . . , z4 have been mapped to
0, w, 1,∞, respectively (so w goes to the cross-ratio). To find the fusing matrix, one
way is to note that this duality interchanges the roles of z1 = 0 and z3 = 1, and therefore
corresponds to the Möbius transformation w �→ (1− w)/(1− 0) = 1− w. Likewise,
braiding interchanges z2 with z3, and so corresponds to the Möbius transformationw �→
(0− 1)/(0− w) = 1/w. When applying Möbius transformations to chiral blocks, recall
(4.3.5); equivalently, chiral blocks (of quasi-primaries) are often written as differential
forms: here they are Fi dw−1. The braiding and fusing matrices here become

B

[
σ σ

σ σ

]
= 1√

2

(
y y−3

y−3 y

)
, (6.1.21a)

F

[
σ σ

σ σ

]
= y2 + y−2

√
2

(
1 1
1 −1

)
, (6.1.21b)
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for some primitive 16th root y of 1. Also, S(σ ) is 0× 0 (since N (1,1)
σ = 0 by (6.1.2)),

and S(ε) = (y−2).

Question 6.1.1. (a) Directly from Definition 6.1.3, prove that the fusion ring homomor-
phism ∗ in f2 is an involution (i.e. ∗2 = id).
(b) Again directly from the definition, prove that Na∗ = (Na)t for any fusion matrix
Na .
(c) Directly from the definition, prove that the numbers Nabc := N c∗

ab in any fusion ring
are completely symmetric in a, b, c.

Question 6.1.2. Choose your favourite character table theorem in, for example, [308]
and find and prove the fusion ring analogue.

Question 6.1.3. Prove that a fusion ring R(β,N )⊗Z Q, considered as an algebra over Q,
is isomorphic to a direct sum of number fields. Construct these number fields explicitly,
from the matrix S. (Hint: (6.1.7) may be helpful.)

Question 6.1.4. Prove Theorem 6.1.5.

Question 6.1.5. Classify all one- and two-dimensional fusion rings and modular data.

Question 6.1.6. What happens to the modular data of the lattice example when the lattice
is integral but not even (i.e. it has odd norm-squared vectors).

Question 6.1.7. (a) Prove (6.1.13b).
(b) Prove that if j = J0 is order n, then ϕ j (a) is an nth root of unity, and for n odd
TJa,Ja Taa is also an nth root of 1, while for n even it is a 2nth root of 1.
(c) Prove that the set of all simple-currents forms an abelian group (with respect to
composition of the permutations J ).
(d) Prove that N J J ′c

Ja,J ′b = N c
ab. Describe σ j and εσ ( j) of simple-currents, for any σ ∈

Gal(Q[ξN ]/Q).

Question 6.1.8. Suppose all a ∈ � are simple-currents. Prove that any modular invariant
is of the form (6.1.14).

Question 6.1.9. Suppose we have four sets of functions, namely ai (z) and bi (z) (for
1 ≤ i ≤ n), and c j (z) and d j (z) (for 1 ≤ j ≤ m), and they are all holomorphic in some
common domain (e.g. the unit disc). Suppose the equality

n∑
i=1

ai (z) bi (z) =
m∑

j=1

c j (z) d j (z)

holds throughout that domain. Then n = m and there is an invertible n × n matrix M
such that both

ai (z) =
n∑

j=1

Mi j c j (z), bi (z) =
n∑

j=1

(M−1)i j d j (z).
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6.2 Examples

6.2.1 Affine algebras

The mathematical riches of CFT go far beyond Lie theory, but CFT would have remained
an esoteric part of mathematical physics, unknown to mathematics proper, if its deep
connection to Lie theory hadn’t been discovered.

The source of some of the most interesting modular data are the nontwisted affine
Kac–Moody algebras g = Xr

(1) (Section 3.2). We are interested in its integral highest
weights λ ∈ Pk

+(g) with a given fixed level k ∈ N.
Recall that the g-character χλ(τ ) (3.2.11c) is essentially a lattice theta function, and

transforms nicely under the modular group SL2(Z). In fact, the SL2(Z)-representation
ρ of Theorem 3.2.3 defines modular data. The ‘vacuum’ is 0 = kω0, and the set of
‘primaries’ � are the highest weights Pk

+(g) given in (3.2.8). The matrix T is related to
the eigenvalues of the second Casimir operator of g = Xr , and S to elements of finite
order in the Lie group of Xr [333]:

Tλμ = exp

[−π i (ρ|ρ)

h∨

]
exp

[
π i (λ+ ρ|λ+ ρ)

k + h∨

]
δλ,μ, (6.2.1a)

Sμν = α
∑
w∈W

det(w) exp

[
−2π i

(w(μ+ ρ)|ν + ρ)

k + h∨

]
, (6.2.1b)

Sλμ
S0μ

= chL(λ)

(
exp

[
−2π i

(λ |μ+ ρ)

k + h∨

])
. (6.2.1c)

The unimportant number α is given explicitly in theorem 13.8(a) of [328]. The inner-
product is the usual Killing form of g, W is the (finite) Weyl group of g, ρ is the Weyl
vector

∑r
i=1 ωi and h∨ is the dual Coxeter number (the sum

∑r
i=0 a∨i of the colabels

in Figure 3.2). Also, λ denotes the projection λ1ω1 + · · · + λrωr , and ‘chL(λ)’ is the
appropriate finite-dimensional Lie group character.

The combinatorics of Lie group characters at elements of finite order, that is the
ratios (6.2.1c), are quite rich and have been studied by many people. For instance, [431]
show that they lead to quick algorithms for computing, for example, tensor product
multiplicities. Kac [327] used them in a Lie theoretic proof of quadratic reciprocity.

For example, for A1
(1) at level k, we may take Pk

+ = {0, 1, . . . , k} (the value of λ1),
and then the S and T matrices and fusion multiplicities are given by

Sab =
√

2

k + 2
sin

(
π

(a + 1) (b + 1)

k + 2

)
, (6.2.2a)

Taa = exp

[
π i(a + 1)2

2(k + 2)
− π i

4

]
, (6.2.2b)

N c
ab =

{
1 if c ≡ a+b (mod 2) and |a−b| ≤ c ≤ min{a+b, 2k−a−b}
0 otherwise

. (6.2.2c)

For A1
(1) the matrix S is real and so charge-conjugation C = id . More generally, for Xr

(1)

C corresponds to a symmetry of the Coxeter–Dynkin diagram of Xr . For A1
(1), there
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(−1,−1)
(1,−2)

(2,−1)

(1,1)

(−2,1)

(−1,2)

2(0,0)

(a)

(2,0) (4,−1)

(1,2)

(2,3) (4,2)

(3,1)2 (5,0)

(c)

(2,0) (4,−1)

(1,2)

(2,3) (4,2)

(3,1)2 (5,0)

(b)

Fig. 6.6 Tensor and fusion products L(2, 0)⊗ L(1, 1) and L(0, 2, 0) × 2 L(0, 1, 1).

is precisely one nontrivial simple-current, namely j = k, corresponding to Ja = k − a
and ϕ j (a) = (−1)a . More generally, to any affine algebra (except for E8

(1) at k = 2), the
simple-currents correspond to symmetries of the extended Coxeter–Dynkin diagram. For
A1

(1) this symmetry interchanges the zeroth and first nodes, that is J (λ0ω0 + λ1ω1) =
λ1ω0 + λ0ω1 (recall a = λ1 and k = λ0 + λ1).

The fusion multiplicities N ν
λμ, defined by (6.1.1b), are essentially the tensor product

multiplicities T ν

λμ
:=multλ⊗μ(ν) for g (as opposed to the unrelated and less interesting

tensor product multiplicities of g), except ‘folded’ in a way depending on the level k.
This is seen explicitly by the Kac–Walton formula (see [328] page 288, [552], though
there are other co-discoverers):

N ν
λμ =

∑
w∈W

det(w) Tw.ν

λμ
, (6.2.3a)

where w.γ :=w(γ + ρ)− ρ and W is the affine Weyl group of Xr
(1) (the dependence

on k arises through this action of W ). The proof follows quickly from (6.2.1c). This
practical formula is also described in Section 16.2 of [131] and Section 4.9 of [553].

Equation (6.2.3a) looks more natural when viewed as follows. The Racah–Speiser
formula (there are other co-discoverers) for tensor product multiplicities says

T ν

λμ
=
∑
w∈W

det(w) dim L(μ)w.ν−λ. (6.2.3b)

Combining (6.2.3) gives the ‘affinisation’ of Racah–Speiser:

N ν
λμ =

∑
w∈W

det(w) dim L(μ)w.ν−λ. (6.2.3c)

For example, the weights for the eight-dimensional A2-module L(1, 1) are given in
Figure 6.6(a). In Figure 6.6(b), we translate this weight space byρ + λ = (3, 1). Equation
(6.2.3b) now tells us to Weyl-reflect each dot not in the A2 alcove Pk

+ + ρ. Two of these
dots are fixed by a Weyl reflection and so cancel themselves. Weight (4, −1) gets Weyl
reflected to (3, 1) and so reduces the multiplicity there by 1. Shifting back by ρ = (1, 1),
we thus get the tensor product

L(2, 0)⊗ L(1, 1) = L(0, 1)⊕ L(2, 0)⊕ L(1, 2)⊕ L(3, 1).
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The calculation of the A2
(1) fusion multiplicity at, for example, level 2 (Figure 6.6(c))

is identical, except we now have extra Weyl reflections and the alcove is much smaller.
The weight (4, 2) now lies outside the alcove, and reflects to (3, 1) where it reduces that
multiplicity to 0. Thus we obtain the fusion product (writing the level as subscript)

L(0, 2, 0) × 2 L(0, 1, 1) = L(1, 0, 1).

Equation (6.2.3a) has the flaw that, although the N ν
λμ are manifestly integral, it is

not clear why they are positive. An open problem in the theory is the discovery of a
combinatorial rule, for example, in the spirit of the well-known Littlewood–Richardson
rule [217], for the affine algebra fusions. Such a rule for Ar

(1) is conjectured in [88],
although it is quite complicated even for A1

(1).
Identical numbers N ν

λμ appear in several other contexts, many of which we’ll see
below. Because of these isomorphisms, we know that the N ν

λμ defined by (6.1.1b) and
(6.2.1b) do indeed lie in N, for any affine algebra, as predicted by RCFT.

As mentioned before, the fusion product here is not the usual tensor product of affine
algebra modules. However, the fusion product has been interpreted algebraically (with
much effort) as a new kind of tensor product of affine algebra modules, in a series of
papers by Kazhdan and Lusztig; it was proved equivalent to fusions in [190].

Fusion multiplicities arise in the quantum cohomology or Gromov–Witten invariants
of Grassmannians [565], [57], often called the ‘quantum Schubert calculus’. Recall
that ‘points’ in the projective plane consist of lines through the origin; more gen-
erally, the Grassmannian Gr(m, n) consists of m-dimensional subspaces in Rn . The
(classical) Schubert calculus (see e.g. [217]) uses the cohomology ring of Gr(m, n)
to solve problems in enumerative geometry such as ‘How many lines in projective 3-
space P3(R) meet four given lines?’. On the other hand, the Gromov–Witten invariants
count surfaces lying in the Grassmannian, which satisfy certain conditions (see e.g.
[359]). The quantum cohomology ring (which counts spheres) of Gr(m, n) is isomor-
phic to the fusion ring of glm

(1) = (u1 ⊕ Am−1)(1) at level (nm, n − m), ‘orbifolded’
with a ‘projection/field-identification’ given by the order-m simple-current (J−n, J ); the
Gromov–Witten invariants are the fusion multiplicities. Now, there is a classical iso-
morphism Gr(m, n) ∼= Gr(n − m, n) (why?); this implies that there is a close relation
(‘rank–level duality’) between the fusion rings of Ar

(1) level k and Ak−1
(1) level r + 1.

There are analogous rank–level dualities for the other classical algebras [428]. This is one
of many symmetries of the g fusion multiplicities that has no analogue for the g tensor
product multiplicities. Another example is that any symmetry of the extended Coxeter–
Dynkin diagram is a symmetry of fusion multiplicities. In short, affine algebra fusion
multiplicities are mathematically more interesting than their classical counterparts.

We have long known that the representation theory of a Lie group G is related to
K-theory. For example, the equivariant K-theory K dim G

G (p) of the (trivial) action of
G on a point p is the representation ring (over Z). The analogue of this for fusion
rings is due to Freed–Hopkins–Teleman [193]: the fusion ring of Xr

(1) at level k is the
twisted equivariant K-theory h K dim G

LG (p) := k+h∨ K dim G
G (G), where G is the compact

simply-connected Lie group corresponding to Xr , G acts on itself by conjugation and
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k + h∨ ∈ Z = H 3
G(G,Z) is the twist h. The strength of this important formulation is also

its weakness: it pushes most technical difficulties under the carpet, but what remains is
a clean conceptual characterisation of the fusion ring.

Fusion multiplicities also arise as dimensions of spaces of generalised theta functions
[179] (see also the discussion in [565]), as tensor product multiplicities in Hecke algebras
at roots of 1 [255] and modular representations for, for example, the Lie algebra g for
fields Fp (see e.g. [392]). In Section 6.1.1 we give another appearance of the An−1

(1)

fusion multiplicities.
The Galois action for the affine algebras can be expressed geometrically using the

action of the affine Weyl group on the weight lattice of Xr . The parity εσ (λ) is quite
interesting (see e.g. [7] for cohomological and number-theoretic interpretations). For a
concrete example, consider A1

(1): (6.2.2a) shows explicitly that Sab lies in the cyclotomic
field Q[ξ4(k+2)]. Write {x} for the number congruent to x mod 2(k + 2) satisfying 0 ≤
{x} < 2(k + 2). Choose any Galois automorphism σ = σ�. Then if {�(a + 1)} < k + 2,
we will have aσ = {�(a + 1)} − 1, while if {�(a + 1)} > k + 2, we will have aσ = 2(k +
2)− {�(a + 1)} − 1. The parity εσ (a) depends on a contribution from

√
2

k+2 (which can
usually be ignored), as well as the sign +1 or −1, respectively, depending on whether
or not {�(a + 1)} < k + 2.

Affine algebra modular data corresponds to Wess–Zumino–Witten RCFT [245], where
a closed string lives on a Lie group manifold G. The action is given by the sum of two
terms: one is an integral over the world-sheet and corresponds to a so-called sigma model
[343] of a bosonic field living on G; the other is a topological Wess–Zumino term, an
integral over the volume bounded by the (compactified) world-sheet. Classically, the
sigma model by itself would be conformally invariant, but quantisation breaks this. It
was Witten who realised that conformal invariance would be retained if the Wess–Zumino
term was added. For topological reasons the Wess–Zumino term comes with an integral
prefactor (or coupling constant), which we call the level k.

Why is the level k always shifted by the dual Coxeter number h∨ in the formulae,
and the weights by the Weyl vector ρ? The ρ-shift appears even for the simple finite-
dimensional algebras (1.5.11), and arises from the combinatorics of geometric series. The
algebraic explanation of the h∨-shift was given after (3.2.15). Physically, in the Wess–
Zumino–Witten model, these ρ- and h∨-shifts also arise automatically: the former as a
quantum effect, due to normal-ordering or regularisation, much like the q1/24 shift in
the Dedekind eta; the latter as an effect of latent supersymmetry caused by decoupling
fermions (see e.g. section 8 of [248], or [206]).

The modular data (6.2.2) of A1
(1) level k is related to the dilogarithm by the remarkable

formula

1

L(1)

k∑
b=1

L

(
S2

0a

S2
ba

)
= ck − 24ha + 6a (6.2.4a)

for each a ∈ Pk
+, where ck = 3k/(k + 2) is the central charge and ha = a (a+2)

4(k+2) the con-
formal weight (recall (3.2.9)). L(x) here is Roger’s dilogarithm, which for 0 < x < 1 is
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given by

L(x) =
∞∑

n=1

x2

n2
+ 1

2
log x log (1− x). (6.2.4b)

We put L(1) := limx→1−L(x) = π/6. L(x) is strictly increasing, real-analytic, and obeys
L(x)+ L(1− x) = L(1) and

L(x)+ L(y) = L(xy)+ L

(
x − xy

1− xy

)
+ L

(
y − xy

1− xy

)
. (6.2.4c)

As was discovered by Lobachevsky and Schläffli in the nineteenth century, the dilog-
arithm is related to volumes of tetrahedra, and several other appearances have been
uncovered since. Equation (6.2.4a) is the tip of the iceberg; see [347] for several other
identities and some history. (6.2.4a) can be proved by studying the τ → 0 asymptotics
of certain character formulae. For a simple example, the two k = 1 A1

(1) characters can
be written

χiω1+(1−i)ω0 (τ ) =
∑

M+N+i even
M,N∈N

q (M+N )2/2

(q)M (q)N
, (6.2.5a)

where (q)N is the q-deformed factorial
∏N

n=1(1− qn). Similar expressions exist for all
other affine algebras and conjecturally all RCFT – see [14] for the state-of-the-art, and
below for a conjecture. Actually, (6.2.4a) is obtained from the asymptotics of these
character identities for certain non-unitary RCFTs, which have essentially the same S
matrix as (6.2.2a). An explanation of some of these identities (at least mod 1) has been
made by [164], who use the dilogarithm to express a natural map from H3(S̃L2(R),Z)
to R/Z.

Choose any r × r rational positive-definite matrix A = At , b ∈ Qr and d ∈ Q. Define

f A,b,d (τ ) :=
∑
n∈Nn

exp[2π iτ (nt An/2+ bt n + d)]

(q)n1 · · · (q)nr

. (6.2.5b)

Conjecture 6.2.1 (Nahm [444]) Let A be any n × n rational positive-definite matrix.
Then there are finitely many vectors b1, . . . , bm ∈ Qn and numbers d1, . . . , dm ∈ Q such
that the functions χi (τ ) := f A,bi ,di (τ ) are the entries of a vector-valued modular function
for SL2(Z), iff these χi (τ ) are the graded-dimensions of the m primaries of some (not
necessarily unitary) RCFT where di = hi − c/24, iff there is a corresponding element
of finite order in the Bloch group.

The precise statement involving the Bloch group would take us too far afield, but see [444]
for details. This beautiful conjecture has been verified only for r = 1 (which has three
different A). A plausibility argument suggesting that RCFT characters should always be
of that form involves considering their massive integrable perturbations [444]. Torsion
in the Bloch group has known connections with modularity.

The affine algebra g arises in the Wess–Zumino–Witten model, for the same reason the
Virasoro does (recall the discussion around (4.3.4)): to each g ∈ G we get a conserved
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current, and its conserved charges define the level-k representation of g. As before, we
get two commuting actions of g on the state-spaceH, recovering the finite decomposition
(4.3.6b).

For affine algebra modular data, the classification of modular invariants seems to be
just barely possible, and the answer is that (generically) the only modular invariants are
constructed in straightforward ways from symmetries of the Coxeter–Dynkin diagrams.
For instance, consider A1

(1):

Theorem 6.2.2 [91] Recall that Pk
+ = {0, 1, . . . , k}, and the simple-current is given

by Ja = k − a. Then the complete list of A1
(1) modular invariants is

Ak+1 =
k∑

a=0

|χa|2 for all k ≥ 1,

D k
2+2 =

k∑
a=0

χa χ
∗
J aa when

k

2
is odd,

D k
2+2 = |χ0 + χJ0|2 + |χ2 + χJ2|2 + · · · + 2|χ k

2
|2 when

k

2
is even,

E6 = |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2 for k = 10,

E7 = |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2
+ χ8 (χ2 + χ14)∗ + (χ2 + χ14)χ∗8 + |χ8|2 for k = 16,

E8 = |χ0 + χ10 + χ18 + χ28|2 + |χ6 + χ12 + χ16 + χ22|2 for k = 28.

A simple proof is given in [234]. The modular invariants An and Dn are generic, given
by (6.1.14), and correspond respectively to the order 1 (i.e. identity) and order 2 (i.e.
simple-current J ) Coxeter–Dynkin diagram symmetries. Physically, An and Dn are the
partition functions (4.3.8b) of Wess–Zumino–Witten models on the SU2(C) and SO3(R)
group manifolds, respectively. The exceptionals E6 and E8 correspond to strings living
on Sp4 and G2 manifolds, at level 1. The E7 exceptional is harder to interpret, but is the
first in an infinite series of exceptionals involving rank–level duality and D4 triality.

Around Christmas 1985, Zuber wrote to Kac about the A1
(1) modular invariant prob-

lem, and mentioned the modular invariants they knew at that point (what we now call
A� and Deven). A few weeks later, Kac wrote back saying he found one more invariant,
and jokingly pointed out that it must indeed be quite exceptional as the exponents of E6

appeared in it. By summer 1986, Cappelli–Itzykson–Zuber found E7, Dodd and then E8,
and at some point recalled by chance Kac’s cryptic remark. They rushed to the library
to find a list of the exponents of the other algebras, and were delighted to discover that
they all matched. Thus the A–D–E pattern (Section 2.5.2) to their modular invariants
was discovered!

The modular invariants for A1
(1) realise the A–D–E pattern, in the following sense [91].

The (dual) Coxeter number h = h∨ of the name Xn equals k + 2, and the exponents mi

of Xn equal 1 plus those a ∈ Pk
+ for which Zaa �= 0 (for the algebras An, Dn, En , the

integers mi are defined by writing the eigenvalues of the corresponding Cartan matrix
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(Definition 1.4.5) as 4 sin2(πmi
2h )). Probably what first led Kac to his observation about

the E6 exponents was that k + 2 (this is how k enters most formulae), for his exceptional,
equals the Coxeter number 12 for E6. More recently, deeper connections between A–
D–E and the A1

(1) modular invariants have been found, notably in subfactor theory
(Section 6.2.6). This modular invariant classification, however, has never been directly
reduced to the suggestion of Section 2.5.2.

The modular invariants have also been classified, for example, for A2
(1) [232], and

they too seem quite interesting (Section 6.3.2). We are almost at the point where we
can safely conjecture the complete list of modular invariants for Xr

(1) at any k, for Xr

a simple algebra (see e.g. [236]). The most surprising thing about these affine alge-
bra modular invariant classifications is that there are so few surprises: almost every
modular invariant is ‘generic’, that is constructable using a few simple uniform meth-
ods such as Coxeter–Dynkin diagram symmetries. Unfortunately, the classification for
semi-simple algebras Xr1 ⊕ · · · ⊕ Xrs does not reduce to that for simple ones, and will be
hopeless.

Has A–D–E been discovered in the other modular invariant classifications? No, only
in those classifications trivially reducible to Theorem 6.2.2. There is, however, a rather
natural way to assign (multi-di)graphs to modular invariants, generalising the A–D–E
pattern for A1

(1). It is called a nim-rep, and is a representation of the fusion ring by
nonnegative integer matrices. More precisely, for each weight a ∈ Pk

+(A(1)
1 ) we want a

nonnegative integer matrix Ma such that

MaMb =
k∑

c=0

N c
abMc, (6.2.6)

whereN c
ab are the fusion multiplicities of (6.2.2c). We also requireM0 = I , and all these

matrices to be symmetric: Ma = (Ma)t . In Question 6.2.2 you are asked to find all such
assignments a �→Ma . Surprisingly, there is a near-perfect correspondence between
the A1

(1) modular invariants, and these nim-reps. Physically, nim-reps are associated
with boundary conformal field theory or D-branes in string theory. See [47], [236] and
references therein for the basic theory and examples of nim-reps. They are an integral
part of the combinatorial data of RCFTs. However, the simplicity of the correspondence
for A1

(1) is an accident due to the small size of the relevant Perron–Frobenius eigenvalue
here. In particular there appear to be far more nim-reps for A2

(1) than modular invariants.
Hanany–He [271] suggest that the A1

(1) A–D–E pattern can be related to subgroups
G ⊂ SU2(C) by orbifolding four-dimensional N = 4 supersymmetric gauge theory by
G, resulting in an N = 2 superconformal field theory whose ‘matter matrix’ can be read
off from the Coxeter–Dynkin diagram corresponding to G. The same game can be played
with finite subgroups of SU3(C), resulting in N = 1 superconformal field theories whose
matter matrices resemble the nim-reps of A2

(1). [271] use this to conjecture optimistically
a McKay-type correspondence between singularities of type Cn/G, for G ⊂ SUn(C),
and the modular invariants of An−1

(1). This in their view would be the form A–D–E takes
for higher-rank modular invariants. Their conjecture is still too vague to be probed.
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So far we have considered only integrable modules, which are necessarily at level
k ∈ N. But their modular behaviour can be mimicked at certain fractional levels, by the
so-called admissible modules [335]. It is tempting to guess that there should be natural
CFT and VOA interpretations for these, analogous to the integrable ones. The matrix S
there is symmetric, but has no column of constant phase and thus naively putting it into
Verlinde’s formula (6.1.1b) will necessarily produce some negative numbers (it appears
that they’ll always be integers though). A legitimate fusion ring has been obtained for
A1

(1) at fractional level in other ways [26], [184], and initial steps for A2
(1) have been

made in [221]. VOA interpretations for A1
(1) admissible modules are given in [2], [148].

Serious doubt, however, on the relevance of these efforts has been cast by [225], [378].
Sorting this out is a high priority.

Related roles for other Kac–Moody algebras are slowly being found. The twisted affine
algebras also have modular-like data, and arise naturally in the data for nim-reps [58],
[226]. Lorentzian Kac–Moody algebras have been proposed [171], [285] as the sym-
metries of ‘M-theory’, the conjectural 11-dimensional theory underlying superstrings.
Relations between strings and Borcherds–Kac–Moody algebras are discussed in [275],
[276], [134].

6.2.2 Vertex operator algebras

LetV be a ‘nice’ VOA (more on this shortly). The primaries a ∈ � label the finitely many
irreducible V-modules Ma . The relation between VOAs and SL2(Z) given in (4.3.9) was
anticipated by RCFT, and proved by Zhu (Theorem 5.3.8). It gives (among other things)
the modular matrices S and T . Do they define modular data? If so, does Verlinde’s
formula (6.1.1b) compute the dimensions of intertwiner spaces (6.1.17)?

Definition 6.2.3 By a rational vertex operator algebra (RVOA) we mean a weakly ratio-
nal vertex operator algebra V (Definition 5.3.2) obeying in addition

(i) V is simple (that is is an irreducible module for itself) and the contragredient V� is
isomorphic to V as a V-module;

(ii) M0 = {0} for all irreducible modules M �= V;
(iii) every N-graded weak module is completely reducible;
(iv) V is C2-cofinite (Definition 5.3.5).

C2-cofiniteness is a technical condition with many consequences. As we know, every
VOA is a module for itself; the contragredient of a module is discussed around (5.3.4a).
In any unitary RCFT, all conformal weights ha , a ∈ �, are positive except for a = 0, so
condition (ii) is then automatic. Condition (iii) is a little stronger than the usual complete
reducibility requirement.

This use of the term ‘rational’ is not standard, and different definitions of ‘RVOA’ can
be found in the literature (some of these are listed in appendix A of [224]). But the term
‘rational VOA’ should be limited to those VOAs that possess some variant of modular
data. The justification for our use of the term is the following recent theorem:
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Theorem 6.2.4 (Huang [297]) Let V be a VOA, rational in the sense of Defini-
tion 6.2.3. Let � label its (finitely many) irreducible modules, let N c

ab be the dimension
of the space V

( c
a b

)
of intertwiners, and let S be the matrix defined in Theorem 5.3.8,

satisfying (4.3.9a). Then Verlinde’s formula (6.1.1b) holds and S is symmetric. Also, the
category RepV of V-modules has a natural structure as a modular category.

The objects of the category RepV are V-modules, and the morphisms are V-module
homomorphisms. A modular category is described in Section 6.2.5 and is (among many
other things) a braided monoidal category. Theorem 6.2.4 is a corollary to Huang’s pro-
gramme of constructing geometric VOAs (Section 5.4.1) in genus≤ 1 from an algebraic
VOA. It appears that additional minor conditions on the VOA V will be needed [296] in
order that the higher-genus chiral blocks be constructed – once identified, these restric-
tions should be included in the definition of rationality for VOAs. Extending this work
to genus > 1 would be the final step in associating a modular functor – that is, a chiral
half of an RCFT, including all the Moore–Seiberg data – to a nice VOA.

Equation (6.1.1b) can be defined only if all SM0 �= 0, so Theorem 6.2.4 certainly
implies that. Some RVOAs (e.g. those associated with non-unitary RCFTs) won’t possess
modular data in the narrow sense of Definition 6.1.6. However, suppose in addition to
being rational that V has the (common) property that any irreducible module M �= V
has positive conformal weight hM (recall hM − c/24 is the smallest power of q in the
Fourier expansion of the graded dimension χM (τ ) = q−c/24 ∑∞

n=0 aM
n qn+hM ). This holds

for instance in all VOAs associated with unitary RCFTs. Then consider the behaviour of
χM (τ ) for τ → 0 along the positive imaginary axis: since each Fourier coefficient aM

n

is nonnegative, χM (τ ) will go to +∞. But this is equivalent to considering the limit of∑
N SM N χN (τ ) as τ → i∞ along the positive imaginary axis. By hypothesis, this latter

limit is dominated by SM0 a0
0q−c/24, at least when SM0 �= 0. So what we find is that,

under this hypothesis, the 0-column of S consists of nonnegative real numbers (and also
that the central charge c is positive). But Verlinde’s formula certainly requires that all
numbers in the 0-column of S be nonzero. Thus we get:

Corollary 6.2.5 Suppose V is a rational VOA and for all irreducible modules M,
Mn = 0 for all n < 0. Then (4.3.9) (more precisely Theorem 5.3.8) define modular
data.

Of course the affine algebra modular data discussed in Section 6.2.1 is a special case of
that considered here, corresponding to the integrable affine VOA V(g, k) constructed in
Section 5.2.2.

Verlinde’s formula (6.1.1b) is only a genus-0 special case of (6.1.2). What makes the
proof of Theorem 6.2.4 difficult is the difficulty in constructing chiral blocks in genus
> 0. At the time of writing, only special cases have been worked out in arbitrary genus
(see, e.g., theorem 6.2 in [573]). Moore–Seiberg bypassed this difficulty by assuming
the chiral blocks all exist and have all the required properties.

As mentioned in Section 5.3.5, one direction Huang’s Theorem could possibly
be extended is to ‘quasi-rational’ CFT [436]. These are VOAs with infinitely many
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irreducible modules, but with finite fusion products (5.3.3). They would correspond
to a ‘C1-cofiniteness’ condition and typically have infinite-dimensional Zhu’s algebra.
The easiest example is the Heisenberg VOA (5.2.5), associated with the oscillator alge-
bra u1

(1) (3.2.12). We find directly from (3.2.12c) that the graded dimension of V (λ)
obeys

χλ(τ + 1) = eπ i (λ2− 1
12 )χλ(τ ), (6.2.7a)

χλ(−1/τ ) =
∫ ∞

−∞
e2π i λμχμ(τ ) dμ. (6.2.7b)

In other words, on the Hilbert space L2(R) of square-integrable functions f (α), let S( f )
be the Fourier transform of f , and T ( f ) the function given by

T ( f )(α) = eπ i (α2− 1
12 ) f (α)

Then S and T define a unitary representation of SL2(Z) on the space L2(R) spanned by
the χλ (more precisely, they act on the space of functions χ f (τ ) = ∫∞

−∞ f (α)χα(τ )dα
for f ∈ L2(R)). In Verlinde’s formula (6.1.1b), the sum over� becomes an integral over
R, and yields the distribution

N ν
λμ = δ(ν − λ− μ),

in other words L(λ) × L(μ) = L(ν), so the ‘fusion ring’ L2(R) is given a convolution
product.

It can be hoped that this modular behaviour would be typical for a wide class of
other quasi-rational theories. The generalisation of Zhu’s Theorem 5.3.8 and Huang’s
Theorem 6.2.4 to such quasi-rational theories would be wonderful to see.

Modular invariants have a VOA interpretation. Let Ma and M ′i be the irreducible
modules of RVOAs V ⊂ V ′ sharing the same conformal vector ω. Then each M ′i is a
V-module. An RVOA is completely reducible, so each M ′i should be expressible as a
direct sum of Ma’s – these are called the branching rules. The sum of

∑
i∈�′ |χ ′M ′ i |2 is

invariant under that SL2(Z)-action; rewriting the χ ′M ′ i ’s there in terms of the χMa ’s via
the branching rules yields a nontrivial modular invariant for V .

For instance, the VOA L(ω0)′ corresponding to the affine algebra G2
(1) at level 1

contains the VOA L(28ω0) = L(0) for A1
(1) at level 28. We get the branching rules

L(ω0)′ = L(0)⊕ L(10)⊕ L(18)⊕ L(28),

L(ω2)′ = L(6)⊕ L(12)⊕ L(16)⊕ L(22).

Thus the Z ′ = I modular invariant for G2
(1) level 1 yields the A1

(1) modular invariant
E8 in Theorem 6.2.2.

So knowing the modular invariants for an RVOA V gives considerable information
concerning its possible ‘nice’ extensions V ′. For instance, we are learning from this that
the only finite extensions of a generic integrable affine algebra VOA are those studied in
[147] (‘simple-current extensions’), and whose modular data is given in [212].
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6.2.3 Quantum groups

The chiral data of affine algebras and Wess–Zumino–Witten models is also recovered
by quantum groups (deformations of the universal enveloping algebra U (g)), though the
reasons are still somewhat mysterious (i.e. indirect).

Over the years large numbers of two-dimensional models in statistical mechanics were
found that are exactly solvable (completely integrable). Gradually it became clear that
the underlying reason was the so-called (quantum) Yang–Baxter equation [394]:

R12 R13 R23 = R23 R13 R12, (6.2.8)

where R : V ⊗ V → V ⊗ V is linear and where, for example, R13 : V ⊗ V ⊗ V →
V ⊗ V ⊗ V sends v1 ⊗ v2 ⊗ v3 ∈ V ⊗ V ⊗ V to

∑
i ai ⊗ v2 ⊗ bi , where R(v1 ⊗ v3) =∑

i ai ⊗ bi . (Generalisations of (6.2.8) exist but this is enough for us.) The Yang–
Baxter equation should make us think of braids (recall Figure 1.29) and indeed an easy
result is:

Proposition 6.2.6 Given a solution R to (6.2.8), we obtain a representation of the
braid group Bn on V ⊗ · · · ⊗ V (n times) by sending the braid generator σi to (τ R)i,i+1,
defined by (τ R)i,i+1(v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · vi−1 ⊗ (

∑
j b j ⊗ a j )⊗ vi+1 ⊗ · · · ⊗ vn,

where R(vi ⊗ vi+1) =∑
j a j ⊗ b j .

The ‘transpose’ τ in Proposition 6.2.6 is the flip of the two copies of V ; we see it again
in Definition 6.2.8. The reader should try to prove the proposition, but it’s also proved
in section 15.2A of [98].

We are interested in families R = R(q) of solutions to (6.2.8), depending on a complex
parameter q . Write q = ei�. If we Taylor expand R(ei�) =∑∞

n=0 �nrn and retain only
the first-order terms in �, we obtain the classical Yang–Baxter equation for r := r1:

[r12, r13]+ [r12, r23]+ [r13, r23] = 0. (6.2.9)

Being a sum of commutators, it’s reminiscent of Lie algebras and indeed Lie theory
provides classes of solutions [98], [394]. Roughly, quantum groups were proposed by
Drinfel’d and Jimbo around 1985 as a Lie-like symmetry underlying (6.2.8), that is, as
providing a way to solve the quantum Yang–Baxter equation using q-deformations of
Lie theory.

The idea of deformations [279] is a beautiful one. For example, consider n-space Rn

and fix a vector q ∈ Rn (the ‘deformation parameter’). Define the new multiplication
by scalars to be k ·q x := kx + (1− k)q and vector addition to be x +q y := x + y − q
(where the operations on the right sides are the usual Rn ones). The zero-vector here
is 0q := q . This defines a new vector-space structure on the same underlying space.
However, it is of course isomorphic (as a vector space) to the original one, since the
dimension hasn’t changed.

The finite-dimensional complex semi-simple Lie algebras g are also rigid in this sense
(see Question 6.2.3(b)). However, nontrivial deformations of their universal enveloping
algebras U (g) (Section 1.5.3) do exist.
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Consider for concreteness g = A1, with basis e, f, h of (1.4.2b). Define

[e, f ] = qh − q−h

q − q−1
, (6.2.10a)

qhe = q2eqh, (6.2.10b)

qh f = q−2 f qh . (6.2.10c)

Here by, for example, ‘qh’ we mean the Taylor expansion in powers of h. These equations
define the quantum group Uq (A1), a one-parameter deformation of U (A1). Given this,
we get a solution R(q) to (6.2.8):

R(q) =
∞∑

n=0

q
n(n+1)

2
(1− q−2)n

'n(q !
(q−he)n ⊗ (qh f )ne

h⊗h
2 , (6.2.10d)

where 'n(q ! = 'n(q'n − 1(q · · · '1(q for 'k(q = (qk − q−k)/(q − q−1). Nevertheless,
these equations look random and opaque (to this author at least). The next few paragraphs
aim to make some sense out of them.

Definition 6.2.7 Let k be a ring (take k = C if this generality makes you uncomfort-
able). A Hopf algebra A is:

(i) An associative algebra over k with unit 1 and multiplication μ.
(ii) A co-associative co-algebra over k, i.e. with co-multiplication � : A → A ⊗ A

and co-unit ε : A → k.
(iii) The algebra and co-algebra structures are compatible, i.e. � and ε are algebra

homomorphisms, and μ and 1 (regarded as a map ι : k → A sending x �→ x1)
are co-algebra homomorphisms.

(iv) A has a map S : A → A, called the antipode, which obeys

μ ◦ (id ⊗ S) ◦� = ι ◦ ε = μ ◦ (S ⊗ id) ◦�.
We’ve seen ‘algebra’ before. A Hopf algebra may or may not be commutative as an
algebra. A ‘co-algebra’ is an ‘algebra with the arrows reversed’: just as an algebra has a
bilinear map A ⊗ A → A (multiplication), so a co-algebra has a linear map A → A ⊗ A
(co-multiplication), and similarly for unit and co-unit.

Perhaps [51] or the introduction to [398] can help make this definition seem more
natural. Hopf algebras are algebras with a rich representation theory. If M, N are modules
of a generic algebra A, then their usual vector-space tensor product M ⊗ N always has a
natural structure as an A ⊗ A-module, but generally not an A-module. But if A has a co-
product, we get the A-module structure by the formula a.(m ⊗ n) := �(a).(m ⊗ n). The
antipode converts left modules into right modules, and is used to define the representation
M∗ dual to a given representation M . It plays the role of inverse in the algebra. See also
Question 6.2.4.

For example, a universal enveloping algebra U (g) forms a Hopf algebra with co-
product given by �(x) = x ⊗ 1+ 1⊗ x for x ∈ g and �(1) = 1⊗ 1; co-unit ε(x) = 0
for x ∈ g and ε(1) = 1; and antipode S(x) = −x for x ∈ g and S(1) = 1. In a similar
way, the space F(G) of functions on a Lie group G is also a Hopf algebra (in fact a dual
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of U (g)). U (g) is co-commutative, whereas F(G) is commutative; in fact, these U (g)
are the only co-commutative, and F(G) the only commutative, Hopf algebras (modulo
certain technical assumptions). This is in fact why Drinfel’d [160] cooked up the name
‘quantum group’ for these q-deformations. Uq (g) is a non-co-commutative deformation
of U (g), so we could imagine that just as the dual of U (g) consists of the functions on
a group G, the dual of Uq (g), which will be a non-commutative Hopf algebra, should
correspond to something like the functions on a group-like object Gq , which would be
some sort of q-deformed version of G. This picture is in the same spirit as Connes’
non-commutative geometry. In any case the term ‘quantum group’ has inappropriately
slipped from Gq to apply directly to Uq (g).

The co-product, etc. for these Uq (g) are explicitly given in proposition 6.5.1 of [98]
in full generality. Although Uq (g) is not co-commutative, it is nearly so:

Definition 6.2.8 A quasi-triangularisable Hopf algebra A is a Hopf algebra with
invertible element R ∈ A ⊗ A such that τ (�(a)) = R�(a)R−1 for all a ∈ A, as well
as

(�⊗ id)(R) =R13R23 ∈ A ⊗ A ⊗ A,

(id ⊗�)(R) =R13R12 ∈ A ⊗ A ⊗ A.

This element R is called the universal R-matrix (or braiding) of A. Of course if A is
co-commutative, then R = 1⊗ 1 works. The point: the element R satisfies the quan-
tum Yang–Baxter equation (6.2.8). This is the origin of the word ‘triangular’ in Defini-
tion 6.2.8: an alternate name for the Yang–Baxter equation is the star–triangle relation. So
given any representation of A,Rmaps to a matrix satisfying (6.2.8) – this representation-
independent aspect of R justifies the word ‘universal’. Any non-co-commutative quasi-
triangularisable Hopf algebra is now called a quantum group.

Drinfel’d [160] found a remarkable way, independent of the Yang–Baxter equation, to
construct quantum groups from any Hopf algebra A. The quasi-triangular Hopf structure
is put on the space A ⊗ (A∗)op, where (A∗)op is the dual Hopf algebra A∗ except that
its co-multiplication is changed from �∗ to its transpose τ ◦�∗. A nice discussion
is in [480]; a general categorical interpretation is the ‘centre construction’ [338]. In
particular, the quantum group Uq (g) of (6.2.10) arises as a simple quotient of the quantum
double of Uq (B+), where B+ is the Borel subalgebra of g, generated by hi and ei . See
section 4.6 of [207] , where this is discussed very explicitly. The point is that Uq (B+) is
very easy to understand, so this gives an explicit way to compute R for Uq (g).

As usual we’re interested in representation theory. Recall that the modules of A1

and U (A1) are identical. There is only one one-dimensional A1-module: everything
gets sent to 0. However, there are exactly two one-dimensional representations of the
quantum group Uq (A1): e.v = f.v = 0 and qh .v = ±v. Call these ψ±. ψ+ is just the
deformation of the trivial U (A1)-representation, but ψ− has no classical (i.e. q → 1)
analogue. The existence of ψ− is the only difference between the representation theory
of Uq (A1) and U (A1) (or A1): every finite-dimensional irreducible Uq (A1) module is
uniquely expressible as the tensor product of a one-dimensional representation ψ± with
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some highest-weight representation Lq (m), for m ∈ N, where Lq (m) is a deformation
of L(m) with the same Weyl character. This generalises to any Uq (g).

We’re more interested in Uq (g) ‘at a root of unity’. The meaning of this is very subtle,
but is explained very thoroughly in chapter 9 of [98] (we are interested in their second
construction, the ‘restricted integral form’ Ures

q (g), which is a quotient of Uq (g)); see
also [10], [392]. The representation theory is also subtle, and most treatments (e.g. that
of [98]) assume from the start that the order of the root of unity must be odd. See, for
example, [392], [10] for their modules. There are now indecomposable modules that are
not irreducible, a common situation in algebra (recall Question 1.1.6). The trick of how to
proceed was discovered by physicists: throw the sick modules away! In particular, when
we evaluate the Weyl characters at the root of unity q, the result is called the quantum
dimension of the module. We keep those modules with nonzero quantum dimension, and
discard the others. This prescription works because the direct product of any Ures

q (g)-
module with any sick one is a direct sum of sick ones. We can call this ‘the reduced
representation ring of the quantum group Uq (g) specialised to the root of unity q’. See
section 4.5 of [207] for examples (though note that his q is the square of ours).

The result is somewhat surprising: this reduced representation ring, for q = eπ i/m(k+h∨)

(where m is defined below), is isomorphic to that of the fusion ring of g(1) at level k
[190]. Here, m = 1 for g = Ar , Dr , E6, E7, E8; m = 2 for g = Br ,Cr , F4; and m = 3
for g = G2.

More generally, much of the chiral data of the Wess–Zumino–Witten theories are
recovered by the corresponding quantum group at a root of unity [253], [207]: along
with the fusion multiplicities, also the braiding and fusing matrices of Section 6.1.4, and
the associated knot invariants of Section 6.2.5. Explanations for these ‘coincidences’ are
given in, for example, chapter 11 of [253], but they are all unsatisfying in that they are
so indirect.

6.2.4 Twisted #6: finite group modular data

In many respects, a finite group G behaves much like a compact connected Lie group, and
so we may hope that they possess an analogue of Section 6.2.1. Indeed that is beautifully
the case.

For any finite group G (Section 1.1), let K1, . . . , Kh be its conjugacy classes, and
write ki for

∑
g∈Ki

g ∈ CG. These ki ’s form a basis for the centre of CG. Write

ki k j =
∑
�

c�i j k�; (6.2.11a)

then the structure constants c�i j are nonnegative integers, and we obtain

c�i j =
‖Ki‖ ‖K j‖
‖G‖

∑
ch∈Irr G

ch(gi ) ch(g j ) ch(g�)

ch(e)
, (6.2.11b)

where gi ∈ Ki . This resembles (6.1.1b), with Sab replaced by Si,ch = ch(gi ) and the
vacuum 0 by the identity e. Unfortunately, the other axioms of modular data fail.
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However, the group algebra CG is a Hopf algebra, with co-multiplication �(g) =
g ⊗ g, co-unit ε(g) = 1 and antipode S(g) = g−1. The way to obtain true modular data
is to take the quantum double of CG. Its Hopf dual, the space F[G] of functions G →
C, is also a Hopf algebra, for example, with co-product �( f )(g1, g2) = f (g1g2). The
construction of the double D(G) is described nicely in [406]; we will simply describe
its modular data.

Let � be the set of all pairs (a, ch), where the a are representatives of the conjugacy
classes of G and ch is the character of an irreducible representation of the centraliser
CG(a). (Recall that CG(a) is the set of all g ∈ G commuting with a.) � parametrises the
irreducible modules of the double D(G). Put [393], [136]

S(a,ch),(a′,ch′) =
1

‖CG(a)‖ ‖CG(a′)‖
∑

g∈G(a,a′)

ch′(g−1ag) ch(ga′g−1), (6.2.12a)

T(a,ch),(a′,ch′) = δa,a′δch,ch′
ch(a)

ch(e)
, (6.2.12b)

where G(a, a′) = {g ∈ G | aga′g−1 = ga′g−1a} and e ∈ G is the identity. For the
‘vacuum’ 0 take (e, 1). Then (6.2.12) is modular data. Manifestly, N-valued descrip-
tions of the fusion multiplicity N (c,ch′′)

(a,ch),(b,ch′) exist (see section 2 of [391], who realises
the fusion ring as the Grothendieck ring for G-equivariant vector bundles). For Lusztig,
(6.2.12) arose in his determination of irreducible characters of Chevalley groups. The
higher-genus fusion multiplicities in (6.1.2) also have interpretations as multiplicities of
representations of D(G) in D(G)⊗ · · · ⊗D(G) [35].

For instance, the modular data associated with the finite group S3 is

S = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 2 2 2 3 3
1 1 2 2 2 2 −3 −3
2 2 4 −2 −2 −2 0 0
2 2 −2 4 −2 −2 0 0
2 2 −2 −2 −2 4 0 0
2 2 −2 −2 4 −2 0 0
3 −3 0 0 0 0 3 −3
3 −3 0 0 0 0 −3 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6.2.13a)

T = diag(1, 1, 1, 1, e2π i/3, e−2π i/3, 1,−1). (6.2.13b)

See [115] for several more explicit examples.
This modular data can be twisted [138], [135], [34], [115] by a 3-cocycle α ∈

H 3(G,C×). Indeed this twisted modular data is absolutely as fundamental as (6.2.12) –
recall the discussion in Sections 4.3.4 and 5.3.6. This cocycle α plays the same role here
that level does in affine algebra modular data, as H 3(G,C×) ∼= Z when G is simply-
connected and simple. This sort of twist has a generalisation to arbitrary chiral data
[118].

One of the remarkable features of affine algebra modular data – its ubiquity – is
shared by finite group modular data. Most important for us, it arises in the orbifold of
holomorphic VOAs (recall Section 5.3.6). Let G be a finite group of automorphisms
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Fig. 6.7 Colourings at a crossing.

of a holomorphic VOA V – all finite groups arise in this way (Question 6.2.7). Let
VG be the space of fixed points of G; it inherits a VOA structure from V . Then
the modular data of V is trivial but that of VG is expected to be (6.2.12) or some
twisted version (see Conjecture 5.3.10). This modular data also appears in the crossed-
product construction in von Neumann algebras (Section 6.2.6). In physics, it arises in
(2+ 1)-dimensional Chern–Simons theory with finite gauge group G [138], [194], as
well as (2+ 1)-dimensional quantum field theories where a continuous gauge group has
been spontaneously broken to a finite group [31] (adding a Chern–Simons term here
corresponds to the cohomological twist).

This modular data is quite interesting for nonabelian G, and deserves more study. It
seems very effective at distinguishing groups – in fact, it is known to distinguish all groups
of order < 128. Conversely, there are non-isomorphic groups of order 215 · 34 · 5 · 7
with identical modular data up to reordering primaries [175]. Finite group modular data
behaves very differently from the affine algebra data (see e.g. [115], [457], [178]). For
instance, Eiichi Bannai has found that the alternating group A5, which has only 22
primaries, has a remarkably high number (8719) of modular invariants. By contrast,
affine algebras have relatively few modular invariants.

6.2.5 Knots

The Jordan curve theorem states that all knots in R2 are trivial. Are there any nontrivial
knots in R3?

In Figures 1.9 and 1.10 are some knots in R3, flattened into the plane of the paper. A
moment’s consideration will confirm that the second knot of Figure 1.9 is indeed trivial.
What about the trefoil?

A knot diagram cuts the knotted S1 into several connected components (arcs), whose
endpoints lie at the various crossings (double-points of the projection). By a 3-colouring,
we mean to colour each arc in the knot diagram either red, blue or green, so that at each
crossing either one or three distinct colours are used. For example, the first two colourings
in Figure 6.7 are allowed, but the third isn’t. By considering the ‘Reidemeister moves’
(Figure 1.12), which tell us how to move between equivalent knot diagrams, different
diagrams for equivalent knots (such as the two in Figure 1.9) are seen to have equal
numbers of distinct 3-colourings. Hence, the number of 3-colourings is a knot invariant.

For example, consider the diagrams in Figure 1.9 for the trivial knot: clearly, all arcs
must be given the same colour, and thus there are precisely three distinct 3-colourings.
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Fig. 6.8 The Wirtinger presentation of the knot group.

On the other hand, the trefoil has nine distinct 3-colourings – the bottom two arcs of
Figure 1.10 can be assigned arbitrary colour, and that choice fixes the colour of the top
arc. Thus the trefoil is nontrivial!

Essentially what we are doing here is counting the number of homomorphisms ϕ from
the knot group π1(R3 \ K ) of knot K to the symmetric group S3. The reason is that any
(oriented) knot diagram gives a presentation for π1(R3 \ K ), where there is a generator
xi for each arc and a relation of the form xi x j = xk xi for each crossing (Figure 6.8). See
section 3.D of [478] for more details and a proof. For example, the knot group of the
right knot of Figure 1.9 has presentation

〈x1, . . . , x7 | x1x2 = x4x1, x5x1 = x3x5, x5x4 = x3x5, x2x1 = x5x2,

x2x7 = x2x2, x2x7 = x6x2, x2x5 = x6x2〉,
which is isomorphic to Z. By contrast, the knot group of the trefoil isB3 (Question 6.2.8).
Incidentally, the complement R3 \ K of a knot determines the knot, and the extent to
which the knot group determines the knot is also understood (see section 1 of [61]).
Therefore, in this sense the trefoil and B3 are intimately connected (recall Section 2.4.3).

S3 is generated by the transpositions (12), (23), (13). The homomorphism ϕ : π1(R3 \
K ) → S3 is defined using, for example, the identification r ↔ (12), b ↔ (23), g ↔ (13),
and the above 3-colouring condition at each crossing is equivalent to requiring that ϕ
obeys each relation in the Wirtinger presentation. Our homomorphism ϕ will be onto
iff at least two different colours are used. By considering more general (non-abelian)
colourings, the target (S3 here) can be made to be any other group G, resulting in a
different knot invariant.

In the early 1980s, knot theory was dormant; by the late 1980s it was flourishing. But
as a consequence, we suddenly had too many knot invariants. Reshitikhin and Turaev
[473] brought order to this chaos, by proving that whenever we have a ribbon category V,
we get invariants of (framed) knots and links, that is of knotted and linked ribbons. The
reason for their result, as we explain in Section 1.6.2, is the universality of the topological
category Ribbon of ribbons (Theorem 1.6.2). Given any knotted link, coloured with the
objects of V, their functor associates the link with some morphism Hom(∅, ∅) of V,
and isotopic links get assigned the same morphism. This morphism is the desired link
invariant. For example, the 3-colouring invariant comes from a ribbon category associated
with the modular data (6.2.13).

We can express their result slightly differently. Suppose we have a representation
of every braid group Bn (e.g. Proposition 6.2.6 says we get this from a solution to
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Fig. 6.9 The Sab and Taa matrix entries in modular categories.

the quantum Yang–Baxter equation). To every braid we get a link by closing it up, as in
Figure 1.14. Unfortunately, different braids can get assigned the same link. As we explain
in Section 1.2.3, the two Markov moves capture precisely this redundancy. Thus we get
a link invariant from our braid representations if we can construct a quantity invariant
with respect to these two moves. The first move β ′ ↔ ββ ′β−1 suggests we assign to the
braid the trace of its representing matrix; unfortunately, that usually won’t respect the
second move, β ↔ βT±1

m .
However, [473] explain how to enhance the braid representation coming from

any quasi-triangularisable Hopf algebra (Definition 6.2.8), to get link invariants. See
section XI.3.1 of [534] for details. Thus, combining their construction with the Drinfel’d
double, which associates a quasi-triangularisable Hopf algebra with any Hopf algebra,
we can construct (or recover) enormous numbers of link invariants.

So far we have discussed invariants of links embedded in R3 (equivalently, S3). Much
more difficult is to construct invariants of links in arbitrary 3-manifolds, but it is precisely
this that is relevant to our story. There are (at least) two ways to do this: one uses ‘Dehn
surgery’ to construct the manifold from S3 [474], and the other uses triangulation by
tetrahedra [535]. We allude to the Turaev–Viro theory [535] elsewhere. In the early 1960s
Lickorish and Wallace established that any closed compact oriented 3-manifold M can
be obtained by surgery on the 3-sphere S3 along some framed link L (see section II.2.1
of [534] for details). The idea is to construct an invariant for M from the link invariant of
L in S3. For instance, the 3-manifold S1 × S2 arises from S3 by surgery along the trivial
ribbon. The problem is that different links give rise to the same manifold. However, this
redundancy is completely captured by the so-called ‘Kirby moves’ (see section II.3.1 of
[534] for details). Once again, Reshitikhin and Turaev [474] find the necessary refinement
to ribbon categories, as well as the precise expression for the 3-manifold invariant,
which will make the quantity invariant under the Kirby moves. The result is called a
modular category (see chapter 2 of [534] for complete details). Roughly speaking, it is
a ribbon category with the additional property of direct sum, with a finite set of ‘simple
objects’ (closed under ∗) and a complete reducibility property, whose Hopf link invariant
(Figure 6.9) is nondegenerate. More generally, this procedure gives us link invariants in
any 3-manifold. Again, the ultimate source of these topological invariants is a universality
property of the appropriate topological category. All of these universalities have as their
source the universality of Braid for braided monoidal categories (Theorem 1.6.1).

Any RCFT gives a modular category (in fact two of them, one for each chiral half). For
an RCFT, the simple objects are the objects that are the chiral primaries, the monoidal
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structure is the fusion product and duality is charge-conjugation. Modular data is obtained
directly from the Hopf link and twist, as in Figure 6.9. There are thus three different
incarnations of the S-matrix in RCFT: the modular transformation (4.3.9a), Verlinde’s
formula (6.1.2), and the Hopf link. In fact, the notion of a modular category is equivalent
to that of Segal’s modular functor (Section 4.4.1) [534], [32]. For a sufficiently nice VOA
V , the simple objects are the irreducible V-modules. The 3-colouring invariant of Figure
6.7 comes from a holomorphic orbifold VOA, and as such can be modified to yield a
link invariant in any 3-manifold.

For instance, we get S3 knot invariants from the quantum group Uq (Xr ) with generic
parameter, but to get invariants for any closed 3-manifold requires specialising q to a
root of unity. Modular categories are far less common than ribbon categories, but they
can be obtained by an analogue of the Drinfel’d double.

6.2.6 Subfactors

The final general source of modular data that we discuss is from subfactor theory. The
relations of subfactors to knots is reviewed in, for example, [317], [318], [319], while
reviews of the relation between subfactors and CFT can be found in [177], [66].

Recall the definitions in Section 1.3.2. Let N ⊂ M be an inclusion of type II1 factors.
We call N a subfactor, provided N includes the identity of M . Jones’ motivation for
looking at subfactors came from their formal similarity with Galois theory. After all, the
very notation dimM (H) for the ‘coupling constant’ of Section 1.3.2 suggests thinking of
a type II1 factor as a non-commutative analogue of ‘field of scalars’.

In particular, let G be a finite group acting on some type II1 factor N . Then the
crossed-product N×G is also a type II1 factor, iff each g ∈ G, g �= e, is ‘outer’. By an
outer automorphism g of N we mean that there are no unitary operators u ∈ N such that
g.x = uxu∗ for all x ∈ N . Any locally compact (e.g. finite) group G acts on, for example,
the hyperfinite type II1 factor by outer automorphisms, so this isn’t a major restriction.
This yields a Galois correspondence between subgroups H of G, and subalgebras of M
containing the algebra MG of fixed points, given by H ↔ M H . This is analogous to the
relation between subfields K ⊂ L and Galois groups in Section 1.7.2. So what is the
subfactor analogue of the index [L : K]?

Jones’ answer is the Jones index of the subfactor N ⊆ M :

[M : N ] := dimN (L2(M)) ≥ 1, (6.2.14)

where L2(M) is the Hilbert space of Question 1.3.6. For instance, for any n ≥ 1, [N ⊗
Mn(C) : N ] = n2. If H ≤ G are finite groups of outer automorphisms, then [M×G :
M×H ] = ‖G‖/‖H‖ = [M H : MG], where the crossed-product M×H and fixed-point
M H factors are discussed in Section 1.3.2.

The following theorem was completely unexpected.

Theorem 6.2.9 [316] For any number

d ∈ {4 cos2(π/n)}∞n=3 ∪ [4,∞],
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there is a subfactor N ⊆ M of the unique hyperfinite type II1 factor M, with index
[M : N ] = d. Conversely, the index of any subfactor of a (not necessarily hyperfinite)
type II1 factor will be in that set.

In fact, the following rigidity is true: if M is the hyperfinite type II1 factor, then at
most four inequivalent subfactors N ⊆ M can possess the same index < 4. The reader,
with Section 2.5.2 fresh in mind, may recognise the discrete sequence of indices in
Theorem 6.2.9 as the square of the Perron–Frobenius eigenvalues of the A–D–E graphs –
is this a coincidence?

The key to proving Theorem 6.2.9, as well as the further developments, is the so-
called basic construction, which appears to have been found independently by a number
of people in the late 1970s. Let N ⊆ M be an inclusion of type II1 factors. Even though
M and N are isomorphic as factors, there is rich combinatorics surrounding how N is
embedded in M . The Hilbert space L2(N ) is naturally contained in L2(M). Let eN be the
orthogonal projection of L2(M) onto L2(N ). Then M and eN generate the von Neumann
algebra 〈M, eN 〉′′ acting on the space L2(M). If the index [M : N ] is finite, then 〈M, eN 〉′′
will also be a type II1 factor, with index [〈M, eN 〉′′ : M] = [M : N ]. Moreover, since the
trace (normalised so that tr(1) = 1) on a type II1 factor is unique, we can unambiguously
speak of the trace tr(eN ), and we find it equals 1/[M : N ]. For later convenience define
τ := 1/[M : N ].

For example, taking N to be the fixed points MG , for some finite group G of outer auto-
morphisms, then eN = (1/‖G‖)∑g g, tr(eN ) = 1/‖G‖ and 〈M, eN 〉′′ = M×G. This
demonstrates the naturalness of this construction. What is the von Neumann algebra
generated by M and e? The answer is the crossed-product M×G.

We can repeat the basic construction indefinitely. Put M0 := N , M1 := M and define
inductively

Mi+1 := 〈Mi , ei−1〉′′,
where ei := eMi−1 is the orthogonal projection from L2(Mi ) onto L2(Mi−1). We thus get
a tower M0 ⊂ M1 ⊂ · · · of type II1 factors, and a sequence e1, e2, . . . of projections.
The limit M∞ := ∪∞n=0 Mn is also a type II1 factor, with a unique (normalised) trace tr,
which restricts to the unique trace on each Mn . Thus each tr(en) = τ . The algebra A∞,τ

spanned by the projections ei obeys the relations

e2
i = e∗i = ei , (6.2.15a)

ei ei±1ei = τei , (6.2.15b)

ei e j = e j ei if |i − j | ≥ 2, (6.2.15c)

tr(xen+1) = tr(x) τ, (6.2.15d)

where x is in the (finite-dimensional semi-simple) algebra An,τ generated by
1, e1, . . . , en−1. In fact these are the complete list of relations for An,τ , because the
(normalised) trace tr on any type II1 factor obeys tr(xx∗) ≥ 0 with equality only if
x = 0. The (easy) proofs of all these statements are in [319]. The point is that the tower
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M0 ⊂ M1 ⊂ · · · and the projections e1, e2, . . . depend only on the original subfactor.
Positive-definiteness of the trace on An,τ gives the discrete values of Theorem 6.2.9.

Of course we are now trained to recognise (6.2.15b) and (6.2.15c) as having to do with
the braid groups. In particular, if we try to send the braid group generator σi to aei + b,
we obtain the solution a = t + 1, b = −1, where t satisfies t + t−1 + 2 = τ−1. Thus to
any finite index type II1 subfactor, we get a representation of the braid group!

We know how to go from a braid group representation to a link invariant: we need
to associate a number with each braid that is invariant under the two Markov moves
(Section 1.2.3). For a braid β ∈ Bn , the combination

Jβ(t) =
(
−
(√

t + 1√
t

))n−1√
t

degβ
tr(β) (6.2.16)

works (verify this), where ‘degβ’ is defined in Section 1.1.4 and ‘tr(β)’ means the trace
of the corresponding element in Mn . This function Jβ is the famous Jones polynomial.

Witten showed that the Jones polynomial can be recovered from the topological field
theory (or modular category) associated with affine algebra A1

(1) at level k ∈ N, when
the highest weight ω1 + (k − 1)ω0 is assigned to each strand of the link. Of course,
there is no need to restrict to A1

(1) or that weight, and other choices yield other link
invariants.

Can the subfactor approach also recover these other link polynomials, or is it inherently
‘rank 1’? Is the full topological field theory (or if you prefer, the CFT or modular category)
obtainable from the subfactor, or does the subfactor only see the link polynomials? The
answer to both questions is yes; the construction was originally due to Ocneanu, and is
explained carefully in [177] (see also [354] for a very accessible treatment of certain
parts of the theory). The starting point is the realisation that the projections ei are only
a small part of the full tower M0 ⊂ M1 ⊂ M2 ⊂ · · · .

Subtleties in any representation theory arise through the interplay of addition with
multiplication, and with contragredient (dual). Addition (direct sum) of modules comes
for free here. Unfortunately, the modules of factors (which we briefly described at the
end of Section 1.3.2) don’t have an obvious tensor product, and in any case are rather
colourless (e.g. there is a unique nontrivial module for type III factors).

The right objects to study here are bimodules. We call a Hilbert space X = M X N an
M–N bimodule if M acts on the left and N on the right. The point is that they have a
natural multiplication: the relative tensor product (‘Connes fusion’) M X N ⊗N YP will
be an M–P bimodule. The multiplicative identity (playing the role of the trivial one-
dimensional module) is M L2(M)M , usually abbreviated to M MM . Given any bimodule

M X N , the conjugate Hilbert space X is naturally an N–M bimodule: nxm := m∗xn∗.
Moreover, the possibilities for bimodules are far richer than for modules.

Let N ⊂ M be an inclusion of II1 factors with finite Jones index [M : N ].
Recall the tower M0 = N ⊂ M = M1 ⊂ M2 ⊂ · · · arising from the basic construc-
tion. Let �M denote the set of equivalence classes of irreducible M–M submod-
ules of ⊕n≥1 M L2(Mn)M , and �N that for the irreducible N–N submodules of
⊕n≥0 N L2 (Mn)N . We require these sets to be finite (‘finite depth’). Write HC

AB for the
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Fig. 6.10 The principal and dual principal graphs associated with S3.

(finite-dimensional) intertwiner space HomM−M (C, A ⊗M B). For any A, B ∈ �M ,
the product A ⊗M B can be decomposed into a finite sum

∑
C∈�M

N C
ABC , where

N C
AB = dimHC

AB ∈ N are the multiplicities. Indeed, all axioms of a fusion ring will
be obeyed, except usually commutativity and self-duality.

Returning to the Galois theory analogy, the Jones index merely corresponds to the
degree of the field extension. To what corresponds the Galois group? Ocneanu’s answer
is an intricate subfactor invariant called a paragroup [453] (see especially chapter 10
of [177]). It consists of two graphs (the principal and dual principal), whose vertices
are bimodules for M and N ; an order-2 involution of the vertices corresponding to
the contragredient map A �→ A; and a ‘connection’, that is an assignment of complex
numbers to closed paths in the graphs, reminiscent of 6 j-symbols, describing the change
between natural bases. The graphs are obtained from the fusion rings; their Perron–
Frobenius eigenvalues equal the square-roots of the Jones index. For example, when the
Jones index is< 4 (corresponding to eigenvalue< 2), those two graphs are equal, and are
one of An, Deven, E6 or E8 (recall Figure 1.4) – it cannot be the tadpole Tn for elementary
reasons, but Dodd and E7 are excluded for their inability to support a connection. Two
inequivalent connections are possible on the E6 and E8 graphs, corresponding to different
subfactors. Thus Theorem 6.2.9 indeed constitutes another realisation of A–D–E, and
for the ultimate reason suggested in Section 2.5.2.

A paragroup is a generalised (‘quantised’) sort of group. Figure 6.10 gives the
graphs for R ⊂ R×G (for R the hyperfinite II1 factor and G = S3). The M–M
bimodules are parametrised by the irreducible characters chi of G, with precisely
chi (e) edges connecting the i th node to the root of the graph. The N–N bimod-
ules are parametrised by elements of the group. The contragredient involution and
fusion rings are the ones familiar to aficionados of character tables: complex-conjugate
and the character ring, and g �→ g−1 and the group ring CG. The connection
explicitly recovers the group structure, much as in the topological field theory of
Section 4.4.2. On the otherhand, the graphs for RG ⊂ R are switched. More gener-
ally, given any subgroup H < G, we get subfactors RG ⊂ RH and R×H ⊂ R×G, and
their paragroups give a group-like interpretation to G/H even when H is not normal.

We say subfactors Ni ⊂ Mi are equivalent if there is an isomorphism θ : M1 → M2

with θ (N1) = N2. When M is hyperfinite type II1, the paragroup identifies N ⊂ M up to
equivalence. Hence, when G is a finite abelian group, RG ⊂ R is equivalent to R ⊂ R×G
(when instead G is nonabelian, they are merely dual).

The paragroup yields a topological invariant for manifolds, generalising the Turaev–
Viro one [535] (see [354] for a very readable treatment of this part of the theory).
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However, it doesn’t directly correspond to the data of an RCFT (e.g. the fusion rings
of Figure 6.10 aren’t self-dual). To get RCFT data, we must pass from N ⊂ M to
the ‘asymptotic inclusion’ 〈M, M ′ ∩ M∞〉 ⊂ M∞, where M∞ is the (weak completion
of the) union of all Mn . Asymptotic inclusion plays the role of Drinfel’d’s quantum-
double here, and corresponds physically to taking the continuum limit of the lattice
model, yielding the CFT from the underlying statistical mechanical model (see sec-
tion 12.6 of [177]). All chiral data of the VOA or RCFT, including the link invariants,
are obtainable from the asymptotic inclusion. For instance, the Jones index [M : N ]
equals 1/S2

00.
A very similar (but simpler) theory has been developed for type III factors. Bimodules

now are equivalent to ‘sectors’, that is equivalence classes of endomorphismsλ : N → N
(the corresponding subfactor is λ(N ) ⊂ N ). This use of endomorphisms is the key dif-
ference (and simplification) between the type II and type III fusion theories. Given
λ,μ ∈ End(N ), we define 〈λ,μ〉 to be the dimension of the vector space of intertwin-
ers, that is all t ∈ N such that tλ(n) = μ(n)t ∀n ∈ N . The endomorphism λ ∈ End(N )
is irreducible if 〈λ, λ〉 = 1. Let � be a finite set of irreducible sectors. The fusion
product is given by composition λ ◦ μ; addition can also be defined, and the fusion
multiplicity N ν

λμ is then the dimension 〈λ ◦ μ, ν〉. The ‘vacuum’ 0 is the identity idN .
Restricting to a finite set � of irreducible sectors, closed under fusion, the result is
again a (noncommutative non-self-dual) fusion ring (after all, why should the composi-
tions λ ◦ μ and μ ◦ λ be related). The missing ingredients are nondegenerate braidings
ε±(λ,μ) ∈ Hom(λ ◦ μ,μ ◦ λ), which say roughly that λ and μ nearly commute (the ε±

must also obey some analogue of the Yang–Baxter equation (6.2.8)). Provided we have
a nondegenerate braiding (which we can obtain from asymptotic inclusion as before),
Rehren [470] proved that we will automatically have modular data. When we have a
hyperfinite type III1 subfactor N ⊂ M with a braided system of endomorphisms, there
is a simple expression (see [65] and references therein) for the corresponding modular
invariant (Definition 6.1.8) using ‘α-induction’ (a process of inducing an endomorphism
from N to M using the braiding ε±): we get Zλμ = 〈α+λ , α−μ 〉. The nim-rep is defined
similarly [65].

Wassermann and collaborators (see e.g. [554]) have explicitly constructed the affine
algebra subfactors, recovering the affine algebra modular data, at least for Ar

(1) and
Br

(1). To any subgroup–group pair G < H , the subfactor R×G ⊂ R×H of crossed-
products has a (in general non-commutative) fusion-like ring. But sometimes it will have a
braiding – for example, the diagonal embedding G < G × G recovers the finite group
modular data of Section 6.2.4.

These approaches cannot reconstruct the full RCFT or VOA. To give a simple example,
the VOA associated with any even self-dual lattice or the Moonshine module corresponds
to the trivial subfactor N = M , where M is the unique hyperfinite type II1 factor. The
way to get more information uses nets of subfactors.

There are two standard axiomatisations of quantum field theory (Section 4.2.4). The
Wightman axioms, applied to two-dimensional CFT, yield quite naturally a VOA (see
chapter 1 of [330]). Algebraic quantum field theory [269], on the other hand, leads to
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subfactors. In particular, to any open set O in Minkowski space R1,1 we are to assign
a von Neumann algebra A(O) ⊂ L(H) of observables localised to O, obeying various
properties (such as O1 ⊂ O2 implies A(O1) ⊂ A(O2)). The axioms imply these A(O)
will all be type III1 factors. In two dimensions, choosing ‘light-cone’ coordinates x0 ± x1,
we can take these O to be the product I × J of open intervals I,J ⊂ R. This means
that for most purposes the theory decomposes into a one-dimensional net A(I) – the
chiral theory. The one-dimensional ‘space-time’ R is compactified to S1, and requiring
the theory to be covariant with respect to Diff(S1), the result is called a local conformal
net. The theory of these one-dimensional nets should be equivalent to that of VOAs, and
that of the two-dimensional ones to the full RCFT, though most details of this equivalence
are still to be established. Nevertheless, some aspects of the theory will likely remain
much more accessible using, for example, subfactors than VOAs (in particular, orbifolds
seem simpler in subfactor theory). For references and results, see, for example, [341],
[340], [568], [332] and references therein.

Question 6.2.1. Prove equation (6.2.3a).

Question 6.2.2. Find all nim-reps for A1
(1) at each level k = 1, 2, 3, . . . (Hint: Verify that

the Perron–Frobenius eigenvalue of M1 is S10/S00 = 2 cos(π/(k + 2)) < 2.)

Question 6.2.3. (a) Find a continuous one-parameter deformation of the three-
dimensional complex Lie algebra span{x, y, z}with brackets [xy] = x , [xz] = [yz] = 0.
(b) Verify that any continuous deformation of A1 is trivial.

Question 6.2.4. Let M, N be left A-modules, where A is a Hopf algebra. Prove that
HomK (M, N ) is a left A-module.

Question 6.2.5. (a) When does the character table of a finite group, with rows and columns
appropriately normalised and ordered, equal the S-matrix of modular data?
(b) Let G be finite and abelian. Is the fusion ring for the quantum double D(G) (see
Section 6.2.4) isomorphic to the group ring of G × G?

Question 6.2.6. Let G be any finite group and consider the modular data of (6.2.12).
Find the conjugation C , the simple-currents J and their action and monodromy ϕJ , and
identify the group of all simple-currents. Identify the Galois action and parities.

Question 6.2.7. Prove that any finite group can be realised as a subgroup of the group of
automorphisms of a holomorphic VOA. (Hint: think of self-dual lattices.)

Question 6.2.8. Identify the knot group π1(R3 \ T ) of the trefoil, using the Wirtinger
presentation of Figure 6.8.

Question 6.2.9. Prove, using the Reidemeister moves, that the Wirtinger presentation
yields the same group no matter which knot diagram is chosen for the given knot.

Question 6.2.10. Recall (6.2.15). Find all values a, b such that σi �→ aei + b, i =
1, . . . , n − 1, yields a representation of the braid group Bn in An,τ .
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6.3 Hints of things to come

String theory has profoundly affected geometry (e.g. elliptic genus and mirror symmetry),
algebra (e.g. VOAs) and topology (e.g. knot invariants), but so far it has had little impact
on number theory. That may have something to do with the knowledge and interests
of the individuals who have developed its mathematical side. There are in fact several
indications of deep relations with number theory, waiting to be developed. In this section
we sketch some of these.

6.3.1 Higher-genus considerations

String theory tells us that CFT can live on any surface �. The VOAs, including the
geometric VOAs of Section 5.4.1, capture CFT in genus 0. The graded dimensions and
traces considered above concern CFT quantities (‘chiral blocks’) at genus 1: τ �→ e2π iτ

maps H onto a cylinder, and the trace identifies the two ends. But there are analogues of
all this at higher genus [573] (though the formulae can rapidly become awkward). We
have alluded to this throughout the book so will only add some quick remarks here. Our
main point is that this is surely the direction for important future research, with direct
implications to Moonshine.

For example, the graded dimension of the V � CFT in genus 2 is computed in [533],
and involves, for example, Siegel theta functions. The higher-genus mapping class group
representations coming from the A1

(1) RCFT are studied in [220]. A more radical sug-
gestion, using projective limits, is given in Section 4.3.3.

The orbifold theory in Sections 5.3.6 and 7.3.2 is genus 1: each sector (g, h) corre-
sponds to a homomorphism from the fundamental group Z2 of the torus into the orbifold
group G (e.g. G = M) – g and h are the targets of the two generators of Z2 and so must
commute. More generally, the sectors correspond to homomorphisms ϕ : π1(�) → G,
and for each we get a higher-genus trace Z(ϕ), which are functions on the Teichmüller
space Tg (generalising the upper half-plane H for genus 1). The action (7.3.3) of SL2(Z)
on N(g,h) generalises to the action of the mapping class group on π1(�) and Tg .

For example, we can count the number of inequivalent homomorphisms π1(�) → G,
for G a compact genus-g surface. This number is given by Verlinde’s formula (6.1.2)
together with the expression (6.2.12a) [194]:

N (g,0) =
∑

h

∑
ch∈Irr(CG (h))

(‖CG(h)‖
ch(e)

)2(g−1)

, (6.3.1)

where we sum over representatives h of the various conjugacy classes of G.

6.3.2 Complex multiplication and Fermat

A few years ago Philippe Ruelle was walking in a library in Dublin. He spotted a yellow
book in the mathematics section, called Complex Multiplication [367]. A strange title
for a book by Lang! Ruelle flipped it to a random page, which turned out to be 26. There
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he found what we would call the Galois selection rule (6.1.15a) for A2
(1), analysed

and solved for the cases where k + 3 is coprime to 6. Lang, however, knew nothing of
modular invariants; he was reviewing work by Koblitz–Rohrlich [351] on decomposing
the Jacobians of the Fermat curve xn + yn + zn = 0 into their prime pieces, called
‘simple factors’.

Fix n > 3. Let Fn denote the nth Fermat curve, that is the projective complex curve
xn + yn + zn = 0. We will describe some similarities with the modular data of A2

(1) at
level k = n − 3.

First, let’s review some A2
(1) chiral data. Call a pair (r, s) ∈ N× N admissible if

1 ≤ r, s and r + s < n. The integrable highest weights λ ∈ Pk
+(A(1)

2 ) are in one-to-one
correspondence with the admissible pairs, given by λ(r,s) := (n − r − s − 1)ω0 + (r −
1)ω1 + (s − 1)ω2. For any admissible (r, s), define

Hr,s = {� ∈ Z×n | 〈�r〉 + 〈�s〉 < n},
where Z×N is (as always) the multiplicative group (mod N ) of integers coprime to N , and
〈a〉 is the unique integer 0 ≤ 〈a〉 < n congruent to a (mod n). Then Z×3n is the Galois
group over Q of the field generated by all entries Sλμ of the A2

(1) level-k matrix S. The
Galois selection rule (6.1.15a) says that if Z is a modular invariant, then

Zλ(r,s),λ(r ′ ,s′ ) �= 0 ⇒ Hr,s = Hr ′,s ′ .

The hard part of the A2
(1) modular invariant classification involves solving this condition

Hr,s = Hr ′,s ′ [232].
Before we compare this to Fn , let’s introduce some geometric terminology. An abelian

variety is a torus of the form Cm/L , where L is a 2m-dimensional lattice in Cm , which
admits an embedding into projective space. This means there is a Hermitian form on
Cm (defined in Section 1.1.3), whose imaginary part takes integer values when restricted
to L . Most tori (when m > 1) don’t satisfy this Hermitian form condition, though it is
automatic when m = 1. We say two abelian varieties Cm/L and Cm/L ′ are isogenous if
there exists a continuous group homomorphism from one to the other that is surjective;
equivalently, if there is an invertible complex-linear endomorphism of Cm taking the
lattice L onto a sublattice of L ′. Isogeny is an equivalence relation preserving most
things of interest.

Now suppose an abelian variety Cm/L contains another, Cn/L ′, of dimension n < m.
Then the Hermitian form can be used to show that the original variety is isogenous to
the product of Cn/L ′ with some Cm−n/L ′′ (roughly, L ′′ is the orthogonal complement
of L ′ in L). Continuing in this way, we get that any abelian variety is isogenous to the
product of simple factors, where simple factor means an abelian variety containing no
proper abelian subvariety.

A very special property that an abelian variety may possess is complex multipli-
cation. The general definition is a little too complicated to get into here (see chap-
ter 1.4 of [367]), so let’s restrict to one-dimensional abelian varieties, that is the torus
Aτ = C/(Z+ τZ). We say Aτ has complex multiplication if its endomorphism ring
End(Aτ ) is strictly greater than Z; equivalently, if there is a non-integer z ∈ C such that
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z(Z+ τZ) ⊂ Z+ τZ (hence the name). It turns out that if Aτ has complex multiplica-
tion, then (among other things) j(τ ) is an algebraic integer. This illustrates just how rare
complex multiplication is: only countably many Aτ have it. It also illustrates its number-
theoretic significance, which only becomes more profound as the dimension rises.

We get an abelian variety from any complex projective curve, by taking the Jacobian
(Section 2.1.4), which is of complex dimension equal to the genus. In the case of the
Fermat curve Fn , the genus is

( n−1
2

)
, which equals the cardinality ‖Pk

+(A(1)
2 )‖. A bijection

between Pk
+(A(1)

2 ) and a basis of holomorphic 1-forms is

λ(r,s) ↔ ω(r,s) := xr−1 ys−1 dx

yn−1
,

for any admissible (r, s). For each (r, s) let [r, s] denote the Hr,s-orbit {(〈�r〉, 〈�s〉)}�∈Hr,s .
Then the Jacobian Jac(Fn) is isogenous to the product, over all orbits [r, s], of a ‖Z×m‖/2-
dimensional abelian variety A[r,s], for m = n/gcd(r, s, n − r − s). All A[r,s] have com-
plex multiplication, which simplifies the following analysis.

We wish to decompose Jac(Fn) into a product of simple factors. Thus we need to
know when the A[r,s] are isogenous to one another, and also when they are simple. Both
questions reduce to knowing when Hr,s = Hr ′,s ′ , which as we mentioned earlier is also
the key step in the A2

(1) modular invariant classification.
Similarly, Itzykson discovered traces of the A2

(1) exceptionals – these occur when
k + 3 = 8, 12, 24 – in the Jacobian of F24. See [46] for additional observations.

The point is that the combinatorial heart of two very different problems – the decom-
position of the Jacobian of Fermat curves into simple factors, and the classification of
RCFT associated with A(1)

2 – are identical. Nevertheless, this must seem a little ad hoc.
What is needed are other independent probes of this (still hypothetical) relationship. One
possibility, suggested by the presence of complex multiplication, is the following.

Basic data associated with an algebraic variety V is its zeta-function L(V, s), which
counts its points over various finite fields. Isogenous varieties have equal zeta-functions.
The Mellin transform of the zeta-function (Section 2.3.1) formally gives a q-series
fV (τ ) =∑

n anqn . For a typical variety V , fV won’t have any special properties, but
when V has complex multiplication, the zeta-function decomposes into a product of
Hecke L-functions, and their q-series do have modularity properties [505], [506].

Thus, associated with the abelian varieties A[r,s] – by virtue of complex multiplication –
are various sorts of modular forms. And associated with the weights λ(r,s) – by virtue
of being integrable highest weights of an affine algebra – are various sorts of modular
forms.

Problem How are the modular forms associated with the zeta-functions of the factors
A[rs] in the Jacobian of the Fermat curve Fn related to the modular forms associated
with integrable highest-weight modules of A2

(1) at level n − 3?

The easiest n to check will be n = 4, 6, 8, 12, since for them Jac(Fn) is isogenous to a
product of elliptic curves. A somewhat related project, concerning A1

(1), is proposed in
[490], though nothing definite has been achieved there yet.
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In any case, these Fermat↔ A2
(1) ‘coincidences’ are still not understood. It is tempt-

ing to guess that, more generally, the Ar
(1) level-k modular invariant classification is

somehow related to the hypersurface xn
1 + · · · + xn

r = zn , for n = k + r + 1, but this is
probably too naive. As with other meta-patterns, the most realistic hope wouldn’t be
to find a direct connection between Fermat curves and the RCFTs associated with sl3.
Rather, the idea is to identify the combinatorial nugget common to both. The real hope
would be that this ‘coincidence’ lies in a series: A–D–E for sl2, Fermat for sl3, . . . , and
that this would lead to insights into sl4 RCFT and beyond.

Complex multiplication in CFT has been the subject of other work – see [435] for
several references. Let’s mention two examples. Arithmetic varieties related to number
fields seem to be naturally selected in the study of black holes in Calabi–Yau compacti-
fications of string theory [435]. It has been conjectured [268] that superconformal field
theory with target space given by a Calabi–Yau manifold M will be rational iff both M
and its mirror have complex multiplication.

6.3.3 Braided # 6: the absolute Galois group

The absolute Galois group of the rationals is the group of symmetries of the field of
algebraic numbers. It is the most important, and poorest understood, group in algebraic
number theory. But it also has deep contacts with geometry (through the generalised
Riemann existence theorem), and there have been several proposals conjecturing its
relevance to RCFT (see e.g. [128], [435], [268] and references therein), and even quantum
field theory [106], [93].

Recall the discussion of algebraic numbers and Galois groups in Section 1.7. The
algebraic closure Q of the rationals is the set of all algebraic numbers, or equivalently
the union of all finite-dimensional field extensions of Q. The absolute Galois group of Q
is �Q := Gal(Q/Q). It’s uncountably infinite, and extremely complicated. Only two of
its elements have names: the identity and complex conjugation. If K is any finite Galois
extension of Q, then its Galois group G = Gal(K/Q), which will be a finite group, is
a homomorphic image of �Q and so is a quotient �Q/N of �Q. Much effort has been
devoted to discovering which groups G can arise as Galois groups over Q (see [548] for
a review of the so-called inverse Galois problem).

Conjecture 6.3.1 Any finite group G is a quotient of �Q.

This conjecture shows just how complicated�Q is. Incidentally, there are many nontrivial
points of contact between braid groups and inverse Galois theory (see e.g. [549]).
�Q is an example of a profinite group, that is a projective limit of finite groups (here,

of the Galois groups G). We define projective limit in Section 2.4.1 – the indexing set
here are the fields K, ordered by inclusion, to which is attached its Galois group G. This
just means that σ ∈ �Q consists of a choice of Galois automorphism σK for each finite
extension K ⊇ Q, which obeys the obvious compatibility constraint (if K ⊂ L, then σL

restricted to K must equal σK). Thus, if the conjecture is true, �Q would be the limit
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lim←G of all finite groups, in this sense. Of course any finite group is also a quotient of
some free group Fn , and so we may wonder if �Q and Fn are somehow related.

Thanks to their realisations as fundamental groups, the braid groupBn acts faithfully on
Fn (Question 6.3.5) – in other words, Bn can be regarded as a subgroup of Aut(Fn). This
can be seen as follows. Recall the space Cn of (1.2.6). We have the obvious projection
π : Cn+1 → Cn , given by forgetting the (n + 1)th point. Hence π induces an action
of the fundamental group π1(Cn) of the base on the fundamental group of the fibre
π−1(z1, . . . , zn) = C \ {z1, . . . , zn}, that is an action of the pure braid group Pn on Fn .
The action of Bn is obtained similarly. We will find that similar reasoning allows us to
replace Bn by �Q, and Fn by its profinite completion.

Let X be an algebraic variety defined over Q – that is, X is defined as the set of
solutions (z1, . . . , zn) ∈ Cn to a collection of polynomials pi (z1, . . . , zn) = 0, and the
polynomials have coefficients in Q. Let X (Q) be the set of points (z1, . . . , zn) ∈ X with
all coordinates zi ∈ Q. Fix a base-point p ∈ X (Q) (assuming one exists).

Let N be a finite-index normal subgroup of π1(X, p). Then by the geometric Galois
correspondence (Section 1.7.2), N corresponds to a finite Galois cover fN : X N → X
of X , with π1(X N ) ∼= N and the quotient π1(X, p)/N can be identified with the set of
homeomorphisms γ : X N → X N satisfying fN ◦ γ = fN . Each γ , restricted to the finite
set f −1

N (p), will be a permutation, and this permutation uniquely determines it.
By the generalised Riemann existence theorem (Grauert–Remmert, 1958), each finite

cover X N of X is an algebraic variety defined over Q. Thus each automorphism σ ∈ �Q

permutes the finite covers of X (or if you prefer, the normal subgroups N ): it acts on X N

by acting simultaneously on the coefficients of all the defining polynomials of X N .
Grothendieck [267] explained that �Q acts on the profinite completion π̂1(X, p) of

the fundamental group of X , called the algebraic fundamental group of X . This means
the following. The profinite completion Ĝ of a group G is the projective limit lim←G/N
over all finite quotients G/N (i.e. N runs over all normal subgroups of finite index in G).
An element g ∈ Ĝ consists of a choice gN N of coset in G/N for each such N , such that
whenever N1 is a subgroup of N2 then gN1 N2 = gN2 N2. This should remind us of the
construction of the p-adic integers Ẑp – indeed, Ẑ =∏

p Ẑp is the profinite completion
of Z. Profinite completion is the algebraic analogue of the topological completion of a
space by Cauchy sequences (as in the construction of R from Q). Its purpose is the same:
just as R fills in the ‘gaps’ in Q, so does Ĝ supply the missing elements in G. For example,√

2 exists in Ẑ7 but not in Z. Of course, being a projective limit, the profinite completion
is also an ‘integration’ of all G/N , that is a way of treating them all simultaneously. A
solution in Ẑ to a polynomial equation gives us simultaneously a solution modulo any n.

For example, �̂ ∈ Ẑ corresponds, for each n ∈ N, to an integer �̂n defined modulo n,
subject to the obvious compatibility condition. Then an element �̂ is invertible, written
�̂ ∈ Ẑ×, iff for each n > 1, �̂n is invertible mod n. Hence any �̂ ∈ Ẑ× has a well-defined
action on finite-order roots of unity: given any nth root of unity ξ , ξ �̂ is defined to be ξ �̂n .
In fact, consider the field Qab obtained by taking the union of all cyclotomic fields (or
equivalently, by Theorem 1.7.1, all abelian extensions of Q). Its Galois group Gal(Qab/Q)
can be naturally identified with the multiplicative group Ẑ× in this way. This is just the
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action of�Q restricted to cyclotomic fields – call this restriction the cyclotomic character
χ cyclo : �Q → Ẑ× (this is a ‘character’ in the sense of a one-dimensional representation,
not as a trace of a higher-dimensional character). This action has a large kernel – in fact,
Ẑ× is isomorphic to the abelianisation �Q/[�Q�Q].

Let γ̂ ∈ π̂1(X, p), that is for each finite-index normal subgroup N of π1(X, p), we
have a coset representative γ̂N of some coset γ̂N N ∈ π1(X, p)/N and these γ̂N – which
we are to think of as permutations of finite sets f −1

N (p) – are compatible in the appropriate
way. Then for any σ ∈ �Q and γ̂ ∈ π1(X, p)/N , the action σ.γ̂ is defined by

(σ.γ̂ )N = σ ◦ γ̂σ−1 N ◦ σ−1, (6.3.2)

where σ acts on the points in f −1
N (p) ⊂ Q

n
component-wise, and acts on the normal

subgroups N as above. As we will see, choosing the variety X appropriately, (6.3.2)
includes the profinite analogue of the braid group action on Fn mentioned earlier: the
image of �Q in Aut F̂n lies in this image of B̂n . Equation (6.3.2) generalises to an action
of �Q on the fundamental groupoids π1(X, p, q) of (homotopy equivalence classes of)
paths in X with endpoints p, q ∈ X (Q).

Now, generically π1(X, p) is isomorphic to the mapping class group �g,n , when X is
a surface of genus g with n punctures. By the modular tower we mean the collection of
moduli spaces Mg,n , where the different spaces are related by the obvious topological
actions such as forgetting marked points, or sewing surfaces together (‘tower’ means a
family of objects linked by homomorphisms). In Section 2 of his Esquisse d’un Pro-
gramme, Grothendieck conjectured that�Q acts on the profinite completion of this tower
(i.e. on the profinite completion of all�g,n , and respecting those topological actions), and
is in fact the full automorphism group of this completion, and that this provides an effec-
tive, almost combinatorial, way to study�Q, not directly related to its action on algebraic
numbers. He conjectured that his profinite modular tower could be reconstructed from
M0,3,M0,4,M1,1, with all relations obtained from M0,5 and M1,2.

For example, the ordered moduli space M0,4 is the thrice-punctured sphere P1(C) \
{0, 1,∞} and can be defined over Q – indeed, it is just �(2)\H and has defining equa-
tion z1z2

2(z2 − 1)2 = z2
2 − z2 + 1. Its fundamental group is F2, the free group on two

generators. Therefore, �Q acts on F̂2. In fact, this action is known to be faithful (Belyi,
1987), so �Q is a subgroup of Aut F̂2. Similarly, we get an action of �Q on B̂n , which
we will give shortly. This action yields one on B̂n/Z (B̂n), and for n = 3 the latter equals
the completion ̂PSL2(Z) of the modular group (recall (1.1.10b)).

Does Moonshine (or if you prefer, RCFT or VOAs) see this same�Q-action? After all,
modular data possesses a nice Galois action (6.1.7), as does the spectrum of the theory
(6.1.15b). Also, Grothendieck’s modular tower, with generators (0, 3), (0, 4), (1, 1) and
relations (0, 5) and (1, 2), reminds one of the Moore–Seiberg data of Section 6.1.4. There
are a few difficulties with this hope. For instance, we should take profinite limits of these
actions – for example, lift our action on SL2(Z) to one on ŜL2(Z). Can that have any
natural meaning to RCFT? Also, and most disappointingly, the modular data always lies
in cyclotomic fields, so the Galois action (6.1.7) in RCFT really only sees the rather
uninteresting action of the abelianisation �Q/[�Q�Q] ∼= Ẑ×, as explained earlier.
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The first difficulty is easy to address. Subject to Conjecture 6.1.7, we obtain the
following universal actions of �Q on modular data: for any σ ∈ �Q,

σ.T = T χ cyclo(σ ), (6.3.3a)

σ.S = T χ cyclo(σ )ST χ cyclo(σ−1)ST χ cyclo(σ )S2. (6.3.3b)

In order for (6.3.3) to make sense, these equations must live in the profinite completion
of SL2(Z). This is the meaning of the profinite completions here: the ‘integration’ of the
data of all RCFT (or VOAs) necessary for universal formulae. The generators S, T of
SL2(Z) also generate ŜL2(Z), though in the topological sense (i.e. just as 1 topologically
generates Ẑ). Since the action (6.3.3) is continuous, it defines a �Q-action on ŜL2(Z). It

is very natural, in the sense that there is a map �Q → ŜL2(Z) given by

σ �→ Gσ := T χ cyclo(σ )ST χ cyclo(σ−1)ST χ cyclo(σ )S =
(
χ (σ ) 0

0 χ (σ−1)

)
∈ ŜL2(Z),

(6.3.4)
and σ.S equals the matrix multiplication Gσ S. This map (6.3.4) is also what gives the
Galois action (2.3.14) on modular functions for�(N ) or, in more suggestive language, the
meromorphic functions on lim←�(N )\H (see Section 2.4.1). Of course, in RCFT there
is a preferred basis for this ŜL2(Z)-representation (namely, that given by the VOA char-
acters), and in that basis the matrices become signed permutation matrices εσ (a) δaσ ,b.
It will be extremely interesting to find universal formulae for the Galois action on the
remaining Moore–Seiberg data. The difficulty is that, in obtaining (6.3.3), we were
guided by the presence of a preferred basis, and so (6.3.3) reduces to the usual Galois
action on the corresponding matrices. For the braiding and fusing matrices, typically
there isn’t a preferred basis, and so other principles must be our guide.

Why do cyclotomic fields exhaust RCFT, hence demanding that the RCFT Galois
action, unlike that on Grothendieck’s modular tower, be far from faithful? Is it trying to
tell us something? What other principles can guide us to a Galois action on the remaining
Moore–Seiberg data?

Those questions lead us to Drinfel’d [161]. Recall from Section 1.6.2 that the pure braid
group Pn acts on each set HomA1 ⊕ · · · ⊕ An, V ) in any braided monoidal category.
In particular, we can ask which subgroup of P3 × P2 acts on the set of all braided
monoidal categories, where β ∈ P3 and y ∈ P2 send the associativity constraint a :
(A ⊗ B)⊗ C → A ⊗ (B ⊗ C) and the commutativity constraint c : A ⊗ B → B ⊗ A,
respectively, of one such category to that of another. We require that β.a and γ.c satisfy
the various axioms, most importantly the pentagon and hexagon equations.

Dualising this, Drinfel’d suggested to act withP3 × P2 on the data of quasi-triangular
quasi-Hopf algebras A (defined in e.g. [98]). These algebras are co-commutative up to
conjugation by the R-matrixR ∈ A ⊗ A (as in Definition 6.2.8), and co-associative up to
conjugation by the associator � ∈ A ⊗ A ⊗ A (� measures how A fails to be Hopf). �
andR are required to obey the triangle, pentagon and hexagon equations of Section 1.6.2.
We met quasi-triangular Hopf algebras in Definition 6.2.8; it will be clear shortly why
Drinfel’d prefers quasi-Hopf algebras. Identify P2 with Z and P3 with F2 × Z (1.1.10c);
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then m ∈ P2 acts on the R-matrix by m.R = R.(R21R)m and, for example, a word
f (x, y) ∈ F2 < P3 acts on the associator by f.� = f (R21R12,�R32R23�

−1)−1�. The
other quantities in the algebra A are left unchanged. Unfortunately, this nice idea fails:
only the two elements (±1, 1) ∈ P2 × P3 satisfy the constraints and thus permute quasi-
triangular quasi-Hopf algebras (the nontrivial one sendingR toR21 and fixing everything
else).

Drinfel’d then proposed that there would be more solutions if we take profinite com-
pletions (indeed, this is a raison d’être of completions), so in place of P2

∼= Z and
P3
∼= Z× F2 we take P̂2

∼= Ẑ and P̂3
∼= Ẑ× F̂2. To get these profinite actions on the

R and �, it suffices to take the scalars of the algebras A to be formal power series
Q̂[[h]] rather than C. The hope is that by completing the groups, there is more chance of
nontrivial solutions to the triangle, pentagon and hexagon equations. The details would
take us too far afield, but the result is that there are indeed several solutions.

Drinfel’d was interested in this because, in an earlier paper, he had found, for each
choice of simple Lie algebra g, a universal formula for one solution (�,R) to those
equations, using Kohno’s monodromy theorem for the KZ connection. Unfortunately
this formula for � is quite complicated. In [161] he investigates two commuting actions
on the set of all solutions (�,R), which he uses to deduce the existence of a simpler
solution (see [39]). One of these actions was this pure braid group action.

Let ĜT , the Grothendieck–Teichmüller group, be the group of all pairs (λ, f ) ∈ Ẑ×
F̂2 (the Ẑ of P̂3 can’t contribute) satisfying those equations and thus permuting those
quasi-triangular quasi-Hopf algebras. ĜT is large, in fact as we will see �Q embeds as
a subgroup in it. Drinfel’d conjectured that ĜT should act on the profinite completion
of Grothendieck’s tower. For example, on B̂n , topologically generated as we know by
σ1, . . . , σn−1, we get the action by (λ, f ) ∈ ĜT given by

(λ, f ).σi = f
(
yi , σ

2
i

)−1
σλ

i f
(
yi , σ

2
i

)
, (6.3.5a)

(λ, f ).Z = Zλ, (6.3.5b)

where Z = (σn−1 · · · σ1)n topologically generates the centre of B̂n (just as it does that of
Bn) and yi = σi−1 · · · σ 2

1 · · · σi−1. This element yi arises in presentations of the genus-
0 mapping class groups �0,n or braid groups of the sphere [59]. The ‘profinite word’
f (yi , σ

2
i ) ∈ F̂2 means the value ϕ( f ) of the homomorphism ϕ : F̂2 → B̂n defined by

ϕ(x) = yi and ϕ(y) = σ 2
i .

Moreover, �Q maps injectively into ĜT and so can be identified with some subgroup
of ĜT . Conjecturally, �Q equals ĜT . For example, (−1, 1) corresponds to complex-
conjugation. See [305], [494], [493], [39] and section 16.4 of [98] for reviews of ĜT and
its action on, for example, the modular tower; [128] speculates on its relation to RCFT.

This is brought one step closer to RCFT by Kassel–Turaev [339]. It is relatively
straightforward to extend Drinfel’d’s action to certain braided monoidal categories. In
[339] a ‘pro-unipotent completion’ R̂ is defined for any ribbon category R. R̂ is itself
a ribbon category, with the same objects as R, but with each Hom(A, B) replaced by
some projective limit of its linearisation over Q̂ =∏

p Q̂p. For example, for the choice
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R = ribbon, Hom(∅, ∅) can be identified with the space of formal finite linear combi-
nations over Q̂ of framed oriented links in R3. Drinfel’d’s work yields an action of �Q

on the collection of these ribbon categories.
This category r̂ibbon obeys a universality property as in Theorem 1.6.2. Now, any

automorphism σ ∈ �Q acts on the data of r̂ibbon to produce a new ribbon category

r̂ibbonσ . Its objects and Hom(∅,∅) are unchanged. By universality, there is a functor
from r̂ibbon to r̂ibbonσ , sending Hom(∅, ∅) to itself. That is, we get an action of �Q

on the Q̂-span of links: a (framed oriented) link L is taken to some linear combination
(over Q̂) of links. �Q also acts on related spaces, such as Q̂-valued Vassiliev invariants
[339].

For example, complex-conjugation sends a link L to its mirror reflection (in general a
link is not isotopic to its mirror reflection – see footnote 6 in chapter 1). However, [339]
show that this �Q action is trivial on the commutator [�Q�Q], and thus really is an action
of Ẑ×.

This action is clearly very similar to that of RCFT. As we know, RCFT attaches the
matrix S to the Hopf link (Figure 6.9). Complex-conjugation (λ = −1 ∈ Ẑ×) sends the
Hopf link to its mirror image; the mirror image corresponds to S, which is what (6.3.3b)
reduces to for λ = −1.

Problem Identify the relation between [339] and the action (6.3.3) in RCFT. Can this
be used somehow to identify the Galois action on arbitrary Moore–Seiberg data?

We conjecture these actions are identical or at least very close. After all, they both
factor through to Ẑ× and agree with complex-conjugation applied to the Hopf link.
Theorem 4 of [40] should make it possible to compute the [339] action on the Hopf link
for any λ ∈ Ẑ×, thus allowing us to compare it directly to (6.3.3a). As we’ve learned,
there are topological underpinnings of chiral RCFT data (e.g. the modular categories of
[534], [32]) as well as full RCFT (see e.g. [211]); this seems the obvious way to attack
this problem.

At least as interesting as this Galois action on the Moore–Seiberg data is that we can
also hope that �Q (or at least Ẑ×) will act on the spaces B(g,n) of chiral blocks, since they
do on B(1,1), i.e. on the characters, which are modular functions (recall Section 2.3.3).

The Galois action (6.3.3) of RCFT is not directly related to Grothendieck’s (6.3.5).
The RCFT action would seem to be intimately related to Congruence Property 6.1.7, so
more relevant to RCFT than ŜL2(Z) should be the much simpler lim←SL2(Z)/�(N ) =
SL2(Ẑ).

So far in this subsection we’ve only addressed CFT ‘in the bulk’. What if anything does
Galois do to, for example, D-branes? Indeed, an action persists in boundary RCFT, though
it is more complicated [235]. In particular, this Galois action will no longer be abelian –
the algebraic numbers involved belong to exponent-2 extensions of the cyclotomic field
Qab. This complication opens the door to much more interesting mathematics.

It will be interesting to see if the Ẑ× action in [106] can be related to that of RCFT. We
are to think of RCFT as being to generic quantum field theory what semi-simple finite-
dimensional Lie algebras are to generic ones. In this spirit, this Galois action on RCFT,
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and its relation to �Q and Grothendieck’s Esquisse, can be regarded perhaps as a toy
model for the much more ambitious Cosmic Galois Group of [93], which conjecturally
underlies the multiple zeta values found by Kreimer and others in more physical quantum
field theories.

As a final remark, it is quite possible that the Galois actions explored in this subsection
are related to the Fermat remarks of last subsection (see in particular section II of
[304]). The Fermat curve FN = {x N + yN = 1} x N + yN = 1 is an abelian cover of
P1(C) \ {0, 1,∞}; in turn, its abelian covers are controlled by torsion points on its
Jacobian Jac(FN ), and in [304] the action of �Q on F̂2 is studied via those torsion points,
with results somewhat reminiscent of Section 6.3.2.

Question 6.3.1. Use the fact that the S and T matrices of (6.1.8) define modular data to
compute the sum

∑n
m=1 e2π im2/n . (Note: This is called a Gauss sum. A similar calculation

yields a generalisation of Gauss sums for any modular data.)

Question 6.3.2. Find all τ ∈ H such that the torus C/(Z+ Zτ ) is isogenous to C/(Z+
Zi).

Question 6.3.3. Prove that the elliptic curves y2 = x3 + ax and y2 = x3 + b both have
complex multiplication for any a, b.

Question 6.3.4. What is the profinite completion Ĝ for finite groups G?

Question 6.3.5. (a) Define σi .x j = x j if j �= i, i + 1, and σi .xi = xi+1 and σi .xi+1 =
x−1

i+1xi xi+1. Verify that this is a well-defined action. (It turns out that this action is
faithful.)
(b) Verify that for any β ∈ Bn , β fixes x1 · · · xn , and there is a permutation πβ and words
ai ∈ Fn such that β.xi = Ai xπβ A−1

i . (It turns out that, conversely, any automorphism β

obeying those two conditions must come from this braid group action. This gives a way
to solve the word problem in Bn .)

Question 6.3.6. Choosing X to be a sphere with two punctures, describe the associated
�Q-action (6.3.2).
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Monstrous Moonshine

Thomas Edison once said that to invent you need a good imagination and a pile of junk.
Let’s see what some imagination can do.

This book has been about Moonshine: a diverse collection of points-of-contact between
algebra, number theory and mathematical physics, which nevertheless has a common
theory. The most remarkable example of Moonshine is surely the association of Haupt-
moduls with elements of the Monster M. It is to this we finally turn.

The reader should reread the introductory chapter, which quickly sketches the basics
of Monstrous Moonshine. In this chapter we explore this in more detail. The original
article [111] is still very readable and contains a wealth of information not found in other
sources. Other reviews are [107], [410], [73], [154], [412], [249], [75], [469], [78], [237]
and the introductory chapter in [201], and each has its own emphasis.

7.1 The Monstrous Moonshine Conjectures

Recall from the introductory chapter the McKay equation

196 884 = 196 883+ 1. (7.1.1)

The number on the left is the first nontrivial coefficient of the j-function, and the num-
bers on the right are the dimensions of the smallest irreducible representations of the
Fischer–Griess Monster M. On the one side, we have a modular function; on the other, a
sporadic finite simple group. Monstrous Moonshine explores this completely unexpected
connection between finite groups and modular functions.

The world is full of coincidences, and it isn’t always clear how seriously they should
be regarded. For instance, at the heart of Monstrous Moonshine is a holomorphic c = 24
VOA; the conjectured number of holomorphic c = 24 VOAs [488] is 71, and this is the
largest prime dividing ‖M‖. There are 26 sporadics, 26 generators in a presentation of
the Bimonster discussed shortly, and 26 conjugacy classes in the largest Mathieu group
M24. Are any of those numbers related to the 24 of Section 2.5.1, the k-group Z48 of the
integers or the number (24) of 24-dimensional even self-dual lattices?1

Nor is physics immune to such thoughts. The great physicist Dirac noticed [140] that
the ratio of the electrostatic to gravitational force between the proton and electron in a

1 Perhaps this Mathieu group remark is related somehow to the fact that for subgroups G of SL3(C), the
Euler number of a minimal resolution of the quotient singularity C3/G equals the number of conjugacy
classes of G [143], [471].
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hydrogen atom is a number N of order 1040. He computed that the ratio of the mass
of the universe to the mass of a proton is roughly N 2, and that the ratio of the age of
the universe with the time needed for light to travel across the classical radius of the
electron is again roughly N . One can add that

√
N is roughly Avagadro’s number, so

gives a measure of the minimum number of molecules needed in a macroscopic object.
Dirac argued that the simple functional relation of these numbers indicates that they are
all somehow physically related.

What distinguishes (7.1.1) from some of these other coincidences is that the more it
was studied, the more the coincidences multiplied, and the more structure was revealed.

A noble goal for mathematics is surely to find interesting and fundamentally new
theorems. Both history and common-sense suggest that to this end it is most profitable to
look simultaneously at both exceptional structures and generic structures, to understand
the special features of the former in the context of the latter, and to be led in this way
to a new generation of exceptional and generic structures. That is the spirit in which
Monstrous Moonshine should be studied.

7.1.1 The Monster revisited

Recall the finite simple group classification discussed in Section 1.1.2. The sporadics are
summarised in Table 7.1 (its dates are only approximate and the list of investigators is
taken from [109]). The Monster M is the largest of these 26 sporadic groups. Its existence
was conjectured in 1973 by Fischer and Griess, and finally constructed (somewhat artifi-
cially) in 1980 by Griess [263]. Tits [528] showed that M is the automorphism group of
a 196 883-dimensional commutative non-associative algebra also constructed by Griess
and now called the Griess algebra (Griess showed only that M was a subgroup of that
automorphism group). We now understand the Griess algebra as the first nontrivial tier
(0-mode algebra) of a VOA, the Moonshine module V �, lying at the heart of Monstrous
Moonshine.

The Monster has 194 conjugacy classes, and so that number of irreducible represen-
tations. Its character table (and other useful information) is given in the Atlas [109],
where we also find analogous data for the other simple groups of ‘small’ order. Table 7.2
gives the upper-left 0.25% or so of the character table of M. The name ‘4C’, for exam-
ple, is given to the third smallest (hence ‘C’) conjugacy class of elements of order 4.
Table 7.2 tells us that the dimensions of the smallest irreducible representations of M
are 1, 196 883, 21 296 876 and 842 609 326.

The centralisers CG(g) of conjugate elements are isomorphic (why?). The centralisers
for all classes of order up to 11 are given in table 2a of [111]. The first few are CM(2A) ∼=
2.B, CM(2B) ∼= 225.Co1, CM(3A) ∼= 3.Fi ′24, CM(3B) ∼= 313.2.Suz, CM(3C) ∼= 3× T h.
We follow the notation of [109]: by, for example, ‘2.B’ we mean a group with Z2 as a
normal subgroup and B as the quotient, or equivalently an extension of B by Z2. Of course
the centraliser CG(g) has 〈g〉 as a subgroup of its centre, hence 〈g〉 is normal in CG(g) –
that is, for example, the ‘2’ in 2.B. Knowing the centraliser, the sizes of the conjugacy
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Table 7.1. The 26 sporadic groups

Group Exact order Approximate order Investigators

M11 24.32.5.11 7.9× 103 Mathieu (1861, 1873)
M12 26.33.5.11 9.5× 104 Mathieu (1861, 1873)
J1 23.3.5.7.11.19 1.8× 105 Janko (1965)
M22 27.32.5.7.11 4.4× 105 Mathieu (1861, 1873)
J2 27.33.52.7 6.0× 105 Hall, Janko (1960s)
M23 27.32.5.7.11.23 1.0× 107 Mathieu (1861, 1873)
H S 29.32.53.7.11 4.4× 107 Higman, Sims (1968)
J3 27.35.5.17.19 5.0× 107 Janko, Higman, McKay (1960s)
M24 210.33.5.7.11.23 2.4× 108 Mathieu (1861, 1873)
McL 27.36.53.7.11 9.0× 108 McLaughlin (1969)
He 210.33.52.73.17 4.0× 109 Held, Higman, McKay (1960s)
Ru 214.33.53.7.13.29 1.5× 1011 Rudvalis, Conway, Wales (1973)
Suz 213.37.52.7.11.13 4.5× 1011 Suzuki (1969)
O’N 29.34.5.73.11.19.31 4.6× 1011 O’Nan, Sims (1970s)
Co3 210.37.53.7.11.23 5.0× 1011 Conway (1968)
Co2 218.36.53.7.11.23 4.2× 1013 Conway (1968)
Fi22 217.39.52.7.11.13 6.5× 1013 Fischer (1970s)
H N 214.36.56.7.11.19 2.7× 1014 Harada, Norton, Smith (1975)
Ly 28.37.56.7.11.31.37.67 5.2× 1016 Lyons, Sims (1972)
T h 215.310.53.72.13.19.31 9.1× 1016 Thompson, Smith (1975)
Fi23 218.313.52.7.11.13.17.23 4.1× 1018 Fischer (1970s)
Co1 221.39.54.72.11.13.23 4.2× 1018 Conway, Leech (1968)
J4 221.33.5.7.113.23.29.31.37.43 8.7× 1019 Janko, Norton, Parker, Benson,

Conway, Thankray (1970s)
Fi ′24 221.316.52.73.11.13.17.23.29 1.3× 1024 Fischer (1970s)
B 241.313.56.72 4.2× 1033 Fischer, Sims, Leon (1970s)

.11.13.17.19.23.31.47
M 246.320.59.76.112.133 8.1× 1053 Fischer, Griess (1973, 1982)

.17.19.23.29.31.41.47.59.71

classes can be quickly determined through the formula ‖Kg‖ = ‖M‖/‖CM(g)‖. These
centralisers play a large role in Section 7.3 below.

The Monster M has a remarkably simple presentation. As with any noncyclic finite
simple group, it is generated by its involutions (i.e. elements of order 2) and so is a
homomorphic image of a Coxeter group (Definition 3.2.1) – see Question 7.1.1.

Let Gpqr , p ≥ q ≥ r ≥ 2, be the graph consisting of three strands of lengths
p + 1, q + 1, r + 1, sharing a common endpoint. Label the p + q + r + 1 nodes as
in Figure 7.1 (this labelling is not standard). Given any graph Gpqr , define Ypqr to be the
group consisting of a generator for each node, obeying the usual Coxeter group relations,
together with an additional one (what Conway calls the ‘spider relation’):

(ab1b2ac1c2ad1d2)10 = 1. (7.1.2)

The relation (7.1.2) arises naturally in a generalisation of the Coxeter group due
to Conway, called a fabulous group. Conway conjectured and, building on work by



Table 7.2. The north-west corner of the Monster character table

ch\Kg 1A 2A 2B 3A 3B 3C 4A 4B 4C 4D 5A 5B

ρ0 1 1 1 1 1 1 1 1 1 1 1 1
ρ1 196883 4371 275 782 53 −1 275 51 19 −13 133 8
ρ2 21296876 91884 −2324 7889 −130 248 1772 −52 −20 12 626 1
ρ3 842609326 1139374 12974 55912 −221 −248 8878 782 −82 78 2451 −49
ρ4 18538750076 8507516 123004 249458 1598 248 28796 2652 380 156 6326 76
ρ5 19360062527 9362495 −58305 297482 1508 −247 35903 −833 63 −65 8152 27
ρ6 293553734298 53981850 98970 1055310 −3927 3876 94874 1274 −102 −454 17423 −77
ρ7 3879214937598 337044990 −690690 4751823 −4173 −3876 345598 −3874 −258 286 54473 98
ρ8 36173193327999 1354188159 2864511 12616074 18954 0 701823 20383 −897 351 91124 −126
ρ9 125510727015275 3215883115 1219435 24688454 −25375 248 1223531 19499 −661 −1365 145275 −350
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Fig. 7.1 The graph G555 presenting the Bimonster.

Ivanov [311], Norton proved [451] that Y555
∼= Y444 is the Bimonster, the wreathed-square

M - Z2
∼= (M×M).2 of the Monster (in fact it is a semi-direct product (M×M)×Z2).

We define the wreath product in Question 7.1.2; the wreathed-square M - Z2 has G = M
and H = S = Z2, where H acts on S by group multiplication. The group-theoretic
significance of the wreath product is that any group G containing a normal subgroup
N with quotient G/N ∼= H can be identified with a subgroup of N - H with S = H .
Thus any extension M.2 of Z2 by M is a subgroup of the Bimonster. The Bimonster
appears naturally in Section 7.3.9. A closely related presentation of the Bimonster has 26
involutions as generators and has relations given by the incidence graph of the projective
plane of order 3; the Monster itself arises from 21 involutions and the affine plane of
order 3. See [112] for details.

The groups Ypqr , for p ≤ 5, have now all been identified – see [312] for a unified
treatment. The ones involving sporadic groups are

Y553
∼= Y443

∼= M× Z2,

Y533
∼= Y433

∼= Z2 × (2.B),

Y552
∼= Y442

∼= 3.(Fi ′24.2),

Y532
∼= Y432

∼= Z2 × Fi23,

Y332
∼=Z2 × (2.Fi22).

The Coxeter groups of the graphs G555, G553, G533, G552 and G532 are all infinite groups
of hyperbolic reflections in, for example, R17,1, and contain copies of groups such as the
affine E8 Weyl group, so there should be rich geometry here.

What role, if any, these remarkable presentations have in Monstrous Moonshine hasn’t
been established yet. As a first step though, [424] has found in the automorphism group
of the Moonshine module V � the 21 involutions generating M. Perhaps this can simplify
the hardest part of [201] (see Section 7.2.1 below). Indeed, Miyamoto’s simplified con-
struction [427] of V � and proof that Aut(V �) ∼= M uses Ivanov’s characterisation [311]
of M. There is a correspondence [425] between certain involutions of a VOA V (e.g.
class 2A in M for V �) and certain vertex operator subalgebras of V isomorphic to the
unique c = 1/2 rational VOA (the Ising model of Section 4.3.2); this technical tool has
many applications, for example the association of various vertex operator superalgebras
to V �, and the VOA interpretation of McKay’s E8

(1) observation in Section 7.3.6.
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7.1.2 Conway and Norton’s fundamental conjecture

As mentioned in the introductory chapter, the central structure in the attempt to under-
stand equations (0.2.1) is an infinite-dimensional graded module for the Monster,
V = V−1 ⊕ V1 ⊕ V2 ⊕ · · · , with graded dimension J (τ ) = j(τ )− 744 (see (0.3.2)). If
we let ρd denote the dth smallest irreducible M-module, numbered as in Table 7.2, then
the first few subspaces will be V0 = ρ0, V1 = {0}, V2 = ρ0 ⊕ ρ1, V3 = ρ0 ⊕ ρ1 ⊕ ρ2 and
V4 = ρ0 ⊕ ρ0 ⊕ ρ1 ⊕ ρ1 ⊕ ρ2 ⊕ ρ3. As we know from Section 1.1.3, a dimension can
(and should) be twisted, by replacing it with the character. This gives us the graded traces

Tg(τ ) := chV−1 (g) q−1 +
∞∑

n=1

chVn (g) qn, (7.1.3)

called the McKay–Thompson series for this module V . Of course, Te = J .

Conjecture 7.1.1 (Conway–Norton [111]) There exists a graded M-module V such
that, for each element g of the Monster M, the McKay–Thompson series Tg is the
Hauptmodul

J�g (τ ) = q−1 +
∞∑

n=1

an(g) qn (7.1.4)

for a genus-0 group�g of Moonshine-type. These groups each contain�0(N ) as a normal
subgroup, for some N dividing o(g) gcd(24, o(g)), and the quotient group�g/�0(N ) has
exponent ≤ 2.

So for each n the map g �→ an(g) is a character chVn (g) of M. The quantity o(g) is the
order of g. We defined the groups of Moonshine-type in Definition 2.2.4 and �0(N )
in (2.2.4b). By the exponent of a group we mean the smallest positive m such that
hm = 1 for all h in the group. [111] explicitly identify each of the groups �g . The first
50 coefficients an(g) of each Tg are given in [413]. Together with the recursions given in
Section 7.1.4 below, this allows one to effectively compute arbitrarily many coefficients
an(g) of the Hauptmoduls. It is also this that uniquely defines V , up to equivalence, as a
graded M-module.

There are around 8× 1053 elements in the Monster, so naively we may expect about
8× 1053 different Hauptmoduls Tg . However, a character evaluated at g and at hgh−1

will always be equal, so Tg = Thgh−1 . Hence there can be at most 194 distinct Tg (one for
each conjugacy class). All coefficients an(g) are integers (as are in fact most entries of
the character table of M). This implies that Tg = Th whenever the cyclic subgroups 〈g〉
and 〈h〉 are equal (why?). In fact, the total number of distinct McKay–Thompson series
Tg arising in Monstrous Moonshine turns out to be only 171.

Of those many redundancies among the Tg , only one is unexpected (and unexplained):
the McKay–Thompson series of two unrelated classes of order 27, namely 27A and 27B,
are equal. It would be interesting to understand what general phenomenon (if any) is
responsible for T27A(τ ) = T27B(τ ). But as we know from Section 5.3.3, the McKay–
Thompson series Tg(τ ) are actually specialisations of 1-point functions and as such
are functions of not only τ but of all M-invariant vectors v in V �. What we call Tg(τ )
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is really the specialisation Tg(τ, 1) of this function Tg(τ, v). All 194 Tg (one for each
conjugacy class) will be linearly independent, if we include this v ∈ (V �)M dependence.
Thus the equality T27A(τ ) = T27B(τ ) should be regarded as an accidental redundancy
caused by specialisation, and is not of any deep significance. Plenty of other Norton’s
series N(g,h)(τ ) (Section 7.3.2) will likewise be accidentally equal. Modular aspects of
the 1-point functions Tg(τ, v) are studied in [155].

Recall that there are two different conjugacy classes of order 2 elements: 2A and 2B.
Class 2B corresponds to �0(2) and gives the Hauptmodul J2 in (2.2.17a), while class 2A
corresponds to �0(2)+, where for any prime p we define

�0(p)+ :=
〈
�0(p),

1√
p

(
0 −1
p 0

)〉
. (7.1.5)

Similarly, (2.2.17b) corresponds to an order 13 element in M, but J25 in (2.2.17c)
doesn’t equal any Tg . Recall that there are exactly 616 Hauptmoduls of Moonshine-
type with integer coefficients [121], so most of these don’t arise as Tg . Recently [110], a
fairly simple characterisation has been found of the groups arising as �g in Monstrous
Moonshine:

Proposition 7.1.2 [110] A subgroup G of SL2(R) equals one of the modular groups
�g appearing in Conjecture 7.1.1, iff:

(i) G is genus 0;
(ii) G has the form ‘�0(n||h)+ e, f, g, . . . ’;

(iii) the quotient of G by �0(nh) is a group of exponent ≤ 2; and
(iv) each cusp Q ∪ i∞ can be mapped to i∞ by an element of SL2(R) that conjugates

the group to one containing �0(nh).

The notation in (ii) is a little too technical to explain here, but it is given in [111] or [110].
We now understand the significance, in the VOA or CFT framework, of transformations
in SL2(Z) (see especially Section 5.3.6), but (ii) emphasises that many modular trans-
formations relevant to Moonshine are more general (called Atkin–Lehner involutions).
Monstrous Moonshine will remain mysterious until we can understand its Atkin–Lehner
symmetries. This isn’t a hopeless task – for example, [433] provides an early attempt at
studying string theories with Atkin–Lehner symmetries, as well as its possible physical
significance. Some of these involutions appear naturally in Weil’s Converse Theorem
(see e.g. page 64 of [90]). Perhaps a topological interpretation for the groups �g not con-
tained in SL2(Z), in the spirit of Section 2.4.3, will help us understand their relevance
in VOAs and the meaning of Atkin–Lehner involutions to CFT. This proposition is the
answer to an important question, but unfortunately their proof of this characterisation is
by exhaustion, and so by itself doesn’t contribute anything conceptually.

7.1.3 E8 and the Leech

There are other less important conjectures in [111]. We’ve already seen easy-to-
understand relations of E8 and the Leech lattice � to the J -function: (0.5.1) (explained
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in Section 3.2.3) and (0.5.2) (explained in Question 2.2.7). There is another way E8 and
� can be related to modular functions.

Lattices are related to groups through their automorphism groups, which are always
finite for positive-definite lattices. The automorphism group Aut(�) = Co0 of the Leech
lattice has order about 8× 1018, and is a central extension by Z2 of Conway’s simple
group Co1. Several other sporadic groups are also involved in Co0, as we’ll see in
Section 7.3.1. To each automorphism α ∈ Co0, let θα denote the theta function of the
sublattice of � fixed by α. Conway–Norton also associate with each automorphism α

a certain function ηα(τ ) of the form
∏

i η(aiτ )/
∏

j η(b jτ ) built out of the Dedekind
eta function (2.2.6b). Both θα and ηα are constant on each conjugacy class in Co0, of
which there are 167. [111] remarks that the ratio θα/ηα always seems to equal some
McKay–Thompson series Tg(α).

It turns out that this observation isn’t quite correct [366]. For each automorphism
α ∈ Co0, the subgroup of SL2(R) that fixes θα/ηα is indeed always genus 0, but for
exactly 15 conjugacy classes in Co0, θα/ηα is not the Hauptmodul. Nevertheless, this
construction proved useful for establishing Moonshine for M24 [407].

Similarly, one can ask this for the E8 root lattice, whose automorphism group is the
Weyl group of the Lie algebra E8 (of order 696 729 600). The automorphisms of the
lattice E8 that yield a Hauptmodul were classified in [95]. On the other hand, Koike
established a Moonshine of this kind for the groups PSL2(F7), PSL2(F5) ∼= A5 and
PSL2(F3), of order 168, 60 and 12, respectively [356].

7.1.4 Replicable functions

A conjecture in [111] that played an important role in ultimately proving the main conjec-
ture involves the replication formulae. Conway–Norton want to think of the Hauptmoduls
Tg as being intimately connected with M; if so, then the group structure of M should
somehow directly relate different Tg . Considering the power map g �→ gn leads to the
following.

It was well known classically that J (τ ) (equivalently, j(τ )) has the property that

s(τ ) := J (pτ )+ J

(
τ

p

)
+ J

(
τ + 1

p

)
+ · · · + J

(
τ + p − 1

p

)
(7.1.6a)

is a polynomial in J (τ ), for any prime p. The proof is straightforward, and is based on
the principle that the easiest way to construct a function invariant with respect to some
group G is by averaging it over the group:

∑
g∈G f (g.x). Here f (x) is J (pτ ) and G is

SL2(Z), and we’ll average over finitely many cosets rather than infinitely many elements.
First, writing � for SL2(Z), note that

�

(
p 0
0 1

)
� =

(
p 0
0 1

)
� ∪

p−1⋃
i=0

(
1 i
0 p

)
� = {A ∈ M2×2(Z) | det(A) = p}.

(7.1.6b)

In Question 7.1.4 you show that this implies (7.1.6a) is a modular function for SL2(Z).
Hence s(τ ) equals a rational function Q(J (τ ))/P(J (τ )) of J (τ ), as in (0.1.7). Because
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the only poles of J are at the cusps, the same applies to s(τ ). This implies that the
denominator polynomial P(z) must be trivial (recall that J (H) = C). QED

The map J (τ ) �→ s(τ ) in (7.1.6a) is called a ‘Hecke operator’, and is an important
ingredient of modular theory. More generally, the same argument says∑

ad=n,0≤b<d

J

(
aτ + b

d

)
= Qn(J (τ )), (7.1.7)

where Qn is the unique polynomial for which Qn(J (τ ))− q−n has a q-expansion with
only strictly positive powers of q . For example, Q2(x) = x2 − 2a1 and Q3(x) = x3 −
3a1x − 3a2, where we write J (τ ) =∑

n anqn . These equations (7.1.7) can be rewritten
into recursions such as a4 = a3 + (a2

1 − a1)/2, or collected together into the remarkable
expression (3.4.7a).

Conway and Norton conjectured that these formulae have an analogue for any McKay–
Thompson series Tg . In particular, (7.1.7) becomes∑

ad=n,0≤b<d

Tga

(
aτ + b

d

)
= Qn,g(Tg(τ )), (7.1.8a)

where Qn,g plays the same role for Tg that Qn plays for J . For example, we get

Tg2 (2τ )+ Tg

(τ
2

)
+ Tg

(
τ + 1

2

)
= Tg(τ )2 − 2a1(g),

Tg3 (3τ )+ Tg

(τ
3

)
+ Tg

(
τ + 1

3

)
+ Tg

(
τ + 2

3

)
= Tg(τ )3 − 3a1(g) Tg(τ )− 3a2(g).

These are called the replication formulae. Again, these yield recursions like a4(g) =
a2(g)+ (a1(g)2 − a1(g2))/2, or can be collected into the expression

p−1 exp

⎡⎣−∑
k>0

∑
m>0
n∈Z

amn(gk)
pmkqnk

k

⎤⎦ = Tg(z)− Tg(τ ). (7.1.8b)

This looks a lot more complicated than (3.4.7a), but you can glimpse the Taylor expansion
of log(1− pmqn) there and in fact for g = e, (7.1.8b) reduces to (3.4.7a).

Axiomatising (7.1.8a) leads to Conway and Norton’s notion of replicable function
[449], [6].

Definition 7.1.3 Let f be any function of the form f (τ ) = q−1 +∑∞
n=1 bnqn, and

write f (1) = f and b(1)
n = bn. Let Qn, f be the unique (degree n) polynomial such that

the q-expansion of Qn, f ( f (τ ))− q−n has only positive powers of q. Use∑
ad=n,0≤b<d

f (a)

(
aτ + b

d

)
= Qn, f

(
f (1)(τ )

)
, (7.1.9)

to recursively define each f (n). If each f (n) has a q-expansion of the form f (n)(τ ) =
q−1 +∑∞

k=1 b(n)
k qk – that is, no fractional powers of q arise – then we call f

replicable.
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Proposition 7.1.4 [6] Suppose f is of the form f (τ ) = q−1 +∑∞
n=1 anqn, and define

Qn, f as in Definition 7.1.3. Define Hm,n by

Qn, f ( f (τ )) = q−n +
∞∑

n=1

nHn,m qm .

Then f is replicable iff Hn,m = Hr,s holds whenever mn = rs and gcd(n,m) = gcd(r, s).

The proof isn’t hard: if f is replicable, with replicates f (n) = q−1 +∑k a(n)
k qk , then

Hn,m =
∑

d|gcd(n,m)

1

d
a(d)

nm/d2

and the Hn,m = Hr,s property is manifest. See Question 7.1.5 for the converse.
Equation (7.1.8a) conjectures that the McKay–Thompson series are replicable. In

particular, we have (Tg)(n)(τ ) = Tgn (τ ). [123] proved that the Hauptmodul of any genus-
0 modular group of Moonshine-type is replicable, provided its coefficients are rational.
Incidentally, if the coefficients b(1)

k are irrational, then Definition 7.1.3 should be modified
to include Galois automorphisms (see section 8 of [114]). Replication in positive genus
is discussed in [510].

Conversely, Norton has conjectured:

Conjecture 7.1.5 Any replicable function with rational coefficients is either a Haupt-
modul for a genus-0 modular group of Moonshine-type, or is one of the ‘modular
fictions’ f (τ ) = q−1 = exp[−2π iτ ], f (τ ) = q−1 + q = 2 cos[2πτ ], f (τ ) = q−1 −
q = −2i sin[2πτ ].

This conjecture seems difficult and is still open.
As is manifest in (7.1.8a), replication concerns the power map g �→ gn in M. Can

Moonshine see more of the group structure of M? One step in this direction is explored
in Section 7.3.6, where McKay models products of conjugacy classes using Coxeter–
Dynkin diagrams. A different idea is given in Section 7.3.2. It would be very desirable
to find other direct connections between the group operation in M and, for example, the
McKay–Thompson series.

Question 7.1.1. Let G be a finite simple group, and let K �= {e} be any nontrivial con-
jugacy class. Prove that K generates G. Why is any noncyclic finite simple group a
homomorphic image of a (possibly infinite) Coxeter group?

Question 7.1.2. Let G, H be any groups, and S any finite set on which H acts. By the
wreath product G - H we mean the set of all pairs ( f, h), where f is any function from
S → G and h ∈ H . Group multiplication is given by ( f, h)( f ′, h′) = ( f ′′, hh′), where
f ′′ : S → G is defined by f ′′(s) = f (s) f ′(h−1.s).
(a) Verify that G - H is a group. Compute its order.
(b) Find a normal subgroup in G - H , isomorphic to G × · · · × G (‖S‖ times). Identify
the quotient of G - H by this normal subgroup.
(c) Find a subgroup of G - H isomorphic to H .
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Question 7.1.3. Note that the dimensions 196 883 and 21 296 876 – see (0.2.1) – exactly
divide the order of the Monster – see (0.2.2). Is this (i) merely a coincidence; (ii) a
mysterious property of M perhaps relevant to Moonshine; or (iii) does it have a more
mundane explanation?

Question 7.1.4. Prove (7.1.6b). Use that to prove that the sum s(τ ) in (7.1.6a) is invariant
under SL2(Z).

Question 7.1.5. Complete the proof of Proposition 7.1.4.

Question 7.1.6. Suppose f (τ ) = q−1 +∑N
k=1 akqk is a replicable Laurent polynomial.

Prove that f is a modular fiction: f (τ ) = q−1 or f (τ ) = q−1 ± q.

Question 7.1.7. As we know from Section 3.2.3, j
1
3 is the graded dimension of the E8

(1)-
module L(ω0). Thus j is the graded dimension of L(ω0)⊗ L(ω0)⊗ L(ω0), on which the
Lie group (E8(C)× E8(C)× E8(C))×S3 acts. Explain why L(ω0)⊗ L(ω0)⊗ L(ω0)
cannot be the M-module V whose graded characters (7.1.3) are the McKay–Thompson
series (ignoring the irrelevant constant 744).

7.2 Proof of the Monstrous Moonshine conjectures

At first glance, any deep significance to the Moonshine conjectures seems very unlikely:
they constitute after all a finite set of very specialised coincidences. The whole point
though is to try to understand why such seemingly incomparable objects as the Monster
and the Hauptmoduls can be so related, and to try to extend and apply this understand-
ing to other contexts. Establishing the truth (or falsity) of the conjectures was merely
meant as an aid to uncovering the meaning of Monstrous Moonshine. Indeed, in proving
them, important new algebraic structures were formulated. We sketch this proof in this
section.

The main Conway–Norton conjecture was attacked almost immediately. Thompson
showed [524] (see also [476]) that if g �→ an(g) is a character for all sufficiently small n
(apparently n ≤ 1300 is sufficient), then it will be for all n. He also showed that if certain
congruence conditions hold for a certain number of an(g) (all with n ≤ 100), then all
g �→ an(g) will be virtual characters (i.e. differences of true characters of M). Atkin,
Fong and Smith (see [511] for details) used that and a computer to prove that indeed
all an(g) were virtual characters (they didn’t quite get to n = 1300 though). But their
work doesn’t say anything more about the underlying (possibly virtual) representation
V , other than its existence, and so adds no light to Moonshine. It plays no role in the
following.

We want to prove Conjecture 7.1.1, that is, show that the McKay–Thompson series
Tg(τ ) of (7.1.3) equals the Hauptmodul J�g (τ ) in (7.1.4). First, we need to construct
the infinite-dimensional module V of M. This we discuss in Section 7.2.1. Borcherds’
strategy was to bring in Lie theory, by associating with the module V a ‘Monster Lie
algebra’. This example of a Borcherds–Kac–Moody algebra is described in Section 7.2.2.
Next, we go from the Monster Lie algebra to the replication formula, and conclude the
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Table 7.3. The first few homogeneous spaces of
the Moonshine module V �

M-module

V �

0 ρ0

V �

1 0
V �

2 ρ0 ⊕ ρ1

V �

3 ρ0 ⊕ ρ1 ⊕ ρ2

V �

4 2ρ0 ⊕ 2ρ1 ⊕ ρ2 ⊕ ρ3

V �

5 2ρ0 ⊕ 3ρ1 ⊕ 2ρ2 ⊕ ρ3 ⊕ ρ5

V �

6 4ρ0 ⊕ 5ρ1 ⊕ 3ρ2 ⊕ 2ρ3 ⊕ ρ4 ⊕ ρ5 ⊕ ρ6

V �

7 4ρ0 ⊕ 7ρ1 ⊕ 5ρ2 ⊕ 3ρ3 ⊕ ρ4 ⊕ 3ρ5 ⊕ ρ6 ⊕ ρ7

V �

8 7ρ0 ⊕ 11ρ1 ⊕ 7ρ2 ⊕ 6ρ3 ⊕ 3ρ4 ⊕ 4ρ5 ⊕ 2ρ6 ⊕ 2ρ7 ⊕ ρ8

proof. In the final subsection, we explain the need for a second proof, and suggest what
it may involve.

Thanks largely to Borcherds, the Monstrous Moonshine conjectures opened a door to
mathematical riches far beyond what Conway and Norton could have originally hoped.
For his work in Monstrous Moonshine and related topics, Richard Borcherds was awarded
the Fields medal in 1998.

7.2.1 The Moonshine module V �

The first essential step in the proof of the Monstrous Moonshine conjectures was the
construction by Frenkel–Lepowsky–Meurman [200] of a graded infinite-dimensional
representation V � of M. They conjectured (correctly) that it is the representation V in
(0.3.1). As we know, V � has a very rich algebraic structure: it is in fact a VOA. A somewhat
simpler construction of V � is now available [427]; in particular, the fundamental fact
that Aut(V �) ∼= M seems much clearer.

Each homogeneous space V �
n of V � is a finite-dimensional M-module – see Table 7.3.

Being a finite group, M only has finitely many (in fact exactly 194) irreducible represen-
tations, whereas J (τ ) has infinitely many coefficients an , which grow polynomially with
n. As can already be observed in the table, the decompositions of V �

n into irreducible
M-modules become increasingly complicated, with ever-increasing multiplicities. Thus
the fact that 196 884 almost equals 196 883 is of no special significance, other than that
it made it easier to anticipate that j and M are related.

Now, V � was constructed before VOAs had been defined. It was natural for Frenkel–
Lepowsky–Meurman to use vertex operators to try to construct the M-module V of
(0.3.1), because there were already vertex operator constructions associated with lat-
tices, affine algebra modules and string theory, and all of these have connections to
modular functions. Borcherds’ definition [68] of vertex algebras abstracted out alge-
braic properties of V � as well as those older vertex operator constructions.
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As we discuss in Sections 4.3.4 and 5.3.6, the Moonshine module V � was constructed
as the orbifold of the Leech lattice VOAV(�) by the±1-symmetry of� – more precisely,
by an involution in Aut(V(�)) restricting to the automorphism −1 of �. This orbifold
construction implies that V � is the direct sum of an invariant part V �

+ := V(�)1
+ and a

twisted part V �
− := V(�)−1

+ (recall (4.3.16)). The underlying vector spaces can be (and
usually are) chosen to be real, and in fact later we speculate that they can be taken to be
Z-modules (Conjecture 7.3.3).

The orbifold serves two purposes. First, it removes the constant term ‘24’ from the
graded dimension J + 24 of V(�). This means that the Lie algebra V �

1 vanishes, giving
V � a chance to have a finite automorphism group (Section 5.2.1). Second, this orbifold
construction enhances the symmetry from the discrete part of Aut(V(�)), which is an
extension of Co0 by (Z2)24, to all of M. In particular, that discrete part of Aut(V(�))
preserves the decomposition V � = V �

+ ⊕ V �
− and is isomorphic to the centraliser CM(2B).

An additional automorphism of V �, an involution σ mixing V �
± and related to ‘triality’,

was constructed by hand. A theorem of Griess [263] shows that together they generate
M. See [201] for more details. Establishing this symmetry enhancement is the most
difficult part of [201].

A major claim of [201] is that V � is a ‘natural’ structure (hence their notation). This
has been uncontested. We have V �

0 = C1, as usual, and V �

1 = 0. Hence the space V �

2 will
be a commutative non-associative algebra with product u × v := u1v and identity 1

2ω

(Question 5.2.3). In fact, it is the 196 883-dimensional Griess algebra [263] extended
by an identity element, which is known to have automorphism group exactly M [528].
Using this, the automorphism group of V � can be seen to equal the Monster M. The only
irreducible module for V � is itself – such a VOA is called holomorphic (Section 5.3.1).
Together with Zhu’s Theorem 5.3.8, this implies that its graded dimension must be a
modular function for SL2(Z), and in fact j(τ )− 744 (Question 5.3.4).

All arguments relating V � to M are complicated by the bipartite structure V �
± built into

V �. In particular, not all elements of Aut(V �) are equally accessible. For example, [201]
could prove Conjecture 7.1.1 when g ∈ M preserves V �

± – equivalently, for any g ∈ M
commuting with some element in class 2B – but not for the other g ∈ M. Perhaps the
work of [424] will make the Monster’s action on V � more uniformly accessible.

Conjecturally, there are 71 holomorphic VOAs with central charge c = 24 [488].
Recall that the Leech lattice � is the unique even self-dual positive-definite lattice of
dimension 24 containing no norm-squared 2-vectors [113]. Under the lattice↔VOA
correspondence mentioned at the end of Section 5.2.2, we are led to the following:

Conjecture 7.2.1 [201] The Moonshine module V � is the unique holomorphic VOA V
with central charge c = 24 and with trivial V1.

Proving Conjecture 7.2.1 is one of the most important and difficult challenges in the
subject – the first small step towards this is [146]. If true, as is expected, it would tell
us V � is a fundamental exceptional structure, on par with the Leech lattice or the E8

Lie algebra or indeed the Monster M. We return to this conjecture in Section 7.3.4; the
analogue A f � for vertex operator superalgebras (holomorphic, c = 12 and V1/2 = 0) is
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known and has automorphism group Co1 [163]. Although the theta series L usually
doesn’t determine the lattice, � is the unique lattice with theta series � (this follows
quickly from its above-mentioned uniqueness). It is thus tempting to also conjecture that
the Moonshine module is the unique VOA with graded dimension J (see Question 7.2.7).

7.2.2 The Monster Lie algebra m

It was discovered early on that every Hauptmodul is replicable, and moreover that any
replicable function is determined by its first few coefficients. An obvious approach to
Conjecture 7.1.1 then is to show that the McKay–Thompson series Tg are also replica-
ble. To get the necessary identities satisfied by their q-expansions, Borcherds used the
denominator identity (Section 3.4.2) of a Lie algebra he associated with V �.

We want to construct a Lie algebra m from the Moonshine module V � = V �

0 ⊕ V �

1 ⊕
· · · . Of course, the direct choice V �

1 is 0-dimensional, so we must modify V � first. Recall
from Section 5.2.2 that a near-VOA V(L) is associated with any even indefinite lattice
L . Let V1,1 := V(I I1,1) be the near-VOA associated with the two-dimensional even self-
dual indefinite lattice I I1,1 defined in Section 1.2.1. We take both V � and V1,1 to be real.
Define V to be the near-VOA V � ⊗ V1,1. As we know, the Monster M acts on V �; extend
this action to V by defining M to fix V1,1. An invariant positive-definite bilinear form on
V � is constructed in [201]; extend it to V in the obvious way. Then the resulting form
(�|�) is M-invariant.

The Monster Lie algebra m is the quotient of PV1 by the radical of the form (�|�)
on V , where the spaces PVn are defined in (5.2.3). The radical contains PV0, so m has
a natural (real) Lie algebra structure (see Question 7.2.4). From the V1,1 part of V we
get the involution ω and Z-grading (see e.g. section 6.2 of [323] for details). Then by
Theorem 3.3.6, a certain central extension of m is some universal Borcherds–Kac–
Moody algebra ĝ(A) – see [72], [323] for details. More precisely, its CartanBK M

matrix

A =

⎛⎜⎜⎜⎜⎜⎝
2 0 · · · 0 −1 · · · −1 · · ·
0 −2 · · · −2 −3 · · · −3 · · ·
...

...
...

...
...

0 −2 · · · −2 −3 · · · −3 · · ·
...

...
...

⎞⎟⎟⎟⎟⎟⎠ (7.2.1)

consists for each i, j ∈ {−1, 1, 2, 3, . . .} of a block in the (i, j) spot of size ai × a j and
with entries −(i + j), where ai are the coefficients J (τ ) =∑∞

i=−1 ai qi .

Theorem 7.2.2 The Monster Lie algebra is m = ĝ(A)/c, where A is in (7.2.1) and c is the
(infinite-dimensional) centre of ĝ(A). m has Cartan subalgebra R⊗Z I I1,1 = R⊕ R =:
m(0,0) and simple roots αi,k for each i ∈ {−1, 1, 2, 3, . . .} and 1 ≤ k ≤ ai . Only α−1,1

is real. The root-space decomposition of m is m = ⊕∞i, j=−∞m(i, j). The Monster M acts
on m as Lie algebra automorphisms. Each root space m(i, j) (for (i, j) �= (0, 0)) is an
M-module isomorphic to the homogeneous space (V �)i j+1, while the Cartan subalgebra
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m(0,0)
∼= ρ0 ⊕ ρ0 as an m-module. The denominator identity of m is given in (3.4.7a).

Finally, m has a vector-space decomposition u+ ⊕ gl2 ⊕ u− into a sum of Lie subalge-
bras, where u± are free Lie algebras with countably many generators.

The proof is given explicitly in section 6.2 of [323], and involves the No-Ghost Theorem
(see the appendix of [323]) – a result first proved in string theory and special to VOAs with
central charge c = 24. In particular, the No-Ghost Theorem establishes the M-module
isomorphisms in Theorem 7.2.2. m has only one positive real root, so its Weyl group is
order 2 and sends (i, j) to ( j, i); it is responsible for the difference on the right side of
(3.4.7a) (the j-function is the correction due to imaginary simple roots). The positive
roots are (−1, 1) and the αi j of type (i, j), and this gives the product on the left.

Similarly, the fake Monster Lie algebra is associated in the same way with the near-
VOA V(�)⊗ V1,1. Though it is certainly an interesting example of a Borcherds–Kac–
Moody algebra, it plays no role in the theory. Its name arose because it was initially
suspected as playing a role in the Moonshine proof, but like V(�) doesn’t carry a natural
action of M so was discarded.

This construction of m from V � may seem indirect. An alternate approach uses Moon-
shine cohomology [386] – a functor assigning to certain c = 2 near-VOAs a Lie algebra
carrying an action of M. To V1,1 this functor assigns m. This functor was anticipated in
[72] and [73] and was inspired by BRST (‘Becchi–Rouet–Stora–Tyutin’) cohomology
in string theory, or the semi-infinite cohomology of Lie theory. In particular, the standard
method for obtaining the space of physical states in a string theory involves tensoring the
original space H (a CFT with c = 26) with a space Hghosts of ghosts (with c = −26); on
H⊗Hghosts is an operator Q obeying Q2 = 0, and the space Hphys of physical states is
the cohomology H � = ker Q/im Q. In particular, m is the space H 1 for H = V � ⊗ V1,1.
The Baby Monster Lie algebra [72], which plays the same role for B as m plays for M,
can be obtained in a similar way [290].

Because of a cohomological interpretation of denominator identities valid for any
Borcherds–Kac–Moody algebra, (3.4.7a) can be ‘twisted’ by any g ∈ M. This is how
Borcherds derived (7.1.8b). These formulae are equivalent to the replication formulae
(7.1.8a) conjectured in Section 7.1.4. However, these identities are obtained by more
elementary means – requiring less of the theory of Borcherds–Kac–Moody algebras – in
[324], [331], permitting a simplification of Borcherds’ proof at this stage. In particular,
in [324] the replication formulae (7.1.8a) appear quite naturally because u± are free Lie
algebras.

7.2.3 The algebraic meaning of genus 0

Now, it turns out that if we verify for each conjugacy class Kg of M that the first,
second, third, fourth and sixth coefficients of the McKay–Thompson series Tg and the
corresponding Hauptmodul J�g agree, then Tg = J�g . That is precisely what Borcherds
then did: he compared finitely many coefficients, and as they all equal what they should,
this concluded the proof of Monstrous Moonshine!
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However, this case-by-case verification occurred at the critical point where the
McKay–Thompson series were being compared directly to the Hauptmoduls, and so
provides little insight into why the Tg are genus 0. Recall that the main purpose for the
proof of Conjecture 7.1.1 was not to establish its logical validity – the numerical evidence
was already quite strong. Rather, the proof is supposed to help us understand how the
Monster could be related to Hauptmoduls. This case-by-case verification became known
as the conceptual gap. The basic problem is that V �, m and (7.1.8b) are algebraic, and the
genus-0 property is topological. Fortunately, a more conceptual explanation of the equal-
ity Tg = J�g – a conversion of the Hauptmodul property into an algebraic statement –
has been found [122], replacing Borcherds’ coefficient check with a general theorem.

Let p be prime. Exactly as in the argument of (7.1.6a), we find that the quantity

J (pτ )k + J

(
τ

p

)k

+ J

(
τ + 1

p

)k

+ · · · + J

(
τ + p − 1

p

)k

(7.2.2a)

is a degree-pk polynomial in J (τ ). This uses the Hauptmodul property of J . Thus there
is a polynomial Fp(X, Y ), of degree p in both X and Y , defined by

Fp(X, J (τ )) = (X − J (pτ ))
p−1∏
i=0

(
X − J

(
τ + i

p

))
. (7.2.2b)

Indeed, the coefficients of Fp(X, J (τ )) are symmetric polynomials in the roots J (pτ ),
J
(
τ+i

p

)
, and so can be expressed polynomially using (7.2.2a). For example,

F2(X, Y ) = (X2 − Y )(Y 2 − X )− 393768 (X2 + Y 2)− 42987520 XY

− 40491318744 (X + Y )+ 120981708338256.

Definition 7.2.3 Consider a formal series f (τ ) = q−1 +∑∞
n=1 bnqn (‘formal’ means

we don’t worry about whether it converges). An order-n modular equation for f is a
monic polynomial Fn(x, y) in two variables, of degree ψ(n) := n

∏
primes p|n(1+ 1/p),

such that

Fn

(
f (τ ), f

(
aτ + b

d

))
= 0

for all integers a, b, d ≥ 0 such that ad = n, gcd(a, b, d) = 1 and 0 ≤ b < d.

This definition looks a little obscure, but it is natural. The degree ψ(n) is precisely the
number of those triples (a, b, d). These triples come from the coset expansion

�0(K )

(
n 0
0 1

)
�0(K ) =

⋃
a,b,d

(
a b
0 d

)
�0(K ),

for any K obeying n ≡ 1 (mod K ). Modular equations necessarily obey Fn(x, y) =
±Fn(y, x).

Thus J (τ ) obeys a modular equation for all n. Note that this property depends crucially
on it being a Hauptmodul. Conversely, does the existence of modular equations imply
the Hauptmodul property? Unfortunately not: the exponential function f (τ ) = q−1 also
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obeys one for every n. For example, for p prime, take Fp(x, y) = (x p − y)(x − y p) (see
also Question 7.2.5).

Beautiful and unexpected is that the only functions f (τ ) = q−1 + b1q + · · · to obey
modular equations for all n are J (τ ) and the ‘modular fictions’ q−1 and q−1 ± q (which
are essentially exp, cos and sin) [360]. More generally, we have the following:

Theorem 7.2.4 [122] Let f (τ ) be a formal series q−1 +∑∞
n=1 bnqn, bi ∈ C. Suppose

f satisfies a modular equation of order n for all n ≡ 1 (mod N). Then:
(a) f converges to a holomorphic function on H.
(b) If the symmetry group �( f ) := {α ∈ SL2(R) | f (α.τ ) = f (τ )} consists only of the

translations ±
(

1 t
0 1

)
, then f (τ ) = q−1 + ξq for some coefficient ξ ∈ C; if the

coefficient ξ is an algebraic number, then ξ = 0 or ξ gcd(24,N ) = 1.
(c) If the symmetry group �( f ) does not only contain translations, then �( f ) is genus 0

and f is a Hauptmodul for �( f ). Moreover, �( f ) contains some subgroup �0(K ),
for K |N∞.

Conversely, if f is a Hauptmodul for some subgroup � of SL2(R) containing �0(K ), and
all coefficients bi lie in the cyclotomic field Q[ξK ], then f obeys a modular equation for
every n ≡ 1 (mod K ). For the other n coprime to K , there is also a modular equation
involving twisting by the Galois group, as in (2.3.14). See [122] for details. The condition
K |N∞ means all primes dividing K also divide N .

The denominator identity argument tells us each Tg obeys a modular equation for
each n ≡ 1 modulo the order N = o(g) of g, so Theorem 7.2.4 concludes the proof of
Monstrous Moonshine, and replaces Borcherds’ coefficient check.

The proof of Theorem 7.2.4 is difficult. First, it is established that f is holomorphic
on H. This implies that whenever f (τ1) = f (τ2), there is a diffeomorphism α defined
locally about τ1, such that α(τ1) = τ2 and f (α(τ )) = f (τ ). The hard part of the proof is
to show α extends to all of H. Once that is done, we know α is a Möbius transformation,
and the rest of the argument is reasonably straightforward.

In [120] it is shown that if f obeys a modular equation for any n, all of whose prime
divisors are congruent to 1 (mod N ), then either f = q + ξq−1 for some ξ , or f is the
Hauptmodul for a group containing some �(N ′). However, computer calculations by
[102] indicate that the hypothesis of these theorems can be considerably weakened:

Conjecture 7.2.5 [102], [120] Let f (τ ) = q−1 +∑∞
n=1 bnqn be a formal series and

p, p′ any two distinct primes. If f satisfies modular equations for both p and p′,
then f converges in H to a holomorphic function, and either f (τ ) = q−1 + ξq for
ξ gcd(p−1,p′−1)+1 = ξ , or f is the Hauptmodul for a genus-0 group containing �(N ) for
N coprime to pp′.

This conjecture is completely out of reach at present.
Finding modular equations was a passion of Ramanujan, who filled his notebooks

with them. See [82] for an application of Ramanujan’s modular equations (namely, for
the function p(τ ) = d

dτ log η(τ )) to computing the first billion or so digits of π .
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In Section 1.7.2 we show that although radicals can be used to solve (i.e. find closed
expressions for the roots of) arbitrary polynomials of degree 4 or less, they are inadequate
to solve all polynomials of degree 5 or higher. However, much as the relation cos(3θ ) =
4 cos(θ )3 − 3 cos(θ ) yields the solution to cubics, a modular equation relating τ and 5τ
for
√
θ3/η can be used to solve quintic polynomials (see e.g. chapter 7 of [464]).

Many of the applications of the j-function have to do with its modular equations. For
instance, recall from Theorem 1.7.1 that each abelian extension of Q lies inside some
cyclotomic field Q[ξn], in other words is generated by the values of the exponential
function exp[2π iα] when α is rational. Likewise, the abelian extensions of the imaginary
quadratic fields Q[

√−d] are generated by the values of J (τ ) for special τ . See [117] for
a review of this part of what is called class field theory. Modular equations are used to
establish properties of those special values of J (τ ) (see Question 7.2.2).

Generalising a little a definition of McKay (recall Conjecture 7.1.5), we get:

Definition 7.2.6 By a modular fiction we mean any function of the form f (τ ) =
q−1 + ξq, where either ξ = 0 or ξ 24 = 1.

The point is that these behave like the modular functions Tg – more precisely [122],
these are precisely the non-Hauptmoduls with cyclotomic integer coefficients, which
obey (Galois-twisted) modular equations for each n (see [122] for more details). Perhaps,
exceptional though they are, they shouldn’t be ignored. This suggests the following:

Problem What is the VOA-related question, for which ‘24’ is the answer?

More precisely, out of which VOA-like structure can we obtain the modular fictions, in
a way analogous to how the Tg are obtained from V �? That structure would complete
Moonshine for the modular fictions. Incidentally, it is manifest in the proof of Theo-
rem 7.2.4 that this 24 arises there through the usual exponent-2 property of Section 2.5.1.

7.2.4 Braided #7: speculations on a second proof

Monstrous Moonshine began with the challenge to understand how the Monster (the
right side of (7.1.1)) could be related conceptually to modular functions (the left side of
(7.1.1)). We have seen that VOAs constitute a bridge between the two sides: the Monster
is the symmetry of a VOA V � whose graded dimension is the J -function.

That argument is still the only proof we have of Monstrous Moonshine. But does that
put our finger on the essence of the mystery? The indirect argument sketched in the
previous three subsections leaves the special role of the Monster unclear. As we’ll see
shortly, it also ignores what CFT has tried to teach us regarding modularity. It should
also be remarked that a VOA is quite a complicated beast – do we really need all of its
rich structure, if all we care about is Moonshine? Is there a simpler explanation that,
by requiring less machinery, is both more general and more conceptual and that more
directly connects M to a Hauptmodul property?

For these reasons, we should look for a second proof of Monstrous Moonshine. But
what would it look like? To get a hint, let’s recall the CFT explanation of modularity.
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Two essentially equivalent formulations of quantum field theory are:

(i) The Hamiltonian formulation (canonical quantisation), which presents us with a
state space V , carrying a representation of the symmetry algebra of the theory, and
includes among other things a Hamiltonian (energy operator) H .

(ii) The Feynman formulation, which interprets the amplitudes using path integrals.

In RCFT, the Hamiltonian formulation describes concretely the space V , graded by H , on
which we take the trace trV q H , and hence gives us the coefficients of our q-expansions.
The Feynman path formalism, on the other hand, interprets these graded traces as func-
tions over moduli spaces, and hence makes their modularity manifest. According to
RCFT, the modularity in Moonshine is the conjunction of these two formulations.

On the Hamiltonian side of CFT, the space V is a module for the chiral algebra (VOA)
V . As such, it is a module of the Virasoro algebra (3.1.5) (giving us the Hamiltonian
H = L0), as well as possibly other algebras (e.g. Kac–Moody) and groups (e.g. M). In our
hypothetical second proof, we would like to avoid the full VOA structure, but probably
the presence of Vir is fundamental if we want to give meaning to the coefficients in
the q-expansion, that is the grading of the modules. Thanks to the theory of VOAs, we
understand fairly well the Virasoro side. The remainder of this subsection will be devoted
to the more mysterious question: what is the key ingredient of the Feynman side?

In any treatment of RCFT (e.g. [436], [207], [131], [530], [32]), we read that V-
characters (5.3.13) are ‘1-point functions on the torus’. By this is meant that they are
chiral blocks in B

(1,1)
V for the torus with one marked point, with that point labelled

with the ‘vacuum’ module V itself (see e.g. Sections 4.3.3 and 5.3.4 for the physical
description). Verlinde’s formula tells us that space has dimension equal to the number
of irreducible modules M of the chiral algebra V , and indeed the characters χM form a
natural basis for it. As explained in Section 2.1.4, its (enhanced) mapping class group
�̂1,1 is the braid group B3. Thus B3 will act on the characters of the RCFT. From this,
using (1.1.10a), we obtain the action of the modular group SL2(Z).

To see this B3 action explicitly, we have to undo a simplification we performed in
Definition 5.3.6. The 1-point functions χM are actually functions of the triple (τ, v, z),
where τ lies in the Teichmüller space H of the torus with 1 puncture, v ∈ V is the
insertion state and z ∈ C is a local coordinate at the puncture. Explicitly, as explain in
Section 5.3.4, for v ∈ V[k] we get

χM (τ, v, z) := trM Y (v, e2π iz) q L0−c/24 = e−2kπ iz trM o(v) q L0−c/24, (7.2.3a)

using the notation of Section 5.3.3 (compare with (5.3.13)). The group �̂1,1 is (like any
mapping class group) generated by the Dehn twists, and as mentioned we obtain

�̂1,1 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 ∼= B3, (7.2.3b)

where σi are the Dehn twists of Figure 2.8. The action of σi on the characters is then

σ1.χM (τ, v, z) = e−2π ik/12 χM (τ + 1, v, z), (7.2.4a)

σ2.χM (τ, v, z) = e−2π ik/12 χM

(
τ

1− τ
,

v

(1− τ )k
, z

)
, (7.2.4b)
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so in particular we get

(σ1σ2σ1)2.χM (τ, v, z) = e−2π ik/2 χM (τ, (−1)kv, z), (7.2.4c)

(σ1σ2σ1)4.χM (τ, v, z) = e−2π ik χM (τ, v, z). (7.2.4d)

The combination (σ1σ2σ1)4, which is trivial in the (unenhanced) mapping class group
�1,1

∼= SL2(Z), here equals the Dehn twist about the puncture, which for the logarithmic
parameter z of course sends z to z + 1. The actions of σi on τ and v are determined from
the homomorphism B3 → SL2(Z) given by (1.1.11b) at w = −1. This should be very
reminiscent of Section 2.4.3.

Of course here the state v comes from the vacuum sector V so the conformal weight
k is an integer. We are in the situation of Section 2.4.3, where our B3 action collapses
to one of PSL2(Z), since the centre (7.2.4c) acts trivially. This is why the z-dependence
of χM could be safely ignored in Definition 5.3.6. As before, the more interesting case
is when the weight k of the modular form is not integral. Here, that will happen when
we insert states from other V-modules, that is when we consider chiral blocks from the
other B

(1,1)
M . In CFT these are equally fundamental. In this case, v ∈ M will have rational

conformal weight k ∈ hM + N, and here the Dehn twist about the puncture will typically
not act trivially. As happened with the Dedekind eta function in (2.4.14), we will then
see nontrivial B3 actions2 (involving e.g. the S(a) of Figure 6.4).

It should be clear that in RCFT, modularity is a topological effect. Zhu’s Theorem 5.3.8
generalises the appearance of SL2(Z) in RCFT to any RVOA, but as we recall from
Section 5.3.5, the proof follows closely the intuition of RCFT: modularity in VOAs
arises through that SL2(Z) action on the space of chiral blocks, which is inherited from
the topological �̂1,1-action mentioned above, once we drop (as Zhu did) the dependence
on z.

A toy model of this idea is provided by the proof in Section 2.4.2 of the modularity
of θ3: we can interpret this action of SL2(Z) as an action of B3. Note that this action of
SL2(Z) on the Heisenberg group H is really the action of B3 on the group R2 given in
(2.4.15b); it factors through to SL2(Z) because R2 is abelian.

The relation of the Hamiltonian (Vir) side to that of Feynman (B3) is that the Virasoro
algebra acts naturally on the enhanced moduli space M̂1,1 (see Section 3.1.2), whose
mapping class group is B3. This Vir-action leads to the KZ equations, which are partial
differential equations obeyed by the chiral blocks in B

(1,1)
V , that is by the VOA characters.

The monodromy group of those equations is �̂1,1
∼= B3, and thus B3 acts on B

(1,1)
V .

Of course the reason Borcherds chose a different route in [72] is that we need more than
merely modularity: we need the genus-0 property. But as we will see in Section 7.3.3,
Norton has proposed a possible relationship between the Monster and the genus-0 prop-
erty, and his method also involves the B3 action given in (2.4.15b). Finally, we argue in
Section 6.3.3 that the �Q-action associated with B3 underlies the Galois action in RCFT.
In all of these examples, the modular group arose from an underlying appearance of the
braid group B3. Is this the same B3? We suggest that this braid group action (together

2 The thought that, for example, topological field theory really sees B3 and not SL2(Z) is also made in [404].
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with a compatible Virasoro action) somehow underlies Moonshine, and pursuing this
thought would lead to a second, more conceptual proof of Monstrous Moonshine.

Question 7.2.1. Verify that any replicable function is uniquely determined by finitely
many coefficients.

Question 7.2.2. (a) Verify that J (τ ) obeys a modular equation for every n = 2, 3, 4, . . .
(b) Suppose τ0 = r + i

√
s for rational r, s, where s > 0. Use part (a) to prove that J (τ0)

is an algebraic number.

Question 7.2.3. Verify that any replicable function obeys a modular equation.

Question 7.2.4. Prove that PV1/rad(�|�) is a Lie subalgebra of PV1/PV0.

Question 7.2.5. For each n, find the modular equations obeyed by the modular fictions
(a) f (τ ) = q−1; (b) f (τ ) = q−1 + q; (c) f (τ ) = q−1 − q.

Question 7.2.6. Arguably, what makes two-dimensional quantum field theory so unique
is the possibility of braid statistics. Could those braid groups directly be responsible for
the B3 action of Section 7.2.4?

Question 7.2.7. Call any VOAV obeying the hypotheses of Corollary 6.2.5, ‘nice’. Prove
that a niceV is holomorphic iff its graded dimensionχV (τ ) is invariant under τ �→ −1/τ .
Use this to show, for the class of nice VOAs, that Conjecture 7.2.1 is true iff V � is the
unique nice VOA with graded dimension J (τ ).

7.3 More Monstrous Moonshine

We give in this section a quick sketch of further developments and conjectures. As we
know, Moonshine is an area where it is much easier to conjecture than to prove.

7.3.1 Mini-Moonshine

It is natural to ask about Moonshine for other groups. Of course any subgroup of M
automatically inherits Moonshine by restriction, but this isn’t at all interesting. A very
accessible sporadic is M24 – see, for example, chapters 10 and 11 of [113]. Most con-
structions of the Leech lattice start with M24, and most constructions of the Monster
involve the Leech lattice. Thus we are led to the following natural hierarchy of (most)
sporadics:

� M24 (from which we can get M11, M12, M22, M23); which leads to
� Co0

∼= 2.Co1 (from which we get H J , H S, McL , Suz, Co3, Co2); which leads to
� M (from which we get He, Fi22, Fi23, Fi ′24, H N , T h, B).

It can thus be argued that we could approach problems in Monstrous Moonshine by first
addressing in order M24 and Co1, which should be much simpler. Indeed, Moonshine
for M24 has been completely established in [153].
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Largely by trial and error, Queen [466] established Moonshine for the following groups
(all essentially centralisers of elements of M): Co0, T h, 3.2.Suz, 2.H J , H N , 2.A7, He,
M12. In particular, to each element g of these groups, there corresponds a series Qg(τ ) =
q−1 +∑∞

n=0 an(g)qn , which is a Hauptmodul for some modular group of Moonshine-
type, and where each g �→ an(g) is a virtual character. For Co0, 3.2.Suz, 2.H J and 2.A7,
it is only a virtual character. Other differences with Monstrous Moonshine are that there
can be a preferred nonzero value for the constant term a0, and that although �0(N ) will
be a subgroup of the fixing group, it won’t necessarily be normal.

For example, Queen’s series Qe for Co0 is the Hauptmodul (2.2.17a) for the genus-0
group�0(2). Checking the tables in [109], we see that 276, 299, 1771, 2024 and 8855 are
dimensions of irreducible modules of the Conway group Co1 (hence its Z2-extension
Co0), and 24 is the dimension of the Co0 representation associated with the Leech
lattice (it’s only a projective representation of Co1). We find 11 202 = 8855+ 1771+
299+ 276+ 1, and the ambiguity 2048 = 1771+ 276+ 1 = 2024+ 24 is resolved in
favour of the latter by considering other character values and comparing to the list of
Hauptmoduls. That a virtual character is needed for Co0 is clear from the minus signs in
(2.2.17a). This Hauptmodul is better known as the McKay–Thompson series T2B (and
the centraliser of 2B involves Co0, which isn’t a coincidence), but about half of Queen’s
Hauptmoduls Qg for Co0 do not arise as Tg for M. Nevertheless, next subsection we see
how to interpret them through the Moonshine for M.

The Hauptmodul for �0(2)+ looks like

q−1 + 4372q + 96256q2 + 12 40002q3 + · · · (7.3.1a)

and we find the relations

4372 = 4371+ 1, 96 256 = 96 255+ 1, 1 240 002 = 1 139 374+ 4371+ 2 · 1,
(7.3.1b)

where 1, 4371, 96 255 and 1 139 374 are all dimensions of irreducible representations of
the Baby Monster B. Thus we may expect Moonshine for B. This should actually fall
into Queen’s scheme because (7.3.1a) is the McKay–Thompson series associated with
class 2A of M, and the centraliser of an element in 2A is a double cover of B.

However, there can’t be a VOA V = ⊕nVn with graded dimension (7.3.1a) and auto-
morphism B, because, for example, the B-module V3 doesn’t contain V2 as a submodule
(recall Question 5.2.1). Nevertheless, Höhn deepened the analogy between M and B by
constructing a vertex operator superalgebra V B� of central charge c = 23.5, called the
shorter Moonshine module, closely related to V � (see e.g. [289]). Like V � it is holo-
morphic (i.e. it has only one irreducible module), with automorphism group Z2 × B and
graded dimension

χV B� (τ ) = q−47/48
(
1+ 4371q3/2 + 96256q2 + 1143745q5/2 + · · · ). (7.3.2a)

Of course the strange−47/48 is−c/24; the half-integer powers of q come from the odd
(i.e. fermionic) part of V B�. Just as M is the automorphism group of the Griess algebra
V �

2 , so is B the automorphism group of the algebra (V B�)2. Just as V � is associated
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with the Leech lattice �, so is V B� associated with the shorter Leech lattice O23,
the unique 23-dimensional positive-definite self-dual lattice with no vectors of length-
squared 2 or 1 (see chapter 6 of [113]). The automorphism group of O23 is a central
extension of Co2 by Z2. The relation between (7.3.2a) and (7.3.1a) will be clearer next
subsection.

Similarly, Duncan [163] constructs a vertex operator superalgebra A f � with c = 12
and automorphism group Co1. Again it is holomorphic, and has graded superdimension

χA f � (τ ) = q−1/2
(
1+ 276 q − 2048 q3/2 + 11202 q2 − 49152 q5/2 + · · · ), (7.3.2b)

i.e. is given by (2.2.17a) with τ �→ τ/2 and hence is fixed by a genus-0 subgroup of
SL2(R) (see Question 7.3.1). It is the unique ‘nice’ holomorphic vertex operator superal-
gebra with c = 12 and no elements with conformal weight 1/2, in perfect analogy with
the conjectured uniqueness of V � (Conjecture 7.2.1). The algebra A f � plays the same
role for Co1 that V � plays for M. In particular, just as V � is obtained from a Z2-orbifold,
so is A f �, and this removes the constant term and enhances the symmetry. From this
construction of A f �, it is then straightforward (see Theorem 7.1 in [163]) to compute
explicit finite expressions for the Thompson twists of (7.3.2b) by g ∈ Co1, using Frame
shapes as described in [111]. In this way, a genus-0 Moonshine for Co1 is established
(as expected, the arguments are far simpler than that for M).

There has been no interesting Moonshine rumoured for the remaining six sporadics
(the pariahs J1, J3, Ru, O N , Ly, J4). There is some sort of weaker Moonshine for any
group that is an automorphism group of a vertex operator algebra (so this means any
finite group [152]!). Many finite groups of Lie type should arise as automorphism groups
of VOAs associated with affine algebras except defined over finite fields. But apparently
the known finite group examples of genus-0 Moonshine are limited to those involved
with M.

7.3.2 Twisted #7: Maxi-Moonshine

In an important announcement [450], on par with [111], Norton unified and generalised
Queen’s work. Unfortunately he called it ‘Generalised Moonshine’, but we won’t (recall
the diatribe in Section 3.3.1).

About a third of the McKay–Thompson series Tg will have some negative coefficients.
In Section 7.3.5 we see that Borcherds interprets them as dimensions of superspaces
(which automatically come with signs). Norton proposed that, although Tg(−1/τ ) will
not usually be another McKay–Thompson series, it will always have nonnegative integer
q-coefficients, and these can be interpreted as ordinary dimensions. In the process, he
extended the g �→ Tg assignment to commuting pairs (g, h) ∈ M×M.

Conjecture 7.3.1 (Norton [450]) To each pair g, h ∈ M, gh = hg, we have a function
N(g,h)(τ ) such that

N(ga hc,gbhd )(τ ) = α N(g,h)

(
aτ + b

cτ + d

)
, ∀

(
a b
c d

)
∈ SL2(Z), (7.3.3)
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for some root of unityα (of order dividing 24, and depending on g, h, a, b, c, d). N(g,h)(τ )
is either constant, or generates the modular functions for a genus-0 subgroup of SL2(R)
containing some�(M). Constants N(g,h)(τ ) arise when all elements of the form gahb (for
gcd(a, b) = 1) are ‘non-Fricke’ (defined below). Each N(g,h)(τ ) has a q

1
M -expansion for

that M; the coefficients of this expansion are characters evaluated at h of some central
extension of the centraliser CM(g). Simultaneous conjugation of g, h leaves the function
unchanged: N(aga−1,aha−1)(τ ) = N(g,h)(τ ).

We call N(g,h)(τ ) the Norton series. An element g ∈ M is called Fricke if the group �g

fixing Tg contains an element sending 0 to i∞. In terms of the notation of Conjecture 7.1.1,
g ∈ M is Fricke iff the invariance group�g contains the Fricke involution τ �→ −1/(Mτ ).
The identity e is Fricke, as are 120 of the 171 �g . For example, the classes pA, for p
prime, are Fricke, while the classes pB are not.

The McKay–Thompson series are recovered by the g = e specialisation: N(e,h)(τ ) =
Th(τ ). Unlike the McKay–Thompson series, the Norton series can have cyclotomic
integer coefficients, and the groups fixing them may not contain �0(M). If g is Fricke,
then clearly N(g,e)(τ ) = Tg(τ/M). The action (7.3.3) of SL2(Z) is related to its natural
action on the fundamental group Z2 of the torus, as we saw in Section 6.3.1, as well as
a natural action of the braid group, as we’ll see next subsection.

For example, when 〈g, h〉 ∼= Z2 × Z2 and g, h, gh are all in class 2A, then

N(e,g)(τ ) = N(e,h)(τ ) = Tg(τ ) = q−1 + 4372q + 96256q2 + · · · , (7.3.4a)

N(g,e)(τ ) = N(h,e)(τ ) = Tg(τ/2) = q−1/2 + 4372q1/2 + 96256q + · · · , (7.3.4b)

N(g,h)(τ ) =
√

J (τ )− 984 = q−1/2 − 492q1/2 − 22590q3/2 + · · · , (7.3.4c)

N(g,g)(τ ) = N(h,h)(τ ) = q−1/2 + 4372q1/2 − 96256q + · · · . (7.3.4d)

Hence N(g,e)(τ + 1) = i N(g,g)(τ ), giving us an example of a nontrivial α in (7.3.3).
The basic tool we have for approaching Moonshine conjectures is the theory of VOAs,

so we need to understand Norton’s suggestion from that point of view. This is done using
twisted modules (Section 5.3.6). For each g ∈ M, there is a unique g-twisted module of
V � [150] – call this twisted module V �(g). This generalises the holomorphicity of V �

mentioned in Section 7.2.1. Given any automorphism h ∈ Aut(V �) commuting with g,
we can perform Thompson’s trick (5.3.23) and write

q−1trV �(g)h q L0 =: Z(g, h; τ ). (7.3.5)

Then Z(g, h) = N(g,h).
[150] proves that, whenever the subgroup 〈g, h〉 generated by g and h is cyclic, then

N(g,h) will be a Hauptmodul satisfying (7.3.3). This will happen, for instance, whenever
the orders of g and h are coprime. [150] proves this by reducing it to Conjecture 7.1.1
(which is now a theorem). Extending [150] to all commuting pairs g, h is one of the
most pressing tasks in Moonshine.

Höhn [290] verified Conjecture 7.3.1 for g in class 2A and h ∈ CM(g) ∼= 2.B. In partic-
ular, those 247 functions N(g,h)(2τ ) are Hauptmoduls for genus-0 groups of Moonshine-
type (see Question 7.3.1). The proof mirrors that of [72] fairly closely. There is a simple
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relation between the twisted module V �(g) and the shorter Moonshine module V B�,
and from this the 286 Thompson twists of (7.3.2a) can be obtained [290]. Verifying
Conjecture 7.3.1 for g in class 2B should likewise be possible.

More satisfying though would be a uniform proof of Conjecture 7.3.1, for example,
by considering the full orbifold V �/M. It appears that the 3-cocycle α corresponding to
this orbifold (recall the cohomological twist of Section 5.3.6) will have to be nontrivial –
in fact, its order in H 3(M,C×) should be a multiple of 12 [408]. Suggestive is that
the permutation orbifold M⊗n/〈g〉 gives a natural interpretation of the left-half of the
definition (7.1.9) of a replicable function.

The orbifold theory for M24 is established in [153] (the relevant series Z(g, h) had
already been constructed in [407]). Next up should be the orbifold theory for Conway’s
group Co1, but that seems out of reach right now, in spite of [163].

As has been alluded to elsewhere in this book, the subfactor approach complements
that of VOAs. In particular, orbifolds seem more accessible for them [157], [332].

7.3.3 Why the Monster?

That M is associated with modular functions can be explained mathematically by it
being the automorphism group of the vertex operator algebra V �. But what is so special
about that group M that these modular functions Tg and N(g,h) should be Hauptmoduls?
In fact, every group known to have rich genus-0 Moonshine properties is contained
in the Monster. To what extent can we derive M from Monstrous Moonshine? Our
understanding of this seemingly central role of M is still poor.

The most interesting approach to this important question is due to Norton, and was first
(cryptically) stated in [450]: the Monster is probably the largest (in a sense) group with
the 6-transposition property. A k-transposition group G is one generated by a conjugacy
class K of involutions, where the product gh of any two elements of K has order ≤ k.
For example, take K to be the transpositions in the symmetric group Sn , that is, K is the
set of all permutations (i j). Since π ◦ (i j) ◦ π−1 = (π i, π j), K is a conjugacy class
in Sn . An easy induction on n confirms that Sn is generated by K . Moreover, (i j)(k�)
has order 1, 2, 3, respectively iff the set {i, j} ∪ {k, �} has cardinality 2, 4, 3. Thus Sn

is a 3-transposition group (this example is the source of the name ‘k-transposition’).
The Monster M is 6-transposition, for the choice of class K = 2A (see Section 7.3.6 for
more details). Transposition groups were used in the finite simple group classification
by Fischer to great effect. The simplest relation known to this author, of the number ‘6’
to genus 0, is given in Question 7.3.2.

The group � = PSL2(Z) is isomorphic to the free product Z3 ∗ Z2 generated by an

order 3 element u =
(

0 −1
1 1

)
and an order 2 element v =

(
0 −1
1 0

)
. A transitive

action of� on a finite set X with one distinguished point x0 ∈ X is equivalent to specifying
a finite index subgroup�0 of�. In particular,�0 is the stabiliser {g ∈ � | g.x0 = x0} of x0,
X can be identified with the cosets�0\� and x0 with the coset�0. (If we avoid specifying
x0, then �0 will be identified only up to conjugation.) As an abstract group, �0 will be
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a free product of a certain number of Z2’s, Z3’s and Z’s (e.g. Fn = Z ∗ Z ∗ · · · ∗ Z n
times).

To such an action, we can associate a directed graph G: its vertices are labelled by
the set X , and we draw a solid edge directed from x to u.x , and a dotted undirected
edge between x and v.x . Choose any spanning tree T of G (i.e. a connected subgraph of
G containing all vertices of G and the minimum possible number (‖X‖ − 1) of edges).
Then the Reidemeister–Schreier method (see e.g. the appendix to [292] or section I.3 of
[103]) gives a presentation for �0, with one generator for every edge in G not in T .

We are more interested though in a triangulation of the closed surface �0\H, called
a (modular) quilt, which we can canonically associate with the action of � in X . The
definition, originally due to Norton and further developed by Parker, Conway and Hsu,
is somewhat involved and will be avoided here (but see especially chapter 3 of [292]).
It is so-named because there is a polygonal ‘patch’ covering every cusp of �0\H, and
the closed surface is formed by sewing together the patches along their edges (‘seams’).
There are a total of 2n triangles and n seams in the triangulation, where n is the index
‖�0\�‖ = ‖X‖. The boundary of each patch has an even number of edges, namely the
double of the corresponding cusp width. The formula (2.2.16) for the genus g of �0\H
in terms of the index n and the numbers ni of �0-orbits of fixed points of order i , can be
interpreted in terms of the data of the quilt (see (6.2.3) of [292]), and we find in particular
that if every patch of the quilt has at most six sides, then the genus will be 0 or 1, and
genus 1 only exceptionally.

The quilt picture was specifically designed for one class of these�-actions (actually an
SL2(Z)-action, but this doesn’t matter). Fix a finite group G (we’re most interested in the
choice G = M). Recall from (2.4.15) the right action of B3 on triples (g1, g2, g3) ∈ G3,
and the equivalent reduced action of B3 on G2. We will be interested in this action on
the subset of G3 where all gi ∈ G are involutions. The modular group SL2(Z) is related
to B3 by (1.1.10a). From this, we can get an action of SL2(Z) in two ways: either (i)
by restricting to commuting pairs g, h; or (ii) by identifying each pair (g, h) with all
conjugates (aga−1, aha−1). Norton’s SL2(Z) action (7.3.3) arises from the B3 action of
(2.4.15b), when we combine both (i) and (ii).

The number of sides in each patch of the corresponding quilt is determined by the
orders of the g, h in these pairs. Taking G to be the Monster, and the involutions
gi from class 2A, then each patch will have ≤ 6 sides, and the corresponding genus
will be 0 (usually) or 1 (exceptionally). In this way we can relate the Monster with a
genus-0 property. This approach to genus 0 faces the same challenge of any other: how
to incorporate the Atkin–Lehner involutions of Proposition 7.1.2(ii).

Based on the B3 actions (2.4.15), Norton hopes for some analogue of Moonshine valid
for noncommuting pairs. Although the resulting series are always modular, they may
not be Hauptmoduls, their fixing group may not contain some �(N ), and the coefficients
won’t always be cyclotomic integers. CFT considerations (‘higher-genus orbifolds’)
alluded to in Section 6.3.1 suggest that this might be more natural to do using, for example,
noncommuting quadruples (g1, g2, h1, h2) ∈ M4 obeying g1h1g−1

1 h−1
1 = h2g2h−1

2 g−1
2 ;

the role of SL2(Z) is then played by higher-genus mapping class groups.
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An important question is, how much does Monstrous Moonshine determine the Mon-
ster? How much of M’s structure can be deduced from, for example, McKay’s Ê8 Dynkin
diagram observation (Section 7.3.6), and/or the (complete) replicability of the Tg , and/or
Conjecture 7.3.1, and/or Modular Moonshine in Section 7.3.5 below? A small start
towards this is taken in [452], where some control on the subgroups of M isomorphic to
Zp × Zp (p prime) is obtained, using only the properties of the N(g,h). See also chapter 8
of [292].

7.3.4 Genus 0 revisited

Tuite [532] suggests a very intriguing reformulation of the genus-0 property, directly
in terms of VOAs. Assume the uniqueness conjecture: V � is the only c = 24 VOA
with graded dimension J (Section 7.2.1). He argues from this that, for each g ∈ M, the
McKay–Thompson series Tg will be a Hauptmodul iff the only orbifolds of V � are the
Leech lattice VOA V(�) and V � itself. More precisely, orbifolding V � by 〈g〉 should be
V � if g is Fricke, and V(�) if g is non-Fricke (‘Fricke’ is defined in Section 7.3.2).

In, for example, [313], this analysis is extended to the genus-0 property of some Norton
series N(g,h), when the subgroup 〈g, h〉 is not cyclic (thus going beyond [150]), although
again assuming the uniqueness conjecture. Tuite is thus suggesting that the genus-0
property of the Monstrous Moonshine functions Tg and N(g,h) seems to be equivalent
to a single principle. These arguments emphasise the importance of establishing the
uniqueness conjecture of V �. Unfortunately, that still seems out of reach.

7.3.5 Modular Moonshine

Consider an element g ∈ M. We know from [466], [450], [150] that there is a Moon-
shine for the centraliser CM(g) of g in M, governed by the g-twisted module V �(g).
Unfortunately, V �(g) is not usually itself a VOA, so the analogy with M is not perfect.
Ryba found it interesting that, for g ∈ M of prime order p, Norton’s series N(g,h) can be
transformed into a McKay–Thompson series (and has all the associated nice properties)
whenever h is p-regular (i.e. h has order coprime to p) – as we know, in this case 〈g, h〉 is
cyclic. This special behaviour of p-regular elements suggested to him to look at modular
representations, for reasons we’ll soon see.

Let’s begin by reviewing the basics of modular representations and Brauer characters
(see also [446], [308]). A modular representation ρ of a group G is a representation
defined over a field of positive characteristic p dividing the order ‖G‖ of G. This is
precisely the class of finite-dimensional representations where the usual properties break
down. Such representations possess many special (that is to say, unpleasant) features.

For one thing, they are no longer completely reducible, so Theorem 1.1.2 breaks down.
For a simple example, let p be any prime and consider G = Zp; then over any field of
characteristic p, the map

a �→
(

1 a
0 1

)
(7.3.6)
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defines a two-dimensional representation of G that is indecomposable but not irre-
ducible. It’s not irreducible because it maps the x-axis to itself, and so contains the
one-dimensional identity representation as a subrepresentation. Before, given a repre-
sentation we could simplify it enough merely by writing it as a direct sum of indecom-
posables, but here there are far too many indecomposables. In other words, there are
other more complicated ways to combine irreducibles than direct sum. The familiar role
of irreducibles as direct summands is replaced here by their role as composition factors.
It is completely analogous to, and simpler than, the role of simple groups in finite group
theory (recall Section 1.1.2). Completely reducible representations (as in Theorem 1.1.2)
are equivalent to a representation with blocks down the diagonal and zero-blocks above
and below the diagonal; the diagonal blocks are its irreducible summands. On the other
hand, a modular representation ρ is equivalent to a matrix with zero-blocks below the
diagonal; the blocks along the diagonal (e.g. two copies of the trivial representation (1)
for the representation in (7.3.6)) are the composition factors, and the blocks above the
diagonal describe how these glue together.

Another complication is that the familiar character χρ of (1.1.5) loses its usefulness.
As we saw at the end of Section 1.1.3, very different modular representations can have
identical characters. Instead, the more subtle Brauer character β(ρ) is used. It can be
defined as follows. Let m be the order ‖G‖ of G, and write m = pa p′ where p and
p′ are coprime. Let K be the cyclotomic field Q[ξm], and let R = Z[ξm] be the ring
of cyclotomic integers. A finite field k of characteristic p can be obtained from R
by choosing any prime ideal p of R containing pR; then k = R/p. This construction
of k defines a ring homomorphism φp : R → k. In particular, put ξ := ξp′ ∈ R; then
ξ = φp(ξ ) will be a primitive p′th root of unity in k.

Suppose ρ is some n-dimensional modular representation of G over k. Let G p′ be the
set of all p-regular elements in G. The field k defined above is big enough that the n × n
matrix ρ(g), for any g ∈ G p′ , is diagonalisable over k. More precisely, its n eigenvalues

(counting multiplicities) are all p′th roots of unity in k, and so can be written as ξ
�i for

some integers �i , 1 ≤ i ≤ n.
The Brauer character β(ρ) of ρ is defined to be

β(ρ)(g) :=
n∑

i=1

ξ�i ∈ R ⊂ C, ∀g ∈ G p′ .

It is a well-defined class-function on G p′ , and in fact the Brauer characters form a basis for
the space of class functions on G p′ . Two representations have the same Brauer character
iff they have the same composition factors. Brauer characters were introduced by Brauer
and his student Nesbitt in 1937. Apart from their role in modular representations, they also
relate p-subgroups of G with properties of the usual character table. See Question 7.3.4
for an example.

Theorem 7.3.2 ([484], [79], [77]) Let g ∈ M be any element of prime order p, for any
p dividing ‖M‖. Then there is a vertex operator superalgebra gV = ⊕n∈Z

gVn defined
over the finite field Fp and carrying a (projective) representation of the centraliser CM(g).
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If h ∈ CM(g) is p-regular, then the graded Brauer character

R(g, h; τ ) := q−1
∑
n∈Z

β(gVn)(h) qn

equals the McKay–Thompson series Tgh(τ ). Moreover, for g belonging to any conjugacy
class in M except 2B, 3B, 5B, 7B or 13B, this is in fact an ordinary VOA (i.e. the ‘odd’
part vanishes), while in those remaining cases the graded Brauer characters of both the
odd and even parts can be expressed separately using McKay–Thompson series.

We defined vertex operator superalgebras in Section 5.1.3. The centralisers CM(g) in
the theorem are quite nice: for example, for groups of type 2A, 2B, 3A, 3B, 3C, 5A,
5B, 7A, 11A these are extensions of the sporadic groups B, Co1, Fi ′24, Suz, T h, H N ,
H J , He and M12, respectively. The proof for p = 2 is not complete as it relies on a
still-unproven hypothesis. The conjectures in [484] concerning modular analogues of
the Griess algebra for several sporadic groups follow from Theorem 7.3.2.

Can these modular gV’s be interpreted as a reduction mod p of (super)algebras in
characteristic 0? What can we say about elements g of composite order in M?

Conjecture 7.3.3 (Borcherds [77]) Choose any g ∈ M and let n denote its order.
Then there is a 1

n Z-graded superspace gV̂ = ⊕i∈ 1
n Z

gV̂i over the ring of cyclotomic

integers Z[e2π i/n]. It is often (but probably not always) a vertex operator superalge-
bra – in particular, 1V̂ is an integral form of the Moonshine module V �. Each gV̂
carries a representation of a central extension of CM(g) by Zn. Define the graded
trace

B(g, h; τ ) = q−1
∑
i∈ 1

n Z

chg V̂i
(h) qi .

If g, h ∈ M commute and have coprime orders, then B(g, h; τ ) = Tgh(τ ). If all q-
coefficients of Tg are nonnegative, then the ‘odd’ part of gV̂ vanishes, so it is an ordinary
space, and should equal the g-twisted module V �(g) of [150]. If g has prime order
p, then the reduction mod p of gV̂ is the modular vertex operator superalgebra gV of
Theorem 7.3.2.

More precisely, gV̂ is to be a free module over the ring Z[e2π i/n], and each graded piece
is finite-dimensional over that ring. When we say 1V̂ is an integral form for V �, we
mean that 1V̂ has the same structure as a VOA, with everything defined over Z, and
tensoring it with C gives V �. Borcherds’ conjecture, which beautifully tries to explain
Theorem 7.3.2, is completely open. It provides the analogue for V � of the surprising Lie
algebra Theorems 1.5.4 and 3.4.1.

7.3.6 McKay on Dynkin diagrams

McKay found other relationships with Lie theory [411], [75], [247], reminiscent of his
A–D–E correspondence with finite subgroups of SU2(C) (see Section 2.5.2). As we
see from Table 7.2, M has two conjugacy classes of involutions. Let K be the smaller
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one, called ‘2A’ in [109] (the alternative, class ‘2B’, has almost 100 million times more
elements). The product of any two elements of K will lie in one of nine conjugacy classes:
namely, 1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A. These conjugacy classes are of elements of
orders 1, 2, 2, 3, 3, 4, 4, 5, 6. It is remarkable that, for such a complicated group as M, that
list stops at only 6 – as we know from Section 7.3.3, we call M a 6-transposition group
for this reason. The punchline: McKay noticed that those nine numbers are precisely the
labels ai of the affine E8 diagram (see Figure 3.2). Thus we can attach a conjugacy class
of M to each vertex of the E8

(1) diagram. A direct interpretation of the edges in the E8
(1)

diagram, in terms of M, is unfortunately not yet known, though [247], [365] establish
how to unambiguously assign classes to the nodes.

We can’t get the affine E7 labels in a similar way, but McKay noticed that an order 2
folding of affine E7 gives the affine F4 diagram, and we can obtain its labels using the
Baby Monster B (the second largest sporadic). In particular, let K now be the smallest
conjugacy class of involutions in B (also labelled ‘2A’ in [109]); the conjugacy classes
in K K have orders 1, 2, 2, 3, 4 (B is a 4-transposition group) – these are the labels of
F4

(1). Of course we’d prefer E7
(1) to F4

(1), but perhaps that two-folding has something
to do with the fact that an order-2 central extension of B is the centraliser of an element
g ∈ M of order 2.

Now, the triple-folding of affine E6 is affine G2. The Monster has three conjugacy
classes of order 3. The smallest of these (‘3A’) has a centraliser that is a triple cover of
the Fischer group Fi ′24.2. Taking the smallest conjugacy class of involutions in Fi ′24.2,
and multiplying it by itself, gives conjugacy classes with orders 1, 2, 3 (Fi ′24.2 is a
3-transposition group) – and those not surprisingly are the labels of G2

(1)!
McKay’s E8

(1), F4
(1),G2

(1) observations still have no explanation. In [247] these pat-
terns are extended, by relating various simple groups to the E8

(1) diagram with deleted
nodes. More recently, [365] relate the E8

(1) observation to VOAs, by applying [425] to
the lattice VOA V(

√
2E8); the connection with V � is plausible but not yet completely

established. As we know from Section 1.5.4, the folding of Coxeter–Dynkin diagrams
arises when we restrict to the invariant subalgebras of automorphisms, so perhaps that
provides a clue how to attack the F4

(1) and G2
(1) observations.

7.3.7 Hirzebruch’s prize question

Algebra is the mathematics of structure, and so of course it has a profound relationship
with every area of mathematics. Therefore the trick for finding possible fingerprints of
Moonshine in, say, geometry is to look there for modular functions. And that search
quickly leads to the elliptic genus.

We briefly discuss this in Section 5.4.2, where we mention several deep relationships
between elliptic genera and the material covered elsewhere in this book. Let us simply
mention here that the genus of a manifold will typically involve negative coefficients
and be the graded dimension of a vertex operator superalgebra. This certainly doesn’t
preclude Moonshine-like behaviour – for example, Moonshine for Co1 involves as we
know the vertex operator superalgebra A f �. However, the genera of even-dimensional



432 Monstrous Moonshine

projective spaces has nonnegative integer coefficients [400]; it would be interesting to
study the representation-theoretic questions associated with them.

Hirzebruch’s ‘prize question’ (page 86 of [287]) asks for the construction of a 24-
dimensional manifold M with Witten- or Â-genus J (after being normalised by η24). We
would like M to act on M by diffeomorphisms, and the twisted Witten genera to be the
McKay–Thompson series Tg . See also [151]. It would also be nice to associate Norton’s
series N(g,h) with this Moonshine manifold. Constructing such a manifold would realise
the geometry underlying Monstrous Moonshine, and as such is perhaps the remaining
Holy Grail in the subject.

Hirzebruch’s question was partially answered by Mahowald–Hopkins [399], who
constructed a manifold with Witten genus J , but couldn’t show it would support an
effective action of M. Related work is [21], who constructed several actions of M on, for
example, 24-dimensional manifolds (but none of which could have genus J ), and [364],
who showed the graded dimensions of the subspaces V �

± of the Moonshine module are
twisted Â-genera of Milnor–Kervaire’s manifold M8

0 (the Â-genus is the specialisation
of elliptic genus to the cusp i∞).

Related to elliptic genus is elliptic cohomology, which is described beautifully in
[499]. Mason’s constructions [407] associated with Moonshine for the Mathieu group
M24 have been interpreted as providing a geometric model (‘elliptic system’) for elliptic
cohomology Ell∗(B M24) of the classifying space of M24 [523], [154].

7.3.8 Mirror Moonshine

There has been a second conjectured relationship between geometry and Monstrous
Moonshine. Calabi–Yau manifolds (see e.g. [299]) are a class of complex manifolds
with an unusually rich mathematical structure – for example, in dimensions 1 and 2 they
are elliptic curves and K3 surfaces, respectively. Specifying a Calabi–Yau manifold X
means choosing a complex structure, as well as a Kähler class [ω] ∈ H 2(X,C). In the
case of an elliptic curve (i.e. a torus), this corresponds to choosing parameters τ, σ ∈ H.
Mirror symmetry [291] says that most Calabi–Yau manifolds come in closely related
pairs, where the roles of the complex structure and Kähler structure are switched. In
the case of elliptic curves, it relates the pair (τ, σ ) to the pair (σ, τ ) and implies the
modularity of certain generating functions for Gromov–Witten invariants – see [132] for
a review. This unexpected modularity is, of course, reminiscent of Moonshine, and it is
tempting to look for a concrete connection.

Consider a one-parameter family Xλ of Calabi–Yau manifolds, with mirror X∗ given
by the resolution of an orbifold X/G for G finite and abelian. Then the Hodge numbers
h1,1(X ) and h2,1(X∗) will be equal, and more precisely the moduli space of (complexified)
Kähler structures on X will be locally isometric to the moduli space of complex structures
on X∗. The ‘mirror map’ λ(q), which can be defined using the Picard–Fuchs equation
[438], is a canonical map between those moduli spaces. For example, x4

1 + x4
2 + x4

3 +
x4

4 + λ−1/4x1x2x3x4 = 0 is such a family of K3 surfaces, where G = Z4 × Z4. Its mirror



More Monstrous Moonshine 433

map is given by

λ(q) = q − 104q2 + 6444q3 − 311 744q4 + 13 018 830q5 − 493 025 760q6 + · · · .
(7.3.7)

Lian–Yau [385] noticed that the reciprocal 1/λ(q) of the mirror map in (7.3.7) equals
the McKay–Thompson series T2A(τ )+ 104. After looking at several other examples with
similar conclusions, they proposed their Mirror Moonshine Conjecture: The reciprocal
1/λ of the mirror map of a one-parameter family of K3 surfaces with an orbifold mirror
will be a McKay–Thompson series (up to an additive constant).

A counterexample (and more examples) are given in section 7 of [544]. In particular,
although there are relations between mirror symmetry and modular functions (see e.g.
[266] and [275]), there doesn’t seem to be any special relation with M. Doran [158]
‘demystifies the Mirror Moonshine phenomenon’ by finding necessary and sufficient
conditions for 1/λ to be a modular function for a modular group commensurable with
SL2(Z).

This focus on K3 surfaces is not significant. Calabi–Yau 3-folds are the real meat of
mirror symmetry, but it is much harder to find explicit families. Some of the interesting
number theory of Calabi–Yau manifolds and mirror symmetry is reviewed in [571].

7.3.9 Physics and Moonshine

The physical side of Moonshine (namely, perturbative string theory and conformal field
theory) was noticed early on, and has profoundly influenced the development of Moon-
shine and VOAs. This effectiveness of physical interpretations isn’t magic – it merely tells
us that finite-dimensional objects are sometimes seen much more clearly when studied
through infinite-dimensional structures (often by being ‘looped’). Of course Monstrous
Moonshine, which teaches us to study the finite group M via its infinite-dimensional
module V �, fits perfectly into this picture.

Throughout this book we’ve described various points-of-contact between mathemat-
ics and physics. Because V � is so mathematically special, it may be expected that it
corresponds somehow to interesting physics. Although there have been some attempts
to directly interpret Monstrous Moonshine in the context of physics, we still have no
evidence Nature concurs.

There is a c = 24 RCFT whose anti-holomorphic chiral algebra is trivial, and whose
holomorphic one, as well as the state space H, are both V � (this is possible because
V � is holomorphic). This RCFT is nicely described in [142]; its symmetry is the
Monster. The Bimonster M - Z2 = (M×M)×Z2 (Section 7.1.1) is the symmetry of
a c = c = 24 RCFT with state space H = V � ⊗ V �. The paper [119] finds the D-branes
(boundary states) of lowest mass for this theory; they are in one-to-one correspondence
g �→ ‖g〉〉with the elements of M. The Bimonster permutes them: (h, k).‖g〉〉 = ‖hgk−1〉〉,
while the remaining involution sends ‖g〉〉 to ‖g−1〉〉. Most interestingly, their ‘overlaps’
〈〈g‖q 1

2 (L0+L̄0− c
24 )‖h〉〉 equal the McKay–Thompson series Tg−1h . We largely ignored D-

branes (surfaces on which endpoints of open strings rest) in Chapter 4, but they are a
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natural ingredient in string theory. Much as every natural property of the Wess–Zumino–
Witten string translates nicely into Lie theory, it would appear that the same holds with
the string theory H = V � ⊗ V � and the Monster M. Surely it would be interesting to
continue that investigation. Other suggestions for the physics of Monstrous Moonshine
are [99], [274], [96], [260], [281].

Question 7.3.1. Let f (τ ) be a Hauptmodul for some genus-0 group �. For any a > 0,
prove that f (aτ ) is fixed by a genus-0 group (call it �a), and any modular function for
�a will be a rational function in f (aτ ).

Question 7.3.2. Let G be any group with exponent k < 6 (i.e. gk = e for all g ∈ G).
Suppose there are a set of functions N(g,h)(τ ) associated with every commuting pair
g, h ∈ G, with the property that equation (7.3.3) always holds with α = 1. Prove that
each of these functions is fixed by a genus-0 subgroup of SL2(Z).

Question 7.3.3. Assume for simplicity that g ∈ M is such that CM(g) acts linearly (i.e.
nonprojectively) on the twisted module V �(g). Then for h ∈ CM(g) of order n, the q-
coefficients of Z(g, h) all lie in the field Q[ξn]. Fix any Galois automorphism σ ∈
Gal(Q[ξn]/Q), and let σZ(g, h) denote the q-expansion obtained by formally applying σ
term-by-term to Z(g, h): σ (

∑
i ai qi ) =∑

i σ (ai )qi . Show that σZ(g, h) equals another
series Z(g′, h′), for some g′ ∈ M, h′ ∈ CM(g′).

Question 7.3.4. Consider the usual representation ρ of G = S3 by 3× 3 permutation
matrices, associating with π ∈ S3 the matrix ρ(π ) obtained from the identity matrix by
applying π to the components of each column. For example,

ρ(123) =
⎛⎝ 0 0 1

1 0 0
0 1 0

⎞⎠ .

Show that ρ is completely reducible when considered as a modular representation over
characteristic 2, but is not completely reducible when considered as a modular represen-
tation over characteristic 3. For both characteristic 2 and 3, compute its Brauer character
using the definition given in Section 7.3.5.



Epilogue, or the squirrel who got away?

So, has Monstrous Moonshine been explained? According to most of the fathers of the
subject, it hasn’t. They consider VOAs in general, and V � in particular, to be too com-
plicated to be God-given. The progress, though impressive, has broadened not lessened
the fundamental mystery, they would argue.

For what it’s worth, I don’t completely agree. Explaining away a mystery is a little
like grasping a bar of soap in a bathtub, or quenching a child’s curiosity. Only extreme
measures like pulling the plug, or growing up, ever really work. True progress means
displacing the mystery, usually from the particular to the general. Why is the sky blue?
Because of how light scatters in gases. Why are Hauptmoduls attached to each g ∈ M?
Because of V �. Mystery exists wherever we can ask ‘why’ – like beauty, it’s in the
beholder’s eye.

Understanding doesn’t put an end to questions, it spices them. There’s always a hori-
zon, no matter how high you climb, beyond which everything is still hidden.

However, have we really isolated the key conjunction of properties needed for Moon-
shine to arise? Can we derive the Monster from Monstrous Moonshine? In Section 7.2.4
we make the case for a more direct, topological explanation for Moonshine involving
compatible actions of the Virasoro algebra and the braid group B3. In any case, we need
a second independent proof of Monstrous Moonshine.

Moonshine is now ‘leaving the nest’. We are entering a consolidation phase, tidying
up, generalising, simplifying, clarifying, working out more examples, climbing a few
metres higher. Important and interesting discoveries will be made in the next few years,
and yes, there still is mystery, but no longer does a Moonshiner feel like an illicit distiller:
Moonshine is now a day-job!

Question and Answer in the Mountains1

They ask me why I live in the green mountains.
I smile and don’t reply; my heart’s at ease.
Peach blossoms flow downstream, leaving no trace –
And there are other earths and skies than these.

Li Bai 701 AD

1 Translated by Vikram Seth, Three Chinese Poets (London, Faber and Faber, 1992).



Notation

Common notation Meaning

Re z, Im z real, imaginary parts of z ∈ C
'x(, .x/ largest (smallest) integer ≤ x (≥ x)
〈α, u〉 Hermitian form
(u|v) = u · v inner-product
Mt transpose of matrix M
M† matrix-adjoint= Mt

‖S‖ cardinality of a set, order of a group
z complex conjugation
gcd(a, b) greatest common divisor
Bn the braid group on n strands (1.1.9)
C the complex numbers
C× the multiplicative group of nonzero z ∈ C
CFT conformal field theory
δi j Kronecker delta: 1 if i = j , otherwise 0
δ(x) Dirac delta distribution
η(τ ) Dedekind eta function (2.2.6b)
H the upper half-plane (0.1.1)
H the upper half-plane with cusps (0.1.3)
In n × n identity matrix
j, J = j − 744 Hauptmoduls for SL2(Z) (0.1.8)
� Leech lattice (Section 1.2.1)
M Monster finite simple group
N the nonnegative integers {0, 1, 2, . . .}
P1(C) Riemann sphere C ∪ {∞}
q e2π iτ , τ ∈ H
Q the rational numbers
R the real numbers
RCFT rational conformal field theory
� Riemann surface, complex curve
SLn(R) n × n det= 1 matrices, entries in R
τ point in H
θ3 Jacobi theta function (2.2.6a)
Tg McKay–Thompson series (0.3.3)
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V � Moonshine module (Section 7.2.1)
VOA vertex operator algebra (Definition 5.1.3)
ξn root of unity exp(2π i/n)
Z the integers

Section 1.1

e the identity in a group
G ∼= H groups G and H are isomorphic
Zn ring and additive group Z/nZ
Fq finite field with q elements
N� G N normal subgroup of G
H < G H subgroup of G
Fn the free group on n generators
〈g1, . . . , gn〉 the group generated by elements gi

Dn dihedral group (1.1.1)
N × H direct product
N×H semi-direct product
Sn symmetric group
Z (G) centre of G
An alternating group
M11, . . . , M24 Mathieu sporadics
GLn(K) invertible matrices over field K
Kg conjugacy class {hgh−1}
CG group algebra
Pn pure braid group
C[w,w−1] = C[w±] Laurent polynomials
[G,G] commutator subgroup 〈ghg−1h−1〉
Section 1.2

L a lattice (Section 1.2.1)
L∗ the dual of a lattice (Section 1.2.1)
I Im,n indefinite even self-dual lattice
|L| determinant of lattice
L1 ⊕ L2 orthogonal direct sum of lattices
Sn the n-sphere
C∞ smooth; all partials are continuous
C∞(U ) C∞-functions f : U → R
Tp(M) tangent space at p ∈ M
T M tangent bundle
Vect(M) vector fields
T ∗p (M) differential 1-forms
T ∗M cotangent bundle
π1(M, v) = π1(M) fundamental group
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Pn(R),Pn(C) projective n-space
Cn configuration space (1.2.6)

Section 1.3

H complex separable Hilbert space
�2(∞) Hilbert space of square-summable sequences
C∞cs (Rn) smooth functions with compact support
S(Rn) Schwartz space
L2(X ) Hilbert space of square-integrable functions
dμ(x) Lebesgue measure
T ∗ adjoint of operator T∫

X H(x)dμ(x) direct integral of Hilbert spaces
L(H) bounded operators on H
S′ commutant of set S
Mn(C) n × n matrices over C
type In, II1, II∞, IIIλ families of factors
M×G crossed-product (1.3.4)

Section 1.4

g a Lie algebra
[xy] bracket (multiplication) in Lie algebra
Heis Heisenberg algebra (1.4.3)
SO+3,1(R) Lorentz group
G̃ universal cover of G
gln Lie algebra of n × n matrices
[gh] span [xy], x ∈ g, y ∈ h

Z (g) centre of g

ad x adjoint operator (ad x)(y) = [xy]
κ(x |y) Killing form on g

g(A) Lie algebra associated with Cartan matrix A
Ar , Br ,Cr , Dr Lie algebras slr+1(C), so2r+1(C), sp2r (C), so2r (C)
E6, E7, E8, F4,G2 exceptional simple Lie algebras
Witt Witt algebra (1.4.9)
Diff(M), Diff+(M) (orientation-preserving) diffeomorphism group

Section 1.5

L(λ) irreducible module with highest weight λ
P+(g) dominant integral weights
M(λ) Verma module with highest weight λ
h a Cartan subalgebra
α ∈ � roots
gα root-space (1.5.5b)
(α|β) Killing form on h∗

rα Weyl reflection (1.5.5c)
W Weyl group
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αi ∈ � simple roots in a base
ωi fundamental weights
β,μ ∈ �(ρ) weights of representation ρ
Vβ weight-spaces (1.5.6b) in module V
U (g) universal enveloping algebra
chV (z) character (1.5.9a) of module V
chλ character of L(λ)
ρ representation; also, the Weyl vector

∑
i ωi

chγλ γ -twisted character
z, h elements in h

γ ∈ Aut(g) automorphisms of g

B(H) bounded operators with bounded inverse
Ĝ unitary dual of Lie group G

Section 1.6

Hom(A, B) set of arrows=morphisms
Vect category of vector spaces
Riem category of Riemann surfaces
Braid category of braids
aU V W associativity constraint
cU V commutativity constraint
Ribbon category of ribbons
RibbonS category of ribbons labelled from S

Section 1.7

K,L fields
K[α1, . . . , αn] field of polynomials in (algebraic) αi

[L : K] degree of field extension K ⊂ L
Gal(L/K) Galois group
Q[ξn] cyclotomic field

Section 2.1

K(S) field of meromorphic functions
p(z) Weierstrass function (2.1.6a)
θr,s(τ, z) theta functions (2.1.7a)
Hk(S),Mk(S) holomorphic/meromorphic k-differentials
Mg,n moduli space for genus g, n punctures
�g,n mapping class group for genus g, n punctures
Jac(�) Jacobian variety
Mg,n Deligne–Mumford compactification
M̂g,n enhanced moduli space
�̂g,n enhanced mapping class group

Section 2.2

ζ (s) Riemann zeta function (2.2.3c)
�(N ) the principal congruence subgroup (2.2.4a)
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�0(N ) a congruence subgroup (2.2.4b)
�θ (2.2.5)
t+L lattice theta function (2.2.11a), (2.3.7)

Section 2.3

�(s) Gamma function
θ1, θ2, θ4 Jacobi theta functions

Section 2.4

Ẑp p-adic integers
lim← projective limit
Mp2(R) metaplectic group (2.4.9)

Section 2.5

A-D-E the An, Dn, E6, E7, E8 meta-pattern
pf2,pf2− condition on graphs

Section 3.1

Witt Witt algebra (1.4.9)
�n standard basis for Witt

Vir Virasoro algebra (3.1.5)
Ln,C standard basis of Vir

L0 Hamilton operator, gives grading on Vir-modules
c, h central charge, conformal weight
M(c, h) Verma module
V (c, h) irreducible module
cm, hm;rs c, h for discrete series (3.1.6)
chc,h(τ ) the character of V (c, h)
Diff+(S1) diffeomorphism group of S1

Section 3.2

g finite-dimensional semi-simple Lie algebra
Lpolyg polynomial loop algebra S1 → g

g(1) = Xr
(1) nontwisted affine algebra

ai , a∨i labels, co-labels (Figure 3.2)
h, h Cartan subalgebras of g and g

g(N ), N > 1 twisted affine algebra
M(λ) = M(λ, k, u) Verma module with highest weight λ
L(λ) irreducible module with highest weight λ
k level
δ imaginary root
Pk
+ integrable level k highest weights (3.2.8)

χλ character of L(λ)
cλ, hλ central charge, conformal weight (3.2.9)
λ,μ ∈ �(V ) weights
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h∨ dual Coxeter number
KZ Knizhnik–Zamolodchikov (Section 3.2.4)
LG loop group (Section 3.2.6)

Section 3.3

ge, he g, h extended by derivations
gτ toroidal algebra associated with 2-cocycle τ
g�,P Krichever–Novikov algebra

Section 3.4

χα
λ α-twisted character

m Monster Lie algebra (Sections 3.3.2, 7.2.2)

Section 4.1

L Lagrangian
H Hamiltonian
pi momentum components
c speed of light
L Lagrangian density

Section 4.2

ψ(x, t) wave-function
� Planck’s constant
H state-space (Hilbert space)
� Fock space
â, â† annihilation, creation operators
Ĥ Hamiltonian operator
|0〉 vacuum
|�〉 state
|in〉, |out〉 incoming, outgoing states
〈out|in〉 transition amplitude
ϕ(x), φ(x), ψ(x) quantum fields
Pμ energy–momentum operators
QED quantum electrodynamics

Section 4.3

OPE operator product expansion
B(g,n) space of chiral blocks
V chiral algebra (VOA)
T (z) stress–energy tensor
WZW Wess–Zumino–Witten model
M ∈ �(V) irreducible V-module
χM (τ ) graded dimension (4.3.8a)
Z(τ, τ ) 1-loop partition function (4.3.8b)
Vh h-twisted sector
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VG fixed-point subalgebra for group G
Z(g,h)(τ ) (4.3.14b)
χ(h,ρ)(τ ) (4.3.15c)

Section 4.4

Cm disjoint union of m circles
Cg,k connected component in Segal’s Hom(Cm,Cn)
Vect f category of finite-dimensional spaces

Section 5.1

W [z±1] Laurent polynomials in z, coefficients in W
W [[z±1]] formal power series in z
δ(z) multiplicative Dirac delta (5.1.2)
Resz( f ) residue (5.1.3a)
V a VOA
Y (a, z) vertex operator
Vn space of conformal weight n vectors
u(n) mode of u ∈ V
ω conformal vector
1 vacuum vector in V
χV (τ ) graded dimension (5.1.10b)
(�|�) invariant bilinear form (5.1.11)

Section 5.2

o(u) the ‘zero-mode’ u(n−1), for u ∈ Vn

PVn conformal primaries (5.2.3)
Aut(V) automorphism group of V
V(Cn) Heisenberg VOA
V(g, k) affine algebra VOA
V(L) lattice VOA
VG G-fixed points in V
Section 5.3

M V -module
YM (u, z) vertex operator for M
Mα conformal weight α space
M� contragredient (= dual) module
�(V) irreducible V-modules
M × N fusion
N P

M N fusion multiplicities (5.3.3)
h(M) conformal weight of M
Mn×n the algebra of n × n matrices
A(V) Zhu’s algebra
χM (τ, v) character of M (5.3.13)
χ J

M (τ, u, v) Jacobi character (5.3.14)
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L[n] a second Virasoro action on V
V[n] homogeneous spaces for L[0]
Inn(V) inner-automorphisms of V
Z(M, h; τ ) h-twisted graded trace (5.3.23)

Section 5.4

X smooth complex variety
MSVX chiral de Rham complex
MSVX (X ) global sections
T (X ) Tamanoi’s invariant

Section 6.1

N c
ab fusion multiplicities

S = (Sab) modular matrix
N (g,m+n) b1,...,bm

a1,...,an Verlinde dimensions (6.1.2)
T = (Tab) diagonal matrix in modular data
Z = (Zab) modular invariant
Y(w, z) intertwining operator
V
( c

a b

)
space of intertwining operators of type

( c
a b

)
Section 6.2

Gr(m, n) Grassmannian
L(x) Roger’s dilogarithm
RVOA rational vertex operator algebra
Uq (g) quantum group
R(q) family of solutions to (6.2.8)
CG(g) centraliser of g in G
N ⊂ M subfactor
[M : N ] Jones index

M X N M − N bimodule

Section 6.3

Fn Fermat curve xn + yn + zn = 0
Jac(Fn) Jacobian of Fermat curve
�Q absolute Galois group of Q
Q algebraic closure of Q
χ cyclo cyclotomic character
Ĝ profinite completion of G

Section 7.1

B Baby Monster
Fi ′24 a Fischer group
M - Z2 Bimonster
�g fixing group of Tg

o(g) order of g
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�0(p)+ (7.1.5)
k|N∞ any prime dividing k divides N

Section 7.3

A f � vertex operator superalgebra for Co1

V B� Baby Monster Moonshine module
N(g,h)(τ ) Norton series
β(g) Brauer character
B(g, h; τ ) Modular Moonshine series
‖�〉〉 boundary states in CFT
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Houches, 1988) (Amsterdam, North-Holland, 1990) 1–168.
[247] G. Glauberman and S. P. Norton, ‘On McKay’s connection between the affine E8 diagram and the

Monster’, Proceedings on Moonshine and Related Topics (Montréal, 1999) (Providence, American
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References 457

[359] M. Kontsevich and Yu. Manin, ‘Gromov–Witten classes, quantum cohomology, and enumerative
geometry’, Mirror Symmetry II (Providence, American Mathematical Society, 1997) 607–53.

[360] D. N. Kozlov, ‘On completely replicable functions and extremal poset theory’, MSc thesis,
University of Lund, Sweden, 1994.

[361] D. Kreimer, Knots and Feynman Diagrams (Cambridge, Cambridge University Press, 2000).
[362] P. B. Kronheimer and H. Nakajima, ‘Yang–Mills instantons on ALE gravitational instantons’, Math.

Ann. 288 (1990) 263–307.
[363] M. Kuga, Galois’ Dream: Group Theory and Differential Equations (Boston, Birkhäuser, 1993).
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adèle 157–158
adjoint

matrix 66
operator 47, 49, 52, 256
operator ad x (Lie algebra) 60, 190
representation 57, 60, 67–68, 72–73, 193,

331–332
module (see representation)

Ado–Iwasawa Theorem 58
affine algebra 176

and braid groups (see braid group Bn and K Z
equation)

characters (see character, for an affine algebra)
graded dimensions (see character, for an affine

algebra)
and Lie algebras of polynomial growth 188–189
and loop algebras (see loop algebra)
and loop groups (see loop group)
modules 189, 192, 208, 329

integrable highest-weight 194–197, 199, 205,
215, 286, 329, 333

nontwisted
construction 189–191, 205, 312
in string theory 189, 280, 286–288, 372–373

twisted 375
construction 191–192
and twisted character 220, 346–347

and Virasoro/Witt algebras (see Virasoro algebra;
Witt algebra)

Weyl group (see Weyl group)
(see also Kac–Moody algebra)

Alexander’s theorem 43
algebra 8, 14, 24, 29, 44, 53, 98, 412, 431
algebraic closure 63, 395
algebraic group 58
algebraic integer 97, 394
algebraic number 96–97
alternating group An 19, 100, 383
amplitude (quantum) 250, 252, 259, 276, 279–280,

300, 308
annihilation operator â 248, 257–258
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(see also chiral block; vertex operator algebra)

conformal group 281–282, 285
conformal map 107

and holomorphicity 114, 281–282
conformal primary (see primaries)
conformal vector ω 318, 326, 377

(see also stress-energy tensor)
conformal weight 182, 194–195, 199, 284–286, 288,

318, 322, 421
congruence property 196, 360–361, 400
congruence subgroup 128, 138–139, 146–147, 166;

(see also congruence property;
moonshine-type)

conjugacy class Kg 23, 77, 305, 375, 402, 411
connection 38, 178, 201–202, 269, 389
conserved charge 231–232, 240, 259, 268, 284, 373
conserved current 238, 240, 259, 284, 372–373
convolution product 21, 84–85, 136, 148, 377
Conway groups 32, 177, 179, 404, 409, 414–415,

422–424
Conway–Norton conjectures (see Monstrous

Moonshine, conjectures)
co-root 195, 211
correlation function 252–253, 259–260, 283

in CFT 279, 281, 283–287, 291–292, 298, 307,
333, 361, 363

(see also chiral block)
coset construction 328
cotangent bundle 37, 231, 232
covariant derivative 38, 178
covering transformation 100

(see also geometric Galois)
Coxeter–Dynkin diagram 31, 62–64, 70–71, 79,

169, 368
affine (see extended below)
extended 62, 170, 172, 190–192, 218–219, 368,

370, 373–374, 431
creation operator â† 193–195, 248, 257–258
critical point (see singularity)
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crossed-product M×G 50–51, 386, 389–390
crystallographic condition 188, 214
current algebra 189
curvature 106, 108, 114–115, 122, 178, 201, 269,

285
curve (1–dimensional manifold)

complex 1–2, 110, 112, 114, 122, 280
real 35–36, 38, 40, 280

cusp 2, 127–128, 130–131, 164, 223–224, 280,
291–292, 427

(see also Deligne–Mumford compactification;
surface with nodes)

Cvitanović’s Magic Triangle 72–73
cyclotomic

character χ cyclo 397
field 101–102, 358, 418, 419
integers 102, 425, 427, 429–430

and characters 101, 103
and modular functions 140, 147

D-brane 278, 280, 292, 374, 400, 433
Dedekind eta function η(τ ) 11, 44, 131–133, 140,

165, 270, 409
in Lie theory 183, 193
in physics 133, 371

Dedekind sum 132, 165
degree of braid (see braid group)
degree of field extension 96, 100, 102
Dehn twists 120, 122, 125, 420–421
Deligne–Mumford compactification Mg,n 123–124

(see also cusp; surface with nodes)
denominator identity 131, 176, 220–223, 225,

415–416
derivation 36, 55, 61, 190, 320

adjoined to Lie algebras 188, 190, 213, 215
Diff+(S1) 64, 184, 186, 206–207, 282, 299–300

complexification? 184, 300–301
representations 180, 184–185
universal cover 184
(see also Virasoro algebra; Witt algebra)

diffeomorphism 34, 36, 57, 306, 432
of surface 111, 285, 299

differential form 37, 119, 180
differentials 352
dihedral group Dn 16, 17, 20, 24, 28, 170, 178,

187–188
dilogarithm 371–372
Dirac delta δ(x) 21, 46–47, 243, 265, 313–316
direct integral 48–49, 50, 286
direct limit (see injective limit)
direct product 16, 18, 35, 59, 88, 95
direct sum

and categories 88, 94, 95
and direct integral 50, 85
of eigenspaces 75, 78
of lattices 31, 70

of Lie algebras 59–61, 63, 180
of modules (see modules)

Dirichlet character 146–147, 158
Dirichlet series 104, 141–142
discrete series (of Virasoro modules) 182–185, 194,

216, 288
distribution 46–47,160–162, 265, 266, 282–283, 313

tempered 46–48, 243, 253, 272, 274
D-module 185, 189, 203
Drinfel’d double (see quantum double)
dual Coxeter number h∨ 73, 195, 326–327, 368,

371, 373–374
shift by (see h∨-shift)

duality (in CFT) 289, 301, 320, 322, 365–366
Dynkin diagram (see Coxeter–Dynkin diagram)

E8 336, 353, 369, 381, 389
lattice 31–32, 70, 138, 409
Lie algebra 61, 73, 77, 78, 196–197, 414, 431
Lie group 196
and Moonshine 6–7, 9, 196–197, 412
Weyl group 406, 409
(see also A-D-E)

Eisenstein series 2–3, 8, 112, 127–128, 134, 152,
156, 164

electromagnetism 233–239, 255, 260, 267–269, 277
elliptic curve 56, 117, 129–130, 142, 401, 432
elliptic functions 117–118, 129, 143, 159, 203
elliptic genus (see genus, elliptic)
energy 229, 232, 235, 239, 254

and conformal weights 181–182, 207, 322
conservation 228, 229–230, 232
kinetic 229
operator (see Hamiltonian)
potential (see potential)

energy-momentum vector 235, 254, 272
enhanced mapping class group (see mapping class

group, enhanced)
equal-time commutation relations 255, 263,

265–266, 271
equations of motion 227, 229–230, 232, 235, 242,

247, 254
Erlangen Programm 38
Esquisse d’un Programme 397–401
exponents (Lie theory) 373–374

factor (von Neumann algebras)
classification 50
crossed-product construction of (see

crossed-product)
definition 49–50
and Galois analogy 100, 386
hyperfinite 50, 386–387
modules of 52
and projections 51
in quantum field theory 50
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factorisation (CFT) 280, 291
fake Monster Lie algebra 212, 214, 225, 416
Feit–Thompson Theorem 18
Fermat curve Fn 393–395, 401
Fermat’s Last Theorem 97, 101, 112, 130, 142
fermion 250, 255, 258, 296

in CFT 168, 281, 301, 328, 352, 371, 423
Feynman diagram 251–253, 260–262, 265, 271

in string theory 278–279, 281
Feynman path formulation 250–251, 259–260, 269,

296, 300, 348, 420–421
Feynman rules 260–261, 364
fibre 38
fibre bundle 38, 269
field (in algebra and number theory)

base 96
cyclotomic (see cyclotomic, field)
definition 15
extension 96

finite extension 96, 99
Galois (see Galois, extension)

finite Fq 15, 19, 25–26, 28, 79, 142, 371, 424,
429–430

field equation (physics) 238, 255–256, 258
Fields medal 11, 43, 47, 49, 137, 248, 277,

413
finite group of Lie type 19, 382, 424
finite simple group

classification 4, 19–20, 426
definition 17–18
importance 18–20
and Lie theory 19, 79
and representations 24, 103
sporadic 19–20, 32, 402–404, 406, 422–425, 430
(see also Baby Monster; Conway groups; Fischer

groups; Mathieu groups; Monster)
Fischer groups 404, 431
Fock space 181, 198, 199, 309
force 227–229, 236, 267–269, 277
formal series 313–317, 399

and distributions 47, 313–317
Fourier

analysis 21, 147, 207
coefficient 131, 257
transform 47, 49, 84–85, 131, 135–137, 256–257,

359, 377
fractional linear transformation (see Möbius

transformations)
free group Fn 16, 27, 29, 40, 51–52, 114, 128, 203,

396–399
Freudenthal’s Magic Square 60–61, 72
Fricke element (in M) 425, 428
Fricke involution 425
Frobenius algebra 286, 289, 307
Fuchsian group 109–110, 128, 130, 137
functional 46–47, 50, 66, 68, 73, 93

functor 87, 89, 92, 94, 99, 298, 305, 384–385, 416
modular (see modular functor)

fundamental domain 109–110, 138
fundamental group π1(M) 27, 40–41, 100, 113–115,

200–202, 396–397, 425
algebraic 396
and Lie theory 59, 178–179

fundamental groupoid 87, 397
fusing operator 365, 366
fusion

for affine algebras 333, 355, 369–371
coefficients (see multiplicities below)
matrix 356
multiplicities 95, 331, 336, 356
product 331, 337
ring 331, 355–360

Galilei group 179, 275
Galois

extension 99–100, 147
group 99, 101–102, 147, 418–419

absolute group 158, 395–400, 421
theory 14, 18, 57–58, 99, 100, 150, 158, 347, 386

Gamma function �(s) 141
gauge symmetry 266–269, 383
Gauss sum 101, 401
generalisations 154–157, 187, 208–209, 424
generalised Kac–Moody algebra (see

Borcherds–Kac–Moody algebra)
generalised Moonshine (see Maxi-Moonshine)
generalised Riemann existence theorem 395–396
genus

elliptic 351–353, 431–432
of surface 110–114, 139, 392
Witten 353, 432

geometric Galois 100, 396
geometric Langlands 327
geometric quantisation 85, 184
ghosts 184, 262, 300, 352, 416
graded character 407, 412, 420, 430

(see also McKay–Thompson series)
graded dimension

and affine algebras 7, 192–193
linear dependence of 332, 337
and RCFT 10, 287–288, 301–302, 341–342, 392,

420
modularity of 10, 288, 291, 301–302, 339–342,

420–421
and Virasoro algebra 181–183
and VOAs 9, 321, 331
(see also character; chiral block)

Gram matrix (lattice) 30–31
graph

Coxeter 188
dual principal 389
principal 389
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Grassmannian, infinite 207
Grassmannian Gr(m, n) 370
Griess algebra 325, 329, 403, 414, 423, 430
Gromov–Witten invariants 265, 370
Grothendieck–Teichmüller group 399
group

abelian 17–18, 29, 31, 85, 88, 95, 102, 357
action 20–21, 27–28, 32, 68
algebra CG 21, 23, 25, 64, 74–75, 334–335

(see also L2(G))
central extension of (see central extension, of

group)
classification of finite 17–18
Coxeter 187–188, 214, 404, 411
cyclic Zn 15, 17–19, 100
direct product of (see direct product)
exponent 407
extension 17–20, 28, 56, 100
fabulous 404, 406
finitely generated 16–17
homomorphism 15–16, 18, 20, 88
k-transposition 426–427, 431
knot 164, 384
presentation 16, 179
profinite 395
reflection 62, 187
semi-direct product of (see semi-direct product)
simple 17–18, 79

(see also finite simple group)
solvable 18, 24, 85–86, 100
(see also finite simple group; Lie group)

group determinant 25
group representation (see module for group)

h∨-shift (affine algebras) 199, 371
Haag’s Theorem 265–266
Haar measure 83, 85, 136
Hamiltonian 232, 242, 247–248, 254, 257–258,

306, 420
in CFT 181, 197, 282, 287, 341,

420–421
harmonic oscillator 228, 230–233, 238, 246,

248–249, 255–257, 276
Hauptmodul

classification 139–140, 408
definition 5, 139
examples 6, 139
and modular equations 418
and replicable functions 411
(see also j-function; McKay–Thompson series;

replicable functions)
heat equation 147
heat kernel 148–149

and KZ equation 11, 150
and modularity 11, 104, 148–150

Hecke operator 222, 410

Heisenberg algebra Heis 54, 179–180, 194–195,
212, 214, 216, 265, 326

Heisenberg group 85–86, 104, 155, 159–164, 179
Heisenberg VOA (see vertex operator algebra,

Heisenberg)
Hermitian form 22, 25, 45, 67, 282, 300
hexagon axiom 90–91, 398–399
highest weight (see weight)
Hilbert space

definition 45
in quantum field theory 177, 253, 272, 275
in quantum mechanics 177, 241–242, 248, 249
separable 46

Hilbert’s Problems 56
Hirzebruch’s ‘prize question’ 431–432
holomorphic function 200, 266, 274, 281–282
homeomorphism 33, 41, 100, 110, 306
homogeneous coordinates (projective space) 39,

108, 112
homogeneous extension (see direct product)
homogeneous space G/K 84, 154–155, 184
Hopf algebra 264, 271, 379–380, 382, 391

co-commutative 380
quasi-triangularisable 380, 385
quasi-triangularisable quasi- 398–399

Hopf link 385–386, 400
hyperbolic

geometry 105–108, 116, 152
plane 105–106
reflections 406
surface 108, 110

ideal 53, 59–61, 74–75, 98, 102, 429
idèle 157–158
index

of subfactor 100, 386–387
of subgroup 15

injective limit 157–158
inner-product 29, 37–38, 61, 69–70, 238
instanton 204–206, 265
intertwining operator 80, 279, 286–287, 331, 342,

363–364, 375–376, 389–390
inverse Galois problem 395
inverse limit (see projective limit)
Ising model 288–290, 366–367
isogeny 393–394
isometry 16, 107
isomorphic groups 15

j-function j(τ ) 3–4, 6–7, 9, 124, 138, 147, 280,
288, 419

J (τ ) = j(τ )− 744 222, 224, 294, 407, 409–410,
415, 417

Jacobi form/function 143–145, 153, 155, 176, 196,
199, 224, 338, 348

Jacobi identity 53, 320, 330, 350
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Jacobi triple product identity 221
Jacobian variety 123, 393–394, 401
Jones index (see index, of subfactor)
Jones polynomial 42–44, 94, 305, 307, 388
Jordan–Hölder Theorem 18–19, 60

K3 surface 205, 432–433
K-theory 169

and character rings 370
and fusion rings 370–371
of Z 169

Kac–Moody algebra
and affine algebras 176, 210–212
basic theory 209–211
hyperbolic (Lorentzian) 210, 224–225, 375
motivation 187–189
representation theory 211–212, 223
(see also affine algebra)

Kac–Walton formula 369
Kähler class 432
Killing form κ(x |y) 60–61, 64–65, 69–71, 86, 205,

211, 368
Knizhnik–Zamolodchikov (KZ) connection 150,

201, 292, 399
Knizhnik–Zamolodchikov (KZ) equation 201–202,

290–291
monodromy 27, 200, 202, 291, 421
and Virasoro 185–186, 287, 292, 421
(see also chiral block)

knot
ambient isotopic 41
and braids (see braid groups and links)
crossing number 42
definition 41
group (see group, knot)
higher dimensional 41–42
invariant (see link, invariant)
(see also link)

Krichever–Novikov algebra 216–217
Kronecker–Weber Theorem 101–102, 158

L2(G), L2(G/�) etc. 21, 51, 84, 136–137, 155
labels ai 170, 172, 190–191, 205, 431
Lagrangian 229–231, 235, 251, 270
Lagrangian density 238–240, 255, 257–258, 261,

263–264, 266, 271, 278, 280
Langlands programme 137, 142, 158
Laplacian 133, 148–149, 156, 242
lattice

automorphisms 32, 43–44, 409
co-root 195–196
definition of 6, 29–30
determinant |L| 31, 328
dimension 30, 328
direct sum of (see direct sum, of lattices)

dual L∗ 30, 134–135
equivalent 30
even 30, 135, 328
indefinite 30, 214, 224, 328
integral 30
laminated 31–32
positive-definite 30, 328
root 31–32, 70–71, 169, 188
self-dual 30, 140, 168, 333, 402
and string theory (see string theory and lattices)
and tori 32–33, 56
VOA V(L) (see vertex operator algebra, lattice)
weight 72–73
(see also Leech lattice, theta series)

Laurent polynomial 27, 42, 184, 187, 189, 206, 216
Lax–Phillips scattering theory 154
Lebesgue integral 46
Lebesgue measure 45–46
Leech lattice �

automorphism group Co0 (see Conway groups)
definition 31–32
and genus-0 property 428
and McKay–Thompson series 408–409
and Moonshine module (see Moonshine module,

construction)
theta series 7, 135, 294, 415
uniqueness 32, 414–415

level
of affine algebra module 192–194, 196, 207, 217,

286, 326, 333
critical 327, 331
fractional 375

Levi decomposition 60
L-function 142, 157, 158, 394
Lie algebra

abelian 54, 69, 86
automorphisms 78–80
classification 54
definition 7, 53
free 212, 416
geometric 349
homomorphism 54, 59, 64, 66
ideal of (see ideal)
and lattices (see co-root)
of observables 232, 240, 247–248
orbit 81, 219–220
radical of 60
reductive 60, 197, 324
self-dual 324
semi-simple 60–61, 197, 226
simple 60, 64, 196

classification of finite-dimensional 61–63
presentation 62
structure 53, 68–71

simply laced 169



Index 471

solvable 60–61, 68, 83–84
of vector fields 36, 55, 178, 184

Lie derivative 36, 55, 217
Lie group

classification 59
compact 60, 206
complexification 300

characters at elements of finite order 101, 288,
368

representations 82–85
definition 55–56
and Lie algebras 57–59, 64, 77–78, 206, 300
and special functions 159
and physics 231, 234–235, 254–255, 267–269,

271, 286
representations 44, 82, 85, 184
structure 59

line bundle
definition 38
determinant 185, 300
sections 38, 84, 178

link
definition 41
invariant 42, 94, 167, 265, 385

(see also Jones polynomial)
mirror image 42, 44, 400
(see also knot)

Liouville’s Theorem 116
Littlewood–Richardson rule 370
local conformal net 391
local coordinates 34–35, 37, 185, 229, 322
localisation functor 185
locality (in physics) 237–238, 254, 318–320, 322,

330
loop (in quantum field theory) 278–279, 283
loop algebra 178, 189–190, 192, 205–207, 215

(see also affine algebra, nontwisted/twisted –
construction)

loop group 189, 194, 206–207, 312
loop space LM 299, 352
Lorentz group SO+3,1(R) 56, 108, 234–235,

254–255

Maass form 156, 166
Magic Square (see Freudenthal’s Magic Square)
Magic Triangle (see Cvitanović’s Magic Triangle)
manifold

ALE 204
conformal 34
definition 33–34
invariants 306
Riemannian 34, 37–38, 229, 236, 351, 353
smooth vs topological structure 34, 56,

296–297
symplectic 85, 231, 232, 270

mapping class group �g,n

and conformal field theory 185–186, 288, 291,
302, 392

(see also chiral block)
definition 120–122
enhanced �̂g,n 125, 299, 420
and Monstrous Moonshine 288, 291, 427
projective representations of 125, 186, 203, 217,

288, 291, 302, 392
(see also braid group B3; braid group Bn)

Markov move 43, 385, 388
Mathieu groups 19, 402, 404, 409, 422, 426, 432

and Leech lattice 20, 422
Maxi-Moonshine 145, 292, 294, 424–426, 428
McKay correspondence 171, 204–205, 374

(see also A-D-E)
McKay equation 3–4, 135, 402
McKay–Thompson series Tg(τ ) 5, 78, 95, 145, 218,

220, 407–408
and the Leech lattice 409
linear dependencies 337, 407–408
and modular equations 418
and replicability 409–411, 415

meromorphic function 114, 116–117
metaplectic group Mp2(R) 163–164, 165–166, 167
minimal model (CFT) 288
minimal polynomial 96, 102
Mini-Moonshine 422–424
Mirror Moonshine 432–433
mirror symmetry 204–205, 225, 351, 395, 432–433
Möbius transformations 107–108, 126, 155, 186,

290, 309, 327
mode 308, 314, 317, 330, 334
modular data 183, 196, 288, 342–343, 359–361,

367–371, 376, 382, 390
and Galois 358, 360, 371, 397–398, 400

modular equation 417–419, 422
modular fiction 411–412, 418–419, 422
modular form 196

definition 127–128, 155
of fractional weight 127, 129, 132, 165, 421
for SL2(Z) 343, 352
Siegel 152–153, 155
vector-valued 134–135, 343
(see also automorphic form; Borcherds’ lift)

modular function
definition 2, 127
for SL2(Z) 2–3
vector-valued 196, 199
(see also Hauptmodul)

modular functor (Segal) 302–303, 307, 310, 322,
349–350, 376, 386

modular group SL2(Z) (see SL2(Z))
modular invariant 361–362, 373–374, 377, 383, 390

(see also partition function)
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Modular Moonshine 428–430
modular representation 25–26, 28, 29, 428–429
modular tower 158, 292, 397
module

completely reducible 22, 67
direct sum 66
indecomposable 23
irreducible 22, 67
simple (see irreducible above)
submodule 67

module for group
contragredient 22, 25
definition 20, 82
direct sum 21–24, 84
dual (see contragredient above)
and representation 20
tensor product 22, 24–25, 28
unitary 22–23, 82–83
from VOA 329, 331
(see also character; module)

module for Lie algebra
for abelian g 86
admissible (see level, fractional)
contragredient 66
definition 66
derived 82–83, 86, 156, 161, 207
direct sum 66–67, 76
dual (see contragredient above)
highest-weight 67, 74, 192–193

integrable 194–196, 205, 368
vs Lie group module 66, 77, 82–84, 207
and representation 66
for solvable g 68
tensor product 66
twisted 218–220
unitary 66–67, 86, 194
Verma 67, 70, 74–77, 192–193
from VOA 324
(see also affine algebra; character; module)

module for vertex operator algebra
in CFT 286, 289, 309
characters (see characters; graded dimension;

vertex operator algebra)
contragredient 332
definition 309, 330
dual (see contragredient above)
graded dimension (see graded dimension; vertex

operator algebra)
lowest-weight space Mh 332, 334–335
twisted 220, 293–295, 345–348, 425
unitary 332

moduli space Mg,n

in CFT 124–125, 185–186, 281, 283, 285,
290–292

definition 119–121

Deligne–Mumford compactification (see
Deligne–Mumford compactification)

enhanced M̂g,n 124–125, 185–186, 281, 287,
291, 299

in string theory 124, 278–280
and Virasoro, Witt 84, 185–186, 281, 287, 292,

301, 318, 348, 421
momentum 231, 240, 242–243, 254, 256–257

canonical (see generalised above)
generalised 232, 238, 255

monodromy representation 200–203, 204–205
in CFT 11, 186, 290–291
and KZ equation (see Knizhnik–Zamolodchikov

equation)
and modularity 200, 202–204, 291
in Moonshine 11, 150

Monster M
as 6–transposition group 11, 166, 426–427, 431
as Aut(�) 121
centralisers in 403–404, 414, 423, 425, 429–431
character table 403, 405, 407
conjugacy classes 5, 403, 405
history 19–20, 403
representations 4–5, 23–24, 177, 405
size (order) 4
and other sporadics 20, 403, 430
and V � 9, 414

Monster Lie algebra m 214
construction 415–416
denominator identity 222, 223, 225, 415–416
and Monster 415–416

Monstrous Moonshine
conjectures 5, 8, 407
and physics 9–10, 303, 433–434

Moonshine module V � 328
automorphism group 406, 414, 426
construction 294, 347, 414
graded dimension J (τ ) 294, 343, 407
and Griess algebra 325, 414
invariant bilinear form 415
twisted modules 220, 425, 428, 430, 434

moonshine-type 138–140, 407, 411, 423, 425
morphism (see arrow)
Mostow Rigidity Theorem 110, 122
M-theory 212, 280, 375
multiplier (for modular forms) 127, 131–132, 134,

165, 343
mutually local 272–273, 316, 322

Nahm’s Conjecture 372
nim-rep 361, 374–375, 383, 390–391
Noether’s Theorem 231–232, 240, 256, 259, 268,

284
No-Ghost Theorem 416
non-commutative geometry 117, 265, 271, 380



Index 473

non-orientable surface 111
normal-ordering 181, 198–199, 258, 317, 335–336,

371
Norton series N(g,h)(τ ) 145, 425, 428, 432
Norton’s Conjecture (see Maxi-Moonshine)
n-point function (see correlation function)
n-torus 33, 84, 123, 205, 215, 250, 393–394
null vector 67, 76, 216, 290, 308, 327, 330

objects in category 87
octonions 53, 56, 61
operator product expansion (OPE) 266, 283–285,

301, 317, 326–327, 357
orbifold 204, 292

and CFT 293–295
holomorphic 292–294, 347, 382, 384, 392
and Maxi-moonshine 292, 294, 295, 425–426
permutation 295, 426
and strings 292–293
and VOAs 328, 345–348

(see also module from VOA Vτ , twisted)
orbit method 85, 137, 184–185, 207
orbital integral 137
order ‖G‖ of group 15
oscillator algebra û1 197–198, 223, 325–326, 377

p-adic numbers 58, 157–158, 292, 396, 399–400
pair-of-pants 125, 279, 297, 301, 307, 322–323,

350, 363
paragroup 389–390
pariahs 424
particle 154, 237, 254, 256–259, 273
partition function 260, 283, 287, 289, 301–302, 314,

353, 361, 373
(see also modular invariant)

path integral 250–251, 266, 279–280, 300
(see also Feynman path formulation)

pentagon axiom 89–90, 398–399
Perron–Frobenius theory 172–173, 175, 357, 374,

387, 389, 391
Peter–Weyl Theorem 82, 84–85
phase space 119, 232, 242, 248
Picard’s Theorem 116
Planck’s constant � 242
Poincaré group 17, 56, 179, 234, 247, 250, 254,

267–268, 272
Poincaré–Birkhoff–Witt Theorem 74–75, 182
Pointrjagin duality 136
Poisson bracket 231, 232, 238, 247, 255
Poisson summation formula 131, 135–138, 140

and theta function modularity 8, 104, 131, 134,
137–138, 143, 152

positive energy representations 182, 207, 300
potential V 227–229, 242
p-regular element 428

primaries (sectors) 286–287, 356–357, 360, 386
(see also state, primary)

principal gradation 193–194
profinite completion Ĝ 396–400
projective geometry 38–39, 406
projective limit 157–158, 271, 291–292, 392,

395–396
projective n-space Pn(R),Pn(C) 39, 116–117, 353,

370, 393, 431–432
projective representation 83, 176–179, 186, 207,

218, 345
and central extensions (see central extensions)
and CFT 125, 186, 285, 291, 295, 296, 299–302
projectively equivalent 177
and quantum theories 177, 242, 247, 254, 272
and two-cocycle 177–178

quadratic Casimir 86, 156, 199, 201, 288, 327
quantisation 247–248, 255, 259

(see also geometric quantisation)
quantum cohomology (see Gromov–Witten

invariants)
quantum dimension 101, 337, 357, 381
quantum double 357, 380, 382, 390
quantum electrodynamics (QED) 255, 261, 262,

268–269
quantum field 117, 237, 253–254, 272, 282–283,

312–313, 322
quantum field theory 117, 226, 252–253

axiomatisations 271–275, 390
mathematical difficulties 167, 257–258, 262–264,

265–266, 270–271
nonperturbative effects/calculations 262, 265,

280
nonrenormalisable 263–264, 277
and number theory 154, 264–265, 395, 400–401
particles (quanta) 256–259, 273
perturbation 205, 259–262, 279
renormalisable 253

quantum group 75, 125, 202, 378–381, 386
at root of unity 381, 386

quantum mechanics
Feymnan’s formalism 250–251
Heisenberg’s formalism 247–249
identical subsystems 249–250
measurement problem 243–246
perturbation 251–252
probability 241, 242
Schrödinger’s formalism 241–242, 246–247

quantum Schubert calculus 370
quasi-periodic 143, 151, 159
quasi-primary (see state, quasi-primary)
quasi-symmetric homeomorphism 185
quaternions 17, 24, 53, 56, 61, 64, 351
quilt 427
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Racah coefficients (or 6j-symbols) 365
Racah–Speiser formula 369
Ramanujan τ -function 142, 221
rational conformal field theory (see conformal field

theory, rational)
ray representation (see projective representation)
regular representation (see group algebra; L2(G))
regularisation

and Lie theory 198–199, 270, 371
and number theory 118, 133, 270
in quantum field theory 133, 263–264, 270–271
zeta-function 133, 140, 199

Reidemeister moves 42, 383, 391
relativity

general 226, 233, 236, 239, 263, 267–268, 269,
277

special 233–236, 237, 238, 246, 247, 250, 252,
254, 272

renormalisation 260, 262–265, 270–271
replicable functions 410–412, 415–416, 422, 426

and the power map gn 409
representation (see module)
ρ-shift (Lie algebras) 217, 371
ribbon 93

(see also category, Ribbon)
Riemann sphere 2, 39, 138, 285
Riemann surface 87, 114–117, 216–217

in CFT 264, 277, 281–282, 286, 298
and conformal structure 114, 281, 290

Riemann zeta function ζ (s) 127–128, 133, 140–142,
154, 168–169, 199

Riemann–Hilbert problem 203
R-matrix universal (see universal R-matrix)
root 68, 73

highest 193
imaginary 68, 191, 193, 211, 212, 214, 224–225,

415–416
lattice (see lattice, root)
positive 70, 73–75, 77, 193, 220, 415–416
real 191, 193, 211, 214, 224, 415–416
simple 69–70, 72, 79, 187, 190, 193, 214,

415–416
space 69–70, 415–416
space decomposition 69, 86, 191, 210, 213,

415–416
system 69–70, 72

scale invariance 230, 284–285, 297
scattering matrix (see S-matrix)
Schur multiplier 177–179
Schur polynomial 72
Schur’s Lemma 23, 67, 80, 161, 192, 216, 331
Schrödinger’s equation 242, 243, 245, 246, 247,

253, 275–276
Schwartz space S(Rn) 45–49, 131, 136, 162, 241,

253

Schwarzian derivative 340
sector

superselection 242, 296
twisted 293–295, 392

Segal’s axioms (CFT) 298–303, 305, 310, 348–350
Selberg trace formula 137, 154
self-adjoint operator 47, 49, 52, 242, 247, 275,

354–355
semi-direct product 16–17, 18, 28–29, 56, 85, 195
semi-direct sum 53, 59–60, 406
sewing 293, 299–302, 306–307, 310, 339, 341,

363–364, 397
sheaf 34–35, 351–352
Siegel upper half-space Hg 122–123, 151–152, 155
simple factor (in geometry) 393–394
simple-current 357–358, 360, 362, 367, 369, 373,

391
simply connected 40, 43, 83, 115, 184, 200, 202,

206–207
singular vector (see null vector)
singularity

blowing up 117
minimal resolution 171, 204–205, 402
quotient (orbifold, conical) 116, 120–121, 170,

204, 292, 374, 402
resolution 171
simple 170–171, 204
(see also A-D-E; McKay corespondence)

SL2(R) 86, 107, 109–110, 125, 160
and Lorentz group 108, 154
and modular forms 154–157, 223
representations of 86, 155–156
universal cover 11, 164–165, 167, 184

SL2(Z) 109–110, 116, 126, 152
in CFT 205, 288, 291, 293
representations of 177, 293, 342, 359

(see also modular data)
and tori 10, 120–121, 130, 280
(see also braid group B3; modular form; modular

function)
S-matrix 154, 252, 259, 265, 281
space-time 34, 229, 265, 277, 280–281, 292, 297,

301
Minkowski 29, 56, 233–234, 236, 239, 268, 274,

281–282
Spectral Theorem 48–49, 242–243, 273
speed c of light 233–235, 237, 255, 282
sphere Sn 40, 42, 53, 55–56
sphere-packing 31–32
spin 83, 250, 254–255, 296, 352
spinor 83

sporadic group (see finite simple group)
squirrel 12, 59, 329, 435
Standard Model 255–256, 262–264, 266, 269, 273,

277–278, 280
star-triangle relation (see Yang–Baxter equation)



Index 475

state
BPS 205, 214
incoming 258–259, 266, 273, 278–279, 283,

300–301
outgoing 258–259, 266, 273, 278–279,

300–301
primary 285–286, 287, 323, 325, 340
quasi-primary 285, 366

state space H 249, 253–254, 272, 275, 286,
298–299, 322, 361

state-field correspondence 283, 318
statistical mechanics 266, 281
Stone–von Neumann Theorem 161, 163, 265
stress-energy tensor 239–240, 284–285, 288, 292,

301, 322
string theory 277–280

and CFT 9, 252, 276–277, 279, 281, 289, 300
and lattices 10, 280, 293–294, 360

(see also vertex operator algebra, lattice)
and Lie groups (see Wess–Zumino–Witten model)
and modular forms 9–10, 166, 264, 279–280, 408
and moduli space (see moduli space in string

theory)
and Monstrous Moonshine 280, 433–434
perturbative 9, 252, 264, 276, 278–279, 433

subfactor
basic construction 387–388
and braids 27, 125, 167, 202, 288, 388
and CFT 44, 374, 386, 388–391
definition 49, 386
analogy with Galois 386, 389
and knots 49, 386–388
and orbifolds 391, 426

subgroup
commutator [GG] 29
index (see index, subgroup)
normal 14–17, 24, 59

Sugawara construction 199, 217, 324, 326
superposition 243–245
supersymmetry (see conformal field theory, super;

vertex operator superalgebra)
surface 33

enhanced 124–125, 185, 281, 283, 287, 291, 300,
349

K3 (see K3 surface)
with nodes 124, 280, 291, 292

(see also cusp; Deligne–Mumford
compactification)

Riemann (see Riemann surface)
stable (see surface with nodes)

symmetric group Sn 17, 20–24, 93, 100, 187–188,
250, 296

as Weyl group 71, 78, 220
(see also braid groups)

Tamanoi’s invariant 351, 353

tangent
bundle T M 35, 38, 53, 56
space Tp(M) 35–38, 56–59
vector 35–38

Taniyama–Shimura conjecture 130, 142
Tannaka–Krein duality 90, 136, 328
Teichmüller space Tg,n 120–122, 291

universal 185
theta function

Jacobi 118–119, 131, 142–143, 160, 203,
223–224

modularity 8, 104, 131, 138, 143, 147–148,
163–164, 280

Siegel’s 123, 151
theta series, lattice 7, 134–135, 138, 140, 143,

195–196, 280, 294
Thompson trick 4–5, 24, 80, 307, 346, 424, 425–426
topological field theory 100, 303, 305–307, 363,

388, 421
and conformal field theory 287, 305, 307

topological span 46, 241, 253
toroidal algebra 215–216
torus S1 × S1

and CFT 287, 292–293, 301–302
conformal structures on 44, 120, 301, 341
diffeomorphisms 44
and elliptic curves 110, 112, 118, 123–124
fundamental group 40, 113
(see also elliptic curve; n-torus; SL2(Z))

tower 157, 158, 291, 397
trace

in CFT 241, 293, 300
as character 5, 23, 25, 77, 183
and determinant 58
and sewing 341
in von Neumann algebras 50–52

trefoil 41–42, 164–166, 383–384, 391
triangle axiom 89–90, 398–399
triangular decomposition (Lie algebra) 70, 182,

191–192, 210, 213
Turaev–Viro theory 385, 389
twenty-four 168–169, 198, 394, 402, 414, 416, 419,

425
(see also c/24)

twining character (see character, twisted)

uniformisation 3, 115–116
unitary dual Ĝ 82–86, 136–137
unitary operator 22, 47–49, 247, 254
unitary representation (see Lie algebra; module for

group; VOA)
universal cover 115–116, 200–201

group G̃ 59, 83, 165, 178, 234, 254, 291
universal enveloping algebra U (g) 74–75, 156–157,

182, 198–199, 327, 334, 378–380
universal R-matrix 380
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unknot 41
upper half-plane H 2, 105, 110, 120, 127, 154

(see also hyperbolic plane)

V � (see Moonshine module)
vacuum (sector) 194, 302, 325, 342, 356, 360–361,

368, 382, 390
vacuum |0〉 (state) 248, 253, 256–257, 259,

272–273, 280, 301, 318–319, 322–323
vacuum-to-vacuum expectation value (see

correlation function)
Vandermonde matrix 221
variety 94, 351, 393–395, 396
Vect(M) 36, 55, 59, 178, 184
Vect(S1) (see Witt algebra)
vector bundle

base of 38
connection on 38
definition 38
fibre of 38
G-equivariant 382
section of 38, 134, 291

vector field 35–36, 53, 55, 57, 178, 184, 188
Verlinde dimension 287
Verlinde’s formula 217, 287, 343, 357, 359, 366,

376, 392
Verma module M(λ) 67, 70, 74–77, 182, 185,

192–194, 211, 214, 217
vertex algebra 318–319, 351
vertex group 350
vertex operator 279, 285, 311–312, 318, 322–323,

330, 363–364, 413
vertex operator algebra (VOA) 311, 330, 339,

350
affine algebra 215, 326–327, 329, 402

(see also integrable affine below)
in conformal field theory 285–286, 289, 293, 301,

309–310
definition 8, 311, 318–319, 390
geometric 348–350, 391
Heisenberg 326, 329, 333, 377
holomorphic 333, 347, 348, 382
integrable affine 194, 286–287, 327–330, 333,

335–339, 348, 376
lattice 327–329, 332–333, 347, 348
and lattice analogy 328–329, 347, 414–415
and Lie algebras 8, 324–325, 333, 336, 338, 351
near- 215, 318, 328–329, 415
rational 286, 330–331, 375–376
simple 322, 331, 375
weakly rational 324, 331–333, 336–337

vertex operator superalgebra 322, 328, 351–353,
406, 414, 423–424, 429–431

Virasoro algebra Vir 181–186
and affine algebras 198–199, 270
and CFT 185–186, 281, 284–288, 299, 301

definition 140, 181
higher-dimension generalisation Vτ 215
higher-genus generalisation L̂�,P 217
and KZ equation (see Knizhnik–Zamolodchikov

equation)
and modularity 183, 318
modules 181–184, 323
and moduli spaces (see moduli space)
and VOAs 182, 318, 323, 331

and coordinate changes 339–341, 350
(see also Diff+(S1); Witt algebra)

virtual (in quantum perturbation) 252, 260–262, 277
Vogel’s Universal Lie algebra 71, 73, 94
von Neumann algebra

abelian 50
centre of 50
definition 49–50
and KZ equations 421
and quantum field theory 50, 275, 390–391
(see also factor; subfactor)

Ward identities 259, 284, 287, 290
wave-function 179, 241–243, 245
Weierstrass function p(z) 118–119, 143
weight (Lie theory)

dominant integral 67, 71, 76
Dynkin labels of 71, 76, 211, 254
fundamental ωi 71, 73–76, 192
highest 67, 74–76, 182, 368
highest weight vector 74, 211, 323
integrable 194, 196, 199, 205, 207, 211, 214,

219
and roots 73
space 73–76, 80–81, 190, 218

space decomposition 73–76, 86, 190, 192–194,
199

weight (modular form) 127, 143, 152, 155
Weil’s Converse Theorem 142, 146–147
Wess–Zumino–Witten (WZW) model 216, 217,

280, 286–288, 295, 371–373, 378, 381, 434
Weyl character formula 77–78, 81, 84, 150, 211, 220
Weyl group

affine 188, 190, 194–196, 369, 371, 406
definition 70, 79, 211, 214
finite 185, 187–188, 195–196, 204, 368
and lattices 32, 70, 169
and weights 70, 73–74, 78, 195

Weyl reflection 70
Weyl vector ρ 77, 195, 368, 371
Weyl–Kac character formula 196, 211, 221
Weyl–Kac–Borcherds character formula 214, 220
Weyl’s dimension formula 223, 225
Weyl’s unitary trick 83
Wightman axioms 265, 266, 271–275

and VOAs 10, 390
Wirtinger presentation 164, 384, 391
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Witt algebra Witt
and affine algebras 189–190, 197–198, 208, 270
and conformal symmetry 185, 281–282, 285
definition 64, 216
as derivations 187, 189–190, 208
and Diff+(S1) 184, 282
higher-genus generalisation L�,P 217
its Lie (semi-)group? 184, 300–301
and Mathieu’s classification 189
modules of 180–181
and moduli spaces (see moduli space)
and Vect(S1) 64, 184
and Virasoro algebra 178, 181, 184, 186, 285

(see also Diff+(S1); Virasoro algebra)

world-sheet 216, 278–280, 281–283, 298, 313,
371

wreath product 406, 411

Yang–Baxter equation 366, 378, 380, 385, 390
and braids 378
and categories 92
classical 378

zero-mode o(u) 324, 334–335, 348
Z-grading as S1 action 207
Zhu’s algebra A(V) 309–310, 334–336, 377
Zhu’s Theorem 9, 104, 342–344, 375, 377, 414,

421
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