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Preface

We are entering an exciting era of B meson physics, with several new high
luminosity facilities that are about to start taking data. The measurements will
provide information on quark couplings and CP violation. To make full use of
the experimental results, it is important to have reliable theoretical calculations
of the hadronic decay amplitudes in terms of the fundamental parameters in
the standard model Lagrangian. In recent years, many such calculations have
been performed using heavy quark effective theory (HQET), which has emerged
as an indispensible tool for analyzing the interactions of heavy hadrons. This
formalism makes manifest heavy quark spin-flavor symmetry, which is exact
in the infinite quark mass limit, and allows one to systematically compute the
correction terms for finite quark mass.

This text is designed to introduce the reader to the concepts and methods of
HQET, developing them to the stage where explicit calculations are performed.
It is not intended to be a review of the field, but rather to serve as an introduction
accessible to both theorists and experimentalists. We hope it will be useful not
just to those working in the area of heavy quark physics but also to physicists
who work in other areas of high energy physics but want a deeper appreciation of
HQET methods. We felt that if the book is to serve this role, then it is important
that it not be too long. An effort was made to keep the book at the 200-page
level and this necessitated some difficult decisions on which subjects were to be
covered.

The material presented here is not uniform in its difficulty. Section 1.8 on
the operator product expansion, Section 4.6 on renormalons, and Chapter 6 on
inclusive B decays are considerably more difficult than the other parts of the
book. Although this material is very important, depending on the background of
the reader, it may be useful to skip it on first reading. Chapter 3 involves some
familiarity with radiative corrections in field theory as studied, for example, in
a graduate course that discusses renormalization in quantum electrodynamics.
Readers less comfortable with loop corrections can read through the chapter, ac-
cepting the results for the one-loop diagrams, without necessarily going through

ix



x Preface

the detailed computations. A section on problems at the end of each chapter is
intended to give the reader more experience with the concepts introduced in that
chapter. The problems are of varying difficulty and most can be completed in a
fairly short period of time. Three exceptions to this are Problem 2 of Chapter 3 and
Problems 3 and 7 of Chapter 6, which are considerably more time-consuming.

This book could serve as a text for a one-semester graduate course on heavy
quark physics. The background necessary for the book is quantum field theory
and some familiarity with the standard model. The latter may be quite modest,
since Chapter 1 is devoted to a review of the standard model.

The only references that are given in the text are to lattice QCD results or to
experimental data that cannot be readily found by consulting the Particle Data
Book (http://pdg.lbl.gov). However, at the end of each chapter a guide to
some of the literature is given. The emphasis here is on the earlier papers, and
even this list is far from complete.

We have benefited from the comments given by a large number of our col-
leagues who have read draft versions of this book. Particularly noteworthy among
them are Martin Gremm, Elizabeth Jenkins, Adam Leibovich, and Zoltan Ligeti,
who provided a substantial number of valuable suggestions.

Updates to the book can be found at the URL:
http://einstein.ucsd.edu/hqbook.



1
Review

The standard model of strong, weak, and electromagnetic interactions is a rela-
tivistic quantum field theory that describes all known interactions of quarks and
leptons. This chapter provides a quick review of features of the standard model
that are relevant for heavy quark systems, and of basic field theory techniques
such as the operator product expansion. It will also serve the purpose of defining
some of the normalization conventions and notation to be used in the rest of the
book.

1.1 The standard model

The standard model is a gauge theory based on the gauge group SU(3) × SU(2) ×
U(1). The SU(3) gauge group describes the strong color interactions among
quarks, and the SU(2) × U(1) gauge group describes the electroweak interac-
tions. At the present time three generations of quarks and leptons have been
observed. The measured width of the Z boson does not permit a fourth genera-
tion with a massless (or light) neutrino. Many extensions of the minimal standard
model have been proposed, and there is evidence in the present data for neutrino
masses, which requires new physics beyond that in the minimal standard model.
Low-energy supersymmetry, dynamical weak symmetry breaking, or something
totally unexpected may be discovered at the next generation of high-energy par-
ticle accelerators.

The focus of this book is on understanding the physics of hadrons containing
a bottom or charm quark. The technically difficult problem is understanding the
role strong interactions play in determining the properties of these hadrons. For
example, weak decays can be computed by using a low-energy effective weak
Hamiltonian. Any new physics beyond the standard model can also be treated
by using a local low-energy effective interaction, and the theoretical difficulties
associated with evaluating hadronic matrix elements of this interaction are vir-
tually identical to those for the weak interactions. For this reason, most of the
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2 Review

discussion in this book will focus on the properties of heavy quark hadrons as
computed in the standard model.

The matter fields in the minimal standard model are three families of spin-
1/2 quarks and leptons, and a spin-zero Higgs boson, shown in Table 1.1. The
index i on the Fermion fields is a family or generation index i = 1, 2, 3, and the
subscripts L and R denote left- and right-handed fields, respectively,

ψL = PLψ, ψR = PRψ, (1.1)

where PL and PR are the projection operators

PL = 1

2
(1 − γ5) , PR = 1

2
(1 + γ5) . (1.2)

Qi
L , ui

R, d i
R are the quark fields and Li

L , ei
R are the lepton fields. All the particles

associated with the fields in Table 1.1 have been observed experimentally, except
for the Higgs boson. The SU(2) × U(1) symmetry of the electroweak sector is
not manifest at low energies. In the standard model, the SU(2) × U(1) symmetry
is spontaneously broken by the vacuum expectation value of the Higgs doublet

Table 1.1. Matter fields in the standard modela

Field SU(3) SU(2) U(1) Lorentz

Qi
L =

(
ui

L

d i
L

)
3 2 1/6 (1/2, 0)

ui
R 3 1 2/3 (0, 1/2)

d i
R 3 1 −1/3 (0, 1/2)

Li
L =

(
νi

L

ei
L

)
1 2 −1/2 (1/2, 0)

ei
R 1 1 −1 (0, 1/2)

H =
(

H+

H 0

)
1 2 1/2 (0, 0)

a The index i labels the quark and lepton family. The
dimensions of the SU(3) and SU(2) representations and
their U(1) charge are listed in the second, third, and fourth
columns, respectively. The transformation properties of the
fermion fields under the Lorentz group SO(3, 1) are listed
in the last column.



1.1 The standard model 3

H . The spontaneous breakdown of SU(2) × U(1) gives mass to the W ± and Z0

gauge bosons. A single Higgs doublet is the simplest way to achieve the observed
pattern of spontaneous symmetry breaking, but a more complicated scalar sector,
such as two doublets, is possible.

The terms in the standard model Lagrangian density that involve only the
Higgs doublet

H =
(

H+
H 0

)
(1.3)

are

LHiggs = (DμH )†(DμH ) − V (H ), (1.4)

where Dμ is the covariant derivative and V (H ) is the Higgs potential

V (H ) = λ

4
(H †H − v2/2)2. (1.5)

The Higgs potential is minimized when H †H = v2/2. The SU(2) × U(1) sym-
metry can be used to rotate a general vacuum expectation value into the standard
form

〈H〉 =
(

0
v/

√
2

)
, (1.6)

where v is real and positive.
The generators of the SU(2) gauge symmetry acting on the Higgs (i.e., funda-

mental) representation are

T a = σ a/2, a = 1, 2, 3, (1.7)

where the Pauli spin matrices are

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (1.8)

and the generators are normalized to Tr T aT b = δab/2. The U(1) generator Y
is called hypercharge and is equal to 1/2 acting on the Higgs doublet (see
Table 1.1). One linear combination of SU(2) × U(1) generators is left unbro-
ken by the vacuum expectation value of the Higgs field H given in Eq. (1.6).
This linear combination is the electric charge generator Q = T 3 + Y , where

Q = T 3 + Y =
(

1 0
0 0

)
, (1.9)

when acting on the Higgs representation. It is obvious from Eqs. (1.6) and (1.9)
that

Q〈H〉 = 0, (1.10)



4 Review

so that electric charge is left unbroken. The SU(3) × SU(2) × U(1) symmetry of
the standard model is broken to SU(3) × U(1)Q by the vacuum expectation value
of H , where the unbroken electromagnetic U(1)Q is the linear combination of
the original U(1) hypercharge generator, Y , and the SU(2) generator, T 3, given
in Eq. (1.9).

Expanding H about its expectation value

H (x) =
(

h+ (x)

v/
√

2 + h0 (x)

)
(1.11)

and substituting in Eq. (1.5) gives the Higgs potential

V (H ) = λ

4
(|h+|2 + |h0|2 +

√
2v Re h0)2. (1.12)

The fields h+ and Im h0 are massless. This is an example of Goldstone’s theo-
rem. The potential has a continuous three-parameter family of degenerate vacua
that are obtained from the reference vacuum in Eq. (1.6) by global SU(2) × U(1)
transformations. [Of the four SU(2) × U(1) generators, one linear combination
Q leaves the vacuum expectation value invariant, and so does not give a mass-
less mode.] Field excitations along these degenerate directions cost no potential
energy and so the fields h+ and Im h0 are massless. There is one massive scalar
that is destroyed by the (normalized) real scalar field

√
2 Re h0. At tree level, its

mass is

mRe h0 =
√

λ

2
v. (1.13)

Global SU(2) × U(1) transformations allow the space–time independent vac-
uum expectation value of H to be put into the form given in Eq. (1.6). Local
SU(2) × U(1) transformations can be used to eliminate h+ (x) and Im h0 (x)
completely from the theory, and to write

H (x) =
(

0

v/
√

2 + Re h0 (x)

)
. (1.14)

This is the standard model in unitary gauge, in which the W ± and Z bosons
have explicit mass terms in the Lagrangian, as is shown below. In this gauge, the
massless fields h+ and Im h0 are eliminated, and so do not correspond to states
in the spectrum of the theory.

The gauge covariant derivative acting on any field ψ is

Dμ = ∂μ + ig AA
μT A + ig2W a

μT a + ig1 BμY, (1.15)

where T A, A = 1, . . . , 8, are the eight color SU(3) generators T a , a = 1, 2, 3
are the weak SU(2) generators, and Y is the U(1) hypercharge generator. The
generators are chosen to be in the representation of the field ψ on which the co-
variant derivative acts. The gauge bosons and coupling constants associated with
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these gauge groups are denoted AA
μ , W a

μ, and Bμ and g, g2, and g1, respectively.
The kinetic term for the Higgs field contains a piece quadratic in the gauge fields
when expanded about the Higgs vacuum expectation value using Eq. (1.11). The
quadratic terms that produce a gauge-boson mass are

L gauge-boson
mass

= g2
2v

2

8
(W 1W 1 + W 2W 2) + v2

8
(g2W 3 − g1 B)2, (1.16)

where for simplicity of notation Lorentz indices are suppressed. The charged
W -boson fields

W ± = W 1 ∓ iW 2

√
2

(1.17)

have mass

MW = g2v

2
. (1.18)

It is convenient to introduce the weak mixing angle θW defined by

sin θW = g1√
g2

1 + g2
2

, cos θW = g2√
g2

1 + g2
2

. (1.19)

The Z -boson field and photon field A are defined as linear combinations of the
neutral gauge-boson fields W 3 and B,

Z = cos θW W 3 − sin θW B,

A = sin θW W 3 + cos θW B.
(1.20)

The Z boson has a mass at tree level

MZ =
√

g2
1 + g2

2

2
v = MW

cos θW
, (1.21)

and the photon is massless.
The covariant derivative in Eq. (1.15) can be reexpressed in terms of the

mass-eigenstate fields as

Dμ = ∂μ + ig AA
μT A + i

g2√
2

(
W +

μ T + + W −
μ T −)

+ i
√

g2
1 + g2

2(T3 − sin2 θW Q)Zμ + ig2 sin θW QAμ, (1.22)

where T ± = T 1 ± iT 2. The photon coupling constant in Eq. (1.22) leads to the
relation between the electric charge e and the couplings g1,2,

e = g2 sin θW = g2g1√
g2

1 + g2
2

, (1.23)
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so the Z coupling constant
√

g2
1 + g2

2 in Eq. (1.22) is conventionally written as
e/(sin θW cos θW ).

Outside of unitary gauge the H kinetic term also has a piece quadratic in the
fields where the Goldstone bosons h+, Im h0 mix with the longitudinal parts of
the massive gauge bosons. This mixing piece can be removed by adding to the
Lagrange density the ’t Hooft gauge fixing term

L gauge
fix

= − 1

2ξ

∑
a

[
∂μW a

μ + ig2ξ (〈H〉†T a H − H †T a〈H〉)]2

− 1

2ξ

[
∂μBμ + ig1ξ (〈H〉†Y H − H †Y 〈H〉)]2

, (1.24)

which gives the Lagrangian in Rξ gauge, where ξ is an arbitrary parameter. The
fields h± and Im h0 have mass terms proportional to the gauge fixing constant ξ .
In Feynman gauge ξ = 1 (the easiest for doing calculations), these masses are the
same as those of the W ± and Z . Im h0 and h± are not physical degrees of freedom
since in unitary gauge ξ → ∞ their masses are infinite and they decouple from
the theory.

SU(3) × SU(2) × U(1) gauge invariance prevents bare mass terms for the
quarks and leptons from appearing in the Lagrange density. The quarks and
leptons get mass because of their Yukawa couplings to the Higgs doublet,

LYukawa = gi j
u ūi

R H T εQ j
L −gi j

d d̄i
R H †Q j

L −gi j
e ēi

R H †L j
L +h.c. (1.25)

where h.c. denotes Hermitian conjugate. Here repeated indices i, j are summed
and the antisymmetric matrix ε is given by

ε =
(

0 1
−1 0

)
. (1.26)

Color indices and spinor indices are suppressed in Eq. (1.25). Since H has a
vacuum expectation value, the Yukawa couplings in Eq. (1.25) give rise to the
3 × 3 quark and lepton mass matrices

Mu = vgu/
√

2, Md = vgd/
√

2, and Me = vge/
√

2. (1.27)

Neutrinos do not get mass from the Yukawa interactions in Eq. (1.25), since
there is no right-handed neutrino field.

Any matrix M can be brought into diagonal form by separate unitary transfor-
mations on the left and right, M → L DR†, where L and R are unitary, and D is
real, diagonal and nonnegative. One can make separate unitary transformations
on the left- and right-handed quark and lepton fields, while leaving the kinetic
energy terms for the quarks, Q̄i

L i∂/ Qi
L , ūi

Ri∂/ ui
R , and d̄ i

Ri∂/ di
R , and also those for
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the leptons, invariant. The unitary transformations are

uL = U (u, L) u′
L ,

dL = U (d, L) d ′
L ,

eL = U (e, L) e′
L ,

u R = U (u, R) u′
R,

dR = U (d, R) d ′
R,

eR = U (e, R) e′
R.

(1.28)

Here u, d, and e are three-component column vectors (in flavor space) for the
quarks and leptons, and the primed fields represent the corresponding mass
eigenstates. The transformation matrices U are 3 × 3 unitary matrices, which
are chosen to diagonalize the mass matrices

U (u, R)†Mu U (u, L) =
⎛
⎝mu 0 0

0 mc 0
0 0 mt

⎞
⎠ , (1.29)

U (d, R)†Md U (d, L) =
⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠ , (1.30)

and

U (e, R)†Me U (e, L) =
⎛
⎝me 0 0

0 mμ 0
0 0 mτ

⎞
⎠ . (1.31)

Diagonalizing the quark mass matrices in Eqs. (1.29) and (1.30) requires
different transformations of the uL and dL fields, which are part of the same
SU(2) doublet QL . The original quark doublet can be rewritten as⎛

⎝uL

dL

⎞
⎠ =

⎛
⎝U (u, L) u′

L

U (d, L) d ′
L

⎞
⎠ = U (u, L)

⎛
⎝ u′

L

V d ′
L

⎞
⎠ , (1.32)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix V is defined by

V = U (u, L)† U (d, L) . (1.33)

It is convenient to reexpress the standard model Lagrangian in terms of the
primed mass-eigenstate fields. The unitary matrices in Eq. (1.32) leave the quark
kinetic terms unchanged. The Z and A couplings are also unaffected, so there
are no flavor-changing neutral currents in the Lagrangian at tree level. The W
couplings are left unchanged by U (u, L), but not by V , so that

g2√
2

W + ūLγ μdL = g2√
2

W + ū′
Lγ μV d ′

L . (1.34)

As a result there are flavor-changing charged currents at tree level.
The CKM matrix V is a 3 × 3 unitary matrix, and so is completely specified

by nine real parameters. Some of these can be eliminated by making phase
redefinitions of the quark fields. The u and d quark mass matrices are unchanged
if one makes independent phase rotations on the six quarks, provided the same
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phase is used for the left- and right-handed quarks of a given flavor. An overall
equal phase rotation on all the quarks leaves the CKM matrix unchanged, but
the remaining five rotations can be used to eliminate five parameters, so that V
is written in terms of four parameters. The original Kobayashi-Maskawa para-
meterization of V is

V =

⎛
⎜⎜⎜⎝

c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

−s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞
⎟⎟⎟⎠ , (1.35)

where ci ≡ cos θi , and si ≡ sin θi for i = 1, 2, 3. The angles θ1, θ2, and θ3 can
be chosen to lie in the first quadrant, where their sines and cosines are positive.
Experimentally it is known that these angles are quite small. The CKM matrix
is real if δ = 0, so that δ �= 0 is a signal of CP violation in the weak interactions.
It describes the unitary transformation between the mass-eigenstate basis di ′,
and the weak interaction eigenstate basis di . The standard notation for the mass-
eigenstate fields is u′1 = u, u′2 = c, u′3 = t , d ′1 = d, d ′2 = s, d ′3 = b.

So far we have only considered the left-handed quark couplings to the gauge
bosons. For the right-handed quarks there are no W -boson interactions in the
standard model, and in the primed mass-eigenstate basis the couplings of the Z ,
photon, and color gauge bosons are flavor diagonal. The analysis for leptons is
similar to that for quarks, with one notable difference – because the neutrinos
are massless, one can choose to make the same unitary transformation on the
left-handed charged leptons and neutrinos. The analog of the CKM matrix in the
lepton sector can be chosen to be the unit matrix, and the leptons can be chosen
to be simultaneously mass and weak eigenstates. We adopt the notation ν ′1 = νe,
ν ′2 = νμ, ν ′3 = ντ , e′1 = e, e′2 = μ, e′3 = τ . From now on, we will use the
mass-eigenstate basis for labeling the quark and lepton fields.

1.2 Loops

Loop diagrams in the standard model have divergences from the high-momentum
(ultraviolet) region of the momentum integrals. These divergences are interpreted
by a renormalization procedure; the theory is regulated in some way and terms
that diverge as the regulator is removed are absorbed into the definitions of the
couplings and masses. Theories in which all divergences in physical quantities
(e.g., S-matrix elements) can be removed in this way using a finite number
of counterterms are called renormalizable. In the unitary gauge, ξ → ∞, the
standard model is manifestly unitary (i.e., only physical degrees of freedom
propagate because the “ghost” Higgs associated with h± and Im h0 have infinite
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mass). The vector-boson propagator

−i
gμν − kμkν/M2

W,Z

k2 − M2
W,Z

(1.36)

is finite as k → ∞, and naive power counting suggests that the standard model is
not renormalizable. In the Feynman gauge, ξ = 1, the vector-boson propagator
is

−i
gμν

k2 − M2
W,Z

, (1.37)

which falls off as 1/k2, and naive power counting shows that the standard model is
renormalizable. The potentially disastrous divergences that occur in the unitary
gauge must cancel. However, unitarity is not manifest in the Feynman gauge
because the unphysical degrees of freedom associated with h± and Im h0 are
included as intermediate states in Feynman diagrams. The standard model is
manifestly unitary in one gauge and manifestly renormalizable in another. Gauge
invariance assures us that the theory is both unitary and renormalizable.

In this book we will regularize Feynman diagrams by using dimensional reg-
ularization. Diagrams are calculated in n = 4−ε dimensions, and the ultraviolet
divergences that occur in four dimensions appear as factors of 1/ε, as ε → 0.

To review how dimensional regularization works, consider the quantum elec-
trodynamics (QED) Lagrangian

LQED = −1

4
F (0)

μν F (0)μν + iψ̄ (0)γ μ
(
∂μ − ie(0)A(0)

μ

)
ψ (0) − m(0)

e ψ̄ (0)ψ (0), (1.38)

which is part of the standard model Lagrangian. The superscript (0) is used to
denote a bare quantity. Here

F (0)
μν = ∂μA(0)

ν − ∂νA(0)
μ (1.39)

is the bare electromagnetic field strength tensor. In n dimensions, the action

SQED =
∫

dnx LQED (1.40)

is dimensionless, since ei SQED is the measure in the Feynman path integral (we use
units where h̄ = c = 1). It follows that the dimensions of the fields, the coupling
constant e(0), and the electron mass, m(0)

e , are[A(0)
] = (n − 2)/2 = 1 − ε/2,[

ψ (0)
] = (n − 1)/2 = 3/2 − ε/2,[

e(0)
] = (4 − n)/2 = ε/2,[

m(0)
e
] = 1.

(1.41)
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The bare fields are related to the renormalized fields by

Aμ = 1√
Z A

A(0)
μ ,

ψ = 1√
Zψ

ψ (0),

e = 1

Ze
μ−ε/2e(0),

me = 1

Zm
m(0)

e .

(1.42)

The factor of μ−ε/2 is included in the relation between the bare and renormalized
electric couplings so that the renormalized coupling is dimensionless. Here μ is
a parameter with dimensions of mass and is called the subtraction point or renor-
malization scale of dimensional regularization. In terms of these renormalized
quantities the Lagrange density is

LQED = −1

4
Z A Fμν Fμν + i Zψψ̄γ μ

(
∂μ − iμε/2 Ze

√
Z AeAμ

)
ψ

−Zm Zψmeψ̄ψ,

= −1

4
Fμν Fμν + iψ̄γ μ

(
∂μ − iμε/2eAμ

)
ψ − meψ̄ψ + counterterms.

(1.43)

It is straightforward to compute the renormalization constants Z A,ψ,e,m by
using the formula for one-loop integrals in dimensional regularization,∫

dnq

(2π )n

(q2)α

(q2 − M2)β

= i

2nπn/2
(−1)α+β(M2)α−β+n/2 �(α + n/2)�(β − α − n/2)

�(n/2)�(β)
, (1.44)

and the Feynman trick for combining denominators,

1

am1
1 · · · amn

n
= �(M)

�(m1) · · · �(mn)

×
∫ 1

0
dx1xm1−1

1 · · ·
∫ 1

0
dxnxmn−1

n

δ
(
1 − ∑n

i = 1 xi
)

(x1a1 + · · · + xnan)M
, (1.45)

where

M =
n∑

i = 1

mi .

The Z ’s are determined by the condition that time-ordered products of renor-
malized fields (i.e., Green’s functions) be finite when expressed in terms of the
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renormalized coupling and mass. This condition still leaves considerable free-
dom in how the Z ’s are chosen. The precise way that the Z ’s are chosen is called
the subtraction scheme. The Z ’s can be chosen to have the form

Z = 1 +
∞∑

p=1

Z p(e)

ε p
, (1.46)

where the Z p(e) are independent of ε. This choice is called minimal subtraction
(MS) because only the poles in ε are subtracted and no additional finite pieces
are put into the Z ’s. We will use the MS scheme, which is minimal subtrac-
tion followed by the rescaling μ2 → μ2eγ /4π , where γ = 0.577 . . . is Euler’s
constant.

The photon wavefunction renormalization Z A to order e2 can be determined
by computing the photon–photon correlation function. There are two pieces to
this order; the first is a tree-level contribution from the counterterm

−1

4
(Z A − 1)Fμν Fμν. (1.47)

After truncating the external photon propagators, it gives

i(Z A − 1)(pμ pν − p2gμν), (1.48)

where p is the photon four momentum. The second contribution is from the
one-loop diagram Fig. 1.1,

(−1) (ie)2 με

∫
dnq

(2π )n

Tr[γμi(q/ + /p + me)γνi (q/ + me)][
(q + p)2 − m2

e

][
q2 − m2

e

] . (1.49)

The factor of (−1) arises from the closed fermion loop. The renormalization
constant only depends on the 1/ε pole, so the γ matrix algebra can be performed
in four dimensions. Expanding

με = 1 + ε ln μ + · · · , (1.50)

one sees that με can be set to unity for the infinite part of the diagram, and finite

q

p + q

p p

Fig. 1.1. One-loop vacuum polarization contribution to the photon propagator.
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parts only depend logarithmically on μ. The denominators are combined using
Eq. (1.45):

1[
(q + p)2 − m2

e

][
q2 − m2

e

] =
∫ 1

0
dx

1[
q2 + 2xq · p + p2x − m2

e

]2 . (1.51)

Making the change of variables k = q + px gives

−4e2
∫ 1

0
dx

∫
dnk

(2π )n

1[
k2 + p2x(1 − x) − m2

e

]2

× [
2kμkν − (

k2 − m2
e

)
gμν − 2x(1 − x)pμ pν + p2x(1 − x)gμν

]
. (1.52)

Terms odd in k vanish upon integration and have been dropped. Evaluating the
k integral using Eq. (1.44), keeping only the part proportional to 1/ε (using
� (ε/2) = 2/ε + · · ·), and doing the x integral gives the divergent part of the
one-loop contribution:

i

16π2ε

(
8e2

3

)
(pμ pν − p2gμν). (1.53)

For the photon two-point correlation function to be finite as ε → 0, the sum of
Eqs. (1.53) and (1.48) must be finite. One therefore chooses

Z A = 1 − 8

3

(
e2

16π2ε

)
. (1.54)

The wave-function renormalization constant Zψ for the electron field ψ is
obtained from the electron propagator. The counterterms

(Zψ − 1)ψ̄i∂/ ψ − (Zm Zψ − 1)meψ̄ψ (1.55)

contribute

i(Zψ − 1)/p − i(Zm Zψ − 1)me (1.56)

to the propagator. In the Feynman gauge, the one-loop diagram Fig. 1.2 is

με(ie)2
∫

dnq

(2π )n
γνi

/p + q/ + me

(p + q)2 − m2
e

γμ

(−i)gμν

q2
. (1.57)

q

p + qp p

Fig. 1.2. One-loop correction to the electron propagator.
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Combining denominators and shifting the momentum integration as in the pre-
vious case gives

2e2
∫

dnk

(2π )n

∫ 1

0
dx

−2me + /p(1 − x)[
k2 − m2

e x + p2x(1 − x)
]2 . (1.58)

Performing the k integration by using Eq. (1.44) and then the x integration gives

i

16π2ε
(4e2)

(
−2me + 1

2
/p

)
(1.59)

for the divergent contribution. The electron propagator is finite if

Zψ = 1 − 2

(
e2

16π2ε

)
(1.60)

and

Zm = 1 − 6

(
e2

16π2ε

)
(1.61)

in the Feynman gauge.
The remaining renormalization factor Ze can be determined by computing

the ψψ̄ A three-point function to order e2. The Feynman graph that has to be
computed is the vertex renormalization graph of Fig. 1.3. The counterterm is

Ze = 1 + 4

3

(
e2

16π2ε

)
. (1.62)

Note that Ze = 1/
√

Z A to order e2.
The relation between the bare and renormalized couplings at order e2 is

e(0) = με/2eZe = με/2e

[
1 + 4

3

(
e2

16π2ε

)]
, (1.63)

using Eqs. (1.62) and (1.42). The bare fields, coupling, and mass are independent
of the subtraction point μ, which is an arbitrary quantity with dimensions of mass
introduced so that the renormalized coupling is dimensionless. Since the bare

Fig. 1.3. One-loop vertex correction.
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coupling constant is independent of μ,

0 = μ
d

dμ
e(0) = μ

d

dμ
με/2eZe = με/2eZe

[
ε

2
+ 1

e
β (e) + μ

Ze

dZe

dμ

]
, (1.64)

where the β function is defined by

β(e) = μ
de

dμ
. (1.65)

This gives

β(e) = −ε

2
e − e

d ln Ze

d ln μ
. (1.66)

Using Eq. (1.62),

d ln Ze

d ln μ
=

(
4

3

)
1

16π2ε
μ

d

dμ
e2 + · · ·

= − e2

12π2
+ · · · , (1.67)

where the ellipses denote terms of higher order in e2. The one-loop β function
is

β(e) = −ε

2
e + e3

12π2
+ · · · , (1.68)

which is finite as ε → 0,

β(e) = e3

12π2
+ · · · . (1.69)

The β function gives the μ dependence of the renormalized coupling e. Here
μ is an arbitrary scale parameter, so physical quantities do not depend on μ.
However, some choices for μ are more convenient than others for computations.
Consider the cross section for σ (e+e− → anything) at a center of mass energy
squared, s = (pe+ + pe−)2 � m2

e . In QED this cross section is finite as me → 0
and so for large s we neglect me. The cross section has a power series expansion
in the coupling e(μ), and it is independent of the subtraction point μ. The implicit
μ dependence in the coupling is canceled by an explicit μ dependence in the
Feynman diagrams. (One can see this by computing, e.g., the finite parts of
Figs. 1.1–1.3.) Typically one finds that terms in the perturbation series have the
form [α (μ) /4π ]n lnm s/μ2, with m ≤ n, where

α (μ) = e2(μ)

4π
(1.70)

is the (scale-dependent) fine structure constant. If s/μ2 is not of the order of
unity, the logarithms can get large and cause a breakdown of perturbation theory.
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One usually chooses μ2 ∼ s, which “minimizes” the higher-order terms in the
perturbation expansion that have not been computed. With this choice of μ, one
expects that perturbation theory is an expansion in α(

√
s)/4π .

When perturbation theory is valid we can use Eqs. (1.65) and (1.69) to solve
explicitly for the dependence of the coupling on μ at one loop:

1

e2 (μ2)
= 1

e2 (μ1)
− 1

12π2
ln

(
μ2

2

μ2
1

)
. (1.71)

The β function in Eq. (1.69) is positive, so e increases as μ increases, as can be
seen explicitly from the solution in Eq. (1.71).

1.3 Composite operators

Composite operators involve products of fields at the same space–time point.
Consider, for example, the bare mass operator

S(0) = ψ̄ (0)ψ (0) (x) . (1.72)

Green’s functions with an insertion of S(0) are usually divergent. An additional
operator renormalization (beyond wave-function renormalization) is required to
make the Green’s functions finite. The renormalized operator S is

S = 1

ZS
S(0) = 1

ZS
ψ̄ (0)ψ (0) = Zψ

ZS
ψ̄ψ, (1.73)

where ZS is the additional operator renormalization. The operator S = ψ̄ψ +
counterterms is conventionally denoted by just ψ̄ψ , with the counterterms im-
plicit. Green’s functions with insertions of S are finite in perturbation theory.

The renormalization factor ZS can be computed from the three-point function
of the time-ordered product of ψ, ψ̄ , and S. It is simpler to use the one-particle
irreducible Green’s function � rather than the full Green’s function G to com-
pute ZS . The counterterm contribution to the one-particle irreducible Green’s
function is

Zψ

ZS
− 1. (1.74)

The one-loop contribution to � is shown in Fig. 1.4. The operator S contains
no derivatives (and ZS is mass independent in the MS scheme), so ZS can be
determined by evaluating Fig. 1.4 at zero external momentum (and neglecting
the electron mass), giving

με(ie)2
∫

dnq

(2π )n
γ α iq/

q2

iq/

q2
γ β (−i)gαβ

q2
= −4ie2

∫
dnq

(2π )n

1

(q2)2
+ · · · , (1.75)
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Fig. 1.4. One-loop graph with an insertion of a fermion-bilinear composite operator
(denoted by ⊗) such as ψ̄ψ .

where the ellipsis denote terms finite as ε → 0. Note that neglecting external
momenta and the electron mass has produced an infrared (i.e., low momentum)
divergence. Regulating this with a mass m by replacing q2 in the denominator
with (q2 − m2) gives

8e2

16π2ε
, (1.76)

for the ultraviolet divergent part of Eq. (1.75). Adding Eqs. (1.74) and (1.76)
together and using Eq. (1.60), we find that the 1/ε divergence cancels, provided

ZS = 1 + 6

(
e2

16π2ε

)
. (1.77)

The anomalous dimension of the composite operator S is defined by

γS = μ
d ln ZS

dμ
(1.78)

so that

γS = − 6e2

16π2
. (1.79)

Similar calculations can be performed for the vector and axial vector currents
ψ̄γμψ and ψ̄γμγ5ψ , and one finds ZV = Z A = 1, so that the currents are not
renormalized and their anomalous dimensions vanish at one loop. Note that
Z = 1 means that the infinite part of Fig. 1.4 is canceled by wave-function renor-
malization, not that Fig. 1.4 is finite. The result Z = 1 arises because for me = 0
both the axial and vector currents are conserved and the zero-component of these
currents (integrated over all space) are charges Q A,V with commutation relations
of the form

[QV , ψ] = −ψ, (1.80)

for example. A conserved charge Q cannot be multiplicatively renormalized
since that would spoil such commutation relations. In dimensional regularization
with minimal subtraction, electron mass effects cannot induce a renormalization
for the axial current because the renormalization factors are independent of
particle masses. This is an example of a general result that “soft” symmetry
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breaking effects, i.e., symmetry breaking terms with operator dimensions less
than four, do not affect renormalization in the MS scheme.

The axial current is not conserved at one loop because of the axial anomaly.
The divergence of the axial current is proportional to the dimension-four operator
F F̃ , so that symmetry breaking because of the anomaly is not soft. It produces
an anomalous dimension for the axial current at two loops.

We have considered a particularly simple example in which the operator S was
multiplicatively renormalized, since there are no other gauge invariant local op-
erators with the same quantum numbers. In general, one can have many different
operators Oi with the same quantum numbers, and one needs a renormalization
matrix,

O (0)
i = Zi j O j . (1.81)

This is referred to as operator mixing. In the MS scheme, Zi j is dimensionless, so
operators can only mix with other operators of the same dimension. This greatly
simplifies the analysis of operator mixing. In a general mass-dependent scheme,
operators can also mix with operators of lower dimension.

1.4 Quantum chromodynamics and chiral symmetry

The portion of the standard model that describes the strong interactions of quarks
and gluons is called quantum chromodynamics (QCD). The QCD Lagrange
density including for the moment only the “light” u, d, and s quark flavors is

LQCD = −1

4
G A

μνG Aμν + q̄(i /D − mq )q + counterterms, (1.82)

where q is the triplet of light quarks

q =
⎛
⎝u

d
s

⎞
⎠ , (1.83)

and mq is the quark mass matrix

mq =
⎛
⎝mu 0 0

0 md 0
0 0 ms

⎞
⎠ . (1.84)

Here Dμ = ∂μ + ig AA
μT A is the SU(3) color covariant derivative and G A

μν is the
gluon field strength tensor,

G A
μν = ∂μ AA

ν − ∂ν AA
μ − g f ABC AB

μ AC
ν , (1.85)

where the structure constants f ABC are defined by [T A, T B] = i f ABC T C . The
QCD renormalization factors can be calculated at order g2 in a manner similar



18 Review

Fig. 1.5. One-loop gluon contribution to the vacuum polarization.

to that for QED. For example, quark wave-function and mass renormalization
Zq and Zm are given by Fig. 1.2 with the photon replaced by a gluon. They can
be obtained from the QED result by replacing e2 by g2T AT A, where T AT A =
(4/3)11 for quarks in QCD. In the Feynman gauge, the order g2 wave-function
and mass renormalization factors are√

Zq = 1 − g2

12π2ε
, Zm = 1 − g2

2π2ε
. (1.86)

A major difference between QCD and QED occurs in the coupling constant
renormalization. The β function for QCD is

β(g) = − g3

16π2

(
11 − 2

3
Nq

)
+ O(g5), (1.87)

where Nq is the number of quark flavors. The quark contribution to the β func-
tion can be computed from Fig. 1.1 with the photon replaced by a gluon. It
is obtained from the QED calculation by the replacement e2 → Nq g2/2, since
Tr T AT B = δAB/2 for each quark flavor in the loop. The other term in the β

function is from gluon self-interactions, as in Fig. 1.5, and is not present in an
Abelian gauge theory such as QED. The QCD β function is negative, as long
as the number of quark flavors Nq is less than 16, so the QCD fine structure
constant

αs(μ) = g2(μ)

4π
(1.88)

becomes smaller at larger μ, a phenomenon known as asymptotic freedom.
At high energies, the coupling constant is small, and QCD perturbation theory
should be reliable. We can explicitly solve for the μ-dependence of αs just as in
QED:

αs(μ2) = 1[
1/αs(μ1) + β0 ln

(
μ2

2/μ
2
1

)] , (1.89)

where β0 is proportional to the first term in the QCD β function,

β0 =
(

33 − 2Nq

12π

)
. (1.90)

Equation (1.89) is valid as long as μ1 and μ2 are large enough that the order
g5 terms in Eq. (1.87) can be neglected, i.e., as long as αs (μ1) and αs (μ2) are
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both small. It is convenient to introduce a subtraction-point independent constant
�QCD with dimensions of mass, defined by

�QCD = μe−1/[2β0αs (μ)]. (1.91)

Then our expression for the strong interaction fine structure constant becomes

αs(μ) = 12π

(33 − 2Nq ) ln
(
μ2/�2

QCD

) . (1.92)

Equation (1.92) suggests that the QCD coupling constant diverges as μ → �QCD.
Of course, this expression for αs ceases to be valid when αs gets large. Never-
theless, one can still view �QCD as the scale at which QCD becomes strongly
coupled so that perturbation theory breaks down and nonperturbative effects be-
come important. Experimentally, �QCD is ∼200 MeV, and it sets the scale for
nonperturbative strong interaction effects. One expects hadron masses such as
the ρ meson mass to be dimensionless multiples of �QCD. It is believed that
QCD is a confining theory at long distances, i.e., the spectrum of physical states
consists of color singlet states called hadrons; there are no colored hadrons.
Bosonic hadrons are called mesons and fermionic hadrons are called baryons.
The simplest ways to form color singlet combinations of the quark fields are
q̄αqα and εαβγ qαqβqγ .

The u, d, and s quark masses are small compared with the scale �QCD of
nonperturbative strong interaction physics, and so it is useful to consider an
approximation to QCD in which the masses of these light quarks are set to zero,
and to do perturbation theory in mq about this limit. The limit mq → 0 is known
as the chiral limit, because the light quark Lagrangian

L light
quarks

= q̄ i /D q = q̄ L i /D qL + q̄ R i /D qR (1.93)

has an SU(3)L × SU(3)R chiral symmetry

qL → L qL qR → R qR, (1.94)

[L ∈SU(3)L , R ∈SU(3)R] under which the right- and left-handed quark fields
transform differently. The Lagrange density in Eq. (1.93) also has a baryon
number U(1) symmetry where the left- and right-handed quarks transform by
a common phase, and an axial U(1) where all the left-handed quarks transform
by a phase and all the right-handed quarks transform by the opposite phase.
Although these axial U(1) transformations leave the Lagrange density invariant,
they change the measure in the path integral, an effect known as the axial anomaly.
Hence, the axial U(1) is not a symmetry of QCD.

The chiral SU(3)L × SU(3)R symmetry of massless three-flavor QCD is spon-
taneously broken by the vacuum expectation value of quark bilinears〈

q̄ j
Rqk

L

〉 = v δk j , (1.95)

where v is of order �3
QCD. [Here v should not be confused with the Higgs vacuum
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expectation value.] The indices j and k are flavor indices, q1 = u, q2 = d, q3 = s,
and color indices are suppressed. If we make a SU(3)L × SU(3)R transformation
q → q ′, 〈

q̄ ′ j
R q ′k

L

〉 = v(L R†)k j . (1.96)

Transformations with L = R leave the vacuum expectation value unchanged.
Thus the nonperturbative strong interaction dynamics spontaneously breaks the
SU(3)L × SU(3)R chiral symmetry to its diagonal subgroup SU(3)V . The eight
broken SU(3)L × SU(3)R generators transform the composite field q̄ j

Rqk
L along

symmetry directions, and so leave the potential energy unchanged. Fluctuations
in field space along these eight directions are eight massless Goldstone bosons.
We can describe the Goldstone boson fields by a 3 × 3 special unitary matrix
�(x), which represents the possible low-energy long-wavelength excitations
of q̄ RqL . Here v�k j (x) ∼ q̄ j

R (x) qk
L (x) gives the local orientation of the quark

condensate. � has vacuum expectation value 〈�〉 = 11. Under SU(3)L × SU(3)R

transformations,

� → L � R†. (1.97)

The low-momentum strong interactions of the Goldstone bosons are described
by an effective Lagrangian for � (x) that is invariant under the chiral symmetry
transformation in Eq. (1.97). The most general Lagrangian is

Leff = f 2

8
Tr ∂μ � ∂μ�† + higher derivative terms, (1.98)

where f is a constant with dimensions of mass. There are no terms without any
derivatives since Tr ��† = 3. At a low enough momentum the effects of the
higher derivative terms can be neglected since they are suppressed by powers of
p2

typ/�
2
CSB, where ptyp is a typical momentum and �CSB is the scale associated

with chiral symmetry breaking, �CSB ∼ 1 GeV.
The field � (x) is an SU(3) matrix and it can be written as the exponential

� = exp

(
2i M

f

)
, (1.99)

of M , a traceless 3 × 3 Hermitian matrix. Under the unbroken SU(3)V subgroup
(L = R = V ), � → V �V †, which implies that M → V MV †, i.e., M transforms
as the adjoint representation. M can be written out explicitly in terms of eight
Goldstone boson fields:

M =

⎛
⎜⎜⎜⎝

π0/
√

2 + η/
√

6 π+ K +

π− −π0/
√

2 + η/
√

6 K 0

K − K̄ 0 −2η/
√

6

⎞
⎟⎟⎟⎠ . (1.100)
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The factor of 2/ f is inserted in Eq. (1.99) so that the Lagrangian in Eq. (1.98)
gives kinetic-energy terms for the Goldstone bosons with the standard normal-
ization.

In the QCD Lagrangian the light quark mass terms,

Lmass = q̄ LmqqR + h.c., (1.101)

transform under chiral SU(3)L × SU(3)R as (3̄L , 3R) + (3L , 3̄R). We can in-
clude the effects of quark masses (to first order) on the strong interactions of
the pseudo-Goldstone bosons, π, K , and η, by adding terms linear in mq to
Eq. (1.98) that transform in this way. Equivalently we can view the quark mass
matrix itself as transforming like mq → Lmq R† under SU(3)L × SU(3)R . Then
the Lagrange density in Eq. (1.101) is invariant under chiral SU(3)L × SU(3)R .
With this transformation rule for mq , we include the effects of quark masses in
the strong interactions of the π, K , and η by adding to Eq. (1.98) terms linear in
mq and m†

q that are invariant under SU(3)L × SU(3)R . This gives

Leff = f 2

8
Tr ∂μ� ∂μ�† + v Tr(m†

q� + mq�†) + · · · . (1.102)

The ellipses in Eq. (1.102) represent terms with more derivatives or more in-
sertions of the light quark mass matrix. The quark mass terms in the Lagrange
density in Eq. (1.102) give masses to the Goldstone bosons

m2
π± = 4v

f 2
(mu + md ),

m2
K ± = 4v

f 2
(mu + ms),

m2
K 0 = m2

K̄ 0 = 4v

f 2
(md + ms),

(1.103)

and hence the π , K , and η are referred to as pseudo-Goldstone bosons. The kaon
masses are much larger than the pion masses, implying that ms � mu,d . For the
η − π0 system there is a mass-squared matrix with elements

m2
π0π0 = 4v

f 2
(mu + md ),

m2
ηπ0 = m2

π0η
= 4v√

3 f 2
(mu − md ),

m2
ηη = 4v

3 f 2
(4ms + mu + md ) .

(1.104)

Because ms � mu,d , the off-diagonal terms are small compared with m2
ηη. Hence,
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up to corrections suppressed by (mu − md )2/m2
s ,

m2
π0 � 4v

f 2
(mu + md ) (1.105)

and

m2
η � 4v

3 f 2
(4ms + mu + md ) . (1.106)

It is interesting to note that the neutral pion mass is near the charged pion masses,
not because mu/md is near unity, but rather because mu −md is small compared
with ms . A more detailed study of mass relations, including electromagnetic
corrections, leads to the expectation that mu/md � 1/2.

The chiral Lagrangian in Eq. (1.102) contains two parameters, v with dimen-
sions of (mass)3 and f with dimensions of mass. Since the quark masses always
appear in conjunction with v it is not possible using the effective Lagrangian in
Eq. (1.102) to determine the quark masses themselves. The effective theory de-
scribing the low-momentum interactions of the pseudo-Goldstone bosons only
determines the ratios of quark masses, since v cancels out.

Equation (1.102) is an effective Lagrangian that describes the low-momentum
interactions of the pseudo-Goldstone bosons. One can use the effective theory
to compute scattering processes, such as π − π scattering. Expanding out � in
terms of the meson fields, one finds that the Tr ∂μ� ∂μ�† part of the Lagrangian
has the four-meson interaction term,

1

6 f 2
Tr[M, ∂μM][M, ∂μM]. (1.107)

Its tree-level matrix element (shown in Fig. 1.6) gives a contribution to the π–π

scattering amplitude of the form

M ∼ p2
typ

f 2
, (1.108)

where ptyp is a typical momentum. The amplitude is of the order of p2
typ since

the vertex contains two derivatives. The mass terms also give a contribution of
this form if we set p2

typ ∼ m2
π . The contributions of higher derivative operators

Fig. 1.6. Tree-level contribution to π–π scattering.
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Fig. 1.7. One-loop contribution to π–π scattering.

in the chiral Lagrangian are suppressed by more factors of the small momentum
ptyp.

What about loop diagrams? There are one-loop diagrams with two insertions
of the ππππ vertex, such as Fig. 1.7. Each vertex gives a factor of p2/ f 2, the
two meson propagators give a factor of 1/p4, and the loop integration gives a
factor of p4. The resulting amplitude in the MS scheme is

M ∼ p4
typ

16π2 f 4
ln
(

p2
typ/μ

2). (1.109)

The factor of p4
typ in the numerator is required by dimensional analysis, since

there is a factor of f 4 in the denominator and the subtraction point μ, which
also has dimensions of mass, only occurs in the argument of logarithms. The
16π2 in the denominator typically occurs in the evaluation of one-loop diagrams.
The one-loop diagram gives a contribution of the same order in the momentum
expansion as operators in the chiral Lagrangian with four derivatives (or two
insertions of the quark mass matrix). The total amplitude at order p4 is the sum
of one-loop diagrams containing order p2 vertices and of tree graphs from the
p4 terms in the Lagrangian. The total p4 amplitude is μ independent; the μ

dependence in Eq. (1.109) is canceled by μ dependence in the coefficients of the
p4 terms in the Lagrangian.

The pattern we have just observed holds in general. More loops give a con-
tribution of the same order as a term in the Lagrangian with more derivatives.
One can show that a graph with L loops, and nk insertions of vertices of order
pk , produces an amplitude of order pD , where (see Problem 6)

D = 2 + 2L +
∑

k

(k − 2) nk . (1.110)

Thus each loop increases D by two, and each insertion of a vertex of order
pk increases D by k − 2. Note that k − 2 ≥ 0, since the Lagrangian starts at
order p2, so that each term in Eq. (1.110) is positive. Loop corrections and
higher derivative operators are of comparable importance when the mass scale
�CSB that suppresses higher derivative operators is approximately equal to 4π f .
The computation of pseudo-Goldstone scattering amplitudes in a momentum
expansion using an effective Lagrangian is known as chiral perturbation theory.
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Although the u, d, and s quark masses are small, the spectrum of QCD suggests
that the theory contains quasi-particles that transform like u, d, and s under the
unbroken SU(3)V group but have a larger mass of approximately 350 MeV.
These quasi-particles are called constituent quarks, and the hadronic spectrum
is consistent at least qualitatively with spectra calculated from nonrelativistic
potential models for the interactions of constituent quarks.

1.5 Integrating out heavy quarks

The top, bottom, and charm quark masses are mt � 175 GeV, mb � 4.8 GeV,
and mc � 1.4 GeV. For processes that occur at energies well below the masses
of these quarks, it is appropriate to go over to an effective theory of the strong
interactions where these heavy quarks are integrated out of the theory and no
longer occur as explicit degrees of freedom in the Lagrangian. The effects of
Feynman diagrams with a virtual heavy quark Q are taken into account by non-
renormalizable operators suppressed by factors of 1/m Q , and through shifts in
the coupling constants of renormalizable terms in the effective Lagrangian. For
definiteness, imagine integrating out the top quark and making a transition from
the six-quark theory of the strong interactions to an effective five-quark theory.
The strong coupling in the original theory with six flavors will be denoted by
g(6), and in the effective five-quark theory by g(5). The relation between the
two couplings is determined by ensuring that the scattering amplitudes com-
puted in the five- and six-quark theories are the same. The general form of the
relation is g(5) (μ) = g(5)[mt/μ, g(6)(μ)], since the g’s are dimensionless. The
power series expansion of g(5) in powers of g(6) has coefficients that, for μ

very different from mt , contain large logarithms of m2
t /μ

2. If instead we pick
μ = mt , g(5) has a power series expansion in g(6)(mt ) with coefficients that are
not enhanced by any large logarithms. At tree level, g(5)(μ) = g(6)(μ), so one
expects

g(5)(mt ) = g(6)(mt )
{
1 + O[

α(6)
s (mt )

]}
. (1.111)

An explicit calculation shows that the one-loop term in this equation vanishes,
so the first nontrivial contribution is at two loops. The strong coupling in the
effective theory with n quarks is written as in Eq. (1.92), where the value of
�QCD now depends on which particular effective theory is being used (i.e.,
�QCD → �

(n)
QCD). Equation (1.111) implies that, at leading order, the coupling

constants are continuous at μ = mt . Combining this with Eq. (1.92), we find that

�
(5)
QCD = �

(6)
QCD

(
mt

�
(6)
QCD

)2/23

. (1.112)
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Integrating out the bottom and charm quarks to go over to effective four- and
three-quark theories gives

�
(4)
QCD = �

(5)
QCD

(
mb

�
(5)
QCD

)2/25

, (1.113)

�
(3)
QCD = �

(4)
QCD

(
mc

�
(4)
QCD

)2/27

. (1.114)

Equations (1.112)–(1.114) determine the most important influence of virtual
heavy quarks on low-energy physics. For example, the proton mass m p is gen-
erated by nonperturbative dynamics in the effective three-quark theory so m p ∝
�

(3)
QCD, where the constant of proportionality is independent of the heavy quark

masses. Imagining that the value of the strong coupling is fixed at some very-
high-energy scale (e.g., the unification scale), Eqs. (1.112)–(1.114) give the de-
pendence of the proton mass on the heavy quark masses. For example, doubling
the charm quark mass increases the proton mass by the factor 22/27 � 1.05.

1.6 Effective Hamiltonians for weak decays

The strong and electromagnetic interactions conserve quark and lepton flavor, so
many particles can only decay by means of the weak interactions. The simplest
example of such a decay is the weak decay of a muon, μ → eνμν̄e. This decay is
a purely leptonic process, since it does not involve any quark fields. The lowest-
order graph for this decay has a single W boson exchanged, as shown in Fig. 1.8.
The tree-level amplitude for the decay is

M(μ → eνμν̄e) =
(

g2√
2

)2 [
ū
(

pνμ

)
γα PLu(pμ)

][
ū(pe)γβ PLv

(
pνe

)]

× 1[(
pμ − pνμ

)2 − M2
W

]
[

gαβ −
(

pμ − pνμ

)α(
pμ − pνμ

)β
M2

W

]
, (1.115)

μ−
e−

νμ

νe

Fig. 1.8. Lowest-order diagram for μ decay.
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where g2 is the weak SU(2) coupling constant, and the W propagator has been
written in the unitary gauge. The muon mass is much smaller than the W -
boson mass MW , so the momenta of all the leptons involved in μ decay are
much smaller than MW . As a result, we can approximate the denominator of
the W -boson propagator, (pμ − pνμ

)2 − M2
W , by −M2

W and neglect the factor of
(pμ − pνμ

)α(pμ − pνμ
)β/M2

W in the numerator of the W -boson propagator. This
approximation simplifies the decay amplitude to

M(μ → eνμν̄e) � −4G F√
2

[
ū
(

pνμ

)
γα PLu(pμ)

][
ū(pe)γ α PLv

(
pνe

)]
, (1.116)

where the Fermi constant G F is defined by

G F√
2

= g2
2

8M2
W

. (1.117)

The decay amplitude Eq. (1.116) is the same as that produced by the tree-level
matrix element of the local effective Hamiltonian:

HW = −LW = 4G F√
2

[ν̄μγα PLμ][ēγ α PLνe]. (1.118)

It is simpler to use an effective Hamiltonian description of the weak interactions
in computing weak decay amplitudes at energies much smaller than MW and MZ ,
particularly if one wants to compute radiative corrections to decay amplitudes.

Electromagnetic loop corrections to the μ → eν̄eνμ decay amplitude go partly
into matrix elements of the Hamiltonian in Eq. (1.118) and partly into modifying
the Hamiltonian itself. The corrections to the Hamiltonian are calculated by
comparing amplitudes in the full theory with the W boson present as a dynamical
field to amplitudes in the effective theory with the W boson removed. These
corrections come from regions of loop momenta of order MW , since the effective
Hamiltonian has been chosen to correctly reproduce the full Hamiltonian for
momenta much smaller than MW . For this reason, the electron and muon masses
occur as me,μ/MW in the effective Hamiltonian, and they can be neglected at
leading order. They are, of course, very important for the matrix elements of the
effective Hamiltonian.

Neglecting the electron and muon masses, we know that the Hamiltonian must
be of the form in Eq. (1.118). In this limit electromagnetic corrections do not
change chirality and so [ν̄μγα PLμ][ēγ α PLνe] and [ν̄μγα PLνe][ēγ α PLμ] are the
only possible dimension-six operators that can occur. Terms with three gamma
matrices between the fermion fields can be reduced to single gamma matrices
by using the identity

γαγβγν = gαβγν + gβνγα − gανγβ − iεαβνηγ
ηγ5, (1.119)

where the sign convention is ε0123 = 1. Higher dimension operators are
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negligible, being suppressed by powers of 1/MW . The Fierz operator identity,

[ψ̄1γα PLψ2][ψ̄3γ
α PLψ4] = [ψ̄1γα PLψ4][ψ̄3γ

α PLψ2], (1.120)

allows one to replace [ν̄μγα PLνe][ēγ α PLμ] by [ν̄μγα PLμ][ēγ α PLνe]. So be-
yond tree level the effective Hamiltonian is modified to

HW = 4G F√
2

C

[
MW

μ
, α(μ)

]
[ν̄μγ α PLμ][ēγα PLνe], (1.121)

where μ is the subtraction point, and α is the electromagnetic fine structure
constant. The only modification due to radiative corrections is the coefficient
C , which is unity at tree level. Loop corrections at μ = MW with virtual loop
momenta of order MW determine the deviation of the coefficient C from unity,
so one expects

C[1, α(MW )] = 1 + O [α (MW )]. (1.122)

Any dependence of the matrix elements of the four-fermion operator [ν̄μγα PL

μ][ēγ α PLνe] on the subtraction point is canceled by the μ dependence of C , so
that physical quantities such as decay rates do not depend on μ. If the Hamil-
tonian above is used to calculate the muon decay rate, with μ = MW naively
one would think that there are large logarithms of (m2

μ/M2
W ) in the perturbative

expansion of the matrix elements of the Hamiltonian. In fact we know that C is
μ-independent and hence such logarithms do not occur. A simple explanation
of this fact follows using the Fierz identity in Eq. (1.120), which allows us to
rewrite the effective Hamiltonian in the form [ν̄μγα PLνe][ēγ α PLμ]. The neu-
trino fields do not interact electromagnetically, so the only renormalization is
that of ēγ α PLμ. In the limit me = mμ = 0, ēγ α PLμ is a conserved current and
does not get renormalized.

The electromagnetic coupling α is so small that even when it is multiplied by
large logarithms, perturbation theory is usually adequate. However, this is not the
case for the strong interactions. For an example in which such logarithms are im-
portant and must be summed, consider the effective Hamiltonian for nonleptonic
b → c decays at tree level,

H (�c = 1)
W = 4G F√

2
VcbV ∗

ud[c̄αγμ PLbα][d̄βγ μ PLuβ]. (1.123)

In Eq. (1.123) α and β are color indices and repeated indices are summed. There
is a contribution to the effective Hamiltonian for nonleptonic b → c decays where
the d quark is replaced by a s quark. It has a coefficient that is suppressed by
|Vus/Vud | ≈ 0.2 compared to Eq. (1.123). This “Cabibbo suppressed” contri-
bution is neglected here. Also, we are focusing on �c = 1 decays. There are
nonleptonic decays where, at tree level, the final state has both a c and c̄ quark.
For these decays the coefficient in the effective Hamiltonian H (�c = 0)

W is not
smaller than Eq. (1.123).
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Strong interaction loop corrections change the form of the Hamiltonian for
b → c decays. An argument similar to that used for μ decay shows that there are
two possible terms in the �c = 1 effective Hamiltonian,

HW = 4G F√
2

VcbV ∗
ud

{
C1

[
MW

μ
, αs(μ)

]
O1(μ) + C2

[
MW

μ
, αs(μ)

]
O2(μ)

}
,

(1.124)

where

O1(μ) = [c̄αγμ PLbα][d̄βγ μ PLuβ],

O2(μ) = [c̄βγμ PLbα][d̄αγ μ PLuβ].
(1.125)

The coefficients C1,2 are determined by comparing Feynman diagrams in the
effective theory with the W -boson integrated out with analogous diagrams in the
full theory. At μ = MW we have from Eq. (1.123) that

C1[1, αs(MW )] = 1 + O[αs(MW )],

C2[1, αs(MW )] = 0 + O[αs(MW )].
(1.126)

Subtraction-point dependence of the operators O1,2 cancels that in the coef-
ficients C1,2. Here O1,2 are local four-quark operators, and they must be renor-
malized to render their matrix elements finite. The relationship between bare and
renormalized operators has the form

O (0)
i = Zi j O j , (1.127)

where i, j = {1, 2} and the repeated index j is summed over. Since the bare
operator is μ independent,

0 = μ
d

dμ
O (0)

i (μ) =
(

μ
d

dμ
Zi j

)
O j + Zi j

(
μ

d

dμ
O j

)
, (1.128)

which implies that

μ
d

dμ
O j = −γ j i Oi (μ), (1.129)

where

γ j i = Z−1
jk

(
μ

d

dμ
Zki

)
. (1.130)

Here γi j (g) is called the anomalous dimension matrix. It can be calculated order
by order in the coupling constant from the Z ’s. The subtraction-point indepen-
dence of the weak Hamiltonian implies that

0 = μ
d

dμ
HW = μ

d

dμ
(C j O j ), (1.131)
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yielding (
μ

d

dμ
C j

)
O j − C jγ j i Oi = 0. (1.132)

Since the operators O1,2 are independent we conclude that

μ
d

dμ
Ci = γ j i C j . (1.133)

The solution to this differential equation is

Ci

[
MW

μ
, αs(μ)

]
= P exp

[∫ g(μ)

g(MW )

γ T (g)

β(g)
dg

]
i j

C j [1, αs(MW )]. (1.134)

Here P denotes “coupling constant ordering” of the anomalous dimension ma-
trices in the exponent, and γ T is the transpose of γ .

It is straightforward to calculate the anomalous dimension matrix for O1,2. At
one loop, it is

γ (g) = g2

8π2

(−1 3
3 −1

)
. (1.135)

It is convenient to diagonalize this matrix by forming the linear combinations of
operators

O± = O1 ± O2. (1.136)

Using the Fierz identity in Eq. (1.120), it is evident that O+ is symmetric under
interchange of the d and c quark fields, whereas O− is antisymmetric. Under an
SU(2) flavor group under which the d and c quark fields form a doublet, O− is a
singlet and O+ is a triplet. The c, d mass difference breaks this flavor symmetry.
Quark masses do not affect the renormalization constants Zi j , so mixing between
O+ and O− is forbidden by this symmetry. In terms of O± the effective weak
Hamiltonian is

HW = 4G F√
2

VcbV ∗
ud

{
C+

[
MW

μ
, αs(μ)

]
O+(μ) + C−

[
MW

μ
, αs(μ)

]
O−(μ)

}
,

(1.137)

where

C±[1, αs(MW )] = 1

2
+ O[αs(MW )]. (1.138)

At any other subtraction point

C±
[

MW

μ
, αs(μ)

]
= exp

[∫ g(μ)

g(MW )

γ±(g)

β(g)
dg

]
C±[1, αs(MW )], (1.139)
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where

γ+(g) = g2

4π2
+ O(g4),

γ−(g) = − g2

2π2
+ O(g4),

(1.140)

and β (g) is given by Eq. (1.87). Provided μ � �QCD, the strong coupling αs(μ)
is small over the range of integration in Eq. (1.139) and higher-order terms in g
can be neglected in γ± and β. This gives

C±
[

MW

μ
, αs(μ)

]
= 1

2

[
αs(MW )

αs(μ)

]a±
, (1.141)

where

a+ = 6

33 − 2Nq
, a− = − 12

33 − 2Nq
. (1.142)

Expressing αs(MW ) in terms of αs(μ) using Eq. (1.89), the perturbative power
series expansions of C± have the form

1

2
+ a1 αs(μ) ln(MW /μ) + a2 α2

s (μ) ln2(MW /μ) + · · · . (1.143)

The expression for C± in Eq. (1.143) sums all leading logarithms of the form
αn

s (μ) lnn (MW /μ), neglecting subleading logarithms of order αn
s lnn−1 (MW /μ).

The series of subleading logarithms can be summed by using two-loop renor-
malization group equations, and so on. The subtraction-point dependence in the
coefficients C± cancels that in the matrix elements of the operators O± so any
value of μ can be used. However, if ptyp is the typical momentum in a nonleptonic
decay, the matrix elements of O± will contain large logarithms of (μ2/p2

typ), for
μ very different from ptyp. Roughly these logarithms come from integrations
over momenta in the region between ptyp and μ. They are summed by scaling
the coefficients down from the subtraction point MW to one of order ptyp, which
moves the logarithms from the matrix elements of O± to the coefficients C±.

The exponents a± in Eq. (1.142) depend on the number of quark flavors Nq .
It is convenient to integrate out the top quark at the same time as the W boson
so that Nq = 5. For inclusive weak decay of a hadron containing a b quark, the
typical momenta of the decay products are of the order of the b-quark mass, and
the large logarithms of (MW /mb)2 are summed by evaluating the coefficients
C± at μ = mb. In this case,

C+(mb) = 0.42, C−(mb) = 0.70, (1.144)

using αs(MW ) = 0.12 and αs(mb) = 0.22.
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1.7 The pion decay constant

Weak pion decay π− → μν̄μ determines the value for the parameter f that occurs
in the chiral Lagrangian for pion strong interactions in Eq. (1.98). Neglecting
electromagnetic corrections, the effective Hamiltonian for π− → μν̄μ decay is

Heff = 4G F√
2

Vud [ūγα PLd][μ̄γ α PLνμ]. (1.145)

Here color indices on the quark fields are suppressed. The current ūγα PLd is
conserved in the limit mu,d → 0, and consequently its strong interaction ma-
trix elements are subtraction-point independent. Taking the π− → μν̄μ matrix
element of Eq. (1.145) gives the pion decay amplitude

M = −i
√

2G F Vud fπ ū(pμ)/pπ PLv
(

pνμ

)
, (1.146)

where the pion decay constant, fπ , is the value of the pion-to-vacuum matrix
element of the axial current,

〈0|ūγ αγ5d|π−(pπ )〉 = −i fπ pα
π . (1.147)

The measured pion decay rate gives fπ � 131 MeV. In Eq. (1.147) the pion field
is normalized by using the standard covariant norm: 〈π (p′

π )|π (pπ )〉 = 2Eπ (2π )3

δ3(p′
π − pπ ). Parity invariance of the strong interactions implies that only the

axial current part of the left-handed current contributes in Eq. (1.146).
In the limit mu,d,s = 0, global SU(3)L transformations are a symmetry of

QCD. The conserved currents associated with this symmetry can be derived by
considering the change in the QCD Lagrangian under infinitesimal local SU(3)L

transformations,

L = 1 + iεA
L T A, (1.148)

with space–time dependent infinitesimal parameters εA
L (x). The change in the

QCD Lagrange density, Eq. (1.93), under this transformation is

δLQCD = −J A
Lμ∂μεA

L , (1.149)

where

J A
Lμ = q̄L T AγμqL (1.150)

are the conserved currents associated with SU(3)L transformations. We also know
how left-handed transformations act on the meson fields in �. The change in the
chiral Lagrange density under an infinitesimal left-handed transformation on the
� in Eq. (1.98) is

δLeff = −J A
Lμ∂μεA

L , (1.151)
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where

J A
Lμ = − i f 2

4
Tr T A � ∂μ�†. (1.152)

Comparing Eqs. (1.150) and (1.152) gives

q̄L T AγμqL = −i
f 2

4
Tr T A�∂μ�† + · · · , (1.153)

where the ellipses are contributions from higher derivative terms in the chiral
Lagrangian. Matrix elements of the quark current involving the pseudo-Goldstone
boson can be calculated by expanding � in terms of M on the right-hand side
of Eq. (1.153). In particular, the part linear in M yields the tree-level relation
f = fπ . Loops and higher derivatives operators in the chiral Lagrangian give
corrections to the relation between f and fπ . The kaon decay constant is defined
by

〈0|ūγ αγ5s|K −(pK )〉 = −i fK pα
K . (1.154)

The measured K − → μν̄μ decay rate determines fK to be ∼25% larger than the
pion decay constant, fK �164 MeV. At leading order in chiral SU(3)L × SU(3)R ,
f = fK = fπ , and the 25% difference between fπ and fK is the typical size of
SU(3)V breaking arising from the nonzero value of the strange quark mass.

At higher orders in chiral perturbation theory, the Noether procedure for find-
ing the representation of q̄ L T AγμqL in terms of pseudo-Goldstone boson fields
becomes ambiguous. Total derivative operators in the chiral Lagrangian can give
a contribution to the current J A

Lμ (although not to the charges Q A
L = ∫

d3x J A
L0),

even though they are usually omitted from the chiral Lagrangian because they
do not contribute to pseudo-Goldstone boson S-matrix elements. Note that at
leading order in chiral perturbation theory there are no possible total derivative
operators since ∂μ(Tr �†∂μ�) = 0.

1.8 The operator product expansion

The operator product expansion (OPE) is an important tool in particle physics and
condensed matter physics, and it will be applied later in this book to describe
inclusive B decay and to discuss sum rules. The use of the operator product
expansion is best illustrated by an explicit example. In this section, the OPE
will be applied to the study of deep inelastic lepton–proton scattering. The main
purpose of the discussion is to explain the use of the OPE, so the presentation of
the phenomenology of deep inelastic scattering will be kept to a minimum.

The basic deep inelastic scattering process is �(k) + proton(p) → �(k ′) +
X (p + q), in which an incoming lepton � with momentum k scatters off a
target proton, to produce an outgoing lepton � with momentum k ′, plus anything
X . The Feynman graph in Fig. 1.9 is the leading term in an expansion in the
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k, E

k′, E′

q =  k - k′

p

X

Fig. 1.9. The basic diagram for deep inelastic lepton–hadron scattering. The virtual
photon momentum is q. The final hadronic state is not measured and is denoted by X .

electromagnetic fine structure constant α. The traditional kinematical variables
used to describe the inclusive scattering process are the momentum transfer
Q2 = −(k ′ − k)2, and the dimensionless variable x defined by

x = Q2

2p · q
, (1.155)

where q = k −k ′. Note that for deep inelastic scattering, Q2 > 0. It is also useful
to define ω = 1/x . The deep inelastic scattering cross section is the inclusive
cross section in the limit that Q2 is large with x fixed. The total cross section
is obtained from squaring the amplitude represented by Fig. 1.9 and performing
the appropriate phase space integrations. The lepton and photon parts of this
amplitude as well as the phase space integrals can easily be computed. The
nontrivial quantity is the square of the hadronic part of the diagram, which is∑

X

(2π )4δ4(q + p − pX )〈p|Jμ
em(0)|X〉〈X |J ν

em(0)|p〉, (1.156)

where the sum is over all possible final states X , and Jμ
em is the electromagnetic

current. For convenience momentum and spin labels on the state vectors are
suppressed. A spin average over the proton states |p〉 is also understood.

It is conventional to define the hadronic tensor

W μν(p, q) = 1

4π

∫
d4x eiq · x〈p|[Jμ

em(x), J ν
em(0)

]|p〉. (1.157)

Inserting a complete set of states gives

W μν(p, q) = 1

4π

∑
X

∫
d4x eiq · x[〈p|Jμ

em(x)|X〉〈X |J ν
em(0)|p〉

− 〈p|J ν
em(0)|X〉〈X |Jμ

em(x)|p〉], (1.158)

where the sum on X is a sum over all final states, as well as an integral over the



34 Review

allowed final state phase space. Translation invariance implies that

〈p|Jμ
em(x)|X〉 = 〈p|Jμ

em(0)|X〉ei(p−pX ) · x ,

〈X |Jμ
em(x)|p〉 = 〈X |Jμ

em(0)|p〉ei(pX −p) · x .
(1.159)

Inserting Eq. (1.159) into Eq. (1.158) gives

W μν(p, q) = 1

4π

∑
X

[
(2π )4δ4(q + p − pX )〈p|Jμ

em(0)|X〉〈X |J ν
em(0)|p〉

−(2π )4δ4(q + pX − p)〈p|J ν
em(0)|X〉〈X |Jμ

em(0)|p〉]. (1.160)

The only allowed final states are those with p0
X ≥ p0, since the baryon number

is conserved. For q0 > 0, only the first delta function in Eq. (1.160) can be
satisfied, and the sum in Wμν reduces to the expression in Eq. (1.156) involving
the hadronic currents, and the energy-momentum conserving delta function (up
to a factor of 1/4π). Since only the first term in Eq. (1.158) contributes, one could
have defined Wμν in Eq. (1.157) simply as the matrix element of Jμ

em(x)J ν
em(0)

without the commutator. The reason for using the commutator is that then Wμν

has a nicer analytic structure when continued away from the physical region.
The most general form of Wμν consistent with current conservation, parity and
time-reversal invariance is

Wμν = F1

(
−gμν + qμqν

q2

)
+ F2

p · q

(
pμ − p · q qμ

q2

)(
pν − p · q qν

q2

)
,

(1.161)

where F1,2 can be written as functions of x and Q2. Here F1,2 are called structure
functions.

The Q2 dependence of the structure functions can be calculated in quantum
chromodynamics. The starting point in the derivation is the time-ordered product
of two currents:

tμν ≡ i
∫

d4xeiq · x T
[
Jμ

em(x) J ν
em(0)

]
. (1.162)

The proton matrix element of tμν ,

Tμν = 〈p|tμν |p〉, (1.163)

can also be written in terms of structure functions,

Tμν = T1

(
−gμν + qμqν

q2

)
+ T2

p · q

(
pμ − p · q qμ

q2

)(
pν − p · q qν

q2

)
.

(1.164)

The analytic structure of T1,2 as a function of ω for fixed Q2 is shown in Fig. 1.10.
There are cuts in the physical region 1 ≤ |ω|. The discontinuity across the
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Re ω

Im ω

1− 1

Fig. 1.10. The analytic structure of Tμν in the complex ω plane. The discontinuity
across the cuts 1 ≤ |ω| ≤ ∞ is related to Wμν .

right-hand cut for T1,2 is F1,2,

Im T1,2(ω + iε, Q2) = 2π F1,2(ω, Q2). (1.165)

[The discontinuity across the left-hand cut gives the structure functions for deep
inelastic scattering off antiprotons.]

The key idea that permits the computation of Tμν in certain limiting cases is
the operator product expansion. Consider the time-ordered product of two local
operators separated in position by z:

T [Oa(z) Ob(0)] . (1.166)

For small z, the operators are at practically the same point. In this limit, the
operator product can be written as an expansion in local operators,

T [Oa(z) Ob(0)] =
∑

k

Cabk(z)Ok(0). (1.167)

The coefficient functions depend on the separation z. Low-momentum (com-
pared with 1/z) matrix elements of the left-hand side are completely equivalent
to matrix elements of the right-hand side. Thus one can replace the product
T [Oa(z)Ob(0)] in the computation of matrix elements by the expansion in
Eq. (1.167), where the coefficients Cabk(z) are independent of the matrix el-
ements, provided that the external states have momentum components that are
small compared with the inverse separation 1/z. In QCD, the coupling constant
is small at short distances because of asymptotic freedom. Thus the coefficient
functions can be computed in perturbation theory, since all nonperturbative ef-
fects occur at scales that are much larger than z, and do not affect the computation
of the coefficient functions.

The momentum space version of the operator product expansion is for the
product ∫

d4z eiq · zT [Oa(z) Ob(0)]. (1.168)
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In the limit that q → ∞, the Fourier transform in Eq. (1.168) forces z → 0, and
again the operator product can be expanded in terms of local operators with
coefficient functions that depend on q. For large q,∫

d4zeiq · zT [Oa(z) Ob(0)] =
∑

k

Cabk(q)Ok(0). (1.169)

This expansion is valid for all matrix elements, provided q is much larger than
the characteristic momentum in any of the external states.

We will use the Fourier transform version of the operator product expansion,
Eq. (1.169). The product of two electromagnetic currents in Eq. (1.162) can be
expanded in terms of a sum of local operators multiplied by coefficients that
are functions of q. This expansion will be valid for proton matrix elements,
Eq. (1.163), provided that q is much larger than the typical hadronic mass scale
�QCD. The local operators in the operator product expansion for QCD are quark
and gluon operators with arbitrary dimension d and spin n. An operator with
spin n and dimension d can be written as Oμ1···μn

d,n , where Od,n is symmetric and
traceless in μ1 · · · μn . The matrix element of Od,n in the spin-averaged proton
target is proportional to md−n−2

p S[pμ1 · · · pμn ]. S acts on a tensor to project
out the completely symmetric traceless component. The power of m p follows
from dimensional analysis, since a proton state with the conventional relativistic
normalization has dimension minus one. The coefficient functions in the operator
product expansion are functions only of q. Thus the free indices on the operator
O must be either μ, ν or be contracted with qα. Every index on O contracted
with qα produces a factor of p · q, which is of the order of Q2 in the deep inelastic
limit. An index μ or ν is contracted with the lepton momentum, and produces
a factor of p · k or p · k′, both of which are also of the order of Q2 in the deep
inelastic limit. In addition, since tμν has dimension two, the coefficient of O
must have dimension [mass]2−d in the operator product expansion. Thus, the
contribution of any operator O to the differential cross section is of the order of

Cμ1···μn Oμ1···μn
d,n → qμ1

Q
· · · qμn

Q
Q2−d 〈Oμ1···μn

d,n

〉
,

→ qμ1

Q
· · · qμn

Q
Q2−dmd−n−2

p pμ1 · · · pμn ,

→ (p · q)n

Qn
Q2−dmd−n−2

p ,

→ ωn
(

Q

m p

)2 + n − d

= ωn
(

Q

m p

)2 − t

, (1.170)

where the twist t is defined as

t = d − n = dimension − spin. (1.171)
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Table 1.2. Dimension, spin, and twist
for the basic objects
in the QCD Lagrangian

Parameter q Gμν Dμ

Dimension 3/2 2 1
Spin 1/2 1 1
Twist 1 1 0

The most important operators in the operator product expansion are those
with the lowest possible twist. Twist-two operators contribute a finite amount to
the structure functions in the deep inelastic limit, twist three contributions are
suppressed by m p/Q, and so on. The fundamental fields in QCD are quark and
gluon fields, so the gauge invariant operators in the operator product expansion
can be written in terms of quark fields q, the gluon field strength Gμν , and the
covariant derivative Dμ. Table 1.2 lists the basic objects, with their dimension
and twist. Any gauge invariant operator must contain at least two quark fields,
or two gluon field strength tensors. Thus the lowest possible twist is two. A
twist-two operator has either two q’s or two Gμν’s and an arbitrary number of
covariant derivatives. The indices of the covariant derivatives are not contracted,
because an operator such as D2 has twist two, whereas the traceless symmetric
part of Dα Dβ has twist zero.

The first step in doing an operator product expansion is to determine all the
linearly independent operators that can occur. We have just seen that the leading
operators are twist-two quark and gluon operators. We will simplify the analysis
by considering not the electromagnetic current but rather Jμ = q̄γμq for a single
quark flavor q. Results for the realistic case can be obtained by summing over
flavors weighted by the square of quark charges. The Lorentz structure of the
quark operators must be either q̄γ μq or q̄γ μγ5q in the limit that light quark
masses can be neglected, because the operator product Jμ J ν does not change
chirality. The conventional basis for twist-two quark operators is:

Oμ1···μn
q,V = 1

2

(
i

2

)n−1

S
{

q̄ γ μ1
↔
D

μ2 · · · ↔
D

μn

q
}

, (1.172)

Oμ1···μn
q,A = 1

2

(
i

2

)n−1

S
{

q̄ γ μ1
↔
D

μ2 · · · ↔
D

μn

γ5q
}

, (1.173)

where

Ā
↔
D

μ

B = Ā
→
DμB − Ā

←
DμB. (1.174)
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The operators Oμ1···μn
q,A have matrix elements proportional to the proton spin,

and so do not contribute to spin-averaged scattering. The tower of twist-two
gluon operators needed for scattering from unpolarized protons is

Oμ1···μn
g,V = −1

2

(
i

2

)n−2

S
{

Gμ1α
A

↔
D

μ2

. . .
↔
D

μn−1

G Aα
μn

}
. (1.175)

We will only compute the operator product expansion to lowest order in αs , so
the gluon operators do not occur.

The most general form for tμν consistent with current conservation and using
only twist-two operators is

tμν =
∞∑

n = 2,4,...

(
−gμν + qμqν

q2

)
2nqμ1 · · · qμn

(−q2)n

∑
j = q,g

2 C (1)
j,n Oμ1···μn

j,V

+
∞∑

n = 2,4,...

(
gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)

× 2nqμ3 · · · qμn

(−q2)n−1

∑
j = q,g

2C (2)
j,n Oμ1···μn

j,V , (1.176)

where the unknown coefficients are C (1)
j,n and C (2)

j,n , and the factors of two and
signs have been chosen for later convenience.

The second step in doing an operator product expansion is to determine the
coefficients of the operators, C (1)

j,n and C (2)
j,n . The best way to do this is to evaluate

enough on-shell matrix elements to determine all the coefficients. Since we have
argued that the coefficients can be computed using any matrix elements, we
will evaluate the coefficients by taking matrix elements in on-shell quark and
gluon states. We will only illustrate the computation of the coefficients to lowest
nontrivial order, i.e., (αs)0, in this chapter.

A generic term in the operator product expansion can be written as

J J ∼ Cq Oq + Cg Og, (1.177)

where q and g refer to quark and gluon operators. Taking the matrix element of
both sides in a free quark state gives

〈q|J J |q〉 ∼ Cq〈q|Oq |q〉 + Cg〈q|Og|q〉. (1.178)

The electromagnetic current is a quark operator. Thus the left-hand side is of
the order of (αs)0. The matrix element 〈q|Oq |q〉 is also of the order of (αs)0,
whereas the matrix element 〈q|Og|q〉 is of the order of (αs)1 since there are at
least two gluons in Og, each of which contributes a factor of the QCD coupling
constant g to the matrix element. Thus, one can determine Cq to leading order by
taking the quark matrix element of both sides of the operator product expansion,
neglecting the gluon operators.
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q , ν q , μ

p , s p , s

p+q

q , ν q , μ

p , s p , s

p-q

Fig. 1.11. The lowest order diagrams contributing to the quark matrix element of the
product of two electromagnetic currents.

As mentioned previously, we work in a theory with a single quark flavor
with charge one. The quark matrix element of the left-hand side of the operator
product expansion, Eq. (1.169), is given by the Feynman graphs in Fig. 1.11,

Mμν = i ū(p, s) γ μi
/p + /q

(p + q)2
γ ν u(p, s) + i ū(p, s) γ νi

/p − /q

(p − q)2
γ μu(p, s).

(1.179)

Note that there is an overall factor of i because we are computing i times the
time-ordered product in Eq. (1.162). The crossed diagram (second term) can be
obtained by the replacement μ ↔ ν, q →−q from the direct diagram (first term),
so we concentrate on simplifying the first term. Expanding the denominator gives

(p+q)2 = 2p ·q+q2 = q2
(

1 + 2p · q

q2

)
= q2 (1 − ω) , (1.180)

since p2 = 0 for an on-shell massless quark. The numerator can be simplified
using the γ matrix identity in Eq. (1.119):

ū(p, s)γ μ(/p + /q)γ νu(p, s) = ū(p, s)[(p + q)μγ ν + (p + q)νγ μ

−gμν(/p + /q) + iεμναλ(p + q)αγλγ5]u(p, s).

(1.181)

For an on-shell massless quark,

/p u(p, s) = 0, ū(p, s) γλ u(p, s) = 2pλ, ū(p, s) γλγ5 u(p, s) = 2h pλ,

(1.182)

where h is the quark helicity. Thus the /p and εμναλ pαγλγ5 terms both give zero.
For spin-averaged matrix elements the sum over helicities gives zero and so we
neglect the part of Mμν proportional to h. Combining the various terms and
using

(1 − ω)−1 =
∞∑

n=0

ωn (1.183)
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gives

Mμν = − 2

q2

∞∑
n = 0

ωn[(p + q)μ pν + (p + q)ν pμ − gμν p · q]. (1.184)

To complete the operator product expansion, we need the free quark matrix
element of the right-hand side of the operator product. The matrix element of
the quark operators of Eq. (1.172) in a free quark state with momentum p is

〈q (p)|Oμ1···μn
q,V |q (p)〉 = S[pμ1 · · · pμn ] = pμ1 · · · pμn , (1.185)

since p2 = 0. The factors of i and 2 in Eqs. (1.172) and (1.173) were chosen so
that no such factors appear in the matrix elements.

We determine the coefficient functions for the spin-independent terms in the
operator product expansion. Including the crossed diagram, the spin-independent
terms on the left-hand side of the operator product are

Mμν = − 2

q2

∞∑
n=0

ωn[(p + q)μ pν + (p + q)ν pμ − gμν p · q]

+ (μ ↔ ν, q → − q, ω → − ω) , (1.186)

since ω is odd in q. The crossed diagram causes half the terms to cancel, so that
the matrix element is

Mμν = − 4

q2

∞∑
n = 0,2,4

ωn2pμ pν − 4

q2

∞∑
n = 1,3,5

ωn(qμ pν + qν pμ − gμν p · q)

= − 8

q2

∞∑
n = 0,2,4

2n (p · q)n

(−q2)n

(
pμ − p · qqμ

q2

)(
pν − p · qqν

q2

)

− 4

q2

∞∑
n = 1,3,5

2n (p · q)n+1

(−q2)n

(
−gμν + qμqν

q2

)
. (1.187)

Equation (1.187) can be rewritten in the form

Mμν = − 8

q2

∞∑
n = 0,2,4

2nqμ3 · · · qμn+2

(−q2)n

×
(

gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
pμ1 · · · pμn+2

− 4

q2

∞∑
n = 1,3,5

2nqμ1 · · · qμn+1

(−q2)n

(
−gμν + qμqν

q2

)
pμ1 · · · pμn + 1, (1.188)

which separates the q and p dependence.
The coefficient functions in the operator product depend only on q, and the

matrix elements depend only on p. We have separated the operator product into
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pieces which depend only on q and only on p. By comparing with Eq. (1.185),
we can write Eq. (1.188) as

Mμν = − 8

q2

∞∑
n = 0,2,4

2nqμ3 · · · qμn+2

(−q2)n

×
(

gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
〈p|Oq,V μ1···μn+2 |p〉

− 4

q2

∞∑
n = 1,3,5

2nqμ1 · · · qμn+1

(−q2)n

(
−gμν + qμqν

q2

)
〈p|Oq,V μ1···μn+1 |p〉

(1.189)

so that

tμν = 2
∞∑

n = 2,4,6

2nqμ3 · · · qμn

(−q2)n−1

(
gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
Oq,V μ1···μn

+ 2
∞∑

n = 2,4,6

2nqμ1 · · · qμn

(−q2)n

(
−gμν + qμqν

q2

)
Oq,V μ1···μn . (1.190)

This is the operator product expansion for the spin-independent part of tμν , i.e.,
the part involving only vector operators. Only vector operators with n even occur
in the operator product expansion, because tμν is even under charge conjugation.

Comparing with the most general form for the operator product in Eq. (1.176),
we see that at lowest order in αs the coefficients C (1,2)

q,n = 1. Considering a gluon
matrix element gives Cg,n = 0 at lowest order in αs . At higher orders in αs the
coefficient functions and the operator matrix elements depend on a subtraction
point μ. Since the physical quantity tμν is independent of the arbitrary choice of
subtraction point, a renormalization group equation similar to that for coefficients
in the weak nonleptonic decay Hamiltonian in Eq. (1.132) can be derived for
the coefficients C (1,2)

j,n . At μ = Q there are no large logarithms in the coefficients

C (1,2)
j,n . Therefore, we have that

C (1,2)
q,n [1, αs(Q)] = 1 + O[αs(Q)],

C (1,2)
g,n [1, αs(Q)] = 0 + O[αs(Q)].

(1.191)

However, at μ = Q there are large logarithms of Q/�QCD in the nucleon matrix
element of the twist-two operators. It is convenient to use the renormalization
group equations that the C (1,2)

j,n satisfy and the initial conditions in Eqs. (1.191) to
move the Q dependence from the matrix elements into the coefficients by scaling
the subtraction point down to a value μ � Q. It is this calculable Q dependence
that results in the dependence of the structure functions T1,2 and hence F1,2 on Q,
without which they would just be functions of x . So quantum chromodynamics
predicts a calculable logarithmic dependence of the structure functions F1,2 on Q,
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Fig. 1.12. The proton structure function F2(x, Q2), measured in deep inelastic muon
scattering by the NMC Collaboration [M. Arneodo et al., Phys. Lett. 364B (1995) 107].
The data is shown as a function of Q2 for different values of x . For clarity, the plots for
different x values are offset by one unit vertically, so that what is plotted is F2 + Nx ,
where Nx is an integer equal to 1 for x = 0.5, 2 for x = 0.35, etc.

which has been verified experimentally. The fact that this dependence is weak at
large Q is a consequence of asymptotic freedom. In free field theory the structure
functions F1,2 are independent of Q, which is called scaling. The logarithmic
Q dependence is usually called a scaling violation. Some experimental data
showing the approximate scaling of F2 are shown in Fig. 1.12.

1.9 Problems

1. Consider an SU(5) gauge theory with a scalar field � that transforms in the adjoint represen-
tation

� → U�U †, U ∈ SU(5).

Suppose � gets the vacuum expectation value

〈�〉 = v

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) What is the unbroken subgroup H of SU(5)?
(b) What are the H quantum numbers of the massive SU(5) gauge bosons?
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2. If there are N generations of quarks and leptons, show that the CKM matrix contains (N −1)2

real parameters.

3. Calculate the vertex renormalization constant Ze given in Eq. (1.62).

4. Calculate to order g2 the renormalization matrix Zi j defined in Eq. (1.127) for the operators
O1 and O2 defined in Eq. (1.125). Use it to deduce the anomalous dimension matrix in
Eq. (1.135).

5. Calculate the cross section σ (π+π− → π+π−) at center of mass energy E to leading order
in the chiral perturbation theory expansion.

6. In chiral perturbation theory, any Feynman diagram contributing to π–π scattering has L
loops, nk insertions of vertices of order pk , and Nπ internal pion lines. The resulting amplitude
is of order pD , where

D = (powers of p in numerator) − (powers of p in denominator).

Using the identity L = Nπ − ∑
k nk + 1, derive Eq. (1.110) for D.

7. Calculate the decay amplitude for K − → π0eν̄e at leading order in chiral perturbation theory.

8. (a) Calculate the semileptonic free quark decay rate �(b → ceν̄e).
(b) Using the renormalization group improved effective Hamiltonian in Eq. (1.124), calculate

the nonleptonic free quark decay rate �(b → cdū).

Neglect all masses except those of the b and c quarks.
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2
Heavy quarks

The light u, d, and s quarks have masses mq that are small compared to the scale
of nonperturbative strong dynamics. Consequently, it is a good approximation to
take the mq → 0 limit of QCD. In this limit QCD has an SU(3)L × SU(3)R chiral
symmetry, which can be used to predict some properties of hadrons containing
these light quarks. For quarks with masses m Q that are large compared with the
scale of nonperturbative strong dynamics, it is a good approximation to take the
m Q → ∞ limit of QCD. In this limit QCD has spin-flavor heavy quark symmetry,
which has important implications for the properties of hadrons containing a single
heavy quark.

2.1 Introduction

The QCD Lagrangian in Eq. (1.82) describes the strong interactions of light
quarks and gluons. As discussed in Sec. 1.4, there is a nonperturbative scale
�QCD that is dynamically generated by QCD. A color singlet state, such as
a meson made up of a quark–antiquark pair, is bound by the nonperturbative
gluon dynamics. If the quarks are light, the typical size of such a system is
of the order of �−1

QCD. Consider a Qq̄ meson that contains a heavy quark with
mass m Q � �QCD, and a light quark with mass mq � �QCD. Such a heavy-light
meson also has a typical size of the order of �−1

QCD, as for mesons containing
only light quarks. The typical momentum transfer between the heavy and light
quarks in the Qq̄ meson arising from nonperturbative QCD dynamics is of the
order of �QCD. An important consequence of this fact is that the velocity v

of the heavy quark is almost unchanged by such strong interaction effects, even
though the momentum p of the heavy quark changes by an amount of the order of
�QCD, since �v = �p/m Q . A similar argument holds for any hadron containing
a single heavy quark Q.

In the limit m Q → ∞, the heavy quark in the meson can be labeled by a velocity
four-vectorv that does not change with time. The heavy quark behaves like a static

44
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external source that transforms as a color triplet, and the meson dynamics reduces
to that of light degrees of freedom interacting with this color source. One sees
immediately that the mass of the heavy quark is completely irrelevant in the limit
m Q → ∞, so that all heavy quarks interact in the same way within heavy mesons.
This leads to heavy quark flavor symmetry: the dynamics is unchanged under
the exchange of heavy quark flavors. The 1/m Q corrections take into account
finite mass effects and differ for quarks of different masses. As a result, heavy
quark flavor symmetry breaking effects are proportional to (1/m Qi − 1/m Q j ),
where Qi and Q j are any two heavy quark flavors. The only strong interaction
of a heavy quark is with gluons, as there are no quark–quark interactions in
the Lagrangian. In the m Q → ∞ limit, the static heavy quark can only interact
with gluons via its chromoelectric charge. This interaction is spin independent.
This leads to heavy quark spin symmetry: the dynamics is unchanged under
arbitrary transformations on the spin of the heavy quark. The spin-dependent
interactions are proportional to the chromomagnetic moment of the quark, and
so are of the order of 1/m Q . Heavy quark spin symmetry breaking does not
have to be proportional to the difference of 1/m Q’s, since the spin symmetry is
broken even if there are two heavy quarks with the same mass. The heavy quark
SU(2) spin symmetry and U(Nh) flavor symmetries (for Nh heavy flavors) can
be embedded into a larger U(2Nh) spin-flavor symmetry in the m Q → ∞ limit.
Under this symmetry the 2Nh states of the Nh heavy quarks with spin up and
down transform as the fundamental representation. We will see in Sec. 2.6 that the
effective Lagrangian can be written in a way that makes this symmetry manifest.

2.2 Quantum numbers

Heavy hadrons contain a heavy quark as well as light quarks and/or antiquarks
and gluons. All the degrees of freedom other than the heavy quark are referred
to as the light degrees of freedom �. For example, a heavy Qq̄ meson has an
antiquark q̄, gluons, and an arbitrary number of q̄q pairs as the light degrees of
freedom. Although the light degrees of freedom are some complicated mixture
of the antiquark q̄, gluons, and q̄q pairs, they must have the quantum numbers of
a single antiquark q̄. The total angular momentum of the hadron J is a conserved
operator. We have also seen that the spin of the heavy quark SQ is conserved
in the m Q → ∞ limit. Therefore, the spin of the light degrees of freedom S�

defined by

S� ≡ J − SQ (2.1)

is also conserved in the heavy quark limit. The light degrees of freedom in a
hadron are quite complicated and include superpositions of states with different
particle numbers. Nevertheless, the total spin of the light degrees of freedom is a
good quantum number in heavy hadrons. We will define the quantum numbers j ,
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Ds
+, Ds

*+

cs

D0, D*0

cu

D+, D*+

cd

Fig. 2.1. Flavor SU(3) weight diagram for the spin-0 pseudoscalar and spin-1 vector
cq̄ mesons. The corresponding bq̄ mesons are the B̄0

s , B̄−, and B̄0, and their spin-1
partners. The vertical direction is hypercharge, and the horizontal direction is I3, the
third component of isospin.

sQ , and s� as the eigenvalues J2 = j ( j + 1), S2
Q = sQ(sQ+1), and S2

� = s� (s� + 1)
in the state H (Q). Heavy hadrons come in doublets (unless s� = 0) containing
states with total spin j± = s� ± 1/2 obtained by combining the spin of the light
degrees of freedom with the spin of the heavy quark sQ = 1/2. These doublets are
degenerate in the m Q → ∞ limit. If s� = 0, there is only a single j = 1/2 hadron.

Mesons containing a heavy quark Q are made up of a heavy quark and a light
antiquark q̄ (plus gluons and qq̄ pairs). The ground state mesons are composed
of a heavy quark with sQ = 1/2 and light degrees of freedom with s� = 1/2,
forming a multiplet of hadrons with spin j = 1/2 ⊗ 1/2 = 0 ⊕ 1 and negative
parity, since quarks and antiquarks have opposite intrinsic parity. These states
are the D and D∗ mesons if Q is a charm quark, and the B̄ and B̄∗ mesons if
Q is a b quark. The field operators which annihilate these heavy quark mesons
with velocity v are denoted by P (Q)

v and P∗(Q)
vμ , respectively. The light antiquark

can be either a ū, d̄, or s̄ quark, so each of these heavy meson fields form a 3̄
representation of the light quark flavor group SU(3)V . The SU(3) weight diagram
for the 3̄ mesons is shown in Fig. 2.1.

In the nonrelativistic constituent quark model, the first excited heavy meson
states have a unit of orbital angular momentum between the constituent antiquark
and the heavy quark. These L = 1 mesons have s� = 1/2 or 3/2, depending on
how the orbital angular momentum is combined with the antiquark spin. The
s� = 1/2 mesons form multiplets of spin parity 0+ and 1+ states named (for
Q = c) D∗

0 and D∗
1 , and the s� = 3/2 mesons form multiplets of 1+ and 2+ states

named (for Q = c) D1 and D∗
2 . Properties of the s� = 1/2 and s� = 3/2 states are

related in the nonrelativistic constituent quark model, but not by heavy quark
symmetry.

Baryons containing a heavy quark consist of a heavy quark and two light
quarks, plus gluons and qq̄ pairs. The lowest-lying baryons have s� = 0 and
s� = 1 and form 3̄ and 6 representations of SU(3)V , which are shown in Figs. 2.2
and 2.3, respectively. We can easily understand this pattern in the nonrelativistic
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Fig. 2.2. Flavor SU(3) weight diagram for the 3̄ spin-1/2 c [qq] baryons. The corres-
ponding b [qq] baryons are the �0

b, �−
b and �0

b. The vertical direction is hypercharge,
and the horizontal direction is I3, the third component of isospin.
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Fig. 2.3. Flavor SU(3) weight diagram for the 6 spin-1/2 and spin-3/2 c (qq) baryons.
The corresponding b (qq) baryons are the spin-1/2 �

−,0,+
b , �

′−,0
b , and �−

b , and their
spin-3/2 partners. The vertical direction is hypercharge, and the horizontal direction is
I3, the third component of isospin.

constituent quark model. In this model the ground-state baryons have no orbital
angular momentum and the spatial wave function for the two light constituent
quarks is symmetric under their interchange. The wave function is also com-
pletely antisymmetric in color. Fermi statistics then demands that for s� = 0,
where the spin wave function is antisymmetric, the SU(3)V flavor wave func-
tion is also antisymmetric, and hence transforms as (3 × 3)antisymmetric = 3̄. For
s� = 1, the SU(3)V flavor wave function is symmetric and hence transforms as
(3 × 3)symmetric = 6. The s� = 0 ground-state baryons have positive parity and
total spin of 1/2, and the spinor fields that destroy these states are denoted by
�

(Q)
v . The s� = 1 ground-state baryons have positive parity and come in a doublet

of states with total spins of 1/2, and 3/2. We denote the fields that destroy these
states by �

(Q)
v and �

∗(Q)
vμ , respectively. The spectrum of excited baryons is more
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complicated than in the meson sector. In the nonrelativistic constituent quark
model, the L = 1 baryons come in two types; states with the unit of orbital angu-
lar momentum between the two light quarks, and states with the unit of orbital
angular momentum between the light quark pair and the heavy quark. The latter
are expected to be lower in mass. The lowest-mass hadrons containing c and b
quarks are summarized in Tables 2.1 and 2.2, respectively.

2.3 Strong decays of excited heavy hadrons

In many cases the two members of a doublet with spin of the light degrees of
freedom s� can decay by means of a single pion emission to the two members
of another lower-mass doublet with spin of the light degrees of freedom s ′

�. The
orbital angular momentum of the emitted pion (L , Lz) is restricted by parity,
angular momentum conservation, and heavy quark spin symmetry. For a given
pion partial wave there are four transition amplitudes that are related by heavy
quark spin symmetry, e.g., the four amplitudes for (D1, D∗

2) → (D, D∗) + π .
It is an instructive exercise to derive these symmetry relations. The derivation
only makes use of the standard formula for the addition of angular momenta in
quantum mechanics. The first step is to decompose the total angular momentum
of the initial and final heavy hadron states j and j ′ into the spin of the initial and
final heavy quark sQ and s ′

Q , and the spin of the initial and final light degrees
of freedom s� and s ′

�. Using the Clebsch-Gordan decomposition of | j, jz〉 into
|1

2 , sQz 〉 and |s�, s�z 〉,
| j, jz〉 =

∑
sQz ,s�z

〈1
2 , sQz ; s�, s�z

∣∣ j, jz
〉∣∣ 1

2 , sQz

〉∣∣s�, s�z

〉
, (2.2)

and the corresponding decomposition of | j ′, j ′
z〉 into |1

2 , s ′
Qz

〉 and |s ′
�, s ′

�z
〉, the

transition amplitude can be written in the form

M [
H (Q)( j, jz) → H (Q)( j ′, j ′

z) + π (L , Lz)
]

= 〈π (L , Lz) ; j ′, j ′
z|Heff| j, jz〉

=
∑〈

π (L , Lz) ; 1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ Heff
∣∣ 1

2 , sQz; s�, s�z
〉

× 〈1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ j ′, j ′
z

〉 〈 1
2 , sQz; s�, s�z

∣∣ j, jz
〉
. (2.3)

Eq. (2.3) is schematic and only keeps track of the group theory factors. The
effective strong interaction Hamiltonian, Heff, conserves the spin of the heavy
quark and of the light degrees of freedom separately. The Wigner-Eckart theorem
then implies that the hadronic matrix element must have the form〈

π (L , Lz) ; 1
2 , s ′

Qz; s ′
�, s ′

�z

∣∣ Heff
∣∣1

2 , sQz; s�, s�z
〉

= δsQz,s′
Qz

〈L , Lz; s ′
�, s ′

�z|s�, s�z〉〈L , s ′
� ‖ Heff ‖ s�〉, (2.4)
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Table 2.1. The lowest-mass hadrons containing a
c quarka

Mass Quark
Hadron (MeV) Content J P s�

D+

D∗+
1869.3 ± 0.5

2010.0 ± 0.5
cd̄

0−

1− 1/2

D0

D∗0

1864.6 ± 0.5

2006.7 ± 0.5
cū

0−

1− 1/2

D+
s

D∗+
s

1968.5 ± 0.6

2112.4 ± 0.7
cs̄

0−

1− 1/2

D∗
0

D∗
1 2461 ± 50

cq̄
0+

1+ 1/2

D1

D∗
2

2422.2 ± 1.8

2458.9 ± 2.0
cq̄

1+

2+ 3/2

�+
c 2284.9 ± 0.6 c[ud] 1/2+ 0

�+
c 2465.6 ± 1.4 c[us] 1/2+ 0

�0
c 2470.3 ± 1.8 c[ds] 1/2+ 0

�++
c

�∗++
c

2452.8 ± 0.6

2519.4 ± 1.5
c(uu)

1/2+

3/2+ 1

�+
c

�∗+
c

2453.6 ± 0.9
c(ud)

1/2+

3/2+ 1

�0
c

�∗0
c

2452.2 ± 0.6

2517.5 ± 1.4
c(dd)

1/2+

3/2+ 1

�′+
c

�∗+
c

2573.4 ± 3.3

2644.6 ± 2.1
c(us)

1/2+

3/2+ 1

�′0
c

�∗0
c

2577.3 ± 3.4

2643.8 ± 1.8
c(ds)

1/2+

3/2+ 1

�0
c

�∗0
c

2704 ± 4
c(ss)

1/2+

3/2+ 1

a Heavy quark spin symmetry multiplets are listed together.
For the excited mesons, the masses quoted correspond to
q = u, d. Excited charm masses with quark content cs̄ and
excited charm baryons have also been observed.
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Table 2.2. The lowest-mass hadrons containing a
b quarka

Mass Quark
Hadron (MeV) Content J P s�

B̄0

B̄∗0

5279.2 ± 1.8

5324.9 ± 1.8
bd̄

0−

1− 1/2

B̄−

B̄∗−
5278.9 ± 1.8

5324.9 ± 1.8
bū

0−

1− 1/2

B̄0
s

B̄∗0
s

5369.3 ± 2.0
bs̄

0−

1− 1/2

B̄∗
0

B̄∗
1

bq̄
0+

1+ 1/2

B̄1

B̄∗
2

bq̄
1+

2+ 3/2

�0
b 5624 ± 9 b[ud] 1/2+ 0

�0
b b[us] 1/2+ 0

�−
b b[ds] 1/2+ 0

�+
b

�∗+
b

b(uu)
1/2+

3/2+ 1

�0
b

�∗0
b

b(ud)
1/2+

3/2+ 1

�−
b

�∗−
b

b(dd)
1/2+

3/2+ 1

�′0
b

�∗0
b

b(us)
1/2+

3/2+ 1

�′−
b

�∗−
b

b(ds)
1/2+

3/2+ 1

�−
b

�∗−
b

b(ss)
1/2+

3/2+ 1

a Heavy quark spin symmetry multiplets are listed together.
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where the final term is the reduced matrix element. Substituting into Eq. (2.3)
yields

M =
∑〈1

2 , sQz; s�, s�z

∣∣ j, jz
〉〈L , s ′

� ‖ Heff ‖ s�〉
× 〈1

2 , sQz; s ′
�, s ′

�z

∣∣ j ′, j ′
z

〉 〈
L , Lz; s ′

�, s ′
�z

∣∣ s�, s�z
〉

= (−1)L+s′
�+ 1

2 + j
√

(2s� + 1)(2 j ′ + 1)

{
L s ′

� s�

1
2 j j ′

}

×〈L , ( jz − j ′
z); j ′, j ′

z| j, jz〉〈L , s ′
� ‖ Heff ‖ s�〉, (2.5)

where we have rewritten the product of Clebsch-Gordan coefficients in terms of
6 j symbols. The total decay rate for j → j ′ is given by

�( j → j ′π ) ∝ (2s� + 1)
2 j ′ + 1

2 j + 1

∑
jz, j ′

z

∣∣∣∣∣
{

L s ′
� s�

1
2 j j ′

}∣∣∣∣∣
2

|〈L , ( jz − j ′
z); j ′, j ′

z| j, jz〉|2

= (2s� + 1)(2 j ′ + 1)

∣∣∣∣∣
{

L s ′
� s�

1
2 j j ′

}∣∣∣∣∣
2

, (2.6)

where we have dropped terms, such as the reduced matrix element, which are the
same for different values of j and j ′. Equation (2.6) provides relations between
the decay rates of the excited s� = 3/2 D1 and D∗

2 mesons to the ground state
s� = 1/2 D or D∗ mesons and a pion. These two multiplets have opposite parity
and the pion has negative parity, so the pion must be in an even partial wave with
L = 0 or 2 by parity and angular momentum conservation. The decays D∗

2 → Dπ

and D∗
2 → D∗π must occur through the L = 2 partial wave, while D1 → D∗π

can occur by either the L = 0 or L = 2 partial wave. The L = 0 partial wave
amplitude for D1 → D∗π vanishes by heavy quark symmetry since{

0 1/2 3/2
1/2 1 1

}
= 0, (2.7)

so that all the decays are L = 2. Equation (2.6) implies that the L = 2 decay
rates are in the ratio

�(D1 → Dπ ) : �(D1 → D∗π ) : �(D∗
2 → Dπ ) : �(D∗

2 → D∗π )

0 : 1 : 2
5 : 3

5

, (2.8)

where �(D1 → Dπ ) is forbidden by angular momentum and parity conservation.
Equation (2.8) holds in the heavy quark symmetry limit, mc → ∞. There is
a very important source of heavy quark spin symmetry violation that is kine-
matic in origin. For small pπ , the decay rates are proportional to |pπ |2L+1,
which for L = 2 is |pπ |5. In the mc → ∞ limit the D1 and D∗

2 are degenerate
and the D and D∗ are also degenerate. Consequently this factor does not af-
fect the ratios in Eq. (2.8). However, for the physical value of mc, the D∗ − D
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mass splitting is ∼140 MeV, which cannot be neglected in comparison with the
450 MeV D∗

2 − D∗ splitting. Including the factor of |pπ |5, the relative decay rates
become

�(D1 → Dπ ) : �(D1 → D∗π ) : �(D∗
2 → Dπ ) : �(D∗

2 → D∗π )

0 : 1 : 2.3 : 0.92
. (2.9)

As a consequence of Eq. (2.9) we arrive at the prediction BR(D∗
2 → Dπ )/BR

(D∗
2 → D∗π ) � 2.5, which is in good agreement with the experimental value

2.3 ± 0.6. The prediction for this ratio of branching ratios would have been 2/3
without including the phase space correction factor.

Phenomenologically, the suppression associated with emission of a low-
momentum pion in a partial wave L is ∼(|pπ |/�CSB)2L+1. The fact that the
scale �CSB ∼ 1 GeV enables us to understand why the doublet of D∗

0 and D∗
1

excited s� = 1/2 mesons is difficult to observe. For these mesons, heavy quark
spin symmetry predicts that their decays to the ground-state doublet by single
pion emission occur in the L = 0 partial wave. The masses of the (D∗

0 , D∗
1) are

expected to be near the masses of the (D1, D∗
2), and so their widths are larger

than those of the D1 and D∗
2 by roughly (�CSB/|pπ |)4 ∼ 20–40. The D1 and D∗

2
widths are �(D1) = 18.9 ± 4 MeV and �(D∗

2) = 23 ± 5 MeV. Hence the D∗
0,1

should be broad, with widths greater than 200 MeV, which makes them difficult
to observe. The measured width of the D∗

1 is 290 ± 100 MeV.
The excited positive parity s� = 3/2 mesons Ds1 and D∗

s2, which contain
a strange antiquark, have also been observed. The Ds1 is narrow, �(Ds1) <

2.3 MeV, and its decays to D∗K are dominated by the S-wave amplitude. This
occurs because the kaon mass is much larger than the pion mass, and so for
this decay |pK | � 150 MeV while in D1 → D∗π decay |pπ | � 360 MeV. Con-
sequently, there is a large kinematic suppression of the D-wave amplitude in
Ds1 → D∗K decay. The s� = 1/2 and s� = 3/2 charmed mesons are in a 3̄ of
SU(3)V , whereas the π , K , and η are in an 8. Since there is only one way to
combine a 3, 3̄, and 8 into a singlet, SU(3)V relates the S-wave part of the D1

decay width to the Ds1 decay width. Neglecting η final states, which are phase
space suppressed, SU(3)V light quark symmetry leads to the expectation that
�S−wave (D1) ≈ (3/4)�(Ds1) × |pπ |/|pK | < 4.1 MeV.

2.4 Fragmentation to heavy hadrons

A heavy quark produced in a high-energy process will materialize as a hadron
containing that heavy quark. Once the “off-shellness” of the fragmenting heavy
quark is small compared with its mass, the fragmentation process is constrained
by heavy quark symmetry. Heavy quark symmetry implies that the probabil-
ity, P (H )

hQ → hs
, for a heavy quark Q with spin along the fragmentation axis (i.e.,
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helicity) hQ to fragment to a hadron H with spin s, spin of the light degrees of
freedom s�, and helicity hs is

P (H )
hQ → hs

=
∑
h�

PQ → s�
ph�

|〈sQ, hQ ; s�, h�|s, hs〉|2, (2.10)

where h� = hs − hQ . In Eq. (2.10) PQ → s�
is the probability for the heavy quark to

fragment to a hadron with spin of the light degrees of freedom s�. This probability
is independent of the spin and flavor of the heavy quark but will depend on other
quantum numbers needed to specify the hadron H . PQ → s�

has the same value
for the two hadrons in the doublet related by heavy quark spin symmetry. ph�

is the conditional probability that the light degrees of freedom have helicity h�,
given that Q fragments to s�. The probabilistic interpretation of the fragmentation
process means that 0 ≤ ph�

≤ 1 and∑
h�

ph�
= 1. (2.11)

Like PQ → s�
, ph�

is independent of the spin and flavor of the heavy quark, but
can depend on the hadron multiplet. The third factor in Eq. (2.10) is the Clebsch-
Gordan probability that the hadron H with helicity hs contains light degrees of
freedom with helicity h� and a heavy quark with helicity hQ . Parity invariance
of the strong interactions implies that

ph�
= p−h�

, (2.12)

since reflection in a plane containing the momentum of the fragmenting quark
reverses the helicities but leaves the momentum unchanged. Equations (2.11)
and (2.12) imply that the number of independent probabilities ph�

is s� − 1/2 for
mesons and s� for baryons. At the hadron level, parity invariance of the strong
interactions gives the relation P (H )

hQ → hs
= P (H )

−hQ → −hs
.

Heavy quark spin symmetry has reduced the number of independent frag-
mentation probabilities. For the ground-state D and D∗ mesons, s� = 1/2, so
p1/2 = p−1/2, which must both equal 1/2, since p1/2 + p−1/2 = 1. This gives
the relative fragmentation probabilities for a right-handed charm quark,

P (D)
1/2 → 0 : P (D∗)

1/2 → 1 : P (D∗)
1/2 → 0 : P (D∗)

1/2 → −1

1/4 : 1/2 : 1/4 : 0
. (2.13)

Parity invariance of the strong interactions relates the fragmentation probabilities
for a left-handed charm quark to those in Eq. (2.13). Heavy quark spin symmetry
implies that a charm quark fragments to a D one-third as often as it fragments to
a D∗. This prediction disagrees with the experimental data, which give a larger
fragmentation probability for the D, and the discrepancy is due to the D∗ − D
mass difference. We have already seen that the mass difference has an important
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impact on decays of excited charm mesons to the D and D∗ and it is not surprising
that the mass difference should influence the fragmentation probabilities as well.
The B∗ − B mass difference is 50 MeV, which is approximately a factor of 3
smaller than the D∗ − D mass difference, so one expects the predictions of exact
heavy quark symmetry to work better in this case. Recent experimental data from
LEP show that the B∗ : B ratio is consistent with the predicted value of 3 : 1.

Charm quark fragmentation to the negative parity s� = 3/2 multiplet of excited
charmed mesons is characterized by the Falk-Peskin parameter w3/2, defined as
the conditional probability to fragment to helicities ±3/2,

p3/2 = p−3/2 = 1
2w3/2, p1/2 = p−1/2 = 1

2 (1 − w3/2). (2.14)

The value of p±1/2 is determined in terms of w3/2 since the total fragmentation
probability must be unity. The relative fragmentation probabilities are given by
Eq. (2.10):

P (D1)
1/2 → 1 : P (D1)

1/2 → 0 : P (D1)
1/2 → −1 : P

(D∗
2 )

1/2 → 2 :

1
8 (1 − w3/2) : 1

4 (1 − w3/2) : 3
8w3/2 : 1

2w3/2 :
(2.15)

P
(D∗

2 )
1/2 → 1 : P

(D∗
2 )

1/2 → 0 : P
(D∗

2 )
1/2 → −1 : P

(D∗
2 )

1/2 → −2

3
8 (1 − w3/2) : 1

4 (1 − w3/2) : 1
8w3/2 : 0

.

Equation (2.15) predicts that the ratio of D1 to D∗
2 production by charm quark

fragmentation is 3/5, independent of w3/2. Assuming that the decays of the
negative parity s� = 3/2 charmed mesons are dominated by D(∗)π final states, the
experimental value of this ratio is close to unity. Experimentally the probability
of a heavy quark to fragment to the maximal helicities ±3/2 is small, i.e.,
w3/2 < 0.24.

The validity of Eq. (2.10) depends on a crucial assumption. Spin symmetry
violation must be negligible in the masses and decays of excited multiplets
that can be produced in the fragmentation process and then decay to the final
fragmentation product. The spin symmetry violating D1 − D∗

2 mass difference
is comparable with the widths of these states, and the spin symmetry violating
D∗ − D mass difference plays an important role in their decay rates to D and
D∗’s. Consequently we do not expect Eq. (2.13) to hold for those D and D∗’s
that arise from decays of a D1 or D∗

2 .

2.5 Covariant representation of fields

We have seen that heavy quark symmetry usually implies a degenerate multiplet
of states, such as the B and B∗. It is convenient to have a formalism in which the
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entire multiplet of degenerate states is treated as a single object that transforms
linearly under the heavy quark symmetries.

The ground-state Qq̄ mesons can be represented by a field H (Q)
v that annihi-

lates the mesons, and transforms as a bilinear under Lorentz transformations,

H (Q)′
v′ (x ′) = D (�) H (Q)

v (x) D (�)−1 , (2.16)

where

v′ = �v, x ′ = �x, (2.17)

and D (�) is the Lorentz transformation matrix for spinors, so that

H (Q)
v (x) → H (Q)′

v (x) = D (�) H (Q)
�−1v

(�−1x)D (�)−1 . (2.18)

The field H (Q)
v (x) is a linear combination of the pseudoscalar field P (Q)

v (x) and
the vector field P∗(Q)

vμ (x) that annihilate the s� = 1/2 meson multiplet. Vector
particles have a polarization vector εμ, with ε · ε = −1, and v · ε = 0. The am-
plitude for P∗(Q)

vμ to annihilate a vector particle is εμ. A simple way to combine
the two fields into a single field with the desired transformation properties is to
define∗

H (Q)
v = 1 + /v

2

[
/P∗(Q)
v + i P (Q)

v γ5
]
. (2.19)

Equation (2.19) is consistent with P (Q)
v transforming as a pseudoscalar, and P∗(Q)

vμ

as a vector, since γ5 and γ μ convert pseudoscalars and vectors into bispinors.
The

(
1 + /v

)
/2 projector retains only the particle components of the heavy quark

Q. The relative sign and phase between the P and P∗ terms in Eq. (2.19) is
arbitrary, and this depends on the choice of phase between the pseudoscalar and
vector meson states. The pseudoscalar is multiplied by γ5 rather than unity, to
be consistent with the parity transformation law

H (Q)
v (x) → γ 0 H (Q)

vP
(xP ) γ 0, (2.20)

where

xP = (x0, −x), vP = (v0, −v). (2.21)

The field H (Q)
v satisfies the constraints

/vH (Q)
v = H (Q)

v , H (Q)
v /v = −H (Q)

v . (2.22)

The first of these follows directly from /v
(
1 + /v

) = (
1 + /v

)
. The second relation

follows by anticommuting /v through H (Q)
v , and using v · P∗(Q)

v = 0, since the
polarization of physical spin-one particles satisfies v · ε = 0.

∗ For clarity, the superscript (Q) and/or the subscript v will sometimes be omitted.
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It is convenient to introduce the conjugate field

H̄ (Q)
v = γ 0 H (Q)†

v γ 0 = [
P∗(Q)†

vμ γ μ + iP (Q)
v

†
γ5
]1 + /v

2
, (2.23)

which also transforms as a bispinor,

H̄ (Q)
v (x) → D(�) H̄ (Q)

�−1v
(�−1x)D(�)−1 , (2.24)

since

γ 0 D(�)† γ 0 = D(�)−1 . (2.25)

In the rest frame

v = vr = (1, 0) (2.26)

the field H (Q)
vr is

H (Q)
vr

=
⎛
⎝ 0 iP (Q)

vr − σ · P∗(Q)
vr

0 0

⎞
⎠ , (2.27)

using the Bjorken and Drell convention for γ matrices,

γ 0 =
(

1 0
0 −1

)
, γ =

(
0 σ

−σ 0

)
, γ5 =

(
0 1
1 0

)
. (2.28)

The indices α and β of the field [H (Q)
vr ]αβ label the spinor indices of the heavy

quark Q and the light degrees of freedom, respectively. The field H (Q)
vr transforms

as a (1/2, 1/2) representation under SQ ⊗ S�. The spin operators SQ and S� for
the heavy quark and light degrees of freedom acting on the H (Q)

vr field are[
SQ, H (Q)

vr

] = 1
2σ4 × 4 H (Q)

vr
,

(2.29)[
S�, H (Q)

vr

] = −1
2 H (Q)

vr
σ4 × 4,

where σ i
4×4 = iεi jk[γ j , γ k]/4 are the usual Dirac rotation matrices in the spinor

representation. Under infinitesimal rotations, one finds (neglecting derivative
terms that arise from rotating the spatial dependence of the fields) that

δH (Q)
vr

= i
[
θ · (SQ + S�), H (Q)

vr

] = i

2

[
θ ·σ4×4, H (Q)

vr

]
, (2.30)

so that

δP (Q)
vr

= 0, δP∗(Q)
vr

= θ × P∗(Q)
vr

, (2.31)

which are the transformation rules for a spin-zero and spin-one particle, respec-
tively. The fields P (Q)

v and P∗(Q)
vμ mix under SQ or S� transformations. Under
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heavy quark spin transformations,

δH (Q)
vr

= i
[
θ · SQ, H (Q)

vr

] = i

2
θ ·σ4×4 H (Q)

vr
, (2.32)

so that

δP (Q)
vr

= − 1
2θ · P∗(Q)

vr
, δP∗(Q)

vr
= 1

2θ × P∗(Q)
vr

− 1
2θP (Q)

vr
. (2.33)

Under finite heavy quark spin transformations,

H (Q)
v → D(R)Q H (Q)

v , (2.34)

where D(R)Q is the rotation matrix in the spinor representation for the rotation
R. Like the Lorentz transformations, it satisfies γ 0 D(R)†Qγ 0 = D(R)−1

Q .
It is straightforward to write couplings that are invariant under the heavy quark

symmetry using the field H (Q)
v and its transformation rules. We have concentrated

on the heavy quark spin symmetry, because that is the new ingredient in the
formalism. One can also implement the heavy quark flavor symmetry by using
fields H (Qi )

v for each heavy quark flavor Qi , and also imposing heavy flavor
symmetry

H (Qi )
v → Ui j H

(Q j )
v , (2.35)

where Ui j is an arbitrary unitary matrix in flavor space.
We have seen how to use a covariant formalism for the pseudoscalar and vector

meson multiplet. It is straightforward to derive a similar formalism for baryon
states. For example the �Q baryon has light degrees of freedom with spin zero,
so the spin of the baryon is the spin of the heavy quark. It is described by a spinor
field �

(Q)
v (x) that satisfies the constraint

/v�(Q)
v = �(Q)

v , (2.36)

transforms under the Lorentz group as†

�(Q)
v (x) → D(�) �

(Q)
�−1v

(�−1x), (2.37)

and transforms under heavy quark spin transformations as

�(Q)
v → D(R)Q�(Q)

v . (2.38)

The analog of the polarization vector for spin-1/2 �Q states with velocity v and
spin s is the spinor u(v, s). These spinors will be normalized so that

ū(v, s)γ μu(v, s) = 2vμ. (2.39)

† We hope the reader is not confused by the use of � for both the Lorentz transformation and the heavy baryon
field.
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Then

ū(v, s)γ μγ5u(v, s) = 2sμ, (2.40)

where sμ is the spin vector, satisfying v · s = 0 and s2 = −1. The field �
(Q)
v

annihilates heavy baryon states with amplitude u(v, s).

2.6 The effective Lagrangian

The QCD Lagrangian does not have manifest heavy quark spin-flavor symmetry
as m Q → ∞. It is convenient to use an effective field theory for QCD in which
heavy quark symmetry is manifest in the m Q → ∞ limit. This effective field
theory is known as heavy quark effective theory (HQET), and it describes the
dynamics of hadrons containing a single heavy quark. It is a valid description of
the physics at momenta much smaller than the mass of the heavy quark m Q . The
effective field theory is constructed so that only inverse powers of m Q appear in
the effective Lagrangian, in contrast to the QCD Lagrangian in Eq. (1.82), which
has positive powers of m Q .

Consider a single heavy quark with velocity v interacting with external fields,
where the velocity of an on-shell quark is defined by p = m Qv. The momentum of
an off-shell quark can be written as p = m Qv + k, where the residual momentum
k determines the amount by which the quark is off shell because of its interactions.
For heavy quarks in a hadron, k is of the order of �QCD. The usual Dirac quark
propagator simplifies to

i
/p + m Q

p2 − m2
Q + iε

= i
m Q/v + m Q + k/

2m Qv · k + k2 + iε
→ i

1 + /v

2v · k + iε
(2.41)

in the heavy quark limit. The propagator contains a velocity-dependent projection
operator

1 + /v

2
. (2.42)

In the rest frame of the heavy quark this projection operator becomes (1+γ 0)/2,
which projects onto the particle components of the four-component Dirac spinor.

It is convenient to formulate the effective Lagrangian directly in terms of
velocity-dependent fields Qv(x), which are related to the original quark fields
Q(x) at tree level. One can write the original quark field Q(x) as

Q (x) = e−im Qv · x [Qv(x) + Qv(x)] , (2.43)

where

Qv(x) = eim Qv · x 1 + /v

2
Q(x) , Qv(x) = eim Qv · x 1 − /v

2
Q(x) . (2.44)
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The exponential prefactor subtracts m Qvμ from the heavy quark momentum. The
Qv field produces effects at leading order, whereas the effects of Qv are sup-
pressed by powers of 1/m Q . These 1/m Q corrections are discussed in Chapter 4.
Neglecting Qv and substituting Eq. (2.43) into the part of the QCD Lagrangian
density involving the heavy quark field, Q̄(i /D−m Q)Q gives Q̄vi /DQv. Inserting
(1 + /v)/2 on either side of /D yields

L = Q̄v (iv · D) Qv, (2.45)

which is an m Q-independent expression. The Qv propagator that follows from
Eq. (2.45) is (

1 + /v

2

)
i

(v · k + iε)
, (2.46)

which is the same as was derived previously by taking the m Q → ∞ limit of the
Feynman rules. The projector in Eq. (2.46) arises because Qv satisfies(

1 + /v

2

)
Qv = Qv. (2.47)

Beyond tree level, there is no simple connection between the fields Qv of
the effective Lagrangian and Q of the QCD theory. The effective theory is con-
structed by making sure that on-shell Green’s functions in the effective theory
are equal to those in QCD to a given order in 1/m Q and αs(m Q). At tree level,
we have seen that the quark propagator in the effective theory matches that in
the full theory up to terms of the order of 1/m Q . It remains to show that the
gluon interaction vertex is the same in the two theories. Consider a generic
gluon interaction, as shown in Fig. 2.4. The interaction vertex in the full theory
is −igT Aγ μ, whereas in the effective theory, the vertex is −igT Avμ from the
v · D term in Eq. (2.45). The vertex in the full theory is sandwiched between
quark propagators. Each heavy quark propagator is proportional to

(
1 + /v

)
/2,

so the factor of γ μ in the vertex can be replaced by

γ μ → 1 + /v

2
γ μ 1 + /v

2
= vμ 1 + /v

2
→ vμ, (2.48)

which gives the same vertex as in the effective theory. Thus the effective
Lagrangian in Eq. (2.45) reproduces all the Green’s functions in the full the-
ory to leading order in 1/m Q and αs(m Q). If there is more than one heavy quark

Fig. 2.4. The quark–gluon vertex.
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flavor, the effective Lagrangian at leading order in 1/m Q is

Leff =
Nh∑

i = 1

Q̄(i)
v (iv · D) Q(i)

v , (2.49)

where Nh is the number of heavy quark flavors and all the heavy quarks have the
same four-velocity v. The effective Lagrangian in Eq. (2.49) does not depend
on the masses or spins of the heavy quarks, and so has a manifest U(2Nh) spin-
flavor symmetry under which the 2Nh quark fields transform as the fundamental
2Nh-dimensional representation. There are only 2Nh independent components
in the Nh fields Q(i)

v , because the constraint in Eq. (2.47) eliminates two of the
four components in each Q(i)

v spinor field.

2.7 Normalization of states

The standard relativistic normalization for hadronic states is

〈H (p′)|H (p)〉 = 2Ep (2π )3 δ3(p − p′), (2.50)

where Ep =
√

|p|2 + m2
H . States with the normalization in Eq. (2.50) have mass

dimension −1. In HQET, hadron states are labeled by a four-velocity v and a
residual momentum k satisfying v · k = 0. These states are defined by using the
HQET Lagrangian in the m Q → ∞ limit. They differ from full QCD states by
1/m Q corrections and a normalization factor. The normalization convention in
HQET is

〈H (v′, k ′)|H (v, k)〉 = 2v0 δvv′ (2π )3 δ3(k − k′). (2.51)

Possible spin labels are suppressed in Eqs. (2.50) and (2.51). The split between
the four-velocity v and the residual momentum is somewhat arbitrary, and the
freedom to redefine v by an amount of order �QCD/m Q while changing k by
a corresponding amount of order �QCD is called reparameterization invariance.
We shall explore the consequences of this freedom in Chapter 4. In matrix
elements we shall usually take our initial and final hadron states that contain a
single heavy quark to have zero residual momentum and not show explicitly the
dependence of the state on the residual momentum; i.e., k will be dropped in the
labeling of states, |H (v)〉 ≡ |H (v, k = 0)〉. The advantage of the normalization
in Eq. (2.51) is that it has no dependence on the mass of the heavy quark. A
factor of m H has been removed in comparison with the standard relativistic
norm in Eq. (2.50). States normalized by using the HQET convention have mass
dimension −3/2.

In the remainder of the book, matrix elements in full QCD will be taken
between states normalized by using the usual relativistic convention and labeled
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by the momentum p, whereas matrix elements in HQET will be taken between
states normalized by using the HQET convention and labeled by their velocity
v. The two normalizations differ by a factor

√
m H ,

|H (p)〉 = √
m H [|H (v)〉 + O(1/m Q)]. (2.52)

Similarly Dirac spinors u(p, s) labeled by momentum are normalized to satisfy

ū(p, s)γ μu(p, s) = 2pμ, (2.53)

and those labeled by velocity to satisfy

ū(v, s)γ μu(v, s) = 2vμ. (2.54)

The spinors u(p, s) and u(v, s) differ by a factor of
√

m H

u(p, s) = √
m H u(v, s). (2.55)

2.8 Heavy meson decay constants

Heavy meson decay constants are one of the simplest quantities that can be
studied with HQET. The pseudoscalar meson decay constants for the B̄ and D
mesons are defined by‡

〈0|q̄γ μγ5 Q(0) |P(p)〉 = −i fP pμ, (2.56)

where fP has mass dimension one. Vector meson decay constants for the D∗
and B̄∗ mesons are defined by

〈0|q̄ γ μQ(0) |P∗(p, ε)〉 = fP∗ εμ, (2.57)

where εμ is the polarization vector of the meson. fP∗ has mass dimension two.
The vector and axial currents q̄γ μQ and q̄γ μγ5 Q can be written in terms of

HQET fields,

q̄ �μQ(0) = q̄ �μQv(0) , (2.58)

where �μ = γ μ or γ μγ5. There are αs(m Q) and 1/m Q corrections to this match-
ing condition, which will be discussed in Chapters 3 and 4, respectively.

The matrix elements required in the heavy quark effective theory are

〈0|q̄ �μQv(0) |H (v)〉, (2.59)

where |H (v)〉 denotes either the P or P∗ states with zero residual momentum,
normalized using Eq. (2.51). For these matrix elements, it is helpful to reexpress
the current q̄ �μQv in terms of the hadron field H (Q)

v of Eq. (2.19). The current

‡ The pion decay constant fπ defined with the normalization convention in Eq. (2.56) has a value of 131 MeV.
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q̄ �μQv is a Lorentz four vector that transforms as

q̄ �μQv → q̄ �μD(R)Q Qv (2.60)

under heavy quark spin transformations, where D(R)Q is the rotation matrix
for a heavy quark field. The representation of the current in terms of H (Q)

v

should transform in the same manner as Eq. (2.60) under heavy quark spin
transformations. This can be done by using a standard trick: (i) Pretend that
�μ transforms as �μ → �μD(R)−1

Q so that the current is an invariant. (ii) Write
down operators that are invariant when Qv → D(R)Q Qv, �μ → �μD(R)−1

Q ,
and H (Q)

v → D(R)Q H (Q)
v . (iii) Set �μ to its fixed value γ μ or γ μγ5 to obtain the

operator with the correct transformation properties.
The current must have a single H (Q)

v field, since the matrix element in Eq. (2.59)
contains a single initial-state heavy meson. The field H (Q)

v and �μ can only occur
as the product �μH (Q)

v for the current to be invariant under heavy quark spin
symmetry. For Lorentz covariance, the current must have the form

Tr X�μH (Q)
v , (2.61)

where X is a Lorentz bispinor. The only parameter that X can depend on is v, so
X must have the form a0(v2) + a1(v2)/v, by Lorentz covariance and parity. All
dependence on spin has already been included in the indices of the H field, so
X can have no dependence on the polarization of the P∗ meson. Since H (Q)

v /v =
−H (Q)

v and v2 = 1, one can write

q̄�μQv = a

2
Tr �μH (Q)

v , (2.62)

where a = [a0(1)−a1(1)] is an unknown normalization constant that is indepen-
dent of the mass of the heavy quark Q. Evaluating the trace explicitly gives

a ×
{

−ivμP (Q)
v if �μ = γ μγ5,

P∗(Q)
v

μ if �μ = γ μ,
(2.63)

where P (Q)
v and P∗(Q)

vμ are the pseudoscalar and vector fields that destroy the
corresponding hadrons. The resulting matrix elements are

〈0|q̄γ μγ5 Qv|P(v)〉 = −iavμ,
(2.64)〈0|q̄γ μQv|P∗(v)〉 = aεμ.

Comparing with the definitions of the meson decay constants Eqs. (2.56), (2.57),
and using pμ = m P (∗)vμ gives the relations

fP = a√
m P

, fP∗ = a
√

m P∗ . (2.65)
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Table 2.3. Heavy meson decay constants from a
lattice Monte Carlo simulationa

Decay Constant Value in MeV

fD 197 ± 2
fDs 224 ± 2
fB 173 ± 4
fBs 199 ± 3

a From the JLQCD Collaboration [S. Aoki et al., Phys. Rev.
Lett. 80 (1998), 5711]. Only the statistical errors are quoted.

The factors of
√

m P and
√

m P∗ are due to the difference between the normal-
izations of states in Eqs. (2.50) and (2.51). The P and P∗ masses are equal in
the heavy quark limit, so one can write the equivalent relations

fP = a√
m P

, fP∗ = m P fP , (2.66)

which imply that fP ∝ m−1/2
P and fP∗ ∝ m1/2

P . For the D and B system, one finds

fB

fD
=

√
m D

m B
, fD∗ = m D fD, fB∗ = m B fB . (2.67)

The decay constants for the pseudoscalar mesons can be measured by means of
the weak leptonic decays D → �̄ν� and B̄ → �ν̄�. The partial width is

� = G2
F |VQq |2

8π
f 2

Pm2
�m P

(
1 − m2

�

m2
P

)2

. (2.68)

The only heavy meson decay constant that has been measured is fDs , from the
decays D+

s → μ̄νμ and D+
s → τ̄ ντ . However, at the present time, the reported

values vary over a large range of ∼200–300 MeV. Values of the heavy meson
decay constants determined from a lattice Monte Carlo simulation of QCD are
shown in Table 2.3. Only statistical errors are quoted. Note that this simula-
tion suggests that there is a substantial correction to the heavy quark symmetry
prediction fB/ fD = √

m D/m B � 0.6.

2.9 B̄ → D(∗) form factors

The semileptonic decays of a B̄ meson to D and D∗ mesons allow one to deter-
mine the weak mixing angle Vcb. The semileptonic B̄ meson decay amplitude is
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determined by the matrix elements of the weak Hamiltonian:

HW = 4G F√
2

Vcb[c̄γμPLb][ēγ μPLνe]. (2.69)

Neglecting higher-order electroweak corrections, the matrix element factors into
the product of leptonic and hadronic matrix elements. The hadronic part is the ma-
trix element of the vector or axial vector currents V μ = c̄γ μb and Aμ = c̄γ μγ5b
between B̄ and D(∗) states.

It is convenient to write the most general possible matrix element in terms of
a few Lorentz invariant amplitudes called form factors. The most general vector
current matrix element for B̄ → D must transform as a Lorentz four vector.
The only four vectors in the problem are the momenta p and p′ of the initial
and final mesons, so the matrix element must have the form apμ + bp′μ. The
form factors a and b are Lorentz invariant functions that can only depend on
the invariants in the problem, p2, p′2 and p · p′. Two of the variables are fixed,
p2 = m2

B and p′2 = m2
D , and it is conventional to choose q2 = (p − p′)2 as the

only independent variable. A similar analysis can be carried out for the other
matrix elements. The amplitudes involving the D∗ are linear in its polarization
vector ε and can be simplified by noting that the polarization vector satisfies the
constraint p′ · ε = 0. The conventional choice of form factors allowed by parity
and time-reversal invariance is

〈D(p′)|V μ|B̄(p)〉 = f+(q2)(p + p′)μ + f−(q2)(p − p′)μ,

〈D∗(p′, ε)|V μ|B̄(p)〉 = g(q2)εμνατ ε∗
ν (p + p′)α(p − p′)τ ,

〈D∗(p′, ε)|Aμ|B̄(p)〉 = −i f (q2)ε∗μ

−iε∗ · p[a+(q2)(p + p′)μ + a−(q2)(p − p′)μ],

(2.70)

where q = p − p′, all the form factors are real, and the states have the usual
relativistic normalization.

Under parity and time reversal,

P|D(p)〉 = −|D(pP )〉,
P|D∗(p, ε)〉 = |D∗(pP , εP )〉,

T |D(p)〉 = −|D(pT )〉,
T |D∗(p, ε)〉 = |D∗(pT , εT )〉, (2.71)

which are the usual transformations for pseudoscalar and vector particles. Here
p = (p0, p), ε = (ε0, ε), and pP = pT = (p0, −p), εP = εT = (ε0, −ε). Analo-
gous equations hold for the B̄ and B̄∗. Parity and time-reversal invariance of
the strong interactions implies that the matrix elements of currents between two
states |ψ〉 and |χ〉 transform as

〈ψ |J 0|χ〉 = ηP〈ψP |J 0|χP〉,
〈ψ |J i |χ〉 = −ηP〈ψP |J i |χP〉,

〈ψ |J 0|χ〉∗ = ηT 〈ψT |J 0|χT 〉,
〈ψ |J i |χ〉∗ = −ηT 〈ψP |J i |χP〉,

(2.72)
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where ηP = 1, ηT = 1 if J is the vector current, ηP = −1, ηT = 1 if J is the
axial current, and |χP〉 ≡ P|χ〉, |χT 〉 ≡ T |χ〉, and so on. One can now show that
Eq. (2.70) is the most general form factor decomposition. Consider, for example,
〈D∗(p′, ε)|V μ|B̄(p)〉. Parity invariance requires that

〈D∗(p′, ε)|V 0|B̄(p)〉 = −〈D∗(p′
P , εP )|V 0|B̄(pP )〉. (2.73)

The only possible tensor combination that changes sign under parity is
ε0νατ ε∗

ν pα p′
τ , which is proportional to the right-hand side in Eq. (2.70). Time-

reversal invariance requires

〈D∗(p′, ε)|V 0|B̄(p)〉∗ = −〈D∗(p′
T , εT )|V 0|B̄(pT )〉, (2.74)

which implies that g(q2) is real. One can similarly work through the other two
cases. The factors of i in Eq. (2.70) depend on the phase convention for the
meson states. We have chosen to define the pseudoscalar state to be odd under
time reversal. Another choice used is i times this, which corresponds to a state
which is even under time reversal. This introduces a factor of i in the last two
matrix elements in Eq. (2.70).

It is straightforward to express the differential decay rates d�(B̄ → D(∗)eν̄e)/
dq2 in terms of the form factors f±, f, g, and a±. To a very good approximation,
the electron mass can be neglected, and consequently a− and f− do not contribute
to the differential decay rate. For B̄ → Deν̄e the invariant decay matrix element
is

M(B̄ → Deν̄e) =
√

2G F Vcb f+ (p+ p′)μ ū(pe)γμ PLv
(

pνe

)
. (2.75)

Squaring and summing over electron spins yields,

|M|2 =
∑
spins

|M(B̄ → Deν̄e)|2

= 2G2
F |Vcb|2| f+|2(p + p′)μ1 (p + p′)μ2Tr

[
/peγμ1/pνeγμ2 PL

]
. (2.76)

The differential decay rate is

d�

dq2
(B̄ → Deν̄e) = 1

2m B

∫
d3 p′

(2π )32p′0

∫
d3 pe

(2π )32p0
e

×
∫

d3 pνe

(2π )32p0
νe

|M|2(2π )4δ4(q − pe − pνe

)
δ[q2 − (p − p′)2], (2.77)

where q2 is the hadronic momentum transfer squared, or equivalently, the invari-
ant mass squared of the lepton pair. The integration measure is symmetric with
respect to electron and neutrino momenta, so the part of the trace in Eq. (2.76)
involving γ5 does not contribute. It would contribute to the electron spectrum
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d�(B̄ → Deν̄e)/dEe. The integration over electron and neutrino momenta gives∫
d3 pe

(2π )32p0
e

∫
d3 pνe

(2π )32p0
νe

Tr
[
/peγμ1/pνeγμ2

]
(2π )4δ4[q − (

pe + pνe

)]
= 1

6π

(
qμ1qμ2 − gμ1μ2q2). (2.78)

Finally, using

(p + p′)μ1 (p + p′)μ2
(
qμ1qμ2 − gμ1μ2q2)

= (
q2 − m2

B − m2
D

)2 − 4m2
Bm2

D, (2.79)

and the two-body phase space formula∫
d3 p′

(2π )32p′0 δ[q2 − (p − p′)2] = 1

16π2m2
B

√(
q2 − m2

B − m2
D

)2 − 4m2
Bm2

D,

(2.80)
the differential decay rate in Eq. (2.77) becomes

d�

dq2
(B̄ → Deν̄e) = G2

F |Vcb|2| f+|2
192π3m3

B

[(
q2−m2

B −m2
D

)2−4m2
Bm2

D

]3/2
. (2.81)

A similar but more complicated expression holds for d�(B̄ → D∗eν̄e)/dq2.
It is convenient, for comparing with the predictions of HQET, not to write the

B̄ → D(∗) matrix elements of the vector and axial vector current as in Eq. (2.70),
but rather to introduce new form factors that are linear combinations of f±, f ,
g, and a±. The four velocities of the B̄ and D(∗) mesons are vμ = pμ/m B and
v′μ = p′μ/m D(∗) , and the dot product of these four velocities, w = v ·v′, is related
to q2 by

w = v · v′ = [
m2

B + m2
D(∗) − q2]/[2m Bm D(∗) ]. (2.82)

The allowed kinematic range for w is

0 ≤ w − 1 ≤ [m B − m D(∗) ]2/[2m Bm D(∗) ]. (2.83)

The zero-recoil point, at which D(∗) is at rest in the B̄ rest frame, is w = 1. The
new form factors h±, hV , and h A j are expressed as functions of w instead of q2

and are defined by

〈D(p′)|V μ|B̄(p)〉√
m Bm D

= h+(w) (v + v′)μ + h−(w) (v − v′)μ,

〈D∗(p′, ε)|V μ|B̄(p)〉√
m Bm D∗

= hV (w)εμναβε∗
ν v′

αvβ, (2.84)

〈D∗(p′, ε)|Aμ|B̄(p)〉√
m Bm D∗

= −ih A1 (w)(w + 1)ε∗μ + ih A2 (w)(ε∗ · v)vμ

+ ih A3 (w) (ε∗ · v)v′μ.
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The differential decay rates d�(B̄ → D(∗)eν̄e)/dw in terms of these form factors
are

d�

dw
(B̄ → Deν̄e) = G2

F |Vcb|2m5
B

48π3
(w2 − 1)3/2r3(1 + r )2FD(w)2,

d�

dw
(B̄ → D∗eν̄e) = G2

F |Vcb|2m5
B

48π3
(w2 − 1)1/2(w + 1)2r∗3(1 − r∗)2

×
[

1 + 4w

w + 1

1 − 2wr∗ + r∗2

(1 − r∗)2

]
FD∗(w)2, (2.85)

where

r = m D

m B
, r∗ = m D∗

m B
, (2.86)

and

FD(w)2 =
[

h+ +
(

1 − r

1 + r

)
h−

]2

,

FD∗(w)2 =
{

2(1 − 2wr∗ + r∗2)

[
h2

A1
+

(
w − 1

w + 1

)
h2

V

]
(2.87)

+ [
(1 − r∗)h A1 + (w − 1)

(
h A1 − h A3 − r∗h A2

)]2

}

×
{

(1 − r∗)2 + 4w

w + 1
(1 − 2wr∗ + r∗2)

}−1

.

The spin-flavor symmetry of heavy quark effective theory can be used to derive
relations between the form factors h±, hV , and h A j . A transition to the heavy
quark effective theory is possible provided the typical momentum transfer to
the light degrees of freedom is small compared to the heavy quark masses. In
B̄ → D(∗)eν̄e semileptonic decay, q2 is not small compared with m2

c,b. However,
this variable does not determine the typical momentum transfer to the light
degrees of freedom. A rough measure of that is the momentum transfer that
must be given to the light degrees of freedom so that they recoil with the D(∗).
The light degrees of freedom in the initial and final hadrons have momentum
of order �QCDv and �QCDv′, respectively, since their velocity is fixed to be the
same as the heavy quark velocity. The momentum transfer for the light system
is then q2

light ∼ (�QCDv − �QCDv′)2 = 2�2
QCD(1 − w). Heavy quark symmetry

should hold, provided

2�2
QCD (w − 1) � m2

b,c. (2.88)

The heavy meson form factors are expected to vary on the scale q2
light ∼ �2

QCD,
i.e., on the scale w ∼ 1.
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The six form factors can be computed in terms of a single function using
heavy quark symmetry. The QCD matrix elements required are of the form
〈H (c)(p′)|c̄ �b|H (b)(p)〉, where � = γ μ, γ μγ5 and H (Q) is either P (Q) or P∗(Q).
At leading order in 1/mc,b and αs(mc,b), the current c̄ �b can be replaced by
the current c̄v′�bv involving heavy quark fields and the heavy mesons states
|H (Q)(p(′))〉 by the corresponding ones in HQET |H (Q)(v(′))〉. One can then use
a trick similar to that used for the meson decay constants: the current is invari-
ant under spin transformations on the cv′ and bv quark fields, provided that �

transforms as D(R)c�D(R)−1
b where D(R)c and D(R)b are the heavy quark

spin rotation matrices for c and b quarks, respectively. For the required matrix
elements one represents the current by operators that contain one factor each of
H̄ (c)

v′ and H (b)
v , so that a meson containing a b quark is converted to one containing

a c quark. Invariance under the b and c quark spin symmetries requires that the
operators should be of the form H̄ (c)

v′ �H (b)
v , so that the factors of D(R)b,c cancel

between the � matrix and the H fields. Lorentz covariance then requires that

c̄v′�bv = Tr X H̄ (c)
v′ �H (b)

v , (2.89)

where X is the most general possible bispinor that one can construct using the
available variables, v and v′. The most general form for X with the correct parity
and time-reversal properties is

X = X0 + X1/v + X2/v
′ + X3/v/v

′, (2.90)

where the coefficients are functions of w = v · v′. Other allowed terms can all
be written as linear combinations of the Xi . For example, /v′/v = 2w − /v/v′, and
so on. The relations /vH (b)

v = H (b)
v and /v′ H̄ (c)

v′ = −H̄ (c)
v′ imply that all the terms in

Eq. (2.90) are proportional to the first, so one can write

c̄v′� bv = −ξ (w)Tr H̄ (c)
v′ �H (b)

v , (2.91)

where the coefficient is conventionally written as −ξ (w). Evaluating the trace
in Eq. (2.91) gives the required HQET matrix elements

〈D(v′)|c̄v′ γμ bv|B̄(v)〉 = ξ (w) [vμ + v′
μ],

〈D∗(v′, ε)|c̄v′γμγ5bv|B̄(v)〉 = −iξ (w) [(1 + w)ε∗
μ − (ε∗ · v)v′

μ], (2.92)

〈D∗(v′, ε)|c̄v′γμbv|B̄(v)〉 = ξ (w) εμναβε∗νv′αvβ.

Equations (2.92) are the implications of heavy quark spin symmetry for the
B̄ → D(∗) matrix elements of the axial vector and vector currents. The function
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ξ (w) is independent of the charm and bottom quark masses. Heavy quark flavor
symmetry implies the normalization condition

ξ (1) = 1. (2.93)

To derive this result, consider the forward matrix element of the vector current
b̄γ μb between B̄ meson states. To leading order in 1/mb, the operator b̄γ μb can
be replaced by b̄vγμbv. The forward matrix element can then be obtained from
Eq. (2.92) by setting v′ = v, and letting c → b, D → B̄,

〈B̄(p)|b̄γμb|B̄(p)〉
m B

= 〈B̄(v)|b̄vγμbv|B̄(v)〉 = 2 ξ (w = 1) vμ. (2.94)

Note that ξ (w) is independent of the quark masses, and so has the same value
in Eqs. (2.92) and (2.94). Equivalently, heavy quark flavor symmetry allows one
to replace D by B̄ in Eq. (2.92). The left-hand side of Eq. (2.94) with μ = 0 is
the matrix element of b-quark number between B̄ mesons, and so has the value
2v0. This implies that ξ (1) = 1.

Functions of w = v · v′ like ξ occur often in the analysis of matrix elements
and are called Isgur-Wise functions. Eq. (2.92) predicts relations between the
form factors in Eqs. (2.84):

h+(w) = hV (w) = h A1 (w) = h A3 (w) = ξ (w),
(2.95)

h−(w) = h A2 (w) = 0.

This equation implies that

FD(w) = FD∗(w) = ξ (w). (2.96)

There is experimental support for the utility of the mc,b → ∞ limit for describing
B̄ → D(∗)eν̄e decays. Figure 2.5 shows a plot of the ratio FD∗(w)/FD(w) as a

Fig. 2.5. The measured ratio FD∗ (w)/FD(w) as a function of w. The data are from the
ALEPH Collaboration [D. Buskulic et al., Phys. Lett. B395 (1997) 373].
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function of w using data from the ALEPH collaboration. It shows that FD∗(w)
is indeed near FD(w). Note that the experimental errors become large as w

approaches unity. This is partly because the differential rates d�/dw vanish at
w = 1. In addition to comparing the D and D∗ decay rates, there is experimental
information on the individual form factors in B̄ → D∗eν̄e decay. It is convenient
to define two ratios of these form factors:

R1 = hV

h A1

, R2 = h A3 + rh A2

h A1

. (2.97)

In the mc,b → ∞ limit, heavy quark spin symmetry implies that R1 = R2 = 1.
Assuming the form factors h j have the same shape in w, the CLEO collaboration
has obtained the experimental values [J. E. Duboscq et al., Phys. Rev. Lett. 76
(1996) 3898]

R1 = 1.18 ± 0.3, R2 = 0.71 ± 0.2. (2.98)

There is a simple physical reason why a single Isgur-Wise function is needed
for the matrix elements in Eq. (2.92). In the mc,b → ∞ limit, the spin of the
light degrees of freedom is a good quantum number. Since c̄v′�bv does not act
on the light degrees of freedom, their helicity, h�, is conserved in the transitions
it mediates. For B̄ → D(∗) matrix elements, there are two helicity amplitudes
corresponding to h� = 1/2 and h� = −1/2. However, they must be equal by parity
invariance and therefore there is only one Isgur-Wise function. There are cases
when more than one Isgur-Wise function occurs. For example, in �b → �

(∗)
c eν̄e

decay, the initial and final hadrons have s� = 1. Thus there are two independent
helicity amplitudes h� = 0 and h� = ± 1, and consequently, two Isgur-Wise
functions occur (see Problem 10).

2.10 Λc →Λ form factors

Another interesting application of heavy quark symmetry is to the weak decay
�c → �ēνe. This decay is an example of a heavy → light transition, in which a
heavy quark decays to a light quark. The most general weak decay form factors
can be written in the form

〈�(p′, s ′)|s̄γ μc|�c(p, s)〉 = ū(p′, s ′)[ f1γ
μ + i f2σ

μνqν + f3qμ]u(p, s) ,

〈�(p′, s ′)|s̄γ μγ5c|�c(p, s)〉 = ū(p′, s ′)[g1γ
μ + ig2σ

μνqν + g3qμ]γ5u (p, s) ,

(2.99)

where q = p− p′ and σμν = i[γμ, γν]/2. The form factors fi and gi are functions
of q2. Heavy quark spin symmetry on the c-quark constrains the general form
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factor decomposition in Eq. (2.99). Making the transition to HQET, one can
write the left-hand side of Eq. (2.99) as

〈�(p′, s ′)|s̄ �cv|�c(v, s)〉, (2.100)

where s̄�c → s̄�cv at leading order in 1/mc. The matrix element in Eq. (2.100)
has the same form factor expansion as Eq. (2.99) with u(p, s) → u(v, s). The√

m�c difference between Eqs. (2.99) and (2.100) in the normalization of states is
compensated by the same factor in the normalization of spinors. The most general
form for the matrix element in Eq. (2.100) consistent with spin symmetry on the
c quark is

〈�(p′, s ′)|s̄�cv|�c(v, s)〉 = ū(p′, s ′)X�u(v, s) , (2.101)

where X is the most general bispinor that can be constructed out of p′ and v.
Note that s and s ′ cannot be used, because the fermion spin is encoded in the
matrix indices of the spinors. The decomposition of X is

X = F1 + F2v/, (2.102)

where Fi are functions of v · p′, and we have used the constraints

/vu(v, s) = u(v, s) , /p′u(p′, s ′) = m�u(p′, s ′) (2.103)

to reduce the number of independent terms. Substituting Eq. (2.102) into
Eq. (2.101) and comparing with Eq. (2.99) gives the relations

f1 = g1 = F1 + m�

m�c

F2,

(2.104)
f2 = f3 = g2 = g3 = 1

m�c

F2,

so that the six form factors fi , gi can be written in terms of two functions F1,2. The
heavy → light form factors F1,2 are expected to vary on the scale v · p′ ∼ �QCD.

These relations between form factors have implications for the polarization
of the �’s produced in �c decay. Equation (2.104) implies that in the mc → ∞
limit, the polarization variable

α = − 2 f1g1

f 2
1 + g2

1

∣∣∣∣
q2=0

(2.105)

is equal to −1. The CLEO Collaboration [G. Crawford et al., Phys. Rev. Lett. 75
(1995) 624] finds that, averaged over all q2, α = −0.82 ± 0.10 consistent with
expectations based on charm quark spin symmetry.
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2.11 Λb →Λc form factors

The semileptonic weak decay �b → �ceν̄e form factors are even more con-
strained by heavy quark symmetry than the �c → �ēνe form factors discussed
above, because one can use heavy quark symmetry on both the initial and final
baryons. The most general weak decay form factors for �b → �c decay are
conventionally written as

〈�c(p′, s ′)|c̄γ μb|�b(p, s)〉 = ū(p′, s ′)[ f1γ
μ + f2v

μ + f3v
′μ]u(p, s),

〈�c(p′, s ′)|c̄γ μγ5b|�b(p, s)〉 = ū(p′, s ′)[g1γ
μ + g2v

μ + g3v
′μ]γ5u(p, s),

(2.106)

where fi and gi are functions of w. We have taken the general decomposition
from Eq. (2.99) and rewritten qμ and σμνqν in terms of γ μ, vμ and v′μ. Making
the transition to HQET, the matrix element

〈�c(v′, s ′)|c̄v′ � bv|�b(v, s)〉 = ζ (w)ū(v′, s ′)�u(v, s) (2.107)

by heavy quark spin symmetry on the b and c quark fields. Thus we obtain

f1(w) = g1(w) = ζ (w), f2 = f3 = g2 = g3 = 0. (2.108)

The six form factors can be written in terms of the single Isgur-Wise function
ζ (w). As in the meson case

ζ (1) = 1, (2.109)

since the form factor of b̄γ μb for �b → �b transitions at w = 1 is b-quark
number. The heavy → heavy relations in Eq. (2.108) are a special case of the
heavy → light relations in Eq. (2.104), with the additional restrictions F2 = 0
and F1(v · v′ = 1) = 1.

2.12 Problems

1. In the m Q → ∞ limit, show that the propagator for a heavy antiquark with momentum
pQ̄ = m Qv + k is

i

v · k + iε

(
1 − /v

2

)
,

while the heavy antiquark–gluon vertex is

ig(T A)T vμ.

2. Compare the theoretical expectation for the ratio �(D1 → D∗π )/�(D∗
2 → D∗π ) with its

experimental value. Discuss your result.
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3. Consider the following heavy-light matrix elements of the vector and axial vector currents

〈V (p′, ε)|q̄γμγ5 Q|P (Q)(p)〉 = −i f (Q)ε∗
μ − iε∗ · p

[
a(Q)

+ (p + p′)μ + a(Q)
− (p − p′)μ

]
,

〈V (p′, ε)|q̄γμ Q|P (Q)(p)〉 = g(Q)εμνλσ ε∗ν(p + p′)λ(p − p′)σ ,

where p = m P(Q)v. The form factors f (Q), a(Q)
± and g(Q) are functions of y = v · p′. V is a

low-lying vector meson, i.e., either a ρ or K ∗ depending on the light quark flavor quantum
numbers of q and P (Q). Show that in the mb,c → ∞ limit

f (b)(y) = (mb/mc)1/2 f (c)(y),

g(b)(y) = (mc/mb)1/2g(c)(y),

a(b)
+ (y) + a(b)

− (y) = (mc/mb)3/2
[
a(c)

+ (y) + a(c)
− (y)

]
,

a(b)
+ (y) − a(b)

− (y) = (mc/mb)1/2
[
a(c)

+ (y) − a(c)
− (y)

]
.

Discuss how these results may be used to determine Vub from data on the semileptonic decays
B → ρeν̄e and D → ρēνe.

4. Consider the matrix element

〈V (p′, ε)|q̄σμν Q|P (Q)(p)〉 = −ig(Q)
+ εμνλσ ε∗λ(p + p′)σ − ig(Q)

− εμνλσ ε∗λ(p − p′)σ

− ih(Q)εμνλσ (p + p′)λ(p − p′)σ (ε∗ · p).

Show that in the m Q → ∞ limit the form factors g(Q)
± and h(Q) are related to those in Problem 3

by

g(Q)
+ − g(Q)

− = −m Q g(Q),

g(Q)
+ + g(Q)

− = f (Q)/2m Q + p · p′

m Q
g(Q),

h(Q) = − g(Q)

m Q
+ a(Q)

+ − a(Q)
−

2m Q
.

5. Verify the expressions for the P → �ν̄e, B̄ → Deν̄e, and B̄ → D∗eν̄e decay rates given in the
text.

6. The fields D∗μν

2 and Dμ

1 destroy the spin-two and spin-one members of the excited doublet
of charmed mesons with s� = 3/2 and positive parity. Show that

Fμ
v = (1 + /v)

2

{
D∗μν

2 γν −
√

3

2
Dν

1γ5

[
gμ

ν − 1

3
γν(γ μ − vμ)

]}
,

satisfies

/vFμ
v = Fμ

v , Fμ
v /v = −Fμ

v , Fμ
v γμ = Fμ

v vμ = 0,

and that under heavy charm quark spin transformations

Fμ
v → D(R)c Fμ

v .
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7. Use Lorentz, parity, and time-reversal invariance to argue that the form factor decompositions
of matrix elements of the weak vector and axial vector b → c currents are

〈D1(p′, ε)|V μ|B̄(p)〉√
m Bm D1

= −i fV1ε
∗μ − i

(
fV2v

μ + fV3v
′μ)(ε∗ · v),

〈D1(p′, ε)|Aμ|B̄(p)〉√
m Bm D1

= f Aεμαβγ ε∗
αvβv′

γ ,

〈D∗
2 (p′, ε)|Aμ|B̄(p)〉

√m Bm D∗
2

= −ikA1ε
∗μαvα + (

kA2v
μ + kA3v

′μ)ε∗
αβvαvβ,

〈D∗
2 (p′, ε)|V μ|B̄(p)〉

√m Bm D∗
2

= kV εμαβγ ε∗
ασ vσ vβv′

γ ,

where v′ is the four velocity of the final charmed meson and v the four velocity of the B̄
meson. Note that the D1 polarization vector is denoted by εα while the D∗

2 polarization tensor
is denoted by εαβ .

8. Show that

d�

dw
(B̄ → D1eν̄e) = G2

F |Vcb|2m5
B

48π 3
r 3

1

√
w2 − 1

{[
(w − r1) fV1 + (w2 − 1)

(
fV3 + r1 fV2

)]2

+ 2
(
1 − 2r1w + r 2

1

)[
f 2

V1
+ (w2 − 1) f 2

A

]}
,

d�

dw
(B̄ → D∗

2 eν̄e) = G2
F |Vcb|2m5

B

48π 3
r 3

2 (w2 − 1)3/2

{
2

3

[
(w − r2)kA1

+ (w2 − 1)
(
kA3 + r2kA2

)]2 + [
1 − 2r2w + r 2

2

][
k2

A1
+ (w2 − 1)k2

V

]}
,

where the form factors, which are functions of w = v . v′, are defined in problem 7.

9. Argue that for B → D1 and B → D∗
2 matrix elements, heavy quark spin symmetry implies

that one can use

c̄v′�bv = τ (w)Tr
{
vσ F̄σ

v′ �H (b)
v

}
,

where τ (w) is a function of w, and Fμ
v was defined in Problem 6. Deduce the following

expressions for the form factors

√
6 f A = −(w + 1)τ,√

6 fV1 = −(1 − w2)τ,√
6 fV2 = −3τ,√
6 fV3 = (w − 2)τ,

kV = −τ,

kA1 = −(1 + w)τ,
kA2 = 0,

kA3 = 0.

Only the form factor fV1 can contribute to the weak matrix elements at zero recoil, w = 1.
Notice that fV1 (1) = 0 for any value of τ (1). Is there a normalization condition on τ (1) from
heavy quark flavor symmetry?

10. The ground-state baryons with two strange quarks and a heavy quark decay weakly, �b →
�(∗)

c eν̄e. They occur in a s� = 1 doublet, and the spin-1/2 and spin-3/2 members are denoted
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by �Q and �∗
Q respectively. Show that the field

S(Q)
vμ =

[
1√
3

(γμ + vμ)γ5�
(Q)
v + �∗(Q)

vμ

]

transforms under heavy quark spin symmetry as

S(Q)
vμ → D(R)Q S(Q)

vμ .

Here �(Q)
v is a spin-1/2 field that destroys a �Q state with amplitude u(v, s) and �∗(Q)

vμ is
a spin-3/2 field that destroys a �∗

Q state with amplitude uμ(v, s). Here uμ(v, s) is a Rarita-
Schwinger spinor that satisfies /vuμ(v, s) = uμ(v, s), vμuμ(v, s) = γ μuμ(v, s) = 0. Argue
that for �Q → �

(∗)
Q matrix elements heavy quark symmetry implies that

c̄v′�bv = TrS̄(c)
v′μ�S(b)

vν [−gμνλ1(w) + vμv′νλ2(w)].

Show that heavy quark flavor symmetry requires the normalization condition

λ1(1) = 1

at zero recoil.
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3
Radiative corrections

The previous chapter derived some simple consequences of heavy quark sym-
metry ignoring 1/m Q and radiative corrections. This chapter discusses how ra-
diative corrections can be systematically included in HQET computations. The
two main issues are the computation of radiative corrections in the matching
between QCD and HQET, and the renormalization of operators in the effective
theory. The renormalization of the effective theory is considered first, because
it is necessary to understand this before computing corrections to the matching
conditions. The 1/m Q corrections will be discussed in the next chapter.

3.1 Renormalization in HQET

The fields and the coupling in the HQET Lagrange density Eq. (2.49) are actually
bare quantities,

Leff = iQ̄(0)
v vμ

[
∂μ + ig(0) A(0)

μ

]
Q(0)

v , (3.1)

where the superscript (0) denotes bare quantities. It is convenient to define renor-
malized fields that have finite Green’s functions. The renormalized heavy quark
field is related to the bare one by wave-function renormalization,

Qv = 1√
Zh

Q(0)
v . (3.2)

The coupling constant g(0) and the gauge field A(0)
μ are also related to the renor-

malized coupling and gauge field by multiplicative renormalization. In the back-
ground field gauge, g Aμ is not renormalized, so g(0) A(0)

μ = gμε/2 Aμ, where
n = 4 − ε is the dimension of space–time.

In terms of renormalized quantities, the HQET Lagrangian becomes

Leff = iZh Q̄vv
μ
(
∂μ + igμε/2 Aμ

)
Qv

= iQ̄vv
μ
(
∂μ + igμε/2 Aμ

)
Qv + counterterms. (3.3)

77
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Fig. 3.1. Heavy quark loop graph, which vanishes in the effective theory. Heavy quark
propagators are denoted by a double line.

Equation (3.3) has been written in n = 4−ε dimensions, with μ the dimensionful
scale parameter of dimensional regularization.

Heavy quarks do not effect the renormalization constants for light quark fields
Zq , the gluon field Z A, and the strong coupling Zg, because heavy quark loops
vanish in the effective theory. That loops do not occur is evident from the propa-
gator in Eq. (2.41). In the rest frame v = vr the propagator i/(k · v + iε) has one
pole below the real axis at k0 = −iε. A closed heavy quark loop graph such as
in Fig. 3.1 involves an integration over the loop momentum k. The heavy quark
propagators in the loop both have poles below the real axis, so the k0 integral
can be closed in the upper half-plane, giving zero for the loop integral. The
HQET field Qv annihilates a heavy quark but does not create the corresponding
antiquark.

In the full theory of QCD, the light quark wave-function renormalization
Zq is independent of the quark mass in the MS scheme. A heavy quark with
mass m Q contributes to the QCD β function even for μ � m Q . At first glance,
this would imply that heavy particle effects do not decouple at low energies.
This nondecoupling is an artifact of the MS scheme. The finite parts of loop
graphs have a logarithmic dependence on the quark mass and become large as
μ � m Q . One can show that the logarithmic dependence of the finite parts exactly
cancels the logarithmic heavy quark contribution to the renormalization group
equation, so that the total heavy quark contribution vanishes as μ � m Q . This
cancellation can be made manifest in the zero heavy quark sector by constructing
an effective theory for μ < m Q in which the heavy quark has been integrated out.
Such effective theories were considered in Sec. 1.5 of Chapter 1. Similarly, in
HQET, one matches at μ = m Q to a new theory in which the Dirac propagator
for the heavy quark is replaced by the HQET propagator Eq. (2.41). This changes
the renormalization scheme for the heavy quarks, so that Zh for the heavy quark
differs from Zq for the light quarks.

Zh can be computed by studying the one-loop correction to the heavy quark
propagator in Fig. 3.2. In the Feynman gauge, the graph is∫

dnq

(2π )n

( − igT Aμε/2)vλ

i

(q + p) · v

( − igT Aμε/2)vλ (−i)

q2

= −
(

4

3

)
g2με

∫
dnq

(2π )n

1

q2 v · (q + p)
, (3.4)



3.1 Renormalization in HQET 79

Fig. 3.2. Gluon interaction with a heavy quark.

where p is the external residual momentum, q is the loop momentum, and we
have used the identity T AT A = (4/3)11 for the 3 of SU(3). The one-loop wave-
function renormalization is given by the ultraviolet divergent part of Eq. (3.4).
If one expands in v · p, Eq. (3.4) is also infrared divergent, and it is convenient
to regulate the infrared divergence by giving the gluon a mass m that will be
set to zero at the end of the computation. This infrared regulator allows one to
isolate the ultraviolet divergence by computing the 1/ε term in the integral. The
regulated integral that has to be evaluated is

−
(

4

3

)
g2με

∫
dnq

(2π )n

1

(q2 − m2)[v · (q + p)]
, (3.5)

where m is the gluon mass. The integral Eq. (3.5) will be computed in detail,
since it provides an example of some standard tricks that are useful in computing
loop graphs in HQET. The denominators can be combined by using the identity

1

arbs = 2s �(r + s)

�(r )�(s)

∫ ∞

0
dλ

λs−1

(a + 2bλ)r + s
, (3.6)

so that Eq. (3.5) can be rewritten as

−
(

8

3

)
g2με

∫ ∞

0
dλ

∫
dnq

(2π )n

1

[q2 − m2 + 2λv · (q + p)]2
. (3.7)

Shifting the loop integration momentum by q → q − λv gives

−
(

8

3

)
g2με

∫ ∞

0
dλ

∫
dnq

(2π )n

1

(q2 − m2 − λ2 + 2λv · p)2
. (3.8)

Evaluating Eq. (3.8) using the standard dimensional regularization formula in
Eq. (1.44) gives

−
(

8

3

)
g2με

∫ ∞

0
dλ

i

(4π )2−ε/2
�(ε/2)[λ2 − 2λv · p + m2]−ε/2. (3.9)

The λ integral can be evaluated by using the recursion relation,

I (a, b, c) ≡
∫ ∞

0
dλ(λ2 + 2bλ + c)a

= 1

1 + 2a

[
(λ2 + 2bλ + c)a(λ + b)|∞0 + 2a(c − b2)I (a − 1, b, c)

]
,

(3.10)
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to convert it to one that is convergent when ε = 0,∫ ∞

0
dλ[λ2 − 2λv · p + m2]−ε/2

= 1

1 − ε

{
(λ2 − 2λv · p + m2)−ε/2(λ − v · p)

∣∣∞
0

− ε
[
m2 − (v · p)2] ∫ ∞

0
dλ(λ2 − 2λv · p + m2)−1−ε/2

}
. (3.11)

The � functions in a one-loop dimensionally regularized integral can have at
most a 1/ε singularity. Since the last term in Eq. (3.11) is multiplied by ε, one
can set ε = 0 in the integrand. The other terms can be evaluated by noting that
in dimensional regularization,

lim
λ→∞

λz = 0, (3.12)

as long as z depends on ε in a way that allows one to analytically continue z to
negative values. This gives for Eq. (3.9)

− i
g2

6π2
(4πμ2)ε/2�(ε/2)

1

1 − ε

{
(m2)−ε/2 (v · p)

− ε
[
m2 − (v · p)2] ∫ ∞

0
dλ(λ2 − 2λv · p + m2)−1

}

= −i
g2

3π2ε
v · p + finite. (3.13)

There is also a tree-level contribution from the counterterm:

iv · p(Zh − 1). (3.14)

The sum of Eqs. (3.14) and (3.13) must be finite as ε → 0, so in the MS scheme

Zh = 1 + g2

3π2ε
. (3.15)

Note that Zh is different from the wave-function renormalization of light quark
fields given in Eq. (1.86). The anomalous dimension of a heavy quark field is

γh = 1

2

μ

Zh

d Zh

dμ
= − g2

6π2
. (3.16)

Composite operators require additional subtractions beyond wave-function
renormalization. Consider the heavy-light bare operator

O (0)
� = q̄ (0)�Q(0)

v = √
Zq Zh q̄�Qv, (3.17)
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Fig. 3.3. One-loop renormalization of the heavy-light operator q̄�Qv . The heavy quark
is denoted by a double line, the light quark by a single line, and the operator insertion
by ⊗.

where � is any Dirac matrix. The renormalized operator is defined by

O� = 1

Z O
O (0)

� =
√

Zq Zh

Z O
q̄�Qv

= q̄�Qv + counterterms, (3.18)

where the additional operator renormalization Z O can be determined by com-
puting a Green’s function with an insertion of O�. For example, Z O can be de-
termined by considering the one-particle irreducible Green’s function of q, Q̄v,
and O�. The counterterm in Eq. (3.18) contributes(√

Zq Zh

Z O
− 1

)
� (3.19)

to this time-ordered product. The one-loop diagram in Fig. 3.3 also gives a
divergent contribution to the time-ordered product. Neglecting external momenta
(the operator O� contains no derivatives) and using the Feynman gauge, the
diagram gives∫

dnq

(2π )n

(−igμε/2T A)γ λ i/q

q2
�

i

v · q

(−igμε/2T A)vλ

(−i)

q2

= −i
4

3
g2με

∫
dnq

(2π )n

/v/q�

q4v · q
. (3.20)

Combining denominators using Eq. (3.6), introducing a gluon mass m to regulate
the infrared divergence, and making the change of variables q → q − λv gives

−i
16

3
g2με

∫
dλ

∫
dnq

(2π )n

/v(/q − λ/v)�

(q2 − λ2 − m2)3
. (3.21)

The term proportional to /q is odd in q, and it vanishes on integration. The identity
/v/v = 1 reduces the remaining integral to be the same as i/2 times the derivative
of Eq. (3.8) with respect to v · p at v · p = 0. Consequently, Fig. 3.3 yields

g2�

6π2ε
, (3.22)

up to terms that are not divergent as ε → 0. The sum of Eqs. (3.19) and (3.22)
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must be finite as ε → 0. Using the expressions for
√

Zh and
√

Zq in Eqs. (3.15)
and (1.86) gives

Z O = 1 + g2

4π2ε
, (3.23)

and the anomalous dimension is

γO = − g2

4π2
. (3.24)

Note that the renormalization of O� is independent of the gamma matrix � in the
operator. This is a consequence of heavy quark spin symmetry and light quark
chiral symmetry, and it is very different from what occurs in the full theory of
QCD. For example, in the full theory the operator q̄i q j requires renormalization
whereas the operator q̄iγμq j does not.

As a final example of operator renormalization, consider a composite operator
with two heavy quark fields with velocity v and v′,

T (0)
� = Q̄(0)

v′ �Q(0)
v = Zh Q̄v′�Qv. (3.25)

The renormalized operator is related to the bare one by means of

T� = 1

ZT
T (0)

�

= Zh

ZT
Q̄v′�Qv = Q̄v′�Qv + counterterms. (3.26)

One can always choose a frame where v = vr or where v′ = vr , but it is not
possible, in general, to go to a frame where both heavy quarks are at rest. Hence T�

depends on w = v ·v′ and we anticipate that its renormalization will also depend
on this variable. Heavy quark spin symmetry implies that the renormalization
of T� will be independent of �. The operator renormalization factor ZT can be
determined from the time-ordered product of Qv′, Q̄v and T�. The counterterm
gives the contribution (

Zh

ZT
− 1

)
�, (3.27)

and the one-loop Feynman diagram in Fig. 3.4 gives (neglecting external

Fig. 3.4. One-loop renormalization of the heavy-heavy operator Q̄v′�Qv . The heavy
quark is denoted by a double line and the operator insertion by ⊗.
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momenta) the contribution∫
dnq

(2π )n

(−igT Aμε/2)v′
λ

(−igT Aμε/2)vλ i

v′ · q
�

i

v · q

(−i)

q2

= −ig2με

(
4

3

)
w

∫
dnq

(2π )n

�

q2(q · v)(q · v′)
(3.28)

to this three-point function. Using the Feynman trick to first combine the q · v
and q · v′ terms, and then using Eq. (3.6), gives

−ig2
(

32

3

)
με�w

∫ ∞

0
dλ

∫ 1

0
dx

×
∫

dnq

(2π )n

λ

{q2 + 2λ[xv + (1 − x)v′] · q − m2}3
, (3.29)

where m has been introduced to regulate the infrared divergence. Performing
the q integration by completing the square in the denominator, shifting the q
integration and dropping finite terms gives

− g2

3π2
μεw�

∫ ∞

0
dλ

∫ 1

0
dx

λ

{λ2[1 + 2x(1 − x)(w − 1)] + m2}1 + ε/2
, (3.30)

where w = v · v′. The λ integral can be evaluated explicitly to give

−16

3

g2

16π2ε
w�(m2)−ε/2

∫ 1

0
dx

1

[1 + 2x (1 − x) (w − 1)]
. (3.31)

Performing the x integral yields for the part proportional to 1/ε,

−
(

16

3

)
g2

16π2ε
w r (w) �, (3.32)

where

r (w) = 1√
w2 − 1

ln
(
w +

√
w2 − 1

)
, (3.33)

Demanding that the sum of Eq. (3.27) and Eq. (3.32) be finite as ε → 0 de-
termines the operator renormalization factor ZT . Using Eq. (3.15) we find that

ZT = 1 − g2

3π2ε
[w r (w) − 1], (3.34)

and the operator anomalous dimension is

γT = g2

3π2
[w r (w) − 1]. (3.35)

Note that the renormalization of T� = Q̄v′�Qv depends on the dot product of
four velocities w = v ·v′. This is reasonable since Qv is a different field for each
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value of the four-velocity. At the zero-recoil point w = 1 the operator Q̄vγμQv

is a conserved current associated with heavy quark flavor symmetry and hence is
not renormalized. The anomalous dimension γT near w = 1 has the expansion

γT = g2

π2

[
2

9
(w − 1) − 1

15
(w − 1)2 + · · ·

]
, (3.36)

and vanishes at w = 1.

3.2 Matching between QCD and HQET

The computation of physical quantities in QCD using HQET requires relating
QCD operators to HQET operators, which is referred to as “matching.” Consider
the QCD vector current operator,

Vν = q̄γν Q, (3.37)

involving a heavy quark field Q and a light quark field q. Matrix elements
of this operator are important for semileptonic decays such as B̄ → πeν̄e and
D → π ēνe. In QCD this operator is not renormalized, since it is conserved in
the limit that the (heavy and light) quark masses vanish. Quark mass terms are
dimension-three operators, and therefore do not affect anomalous dimensions.
Matrix elements of the full QCD vector current between physical states contain
large logarithms of the quark mass m Q divided by a typical hadronic momentum,
which is of the order of �QCD. These logarithms can be resummed using HQET.
In HQET, matrix elements of operators renormalized at μ can only contain
logarithms of �QCD/μ. There are no logarithms of m Q/μ, since HQET makes
no reference to the large-momentum scale m Q . The logarithms of m Q/μ are
obtained by scaling the HQET operators between m Q and μ, using the anomalous
dimensions computed in the previous section.

The first step in computing matrix elements of Vν is to relate the QCD operator
to HQET operators. One can do this by computing matrix elements of the QCD
operator between quarks at a scale μ, and comparing this with matrix elements
of HQET operators renormalized at the same scale. Both calculations are done in
perturbation theory, and are in general infrared divergent. However, the matching
conditions depend on the difference between the computations in QCD and
HQET. Since HQET is constructed to reproduce the low-momentum dynamics
of QCD, the infrared divergences cancel in the matching conditions. One can
therefore compute the matching conditions by using any convenient infrared
regulator. It is crucial that the matching conditions do not depend on infrared
effects; otherwise they would depend on the nonperturbative scale �QCD, and
they would not be computable by using perturbation theory. Two common ways
to regulate infrared divergences are to use a gluon mass and to use dimensional
regularization. In this chapter, we will use dimensional regularization. If the scale
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μ is chosen to be of the order of the heavy quark mass m Q , the computation of the
matching between the full and effective theories will be an expansion in αs(μ),
with no large logarithms. For the specific example of the heavy → light vector
current, this expansion takes the form

V λ = C (V )
1

[
m Q

μ
, αs(μ)

]
q̄γ λQv + C (V )

2

[
m Q

μ
, αs(μ)

]
q̄vλQv. (3.38)

The right-hand side of Eq. (3.38) includes all dimension-three operators with
the same quantum numbers as the vector current V λ. Higher dimension op-
erators are suppressed by powers of 1/m Q . They can also be computed in a
systematic expansion to determine the 1/m Q corrections, as will be discussed in
Chapter 4. Other dimension-three operators can be rewritten in terms of the two
operators given above. For example, q̄iσμνvν Qv = −(1/2)q̄(γ μ/v − /vγ μ)Qv =
−q̄γ μQv + vμq̄ Qv, and so is not a linearly independent operator.

The matching calculation between QCD and HQET at the scale m Q determines
C (V )

i [1, αs(m Q)]. At lowest order in αs (tree level), the matching condition is
trivial,

C (V )
1 [1, αs(m Q)] = 1 + O[αs(m Q)],

C (V )
2 [1, αs(m Q)] = O[αs(m Q)],

(3.39)

since at tree level, the field Q can be replaced by Qv up to corrections of the
order of 1/m Q . The one-loop corrections to C (V )

i will be computed in Sec. 3.3.
In the general case, one has a QCD operator OQCD renormalized at the scale

m Q , which can be expressed as a linear combination of HQET operators Oi

renormalized at the scale μ,

OQCD(m Q) =
∑

i

Ci

[
m Q

μ
, αs(μ)

]
Oi (μ), (3.40)

where the coefficients Ci [1, αs(μ)] are computed by doing a perturbative match-
ing condition calculation at the scale μ = m Q . One can then obtain the coeffi-
cients Ci [m Q/μ, αs(μ)] at some lower scale μ < m Q by renormalization group
scaling in the effective theory, using the same procedure as that used for the
weak Hamiltonian in Sec. 1.6. The operators Oi satisfy the renormalization
group equation in Eq. (1.129). Since the left-hand side of Eq. (3.40) is μ in-
dependent, this implies that the coefficients satisfy the renormalization group
equation shown in Eq. (1.133), with the solution given by Eq. (1.134).

The renormalization group equation solution in Eq. (1.134) can be written out
explicitly in the case in which a single operator is multiplicatively renormalized,
so that γ is a number rather than a matrix. The anomalous dimension, β function,
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and matching coefficient have the perturbative expansions

γ (g) = γ0
g2

4π
+ γ1

(
g2

4π

)2

+ · · ·

β(g) = −β0
g3

4π
− β1

g5

(4π )2
+ · · · ,

C[1, αs(m Q)] = C0 + C1αs(m Q) + · · · .

(3.41)

Integrating Eq. (1.134) gives

C

[
m Q

μ
, αs(m Q)

]
= [C0 + C1αs(m Q) + · · ·]

×
{

exp
∫ g(m Q )

g(μ)

dg

g

[
γ0

β0
+

(
γ1

β0
− γ0β1

β2
0

)
g2

4π
+ · · ·

]}

=
[

αs(μ)

αs(m Q)

]−(γ0/2β0)

×
{

C0 + C0

(
γ1

2β0
− γ0β1

2β2
0

)
[αs(m Q) − αs(μ)] + C1αs(m Q) + · · ·

}
.

(3.42)

The terms explicitly displayed in this equation sum all subleading logarithms
of the form αn+1

s lnn(m Q/μ). To evaluate the subleading logarithms requires
knowing the two-loop anomalous dimension and β function, and the one-loop
matching coefficient C1. The two-loop β function is scheme independent, but
C1 and γ1 are both scheme dependent in general. Retaining only the one-loop
anomalous dimension γ0 and the one-loop β function β0 sums all the leading
logarithms αn

s lnn(m Q/μ).
The leading logarithms can be summed in the case of operator mixing by

diagonalizing the anomalous dimension matrix γ0, and then using Eq. (3.42).
The two-loop equations with operator mixing cannot be simplified in the same
way, because in general, γ0 and γ1 cannot be simultaneously diagonalized, and
the equation has to be integrated numerically.

It should now be clear how to interpret the predictions for heavy meson de-
cay constants and form factors obtained in Secs. 2.8–2.11. For the decay con-
stants, the coefficient a is subtraction-point dependent, and Eq. (2.62) holds up
to perturbative matching corrections when a is evaluated at μ = m Q . The μ

dependence of a is determined by the anomalous dimension in Eq. (3.24). The
situation is similar for the Isgur-Wise functions that occur in B̄ → D(∗)eν̄e and
�b → �ceν̄e decays. The Isgur-Wise functions are matrix elements of HQET
operators and also depend on the subtraction point μ due to the anomalous
dimension in Eq. (3.35). The expression for the form factors in terms of the
Isgur-Wise functions are valid up to perturbative matching corrections provided
the Isgur-Wise functions are evaluated at a subtraction point around mc,b, e.g.,
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μ = √
mcmb. Note, however, that the anomalous dimension γT vanishes at w = 1,

and therefore the normalization conditions ξ (1) = 1 and ζ (1) = 1 in Eqs. (2.93)
and (2.109) are μ independent.

3.3 Heavy-light currents

The tree-level matching conditions for heavy → light currents are given in
Eq. (3.39). The one-loop corrections to this result can be determined by com-
puting at order αs a matrix element of the left-hand side of Eq. (3.38) in the full
theory of QCD and equating it with the corresponding matrix element of the
right-hand side of Eq. (3.38) calculated in HQET. A convenient matrix element
is that between an on-shell heavy quark with four-momentum p = m Qv as the
initial state and an on-shell massless quark state with four-momentum zero as
the final state. These are not physical states since the strong interactions confine.
However, Eq. (3.38) holds at the operator level and so these unphysical states
can be used to determine the matching coefficients, C (V )

1 and C (V )
2 .

The order αs matrix element in QCD contains the one-loop vertex correction,
as well as the one-loop correction to the propagator for the heavy and light
quark fields. The quark propagators have the form [analytic + iR(Q)/(/p − m Q)]
and [analytic + iR(q)//p] near the poles p2 = m2

Q and p2 = 0, respectively. The
residues R(Q) and R(q) have perturbative expansions

R(Q) = 1 + R(Q)
1 αs(μ) + · · · (3.43)

and

R(q) = 1 + R(q)
1 αs(μ) + · · · . (3.44)

The desired matrix element in full QCD is obtained from the LSZ reduction
formula,

〈q(0, s ′)|V λ|Q(p, s)〉 = [
R(Q) R(q)]1/2

ū(0, s ′)
[
γ λ + V λ

1 αs(μ)
]
u(p, s), (3.45)

where γ λ is the tree-level vertex, and αs V λ
1 is the one-loop correction to the

vertex from Fig. 1.4. The one-loop correction to the vertex has the expansion
(p = m Qv)

V λ
1 = V (1)

1 γ λ + V (2)
1 vλ, (3.46)

as will be shown in Eq. (3.65).
The expression for the analogous matrix element in HQET is

〈q(0, s ′)|q̄�Qv|Q(v, s)〉 = [
R(h) R(q)]1/2

ū(0, s ′)
[
1 + V eff

1 αs(μ)
]
�u(0, s),

(3.47)
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where R(h) is the the residue of the heavy quark propagator near its pole, iR(h)/

p · v + analytic, and αs V eff
1 � is the one-loop vertex correction in Fig. 3.3, which

is independent of the � matrix structure of the operator q̄�Qv.
Comparing Eqs. (3.45)–(3.47) and (3.38) gives

C (V )
1

[
m Q

μ
, αs(μ)

]
= 1 +

{
1

2

[
R(Q)

1 − R(h)
1

] + V (1)
1 − V eff

1

}
αs(μ) + · · · ,

(3.48)
C (V )

2

[
m Q

μ
, αs(μ)

]
= V (2)

1 αs(μ) + · · · ,

where the ellipses denote terms higher order in αs (μ). R(q)
1 does not occur in

Eqs. (3.48) because it is common to both the HQET and full QCD calculations
of the matrix element. The quantities R1 and V1 are ultraviolet finite as ε → 0
but they have infrared divergences, which must be regulated before computing
these quantities. The coefficients C (V )

1 and C (V )
2 are not infrared divergent, so the

infrared divergence cancels in the matching condition, which involves differences
R(Q)

1 − R(h)
1 and V (1)

1 − V eff
1 in the full and effective theories. It is important

to use the same infrared regulator in both theories when computing matching
conditions.

In this section, dimensional regularization will be used to regulate both the
infrared and ultraviolet divergences. All graphs are computed in 4 − ε dimen-
sions, and the limit ε → 0 is taken at the end of the computation. Graphs will
have 1/ε poles, which arise from ultraviolet and infrared divergences. Only the
1/ε ultraviolet divergences are canceled by counterterms. As a simple example,
consider the integral ∫

dnq

(2π )n

1

q4
= 0. (3.49)

The integral is ultraviolet and infrared divergent, but it is zero when evaluated
in dimensional regularization. The infrared divergence can be regulated by in-
troducing a mass to give∫

dnq

(2π )n

1

(q2 − m2)2
= i

8π2ε
+ finite. (3.50)

Thus the original integral can be written as∫
dnq

(2π )n

1

q4
= i

8π2ε
− i

8π2ε
, (3.51)

where the first term is the ultraviolet divergence, and the second term is the
infrared divergence. The counterterm contribution to the integral is −i/8π2ε,
which cancels the ultraviolet divergence and leaves∫

dnq

(2π )n

1

q4
+ counterterm = − i

8π2ε
, (3.52)

where the right-hand side now only has an infrared divergence.
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3.3.1 The QCD computation

The two-point function of renormalized heavy quark fields in the full QCD
theory gets two contributions at order αs . One is the one-loop diagram in Fig. 1.2
denoted by the subscript fd, and the other is the tree-level matrix element of the
counterterm that cancels the 1/ε ultraviolet divergence, denoted by the subscript
ct. In the Feynman gauge, the one-loop contribution in Fig. 1.2 gives the quark
self-energy �fd,

−i�fd =
∫

dnq

(2π )n

(−igT Aμε/2)γ α i(/p + /q + m Q)[
(p + q)2 − m2

Q

](−igT Aμε/2)γα

(−i)

q2

= −g2
(

4

3

)
με

∫
dnq

(2π )n

γ α(/q + /p)γα + nm Q

q2
[
(q + p)2 − m2

Q

] . (3.53)

Using the identity γ αγμγα = 2γμ −γ αγαγμ = (2−n)γμ and combining denom-
inators gives

−i�fd = −g2
(

4

3

)
με

∫ 1

0
dx

∫
dnq

(2π )n

(2 − n)(/q + /p) + nm Q[
q2 + 2q · px − m2

Q x + p2x
]2

= −g2
(

4

3

)
με

∫ 1

0
dx

∫
dnq

(2π )n

(2 − n)(1 − x)/p + nm Q[
q2 + p2x(1 − x) − m2

Q x
]2 . (3.54)

The self-energy has the form

�(p) = A(p2)m Q + B(p2)/p. (3.55)

Since the full propagator is i/[/p − m Q − �(p)], it is straightforward to see that
the residue at the pole is

R(Q)
1 αs(μ) = B

(
m2

Q

) + 2m2
Q

d(A + B)

dp2

∣∣∣∣
p2 = m2

Q

. (3.56)

Performing the dnq integration in Eq. (3.54) yields the following expressions
for A and B:

Afd(p2) = g2

12π2
(4πμ2)ε/2�(ε/2)(4 − ε)

∫ 1

0
dx

[
m2

Q x − p2x(1 − x)
]−ε/2

,

Bfd(p2) = − g2

12π2
(4πμ2)ε/2�(ε/2)(2 − ε) (3.57)

×
∫ 1

0
dx(1 − x)

[
m2

Q x − p2x(1 − x)
]−ε/2

.

The on-shell renormalization factor R1 of Eq. (3.56) can be obtained by
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substituting for A and B and integrating over x , using the identity∫ 1

0
xa(1 − x)b = �(1 + a)�(1 + b)

�(2 + a + b)
. (3.58)

Expanding around ε = 0 gives

R1,fdαs = − g2

12π2

(
6

ε
+ 4 − 3γ + 3 ln

4πμ2

m2
Q

)
. (3.59)

The 1/ε terms include both the infrared and ultraviolet divergences. The coun-
terterm contribution is −i�ct = i(Zq − 1)/p − i(Zm − 1)m, i.e., Act = (Zm − 1)
and Bct = −(Zq − 1), which gives the counterterm contribution to R1,ctαs of
−(Zq −1). Adding this [from Eq. (1.86)] to R1,fdαs and rescaling 4πμ2 → μ2eγ

to convert to the MS scheme gives the final result,

R(Q)
1 αs = − g2

12π2

(
4

ε
+ 4 + 3 ln

μ2

m2
Q

)
, (3.60)

where the 1/ε divergence in Eq. (3.60) is only an infrared divergence.
Next, consider the order αs contribution to the one-particle irreducible vertex

in full QCD shown in Fig. 1.4. In the Feynman gauge the graph gives∫
dnq

(2π )n

(−igμε/2T A)γα

i/q

q2
γ λi

(/p + /q + m Q)[
(p + q)2 − m2

Q

](−igμε/2T A)γ α (−i)

q2
.

(3.61)

Combining denominators, shifting the integration variable q → q − px , and
using p2 = m2

Q gives

−ig2με

(
8

3

)∫ 1

0
dx(1 − x)

∫
dnq

(2π )n

1(
q2 − m2

Q x2
)3

×{γα(/q − /px)γ λ[/q + /p(1 − x)]γ α + m Qγα(/q − /px)γ λγ α}. (3.62)

The numerator can be simplified using the relations γαa/b/c/γ α = − 2c/b/a/ − (n −
4)a/b/c/, and γαa/b/γ α = 4a · b + (n − 4)a/b/. Terms odd in q vanish on integration.
Terms involving /p can be simplified by anticommuting /p through any γ matrices
until it is at the right, where it can be eliminated using /p = m Q when acting on
the heavy quark spinor. The final expression is

−ig2με

(
8

3

)∫ 1

0
dx(1 − x)

∫
dnq

(2π )n

1(
q2 − m2

Q x2
)3

×
{

q2

n
(2 − n)2γ λ − 2m Q pλ (n − 2) x2 + m2

Qγ λx[x (n − 2) − 2]

}
. (3.63)
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Evaluating the q integrals and using p = m Qv gives

g2

12π2
(4πμ2)ε/2

∫ 1

0
dx(1 − x)

(
m2

Q x2)−ε/2
{

1

2
�(ε/2)(2 − ε)2γ λ

+ 2�(1 + ε/2)vλ (2 − ε) − �(1 + ε/2)γ λ 1

x
[x (2 − ε) − 2]

}
. (3.64)

Evaluating the x integral and expanding in ε gives

g2

12π2
{−2γ λ + 2vλ}. (3.65)

The counterterm contribution is determined by the renormalization of the current
q̄γ λQ in QCD. Since this is a partially conserved current (i.e., is conserved in
the limit that the masses vanish), it is not renormalized. The only remaining
counterterm contribution is the QCD wave-function renormalization Zq − 1 =
−2αs/3πε to V (1)

1 αs , from Eq. (1.86). Adding this to Eq. (3.65) gives

V (1)
1 αs = −2αs

3π

(
1

ε
+ 1

)
,

V (2)
1 αs = 2αs

3π
.

(3.66)

3.3.2 The HQET computation

We have now calculated all the quantities in full QCD that occur in Eq. (3.48)
for C (V )

1 and C (V )
2 . It remains to calculate the HQET quantities. In the Feynman

gauge the HQET heavy quark self-energy obtained from the Feynman diagram
in Fig. 3.2 is

−i�fd(p) = −
(

4

3

)
g2με

∫
dnq

(2π )n

1

q2 v · (p + q)
, (3.67)

The residue at the pole is

R(h)
1 αs = vα ∂�

∂pα

∣∣∣∣
p · v = 0

. (3.68)

Evaluating Eq. (3.67) by combining denominators, the q integral gives

−i�fd = −i
g2

6π2
(4πμ2)ε/2�(ε/2)

∫ ∞

0
dλ(λ2 − 2λp · v)−ε/2

= −i
g2

6π2
(4πμ2)ε/2(−p · v)1−ε �(ε/2)�(1 − ε/2)�(−1/2 + ε/2)

2
√

π
.

(3.69)
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This yields R(h)
1,fd = 0, since limp → 0(−p · v)−ε = 0. The only contribution to

R(h)
1 is −(Zh − 1) from the counterterm, Eq. (3.14),

R(h)
1 αs = R(h)

1,ctαs = − 4αs

3πε
. (3.70)

The vertex calculation is also much simpler in HQET than in full QCD. The
Feynman diagram in Fig. 3.3 gives

−ig2με

(
4

3

)∫
dnq

(2π )n

/v/q�

(q2)2v · q
. (3.71)

Combining denominators and evaluating the q integral gives

g2

6π2
�(4πμ2)ε/2�(1 + ε/2)

∫ ∞

0
dλ λ−1−ε, (3.72)

which is zero in dimensional regularization. The only contribution is from the
counterterm, the negative of Eq. (3.22), which implies that

V eff
1 αs = − 2αs

3πε
. (3.73)

Putting the pieces Eqs. (3.48), (3.60), (3.66), (3.70), and (3.73) of the matching
calculation together yields

C (V )
1

[
m Q

μ
, αs(μ)

]
= 1 + αs(μ)

π

[
ln(m Q/μ) − 4

3

]
,

C (V )
2

[
m Q

μ
, αs(μ)

]
= 2

3

αs(μ)

π
.

(3.74)

All the 1/ε infrared divergences have canceled in the matching conditions. Note
that in C (V )

1 there is a logarithm of (m Q/μ). That is why in our initial condition
for the C (V )’s we took μ = m Q . If μ was chosen very different from m Q , large
logarithms would prevent a perturbative evaluation of the initial values for the
C (V )’s. Of course, we do not have to pick μ = m Q precisely. One may just as
well use μ = m Q/2 or μ = 2m Q , for example. The μ dependence of the coeffi-
cients C (V )

i is connected with the anomalous dimension of the HQET operator
q̄γ λQv. Here μ[dC (V )

1 /dμ] is the anomalous dimension γO given in Eq. (3.24).
The absence of a logarithm in C (V )

2 shows explicitly that q̄γ λQv does not mix
with q̄vλQv, which is consistent with our expectations based on spin and chiral
symmetries.
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A similar matching condition holds for the axial current, Aμ = q̄γ μγ5 Q.

Aμ = C (A)
1

[
m Q

μ
, αs(μ)

]
q̄γ μγ5 Qv + C (A)

2

[
m Q

μ
, αs(μ)

]
q̄vμγ5 Qv. (3.75)

It is simple to deduce the C (A)
j , given our calculation of the C (V )

j ’s. Rewrite
the axial current as Aμ = −q̄γ5γ

μQ. γ5 acting on the massless quark q gives
± depending on the chirality of the quark. Chirality is conserved by the gluon
vertices, so the calculation of matching conditions proceeds just as in the vector
current case, except that q̄ should be replaced everywhere by q̄γ5. At the end
of the calculation, the γ5 is moved back next to Qv, producing a compensating
minus sign for γ μγ5, but not for vμγ5. Thus

C (A)
1

[
m Q

μ
, αs(μ)

]
= C (V )

1

[
m Q

μ
, αs(μ)

]
, (3.76)

C (A)
2

[
m Q

μ
, αs(μ)

]
= −C (V )

2

[
m Q

μ
, αs(μ)

]
. (3.77)

The results of this section can be used to compute the αs corrections to the
pseudoscalar and vector meson decay constant relations given in Sec. 2.8. The
QCD vector and axial current operators match the linear combination of HQET
operators given in Eqs. (3.38) and (3.75). Computing the matrix elements of the
HQET operators q̄�μQv (renormalized at μ) as in Eq. (2.63) gives

a (μ) ×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ivμP (Q)
v if �μ = γ μγ5,

ivμP (Q)
v if �μ = vμγ5,

P∗(Q)
v

μ if �μ = γ μ,

0 if �μ = vμ.

(3.78)

Combining this with the matching conditions gives

fP∗ = √
m P∗ a(μ)C (V )

1 (μ),

fP = 1√
m P

a(μ)
[
C (A)

1 (μ) − C (A)
2 (μ)

]
.

(3.79)

The μ dependence of the matrix element a (μ) is given by the anomalous di-
mension of the heavy-light operators, Eq. (3.24),

μ
da

dμ
= −γOa = αs

π
a. (3.80)

This μ dependence is canceled by the μ dependence in the coefficients C (V,A)
i ,

so that the complete answer for the measurable quantity fP,P∗ is μ independent.
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For example,

√
m P μ

d fP

dμ
= μ

da

dμ

[
C (A)

1 − C (A)
2

] + a μ
d

dμ

[
C (A)

1 − C (A)
2

]
= αs

π
a
[
C (A)

1 − C (A)
2

] + a
(
−αs

π
+ 0

)
= 0 + O(

α2
s

)
. (3.81)

Equation (3.79) gives the αs correction to the ratio of the pseudoscalar and vector
meson decay constants,

fP∗

fP
= √

m P∗m P

[
C (V )

1

C (A)
1 − C (A)

2

]
= √

m P∗m P

[
1 − 2

3

αs(m Q)

π

]
. (3.82)

The αs correction to the ratio of pseudoscalar meson decay constants for the D
and B mesons can also be determined. Heavy quark flavor symmetry implies that
a (μ), the matrix element in the effective theory, is independent of the quark mass.
The matching from QCD to the effective theory is done at the scale m Q = mb for
the B̄ meson system, and m Q = mc for the D meson system. This determines

fB
√

m B

fD
√

m D
=

[
a (mb)

a(mc)

]
C (A)

1 [1, αs(mb)] − C (A)
2 [1, αs(mb)]

C (A)
1 [1, αs(mc)] − C (A)

2 [1, αs(mc)]

=
[
αs(mb)

αs(mc)

]−6/25

×
{

1 + [αs(mb) − αs(mc)]

[
− 2

3π
+

(
γ1O

2β0
− γ0Oβ1

2β2
0

)]}
. (3.83)

To complete the prediction for the ratio of B and D meson decay constants,
the two-loop correction to the anomalous dimension of O�, γ1O , and the two-
loop contribution to the β function, β1, are needed. These can be found in the
literature. The leading logarithmic prediction for the ratio of B and D meson
decay constants is

fB
√

m B

fD
√

m D
=

[
αs(mb)

αs(mc)

]−6/25

. (3.84)

The matching conditions in this section have been computed keeping the 1/ε

infrared divergent quantities, to show explicitly that the divergences cancel in the
matching coefficients. This cancellation provides a useful check on the calcula-
tion. The matching conditions can be computed more simply if one is willing to
forego this check. One can simply compute only the finite parts of the dimen-
sionally regulated graphs in the full and effective theory to compute the matching
conditions. The 1/ε ultraviolet divergences are canceled by counterterms, and
the 1/ε infrared divergences will cancel in the matching conditions, and so need
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not be retained. One also need not compute any diagrams in the effective theory,
since all on-shell graphs in the effective theory vanish on dimensional regular-
ization. We saw this explicitly in Eqs. (3.69) and (3.72). The reason is that graphs
that contain no dimensionful parameter vanish in dimensional regularization.

Since mb/mc is not very large, there is no reason to sum the leading logarithms
of mb/mc. If one matches onto HQET simultaneously for the b and c quarks at
a scale μ, then Eqs. (3.74), (3.76), and (3.77) imply that

fB
√

m B

fD
√

m D
= 1 + αs(μ)

π
ln

(
mb

mc

)
. (3.85)

Eq. (3.85) can also be derived by expanding Eq. (3.84) to order αs .

3.4 Heavy-heavy currents

B̄ → D(∗)eν̄e and �b → �ceν̄e decay rates are determined by matrix elements
of the vector current, c̄γμb, and the axial vector current c̄γμγ5b. The matching
of these currents in full QCD onto operators in HQET has the form

c̄γμb = C (V )
1

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′γμbv

+ C (V )
2

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′vμbv

+ C (V )
3

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′v′

μbv (3.86)

and

c̄γμγ5b = C (A)
1

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′γμγ5bv

+ C (A)
2

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′vμγ5bv

+ C (A)
3

[
mb

μ
,

mc

μ
, αs(μ), w

]
c̄v′v′

μγ5bv. (3.87)

The right-hand side contains all dimension three operators with the same quan-
tum numbers as the left-hand side. Higher dimension operators give effects sup-
pressed by powers of (�QCD/mc,b) and will be considered in the next chapter.
In the matching condition of Eqs. (3.86) and (3.87) the transition to HQET is
made simultaneously for both quarks. Usually one chooses a subtraction point,
μ = m̄ = √

mbmc, which is between the bottom and charm quark masses for the
initial value for the C j ’s and then runs down to a lower value of μ by using
the HQET renormalization group equation. At order αs , the matching condition
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contains terms of the order of αs(m̄) ln(mb/mc), but since this logarithm is not
very large there is no need to sum all terms of the order of αs(m̄)n lnn(mc/mb).
Tree-level matching at m̄ gives

C (V,A)
1

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 1 + O [αs(m̄)] ,

C (V,A)
2

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 0 + O [αs(m̄)] , (3.88)

C (V,A)
3

[
mb

m̄
,

mc

m̄
, αs(m̄), w

]
= 0 + O [αs(m̄)] .

The additional operators c̄v′vμbv and c̄v′v′μbv induced at one loop do not cause
a loss of predictive power in computing decay rates. In HQET the B̄ → D(∗)

matrix elements of any operator of the form c̄v′�bv (where � is a 4 × 4 matrix in
spinor space) can be expressed in terms of the Isgur-Wise function, so the matrix
elements of the new operators are related to the matrix elements of the old
operators. This was also the case for heavy-light matrix elements in Eq. (3.78).

The calculation of the C (V,A)
j at order αs is straightforward but somewhat

tedious, since these coefficients depend not only on the bottom and charm quark
masses but also on the dot product of four velocities w = v · v′. In this chapter
we shall explicitly calculate the matching condition at the zero-recoil kinematic
point, w = 1. Here the matching condition simplifies because c̄vγ5bv = 0 and
c̄vγμbv = c̄vvμbv. Consequently we can write the matching relation as

c̄γμb = ηV c̄vγμbv,

c̄γμγ5b = ηA c̄vγμγ5bv.
(3.89)

As in the case of heavy-light currents, the coefficients ηV and ηA are determined
by equating a full QCD matrix element of these currents with the corresponding
one in HQET. The matrix element we choose is between an on-shell b-quark
state with four-momentum pb = mbv and an on-shell c-quark state with four-
momentum pc = mcv. Since c̄vγμbv is the conserved current associated with
heavy quark flavor symmetry, and c̄vγμγ5bv is related to it by heavy quark spin
symmetry, we know the matrix elements of these currents. To all orders in the
strong coupling, 〈

c(v, s ′)
∣∣ c̄v�bv

∣∣b(v, s)
〉 = ū(v, s′) � u(v, s), (3.90)

where � is any matrix in spinor space (including γμ or γμγ5), and the right-
hand side is absolutely normalized by heavy quark symmetry. This relation is
subtraction-point independent and so η(V,A) must be μ independent:

μ
d

dμ
η(V,A) = 0. (3.91)
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The matching condition will be computed by using the procedure outlined at
the end of the previous section, so only the finite parts of dimensionally regulated
graphs will be computed. The vector current matrix element in QCD is

〈c(pc, s ′)|c̄γ λb|b(pb, s)〉
= ū(pc, s ′)

{
1 + 1

2

[
R(c)

1 + R(b)
1

]
αs(μ) + V1αs(μ)

}
γ λu(pb, s) + · · · ,

(3.92)

where pc = mcv, pb = mbv, and the ellipsis denotes terms higher order in αs .
Here R(Q)

1 has already been computed, so it only remains to compute the one-
particle irreducible vertex at the order of αs . It is given by the Feynman diagram
in Fig. (1.4). In the Feynman gauge Fig. 1.4 yields

−ig2με

(
4

3

)∫
dnq

(2π )n

γα(/q + /pc + mc)γ λ(/q + /pb + mb)γ α

(q2 + 2pc · q)(q2 + 2pb · q)q2
. (3.93)

The charm and bottom quarks have the same four velocity and so a factor of /pc,b

on the far left or right can be replaced by mc,b. Hence Eq. (3.93) can be written as

−ig2με

(
4

3

)∫
dnq

(2π )n

(2mcvα + γα/q)γ λ(2mbv
α + /qγ α)

(q2 + 2q · pc)(q2 + 2q · pb)q2

= −ig2με

(
4

3

)∫
dnq

(2π )n

×
[

4mcmbγ
λ + 2mcγ

λ/q + 2mb/qγ λ + (2 − n)/qγ λ/q

(q2 + 2q · pc)(q2 + 2q · pb)q2

]
. (3.94)

It is convenient to first combine the two quark propagator denominators using
the Feynman parameter x , and then combine the result with the gluon propagator
using y. Shifting the q integration variable, q → q − y[mcx + mb(1 − x)]v and
performing the dnq integration gives

g2

12π2
γ λ(4πμ2)ε/2

∫ 1

0
dx

∫ 1

0
y dy

(
m2

x y2)−ε/2
{

1

2
(2 − ε)2 � (ε/2)

− � (1 + ε/2)

[
4mcmb

m2
x y2

− 2
mc + mb

mx y
− (2 − ε)

]}
(3.95)

where

mx = mcx + mb(1 − x).

Evaluating the y integral, expanding in ε, and rescaling μ to the MS scheme
yields

g2

6π2
γ λ

∫ 1

0
dx

[(
1 + 2mbmc

m2
x

)
1

ε
+ mb + mc

mx
−

(
1 + 2mbmc

m2
x

)
ln

(
mx

μ

)]
.

(3.96)
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Integrating with respect to x and keeping the finite part gives

V1αs = − g2

6π2

[
1 + 3

mb ln(mc/μ) − mc ln(mb/μ)

mb − mc

]
. (3.97)

Equations (3.90) and (3.92) imply that the matching coefficient is

ηV = 1 + αs(μ)

[
R(b)

1

2
+ R(c)

1

2
+ V1

]
+ · · · , (3.98)

where the ellipsis denotes terms of the order of α2
s and higher. Using Eq. (3.97)

and the finite part of Eq. (3.60), we find that at order αs ,

ηV = 1 + αs(μ)

π

[
−2 +

(
mb + mc

mb − mc

)
ln

(
mb

mc

)]
. (3.99)

Note that the coefficient of αs(μ) is independent of μ. This is a consequence of
Eq. (3.91), which states that ηV is independent of the subtraction point μ. Terms
higher order in αs compensate for the dependence of αs on μ in Eq. (3.99).
Usually for numerical evaluation of η(V,A) one uses μ = √

mbmc = m̄.
In the case mb = mc, the vector current c̄γ λb is a conserved current in QCD and

its on-shell matrix element is 〈c(pc, s ′)|c̄γ λb|b(pb, s)〉 = ū(pc, s ′)γ λ u(pb, s ′),
to all orders in αs . Consequently the coefficient of αs in Eq. (3.99) vanishes in
the limit mb = mc.

The axial current matching condition is almost the same as in the vector case.
In the calculation of the one-particle irreducible vertex, Eq. (3.94) is replaced by

−ig2με

(
4

3

)∫
dnq

(2π )n

1

(q2 + 2q · pc)(q2 + 2q · pb)q2

× [
4mcmbγ

λγ5 + 2mcγ
λγ5/q + 2mb/qγ λγ5 + (2 − n)/qγ λ

/qγ5
]
. (3.100)

One can then combine denominators and change the integration variable as
for the computation of ηV . The only difference between ηV and ηA is that for
ηV , (2 − n)/qγ λ/q generates the term (2 − n)m2

x y2γ λ on shifting the integration
variable, whereas for ηA, (2 − n)/qγ λ/qγ5 generates −(2 − n)m2

x y2γ λγ5. Thus

ηA = ηV + ig2
(

4

3

)
2(2 − n)

∫ 1

0
dx

∫ 1

0
2y dy

∫
dnq

(2π )n

m2
x y2(

q2 − m2
x y2

)3

= ηV − 2

3π
αs(μ)

= 1 + αs(μ)

π

[
−8

3
+ (mb + mc)

(mb − mc)
ln

(
mb

mc

)]
. (3.101)

Here η(V,A) are important for the B → D(∗)eν̄e differential decay rates near
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w = v ·v′ = 1, i.e., FD∗ (1) = ηA and FD (1) = ηV up to corrections suppressed
by powers of m Q .

3.5 Problems

1. The effective Hamiltonian for B0 − B̄0 mixing is proportional to the operator

(d̄γμPL b)(d̄γ μPL b).

After the transition to HQET, it becomes

O�S = 2 = (d̄γμPL bv)(d̄γ μPL bv).

Calculate the anomalous dimension of O�S = 2 at one loop.

2. Analytic expressions for the matching coefficients C (V )
j and C (A)

j can be found in an expansion
about w = 1.

(a) Show that if the c and b quarks are matched onto the HQET fields cv′ and bv at the
common scale μ = m̄ = √

mcmb, then C V,A
j (w) = 1 + (αs(m̄)/π )δC V,A

j (w), where

δC (V )
1 (1) = −4

3
− 1 + z

1 − z
,

δC (V )
2 (1) = −2(1 − z + z ln z)

3(1 − z)2
,

δC (V )
3 (1) = 2z(1 − z + ln z)

3(1 − z)2
,

δC (A)
1 (1) = −8

3
− 1 + z

1 − z
ln z,

δC (A)
2 (1) = −2[3 − 2z − z2 + (5 − z)z ln z]

3(1 − z)3
,

δC (A)
3 (1) = 2z[1 + 2z − 3z2 + (5z − 1) ln z]

3(1 − z)3
,

where z = mc/mb.
(b) Show that

δC ′(V )
1 (1) = −2[13 − 9z + 9z2 − 13z3 + 3(2 + 3z + 3z2 + 2z3) ln z]

27(1 − z)3
,

δC ′(V )
2 (1) = 2(2 + 3z − 6z2 + z3 + 6z ln z)

9(1 − z)4
,

δC ′(V )
3 (1) = 2z(1 − 6z + 3z2 + 2z3 − 6z2 ln z)

9(1 − z)4
,

δC ′(A)
1 (1) = −2[7 + 9z − 9z2 − 7z3 + 3(2 + 3z + 3z2 + 2z3) ln z]

27(1 − z)3
,

δC ′(A)
2 (1) = 2[2 − 33z + 9z2 + 25z3 − 3z4 − 6z(1 + 7z) ln z]

9(1 − z)5
,

δC ′(A)
3 (1) = −2z[3 − 25z − 9z2 + 33z3 − 2z4 − 6z2(7 + z) ln z]

9(1 − z)5
,

where ′ denotes differentiation with respect to w.
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(c) Using mc = 1.4 GeV and mb = 4.8 GeV, calculate the perturbative QCD corrections to
the ratios of form factors R1(1) and R2(1) defined in Chapter 2.

3. Prove the identity in Eq. (3.6).

4. Calculate the renormalization of the operators

O1 = c̄v′ �i Dμ bv

O2 = c̄v′ �i
←−
D μ bv

O3 = c̄v′ �i(v′ · D) bv vμ

O4 = c̄v′ �i(v′ · D) bv v′
μ

O5 = c̄v′ �i(v · ←−
D ) bv vμ

O6 = c̄v′ �i(v · ←−
D ) bv v′

μ

and use it to compute the anomalous dimension matrix for O1 − O6.

5. Consider the ratio r f (w) = f2(w)/ f1(w) of the form factors for �b → �ceν̄e decay. Show that
in the mb → ∞ limit, the perturbative αs correction gives

r f (w) = −2αs(mc)

3π
r (w),

where r (w) is defined in Eq. (3.33).
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4
Nonperturbative corrections

The effective Lagrangian for heavy quarks has an expansion in powers of αs(m Q)
and 1/m Q . The αs corrections were discussed in the previous chapter; the 1/m Q

corrections are discussed here. By dimensional analysis, these corrections are
proportional to �QCD/m Q , necessarily involve the hadronic scale �QCD, and
are nonperturbative in origin. By using the effective Lagrangian approach, we
can systematically include these nonperturbative corrections in computations
involving hadrons containing a heavy quark.

4.1 The 1/mQ expansion

The HQET Lagrangian including 1/m Q corrections can be derived from the
QCD Lagrangian following the procedure of Sec. 2.6. Substituting Eq. (2.43)
into the QCD Lagrangian gives

L = Q̄v (iv · D) Qv − Q̄v(iv · D + 2m Q)Qv + Q̄vi /DQv + Q̄vi /DQv, (4.1)

using /vQv = Qv and /vQv = −Qv. It is convenient to project four vectors into
components parallel and perpendicular to the velocity v. The perpendicular com-
ponent of any four-vector X is defined by

Xμ
⊥ ≡ Xμ − X · vvμ. (4.2)

The i /D factors in Eq. (4.1) can be replaced by i /D⊥ since Q̄v/vQv = 0.
The field Qv corresponds to an excitation with mass 2m Q , which is the energy

required to create a heavy quark–antiquark pair. Here Qv can be integrated out
of the theory for physical situations where the use of HQET is justified. This can
be done at tree level by solving the Qv equation of motion,

(iv · D + 2m Q)Qv = i /D⊥Qv, (4.3)

102
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and substituting back into the Lagrangian Eq. (4.1), to give

L = Q̄v

(
iv · D + i /D⊥

1

2m Q + iv · D
i /D⊥

)
Qv

= Q̄v

(
iv · D − 1

2m Q
/D⊥ /D⊥

)
Qv + · · · , (4.4)

where the ellipses denote terms of higher order in the 1/m Q expansion. It is
convenient to express the term suppressed by 1/m Q as a sum of two terms, one
that violates heavy quark spin symmetry and one that doesn’t. Specifically,

/D⊥ /D⊥ = γμγν Dμ
⊥Dν

⊥ = D2
⊥ + 1

2
[γμ, γν]Dμ

⊥Dν
⊥. (4.5)

Using the identity [Dμ, Dν] = igGμν , and the definition σμν = i[γμ, γν]/2,
this becomes

/D⊥ /D⊥ = D2
⊥ + g

2
σμνGμν. (4.6)

It is not necessary to include any ⊥ labels on the μ and ν indices of the σμν term,
since Q̄vσμνv

μQv = 0. Substituting Eq. (4.6) into Eq. (4.4) gives

L = L0 + L1 + · · · , (4.7)

where L0 is the lowest order Lagrangian Eq. (2.45), and

L1 = −Q̄v

D2
⊥

2m Q
Qv − gQ̄v

σμνGμν

4m Q
Qv. (4.8)

In the nonrelativistic constituent quark model, the term Q̄v(D2
⊥/2m Q)Qv is the

heavy quark kinetic energy p2
Q/2m Q . It breaks heavy quark flavor symmetry

because of the explicit dependence on m Q , but it does not break heavy quark
spin symmetry. The magnetic moment interaction term−gQ̄v(σμνGμν/4m Q)Qv

breaks both heavy quark spin and flavor symmetries.
Equation (4.8) has been derived at tree level. Including loop corrections

changes the Lagrangian to

L1 = −Q̄v

D2
⊥

2m Q
Qv − a(μ) gQ̄v

σμνGμν

4m Q
Qv. (4.9)

The tree-level matching calculation Eq. (4.8) implies that

a(m Q) = 1 + O[αs(m Q)]. (4.10)

The μ dependence of the magnetic moment operator is canceled by the μ de-
pendence of a(μ). In the leading logarithmic approximation

a(μ) =
[
αs(m Q)

αs(μ)

]9/(33−2Nq )

, (4.11)
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where Nq is the number of light quark flavors. Loop effects do not change the
coefficient of the heavy quark kinetic energy term. In the next section it is shown
that this is a consequence of the reparameterization invariance of the effective
Lagrangian.

4.2 Reparameterization invariance

The heavy quark momentum pQ is given by

pQ = m Qv + k, (4.12)

where v is the heavy quark four velocity and k is its residual momentum. This
decomposition of pQ into v and k is not unique. Typically k is of the order of
�QCD, which is much smaller than m Q . A small change in the four velocity of the
order of �QCD/m Q can be compensated by a change in the residual momentum:

v → v + ε/m Q,

k → k − ε.
(4.13)

Since the four velocity satisfies v2 = 1, the parameter ε must satisfy

v · ε = 0, (4.14)

neglecting terms of order (ε/m Q)2. In addition to the changes of v and k in
Eqs. (4.13), the heavy quark spinor Qv must also change to preserve the constraint
/vQv = Qv. Consequently, if

Qv → Qv + δQv, (4.15)

δQv satisfies (
/v + ε/

m Q

)
(Qv + δQv) = Qv + δQv. (4.16)

At linear order in (ε/m Q), one finds

(1 − /v)δQv = ε/

m Q
Qv. (4.17)

Therefore a suitable choice for the change in Qv is

δQv = ε/

2m Q
Qv. (4.18)

This satisfies /vδQv = −δQv, since v · ε = 0, so that Eq. (4.17) holds. The
solution to Eq. (4.17) is not unique, and we have chosen one that preserves the
normalization of the iv · D term. Other choices are equivalent to the above by a
simple redefinition of the field.
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In summary, the Lagrange density in Eq. (4.7) must be invariant under the
combined changes

v → v + ε/m Q,

Qv → eiε · x

(
1 + ε/

2m Q

)
Qv,

(4.19)

where the prefactor eiε · x causes a shift in the residual momentum k → k − ε.
Under the transformation in Eq. (4.19),

L0 → L0 + 1

m Q
Q̄v(iε · D)Qv,

L1 → L1 − 1

m Q
Q̄v(iε · D)Qv.

(4.20)

Consequently the Lagrangian, L0 + L1, is reparameterization invariant. This
would not be the case if the coefficient of the kinetic energy deviated from unity.
There can be no corrections to the coefficient of the kinetic energy operator
as long as the theory is regularized in a way that preserves reparameterization
invariance. Dimensional regularization is such a regulator, since the arguments
made in this section hold in n dimensions.

An important feature of reparameterization invariance is that it connects differ-
ent orders in the 1/m Q expansion, since the transformation Eq. (4.19) explicitly
involves m Q . Thus it can be used to fix the form of some 1/m Q corrections using
only information from lower order terms in 1/m Q , as was done for the kinetic
energy term.

4.3 Masses

Heavy quark symmetry can be used to obtain relations between hadron masses.
The hadron mass in the effective theory is m H − m Q , since the heavy quark mass
m Q has been subtracted from all energies in the field redefinition in Eq. (2.43).
At order m Q , all heavy hadrons containing Q are degenerate, and have the same
mass m Q . At the order of unity, the hadron masses get the contribution

1

2

〈
H (Q)

∣∣H0
∣∣H (Q)〉 ≡ �̄, (4.21)

where H0 is the order 1/m0
Q terms in the HQET Hamiltonian obtained from

the Lagrangian term Q̄v(iv · D)Qv, as well as the terms involving light quarks
and gluons. In this section, the hadron states |H (Q)〉 are in the effective theory
with v = vr = (1, 0). The factor 1/2 arises from the normalization introduced in
Sec. 2.7. Here �̄ is a parameter of HQET and has the same value for all particles
in a spin-flavor multiplet. The values will be denoted by �̄ for the B, B∗, D,
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and D∗ states, �̄� for the �b and �c, and �̄� for the �b, �∗
b , �c, and �∗

c . In
the SU(3) limit, �̄ does not depend on the light quark flavor. If SU(3) breaking
is included, �̄ is different for the Bu,d and Bs mesons, and will be denoted by
�̄u,d and �̄s , respectively.

At order 1/m Q , there is an additional contribution to the hadron masses given
by the expectation value of the 1/m Q correction to the Hamiltonian:

H1 = −L1 = Q̄v

D2
⊥

2m Q
Qv + a(μ)gQ̄v

σαβGαβ

4m Q
Qv. (4.22)

The matrix elements of the two terms in Eq. (4.22) define two nonperturbative
parameters, λ1 and λ2:

2λ1 = −〈
H (Q)

∣∣Q̄vr D2
⊥Qvr

∣∣H (Q)
〉
,

16(SQ · S�)λ2(m Q) = a(μ)
〈
H (Q)

∣∣Q̄vr gσαβGαβ Qvr

∣∣H (Q)
〉
.

(4.23)

Here λ1 is independent of m Q , and λ2 depends on m Q through the logarithmic
m Q dependence of a(μ) in Eq. (4.11); λ1,2 have the same value for all states
in a given spin-flavor multiplet and are expected to be of the order of �2

QCD.
The naive expectation that the heavy quark kinetic energy is positive suggests
that λ1 should be negative. The λ2 matrix element transforms like SQ · S� under
the spin symmetry, since that is the transformation property of Q̄vr σαβGαβ Qvr .
Only the two upper components of Qvr are nonzero, since γ 0 Qvr = Qvr , and
Q̄vr σαβGαβ Qvr reduces to the matrix element of Q̄vrσ · BQvr , where B is the
chromomagnetic field. The operator Q̄vrσQvr is the heavy quark spin, and the
matrix element of B in the hadron must be proportional to the spin of the light
degrees of freedom, by rotational invariance and time-reversal invariance, so
that the chromomagnetic operator contribution is proportional to SQ · S�. Using
SQ · S� = (J2 − S2

Q − S2
�)/2, one finds that

m B = mb + �̄ − λ1

2mb
− 3λ2(mb)

2mb
,

m B∗ = mb + �̄ − λ1

2mb
+ λ2(mb)

2mb
,

m�b = mb + �̄� − λ�,1

2mb
,

m�b = mb + �̄� − λ�,1

2mb
− 2λ�,2(mb)

mb
,

m�∗
b

= mb + �̄� − λ�,1

2mb
+ λ�,2(mb)

mb
,

(4.24)
m D = mc + �̄ − λ1

2mc
− 3λ2(mc)

2mc
,



4.4 �b → �ceν̄e decay 107

m D∗ = mc + �̄ − λ1

2mc
+ λ2(mc)

2mc
,

m�c = mc + �̄� − λ�,1

2mc
,

m�c = mc + �̄� − λ�,1

2mc
− 2λ�,2(mc)

mc
,

m�∗
c

= mc + �̄� − λ�,1

2mc
+ λ�,2(mc)

mc
.

The average mass of a heavy quark spin symmetry multiplet, e.g., (3m P∗ + m P )/4
for the meson multiplet, does not depend on λ2. The magnetic interaction λ2 is
responsible for the B∗ − B and D∗ − D splittings. The observed value of the
B∗ − B mass difference gives λ2 (mb) � 0.12 GeV2.

Equations (4.24) give the meson mass relation

0.49 GeV2 � m2
B∗ −m2

B � 4λ2 � m2
D∗ −m2

D � 0.55 GeV2, (4.25)

up to corrections of order 1/mb,c, and ignoring the weak m Q dependence of λ2.
Similarly, one finds that

90 ± 3 MeV = m Bs − m Bd = �̄s − �̄u,d = m Ds − m Dd = 99 ± 1 MeV,

345 ± 9 MeV = m�b − m B = �̄� − �̄u,d = m�c − m D = 416 ± 1 MeV.

(4.26)

The parameters λ1 and λ2 are nonperturbative parameters of QCD and have not
been computed from first principles. It might appear that very little has been
gained by using Eqs. (4.24) for the hadron masses in terms of �̄, λ1, and λ2.
However, the same hadronic matrix elements also occur in other quantities, such
as form factors and decay rates. One can then use the values of �̄, λ1, and λ2

obtained by fitting to the hadron masses to compute the form factors and decay
rates, without making any model dependent assumptions. An example of this is
given in Problems 2–3.

4.4 Λb → Λceν̄e decay

The HQET predictions for �b → �c form factors were discussed earlier in
Sec. 2.11. Recall that the most general form factors are

〈�c(p′, s ′)|c̄γ νb|�b(p, s)〉 = ū(p′, s ′)[ f1γ
ν + f2v

ν + f3v
′ν]u(p, s),

〈�c(p′, s ′)|c̄γ νγ5b|�b(p, s)〉 = ū(p′, s ′)[g1γ
ν + g2v

ν + g3v
′ν]γ5u(p, s),

(4.27)

where p′ = m�cv
′ and p = m�bv. It is convenient for the HQET analysis to

consider the form factors f j and g j as functions of the dimensionless variable
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w = v · v′. Heavy quark symmetry implies that

〈�c(v′, s ′)|c̄v′�bv|�b(v, s)〉 = ζ (w) ū(v′, s ′)�u(v, s), (4.28)

with ζ (1) = 1. Consequently the form factors are

f1 = g1 = ζ (w), f2 = f3 = g2 = g3 = 0. (4.29)

In Sec. 3.4 perturbative QCD corrections to the matching of heavy quark currents
were computed. For the vector current, new operators of the form vμc̄v′bv and
v′μc̄v′bv were induced with calculable coefficients. These additional terms do
not represent any loss of predictive power because Eq. (4.28) gives the matrix
elements of these new operators in terms of the same Isgur-Wise function ζ (w).

In this section, nonperturbative corrections suppressed by �QCD/mc,b are
considered. These corrections arise from two sources. There are time-ordered
products of the 1/m Q terms in the Lagrangian with the heavy quark current.
These terms can be thought of as correcting the hadron states in HQET at order
1/m Q , or equivalently, as producing a 1/m Q correction to the current, and leaving
the states unchanged. For example, the chromomagnetic 1/mc correction to the
Lagrangian gives a correction to the current c̄v′�bv of

−i
a(μ)

2

∫
d4xT

(
gc̄v′

σμνGμν

2mc
cv′

∣∣∣∣
x

c̄v′�bv

∣∣∣∣
0

)
. (4.30)

Spin symmetry implies that for �b → �c matrix elements in HQET, the above
quark–gluon operator is equivalent to the hadronic operator

�̄(c)(v′, s ′)σμν

(1 + /v′)
2

��(b)(v, s)
Xμν

mc
, (4.31)

where Xμν depends on v and v′ and is antisymmetric in its indices μ and ν.
The σμν matrix must be next to �̄(c)(v′, s ′), and the � matrix must be next to
�(b)(v, s) because these matrices were next to c̄v′ and bv in Eq. (4.30). The
projector (1 + /v′)/2 arises because σμν and � were multiplied on the right and
left by cv′ and c̄v′ , respectively, in Eq. (4.30). The only possibility for X is
Xμν ∝ vμv′

ν − vνv
′
μ, with the constant of proportionality a function of w. With

this form for Xμν , Eq. (4.31) is zero since (1 + /v′)σμν(1 + /v′)v′
μ = 0. Thus

the chromomagnetic 1/mc correction to the charm quark part of the Lagrangian
has no effect on the �b → �ceν̄e form factors. Clearly, the same conclusion
holds for the 1/mb chromomagnetic correction to the bottom quark part of the
Lagrangian.

The kinetic energies of the bottom and charm quarks do not violate heavy quark
spin symmetry so they preserve f2 = f3 = g2 = g3 = 0 and can be absorbed into
a redefinition of the Isgur-Wise function ζ (w). It is important to know if this
correction to ζ preserves the normalization condition ζ (1) = 1 at zero recoil.
One can show that the normalization is preserved by an argument similar to
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that used in proving the Ademollo-Gatto theorem. The 1/m Q kinetic energy
term in the Lagrange density changes the |�Q(v, s)〉 state in HQET to the state
|�Q(v, s)〉 + (ε/m Q)|SQ(v, s)〉 + · · · , where |SQ(v, s)〉 is a state orthogonal to
|�Q(v, s)〉, ε is of the order of �QCD, and the ellipses denote terms suppressed by
more powers of 1/m Q . At zero recoil, c̄v�bv is a charge of heavy quark spin flavor
symmetry so it takes |�b(v, s)〉 to the state |�c(v, s)〉, which is orthogonal to
|Sc(v, s)〉. Consequently at order 1/m Q the heavy quark kinetic energies preserve
Eq. (4.29) and do not change the normalization of ζ at zero recoil. Equivalently,
one can use an analysis analogous to that for the chromomagnetic operator. The
time-ordered product

−i
∫

d4xT

(
gc̄v′

D2
⊥

2mc
cv′

∣∣∣∣
x

c̄v′�bv

∣∣∣∣
0

)
(4.32)

is equivalent to the hadronic operator

�̄(c)(v′, s ′)
(1 + /v′)

2
��(b)(v, s)

χ1

mc
, (4.33)

where χ1 is an arbitrary function of w. Similarly, the b-quark kinetic energy
gives a correction term

�̄(c)(v′, s ′)�
(1 + /v)

2
�(b)(v, s)

χ1

mb
. (4.34)

The two χ1’s are the same (see Problem 4), since one can relate the form of
the matrix elements of the two possible time-ordered products by v ↔ v′ and
c ↔ b. Equations (4.33) and (4.34) give the following correction terms to the
form factors:

δ f1 = χ1

(
1

mc
+ 1

mb

)
,

δg1 = χ1

(
1

mc
+ 1

mb

)
,

δ f2 = δ f3 = δg2 = δg3 = 0.

(4.35)

This corresponds to a redefinition of the Isgur-Wise function:

ζ (w) → ζ (w) + χ1(w)

(
1

mc
+ 1

mb

)
. (4.36)

At zero recoil, for mb = mc, the vector current matrix element is normalized,
since it is a symmetry generator of the full QCD theory. Since ζ (1) = 1, this
implies that χ1(1) = 0. As a result, the effects of χ1 can be reabsorbed into ζ by
the redefinition in Eq. (4.36), without affecting the normalization at zero recoil.

In addition to the 1/m Q corrections to the Lagrange density, there are order
1/m Q terms that correct the relation between currents in full QCD and HQET.
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These terms arise when one includes the 1/m Q corrections to the relation between
the quark fields in QCD and HQET. At tree level,

Q = e−im Qv · x
(

1 + i
/D

2m Q

)
Qv, (4.37)

where the relation in Eq. (2.43) and the solution for Qv in Eq. (4.3) have been
used. One could equally well have a ⊥ subscript on the covariant derivative.
These two forms for Eq. (4.37) are equivalent, since the difference vanishes by
the equation of motion (v · D)Qv = 0. Using Eq. (4.37) the relation between the
QCD current and HQET operators to order 1/m Q is

c̄γ νb = c̄v′

(
γ ν − i

←
Dμ

2mc
γ μγ ν + γ νγ μ

i Dμ

2mb

)
bv,

c̄γ νγ5b = c̄v′

(
γ νγ5 − i

←
Dμ

2mc
γ μγ νγ5 + γ νγ5γ

μ
i Dμ

2mb

)
bv.

(4.38)

Heavy quark spin symmetry implies for �b → �c matrix elements in HQET,
one can use

c̄v′ i
←
Dμ�bv = �̄(c)(v′, s ′)��(b)(v, s)[Avμ + Bv′

μ], (4.39)

where A and B are functions of w. The equation of motion (iv′ · D)cv′ = 0
implies that contracting v′μ into the above give zero, so

B = −Aw. (4.40)

The function A can be expressed in terms of �̄� and the Isgur-Wise function ζ .
To show this note that

〈�c(v′, s ′)|i∂μ(c̄v′�bv)|�b(v, s)〉
= [(

m�b − mb
)
vμ − (

m�c − mc
)
v′

μ

]〈�c(v′, s ′)|c̄v′�bv|�b(v, s)〉
= �̄�(v − v′)μζ ū(v′, s ′)�u(v, s). (4.41)

So for �b → �c matrix elements in HQET,

i∂μ(c̄v′�bv) = c̄v′ i
←
Dμ�bv + c̄v′�i Dμbv

= �̄�(v − v′)μζ�̄(c)(v′, s ′)��(b)(v, s). (4.42)

Contracting vμ into this and using the equation of motion (ivμDμ)bv = 0 implies
that

A(1 − w2) = �̄�ζ (1 − w), (4.43)
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giving

A = �̄�ζ (w)

1 + w
. (4.44)

In summary, putting all the pieces together gives

c̄v′ i
←
Dμ�bv = �̄�ζ

1 + w
�̄(c)(v′, s ′)��(b)(v, s)(vμ − wv′

μ). (4.45)

For the operator with the derivative on the bottom quark, one uses

c̄v′�i Dμbv = −(b̄vi
←
Dμ�̄cv′)†

= − �̄�ζ

1 + w
�̄(c)(v′, s ′)��(b)(v, s)(v′

μ − wvμ). (4.46)

Using these results with � = γ μγ ν , and so on, together with the fact that the
effect of 1/m Q corrections to the Lagrangian can be absorbed into a redefinition
of ζ , yields the following expression for the �b → �ceν̄e form factors at order
1/m Q :

f1 =
[

1 +
(

�̄�

2mc
+ �̄�

2mb

)]
ζ (w),

f2 = −�̄�

mc

(
1

1 + w

)
ζ (w),

f3 = −�̄�

mb

(
1

1 + w

)
ζ (w),

g1 =
[

1 −
(

�̄�

2mc
+ �̄�

2mb

)(
1 − w

1 + w

)]
ζ (w),

g2 = −�̄�

mc

(
1

1 + w

)
ζ (w),

g3 = �̄�

mb

(
1

1 + w

)
ζ (w).

(4.47)

The leading order predictions for the form factors in Eq. (4.29) involved a single
unknown function ζ (w). The result including 1/m Q corrections involves a single
unknown function, as well as the nonperturbative constant �̄�. Many of the
leading order relations survive even when the 1/m Q corrections are included
in �b decay form factors. In the next section, we will see that fewer relations
hold for meson decay including 1/m Q corrections, but some important ones
continue to hold even at this order. The �QCD/m Q corrections are expected to
be numerically small, of the order of ∼10–20%.
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At the zero-recoil point w = 1, the matrix elements of the vector and axial
vector currents in �b decay become

〈�c(p′, s ′)|c̄γ νb|�b(p, s)〉 = [ f1 + f2 + f3]vν u(p′, s ′)u(p, s),

〈�c(p′, s ′)|c̄γ νγ5b|�b(p, s)〉 = g1 ū(p′, s ′)γ νγ5u(p, s).
(4.48)

One can see from Eq. (4.47) that at w = 1, f1 + f2 + f3 and g1 do not receive
any nonperturbative 1/m Q corrections, so that the decay matrix element has no
1/m Q corrections at zero recoil, a result known as Luke’s theorem. Note that
the individual form factors can have 1/m Q corrections at zero recoil, but the
matrix element does not. A similar result will be proven for B decays in the next
section.

4.5 B̄ → D(∗)eν̄e decay and Luke’s theorem

The analysis of 1/m Q corrections for �b → �c semileptonic decay can be re-
peated for B̄ → D(∗) semileptonic decay. To determine the 1/m Q corrections
using the weak currents in Eq. (4.38), one needs the matrix elements of c̄v′ i

←
Dμ�bv

and c̄v′�i Dμbv between B̄ and D(∗) meson states at leading order in 1/m Q . For
this, one can use

c̄v′ i
←
Dμ�bv = Tr H̄ (c)

v′ �H (b)
v Mμ(v, v′)

c̄v′�i Dμbv = −(b̄vi
←
Dμ�̄cv′)† = −Tr H̄ (c)

v′ �H (b)
v M̄μ(v′, v)

(4.49)

where

Mμ(v, v′) = ξ+(v + v′)μ + ξ−(v − v′)μ − ξ3γμ (4.50)

is the most general bispinor constructed out of v and v′. There is no term propor-
tional to εμαβνv

αv′βγ νγ5 since it can be eliminated by using the three-γ matrix
identity in Eq. (1.119) to write

−iεμαβνv
αv′βγ νγ5 = γμ/v/v

′ − vμ/v
′ − wγμ + v′

μ/v, (4.51)

which can be absorbed into the other terms using H (b)
v /v = −H (b)

v ,/v′ H̄ (c)
v′ = −H̄ (c)

v′ .
The equation of motion, (iv′ · D)cv′ = 0, implies that

ξ+(w + 1) − ξ−(w − 1) + ξ3 = 0. (4.52)

By an argument similar to that used to derive Eq. (4.41), one finds that for
B̄ → D(∗) matrix elements,

i∂μ(cv′�bv) = c̄v′ i
←
Dμ�bv + cv′�i Dμbv

= −�̄(v − v′)μ ξ Tr H̄ (c)
v′ �H (b)

v , (4.53)
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which implies using Eqs. (4.49) and (4.50) that

ξ−(w) = 1

2
�̄ξ (w). (4.54)

When combined with Eq. (4.52), this yields

ξ+(w) = w − 1

2(w + 1)
�̄ξ (w) − ξ3(w)

w + 1
. (4.55)

The 1/m Q corrections to the B̄ → D(∗) form factors that were defined in
Eq. (2.84) from the 1/m Q terms in the currents given in Eq. (4.38) are

δh+ = [(1 + w)ξ+ + ξ3]

(
1

2mc
+ 1

2mb

)
− (w − 1)ξ−

(
1

2mc
+ 1

2mb

)
,

δh− = [(1 + w)ξ+ + 3ξ3]

(
1

2mc
− 1

2mb

)
− (w + 1)ξ−

(
1

2mc
− 1

2mb

)
,

δhV = ξ−
(

1

mc
+ 1

mb

)
− ξ3

(
1

mb

)
,

(4.56)
δh A1 = ξ+

(
1

mc
+ 1

mb

)
+ ξ3

1 + w

(
1

mc
+ 2 − w

mb

)
,

δh A2 = (ξ+ − ξ−)

(
1

mc

)
,

δh A3 = −ξ3

(
1

mb

)
+ ξ−

(
1

mb

)
+ ξ+

(
1

mc

)
,

where ξ+ and ξ− are given in Eqs. (4.54) and (4.55).
One also needs to evaluate the 1/m Q corrections from the Lagrangian. The

time-ordered product of the c-quark chromomagnetic operator with the weak
currents, Eq. (4.30), can be written as

Tr H̄ (c)
v′ σμν

(1 + /v′)
2

�H (b)
v

Xμν

2mc
, (4.57)

as for the �b → �c case. The only difference is that Xμν is now a general bispinor
that is antisymmetric in μ and ν. The most general form for Xμν that does not
give a vanishing contribution is

Xμν = iχ2(vμγν − vνγμ) − 2χ3σμν. (4.58)

A similar result holds for the b-quark chromomagnetic moment. The c-quark
kinetic energy term gives a time-ordered product contribution

−Tr H̄ (c)
v′

(1 + /v′)
2

�H (b)
v

χ1

mc
, (4.59)
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with a similar expression for the b-quark kinetic energy. These give

δh+ = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mc
+ 1

mb

)
+ 6χ3

(
1

mc
+ 1

mb

)
,

δh− = 0,

δhV = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
,

(4.60)

δh A1 = χ1

(
1

mc
+ 1

mb

)
− 2(w − 1)χ2

(
1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
,

δh A2 = 2χ2

(
1

mc

)
,

δh A3 = χ1

(
1

mc
+ 1

mb

)
− 2χ3

(
1

mc
− 3

mb

)
− 2χ2

(
1

mc
+ w − 1

mb

)
.

The expressions for the form factors are given by adding Eqs. (4.56) and (4.60)
to Eq. (2.95). In addition, there are the perturbative corrections discussed in
Chapter 3. We will see in the next section that there is a connection between
these two seemingly very different kinds of terms.

The 1/m Q corrections to the form factors are parameterized in terms of one
unknown constant �̄, and four unknown functions ξ3, χ1 − 3, so there are several
new functions in the expressions for the meson decay form factors at order 1/m Q .
At zero recoil, the B̄ → D matrix element of the vector current is normalized
when mc = mb. This gives the constraint χ1(1) + 6χ3(1) = 0. There is also a
constraint from the B̄∗ → D∗ matrix element being absolutely normalized at
w = 1 when mb = mc. We have not computed this matrix element, since it is
not relevant for the phenomenology of B decays. However, it is straightforward
to compute this matrix element at zero recoil, and show that the constraint is
χ1(1) − 2χ3(1) = 0, so that

χ1(1) = χ3(1) = 0. (4.61)

Using these relations, one can derive Luke’s result for the absence of 1/m Q

corrections to the meson matrix elements of the weak currents at zero recoil.
The B̄ → D matrix element of the vector current at zero recoil is proportional
to h+(1), and the B̄ → D∗ matrix element of the axial current at zero recoil is
proportional to h A1 (1). It is easy to see that δh+(1) = δh A1 (1) = 0 using the
results derived above.

The absence of 1/m Q corrections to the matrix elements of the weak cur-
rents at zero recoil allows for a precise determination of |Vcb| from experi-
mental semileptonic B decay data. Extrapolation of the experimental value for
d�(B̄ → D∗eν̄e)/dw toward w = 1 gives

|Vcb||FD∗(1)| = (35.2 ± 1.4) × 10−3, (4.62)
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where FD∗(w) was defined in Eq. (2.87). At zero recoil, the expression for
FD∗(w) simplifies, giving FD∗(1) = h A1 (1). In the m Q → ∞ limit FD∗(1) = 1;
however there are perturbative and nonperturbative corrections,

FD∗(1) = ηA + 0 + δ1/m2 + · · · , (4.63)

where ηA is the matching coefficient for the axial current, which was determined
in Chapter 3 at order αs . It has been computed to order α2

s , and is numerically
ηA � 0.96. The zero in Eq. (4.63) indicates the absence of order 1/mc,b nonper-
turbative corrections, and δ1/m2 + · · · stands for the nonperturbative corrections
of the order of 1/m2

Q and higher. Estimates of these corrections using phe-
nomenological models like the constituent quark model lead to the expectation
δ1/m2 + · · · � −0.05. Putting these results together, and assigning a 100% un-
certainty to the model-dependent estimate of the nonperturbative effects yields
the theoretical prediction

FD∗(1) = 0.91 ± 0.05. (4.64)

Combining this with the experimental value in Eq. (4.62) yields

|Vcb| = [38.6 ± 1.5(exp) ± 2.0(th)] × 10−3, (4.65)

for the b → c element of the CKM matrix.
The theoretical error in Eq. (4.64) is somewhat ad hoc. To have complete

confidence that the theoretical uncertainty in the value of Vcb is indeed only 5%,
and to try and reduce it further, it is necessary to have another high precision
determination of |Vcb| using a different method. Fortunately, as we shall see in
Chapter 6, |Vcb| can also be determined using inclusive B decays.

The zero-recoil B̄ → D vector current matrix element also has no order
�QCD/m Q corrections, i.e., h+(1) = 1 + O(�2

QCD/m2
Q). However, B̄ → Deν̄e

is not as useful as B̄ → D∗eν̄e for determining Vcb. There are two reasons for
this. First, the differential decay rate for B̄ → Deν̄e vanishes faster as w → 1
than the differential decay rate for B̄ → D∗eν̄e. This makes the extrapolation to
zero recoil more difficult. Second, FD(1) depends on both h+(1) and h−(1), and
h−(1) does receive O(�QCD/m Q) corrections.

4.6 Renormalons

Suppose QCD perturbation theory is used to express some quantity f as a power
series in αs :

f (αs) = f (0) +
∞∑

n = 0

fnα
n+1
s . (4.66)
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Typically, this perturbation series for f is an asymptotic series and has zero
radius of convergence. The convergence can be improved by defining the Borel
transform of f ,

B[ f ](t) = f (0)δ(t) +
∞∑

n = 0

fn

n!
tn, (4.67)

which is more convergent than the original expansion in Eq. (4.66). The original
series for f (αs) can be recovered from the Borel transform B[ f ](t) by the inverse
Borel transform

f (αs) =
∫ ∞

0
dt e−t/αs B[ f ](t). (4.68)

If the integral in Eq. (4.68) exists, the perturbation series in Eq. (4.66) for f (αs)
is Borel summable, and Eq. (4.68) gives a definition for the sum of the series.
While this provides a definition for the sum of the series in Eq. (4.66), it does
not mean that it gives the complete, nonperturbative value for f . For example,
exp(−1/αs) has the power series expansion

exp(−1/αs) = 0 + 0αs + 0α2
s + · · · (4.69)

whose sum is zero. If there are singularities in B[ f ](t) along the path of inte-
gration, the Borel sum of f is ambiguous. The inverse Borel transform must be
defined by deforming the contour of integration away from the singularity, and
the inverse Borel transform in general depends on the deformation used.

Singularities in the Borel transform B[ f ](t) arise from factorial growth in the
coefficients fn at high orders in perturbation theory. For example, suppose that
for large n, fn is of the order of

fn ∼ awn(n + k)! (4.70)

The Borel transform then has a pole of order k + 1 at t = 1/w:

B[ f ](t) ∼ ak!

(1 − wt)k+1
+ less singular. (4.71)

One source of singularities in B[ f ] in QCD is infrared renormalons. Infrared
renormalons are ambiguities in perturbation theory arising from the fact that the
gluon coupling gets strong for soft gluons. The infrared renormalons produce
a factorial growth in the coefficients fn , which gives rise to poles in the Borel
transform B[ f ]. The renormalon ambiguities have a power law dependence
on the momentum transfer Q2. For example, a simple pole at t = t0 in B[ f ]
introduces an ambiguity in f , depending on whether the integration contour is
deformed to pass above or below the renormalon pole. The difference between
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Fig. 4.1. The bubble chain sum. The blob is the gluon vacuum polarization at one loop.

the two choices is proportional to

δ f ∼
∮

C
dt e−t/αs (Q) B[ f ](t) ∼

(
�QCD

Q

)2β0t0

, (4.72)

where β0 defined in Eq. (1.90) is proportional to the leading term in the QCD β

function that governs the high-energy behavior of the QCD coupling constant,
and the contour C encloses t0. It is useful to write the Borel transform B[ f ](t)
in terms of the variable u = β0t . The form of the renormalon singularity in
Eq. (4.72) then implies that a renormalon at u0 produces an ambiguity in f that
is of the order of (�QCD/Q)2u0 . This ambiguity is canceled by a corresponding
ambiguity in nonperturbative effects such as in the matrix elements of higher
dimension operators.

Clearly, one is not able to sum the entire QCD perturbation series to determine
the renormalon singularities. Typically, one sums bubble chains of the form given
in Fig. 4.1. One can consider a formal limit in which the bubble chain sum is the
leading term. Take QCD with N f flavors in the limit N f → ∞, with a = N f αs

held fixed. Feynman diagrams are computed to leading order in αs , but to all
orders in a. Terms in the bubble sum of Fig. 4.1 with any number of bubbles are
equally important in this limit, since each additional fermion loop contributes
a factor αs N f , which is not small. QCD is not an asymptotically free theory in
the N f → ∞ limit, so the procedure used is to write the Borel transform as a
function of u but still study renormalons for positive u. The singularities in u
are taken to be the renormalons for asymptotically free QCD. This procedure is
a formal way of doing the bubble chain sum while neglecting other diagrams.

The Borel transform of the sum of Feynman graphs containing a single bubble
chain can be readily obtained by performing the Borel transform before doing
the final loop integral. In the Landau gauge, the bubble chain sum is

G(αs, k) =
∞∑

n = 0

i

k2

(
kμkν

k2
− gμν

)
(−β0αs N f )n[ln(−k2/μ2) + C]n, (4.73)

where k is the momentum flowing through the gauge boson propagator, C is a
constant that depends on the particular subtraction scheme, and β0 = −1/6π

is the contribution of a single fermion to the β function. In the MS scheme,
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C = −5/3. The Borel transform of Eq. (4.73) with respect to αs N f is

B[G](u, k) = 1

αs N f

∞∑
n = 0

i

k2

(
kμkν

k2
− gμν

)
(−u)n

n!
[ln(−k2/μ2) + C]n

= 1

αs N f

i

k2

(
kμkν

k2
− gμν

)
exp[−u ln(−k2eC/μ2)]

= 1

αs N f

(
μ2

eC

)u
i

(−k2)2 + u
(kμkν − k2gμν). (4.74)

The 1/αs has been factored out before Borel transforming, because it will be
canceled by the factor of g2 from the gluon couplings to the external fermion line.
The Borel transformed loop graphs can be computed by using the propagator in
Eq. (4.74) instead of the usual gauge boson propagator in the Landau gauge:

(kμkν − k2gμν)
i

(k2)2
. (4.75)

By construction, HQET has the same infrared physics as the full QCD theory.
However, because the ultraviolet physics differs in the two theories (above the
scale m Q at which the theories are matched), the coefficients of operators in
the effective theory must be modified at each order in αs(m Q) to ensure that
physical predictions are the same in the two theories. Such matching corrections
were considered in Chapter 3.

Since the two theories coincide in the infrared, these matching conditions de-
pend in general only on ultraviolet physics and should be independent of any in-
frared physics, including infrared renormalons. However, in a mass-independent
renormalization scheme such as dimensional regularization with MS, such a
sharp separation of scales cannot be achieved. It is easy to understand why in-
frared renormalons appear in matching conditions. Consider the familiar case
of integrating out a W boson and matching onto a four-Fermi interaction. The
matching conditions at one loop involve subtracting one-loop scattering ampli-
tudes calculated in the full and effective theories, as indicated in Fig. 4.2, where
C0 is the lowest order coefficient of the four-Fermi operator, and C1 is the αs

correction. For simplicity, neglect all external momenta and particle masses, and
consider the region of loop integration where the gluon is soft. When k = 0, the
two theories are identical and the graphs in the two theories are identical. This

c1(μ) ∼ −

Fig. 4.2. Matching condition for the four-Fermi operator.
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is the well-known statement that infrared divergences cancel in matching con-
ditions. However, for finite (but small) k, the two theories differ at O(k2/M2

W )
when one retains only the lowest dimension operators in the effective theory.
Therefore, the matching conditions are sensitive to soft gluons at this order, and
it is not surprising that the resulting perturbation series is not Borel summable
and has renormalon ambiguities starting at O(�2

QCD/M2
W ).

However, this ambiguity is completely spurious and does not mean that the
effective field theory is not well defined. Since the theory has only been defined to
a fixed order, an ambiguity at higher order in 1/MW is irrelevant. The renormalon
ambiguity corresponded to the fact that the two theories differed in the infrared
at O(k2/M2

W ). When operators suppressed by an additional power of 1/M2
W in

the effective theory are consistently taken into account, the two theories will
coincide in the infrared up to O(k4/M4

W ), and any ambiguity is then pushed up
to O(�4

QCD/M4
W ). Consistently including 1/M4

W suppressed operators pushes
the renormalon to O(�6

QCD/M6
W ), and so on. In general, a renormalon at u = u0

in the coefficient function of a dimension D operator is canceled exactly by a
corresponding ambiguity in matrix elements of operators of dimension D + 2u0,
so that physical quantities are unambiguous. This cancellation is a generic feature
of all effective field theories, and it also occurs in HQET.

The HQET Lagrangian has an expansion in inverse powers of the heavy quark
mass, which can be formally written as

L = L0 + L1 + L2 + · · · + Llight,

L0 = Q̄v(i D · v)Qv − δm Q̄v Qv,
(4.76)

on scaling out the phase factor exp(−im0v · x) from the heavy quark field. Here
m0 is a mass that can differ from m Q by an amount of order �QCD, Llight is the
QCD Lagrangian for the light quarks and gluons, Qv is the heavy quark field,
and Lk are terms in the effective Lagrangian for the heavy quark that are of
order 1/mk

0. There are two mass parameters for the heavy quark in Eq. (4.76),
the expansion parameter of HQET m0, and the residual mass term δm. The two
parameters are not independent; one can make the redefinition m0 → m0 + �m,
δm → δm − �m. A particularly convenient choice is to adjust m0 so that the
residual mass term δm vanishes. Most HQET calculations are done with this
choice of m0, and this is the choice we have used so far in this book, but it is
easy to show that the same results are obtained with a different choice of m0.
The HQET mass m0 when δm = 0 is often referred to in the literature as the
pole mass m Q , and we will follow this practice here.

Like all effective Lagrangians, the HQET Lagrangian is nonrenormalizable, so
a specific regularization prescription must be included as part of the definition
of the effective theory. An effective field theory is used to compute physical
quantities in a systematic expansion in a small parameter, and the effective



120 Nonperturbative corrections

Lagrangian is expanded in this small parameter. The expansion parameter of the
HQET is �QCD/m0. One can then use “power counting” to determine what terms
in the effective theory are relevant to a given order in the 1/m0 expansion. For
example, to second order in 1/m0, one needs to study processes to first order in
L2, and to second order inL1. It is useful to have a renormalization procedure that
preserves the power counting. We choose to use dimensional regularization with
MS, and nonperturbative matrix elements must be interpreted in this scheme.
A nonperturbative calculation of a matrix elements, e.g., using lattice Monte
Carlo methods, can be converted to MS by means of a perturbative matching
procedure.

There is a renormalon in the relation between the renormalized mass at short
distances (such as the MS mass m̄ Q) and the pole mass of the heavy quark
at u = 1/2, which produces an ambiguity of the order of �QCD in the relation
between the pole mass and the MS mass. The heavy quark mass in HQET and
the MS mass at short distances are parameters in the Lagrangian that must be
determined from experiment. Any scheme can be used to compute physical
processes, though one scheme might be more advantageous for a particular
computation. The MS mass at short distances is useful in computing high-energy
processes. However, there is no advantage to using the “short distance” mass
(such as the running MS mass) in HQET. In fact, from the point of view of HQET,
this is inconvenient. The effective Lagrangian in Eq. (4.76) is an expansion in
inverse powers of m0. Power counting in 1/m0 in the effective theory is only
valid if δm is of the order of one (or smaller) in m0, i.e., only if δm remains finite
in the infinite mass limit m0 → ∞. When m0 is chosen to be the MS mass the
residual mass term δm is of the order of m0 (up to logarithms). This spoils the
1/m0 power counting of HQET, mixes the αs and 1/m0 expansions, and breaks
the heavy flavor symmetry. For example, using m0 to be the MS mass at μ = m0,
one finds at one loop that

δm = 4

3π
αsm0. (4.77)

In b → c decays, including this residual mass term in the heavy c-quark
Lagrangian causes 1/mc operators such as c̄v′

←
/D�bv/mc to produce effects that

are suppressed by αs rather than �QCD/mc. While physical quantities calculated
in this way must be the same as those calculated by using the pole mass, it un-
necessarily complicates the power counting to use a definition for m0 that leaves
a residual mass term that is not finite in the m0 → ∞ limit. Better choices for
the expansion parameter of HQET are the heavy meson mass (with δm of the
order of �QCD), and the pole mass (with δm = 0).

The MS mass at short distances can be determined (in principle) from ex-
periment without any renormalon ambiguities proportional to �QCD. The MS
quark mass can be related to other definitions of the quark mass by using QCD
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perturbation theory. The connection between the Borel-transformed pole mass
and the MS mass is

B[m Q](u) = m̄ Qδ(u) + m̄ Q

3π N f

[(
μ2

m̄2
Q

)u

e−uC 6(1 − u)
�(u)�(1 − 2u)

�(3 − u)

− 3

u
+ R�1 (u)

]
, (4.78)

where m̄ Q is the renormalized MS mass at the subtraction point μ, and the
constant C = −5/3 and the function R�1 (u) have no singularities at u = 1/2.
Equation (4.78) has a renormalon singularity at u = 1/2, which is the leading
infrared renormalon in the pole mass. Writing u = 1/2 + �u, we have

B[m Q](u = 1/2 + �u) = − 2μe−C/2

3π N f �u
+ · · · , (4.79)

where the ellipses denote terms regular at �u = 0. We will only work to leading
order in 1/m0, so poles to the right of u = 1/2, which are related to ambiguities
at higher order in 1/m0, are irrelevant. Although m Q is formally ambiguous at
�QCD, we have argued that physical quantities that depend on m Q are unam-
biguously predicted in HQET. We now demonstrate this explicitly for a ratio of
form factors in �b semileptonic decay.

The matrix element of the vector current for the semileptonic decay �b →
�ceν̄e decay is parameterized by the three decay form factors f1−3(w) defined in
Eq. (4.27). In the limit mb, mc → ∞, and at lowest order in αs , the form factors
f2 and f3 vanish. We will consider αs and 1/mc corrections, but work in the
mb → ∞ limit. Consider the ratio r f = f2/ f1, which vanishes at lowest order in
αs and 1/mc. The corrections to r f can be written in the form

r f (αs, w) ≡ f2(w)

f1(w)
= −�̄�

mc

1

(1 + w)
+ fr (αs, w), (4.80)

where the function fr (αs, w) is a perturbatively calculable matching condition
from the theory above μ = mc to the effective theory below μ = mc, and the
�̄� term arises from 1/mc suppressed operators in HQET. At one loop (see
Problem 5 of Chapter 3),

fr (αs, w) = −2αs

3π

1√
w2 − 1

ln
(
w +

√
w2 − 1

)
. (4.81)

The ratio r f = f2/ f1 is an experimentally measurable quantity and does not
have a renormalon ambiguity. The standard form for r f in Eq. (4.80) is obtained
by using HQET with the pole mass as the expansion parameter. The HQET
parameter �̄� is the baryon mass in the effective theory, i.e., it is the baryon mass
m�c minus the pole mass of the c quark. The pole mass has the leading renormalon
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b c

Fig. 4.3. The bubble chain sum for the radiative correction to the vector current form
factors.

ambiguity at u = 1/2 given in Eq. (4.79), which produces an ambiguity in the
1/mc contribution to f2/ f1 given by the first term in Eq. (4.80). There must
therefore also be a renormalon at u = 1/2 in the radiative correction to f2/ f1

given by the second term in Eq. (4.80). It is straightforward to show that this is
indeed the case.

The Borel-transformed series B[ fr ](u, w) in the 1/N f expansion is easily
calculated from the graph in Fig. 4.3, using the Borel-transformed propagator in
Eq. (4.74). The Borel transform of the Feynman diagram is

B[graph] = i

αs N f

4

3
g2

(
μ2

eC

)u

×
∫

d4k

(2π )4

γ ν(mc/v
′ + k/ + mc)γ αvμ(kμkν − k2gμν)

(k2 + 2mck · v′)(−k2)2+uk · v . (4.82)

The radiative correction to f2 (which determines fr ) is obtained from the terms in
Eq. (4.82) that are proportional to vα. Combining denominators using Eq. (1.45)
and Eq. (3.6), extracting the terms proportional to vα and performing the mo-
mentum integral, we obtain

B[ fr ](u, w) = 4(u − 2)

3π N f (1 + u)

(
μ2

eC

)u

mc

×
∫ ∞

0
dλ

∫ 1

0
dx

(1 − x)1+u x[
λ2 + 2λmcxw + m2

c x2
]1+u

. (4.83)

Rescaling λ → xmcλ and performing the x integral gives

B[ fr ](u, w) = 4

3π N f

(
μ2

m2
ceC

)u
(u − 2)�(1 − 2u)�(1 + u)

�(3 − u)

×
∫ ∞

0
dλ

1

[λ2 + 2λw + 1]1+u
. (4.84)



4.7 v · A = 0 gauge 123

This expression has a pole at u = 1/2. Expanding in �u = u − 1/2 gives

B[ fr ](u = 1/2 + �u, w)

= 2μ

3π Nf mceC/2

1

�u

∫ ∞

0
dλ

1

[λ2 + 2λw + 1]3/2
+ · · ·

= 2μ

3π Nf mceC/2

1

�u

1

1 + w
, (4.85)

where the ellipsis denotes terms that are regular at u = 1/2.
The Borel singularity in Eq. (4.85) cancels the singularity in the first term

of Eq. (4.80) at all values of w, so that the ratio of form factors r f (αs, w) =
f2(w)/ f1(w) has no renormalon ambiguities. Therefore the standard HQET com-
putation of the 1/mc correction to f2/ f1 using the pole mass and the standard
definition of �̄� gives an unambiguous physical prediction for the ratio of form
factors.

The cancellation of renormalon ambiguities has been demonstrated by explicit
computation in this example, but the result holds in general.

4.7 v · A = 0 gauge

Calculations in HQET can be performed in almost any gauge. However, in the
v · A = 0 gauge, HQET perturbation theory is singular. Consider tree-level Qq
elastic scattering in the rest frame v = vr . In HQET, an on-shell heavy quark has
a four velocity v and a residual momentum k that satisfies v · k = 0. Suppose the
initial heavy quark has zero residual momentum and the final quark has residual
momentum k = (0, k). The tree-level Feynman diagram in Fig. 4.4 gives the Qq
scattering amplitude

M = −g2ūQ T AuQ
i

k2
ūq T A

/vuq , (4.86)

in the Feynman or Landau gauge, where uQ and uq are the heavy and light quark
spinors, respectively. The current conservation equation ūqk/uq = 0 was used to
simplify the result.

In the v · A = 0 gauge, the gluon propagator is

−i

k2 + iε

[
gμν − 1

v · k
(kμvν + vμkν) + 1

(v · k)2
kμkν

]
. (4.87)

Fig. 4.4. Heavy quark + light quark scattering amplitude at tree level.
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The heavy quark kinetic energy cannot be treated as a perturbation in this gauge,
because then v · k = 0 and the gluon propagator is ill defined. Including the
heavy quark kinetic energy in the Lagrangian, the residual momentum of the
outgoing heavy quark becomes kμ = (k2/2m Q, k) and v · k = k2/2m Q is not
zero. Note that the factors of 1/(v · k) in Eq. (4.87) lead to 2m Q/k2 terms in the
gluon propagator, so that the v · A = 0 gauge can mix different orders in the
1/m Q expansion.

It is instructive to see how the scattering amplitude in Eq. (4.86) arises in
the v · A = 0 gauge. The amplitude comes from the QQA vertex that is due
to the heavy quark kinetic energy term −Q̄v D2

⊥/(2m Q)Qv. Although this is a
1/m Q term in the Lagrangian, it can contribute to a leading-order amplitude in the
v · A = 0 gauge. The Feynman rule for Qv(k ′) → Qv(k)+ Aμ vertex arising from
an insertion of the kinetic energy operator is i(g/2m Q)(k⊥ + k ′

⊥)μ = i(g/2m Q)
(k + k′)μ − i(g/2m Q)v · (k + k′)vμ. In the case we are considering, v is chosen
so that k ′ = 0. The part proportional to vμ doesn’t contribute, since v · A = 0.
Since ūqk/uq = 0 only the vμkν + vνkμ term in the gluon propagator contributes,
and one can show that it reproduces Eq. (4.86) for large values of m Q .

In the v · A = 0 gauge the heavy quark kinetic energy must be considered as
a leading operator for on-shell scattering processes, because we have just seen
that it is the QQA vertex from this 1/m Q operator that gives rise to the leading
Qq on-shell scattering amplitude.

4.8 NRQCD

HQET is not the appropriate effective field theory for systems with more than
one heavy quark. In HQET the heavy quark kinetic energy is neglected. It occurs
as a small 1/m Q correction. At short distances the static potential between heavy
quarks is determined by one gluon exchange and is a Coulomb potential. For a
QQ̄ pair in a color singlet, it is an attractive potential, and the heavy quark kinetic
energy is needed to stabilize a QQ̄ meson. For QQ̄ hadrons (i.e., quarkonia)
the kinetic energy plays a very important role, and it cannot be treated as a
perturbation.

In fact the problem is more general than this. Consider, for example, trying to
calculate low-energy QQ scattering in the center of a mass frame using HQET.
Setting v = vr for each heavy quark, and using initial and final residual momenta
k± = (0, ±k) and k ′± = (0, ±k′) respectively, we find the one-loop Feynman di-
agram, Fig. 4.5, gives rise to a loop integral,∫

dnq

(2π )n

i

(q0 + iε)

i

(−q0 + iε)

i

(q + k+)2 + iε

i

(q + k ′+)2 + iε
. (4.88)

The q0 integration is ill defined because it has poles above and below the real axis
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Fig. 4.5. One-loop contribution to Q Q scattering.

at q0 = ±iε. This problem is cured by not treating the heavy quark kinetic energy
as a perturbation but including it in the leading-order terms. Then the denomi-
nators of the two heavy quark propagators become E + q0 − q2/2m Q + iε and
E − q0 − q2/2m Q + iε, where E = k2/2m Q = k′2/2m Q . Closing the q0 contour
in the upper half-plane, we find Eq. (4.88) is dominated (for large m Q) by the
residue of the pole at q0 = E − q2/2m Q + iε and is proportional to m Q . That is
why we obtained an infinite answer for Eq. (4.88) by using the m Q → ∞ limit
of the fermion propagators.

Properties of quarkonia are usually predicted as a power series in v/c, where v

is the magnitude of the relative QQ̄ velocity and c is the speed of light. For these
systems the appropriate limit of QCD to examine is the c → ∞ limit. In this
limit the QCD Lagrangian becomes an effective field theory called NRQCD. For
finite c there are corrections suppressed by powers of 1/c. In particle physics
we usually set h̄ = c = 1. Making the factors of c explicit, we find the QCD
Lagrangian density is

LQCD = −1

4
G B

μνG Bμν − cQ̄(i /D − m Qc)Q. (4.89)

In the above the zero component of a partial derivative is

∂0 = 1

c

∂

∂t
, (4.90)

and D is the covariant derivative

Dμ = ∂μ + ig

c
AB

μT B . (4.91)

The gluon field strength tensor G B
μν is defined in the usual way except that

g → g/c.
Although c is explicit, h̄ has been set to unity. All dimensionful quanti-

ties can be expressed in units of length [x] and time [t], i.e., [E] ∼ 1/[t] and
[p] ∼ 1/[x]. The Lagrangian L = ∫

d3xL has units of 1/[t] since the action
S = ∫ Ldt is dimensionless. It is straightforward to deduce that the gluon field
has units [A] ∼ 1/

√
[x][t] and the strong coupling g ∼ √

[x]/[t]. The fermion
field has units [ψ] ∼ 1/[x]3/2 while its mass has units [m Q] ∼ [t]/[x]2. With
these units m Qc2 has dimensions of energy and the strong fine structure constant
αs = g2/4πc is dimensionless.
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For the fermion field Q the transition from QCD to NRQCD is analogous to
the derivation of HQET. The heavy quark field is rewritten as

Q = e−im Qc2t
[

1 + i /D⊥
m Qc

+ · · ·
](

ψ

0

)
, (4.92)

where ψ is a two-component Pauli spinor. Using this field redefinition, we find
the part of the QCD Lagrange density involving Q becomes

Lψ = ψ†
[

i

(
∂

∂t
+ ig AB

0 T B
)

+ ∇2

2m Q

]
ψ + · · · , (4.93)

where the ellipses denote terms suppressed by powers of 1/c. Note that the heavy
quark kinetic energy is now leading order in 1/c. The replacement g → g/c was
necessary to have a sensible c → ∞ limit.

Among the terms suppressed by a single power of 1/c is the gauge completion
of the kinetic energy:

Lint = ig

2m Qc
AC [ψ†T C∇ψ − (∇ψ)†T Cψ]. (4.94)

There is also a 1/c term involving the color magnetic field BC = ∇ × AC .
It is convenient to work in Coulomb gauge, ∇ · AC = 0. Then the part of the

action that involves the gluon field strength tensor and is quadratic in the gauge
fields simplifies to

−1

4

∫
d3xGC

μνGCμν → 1

2

∫
d3xGC

0i G
C
0i − 1

4

∫
d3xGC

i j G
C
i j

= 1

2

∫
d3x

(
∂i AC

0

)2 + (
∂0 AC

i

)2 − (
∂i AC

j

)2 + non-Abelian terms.

(4.95)

The non-Abelian terms are suppressed by factors of 1/c. [The above derivation
implicitly assumes that m Qv2 � �QCD.]

In Eq. (4.95), the zero component of the gauge field has no time derivatives.
Therefore, it does not represent a propagating degree of freedom. Neglecting
terms suppressed by factors of 1/c, the Lagrangian only contains terms quadratic
and linear in the field AC

0 . Hence the functional integral over AC
0 can be performed

exactly by completing the square. The effects of AC
0 exchange are then repro-

duced by an instantaneous potential V (x, y) that is proportional to the Fourier
transform of the momentum–space propagator,

V (x, y) = g2
∫

d3k

(2π )3
eik · (x−y) 1

k2
= g2

4π |x − y| . (4.96)

The transverse gluons AC do not couple to the quarks at leading order in the 1/c
expansion. Neglecting terms suppressed by 1/c, we find the effective Lagrangian
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for the interaction of nonrelativistic quarks is

LNRQCD =
∫

d3x ψ†
(

i
∂

∂t
+ ∇2

2m Q

)
ψ

−
∫

d3x1

∫
d3x2ψ

†(x1, t)T Aψ(x1, t)V (x1, x2)ψ†(x2, t)T Aψ(x2, t).

(4.97)

The Hamiltonian

H =
∫

d3xψ†i
∂

∂t
ψ − L (4.98)

has the familiar form used in nonrelativistic many-body theory. When restricting
one’s attention to the two heavy quark sector, the effective theory reduces to
ordinary nonrelativistic quantum mechanics.

4.9 Problems

1. For any doublet of heavy hadrons H (Q)
± with spins j± = s� ± 1/2, show that

m H (Q)
±

= m Q + �̄H − λH,1

2m Q
± n∓

λH,2

2m Q
,

where n± = 2 j± + 1 and λH,1 and λH,2 are defined in Eqs. (4.23). We have inserted an extra
subscript H because the values of the matrix elements depend on the particular doublet.

2. For the ground-state doublet of mesons, let {�̄H , λH,1, λH,2} = {�̄, λ1, λ2} and for the excited
s� = 3/2 mesons let {�̄H , λH,1, λH,2} = {�̄∗, λ∗

1, λ
∗
2}. Show that

�̄∗ − �̄ = mb(m̄∗
B − m̄ B) − mc(m̄∗

D − m̄ D)

mb − mc
,

λ∗
1 − λ1 = 2mcmb

(m̄∗
B − m̄ B) − (m̄∗

D − m̄ D)

mb − mc
,

where

m̄ H = n−m H− + n+m H+
n+ + n−

.

3. In Problems 6–9 of Chapter 2, the leading m Q → ∞ predictions for the B̄ → D1eν̄e and
B̄ → D∗

2 eν̄e form factors were derived. In this problem, the 1/m Q corrections are included.

(a) For B̄ → D1 and B̄ → D∗
2 matrix elements, argue that

c̄v′ i
←
Dλ� bv = Tr

{
S(c)

σλ F̄σ
v′�H (b)

v

}
,

c̄v′ �i Dλ bv = Tr
{

S(b)
σλ F̄σ

v′�H (b)
v

}
,

where
S(Q)

σλ = vσ

[
τ

(Q)
1 vλ + τ

(Q)
2 v′

λ + τ
(Q)
3 γλ

] + τ
(Q)
4 gσλ,

and the functions τ
(Q)
i depend on w. (They are not all independent.)
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(b) Show that the heavy quark equation of motion implies

wτ
(c)
1 + τ

(c)
2 − τ

(c)
3 = 0,

τ
(b)
1 + wτ

(b)
2 − τ

(b)
3 + τ

(b)
4 = 0.

(c) Further relations between the τ ’s follow from

i∂ν(c̄v′ � bv) = (�̄vν − �̄∗v′
ν)c̄v′ � bv.

Show that this equation implies the relations

τ
(c)
1 + τ

(b)
1 = �̄τ,

τ
(c)
2 + τ

(b)
2 = −�̄∗τ,

τ
(c)
3 + τ

(b)
3 = 0,

τ
(c)
4 + τ

(b)
4 = 0,

where τ was defined in Problem 9 of Chapter 2. The relations in parts (b) and (c) imply
that all the τ

(Q)
j ’s can be expressed in terms of τ

(c)
1 and τ

(c)
2 .

(d) Using the results from parts (a)–(c), show that the corrections to the currents give the
following corrections to the form factors:√

6 δ f A = −εb(w − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

− εc[4(w�̄∗ − �̄)τ − 3(w − 1)(τ1 − τ2)],
√

6 δ fV1 = −εb(w2 − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

− εc[4(w + 1)(w�̄∗ − �̄)τ − 3(w2 − 1)(τ1 − τ2)],
√

6 δ fV2 = −3εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[(4w − 1)τ1 + 5τ2)],
√

6 δ fV3 = εb(w + 2)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2]

+ εc[4(w�̄∗ − �̄)τ + (2 + w)τ1 + (2 + 3w)τ2],

for B̄ → D1eν̄e. For B̄ → D∗
2 eν̄e show that the corrections to the form factors are

δkV = −εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[τ1 − τ2],

δkA1 = −εb(w − 1)[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc(w − 1)[τ1 − τ2],

δkA2 = −2εcτ1,

δkA3 = εb[(�̄∗ + �̄)τ − (2w + 1)τ1 − τ2] − εc[τ1 + τ2].

Here εc = 1/(2mc), εb = 1/(2mb) and τ1 = τ
(c)
1 , τ2 = τ

(c)
2 .

(e) The zero-recoil matrix elements of the weak current are determined by fV1 (1). The 1/m Q

corrections to the current imply that√
6 fV1 (1) = −8εc(�̄∗ − �̄)τ (1).

Show that the 1/m Q corrections to the states do not alter this relation.

4. Explain why the χ1’s from the charm and bottom quark kinetic energies are the same.

5. Show that the B̄∗ → D∗ matrix element implies that χ1(1) − 2χ3(1) = 0 for the 1/m Q correc-
tions to the B̄ → D(∗) form factors that arise from the chromomagnetic term in the Lagrangian.

6. Verify Eq. (4.77) for the relation between the MS mass and the pole mass.

7. Calculate the order �QCD/mc,b corrections to the form factor ratios R1 and R2 defined in
Chapter 2. Express the result in terms of �̄, ξ3 and χ1−3.
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5
Chiral perturbation theory

In Sec. 1.4 we discussed how to formulate an effective chiral Lagrangian for
the self-interactions of low-momentum pseudo-Goldstone bosons, such as the
pion. Chiral Lagrangians can also be used to describe the interactions of pions
with hadrons containing a heavy quark. The use of chiral perturbation theory is
valid for these interactions as long as the pion is soft, that is, has momentum
p � �CSB. Chiral perturbation theory for heavy hadrons makes use of spon-
taneously broken SU(3)L × SU(3)R chiral symmetry on the light quarks, and
spin-flavor symmetry on the heavy quarks. In this chapter, we study the implica-
tions of the combination of chiral and heavy quark symmetries for heavy hadron
pion interactions.

5.1 Heavy mesons

In this section, we will obtain the chiral Lagrangian that describes the low-
momentum interactions of the π, K , and η with the ground state s� = 1

2 spin
symmetry doublet of heavy mesons, Pa and P∗

a . Some applications of the chiral
Lagrangian are described later in this chapter. The chiral Lagrangian for other
heavy hadron multiplets, e.g., heavy baryons, can be obtained similarly and is
left to the problems at the end of the chapter.

As was noted in Chapter 2, we can combine the Pa and P∗
a fields into a 4 × 4

matrix,

Ha = (1 + /v)

2

[
P∗μ

a γμ + i Paγ5
]
, (5.1)

that transforms under the unbroken SU(3)V subgroup of chiral symmetry as an
antitriplet

Ha → HbV †
ba, (5.2)
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and transforms as a doublet

Ha → DQ(R)Ha, (5.3)

under heavy quark spin symmetry. In Chapter 2, the fields P, P∗ and the matrix
H were also labeled by the flavor and velocity of the heavy quark. In this chapter,
we are mainly concerned with the light quark dynamics, and so these labels are
suppressed whenever possible.

The Lagrangian for the strong interactions of the P and P∗ with low-
momentum pseudo-Goldstone bosons should be the most general one consis-
tent with the chiral and heavy quark symmetries defined in Eqs. (5.2) and (5.3),
and it should contain at leading order the least number of derivatives and inser-
tions of the light quark mass matrix. Fields such as P and P∗, which are not
Goldstone bosons, are generically referred to as matter fields. Matter fields have
a well-defined transformation rule under the unbroken vector SU(3)V symmetry,
but they do not necessarily form representations of the spontaneously broken
SU(3)L × SU(3)R chiral symmetry. To construct the chiral Lagrangian, it is use-
ful to define an H field that transforms under the full SU(3)L × SU(3)R chiral
symmetry group in such a way that the transformation reduces to Eq. (5.2) under
the unbroken vector subgroup. The transformation of H under SU(3)L × SU(3)R

is not uniquely defined, but one can show that all such Lagrangians are related
to each other by field redefinitions and so make the same predictions for any
physical observable.

For example, one can pick a field Ĥa that transforms as

Ĥa → Ĥ b L†
ba, (5.4)

under chiral SU(3)L × SU(3)R . This transformation property is a little unusual
in that it singles out a special role for the SU(3)L transformations. The parity
transform of Ĥ would then have to transform as in Eq. (5.4) but with L replaced
by R. This forces upon us the following choice of parity transformation law:

PĤ a(x, t)P−1 = γ 0 Ĥ b(−x, t)γ 0�ba(−x, t), (5.5)

where � is the matrix defined in Eq. (1.99).
Clearly, Eq. (5.4) is not symmetric under L ↔ R, which causes the parity trans-

formation rule to involve the � field. It is convenient to have a more symmetrical
transformation for H . The key is to introduce a field

ξ = exp(iM/ f ) =
√

�. (5.6)

Because of the square root in Eq. (5.6), ξ transforms in a very complicated way
under chiral SU(3)L × SU(3)R transformations,

ξ → LξU † = Uξ R†, (5.7)

where U is a function of L , R, and the meson fields M(x). Since it depends on
the meson fields, the unitary matrix U is space–time dependent, even though one
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is making a global chiral transformation with constant values for L and R. Under
a SU(3)V transformation L = R = V, ξ has the simple transformation rule

ξ → V ξV †, (5.8)

and

U = V . (5.9)

The field

Ha = Ĥ bξba (5.10)

transforms as

Ha → HbU †
ba, (5.11)

under SU(3)L × SU(3)R transformations. Under parity

PHa P−1 = γ 0 Ĥ cγ
0�cbξ

†
ba

= γ 0 Haγ
0, (5.12)

which no longer involves �. For a generic matter field, it is convenient to use
a field with a transformation law such as Eq. (5.11) that involves U but not L
and R, and that reduces to the correct transformation rule under SU(3)V . For
example, if X is a matter field that transforms as an adjoint X → V X V † under
SU(3)V , one would pick the chiral transformation law X → U XU †.

H and Ĥ lead to the same predictions for physical observables, since they are
related by the field redefinition in Eq. (5.10),

H = Ĥ + i

f
Ĥ M + · · · , (5.13)

which changes off-shell Green’s functions but not S-matrix elements. In this
chapter we use the H field transforming under SU(3)L × SU(3)R and parity as
in Eqs. (5.11) and (5.12). Unless explicitly stated, traces are over the bispinor
Lorentz indices and repeated SU(3) indices (denoted by lower-case roman letters)
are summed over.

Chiral Lagrangians for matter fields such as H are typically written with ξ

rather than � for the Goldstone bosons. ξ has a transformation law that involves
U , L , and R, whereas the matter field transformation law only involves U . In the
construction of invariant Lagrangian terms, it is useful to form combinations of
ξ whose transformation laws only involve U . Two such combinations with one
derivative are

Vμ = i

2
(ξ †∂μξ + ξ∂μξ †),

Aμ = i

2
(ξ †∂μξ − ξ∂μξ †),

(5.14)
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which transform under chiral SU(3)L × SU(3)R transformations as

Vμ → UVμU † + iU∂μU †, Aμ → UAμU †, (5.15)

using the transformation rule in Eq. (5.7) for ξ . Thus Aμ transforms like the
adjoint representation under U and has the quantum numbers of an axial vector
field, and Vμ transforms like a U -gauge field and has the quantum numbers of
a vector field. The Vμ field can be used to define a chiral covariant derivative,
Dμ = ∂μ − iVμ, that can be applied to fields transforming under U . Acting on
a field Fa transforming like a 3 the covariant derivative is

(DF)a = ∂ Fa − iVab Fb, (5.16)

and acting on a field Ga transforming like a 3̄ the covariant derivative is

(DG)a = ∂Ga + iGbVba. (5.17)

The H -field chiral Lagrangian is given by terms that are invariant under chiral
SU(3)L × SU(3)R and heavy quark symmetry. The only term with zero deriva-
tives is the H -field mass term MH Tr H̄a Ha . Scaling the heavy meson fields by
e−i MH v · x removes this mass term. Once this is done, derivatives on the heavy
meson fields produce factors of the small residual momentum, and the usual
power counting of chiral perturbation theory applies. Scaling the H field to re-
move the mass term is equivalent to measuring energies in the effective theory
relative to the H -field mass MH , rather than m Q .

The only allowed terms with one derivative are

L = −iTr H̄avμ

(
∂μδab + iVμ

ba

)
Hb + gπTr H̄aHbγνγ5A

ν
ba. (5.18)

Heavy quark spin symmetry implies that no gamma matrices can occur on the
“heavy quark side” of H̄ and H in the Lagrangian, i.e., between the two fields
in the trace. Any combination of gamma matrices can occur on the light quark
side, i.e., to the right of H in the trace. The H fields in Eq. (5.18) are at the same
velocity, since low-momentum Goldstone boson exchange does not change the
velocity of the heavy quark. It is easy to show that the only gamma matrices
that give a nonvanishing contribution to Tr H̄ H� are � = 1 and � = γμγ5. The
� = 1 term was the H -field mass term discussed earlier. The � = γμγ5 is the
axial coupling to Goldstone bosons. Heavy quark symmetry symmetry implies
that at leading order in 1/m Q , the coupling constant gπ is independent of the
heavy quark mass, i.e., it has the same value for the D and B̄ meson systems.
The kinetic terms in Lagrange density Eq. (5.18) imply the propagators

iδab

2(v · k + iε)
,

−iδab(gμν − vμvν)

2(v · k + iε)
, (5.19)

for the Pa and P∗
a mesons, respectively.

The terms in Lagrange density in Eq. (5.18) that arise from Vν contain an even
number of pseudo-Goldstone boson fields, whereas the terms that arise from Aν ,
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and are proportional to gπ , contain an odd number of pseudo-Goldstone boson
fields. Expanding Aν , in terms of M , Aν = −∂ν M/ f + · · ·, gives the P∗ P M
and P∗ P∗M couplings

Lint =
(

2igπ

f
P∗ν†

a Pb∂ν Mba + h.c

)
− 2igπ

f
P∗α†

a P∗β

b ∂ν Mbaεαλβνv
λ. (5.20)

The P∗ P M and P∗ P∗M coupling constants are equal at leading order in 1/m Q

as a consequence of heavy quark symmetry; the PPM coupling vanishes by
parity. The coupling gπ determines the D∗ → Dπ decay width at tree level

�(D∗+ → D0π+) = g2
π |pπ |3
6π f 2

. (5.21)

The width for a neutral pion in the final state is one-half of this, by isospin
symmetry. The B∗ − B mass splitting is less than the pion mass so the analogous
B∗ → Bπ decay does not occur.

It is possible to systematically include effects that explicitly break chiral sym-
metry and heavy quark symmetry as corrections to the chiral Lagrangian. At the
order of �QCD/m Q , heavy quark spin symmetry violation occurs only by means
of the magnetic moment operator Q̄vgσμνG A

μνT A Qv, which transforms as a
singlet under SU(3)L × SU(3)R chiral symmetry, and as a vector under heavy
quark spin symmetry. At leading order in the derivative expansion, its effects are
taken into account by adding

δL(1) = λ2

m Q
Tr H̄aσ

μν Haσμν (5.22)

to the Lagrange density in Eq. (5.18). The only effect of δL(1) is to shift the
masses of the P and P∗ mesons, giving rise to the mass difference

�(Q) = m P∗ − m P = −8
λ2

m Q
. (5.23)

Including this effect, the P and P∗ propagators are

iδab

2
(
v · k + 3�(Q)/4 + iε

) , −iδab(gμν − vμvν)

2
(
v · k − �(Q)/4 + iε

) , (5.24)

respectively. In the rest framev = vr , an on-shell P has residual energy−3�(Q)/4
and an on-shell P∗ has residual energy �(Q)/4. It is convenient when dealing
with situations in which there is a real P meson and the P∗ only appears as
a virtual particle to rescale the heavy meson fields by an additional amount,
H → e3i�(Q)v·x/4 H , so that the P and P∗ propagators become

iδab

2(v · k + iε)
and

−iδab(gμν − vμvν)

2
(
v · k − �(Q) + iε

) , (5.25)
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respectively. This rescaling is equivalent to measuring energies with respect to
the pseudoscalar mass, rather than the average mass of the PP∗ multiplet.

Chiral symmetry is explicitly broken by the quark mass matrix mq , which
transforms as mq → Lmq R† under SU(3)L × SU(3)R . Chiral symmetry breaking
effects at lowest order are given by adding terms linear in mq to the Lagrange
density,

δL(2) = σ1Tr H̄a Hb(ξm†
qξ + ξ †mqξ †)ab

+ σ ′
1Tr H̄a Ha(ξm†

qξ + ξ †mqξ †)bb, (5.26)

where mq is the light quark mass matrix. Expanding ξ in pion fields, ξ = 1+· · ·,
it is easy to see that the first term gives rise to mass differences between the
heavy mesons due to SU(3)V breaking. The second term is an overall shift in
the meson masses that is due to the light quark masses. It can be distinguished
from the chirally symmetric term Tr H̄ H because it contains π − H interaction
terms. The σ ′

1 term is analogous to the σ term in pion–nucleon scattering. Both
terms contain pion interactions of the pseudo-Goldstone bosons with the heavy
mesons that do not vanish as the four momenta of the pseudo-Goldstone bosons
go to zero, since they contain an explicit factor of chiral symmetry breaking.

The strange quark mass is not as small as the u and d quark masses, and
predictions based just on chiral SU(2)L × SU(2)R typically work much better
than those that use the full SU(3)L × SU(3)R symmetry group. The results of this
section can be used for chiral SU(2)L × SU(2)R , by restricting the flavor indices
to 1–2, and using the upper 2 × 2 block of Eq. (1.100) for M , ignoring η. It is
important to note that the parameters gπ , σ1, σ ′

1, and so on in the SU(2)L × SU(2)R

chiral Lagrangian do not have the same values as those in the SU(3)L × SU(3)R

chiral Lagrangian. The two-flavor Lagrangian can be obtained from the three-
flavor Lagrangian by integrating out the K and η fields.

5.2 gπ in the nonrelativistic constituent quark model

The nonrelativistic constituent quark model is a phenomenological model for
QCD in the nonperturbative regime. The quarks in a hadron are treated as nonrel-
ativistic and interact by means of a potential V (r ) that is usually fixed to be linear
at large distances and Coulombic at short distances. Gluonic degrees of freedom
are neglected apart from their implicit role in giving rise to this potential and
giving the light quarks their large constituent masses mu � md � 350 MeV, ms �
500 MeV. This simple model predicts many properties of hadrons with surprising
accuracy.

We use the quark model to compute the matrix element

〈D+|ūγ 3γ5d|D∗0〉, (5.27)
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where the D∗0 meson has Sz = 0 along the spin quantization ẑ axis, and the
heavy meson states are at rest. To calculate this transition matrix element, we
need the operator ūγ 3γ5d in terms of nonrelativistic constituent quark fields and
the D+ and D∗0 state vectors. The decomposition of a quark field in terms of
nonrelativistic constituent fields is

q =

⎛
⎜⎜⎜⎜⎜⎜⎝

qnr(↑)

qnr(↓)

−q̄nr(↓)

q̄nr(↑)

⎞
⎟⎟⎟⎟⎟⎟⎠

+ · · · , (5.28)

where the ellipses denote terms with derivatives. The field qnr destroys a con-
stituent quark and q̄nr creates a constituent antiquark, with spins along the ẑ axis
as denoted by the arrow. (The lower two elements follow by acting with the
charge conjugation operator on the upper two.) Using this decomposition, one
finds

ūγ 3γ5d = ū†
nr(↓)d̄nr(↓) − ū†

nr(↑)d̄nr(↑)

+ terms involving quark fields. (5.29)

In the matrix element Eq. (5.27), the overlap of spatial and color wave func-
tions for the D and D∗ states gives unity. The operator only acts nontrivially
on the spin-flavor part of the state vector. In our conventions (see Chapter 2),
2i[S3

Q, D] = −D∗3, and this commutation relation fixes the relative phase of
the D and D∗ state vectors. Explicitly,

|D∗0〉 = |c ↑〉|ū ↓〉 + |c ↓〉|ū ↑〉,
|D+〉 = i(|c ↑〉|d̄ ↓〉 − |c ↓〉|d̄ ↑〉).

(5.30)

Equations (5.29) and (5.30) yield

〈D+|ūγ 3γ5d|D∗0〉 = −2i, (5.31)

where the heavy meson states at rest are normalized to two.
The matrix element in Eq. (5.27) can be related to the coupling gπ in the

chiral Lagrangian by using the same method that was used in Sec. 1.7 to relate
the parameter f to a matrix element of the axial current. Under an infinitesimal
axial transformation

R = 1 + iεB T B, L = 1 − iεB T B, (5.32)

the QCD Lagrange density changes by

δLQCD = −AB
μ∂μεB, (5.33)
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where AB
μ is the axial current

AB
μ = q̄γμγ5T Bq. (5.34)

In Eq. (5.34), the SU(3) generator T B acts on flavor space, and color indices are
suppressed. The transformation rule, � → L�R†, implies that under the chiral
transformation in Eq. (5.32) the pseudo-Goldstone boson fields transform as

δM = − f εB T B + · · · , (5.35)

where the ellipses denote terms containing M . Equations (5.4) and (5.10) imply
that under an infinitesimal chiral transformation the change in the heavy me-
son fields vanishes up to terms containing the pseudo-Goldstone boson fields.
Consequently the change in the effective chiral Lagrangian Eq. (5.18) under the
infinitesimal axial transformation in Eq. (5.32) is

δLint = (
2gπ i P∗ν

b P†
a T B

ba∂νε
B + h.c.

) + 2igπ P∗α†
a P∗β

b T B
baεαλβνv

λ∂νεB + · · · .
(5.36)

Equating δLint with δLQCD implies that for matrix elements between heavy
meson fields, the axial current can be written as

AB
μ = (−2igπ P∗

bμ P†
a T B

ba + h.c.
) − 2igπ P∗α†

a P∗β

b T B
baεαλβμvλ + · · · , (5.37)

where the ellipses denote terms containing the pseudo-Goldstone boson fields.
Using Eq. (5.37) leads to

〈D+|ūγ 3γ5d|D∗0〉 = −2igπ , (5.38)

and so the nonrelativistic constituent quark model predicts gπ = 1. Heavy quark
flavor symmetry implies that it is the same gπ that determines both the DD∗π
and B B∗π couplings. A similar result for the matrix element of the axial current
between nucleons leads to the prediction gA = 5/3 in the nonrelativistic con-
stituent quark model, compared with the experimental value of 1.25. A recent
lattice Monte Carlo simulation by the UKQCD Collaboration found gπ = 0.42
(G.M. de Divitiis et al., hep-lat/9807032).

5.3 B̄ →πeν̄e and D →πēνe decay

The decay rates for B̄ → πeν̄e and D → π ēνe are determined by the transition
matrix elements,

〈π (pπ )|q̄aγμ(1 − γ5)Q
∣∣P (Q)(pP )

〉 = f (Q)
+ (pP + pπ )μ + f (Q)

− (pP − pπ )μ.

(5.39)

Here f (Q)
− can be neglected since its contribution is proportional to the lepton

mass in the decay amplitude. The form factors are usually considered to be
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functions of q2 = (pP − pπ )2. However, here it is convenient to view the form
factors f (Q)

+ and f (Q)
− as functions of v · pπ , where pP = m Pv. The right-hand

side of Eq. (5.39) can be rewritten as[
f (Q)
+ + f (Q)

−
]
m Pvμ + [

f (Q)
+ − f (Q)

−
]

pπμ. (5.40)

In the region of phase space where v · pπ � m Q , momentum transfers to the
light degrees of freedom are small compared with the heavy quark mass, and a
transition to HQET is appropriate. Apart from logarithms of m Q in matching the
left-handed current onto the corresponding HQET operator, the left-hand side of
Eq. (5.39) depends on m Q only through the normalization of the P (Q) state, and
so it is proportional to

√
m Q . This gives the following scaling for large m Q :

f (Q)
+ + f (Q)

− ∼ O(1/
√

m Q),

f (Q)
+ − f (Q)

− ∼ O(
√

m Q),
(5.41)

and in the limit m Q → ∞, f (Q)
+ = − f (Q)

− .
Neglecting perturbative corrections, we find the relation between B and D

form factors is

f (b)
+ + f (b)

− =
√

m D

m B

[
f (c)
+ + f (c)

−
]
,

f (b)
+ − f (b)

− =
√

m B

m D

[
f (c)
+ − f (c)

−
]
,

(5.42)

where in Eqs. (5.42) the form factors for Q = b and Q = c are evaluated at the
same value of v · pπ . Since the decay rate is almost independent of f (Q)

− , it is
more useful to have a relation just between f (b)

+ and f (c)
+ . Using f (Q)

+ = − f (Q)
−

in Eq. (5.42) yields such a relation:

f (b)
+ =

√
m B

m D
f (c)
+ . (5.43)

Equation (5.43) relates the decay rates for B̄ → πeν̄e and D → π ēνe over the
part of the phase space where v · pπ � m Q .

An implicit assumption about the smoothness of the form factors was made
in deriving Eq. (5.43). We shall see that this assumption is not valid for very
small v · pπ . In this kinematic region chiral perturbation theory can be used to
determine the amplitude.

The operator q̄aγ
ν(1 − γ5)Qv transforms as (3̄L , 1R) under SU(3)L × SU(3)R

chiral symmetry. This QCD operator is represented in the chiral Lagrangian by
an operator constructed out of H and ξ with the same quantum numbers. At
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P P*

Fig. 5.1. Pole graph contribution to the heavy meson decay form factors. The axial
current insertion is denoted by ⊗. The PP∗π coupling is from the gπ term in the chiral
Lagrangian.

zeroth order in the derivative expansion, it has the form

q̄aγ
ν(1 − γ5)Qv = a

2
Tr γ ν(1 − γ5)Hb ξ

†
ba. (5.44)

Heavy quark symmetry has been used to restrict the form of the right-hand side.
Operators with derivatives and/or insertions of the light quark mass matrix mq are
higher order in chiral perturbation theory. Recall that ξ = exp(iM/ f ) = 1 + · · ·,
so the part of Eq. (5.44) independent of the pseudo-Goldstone boson fields
annihilates P and P∗. This term was already encountered in Sec. 2.8 when we
studied the meson decay constants fD and fB . At μ= m Q, a = √

m P (Q) fP (Q) . The
part of Eq. (5.44) that is linear in the pseudo-Goldstone boson fields contributes
to the P (Q) → π matrix element of Eq. (5.44). There is another contribution from
the Feynman diagram in Fig. 5.1 that is also leading order in chiral perturbation
theory. Here the P∗(Q) P (Q)π coupling has one factor of momentum pπ , but that
is compensated by the P∗(Q) propagator, which is of the order of 1/pπ . The
direct and pole contributions together give

f (Q)
+ + f (Q)

− =
[

fP (Q)

f

] [
1 − gπv · pπ

v · pπ + �(Q)

]
,

f (Q)
+ − f (Q)

− = gπ fP (Q)m P (Q)

f
[
v · pπ + �(Q)

] . (5.45)

Note that f (Q)
+ − f (Q)

− is enhanced by m P (Q)/v · pπ over f (Q)
+ + f (Q)

− and so
f (Q)
+ � − f (Q)

− . Using this relation, we find the prediction of chiral perturbation
theory for f (Q)

+ becomes

f (Q)
+ = gπ fP (Q)m P (Q)

2 f
[
v · pπ + �(Q)

] . (5.46)

For v · pπ � �(b,c) the scaling relation between f (b)
+ and f (c)

+ in Eqs. (5.43) holds
if 1/m Q corrections in the relation between fB and fD are small. However, for
pions almost at rest, Eq. (5.43) has large corrections because mπ is almost equal
to �(c). The derivation of Eq. (5.46) only relies on chiral SU(2)L × SU(2)R

symmetry, and it is not necessary to assume that the strange quark mass is also
small.
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Using chiral SU(3)L × SU(3)R , a formula similar to Eq. (5.46) holds for the
decay D → K ēνe. Experimental data on the D → K ēνe differential decay rate
indicate that f (D → K )

+ (q2) is consistent with the pole form

f (D → K )
+ (q2) = f (D → K )

+ (0)

1 − q2/M2
, (5.47)

where M = 2.1 GeV. With this form for f (D → K )
+ (q2), the measured decay rate

implies that |Vcs f (D→K )
+ (0)| = 0.73 ± 0.03. Using |Vcs | = 0.94, we find this

implies that at zero recoil, i.e., q2 = q2
max = (m D − mK )2, the form factor has

the value | f (D → K )
+ (q2

max)| = 1.31. The zero-recoil analog of Eq. (5.46) for this
situation is

gπfDs m Ds

2 f
(
mK + m D∗

s
− m D

) = f (D → K )
+

(
q2

max

)
. (5.48)

With the use of the experimental value for f (D → K )
+ (q2

max), this implies that
gπ fDs = 129 MeV. For the lattice value of fDs in Table 2.3, this gives gπ = 0.6.

5.4 Radiative D∗ decay

The measured branching ratios for D∗ decay are presented in Table 5.1. The
decay D∗0 → D+π− is forbidden, since mπ− > m D∗0 − m D+ . For D∗0 decay,
the electromagnetic and hadronic branching ratios are comparable. Naively, the
electromagnetic decay should be suppressed by α compared with the strong one.
However, in this case the strong decay is phase space suppressed since m D∗ −m D

is very near mπ . For D∗+ decays, the electromagnetic branching ratio is smaller

Table 5.1. Measured branching ratios
for radiative D∗ decaya

Decay mode Branching ratio(%)

D∗0 → D0π0 61.9 ± 2.9
D∗0 → D0γ 38.1 ± 2.9
D∗+ → D0π+ 68.3 ± 1.4
D∗+ → D+π0 30.6 ± 2.5
D∗+ → D+γ 1.7 ± 0.5
D∗+

s → D+
s π0 5.8 ± 2.5

D∗+
s → D+

s γ 94.2 ± 2.5

a The branching ratio for D∗+ → D+γ is from
a recent CLEO measurement (J. Bartlet
et al., Phys. Rev. Lett. 80, 1998, 3919).
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than for the D∗0 case because of a cancellation that we will discuss shortly. The
decay D∗+

s → D+
s π0 is isospin violating and its rate is quite small.

The D∗
a → Daγ matrix elements have the form [a is an SU(3) index so

D1 = D0, D2 = D+ and D3 = D+
s ]

M(D∗
a → Daγ ) = eμaε

μαβλε∗
μ(γ )vαkβελ(D∗), (5.49)

where ε(γ ) and ε(D∗) are the polarization vectors of the photon and D∗, v is
the D∗ four velocity (we work in its rest frame where v = vr ), and k is the
photon’s four momentum. The factor eμa/2 is a transition magnetic moment.
Equation (5.49) yields the decay rate

�(D∗
a → Daγ ) = α

3
|μa|2|k|3. (5.50)

The D∗
a → Daγ matrix elements get contributions from the photon coupling

to the light quarks through the light quark part of the electromagnetic current,
2
3 ūγμu − 1

3 d̄γμd − 1
3 s̄γμs, and the photon coupling to the charm quark through

its contribution to the electromagnetic current, 2
3 c̄γμc. The part of μa that comes

from the charm quark part of the electromagnetic current μ(h) is fixed by heavy
quark symmetry. The simplest way to derive it is to examine the D∗ → D matrix
element of c̄γμc with the recoil velocity of the D being given approximately
by v′ � (1, −k/mc). Linearizing in k, and using the methods developed in
Chapter 2, the heavy quark symmetry prediction for this matrix element is

μ(h) = 2

3mc
, (5.51)

which is the magnetic moment of a Dirac fermion. Another way to derive
Eq. (5.51) is to include electromagnetic interactions in the HQET Lagrangian.
Then μ(h) comes from the order �QCD/mc magnetic moment interaction anal-
gous to the chromagnetic term discussed in Chapter 4. The part of μa that comes
from the photon coupling to the light quark part of the electromagnetic current
is denoted by μ

(�)
a . It is not fixed by heavy quark symmetry. However, the light

quark part of the electromagnetic current transforms as an 8 under the unbroken
SU(3)V group, while the D and D∗ states are 3̄’s. Since there is only one way
to combine a 3 and a 3̄ into an 8, the three transition magnetic moments μ

(�)
a are

expressible in terms of a single reduced matrix element β,

μ(�)
a = Qaβ, (5.52)

where Q1 = 2/3, Q2 = −1/3 and Q3 = −1/3.
Equation (5.52) is a consequence of SU(3)V symmetry. Even the relation

between μ
(�)
1 and μ

(�)
2 depends on SU(3)V symmetry. The contribution of u and d

quarks to the electromagnetic current is a combination of I = 0 and I = 1 pieces,
and so isospin symmetry alone does not imply any relation between μ

(�)
1 and μ

(�)
2 .

We expect that SU(3)V violations are very important for μa = μ(h) + μ
(�)
a . This
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D*+
s D*0 D+

s

K + K +

D*0 D*+
s D0

K− K−

D*0 D*+ D0

π− π−

D*+ D*0 D+

π + π +

Fig. 5.2. The order m1/2
q corrections to the radiative D∗ decay amplitude.

expectation is based on the nonrelativistic constituent quark model. In that model,
the ū, d̄, and s̄ quarks in a D or D∗ meson are also treated as heavy, and their
contribution to μ

(�)
a can be determined in the same way that the charm quark

contribution μ(h) was. This yields

μ
(�)
1 = 2

3

1

mu
, μ

(�)
2 = −1

3

1

md
, μ

(�)
3 = −1

3

1

ms
. (5.53)

The large SU(3)V violations occur because for the usual values of the constituent
quark masses mu � md = 350 MeV, ms = 500 MeV and mc = 1.5 GeV, μ

(�)
2

and μ
(�)
3 almost cancel against μ(h). This cancellation is consistent with the

suppression of the D∗+ → D+γ rate evident in Table 5.1. With the constituent
quark masses given above, the nonrelativistic quark model predictions for the
μa are μ1 � 2.3 GeV−1, μ2 = −0.51 GeV−1, and μ3 = −0.22 GeV−1.

In chiral perturbation theory the leading SU(3)V violations are of the order of
m1/2

q and come from the Feynman diagrams in Fig. 5.2. The diagrams are calcu-
lated with initial and final heavy mesons at the same four velocity v, but the final
state D has a residual four momentum −k. These diagrams give contributions to
μa of the order of m(π,K )/ f 2, and their nonanalytic dependence on mq ensures
that higher-order terms in the chiral Lagrangian do not give rise to such terms.

For the Feynman diagrams in Fig. 5.2 to be calculated, the chiral Lagrangian
for strong interactions of the pseudo-Goldstone bosons in Eq. (1.102) must be
gauged with respect to the electromagnetic subgroup of SU(3)V transformations.
This is done by replacing a derivative of � with the covariant derivative

∂μ� → Dμ� = ∂μ� + ie[Q, �]Aμ, (5.54)
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where

Q =
⎡
⎣2/3 0 0

0 −1/3 0
0 0 −1/3

⎤
⎦ , (5.55)

and A is the photon field. The electromagnetic interactions arise on gauging
a U (1) subgroup of the unbroken SU(3)V symmetry. Since ξ transforms the
same way as � under SU(3)V , the covariant derivative of ξ is Dμξ = ∂μξ +
ie[Q, ξ ]Aμ.

The strong and electromagnetic interactions are described at leading order in
chiral perturbation theory by the Lagrangian

Leff = f 2

8
Tr Dμ�(Dμ�)† + vTr(mq� + mq�†), (5.56)

where in this case the trace is over light quark flavor indices. It gives rise to the
M Mγ interaction term

Lint = ieAμ{[Q, M]ab∂
μMba}. (5.57)

Using the Feynman rules that follow from Eqs. (5.20) and (5.57), we find the last
diagram in Fig. 5.2 gives the following contribution to the D∗+

s → D+
s γ decay

amplitude:

δM = i
∫

dnq

(2π )n

(
2

f
gπεαλβνv

λqν

)(
2gπ

f
kη

)

× gαη

2v · q
(e2qμ)

(
1

q2 − m2
K

)2

εβ(D∗
s )εμ(γ )

= 4ig2e

f 2
εαλβνv

λkαεβ(D∗
s )ε∗

μ(γ )
∫

dnq

(2π )n

qνqμ(
q2 − m2

K

)2
v · q

. (5.58)

In Eq. (5.58) only the linear dependence on k has been kept. The second term in
large parentheses is the D∗

s DK coupling. It actually is proportional to (q − k)η

but the qη part does not contribute to δM. Similarly, the K Kγ coupling is
proportional to (2q − k)μ, but the kμ part is omitted in Eq. (5.58), since it does
not contribute to δM. Finally, the part proportional to vαvη in the D∗

s propagator
also does not contribute to δM and is not displayed in Eq. (5.58).

Combining denominators using Eq. (3.6) gives

δM = 16ig2
πe

f 2
εαλβνv

λkαεβ(D∗
s )ε∗

μ(γ )

×
∫ ∞

0
dλ

∫
dnq

(2π )n

qνqμ(
q2 + 2λv · q − m2

K

)3 . (5.59)
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Shifting the integration variable q by λv, we find this becomes

δM = 16ig2
πe

n f 2
εαλβμvλkαεβ(D∗

s )ε∗μ(γ )
∫ ∞

0
dλ

∫
dnq

(2π )n

q2(
q2 − m2

K − λ2
)3 .

(5.60)

Consequently, the contribution of this Feynman diagram to the transition mag-
netic moment is

δμ
(�)
3 = 16ig2

π

n f 2

∫ ∞

0
dλ

∫
dnq

(2π )n

q2(
q2 − m2

K − λ2
)3 . (5.61)

Performing the q integration using Eq. (1.44) yields

δμ
(�)
3 = −4g2

π�(2 − n/2)

f 22nπn/2

∫ ∞

0
dλ

(
λ2 + m2

K

)−2+n/2
. (5.62)

Using Eq. (3.11), we find it easy to see that the integral over λ is proportional to
ε = 4 − n and so the expression for δμ

(�)
3 is finite as ε → 0. Taking this limit, we

find

δμ
(�)
3 = g2

πm2
K

2π2 f 2

∫ ∞

0

dλ(
λ2 + m2

K

) = g2
πmK

4π f 2
. (5.63)

A similar calculation can be done for the other diagrams. Identifying f with fK

for the kaon loops, and with fπ for the pion loops, we have

μ
(�)
1 = 2

3
β − g2

πmK

4π f 2
K

− g2
πmπ

4π f 2
π

,

μ
(�)
2 = −1

3
β + g2

πmπ

4π f 2
π

,

μ
(�)
3 = −1

3
β + g2

πmK

4π f 2
K

.

(5.64)

Using fK for kaon loops and fπ for pion loops reduces somewhat the magnitude
of the kaon loops compared with the pion loops. Experience with kaon loops in
chiral perturbation theory for interactions of the pseudo-Goldstone bosons with
nucleons suggests that such a suppression is present.

It remains to consider the isospin violating decay D∗+
s → D+

s π0. The two
sources of isospin violation are electromagnetic interactions and the difference
between the d and u quark masses, md − mu . In chiral perturbation theory the
pole type diagram in Fig. 5.3 dominates the part of the amplitude coming from
the quark mass difference. The η −π0 mixing is given in Eq. (1.104). Using this
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D*+
s D+

s

η0

π0

Fig. 5.3. Leading contribution to the isospin violating decay D∗
s → Dsπ

0.

and Eq. (5.20), we find the decay rate is

�
(
D∗+

s → D+
s π0) = g2

π

48π f 2

[
md − mu

ms − (mu + md )/2

]2

|pπ |3. (5.65)

The measured mass difference m D∗
s
− m Ds = 144.22 ± 0.60 MeV implies that

|pπ | � 49.0 MeV. In chiral perturbation theory, this is the dominant contribu-
tion coming from the quark mass difference because it is suppressed by only
(md − mu)/ms � 1/43.7, as opposed to (md − mu)/4π f . The isospin violating
electromagnetic contribution is expected to be less important since α/π is smaller
than (md − mu)/ms .

The measured branching ratios in Table 5.1 determine the values of gπ and
β. There are two solutions, since one has to solve a quadratic equation. Using
the above results gives either (gπ = 0.56, β = 3.5 GeV−1) or (gπ = 0.24, β =
0.85 GeV−1). In evaluating these parameters, we have set f = fπ for the hadronic
modes. The values obtained for gπ are smaller than the quark model prediction
discussed in Sec. 5.2. Of course there is a large uncertainty in this determination
of gπ , since the experimental errors on branching ratios for the isospin violating
decay D∗+

s → D+
s π0 and the radiative decay D∗+ → D+γ are large, and because

higher-order terms in chiral perturbation theory that have been neglected may
be important.

5.5 Chiral corrections to B̄ → D(∗)eν̄e form factors

In Chapter 4, the nonperturbative order �QCD/m Q , corrections to B decay form
factors, such as the semileptonic B̄ → D(∗)eν̄e form factors, h±(w), hV (w) and
h A j (w), were discussed. It seems reasonable that nonperturbative corrections
to the form factors should be expandable in powers of (�QCD/m Q), since the
Lagrangian has an expansion in inverse powers of the heavy quark mass m Q .
However, because of the small values for the u and d quark masses, this ends
up not being the case because of pole and loop diagrams involving pions. This
point is illustrated below with the help of two examples: B̄ → D∗πeν̄e, which
has pole terms, and B̄ → Deν̄e, which has pion loop terms.
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B D(**) D*

π

B B* D*

π

Fig. 5.4. Pole diagram contribution to the B̄ → D∗πeν̄e form factors. The solid box
is an insertion of the axial current, Eq. (5.66).

B B* D* D

Fig. 5.5. One-loop correction to the B̄ → Deν̄e form factors.

The weak current c̄γμ(1 − γ5)b is a singlet under chiral SU(3)L × SU(3)R

transformations. At leading order in chiral perturbation theory, this operator is
represented in the chiral Lagrangian by

c̄γμ(1 − γ5)b = −ξ (w)Tr H̄ (c)
av′γμ(1 − γ5)H (b)

av , (5.66)

where we have now put back the heavy quark and velocity labels. ξ (w) is the
Isgur-Wise function.

Equation (5.66) contains no powers of the pion fields. This implies that at
leading order in chiral perturbation theory the B̄ → D∗πeν̄e amplitudes come
from pole diagrams in Fig. 5.4. The propagator for the intermediate D meson is

i

pπ · v + �(c)
(5.67)

where pπ is the pion momentum and �(c) is the D∗–D mass difference, which
is of the order of �2

QCD/mc. Clearly, the form factors for this decay depend on
�(c)/v · pπ , and so do not simply have an expansion in �QCD/m Q . A similar
conclusion holds for the B̄ → πeν̄e form factors discussed in Sec. 5.3.

To compute B̄ → Deν̄e form factors, one needs the B̄ → D matrix element
of Eq. (5.66). The leading order of chiral perturbation theory is the tree-level
matrix element of this operator. At higher order in chiral perturbation theory
one needs loop diagrams, as well as additional terms in Eq. (5.66) involving
derivatives and insertions of the light quark mass matrix. At one loop the diagram
in Fig. 5.5 contributes to the form factors for B̄ → Deν̄e decay. This contribution
is proportional to g2

π/(4π f )2 and depends also on the pion mass, mπ , and the
D∗ − D mass difference, �(c) (here, for simplicity, we neglect the B∗ − B mass
difference). At zero recoil, Fig. 5.5, the wave-function renormalization diagrams
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and a tree-level contribution from an order 1/m2
c operator give the contribution

δh+(1) = − 3g2
π

32π2 f 2
�(c)2

{
ln

μ2

m2
π

+ F
[
�(c)/mπ

] + C

}
, (5.68)

where μ is the scale parameter of dimensional regularization, and F is a dimen-
sionless function that can be computed by explicitly evaluating the diagrams.
Here C is the contribution of the local order 1/m2

c operator. Any dependence on
μ in a Feynman diagram is logarithmic. The mass difference �(c) is of the order
of 1/mc, and the pion mass is of the order of

√
mq . Expanding F in a power

series in �(c) is equivalent to an expansion in powers of 1/mc. Expanding in
powers of �(c) gives

F = −3π

4

�(c)

mπ

+ 6

5

�(c)2

m2
π

+ · · · . (5.69)

Dimensional analysis dictates that for terms in δh+(1) of the order of [�(c)]n ∼
(1/mc)n, n = 3, 4 . . ., the coefficients have the form 1/mn−2

π and diverge as
mπ → 0. Nonperturbative corrections to the form factor h+(1) are not suppressed
by powers of (�QCD/mc) but are much larger, of the order of �

3n/2 + 2
QCD /mn + 2

c

mq
n/2 for n ≥ 0. Note that in accordance with Luke’s theorem there is no order

1/mc term in δh+(1).
The heavy quark limit is mc large, and the chiral limit is mq small. Expanding

F in powers of �(c) is equivalent to taking the heavy quark limit where mc

is large while keeping mq fixed. If one first takes the chiral limit where mq is
small while keeping mc fixed, one should instead expand in powers of mπ . This
expansion has the form

F =
[

2

3
− ln

4�(c)2

m2
π

]
+ m2

π

�(c)2

[
9

2
− 3

2
ln

4�(c)2

m2
π

]
−2π

m3
π

�(c)3 +· · · , (5.70)

with coefficients with positive powers of mc in the higher order terms, which
diverge as mc → ∞.

While the expansions in Eqs. (5.69) and (5.70) have divergent coefficients in
the mπ → 0 and mc → ∞ limits, respectively, the contribution of Fig. 5.5 and
the wave-function renormalization diagrams to h+(1) is perfectly well defined.
The chiral Lagrangian for heavy mesons can be used as long as �(c) and mπ

are both much smaller than �CSB, and the correction Eq. (5.68) is smaller than
unity, irrespective of the value for the ratio �(c)/mπ . The interesting terms which
cause divergent coefficients arise because of the ratio of two small scales, mπ

and �(c), and all such effects are computable in chiral perturbation theory.
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5.6 Problems

1. Compute the magnetic moments of the baryon octet in the nonrelativistic constituent quark
model, and compare the results with the experimental data.

2. Neglecting the u and d quark masses, show that in chiral perturbation theory

fBs

fB
= 1 − 5

6

(
1 + 3g2

π

) m2
K

16π2 f 2

(
ln

m2
K

μ2
+ C

)
+ · · · .

C is a constant and the ellipsis denotes terms of higher order in chiral perturbation theory.
The ln(m2

K /μ2) term is referred to as a “chiral logarithm.” The μ dependence of this term is
canceled by a corresponding μ dependence in the coefficient C . If mK were extremely small,
the logarithm would dominate over the constant C .

3. The form factors for D → Kπ ēνe are defined by

〈π (pπ )K (pK )|s̄γμ PL c|D(pD)〉 = iω+ Pμ + iω− Qμ

+ ir (pD − P)μ + hεμαβγ pα
D Pβ Qγ ,

where

P = pK + pπ , Q = pK − pπ .

Use chiral perturbation theory to express the form factors ω±, r and h for D+ → K −π+ēνe in
terms of fD , f , gπ , �(c) = m D∗ − m D and μs = m Ds − m D .

4. Verify Eqs. (5.64) and (5.65).

5. Evaluate F(�/mπ ) in Eq. (5.68). Expand in 1/mc and mπ and verify Eqs. (5.69) and (5.70).

6. The low-lying baryons containing a heavy quark Q transforms as a 6 and 3̄ under SU(3)V .
Under the full chiral SU(3)L × SU(3)R the fields that destroy these baryons transform as

Sμ

ab → UacUbd Sμ

cd , Ta → TaU †
ab,

where (see Problem 10 in Chapter 2)

Sμ

ab = 1√
3

(γμ + vμ)γ5 Bab + B∗μ

ab .

Velocity and heavy quark labels are suppressed here.

(a) In the case Q = c identify the various components of the fields Ta , Bab, and B∗μ

ab with
baryon states in Table 2.1.

(b) Argue that at leading order in 1/m Q , mq , and derivatives, the chiral Lagrangian for heavy
baryon pseudo-Goldstone boson interactions is

L = −i S̄μ

ab(v · D)Sμab + �M S̄μ

ab Sμab + i T̄a(v · D)Ta + ig2εμνσλ S̄μ

abv
ν Sλ

cbA
σ
ac

+ g3

(
εabc T̄a SμcdA

μ

bd + h.c.
)
.

Define how the covariant derivative D acts on Sμ

ab and Ta .
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6
Inclusive weak decay

In this chapter, we will study inclusive weak decays of hadrons containing a b
quark. The lowest mass meson or baryon containing a b quark decays weakly,
since the strong and electromagnetic interactions preserve quark flavor. One of
the main results of this chapter is the demonstration that the parton model picture
that inclusive heavy hadron decay is the same as free heavy quark decay is exact
in the mb → ∞ limit. In addition, we will show how to include radiative and
nonperturbative corrections to the leading-order formula in a systematic way.
The analysis closely parallels that of deep inelastic scattering in Sec. 1.8.

6.1 Inclusive semileptonic decay kinematics

Semileptonic B̄-meson decays to final states containing a charm quark arise from
matrix elements of the weak Hamiltonian density

HW = 4G F√
2

Vcb c̄γ μPLb ēγμPLνe. (6.1)

In exclusive three-body decays such as B̄ → Deν̄e, one looks at the decay into
a definite final state, such as Deν̄e. The differential decay distribution has two
independent kinematic variables, which can be chosen to be Ee and Eνe , the
energy of the electron and antineutrino. The decay distribution depends implicitly
on the masses of the initial and final particles, which are constants. In inclusive
decays, one ignores all details about the final hadronic state Xc and sums over
all final states containing a c quark. Here Xc can be a single-particle state, such
as a D meson, or a multiparticle state, such as Dπ . In addition to the usual two
kinematic variables Ee and Eνe for exclusive semileptonic decays, there is an
additional kinematic variable in B̄ → Xceν̄e decay since the invariant mass of
the final hadronic system can vary. The third variable will be chosen to be q2, the
invariant mass of the virtual W boson. The diagrams for semileptonic b-quark
and B̄-meson decays are shown in Fig. 6.1.
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b
e−

c

νe

B

e−
Xc

νe

Fig. 6.1. Weak decay diagrams for semileptonic quark and hadron decay.

In the B̄ rest frame, the differential decay distribution for inclusive semilep-
tonic decay is

d�

dq2 dEe dEνe

=
∫

d4 pe

(2π )4

∫
d4 pνe

(2π )4 2πδ
(

p2
e

)
2πδ

(
p2

νe

)
θ
(

p0
e

)
θ
(

p0
νe

)
× δ

(
Ee − p0

e

)
δ
(
Eνe − p0

νe

)
δ
[
q2 − (

pe + pνe

)2]
×

∑
Xc

∑
lepton
spins

|〈Xceν̄e|HW |B̄〉|2
2m B

(2π )4δ4[pB − (
pe + pνe

) − pXc

]
, (6.2)

where we have used the familiar formula d3p/(2E) = d4 pδ(p2 − m2)θ (p0) and
neglected the electron mass. The phase space integrations can be performed in
the rest frame of the B̄ meson. After summation over final hadronic states Xc, the
only relevant angle is that between the electron and the neutrino three momenta.
Nothing depends on the direction of the neutrino momentum, and integrating over
it gives a factor of 4π . One can then choose the z axis for the electron momentum
to be aligned along the neutrino direction. Integrating over the electron azimuthal
angle gives a factor of 2π . Consequently, the lepton phase space is

d3ped3pνe = 8π2|pe|2d|pe||pνe |2d|pνe |d cos θ, (6.3)

where θ is the angle between the electron and neutrino directions. The three
remaining integrations are fixed by the three delta functions. Using δ(p2

e ) =
δ(E2

e −|pe|2) to perform the integration over |pe|, δ(p2
νe

) = δ(E2
νe

− |pνe |2) to per-
form the integration over |pνe |, and δ[q2−(pe+pνe )

2] = δ[q2−2Ee Eνe (1−cos θ )]
to perform the integration over cos θ gives

d�

dq2 dEe dEνe

= 1

4

∑
Xc

∑
lepton
spins

|〈Xeν̄e|HW |B̄〉|2
2m B

δ4[pB − (
pe + pνe

) − pXc

]
.

(6.4)

The weak matrix element in Eq. (6.4) can be factored into a leptonic matrix
element and a hadronic matrix element, since leptons do not have any strong
interactions. Corrections to this result are suppressed by powers of G F or α, and
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they arise from radiative corrections due to additional electroweak gauge bosons
propagating between the quark and lepton lines. The matrix element average is
conventionally written as the product of hadronic and leptonic tensors,

1

4

∑
Xc

∑
lepton
spins

|〈Xceν̄e|HW |B̄〉|2
2m B

(2π )3δ4[pB − (
pe + pνe

) − pXc

]

= 2G2
F |Vcb|2Wαβ Lαβ, (6.5)

where the leptonic tensor is

Lαβ = 2
(

pα
e pβ

νe
+ pβ

e pα
νe

− gαβpe · pνe − iεηβλα peη pνeλ

)
(6.6)

and the hadronic tensor is defined by

W αβ =
∑
Xc

(2π )3δ4(pB − q − pXc )
1

2m B

×〈B̄(pB)|J †α

L

∣∣Xc
(

pXc

)〉〈
Xc

(
pXc

)∣∣Jβ

L |B̄(pB)〉, (6.7)

with Jα
L = c̄γ αPLb, the left-handed current. In Eq. (6.7), q = pe + pνe is the sum

of electron and antineutrino four momenta. Here Wαβ is a second-rank tensor that
depends on pB = m Bv and q, the momentum transfer to the hadronic system.
The relation pB = m Bv defines v as the four velocity of the B̄ meson. The b quark
can have a small three velocity of the order of 1/mb in the B̄-meson rest frame,
and this effect is included in the 1/mb corrections computed later in this chapter.

The most general tensor Wαβ is

Wαβ = −gαβW1 + vαvβW2 − iεαβμνv
μqνW3 + qαqβW4 + (vαqβ + vβqα)W5.

(6.8)

The scalar structure functions W j are functions of the Lorentz invariant quantities
q2 and q · v. Using Eqs. (6.8), (6.6), and (6.5), we find the differential cross
section in Eq. (6.4) becomes

d�

dq2 dEe dEνe

= G2
F |Vcb|2
2π3

[
W1q2 + W2

(
2Ee Eνe − q2/2

)
+ W3q2(Ee − Eνe

)]
θ
(
4Ee Eνe − q2), (6.9)

where we have explicitly included the θ function that sets the lower limit for
the Eνe integration because it will play an important role later in this chapter.
The functions W4 and W5 do not contribute to the decay rate, since qα Lαβ =
qβ Lαβ = 0 in the limit that the electron mass is neglected. These terms have to
be included in decays to the τ .

The neutrino is not observed, and so one integrates the above expression over
Eνe to get the differential spectrum d�/dq2 dEe. For a fixed electron energy the
minimum value of q2 occurs when the electron and neutrino are parallel (i.e.,
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Fig. 6.2. The allowed q2 values as a function of the electron energy Ee, for different
values of the final state hadronic mass m Xc . The entire region inside the curve is allowed.
The curves are (from the outermost curve in) for m Xc = m D , (m Xc/m B)2 = 0.25, 0.5,
and 0.75, respectively.

cos θ = 1), and the maximum value occurs when the electron and neutrino are
antiparallel (i.e., cos θ = −1). Hence

0 < q2 <
2Ee

(m B − 2Ee)

(
m2

B − 2Eem B − m2
Xmin

c

)
, (6.10)

where Xmin
c is the lowest mass state containing a charm quark, i.e., the D meson.

The maximum electron energy is

Emax
e =

m2
B − m2

Xmin
c

2m B
, (6.11)

which occurs at q2 = 0. The allowed q2 values as a function of Ee are plotted
in Fig. 6.2. For a given value of the final hadronic system mass m Xc , electron
energy Ee, and q2, the neutrino energy Eνe is

Eνe =
(

m2
B − m2

Xc
+ q2

2m B

)
− Ee. (6.12)

Consequently, integrating d�/dq2 dEe dEνe over Eνe (at fixed q2 and Ee) to
get d�/dq2 dEe is equivalent to averaging over a range of final-state hadronic
masses. We will see later in this chapter that in some regions of phase space,
the validity of the operator product expansion for inclusive decays depends on
hadronic mass averaging. For values of q2 and Ee near the boundary of the al-
lowed kinematic region, q2(m B − 2Ee) − 2Ee(m2

B − 2Eem B − m2
Xmin

c
) = 0, only

final hadronic states with masses near m Xmin
c

get averaged over in the integration
over Eνe .
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The hadronic tensor Wαβ parameterizes all strong interaction physics relevant
for inclusive semileptonic B̄ decay. It can be related to the discontinuity of a
time-ordered product of currents across a cut. Consider the time-ordered product

Tαβ = −i
∫

d4xe−iq · x 〈B̄|T [
J †

Lα(x) JLβ(0)
]|B̄〉

2m B
. (6.13)

Inserting a complete set of states between the currents in each time ordering,
using the analogs of Eqs. (1.159), applying the identity

θ (x0) = − 1

2π i

∫ ∞

−∞
dω

e−iωx0

ω + iε
, (6.14)

and performing the integration over d4x gives, in the B̄ rest frame,

Tαβ =
∑
Xc

〈B̄|J †
Lα|Xc〉〈Xc|JLβ |B̄〉

2m B(m B − EX − q0 + iε)
(2π )3δ3(q + pX )

−
∑
Xc̄bb

〈B̄|JLβ |Xc̄bb〉〈Xc̄bb|J †
Lα|B̄〉

2m B(EX − m B − q0 − iε)
(2π )3δ3(q − pX ). (6.15)

Here Xc is a complete set of hadronic states containing a c quark, and Xc̄bb is a
complete set of hadronic states containing two b quarks and a c̄ quark. At fixed q
the time-ordered product of currents Tαβ has cuts in the complex q0 plane along

the real axis. One cut is in the region −∞ < q0 < m B −
√

m2
Xmin

c
+ |q|2, and the

other cut is in the region ∞ > q0 >
√

m2
Xmin

c̄bb
+ |q|2 − m B . The imaginary part of

T (i.e., the discontinuity across the cut) can be evaluated using

1

ω + iε
= P

1

ω
− iπδ(ω), (6.16)

where P denotes the principal value. This gives

1

π
Im Tαβ = −

∑
Xc

〈B̄|J †
Lα|Xc〉〈Xc|JLβ |B̄〉

2m B
(2π )3δ4(pB − q − pX )

−
∑
Xc̄bb

〈B̄|JLβ |Xc̄bb〉〈Xc̄bb|J †
Lα|B̄〉

2m B
(2π )3δ4(pB + q − pX ).

(6.17)

The first of these two terms is just −Wαβ . For values of q and pB in semileptonic
B̄ decay, the argument of the δ function in the second term of Eq. (6.17) is
never zero, and it does not contribute to the imaginary part of T . It is convenient
to express Tαβ in terms of Lorentz scalar structure functions just as we did
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for Wαβ :

Tαβ = −gαβT1 + vαvβT2 − iεαβμνv
μqνT3 + qαqβT4 + (vαqβ + vβqα)T5.

(6.18)

The Tj ’s are functions of q2 and q · v. One can study Tj in the complex q · v plane
for fixed q2. This is a Lorentz invariant way of studying the analytic structure
discussed above. For the cut associated with physical hadronic states containing
a c quark, (pB −q) − pX = 0, which implies that v · q = (m2

B + q2 − m2
Xc

)/2m B .
This cut is in the region −∞ < v · q < (m2

B + q2 − m2
Xmin

c
)/2m B (see Fig. 6.3).

In contrast, the cut corresponding to physical hadronic states with a c̄ quark and
two b quarks has (pB + q) − pX = 0, which implies that v · q = (m2

Xc̄bb
− m2

B −
q2)/2m B . This cut occurs in the region (m2

Xmin
c̄bb

− m2
B − q2)/2m B < v · q < ∞.

These cuts are widely separated for all values of q2 allowed in B̄ → Xceν̄e

semileptonic decay, 0 < q2 < (m B − m Xmin
c

)2. The minimum separation between
the cuts occurs for the maximal value of q2. Approximating hadron masses
by that of the heavy quark they contain (e.g., m Xmin

c
= mc, m Xmin

c̄bb
= mc + 2mb,

etc.), we find the minimum separation between the two cuts is, 4mc, which is
much greater than the scale �QCD of nonperturbative strong interactions. The
discontinuity across the left-hand cut gives the structure functions for inclusive
semileptonic decay:

− 1

π
Im Tj = W j (left-hand cut only). (6.19)

The double differential decay rate d�/dq2 dEe can be obtained from the triple
differential rate d�/dq2 dEe dEνe , or equivalently, d�/dq2 dEe dv · q, by inte-
grating over q · v = Ee + Eνe . Integrals of the structure functions W j (q2, v · q)
over v · q are then related to integrals of Tj over the contour C shown in Fig. 6.3.

The situation is similar for b → u decays. The results for this case can be
obtained from our previous discussion just by changing the subscript c to u.
However, since the u quark mass is negligible, the separation between the two
cuts is not large compared with the scale of the strong interactions, �QCD, when
q2 is near its maximal value for b → u decays. The significance of this will be
commented on later in this chapter.

Re q ⋅ v

Im q ⋅ v

C

Fig. 6.3. Contour for the Tj integral.
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6.2 The operator product expansion

The structure functions Tj can be expressed in terms of matrix elements of local
operators using the operator product expansion to simplify the time-ordered
product of currents,

−i
∫

d4xe−iq·x T
[
J †

Lα(x) JLβ(0)
]
, (6.20)

whose B̄-meson matrix element is Tαβ . The coefficients of the operators that
occur in this expansion can be reliably computed by using QCD perturbation
theory, in any region of v · q that is far away (compared with �QCD) from
the cuts. We compute the coefficients of the operators that occur in the operator
product expansion by using quark and gluon matrix elements of Eq. (6.20). These
operators will involve the b-quark field, covariant derivatives D, and the gluon
field strength G A

μν . At dimension six and above, the light quark fields also occur.
At lowest order in perturbation theory the matrix element of Eq. (6.20) between

b-quark states with momentum mbv + k is (see Fig. 6.4)

1

(mbv − q + k)2 − m2
c + iε

ūγα PL (mb/v − /q + k/)γβ PLu. (6.21)

In the matrix elements of interest, q is usually of the order of mb, but k is of
the order of �QCD. Expanding in powers of k gives an expansion in powers of
�QCD/mb, and thus an expansion in 1/mb of the form factors Tj .

6.2.1 Lowest order

The order k0 terms in the expansion of Eq. (6.21) are

1

�0
ū[(mbv − q)αγβ + (mbv − q)βγα − (mb/v − /q)gαβ

−iεαβλη(mbv − q)λγ η]PLu, (6.22)

where

�0 = (mbv − q)2 − m2
c + iε, (6.23)

q , β q , α

b b

c

Fig. 6.4. Leading-order diagrams in the OPE.
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and we have used the identity in Eq. (1.119). The matrix elements of the
dimension-three operators b̄γ λb and b̄γ λγ5b between b-quark states are ūγ λu
and ūγ λγ5u, respectively, so the operator product expansion is obtained by re-
placing u and ū in Eq. (6.22) by the fields b and b̄, respectively. Finally, to get
the Tj we take the hadronic matrix elements of the operators,

〈B̄(pB)|b̄γλb|B̄(pB)〉 = 2pBλ = 2m Bvλ (6.24)

and

〈B̄(pB)|b̄γλγ5b|B̄(pB)〉 = 0. (6.25)

The latter matrix element vanishes because of the parity invariance of the strong
interactions. Equation (6.24) follows because b̄γλb is the conserved b-quark
number current. The b-quark number charge Qb = ∫

d3xb̄γ0b acts on B̄-meson
states as Qb|B̄〉 = |B̄〉, since they have unit b-quark number. Note that Eqs. (6.24)
and (6.25) are exact. There are no corrections of order �QCD/mb to these relations
and hence at this level in the OPE there is no need to make a transition to the
heavy quark effective theory.

The Tj ’s that follow from Eqs. (6.24), (6.25), and (6.22) are

T (0)
1 = 1

2�0
(mb − q · v),

T (0)
2 = 1

�0
mb, (6.26)

T (0)
3 = 1

2�0
.

At this level in the operator product expansion, the entire cut reduces to a simple
pole. The W j ’s that follow from Eq. (6.26) are

W (0)
1 = 1

4

(
1 − q · v

mb

)
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
,

W (0)
2 = 1

2
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
, (6.27)

W 0
3 = 1

4mb
δ

[
v · q −

(
q2 + m2

b − m2
c

2mb

)]
.

Putting these expressions into Eq. (6.9) and performing the integration over
neutrino energies using the δ function in Eq. (6.27) gives

d�

dq̂2 dy
= G2

F |Vcb|2m5
b

192π3
12(y − q̂2)(1 + q̂2 − ρ − y)θ (z), (6.28)

where

y = 2Ee/mb, q̂2 = q2/m2
b, ρ = m2

c/m2
b, (6.29)
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and

z = 1 + q̂2 − ρ − q̂2/y − y (6.30)

are convenient dimensionless variables. This is the same result one obtains from
calculating the decay of a free b quark. Integrating over q̂2 gives the lepton
energy spectrum

d�

dy
= G2

F |Vcb|2m5
b

192π3

[
2(3 − 2y)y2 − 6y2ρ − 6y2ρ2

(1 − y)2
+ 2(3 − y)y2ρ3

(1 − y)3

]
,

(6.31)

which also is the same as obtained from free quark decay. Including perturbative
QCD corrections to the coefficient of the operator b̄γλb in the operator product
expansion would reproduce the perturbative QCD corrections to the b-quark
decay rate.

At linear order in k, Eq. (6.21) contains the terms

1

�0
ū(kαγβ + kβγα − gαβk/ − iεαβληkλγ η)PLu

−2k · (mbv − q)

�2
0

ū[(mbv − q)αγβ + (mbv − q)βγα

−(mb/v − /q)gαβ − iεαβλη(mbv − q)λγ η]PLu. (6.32)

These produce terms in the operator product expansion of the form b̄γλ(iDτ −
mbvτ )b and b̄γλγ5(iDτ −mbvτ )b. Converting the b-quark fields in QCD to those
in the heavy quark effective theory gives, at leading order in 1/mb, the operators
b̄vγλiDτ bv = vλb̄viDτ bv and b̄vγλγ5iDτ bv. The second of these has a vanishing
B̄-meson matrix element by parity invariance of the strong interactions. The first
has a matrix element that can be written in the form

〈B̄(v)|b̄viDτ bv|B̄(v)〉 = Xvτ . (6.33)

Contracting both sides with vτ , we find that the equation of motion in HQET,
(iv · D)bv = 0, implies that X = 0. There are no matrix elements of dimension-
four operators that occur in the OPE for the Tj ’s. This means that, when the
differential semileptonic B̄-meson decay rate is expressed in terms of the bottom
and charm quark masses, there are no corrections suppressed by a single power
of �QCD/mb.

6.2.2 Dimension-five operators

There are several sources of contributions from dimension-five operators to the
operator product expansion. At order k1 we found in the previous subsection
that the operators b̄γλ(iDτ − mbvτ )b and b̄γλγ5(iDτ − mbvτ )b occur. Including
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1/mb corrections to the relationship between QCD and HQET operators gives
rise to dimension-five operators in HQET. Recall from Chapter 4 that at order
1/mb, the relationship between the b-quark field in QCD and in HQET is (to
zeroth order in αs)

b(x) = e−imbv · x
(

1 + i /D

2mb

)
bv(x), (6.34)

and the order 1/mb HQET Lagrange density is

L1 = −b̄v

D2

2mb
bv − b̄vg

Gαβσαβ

4mb
bv. (6.35)

As was noted in Chapter 4, one can drop the ⊥ subscript on D at this order.
Equations (6.34) and (6.35) imply that at order 1/mb (and zeroth order in αs),

b̄γλ(iDτ − mbvτ )b = b̄vγλiDτ bv + i
∫

d4x T [b̄vγλiDτ bv(0) L1(x)]

+ b̄v

(−i
←
/D

2mb

)
γλiDτ bv + b̄vγλiDτ

i /D

2mb
bv. (6.36)

Equation (6.36) is an operator matching condition. The matrix element of the
left-hand side is to be taken in QCD, and of the right-hand side in HQET between
hadrons states constructed using the lowest order Lagrangian. The effects of the
1/mb corrections to the Lagrangian have been explicitly included as a time-
ordered product term in the operator. Equation (6.36) is valid at a subtraction
point μ = mb, with corrections of order αs(mb).

Let us consider the B̄-matrix element of the various terms that occur on the
right-hand side of Eq. (6.36). We have already shown that the equations of
motion of HQET imply that b̄vγλiDτ bv has zero B̄-meson matrix elements. For
the time-ordered product, we note that γλ can be replaced by vλ and write

〈B̄(v)|i
∫

d4x T [b̄viDτ bv(0) L1(x)]|B̄(v)〉 = Avτ . (6.37)

Contracting with vτ yields

〈B̄(v)|i
∫

d4xT [b̄v(iv · D)bv(0) L1(x)]|B̄(v)〉 = A. (6.38)

At tree level, the time-ordered product is evaluated by using (v · D)Sh(x − y) =
δ4(x − y), where Sh is the HQET propagator. Consequently,

A = −〈B̄(v)|L1(0)|B̄(v)〉 = − λ1

mb
− 3λ2

mb
, (6.39)

where λ1 and λ2 were defined in Eqs. (4.23). There is another way to evaluate
the B̄-matrix element of the first two terms on the right-hand side of Eq. (6.36).
Instead of including the time-ordered product, one evaluates the matrix element
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of the first term by using the equations of motion that include O(1/m Q) terms
in the Lagrangian, i.e., b̄v (iv · D) bv = −L1.

Using the operator identity [Dα, Dβ] = igGαβ , we find the last two terms on
the right side of Eq. (6.36) become

b̄v

i /D

2mb
γλiDτ bv + b̄vγλiDτ

i /D

2mb
bv = b̄v

iD(λiDτ )

mb
bv − b̄vg

Gατσ
α
λ

2mb
bv, (6.40)

where parentheses around indices denote that they are symmetrized, i.e.,

a(αbβ) = 1

2
(aαbβ + aβbα).

For the operator with symmetrized covariant derivatives we write

〈B̄(v)|b̄viD(λiDτ )bv|B̄(v)〉 = Y (gλτ − vλvτ ). (6.41)

The tensor structure on the right-hand side of this equation follows from the
HQET equation of motion (iv · D)bv = 0, which implies that it must vanish
when either index is contracted with the b quark’s four velocity. To fix Y we
contract both sides with gλτ , giving

Y = 1

3
〈B̄(v)|b̄v(iD)2bv|B̄(v)〉 = 2

3
λ1. (6.42)

Finally we need

〈B̄(v)|b̄vgGατσ
α

λbv|B̄(v)〉 = Z (gλτ − vλvτ ), (6.43)

where again the tensor structure on the right-hand side follows from the fact that
contracting vλ into it must vanish, since b̄vσ

α
λv

λbv = 0. Contracting both sides
of Eq. (6.43) with the metric tensor yields

Z = 1

3
〈B̄(v)|b̄vgGαβσαβbv|B̄(v)〉 = −4λ2. (6.44)

Combining these results we have that the order k1 terms in Eq. (6.32) give the
following contribution to the Tj ’s:

T (1)
1 = − 1

2mb
(λ1 + 3λ2)

{
1

6�0
− (mb − q · v)2

�2
0

+ 2

3

[q2 − (q · v)2]

�2
0

}
,

T (1)
2 = − 1

2mb
(λ1 + 3λ2)

[
5

3�0
− 2mb(mb − v · q)

�2
0

+ 4

3

mbv · q

�2
0

]
, (6.45)

T (1)
3 = 1

2mb
(λ1 + 3λ2)

5

3

(
mb − v · q

�2
0

)
.
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6.2.3 Second order

The order k2 terms in Eq. (6.21) are

−2
k · (mbv − q)

�2
0

ū(kαγβ + kβγα − gαβk/ − iεαβληkλγ η)PLu

+
{

4[k · (mbv − q)]2

�3
0

− k2

�2
0

}
ū[(mbv − q)αγβ + (mbv − q)βγα

− (mb/v − /q)gαβ − iεαβλη(mbv − q)λγ η]PLu. (6.46)

These can be expressed in terms of matrix elements of the operators b̄γ λ(iD −
mbv)(α(iD − mbv)β)b and b̄γ λγ5(iD − mbv)(α(iD − mbv)β)b. The operator in-
volving γ5 will not contribute to B̄-meson matrix elements by parity. Rewrit-
ing the result using HQET operators, we find the only operator that occurs is
vλb̄viD(αiDβ)bv. Its matrix element is given by Eqs. (6.41) and (6.42). So we
find that the terms with two k’s give the following contribution to the structure
functions:

T (2)
1 = 1

6
λ1(mb − v · q)

{
4

�3
0

[q2 − (v · q)2] − 3

�2
0

}
,

T (2)
2 = 1

3
λ1mb

{
4

�3
0

[q2 − (v · q)2] − 3

�2
0

− 2v · q

mb�
2
0

}
, (6.47)

T (2)
3 = 1

6
λ1

{
4

�3
0

[q2 − (v · q)2] − 5

�2
0

}
.

At zeroth order in αs , the b-quark matrix element of the operator b̄σαβGαβb
vanishes. To find the part of the operator product expansion proportional to this
operator, we need to consider the b → b + gluon matrix element of the time-
ordered product. At tree level it is given by the Feynman diagram in Fig. 6.5. The
matrix element has the initial b quark with residual momentum p/2, a final b
quark with residual momentum −p/2, and the gluon with outgoing momentum
p. This choice is convenient since the denominators of the c-quark propagators
do not contribute to the p dependence at linear order in p. The part of this
Feynman diagram with no factors of the gluon four momentum, p, is from the
b → b+gluon matrix element of operators we have already found, with the gluon

q , β q , α

b b

Fig. 6.5. The one-gluon matrix element in the OPE.
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field coming from the covariant derivative D = ∂ + ig A. The part linear in p is

gT AεAλ∗(p)
1

2�2
0

ūγα[−/pγλ(mb/v − /q) + (mb/v − /q)γλ/p]γβ PLu, (6.48)

where εAλ is the gluon polarization vector. Only the part of this antisymmet-
ric under interchange p ↔ ε∗ contributes to the operator we are considering.
Equation (1.119) is used to reexpress the product of three-gamma matrices in
the square brackets of Eq. (6.48) in terms of a single-gamma matrix. Only the
part proportional to the Levi-Civita tensor survives. Applying the identity of
Eq. (1.119) one more time shows that the term linear in p is reproduced by the
matrix element of the operator

g

2�2
0

b̄Gμνε
μνλσ (mbv − q)λ(gασ γβ + gβσ γα − gαβγσ + iεασβτ γ

τ γ5)PLb.

(6.49)

Here we have used the replacement

pβT AεAλ∗ → − i

2
Gβλ

for the part antisymmetric in β and λ.
The transition to HQET is made by replacing b-quark fields in the above by

bv. The operators that occur are b̄vGμνγ λγ5bv and b̄vGμνγ λbv. Because of the
antisymmetry on the indices μ and ν, parity invariance of the strong interaction
forces the latter operator to have a zero matrix element between B̄-meson states.
The matrix element of the other operator can be written as

〈B̄(v)|b̄vgGμνγ λγ5bv|B̄(v)〉 = Nεμνλτ vτ . (6.50)

Contracting both sides of this equation with εμνλρvρ and using the identity

εμνλρvρ b̄vγ
λγ5bv = −b̄vσμνbv (6.51)

yields

N = −2λ2. (6.52)

Consequently, the b → b + gluon matrix element gives these additional contri-
butions to the structure functions:

T (g)
1 = λ2

(mb − v · q)

2�2
0

,

T (g)
2 = −λ2

mb

�2
0

, (6.53)

T (g)
3 = λ2

1

2�2
0

.

Summing the three contributions we have discussed,

Tj = T (1)
j + T (2)

j + T (g)
j , (6.54)
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gives the complete contribution of dimension-five operators in HQET to the
structure functions. At this order in the operator product expansion only two
matrix elements occur, λ1 and λ2. Furthermore, one of them, λ2 � 0.12 GeV2,
is known from B∗ − B mass splitting. The results for Tj determine the nonper-
turbative �2

QCD/m2
b corrections to the inclusive semileptonic decay rate.

6.3 Differential decay rates

The inclusive B̄ semileptonic differential decay rate is calculated by using
Eqs. (6.9) and (6.54), with the W j ’s obtained from the imaginary part of the
Tj ’s. The identity

− 1

π
Im

(
1

�0

)n+1

= (−1)n

n!
δ(n)[(mbv − q)2 − m2

c

]
, (6.55)

where the superscript denotes the nth derivative of the δ function with respect
to its argument, is useful in computing the W j ’s. Terms with derivatives of
the δ function are evaluated by first integrating by parts to take the derivatives
off the δ function. In using this procedure, one must be careful to include the
factor θ (4Ee Eνe − q2), which sets the lower limit of the Eνe integration, in the
differential decay rate, since the derivative can act on this term. Differentiating
the θ function with respect to Eνe gives

δ

[(
m2

b − m2
c + q2

2mb
− Ee

)
− q2

4Ee

]
, (6.56)

which, in terms of the variables y, q̂2, and z defined in Eqs. (6.29) and (6.30), is
the δ function 2δ(z)/mb. This procedure gives for the differential decay rate

d�

dq̂2 dy
= G2

F m5
b

192π3
|Vcb|2

{
θ (z)

[
12(y − q̂2)(1 + q̂2 − ρ − y)

− 2λ1

m2
b

(4q̂2 − 4q̂2ρ + 4q̂4 − 3y + 3ρy − 6q̂2 y)

− 6λ2

m2
b

(−2q̂2 − 10q̂2ρ + 10q̂4 − y + 5ρy − 10q̂2 y)

]

+ δ(z)

y2

[
−2λ1

m2
b

(2q̂6 + q̂4 y2 − 3q̂2 y3 − q̂2 y4 + y5)

−6λ2

m2
b

q̂2(q̂2 − y)(5q̂2 − 8y + y2)

]

+ δ′(z)

y3

[
−2λ1

m2
b

q̂2(y2 − q̂2)2(y − q̂2)

]}
, (6.57)
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where the dimensionless variable q̂2, y, ρ, and z are defined in Eqs. (6.29)
and (6.30). Experimentally, the electron energy spectrum d�/dy is easier to
study than the doubly differential decay rate. Integration of Eq. (6.57) over the
allowed region 0 < q̂2 < y(1 − y − ρ)/(1 − y) gives

d�

dy
= G2

F m5
b

192π3
|Vcb|2

{[
2(3 − 2y)y2 − 6y2ρ − 6y2ρ2

(1 − y)2
+ 2(3 − y)y2ρ3

(1 − y)3

]

− 2λ1

m2
b

[
−5

3
y3 − y3(5 − 2y)ρ2

(1 − y)4
+ 2y3(10 − 5y + y2)ρ3

3(1 − y)5

]

− 6λ2

m2
b

[
−y2 (6 + 5y)

3
+ 2y2(3 − 2y)ρ

(1 − y)2

+ 3y2(2 − y)ρ2

(1 − y)3
− 5y2(6 − 4y + y2)ρ3

3(1 − y)4

]}
. (6.58)

Integrating over the allowed electron energy 0 < y < 1 − ρ yields the total
B̄ → Xceν̄e decay rate,

� = G2
F m5

b

192π3
|Vcb|2

[
(1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ)

+ λ1

2m2
b

(1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ)

− 3λ2

2m2
b

(3 − 8ρ + 24ρ2 − 24ρ3 + 5ρ4 + 12ρ2 ln ρ)

]
, (6.59)

which can be written in the compact form

� = G2
F m5

b

192π3
|Vcb|2

[
1 + λ1

2m2
b

+ 3λ2

2m2
b

(
2ρ

d

dρ
− 3

)]
f (ρ), (6.60)

where

f (ρ) = 1 − 8ρ + 8ρ3 − ρ4 − 12ρ2 ln ρ. (6.61)

The first term is the leading term in the mb → ∞ limit and is equal to the free
quark decay rate. The next two terms are 1/m2

b corrections. The 1/mb correction
vanishes. Note that the ρ dependence of the coefficient of λ1 is the same as that
in the free quark decay rate. We will give a simple physical reason for this result
in the next section.

Results for semileptonic B̄-meson decays from the b → u transition are ob-
tained from Eqs. (6.57), (6.58), and (6.59) by taking the limit ρ → 0. Taking this
limit is straightforward, except in the case of the electron spectrum in Eq. (6.58).
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Suppose the electron energy spectrum in the b → c case contains a term of the
form

gρ(y) = ρn−1

(1 − y)n
. (6.62)

The limit as ρ → 0 of gρ(y) is not zero. The problem is that the maximum
value of y is 1 − ρ and hence at maximum electron energy the denominator in
Eq. (6.62) goes to zero as ρ → 0. Imagine integrating gρ(y) against a smooth
test function t(y). Integrating by parts

lim
ρ→0

∫ 1−ρ

0
dy t(y)gρ(y) = 1

(n − 1)

[
t(1) − lim

ρ→0

∫ 1−ρ

0
dy

dt

dy
(y)

ρn−1

(1 − y)n−1

]

= 1

(n − 1)
t(1). (6.63)

Hence we conclude that

lim
ρ→0

gρ(y) = 1

(n − 1)
δ(1 − y). (6.64)

Differentiating the above gives

lim
ρ→0

ρn−1

(1 − y)n+1
= − 1

n(n − 1)
δ′(1 − y). (6.65)

The ρ → 0 limit of the electron spectrum in Eq. (6.58) is the B̄ → Xueν̄e electron
energy spectrum,

d�

dy
= G2

F m5
b|Vub|2

192π3

{
2(3 − 2y)y2θ (1 − y)

− 2λ1

m2
b

[
− 5

3
y3θ (1 − y) + 1

6
δ(1 − y) + 1

6
δ′(1 − y)

]

− 2λ2

m2
b

[
− y2(6 + 5y) θ (1 − y) + 11

2
δ(1 − y)

]}
, (6.66)

and the total decay width is

� = G2
F m5

b|Vub|2
192π3

(
1 + λ1

2m2
b

− 9λ2

2m2
b

)
. (6.67)

6.4 Physical interpretation of 1/m2
b corrections

The corrections to the decay rate proportional to λ1 have a simple physical
interpretation. They arise from the motion of the b quark inside the B̄ meson. At
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leading order in the 1/mb expansion, the b quark is at rest in the B̄-meson rest
frame, and the B̄-meson differential decay rate is equal to the b-quark, decay rate,
d�(0)(vr , mb). However, in a B̄ meson the b quark really has (in the B̄-meson
rest frame) a four momentum pb = mbvr + k. We can consider this as a b quark
with an effective mass m′

b and an effective four velocity v′ satisfying

m ′
bv

′ = mbvr + k. (6.68)

Including effects of the b-quark motion in the B̄ meson, we find the fully differ-
ential semileptonic decay rate d� is

d� = 〈
d�(0)(v′, m′

b)/v′0〉, (6.69)

where v′0 is the time-dilation factor, the fences denote averaging over k, and d�(0)

is the free b-quark differential decay rate. This averaging is done by expanding
Eq. (6.69) to quadratic order in k and using

〈kα〉 = − λ1

2mb
vα

r , 〈kαkβ〉 = λ1

3

(
gαβ − vα

r vβ
r

)
. (6.70)

More powers of k would correspond to higher dimension operators in the OPE
than those we have considered so far. In expanding Eq. (6.69) one can use

m ′
b
2 = (m′

bv
′)2 = (mbvr + k)2 = m2

b + 2mbvr · k + k2. (6.71)

Note that Eqs. (6.70) and (6.71) imply that 〈m ′2
b 〉 = 〈m2

b〉. Since vrα〈kαkβ〉 = 0,
we can replace m ′

b by mb in Eq. (6.69) without worrying about cross terms in
the average where one factor of k arises from expanding m′

b and the other from
expanding v′. The effective four velocity v′ is related to vr and k by

v′
α = vrα + 1

m ′
b

kα = vrα + kα

mb
, (6.72)

so the time-dilation factor is

v′
0 = vr · v′ = 1 + vr · k/mb. (6.73)

Averaging this yields 〈v′
0〉 = 1−λ1/2m2

b, and since vrα〈kαkβ〉 = 0 we can replace
the factor 1/v′0 in Eq. (6.69) by (1 + λ1/2m2

b). The fully differential decay rate
can be taken to be d�/dq̂2 dy dx , where we have introduced the dimensionless
neutrino energy variable

x = 2Eνe

mb
. (6.74)

The variables x and y depend on the four velocity vr of the b quark through
y = 2vr · pe/mb, x = 2vr · pνe/mb, and consequently, under the replacement
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vr → v′,

y → y′ = y + 2k · pe

m2
b

, x → x ′ = x + 2k · pνe

m2
b

. (6.75)

Hence Eq. (6.69) implies that

d�

dq̂2 dy dx
=

[
1 − λ1

2m2
b

(
−1 + y

∂

∂y
+ x

∂

∂x
+ 1

3
y2 ∂2

∂y2
+ 1

3
x2 ∂2

∂x2

+ 2

3
(xy − 2q̂2)

∂2

∂x ∂y

)]
d�(0)

dq̂2 dy dx
. (6.76)

Integrating over x yields

d�

dq̂2 dy
=

[
1 − λ1

2m2
b

(
−4

3
+ 1

3
y

∂

∂y
+ 1

3
y2 ∂2

∂y2

)]
d�(0)

dq̂2 dy
, (6.77)

where the free b-quark differential decay rate d�(0)/dq̂2 dy is given in Eq. (6.28).
Integrating over q̂2 and y, we find for the total decay rate

� =
(

1 + λ1

2m2
b

)
�(0). (6.78)

Equations (6.77) and (6.78) give the correct λ1 dependence of the B̄-meson dif-
ferential decay rates. Unfortunately, the dependence of the B̄-meson differential
decay rates in Eqs. (6.57)–(6.59) on λ2 does not seem to have as simple a physical
interpretation.

6.5 The electron endpoint region

The predictions that follow from the operator product expansion for the dif-
ferential B̄ → Xeν̄e semileptonic decay rate cannot be compared directly with
experiment in all regions of the phase space. For example, the expression for the
differential cross section d�/dq̂2 dy in Eq. (6.57) contains singular terms on the
boundary of the Dalitz plot, z = 0. Rigorously, predictions based on the operator
product expansion and perturbative QCD can be compared with experiment only
when averaged over final hadronic state masses m X with a smooth weighting
function. Very near the boundary of the Dalitz plot, only the lower-mass final
hadronic states can contribute, and the integration over neutrino energies does not
provide the smearing over final hadronic masses needed to compare the operator
product expansion results with experiment. In fact, since m X is necessarily less
than m B , the weighting function is never truly smooth. As a result the contour
integral over v · q needed to recover the structure functions W j from those asso-
ciated with the time-ordered product Tj necessarily pinches the cut at one point.
Near the cut the use of the OPE cannot be rigorously justified because there will
be propagators that have denominators close to zero. This is not considered a
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problem in a region where the final hadronic states are above the ground state
by a large amount compared with the nonperturbative scale of the strong inter-
actions, because threshold effects that are present in nature but not in the OPE
analysis are very small. In inclusive B̄ decay we assume that threshold effects
associated with the limit on the maximum available hadronic mass m Xmax are
negligible as long as m Xmax − m Xmin � �QCD. Near the boundary of the Dalitz
plot this inequality is not satisfied. Note that at the order in αs to which we have
worked, the singularities in Tj are actually poles located at the ends of what
we have called cuts. When αs corrections are included, the singularities become
the cuts we have described. Hence when radiative corrections are neglected, the
contour in Fig. 6.3 need not be near a singularity in the b → c decay case. For
b → u at q2 near q2

max, the contour necessarily comes near singularities because
the ends of the cuts are close together.

The endpoint region of the electron spectrum in inclusive semileptonic B̄ de-
cay has played an important role in determining the value of the element of the
CKM matrix |Vub|. For a given hadronic final state mass m X , the maximum elec-
tron energy is Emax

e = (m2
B − m2

X )/2m B . Consequently, electrons with energies
greater than Ee = (m2

B − m2
D)/2m B must necessarily come from the b → u

transition. However, this endpoint region is precisely where the singular contri-
butions proportional to δ(1− y) and δ′(1− y) occur in the b → u electron energy
spectrum. Note that these singular terms occur at the endpoint set by quark–gluon
kinematics, Ee = mb/2, which is smaller than the true maximum Emax

e = m B/2.
Clearly, in this region we must average over electron energies before comparing
the predictions of the OPE and perturbative QCD with experiment.

To quantify the size of the averaging region in electron energies needed, we
examine the general structure of the OPE. The most singular terms in the endpoint
region result from expanding the k dependence in the denominator of the charm
quark propagator. A term with power k p produces an operator with p covariant
derivatives and gives a factor of 1/�

p+1
0 in the Tj . This results in a factor of

δ(p−1)(1− y) in the electron energy spectrum. Matrix elements of operators with
p covariant derivatives are of the order of �

p
QCD and so the general structure of

the OPE prediction for the electron energy spectrum is

d�

dy
∝ θ (1 − y)(ε0 + 0 ε + ε2 + · · ·)

+ δ(1 − y)(0 ε + ε2 + · · ·)
+ δ′(1 − y)(ε2 + ε3 + · · ·)
...

+ δ(n)(1 − y)(εn+1 + εn+2 + · · ·)
... (6.79)

where εn denotes a quantity of the order of (�QCD/mb)n . It may contain smooth
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y dependence. The zeroes are the coefficients of the dimension-four operators,
which vanish by the equations of motion. Although the theoretical expression for
d�/dy is singular near the b-quark decay endpoint y = 1, the total semileptonic
decay rate is not. The contribution to the total rate of a term of order εmδ(n)(1− y)
is order εm , and so the semileptonic width has a well-behaved expansion in
powers of 1/mb:

� ∝ (ε0 + 0 ε + ε2 + ε3 + · · ·). (6.80)

In the endpoint region consider integrating d�/dy against a normalized func-
tion of y that has a width σ . This provides a smearing of the electron energy
spectrum near y = 1 and corresponds to examining the energy spectrum with
resolution in y of σ (i.e., a resolution in electron energy of mbσ ). A mean-
ingful prediction for the endpoint spectrum can be made when the smearing
width σ is large enough that terms that have been neglected in Eq. (6.79) are
small in comparison to the terms that have been retained. The singular term
εmδ(n)(1 − y) (where m > n) smeared over a region of width σ gives a contribu-
tion of order εm/σ n + 1. If the smearing width σ is of the order of ε p, the generic
term εmδ(n)(1 − y) yields a contribution to the smeared spectrum of the order of
εm − p(n + 1). Even though m > n, higher-order terms in the 1/mb expansion get
more important than lower-order ones unless p ≤ 1.

If the smearing in y is chosen of order ε (i.e., a region of electron energies
of the order of �QCD), then all terms of the form θ (1 − y) and εn + 1δ(n)(1 − y)
contribute equally to the smeared electron energy spectrum, with less singular
terms being suppressed. For example, all terms of order εn + 2δ(n)(1 − y) are
suppressed by ε, and so on. Thus one can predict the endpoint region of the
electron energy spectrum, with a resolution in electron energies of the order of
�QCD, if these leading singular terms are summed. The sum of these leading
singularities produces a contribution to d�/dy of width ε but with a height of
the same order as the free quark decay spectrum.

We can easily get the general form of the most singular contributions to the
operator product expansion for the electron spectrum by using the physical pic-
ture of smearing over b-quark momenta discussed in the previous section. We
want to continue the process to arbitrary orders in k, but only the most singular
y dependence is needed. It arises only from the dependence of y on mb and v.
Shifting to m′

b and v′,

y → y′ = 2v′ · pe

m ′
b

= y + kμ 2

mb
( p̂eμ − yvμ) + · · · , (6.81)

where the ellipsis denotes terms higher order in k, and p̂e = pe/mb. The term
proportional to yvμ in Eq. (6.81) arose from the dependence of m′

b on k. The
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most singular terms come from the y dependence in the factor θ (1 − y), and so

d�

dy
= d�(0)

dy

[
1 + 〈kμ1〉

(
2

mb

)
( p̂e − v)μ1

∂

∂y
+ · · ·

+ 1

n!
〈kμ1 · · · kμn 〉

(
2

mb

)n

( p̂e − v)μ1 · · · ( p̂e − v)μn

∂n

∂yn
+ · · ·

]
θ (1 − y).

(6.82)

Equation (6.82) sums the most singular nonperturbative corrections in the end-
point region, provided one interprets the averaging over residual momenta as〈

kμ1 · · · kμn

〉 = 1

2
〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉. (6.83)

There is no operator ordering ambiguity because 〈kμ1 · · · kμn 〉 is contracted with
a tensor completely symmetric in μ1 · · · μn . Finally, only the part of the matrix
element 〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉 proportional to vμ1 · · · vμn contributes
to the most singular terms. A dependence on the metric tensor gμi μ j would result
in a factor of ( p̂e − v)2 that vanishes at y = 1. So writing

1

2
〈B̄(v)|b̄viD(μ1 · · · iDμn)bv|B̄(v)〉 = Anvμ1 · · · vμn + · · · , (6.84)

we find the differential decay spectrum near y = 1 is

d�

dy
= d�(0)

dy
[θ (1 − y) + S(y)], (6.85)

where the shape function S(y) is

S(y) =
∞∑

n = 1

An

mn
bn!

δ(n−1)(1 − y). (6.86)

In Sec. 6.2.2, we showed that A1 = 0 and A2 = − 1
3λ1. At present, one must use

phenomenological models for the shape function to extract |Vub| from semilep-
tonic decay data in the endpoint region. This yields |Vub| ≈ 0.1|Vcb|. The pertur-
bative QCD corrections to d�/dy also become singular as y → 1. These singular
terms must also be summed to make a prediction for the shape of the electron
spectrum in the endpoint region.

For inclusive b → c semileptonic decay, the 1/m2
b corrections are not singular

at the endpoint of the electron spectrum, but they are large because m2
c/m2

b � 1/10
is small. (At order 1/m3

b singular terms occur even for b → c semileptonic decay.)
It is instructive to plot the b → c electron spectrum including the 1/m2

b correc-
tions. This is done in Fig. 6.6. One can clearly see that the 1/m2

b corrections
become large near the endpoint. The OPE analysis gives the electron spectrum
in Eq. (6.58), which depends on the heavy quark masses mb and mc. In particular,
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Fig. 6.6. The electron energy spectrum in inclusive semileptonic B̄ → Xc decay at
lowest order (solid curve) and including the 1/m2

b corrections (dashed curve), with
λ1 = − 0.2 GeV2, mb = 4.8 GeV, and mc = 1.4 GeV. Here �0 = G2

F |Vcb|2m5
b/192π3.

Fig. 6.7. The electron energy spectrum in inclusive semileptonic B̄ → Xc decay, using
the lowest-order formula with quark masses (dashed curve) and with hadron masses (solid
curve); y is defined as 2Ee/mb in both plots, and �0 = G2

F |Vcb|2m5
b/192π3.

the electron endpoint energy is (m2
b −m2

c)/2mb. The true kinematic endpoint for
the electron spectrum is (m2

B − m2
D)/2m B , and it depends on the hadron masses.

In Fig. 6.7, the lowest-order electron spectrum using quark masses has been
compared with the same spectrum in which quark masses have been replaced by
hadron masses. Over most of the phase space, this is close to the true spectrum,
but very near the maximum value of Ee there is no theoretical basis to believe
that the lowest-order spectrum with hadron masses has any connection with the
actual electron spectrum. Nevertheless, the spectrum with hadron masses ends
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Fig. 6.8. The inclusive lepton energy spectrum for semileptonic B̄ → Xc decay, as
measured by the CLEO Collaboration. The data are from the Ph.D thesis of R. Wang.
The filled dots are the electron spectrum, and the open dots are the muon spectrum. The
dashed curve is a model fit to the primary leptons from b → c semileptonic decay, which
should be compared with theoretical predictions in Figs. 6.6 and 6.7. The dotted curve
is a model fit to the secondary leptons from semileptonic decay of the c quark produced
in b decay, and the solid curve is the sum of the two.

at the true kinematic endpoint of the allowed electron spectrum. The measured
inclusive lepton spectrum in semileptonic B decay is shown in Fig. 6.8.

6.6 |Vcb| from inclusive decays

The expression for the inclusive differential semileptonic decay rate in Eq. (6.57)
can be used to deduce the HQET parameters �̄ and λ1. In addition, it provides a
determination of the CKM matrix element Vcb. For comparison with experiment,
it is useful to eliminate the c- and b-quark masses in favor of hadron masses.
The average D- and B-meson masses are

m̄ D = m D + 3m D∗

4
= 1.975 GeV, m̄ B = m B + 3m B∗

4
= 5.313 GeV.

(6.87)
Using the results of Chapter 4, we find

mc = m̄ D − �̄ + λ1

2m̄ D
+ · · · ,

mb = m̄ B − �̄ + λ1

2m̄ B
+ · · · ,

(6.88)



174 Inclusive weak decay

where the ellipses denote terms higher order in the 1/m Q expansion. This gives,
for example,

mc

mb
= m̄ D

m̄ B
− �̄

m̄ B

(
1 − m̄ D

m̄ B

)
− �̄2

m̄2
B

(
1 − m̄ D

m̄ B

)
+ λ1

2m̄ Bm̄ D

(
1 − m̄2

D

m̄2
B

)

� 0.372 − 0.63
�̄

m̄ B
− 0.63

�̄2

m̄2
B

+ 1.2
λ1

m̄2
B

. (6.89)

Applying this procedure to the inclusive semileptonic decay rate in Eq. (6.59)
and including the perturbative QCD corrections to the terms not suppressed by
powers of �QCD/m Q gives

�SL(B) = G2
F |Vcb|2m5

B

192π3
0.369

[
η� − 1.65

�̄

m̄ B
− 1.0

�̄2

m̄2
B

− 3.2
λ1

m̄2
B

]
. (6.90)

Note that m5
B has been factored out instead of m̄5

B . This choice makes the coef-
ficient of λ2/m̄2

B very small, and it has been neglected in the square brackets in
Eq. (6.90).

The perturbative corrections to the leading term in the 1/m Q expansion are
known to order α2

s :

η� = 1 − 1.54
αs(mb)

π
− 12.9

[
αs(mb)

π

]2

= 0.83. (6.91)

Using Eq. (6.90), the measured semileptonic branching ratio BR(B → Xeν̄e) =
(10.41 ± 0.29) %, and the B lifetime τ (B) = (1.60 ± 0.04) × 10−12 s, one finds

|Vcb| = [ 39 ± 1 (exp) ] × 10−3√
1 − 2.0 �̄

m̄ B
− 1.2

(
�̄

m̄ B

)2 − 3.9 λ1

m̄2
B

. (6.92)

The differential decay rate constrains the values of �̄ and λ1. An analysis of the
electron energy spectrum gives (at order α2

s ) �̄ � 0.4 GeV and λ1 � −0.2 GeV2,
with a large uncertainty. These values imply that |Vcb| = 0.042. Note that this is
close to the value extracted from semileptonic B̄ → D∗eν̄e decay in Chapter 4
(see Eq. (4.65)). Theoretical uncertainty in this determination of Vcb arises from
the values of �̄ and λ1 and possible violations of quark hadron duality.

In Eq. (6.91) the order α2
s term is ∼60% of the order αs term. There are

two reasons for this. First, recall from Chapter 4 that �̄ is not a physical quan-
tity and has a renormalon ambiguity of the order of �QCD. Using HQET, we
can relate �̄ to a measurable quantity, for example 〈δsH 〉, the average value of
δsH = sH −m̄2

D , where sH is the hadronic invariant mass squared in semileptonic
B̄ decay. This relation involves a perturbative series in αs . If one eliminates �̄

in Eq. (6.90) in favor of 〈δsH 〉, then the combination of the perturbative series in
the relation between �̄ and 〈δsH 〉 and the series η� will replace η� in Eq. (6.90).
This modified series has no Borel singularity at u = 1/2 and is somewhat better
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behaved. Second, the typical energy of the decay products in b → ceν̄e quark
decay is not mb, but rather Etyp ∼ (mb − mc)/3 ∼ 1.2 GeV. Using this scale in-
stead of mb to evaluate the strong coupling at in Eq. (6.91) leads to a series in
which the order α2

s term is 25% of the order αs term. Note that for this one uses
αs(mb) = αs(Etyp) − α2

s (Etyp)β0 ln m2
b/E2

typ + · · · in Eq. (6.91) and expands η�

to quadratic order in αs(Etyp).

6.7 Sum rules

One can derive a set of sum rules that restrict exclusive B̄ → D(∗)eν̄e form factors
by comparing the inclusive and exclusive semileptonic B̄ decay rates. The basic
ingredient is the simple result that the inclusive B̄ decay rate must always be
greater than or equal to the exclusive B̄ → D(∗) decay rate.

The analysis uses Tαβ considered as a function of q0 with q held fixed. It is
convenient not to focus on just the left-handed current, which is relevant for
semileptonic decay, but rather to allow J to be the axial vector or vector currents
or a linear combination of these. Also we change variables from q0 to

ε = m B − q0 − EXmin
c

, (6.93)

where EXmin
c

=
√

m2
Xmin

c
+ |q|2 is the minimal possible energy of the hadronic

state. With this definition, Tαβ(ε) has a cut in the complex ε plane along 0<ε<∞,
corresponding to physical states with a c quark. Tμν has another cut for 2m B −
EXmin

c̄bb
− EXmin

c
> ε > −∞ corresponding to physical states with two b quarks

and a c̄ quark.∗ This cut will not be important for the results in this section.
Contracting Tμν with a fixed four vector aν yields

a∗μTμν(ε)aν = −
∑
Xc

(2π )3δ3(q + pX )
〈B̄|J † · a∗|Xc〉〈Xc|J · a|B̄〉

2m B
(
EXc − EXmin

c
− ε

) + · · · ,

(6.94)

where the ellipsis denotes the contribution from the cut corresponding to two
b quarks and a c̄ quark. Consider integrating the product of a weight function
W�(ε) and Tμν(ε) along the contour C shown in Fig. 6.9. Assuming W� is
analytic in the region enclosed by this contour, we get

1

2π i

∫
C

dε W�(ε) a∗μTμν(ε)aν

=
∑
Xc

W�

(
EXc − EXmin

c

)
(2π )3δ3(q + pX

) |〈Xc|J · a|B̄〉|2
2m B

. (6.95)

∗ Note that the left-hand and right-hand cuts are exchanged when switching from q0 to ε because of the minus
sign in Eq. (6.93).
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Re ε

Im ε

C

Fig. 6.9. The sum-rule cut.

We want the weight function W�(ε) to be positive semidefinite along the cut
so the contribution of each term in the sum over Xc above is nonnegative. For
convenience we impose the normalization condition W�(0) = 1. We also assume
W� is flat near ε = 0 and falls off rapidly to zero for ε � �. If the operator
product expansion and perturbative QCD are used to evaluate the left-hand side
of Eq. (6.95), it is crucial that W� is flat in a region of ε much bigger than �QCD.
Otherwise, higher-order terms in the operator product expansion and perturbative
corrections will be large.

The positivity of each term in the sum over states X in Eq. (6.95) implies the
bound

1

2π i

∫
C

dε W�(ε) a∗μTμν(ε)aν >

∣∣〈Xmin
c

∣∣J · a|B̄〉∣∣2
4m B Emin

Xc

. (6.96)

To derive this we note that the sum over Xc includes an integral over d3 p/(2π )32E
for each particle in the final state. For the one-particle state, Xmin

c , performing
the integral over its three momentum by using the delta function leaves the
factor (2EXmin

c
) in the denominator of Eq. (6.96). All the other states make a

nonnegative contribution, leading to the inequality Eq. (6.96).
A set of possible weight functions is

W (n)
� = �2n

ε2n + �2n
. (6.97)

For n > 2 the integral Eq. (6.96) is dominated by states with a mass less than �.
These weight functions have poles at ε = (−1)1/2n�. Therefore, if n is not too
large and � is much greater than the QCD scale, the contour in Fig. 6.9 is far from
the cut. As n → ∞, W (n)

� → θ (� − ε) for positive ε, which corresponds to sum-
ming over all final hadronic resonances with equal weight up to excitation energy
�. In this case the poles of W� approach the cut and the contour in Fig. 6.9 must be
deformed to touch the cut at ε = �. As in the semileptonic decay rate, this is usu-
ally not considered a problem as long as � � �QCD. Here W (∞)

� is the common
choice for the weight function, and we use it for the remainder of this chapter.

To illustrate the utility of Eq. (6.96) we go over to HQET, where the charm and
bottom quark masses are taken as infinite, and let Jμ = c̄v′γ μbv and aμ = vμ.
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q q

Fig. 6.10. The leading-order diagram for the OPE.

Only the pseudoscalar member of the ground state D, D∗ doublet contributes in
this case, and

〈D(v′)|J · v|B̄(v)〉 = (1 + w)ξ (ω), (6.98)

where w = v · v′. For � large compared with �QCD, the leading contribution to
the time-ordered product Tμν(ε) comes from performing the OPE, evaluating
the coefficients to lowest order in αs , and keeping only the lowest-dimension
operators. We work in the B̄-meson rest frame v = vr and define the four velocity
of the charm quark by −q = mcv′. Then the charm quark’s residual momentum
is (k0 = mbv

0
r − q0 − mcv

′0, k = 0). In this frame v′
0 = vr · v′ = w. The leading

operator in the OPE is b̄vr bvr , and its coefficient follows from the Feynman
diagram for the b-quark matrix element shown in Fig. 6.10. This yields

vμ
r Tμν(ε)vν

r = (vr · v′ + 1)

2v′
0(mbvr0 − q0 − mcv

′
0)

. (6.99)

The variable ε defined in Eq. (6.93) can be expressed in terms of the heavy quark
masses, �̄ and w,

ε = mb + �̄ − q0 −
√

(mc + �̄)2 + m2
c(w2 − 1) + · · ·

= mb − q0 − mcw + �̄ (w − 1)

w
+ · · · , (6.100)

where the ellipses denote terms suppressed by powers of �QCD/mb,c. Using this,
we find Eq. (6.99) becomes

vμ
r Tμν(ε)vν

r =
(

w + 1

2w

)
1

ε − �̄(w − 1)/w
. (6.101)

Performing the contour integration gives

w + 1

2w
>

|ξ (w)|2(1 + w)2

4w
. (6.102)

At zero recoil, ξ (1) = 1, and the above bound is saturated. Writing ρ2 =
−dξ/dw|w = 1, we find the above gives the Bjorken bound on the slope of
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the Isgur-Wise function at zero recoil, ρ2 ≥ 1/4. Away from zero recoil the
Isgur-Wise function is subtraction-point dependent and consequently ρ2 de-
pends on the subtraction point. Perturbative QCD corrections add terms of the
form αs(μ)(ln �2/μ2 + C) to the bound on ρ2. Consequently the bound on ρ2

is more correctly written as

ρ2(�) ≥ 1/4 + O[αs(�)]. (6.103)

6.8 Inclusive nonleptonic decays

The nonleptonic weak decay Hamiltonian for b → cūd decays H (�c = 1)
W was

given in Eqs. (1.124) and (1.125). The nonleptonic decay rate is related to the
imaginary part of the B-meson matrix element of the time-ordered product of
this Hamiltonian with its Hermitian conjugate,

t = i
∫

d4x T
[
H (�c = 1)†

W (x) H (�c = 1)
W (0)

]
. (6.104)

Taking the matrix element of t between B-meson states at rest and inserting a
complete set of states between the two Hamiltonian densities yields

�(�c = 1) =
∑

X

(2π )4 δ4 (pB − pX )

∣∣〈X (pX )|H (�c = 1)
W (0)|B̄(pB)〉∣∣2

2m B

= Im 〈B̄|t |B̄〉
m B

, (6.105)

where the first line is the definition of �(�c = 1).
Inclusive nonleptonic decays can also be studied by using the OPE. In the case

of semileptonic decays, one can smear the decay distributions over the leptonic
kinematic variables q2 and q · v. The corresponding smearing variables do not
exist for nonleptonic decay, since all the final-state particles are hadrons. For
nonleptonic decays, one needs the additional assumption that the OPE answer
is correct even without averaging over the hadron invariant mass, which is fixed
to be the B-meson mass. This assumption is reasonable because m B is much
greater than �QCD. The leading term in the OPE is computed from the diagram
in Fig. 6.11. Its imaginary part gives the total nonleptonic decay width. The

b b

c

u

d

Fig. 6.11. OPE diagram for inclusive nonleptonic decay.
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situation in the case of nonleptonic decays is not very different from the case
of semileptonic decays, since there the contour of v · q integration cannot be
deformed so that it is always far from the physical cut; see Fig. 6.3.

One can compare the OPE computation of the nonleptonic decay width with
that of the semileptonic decay distribution. Imagine evaluating Fig. 6.11 with ūd
replaced by ν̄e. Computing the imaginary part of the diagram is equivalent to
evaluating the phase space integral for the final-state fermions. Thus performing
an OPE from the imaginary part of Fig. 6.11 is equivalent to integrating the
decay distributions to obtain the total decay width in Eq. 6.60. In the case of
nonleptonic decays, only the total width can be computed. Decay distributions are
not accessible using this method. Another difference between the semileptonic
and nonleptonic decays is that the weak Hamiltonian H (�c = 1)

W contains two terms
with coefficients C1(mb) and C2(mb) due to summing radiative corrections, using
the renormalization group equations.

Including �2
QCD/m2

b terms, we find the final result for the nonleptonic decay
width �(�c = 1) computed using the OPE together with a transition to HQET is

�(�c = 1) = 3
G2

F m5
b

192π3
|VcbVud |2

{(
C2

1 + 2

3
C1C2 + C2

2

)[(
1 + λ1

2m2
b

)

+ 3λ2

2m2
b

(
2ρ

d

dρ
− 3

)]
f (ρ) − 16C1C2

λ2

m2
b

(1 − ρ)3
}
, (6.106)

where f (ρ) was defined in Eq. (6.61) and C1,2 are evaluated at μ = mb.
The form of the leading-order term was computed in Problem 8 in Chapter 1.

The order �2
QCD/m2

b part of Eq. (6.106) proportional to λ1 can be deduced using
the techniques of Sec. (6.4). Equation (6.78) holds for both the semileptonic and
nonleptonic decay widths. However, the correction proportional to λ2 cannot be
deduced as simply. Like the semileptonic decay case, it arises from two sources.
One is from a b-quark matrix element of the time-ordered product t , where the b
quarks have momentum pb = mbv + k. Expanding in the residual momentum k
gives, at quadratic order in k, dependence on λ2 through the transition from full
QCD to HQET. This part of the λ2 dependence is the same for the nonleptonic
and semileptonic decays. There is also λ2 dependence that is identified from
the b → b + gluon matrix element. It is different in the nonleptonic decay case
because of the possibility that the gluon is emitted off the d or ū quarks, as shown
in Fig. 6.12. This contribution depends on the color structure of the operators
O1 and O2, and we consider the pieces in �(�c = 1) proportional to C2

1 , C2
2 , and

C1C2 successively.
For the piece of the λ2 term proportional to C2

1 , the contribution where a gluon
attaches to a d or ū quark vanishes by color conservation because these diagrams
are proportional to Tr T A = 0. Consequently, the λ2 dependence proportional to
C2

1 is the same for nonleptonic and semileptonic decays. For the contribution
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b b

u

c

d

b b

c

d

Fig. 6.12. OPE diagram for inclusive nonleptonic B decay with a gluon emitted from
one of the light quark lines.

proportional to C2
2 , the b → b + gluon matrix element is the same as semileptonic

b → u decay, provided the electron is not massless but rather has a mass equal
to that of the c quark. This is easily seen after making a Fierz rearrangement of
the quark fields in O2. Note that the c-quark mass only enters the calculation
of Tμν through �0. The left-handed projectors PL remove the c-quark mass
term in the numerator of its propagator. After taking the imaginary part, the mc

dependence in �0 goes into setting the correct three-body phase space. However,
the phase space is the same for b → c decay with massless leptons and b → u
decay with a massless neutrino and the electron having the same mass as the c
quark. Consequently, the λ2C2

2 term is also the same as in semileptonic decay.
For the λ2C1C2 term there is the usual part that is the same as for semileptonic
decays, as well as an additional contribution from the piece of the b → b + gluon
matrix element of t where the gluon attaches to either the d or ū quarks. This
additional part is the last term in Eq. (6.106), and the remainder of this section
is devoted to computing it.

The part of Im〈bg|t |b〉 coming from Fig. 6.12 is

16π iG2
F |Vcb|2|Vud |2

∫
d4q

(2π )4 δ
[
(mbv − q)2 − m2

c

]
× ūγ μPL (mb/v − /q + mc)γ νPLu Im �μν. (6.107)

In Eq. (6.107) the δ function comes from the imaginary part of the c-quark
propagator and

�μν = gT AεAλ∗
∫

d4k

(2π )4

× Tr

[
γ μ PL

k/ − /p/2

(k − p/2)2 + iε
γλ

k/ + /p/2

(k + p/2)2 + iε
γν PL

k/ − /q

(k − q)2 + iε

+ γμ PL
k/ + /q

(k + q)2 + iε
γν PL

k/ − /p/2

(k − p/2)2 + iε
γλ

k/ + /p/2

(k + p/2)2 + iε

]
.

(6.108)
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As in the semileptonic decay case, the gluon has outgoing momentum p and the
initial and final b quarks have residual momentum p/2 and −p/2, respectively.
Expanding in p, keeping only the linear term, combining denominators by using
the Feynman trick, performing the k integration, taking the imaginary part, and
performing the Feynman parameter integration gives

Im �μν = igpβT AεAλ∗

32π
δ(q2)Tr[γμ(γβγλ/q − /qγλγβ)γν/q PR + (μ ↔ ν)].

(6.109)

Only the part antisymmetric in β and λ gives a contribution of the type we are
interested in. Performing the trace yields

Im �μν = gpβT AεAλ∗

4π
δ(q2)[εβνλαqαqμ + (μ ↔ ν)]. (6.110)

Putting this into Eq. (6.107), identifying the spinors with HQET b-quark fields,
and using pβT AεAλ∗ → −iGβλ/2 and Eq. (6.50) for the resulting B-meson
matrix element, Fig. 6.12 gives the following contribution to the nonleptonic
width:

δ�(�c = 1) = −32C1C2|Vcb|2|Vud |2G2
Fλ2

×
∫

d4q

(2π )4 δ
[
(mbv − q)2 − m2

c

]
δ(q2)mb(v · q)2. (6.111)

Performing the q0 and q integrations with the δ functions yields

δ�(�c = 1) = −C1C2|Vcb|2|Vud |2G2
Fλ2m3

b

4π3

(
1 − m2

c

m2
b

)3

, (6.112)

which is the last term in Eq. (6.106). The contribution of dimension-six four-
quark operators to the nonleptonic width is thought to be more important than
the dimension-five operators considered in this section, because their coefficients
are enhanced by a factor of 16π2. The influence of similar four-quark operators
in the case of Bs − B̄s mixing will be considered in the next section.

6.9 Bs − B̄s mixing

The light antiquark in a B̄ or B̄s meson is usually called the spectator quark,
because at leading order in the OPE, its field does not occur in the operators
whose matrix elements give the inclusive decay rate. This persists at order 1/m2

b
since λ1,2 are defined as the matrix elements of operators constructed from
b-quark and gluon fields. At order 1/m3

b, the spectator quark fields first appear
because dimension-six four-quark operators of the form b̄vbv q̄q occur in the
OPE. These operators play a very important role in Bs − B̄s width mixing.
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Recall that C P|Bs〉 = −|B̄s〉, so the CP eigenstates are

|Bs1〉 = 1√
2

(|Bs〉 + |B̄s〉)

|Bs2〉 = 1√
2

(|Bs〉 − |B̄s〉),
(6.113)

with CP|Bsj 〉 = (−1) j |Bsj 〉. At second order in the weak interactions there are
|�b| = 2, |�s| = 2 processes that cause mass and width mixing between the |Bs〉
and |B̄s〉 states. In the limit that CP is conserved, it is the states |Bsj 〉 rather than
|Bs〉 and |B̄s〉 that are eigenstates of the effective Hamiltonian Heff = M + iW/2,
where M and W are the 2 × 2 mass and width matrices for this system. For
simplicity, we will neglect CP violation in the remainder of this section; it is
straightforward to extend the arguments to include CP violation. In the Bs − B̄s

basis, the width matrix W is

W =
⎛
⎝ �Bs ��

�� �B̄s

⎞
⎠. (6.114)

CPT invariance implies that �Bs = �B̄s
, so the widths of the eigenstates of Heff

are

� j = �Bs − (−1) j��. (6.115)

The difference between the widths of the two eigenstates |Bs1〉 and |Bs2〉 is
�1 − �2 = 2��.

The width mixing element �� in Eq. (6.114) is defined by

�� ≡
∑

X

(2π )4δ4(pB − pX )
〈Bs |H (�c = 0)

W |X〉〈X |H (�c = 0)
W |B̄s〉

2m Bs

= Im
〈Bs |i

∫
d4x T

[
H (�c = 0)

W (x) H (�c = 0)
W (0)

]|B̄s〉
2m Bs

. (6.116)

The first line is the definition of ��, and the second line can be verified by
inserting a complete set of states. There is a difference of a factor of 2 when
compared with Eq. (6.105), because now both time orderings contribute. The
width transition matrix element �� comes from final states that are common
in Bs and B̄s decay. For this reason it involves only the �c = 0 part of the
weak Hamiltonian; the �c = 1 part does not contribute. The �c = 0 part of the
weak Hamiltonian gives at tree level the quark decay b → cc̄s. In the leading
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logarithmic approximation,

H (�c = 0)
W = 4G F√

2
VcbV ∗

cs

∑
i

Ci (μ)Qi (μ), (6.117)

where the operators Qi (μ) that occur are

Q1 = (c̄αγμ PLbα) (s̄βγ μ PLcβ),

Q2 = (c̄βγμ PLbα) (s̄αγ μ PLcβ),

Q3 = (s̄αγμ PLbα)
∑

q = u,d,s,c,b

q̄βγ μ PLqβ,

(6.118)Q4 = (s̄βγμ PLbα)
∑

q = u,d,s,c,b

q̄αγ μ PLqβ,

Q5 = (s̄αγμ PLbα)
∑

q = u,d,s,c,b

q̄βγ μ PRqβ,

Q6 = (s̄βγμ PLbα)
∑

q = u,d,s,c,b

q̄αγ μ PRqβ.

At the subtraction point μ = MW , the coefficients are

C1(MW ) = 1 +O [αs (MW )] , C j �=1(MW ) = 0 +O [αs (MW )] . (6.119)

The operators Q1 and Q2 are analogous to O1 and O2 in the �c = 1 nonleptonic
Hamiltonian. The new operators Q3−Q6 occur because new “penguin” diagrams
shown in Fig. 6.13 occur in the renormalization of Q1. The sum of diagrams in
Fig. 6.13 is proportional to the tree-level matrix element of the operator

g(s̄T Aγμ PLb)DνG Aνμ, (6.120)

which after using the equation of motion DνG Aνμ = g
∑

q q̄γ μT Aq becomes

g2(s̄T Aγμ PLb)
∑

q = u,d,s,c,b

q̄γ μT Aq. (6.121)

This is a linear combination of Q3 − Q6. Penguin-type diagrams with more
gluons attached to the loop are finite and do not contribute to the operator renor-
malization.

b s b s b s

Fig. 6.13. Penguin diagrams that renormalize the weak Hamiltonian.
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The coefficients of Q1−6 at μ = mb are computed by using the renormalization
group equation Eq. (1.134), where the anomalous dimension matrix is

γ = g2

8π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 3 −1
9

1
3 − 1

9
1
3

3 −1 0 0 0 0

0 0 − 11
9

11
3 − 2

9
2
3

0 0 22
9

2
3 − 5

9
5
3

0 0 0 0 1 −3

0 0 −5
9

5
3 − 5

9 − 19
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.122)

Solving Eq. (1.134) for the coefficients at the scale μ = mb, it is easy to see that
C1 and C2 have the same value as in the �c = 1 case, whereas C3 − C6 are quite
small.

The operators in the OPE for the time-ordered product of weak Hamiltoni-
ans that gives �� must be both �s = 2 and �b = 2. Consequently, the lowest-
dimension operators are four-quark operators, and�� is suppressed by�3

QCD/m3
b

in comparison with �.
Neglecting the operators Q3 − Q6, we calculate the operator product for the

time-ordered product in Eq. (6.116) from the imaginary part of the one-loop
Feynman diagram in Fig. 6.14. This gives

�� = [
C2

1〈Bs(v)|(s̄βγ μPLbvα) (s̄αγ νPLbvβ)|B̄s(v)〉 + (
3C2

2 + 2C1C2
)

× 〈Bs(v)|(s̄αγ μPLbvα) (s̄βγ νPLbvβ)|B̄s(v)〉] Im �μν(pb). (6.123)

Taking the imaginary part converts the loop integration into a phase space inte-
gration for the intermediate c and c̄ quarks:

Im �μν(pb) = 4G2
F

(
VcbV ∗

cs

)2
∫

d3 pc

(2π )32Ec

d3 pc̄

(2π )32Ec̄
(2π )4 δ4 (pb − pc − pc̄)

× Tr[γμ PL (/pc + mc)γν PL (/pc̄ − mc)]. (6.124)

Performing the phase space integration above yields

Im �μν(pb) = 4G2
F

(
VcbV ∗

cs

)2
m2

b(Evμvν + Fgμν), (6.125)

b b

s s

c

c

Fig. 6.14. One-loop diagram for Bs − B̄s mixing.
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where

E = 1 + 2ρ

24π

√
1 − 4ρ,

F = −1 − ρ

24π

√
1 − 4ρ,

(6.126)

and ρ = m2
c/m2

b. Putting the above results together gives

�� = G2
F

(
VcbV ∗

cs

)2
m2

b

6π

√
1 − 4ρ

× {[
C2

1〈Bs(v)|(s̄βPRbvα) (s̄αPRbvβ)|B̄s(v)〉
+ (

3C2
2 + 2C1C2

)
× 〈Bs(v)|(s̄βPRbvβ) (s̄αPRbvα)|B̄s(v)〉](1 + 2ρ)

− (
C2

1 + 3C2
2 + 2C1C2

)
× 〈Bs(v)|(s̄βγ μPLbvβ) (s̄αγμPLbvα)|B̄s(v)〉(1 − ρ)

}
. (6.127)

One of the four-quark operators can be eliminated by using the Fierz identity:

(s̄αγ μPLbα)(s̄βγ νPLbβ) + (s̄βγ μPLbα)(s̄αγ νPLbβ)

= 1

2
gμν(s̄αγ λPLbα)(s̄βγλPLbβ). (6.128)

Making the transition to HQET and contracting with vμvν , we find this Fierz
identity gives

(s̄αPRbvα)(s̄βPRbvβ) + (s̄βPRbvα)(s̄αPRbvβ)

= 1

2
(s̄αγ λPLbvα)(s̄βγλPLbvβ). (6.129)

Using this, Eq. (6.127) becomes

�� = −G2
F

(
VcbV ∗

cs

)2
m2

b

6π

√
1 − 4ρ ×

{(−C2
1 + 2C1C2 + 3C2

2

)
(1 + 2ρ)

× 〈Bs(v)|(s̄β PRbvβ) (s̄α PRbvα)|B̄s(v)〉
+

[
1

2
C2

1 (1 − 4ρ) + (
3C2

2 + 2C1C2
)

(1 − ρ)

]

×〈Bs(v)|(s̄βγ μ PLbvβ) (s̄αγμ PLbvα)|B̄s(v)〉
}
. (6.130)

Estimates of the matrix elements in this equation suggest that |��/�Bs | is ∼0.1.
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6.10 Problems

1. At fixed q2, show that the structure functions F1,2(ω, q2) defined in Sec. 1.8 have cuts on the
real ω axis for |ω| ≥ 1. Also show that the discontinuity across the positive ω cut is given by
Eq. (1.165).

2. Derive Eqs. (6.10) and (6.11).

3. Define the parton-level dimensionless energy and invariant mass variables Ê0 and ŝ0 by

Ê0 = v · (pb − q) /mb = 1 − v · q̂,

ŝ0 = (pb − q)2/m2
b = 1 − 2v · q̂ + q̂2.

The hadronic energy EH and invariant mass sH are given by

EH = v · (pB − q) = m B − v · q,

sH = (pB − q)2 = m2
B − 2m Bv · q + q2.

(a) Show that EH and sH are related to the parton-level quantities by

EH = �̄ − λ1 + 3λ2

2m B
+

(
m B − �̄ + λ1 + 3λ2

2m B

)
Ê0 + · · ·

sH = m2
c + �̄2 + (

m2
B − 2�̄m B + �̄2 + λ1 + 3λ2

)
(ŝ0 − ρ)

+ (2�̄m B − 2�̄2 − λ1 − 3λ2)Ê0 + · · · ,

where the ellipses denote terms of higher order in 1/m B .
(b) For the b → u case, set mc = 0 in the above and show that

〈ŝ0〉 = 13λ1

20m2
b

+ 3λ2

4m2
b

,

〈Ê0〉 = 13λ1

40m2
b

+ 63λ2

40m2
b

,

where the symbol 〈·〉 denotes an average over the decay phase space.
(c) Use the previous results to show that

〈sH 〉 = m2
B

[
7�̄

10m B
+ 3

10m2
B

(�̄2 + λ1 − λ2)

]
.

4. Define

Tμν = −i
∫

d4x e−iq · x
〈B̄|T [

J †
μ(x)Jν(0)

]|B̄〉
2m B

,

where J is a b → c vector or axial current. An operator product expansion of Tμν in the
zero-recoil case q = 0 yields

1

3
T AA

ii = 1

ε
− (λ1 + 3λ2) (mb − 3mc)

6m2
bε (2mc + ε)

+ 4λ2mb − (λ1 + 3λ2) (mb − mc − ε)

mbε2 (2mc + ε)
,

1

3
T V V

ii = 1

2mc + ε
− (λ1 + 3λ2) (mb + 3mc)

6m2
bε (2mc + ε)

+ 4λ2mb − (λ1 + 3λ2) (mb − mc − ε)

mbε (2mc + ε)2 ,

where ε = mb − mc − q0.
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(a) Use these results to deduce the sum rules

1

6m B

∑
X

(2π )3 δ3 (pX ) |〈X |Ai |B̄〉|2 = 1 − λ2

m2
c

+ λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

+ 2

3mbmc

)
,

1

6m B

∑
X

(2π )3 δ3 (pX ) |〈X |Vi |B̄〉|2 = λ2

m2
c

− λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

− 2

3mbmc

)
.

(b) Use part (a) to deduce the bounds

h2
A1

(1) ≤ 1 − λ2

m2
c

+ λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

+ 2

3mbmc

)
,

0 ≤ λ2

m2
c

− λ1 + 3λ2

4

(
1

m2
c

+ 1

m2
b

− 2

3mbmc

)
.

5. Use the results of Sec. 6.2 to derive the double differential decay rate in Eq. (6.57).

6. Calculate the renormalization of Q1 − Q6 and verify the anomalous dimension matrix in
Eq. (6.122).

7. Suppose the effective Hamiltonian for semileptonic weak B decay is

HW = G F√
2

Vcb(c̄γμb)(ēγ μνe).

Perform an OPE on the time-ordered product of vector currents and deduce the nonperturbative
1/m2

b corrections to d�/dq̂2 dy.
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anomalous dimension
�c = 0 nonleptonic b decay, 184
�c = 1 nonleptonic b decay, 29
�b = 2, 99
heavy quark, 80
heavy-heavy, 83
heavy-light, 82
magnetic moment, 103
operator, 16, 28
velocity dependent, 83

B meson, 46
decay constant, 61–63
exclusive decay rate, 65–70
form factor relations, 69
inclusive decay, see inclusive decay
mass, 50, 106, 107
pion couplings, 135

B∗ meson, 46
decay constant, 61–63
mass, 50, 106, 107

Bs meson
decay constant, 63
mass, 50, 107
mixing, 181–185

β function, 14, 18
Borel transform, 116
bound, on slope of Isgur-Wise function, 178

Cabibbo-Kobayashi-Maskawa Matrix, see CKM
matrix

chiral Lagrangian, 20–24, 43
covariant derivative, 134, 143
heavy baryon, 149
heavy meson, 134

1/m correction, 135
loops, 23
parity, 132, 133

power counting, 20, 23, 43
scale �CSB, 20

chiral symmetry, 17–24
CKM matrix, 7, 8, 43
composite operator, see operator
coupling, running, 15, 18
covariant derivative, 5

D meson, 46
decay constant, 61–63
mass, 49, 106, 107
pion couplings, 135

D∗ meson, 46
decay constant, 61, 62
isospin violating decay, 145
mass, 49, 107
radiative decay, 141, 142
strong decay, 135

D(∗)
1,2, 46
B̄ decay to, 74, 127–128
mass, 49
strong decay, 48–52

Ds meson
decay constant, 63
mass, 49

decay constant
heavy meson, 61–63, 93–95, 149
π, K , 31, 32

dimensional regularization loop integral, 10

effective Hamiltonian, 25–30
anomalous dimension, 30
μ decay, 26
nonleptonic decay, 27, 28
radiative corrections, 27, 28

FD(∗) , 67, 69, 115
Fermi constant, 26

189
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Feynman parameter, 10
field strength, gluon, 17
form factor

B → D(∗)
1,2, 74, 127–128

B → D(∗), 63–70, 113, 114
B → π , 138, 140
D → π , 138
�b → �c , 72, 107, 108, 111, 112
�c → �, 70–71

fragmentation, 52–54

gauge boson
masses, 5

gauge fixing, 6
gluon field strength, 17
gπ , 135, 138

H field, 54–58
constraints, 55
definition, 55
heavy quark, spin of, 56
light degrees of freedom, spin of, 56
Lorentz transformation, 55
parity, 55

heavy meson
decay constant, 63
form factors

B → D(∗), definition, 64
heavy quark

field, constraint on, 59
flavor symmetry, 45
magnetic moment, 142
propagator, 58
spin, 45
spin symmetry, 45
vertex, 59

heavy quark states, normalization of, 60–61
Higgs boson, 2
Higgs potential, 3, 4
HQET Lagrangian, 58–60

inclusive decay
differential distribution, 164, 166
electron endpoint, 154, 168–173
electron spectrum, 158, 165
gluon operator, 162, 179
kinematics, 151
nonleptonic, 178–181
nonleptonic width, 179
radiative corrections, 174
semileptonic, 151–173

decay distributions, 152
semileptonic width, 165, 166, 174
Tμν , 155
Wμν , 153

integrating out, 24
Isgur-Wise function, 68, 72, 108

normalization, 72
normalization at zero recoil,

69

Lagrangian
chiral, 20, 134
HQET at order 1/m Q , 103
QCD, 17
QED, 9

λ1, 106, 174
λ2, 106
�b , 47

field, 57
form factors, 72
mass, 50, 106, 107

�̄, 105, 174
�c , 47

decay, 70–71
field, 57
form factors, 70–71
mass, 1, 49, 107

�QCD, definition, 19
lepton masses, 6
loops, 8–15
Luke’s theorem, 112, 114, 148

magnetic moment, 142, 143
mass

heavy hadron, 49, 50, 105–107,
127

MS, 120
pole, 119, 120
pseudo-Goldstone boson, 21
residual, 119

mass terms, 5–6
matching, 24, 84–87

coupling constant, 24
heavy-heavy, 95, 96, 98
heavy-light, 85, 88, 92, 93
�QCD, 24
magnetic moment, 103
renormalons, 118

MS
mass, 120
scheme, 11

nonrelativistic quark model, 24, 136–138, 143,
149

NRQCD, 124–127

OPE, 32–41
for deep inelastic scattering, 38, 41
inclusive decay, 157–164
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operator
anomalous dimension, 16, 28, 43
mixing, 17, 28
renormalization, 15–17

operator product expansion, see OPE

pion couplings
heavy meson, 135

pole mass, 119–121
power counting, 23, 120
projection operator, velocity, 58
propagator, for heavy quark, 58

quark
field, heavy, 58
masses, 6

renormalization
charge, 13
HQET, 77–99
mass, 13, 18
operator, 15–17, 82–83
vertex, 13, 43
wave function, 11–13, 18, 78–80

renormalon, 115–123
reparametrization invariance, 104–105
residual mass, 119

�b , 50, 106
�c , 49, 107

�∗
b , 50, 106

�∗
c , 49, 107

� field, 20
sin2 θW , 5
spin of the light degrees of freedom,

45
Standard Model, 1–8
sum rules, 175–178, 186

Tμν for semileptonic decay, 155
twist, 36, 37
twist-two operators, 37

Vcb , 8, 114
from exclusive decays, 115
from inclusive decays,

173–175
Vub , 8

from inclusive decay, 171

W
fermion couplings, 7
mass, 5

Wμν , 33, 153
weak Hamiltonian, see effective

Hamiltonian

Yukawa couplings, 6

Z mass, 5
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