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Preface

The aim of the book is to introduce the electroweak theory and the methods that
have been developed for calculating physical processes. To this end it was decided
to divide the book into three major parts.

I. The road to unification

This part gives a general view of early developments when the theory was based on
numerous empirical rules. These topics are extensively discussed in older books on
weak interactions, and I selected a few topics among them, such as form factors,
CVC, and PCAC, in order to give a general impression of how the field developed.
It should serve as an introduction to a few topics from the early period of weak
interactions and as a guide to articles and texts. Appreciation of the first part requires
familiarity with the methods developed at that time. The readers who find this part
too brief or difficult may proceed to the second part, where gauge theories are
introduced.

II. Field theories with global or local symmetries

This part presents field theories based on continuous symmetries and guides the
student to the electroweak theory based on the group SU(2) × U(1). Special effort
has been made to present it in a simple and pedagogical way. For this reason the
chapters are short and accompanied by references that the reader or lecturer can
consult.

III. Experimental consequences and comparisons

The third part of the book covers some of the exciting discoveries that took place
in the process of verifying the electroweak theory. To date, there has been no book
dedicated to the study of the electroweak theory and its developments over the past

xi



xii Preface

30 years. Several textbooks cover special chapters, but an introductory overview
for graduate students, both theorists and experimentalists, is still missing.

The weak interactions, because they are weak, allow perturbative calculations
that are very accurate. Since the introduction of the theory (1967), there have
been several discoveries that have stimulated intensive research activity. These
discoveries include

� neutral currents
� the charm quark, bottom quark, and top quark
� neutrino properties and their interactions (oscillations)
� intermediate gauge bosons
� heavy quarks (bottom and top)
� CP violation in K- and B-meson systems

There is hardly a book in which all the topics are discussed together. One reason
for this lack is that the discoveries happened every few years and older textbooks
could not cover them. This book has been written over several years and includes
the new topics. The author has worked on several topics and contributed to them.

In several seminars it became clear that advanced students were asking many
questions on how to calculate specific topics; for example box and penguin dia-
grams, processes with mixings of Majorana neutrinos, CP-violating amplitudes,
etc. The outcome of efforts to answer these questions is the collection of chapters
which form the book. The answers to several such questions comprise sections that
should help the reader to find his or her way through the ideas and the calculations
and to go further to study the original papers. Some topics like neutral current cal-
culations may appear standard, but are again relevant and useful for the neutrino
oscillation and long-base-line experiments. The problems are an integral part of
the book and help to clarify the sections of the book or present specific cases as
examples.

The theory has still not been completely verified, because the Higgs particles
have not been discovered. The theory may belong to a larger grand unified theory,
which tempted me to include chapters on future developments. The book could
have been made longer by including more chapters on QCD, grand unification,
supersymmetry, etc. I tried to avoid this temptation and concentrated on topics that
have become standard themes of the electroweak theory.

I am enormously grateful to those who generously took the time to read the
manuscript and offered corrections and technical support. The writing of a book
relies on the support of many friends and colleagues.

I mention in particular Dr. R. Decker (deceased) for helpful comments in Parts
I and II, my students and collaborators Drs. A. Bareiss, M. Nowakowski, J. and
M. Flanz, W. Rodejohann, and my postdoc Dr. O. Lalakulich. I wish to thank the



Preface xiii

guests at Dortmund University, Professors A. Datta, A. Kundu, and N. P. Singh
for reading and improving special chapters. The attractive appearance of the fig-
ures owes a lot to the skills of Drs. A. Samanpour and O. Lalakulich and Mr. A.
Kartavtsev, whom I thank. For his technical support and expert advice on hardware
and software problems I am grateful to Dr. S. Michalski. I express my thanks to
Dr. Steven Holt for editorial improvements of the text. Parts of the book were com-
pleted when I was visiting CERN, Fermilab, and the Institute for Advanced Studies
(Princeton); I wish to thank them for their hospitality.

Finally, I am greatly indebted to Mrs. Susanne Laurent for typing and retyping
the Tex files of the manuscript with skill and patience over what turned out to be
quite a long period of time, and for continuously contributing to the process of
preparing and improving it. Many thanks are also due to Mrs. Beate Schwertfeger,
who typed a good part of the first drafts when I started to work on this book.





Part I

The road to unification





1

The electromagnetic current and its properties

1.1 Introduction

The theory of the weak interactions, better known as the electroweak theory, was
developed in two stages. In the first stage, a phenomenological interaction was in-
troduced and was extended when additional experimental results became available.
At that stage a large number of observations could be accounted for by empirical
rules. There still remained the desire to develop a basic theory that was finite and
renormalizable. This was achieved in the second stage by combining the electro-
magnetic and weak interactions into a gauge theory – the electroweak theory.

The effective current–current interaction was introduced by Fermi in 1934,

Heff = − GF√
2

Jµ(x)Jµ†(x), (1.1)

and was responsible for charged-current weak interactions of leptons and hadrons.
The current was originally introduced, in analogy to electrodynamics, for the inter-
action of the electron with its neutrino and also for the neutron–proton transition

Jµ(x) = �νeγµ(1 − γ5)�e + �pγµ(1 − γ5)�n + �νµ
γµ(1 − γ5)�µ + · · ·.

(1.2)

Here the �s are the fields of the fermions and the γ s are the Dirac γ -matrices in the
notation of Bjorken and Drell (1965). The shortcoming of this theory is known as
the unitarity problem and shows up in many reactions. For example, for the reaction

νµ + e− −→ νe + µ−

we can calculate the cross section, which to lowest order is

σtot(νµe− → νeµ
−) = G2

Fs

π
(1.3)

3



4 The electromagnetic current and its properties

with s = 4E2
cm, where terms proportional to the masses of the leptons have been

omitted at high energies. Because of the point coupling in (1.1) only the lowest
partial wave (angular momentum zero) can contribute to the scattering amplitude.
Then conservation of probability (unitarity) in quantum mechanics requires (see
Problems 1 and 2 at the end of Chapter 2)

σ l=0
inelastic ≤ π

2E2
cm

(1.4)

for any scattering process. From (1.3) and (1.4) we find that the theory is consistent
with unitarity only for

Ecm ≤
(

π
√

2

4GF

)1
2

= 309 GeV. (1.5)

Thus the theory is incomplete.
On the other hand, why should we believe the first-order-term result for such high

energies? It is not a matter of belief but an unfortunate fact of life that we cannot
calculate higher-order contributions. The theory, which is based on the Hamilto-
nian (1.1), is non-renormalizable and does not allow a well-defined perturbation
expansion.

At this point we fall back upon the most successful field theory at our disposal:
quantum electrodynamics (QED). We describe in this chapter its salient features
and we try to develop in Part II of this book, in analogy to QED, a gauge theory of
weak and electromagnetic interactions. In fact the second stage in the development
of the weak interactions is to construct a well-defined and renormalizable theory.

We start with the Dirac Lagrangian for an electron interacting with the electro-
magnetic field,

L = �

(
iγ µ ∂

∂xµ
+ eγ µ Aµ − m

)
� − 1

4
Fµν Fµν. (1.6)

We think of � as the electron field whose current

jµ = �(x)γµ�(x) (1.7)

interacts with the electromagnetic field

LF = �(iγ µ∂µ − m)� + ejµ Aµ. (1.8)

The interaction term e�γµ� Aµ fixes the vertex and the electron propagator is the
inverse of the kinetic term.
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ieγµ

i

p−m + iε

Figure 1.1. The photon–fermion vertex and the propagator.

Finally, the last term in (1.6) gives the interaction between photons and involves
the electromagnetic field tensor

Fµν = ∂ Aν

∂xµ
− ∂ Aµ

∂xν
. (1.9)

Gauge invariance forbids a term m2
γ Aµ Aµ that would give a mass to the photon.

QED has been one of the most precise and successful theories in all of physics and
has been tested to a few parts per million.

As mentioned above, the electromagnetic current describes the interaction of the
photon with a charged fermion. The current is a local operator

jµ(x) = �l(x)γµ�l(x), (1.10)

where �l(x) is the field for the lepton l and γµ is a Dirac matrix. The current jµ(x)
is a generalization of the classical concept of a current as it appears in Maxwell’s
theory. In classical electrodynamics jµ(x) is a four-vector with components

jµ(x) =
[
cρ(x), �j(x) = ρ(x)�v

]
= ρ(x)

[
c, �v ]

, (1.11)

with ρ(x) denoting the charge density, the vector �j(x) the charge flow, c the speed
of light, and �v the velocity of the charge density. The total charge of a particle is
given by the integral

c Q =
∫

d3x j0(x). (1.12)

The current in (1.11) is an operator that transforms like a four-vector. The fields
occurring above are also operators that create and destroy localized particle states.
They satisfy canonical commutation relations, which quantize the theory. The com-
putational methods of QED can be found in many books given in the references.
We shall assume that the reader is familiar with the methods of quantum electro-
dynamics.



6 The electromagnetic current and its properties

1.2 The current for hadronic states

The electromagnetic current for a proton is more complicated since protons are not
point-like particles, but have a measurable physical size formed by the cloud of
pions and other hadrons which surrounds them. As a first attempt one would write
the electromagnetic current for a proton in terms of free fields,

Jµ = �p′(x)γµ�p(x) = u(p′)γµu(p)ei(p′−p)x. (1.13)

This form is ruled out immediately because it describes a point particle with unit
charge and a Dirac magnetic moment. It obviously fails for the case of a proton,
which has size and an anomalous magnetic moment. This implies a charge distri-
bution and requires additional terms on the right-hand side.

One therefore expects a more general structure, which is introduced by con-
sidering the hadronic current as a vector operator that satisfies general symmetry
principles. We begin by considering the interaction of the electromagnetic field
Aµ(x) with protons. The matrix element contains the term

〈p′|Jµ(x)e−iqx|p〉. (1.14)

Under translations in space and time Jµ(x) transforms as

Jµ(x) = ei p̂x Jµ(0)e−i p̂x , (1.15)

where p̂ is the operator of the four-momentum; thus (1.14) reduces to∫
d4x〈p′|Jµ(0)|p〉e−i(q+p−p′)x = ū(p′)Oµ(p′, p)u(p)

∫
d4x e−i(q+p−p′)x ,

(1.16)
with Oµ containing terms with γ -matrices, the antisymmetric tensor εµναβ , and
momenta. The spinors u(p) and u(p′) are solutions of the free Dirac equation.
These are the requirements of Lorentz invariance.

Two other properties are

(i) gauge invariance, which translates into

qµ〈p′|Jµ(0)|p〉 = qµū(p′)0µu(p) = 0; (1.17)

(ii) Hermiticity of the current

〈p′|Jµ(0)|p〉∗ = 〈p|Jµ(0)|p′〉,
(1.18)[

ū(p′)0µu(p)
]+ = ū(p)0µu(p′),

from which it follows that

O+
µ = γ0 Oµγ0. (1.19)
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The above requirements limit the types of Dirac matrices and momenta which
are included in the operator Oµ. The first subset of operators is{

�µ = pµ + p′
µ, qµ = p′

µ − pµ, γµ, iσµνqν, σµν�
ν
}
, (1.20)

which appear in matrix elements of the vector current. In addition to the above
operators, there are also others that contain γ5 or the antisymmetric tensor. They
are produced by higher-order weak or new interactions and their contributions to
electromagnetic matrix elements are small. For completeness we include them here
and discuss some properties in the next section. The second subset of matrices
contains γ5, {

�µγ5, qµγ5, γµγ5, σµνqνγ5
}
, (1.21)

and the third the antisymmetric tensor,{
εµν αβσαβ�ν, εµν αβσαβqν, εµν αβγµγ5qα�β, εµν αβγνqα�β

}
. (1.22)

These terms are odd under parity transformations. Matrix elements of these opera-
tors are not all linearly independent. For instance, matrix elements of the last three
terms in (1.22) are reduced, by judicious use of γ -matrix identities and the Dirac
equation, to matrix elements of the second set (Nowakowski et al., 2005).

The Gordon decomposition formula

ū(p′)γ µu(p) = ū(p′)
(

p′µ + pµ

2m
+ iσµνqν

2m

)
u(p) (1.23)

eliminates one term in the first subset. Similarly, the term σµν�
ν can be replaced

by ū(p′)qµu(p). Thus the matrix element of the vector current has the general
form

ū(p′)
(

γµF1(q2) + iσµνqν

2m
F2(q2) + qµF3(q2)

)
u(p). (1.24)

Gauge invariance gives an additional condition,

F3(q2) = 0. (1.25)

The functions Fi with i = 1, 2, 3 are Lorentz scalars and their argument must
remain unchanged under the replacement pµ → pµ + kµ and p′

µ → p′
µ + kµ with

kµ an arbitrary four-vector; consequently they are functions of q2 = (p′ − p)2,
which justifies the argument introduced in Eq. (1.24). We can use the Hermiticity
condition as written in (1.19) to assure that the form factors are real functions.
In summary, symmetry principles restrict the number and properties of the form
factors. Some other consequences of symmetries are discussed in Chapter 2 and
the problems given there.
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What is the physical meaning of form factors? As the name indicates, they
describe the structure or configuration of particles. Let us begin with an electron in
the Dirac theory. To lowest order of electrodynamics F1(0) = 1 and F2(0) = 0. On
replacing next the γµ term with the help of the Gordon decomposition, the coupling
of the electron to the electromagnetic field Aµ(x) is written as

e�̄f(x)γµ Aµ(x)�i (x) = e�̄f(x)

(
pµ + p′

µ

2m
+ iσµνqν

2m

)
�i (x)Aµ(x). (1.26)

The non-relativistic limit produces two terms. The first term, from the sum of
momenta,

eū(p′)u(p)A0(x) (1.27)

couples the charge density to the scalar potential because the ratio of the three-
momentum to the mass becomes very small. The second term couples the magnetic
moment to an external magnetic field. Considering a constant magnetic field �B and
its potential Aµ(x), the interaction in configuration space is

e

2m
�̄f(x)σµν�i (x)

∂ Aµ(x)

∂xν
= �̄A,f(x)

e

2m
�σ · �B �A,i , (1.28)

where �A are the upper components of the spinors (see Problem 2.5). The magnetic
field is introduced as the rotation of the vector potential. Defining the magnetic
moment as

�µ = −g
e

2m
�S with �S = �σ

2
, (1.29)

we obtain for the electron the gyromagnetic ratio g = 2. Thus a Dirac electron has
an intrinsic magnetic moment with the natural value of 2, which can be modified
by radiative corrections.

Although we have started to derive a current for extended fermions, the results of
this derivation in the form of Eqs. (1.27) and (1.29) are also valid for “point-like”
particles, when higher-order electromagnetic corrections are taken into account.
Indeed, the Lagrangian given in (1.6) will induce correction terms compatible with
the symmetries of the Lagrangian. We see from (1.23) and (1.24) that F2 will also
contribute to the magnetic moment via µ = 1

2 [F1(0) + F2(0)]. Both for the electron
and for the muon, the magnetic moments have been measured very accurately. They
have also been calculated theoretically and the agreement is very good. For the
electron

1

2
(g − 2)e = 0.001 159 652 209 (31), (1.30)

with the number in parentheses denoting the experimental accuracy. Very accurate
results exist also for the muons. The deviation from the value of 2 comes from
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radiative corrections, which in quantum electrodynamics have been calculated pre-
cisely (Kinoshita, 1990).

The situation is very different for protons and neutrons. The experimental values
are

F1(0) = 1 and F2(0) = 1.79 for the proton, (1.31)

F1(0) = 0 and F2(0) = −1.91 for the neutron. (1.32)

The changes come from the strong interactions and cannot yet be calculated.
They are called the anomalous magnetic moments and have been measured in
electron–hadron-scattering experiments. In addition to their values at q2 = 0, the
form factors have been measured over extended regions of the momentum-transfer
squared and were found to decrease rapidly with q2. This behavior indicates the
existence of a charge distribution of virtual particles around the proton and the
neutron, with the charge density decreasing rapidly with increasing radius. The
motion of the particles creates magnetic fields, which are manifested in the values
of the magnetic moments.

1.3 Parity-violating form factors

For completeness we include additional couplings of the photon induced by weak
interactions inside the vertex. Omitting this section will not affect the study of the
following chapters.

The electromagnetic force is not the only force between particles. For instance,
the presence of weak terms changes the general structure of the electromagnetic
matrix elements. The interaction of a photon with a particle does not mean that
the whole process is electromagnetic, since higher-order corrections must also
include the weak interactions. Conceptually it is easy to include these effects in the
electromagnetic current, by dropping the restrictions that the current is invariant
under the discrete symmetries charge conjugation C, parity P, and time-reversal
T. Imposing Lorentz invariance, gauge invariance, and Hermiticity means that one
must include two additional form factors (F3 and F4) and the electromagnetic
current takes a more general form,

ū(p′)0µu(p) = ū(p′)

[
γµF1(q2) + i

σµνqν

2m
F2(q2) + i

εµναβσ αβqν

4m
F3(q2)

+
(

qµ − q2

2m
γµ

)
γ5 F4(q2)

]
u(p). (1.33)

We know from classical electrodynamics and quantum mechanics that the fields
transform under parity P and time-reversal T as shown in Table 1.1.
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Table 1.1

�B P→ �B
�B T→ − �B
�E P→ − �E
�E T→ �E
�σ P→ �σ
�σ T→ −�σ

From Table 1.1 we can infer immediately that �σ · �B, an interaction defining
the second form factor F2(q2), conserves parity and time-reversal. Similarly, the
non-relativistic reduction of all form factors including F3(q2) and F4(q2) is given
by

Hint ∝ eA0 − µ�σ · �B − d �σ · �E − a

[
�σ ·

(
�∇ × �B − ∂ �E

∂t

)]
, (1.34)

with F1(0) = e (charge), [F1(0) + F2(0)] /(2m) = µ (magnetic dipole moment),
F3(0)/(2m) = d (electric dipole moment), and F4(0) ∝ a is called the anapole
moment (Zeldovich, 1958). It is evident that the presence of F3 leads to a parity-
and time-reversal-violating interaction. Physical phenomena that exhibit violation
of time-reversal are very scarce. Therefore, the observation of d �= 0 will be a
physical breakthrough. Up to now only upper limits for d have been established for
electrons and nucleons.

The fourth form factor F4(q2) is even under time-reversal but violates parity. It is
frequently omitted from discussions of the electromagnetic form factors, because
it is an off-shell form factor, in the sense that its interaction with an on-shell photon
vanishes. This is easily seen because q2 = 0 and εµqµ = 0 for on-shell photons.
In addition, this form factor can appear only in matter with currents producing the
electromagnetic fields, because for classical fields the expression �∇ × �B − ∂ �E/∂t ,
which appears in the anapole interaction, vanishes (Maxwell equation in vacuum) in
the absence of a current. Finally, for neutral fermions, which do not carry any global
quantum numbers, like Majorana neutrinos, only the anapole form factor is possible.
For a more detailed treatment of the form factors I recommend Nowakowski et al.
(2005).
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2

The weak currents

2.1 The weak currents and some of their properties

The effective weak interaction in Eq. (1.1) was motivated by nuclear β-decays. For
many years this was the main theoretical framework for analyzing experiments.
As new experimental discoveries became available, the form of the interaction was
maintained but the current Jµ(x) was enlarged to incorporate the new observations.
At the end of the sixties the charged current J †

µ(x) included a leptonic and a hadronic
term,

J †
µ = l†µ(x) + h†

µ(x). (2.1)

The leptonic part of the current is

l†µ(x) = �e(x)γµ(1 − γ5)�νe (x) + �µ(x)γµ(1 − γ5)�νµ
(x), (2.2)

with the first term corresponding to the electron and its neutrino and the second term
to the muon and its neutrino. Its space-time structure has a vector part analogous
to the electromagnetic current and an axial part introduced after the discovery of
parity violation. A direct calculation using the currents in (2.2) gives the µ-decay
spectrum, which is in good agreement with experiment. It also gives the decay rate
of the muon as

�(µ → e + νe + ν̄µ) = Gµm5
µ

192π3
. (2.3)

From the observed decay rate and the mass of the muon the constant Gµ is deter-
mined to be

Gµ = (1.166 32 ± 0.000 04) × 10−5 GeV−2. (2.4)

This determination includes the effects of radiative corrections, which in the
electroweak theory are finite and can be calculated precisely.

12
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The hadronic current consists of several parts determined by detailed analyses
of hadron decays. For instance, the decay of a neutron, n → p + e− + νe, is well
described by the matrix element

〈p|J †
µ|n〉 = 〈p|V †

µ|n〉 − 〈p|A†
µ|n〉, (2.5)

where we can decompose the matrix elements in terms of form factors. Lorentz
invariance gives the general expressions

〈p|V †
µ|n〉 = ū(p′)

(
gVγµ + fV

(p + p′)µ
2M

+ hV
qµ

2M

)
u(p) (2.6)

and

〈p|A†
µ|n〉 = ū(p′)

(
gAγµγ5 + fA

iσµνqν

2M
γ5 + hA

qµ

2M
γ5

)
u(p), (2.7)

where pµ and p′
µ are the momenta of the neutron and proton, respectively, with

qµ = p′
µ − pµ. The functions gV, fV, and hV are vector form factors describing

the effects of strong interactions in the hadrons. Similarly gA, fA, and hA are axial
form factors. General symmetries, like charge symmetry and time-reversal, limit
the form factors and demand that hV = fA = 0 (see Marshak et al., 1969, p. 314).
At zero momentum transfer, the vector form factor gV was precisely determined and
it is strikingly close to 1, while gA is about −1.23. An explanation was proposed,
namely that the strangeness-conserving part of V †

µ has the isospin content

V †
µ = V 1

µ + iV 2
µ =: V +

µ and A†
µ = A1

µ + iA2
µ =: A+

µ, (2.8)

where 1 and 2 denote the first and second components of isospin. This means that
the charges

T i =
∫

V i
0 (x)d3x (2.9)

are the same isospin generators as those occurring in the strong interactions and
are therefore conserved. This rule is called the conserved-vector-current (CVC)
hypothesis. The T i form an algebra that closes under commutation relations[

T i , T j
] = iεi jk Tk . (2.10)

As a consequence, the commutator of T + with T − produces the third component of
isospin. In the late sixties T 3 had not yet been observed to mediate transitions with
the strength G; there was no weak neutral current. But such an operator already
existed in the electromagnetic current. The electromagnetic current consisted of



14 The weak currents

two parts,

J em
µ (x) = V 3

µ(x) + 1√
3

V 8
µ(x), (2.11)

with V 3
µ(x) being the third component of isospin and V 8

µ an iso-scalar current
transforming as the eighth component of SU(3). It is evident that there is a rela-
tion between the weak and the electromagnetic currents, since the vector part of the
weak current and the isovector part of the electromagnetic current form an isotriplet.
The form of the interaction in (1.1) defines a universal coupling for leptonic, semi-
leptonic, and non-leptonic decays. Once the coupling constant G has been deter-
mined, as in (2.4) from the muon decay, it can be used to translate the isotriplet
hypothesis into relations between electromagnetic and weak matrix elements. In
Section 11.3 we give a consequence of the isotriplet hypothesis and the cross
section for neutrino–neutron quasi-elastic scattering. Expressions for the currents
in terms of quark fields are given in Chapter 3.

Since V +
µ is an isospin current, its matrix elements at zero momentum transfer

are simply given by Clebsch–Gordan coefficients. The strength gV is determined
in nuclear β-decay as well as in the elementary decays

π+ −→ π0 + e+ + νe,
(2.12)

n −→ p + e− + ν̄e.

In all these cases the charge current connects states with the same isospin T, but
different components T3. At zero momentum transfer the relevant matrix element
is

〈I, I3 + 1|V +
µ (0)|I, I3〉 = 1, (2.13)

for I = 1
2 . The value of gV is extracted from β-decay and its value is found (see

Equation (9.28)) to be

gV = 0.9740 ± 0.0003 ± 0.0015. (2.14)

This precise value includes radiative corrections, so its deviation from unity is
significant.

Is the small difference of 2.6% a drawback of the theory or is there another com-
ponent of the current? The discrepancy was explained by the observation that the
hadronic current V ±

µ does not generate only the isospin group SU(2), but contains
other pieces responsible for strangeness-changing decays, like

�0 −→ p + e− + ν̄e,
(2.15)

K+ −→ π0 + e+ + νe.
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Thus the hadronic current is the sum of a 	S = 0 term and a 	S = 1 term,

V +
µ = cos θc V 	S=0

µ + sin θc V 	S=1
µ . (2.16)

The two terms are interpreted as two components of the current orthogonal to each
other and connected through the mixing angle θc. The first term contains the isospin
current that appears in (2.8),

V 	S=0
µ = V 1

µ + iV 2
µ. (2.17)

The second component produces strangeness-changing transitions and it has, in
SU(3), the form

V 	S=1
µ = V 4

µ + iV 5
µ. (2.18)

The matrix elements of V 	S=0
µ and V 	S=1

µ can be estimated accurately. The con-
clusion from numerous experimental estimates gives the mixing angle

sin θc = 0.220 ± 0.002. (2.19)

In this way universality is restored, since the sum of the squares of the hadronic
couplings reproduces the coupling observed in muon decay. In addition the dis-
crepancy of gV from 1 is understood. The angle θc is called the Cabibbo angle.
The appearance of the Cabbibo angle will become more evident in the context of
the Cabibbo–Kobayashi–Maskawa matrix, which enters the full Lagrangian of the
weak interaction.

Finally, we mention one more difference between electromagnetic and weak
interactions. The electromagnetic amplitude for the reaction e+e− → µ+µ− has
the amplitude

M = ie2 Jµ gµν

q2
J ν†, (2.20)

with an explicit photon propagator and the product of two currents, like

Jµ = lem
µ + J em

µ . (2.21)

The hadronic current was discussed in Chapter 1 and the leptonic current has a term
for each charged lepton like

lem
µ = �lγµ�l . (2.22)

On comparing (2.20) with (1.1), we note that the propagator is missing in (1.1). It
should have been there in the form

g2	µν = g2 −igµν

q2 − M2
W

, (2.23)
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if the weak interaction were mediated by the exchange of a particle of mass MW and
coupling strength g. At very low energies, however, at which most of the decays
take place, q2 � M2

W and

g2	µν −→ igµν

g2

M2
W

= igµν

G√
2
. (2.24)

Thus the form in (1.1) is indeed a very good approximation.

2.2 The partially conserved axial current

A second property of the weak currents deals with approximations that are possible
in matrix elements of the axial current. The charged pions decay weakly into µν̄µ

pairs with a hadronic matrix element

〈0|A±
µ (x)|π±(q)〉 = i fπ(q2)qµe−iqx . (2.25)

Here qµ is the four-momentum of the pion and fπ defines the decay coupling
constant. The form of the matrix is dictated by Lorentz invariance. The coupling
fπ(q2 = m2

π) is measured with the pion on the mass shell. We can take the diver-
gence of this matrix element and obtain

qµ〈0|A±
µ (x)|π±〉 = i fπq2e−iqx . (2.26)

We conclude from this relation that the axial current is not conserved, because
neither fπ nor mπ is zero. However, it may be approximately conserved because
q2 = m2

π is a small number relative to the mass squared of all other hadrons. Thus,
for many low-energy processes that involve the axial current with four-momentum
qµ, it is possible to replace the divergence of the axial current by the pion field

∂µ Ai
µ = fπm2

πφi , (2.27)

and, in addition, after we have extracted the pion propagator, the reduced matrix
element is a slowly varying function of q2 provided that q2

� m2
π. Equation (2.27)

is an operator relation and holds for all matrix elements. We must be careful,
however, to replace the pion field by its source j i

π = (�2 + m2)φi and substitute
for the pion–nucleon vertex the coupling

〈p| jπ+|n〉 = i
√

2gπNNū(p′)γ5u(p). (2.28)

Several applications have established that the matrix elements of the axial current
and its divergence can be treated this way. We shall describe here an application
of this procedure to the matrix element in β-decay, which leads to a remarkable
relation known as the Goldberger–Treiman relation. We present the derivation in
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ifπqµ

qµ
i
√

2gπNNγ5

Figure 2.1. Direct coupling of the axial current to a particle of zero mass.

two ways in order to emphasize that the second method is based on an underlying
symmetry. Consider the matrix element

〈p|A+
µ |n〉 = ū(p′)

(
gA(q2)γµγ5 + hA(q2)

qµ

2M
γ5

)
u(p). (2.29)

Taking the divergence of both sides of this equation gives

〈p|∂µ A+
µ |n〉 =

(
2MgA(q2) + q2 hA(q2)

2M

)
iū(p′)γ5u(p). (2.30)

On the other hand, from (2.27)

〈p|∂µ A+
µ |n〉 = fπm2

π〈p|φ+|n〉 = fπm2
π

1

−q2 + m2
π

〈p| j+
π |n〉

= fπ
m2

π

−q2 + m2
π

i
√

2gπNNū(p′)γ5u(p). (2.31)

Taking the limit q2 → 0 with m2
π �= 0 in the last two equations, we obtain

√
2MgA = gπNN fπ. (2.32)

This is the Goldberger–Treiman relation. For the experimental values of the
coupling constants it holds at the 10% level. It is a remarkable relation, relating
the pion–nucleon coupling constant to two couplings of weak interactions.

There is a second way of looking at partially conserved axial current (PCAC).
The meaning of PCAC is that the actual world is not far from the limit in
which the axial currents are conserved at the expense of having zero-mass
pions (mπ = 0, fπ �= 0). In this approach we can still define fπ and gA through
Eqs. (2.25) and (2.29). Because the axial current is now conserved, Eq. (2.30)
becomes

2MgA(q2) + q2 hA(q2)

2M
= 0. (2.33)

In the limit of q2 → 0 the second term of Eq. (2.29) does not vanish but con-
tributes the amplitude

i fπqµ

i

q2
i
√

2gπNNū(p′)γ5u(p) (2.34)
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shown by the diagram in Fig. 2.1. The amplitude has a pole at q2 = 0 and its
divergence gives

q2 hA(q2)

2M
= −

√
2 fπ gπNN + terms proportional to q2, (2.35)

which, together with (2.33), gives again the Goldberger–Treiman relation. This
demonstrates that the form factor hA(q2) is dominated at small momentum transfers
by the pion pole.

2.3 Regularities among the forces

The subjects covered in the first two chapters represent basic topics developed long
before the electroweak theory. They strongly suggest that the weak force is not an
isolated phenomenon, but one intimately connected with the other forces of nature.
The isotriplet hypothesis clearly states that the isovector part of the electromagnetic
current and the vector part of the weak current for 	S = 0 transitions form an
isospin triplet. In addition, it states that the charges T ± are the same generators as
those of strong isospin. We note that operators of the three types of interactions are
related. The isotriplet hypothesis also posed a problem: that of explaining why the
neutral member of the multiplet did not occur in the weak interactions by itself, but
only through electromagnetism. This question was answered with the discovery of
weak neutral currents.

The hypothesis of PCAC relates couplings of the weak interactions to the pion–
nucleon coupling constant through the Goldberger–Treiman relation. In another
application, PCAC combined with equal-time commutation relations, it is possible
to calculate the deviation of gA from 1 as an integral over the pion–nucleon cross
sections.

Consequences of PCAC hold at the 10%–20% level. They are understood to
hold because the mass of the pion is small in comparison with the masses of other
hadrons. That is, there is an underlying symmetry, which is broken by the small mass
of the pion. The previous remarks provide a strong motivation to search for a closer
connection of the weak, electromagnetic, and perhaps the strong interactions. The
successful theory which unifies the weak and electromagnetic forces is studied in
the following chapters. The electroweak theory is so far in excellent agreement with
experiment. It made many predictions that have been confirmed by experimental
data. Finally, the reader should keep in mind that the theory must also provide a
natural explanation of the empirical rules described so far and others to be described
in the following chapters.
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Problems for Chapters 1 and 2

1. The scattering of particles

a + b −→ c + d

is described by the amplitude

f (θ ) = 1

k

∑
l

(2l + 1)
(ηle2iδl − 1)

2i
Pl(cos θ ),

where ηl and δl are real functions and k is the magnitude of the momentum of particle
a or b in the center-of-mass system. δl is the phase shift and ηl is introduced to describe
inelastic scattering: for elastic scattering ηl = 1 and for inelastic scattering ηl < 1.

(a) Prove the optical theorem and show that

σtot = 2π

k2

∑
l

(2l + 1)[1 − ηl cos(2δl)].

(b) Show that, for elastic scattering,

σel = 4π

k2

∑
l

(2l + 1)

∣∣∣∣ηle2iδl − 1

2i

∣∣∣∣
2

.

(c) Show that, from (a) and (b), it follows that

σtot = π

k2

∑
l

(2l + 1)(1 − η2
l ).

2. Using the result from Problem 1 (part (c)), show that the cross section for the reaction
νµ+ e− → µ− + νe is limited by

σ (νµ+ e− → µ− + νe) ≤ π

2E2
cm

,

where Ecm is the energy of the νµ or the e− in the center-of-mass frame. Take into
account that it is an l = 0 scattering and that there is a spin factor of (2s + 1).

3. From the Hermiticity of the electromagnetic current, show that F1(q2) and F2(q2) are
real.

4. From time-reversal invariance, show that F1(q2) and F2(q2) are real.
5. By considering the non-relativistic limit of the Pauli interaction,

1

2
µ�σµν�Fµν, Fµν = ∂µ Aν − ∂ν Aµ,

give a physical interpretation of the term containing F2(q2). Express F2(0) in terms of
the proton’s anomalous magnetic moment.

Reference
Marshak, R. E., Riazuddin, and Ryan, C. P. (1969), Theory of Weak Interactions in

Particle Physics (New York, Interscience)
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3

The quark model

3.1 Introduction

The quark model arose from the analysis of symmetry patterns observed when
particles were grouped together according to their spin and parity. When the eight
mesons with J p = 0− are displayed in a strangeness (S) versus isospin (I3) plane,
they form the octet of Fig. 3.1. An identical pattern emerges for the eight vector
mesons with J p = 1− also shown in Fig. 3.1. The vector mesons are excited states
of the particles in the J p = 0− octet. The symmetry pattern was interpreted as a
generalization of the isospin group SU(2) to the group SU(3) which incorporates
both isospin and strangeness. Gell-Mann and Neeman (1964) proposed that the
eight baryons with J p = 1

2
+

also belong to an octet of SU(3), thus establishing a
parallelism between meson and baryon states. Finally, many static properties of the
particles exhibit the SU(3) symmetry.

Since the fundamental representation of the group SU(3) is a triplet, it is natural
to try to interpret the hadronic states in the octets as bound states of triplets or of
triplets with antitriplets. If the fundamental fields also carry baryon number, the
product of triplet ⊗ antitriplet would be mesons with zero baryon number. The
product of three triplets carries baryon number and contain octets and a decuplet
as was required by the observed states of baryons. This is the quark model of
Gell-Mann (1964) and Zweig (1964).

The spectroscopy of particles and their SU(3) properties are covered in many
books, for instance in the references at the end of this chapter, and we shall concen-
trate on symmetries of the currents, which are more relevant for the electroweak
theory.

21
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Figure 3.1. Meson octets with J p = 0− and J p = 1−.

3.2 Current algebra

The original model contained a triplet of quarks

q =
⎛
⎝u

d
s

⎞
⎠ (3.1)

with the quantum numbers

Quark Q/e I I3 B Y

u 2/3 1/2 1/2 1/3 1/3
d −1/3 1/2 −1/2 1/3 1/3
s −1/3 0 0 1/3 −2/3

where Q, I, I3, B, and Y are the charge, isospin, third component of isospin, baryon
number, and hypercharge, respectively. The quantum numbers of the quarks satisfy
the Gell-Mann–Nishijima relation,

Q = T3 + Y

2
, (3.2)

a rule that was established originally for hadronic states.
Next we shall rewrite the currents in terms of quark fields and formulate several

of their properties. This approach is motivated by the fact that several properties of
the currents and their couplings to hadrons are explained as symmetry properties
of SU(3) and in many cases they are identical with predictions of the simple quark
model. In fact, for a long time the quark model was used as a tool for abstracting
properties and relations, whose validity is more general in field theories. In the
early days the quark model was supplemented with strong interactions mediated
by vector mesons in order to verify the validity of the results in theories with
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interactions. Among the regularities are relations between the masses of particles
within a multiplet and regularities of the currents. We describe below conservation
laws of the currents and outline the algebra of currents.

The electromagnetic interaction of leptons is

Lem
int = ej em

µ (x)Aµ(x), (3.3)

with

jµ(x) = ē(x)γµe(x) + µ̄(x)γµµ(x) + · · ·. (3.4)

Similarly, we can construct the electromagnetic current of quarks,

jµ(x) =
∑

i

eqi q̄iγµqi

= 2

3
ūγµu − 1

3
d̄γµd − 1

3
s̄γµs

= 1

2
(ūγµu − d̄γµd) + 1

6
(ūγµu + d̄γµd − 2s̄γµs). (3.5)

In the last equation we separated the current into two parts, in order to show explicitly
its SU(3) content. Let λa be the Gell-Mann matrices for SU(3), then we define vector
and axial currents

j a
µ(x) = q̄(x)γµ

λa

2
q(x) (3.6)

j a
µ5(x) = q̄(x)γµγ5

λa

2
q(x) (3.7)

with q given in Eq. (3.1). Then the electromagnetic current in (3.5) is

j em
µ (x) = j3

µ + 1√
3

j8
µ, (3.8)

which reproduces Eq. (2.11).
With the quark currents it is also convenient to study the symmetries of the

Lagrangian

Lquark = L0 + Lmass, (3.9)

with

L0 = iq̄ /∂q and Lmass = muūu + mdd̄d + mss̄s. (3.10)

We now state the invariance properties under global transformations. L0 is
invariant under the transformation

q −→ q ′ = Uq with U = eiθαλa/2, (3.11)
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where θα are constants, i.e. independent of space and time. Such a transformation
is called global. In proving the invariance under unitary transformations recall that
eAeB = eA+B+ 1

2 [A,B], provided that A, B commute with [A, B]. The term Lmass is
not, in general, invariant under the global transformation. It becomes invariant only
when all quark masses are equal:

m = mu = md = ms. (3.12)

A consequence of the symmetry is the conservation of all vector currents. Consider

∂

∂xµ

{
ū(x, p′)γµd(x, p)

} = ∂

∂xµ
j †µ(x), (3.13)

which in momentum space becomes

ū(x, p′)
[

p/′ − p/
]
d(x, p) = (mu − md)ū(x, p′)d(x, p). (3.14)

This current is conserved when the two masses become equal.
Let us try to repeat this argument for axial transformations:

q −→ q ′ = V q = ei�αλa/2 ·γ5q. (3.15)

Now the kinetic term L0 is again invariant, but the mass term is not invariant even
when the masses are equal. The Lagrangian is invariant under global γ5 transfor-
mations when all quark masses are zero. In fact the axial current is not conserved
and its divergence is

∂

∂xµ
j †µ5(x) = ū(x, p′)

[
p/′ − p/

]
γ5d(x, p) = (mu + md)ū(x, p′)γ5d(x, p). (3.16)

When the Lagrangian is invariant under the axial transformations (3.15), all quark
masses must vanish and the axial current is conserved. The two cases are examples
of Noether’s theorem, which states that, for every continuous global transformation
that leaves the Lagrangian invariant, there is a current that is conserved.

Relations of the second class are abstracted from the quark model and establish
equal-time commutation relations of currents.

In quantum field theory the quark fields satisfy the following equal-time canon-
ical anticommutation relations:{

q†
τ (x), qτ ′(x ′)

}
x0=x ′

0
= δττ ′δ(3)(�x − �x ′),

(3.17){
qτ (x), qτ ′(x ′)

}
x0=x ′

0
=

{
q†

τ (x), q†
τ ′(x ′)

}
x0=x ′

0

= 0,

where τ and τ ′ run from 1 to 12, i.e. there are three flavors and to each of them
there correspond four spinor components. One can derive equal-time commutation
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relations for the SU(3) currents using the identity

[AB, C D] = −AC{D, B} + A{C, B}D − C{D, A}B + {C, A}DB. (3.18)

The final result, outlined in Problem 2, is[
j a
µ(x), j b

0 (x ′)
]

x0=x ′
0
= − f abc j c

µ(x)δ(3)(�x − �x ′). (3.19)

On integrating this equation over three-dimensional space we arrive at[
j a
µ(x), Qb(x0)

]
x0=x ′

0
= i f abc j c

µ(x), (3.20)

where Qb(x0) is the charge corresponding to the vector current, defined by

Qb(x0) =
∫

d3x jb
0 (x). (3.21)

It is now straightforward to derive from (3.20) the commutation relation for the
charges: [

Qa, Qb
] = i f abc Qc. (3.22)

Similarly, we can repeat the above steps for the axial current to obtain[
Qa, Qb

5

] = i f abc Qc
5, (3.23)[

Qa
5, Qb

5

] = i f abc Qc. (3.24)

We see that the vector and axial charges form an algebra that closes under commu-
tation relations. If we define left- and right-handed charges

Qa
L,R = 1

2

(
Qa ∓ Qb

5

)
, (3.25)

they also satisfy the algebra[
Qa

L, Qb
R

] = 0,[
Qa

L, Qb
L

] = i f abc Qc
L,

[
Qa

R, Qb
R

] = i f abc Qc
R. (3.26)

It says that the left-handed sector does not communicate with the right-handed
sector. Thus each sector by itself forms an SU(3) algebra. The group now is
SU(3)L × SU(3)R, known as the chiral group. The theory based on the chiral group
and the approximation that the u and d quark masses are very small, relative to
those of the other quarks, is known as chiral theory. The chiral theory can explain
many of the regularities observed at small masses and momenta. We shall have the
opportunity to remark on the implications of such a theory in Sections 5.2 and 15.6.

We can also express the weak hadronic current given by

jhad
µ = ūγµ(1 − γ5)d cos θc + ūγµ(1 − γ5)s sin θc (3.27)
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in terms of the octet currents (3.6) and (3.7). Defining

V a
µ = j a

µ, Aa
µ = j a

µ5, (3.28)

one obtains

jhad
µ = [(

V 1
µ + iV 2

µ

) − (
A1

µ + iA2
µ

)]
cos θc + [(

V 4
µ + iV 5

µ

) − (
A4

µ + iA5
µ

)]
sin θc

(3.29)

and we recover the 	S = 0 part of (2.17) and the 	S = 1 part of (2.18).
Expressing the hadronic currents in terms of quark fields sets them in one-to-

one correspondence with the leptonic currents. The equal-time commutators give
non-linear relations between observables, thus determining their relative strengths.
Prominent among them are several sum rules that are valid at small and large
momentum transfers.

3.3 Quantum chromodynamics

In spite of its successes, the quark model was received with a lot of skepticism
because there was no experimental evidence for particles with fractional charges.
To some authors this remained a mystery; to others the quarks remained a mnemonic
for deriving useful rules. An additional objection concerned the fact that there was
no theory describing the strong interactions among quarks. The attitude changed
in the late sixties when inelastic electron–nucleon-scattering experiments provided
evidence for point-like constituents, partons, within hadrons. Furthermore, corre-
lations between electron- and neutrino-induced reactions provided evidence that
the partons carried the quark quantum numbers. These topics will be studied in
detail in Chapters 10 and 11. The final result was the formulation of a theory for
the strong interactions whose fundamental fields are the quark and vector mesons –
the gluons.

The theory of strong interactions is known as quantum chromodynamics or, in
short, QCD. There are strong indications that each quark carries an additional quan-
tum number called color; hence the name of the theory chromodynamics (color =
chroma). The choice of names of the colors as red, white, and blue, or another
triplet of names, is arbitrary but the fact that they are three in number is important.
The quarks interact with each other by the exchange of vector bosons that change
the colors of the quarks (Gross and Wilczek, 1973; Politzer, 1973).

We include in this section a few introductory remarks and discuss topics related
to QCD in various sections of the book.
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igsγµ
λa

2

Figure 3.2. A gluon–fermion vertex.

The theory of strong interactions is in many respects similar to QED. We write
a quark of a specific flavor as a triplet of color SU(3):

q(x) =
⎛
⎝ qr

qw

qb

⎞
⎠.

The theory also contains eight vector mesons – the gluons – coupled to quarks.
There is again a vector vertex, with the new coupling constant gs for the strong
interactions, and a λα matrix acting on the quarks. The effective coupling constant
for the strong interactions,

αs(p) = g2
s (p)

4π
,

is now large and calculations with the exchange of a single gluon are neither accurate
nor useful. One considers the cumulative effect from the exchange of many gluons,
which modify the coupling constant, making it a function of momentum carried by
the gluon.

The strong coupling constant has a remarkable property. At small momenta it
is very large, binding the quarks into hadrons, so quarks cannot be separated as
asymptotic particles. At large momenta of the gluons, the strong coupling constant
becomes small, making perturbative calculations possible. As a consequence there
are two types of calculations in QCD. One of them involves large momenta, for
which perturbative summations of many gluons are possible. In a second class of
calculations, numerical simulations of QCD replace continuous space-time by a
finite but large four-dimensional lattice for space and time. Sophisticated computer
programs have been written for handling gluon and quark fields on the lattice.
These are non-perturbative calculations that should produce, among other results,
confinement.

Throughout this book we shall study decays and reactions that involve both
strong and weak interactions. The weak interactions of hadrons will be expressed
in terms of the quark substructure by writing the currents in terms of quark fields and
estimating or calculating matrix elements of quark operators for transitions between
hadronic states. The success of these methods varies from process to process. This
is a still developing field of research, as will become evident in several sections of
this book.
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Problems for Chapter 3

1. The lowest-lying baryon states are built with three quarks with L = 0. There are ten states
with J p = 3+

2 . To this decuplet belongs 	++(uuu). Construct the wave function of 	++

with space, spin, and color contributions so that it obeys Fermi statistics. Finally, argue
that color is necessary in order for the Pauli principle to be preserved. See Kokkedee
(1969).

2. The weak vector current builds, together with the electromagnetic current, an algebra.
For a better understanding we consider the SU(2) algebra. The generators of the group
SU(2) are the matrices τ 1, τ 2, and τ 3, with the following property:[

τ i , τ j
] = 2iεi jkτk .

We now define the currents

j a
µ = q̄(x)

τ a

2
γµq(x),

which satisfy an algebra.
The fermion fields obey the canonical quantization{

q†
τ (x), qτ ′ (y)

}
x0=y0

= δττ ′δ(3)(�x − �y)

and

{qτ (x), qτ ′ (y)}x0=y0
= {

q†
τ (x), q†

τ ′ (y)
}

x0=y0
= 0.

(a) Show the following relation:[
�ατ a, �βτ b

] = 1

2

{
�α, �β

}[
τ a, τ b

] + 1

2

[
�α, �β

]{
τ a, τ b

}
,

where �α and �β are arbitrary Dirac matrices.
(b) Using the identity

[AB, C D] = −AC{B, D} + A{C, B}D − C{D, A}B + {C, A}DB,

show that [
q†

σ (x)qτ (x), q†
σ ′ (y)qτ ′ (y)

]
x0=y0

= {
q†

σ (x)δσ ′τ qτ ′ (y) − q†
σ ′ (y)δστ ′qτ (x)

}
δ(3)(�x − �y)|x0=y0 .

(c) It follows now that[
iq̄γµ

τ a

2
q(x), iq̄γ0

τ b

2
q(y)

]
x0=y0

= −iεabcq̄(x)
τ c

2
γµq(y)δ(3)(�x − �y).
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Part II

Field theories with global or local symmetries





4

Yang–Mills theories

4.1 The Yang–Mills field

The successful and simple theory which unifies the weak and electromagnetic
interactions is based on the group SU(2) × U(1). We develop the theory in several
steps. First we describe, in this chapter, the main features of a gauge theory. Then we
will describe a theory containing only electrons and the corresponding neutrinos.
Finally, the theory is extended to incorporate hadrons.

The structure of a Yang–Mills theory is almost completely determined by the re-
quirement that the internal symmetry transformations of the fields can be carried out
independently at different space-time points. In other words, the theory is invariant
under local transformations. Let � be a multiplet of n Dirac fields. The multiplets
belong to representations of the group SU(N ). We define a transformation of the
fermion fields by

� −→ � ′ = U�,
(4.1)

�̄ −→ �̄ ′ = �̄U †,

with U a unitary matrix. We represent U by

U = eiα j λ j /2, (4.2)

with j = 1, 2, . . ., N 2 − 1, where λ j are the generators of the group with λ j = λ
†
j

and the α j are real. The generators are familiar in simple cases. When the fermions
belong to the fundamental representation of SU(2), the λ j are the Pauli matrices;
for SU(3) they are the Gell-Mann matrices. We distinguish two cases:

(i) when all α j are constant, we call it a global transformation;
(ii) when the α j = α j (x) are functions of xµ, we call it a local or gauge transformation.

33
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The free Dirac Lagrangian

L = i�̄(x)γµ∂µ�(x) = i�̄(x)/∂�(x) (4.3)

is invariant under global transformations.
If we allow α j to be a function of x, then (4.3) is no longer invariant. In fact, the

Lagrangian transforms into

L −→ L′ = �̄iγµ

[
∂µ + i

2
α

µ

j (x)λ j

]
�, (4.4)

with α
µ

j (x) = ∂α j (x)/∂xµ. Following Yang and Mills, we introduce a set of vector
fields Bµ

i (x) and couple them to the currents as follows:

L = �̄iγµ

[
∂µ + � j Bµ

j

]
� + LB, (4.5)

where � j is a set of matrices still to be determined and LB is a function of the
Bµ

j terms only. Each vector field is characterized by a Lorentz index µ and an
internal symmetry index j. We now demand that L remains invariant under the
transformations (4.2) with α j a function of x ; this will require that Bµ

j transforms

in such a way as to cancel out the additional term in (4.4). Let B̂µ

j be the transformed
vector field. Then, for L to remain invariant,

U+ ∂

∂xµ

U + U+�iU Bµ

i = �i B̂µ

i (4.6)

must hold (see Problem 1). Since the λ j terms form a complete set of N × N
traceless matrices, we can attempt to write

�k = i

2
eλk ; (4.7)

the imaginary i is there because the λk terms and the B terms are Hermitian.
Considering infinitesimal transformations,

U � 1 + i

2
α jλ j , (4.8)

with [
1

2
λi ,

1

2
λ j

]
= i fi jk

1

2
λk,

(4.9)
Tr[λiλ j ] = 2δi j ,
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and fi jk are the structure constants of the group. For the infinitesimal transformation
we can solve for B̂µ

j in (4.6). A convenient method is to rewrite (4.6) as

eλi B̂µ

i = U+eλiUBµ

i + λi
∂αi

∂xµ

(4.10)

and then expand the unitary matrices to first order in αi and use the relation in (4.9)
to obtain

B̂µ

k = Bµ

k + fi jkαi Bµ

j + 1

e

∂αk

∂xµ
. (4.11)

It is convenient to introduce a covariant derivative,

Dµ = ∂µ + i

2
eλ j Bµ

j , (4.12)

and rewrite the fermion part in (4.5) as

LF = i�̄ D/ � = i�̄γµ

(
∂µ + i

2
eλ j Bµ

j

)
�. (4.13)

Covariant derivatives are useful in generating gauge-invariant Lagrangians. A
Lagrangian invariant under global transformations becomes locally gauge-invariant
when all ordinary derivatives are replaced by covariant derivatives. In quantum elec-
trodynamics this replacement is the well-known minimal-substitution law.

Next we must construct LB. It must be Lorentz-invariant and invariant under
B → B̂. It must also contain the kinetic term of the Bµ fields. In analogy to the
procedure of obtaining gauge-invariant field strengths in electrodynamics, we define

Fµν

i = ∂ν Bµ

i − ∂µ Bν
i + e fi jk Bµ

j Bν
k . (4.14)

If we introduce the vector notation

�Bµ = (
Bµ

1 , Bµ

2 , . . ., Bµ

k

)
, (4.15)

where k = N 2 − 1 and

( �A × �B)i = fi jk A j Bk, (4.16)

we can write (4.11) and (4.14) as

�Fµν = ∂ν �Bµ − ∂µ �Bν + e �Bµ × �Bν. (4.17)

The last term in (4.17) does not occur in electrodynamics and is introduced to
assure that �Fµν transforms as a vector under gauge transformations. A reason for
introducing a generalized �Fµν is given in Problem 1; in the same problem we
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discuss the gauge invariance of LB. We can now build a scalar Lagrange function
for the �Bµ fields,

LB = −1

4
�Fµν �Fµν = −1

4
Fµν

i Fi,µν. (4.18)

A theory with LB alone is called a pure Yang–Mills theory.
For Lagrangians invariant under symmetries, we can also define currents of the

original Lagrangian, which are given by

Jµ
α (x) = ∂L

∂(∂µ�)

λα

2
� = i�̄(x)γ µ λα

2
�(x). (4.19)

The invariance of the theory implies that the currents are conserved. We note that
these are the same currents as those we introduced in Chapter 3.

To sum up, we constructed a theory that is invariant under gauge transformations.
The complete Lagrangian is

L = LF + LB.

We found that the invariance requirements are fulfilled by introducing vector fields
coupled to conserved currents.

Such a theory is a candidate for particle physics. It describes the interaction of
massless fermions with massless gauge bosons. It possesses a symmetry that can
be SU(2), SU(3), or a larger unitary group. The case of SU(3) is, in fact, realized in
Nature as the theory of strong interactions. There the vector bosons are the gluons
coupled to quarks and the symmetry is the SU(3)-color. The color symmetry remains
unbroken. The electroweak theory is more complicated because it contains masses
for the quarks and the gauge bosons. It is a broken symmetry, to be developed in
Chapters 5–7.

4.2 Gauge invariance in scalar electrodynamics

The electrodynamic field is described by the four-vector

Aµ(x) = (
	(x), �A(x)

)
, (4.20)

whose components are the standard scalar and vector potentials. The electric and
magnetic fields are now determined by

�E = −�∇ A0 − ∂ �A
∂t

, �B = �∇ × �A. (4.21)
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However, to one set of fields ( �E, �B) there correspond many potentials Aµ. The
primed potentials obtained by the gauge transformation

A′
µ(x) = Aµ(x) + ∂�(x)

∂xµ
, (4.22)

with �(x) an arbitrary scalar function, give the same �E and �B. If someone solves
a problem with Aµ(x) and somebody else does it with A′

µ(x), both should get the
same physical result. In general, only those quantities which are invariant under
gauge transformations have physical meaning. Gauge invariance has far-reaching
implications for the theories, as we discuss in the following chapters, and clever
choices of gauge lead to substantial simplifications of problems.

Here we use gauge invariance to discuss the degrees of freedom for the electro-
magnetic field. For the pure electromagnetic case

L = −1

4
Fµν Fµν, (4.23)

with

Fµν = ∂µ Aν − ∂ν Aµ. (4.24)

The equation of motion

∂µFµν = 0, (4.25)

when written in terms of Aµ, becomes

∂µ∂µ Aν − ∂ν∂
µ Aµ = 0. (4.26)

It is well known that the �E and the �B fields satisfy a wave equation, but Aµ does
not. In order to recover a wave equation from (4.26), we impose the condition

∂µ Aµ = 0 (Lorentz gauge). (4.27)

We used the gauge freedom to obtain this result, but still we did not exhaust all
possible gauge transformations, because any gauge function χ (x) that satisfies

∂µ∂µχ (x) = 0 (4.28)

is still consistent with (4.27). We take advantage of this freedom in order to show
that a photon has only two degrees of freedom.

A free photon is represented by a plane wave

Aµ(x) = εµe−ikx , (4.29)
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where εµ is called the polarization vector. By substituting (4.29) into (4.26), we
find k2 = 0, or m = 0, and from (4.27) we find

kµεµ = 0 (Lorentz gauge). (4.30)

We choose a coordinate system with the z-axis along �k and decompose εµ into
longitudinal and transverse parts:

Aµ(x) = (
ε‖
µ + ε⊥

µ

)
e−ikx . (4.31)

From (4.30) we conclude that ε‖
µ is proportional to kµ. Instead of the electromagnetic

field Aµ(x), we can choose another one given through a gauge transformation with

χ (x) = ice−ikx , c = constant. (4.32)

The new field is

A′
µ(x) = (

ε‖
µ + ε⊥

µ

)
e−ikx + ckµe−ikx . (4.33)

By an appropriate choice of the constant c, we can eliminate kµ, i.e. we can gauge
away the longitudinal degrees of freedom. Therefore a free photon has only two
degrees of freedom.

The argument fails for a massive Aµ(x) field. The addition of a mass term
1
2 µ2 Aµ Aµ to Eq. (4.23) breaks the gauge invariance of the theory. In this case the
equation of motion

∂µFµν + µ2 Aν = 0 (4.34)

implies

µ2∂ν Aν = 0. (4.35)

For µ2 �= 0, Aµ satisfies the Lorentz condition, which again eliminates one degree
of freedom. But now we cannot repeat the steps between Eqs. (4.28) and (4.33).
Therefore a massive field has three degrees of freedom.

Next we study the interaction of a photon with a charged scalar field: scalar
electrodynamics. The Lagrangian is

L = −1

4
Fµν Fµν + (Dµφ)∗(Dµφ) − V (φ∗φ). (4.36)

Here Dµ = (∂µ + ieAµ) is the covariant derivative, in agreement with the rule of
replacing ordinary derivatives with covariant ones. We represent the field as

φ(x) = 1√
2

(φ1(x) + iφ2(x)) (4.37)
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and introduce the potential

V (φ∗φ) = −µ2φ∗φ + λ(φ∗φ)2. (4.38)

This Lagrangian is invariant under the local transformation

Aµ(x) −→ Aµ(x) + ∂µω(x),

φ(x) −→ e−iω(x)φ(x), (4.39)

φ∗(x) −→ eiω(x)φ∗(x),

where ω(x) is an arbitrary real function. The photon is again massless and
carries two independent degrees of freedom. This follows from the same argu-
ments as in the free-photon case. First we can go to the Lorentz gauge, which
again simplifies the equations of motion both for Aµ(x) and for the scalar field
φ(x). Then, since the photon is again massless, we can introduce a new gauge
transformation satisfying (4.28) and eliminate the longitudinal degrees of freedom.
In gauge theories, masses for the gauge bosons are introduced, not through the
ad-hoc procedure of the previous paragraph, but through spontaneous breaking of
the symmetry. We study this topic in Chapter 6 and return to scalar electrodynamics
in Section 5.3.

Problems for Chapter 4

1. Consider the fermion Lagrangian in Eq. (4.13).
(i) Show that invariance under the local transformation (4.2) requires that the covariant

derivative satisfies

D′
µ = U †DµU.

(ii) Show that this result, together with the definition of Dµ, implies the transformation
property for Bµ given in (4.6).

(iii) Show that the Hermitian quantity Fµν = −i[Dµ, Dν] is the field tensor whose
transformation under local transformations is

Fi ′
µν = U †Fi

µνU.

It is now easy to build an invariant term given by

LYM = 1

4
Tr

(
Fi

µν Fµν

i

)
.

2. Show that, under local transformations, the field-strength tensor Fi
µν transforms as a

vector on the index i . The result holds including terms linear in εi (x), i.e.

�F ′
µν = �Fµν − �ε × �Fµν + O(ε2).
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You may need the Jacobi identity

f ABm fmCα + fBCm fm Aα + fC Am fm Bα = 0,

which follows from[
λA

2
,

λB

2

]
= i f ABm

λm

2
and Tr(λAλB) = 2δAB .
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Spontaneous breaking of symmetries

If my view is correct, the universe may have a kind of domain structure.
In one part of the universe you may have one preferred direction of the
axis; in another part the direction of the axis may be different.

(Y. Nambu)

In the gauge theory of the previous chapter, all gauge bosons and fermions are
massless. In the real world the only massless vector particle is the photon. Evidently
we must devise a procedure for giving masses to gauge bosons and other particles.
During the past few decades, substantial progress has been made in understanding
the connection between particle masses and symmetries. In theories with global
symmetries, it is possible for the states to have the same symmetry as the operators
of the theory, as is, for instance, the case with strong isospin. This, however, is not the
only mode in which a symmetry manifests itself. In field theories the symmetry can
be broken by giving a non-vanishing vacuum expectation value to some field, i.e.

〈�|φ|�〉 �= 0.

We say now that the symmetry is spontaneously broken.1 In this case the operators
of the theory exhibit the symmetry, but the physical states do not. In other words,
for a symmetry which is spontaneously broken, remnants of the symmetry occur
explicitly in the commutation relations of the operators, but are realized in the
particle spectrum in a subtle way. In this chapter we study two such cases: the
Goldstone mode and the Higgs phenomenon.

In many cases a symmetry does not allow the introduction of a mass term.
The breaking of the symmetry generates a mass term. This is demonstrated in
Section 5.1, where the Lagrangian is invariant under a discrete symmetry. The

1 The word spontaneous is used to communicate the idea that the phenomenon happens without any evident
external cause, for example spontaneous combustion, spontaneous emission, . . .

41



42 Spontaneous breaking of symmetries

selection of the vacuum state breaks the symmetry and at the same time generates
a mass.

For theories with continuous global symmetries the situation is different. The
selection of a non-trivial vacuum generates masses, but at least one of the scalar
particles must remain massless. This is the Goldstone phenomenon described in
Section 5.2. Finally, in gauge theories, the particles that would become Goldstone
mesons are eliminated by a gauge transformation and produce masses for gauge
bosons (the Higgs mechanism).

5.1 Spontaneous breaking of global symmetries: discrete symmetry

Before we describe the general case, it is instructive to discuss a few simple examples
in which the main ideas are transparent. Consider a real scalar field φ(x) and the
classical Lagrange function

L = 1

2

∂φ

∂xµ

∂φ

∂xµ

− U (φ(x)), (5.1)

with U (φ) a potential depending on φ. We are interested in finding the ground state.
To this end we construct the Hamiltonian

H = 1

2
(∂0φ)2 + 1

2
( �∇φ)2 + U (φ). (5.2)

The field with lowest energy is a constant field, whose value minimizes the poten-
tial U (φ). All this is classical. In the quantum theory φ(x) is an operator with a
conjugate momentum. The field and its conjugate momentum satisfy commutation
relations. The fields operate on the eigenstates of the Hamiltonian. For simple field
theories it is possible to construct the eigenstates explicitly. The lowest energy is the
ground state, also called the “vacuum.” The word vacuum is somewhat misleading,
because the vacuum state is not empty but, rather, is a complicated superposition
of many particles. The term vacuum is appropriate in free-field theory, where it
corresponds to the state with no particles, but for interacting fields the vacuum is
a complicated state with many particles present. The vacuum and other states for
simple Hamiltonians are constructed explicitly in Problems 1–3 at the end of this
chapter. In this book, by vacuum we mean the lowest energy state, which will be
denoted by |�〉 or simply | 〉.

In the class of theories of Eq. (5.1) we discuss two cases:

U (φ) = λ

4!
φ4 ± µ2

2
φ2 with λ > 0. (5.3)
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Figure 5.1. The Higgs potential U (φ).

(I) Case 1. We select

U (φ) = λ

4!
φ4 + µ2

2
φ2. (5.4)

This is the familiar theory for a field φ with mass µ2 and an interaction term (λ/4!)φ4.

The Feynman rules and other properties of this theory occur in many textbooks. The
symmetry is explicit, with the Lagrangian being invariant under the transformation

φ → −φ.

All solutions are also invariant under this transformation.
(II) Case 2. Now select

U (φ) = λ

4!
φ4 − µ2

2
φ2. (5.5)

In this case there is no mass term and U (φ) must be considered as a potential. The
shape and the minima of the potential at

φ = ±
√

3!µ2

λ
= ±v

are shown in Fig. 5.1. We can select one of the minima as the ground state and study small
oscillations around the minimum. This choice of the ground state breaks the symmetry,
since the vacuum is no longer symmetric under the transformation φ → −φ. We look
for a solution in the neighborhood of v, and make the substitution

φ = v + φ′ with v = 〈�|φ|�〉. (5.6)

This describes small oscillations. In terms of the new field,

U (φ′) = λ

4!
φ′4 + λv

3!
φ′3 + 1

2

λv2

3
φ′2 − λv4

4!
.

We note that the term linear in φ′ does not appear, but instead the new field acquired
the mass

√
λv2/3. Another result of the shift is the appearance of a cubic self-coupling,

which spoils the symmetry of the original Lagrangian. In this case the original symmetry
is not present in the solution that we have chosen.
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Figure 5.2. The Higgs potential U (φ1, φ2).

This simple example demonstrates explicitly the breaking of the symmetry. It is
based on a discreet symmetry, i.e. the reflection of the potential. New phenomena
occur when the Lagrangian possesses either a continuous global symmetry or a
local symmetry. In the following we discuss both cases.

5.2 Continuous global symmetries

The SO(2) model Next we consider a theory based on a continuous symmetry
and then we break it spontaneously. Let us consider a theory with two real scalar
fields, φ1(x) and φ2(x), and with the potential

U (φ) = λ

4!

(
φ2

1 + φ2
2 − v2

)2
; (5.7)

φ1 and φ2 are massless. This theory is invariant under rotation of φ1 and φ2, i.e.
invariant under the group SO(2). The rotations are described by the angle θ ,(

φ′
1

φ′
2

)
=

[
cos θ sin θ

−sin θ cos θ

](
φ1

φ2

)
. (5.8)

The potential is shown in Fig. 5.2 and has the shape of a Mexican hat. The minima
of the potential lie on the circle

φ2
1 + φ2

2 = v2. (5.9)

We show in Fig. 5.3 the locus of minima at the bottom of the hat. The lowest energy
state is any vector �φ in the φ1–φ2 plane which ends at the circumference C.

We consider next the quantum-mechanical case and select a minimum in a spe-
cific direction. Without loss of generality, we select a coordinate system with the
φ1-axis parallel to the vacuum state, then

〈φ1〉 = v and 〈φ2〉 = 0.
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φ1

φ2

C

Figure 5.3. The locus of the minima of the Higgs potential.

Next we shift the fields,

φ1 = φ′
1 + v, φ2 = φ′

2, (5.10)

and find

U (φ′) = λ

4!

(
φ′2

1 + φ′2
2 + 2vφ′

1

)2
. (5.11)

On expanding this, we see that the φ1 field has mass, but the φ2 field is mass-
less. There again appear cubic terms in the fields, which break the original SO(2)
symmetry.

This is a transparent example of a more general phenomenon and it is worthwhile
to elaborate on the general case. One starts with a Lagrangian invariant under global
transformations of a group G. The minima of the potential have the same symmetry.
Then we break the symmetry by selecting one of the minima to be the vacuum,
which is invariant under the subgroup H of G. In this analysis there are generators
{gi } of G that do not belong to H. They are broken by the selection of the vacuum.
To each broken generator {gi } there corresponds a massless field. These fields are
called the Goldstone bosons. The Goldstone bosons transform under G like the
coset or factor space of K = (G/H). We demonstrate this general phenomenon
with several examples.

Example 1 In the SO(2) model, that we discussed, there is one generator

I (θ ) = eiθσy =
[

cos θ sin θ

−sin θ cos θ

]
. (5.12)

After breaking of the symmetry, the potential term in (5.11) is not invariant under
the transformation (

φ̃1

φ̃2

)
= I (θ )

(
φ′

1

φ′
2

)
. (5.13)
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The generator is broken and there exists one massless particle φ2. When we change
the orientation of the vacuum, there is still a massless particle, which is a linear
superposition of φ1 and φ2.

Example 2 We consider the model with three real fields (φ1, φ2, φ3) invariant
under the group SO(3), that is, invariant under rotations in a three-dimensional
space. We represent the state by a column matrix

ϕ =
⎛
⎝φ1

φ2

φ3

⎞
⎠ (5.14)

and the Lagrangian by

L = 1

2
∂µϕ+∂µϕ − U (ϕ+ϕ), (5.15)

with

U (ϕ+ϕ) = λ

4!

(
ϕ+ϕ − v2

)2
. (5.16)

We next break the symmetry by giving a vacuum expectation value to 〈φ3〉 �= 0.

After shifting of the fields we obtain the potential

U (φ′) = λ

4!

(
φ′2

1 + φ′2
2 + φ′2

3 + 2vφ′
3

)2
. (5.17)

This expression is still invariant under rotations around the 3-axis, but U (φ) and
the Lagrangian change when we rotate around the first and second axes. We can
represent a general rotation through the Euler angles (α, β, γ ), which consists of
the following three successive rotations:

(i) a rotation through an angle α about the 3-axis with the transformation matrix

R(0, 0, α) =
⎡
⎣ cos α sin α 0
−sin α cos α 0

0 0 1

⎤
⎦, (5.18)

(ii) a rotation through β about the 2-axis with R(0, β, 0), and
(iii) a rotation through γ about the 1-axis with R(γ, 0, 0).

The product of the three matrices gives the complete rotation

R(α, β, γ ) = R(γ, 0, 0)R(0, β, 0)R(0, 0, α). (5.19)

The model is invariant under the rotations R(0, 0, α), but the R(γ, 0, 0) and
R(0, β, 0) generators are broken. To the last two generators there correspond two
massless particles, as follows from the form of the potential in (5.17).
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Example 3 The last example is a scalar theory invariant under global SU(2). For
the field we consider a complex scalar doublet

φ(x) =
[
φ+
φ0

]
=

[
φ1 + iφ2

φ3 + iφ4

]
. (5.20)

Each of the fields has a real and an imaginary part. The Lagrangian is given by

L = ∂µφ†∂µφ − λ
(
φ†φ − v2

)2
. (5.21)

Again we break the symmetry by giving a vacuum expectation value to the real part
of φ0,

〈Re φ0〉 = 〈φ3〉 = v. (5.22)

When we shift the field φ0 as before, the potential in terms of the components φ+
and φ′

0 becomes

U (φ′) = λ
[|φ+|2 + |φ′

0|2 + 2(Re φ′
0)v

]2
. (5.23)

The new potential is not invariant under transformations of SU(2) with the two
fields in φ+(x) as well as Im φ0 remaining massless, as is verified by expanding
Eq. (5.23).

To sum up, we found that in field theories with continuous global symmetries the
breaking of the symmetry requires the existence of scalar particles of zero mass.
In fact, to every broken generator, there corresponds a massless particle. These
are representative examples of Goldstone’s theorem, which follows from general
properties of field theory.

Goldstone’s theorem If there is a continuous global symmetry transformation
under which the Lagrangian is invariant, then either the vacuum state is invariant
under the transformation, or there must exist spinless particles of zero mass.

We demonstrate the content of the theorem by studying the symmetry properties
of a general potential.

(i) We assume that the potential V (φi ) contains a set of real fields that transform according
to a representation T a of the group G

φ′
i (x) = φi (x) + iεa T a

i jφ j (x). (5.24)

When the fields belong to the adjoint representation, the number of fields equals the
number of generators.

(ii) We assume that the potential is invariant under the group G. Then

δV (φi ) = ∂V

∂φi
δφi = i

∂V

∂φi
εa T a

i jφ j (x) = 0. (5.25)
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Since the εa are arbitrary and continuous variables, it follows that

∂V

∂φi
T a

i jφ j (x) = 0. (5.26)

(iii) At the minimum of the potential

∂V

∂φi

∣∣∣∣∣
φi =vi

= 0 (5.27)

for each φi . Differentiating Eq. (5.26) again gives

∂2V

∂φi∂φk
T a

i jφ j + ∂V

∂φi
T a

ik = 0. (5.28)

(iv) At the minimum of the potential, the second term vanishes and

∂2V

∂φi∂φk

∣∣∣∣∣
φi =vi

T a
i jv j = 0. (5.29)

The mass matrix is

M2
ik = ∂2V

∂φi∂φk

∣∣∣∣∣
φi =vi .

(5.30)

Equation (5.29) is an eigenvalue equation with T a
i jv j being the eigen-vectors. There

are two important possibilities now. The first is

(α) T a
i jv j = 0, (5.31)

which means that the generator T a annihilates the vacuum. The states corresponding
to the generators T a have the symmetry of the group. In the second possibility there
are generators T b for which

(β) T b
i jv j �= 0, (5.32)

in which case the symmetry generated by the T b is not a symmetry of the vacuum. In
this case T b

i jv j is an eigenvector with eigenvalue zero, i.e. the states T b
i jφ j have zero

mass. In Lagrangian theories this is a proof of the theorem, which at the same time
demonstrates which particles remain massless.

Physical examples of the phenomenon occur in non-relativistic many-body sys-
tems. The Heisenberg ferromagnet is an example that consists of an infinite array of
spin- 1

2 magnetic dipoles. The Hamiltonian is rotationally invariant but the magnets
in the ground state are aligned with all spins parallel, thus breaking the rotational
symmetry. In this case the frequency of the spin waves goes to zero with the wave-
number.

In particle physics the phenomenon is relevant to understanding the connection
of symmetries of the hadronic currents. In Section 2.2 we showed that, in the limit



5.3 Spontaneous breaking of local symmetries 49

of zero pion mass (mπ = 0), the axial current is conserved. The conserved vector
and axial currents generate an SU(2)L × SU(2)R algebra. Therefore, the symmetry
is present in the currents and leads to many important predictions. It is absent
from the particle spectrum, since there are no parity-degenerate multiplets. Think
of the (ρ+, ρ0, ρ−) and (A+, A0, A−) isospin multiplets. The ρs transform into
each other with SU(2)vector and the As with SU(2)axial, but there is no connection
between the two multiplets through SU(2)L × SU(2)R transformations. In other
words, the operators are SU(2)L × SU(2)R-symmetric but the particle states are not
(mρ �= mA). This physical situation can be understood in SU(2)L × SU(2)R theory
with spontaneously broken symmetry. The SU(2)A generators are broken by non-
zero vacuum expectation values and must be accompanied by zero-mass Goldstone
bosons. This is in agreement with the fact that the pions have masses much smaller
(nearly zero) than those of all other hadrons. Strictly speaking, the pions should be
massless, but corrections to the potential or radiative corrections can produce small
masses.

5.3 Spontaneous breaking of local symmetries

A new phenomenon occurs in local gauge theories, which is crucial for constructing
theories with massive gauge bosons. The simplest example is scalar electrodynam-
ics, which was introduced in Section 4.2. We consider the Lagrangian of Eq. (4.36)
with the potential

V (φ∗φ) = −µ2φ∗φ + λ(φ∗φ)2. (5.33)

The theory is invariant under the gauge transformation defined in Eq. (4.39). In
addition, the Lagrangian is invariant under a global rotation of the scalar field

φ → eiαφ, (5.34)

with α independent of space and time. We first demonstrate properties of the theory
under global transformations and then indicate the changes introduced in a gauge
theory.

For the vacuum state we select one of the minima of the potential. By a global
rotation we can transform 〈φ〉 to a real value. We represent the field and its vacuum
state by

φ = 1√
2

(φ1 + iφ2), 〈φ1〉 = v =
(

µ2

2λ

)1
2

and 〈φ2〉 = 0. (5.35)

As in the previous cases, we translate φ,

φ1(x) = φ′
1(x) + v, (5.36)
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and leave φ2 unchanged. In terms of the new field, the potential becomes

V (φ) = −µ4

4λ
+ λ

[(
φ′2

1 + φ2
2

)2 + 4v2φ′2
1 + 4vφ′

1

(
φ′2

1 + φ2
2

)]
. (5.37)

The φ′
1 field acquired a mass and there are also trilinear interaction terms. In addition

there are changes in the kinetic terms, which we describe in Problem 5.4; important
among them is the property that Aµ acquires a mass.

Alternatively, we can study this theory as a gauge theory. We define two real
fields θ (x) and ρ(x) by the relation

φ(x) = eiθ (x)/v ρ(x) + v√
2

(5.38)

and give ρ(x) a vacuum expectation value.
Then we observe that the local gauge transformation

φ′ = e−iθ (x)/vφ(x) = ρ(x) + v√
2

,

(5.39)
A′

µ(x) = Aµ(x) + 1

ev
∂µθ (x)

eliminates θ (x) completely. This transformation is unusual, because the field itself
occurs in the gauge transformation; but it is legitimate in all respects. After the gauge
transformation, the first two terms of Eq. (4.36) retain their form, with primed fields
replacing the old ones. The net effect is

L = −1

4
F ′

µν F ′µν + (D′µφ′)∗(D′
µφ′) + µ2

2
[ρ(x) + v]2 − λ

4
[ρ(x) + v]4,

(5.40)

with D′
µ = ∂µ + ieA′

µ. The second term,

(D′µφ′)∗(D′
µφ′) = 1

2
∂µρ∂µρ + 1

2
e2 A′

µ A′µ(
ρ2 + 2ρv + v2

)
, (5.41)

generates a mass for the A′
µ field. The Goldstone field disappeared and the vector

field became massive.
We have described a second important case of spontaneous symmetry breaking.

We started with a locally invariant theory describing a charged scalar field (two
degrees of freedom) and a massless gauge field with two polarizations. After spon-
taneous symmetry breaking there is one real scalar field and a massive gauge field
with three polarizations. The spontaneous breaking of the symmetry redistributed
the degrees of freedom: one of the two real fields forming the complex scalar field
was transformed into the longitudinal polarization of the vector field. This exam-
ple illustrates that the spontaneous breaking of local symmetry does not produce
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Goldstone mesons, but gives masses to the gauge bosons. It will be used later on
in order to create masses for the intermediate gauge bosons.

The spontaneous breaking of scalar electrodynamics is physically unrealistic,
because electric charge is not conserved. This is evident from the presence of the
A2ρ term in (5.33). It is a consequence of the fact that we introduced a non-zero
vacuum expectation value for a charged field,

〈�|φ(x)|�〉 �= 0, (5.42)

which in itself violates charge conservation. In realistic theories we can preserve
the conservation laws by giving non-zero expectation values to fields that carry the
vacuum quantum numbers.

This phenomenon was introduced in the sixties in order to evade the Goldstone
theorem and maintain gauge invariance, despite the fact that the vector meson
acquires a mass. At that time it was thought to be relevant for the strong interactions.
Later it was extended to non-Abelian gauge theories. It is now used in order to
break the gauge symmetry of the electroweak theory and produce masses for the
intermediate gauge bosons. It is referred to as the Higgs mechanism and we describe
it in Chapter 7.

Problems for Chapter 5

1. Consider a one-dimensional harmonic oscillator. Its Hamiltonian

H = 1

2

(
p2 + ω2

0x2
)

can easily be rewritten in terms of the classical variables

a =
√

1

2ω0
(ω0x + ip) and a+ =

√
1

2ω0
(ω0x − ip).

In quantum mechanics a and a+ are operators satisfying the commutation relations[
a, a+] = 1 and [a, a] = [

a+, a
] = 0.

Compute
(i) the eigenstates of this Hamiltonian,

(ii) the time development of the operators a and a+, and
(iii) the matrix elements of a and a+ between arbitrary states.
When you have done all this, then you have solved this quantum field theory completely.

2. The Hamiltonian for an asymmetric oscillator is

H = 1

2

(
p2 + ω2

0x2
) + kx .

Replace again the position and momentum variables with the operators a and a+. The
Hamiltonian reads

H = 1

2
ω0(a+a + aa+) + k(a + a+).
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The problem now is to find a unitary transformation such that

UaU+ = a − k/ω0,

Ua+U+ = a+ − k/ω0.

With the help of U it is possible to eliminate the linear term kx and reduce this problem
to the previous one.

3. The vacuum state, |�〉, is not always the empty state, |0〉. This is demonstrated with the
Hamiltonian

H = 5

3
a+a + 2

3
(a+)2 + 2

3
a2.

The number operator N = a+a does not commute with the Hamiltonian. Consequently
the eigenstates of N are not eigenstates of H .

Find the lowest-energy state of H . To this end, construct two operators with the
properties

[
H, Q±] = ±Q±.

These operators raise and lower the energy by one unit. The lowest-energy state is defined
as usually by the condition

Q−|�〉 = 0 .

You can represent the vacuum as
∑

n cn(a+)n|0〉, and then use the above condition to
give an explicit formula for |�〉. It is possible to write the normalized vacuum state in
closed form. Finally, construct all higher-energy states.

4. Work out the kinetic term for scalar electrodynamics using the new fields of Eq. (5.36).
Show that the field Aµ acquired a mass and demonstrate the appearance of trilinear
interaction terms.
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Construction of the model

The next task is to find a gauge theory that contains the weak and electromagnetic
currents described in the previous chapters. We consider a gauge model of electrons
and their neutrinos. At the very beginning we must answer two questions:

(i) which group should we select for the theory; and
(ii) to which representation of the group should we assign the fermion fields?

The currents of the theory must include at least the charged weak current

J+
µ (x) = ν̄e(x)γµ(1 − γ5)e(x), (6.1)

its Hermitian adjoint, and the electromagnetic current

J em
µ (x) = ē(x)γµe(x). (6.2)

We need three vector fields with which to couple them. They correspond to the
intermediate gauge bosons, W±, and the photon. The smallest group is SU(2). This
group, however, is unacceptable because the currents (6.1) and (6.2) do not form
an SU(2) algebra. This becomes evident on considering the charges and studying
their commutation relations. Consider the charges

T + = 1

2

∫
d3x ν+

e (x)(1 − γ5)e(x), T − = (T +)+. (6.3)

The commutator is[
T +, T −] = 1

4

∫
d3x d3 y

[
ν+(x)(1 − γ5)e(x), e+(y)(1 − γ5)ν(x)

]
= 1

2

∫
d3x d3 y

[
ν+(x)(1 − γ5)ν(x) − e+(x)(1 − γ5)e(x)

]
δ3(x − y),

iT 3 = [
T +, T −]

, (6.4)

which is not the charge operator corresponding to the electromagnetic current.

53
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There are now two alternatives:

(i) introduce new leptons and modify the weak current J±
µ so that we get the right SU(2)

algebra, or
(ii) introduce another gauge boson W3 and its corresponding current. In this alternative there

are four gauge bosons, W±, Z, and γ, and the group must be enlarged to SU(2) × U(1).

Both alternatives were actively studied and it became evident only after the dis-
covery of neutral currents that Nature prefers the second solution.

We consider a theory based on the group SU(2) × U(1). We must decide how the
electron and its neutrino transform under SU(2) and U(1), separately. From (6.3)
and (6.4) we see that the charges

T + = 1

2

∫
d3x

[
ν+(1 − γ5)e

]
, (6.5)

T − = [
T +]+

, (6.6)

iT 3 = 1

2

∫
d3x

[
ν+

e (1 − γ5)νe − e+(1 − γ5)e
]

(6.7)

generate an SU(2) algebra. This means that the left-handed fields

eL = 1

2
(1 − γ5)e and νL = 1

2
(1 − γ5)ν

form an SU(2) doublet,

�L =
(
νL

eL

)
. (6.8)

The charges are defined as

Ti =
∫

d3x �+
L

(τi

2

)
�L (6.9)

and

Q = −
∫

d3x e+e = −
∫

d3x
(
e+

L eL + e+
R eR

)
. (6.10)

Since we should include Q in the group transformations, Q must be a combination
of T3 and the generator of U(1), denoted by Y :

Y

2
≡ Q − T3 = −1

2

∫
d3x

(
e+

L eL + 2e+
R eR + ν+

L νL
)
. (6.11)

This relation involves the difference between the charge Q and the weak isospin T3

and it defines a new quantum number: the weak hypercharge. It is analogous to the
Gell-Mann–Nishijima formula of the strong interactions which was established by
empirical data. With this definition the charge coincides with what we were always
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using as charge, but the weak isospin and hypercharge, when extended to quarks, do
not always coincide with the corresponding hadronic quantum numbers. In (6.11)
there appear the left-handed and right-handed leptonic number operators

NR =
∫

d3x e+
R eR, (6.12)

NL =
∫

d3x
(
e+

L eL + ν+
L νL

)
. (6.13)

Thus the hypercharge operator in SU(2) is the unit matrix which commutes with
the other generators of the group,

[Y, Ti ] = 0 for i = 1, 2, 3. (6.14)

From the relation Y = −(NL + 2NR) we deduce that

Y =
{

1 for left-handed states,
2 for right-handed states.

This satisfies the original requirements of selecting a group and the representations
for the fields with

�L =
(
νL

eL

)
an SU(2) doublet,

�R = eR an SU(2) singlet.

Finally, we give the parts of the Lagrangian describing the fermion and gauge
fields. We denote by W i

µ the gauge fields of SU(2) and by Bµ the field of U(1). The
field tensors are written as

Fi
µν = ∂µW i

ν − ∂νW i
µ + gεi jk W j

µW k
ν , (6.15)

Gµν = ∂µ Bν − ∂ν Bµ, (6.16)

and the Lagrangian for the gauge fields is

LB = −1

4
Fi

µν Fi,µν − 1

4
GµνGµν, (6.17)

with a summation understood over repeated indices. The gauge fields at this stage
are massless. The Lagrangian for the leptons is

LF = i�̄Rγµ

(
∂µ + ig′ Y

2
Bµ

)
�R + i�̄Lγµ

(
∂µ + ig′ Y

2
Bµ + i

2
gτ k W k

µ

)
�L.

(6.18)

We notice that the leptons are also massless because there are no �̄R�L and �̄L�R

terms, which indeed are not SU(2) × U(1)-invariant.
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The Higgs mechanism in the
Glashow–Salam–Weinberg model

7.1 Masses for gauge bosons

In order to give masses to the gauge bosons and the fermions, we follow the method
described in Section 5.3. We introduce a complex scalar doublet

φ =
[
φ+
φ0

]
. (7.1)

From the relation Q = T3 + Y/2, it follows that Y = 1 for φ. Each of the fields
has a real part and an imaginary part, so there are four independent scalar fields.
The Lagrange function for the scalar sector is given by

Lφ = (Dµφ)†(Dµφ) − V (φ+φ), (7.2)

with the covariant derivative defined by

Dµ = ∂µ + ig′ Bµ + ig
τ i

2
W i

µ (7.3)

and the potential by

V (φ†φ) = −µ2φ+φ + λ(φ†φ)2. (7.4)

We have been gradually enlarging the Lagrangian and so far it consists of three
terms:

L = LF + LB + Lφ. (7.5)

It contains fermions, vector bosons, and scalar fields and is invariant under gauge
transformations of the group SU(2) × U(1).
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Classically, the potential V (φ) has a locus of minima at

∂V

∂φ∗+
= −µ2φ+ + 2λ

(|φ+|2 + |φ0|2
)
φ+ = 0, (7.6)

∂V

∂φ0
= −µ2φ0 + 2λ

(|φ+|2 + |φ0|2
)
φ0 = 0; (7.7)

that is, at

|φ+|2 + |φ0|2 = µ2

2λ
. (7.8)

We can choose the ground state (vacuum state) at the minimum of the potential.
Since we wish to conserve charge, the field must carry vacuum quantum numbers

|φ0| = µ√
2λ

and φ+ = 0. (7.9)

In the quantum theory the symmetry is broken by introducing

〈φ〉 =
(

0
v/

√
2

)
with v = µ√

λ
.

In other words, one of the neutral scalar fields acquires a vacuum expectation value
at the minimum of the potential.

The next step is to try to rewrite the Lagrangian in terms of fields displaced
relative to the minimum of the potential and arrive at a physical interpretation. The
selection of a vacuum expectation value chooses a direction in the potential, thus
breaking the symmetry. We define four scalar fields, ξ1, ξ2, ξ3, and η, by

φ = U−1(�ξ )

(
0

(v + η)/
√

2

)
, (7.10)

where U−1(�ξ ) is the unitary transformation

U−1(�ξ ) = exp

(
− i�ξ · �τ

2v

)
. (7.11)

This is very similar to the discussion concerning Eqs. (5.38) and (5.39). Again, we
define new fields through a gauge transformation

φ → φ′ = U (�ξ )φ =
(

0
(v + η)/

√
2

)
, (7.12)

ψL → ψ ′
L = U (�ξ )ψL and ψ ′

R = ψR, (7.13)

1

2
�τ · �W µ → 1

2
�τ · �W ′

µ = 1

2
U (�ξ )�τ · �W µU−1(�ξ ) + i

g

[
∂µU−1(�ξ )

]
U (�ξ ). (7.14)
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This transformation has the form described in Chapter 5, with a new feature:
the fields themselves occur in the transformation. Upon substitution into the
Lagrangian, the terms LF and LB retain the same form when expressed in terms of
the new fields, but Lφ is modified. In fact, as we show next, several of the scalar
fields disappear and the Lagrangian has a new physical interpretation.

Consider the Lφ term and set

φ′ =
(

0
(v + η)/

√
2

)
= v + η√

2
χ with χ =

(
0
1

)
. (7.15)

On substituting for the φ field in terms of the new field, it appears as if we are
making a gauge transformation. The covariant derivatives become

Dµφ′ =
[
∂µη + i

2
(v + η)

(
g′ Bµ + gτ i W i

µ

)] χ√
2
, (7.16)

(Dµφ′)†(Dµφ′) + h.c. = 1

2
(∂µη)(∂µη)

+ 1

8
(v + η)2χ+{(

g′ Bµ + gτ i W i
µ

)
(g′ Bµ + gτ i W i,µ)

}
χ.

(7.17)

The cross-term is purely imaginary and does not appear in the product. We study
in detail the structure of the second term,

(g′ Bµ + g�τ · �W µ)(g′ Bµ + g�τ · �W µ) =
[
g′2 Bµ Bµ + g2 �W µ

�W µ + 2gg′ Bµ�τ · �W µ
]
,

(7.18)

and between the χ states

χ+ [. . .]χ = g′2 Bµ Bµ + g2W i
µW i,µ − 2gg′ BµW 3,µ

= (
g′ Bµ − gW 3

µ

)2 + 2g2W +
µ W −µ

= (g2 + g′2)ZµZµ + 2g2W +
µ W −µ. (7.19)

The evaluation of the term linear in �τ is most easily done using �τ · �W µ =√
2(τ+W −

µ + τ−W +
µ ) + τ 3W 3

µ and properties of τ±χ. New fields were also
introduced:

W ±
µ = 1√

2

(
W 1

µ ± iW 2
µ

)
, Zµ = −gW 3

µ + g′ Bµ√
g2 + g′2 ,

and

Aµ = gBµ + g′W 3
µ√

g2 + g′2 . (7.20)
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We note that the fields W± and Z are now massive with

MW = 1

2
gv and MZ = 1

2

(
g2 + g′2)1/2

v, (7.21)

but the field Aµ remains massless. The physical correspondence for the fields
is evident. Aµ represents the photon and the other three the intermediate gauge
bosons of the weak interaction. An interesting property is the disappearance from
the Lagrangian of the ξ1, ξ2, and ξ3 fields. These three degrees of freedom were
transformed into longitudinal states of the massive vector mesons. This form of the
theory, with its clear physical interpretation, is referred to as the unitary gauge.

To sum up, we have constructed a theory with vector, scalar, and spin- 1
2 particles

based on the symmetry group SU(2) × U(1). The symmetry was broken in the Higgs
mode by introducing a non-zero vacuum expectation value for the neutral field φ0.

Then it was shown that a judicious choice of the gauge eliminates three scalar fields.
In this gauge the physical interpretation is clear, with the states W± and Z0 being
massive. They also have three longitudinal degrees of freedom.

In the quantum theory, the breaking of the symmetry by Eq. (7.9) implies
that the vacuum is not the empty state but a complicated superposition of states,
as demonstrated for the simple Hamiltonian in Problem 3 of Chapter 5. Condi-
tion (7.9) does not break the symmetry completely, because the charge generator
annihilates the vacuum and the law for charge conservation is preserved. The other
three generators are broken and to each of them there corresponds a massive gauge
boson. Their masses satisfy the relation

M2
W

M2
Z

= g2

g2 + g′2 . (7.22)

They also couple to fermions through charged and neutral currents, which satisfy the
SU(2) × U(1) algebra. These and other couplings will be studied in the following
chapters.

Finally, the simple mass relations (7.21) depend on the fact that the field φ

was a weak isodoublet. It survives even if φ is replaced by a finite number of
isodoublet fields. It fails, however, when Higgses belonging to other representations
are introduced. Consider, for instance, a theory that contains, in addition to the
doublet, a triplet of Higgs fields,

�	 =
⎡
⎣	+

	0

	−

⎤
⎦, (7.23)

with 〈	0〉 = σ �= 0. Then, by repeating the steps (7.16)–(7.21) and using the SU(2)
matrices for the three-dimensional representation, the reader can verify the new
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mass relations

MW = 1

2
g(v2 + σ 2)1/2 and MZ = 1

2

(
g2 + g′2)1/2

v. (7.24)

7.2 Masses for leptons

The standard model based on the group SU(2) × U(1) allows us to make some of
the simplest choices. It is the simplest group which contains charged, neutral, and
electromagnetic currents. This is at the expense of introducing two coupling con-
stants, g and g′, which are related through the Higgs mechanism to other parameters
of the theory (masses of gauge bosons, structure of neutral currents, . . .).

It has the simplest multiplet assignment for the fermion multiplets which is
consistent with parity violation. The left-handed particles are SU(2) doublets and
the right-handed components singlets,

ψe =
(

νe

e−

)
L

, e−
R , (7.25)

with the same pattern repeated for the other two families:

ψµ =
(

νµ

µ−

)
L

, µ−
R and ψτ =

(
ντ

τ−

)
L

, τ−
R . (7.26)

We note that there are no right-handed neutrinos because it was thought that they
are massless. This attitude changed with the discovery of neutrino oscillations,
which require small and finite masses. The subject of neutrino masses is covered
in Chapter 13.

Masses for leptons are generated through Yukawa couplings. A Yukawa inter-
action invariant under SU(2) × U(1) is given by

Ly = geψ̄eφeR + h.c. (7.27)

As mentioned earlier, the symmetry is broken by giving a vacuum expectation value
to φ0: (

φ+

φ0

) −→
breaking

(
0

(1/
√

2)(v + η)

)
, (7.28)

which gives the mass me = (1/
√

2)gev. Similarly, masses are generated for the mu
and tau leptons. The lepton masses remain arbitrary parameters without any relation
among them.

The theory has the simplest symmetry-breaking mechanism. The Higgs particles
are in the fundamental representation of SU(2) containing just enough fields to make
W± and Z0 massive and leave one neutral Higgs as a physical particle. This pattern
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of symmetry-breaking provides a consistent way to control the higher-order terms
by absorbing infinities into the masses and couplings of the theory. ’t Hooft (1971)
derived the correct Feynman rules in a class of gauges and constructed gauges for
which the theory is manifestly renormalizable. Detailed studies of renormalization
and unitarity followed (Lee and Zinn-Justin, 1972; ’t Hooft and Veltman, 1972).
This remarkable success opened the road for many investigations and predictions
that have been confirmed by experiments.

Problems for Chapter 7

1. Use the matrices

λ1 = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, λ2 = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ and

λ3 = 1√
2

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠

for the I = 1 representation of SU(2) and the Pauli matrices for the I = 1/2 represen-
tation in order to prove Eq. (7.24).

2. Generally, it is possible to construct SU(2) × U(1) theories with several multiplets of
scalar fields. We denote them by φi and they carry weak isospin Ii and have a neutral
component I3i . If each neutral component develops a vacuum expectation value vi/

√
2,

show that the W and Z masses satisfy

M2
W = 1

2
g2

∑
i

[
Ii (Ii + 1) − I 2

3i

]
v2

i ,

M2
Z = sec2 θW g2

∑
i

I 2
3iv

2
i .

Find the first values (I, I3) for which the relation

MW = MZ cos θW

is maintained.
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8

The leptonic sector

8.1 Feynman rules

We gave in Chapter 6 the Lagrange function for the fermions and the gauge bosons.
In the previous chapter we defined the physical bosons with definite masses. It
is now a straightforward exercise to rewrite the Lagrange density in terms of
the physical bosons and read off the Feynman rules. For the rules, it is neces-
sary to introduce quantized fields in order to keep track of the combinatorics and
other factors, especially for diagrams with closed loops. The canonical quantiza-
tion method in terms of Wick’s theorem does not work for non-Abelian gauge
theories because there are ambiguities that arise from gauge transformations. The
appropriate discussion at this point is the quantization in the path-integral formal-
ism. This will be a long digression and will delay us from arriving at physical
results. We adopt a compromise. We consider the fermionic part of the Lagrange
function in terms of the physical fields and read off the relevant vertices. The
interested reader can compare this method with the procedure used in textbooks
of quantum electrodynamics. In this way we obtain an extensive set of Feynman
rules for vertices and propagators, in terms of which we discuss many physical
processes.

Later on, we repeat this procedure for other parts of the Lagrangian, which in-
clude Higgses and gauge bosons. The rules that we obtain suffice when we calculate
tree diagrams to any order. Difficulties occur when loop diagrams are computed,
beginning with one-loop diagrams. The difficulties are solved by introducing addi-
tional diagrams with scalar particles: the Faddeev–Popov ghosts.

We saw in the previous chapter that the neutral gauge fields mix among them-
selves. It is appropriate to introduce a mixing angle

tan θW = g′

g
. (8.1)

64
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The physical fields defined as mass eigenstates are given by

W ±
µ = 1√

2
(W1 ± iW2), (8.2)

Aµ = cos(θW)Bµ + sin(θW)W 3
µ, (8.3)

Zµ = sin(θW)Bµ − cos(θW)W 3
µ. (8.4)

As stated earlier, Aµ represents the photon, while Zµ and W ±
µ represent the neutral

and charged intermediate gauge bosons, whose masses satisfy the relation

M2
W

M2
Z

= cos2θW. (8.5)

In the leptonic Lagrangian (6.18) we substitute for W i
µ and Bµ in terms of the fields

W ±
µ , Zµ, and Aµ. Using again the identity

�τ · �Wµ =
√

2(τ+W −
µ + τ−W +

µ ) + τ3W 3
µ, (8.6)

we can read off the couplings of the W± bosons to charged currents.
The couplings of Zµ and Aµ to their respective currents follow after some algebra.

The neutral gauge couplings are

LNC = −ψ̄Rγ µg′ Y
2

BµψR − ψ̄Lγ µ

(
g′ Y

2
Bµ + g

τ3

2
W 3

µ

)
ψL

= −gs

[
ψ̄Rγ µ Y

2
ψR + ψ̄Lγ µ

(
Y

2
+ τ3

2

)
ψL

]
Aµ

+ g

c

[
−s2

(
ψ̄Rγ µ Y

2
ψR + ψ̄Lγ µ Y

2
ψL

)
+ c2ψ̄Lγ µ τ3

2
ψL

]
Zµ, (8.7)

with (c, s) = (cos θW, sin θW). The weak hypercharge Y can be replaced according
to (6.11) by

ψ̄R
Y

2
γ µψR = ψ̄R Qγ µψR, (8.8)

ψ̄L
Y

2
γ µψL = ψ̄L

(
Q − τ3

2

)
γ µψL, (8.9)

giving finally

LNC = −gs
(
ψ̄Rγ µQψR + ψ̄Lγ µQψL

)
Aµ

+ g

c

[
ψ̄Lγ µ τ3

2
ψL − s2(ψ̄Rγ µQψR + ψ̄Lγ µQψL)

]
Zµ. (8.10)
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Finally, on substituting for

ψL =
(
ν

e

)
L

and ψR = eR,

we obtain

LF = iē ∂/e + iν̄ ∂/ν − gs Aµēγ µe

+ g

2
√

2

[
ν̄γ µ(1 − γ5)eW +

µ + ēγ µ(1 − γ5)νW −]
+ g

4c

[
ν̄γ µ(1 − γ5)ν + ēγ µγ5e − (1 − 4s2)ēγ µe

]
Zµ. (8.11)

The third term above is the coupling of a massless vector particle to the electro-
magnetic current of electrons. Its coupling is evidently the electromagnetic charge

e = g sin θW. (8.12)

We can read off the following vertices:

Z0

l

l
ig

4 cos θW
γµ(1 − 4 sin2θW − γ5)

Z0

¯

− ig

4 cos θW
γµ(1 − γ5)

W±

l

l

− ig

2
√

2
γµ(1 − γ5)

γ

f

f

−ieQfγ
µ

The propagators for particles are introduced in many textbooks. For the fermions,

i

p−m + iε
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For vector mesons the propagator depends on the gauge. We will frequently use
the Feynman gauge, for which the three relevant propagators are

Z
− igµν
p2 −M2

Z + iε

W
− igµν
p2 −M2

W + iε

− igµν
p2 + iε

γ

In an arbitrary gauge the vector boson propagator depends on the gauge parameter
ξ as follows:

�µν(p) = −i
gµν + (ξ − 1)pµ pν/(p2 − ξ M2)

p2 − M2 + iε
.

In special gauges we obtain

ξ = 1 �µν = −i
gµν

p2 − M2 + iε
(Feynman gauge)

ξ = 0 �µν = −i
gµν − pµ pν/p2

p2 − M2 + iε
(Landau gauge)

ξ = ∞ �µν = −i
gµν − pµ pν/M2

p2 − M2 + iε
(unitary gauge)

In addition to electromagnetism, the theory describes weak interactions mediated
by charged W± bosons and the neutral boson Z. Charged-current interactions are
mediated by the W± bosons, whose mass satisfies the relation

MW = 1

2
gv. (8.13)

In low-energy reactions the W masses can be factored out – or integrated out –
giving an effective four-fermion interaction with the coupling

GF√
2

= g2

8M2
W

. (8.14)

The electroweak theory goes beyond the V–A theory and predicts the existence of
neutral currents mediated by the Z bosons, whose mass

MZ = 1

2
gv

1

cos θW
(8.15)
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is related to MW through (8.5). At low energies the neutral-current interaction also
reduces to an effective interaction, whose overall strength is determined by(

− ig

4 cos θW

)2 1

p2 − M2
Z

= g2

16M2
W

= GF

2
√

2
. (8.16)

The Lagrangian (8.11) defines the weak and electromagnetic interactions of elec-
trons and neutrinos. It contains four unknown quantities: g, sin2θW, and the masses
MW and MZ which occur in the propagators of the bosons. In addition there is the
mass of the electron, which is to be taken from experiment. All four quantities are
not independent, since three of them are related through (8.5). We can use three ex-
perimental quantities to determine them. Electromagnetic measurements determine
the fine-structure constant

α = e2

4π
= 1

137.036 . . .
. (8.17)

The muon decay is used to determine GF. Neutral-current measurements, discussed
in this and subsequent chapters, determine

sin2θW = 0.222 ± 0.010. (8.18)

From the three low-energy measurements we now determine the other parameters:

M2
W = πα√

2GF sin2θW

, M2
Z = M2

W

cos2θW
, (8.19)

and

v = 1(√
2GF

)1/2 = 246 GeV. (8.20)

8.2 Predictions in the leptonic sector

We have now a theory that enables us to compute many processes at the tree level.
In this chapter we compute three leptonic processes.

Boson decays Among the many predictions of the model, the decays of the gauge
bosons are simple to discuss. We begin with the decay

W− → e− ν̄. (8.21)

The diagram in Fig. 8.1 gives the amplitude

M = ig

2
√

2
ū(k−)γµ(1 − γ5)v(k+)εµ, (8.22)
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W−
¯e

e−

Figure 8.1. The Feynman diagram for a W− decay.

with εµ being the polarization of the intermediate boson. For the decay rate we sum
over the polarization states with∑

Pol

ε∗
µεν = −gµν + qµqν

M2
W

. (8.23)

The contribution from qµqν is proportional to the masses of the leptons and can
be neglected. We also ignore terms proportional to lepton masses in the trace com-
putation. The mass of the neutrino being small or zero does not cause any dif-
ficulties, because in the spinor normalization ūu = 2m they simply do not occur
in the formulas. Had we used another normalization, i.e. ūu = 1, then we could
give a small mass to the neutrinos and proceed to calculate decay rates and cross
sections, but we will find in the end that the neutrino masses drop out of the
formulas.

The square of the matrix element summed over spins is

∑
Spins, Pol

MM∗ = g2

8
· 2 · Tr[γµ(1 − γ5)(k/+ + me)γν(k/− − mν)] · (−gµν)

= 2g2k+ · k−. (8.24)

The decay rate is given following standard rules:

� = 1

2MW

∫
g2k+ · k−(2π )4δ4(p − k+ − k−)

1

2Ee

d3k−
(2π )3

1

2Eν

d3k+
(2π )3

= g2

16π
MW = GF M3

W

2
√

2π
. (8.25)

We must still average over the initial polarizations of the gauge bosons and obtain

� = 1

(2s + 1)
� = GF M3

W

6
√

2π
, (8.26)

which gives 211.3 MeV for MW = 80 GeV (235.9 MeV for MW = 83 GeV).
The total width is obtained by adding the additional decays into µν̄µ, τν̄τ, and

quark pairs. We introduce the vertices of the gauge bosons to quarks in the next
chapter, but we mention here that the decay of W− into a quark pair of definite color
is also given by (8.26). Thus, for three generations of quarks and leptons the total
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width is obtained by multiplying the width by 12: (3 lepton families) + [(3 quark
families) × (3 colors)] = 12;

�total = 2GF M3
W√

2π
. (8.27)

In leptonic decays all that can be observed is the charged lepton. In hadronic decays
the W bosons are inferred by reconstructing the hadronic jets, which imitate to some
extent the kinematic characteristics of the original quarks.

In contrast, the leptonic decays of Z bosons into charged leptons are identified
by the invariant mass of the pairs. By comparing the coupling constants we obtain
the partial decay widths

�(Z → νν̄) = GF M3
Z

12
√

2π
(8.28)

and

�(Z → e+e−) = GF M3
Z

12
√

2π

(
1 − 4 sin2θW + 8 sin4θW

)
. (8.29)

For the total width, we need in addition the decay width into quarks (see Problem 1).
Summing again over three generations,

�total(Z) = GF M3
Z

3
√

2π

(
21

4
− 10 sin2θW + 40

3
sin4θW

)
. (8.30)

It is worth noting that the total width is sensitive to the total number of quarks and
leptons lighter than MZ and precise measurements of �total could produce exotic
surprises. The width of the Z boson has been determined in the CERN experiments
to be

�Z = (2.490 ± 0.007) GeV.

The width in turn limits the number of neutrinos to

Nν = 3.09 ± 0.13,

which is very close to the number of neutrinos allowed by nucleosynthesis
arguments, Nν � 3–4.

8.3 Leptonic neutral currents

A striking piece of evidence for the electroweak theory was the discovery of neutral
currents. The Lagrangian in (8.11) describes both charged- and neutral-current
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interactions of neutrinos and electrons. All the couplings depend on the SU(2)
coupling constant g and the Weinberg angle θW. At low energies, the overall strength
of the neutral-current interaction is determined by GF through Eq. (8.16). Thus
all neutral-current interactions must depend on a single parameter, sin2θW. There
is a large number of neutral-current reactions that have been measured and the
agreement after two and a half decades of research is indeed impressive. This
section describes in detail leptonic neutral-current reactions. The reader will find
this section very useful also for the semileptonic interactions discussed in Chapters
10–12, since many of the formulas can be taken over. We consider first neutrino–
electron scattering. Six reactions of this type are shown in Fig. 8.2.

Reactions (1) and (2) can proceed only through neutral currents. Other reactions
like

νe(k) + e−(p) → νe(k ′) + e−(p′) (8.31)

involve both charged- and neutral-current diagrams. For low-energy reactions it is
convenient to write the Feynman amplitude in the form

M = −i
GF√

2

[
ν̄γµ(1 − εγ5)νēγ µ(gV − gAγ5)e

]
. (8.32)

In this form both vertices retain the charge of the lepton. Evidently, not all reactions
are of this form, because several of them include also charged-current reactions.
Charged- and neutral-current reactions have different propagators and in addition
the order of the spinors is different. Charged-current reactions can be transformed
into the charge-retaining form by Fierz’s reordering theorem. A special form of
the theorem states that, when at least one of the couplings is (1 ± γ5), then we can
interchange the first and the third (or second and fourth) spinors. All examples in
Fig. 8.2 involve a neutrino or antineutrino whose vertex is γµ(1 − εγ5) with ε = 1
for neutrinos and ε = −1 for antineutrinos. As an illustration, consider the reaction
(8.31) to which the two diagrams in Fig. 8.3 contribute. The amplitude is

M =
(

ig

4c

)2 −i

q2 − M2
Z + iε

ū(k ′)γµ(1 − γ5)u(k) · ū(p′)
[
γ µγ5 − (1−4s2)γ µ

]
u(p)

+
(

ig

2
√

2

)2 −i

q2 − M2
W + iε

ū(p′)γµ(1 − γ5)u(k) · ū(k ′)γ µ(1 − γ5)u(p)

q2�M2
W−→ −i

GF√
2

ū(k ′)γµ(1 − γ5)u(k) · ū(p′)
[(

1

2
+ 2s2

)
γ µ − 1

2
γ µγ5

]
u(p)

= −i
GF√

2
ū(k ′)γµ(1 − γ5)u(k) · ū(p′) (gVγ µ − gAγ µγ5) u(p). (8.33)



72 The leptonic sector

W (6) e e− → µ µ−

W (5) µ e− → e µ−

Z +
W

(4) e e− → e e−

Z + W (3) νe e− → νe e−

Z (2) νµ e− → µ e−

Z (1) νµ e− → νµ e−

Neutral current Charged current Reaction

¯ ν̄

ν̄

ν̄

ν̄ ν̄

ν̄

ν̄

Figure 8.2. Diagrams for neutrino–electron scattering.

In this way we can write all reactions in the form (8.32). The explicit values for
ε, gV, and gA for five reactions are given in Table 8.1. We can now calculate the cross
section for the amplitude (8.32) and obtain the specific reaction by substituting the
values from Table 8.1.
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Table 8.1. Effective couplings for several reactions

Electroweak theory V–A theory

Reaction ε gV gA gV gA

νµ+ e− → νµ+ e− +1 − 1
2 + 2s2 − 1

2 0 0

ν̄µ+ e− → ν̄µ+ e− −1 − 1
2 + 2s2 − 1

2 0 0

νe + e− → νe + e− +1 + 1
2 + 2s2 + 1

2 1 1

ν̄e + e− → ν̄e + e− −1 + 1
2 + 2s2 + 1

2 1 1

νµ+ e− → µ− + νe +1 1 1 1 1

e−, p e−, pe−, p e−, p

Z + W

νe, k νe, kνe, k νe, k

Figure 8.3. Z and W exchange in neutrino–electron scattering.

We begin with the amplitude in (8.32) and compute the differential cross section.
For simplicity, for the moment we set ε = 1 and the mass of the electron to zero
(whenever allowed). At the end we give the complete formula with ε and a small
term proportional to the electron mass. The square of the amplitude summed over
final spins and averaged over initial spins is

|M2| = 1

2

∑
Spins

MM∗

= G2
F

4
Tr

[
γµ(1 − γ5)k/γν(1 − γ5)k/′]

× Tr
[
γ µ(gV − gAγ5)(p/ + m)γ ν(gV − gAγ5)(p/′ + m)

]
. (8.34)

Averaging over initial spins brings in a factor of 1/2 because the neutrinos are
always left-handed. Evidently the expression factorizes into two tensors,

|M2| = G2
F

2
Lµν�

µν, (8.35)

with

Lµν = Tr
[
γµ(1 − γ5)k/γνk/′]

= 4(kµk ′
ν + kνk ′

µ − k · k ′gµν + iεµναβkαk ′β) (8.36)
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and

�µν = Tr
[
(g2

V + g2
A)γ µ p/γ ν p/′ + 2gVgAγ5γ

µ p/γ ν p/′], (8.37)

where we neglected terms proportional to m2
e . The computation of the �µν tensor

is similar to that of Lµν. In contracting the two tensors, we observe that products
with different symmetries in µ and ν vanish:

|M|2 = 16G2
F

[
(gV + gA)2(k · p)(k ′ · p′) + (gV − gA)2(k · p′)(k ′ · p)

]
. (8.38)

We choose to compute the cross section in the laboratory frame, where the initial
electron is at rest:

dσ = 1

2me

1

2Eν
|M|2(2π )4δ4(k + p − k ′ − p′)

1

2E ′
ν

d3k ′

(2π )3

1

2E ′
e

d3 p′

(2π )3
. (8.39)

We perform the d3 p′ phase-space integration with the help of the δ4-function. The
last integration over the scattering angle involves the integral∫

d3k ′ δ
[
m2

e − (k − k ′ + p)2
] = π

(
E ′

ν

Eν

)
dE ′

ν. (8.40)

The δ-function gives the relation between the scattering angle and the energy
transfer:

1 − cos θ = (E − E ′)me

E E ′ . (8.41)

Since the average value for 〈E ′〉 ≈ Eν/2, we can estimate the average scattering
angle θ ≈ 2◦/

√
E with E measured in GeV. The scattered electron comes out at

very small forward angles and provides a unique signature for the experiments.
From (8.38) and (8.40) we obtain the final result

dσ

dE ′ = G2
Fme

2π

[
(gV + gA)2 + (gV − gA)2

(
E ′

ν

Eν

)2
]
. (8.42)

Had we used the amplitude (8.32) and retained the mass of the electron, the final
result would have been

dσ

dE ′ = G2
Fme

2π

[
(gV + εgA)2 + (gV − εgA)2

(
E ′

ν

Eν

)2

+ meν

E2
ν

(
g2

A − g2
V

)]
. (8.43)

The last term, which is proportional to the electron mass, is small, so it can be
neglected at accelerator energies. The variable ν = Eν − E ′

ν denotes the energy
transfer.
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Formula (8.43) is useful in describing all reactions shown in Fig. 8.2 that include
charged-current reactions. For instance the reaction

νµ + e− → µ− + νe (8.44)

reduces after substitution to

dσ

dE ′ = 2G2
Fme

π
. (8.45)

The same result holds for the semileptonic reaction

νµ + d → µ− + u, (8.46)

which we rewrite in terms of the inelasticity y = (E − E ′)/E and the square of the
center-of-mass energy, s = 2M Eν, as

dσν

dy
= G2

Fs

π
. (8.47)

For both of the reactions

ν̄µ + u → µ+ + d, (8.48)

νµ + ū → µ− + d̄ (8.49)

the differential cross section is

dσν̄

dy
= G2

Fs

π
(1 − y)2. (8.50)

We see that, when both vertices are left-handed or both are right-handed, then dσ/dy
is independent of y as in (8.47). On the other hand, when one vertex is left-handed
and the other right-handed, then dσ/dy is proportional to (1 − y)2 as in (8.50).

Neutral-current reactions have a mixed y dependence. As an illustrative example,
consider the neutral-current reaction

νµ + e− → νµ + e−, (8.51)

for which the cross section is

dσ

dy
= G2

Fme Eν

2π

[
(1 − 2 sin2θW)2 + 4 sin θW(1 − y)2

]
. (8.52)

This reaction has been studied in several experiments. When the existence of neutral
currents was still in doubt, a few events of this type were observed in the Gargamelle
experiment. In spite of many attempts, one could not attribute them to any other
origin. This evidence was gradually reinforced by information from semileptonic
neutral-current reactions until their existence was accepted. Today there are exper-
imental results from a few hundred events for reaction (8.51). The average slope
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from all the experiments is

σ

Eν
= (1.6 ± 0.4) × 10−42 cm2 GeV−1,

yielding a Weinberg angle given by

sin2θW = 0.222 ± 0.010.

Data for the other neutrino reactions are also available. In the gV versus gA plane
each of the above total cross sections limits the physical region to an elliptical band.

8.4 Weak effects in electron–positron annihilation

An interesting and very important reaction occurs in electron–positron collisions,

e+e− → µ+µ−,

which can be mediated by the exchange of a photon, as well as by the heavy boson Z0.
At low energies relative to the mass of the Z boson the photon diagram dominates.
On the other hand, at a center-of-mass energy close to the Z boson’s mass, the
gauge boson dominates and exhibits a resonance behavior. At intermediate energies
there is an interference term between electromagnetic and weak interactions, which
modifies the angular distribution.

The amplitude for the process has two diagrams producing two amplitudes:

M = Mγ + MZ;

Mγ = −e2

s
v̄(k+)γµu(k−) v̄(p+)γ µu(p−),

MZ = − g2

4 cos2 θW

1

q2 − M2
Z + iMZ�

× v̄(k+)γµ(gV + gAγ5)u(k−)v̄(p+)γ µ(g′
V + g′

Aγ5)u(p−). (8.53)

We consider energies high enough that one can ignore the masses of the electron
and muon. We also included the width of the Z particle in the propagator, which
will lead to a cross section with a Breit–Wigner formula. In field theory the width
is generated by summing the decays to all possible final states. For the couplings of
the Z boson to electrons we introduced general coupling constants gV and gA; their
dependence on the Weinberg angle follows from the Feynman rules. Similarly, g′

V

and g′
A are couplings to muons, which are equal to the couplings of electrons.
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At intermediate energies, such as
√

s = 30–50 GeV, the well-known electromag-
netic formula is modified by the presence of the interference term

dσ

d�
= α2

4s

[
(1 + cos2θ )

(
1 + ε(s)g2

V

) + 2 ε(s)g2
A cos θ

]
, (8.54)

with s the square of the center-of-mass energy and

ε(s) =
√

2Gs

4πα
. (8.55)

The new feature is the cos θ term, with the consequence that the differential cross
section is not symmetric in the forward–backward direction. The new term arises
from the neutral current but is not parity–violating. It has a new angular dependence
typical of the γ5 coupling. We define a forward–backward asymmetry

A(θ ) = dσ (θ ) − dσ (π − θ )

dσ (θ ) + dσ (π − θ )
= ε(s)

2 cos θ

1 + cos2θ
g2

A . (8.56)

The asymmetry was measured in many experiments and gave values for gA = − 1
2

consistent with the standard model.
At higher energies the interference term becomes larger. As the center-of-mass

energy approaches the mass

MZ = 91.188 ± 0.002 GeV/c2,

the weak term dominates and produces the cross section

dσ

d�
=

(
g2

8c2

)2
s(

s − M2
Z

)2 + M2
Z�2

[(
g2

V + g2
A

)2
(1 + cos2θ ) + 8g2

Vg2
A cos θ

]
,

(8.57)

where c = cos θW. The resonance was observed at CERN and was studied carefully
to give precise values for the mass and the width of the gauge boson quoted in this
chapter.

In addition to the muons, electron–positron collisions also produce qq̄ pairs,
which are analyzed with the same formulas. The values for g′

V and g′
A are now

replaced by couplings appropriate for quarks.

Problem for Chapter 8

1. Compute for each generation the decay width of the Z boson for decays to neutrinos,
charged leptons, and quark pairs separately. Then estimate the total decay width.
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Incorporating hadrons

9.1 The mixing matrix

The weak interaction for the leptons was introduced into the theory by arranging
the left-handed leptons (chirality −1) in three generations of doublets and the right-
handed charged leptons into three singlets:(

νe

e−

)
L

,

(
νµ

µ−

)
L

,

(
ντ

τ−

)
L

; e−
R , µ−

R , τ−
R . (9.1)

The similarities of the interactions of leptons to those of quarks suggest that one
should similarly introduce for the quarks left-handed doublets and right-handed
singlets. The situation for the quarks is different, since all of them are massive. For
this reason each quark field has a right-handed component. The fields are classified
as three doublets,

q1′
L =

(
u′

d′

)
L

, q2′
L =

(
c′

s′

)
L

, and q3′
L =

(
t′

b′

)
L

; (9.2)

and six right-handed singlets, u′
R, d′

R, c′
R, s′

R, t′R, and b′
R. The superscripts denote

three generations and the primes indicate that they are gauge quarks. The part of
the Lagrangian which contains the kinetic terms and the couplings of the quarks to
W±, Z0, and photons is written as follows:

L = q̄ ′
Liγ

µ

{
i∂µ + g

2
�τ �W µ + g′

2
Y Bµ

}
q ′

Li + q̄ ′
Riγ

µ

{
i∂µ + g′

2
Y Bµ

}
q ′

Ri . (9.3)

The operator Y denotes the weak hypercharge, which has been defined already,

Y = 2(Q − I3). (9.4)

At this stage it is not clear whether the fields u′, d′, . . . stand for the physical states
because Eq. (9.3) contains only kinetic and interaction terms. Physical fields are
eigenstates of the mass matrix which will be introduced below. This is the reason

78
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why the quark fields in Eq. (9.3) have a prime and we referred to them as gauge
eigenstates or gauge quarks.

Masses for the quarks are generated through quark–Higgs Yukawa couplings. A
Yukawa interaction invariant under SU(2) ⊗ U(1) gauge transformations is easily
constructed:

Lmass = hi j
(d)(ū

′
i , d̄ ′

i )L

(
φ+

φ0

)
d jR + hi j

(u)(ū
′
i , d̄ ′

i )

(−φ̄0

φ−

)
u jR + h.c., (9.5)

where i, j = 1, 2, 3 and the Higgs fields are the same fields as those introduced in
Chapters 5 and 7. The matrices hi j

(u) and hi j
(d) denote couplings of i and j quarks of

the up and down types, respectively. The symmetry is broken by giving a vacuum
expectation value to φ0:

φ =
(

φ+

φ0

) −→
breaking

φ = 1√
2

(
0

v + η

)
(9.6)

and

φc = −iτ2φ
∗ =

(−φ̄0

φ−

) −→
breaking

− 1√
2

(
v + η

0

)
, (9.7)

with η the field fluctuation around the minimum. Spontaneous breaking of the
symmetry generates the mass terms

Lmass = v√
2

(
ū′

Li h
(u)
i j u′

R j + d̄ ′
R j + d̄ ′

Li h
(d)
i j d ′

R j

)
+ h.c. (9.8)

The expressions

M (u)
i j = v√

2
h(u)

i j and M (d)
i j = v√

2
h(d)

i j (9.9)

occurring above are called the mass matrices. From the way they were intro-
duced, there is no reason for them to be either symmetric or Hermitian. In fact
the Lagrangian in (9.5) is manifestly gauge-invariant and the mass matrices are
to a certain extent arbitrary. The mass matrices are very important because they
determine the masses and the flavor mixing of the quarks.

The quark fields that have been investigated up to now are, as has already been
mentioned, non-physical gauge eigenstates. To find the physical or mass eigenstates,
we must transform the quark-mass matrices into diagonal form.

Any square matrix can be diagonalized by a bi-unitary transformation. Therefore
it is always possible to find four matrices UL,R and DL,R that diagonalize the mass
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matrices,

M(u) = U+
L M (u)UR =

⎛
⎝mu 0 0

0 mc 0
0 0 m t

⎞
⎠, (9.10)

M(u) = D+
L M (d) DR =

⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠. (9.11)

The mass eigenstates, to be denoted as unprimed fields, are related to the gauge
eigenstates by the transformations

uLi = (U+
L )i j u

′
L j , uRi = (U+

R )i j u
′
R j ,

(9.12)dLi = (D+
L )i j d

′
L j , dRi = (D+

R )i j d
′
R j .

In terms of the mass eigenstates the mass term is now diagonal. Therefore we can
substitute the physical fields everywhere in the Lagrangian and deduce the physical
couplings. The neutral couplings expressed in terms of physical quarks retain the
same form as they had with gauge quarks. The charge current after the substitution
becomes

j+
µ = ū′

Liγµd ′
Li = ūLiγµVi j dL j (9.13)

and the charged-current interaction is

Lcc = g√
2

(
j+
µ W −

µ + j−
µ W +

µ

)
, (9.14)

where V = U+
L DL and summation over repeated indices is understood. This matrix

is one of the most important quantities in the standard model, because it contains
information on all possible flavor-transitions and CP violation. It is called the flavor-
mixing matrix or the Cabibbo (1963)–Kobayashi–Maskawa (1973) (CKM) matrix.

By construction the flavor matrix is unitary, a property that will be used exten-
sively in the next section. The mixing matrix is derived directly from the mass
matrices, which shows that all information about it is included in the mass matri-
ces. A determination of the mass matrices from experimental data is impossible
because they contain 36 real parameters (9 complex numbers for each charge sector).
By contrast, there are only ten quantities that can be determined by experiment:
six quark masses and four independent mixing parameters. The fact that only four
parameters of the mixing matrix are relevant can be understood as follows: a unitary
N × N matrix may be expressed by N 2 real parameters. Among them N (N − 1)/2
can be chosen to be the rotation angles of an orthogonal matrix and the remaining
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N (N + 1)/2 taken as phase angles. Not all phases, however, are physical. Each
quark field has an arbitrary phase that can be used to eliminate a phase of the CKM
matrix, except for an overall phase. This means that one can arrange the phases of
the quark fields in such a way that they eliminate phases in Vi j of Eq. (9.14). An
exception to this rule is an overall phase that is lost when we square matrix elements
in order to produce probabilities. Thus N × N flavor mixing can be parametrized
by N (N − 1)/2 rotation angles and

N (N + 1)/2 − (2N − 1) = (N − 1)(N − 2)/2

phase angles. For three quark generations (N = 3) there remain three rotation
angles and one phase, which is responsible for CP violation. So in all there are four
parameters that describe the mixing matrix.

The unitarity of the mixing matrix that is required in gauge theories is a conse-
quence of the unitarity of the matrices UL and DL:

Vik(Vkj )
+ = Vik V ∗

jk = δi j . (9.15)

This relation expresses the orthogonality of rows and columns within the matrix.
As was shown above, the mixing matrix can be parametrized with four quan-

tities, but this does not determine the functional form of the matrix. The first
explicit parametrization was given by Kobayashi and Maskawa. They used Euler-
type angles for three-dimensional rotations in the flavor space and one phase:

VKM =
⎛
⎝ c1 −s1c3 −s1s3

s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞
⎠, (9.16)

where the abbreviations si = sin θi and ci = cos θi are used. The parameters are
chosen so that, for θ2 = θ3 = δ = 0, the three-dimensional mixing matrix is reduced
to the corresponding one for just two doublets. The angles θi may without loss of
generality be chosen to lie in the first quadrant, 0 ≤ θi < π/2. The phase angle δ

may take any value within the interval [−π, π ].
This parametrization is just one possibility. Another one that is very customary

was given by Maiani. It is quite suitable for investigations of B-meson decays:

VM =
⎛
⎝ cβcθ cβsθ sβ

−sβsγ cθeiδ′ − sθcγ cγ cθ − sβsγ sθeiδ′
sγ cβeiδ′

−sβcγ cθ + sγ sθe−iδ′ −sβsθcγ − sγ cθe−iδ′
cβcγ

⎞
⎠. (9.17)

The quantity sγ is mainly the coupling for b → c and sβ is mainly for b → u.
Ranges for angles and the phase can be chosen as in the Kobayashi–Maskawa
parametrization.
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A further parametrization is the one by Wolfenstein. In this case the elements
are expanded in terms of a small parameter λ = sin θc exploiting the experimental
information about the smallness of the mixing angles. The structure of the matrix
is determined by the unitary conditions of the mixing matrix:

VW =

⎛
⎜⎝

1 − 1
2λ

2 λ Aλ3(ρ − iη + iη 1
2λ

2)

−λ 1 − 1
2λ

2 − iηA2λ4 Aλ2(1 + iηλ2)

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎟⎠. (9.18)

In contrast to the parametrizations discussed so far, the one by Wolfenstein is only
an approximation, being an expansion in a small parameter. The unitarity condition
is satisfied to a given order in λ. The real parts of the elements are correct to the
order λ3 and the imaginary parts to order λ5. The parameters A, η, and ρ are of
order unity or even smaller:

λ = 0.221 ± 0.002, A = 1.0 ± 0.1,
√

ρ2 + η2 = 0.46 ± 0.23. (9.19)

Magnitudes for elements of the mixing matrix are determined directly from ex-
periments. They in turn are translated into values for the rotation angles. We will
review the experiments and the corresponding values. It is much more difficult to
obtain values for δ, since it is related to CP-violating quantities. We shall return to
its determination in Chapters 15 and 16.

9.2 Flavor-changing neutral couplings (FCNCs)

The structure of the mixing matrix has another important consequence. The neutral
couplings of the theory preserve flavor to a large degree of accuracy. The suppression
of flavor-changing neutral couplings is required by many experimental results. For
instance, the decay KL → µ+µ− is highly suppressed. The branching ratio is

Br(KL → µ+µ−) = (7.2 ± 0.2) × 10−9.

The D0D̄0 mixing has not been observed at the 10−3 level. These properties and
others are incorporated into the theory by the construction described in Section 9.1.
In fact, FCNCs are absent at the tree level. The proof of this follows from the
structure of neutral currents. We can begin again with the Lagrangian in Eq. (8.10)
and substitute the ψs with quark fields. The couplings of the quarks to the Z and γ

are

Lnc = −e
3∑

i=1

q̄ i Qγ µqi Aµ + g

c

3∑
l=1

{
q̄ iτ3γ

µqi − s2q̄ iQγ µqi
}

Zµ. (9.20)
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Table 9.1. Couplings of quarks and leptons to Z0

States gV gA

Up quarks 1
2 − 4

3 sin2θW
1
2

Down quarks − 1
2 + 2

3 sin2θW − 1
2

Neutrinos 1
2

1
2

Charged leptons − 1
2 + 2 sin2θW − 1

2

W− W+

di V ∗
ji uj dkVkj

Figure 9.1. Vertices appearing in box diagrams.

At first sight the quarks occurring in (9.20) should have a prime, since they are still
gauge quarks, but Eq. (9.20) is diagonal in the quark fields and the unitary matrices
UL,R and VL,R will disappear when the quark fields are replaced by physical states.
Thus the omission of the prime is justified.

Next we introduce a convenient notation and write the neutral-current couplings
in the form

Lnc = g

2
√

2 c
q̄iγ µ(gV − gAγ5)qiZµ, (9.21)

with qi representing general states of up and down quarks or leptons. The couplings
are given in Table 9.1, where we also include the neutral couplings to neutrinos and
leptons. In this way neutral couplings are diagonal at the tree level.

The suppression that has been introduced so far is not sufficient. Flavor-changing
effects will now appear through higher-order corrections that involve charged cur-
rents. Higher-order effects are O(Gα) and this suppression is not sufficient. How-
ever, the method introduced so far suppresses FCNC to the level O(Gαm2

q/M2
W),

where mq is the mass of the quark in the intermediate state. We can see this by
considering the upper line of the box diagram shown in Fig. 9.1. The VKM matrix
elements which occur in this line include a mass-independent term,

V ∗
i j Vk j = Vkj V

+
j i = δki , (9.22)
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and a mass-dependent term

V ∗
i j Vk j

mq j

MW
= Vkj V

+
j i

mq j

MW
. (9.23)

The leading term vanishes by virtue of the unitarity of the mixing matrix and
the next term is proportional to the mass of the intermediate quark. This is the
famous Glashow–Iliopoulos–Maiani cancellation scheme (Glashow et al., 1970).
Processes involving quarks in intermediate states, which are light relative to MW,
give a very small contribution. The mechanism has important consequences for
box and penguin diagrams. These diagrams occur for K0–K̄0 mixing and the εK

parameter.
The above requirements for flavor conservation in neutral couplings determines

to a large extent the representation assignment of the fermion fields. There is a
general theorem, which states that, for a gauge theory based on the group SU(2) ×
U(1), the bounds of FCNC are satisfied if we classify (Paschos, 1977; Glashow and
Weinberg, 1977) the quarks into representations of the group in such a way that
quarks of the same charge and the same helicity have the same T (total weak isospin)
and T3 (third component of isospin). For quarks of only two charges (2/3, −1/3)
it implies that there must be equal numbers of up and down quarks.

We illustrate the implications of the result with some examples.

Example 1 Models with three quarks are not allowed, since they will produce
strangeness-changing neutral currents. To solve this problem Glashow, Iliopoulos,
and Maiani (Glashow et al., 1970) introduced a charmed quark. The matrix M is

M =
(

cos θ sin θ

−sin θ cos θ

)
(9.24)

and the charged current

J+
µ = (

ū c̄ d̄ s̄
)(0 M

0 0

)⎛
⎜⎜⎝

u
c
d
s

⎞
⎟⎟⎠ . (9.25)

Example 2 Models with five quarks, u, c, d, s, and b, produce flavor-changing
couplings. To eliminate these couplings the top quark was introduced. The charged-
current interactions are now described by Eqs. (9.13) and (9.14).

9.3 The elements of the mixing matrix

There are many processes that determine values for the elements of the mixing
matrix. They involve products of the weak couplings times hadronic matrix
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elements. Estimates of the latter require methods of strong interactions as they
apply to low or high energies. For the sake of brevity, the description of hadronic
methods given here is short. The aim is to give a general impression of the
methods and arrive quickly at the relevant numerical results. The interested
student will find more details in the references or in the following chapters,
especially Chapters 11–14.

9.3.1 Determination of Vud

For the weak interaction we introduced in Chapter 2 the Fermi coupling constant
GF, which is related to the SU(2) coupling by Eq. (8.14). It was also mentioned there
that its numerical value is determined by the muon lifetime. To obtain a precise value
for GF it is necessary to include radiative corrections from the exchange of photons
and gauge bosons, as well as the emission of photons. Such diagrams in general
introduce infinities, which must be treated with special care. The electroweak theory
is renormalizable and the infinities can be absorbed into a few coupling constants.
In this book we do not cover the method of renormalization, but refer to an article
and a book (Sirlin, 1978; Bardin and Passarino, 1999). The precise value for the
Fermi coupling constant is

Gµ = (1.166 32 ± 0.000 04) · 10−5 GeV−2, (9.26)

with the subscript indicating that it is obtained from the muon lifetime.
The method which was used to construct the hadronic Lagrangian requires that

the charged currents for quarks have the same coupling constant multiplied by the
quark mixing matrix, as is seen in Eq. (9.14). This property is called universality.
Thus the Vud coupling is given by the ratio of the coupling constant measured in
β-decay, to be denoted by GV , to the muon decay constant:

Vud = GV

Gµ
. (9.27)

The most accurate experiments for β-decay, so far, were done in nuclei and involve
0+ → 0+ transitions, also known as superallowed transitions. Their measurements
and analyses have a long history. Precise determination of GV must include radiative
and in addition nuclear corrections. It is beyond the scope of this chapter to describe
the corrections in detail. The result of the analyses is a very precise value,

Vud = 0.9740 ± 0.0003 ± 0.0015, (9.28)

where the first error is statistical and the second represents the theoretical uncer-
tainty.
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There are two other elementary transitions that are also relevant. The first is pion
β-decay,

π+ → π0 + e+ + ν.

The branching ratio for this decay has been measured to be

Br
(
π+ → π0 + e+ + ν

) = (1.025 ± 0.034) × 10−8, (9.29)

which has a 3% error and is not as accurate as ratios from nuclear β-decays. The
determination of Vud from this decay has no nuclear corrections but carries a larger
statistical error,

Vud = 0.965 ± 0.016. (9.30)

The second elementary transition is the decay of neutrons: n → p + e− + ν̄. This
decay depends both on the vector current and on the axial current, in contrast
to the previous two cases, to which only the vector current contributes. Precise
measurements of the neutron lifetime,

τn = 888.5 ± 0.8 s, (9.31)

give the value

Vud = 0.9801 ± 0.0030. (9.32)

We note that the three determinations are consistent with each other. The most
accurate one from the superallowed nuclear transitions will be used later on.

9.3.2 Determination of Vus

There are several ways to determine Vus, among which the Kl3 decays are the
cleanest. Hyperon decays give values that are almost as accurate. For the K-meson
decays we use the reactions

K0
L → π−e+νe and K+ → π0e+νe.

The transition is from a pseudoscalar to another pseudoscalar particle and only the
vector current contributes. Its matrix element can be written as

〈π (p′)|Jµ|K (p)〉 = C
[(

pµ + p′
µ

)
f+(q2) + (

pµ − p′
µ

)
f−(q2)

]
, (9.33)

where q2 = (p − p′)2, C is an isospin Clebsch–Gordan coefficient, and f±(q2)
are the form factors. In the SU(3)-symmetry limit at q2 = 0 the form factor
is known: f+(0) = 1. Corrections to this value were computed to account for
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symmetry-breaking effects. Then the width

� = G2
µM5

K

192π3
C2| f+(0)|2|Vus|2 (9.34)

determines Vus. The result including all corrections is

Vus = 0.220 ± 0.002. (9.35)

The analysis of hyperon decays studies the decays of many hyperons, for which
a χ2 fit is performed. They involve form factors of both vector and axial currents,
which are assumed to satisfy the SU(3) symmetry. The general fit is an impressive
success of the SU(3) symmetry since there is a single value Vus consistent with all
the hyperon data and the above value. It carries a slightly larger error arising from
the theoretical uncertainties.

9.3.3 Determination of |Vcd| and |Vcs|
One way to obtain the couplings |Vcd| and |Vcs| is to study the production of charmed
particles in deep inelastic neutrino–nucleon scattering. The particles produced
decay semileptonically and appear as events with opposite-sign dimuons. The
elementary interactions are

ν + d → µ− + c

↘ µ+ + ν + s, (9.36)

ν̄ + d̄ → µ+ + c̄

↘ µ− + ν̄ + s̄. (9.37)

The semileptonic decays involve a mixture of charmed particles whose branching
ratio is taken as Be = 7.1 ± 1.3%.

Thus it remains to compute the production rates for charm quarks, which are
discussed in Chapter 11. Here we mention that the original reactions are computed
in the parton model as follows

σ (νN → cX) = G2 M E

π

[
rd(U + D)|Vcd|2 + 2rsS|Vcs|2

]
, (9.38)

σ (ν̄N → c̄X) = G2 M E

π

[
rd̄(Ū + D̄)|Vcd|2 + 2rs̄ S̄|Vcs|2

]
. (9.39)

The r -coefficients measure the suppressions in the production of charmed quarks
due to phase-space restrictions. Estimates for the experiments at energies Eν =
220 GeV and Eν̄ = 150 GeV gave the values

rd (220 GeV) = 0.91, rs (220 GeV) = 0.72,
(9.40)

rd̄ (150 GeV) = 0.70, rs̄ (150 GeV) = 0.66.
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The capital letters U, D, . . . denote integrals of the quark distribution functions in
the proton. They are extracted from data on high-energy neutrino–nucleon scatter-
ing.

In Eqs. (9.38) and (9.39) we have two equations with two unknowns and thus
we can solve for Vcd and Vcs. The results are

|Vcd| = 0.22 ± 0.03, (9.41)

|Vcs| ≥ 0.75. (9.42)

Another source of information on |Vcs| is the semileptonic D-meson decays.
They are proportional to f D→K

+ (q2)|Vcs| and require estimates of the form factor
f D→K
+ (q2).

The values for |Vcs| obtained by these methods have large errors due to theoretical
uncertainties. These values have been superseded by measurements of W decays to
identified charmed hadrons and the subsequent decays. W bosons decay to the pairs
(uq̄) and (cq̄) with q̄ = d̄, s̄, b̄ antiquarks. The sum of the squares of the couplings
for the six decays should add up to the value of 2. Since five of the six couplings
are well measured or they are very small, LEP measurements can be converted into
a precise value of

|Vcs| = 0.996 ± 0.016.

Without the use of unitarity the central value from all measurements is consistent,
with 0.97 ± 0.10. With these values the upper-left-hand corner of the CKM matrix
is known to a high degree of accuracy.

9.3.4 B-Meson decays and the determination of Vcb and Vub

The relatively long-lived B mesons made possible the determination of two more
elements in the mixing matrix, Vcb and Vub. The decays of the B mesons proceed in
the spectator model with the decay of b quarks into c and u quarks. The total width
is the incoherent sum of the contributions from the above two decays, corrected, of
course, for the exchange of gluons as described by QCD. The method accounts for
the semileptonic and non-leptonic decays. Both decays were used in determining
Vcb, while the semileptonic spectrum is used for constraining the element Vub. In
these estimates theoretical uncertainties enter the calculation and we shall discuss
them in some detail.

The total width is given by

�tot = �0(r |Vub|2 + s|Vcb|2), (9.43)
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where r and s are products of phase space, color factors, and QCD corrections, and

�0 = G2m5
b

192π3
. (9.44)

There are theoretical uncertainties for r, s, and �0. For instance, the factor �0 is
sensitive to the b-quark mass:

1

�0
=

{
0.93 × 10−14 s for mb = 5.00 GeV,

1.22 × 10−14 s for mb = 4.75 GeV.
(9.45)

The spectator and parton models were used for analyzing, along these lines, the
lepton spectra of semileptonic decays. A consistent analysis determines two more
matrix elements, Vcb and Vub, with ≈20% error.

An alternative method considers exclusive B decays in the heavy-quark effective
theory (HQET). This is a systematic expansion in inverse powers of the heavy-quark
mass. When the mass of the heavy quark is taken to infinity, the decays B → D∗�ν̄
and B → D�ν become equal. Eperimentally the two branching ratios are different,
so corrections of O(1/mq) must be included. Consequently, specific final states are
selected to determine

|Vcb| = 0.041 ± 0.002 (9.46)

and

|Vub| = 0.004 ± 0.001. (9.47)

Some details for the calculations are included in Section 14.5. Finally, the discovery
of the top quark was achieved by observing semileptonic decays that provide an
approximate estimate of |Vtb|.

With the B-meson decays we close the discussion concerning the elements of
the CKM matrix, of which six elements are directly determined by experiments.
Values for the remaining three elements, involving couplings of the top quark, are
deduced from the unitarity of the matrix.

9.3.5 Summary and unitarity

In this chapter we were able to derive accurate values for the matrix elements from
tree-level constraints. We emphasize that we can determine only their magnitudes,
not their relative phases. In summary,

|Vud| = 0.9740 ± 0.0020, |Vus| = 0.220 ± 0.002,

|Vcd| = 0.22 ± 0.03, |Vcs| = 0.97 ± 0.10, (9.48)

|Vcb| = 0.041 ± 0.002, |Vub| = 0.004 ± 0.001.
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The unitarity of the mixing matrix restricts the matrix elements even further. The
tree constraints together with unitarity give the following ranges reported by the
Particle Data Group (Gilman et al., 2002):

|Vi j | =
⎛
⎝0.9741–0.9756 0.219–0.226 0.0025–0.0048

0.219–0.226 0.9732–0.9748 0.0038–0.004
0.004–0.014 0.037–0.044 0.9990–0.9993

⎞
⎠. (9.49)

The small values for many of the elements justify the small-angle approximation
and the Wolfenstein parametrization described in Section 9.1. Similarly, one obtains
values for the other parametrizations as was done in Eq. (9.19). The phase δ is
still undetermined. Its determination requires measurements of the CP parameters,
which we postpone until Chapters 15 and 16.

We are now in a position to test the unitarity of the mixing matrix. There are two
types of constraints.

(i) The sum of the squares of absolute values of the elements for each row or each column
must sum up to unity. This can be tested for the first row,

|Vud|2 + |Vus|2 + |Vub|2 = 0.9970 ± 0.0036, (9.50)

which is consistent with unity. The radiative corrections for the Vud element are very
crucial because without them the right-hand side in (9.50) would be greater than unity,
in fact

∑
i |Vui |2 = 1.020 ± 0.004.

(ii) A convenient and pictorial way to summarize the content of the CKM matrix is in terms
of unitarity triangles. Consider the entries of each row or column of the matrix as the
components of a vector. Then the unitarity condition applied to any two columns is the
dot product of one column with the complex conjugate of another column. For the first
and third columns the condition yields

VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0. (9.51)

The unitarity triangle is a geometrical representation of this equation in the complex
plane. Each term in the equation is proportional to Aλ3 and, to leading order,

VcdV ∗
cb ≈ −Aλ3, VudV ∗

ub ≈ Aλ3(ρ + iη), and VtdV ∗
tb ≈ Aλ3(1 − ρ − iη).

(9.52)

We can choose to orient the triangle so that Vcd V ∗
cb lies on the x-axis and scale out the

common factor Aλ3 which is of order 1%. Now the coordinates for the vertices are
shown in Fig. 9.2. The angles α, β, and γ of the triangle are also referred to as φ2, φ1,
and φ3, respectively. It is evident from the construction of the triangle that β and γ are
the phases of the elements Vtd and Vub, respectively:

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ. (9.53)
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Figure 9.2. The unitarity triangle.

Once Aλ3 is factored out, the triangle depends on ρ and η. Let us select the x-axis to be
ρ and the y-axis η. The shape of the triangle is now determined by three measurements.
The first constraint comes from the magnitude of Vub which determines a ring centered
at the origin. The CP parameter εK determines a second region. Finally, the mass
difference of the Bd mesons defines another ring; this time its center is at ρ = 1 (see
Eqs. (15.53), (16.26) and (16.27)). The three regions are shown in Fig. 9.2, where their
intersection defines the apex of the triangle. All additional measurements that depend
on parameters of the triangle must reproduce the unitarity triangle (see Section 16.5).

We have mentioned already that CP violation is attributed to the phase in the CKM
matrix. Quantitative predictions for CP asymmetries always contain

s1s2 s3 sin δ or sβsγ sθ sin δ′ (9.54)

as a multiplicative factor. For three generations of quarks there is a rephasing-
invariant measure of CP violation. In terms of the elements, it is given by

Jiα ≡ Im
{

Vjβ Vkγ (Vjγ Vkβ)∗
}
, (9.55)

where i , j , k and α, β, γ are cyclic permutations of 1, 2, 3, i.e. once we give
numerical values to i and α, the other indices are determined (Jarlskog, 1985).
There are nine such invariants, which are all equal to each other. Their explicit
form in the Maiani parametrization is

Jiα ≈ βγ sθ sin δ′. (9.56)

For the central values of the angles

Jiα ≈ 2.5 × 10−4sθ sin δ′. (9.57)
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The smallness of this quantity implies that CP parameters will in general be small.
There are also exceptions to this rule, which happen when the CP-violating quantity,
which is proportional to Jiα, is divided by another small quantity. It is evident from
this discussion that the CP asymmetries manifest themselves in two ways:

(i) processes in which the rates are large have small asymmetries; and
(ii) large asymmetries occur for observables when the branching ratios are small.

Both situations appear in K- and B-meson decays, for which CP asymmetries have
been observed.

Beyond the estimates of CKM elements discussed in this chapter, there are
additional limits from observations related to loop diagrams. The theoretical anal-
yses are now more complicated and involve additional theoretical assumptions.
The advantage, however, is that they investigate the quantum nature of the theory
and lead to a consistent picture. In fact, there are additional checks for the angles
(CP phases) of the unitarity triangle. We shall cover several of these exciting topics
in later chapters of the book.
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10

Deep inelastic scattering

10.1 Kinematics for deep inelastic scattering

The processes that we are studying in the next few sections are shown schematically
in Fig. 10.1. An initial neutrino with energy E hits a proton, producing a final state
of a muon with energy E′ and an undetected final hadronic state.

The lepton vertex is well known. All the interesting structure is included in the
hadronic vertex. The kinematics are shown in the diagram and they involve

kµ, the four-vector of the neutrino,
k ′
µ, the four-vector of the muon,

q = k − k ′, the four-momentum transferred from leptons to hadrons,
Pµ, the four-momentum of the target nucleon,
ν = pq/M , energy transfer in the laboratory frame,
θ , the laboratory angle of the muon produced relative to the incident neutrino, and
Q2 = −q2 = −m2

µ+ 2E�k ′ (1 − cos θ ) ≈ 4E E ′ sin2 θ/2, with k ′ = √
E ′2 − m2

µ .

The above definitions hold also for electroproduction, when the initial neutrino is
replaced by an electron and the exchange particle is the photon. The discussion of
this and the following section is restricted to neutrino reactions. The cross section
for such a process in the rest frame of the proton is given by

dσ = 1

(2E)(2M)

∑∫
n
|M|2(2π )4δ4(k + p − k ′ − pn)

d3k ′

2E ′(2π )3
, (10.1)

where

pµ
n =

n∑
i=1

pµ

i ,

with the summation over all final particle configurations, each of which contains n
particles with momenta pi and i = 1, . . ., n. The integration over the phase space

95
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Figure 10.1. Inelastic neutrino–nucleon scattering, together with the coordinate
system used in decomposing the leptonic current.

of final-state particles and the summation over the configurations is given by

∑∫
n
. . . =

∑
n

∫ n∏
i=1

[
d3 pi

2Ei (2π )3

]
. . .

Later on we shall specify the final state to be a single quark, with the product
reduced to a single phase-space factor.

The matrix element is

M = G√
2

ū(k ′)γµ(1 − γ5)u(k)〈pn|Jµ|p〉. (10.2)

We write the leptonic current as

j lept
µ = ū(k ′)γµ(1 − γ5)u(k). (10.3)

Neglecting the muon mass, the current is evaluated by multiplying it by a simple
factor (Bjorken and Paschos, 1970):

j lept
µ =

∑
s,s ′

ū(k ′, s ′)γµ(1 − γ5)u(k, s)
ū(k, s)γ0(1 − γ5)u(k ′, s ′)
ū(k, s)γ0(1 − γ5)u(k ′, s ′)

. (10.4)

The factor of unity is introduced in order to change the numerator into a trace;
the summation over spins does not change the lepton current because (1 − γ5) is a
chirality-projection operator, so the extra states introduced by

∑
s,s ′ contribute zero:

j lept
µ = 2 Tr

[
γµ(1 − γ5)k/ γ0 k ′/

]
{2 Tr[γ0(1 − γ5)k ′/ γ0 k/]}1/2

= 8
(
kµE ′ + k ′

µE − gµo k · k ′ + iεµoαβkαk ′β)
4
√

E E ′ cos θ/2
. (10.5)
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Similarly, we calculate the square of the denominator, which produces a trace.
Using current conservation, we can eliminate one of the components in jµ and

expand the current in terms of three orthonormal polarization vectors whose spatial
components lie along the axes shown in Fig. 10.1; the z-axis lies along q. This
decomposition simplifies considerably in the high-energy limit ν � 2M ≈ 2 GeV;
Q2 � ν2, which is all we consider in this chapter. An alternative way would be
to square the leptonic current and compute the leptonic tensor. The method is
straightforward and the interested student can use it in order to reproduce some of
the formulas in Sections 10.2 and 10.3. Here we find the method convenient for
introducing helicity cross sections.

The three polarization vectors below correspond to the angular-momentum state
|J = 1, m〉 with helicities m = 0, 1, and −1, respectively:

εS
µ = 1[

Q2
]1/2 (qz, 0, 0, q0) ≈ ν[

Q2
]1/2

(
1 + Q2

2ν2
, 0, 0, 1

)
,

εR
µ = 1√

2
(0, 1, i, 0), (10.6)

εL
µ = 1√

2
(0, 1, −i, 0).

They satisfy the conditions ε2
S = +1, |εL;R|2 = −1, and εS,L,R · q = 0. In the high-

energy approximation the current, evaluated in the laboratory frame, becomes

j

µ ≈ 4

(E E ′Q2)1/2

ν

[
εS
µ +

(
E ′

2E

)1
2

εR
µ +

(
E

2E ′

)1
2

εL
µ

]
. (10.7)

The only change in j lept
µ on going over to antineutrino-induced processes is the

interchange R ↔ L.
The integration over the phase space of the muon can be carried out,

d3k ′

2E ′(2π )3
= E ′ dE ′ d�

2(2π )3
.

In addition, we can transform to an invariant phase-space element,

dσ

dQ2 dν
= π

E E ′
dσ

d� dE ′ ,

arriving at

dσ

dQ2 dν
= G2

2π2

E ′

E

Q2

ν

(
1

(2ν)(2M)

∑∫
n
|〈n| j̃µ Jµ|p〉|2(2π )4δ4(pn − p − q)

)
.

(10.8)
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Here

j̃ lept
µ = εS

µ +
(

E ′

2E

)1
2

εR
µ +

(
E

2E ′

)1
2

εL
µ.

It is evident now that the amplitude 〈n| j̃µ Jµ|p〉 is the sum of three helicity am-
plitudes: scalar (AS), right-handed (AR), and left-handed (AL). The cross section
is the sum of three helicity cross sections and three interference terms. When we
average over the azimuthal angles of the hadrons produced, the three interference
terms average to zero, as indicated by the following argument.

Let � be a fixed set of final-state hadron momenta that are measured. Let �′ = R�

be the set of momenta obtained by rigid rotation of � about �q (the z-axis) by the
angle φ. We kept the neutrino and muon momenta fixed and rotated the hadronic
system. This is equivalent to keeping the hadrons fixed and rotating the neutrino–
muon plane in the opposite direction. Under this rotation the only change in the
cross section is to replace j̃ lept

µ as follows:

j̃ lept
µ = εS

µ +
√

E ′

2E
εR
µeiφ +

√
E

2E ′ εL
µe−iφ. (10.9)

The rotation is equivalent to a rotation of the two polarization vectors �εR,L around the
z-axis. �εS, which is parallel to �q, does not change. Accordingly, only the interference
terms 2
(AS A∗

Reiφ), 2
(AS A∗
Le−iφ), and 2
(AR A∗

Le2iφ) change. They produce
terms linear in cos(φ) and sin(φ). By averaging over the azimuthal orientations
of the final hardons, i.e. integrating over φ from 0 to 2π , the interference terms
are made to vanish. Should one wish to isolate the interference terms, then it is
necessary to construct appropriate moments over the angle φ.

To sum up, � denotes a set of hadronic momenta in the final state, whose angles
relative to each other are kept fixed; the rigid rotation around �q has been averaged,
i.e. integrated out. In this manner only helicity cross sections survive.

We define the helicity cross sections for absorption of the “virtual” W nucleon
into final hadronic states by

σ (λ)(ν, Q2) = 1

(2ν)(2M)

∫
|〈n|ελ

µ · Jµ(0)|p〉|2(2π )4δ(4)(p′ − p − q)
d3 p′

2E p′(2π )3
.

(10.10)

Here we have assumed that there is only one particle in the final hadronic state.
When there are many particles produced, the phase space is replaced by a product
of phase-space factors. These cross sections depend only on ν and Q2. The final
formula reads

dσ

dQ2 dν
= G2

4π2

E ′

E

Q2

ν

(
2σS + E ′

E
σR + E

E ′ σL

)
. (10.11)
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The absorption cross sections are not uniquely defined; for q2 = 0 the flux factor
for the exchanged particle is 2ν. This is a convention and sometimes the factor
has been replaced by 2ν[1 − Q2/(2Mν)]. To avoid the zeros which appear for
elastic scattering, we chose the overall factor in the helicity cross sections F = 4Mν

(Eq. (10.10))
On introducing the structure function

W2(ν, Q2) = 1

2π

Q2

ν
(2σS + σR + σL) (10.12)

and the ratios

(L) = σL

2σS + σR + σL
≤ 1,

(R) = σR

2σS + σR + σL
≤ 1, (10.13)

it follows that

dσ

dQ2 dν
= G2

2π

E ′

E
W2(ν, Q2)

[
1 + ν

E ′ (L) − ν

E
(R)

]
. (10.14)

The antineutrino–nucleon cross section is obtained from (10.14) by the interchange
L ↔ R. We shall find these cross sections useful in several applications later on.

An alternative notation introduces the structure functions W1(ν, Q2), W2(ν, Q2),
and W3(ν, Q2) defined in the next section. They are related to the absorption cross
sections through (10.12) and the following:

W1(ν, Q2) = W2(ν, Q2)

(
1 + ν2

Q2

)
[(L) + (R)], (10.15)

W3(ν, Q2) = W2(ν, Q2)
2M

Q

(
1 + ν2

Q2

)1
2

[(L) − (R)]. (10.16)

In the limit ν2/Q2 � 1 they reduce to

W1(ν, Q2) = νW2(ν, Q2)
ν

Q2
[(L) + (R)], (10.17)

νW3(ν, Q2) = νW2(ν, Q2)
2Mν

Q2
[(L) − (R)]. (10.18)

10.2 Hadronic structure functions

In the previous section we introduced structure functions that describe the hadronic
vertex. Here we describe their connection with products of currents and their com-
mutators. The formalism of this section is convenient in discussing sum rules or the
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light-cone behavior of the product of weak currents. We define the hadronic tensor
as

Wµν = (2π )3
∑

Sn

∑∫
n
〈P|J+

µ (0)|Pn〉〈Pn|Jν(0)|P〉δ(4)(pn − p − q). (10.19)

Here
∑

n

∫
sums over final states, and

∑
Sn

averages over the spins of the target
nucleon. By exponentiating the delta function and using translation invariance,

Jµ(x) = eiPx Jµ(0)e−iPx , (10.20)

one obtains

Wµν = 1

2π

∑
Sn

∫
d4x eiqx〈P|J+

µ (x)Jν(0)|P〉, (10.21)

where the unitary relation
∑

n

∫ |pn〉〈pn| ≡ 1 was used. We may change Wµν into a
commutator,

Wµν = 1

2π

∑
Sn

∫
d4x eiqx〈P|[J+

µ (x), Jν(0)
]|P〉, (10.22)

since the second term of the commutator,

1

2π

∫
d4x eiqx〈P|Jν(0)J+

µ (x)|P〉, (10.23)

vanishes. This is proven by reversing the steps and showing that (10.22) reduces to∑∫
n
〈P|Jν(0)|pn〉〈pn|J+

µ (0)|P〉δ(4)(pn − P + q) = 0, (10.24)

since in the physical process q0 = En − Mproton ≥ 0, but in Eq. (10.24) the δ-
function argument implies

q0 = P0 − p0
n = M − En < 0.

By virtue of Lorentz and gauge invariance, Wµν can be written in terms of
six scalar functions, which are better known as structure functions. In neutrino
scattering, however, only three contribute to the inelastic cross section because
the lepton current is conserved (for mµ = 0). The tensor relevant to deep inelastic
scattering is

Wµν = −gµνW1 + Pµ Pν

M2
W2 − i

εµναβ Pαqβ

2M2
W3, (10.25)

where the structure functions W1(Q2, ν) and W2(Q2, ν) arise from the product
of vector ⊗ vector currents and axial ⊗ axial currents, whereas W3(Q2, ν) is the
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interference of an axial current ⊗ a vector current. The additional three terms are

qµqν

M2
W4 + Pµqν + Pνqµ

M2
W5 + i

Pµqν − Pνqµ

M2
W6.

Their contributions to the matrix elements and the cross section are proportional to
lepton masses and will be neglected.

10.3 Scaling and the total cross section

The structure functions are functions of ν and Q2, but at high energies both variables
are very large. It was suggested by Bjorken (1969) that, in the limit ν → ∞, Q2 →
∞, with the ratio

x = Q2

2Mν
= finite, (10.26)

the structure functions become functions of x only, i.e.

νW2,3(ν, Q2) → F2,3(x), (10.27)

MW1(ν, Q2) → F1(x). (10.28)

This was established in experiments on deep inelastic electron–proton scattering,
for which the limit is reached at relatively low values of Q2, 2Mν ≈ (1 GeV)2.
Inelastic electron–proton scattering is closely related to neutrino reactions and we
mention it later on in this section.

In the scaling limit the relations (10.18) and (10.19) reduce to

2x F1(x) = F2(x)[(L) + (R)],
x F3(x) = F2(x)[(L) − (R)].

With this notation we can rewrite the cross section in a convenient form. For vari-
ables we use x = Q2/(2Mν) and the inelasticity y = ν/E , then we substitute the
scaling functions into the cross section, Eq. (10.14), and change the phase-space
variables to arrive at

dσ

dx dy
= G2 M E

π

[
xy2 F1(x) + (1 − y)F2(x) + xy

(
1 − 1

2
y

)
F3(x)

]
,

where the structure functions depend on the process under consideration. In order
to obtain the corresponding cross section for an antineutrino-induced reaction, one
should change the sign of the F3 term and replace the structure functions with the
charge conjugate.

The main difference between electroproduction and neutrino-induced reactions
is the nature of the particle exchanged. In electroproduction the particle exchanged
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is the photon, which has only a vector coupling

j lept
µ = ū(k ′)γµu(k). (10.29)

The vector–axial interference term is now absent and the cross sections σR and σL

are equal. Following steps similar to those of the previous section, one finds

dσ (ep)

dQ2 dν
= E ′

E

4πα2

Q4

[
W e

2 cos2

(
θ

2

)
+ 2W e

1 sin2

(
θ

2

)]
, (10.30)

where W e
1 and W e

2 are electroproduction structure functions analogous to those
introduced in Eq. (10.25). In the cross section we kept the scattering angle θ .
However, we can substitute it in terms of Q2 and the energies E and E′ and arrive at
a formula analogous to (10.14). The superscript e indicates their electromagnetic
origin. Numerous experiments have shown that the limits

νW e
2 (ν, Q2) → Fe

2 (x), (10.31)

MW e
1 (ν, Q2) → Fe

1 (x) (10.32)

are reached for relatively low values of ν and Q2. This is shown in Fig. 10.2, where
the structure function F2(x) is plotted for a range of Q2. Deviations from the scaling
law have also been established, and we return to this topic in Chapter 11. We show
next that scaling predicts σtot ∼ Eν : namely a linear rise with neutrino energy.

From (10.14) and scale invariance (10.27) we find the averaged cross section
over protons and neutrons

dσ

dν
= G2

2π

E ′

E

∫ 2Mν

∼0

dQ2

ν
νW2(ν, Q2)

(
1 + ν

E ′ (L) − ν

E
(R)

)

= G2 M

π

E ′

E

(
1 + ν

E ′ 〈L〉 − ν

E
〈R〉

) ∫ 1

0
dx

1

2

[
F2(x)p + F2(x)n

]
, (10.33)

where 〈R〉 and 〈L〉 imply that the appropriate averages of x have been taken. Then
the total cross section is

σtot = G2 M E

π

∫ 1

0
dx

1

2

[
F2(x)p + F2(x)n

]{1

2
+ 〈L〉

2
− 〈R〉

6

}
. (10.34)

The factor in the curly brackets lies between 1 and 1
3 . In particular,

1

2
+ 1

2
〈L〉 − 1

6
〈R〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if σR = σS = 0,

2

3
if σR = σL, σS = 0,

1

2
if σR = σL = 0,

1

3
if σL = σS = 0.

(10.35)



10.3 Scaling and the total cross section 103

Figure 10.2. Scaling of the structure function νW e
2 = F2(x).

From (10.33) we see that a linear rise in σtot depends on the property that νW2 is
scale-invariant and the absence of a W propagator. The neutrino measurements give

σν
tot = (0.677 ± 0.014) × 10−38 cm2 Eν

GeV
.

We can also compare neutrino and antineutrino cross sections on isoscalar targets:

σ ν̄N

σνN
=

1
2 + 1

2〈R〉 − 1
6〈L〉

1
2 + 1

2〈L〉 − 1
6〈R〉 .

The ratio is bounded between 1
3 and 3. The experimental data give

σ ν̄
tot = (0.334 ± 0.008) × 10−38 cm2 Eν̄

GeV
,

with the ratio of the two slopes being 0.501 ± 0.015, which is consistent with the
above prediction and close to the lower bound.
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10.4 The parton model

“Friends rush in where angels fear to tread.”
(R. P. Feynman, at Fermilab, 1973)

A physical interpretation of the scaling phenomenon is given by the parton model,
which considers the scattering as the incoherent sum of scattering from point-
like constituents within the proton, called partons. The point-like nature of the
constituents reproduces scaling. By studying several reactions it was possible to
deduce properties of the constituents, such as electric charge, and identify the
partons with quarks. The parton model has been applied to a wide range of high-
energy reactions, many of which will be covered in this chapter. Deep inelastic
reactions together with hadron spectroscopy supply the major evidence for the
quark substructure of matter.

Neutrino–nucleon scattering

The basic idea in the parton model is to regard the deep inelastic scattering as quasi-
free scattering from point-like constituents within the proton. This happens when the
scattering is viewed from a frame in which the proton has infinite momentum. The
neutrino–proton center-of-mass system is, at high energies, a good approximation
of such a frame. In the infinite-momentum frame, the proton is Lorentz-contracted
into a thin pancake, and the lepton scatters instantaneously. Furthermore, the proper
motion of the constituents within the proton is slowed down by time dilatation. We
estimate the interaction time and lifetime of the virtual states within the proton. In
the notation of the previous section and Fig. 10.3, the initial electron and proton
are collinear and in opposite directions:

�k = − �P,
(10.36)

k0 ≈ P0 = P.

In this frame

p · q = Mν = (q0 + qz)P, (10.37)

k · q = −Q2/2 = (q0 − qz)P, (10.38)

from which it follows that

q0 = 2Mν − Q2

4P
. (10.39)

The time of interaction is τ ≈ 1/q0, which for moderate values of x decreases as

τ = 4P

2Mν(1 − x)
. (10.40)
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Figure 10.3. Kinematics for neutrino–nucleon scattering in the parton model.

We visualize the proton as composed of virtual states called partons. We denote by
x the fraction of the proton’s momentum carried by a constituent. The lifetime of
the virtual states (Feynman, 1969; Bjorken and Paschos, 1969) is

T = 1

Ex + E1−x − Ep
= 1√

(x P)2 + µ2
1 +

√
(1 − x)2 P2 + µ2

2 − √
P2 + M2

≈ 2P(
µ2

1 + P2
1⊥

)/
x + (

µ2
2 + P2

2⊥
)/

(1 − x) − M2
. (10.41)

If we now require that τ � T , then we must consider the partons, contained in
the proton, as free during the interaction. In this limit the current interacts with
just one of the constituents, leaving the rest undisturbed, thus making the im-
pulse approximation valid. The above conditions appear to be satisfied in high-
energy and large-momentum-transfer electron–nucleon scattering and in high-
energy neutrino–nucleon scattering. The model could fail for x → 0 or 1, for
which the expansion in (10.39) is no longer justified. The reader may have noticed
that we use x with two meanings: the first one is Bjorken’s variable x defined in
Eq. (10.26) and the second is the fraction of the proton’s momentum. This was done
on purpose because the two variables are the same.

The cross section of a proton is the incoherent sum of cross sections of the indi-
vidual constituents. We denote by dσi (x)/(dQ2 dν) the cross section of a neutrino
on a parton of type i , which carries a fraction x of the proton’s momentum,

pµ

i ≈ x Pµ. (10.42)
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We denote by fi (x) the probability of finding the i th constituent carrying a fraction
x of the proton’s momentum. Then the cross section is

dσ

dQ2 dν
=

∑
i

∫ 1

0

dσi (x)

dQ2 dν
fi (x)dx . (10.43)

The summation here is over all types of constituents within the proton and the
integral is over the momentum fraction x . Thus the complicated hadronic structure is
reduced to the incoherent scattering from point-like constituents times the structure
functions fi (x).

The point cross sections have already been derived in Section 8.3. For neutrino–
parton scattering

dσ

dQ2 d(pi q/mi )
= G2

π
δ

(
pi q

mi
− Q2

2mi

)
(10.44)

or

dσ

dQ2 d(pi q)
= G2

π
δ

(
pi q − Q2

2

)
. (10.45)

For neutrino–antiparton scattering

dσ

dQ2 d(pi q)
= G2

π

(
1 − pi q

pi kµ

)2

δ

(
pi q − Q2

2

)
, (10.46)

with kµ the four-momentum of the neutrino.
The proton is built from two up quarks and one down quark, which constitute

the valence quarks and give the proton its quantum numbers. In addition, there is
in the proton a cloud of quark–antiquark pairs produced by the radiation of gluons
and their subsequent conversion into pairs. The number of the pairs is infinite, but
their momentum distributions have not been calculated explicitly. We denote the
probability of finding an up quark carrying a fraction x of the proton’s momentum by
u(x). Similarly, we denote by d(x) the probability of finding a down quark carrying
a fraction x of the proton’s momentum. The cloud of quark–antiquark pairs of any
flavor necessitates the introduction of additional quark distribution functions. For
instance, ū(x) and d̄(x) correspond to up and down antiquarks. Similarly, there are
distributions s(x), s̄(x), c(x), c̄(x), . . . for strange, charm, and other flavors.

When we substitute pµ

i = x Pµ into (10.44) we obtain the point cross section

dσi

dQ2 dν
= G2

π
Mxδ

(
x Mν − Q2

2

)
. (10.47)
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Finally, on substituting the point cross sections in (10.42) and integrating over x ,
we arrive at the neutrino–proton scattering

dσνp

dQ2 dν
= G2

π

x

ν

[
d(x) + ū(x)

(
1 − ν

E

)2
]
. (10.48)

Here we omit the contribution from the strange and heavier quarks and their
antiparticles. In the case of antineutrino–proton scattering we obtain

dσ ν̄p

dQ2 dν
= G2

π

x

ν

[
d̄(x) + u(x)

(
1 − ν

E

)2
]
. (10.49)

It is now evident that the momentum fraction x = Q2/(2Mν) is indeed the Bjorken
scaling variable.

The general case with many families of quarks can be easily written down. The
contribution from a quark q(x) and an antiquark q̄(x) is

dσνN

dx dy
= G2

π
2M Ex

[
q(x) + (1 − y)2q̄(x)

]
, (10.50)

provided that the quark under consideration is allowed by charge conservation.
Similarly, the antineutrino–nucleon cross section is

dσ ν̄N

dx dy
= G2

π
2M Ex

[
(1 − y)2q(x) + q̄(x)

]
. (10.51)

These relations are used to determine the antiquark content of the proton. For
instance, the antineutrino–nucleon cross section at y = 1 measures q̄. The total cross
sections are also easily derived. They grow linearly with neutrino or antineutrino
energy.

Finally the ratio of the total cross sections for an isoscalar target, such as
deuterium or oxygen, is

σ ν̄d

σνd
=

∫ 1
0 dx x

[
1
3 (u + d) + (ū + d̄)

]
∫ 1

0 dx x
[
(u + d) + 1

3 (ū + d̄)
] . (10.52)

Taking the experimental ratio of the cross sections to be approximately 0.50, we
arrive at the conclusion that the integrated antiquark contribution is approximately
20% of the quark contribution.

We close this section with a few remarks. We derived the general formulas
for neutrino- and antineutrino-induced reactions using helicity cross sections. We
have also shown explicitly that they are related to the structure functions. The
formalism can be carried over to electroproduction, for which similar formulas
hold. We also emphasized that high-energy neutrino reactions are closely related
to electroproduction in the deep inelastic region.
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p
p1

fq(x)
pq = xp1

pq̄ = yp2

fq̄(x)p p2

l−

l+

Figure 10.4. The Drell–Yan process.

Both reactions were analyzed in terms of the parton model, assuming that the
constituents of protons are the quarks (Bjorken and Paschos, 1969). This will be
further developed in the next two chapters, where the quark-parton content of
hadrons becomes more evident.

10.5 The Drell–Yan process

The production of a massive photon or of a W± in hadron–hadron collisions and
its subsequent decay has been successfully analyzed in terms of the parton model.
The reactions (Drell and Yan, 1970)

p + p → γ + · · · → µ+µ− + X, (10.53)

p̄ + p → W + · · · → e−ν̄ + X (10.54)

are known as Drell–Yan processes. Together with deep inelastic scattering and
electron–positron annihilation, these processes play an important role in determin-
ing the structure functions and in testing the parton model, including QCD correc-
tions. The Drell–Yan process was especially important in formulating a strategy for
seeking and discovering the W bosons.

To calculate the cross section corresponding to Fig. 10.4, we begin with the
parton subprocess,

σ (q̄q → �+�−) = 4πα2

3Q2
e2

q . (10.55)

In order to embed it in the hadronic process, we rewrite it as a differential cross
section, dσ/dQ2, for the production of a lepton pair with invariantmass

√
Q2,
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where

Q2 = ŝ = (pq + pq̄)2, (10.56)

dσ̂

dQ2
= 4πα2

3Q2
e2

qδ(Q2 − ŝ). (10.57)

We envisage each hadron of momentum P being made up of partons carrying
a longitudinal momentum x P . We make the idealization that the partons carry
negligible transverse momentum. When the mass of the produced pair is very large,
the cross section is the incoherent sum of the elementary subprocesses. In this case a
quark of type q from one hadron annihilates with an antiquark of the same type from
the other hadron. The probability of finding the quark with fractional momentum
x is given by fq(x) and that for the antiquark by fq̄(y). The hadronic cross section
can now be obtained (Drell and Yan, 1970):

dσ

dQ2
(pp → 
+
−X) =

−−−∑
q

e2
q

∫
dx

∫
dy fq(x) fq̄(y)

dσ̂

dQ2
, (10.58)

where the sum is over all possible qq̄ pairs that can be formed from the constituents
of the colliding protons and the average is over the number of initial qq̄ states. This
gives in the end an overall factor of 1

3 .
The q and q̄ carry the fractions x and y of the proton momenta and the invariant

mass becomes

ŝ = (xp1 + yp2)2 ≈ xys, (10.59)

with s ≈ 2p1 · p2. The cross section now takes the form

dσ

dQ2
= 4

9

πα2

Q2

∫
dx

∫
dy fq(x) fq̄ (y)δ(Q2 − xys). (10.60)

After integration over y, we obtain the final result

dσ

dQ2
= 4πα2

9Q2s

∫ 1

Q2/s

dx

x
fq(x) fq̄

(
Q2

xs

)
. (10.61)

To lowest order (without gluon emission) we expect a scaling result: the last integral
depends on the ratio τ = Q2/s. The scaling is satisfied but the overall rate is
modified by QCD corrections, which involve gluons. In this case the corrections
are substantial and the reader should consult specialized articles for more details.

In addition to the quarks, the proton contains also gluons, i.e. vector mesons
that mediate the strong interactions. This requires that for each hadron we must
introduce a gluon distribution function: g(x) . In several processes gluons play an
important role. For instance, the production of Higgses in high-energy colliders
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proceeds through the fusion of two gluons,

g + g → H → ZZ, (10.62)

with g denoting gluons and the Higgs decaying to two lighter particles (in this case
Z bosons). The hadronic reaction can be analyzed as a Drell–Yan process with the
quarks of the intermediate states replaced by gluons.

Let us consider the process

p + p → H + hadrons → Z Z + hadrons (10.63)

and denote by σ0(gg → H → ZZ) the point cross section for the production of two
Z bosons. The gluon distribution function for protons has been measured in DESY
experiments to be large at small values of x . The cross section for the production
of Z pairs through two gluons with moments xp1 and yp2, respectively, is given by

dσ0

dQ2
= σ0(Q2)δ(Q2 − xys). (10.64)

The cross section for the proton–proton collision is

dσ

dQ2
=

∫
σ0(Q2)

s

dx

x
g(x)g

(
Q2

xs

)
. (10.65)

One usually takes the gluon structure functions from electron–proton-scattering
experiments and extrapolates them to regions of small x and large Q2 by means
of the renormalization-group equations. In addition to the corrected structure func-
tions, the calculations must include corrections to the gluon–Higgs-boson coupling
induced again by virtual gluons.

Problems for Chapter 10

1. Show that Eq. (10.5) is determined up to an overall phase.
2. Determine the behaviour of εR,L

µ under rotations around the z-axis.

This can be done easily if you split εR,L
µ into ε(x)

µ = (0, 1, 0, 0) and ε
(y)
µ = (0, 0, 1, 0).

3. Prove Eq. (10.7) with the following Ansatz: j lept
µ = aεS

µ + bεR
µ + cεL

µ.

Determine a, b, and c using kµ = (E, kx , 0, kz), qµ = (ν, 0, 0, qz), and momentum
conservation. Apply the high-energy limit ν � 2M and Q2 � ν2 in order to obtain
Eq. (10.7).

4. Derive Eq. (10.22) starting from Eq. (10.19).
5. In order to prove Eq. (10.30) rewrite j lept

µ as

j lept
µ = 1

2
ū′γµ(1 + γ5 + 1 − γ5)u

and follow steps similar to those in the case of neutrino–hadron scattering.
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6. Check the individual steps leading to Eq. (10.34).
7. Carry out the various steps leading to Eqs. (10.47) and (10.48).
8. Calculate the helicity cross section for a left-handed W scattered on quarks and show

that it reproduces the result in Eq. (8.45).
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Charged-current reactions

Charged-current interactions are the most frequent and occur in decays, as well as in
particle reactions. They have been analyzed in many books, especially those written
before 1970. Charged-current interactions, especially decays, were instrumental in
establishing properties of the currents. We can classify them according to the degree
of our theoretical understanding. The simplest reactions are purely leptonic. They
are relatively simple to calculate, because the couplings of leptons to currents are
precisely known and, now that the theory is renormalizable, we can include loop
corrections. Some leptonic reactions were presented in Chapter 8. We shall not
study them further.

The next class of reactions consists of the semileptonic ones, which can also
be treated successfully with various theoretical methods. They involve a single
coupling of the currents to hadrons, which can be understood at low energy and/or
at low momentum transfer in terms of form factors. They are also understood at
high energies in terms of the short-distance behavior of the currents. We shall
study several processes in this chapter: deep inelastic scattering and quasi-elastic
scattering.

Non-leptonic interactions are the most difficult to analyze. They do not include
any leptons and involve both strong and weak interactions. The interplay between
the two interactions is still a developing field of research.

11.1 Deep inelastic scattering

High-energy neutrino interactions have been used to probe the inner structure of
protons and neutrons: these studies were crucial for establishing the quark sub-
structure of matter and giving quantitative support to the field theory of quark
interactions (quantum chromodynamics). In Chapter 10 we described the general
structure of the cross sections and some consequences of the scaling phenomenon.

112
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Then we showed that the general features can be explained in terms of the
quark–parton model. Many more properties and correlations with other reactions
have been understood and we discuss them here in greater detail.

11.1.1 Scaling and the charge of the quarks

The electroproduction reactions couple to the charge of the quarks, in contrast to
the neutrino reactions, which couple to the weak isospin. Comparison of the two
processes gives an indication regarding the charge of the constituents.

The electroproduction cross section is

dσ

dQ2 dν
= 4πα2

Q4

∫
dx δ

(
ν − Q2

2Mx

) ∑
i

e2
i [qi (x) + q̄ i (x)]

= 4πα2

Q4

x

ν

∑
i

e2
i [qi (x) + q̄ i (x)], (11.1)

with the normalization chosen to reproduce the Mott cross section. We obtain the
structure function

Fep
2 (x) = x

{
4

9
[u(x) + ū(x)] + 1

9

[
d(x) + d̄(x) + s(x) + s̄(x)

]}
, (11.2)

where u(x), d(x), ū(x), and d̄(x) are the quark distribution functions in the proton.
Similar equations hold for electron–neutron scattering, in which the exchanges
u ↔ d and ū ↔ d̄ take place. The structure function on an isoscalar target is the
average over protons and neutrons,

FeN
2 (x) = x

{
5

18

[
u(x) + ū(x) + d(x) + d̄(x)

] + 1

9
[s(x) + s̄(x)]

}
, (11.3)

where the factor of 5/18 follows directly from the fractional charges of the quarks.
For neutrino-induced reactions the structure functions are expressed in terms of

the quark distributions

Fνp
2 (x) = 2x[qi (x) + q̄ i (x)], (11.4)

Fνp
2 (x) = 2x Fνp

1 (x) (Callan and Gross, 1969), (11.5)

x Fνp
3 (x) = 2x[qi (x) − q̄ i (x)]. (11.6)

For neutrinos the following elementary processes are possible:

νd → µ−u,

νū → µ−d̄;
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and for antineutrinos

ν̄u → µ+d,

ν̄d̄ → µ+ū.

We shall assume in this section that the Cabbibo angle is zero, so that scatterings
from strange quarks are neglected. Then we obtain the structure functions

Fνp
2 (x) = 2x[d(x) + ū(x)],

(11.7)
F ν̄p

2 (x) = 2x
[
d̄(u) + u(x)

] = f νn
2 (x)

and, for isoscalar targets,

FνN
2 (x) = x

[
u(x) + d(x) + ū(x) + d̄(x)

]
(11.8)

and

x FνN
3 (x) = x

[
u(x) + d(x) − ū(x) − d̄(x)

]
. (11.9)

Since the strange-quark structure functions s(x) and s̄(x) are relatively small, we
can neglect them and obtain from Eqs. (11.3) and (11.8) the ratio

FeN
2 (x)

FνN
2 (x)

= 5

18
. (11.10)

The ratio measures the average charge of the quarks and it indicates that the charges
of the constituents are fractional. These and other relations have shown that the
constituents of hadrons which couple in deep inelastic scattering carry the quantum
numbers of the quarks.

11.1.2 Spin of the quarks

In the V–A theory all fermions participate in the weak interactions as left-handed
particles and all antifermions as right-handed particles. For antineutrino–quark
scattering, helicity conservation requires that the process in the center-of-mass
frame vanishes at θcm = 180◦ as shown in Fig. 11.1.

The cross section has the angular dependence

dσ ν̄q

d cos θ cm
∝ (1 + cos θcm)2. (11.11)

The center-of-mass angle θcm is related to the laboratory energies by

1 + cos θcm

2
= Eµ

Eν
= 1 − y, (11.12)
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Before collision
ν̄ q

J = +1

After collision
µ+ q

J = −1

Figure 11.1. Production of a forbidden configuration by helicity conservation in
antineutrino–quark scattering.

Table 11.1. Angular dependences of the
reactions

Process Jz y Dependence

νq, ν̄q̄ : ⇐
ν

⇒
q 0 1

νq̄, ν̄q : ⇐
ν

⇐
q̄ 1 (1 − y)2

which is easily obtained by evaluating the ratio k ′ · p/(k · p) in the center-of-mass
system. In this pictorial manner we understand the y dependence of the cross
section:

dσ ν̄q

dy
∝ (1 − y)2. (11.13)

A similar study of the reaction

ν + d → µ− + u (11.14)

shows that there is no reason for the cross section to vanish in any direction. In this
way we construct Table 11.1.

The cross sections in terms of the various species attain the form with q(x) and
q̄(x) contributions from spin- 1

2 constituents and k(x) distributions for spin-zero
constituents:

dσνN

dx dy
= G2 M Eν

π
x
[
q(x) + (1 − y)2q̄(x) + (1 − y)k(x)

]
, (11.15)

dσ ν̄N

dx dy
= G2 M Eν̄

π
x
[
(1 − y)2q(x) + q̄(x) + (1 − y)k(x)

]
. (11.16)

The experimental results indicate that the scattering occurs on spin- 1
2 constituents

and that the content of scalar constituents is very small. The y distribution for
antineutrinos is not exactly zero at y = 1 because protons and neutrons contain a
sea of quark–antiquark pairs in addition to their valence quarks. These pairs are
created by the emission of vector particles, the gluons, which also bind the quarks
into hadrons.
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11.1.3 Sum rules

In the quark parton model, the distribution functions indicate how the quantum
numbers are distributed within hadrons. Thus integrals of distribution functions
must reproduce the quantum numbers of the target. For instance,

∫ 1
0 s(x)dx gives

the probability of finding a strange quark, with any momentum, within a proton.
Since the proton has zero strangeness,

∫ 1

0
[s(x) − s̄(x)]dx = 0. (11.17)

Similarly we can compute the baryon number and isospin of a proton:

1

3

∫ 1

0

[
u + d − ū − d̄

]
dx = 1 (baryon), (11.18)∫ 1

0

[
(u − d) − (ū − d̄)

]
dx = 1 (isospin). (11.19)

Such relations are known as sum rules and have been determined by combining
data from various processes.

A good example is the Adler (1965) sum rule

SA = 1

2

∫ [
F ν̄p

2 (x) − Fνp
2 (x)

]dx

x
= 1, (11.20)

which follows from the isospin relation in (11.19). The Adler sum rule follows from
current algebra and it must be valid for each value of Q2. In fact, it is a consequence
of the commutator of two isospin charges and as such is very reliable. Experimental
results give the value

SA = 1.08 ± 0.20, (11.21)

which is in good agreement but the error is relatively large.
A fast convergent sum rule is the Gross–Llewellyn Smith (1969) sum rule

∫ 1

0

[
Fνp

3 (x, Q2) + Fνn
3 (x, Q2)

]
dx = 6

[
1 − αs(Q2)

π

]
= 5.4 at Q2 = 3 GeV2

= 5.00 ± 0.16 (experiment). (11.22)

The right-hand side includes first-order QCD corrections. Again the agreement is
very good.
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Finally, the integral
∫ 1

0 xq(x)dx gives the fraction of the proton’s momentum
carried by the q quark. Thus

∑
=

∫ 1

0
x
[
u(x) + d(x) + s(x) + ū(x) + d̄(x) + s̄(x)

]
dx = 0.54 (11.23)

is the momentum carried by all the quarks inside the proton. This integral was
determined by combining data from several processes. It is much less than unity,
indicating that the quarks carry one half of the proton’s momentum. The remaining
half must be carried by other particles, which do not interact directly with the
currents. They are the gluons of quantum chromodynamics.

11.2 Evolution of distribution functions

The algebraic relations discussed in this and the previous chapter assumed point-
like constituents within the nucleon. We know from previous advances in physics
that a particle that looks point-like on one resolution scale reveals substructure at
a higher resolution. The scaling phenomenon and the numerous quantum-number
relations revealed a point-like structure, but deviations from scaling indicate the
existence of additional structure. In fact, it has been established that the variation
of the structure functions with Q2 is due to the emission of vector particles: the
gluons. As was mentioned earlier, they carry the other half of the momentum of the
nucleons, that was missing in the momentum sum rule.

The additional structure is introduced by the theory of strong interactions known
as quantum chromodynamics (QCD). There are many indications that each flavor
of quarks comes in three colors: red, white, and blue. The names for the colors
are arbitrary, but the fact that there are three is important. The quarks interact
with each other by the exchange of vector bosons that change the color of the
quarks.

The theory of the strong interaction – QCD – is a non-Abelian gauge theory
based on the group SU(3)c. Each quark species – up, down, strange, . . . – forms a
triplet in color space and has a coupling gs to the eight gluons, Gα

µ, which belong
to the adjoint representation of SU(3) color. We write the color triplet as

q(x) =
⎛
⎝ qr

qw

qb

⎞
⎠

and the Lagrangian

LQCD = q̄(x)iγ µ

[
∂µ + i

2
gsλ

αGα
µ(x)

]
q(x), (11.24)
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with λα the Gell-Mann matrices of SU(3)c and Gα
µ(x) with α = 1, 2, . . ., 8 the

eight gluons. There is no mass term for the gluons that leaves the color sym-
metry exact. QCD makes dramatic predictions. The first one concerns the coupling
constant.

In field theories coupling constants and other observables are modified by higher-
order corrections that involve loops. Many loop diagrams are divergent, which
demands special handling of them. When all the infinities from loop diagrams
are absorbed into the definition of couplings, masses, and other parameters of the
original Lagrangian, we say that the theory is renormalizable. In these theories we
can calculate physical observables with high precision. QCD and the electroweak
theory are renormalizable. It is beyond the scope of this book to describe or prove
renormalization. Instead, we shall describe a few cases of higher-order corrections
in order to demonstrate the methods entering these calculations. Furthermore, we
describe some properties of field theories that have significant impact on properties
of weak interactions.

One quantity modified by loop corrections is the strong coupling constant gs.
The infinities introduced by higher orders are absorbed into the redefinition of
the coupling constant. Since the corrections involve the addition of infinite quan-
tities, the numerical value of the coupling is unknown and must be determined
experimentally. Thus αs is measured at a specific reference scale µ0, known as
the renormalization point. In many cases the reference scale µ is identified with
the momentum flowing through the vertex. The arbitrariness of the reference point
leads to a differential equation – the renormalization-group equation. To be specific,
the change of α(µ) = g2

s /(4π ) with respect to the reference point µ satisfies the
equation

µ
dα

dµ
= β(α), (11.25)

where β(α) represents the sum of higher-order corrections and is of the form

β(α) = β0α
3 + O(α5). (11.26)

The constant β0 and higher terms are determined in perturbation theory. The solution
is obtained as ∫ α(µ)

α(µ0)

dα

β(α)
= ln

(
µ

µ0

)
(11.27)

or, keeping the leading term on the right-hand side of Eq. (11.26), we obtain

α(µ) = α(µ0)

1 + β0α(µ0)ln
(
µ2/µ2

0

) . (11.28)
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This states that, knowing the coupling constant at the reference scale µ0, we can
predict its value at another scale µ. The coupling constant is no longer a constant
but runs with momentum; hence the name running coupling constant.

An important property of QCD is that the value of β0 = 11 − 2
3 Nf, with Nf

the number of generations, is positive. As the momentum increases, the coupling
constant decreases and, at very high momentum, αs(p) is so small that perturbation
theory is applicable. This provides a justification of scaling and of the parton model.
It also goes beyond scaling, by predicting modifications introduced by the emission
of gluons. The corrections are functions of Q2 producing predictable violations of
scaling. The corrections have been studied extensively in perturbation theory and
compared with many experimental results.

There is an extensive list of articles in which violations of scaling have been
computed and are discussed in detail. Experimentally, the changes have been ob-
served with the structure functions increasing for small x as functions of Q2 and
decreasing for x > 0.4.

The second prediction concerns the production of gluons, which are emit-
ted by the accelerating particles. The quarks produced materialize into hadrons
and produce jets of particles. Similarly, the gluons also produce jets of hadrons.
Consequently we expect some reactions to produce two jets (from qq̄ pairs) and
others three jets (from qq̄g production). Three-jet events have been observed in
electron–positron-annihilation reactions. The production of gluons implies that
they also exist within hadrons and are responsible for the missing momentum
in the sum rule in Eq. (11.23). Consequently the experimental results have been
analyzed with the inclusion of an additional distribution function for the gluons.
A dramatic property of the gluon distribution function is its rapid increase at
small x .

For small momenta the coupling constant grows and becomes very big, making
a perturbative description impossible. It is customary to denote by �2 the scale of
Q2 at which the denominator becomes zero. This happens at

�2 = µ2
0e−1/[β0α(µ0)]. (11.29)

It follows now that the coupling constant can be rewritten

α(µ) = 1

β0 ln(µ2/�2)
. (11.30)

We can think of � as the boundary between the region where quarks and gluons
appear as quasi-free particles and the world of bound states like protons, pions,
etc. At momenta smaller than �, the strong interaction becomes so strong that the
quarks cannot come out as free particles, but remain confined within hadrons. This
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property of confined quarks has not been proved yet, and thus it is difficult to judge
which among several approaches may ultimately be the most productive.

It is evident that QCD and its consequences form an extensive and exciting topic,
which is, however, beyond the scope of this book. We shall have occasion to return
to QCD in Section 15.6, where we discuss the effective Hamiltonian for low-energy
weak interactions. As a last topic concerning the charged-current interactions we
discuss in the next section quasi-elastic scattering.

11.3 Quasi-elastic scattering

In contrast to deep inelastic scattering, quasi-elastic scattering gives information
on the static properties of the proton and the neutron. In fact, the first experiments
with neutrino beams measured the reactions shown in Fig. 11.2:

ν(k) + n(p) → µ−(k ′) + p(p′), (11.31)

ν̄(k) + p(p) → µ+(k ′) + n(p′), (11.32)

which are still interesting on several accounts. For instance, we would like to deter-
mine their form factors accurately and check their relation to the electromagnetic
form factors. Furthermore, the quasi-elastic cross sections reach constant values for
neutrino energies greater than 2.0 GeV. This property has been used for measuring
the flux of neutrino beams and is still useful. Low-energy neutrino interactions re-
cently started being used efficiently for studying neutrino oscillations. For all these
reasons we present in this chapter an explicit calculation.

For low energies relative to the mass of the W boson, interactions of neutrinos
can be written as a leptonic current times a hadronic current:

M = G√
2

ū(k ′)γµ(1 − γ5)u(k)〈p|J+
µ |n〉.

The hadronic current has a complicated structure produced by the motion of the
quarks within hadrons. We define the vector form factors of the charged current as

〈p|V +
µ |n〉 = ū(p′)

(
γµF+

1 + i
σµνqν

2M
F+

2 + qµ

M
F+

3

)
u(p). (11.33)

Denoting, as before, the isovector form factor of the electromagnetic current by
FV

1 , we obtain

F+
1 (q2) = −2FV

1 (q2). (11.34)

The factor 2 comes from the normalization of V +
µ = V 1

µ + iV 2
µ and the

Clebsch–Gordan coefficients, which are
√

2
3 for the charged current and −

√
1
3 for
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n
pµ

p
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W, qµ

l

k µ

νl

kµ

Figure 11.2. Quasi-elastic scattering.

the electromagnetic current. For the following calculation it is convenient to write
the hadronic current in a modified form:

〈p|J+
µ |n〉 = ū(p′)

[
gVγµ + fV

(p + p′)µ
2M

+ hV
qµ

2M

+ gAγµγ5 + fAiσµν

qνγ5

2M
+ hA

qµγ5

2M

]
u(p), (11.35)

where we left out the factor cos θc arising from the Cabibbo angle. In reducing
(11.33) to (11.35) we used the Gordon decomposition formula, which gives the
relations gV = F+

1 + F+
2 , fV = −F+

2 , and F+
3 vanishes as explained in Chapter 2.

The term hAqµγ5 contributes to the cross section terms proportional to the lepton
masses and will be omitted. In Chapters 1 and 2 we discussed the fact that charge
conjugation and time-reversal together require hV and fA to vanish. On eliminating
these three form factors, we obtain a simplified form for the matrix element which
we shall use in this section:

〈p|J+
µ |n〉 = ū(p′)

[
gVγµ + fV

(p + p′)µ
2M

+ gAγµγ5

]
u(p). (11.36)

The electromagnetic form factors are known from electron-scattering experiments
on protons and neutrons. Similar values of the axial form factor at low values of
Q2 have been measured in β-decay. We shall use this information at the end of this
section.

The calculation of the cross section is now straightforward but tedious. Since
the calculation of quasi-elastic scattering is not easily available in books, I give a
few intermediate steps. There is a second reason: the elastic scattering for neutral
currents has a similar functional form that is obtained by replacing the form factors
by those of neutral currents. Studies of quasi-elastic scattering frequently use a
formula in terms of Mandelstam variables (Llewellyn Smith, 1974). We derive
here two more formulas that are convenient for taking limits in specific kinematic
regions.
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The kinematics for the process are simplest in the laboratory frame where the
nucleon is at rest:

p · k = p′ · k ′ = M E,

p · k ′ = p′ · k = M E + q2

2
,

k · k ′ = m2
µ

2
− q2

2
, (11.37)

p · p′ = M2

x
− q2

2
,

Q2 = 2Mν = 4E E ′ sin2

(
θ

2

)
.

The square of the hadronic tensor is obtained from (11.36)

Hµν = (
g2

V + g2
A

)
(pµ p′

ν + pν p′
µ − gµν p · p′) − 2igVgAεµνγ δ pγ p′δ

+ M2
(
g2

V − g2
A

)
gµν +

(
f 2
V

p · p′ + M2

4M2
+ fVgV

)
(pµ + p′

µ)(pν + p′
ν).

(11.38)

The first line of this equation follows from Eq. (8.37) and the remaining ones from
a straightforward calculation. The similarities between Section 8.3 and the present
one can be used for comparisons. For instance, the inner product of the leptonic
tensor in Eq. (8.36) with Hµν leads to a matrix element that can be expressed in
terms of the scattering angle. From the matrix element and the phase-space integral
we arrive at the differential cross section

dσ

dE ′ = G2
F

2π
M

E ′

E

{ (
g2

V + g2
A

)[
1 + Q2

2M2
sin2

(
θ

2

)]
+ (

g2
A − g2

V

)
sin2

(
θ

2

)

− 2gAgV

(
E + E ′

M

)
sin2

(
θ

2

)
+

[
f 2
V

(
1 + Q2

4M2

)
+ 2 fVgV

]
cos2

(
θ

2

)}
.

(11.39)

Several limiting cases are now interesting. For gA = 0 the cross section depends
only on the vector terms and the functional form agrees with the Rosenbluth formula.
Differences between electroproduction and neutrino-induced formulas arise from
the photon propagator and the coupling constants.
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Alternatively, we may combine the gV and gA terms and obtain another expres-
sion for the cross section:

dσ

dE ′ = G2
F M

4π

{
(gV − gA)2 + (gV + gA)2

(
E ′

E

)2

+ (
g2

A − g2
V

) Mν

E2

+ 1

2

[
f 2
V

(
1 + Q2

4M2

)
+ 2 fVgV

][(
1 + E ′

E

)2

− Q2

E2

(
1 + Q2

4M2

)] }
.

(11.40)

For fV = 0 the interaction of the neutrino has the same functional form as neutrino–
electron scattering and the expression above agrees with Eq. (8.43).

The two equations for quasi-elastic scattering presented already are convenient
for taking specific limits. It is customary, however, to use another formula, which
expresses the differential cross section in terms of Mandelstam variables s, u, t =
q2 (Llewellyn Smith 1974). Most recent analyses use it and have been able to
account for the experimental data in terms of three form factors. The vector form
factors are related to those measured in electromagnetic reactions. The axial form
factor is parametrized

gA(q2) = gA(0)(
1 − q2/M2

A

)2 , (11.41)

with gA(0) = 1.26 and MA = 1.00 ± 0.05 GeV/c2 (its precise value is still being
debated among the experts).
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Neutral currents in semileptonic reactions

12.1 Neutrino–hadron neutral-current interactions

The first experimental support for the electroweak theory came from the observation
of neutral currents in semileptonic reactions. Neutral currents appear because the
product SU(2) × U(1) contains two neutral generators. We have shown that one
linear superposition of generators is the electromagnetic current and the second is a
neutral current. In Chapter 8 we discussed leptonic neutral-current reactions. In this
chapter we deal with the observation of neutral currents in semileptonic reactions
and, in particular, neutrino–hadron interactions.

The coupling of the Zµ boson to leptons was given in Eq. (8.11) and that to
quarks in Eq. (9.20). The neutral-current neutrino–hadron interactions have the
general form

Heff = G√
2

[
ν̄γ µ(1 − γ5)ν

] 3∑
i=1

(
q̄i τ3γµqi − sin2θW q̄i Qγµqi

)

= G√
2

[
ν̄γ µ(1 − γ5)ν

](
xV 3

µ + y A3
µ + γ V 0

µ + δA0
µ

)
, (12.1)

where V 3
µ and A3

µ are the isospin partners of the charged currents. V 0
µ and A0

µ are
isoscalar currents for which there are several possibilities. For comparison we give
the normalization of V 3

µ in terms of quarks:

V 3
µ = 1

2

(
ūγµu − d̄γµd

)
,

(12.2)
A3

µ = 1

2

(
ūγµγ5u − d̄γµγ5d

)
.

We could have defined V 3
µ abstractly, in terms of its isospin transformation prop-

erties, but, now that quarks permeate our daily language, this notation is appropriate.
The interested reader can always revert to the transformation properties. Similarly,

124
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we define the isoscalar currents

V 0
µ = 1

2

(
ū γµu + d̄γµ d

) + · · ·,
(12.3)

A0
µ = 1

2

(
ū γµγ5u + d̄γµγ5 d

) + · · ·,

where · · · involve s̄s and c̄c terms. With this normalization, the isoscalar piece of
the electromagnetic current is 1

3 V 0
µ . In the electroweak theory

x = 1 − 2 sin2θW, y = −1,
(12.4)

γ = −2

3
sin2 θW, δ = 0.

The vanishing of δ is a specific property of the standard model when we consider
only up and down quarks. It is non-zero as soon as strange and heavier quarks or
higher-order corrections are introduced.

The weak mixing angle θW is the same angle as that introduced in the leptonic
sector. The first issue was the existence of the neutral currents. This was a diffi-
cult experimental problem because neutral-current interactions were new and the
experiments had a large neutron background.

After the discovery of neutral currents, there was still interest in establishing that
they belonged to the standard model. As problems, there remained

(i) verification of the Lorentz structure of neutral currents as vector and axial-vector oper-
ators, and

(ii) verification of the internal symmetry structure as a superposition of isovector and
isoscalar operators in terms of a mixing parameter: sin2θW.

In analyzing these issues there are two separate kinematic regions where we know
the hadronic matrix elements of the currents. One region is deep inelastic scatter-
ing, where the structure functions have been measured and have been explained
successfully in terms of quark-parton distribution functions. The other region in-
volves low-energy experiments, for which form factors for elastic scattering and
the excitation of the �(1232) resonance are already known. In the next few sections
we study reactions that allow us to decipher the couplings of neutral currents to
hadrons.

When the standard model became popular, it appeared very important to dis-
cover neutral currents. It was also fortunate that experiments with the capability
of searching for them were running or were beginning to run. It was not clear,
however, how large neutral-current cross sections should be. There was a need for
theoretical predictions. At that time the quark-parton model was in its infancy and
its predictions were frequently questioned.
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Thus theoretical predictions were carried out at two levels. One approach was
through the symmetry properties of the currents relating V 3

µ and V 0
µ to the charged

and electromagnetic currents. The other approach was to calculate cross sec-
tions in the quark-parton model. Nowadays we know that both approaches are
correct.

12.2 Model-independent predictions

The simplest processes to consider are those involving total cross sections on isospin
neutral targets. We define

σ− = 1

2

[
σ (ν + p → µ− + X1) + σ (ν + n → µ− + X2)

]
and

σ0 = 1

2

[
σ (ν + p → ν + X3) + σ (ν + n → ν + X4)

]
. (12.5)

An incoherent sum over all possible final states that yields an isoscalar final state
is assumed. For the charged-current cross section we write

σ− = V + A + I, (12.6)

where V comes from the vector current alone, A from the axial current alone, and
I is the interference term. We can represent them as follows:

V =
∑

|〈X | ε · V |p〉|2, A =
∑
x,ε

|〈X | ε · A|p〉|2,

and

I = 2
∑

Re(〈X |ε · V |p〉∗〈X | ε · A |p〉), (12.7)

with the sums running over all final states and polarizations of the W boson. In
Eqs. (12.6) and (12.7) an average over protons and neutrons is understood.

The vector currents are isovector quantities that are related to the isovector part
of the neutral current through an isospin rotation. The neutral current contains in
addition an isoscalar term, but, since we consider isoscalar target and isoscalar final
states, the isoscalar–isovector interference drops out. It follows now that

σ0 = 1

2

(
x2V + x I + A + y2S

)
, (12.8)

where S is the contribution of the isoscalar current. The overall factor of 1/2 follows
from the fact that the charged current transforms like the generator

√
2τ+ of SU(2)
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and the neutral current like τ 3. Since y2 ≥ 0,

R = σ0

σ−
≥ 1

2

A + x I + x2V

A + I + V
. (12.9)

Furthermore, Schwarz’s inequality implies

4AV ≥ I 2. (12.10)

On combining the two inequalities (see Problem 1), we arrive at

R ≥ 1

2

[
1 − (1 − x)

(
V

A + I + V

)1
2

]2

. (12.11)

The term V can be deduced from knowledge of the isovector contribution to the
electroproduction cross section

σem = 1

2

[
σ (e + p → e + x1) + σ (e + n → e + x2)

]
. (12.12)

Not knowing the isoscalar contribution, we use again inequalities,

V ≤ G

π

Q4

4πα2
σem = Vem, (12.13)

which gives the final result

R ≥ 1

2

[
1 − 2 sin2θW

(
Vem

σ−

)1
2

]2

. (12.14)

This derivation makes judicious use of inequalities. Within the electroweak theory
the method is model-independent and holds for many physical processes. When we
plot R versus sin2θW there is a minimum for the ratio; for similar inequalities see
Pais and Treiman (1972).

One may also use reactions induced by antineutrinos to obtain additional rel-
ations. On going over to antineutrinos one must change the sign of the interference
term I . The charged- and neutral-current cross sections on isoscalar targets are,
respectively,

σ+ = (V + A − I ), (12.15)

σ̄0 = 1

2

(
A + x2V − x I + y2S

)
. (12.16)
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On combining Eqs. (12.6), (12.8), (12.15), and (12.16), we obtain (Paschos and
Wolfenstein, 1973)

R− = σ0 − σ̄0

σ− − σ+
= 1

2

(
1 − 2 sin2θW

)
, (12.17)

R+ = σ0 + σ̄0

σ− + σ+
=

(
1

2
− sin2θW + 10

9
sin4θW

)
. (12.18)

These relations are truly independent of any details of scaling violations and elim-
inate some theoretical corrections inherent in the quark-parton method. They are
frequently used to determine the mixing angle sin2 θW.

In the above derivations we set the parameter

ρ = M2
W

M2
Z cos2θW

(12.19)

equal to unity. This is the lowest-order value, which appears also in Eq. (8.19),
but radiative corrections will modify it. Extensive analyses of the data including
radiative corrections from the top quark and the Higgs meson gave the value

ρ = 0.9998 +0.0034
−0.0012 and MH < 1002 GeV,

which is indeed very close to unity. This is a confirmation of the SU(2) structure of
the theory and we will continue giving ρ the value unity.

12.3 Neutral-current cross sections

It is perhaps more transparent to discuss the various cross sections in the parton
model (Sehgal, 1973; Kim et al., 1981). The effective Lagrangian density was
written, at the beginning of this chaper, in terms of the first generation of quarks.
We re-express the effective interaction in terms of chiral couplings,

L = − G√
2
ν̄γ µ(1 − γ5)ν

{
ūγµ[uL(1 − γ5) + uR(1 + γ5)]u

+ d̄γ µ[dL(1 − γ5) + dR(1 + γ5)]d + · · ·}, (12.20)

with uL and uR the couplings of the left- and right-handed up quarks and with
a similar definition for dL and dR. The ellipses indicate again contributions from
higher generations. We adopted this notation because it is convenient to write down
the elementary cross sections as they were classified in Section 8.3 in terms of the
chiralities of the leptonic and hadronic vertices. The new couplings are related to



12.3 Neutral-current cross sections 129

those defined at the beginning of this chapter as follows:

uL = 1

4
(x + y + γ + δ),

uR = 1

4
(x − y + γ − δ),

(12.21)
dL = 1

4
(−x − y + γ + δ),

dR = 1

4
(−x + y + γ − δ).

The neutrino experiments determined combinations of uL, . . ., dR, which then were
translated into x, y, γ, and δ, thus testing the isospin and parity content of the
current. Finally, they were all determined in terms of a single mixing angle sin2 θW.
The expressions become rather long and it is convenient to introduce a shorter
notation. We denote generically by fq and fq̄ the parton distribution functions for
q and q̄ and their left-handed or right-handed couplings by qL and qR, respectively.
One easily finds cross sections for the elementary processes

dσNC(νq)

dx dy
= 2G2 M E

π
x fq(x)

[
q2

L + q2
R(1 − y)2

]
,

dσNC(ν̄q)

dx dy
= 2G2 M E

π
x fq(x)

[
q2

R + q2
L(1 − y)2

]
,

(12.22)
dσNC(νq̄)

dx dy
= 2G2 M E

π
x fq̄

[
q2

R + q2
L(1 − y)2

]
,

dσNC(ν̄q̄)

dxdy
= 2G2 M E

π
x fq̄

[
q2

L + q2
R(1 − y)2

]
.

There are various ways to combine these cross sections and isolate the coupling
constants. In experiments with isoscalar targets,

fu(x) = fd(x) = f (x) and fū(x) = fd̄(x) ≡ f̄ (x).

Furthermore, we can integrate over y and set K = 2G2 M E/π to obtain

dσNC(νN)

dx
= K x

[(
f + 1

3
f̄

)(
u2

L + d2
L

) +
(

1

3
f + f̄

)(
u2

R + u2
R

)]
,

dσNC(ν̄N)

dx
= K x

[(
1

3
f + f̄

)(
u2

L + d2
L

) +
(

f + 1

3
f̄

)(
u2

R + d2
R

)]
,

(12.23)
dσCC(νN)

dx
= K x

(
f (x) + 1

3
f̄

)
,

dσCC(ν̄N)

dx
= K x

(
1

3
f + f̄

)
.
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Most experiments measure ratios of cross sections, where the flux of the neutrinos
drops out. A popular ratio is

Rν = σNC(νN)

σCC(νN)
= (

u2
L + d2

L

) + 2 − B

2 + B

(
u2

R + d2
R

)
, (12.24)

with

B =
∫ 1

0 dx x
[

f (x) − f̄ (x)
]

∫ 1
0 dx x

[
f (x) + f̄ (x)

] (12.25)

measuring the relative strength of the valence- and the sea-quark contributions. For
instance, B = 1 corresponds to vanishing sea contribution. For the experimental
value B = 0.8 the ratio becomes

Rν = 1

2
− sin2θW + 50

63
sin4θW. (12.26)

The experimental values for Rν and Rν̄ are

Rν = 0.29 ± 0.01 and Rν̄ = 0.34 ± 0.03.

In order to compare them with the prediction of Eq. (12.23) it is necessary to
include precise quark distribution functions. They include contributions from sea-
quark (s, s̄) and (c, c̄) pairs of the target. In addition, scaling violations, which have
been established and analyzed in charged-current reactions, must be included (Kim
et al., 1981). The analysis yields

u2
L + d2

L = 0.29 ± 0.01 and u2
R + d2

R = 0.03 ± 0.01,

which lead to the value sin2θW = 0.228 ± 0.001.

12.4 Parity violation in electron scattering

Effects of weak neutral currents in low-energy (Q2 	 M2
Z) electron–hadron reac-

tions are submerged in the dominant electromagnetic interaction. For these reac-
tions we must search for a clear signature of weak origin, such as parity violation.
Experiments of this type have been carried out in deep inelastic electron–hadron
scattering and in atomic physics (see Problem 4). The couplings of the Z boson to
electrons and quarks have been discussed already.

A parity-violating observable is the difference of cross sections for right- and
left-handed polarized electrons. These are electrons polarized along their direc-
tion of motion, i.e. electrons with definite helicity. Since helicity changes sign
under spatial reflection, a difference between the two cross sections is an indication
of parity violation. We denote the left-handed and right-handed electrons by the
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spinors

eL,R = 1

2
(1 ∓ γ5)u(k), (12.27)

respectively. Their interactions at high energies with protons and neutrons are de-
scribed with sufficient accuracy by the parton model. Consequently, we can write
the hadronic neutral current as

Jµ(x) = ūγµ[uL(1 − γ5) + uR(1 + γ5)]u + d̄γµ[dL(1 − γ5) + dR(1 + γ5)]d
(12.28)

as it appears in Eq. (12.20). The interaction of the electrons with hadrons now
involves the exchange of a photon and a Z boson. In cross sections there are contri-
butions from the electromagnetic amplitude and weak terms. The latter contribution
is responsible for the asymmetry. The amplitudes are given as

mγ = − ie2

q2
ēγµe (euūγ µu + · · ·), (12.29)

and

mZ = − ig2

cos2θW
(
q2 − M2

Z

)(
gLēLγµeL + gR ēRγµeR

)
× [

uLūγ µ(1 − γ5)u + uRūγ µ(1 + γ5)u + · · ·], (12.30)

where eu is the charge of the up quark and the ellipses indicate contributions from
other quarks. For the Z-boson couplings, gL and gR are the helicity couplings to
electrons while uL and uR are the corresponding couplings to the up quark. For
the computation of the interference term we follow the presentation of Section 8.3,
where it was shown that, in the squared amplitude, the following conditions hold.

(i) The electron bilinears are left-handed or right-handed. The same is true for the quarks.
(ii) When left-handed leptonic couplings combine with left-handed quark couplings then

dσ/dy is independent of y. The same holds for right-handed leptonic couplings with
right-handed hadronic combinations.

(iii) When left-handed leptonic couplings combine with right-handed hadronic couplings,
then the dependence is (1 − y)2.

The form of the interference terms now follows:

dσL

dx dy
∝ [

gLuL + gLuR(1 − y)2
]
u(x) + · · ·, (12.31)

dσR

dx dy
∝ [

gRuL(1 − y)2 + gR uR
]
u(x) + · · ·, (12.32)

with the subscripts L and R in the cross section denoting left- and right-handed
polarized electrons and the ellipses indicating contributions from down quarks.
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The parity-violating observable is built into the asymmetry

A = dσR − dσL

dσR + dσL
, (12.33)

which is easy to derive from (12.31) and (12.32). To arrive at the final result, we must
include the down quarks. In an isoscalar target, such as deuterium or carbon, there
are equal numbers of up and down quarks, so only the combination u(x) + d(x)
appears in the cross sections, which drops out in the asymmetry. On collecting the
various terms together, the asymmetry is expected to be

A = G Q2

√
24πα

9

5

[
a1 + a2

1 − (1 − y)2

1 + (1 + y)2

]
, (12.34)

with a1 = 1 − (20/9)sin2θW and a2 = 1 − 4 sin2θW. I have given several steps of
the derivation so that the interested reader can reproduce it using the various cou-
pling constants given in the book. The magnitude of the asymmetry for Q2 =
1 GeV2 is

A ≈ −1.6 × 10−4.

The effect was observed at the Stanford Linear Accelerator Center (SLAC) (Prescott
et al., 1978, 1979). Electron–proton and positron–proton collisions have been ex-
tended at HERA to very large values of Q2 = 400–40 000 GeV2, at which the
effects of the Z propagator are also observable.

Problems for Chapter 12

1. Make judicious use of the Schwarz inequality to prove Eqs. (12.11) and (12.14).
2. Select the Feynman rules for the electron–hadron reaction and show that the effective

interaction has the form

H ep
eff = G√

2
ēγµ(gV − gAγ5)e

[
ūγ

µ

1 (Vu + auγ5)u + d̄γ µ(Vd + ad)d + · · ·],
where

gV = 1

2
− 2 sin2θW, gA = −1

2
;

Vu =
(

1 − 8

3
sin2θW

)
, au = −1; (12.35)

Vd = −
(

1 − 4

3
sin2θW

)
, ad = 1;

and the ellipses stand for strange and heavier quarks.
3. Combine the results of the previous problem with the outline of Section 12.4 and obtain

the final form of the asymmetry.
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Figure 12.1. A schematic drawing of a Z exchange in an atom.

Figure 12.2. Feynman diagrams for electron–nucleus interaction.

4. Another manifestation of neutral-current interactions appears as parity violation in
atoms. The neutral current introduces a new interaction between the orbiting electron
and the nucleus. The total force in the atom is the sum of electromagnetic and weak
diagrams (Fig. 12.1) or can be expressed in terms of Feynman diagrams (Fig. 12.2).

The sum of the amplitudes contributes

m = ē(k ′)γ µe(k)
e2

q2
〈N |J em

µ |N 〉

+ g2

8 cos2θW
ē(k ′)γ µ(gV + gAγ5)e(k)

1

q2 − M2
Z

〈N |J NC
µ |N 〉,

where qµ = kµ − k ′
µ = p′

µ − pµ. In order to identify weak effects, a signal with parity
violation is required.

Two parity-violating amplitudes are

M1 = G√
2

ē(k ′)gAγ µγ5e(k)
{〈N |V 3

µ |N 〉 − 2 sin2θW〈N |J em
µ |N 〉}

and

M2 = G√
2

ē(k ′)gVγ µe(k)〈N |Aµ|N 〉.

For sin2θW = 0.25 (which is close to the experimental value), only the M1 amplitude
survives. For this reason and because of the suppression of the hadronic matrix element
in M2, we discuss below only M1.
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The momenta involved in atomic experiments are small, so it is convenient to obtain
a non-relativistic limit of the weak interaction.

(i) For |�k| 	 me and |�k ′| 	 me, show that

1

q2 − M2
Z

≈ 1

4π

∫
d3r ei�q·�r e−MZr

r
.

The weak interaction is of short range and, in the limit of large MZ, it acts at the
origin, where the nucleus is located. Later on we replace the Yukawa potential by
a three-dimensional δ-function.

(ii) For reduction of the hadronic matrix element to the non-relativistic limit, consider

〈N , p′|J em
µ |N , p〉 = ū(p′)

[
γµF1(q2) + iσµν

(p − p′)ν

2M
F2(q2)

]
u(p).

Show that, in the non-relativistic limit, only the µ = 0 component survives and gives
the charge Q of the nucleus. Similar arguments for the V 3

µ matrix element give

〈N , p′|V 3
µ |N , p〉 = gµ0

1

2
(Z − N ),

with Z the number of protons and N on the right-hand side the number of neutrons
in the nucleus. On combining the results from steps (i) and (ii), we find that the
nucleus generates, through the M1 amplitude, the potential

Zµ(r ) = gµ0
G√

2
δ3(�r )QW(Z , N ),

with QW(Z , N ) = 1
2 [Z (1 − 4 sin2θW) + N ].

(iii) The transition-matrix element of the electron is

〈ef|HPV|ei〉 =
∫

ēf(r )γµγ5 Zµei(r )d3r.

For atomic physics the electron wave function can be written as

ei (r ) =
⎛
⎝ 1

�σ · ��
2me

⎞
⎠ψi (r ),

with ψi (r ) the space wave function of level i, me the mass of the electron and ��
the momentum operator. Show that the matrix element reduces to

〈ef|HPV|ei〉 = G√
2

1

2me
QW

∫
d3r ψ∗

f (r )
[
�σ · ��δ3(r ) + δ3(r )σ · ��

]
ψi(r ).

The effect of the neutral current on an atomic level is to induce the mixing of levels
with opposite parities. Thus the absorption rates of beams of monochromatic light
with various polarizations by atoms differ. One effect of parity violation in heavy
atoms is the rotation of the plane of polarization of laser light passing through
atomic vapors. Such experiments have been performed and effects of the neutral
current have been observed (Bouchiat and Bouchiat, 1974).
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13

Physics of neutrinos

13.1 Neutrino masses

Neutrinos as elementary particles have remarkable properties. They have only weak
and gravitational interactions, which allows them to travel through matter making
very few interactions. They carry a global quantum number, known as lepton num-
ber, which can be broken without disturbing the conservation of electric charge.
The breaking of lepton number resides on the mass matrices which we introduce
in this section.

Their unique properties have led to several discoveries, the newest among them
being neutrino oscillations, which provide information on their mass differences
and mixing parameters. Neutrino oscillations also create new questions concerning
their properties, which are now under active investigation.

Masses for quarks and leptons were introduced in Chapters 8 and 9 through
Yukawa couplings to the Higgs doublet. The neutrino remained massless because
interactions of right-handed neutrinos had not been observed. This is a unique and
unfamiliar situation, because all other fermions have right-handed components. In
this chapter we shall describe the properties of neutrinos and introduce right-handed
neutrinos NR, which are singlets under SU(2)L. The representation content for the
electron family is

�L =
(

ν

e

)
L

, NR and eR, (13.1)

with eR,L = 1
2 (1 ± γ5)e. We should have written the right-handed state as νR; how-

ever, right-handed neutrinos will play later a special role (Majorana), so we decided
to denote them NR. There is an analogous classification of the leptonic states for
the muon and tau families.

A mass term of the form

mDν̄L NR + h.c. (13.2)

136
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is possible and is generated from the Yukawa coupling

Lν
Y =

∑
fll ′�̄

l
L�̂Nl ′

R + h.c., (13.3)

where � is the standard Higgs doublet and

�̂ = iτ2�
∗ =

(
�0

−�−

) −→
breaking

(
�0 + v

0

)
. (13.4)

We call this the Dirac mass term. The discussion so far is similar to that of quarks
and charged leptons. However, the observed extreme smallness of neutrino masses
seems to require a special treatment. It is possible to introduce another term, known
as the Majorana mass term, which brings special properties and is a candidate for
explaining the small masses.

Before we proceed with new properties of the neutrinos, it is instructive to point
out which spinors correspond to the above states. The identification is helpful when
we proceed with calculations. The Dirac equation has four solutions: two solutions
with E > 0 and two with E < 0, which describe particle and antiparticle states to
be denoted by u and v, respectively. We follow standard textbook notation with

ψ1,2 = ui e
−ip·x and ψ3,4 = vi e

ip·x for i = 1, 2, (13.5)

where, for particles moving in the z-direction, the four spinors are

u1 =
√

E + m

2m

⎛
⎜⎜⎜⎝

1
0
pz

E + m
0

⎞
⎟⎟⎟⎠, u2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎝

0
1
0

−pz

E + m

⎞
⎟⎟⎟⎟⎠,

v1 =
√

E + m

2m

⎛
⎜⎜⎜⎝

pz

E + m
0
1
0

⎞
⎟⎟⎟⎠, v2 =

√
E + m

2m

⎛
⎜⎜⎜⎜⎝

0
−pz

E + m
0
1

⎞
⎟⎟⎟⎟⎠.

(13.6)

The normalization of the spinors is as follows: ui u j = δi j and viv j = −δi j .
For massless neutrinos the spinors are eigenfunctions of the operator γ5 and we

define the spinor for the neutrino as

ν =
(

1 − γ5

2

)
u2 (13.7)

and the spinor for the antineutrino as

ν̄ =
(

1 + γ5

2

)
v1. (13.8)
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In this limit we speak of left-handed neutrinos and right-handed antineutrinos. We
also notice that in the limit pz � m there are only two independent spinors.

For massive particles the situation is different. Considering the Hamiltonian of
a free Dirac particle,

H = c �α · �p + βmc2, (13.9)

where β �α = γi and β = γ0, we notice that γ5 does not commute with the Hamil-
tonian since [γ5, γ0] �= 0. Thus, for massive neutrinos, γ5 is not a good quantum
number; i.e. the spinors are not eigenstates of the γ5 operator. For the massive case
we introduce another operator, the helicity

h = 1

2

�p · �s
| �p| = 1

2
p̂i

(
σ i 0
0 σ i

)
. (13.10)

It is easy to verify that the spinors u1 und v1 are eigenfunctions with helicity 1
2 .

Similarly, u2 und v2 are eigenfunctions of the helicity operator with eigenvalues
− 1

2 . In a given Lorentz frame, helicity in a reaction is conserved. However, the
helicity of a massive particle depends on the frame, because, by moving very fast,
we can reverse the momentum of a particle, leaving its spin unchanged.

A new mass term of the form

1

2
Mm N̄ c

R NR + h.c. (13.11)

is allowed to be present, since it is Lorentz- and SU(2)L-invariant. This is known
as a Majorana mass term and is unique to neutrinos, which are neutral particles. A
Majorana mass term conserves electric charge but changes the lepton number by
two units. It may be introduced to the Langrangian as an additional term or as a
new interaction term, coupled to a new scalar particle which is an SU(2)L singlet.
A Majorana mass is generated by assigning to the new scalar particle a vacuum
expectation value. Consequently, we generate Dirac mass terms through Eq. (13.3)
and a Majorana term through Eq. (13.11). On collecting these terms together, one
obtains the neutrino mass matrix:

(
ν̄L N̄ c

R

)( 0 mD

mT
D Mm

)(
νL

NR

)
. (13.12)

Once we have introduced mass terms that do not preserve the original symmetry,
we must solve the problem again using the Lagrangian. This means that, after
introducing Dirac and/or Majorana mass terms, we should solve the problem using
the rules of the new Lagrangian (see Problem 13.3). For our specific case, we can no
longer use the eigenfunctions of Eq. (13.6). We must diagonalize the mass matrix
and use the new mass eigenstates (physical states) which will have components
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that couple the various flavors with each other and, in addition, couple particles to
antiparticles (when Majorana mass terms are present).

For Mm � mD the mass matrix of the form given in Eq. (13.12) has eigenvalues
with specific properties: one eigenvalue is large and the other is suppressed. This
method of introducing masses for neutrinos is known as the see-saw mechanism,
to which we shall return in the fourth section. In the meantime we shall discuss
neutrino oscillations in free space and in matter, which are active fields of research
nowadays.

13.2 Neutrino oscillations

The couplings of Dirac neutrinos to charged and neutral currents conserve the
lepton number, as has been tested in many experiments. Lepton flavor can be
violated in the mass matrix, with the appearance of off-diagonal elements. In this
case the eigenfunctions of the Hamiltonian are superpositions of neutrinos with
various flavor numbers. We shall call them the mass eigenstates and they have the
time development given below in Eq. (13.14). In a physical reaction, however, the
neutrinos that are produced have definite flavor number. Their time development
requires special attention because we must rewrite the flavor states in terms of mass
eigenstates, whose time development is that given in Eq. (13.14). This mis-match
between the production of flavor states and the time development of mass states
leads to an oscillation of lepton quantum numbers that will be described below.

We demonstrate the mixing phenomenon for two generations of neutrinos, for
which the algebra is simpler. We consider νe and νµ neutrinos with the mass matrix

i
∂

∂t

(
νe

νµ

)
= Hmass

(
νe

νµ

)
, with Hmass =

(
mee meµ

mµe mµµ

)
. (13.13)

The mass matrix mixes electron and muon neutrinos in a manner analogous to
atomic physics, where energy levels are mixed through the interactions with external
fields, such as magnetic fields. For the sake of simplicity, we assume that the
matrix elements are real and in addition that mµe = meµ. A symmetric matrix is
diagonalized by an orthogonal matrix to be denoted by O and has the eigenvalues
m1 and m2. A mass eigenstate with momentum p has the time development

|νi (t)〉 = |νi (0)〉e−iEi t , (13.14)

with i = 1 or 2 and Ei =
√

p2 + m2
i . To avoid confusion, we shall use two types of

subscripts, with numbers denoting physical eigenstates and letters denoting flavor
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states. Let us parametrize the orthogonal matrix as follows:

O =
(

cos θ sin θ

−sin θ cos θ

)
;

then the mass eigenstates are given by(
ν1(t)
ν2(t)

)
=

(
cos θ −sin θ

sin θ cos θ

)(
νe(t)
νµ(t)

)
. (13.15)

We can easily invert this equation to obtain(
νe(t)
νµ(t)

)
=

(
cos θ sin θ

−sin θ cos θ

)(
ν1(t)
ν2(t)

)
, (13.16)

which, with the help of Eq. (13.14), can be rewritten as

|νe(t)〉 = e−iE1t |ν1(0)〉cos θ + e−iE2t |ν2(0)〉sin θ,

|νµ(t)〉 = −e−iE1t |ν1(0)〉sin θ + e−iE2t |ν2(0)〉cos θ. (13.17)

The general structure of these equations is summarized by

|να(t)〉 =
∑

k=1,2

Uαke−iEk t |νk(0)〉,

with the unitary matrix Uαk defining the mixing between flavor and mass states.
The mixing matrix was introduced a long time ago and is referred to as the MNS
matrix (Maki et al., 1962).

On replacing ν1(0) and ν2(0) by the flavor eigenstates given in Eq. (13.15), we
obtain the final result

|νe(t)〉 = (cos2θ e−iE1t + sin2θ e−iE2t )|νe(0)〉
+ sin θ cos θ (e−iE2t − e−iE1t )|νµ(0)〉,

(13.18)|νµ(t)〉 = sin θ cos θ (e−iE2t − e−iE1t )|νe(0)〉
+ (cos2θ e−iE1t + sin2θ e−iE2t )|νµ(0)〉.

This shows explicitly that the flavor content of the wave function changes with
time. For example, at t = 0 the first equation contains only an electron neutrino.
In the course of time a νµ component develops. The second equation describes a
state which starts as νµ(0).

We consider a state that starts as νe(0) and compute the probability of finding a
νe(t). The masses of the neutrinos are small relative to their momenta and one can
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use the approximation Ei =
√

p2 + m2
i ≈ E[1 + m2

i /(2E2)] to arrive at

Pee(t) = |〈νe|νe(t)〉|2 = 1 − sin2(2θ )sin2

(
m2

4E
t

)
, (13.19)

with m2 = m2
2 − m2

1. Similarly, we compute the probability of finding a νµ at
time t ,

Pµe(t) = |〈νµ|νe(t)〉|2 = sin2(2θ )sin2

(
m2

4E
t

)
. (13.20)

The sum of the two probabilities is equal to unity. A mono-energetic neutrino
beam thus oscillates with amplitude sin2(2θ ) and wave-number m2/(4E). For
oscillations to occur, we need a non-zero θ and at least one non-zero mass. The
amplitude is maximal for θ = π/4.

In vacuum-oscillation experiments there is a redundancy in the values of the
mixing angle. The same numerical value of sin2(2θ ) appears eight times when θ

varies between zero and 2π. This means that in oscillation experiments it suffices to
consider angles in the interval between zero and π/4. In other situations for which
the mixing depends on cos(2θ ) the range for the mixing angle must be extended
from 0 to π/2, as we shall discuss at the end of the next section.

We can express the various quantities in useful units and substitute t 
 L , where
the speed of light c is set equal to unity,

m2 L

4E
= 1.27

L

km

m2

eV2

GeV

E
. (13.21)

This entity is a dimensionless quantity and we are free to use the units. The units
in Eq. (13.21) are now standard and convenient for terrestrial experiments. This
formula defines the sensitivity of an experiment, since oscillations occur when
m2L/E is of order unity. As a function of the baseline length, the maximum of
the oscillation occurs at L 
 2E/m2.

The generalization to three or more families is straightforward and leads to the
transition probability

|〈νβ|να(t)〉|2 = δαβ − 2 Re

{∑
j>i

UαiU
∗
α jU

∗
βiUβ j

[
1 − exp

(
−i

m2
i j

2E
L

)]}
.

(13.22)

For two neutrino families, Uαi is a simple 2 × 2 orthogonal matrix. Upon substi-
tution the probabilities simplify to Eqs. (13.19) and (13.20). For three families a
hierarchy of the form m2

12 � m2
13 
 m2

23 and the smallness of one mixing-
matrix element (Ue3) describes all existing experiments.
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Finally, we present a simple description of what happens in oscillations. A |να〉
is composed of various waves with different mi . At a given energy the heavier mass
states oscillate faster and the various |νi 〉 components come out of phase, so at a
certain distance they do not sum up to a |να〉. Since the oscillatory term comes from
an interference between the different mi , a common phase factor of the |νi 〉s plays
no role and can be ignored. This will be useful in the next section, when we turn to
oscillation in matter.

13.2.1 Oscillation in matter

The neutral-current interaction of neutrinos with matter is extremely weak, but
can nonetheless affect oscillations (Wolfenstein, 1978). The reason is that the mo-
mentum transfer to the target can have a large wavelength, such that the neutrino
interacts coherently with all the particles within its wavelength. At the same time
the difference E1 − E2 
 m2

12/(2E) may correspond to a wavelength of the same
magnitude, so the time development of the mass eigenstates is influenced by the in-
teractions with the medium. In the medium the flavor eigenstates νe and νµ interact
with electrons and protons with different cross sections and modify the development
of the mass eigenstates.

The Hamiltonian on the mass basis is given by

i
∂�i

∂t
= H0�i = Ei�i 
 p

(
1 + m2

i

2p2

)
�i → m2

i

2E
�i , (13.23)

where after the arrow we omitted the term proportional to the unit matrix. This
term does not influence the oscillations because it can be eliminated by the trans-
formation νi → νi e−ipt common for all neutrinos. For this reason we can simplify
the Hamiltonian,

H0� = H0

(
ν1

ν2

)
= 1

2E

(
m2

1 0
0 m2

2

)(
ν1

ν2

)
. (13.24)

The interactions with matter, however, involve flavor states. For this reason
we transform the equations to the flavor basis where we include the interactions
with matter. The solution of the new eigenvalue problem describes the propagating
eigenfunctions. In the flavor basis

Hflavor ≡ 1

2E
U

(
m2

1 0
0 m2

2

)
U † = 1

4E

(
� − m2 cos(2θ ) m2 sin(2θ )

m2 sin(2θ ) � + m2 cos(2θ )

)
,

(13.25)

where � = m2
1 + m2

2, m2 = m2
1 − m2

2, and U is the mixing matrix in Eq. (13.16).
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In a medium there is an additional interaction Hamiltonian created by the neutral
and charged currents. Recall the interaction term from Chapter 8,

Hint = GF√
2

ψ̄ xγµ

(
gx

V − gx
Aγ5

)
ψx ψ̄νeγ

µ(1 − γ5)ψνe . (13.26)

Here x denotes weakly interacting particles in the medium, which in the Sun are
electrons, neutrons, and protons. For left-handed neutrinos (1 − γ5)ψν = 2ψν. The
term 〈ψ̄ xγµγ5ψx〉 reduces in the non-relativistic limit to the expectation value for
the spin operator. In an unpolarized medium, the states ψx occupy all possible spin
states and this term averages to zero. For the remaining term 〈ψ̄ xγµψx〉 the space
components are proportional to the momentum of the particles, which is small.
Consequently only the term 〈ψ̄ xγ0ψx〉 = nx survives and is equal to the density
of the particles nx . This term produces the potential gx

V

√
2GFnxψ

†
νeψνe which is

added to the Hamiltonian. Finally, we obtain the Schrödinger equation from the
Euler–Lagrange equation for ψ

†
νe .

We already know the couplings of neutrinos to electrons from Section 8.3, where
they are summarized in Table 8.1. The couplings to nucleons are obtained in a similar
way:

ge
V = 1

2 + 2 sin2θW for νe,

ge
V = − 1

2 + 2 sin2θW for νµ,
(13.27)

gp
V = 1

2 − 2 sin2θW for να,

gn
V = − 1

2 for να,

with α being either the electron neutrino or the muon neutrino. The difference
of 1 in the ge

V contribution between νe and νµ comes from the Fierz-transformed
charged-current term in the Hamiltonian. In an electrically neutral medium ne = np,
therefore

V =
√

2GF ×
{− 1

2 nn + ne for νe,

− 1
2 nn for νµ.

(13.28)

The new contribution from the scattering with matter must be added to the ee and
µµ elements of Hflavor, yielding a propagation equation

i
d

dt

(
νe

νµ

)
= 1

2E

(
m2

ee + 2
√

2EGFne m2
eµ

m2
eµ m2

µµ

)(
νe

νµ

)
, (13.29)
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with matrix elements

m2
ee = − 1

2 m2 cos(2θ ),

m2
µµ = 1

2 m2 cos(2θ ), (13.30)

m2
eµ = 1

2 m2 sin(2θ ).

One sees that effects of matter become more important at higher energy. Note
that we ignored terms proportional to the unit matrix. Apart from the aforemen-
tioned fact that they can be transformed away, there is another justification: after
diagonalization the mixing angle and the difference between the eigenvalues are
independent of equal diagonal terms (see Problem 13.1). Exactly such terms ap-
pear in the formula (13.30) for the oscillation probability and have been omitted.
Diagonalization of the matrix gives the mass difference

m2
2M − m2

1M = m2
M = m2

√
[A − cos(2θ )]2 + sin2(2θ ), (13.31)

where

A ≡ 2
√

2EGFne

m2
,

and the mixing angle (Wolfenstein, 1978; Mikheyev and Smirnov, 1985)

tan(2θM) = sin(2θ )

cos(2θ ) − A
⇒ sin2(2θM) = sin2(2θ )

[cos(2θ ) − A]2 + sin2(2θ )
. (13.32)

In the limit ne → 0, we recover the formulas for oscillation in vacuum. The careful
reader will notice that there is a resonance effect when A = cos(2θ ) (Mikheyev and
Smirnov, 1985). For this value of A the mixing in the medium is maximal, even
though the mixing in the vacuum can be very small.

The angle θM expresses the matter eigenstates in terms of the flavor states(
ν1M

ν2M

)
=

(
cos θM −sin θM

sin θM cos θM

)(
νe

νµ

)
. (13.33)

We discuss two cases realized in the Sun. We know that electron-type neutrinos
are created in the interior of the Sun, where ne is very large. In that region

tan(2θM) 
 −2θ

A
and θM 
 π

2
, (13.34)

since tan(2θM) approaches zero from negative values. Equation (13.33) now gives
ν1M 
 −νµ and ν2M 
 νe, i.e. in the interior of the Sun the state with the heavier
effective mass is the electron neutrino. As the beam transverses the Sun, ne decreases
and tan(2θM) 
 tan(2θ ), therefore θM 
 θ and ν2M 
 νµ. The flavor content of the



13.3 Experimental results 145

beam changes. This phenomenon is called the MSW effect. It will be interesting
to measure in terrestrial experiments the lepton-number content of the neutrinos
arriving from the Sun.

Next we discuss terrestrial experiments with a νµ beam going through the Earth.
This situation can be realized in long-baseline accelerator experiments or via at-
mospheric neutrinos. We assume that the νµ oscillates into another flavor state, as
reported from the Superkamiokande experiment. Two cases are of interest.

Case 1

The νµ mixes with the ντ. The interaction with matter proceeds with the exchange
of a Z0 boson and is identical for µ and τ neutrinos. It will thus add the same term to
the diagonal elements of Hflavor, which does not affect the oscillation. This means
that no effects of matter appear.

Case 2

The νµ mixes with a sterile neutrino νs. The interaction with matter in the transition
νµ → νµ proceeds through the exchange of a Z0 boson, but there is no such process
for the νs. We must add an interaction with matter only in the µµ element and the
propagation Hamiltonian has the form

Hflavor = 1

2E

(
m2

µµ − √
2EGFnn m2

µs

m2
µs m2

ss

)
. (13.35)

The notation is analogous to that in Eq. (13.30) with mass elements m2
µµ, m2

µs,
and m2

ss similar to those in Eq. (13.30). The angle θ now governs the oscillation
between νµ and νs. We note that the sign of the matter term is reversed and the
neutron density nn replaces the density of electrons.

Finally, Eqs. (13.31) and (13.32) depend on cos(2θ ) and the range 0 ≤ θ ≤ π/4
does not cover negative values of cos(2θ ). The range must now be extended to
0 ≤ θ ≤ π/2.

13.3 Experimental results

There has been a long search for neutrino oscillations. The experiments were
carried out with neutrino beams from nuclear reactors, the Sun, and accelerators,
and recently with atmospheric neutrinos. In recent years several experiments have
provided evidence for neutrino oscillation. We will not discuss the experiments in
detail but only summarize the main results. For an overview of the current status,
see Mohapatra et al. (2005).
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� Atmospheric neutrinos Compelling evidence for oscillation comes from experiments
with atmospheric neutrinos. They are produced in the atmosphere by meson decays,
which in turn are produced by the interaction of cosmic rays with nuclei of the atmos-
phere. Both electron and muon neutrinos are produced in pion and muon decays and the
ratio at production is roughly two muon neutrinos to one electron neutrino. Neutrino in-
teractions are detected in a huge underground target/detector – the Superkamiokande.
The experiment established that there is a decrease in the number of muon-type neutrinos
and no decrease in number of electron neutrinos. This implies that the νµ neutrinos
oscillate into another type, such as τ or sterile (see below) neutrinos. A zenith-angle
dependence of the disappearance is observed, whereby more of the neutrinos coming from
underneath the detector disappear. They are produced in the atmosphere and travel through
the Earth in order to reach the detector. These observations require a mass difference of
m2 
 2 × 10−3 eV2 and the mixing angle to be maximal.

� Solar neutrinos Nuclear reactions in the Sun produce a tremendous amount of heat,
which is radiated and at the same time produces electron neutrinos. The cycles which
produce them have been studied and the neutrino spectra have been calculated. For three
decades experiments measuring the flux of neutrinos from the Sun have observed deficits,
indicating that νe neutrinos, during their journey from Sun to Earth, oscillate into other
types of neutrinos. Previous experiments trying to verify this result with reactor neutri-
nos failed to find a deficit, indicating that the distance of 1 km from the reactors is too
small. The explanation of the solar deficit requires that it is either oscillation in vacuum
with a large mixing angle and m2 
 10−10 eV2 or oscillations inside the Sun where
effects of matter according to the MSW effect are important. The latter possibility gives
two solutions with either large mixing (LAMSW) or small mixing (SAMSW) and with
m2 
 8 × 10−5 eV2.

� Reactor experiments Reactor experiments search for a decrease of the antineutrino flux
far away from the reactor. The CHOOZ collaboration detected ν̄e at a distance of 1
km away but saw no deficit. These data restrict the mixing angle θ13, as we will discuss
below. The experiment KamLAND measured the flux of ν̄e neutrinos from distant nuclear
reactors. The experiment uses a target containing 1000 tons of liquid scintillator viewed
by more than 1800 light-detecting photomultiplier tubes. It detects electron antineutrinos
emitted by ∼70 nuclear reactors in Japan and South Korea arriving from an average
distance of 180 km. The ratio of the observed antineutrino interactions to the expected
number without disappearance of ν̄e is 0.611 ± 0.085 (statistical uncertainty) ± 0.041
(systematic uncertainty) for ν̄e energies >3.4 MeV. In the two-flavor analysis only the
“large-mixing-angle” solution is allowed. The best fit of their data gives m2

12 = 6.9 ×
10−5 eV2 and sin2(2θ ) = 1.0, which selects the large-mixing-angle solution.

� The Sudbury experiment The Sudbury Neutrino Observatory (SNO) detects 8B solar
neutrinos through the reactions

νe + d → p + p + e−,

νx + d → p + n + νx ,

νx + e− → νx + e−,
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where the subscript x denotes any type of flavor. Only electron neutrinos produce charged-
current interactions, while the neutral-current (NC) interactions and elastic scattering are
sensitive to all types of flavors. The NC reaction measures the total flux of all active
neutrino flavors produced in the Sun with energy above the threshold of 2.2 MeV. This
provides a measurement of the solar neutrino flux as

5.21 ± 0.27 (statistical uncertainty) ± 0.38 (systematic uncertainty) × 106 cm−2 s−1,

which is in agreement with the standard solar models. A global analysis of these and other
solar- and reactor-neutrino results yields m2 = 7.1 +1.2

−0.6 × 10−5 eV2 and θ = 32.5 +2.4
−2.3

degrees.
� Accelerator neutrinos The LSND experiment has found an electron-antineutrino excess

in a muon-antineutrino beam. The solution would be small mixing and a mass-squared
difference of 0.1–1 eV2. However, the very similar KARMEN experiment has found no
such effect, but it cannot rule out LSND’s complete parameter space. The LSND results are
referred to as the LSND anomaly because the large mass difference cannot be reconciled
with the three-family model. The MiniBoone experiment at Fermilab is currently running
with the aim of checking the LSND result.

� Long-base-line experiments There are several experiments that will use two detectors,
one close to the accelerator, where the neutrino beam is produced, and a second detector
at a distance of 200–400 km. The nearby detector will be used for calibration reasons to
determine the beam and properties of the neutrino reactions. The faraway detector will
be looking at the changes that take place because muon neutrinos oscillate to neutrinos
of another flavor. A small-scale experiment, K2K, operated in Japan and two others are
under construction, MINOS in the USA and OPERA in Europe.

For three flavors of neutrinos there are only two independent m2. If the result
from the LSND experiment is correct, then there must be a fourth flavor, which has
to be “sterile,” i.e. it does not couple to the gauge bosons and therefore does not
contribute to the Z0 width. The results of the other experiments are summarized as
follows:

(m2 (eV2), sin2θ ) 

{

(2 × 10−3, 
0.5), atmospheric,

(7 × 10−5, 
0.3) LAMSW, solar, KamLAND.
(13.36)

We can now estimate the magnitude of the leptonic MNS matrix. Let us ignore
the LSND result and assume that there are two mass-squared differences govern-
ing the atmospheric and solar oscillation. They obey m2

� � m2
A. If we iden-

tify m2
21 = m2

� � m2
A = m2

31 
 m2
32, then we have, for a short-baseline

reactor experiment such as CHOOZ (see Problem 2),

PCHOOZ
ee = 1 − 4|Ue3|2(1 − |Ue3|2)sin231, (13.37)
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where i j = m2
i j L/(4E) and L is the distance for the CHOOZ experiment. The

absence of disappearance of neutrinos in the experiment means that |Ue3| is either
small or close to unity. The probability for solar neutrinos is (Bilenky, 2003)

P�
ee = (1 − |Ue3|2)2

(
1 − 4

|Ue1|2|Ue2|2
(1 − |Ue3|2)2

sin221

)
+ |Ue3|4. (13.38)

Experimentally, P�
ee is significantly less than unity and also energy-dependent. On

combining the results of the CHOOZ experiment with the solar deficit, we conclude
that |Ue3|2 � 1. Finally, atmospheric neutrinos oscillate with

PA
µτ = 4|Uµ3|2|Uτ3|2 sin231. (13.39)

Note that oscillations of reactor and atmospheric neutrinos are triggered by the same
m2. If for the latter we use m2 = 3 × 10−3 eV2, CHOOZ gives |Ue3|2 <∼ 0.05.
As a first approximation we can assume |Ue3| 
 0, maximal atmospheric mixing,
and the LAMSW solution for solar mixing. With these results, we can approximate
the MNS matrix by

Uαi 

⎛
⎝ c s 0

−s/2 c/2 1/
√

2
s/2 −c/2 1/

√
2

⎞
⎠LAMSW, (13.40)

where c = cos θ , s = sin θ , and s2 
 0.3. Note that there can be a phase in the
matrix, resulting in CP violation as in the quark sector. However, for Ue3 = 0 the
theory is effectively a two-flavor theory. Only for a non-vanishing Ue3 element
could one establish CP violation in long-baseline experiments.

If neutrinos are Majorana particles (see below), then there are two additional
phases in the mixing matrix. They can be shown to have no influence on oscillation
physics and reveal their presence only in neutrinoless double beta decay, which we
will discuss below.

13.4 Majorana neutrinos

The results of the last section give strong evidence in favor of massive neutrinos.
The oscillations indicate that in the leptonic sector flavor number is not conserved,
i.e. muon neutrinos can become tau neutrinos, etc. This is a change from one
family to the next. So far there has been no discussion of a particle changing into
its antiparticle. The mixing among the families is produced when we introduce a
mass term of the form

LD =
∑
i, j

mi j
Dψ iψ j + h.c., (13.41)
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with i and j running over the families. For the electroweak theory, special attention
is required because the states are classified according to helicities – with left-handed
particles in doublets and right-handed particles in singlets of weak SU(2). The mass
term is now

LD =
∑
i, j

mi j
D ψ̄LiψR j + h.c. (13.42)

It is known as the Dirac mass term and is produced by the Higgs mechanism, as
described at the beginning of this chapter.

There is also the possibility of introducing new mass terms,

1

2
MR N̄ c

R NR and
1

2
MLν̄c

LνL (13.43)

and their Hermitian conjugates, which are called Majorana mass terms. Obviously,
Majorana mass terms can include mixing among the generations by introducing
indices i and j, as in Eq. (13.42). They also mix neutrinos with antineutrinos. The
new terms are Lorentz-invariant, and they carry lepton number two, thus introducing
violation of the lepton number. Again, special attention must be paid to the peculiar
property of the electroweak theory which classifies the states according to helicities.
This introduces special requirements on the terms which are allowed. For instance,
the Lorentz structure gives the identities N̄ R NR = ν̄LνL = 0 and N̄ Rνc

L = ν̄L N c
R =

0. A Majorana state is defined as one with equal components of particles and
antiparticles. It follows from the above identities that

(
N̄ c

R + N̄ R
)(

N c
R + NR

) = N̄ c
R NR + N̄ R N c

R,

which indicates that the mass terms introduced do indeed correspond to Majorana
particles.

Similarly, specific terms are permitted by the SU(2) symmetry. We can introduce
the term MR N̄ c

R NR, since it is Lorentz-invariant and SU(2) singlet. We cannot
introduce the term MLν̄c

LνL, because it is the direct product of a doublet with a
doublet, which decomposes into an SU(2) singlet plus a triplet. Their product with
the Higgs doublet cannot produce a singlet. Similarly, their product with a singlet
produces a singlet and a triplet. SU(2) symmetry dictates that ML = 0, unless we
introduce triplet representations of Higgses. The possible mass terms are a Dirac
mass term as in Eq. (13.42) and, in addition, a Majorana term appearing as the first
term in Eq. (13.43). We sum up these terms in a matrix notation:

Lmass =
(
ν̄L N̄ c

R

)( 0 mD

mD MR

)(
νc

L

NR

)
+ h.c. (13.44)



150 Physics of neutrinos

We can diagonalize this mass matrix with an orthogonal transformation. The eigen-
values are

λ1,2 = 1

2

(
MR ±

√
M2

R + 4m2
D

)
, (13.45)

which for mD/MR � 1 become

λ1 = − m2
D

MR
and λ2 = MR + m2

D

MR
. (13.46)

The case we studied is called the seesaw mechanism (Gell-Mann et al., 1979;
Yanagida, 1979; Minkowski, 1977) because when one mass is large the other is
small. Now, since the neutrino masses are very small relative to lepton and quark
masses, for instance mν ≈ 10−2 eV, the seesaw mechanism supplies an explanation
provided that the Majorana mass, MR, is large.

The corresponding wave functions, omitting a normalization constant, are

ψ1 = νL + m

MR
N c

R,

(13.47)
ψ2 = − m

M
νc

L + NR,

indicating that ψ1 consists primarily of the normal neutrino with a small admixture
of N c

R. The other state ψ2 is the heavy state with a large component NR and a small
admixture of νc

L.

Identifying νL or ψ1 with the standard-model neutrinos explains their lightness by
introducing a heavy scale. It follows a hierarchical mass scheme for the neutrinos.
Neutrino masses mν 
 10−2 eV require mR 
 1016 GeV for a Dirac scale of 1 GeV.
This is a typical scale of grand unified theories, which is one of the reasons why
seesaw models are very popular.

13.5 Neutrinoless double beta decay

Much effort has been devoted to discovering the nature of the neutrino. The
experimental results on oscillations are independent of the Majorana character
of the neutrinos. They observe oscillation of flavors. Experiments also search for
evidence of Majorana neutrinos. A reaction that is conceptually simple concerns
the conversion

νe + N → e+ + hadrons,

which has, unfortunately, a very small cross section. Theoretical estimates indicate
that the rate for a neutrino with an energy of 1 GeV is 10−18–10−22 times smaller
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Figure 13.1. Neutrinoless double beta decay.

than the normal charged-current cross section. Experiments with neutrino beams
are far away from these limits.

A favorable reaction is

2n → 2p + (e−e−),

which is known as neutrinoless double beta decay and is indicated as 0νββ. The
process is shown in Fig. 13.1 where a nucleus with Z protons and A − Z neutrons
emits two W− bosons and decays into a nucleus with Z + 2 protons and A − Z −
2 neutrons. The two W− bosons interact with each other and convert into two
electrons. The lepton propagator is a Majorana neutrino containing both particles
and antiparticles. The amplitude for the process contains the leptonic tensor

Lαβ(0νββ) ∝ U 2
ei ēγαγ−

/p + mi

p2 − m2
i

γβγ+e = U 2
ei mi

1

p2
ēγαγ−γβe, (13.48)

where p is the momentum of the propagating neutrino, mi its mass, and e are the
electron fields. The element Uei gives the coupling of the electron to the i th neutrino
mass state. There is also a corresponding hadronic tensor W αβ , whose structure is
rather complicated. Its structure is unfortunately left out in most theoretical articles
and discussions in spite of the fact that it introduces considerable uncertainty in
the predictions. The decay rate of the process is obtained by first summing the
amplitudes over all intermediate states and then squaring the total amplitude to
arrive at

�(0νββ) = A

∣∣∣∣∣
∑

i

U 2
ei mi

∣∣∣∣∣
2

, (13.49)

where A is a non-trivial factor representing nuclear matrix elements. The quantity

mee =
∑

i

U 2
ei mi , (13.50)
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with the sum running over all neutrinos, is called the effective electron-neutrino
Majorana mass, or in short the effective neutrino mass. The neutrino masses in
the propagator are physical masses and are very small relative to q2 involved in
nuclear decays. The masses mi and the mixing elements Uei also appear in the
oscillations of neutrinos. Unfortunately, the oscillation experiments measure
m2

i j , i.e. mass differences, rather than absolute values for the masses. They also
measure the squares of the Uei , which in general are complex functions. Thus,
extracting mass differences and mixing angles from oscillation experiments, there
is still a large range of values possible for mee (Pascoli et al., 2005; Choubey
and Rodejohann, 2005). Processes depending on the effective Majorana mass have
branching ratios and cross sections that can be very small. The current limit for
mee comes from neutrinoless double beta decay of 76Ge and is approximately
0.2 eV. There is only one experiment (Klapdor-Kleingrothaus et al., 2004) in which
it has been claimed that the Majorana mass has been measured. The best value given
by the group is 〈mee〉 = 0.39 eV, but the data analysis of this experiment has been
criticized (Aalseth etal., 2004). There are plans to build improved experiments.
This is a difficult but very interesting and exciting field, regarding which the reader
can consult other articles (Aalseth et al., 2004).

Problems for Chapter 13

1. Show that the mixing angle θ in the matrix

U =
(

cos θ sin θ

−sin θ cos θ

)
which diagonalizes the symmetric matrix

M =
(

a b
b d

)
is given by

tan(2θ ) = 2b

d − a

and the eigenvalues

E1,2 = 1

2

[
(a + d) ± 2b

sin(2θ )

]
.

What happens to the mixing angle and the difference of the eigenvalues of M when one
adds a term proportional to the unit matrix to M?

2. For three generations there are only two independent mass differences. For this reason
the observation of two oscillations, e → µ and µ → τ, determines the mass-squared
differences

m2
� = m2

12,

m2
A = m2

23 = m2
31.
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For the CHOOZ experiment the distance is approximately a kilometer, so m2
12 L/E

is very small and does not contribute to the oscillation.
(i) Use Eq. (13.22) and approximations suggested by the description of this problem

to derive Eq. (13.39).
(ii) Use again Eq. (13.22), the same approximations, and the unitarity of the mixing

matrix to derive Eq. (13.37).
3. The general Lagrangian with Dirac and Majorana mass terms is

−L = ψ̄ ∂/ψ + MD
[
ψ̄LψR + h.c.

] + ML

2

[
(ψ̄L)cψL + h.c.

] + MR

2

[
(ψ̄R)cψR + h.c.

]
,

with ML and MR being Majorana mass terms for the left- and right-handed neutrinos.
(i) Show that it can be written in the form

−L = V̄ ∂/V + V̄ [M]V,

where V is a column matrix,

V = 1

2

(
ψL + (ψL)c

ψR + (ψR)c

)
,

and [M] is a symmetric matrix,

[M] =
(

ML MD

MD MR

)
.

[M] is the neutrino mass matrix. For ML = 0 it reduces to the seesaw case.
(ii) Let ψ1 and ψ2 be the eigenvector fields of the mass matrix with eigenvalues λ1 and

λ2, respectively. Then show that L can be rewritten as

−L = ψ̄1 ∂/ψ1 + ψ̄2 ∂/ψ2 + λ1ψ̄1ψ1 + λ2ψ̄2ψ2.

The physics content of the Lagrangian is now clear: it is the free Lagrangian for two
particles ψ1 and ψ2.

4. Consider the Dirac Lagrangian and add the term

ψ̄(x)γ5ψ(x)φ.

The Dirac equation now becomes

[i ∂/ − γ5φ − m]ψ(x) = 0.

When φ(x) is a function of xµ, the addition term represents the interaction of the fermion
with a scalar field. We may also consider φ to be a constant, i.e. independent of space
and time. Consider the latter case and search for plane-wave solutions

ψ(x) = u(p)e−ip·x .

(a) Which condition must pµ satisfy in order for solutions to exist?
(b) Once pµ satisfies the conditions, which are the linearly independent spinors?
(c) Find a chiral transformation T = eiγ5θ so that the Dirac equation is brought into the

form (i ∂/ − m̃)ψ(x) = 0.

Comment This exercise shows that, whenever φ is a constant, the term φψ̄(x)γ5ψ(x)
is a mass term. It also follows that the sign of the fermion mass can be changed by a
chiral transformation.
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14

Heavy quarks

14.1 Introduction

When quarks were introduced into physics, they were considered to be light, like
the up, the down, and the strange quarks. Their bound states were light mesons,
such as the π and K mesons. In fact, light states were interpreted as the Goldstone
bosons of the SU(3) symmetry with several of the aspects of Goldstone particles
discussed in Chapter 5.

The next quark is the charm quark, which was formulated in order to suppress
flavor-changing-neutral couplings in the K mesons (Glashow et al., 1970) (GIM
henceforth). Since the charm quark is much heavier than the proton, its existence
gave rise to the possibility that additional heavy quarks may exist. The expectation
was confirmed with the discoveries of the bottom and top quarks when accelerators
of higher and higher energies began operating.

The precise definition of quark masses is a delicate topic and for this reason
we shall discuss some of the issues involved. Masses of fermions appear in the
electroweak Lagrangian after the breaking of the symmetry, i.e. when the Higgs field
acquires a vacuum expectation value. Masses for particles are measured through
their interactions with an external field; for example, the bending of an electron
beam in a magnetic field determines the ratio e/m. The interaction contains higher-
order corrections, which must be included. For leptons the masses are defined as
poles of the propagators. For quarks the situation is more complicated because they
never appear as free particles, but are always confined within hadrons. The masses
of quarks must include radiative corrections from the forces which confine them. On
the energy scale of the heavy quarks the strong coupling constant is small enough
to allow perturbative calculations. We define the running quark mass m(p2) as the
renormalized mass parameter in the quark propagator

S(p) = i

p/ − m0 − �(p) + iε
= iZ3(p)

p/ − m(p2) + iε
. (14.1)

155
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In this expression m0 is the bare mass and �(p) is the fermion self-energy cor-
rection obtained in perturbation theory, which contains infinite terms. The infinite
terms combine with m0 to define the physical mass and define the wave-function
renormalization Z3(p). The specific method for eliminating (subtracting) the in-
finity is scheme-dependent and brings into the definition of masses and coupling
constants the renormalization scale µ0, where the subtraction takes place. This
is very similar to the definition of the running coupling constant described in
Section 11.2.

So far have we defined quark masses as functions of the renormalization point
µ0 and the momentum p at which they are measured. We need an additional pre-
scription for relating them to masses of hadrons or for describing how we estimate
reactions in which heavy quarks occur. There are several methods for extracting
quark masses from physical processes. One of them uses sum rules over two-
point functions (spectral functions), which are saturated by physical data and are
matched to theoretical expressions that include running quark masses (Narison,
2001; Manohar, 2000). Another method appeals to decays of mesons containing a
single heavy quark. Here one computes the decay in a two-fold expansion: in pow-
ers of αs(p) and a non-perturbative series in powers of �QCD/m Q (Manohar and
Wise, 2000). The masses extracted by the various methods are close to each other
and contain an explicit dependence on the momentum at which they are measured.
The spectrum that emerges for the new quarks is

mc(mc) = 1.15–1.35 GeV,

mb(mb) = 4.6–4.9 GeV.

The mass of the top quark is determined in another way. The observed events
are attributed to the production of tt̄ pairs and their subsequent decays into leptons
and hadron jets. The production of the pairs is computed in the parton model using
lowest-order QCD. The value for the top quark appears in the calculation and
the value which optimizes the fit is reported as the standard-model mass, giving
(CDF/DO, 2005)

mt = 174.3 ± 3.4 GeV.

Besides the masses of the heavy quarks we need their couplings to charged and
neutral currents. They are accurately determined by the gauge nature of the theory
and experimental data. The couplings have already been discussed in Chapter 9.

There are several other properties of heavy quarks that we take up in this chapter.
First, the decays of states containing heavy quarks involve hadronic matrix elements
that simplify considerably. In addition, when they appear as intermediate states in
loop diagrams, they dominate the diagrams and produce new phenomena such as
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the mixing of states and CP asymmetries. Examples of the new phenomena are
(i) B0–B̄0 mixing dominated by box diagrams and (ii) some CP asymmetries dom-
inated by penguin diagrams. Finally, heavy quarks may have strong couplings to
induce bound states that imitate the Higgs particles. Some of these topics will be
covered in this and the following chapters.

It is still interesting to ask which quarks are considered to be heavy. A heavy
state is one with

mq � �QCD,

where according to QCD the interparticle forces become weak. For instance, the
inclusive semileptonic decays of pseudoscalar mesons containing a heavy quark
must be given to a first approximation by the spectator model. The spectator model,
improved by the momentum distribution of a b quark in a B meson, gives an accurate
description of semileptonic B-meson decays. Thus B and higher meson states are
considered to be heavy states. In fact, for hadronic states containing a heavy quark,
a systematic expansion has been developed in inverse powers of the heavy-quark
mass, which will be described in Sections 14.4 and 14.5. The top quark decays so
fast that bound states do not have enough time to form.

A crude test for the validity of the spectator model is provided by the ratio of
lifetimes of charged and neutral mesons. For mesons with beauty quarks,

τB+

τB0
= 1.08 ± 0.01,

which is to be compared with the ratio for mesons containing charmed quarks,

τD+

τD0
= 2.55 ± 0.01.

The ratio for the B mesons suggests that the spectator model is applicable. The
ratio for D mesons indicates that there are additional contributions. In fact, it was
a surprise when the experimental colleagues established this large ratio. It is now
generally believed that annihilation diagrams are important in D-meson decays.
The simple picture that mesons consist of a quark and an antiquark is too naive,
because the gluons in D mesons play a very active role in binding the quarks. We
illustrate this fact by the following argument, where we set the CKM matrix equal
to the unit matrix, which makes the Vcd element zero. The spectator decay mode
(see Section 14.2)

c → s + d̄ + u

is expected to give equal contributions to D0 and D+ decays, and its amplitude will
be denoted by Asp. In addition, for the D0 meson there is the annihilation diagram
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for the reaction

c + ū → s + d̄ + gluons,

with a W+ exchanged in the t-channel. Its amplitude will be denoted by Aan. The
decay width for D0 depends on the sum of the two amplitudes,

�D0 ∝ |Asp|2 + |Aan|2,
and similarly for D+,

�D+ ∝ |Asp|2.
The CKM-matrix elements are the same in all these diagrams, indicating that the
lifetime τD+ is larger than τD0. Precise calculations for these and other decays of
charm mesons are difficult, but there are phenomenological models that give a
consistent picture for several decay channels (Bander et al., 1980).

This chapter is long and contains various topics. To help the reader I outline
its contents. The following three sections describe decays of heavy quarks in phe-
nomenological models. Some of these models have been very popular. Sections
14.4 and 14.5 are devoted to the heavy-quark effective theory (HQET), which is a
systematic expansion of amplitudes in inverse powers of the heavy-quark mass. The
top quark is very heavy and has special properties. For this reason a special section
is devoted to it. Finally, heavy quarks play an important role in loop diagrams, with
a simple example being provided by box diagrams, which are ultraviolet-finite.
An introduction to the computational methods for box diagrams is included in
Section 14.7.

14.2 Semileptonic and inclusive B-meson decays

14.2.1 The spectator model

When a heavy quark, generically denoted by Q, decays inside a hadron, it does
so without disturbing the surrounding field produced by other quarks, antiquarks,
and gluons. In the B mesons, for instance, the b quark decays, leaving the light
antiquark u, d, or s (hereafter generically denoted as q) undisturbed (spectators).
Thus we expect the decay of the B meson to be given by the free decay of the b quark
to a zeroth-order approximation. This result must be improved for the bound-state
effects of the meson, as will be described in this section (Altarelli et al., 1982).

In the spectator model, the light quark moves in the field of the heavy quark,
and between them they share all the energy and momentum of the meson. The
spectator quark q has a definite mass m and a four-momentum pq ≡ (Eq, p). In
the rest frame of the meson the b quark moves with a virtual mass W and a
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Figure 14.1. B-meson decay.

four-momentum pb ≡ (Eb, −p), where

Eq + Eb = MB,
(14.2)

W 2 = M2
B + m2

q − 2MB

√
p2 + m2

q,

and MB is the mass of the B meson. The decay is now given by the point-like decay
of the b quark averaged over its momentum inside the meson (Fig. 14.1).

In the model of Altarelli et al. (1982), henceforth called the ACCMM model,
the averaging over the momentum of the b quark is done by introducing a Gaussian
distribution function,

φ(|p|) = 4√
π p3

F

exp
( − |p|2/p2

F

)
, (14.3)

where pF, the Fermi momentum, is a free parameter to be adjusted by comparing the
theoretical prediction with the experimental spectrum. Its value is of the order of a
few hundred MeV at most, so large-p configurations are exponentially suppressed.
With this distribution the b quark remains close to its mass shell.

To calculate the electron spectrum from the semileptonic decay b → u(c)eν̄e,
one follows three steps.

1. One calculates the differential decay width for a point quark in its rest frame. This is
exactly analogous to the muon decay and the result is

d�0

dE
= G2W 4

48π3
|Vu(c)b|2x2(3 − 2x). (14.4)

Here, E is the electron energy, Vub or Vcb are the CKM-matrix elements, and x = 2E/W .
Note that we have neglected the masses of all final-state particles, which is surely not
justified for a b → c transition, with the relevant mass dependences given in the ACCMM
article.

2. In addition, one may incorporate the QCD corrections to this tree-level decay distribution,
by multiplying d�0/dE by an overall factor that is less than unity and depends upon
x . This changes the shape of the spectrum near its endpoint. This will not be discussed
here, but is described briefly in Problem 2.
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3. The decaying quark is not at rest but moves with a momentum | �p| inside the meson. We
can account for this motion by writing the decay rate in a Lorentz-invariant form, which
will be valid in any frame. To this end, we write first

x = 2E

W
= 2pb · pe

W 2
= 2

W 2
(Eb Ee − ppe cos θ ). (14.5)

The first two equations are computed in the rest frame of the b quark and the third one
in a frame where the b quark moves. Here E2

b = W 2 + p2, p2
e = E2

e − m2
e , and θ is the

angle between the momentum of the b quark and the direction of the electron. The final
decay rate is obtained by averaging over p and θ using the distribution function

d�

dEe
= G2

48π3
|Vub|2

∫ pF

0
W 4x2(3 − 2x)φ(p)p2 dp d cos θ ; (14.6)

here x depends on p and the range of integration over θ is from 0 to π .

This method of averaging over the Fermi motion respects Lorentz invariance
and takes into account the phase space. It is somewhat crude, in the sense that the
energy and momentum of the meson are supposed to be distributed between the
two constituent quarks only and the distribution formula is valid only when |p| is
rather small. In spite of its crudeness, the model describes accurately the electron
spectrum observed in the experiments. It indicates that for B and heavier mesons the
spectator model is a reasonable zeroth-order approximation, requiring additional
corrections from the interaction of the heavy quark with its surrounding field. We
shall discuss some improvements in this chapter.

14.2.2 The parton model

The semileptonic B-meson decays can be presented by the diagram in Fig. 14.2,
where X can be a specific final state or the incoherent sum over various final states.
The drawing represents the square of the amplitude and looks very much like the
diagram for deep inelastic scattering. This suggests that a formally similar analysis
for the B-meson inclusive decays is possible. There are two differences, however;
the initial B meson is heavy and the current is time-like, with its variables determined
by the initial and final hadronic states. Consequently, we use the same formalism
but the structure function is now different, giving the probability of finding a b
quark in a fast-moving B meson.

In a standard analysis the square of the matrix element is given as the product of
a leptonic and a hadronic tensor,

|M|2 = LµνWµν. (14.7)
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Figure 14.2. Semileptonic B decay in the parton model.

The hadronic tensor can be written as

Wµν(q2, q · p) = 1

2π

∫
d4x eiqy〈B|[Jµ(x), Jν(0)]|B〉

= −gµνW1 + pµ pνW2 + iεµναβ pαqβW3 + · · ·, (14.8)

with the notation being analogous to that introduced for neutrino reactions. After
analyzing the kinematics of the decay, it was shown that a large region of phase
space is dominated by the singular behavior of the commutator on the light cone.
This allows us to express the decay in terms of a quark distribution function f (x),
which denotes the probability of finding a b quark in the B meson. Dominance of
the light cone demands that the analysis of the decay be carried out in an infinite-
momentum frame.

We visualize the B meson moving in an infinite-momentum frame, where the
motion of the constituents slows down relative to the time of the decay. In this frame
the b quark decays, leaving the rest of the B meson undisturbed. The decay is in
general given by

d�

dEe dq0 dq2
= G2|Vub|2

32π3mB

{
2q2W1 + (

4Eeq0 − 4E2
e − q2

)
W2

− 2q2(2Ee − q0)
W3

mB

}
. (14.9)

The hadronic tensor for point-like interaction is

W µν

0 (q2, q · p) = 1

2
Tr

[
p/uγ

µ(1 − γ5)p/bγ
ν(1 − γ5)

]
δ
[
(pb − q)2

]
, (14.10)

with pu and pb the four-momenta of the u and b quarks, respectively. The b quark
carries a fraction x of the B meson’s momentum and has the momentum distribution
function f (x). We arrive at the B-meson decay by substituting

pb = x P and pu = pb − q, (14.11)

then multiplying W µν

0 by f (x) and integrating over x ,

W µν =
∫

W µν

0 (q2, xq · p) f (x)δ(x2 p2 − 2xq · p + q2)dx . (14.12)
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The δ-function has two roots x± = (q0 ± |�q|)/MB. The smaller root x− corresponds
to diagrams with particles moving backwards in time and will be neglected because
it is numerically small. The structure functions are given as (Bareiss and Paschos,
1989)

W1 = 2x+ f (x+), W2 = 4MB

|�q| x2
+ f (x+), W3 = −2MB

|�q| x+ f (x+).

(14.13)
Direct substitution leads to the final result

d�

dEe dq0 dq2
= G2|Vub|2

4π3mB

x f (x)√
q2

0 − q2
(q0 − Ee)

(
2EemBx − q2

)
, (14.14)

with x = (q0 + |�q|)/MB.
It is hard to measure the triple differential decay and several integrations must be

carried out. We define the limits of the integrations. For fixed q2 we can substitute
q0 by the hadronic mass s = m2

X:

s = m2
B + q2 − 2mBq0,

(14.15)= m2
B + q2 − 2mB Ee − 2mB Eν.

We can replace Eν by Eν = q2/[2Ee(1 − cos θ )] and obtain the upper bound of s
at cos θ = −1:

m2
π ≤ s ≤ (mB − 2Ee)

(
mB − q2

2Ee

)
. (14.16)

The other two variables are bounded in the regions

0 ≤ q2 ≤ 2mB Ee, (14.17)

0 ≤ Ee ≤ mB

2
. (14.18)

The triple differential rate can be used to extract the distribution function directly,
but decay rates in several variables are not available yet. Instead one adopts an
Ansatz for the distribution function. Here we are guided by physical intuition and
the experience gained from the fragmentation functions. In the boosted frame, we
expect the heavy quark to carry most of the momentum of the meson, which means
that the distribution function is peaked at x ≈ 1. Thus a function with a peak in
the high-x region and a small width should be sufficient. A function with two
parameters a and b that satisfies the above criteria is

f (x) = N
x(1 − x)

(x − b)2 + a2
, (14.19)
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Figure 14.3. The predicted electron-energy spectrum compared with data.

with N a normalization constant. Integration over the variables and for a =
0.0118, b = 0.931 produces the electron spectrum shown in Fig. 14.3. A simi-
lar curve is obtained in the ACCMM model. The data points are from Barish et al.
(1996).

It is desirable to calculate the distribution function or determine its parameters
from basic principles. Attempts in this direction have been made in the heavy-quark
effective theory.

14.3 Exclusive semileptonic decays

Of special interest are decays in which the initial and final mesons are specific
hadrons. In this case analysis in the quark-decay picture is not applicable. Let us
concentrate on decays of a heavy B or D meson, to a meson Xi and a lepton pair:

M → Xi eν, (14.20)

where M is the initial heavy meson. The experiments measure the energy spectrum
of the electron (1/�)d�/dE , and, for comparison with the theoretical model, we
calculate the invariant amplitude for the process. It is again a product of the known
leptonic weak current Lµ and the hadronic matrix element Hµ:

M = G√
2

Lµ Hµ with Hµ = 〈Xi | jµ|M〉. (14.21)

The explicit structure of the meson current depends on the definite properties of
the final meson under Lorentz transformations. With such information it is possible
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to derive the most general form-factor decomposition of the matrix element. As an
example we present here the decay to a pseudoscalar state, i.e. Xi = P(0−):

〈P| jµ|M〉 = m2
M − m2

P

q2
qµF0(q2) +

[
(kM + kP)µ − m2

M − m2
P

q2
qµ

]
F1(q2),

(14.22)

with qµ = (kM − kP)µ and F0(0) = F1(0). F0(q2) and F1(q2) denote the longi-
tudinal and transverse form factors, respectively. The form factors are unknown
parameters, which have to be estimated theoretically and then compared with the
experiments. On the theoretical side, the most famous parametrization appears in
the BSW model (Wirbel et al., 1985) which makes the following Ansatz for the q2

dependence:

Fi (q
2) = Fi (0)

1 − q2/m2
i

. (14.23)

The pole masses mi are estimated numerically. Finally, to predict an energy spec-
trum for the lepton produced in the decay of Eq. (14.20), an estimate for the form
factors at q2 = 0 is required. In the BSW appoach it is given by the overlap of the
initial and final wave functions of the mesons. With this information, the phase-
space integrals can be performed and many differential decay rates calculated
(Wirbel et al., 1985).

14.4 Heavy-quark effective theory

The heavy-quark effective theory (HQET) is a systematic method for describing
particles containing a heavy quark (Manohar and Wise, 2000). The HQET is based
on the fact that QCD is flavor-blind and a hadron containing a heavy quark is
very unlikely to have excitations containing antiquark degrees of freedom. Thus it
suffices to work with the spinor of the heavy quark and view the light quark with its
surrounding gluonic field as a composite system. This picture is an improvement
over the spectator model and supplies a method for calculating the distribution
function of the heavy quark in the meson. For mesons made up of a heavy quark
Q and a light antiquark, the heavy quark is essentially on-shell and therefore static
when the meson is at rest. This is analogous to atoms, in which the nucleus is
stationary and the electrons move in the static field of the nucleus. We will see that,
to zeroth order, properties of the meson do not depend on the mass, spin, or flavor
of the heavy quark, just as chemical properties of the atom do not depend on the
particular isotope.

We shall demonstrate that the HQET is a limiting case of QCD where mQ → ∞
with the four-velocity of Q, vµ, held fixed. In this limit the Lagrangian simplifies
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considerably, giving a static term and calculable corrections expressed in inverse
powers of the heavy-quark mass.

The four-momentum of the heavy quark can be expressed by

pµ = mQvµ + kµ, (14.24)

with vµ its velocity normalized to unity, vµvµ = 1. The correction term kµ is small
relative to mQvµ. The heavy-quark field has an energy dependence close to that
of a free particle and a spinor hv with positive energy. Since the heavy quark is
bound, it may be influenced by the cloud of quark–antiquark pairs. These degrees
of freedom are represented in HQET by two spinors, which are eigenfunctions of
the velocity operator. To be specific,

Q(x) = e−imQv·x [hv(x) + lv(x)] , (14.25)

with

v/hv = hv, v/ lv = −lv. (14.26)

Factoring out the phase is a redefinition of the field, but the decomposition into the
components hv and lv is an approximation in terms of positive and negative velocity
fields.

The results can be re-expressed in terms of velocity projection operators

P± = 1

2
(1 ± v/ ), (14.27)

which project out the positive velocity fields,

P+Q = e−imQv·x hv, (14.28)

and the negative velocity fields,

P−Q = e−imQv·xlv. (14.29)

The overall phase varies rapidly and among the spinors we expect hv to be dominant.
The heavy quark interacts with the gluonic field and satisfies a Dirac Lagrangian

L = Q̄(x)
[
iD/ − mQ

]
Q(x), (14.30)

where Dµ = ∂µ + igs Aa
µ · λa/2, with Aa

µ(x) the field of the gluons. We are inter-
ested in approximate solutions of the Lagrangian in which the heavy-quark field
hv is slightly perturbed by the light degrees of freedom. To simplify the algebra we
mention two identities and drop the subscript v, i.e. setting hv = h and lv = l,

P+γµ P+ = P+
(
P−γµ + vµ

) = vµ P+,

P−γµ P− = P−
(
P+γµ − vµ

) = −vµ P−, (14.31)

/D Q(x) = −imQv/Q + e−imQv·x (/Dh + /Dl) , (14.32)
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with h̄l = 0 and h̄/vl = l̄/vh = 0. With the help of the identities, we rewrite L in the
following way:

L = h̄i /D h + l̄(i /D − 2mQ)l + h̄i /Dl + l̄i /Dh

= ih̄v · Dh − l̄(iv · D + 2mQ)l + h̄i /Dl + l̄i /Dh. (14.33)

In the last two terms a final simplification is possible, which allows one to replace
Dµ by its transverse component D⊥µ = Dµ − D · vvµ because h̄v/ l = l̄v/h = 0.
Several authors use this additional simplification. The Euler–Lagrange equation
for the field gives

(iv · D + 2mQ)l = i /Dh =⇒ l = 1

iv · D + 2mQ
iD/ h. (14.34)

To sum up, we have taken out the dependence on large momenta by factoring out
the term exp(−imQv · x). The remaining terms, except for the covariant derivative
acting on h, contain small momenta, as is evident from the fact that l(x) is indeed
the smaller of the two velocity spinors.

In this limit of the theory, we give rules for the propagator

i
p/ + mQ

p2 − m2
Q

= i
mQv/ + mQ + k/

2mQv · k + k2
→ i

v · k

(
1 + v/

2

)
+ O

(
k

mQ

)
(14.35)

and for the vertex describing the coupling of gluons to the heavy quark,

igh̄γµh = igvµh̄h. (14.36)

Calculations with h alone reproduce the free-quark model. The interactions are
improved by including 1/mQ terms.

In the limit of mQ → ∞ the quark field approaches the heavy-quark field,

Q(x) → e−imQv·x P+h. (14.37)

On substituting this field into the Lagrangian (14.30) or from Eq. (14.33), we obtain

L → ih̄ v · Dh = L0. (14.38)

The result shows explicitly that in the limit mQ → ∞ the interaction between the
gluonic field and the heavy quark is independent of the spin and mass of the heavy
quark. There are several consequences of this property.

As mentioned already, the meson is viewed as composed of a heavy quark and a
light system consisting of the light quark and its surrounding gluonic field. Several
properties should be independent of the spin of the heavy quark. Let us denote the
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spin of the light system by S� and the spin of the heavy quark by SQ = 1
2 . The two

systems may still have relative angular momentum �L . The total angular momentum,
�J , for the meson is a sum of spins

�S = �SQ + �S� (14.39)

plus the relative angular momentum �L ,

�J = �S + �L.

For a meson with S� = 1
2 and �L = 0

| �S| = | �S�| ± 1

2
= 0, 1

and the total angular momentum �J = 0 or 1. For Q = b the two states with L = 0
are Bd and B∗

d mesons. The HQET predicts that the two states have properties that
are independent of SQ and therefore degenerate. The difference between the masses
of the pseudoscalar and vector mesons is indeed small relative to their sum. The
same is experimentally true for the charm states D and D∗.

Even though the mass differences are small, they are not zero, suggesting that
we must formulate the effective Lagrangian more precisely by keeping the 1/mQ

terms which were ignored. This will be discussed in the next section. The same
is true for the charm states D and D∗ containing charm quarks. To first approxi-
mation the spin symmetry is realized. However, the small differences suggest that
we must formulate the effective Lagrangian more accurately by including 1/mQ

corrections.

14.5 The effective Lagrangian: 1/mQ corrections

Higher-order corrections are obtained by including the light-quark degrees of free-
dom. This complicates the algebra somewhat, but leads to correction terms that are
simple to describe. In the following we give a derivation. However, the reader who
finds it complicated may proceed directly to Eq. (14.43).

To include the light-quark field, we substitute l(x) using Eq. (14.34) together
with a similar expression for l̄(x). In this way we obtain an improved interaction,

L = L0 + L1 = h̄

(
i /D + i /D

1

iv · D + 2mQ
i /D

)
h + O

(
1

m2
Q

)

= ih̄v · Dh + 1

2mQ
h̄i /Di /Dh + O

(
1

m2
Q

)
, (14.40)
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with the first term being L0 and the rest the improvement. The new term has two
covariant derivatives next to each other and can be simplified. We use the identity

/D/D = γ µγ ν Dµ Dν

= 1

2
{γ µ, γ ν}Dµ Dν + 1

2

[
γ µ, γ ν

]
Dµ Dν

= D2 + 1

4

[
γ µ, γ ν

][
Dµ, Dν

]
(14.41)

together with

σµν = i

2

[
γ µ, γ ν

]
, igsG

a
µν

(
λa

2

)
= [

Dµ, Dν

]
, (14.42)

in order to obtain the 1/mQ term of the Lagrangian:

L1 = −h̄
D2

2mQ
h − gsh̄

σµνGµν

4mQ
h. (14.43)

A few remarks are now in order. The first term, D2/(2mQ), is the average kinetic
energy of the heavy quark. The second term couples the spin of the heavy quark to
the gluo-magnetic field surrounding the quarks. The theory succeeded in including
the interaction of the heavy quark with the surrounding degrees of freedom. It also
has the advantage that it is precise enough to allow systematic studies. It has been
successful in accounting for mass differences, decay rates etc., which we cover in
the next section.

14.5.1 Applications

Mass relations

To leading order the HQET Lagrangian does not depend on the spin or flavor of
the heavy quark. The first term in Eq. (14.43) breaks the flavor symmetry and the
second term breaks both flavor and spin symmetries. These two terms play a leading
role in determining the mass spectra of heavy hadrons. Consider the expectation
value of the Hamiltonian between mesonic states. The mass of the meson is written
as

mM = mQ + �̄ + 〈M |O1|M〉 + 〈M |O2|M〉
= mQ + �̄ − λ1

2mQ
+ aJ λ2

2mQ
, (14.44)

with aJ = 1
2
�SQ · �S�. Here O1 and O2 are the first and second operators in Eq.

(14.43), respectively, and �̄ is the contribution from the light-quark degrees of
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freedom, which is a priori unknown. According to HQET, λ1 and λ2 are univer-
sal constants. One generally determines them from the moments of the energy
spectrum of inclusive semileptonic B decays. It turns out that �̄ ≈ 0.40 GeV and
λ1 ≈ −0.2 GeV2.

O2 is a magnetic-moment-type interaction, and its matrix element for mesons
with L = 0 is proportional to SQ · S� = (J 2 − S2

Q − S2
� )/2. The expectation values

of this operator in triplet and singlet states are different, which causes a splitting
among the lowest-lying states. The singlet (J = 0) is lowered and the triplet (J = 1)
is raised, but by different amounts. These states are generally denoted by M and
M∗. It is obvious that

mB∗ − mB

mD∗ − mD
= mc

mb
,

which is satisfied to a high degree of accuracy. In fact, one can determine λ2 from
the splitting of the meson doublet.

Exclusive semileptonic decays

An important prediction of HQET describes decays governed by the quark-level
transition b → c. The initial B meson decays into an electron–neutrino pair plus the
D meson. In general the matrix element of pseudoscalar-to-pseudoscalar transition
involves two form factors that are functions of q2 (see Eq. (14.22)). The velocities
for the B and D mesons are vµ = pµ/mB and v′µ = p′µ/mD and the q2 dependence
may be replaced by

w = v · v′ = m2
B + m2

D − q2

2mBmD
. (14.45)

In the limit that the masses are very big relative to the difference mB − mD the two
states B and D are, according to HQET, very similar. In this limit v · v′ = 1 and
vµ ≈ v′µ.

To appreciate the situation, consider a configuration in which the B meson is
at rest and the four-momentum carried away by the lepton pair is maximal, q2 =
(MB − MD)2, which means that the D meson is also produced at rest. This is the
zero-recoil point where w = 1. In the limit that the heavy-meson masses are large
and close to each other, only one form factor contributes:

〈D(p′)|Vµ|B(p)〉 = f+(q2)(p + p′)µ + f−(q2)(p − p′)µ

→ 〈D(v′)|c̄γµb|B(v) ≈ √
mBmD h(v · v′)(vµ + v′

µ). (14.46)

The square root arises from the normalization of the states and h(v · v′) is a universal
function called the Isgur–Wise function (Isgur and Wise, 1989, 1990). Furthermore,
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in the limit mB, mD → ∞ with mB − mD fixed, q2 � MB, MD, the Isgur–Wise
function measures the overlap of two identical wave functions so that h(1) = 1.

Consider next the decay to a vector meson B → D∗�ν. We have discussed already
the fact that to leading order the decay is independent of the spin of the heavy quarks.
A consequence of the symmetry is the relation

〈D∗(v′, ε)|c̄γµb|B(v) = i
√

mBmD∗εµναβενvαv′βh(v · v′), (14.47)

where the Lorentz structure depends on the polarization of the D∗ meson, εµ, and the
same universal form factor h(v · v′) appears as before. However, the universality
is a feature of the zeroth-order Lagrangian and is broken by 1/mQ corrections.
For a complete analysis we must also include matrix elements of the axial current,
which bring additional form factors into play. The general case must explain decays
to several vector mesons D∗(2010), D∗(2420), . . ., whose partial decay widths are
different from each other. The differences remain after corrections over phase-space
factors have been taken into account.

This motivated an analysis of the partial decay rates in terms of h(v · v′) plus its
slope at the point v · v′ = 1. The important variable for the decays is w, with the
decay spectrum given by (Manohar and Wise, 2000)

d�

dw
(B → D∗�ν) = G2|Vcb|2

48π3
K (w)h(v · v′)2, (14.48)

where w is defined in (14.45), K (w) is a known phase-space factor, and h(v · v′)
is the Isgur–Wise function including finite-mass and other (QCD, . . . ) corrections.
The analysis determined the value of the form factor F1(w = 1) and its slope at
w = 1. A systematic analysis of several experiments gives the mean value of the
slope and the product as

h(w = 1)|Vcb| = 0.0038 ± 0.0010,

from which the value for |Vcb| has been extracted (see Section 9.3.4).
The applications of HQET to mass relations and B decays to D and D∗ are

successes of the theory. The Isgur–Wise function h(v · v′) has been studied and
calculated also in lattice gauge theories. Of direct interest is its calculation for the
physical b and c masses in the zero-recoil limit (when v · v′ = 1). Lattice calcula-
tions give h(1) = 0.929 with a small error.

B-meson decays to light mesons are much harder to calculate in HQET or on the
lattice because most of the decay occurs in a kinematic region where the π or the
ρ mesons have large momenta. They attract a good deal of attention because data
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on B-meson decays are accumulating in B-factories and are very important for the
interpretation of CP asymmetries in B-meson decays.

Inclusive semileptonic decays

For inclusive decays one must calculate the decay rate in the rest frame of the b
quark. To leading order the hadronic tensor will have the structure of Eq. (14.10),
which is proportional to the δ-function

δ[(pb − q)2] = δ
(
m2

b − 2pb · q + q2
)
.

In the limit m2
b � q2 it reduces to

δ
(
m2

b − 2mbq0
)
,

which peaks at the endpoint of the q0 range. Since there is no averaging over a
distribution function, the smoothness of the spectrum must be brought about by
higher-order corrections of HQET. Higher-order corrections including bound-state
effects must reproduce the effects and spectrum discussed in Sections 14.2.1 and
14.2.2.

14.6 The top quark and its physical properties

The top quark is very heavy and weighs as much as a heavy atom. After the discovery
of the bottom quark and the tau lepton, the top was predicted in order to preserve
the symmetry between quarks and leptons. In addition, several properties of the
low-lying states required the existence of a heavier state. Among these properties
are the mixing and CP properties of the neutral K mesons, as well as those of
neutral D and B mesons. Furthermore, in order to accommodate CP violation in
the electroweak theory, a third generation of quarks is required. Some of these
properties were mentioned earlier and they will be covered in greater detail in the
next chapters.

Besides the expectation of a heavier top quark, its mass was, for a long time,
unknown. Only with the discovery of the W and Z bosons and the precise measure-
ments of their masses and widths did it become possible to put a limit on the top
quark’s mass. A stringent limit is provided by the ρ parameter, where the correction
from the self-energy has a quadratic dependence on the quark mass. We quote the
result here in order to stress how quantum corrections become important. The ρ

parameter is defined as

ρ = M2
W

M2
Z cos2θW
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and has the value unity (see Eq. (12.19)). The loop correction from the top–bottom
quark pair changes this ratio to

ρ = 1 + G

8π2

(
m2

t + m2
b − 2m2

t m2
b

m2
t − m2

b

ln

(
m2

t

m2
b

)
+ smaller terms from

Higgs exchanges

)
. (14.49)

For very accurate values of MW, MZ, and the mixing angle, the effect from the
top quark is noticeable. Several analyses along these lines gave a range for the top
quark’s mass in the neighborhood of 175 GeV, with an error of ±25 GeV, within
which it was eventually discovered.

The dominant decay of the top quark is into a bottom quark plus a W boson.
The calculation of the decay is straightforward and we have formulated it as an
exercise. If we neglect the mass of the bottom quark, the decay width is

�(t → bW+) = GF M3
t

8
√

2π
|Vtb|2

(
1 − M4

W

M4
t

)2

, (14.50)

which grows rapidly with the top-quark mass. For Mt = 175 GeV, the decay width
is

�(t → bW+) = 1.55 GeV,

which corresponds to a top-quark lifetime of 0.4 × 10−24 s. The confining effects of
the strong interactions act on a time scale ≈1/�QCD. This means that the top quark
decays long before the interaction can act to produce hadrons. Unlike the properties
of the other five quarks, there are no bound states and no toponium spectroscopy.

The fact that the mass of the top quark is close to the value required by the
radiative corrections is a success of the electroweak theory. These and other tests of
the theory will be discussed in Section 17.2 devoted to precision tests of the theory.
Another test involves the value of Vtb, which, according to the analysis of the CKM
matrix, must be very close to unity. There is already experimental evidence that the
top decays primarily to a bottom quark, but the accuracy is still very poor to test
the unitarity prediction in Eq. (9.49).

The ultrarapid decay of the top quark implies that the production of tt̄ pairs
in hadron collisions should be calculable in perturbative QCD. Electron–positron
colliders could be used to search for the reaction

e+e− → tt̄,

but at the lower energies available in those colliders it is impossible to produce the
pairs. The decisive experiments have been carried out at the proton–antiproton
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collider of Fermilab. Some characteristic reactions and their decays are listed
below:

p + p̄ → t + t̄ + anything → eνe + µν̄µ + hadrons,

→ e±µ± bb̄ /ET,

→ µ± + jets /ET.

The dilepton events (eµ, ee, and µµ) are produced when both W bosons decay into
eν or µν. The neutrinos remain unobservable and are represented by the missing
energy /ET. Events with lepton-plus-jets channels occur when one W decay produces
e or µ and the other decays into quark–antiquark pairs.

A second challenge to experimenters is the complexity of the events in high-
energy proton–antiproton collisions. The tt̄ pair produced is accompanied by scores
of other particles. Separating the top quark is like searching for a needle in a
haystack. Two experimental groups at the Tevatron collider at Fermilab succeeded
in discovering the production of tt̄ pairs. As mentioned in the introduction to this
chapter, the production of tt̄ pairs and their subsequent decays are computed in
the parton model, using the best possible quark distribution functions, and the top
quark’s mass is determined as the value which optimizes the fit.

We close this section with a speculation. The fact that the mass of the top quark
is larger than the mass of gauge bosons and closer to the scale of the symmetry-
breaking motivates the thought that the top quark is intimately connected to the
symmetry-breaking. One suggestion is to study the decays of the top quark to the
b quark and the W boson, which is expected to be longitudinally polarized. Since
the longitudinal state of W bosons is developed through the Higgs mechanism, it
may be sensitive to new physics. In another suggestion, the top–antitop pairs attract
each other through a new force to make a condensate, which is the Higgs particle.
We return to this possibility in Chapter 17.

14.7 Loop diagrams with heavy quarks

14.7.1 Mixing of states and lifetime differences: a preview

Heavy quarks also appear as intermediate states in loop diagrams and give dominant
contributions. As a first example we study box diagrams, in which second-order
weak interactions change the flavor quantum number by two units and produce
the mixing of B0–B̄0, as well as K0–K̄0, states. When the intermediate states are
heavy quarks, they produce a short-distance interaction shown with the diagrams
in Fig. 14.4. The strategy of the calculations is to construct an effective �F = 2
Lagrangian from the free-quark model and then take the matrix element between
B0 and B̄0 (or, analogously, K0 and K̄0). We compute the diagram of Fig. 14.4 in
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Figure 14.4. Box diagrams for �B = 2 transitions. We calculate the “scattering”
term in (a). The “annihilation” term (b) is equal to the “scattering” term.

Section 14.7.2, where it is also shown that box diagrams are finite, i.e. they do not
bring in any ultraviolet divergences. Before we present the calculation, we quote
several results from Chapters 15 and 16 in order to emphasize the point that box
diagrams are indeed important. The interested reader may consult Chapters 15 and
16 for the underlying physics and then return to this section for the study of a loop
diagram.

Let us denote by�Md = MBH − MBL the difference in mass between the physical
states built up from the mesons B0

d and B̄0
d. We use the subscripts H and L to denote

heavy and light mesonic states. The structure of physical states is described in
Chapter 15. The calculation of the box diagram with the top quark in the intermediate
state gives

�Md = G2

16π2
|VtdV ∗

tb|2 M2
W E(xt)X Bd, with xt =

(
m t

mW

)2

, (14.51)

E(xt) = 3

2

x3
t

(1 − xt)3
ln xt −

[
1

4
+ 9

4

1

1 − xt
− 3

2

1

(1 − xt)2

]
xt, (14.52)

X̄Bd = 〈Bd|d̄γµ(1 − γ5)bb̄γ µ(1 − γ5)d|B̄d〉. (14.53)

The function E(xt) comes from the integration over the loop and XBd is the matrix
element of a four-quark operator between Bd and B̄d states. Four-quark operators
appear as overall factors in calculations of box diagrams. The same calculation also
determines the width difference

��d = 3G2

32π
m2

b|VtdV ∗
tb|2 XBd . (14.54)

In the decay only u and c quarks appear as final states. The decay is discussed at
the end of Section 16.4 and shown in Fig. 16.1. The dependences of the width and
�Md on the quark masses are different. Mass and width differences are related by

��d = 3

2
π

m2
b

M2
W E(xt)

�Md, (14.55)
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from which we conclude that for large m t the width difference is much smaller than
the mass difference. Furthermore, on comparing �Md with the decay width

�B = G2m5
b

192π3
|Vbc|2, (14.56)

we note that there is an enhancement of the mass difference arising from the high
mass of the heavy quark. Thus, for favorable values of the other quantities, �Md

can be comparable to �B. In fact, experiments determined

�Md = (0.49 ± 0.01) × 1012h s−1, (14.57)

which is one fifth of the width. A similar analysis of the mass difference of Bs = (bs̄)
leads to a larger mass difference because it is enhanced by the CKM element.
Experimentally there is the lower bound

�Ms > 13.1 × 1012h s−1. (14.58)

The discussion shows that loop contributions are important since they determine
physical quantities and correlate properties of various mesons.

The physics described for the neutral Bd mesons contains several general prop-
erties. The down quarks are always lighter than the upper quark of the same family.
Consequently, mesons containing down quarks decay to quarks of a lighter family,
for which the decay width is suppressed by a CKM element. On the other hand, the
mass difference of neutral mesons containing the down quarks involves the square
of the mass of the upper quark. If the mass of the upper quark in the same family
is much larger and the values of the mixing angles and the reduced matrix element
are favorable, then substantial mixing between the neutral mesons is possible. This
situation is realized for the B0

d, B0
s , and K0

L–K0
S mesons.

The opposite situation prevails for neutral mesons that contain a heavy upper
quark. For example, for D0 = (cū) mesons the decay width is proportional to m5

c

and the CKM element is practically unity. The mass difference is proportional to
m2

b or m2
s and the CKM elements are smaller than unity, so there is no substantial

enhancement. Consequently, mixing of the D0 and D̄0 states is small and it has not
been observed yet.

14.7.2 Calculation of a box diagram

We compute first the box diagrams for Fig. 14.4 with intermediate quarks
i, j = u, c, t. In addition to the diagrams with the exchange of W bosons there
are exchanges with charged Higgses, which become important when the masses of
the internal quarks are large. Charged Higgses became the longitudinal degrees of
freedom of the W bosons. For simplicity we shall assume that the external momenta
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and masses are zero. In the Feynman–’t Hooft gauge, we obtain

T a
12 =

(
g

2
√

2

)4 ∑
i, j

λiλ j

∫
d4k

(2π )4

( −i

k2 − M2
W

)2(
d̄Lγ µ k/ + mi

k2 − m2
i

γ νbL

)

×
(

d̄Lγν

k/ + m j

k2 − m2
j

γµbL

)

= − g4

64

∑
i, j

λiλ j

∫
d4k

(2π )4

1(
k2 − M2

W

)2 d̄γ µ(1 − γ5)
k/ + mi

k2 − m2
i

γ ν(1 − γ5)b

× d̄γν(1 − γ5)
k/ + m j

k2 − m2
j

γµ(1 − γ5)b, (14.59)

with λi = V ∗
idVis. Simple counting of the momenta shows that the integral is con-

vergent. The neutrino masses in the numerators do not contribute, because of the
(1 − γ5) structure. The surviving integral has the following Lorentz structure:

Iαβ(i, j) =
∫

d4k
kαkβ(

k2 − M2
W

)2(
k2 − m2

i

)(
k2 − m2

j

) = I (mi , m j , MW)gαβ.

(14.60)

The fact that the integral is proportional to the gαβ simplifies the spinor structure,
which takes the form

d̄γ µγ αγ ν(1 − γ5)b · d̄γνγαγµ(1 − γ5)b = 4d̄γ α(1 − γ5)b · d̄γα(1 − γ5)b.

(14.61)
This and other spinor identities follow from the relation

γ µγ λγ ν = gµλγ ν + gλνγ µ − gµνγ λ − iεµλνργ5γρ, (14.62)

as demonstrated in Appendix C.

14.7.3 Integrals in Euclidean space

In the calculation of the integrals we consider the momenta to be Euclidean, by
setting

k0 = ik4. (14.63)

Then the propagators do not have poles. The four-dimensional volume element
becomes

d4k = dk0 d3k = idk4 d3k. (14.64)
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A typical integral in loop calculations takes the form

I α(m) =
∫

d4k
1

(k2 − m2 + iε)α
= i(−1)α

∫
Eucl.

d4k
1

(k2 + m2 − iε)α
. (14.65)

In Euclidean space we can transform to spherical coordinates,

d4k → k4−1 dk d�4 with
∫

d�4 = 2π2

�(2)
= 2π2. (14.66)

For our specific integral

I (mi , m j , MW) = 1

4

∫
d4k

k2(
k2 − M2

W

)2(
k2 − m2

i )(k2 − m2
j

)
= 1

4
2π2

∫ ∞

0
dk

k5(
k2 + M2

W

)2(
k2 + m2

i

)(
k2 + m2

j

) . (14.67)

14.7.4 Feynman parameters

The standard way of carrying out momentum integrations in loop integrals is to
use the so-called Feynman-parameter technique in order to transform a product of
propagators depending on the integration momentum into a single factor. This is
accomplished with the following identity:

1

(a1 + iε)(a2 + iε) . . . (an + iε)
=

∫ 1

0
(n − 1)! dx1 dx2 . . . dxn

× δ(1 − x1 − x2 − · · · − xn)

[a1x1 + a2x2 + · · · + anxn + iε]n . (14.68)

Simple examples can be worked out. When the propagator (ai + iε)k , with k an
integer, appears on the left-hand side, the corresponding formula is obtained by
differentiating the above expression with respect to ai several times. Following this
rule we obtain

1

(a1 + iε)(a2 + iε)(a3 + iε)
= 6

∫
dx dy(1 − x − y)

[a1(1 − x − y) + a2x + a3 y + iε]4 . (14.69)

Returning to our integral in Eq. (14.67),

I (mi , m j , MW) = π2

2

∫ ∞

k=0
dk k5

∫ 1

0
dx

∫ 1−x

0
dy

× 1 − x − y[
k2 + M2

W(1 − x − y) + m2
i x + m2

j y
]4 . (14.70)
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Now, since the Feynman parameters in the δ-function sum up to unity, the coefficient
of the k2 term in the denominator is always unity. We can perform the dk2 integration
to obtain

I (mi , m j , MW) = π2

12M2
W

∫ 1

0
dx

∫ 1−x

0
dy

1 − x − y(
1 − x − y + x2

i x + x2
j y

)
= π2

12M2
W

1

2

1

xi − x j

[
1

1 − xi
− 1

1 − x j
+ x2

i

(1 − xi )2 ln xi

− x2
j(

1 − x2
j

)2 ln x j

]
, (14.71)

with xi = m2
i /M2

W and x j = m2
j/M2

W.This diagram gives the dominant contribution
for cases in which xi and x j � 1. In the other cases with the exchange of a heavy
scalar, additional diagrams must be included; the complete answer is given in
Chapter 15.

This first example shows that the calculation of loop diagrams involves four
steps.

1. A simplification of the spin structure, which reduces the calculation to a few four-
dimensional integrals.

2. The reduction of the denominators to a single factor with the help of Feynman parameters.
3. The completion of the four-dimensional integrals. This is carried through in Euclidean

space and holds in the Minkowskian region by analytic continuation. The case of the
box diagram is relatively simple, because the integral is convergent. In the general case,
the integrals are divergent, which demanded the development of special methods for
subtracting the infinities, which respect the gauge invariance of the theory.

4. Finally, there is an integration over the Feynman parameters, which requires special
attention at the endpoints, where infrared singularities may occur.

Problems for Chapter 14

1. Draw the graph of d�0/dx , where x = 2E/W , in the quark rest frame. Multiply by the
QCD correction factor

G(x) = 1

x
2 ln(1 − x)[2 + ln(1 − x)]

and show how the distribution changes.
2. Use the identities given in the text to prove Eq. (14.33). Then show that it is possible to

replace Dµ by D⊥µ = Dµ − D · vvµ.
3. For the semileptonic decay B → Deν̄ the dominant form factor f+(q2) is related to the

Isgur–Wise function as in Eq. (14.46).
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(i) Show that f+(q2) is related to h(v · v′) as follows:

f+(q2) = h(v · v′)
2
√

mBmD

mB + mD
.

(ii) Calculate the decay spectrum d�/dW in the heavy-quark limit.
(Hint: you may begin with d�/dq2 and then take the heavy-quark limit.)

4. Use the Feynman rules from Chapter 8 to calculate the decay width for the top quark
given in Eq. (14.50).

5. Prove the following useful identities that involve Feynman parameters:

(i)
1

(a1 + iε)(a2 + iε)
=

∫ 1

0

dx

[a1x + a2(1 − x) + iε]2
;

(ii)
1

(a1 + iε)3(a1 + iε)
=

∫ 1

0

3x2 dx

[ax + b(1 − x) + iε]4
.
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15

CP violation: K mesons

15.1 Introduction

Most of the symmetries in elementary-particle physics are continuous. A typical
example is the symmetry of rotations around an axis, where the angle of rotation can
assume any value between zero and 2π . In addition to continuous symmetries, there
are also discrete symmetries, for which the possible states assume discrete values
classified with the help of a few integers. For instance, snowflakes exhibit the dis-
crete symmetry of rotations under 60◦ and crystals exhibit various types of discrete
symmetries. In elementary-particle physics there are three discrete symmetries of
basic importance: parity, charge conjugation and time-reversal.

Parity is the reflection of space coordinates and will be denoted by P. Under
parity there are two states – the object and its space reflection. Parity is familiar from
quantum mechanics, where the eigenstates of Hamiltonians are classified according
to their properties under space reflection. For spherically symmetric potentials the
wave functions are proportional to the spherical harmonics Y �

m(θ, ϕ) whose parity
is (−1)�. For a long time it was assumed that the fundamental interactions respect P,
but a critical review of experimental evidence led two theoreticians, T. D. Lee and
C. N. Yang, to suggest that parity may be violated by the weak interactions. One
year later, an experiment led by C. S. Wu brought the proof that the P symmetry is
indeed violated by weak interactions.

The symmetry of charge conjugation, to be denoted by C, exchanges particles
with antiparticles. One can imagine building an antiworld by replacing all particles
by antiparticles. In the antiworld the three interactions gravity, the strong force, and
electromagnetism are the same, but the weak interactions are different. For example
in the antiworld muon-type antineutrinos are right-handed and produce µ+ which
are also right-handed. In comparison neutrinos are left-handed and always produce,
in high-energy reactions, left-handed µ−. In the weak interactions the C symmetry
is broken. However, it was assumed, at that time, that the observed processes do

180
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respect the combined CP transformation, the one obtained by applying both C and
P transformations.

There is a fundamental reason why CP symmetry plays a crucial role. It is inti-
mately linked to the time-reserval transformation (T). This transformation consists
of “looking” at an experiment running backward in time. Although, at the macro-
scopic level, one can distinguish the real sequence of events from the time-reversed
one in terms of large-scale phenomena such as entropy or the expansion of the
Universe, this is not a priori evident for microscopic interactions, i.e. it is not a
priori evident that the amplitudes for reactions and for the time-reversed reactions
are equal.

The analysis of CP violation is facilitated by an important theorem known as CPT
theorem. It states that any local field theory based on special relativity and quantum
mechanics is invariant under the combined action of C, P, and T. A consequence
of the theorem is that CP symmetry implies T symmetry, because any CP violation
should be compensated by T violation.

Until 1964 the decays and interactions of particles showed that the CP symmetry
was conserved; this created the belief that microscopic phenomena also obey the
T symmetry. In 1964 CP violation was observed in an experiment dedicated to the
study of K0 and K̄0 mesons. Since then it has become an active topic of research,
with CP violation having been observed so far in the K and the B mesons. In this
chapter we study the properties of mesons under discrete symmetries, leaving the
study of fermions for more specialized articles and books.

15.2 General properties

We describe now the properties that govern the decays of neutral pseudoscalar
mesons, such as K0, D0, and B0

d, when the interactions obey the CPT and CP sym-
metries. The results guide us to properties of these reactions that indicate breakdown
of CP and/or CPT symmetries.

For simplicity of presentation we shall consider the K0 as an example and describe
properties of the K0–K̄0 system; however, the results are general and hold for the
other mesons too. We adopt the phase convention

P|K 0〉 = |K 0〉, P|K̄ 0〉 = |K̄ 0〉, (15.1)

C |K 0〉 = |K̄ 0〉, (15.2)

T |K 0〉 = 〈K 0|, (15.3)

with similar relations being valid for the antiparticle |K̄ 0〉. Even though |K 0〉 is
a pseudoscalar particle, we chose a convention that under parity |K 0〉 transforms
into itself, since with this choice it is easier to keep track of the minus signs. The
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freedom to make this choice comes from the fact that parity transformation requires
P2 = 1; thus there is still freedom of the overall sign.

The decays of the mesons are mediated by the weak interactions, whose oper-
ators are Hermitian. Non-Hermitian terms appear in loop diagrams from energy
denominators; however, Hermiticity still holds when we consider the dispersive
and absorptive parts separately, as we discuss next. For instance, the semileptonic
decay has the amplitude

a� = 〈π−�+ν|HW|K 0〉 (15.4)

with HW the weak Lagrangian, which is Hermitian. Similarly, the contributions to
the mass matrix, with i and j being K 0 or K̄ 0, have the general form

Hi j = mKδi j + 〈i |HW| j〉 +
∑

n

〈i |HW|n〉〈n|HW| j〉
MK − En + iε

. (15.5)

The first two terms appear for i = j . The last term originates from box diagrams and
is present for �S = 2 transitions with j = K0 and i = K̄0. The last term is decom-
posed into two Hermitian matrices by decomposing the energy denominator into a
principal part denoted by P and a δ-function term. The Hamiltonian decomposes
as follows:

Hi j = Mi j − i

2
	i j , (15.6)

with a dispersive term

Mi j = mKδi j + 〈i |HW| j〉 + P
∑

n

〈i |HW|n〉〈n|HW| j〉
MK − En

(15.7)

and an absorptive term

	i j = 2π
∑

n

〈i |HW|n〉〈n|HW| j〉δ(En − MK). (15.8)

These terms satisfy the Hermiticity relations

Mi j = M∗
j i and 	i j = 	∗

j i . (15.9)

More relations follow from CP and CPT invariance. We present the conditions
as two theorems.

Theorem 1 For a Hamilton operator that is CPT-invariant the amplitudes for the
decays of particles and antiparticles are the complex conjugates of each other.

Proof Let us denote the amplitude for K0 decay by

AI = 〈X I |HW|K 0〉. (15.10)
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Then, using (C PT )HW(C PT )−1 = HW, we obtain

AI = 〈X I |(C PT )−1 HW(C PT )|K 0〉
= 〈K̄ 0|HW|X̃ I 〉 = Ā∗

I , (15.11)

where |X̃ I 〉 = C P|X I 〉, i.e. the CP conjugate state and

Ā I = 〈X̃ I |HW|K̄ 0〉. (15.12)

By applying the theorem to the diagonal elements of the mass matrix Hi j and
using Hermiticity of the dispersive and absorptive parts, we obtain

M11 = M22 and 	11 = 	22. (15.13)

This is the statement that CPT invariance demands the equality of masses and
widths for particles and antiparticles. When we apply the theorem to off-diagonal
elements, we obtain the relation

M12 = M∗
21 and 	12 = 	∗

21, (15.14)

which is not new, but the Hermiticity relations in Eqs. (15.9).
It follows now that the mass matrix in the |K 0〉 and |K̄ 0〉 has the form

M − i

2
	 =

(
M11 − i

2	11 M12 − i
2	12

M∗
12 − i

2	
∗
12 M11 − i

2	11

)
. (15.15)

As mentioned already, the form of the diagonal elements follows from conserva-
tion of the CPT symmetry. We can make them different, thus introducing by hand a
violation of CPT invariance, and study the modifications in the lifetimes and other
properties of the states.

The presence of the off-diagonal matrix elements implies the mixing of the states
K0 and K̄0. The physical states are a mixture of them, obtained by diagonalizing the
mass matrix, which will be presented in the next section. Additional restrictions,
which we describe in the next theorem, are introduced by CP symmetry. �

Theorem 2 For a Hamiltonian that is CP-invariant, the decay amplitudes for
particles and antiparticles are relatively real.

Proof

(i) As before we denote by AI and Ā I the decay amplitudes for particles and antiparticles,
respectively.

(ii) CP invariance implies

HW = (C P)−1 HW(C P). (15.16)
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(iii) Then the matrix elements are related,

AI = 〈X I |(C P)−1 HW(C P)|K 0〉
= 〈X̃ I |HW|K̄ 0〉 = Ā I . (15.17)

We can apply the theorem in cases in which |X I 〉 is a specific final state or in the
case |Xi 〉 = |K̄ 0〉 which refers to the mass matrix.

Let us consider the latter case first. Taking |X I 〉 = |K̄ 0〉 and |X̃ I 〉 = |K 0〉, we
obtain the relation

〈K̄ 0|HW|K 0〉 = 〈K 0|HW|K̄ 0〉 . (15.18)

In this and the following equations HW can be the lowest-order Lagrangian or
may include higher-order terms with possible contractions between fields. It follows
now that, when we consider the dispersive and absorptive terms separately, they
are relatively real. This is a stronger restriction than the Hermiticity requirement of
Eq. (15.15), where they were complex conjugates of each other. We shall use these
properties in the next section, where we will define the parameter ε.

For decays of particles the theorem says that the amplitudes for particles and
antiparticles are relatively real. This indicates a strategy for detecting CP violation.
It consists of measuring the phase difference of the two amplitudes relative to a third
standard phase, such as the phase occuring in the time development of states, the
phase in a Breit–Wigner propagator, or some other known phase. We shall describe
several methods in the next sections. �

15.3 Time development of states

In the following sections of Chapter 15, we shall assume that CPT is a good sym-
metry of Nature and study cases in which the CP symmetry is broken. The fact that
there are off-diagonal elements in Eq. (15.5) means that |K 0〉 and |K̄ 0〉 are not mass
eigenstates but the physical states are mixed states. The physical states are obtained
by diagonalizing the matrix in Eq. (15.15). Beyond the solution of the physical
states we are interested in learning how the elements M12 and 	12 are produced. In
gauge theories they originate from box diagrams and lead, for the various mesons,
to terms of different magnitudes, so that the physical properties of K0, D0, and B0

mesons are very different. We describe first the time development of the states.
We are interested in defining a state that is a superposition of |K 0〉 and |K̄ 0〉 and

has the time development

ψ1(t) = (B1|K 0〉 + D1|K̄ 0〉)eiE1t , (15.19)
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with B1 and D1 being constants. The time evolution is described by the Schrödinger
equation

i
d

dt
ψ1(t) =

(
M − i

	

2

)
ψ1(t), (15.20)

whose stationary solutions are determined by the eigenvalue problem(
H H12

H21 H

)(
B1

D1

)
= E1

(
B1

D1

)
, (15.21)

with a similar equation for the second eigenvalue E2.
The solutions have energies E1,2 = H ± √

H12 H21 and the eigenfunctions

ψ1,2 =
(

1
±q/p

)
e−iE1,2t with

q
p

=
(

H21

H12

)1
2

= eiξ , (15.22)

respectively. We have written the wave functions in terms of the parameter q/p
and have not yet normalized them. The reason for this is that one frequently uses
another parameter, ε, which is defined by

q

p
= 1 − ε

1 + ε
= [M∗

12 − (i/2)	∗
12]1/2

[M12 − (i/2)	12]1/2
= eiξ , (15.23)

which will be used later on. The dynamics of each problem resides in the matrix
elements of the Hamiltonian, which are calculated in terms of the box diagrams.
We describe the results of these calculations in the next section. They provide us
with values for M12 and 	12, which turn out to be complex functions indicating
CP violation in the mass matrix.

Let us discuss the physical states. On substituting q/p into Eq. (15.19), we obtain
at t = 0 two normalized states,

|KS〉 = 1√
2(1 + |ε|2)1/2

[
(1 + ε)|K 0〉 + (1 − ε)|K̄ 0〉], (15.24)

|KL〉 = 1√
2(1 + |ε|2)1/2

[
(1 + ε)|K 0〉 − (1 − ε)|K̄ 0〉]. (15.25)

Each state has its own time development given by e−iES,Lt . The subscripts S and
L indicate the short- and long-lived states. When ε = 0, |KS〉 and |KL〉 are even
and odd eigenstates of the CP operator. For Re ε �= 0 the states are no longer CP
eigenstates, indicating that the symmetry is broken in the construction of the states.

There are two special properties we wish to discuss. The states are not orthogonal
to each other, but have an overlap

〈KS|KL〉 = 2 Re ε

1 + |ε|2 . (15.26)
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This follows from the fact that the mass matrix, in general, is not Hermitian. The
second property occurs when ε is purely imaginary. We can use the states |K 0〉 and
|K̄ 0〉 or new states

|K̃ 0〉 = eiα|K 0〉 and |
�
K 0〉 = e−iα|K̄ 0〉 (15.27)

rotated by a constant phase α. A purely imaginary ε can be eliminated by the
appropriate redefinition of the states in Eqs. (15.24) and (15.25). The real part of
ε cannot be eliminated. A real part of εK has been established for the K 0-meson
system. For B0 mesons εB is, to a good approximation, purely imaginary and there
is no CP violation in the construction of the physical states.

For the time development of the states we separate the eigenvalues into their
respective dispersive and absorptive parts,

MS,L − i

2
	S,L = ES,L = E1,2,

which define the mass and width differences

ML − MS − i

2
(	L − 	S) = 2

√
H12 H21. (15.28)

A general state is a superposition of the physical states KS and KL, with constant
coefficients C1,2 describing how the state was created at time t = 0:

ψ(t) = C1e−i[MS−(i/2)	S]t |KS〉 + C2e−i[ML−(i/2)	L]t |KL〉. (15.29)

The decay of the state proceeds through strangeness-changing couplings, which
requires that we rewrite them in terms of |K 0〉 and |K̄ 0〉. The time development of
a state that at time t = 0 began as |K 0〉 is given by

ψ1(t) = N

[
f+(t)|K 0〉 + q

p
f−(t)|K̄ 0〉

]
, (15.30)

with

f± = e−i[MS−(i/2)	S]t ± e−i[ML−(i/2)	L]t , (15.31)

with N a normalization constant. Similarly, a state that starts at t = 0 as |K̄ 0〉 has
the time development

ψ2(t) = N ′
[

f−(t)|K 0〉 + q

p
f+(t)|K̄ 0〉

]
. (15.32)

These equations indicate that a state that started as a pure |K 0〉 will develop in time a
|K̄ 0〉 component through the interference of the two terms. The fact that it involves
an interference phenomenon makes possible the separation of the amplitudes, as
well as determination of the factor q/p.
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Let us consider an experiment in which a state |K 0〉 was created. This state will
evolve into a mixture of both K0 and K̄0. In fact the probabilities of finding at time
t the |K 0〉 and |K̄ 0〉 components are

|〈K 0|K 0(t)〉|2 = | f+(t)|2 = 1

4

[
e−	1t + e−	2t + 2 cos(�M t)e−	t

]
and

|〈K̄ 0|K 0(t)〉|2 =
∣∣∣∣q

p
f−(t)

∣∣∣∣
2

= 1

4

∣∣∣∣q

p

∣∣∣∣
2[

e−	1t + e−	2t − 2 cos(�M t)e−	t
]
,

with 	1 = 	S, 	2 = 	L, and 	 = 1
2 (	S + 	L). Similar formulas hold for a state

that starts as |K̄ 0(t)〉. The detection of |K 0〉 or |K̄ 0〉 in the final state is carried out
by observing their decay products. Thus the final formulas involve an additional
amplitude, which introduces its own phase. The time development of the states
allows the accurate determination of�M and of relative phases. In fact, this property
is used heavily in the analysis of experiments.

15.3.1 Simplified formulas for K0 mesons

Numerous experiments with K-meson beams were able to determine �M , �	,
and the parameter εk . The results suggest several approximations that simplify the
equation considerably. For neutral K mesons the mass and width differences are
comparable:

�MK = ML − MS = 3.52×10−15 GeV, �	K = 	L −	S = −7.36 × 10−15 GeV .

(15.33)
Measurements in the decays of the particles determine εK to be small,

|εK| = (2.27 ± 0.02) × 10−3, (15.34)

with a phase of approximately 45◦. At the end of this section we describe an
experimental method that determines |εK|.

For small εK the exponent ξ which occurs in Eq. (15.23) is small and allows the
following approximations:

H12 ≈ √
H12 H21(1 − iξ ),

H21 ≈ √
H12 H21(1 + iξ ).

From the definition of εK it follows that

εK = H12 − H21

H12 + H21 + 2
√

H12 H21
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and, using the above approximations,

εK = i Im M12 + 1
2 Im 	12

2
√

H12 H21
= i Im M12 + 1

2 Im 	12

�M − (i/2)�	
. (15.35)

The fact that the phase is 45◦ means that Im M12 and Im 	12 are comparable.
Furthermore, the magnitude of |εK| implies that the denominator is much larger,
i.e.

Im M12, Im 	12 ≤ Re M12 or Re 	12, (15.36)

giving the final result

H12 = Re M12 − i

2
Re 	12 (15.37)

and √
H12 H21 ≈ Re M12 − i

2
Re 	12. (15.38)

The simplified formulas of this section hold only for the K0 system. For this case
the mass difference is

�M = 2 Re M12 (15.39)

and the width difference is

�	 = 2 Re 	12. (15.40)

We shall discuss the theoretical determination of these quantities in the next section.
Before leaving the discussion of the K mesons, we discuss the measurement of
Re εK from semileptonic decays.

Let us consider a beam that consists of KL mesons. This beam is created in
accelerators by producing intense beams of K0 or K̄0 mesons and setting up an
experiment far away from the production region, where the KS particles have already
decayed. Next we consider the decays

KL → π−�+ν (15.41)

and

KL → π+�−ν̄, (15.42)

distinguished by the charges of the pions and leptons. We denote the decay ampli-
tudes as

a� = 〈π−�+ν|HW|K 0〉, (15.43)

ā� = 〈π+�−ν̄|HW|K̄ 0〉. (15.44)
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Assuming CP invariance for the amplitudes, Theorem 2 says that the two amplitudes
are equal,

a� = ā�, (15.45)

which, together with the definition of KL, determines the asymmetry

δ = 	(KL → π−�+ν) − 	(KL → π+�−ν̄)

	(KL → π−�+ν) + 	(KL → π+�−ν̄)
= 2 Re ε

1 + |ε|2 . (15.46)

The experimental value for the asymmetry is

δ = (3.27 ± 0.12) × 10−3, (15.47)

which is consistent with the magnitude and phase given earlier in this section. The
separation into magnitude and phase is obtained by comparing the semileptonic
decay with the KL → ππ decays, which we shall describe in a following section.

15.4 The K0–K̄0 transition amplitude

The theoretical calculations of the matrix elements M12 and 	12 are far from being
understood. For these as well as other matrix elements, there have been developed
several methods that provide acceptable values and even make successful predic-
tions. For K0 mesons there are short- and long-distance contributions, with the
dominance of the short-distance contributions being harder to justify, because the
strong coupling constant αS(q2) is large and the quarks are confined into hadrons.
For the B0 mesons, on the other hand, the dominance of the top quark in intermediate
states makes short-distance dominance more reliable.

The diagonal elements of the mass matrix are created by the strong interactions.
The off-diagonal term M12 involves a �S = 2 transition and receives contributions
from the box diagrams, as described in Section 14.7. The method consists of calcu-
lating an effective �S = 2 Hamiltonian in the free-quark model and then taking its
matrix element between the K0 and K̄0 states. The �S = 2 Hamiltonian generated
by this method was described in Section 14.7:

H�S=2
W = − G2

16π2
M2

W Q�S=2
[
λ2

c E(xc) + 2λcλt E(xc, xt) + λ2
t E(xt)

]
, (15.48)

with the various terms defined as follows. The variable xi = m2
i /M2

W and the
couplings of the quarks at the various vertices produce the factors

λi = V ∗
idVis. (15.49)

Their numerical values are determined by the CKM-matrix elements with λc being
of O(λ) and λt of O(λ5) in the Wolfenstein parametrization. The functions E(xc)
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and E(xc, xt) are obtained from the integration over the loop. We wrote down E(xi )
in Eq. (14.52) and the second function is given as

E(xi , x j ) = −xi x j

[
1

xi − x j

(
1

4
+ 3

2

1

(1 − xi )
− 3

4

1

(1 − xi )2
ln xi

)
+ (i ↔ j)

− 3

4

1

(1 − xi )(1 − x j )

]
. (15.50)

For

m2
c  M2

W, E(xc) → −xc

and for

m2
t � M2

W, E(xt) → −1

4
xt + 3

2
ln xt,

which indicates that the various terms in (15.50) are comparable.
Finally, there is the operator

Q�S=2 = d̄γµ(1 − γ5)sd̄γ µ(1 − γ5)s,

which represents the external lines of the box diagram. The matrix element XK =
〈K 0|Q�S=2|K̄ 0〉 contains the long-distance contribution of this calculation. A good
deal of effort has been invested in its calculation. In various situations so far, we have
encountered the calculation of two-quark operators (currents) between hadronic
states, for which there are reliable numerical estimates – sometimes extracted from
experimental data. Estimates of matrix elements for four-quark operators are less
reliable and are still a subject of research. A simple estimate of such matrix elements
is given in Eq. (16.5), which can be taken over for the K mesons by making the
replacements FD → FK and MD → MK.

The absorptive part 	12 is in principle also calculable in terms of the box diagrams
by setting the intermediate states on the mass shell, i.e. replacing the propagators
by δ-functions. For K mesons the physical intermediate states are u quarks, making
the absorptive part a long-distance effect. This term is calculated by low-energy
methods with the intermediate states being 2π, 3π, . . . mesons. The calculation
carries a large uncertainty because the amplitudes and their relative phases are not
known.

The situation is different for heavy mesons, in particular the B0−B̄0 system, in
which there are many intermediate states with multiparticle final states dominating
the decay. For heavy mesons the sum over intermediate states will be replaced by the
quarks and will be calculated as the absorptive part of the diagram. This is known
as the quark–hadron duality, whereby hadronic matrix elements are replaced by
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the corresponding quark diagrams. Finally, the matrix elements are taken between
hadrons, for which approximations are again necessary.

We close this section by deriving two approximate formulas describing the mass
and width differences of neutral B mesons. The general formulas for width and
mass differences are

�M = 2 Re

[(
M12 − i

2
	12

)(
M∗

12 − i

2
	∗

12

)] 1
2

, (15.51)

�	 = −4 Im

[(
M12 − i

2
	12

)(
M∗

12 − i

2
	∗

12

)] 1
2

. (15.52)

For these equations, we need assume only that the CPT symmetry is exact. For K0

mesons the data imply the approximations which were described in Section 15.3.1.
For the B mesons the situation is different. Estimates of 	12 and M12 using the
effective Hamiltonians of this section lead to the estimate (Paschos and Türke,
1989)

	12 ∼ 0.1M12

and with almost the same phase; consequently for B mesons

�MB = 2|M12| and �	B = 2|	12| (15.53)

to a good approximation. The differences in the masses and widths of the K0 and
B0 mesons indicate that each system must be treated separately. The qualitative
differences are understood in terms of the quark substructure which enters the box
diagrams.

15.5 CP violation in amplitudes

Besides the phase introduced in the mass matrix the decay amplitudes have their
own phases. Theorem 1 states that the amplitudes for particle and antiparticle
decays are the complex conjugates of each other. This is a consequence of CPT.
CP symmetry goes one step further and requires the amplitudes to be real relative
to each other. Consequently, evidence for the breakdown of CP symmetry requires
the measurement of phases.

In quantum mechanics the overall phase of a sum of amplitudes can always be
removed, but relative phases among amplitudes are measurable observables. For
this reason all measurements must include at least two phases and the experiments
measure one phase relative to the other.



192 CP violation: K mesons

Let us denote the final state by 〈 f | and in addition select the final state to be a
CP eigenstate with eigenvalue unity. Examples of such decays are

K0 → π+π−, π0π0. (15.54)

There are two decay amplitudes specified by the isospin of the two pions being
0 or 2. Searches for direct CP violation measure the relative phase of the two
amplitudes and try to establish whether it is the same in K0 and K̄0 decays. We
denote the amplitude

〈(2π )I |HW|K 0〉 = AI eiδI ,

〈(2π )I |HW|K̄ 0〉 = Ā I eiδI with I = 0 or 2. (15.55)

The phases δI are created by final-state interactions of the two pions, which is
a strong-interaction effect independent of the initial state but a function of the
isospin I . Beyond the strong phase there is also a phase of weak origin, which
changes sign as we go from particles to antiparticles. Consequently, we can write
the amplitudes as follows.

AI = |AI |eiθI , (15.56)

Ā I = |AI |e−iθI , (15.57)

where θI is now a phase of weak origin.
Experiments starting with a |K 0〉 or a |K̄ 0〉 beam also observed the mixing

phenomenon, described in Section 15.3, in the decays to π+π− and π0π0. At a
distance corresponding to six to seven lifetimes of the KS mesons the two amplitudes
interfere and show a difference. In this way one can separate the ratios

η+− = A(KL → π+π−)

A(KS → π+π−)
(15.58)

and

η00 = A(KL → π0π0)

A(KS → π0π0)
. (15.59)

If CP is a good symmetry (the CP quantum number is conserved), then these ratios
vanish. The experiments found these ratios to be different from zero. It is customary
to make an isospin analysis of the amplitudes and write them as

A(K0 → π0π0) =
√

2

3
A0 − 2√

3
A2 (15.60)
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and

A(K0 → π+π−) =
√

2

3
A0 + 1√

3
A2 (15.61)

and rewrite the ratios in terms of isospin amplitudes.
Straightforward substitution of the amplitudes gives

η+− = (
√

2A0 + A2ei�) − eiξ (
√

2A∗
0 + A∗

2ei�)

(
√

2A0 + A2ei�) + eiξ (
√

2A∗
0 + A∗

2ei�)
, (15.62)

with � = δ2 − δ0. It is mentioned here that the ratio is phase-convention indepen-
dent. A popular phase convention was introduced by Wu and Yang, which selects
the A0 amplitude to be real and then the answers will depend on the phase of the
A2 amplitude denoted by θ2. We adopt this convention; then, by substituting eiξ in
terms of ε and collecting terms together, we obtain

η+− =
ε

[
1 + 1√

2

∣∣∣∣ A2

A0

∣∣∣∣cos θ2 ei� +
(

i√
2

)∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

]
[

1 + 1√
2

∣∣∣∣ A2

A0

∣∣∣∣ cos θ2 ei� +
(

iε√
2

)∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

] . (15.63)

The expression simplifies if we neglect the second term in the denominator, since
ε|A2/A0|sin θ2  1. In this case

η+− = ε + ε′

1 + ω/
√

2
(15.64)

with

ε′ =
(

i√
2

) ∣∣∣∣ A2

A0

∣∣∣∣sin θ2 ei�

and

ω =
∣∣∣∣ A2

A0

∣∣∣∣cos θ2 ei�.

On repeating the analysis for η00 with the same approximations, we obtain

η00 = ε − 2ε′

1 − √
2 ω

. (15.65)

In many models both A0 and A2 are complex and rephasing of the amplitudes is
necessary in order to bring them into accord with the Wu–Yang phase convention.

In summary, in addition to the CP parameter discussed in Section 15.3.1, there
is the parameter ε′. The parameter ε arose from phases in the mass matrix and ε′

from relative phases in the decay amplitudes. The former is referred to as indirect
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CP violation and the latter as direct CP violation. It is also customary to define the
ratio ε′/ε because the phase π/2 − � ≈ 45◦ of ε′ is approximately equal to the
phase of ε and cancels out in the ratio.

Going back to a general phase convention whereby both A0 and A2 are complex,
we should replace θ2 by θ2 − θ0 and the definition of ε′/ε becomes

ε′

ε
= 1√

2|ε|

∣∣∣∣ A2

A0

∣∣∣∣(sin θ2 − sin θ0)

= − ω√
2 ε

1

Re A0

(
Im A0 − 1

ω
Im A2

)
, (15.66)

with

ω =
∣∣∣∣ A2

A0

∣∣∣∣ ≈ Re A2

Re A0
� 1

22.2
.

The remaining problem is the calculation of the imaginary parts of the amplitudes
in Eq. (15.66) because the real parts are much larger, with their numerical values
known from experiments.

15.6 The effective Hamiltonian

K-meson decays involve low-energy interactions mediated by the exchanges of
hadrons and at least one W boson. It is customary to appeal to the quark–hadron
duality and replace the hadrons by quarks and gluons. The weak interaction is a
short-distance phenomenon that is represented by the couplings of the W to quarks.
This is not the only part of the interaction, because there are strong interactions
produced by the exchanges of gluons. A complete calculation must include both of
them. Thus a method has been developed in field theory for this purpose. The method
consists of summing the leading logarithmic contributions of the diagrams. The final
result is an effective field theory with the W and the heavy quarks eliminated or, as
one says, “they have been integrated out.”

Even if we start with one weak operator at momenta comparable to MW, the
exchange of gluons introduces more operators coming from loop diagrams, like
penguin and box diagrams. The effective Hamiltonian has the form

Heff =
∑
a,b

Cab(MW, µ)Qab(µ), (15.67)

with Qab(µ) = q̄(x)	aq(x)q̄(x)	bq(x) with 	a and 	b being matrices in Dirac
space. The constants Cab(MW, µ) are the coefficient functions (Wilson coefficients)
obtained from the renormalization of the operators. They depend on a high energy,
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MW, a low energy scale, µ, and the quarks in the intermediate states. Their general
form is

Ci j (MW, µ) ∼ ln

(
MW

µ

)γ

b

, (15.68)

which is obtained by integrating renormalization equations of quantum chromo-
dynamics (QCD). The exponent γ is known as the anomalous dimension and b
arises from the running of the coupling constant. The calculation of the coefficients
and their accuracy is a theoretical topic of active research whose study is beyond
the scope of this book (Buchalla etal., 1996).

In order to give a general impression of the results, we present here the effective
Hamiltonian for K-meson decays. As mentioned already, it depends only on the
light quarks and contains eight operators:

H�S=1
eff = GF√

2

8∑
i=1

[
Cu

i (µ)λu + Cc
i (µ)λc + C t

i (µ)λt
]
Qi for µ < mc, (15.69)

where λq = V ∗
qdVqs are again the couplings from the CKM matrix, the unitarity of

which implies

λu + λc + λt = 0 (15.70)

and makes possible the elimination of one of them. Once we decide to eliminate
λu, the coefficient functions will appear as differences Cc

i − Cu
i and C t

i − Cu
i . The

substitution makes the coefficient functions less sensitive to the up quark. The
operators which appear are defined as follows:

Q1 = 4s̄Lγ µdLūLγµuL, Q2 = 4s̄Lγ µuL ūLγµdL,

Q3 = 4
∑

q

s̄Lγ µdL q̄LγµqL, Q4 = 4
∑

q

s̄Lγ µqL q̄LγµdL,

Q5 = 4
∑

q

s̄Lγ µdL q̄RγµqR, Q6 = −8
∑

q

s̄LqR q̄RdL,

Q7 = 4
∑

q

3

2
eq s̄Lγ µdL q̄RγµqR, Q8 = −8

∑
q

3

2
eq s̄LqR q̄RdL. (15.71)

Operator Q2 is the original charged-current operator and Q1 is generated from box-
type diagrams, where in addition to the W a gluon is being exchanged (Fig. 15.1).

The penguin diagrams in Fig. 15.2 generate Q3, . . ., Q6. Finally, penguin dia-
grams with the exchange of photons generate Q7 and Q8 (electroweak penguins).
Since the penguin diagrams are important, we present several steps of the calcula-
tion in Section 15.7, where it is also explained how the penguin diagrams generate
the various operators.
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ū

Figure 15.1. Tree and box diagrams.
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Figure 15.2. A penguin diagram.

Finally, one may also show that not all the operators are independent, since they
satisfy the relation

−Q1 + Q2 + Q3 = Q4.

The coefficient functions Ci (MW, µ) originate from the short-distance interaction
of QCD and have been calculated at the one-loop, as well as the two-loop, level.
The hadronic matrix elements

〈Qi (µ)〉I = 〈ππ, I |Qi (µ)|K 0〉 (15.72)

originate from long-distance interactions, since they involve low energies and
momenta. They represent the low-energy limit of QCD and must be calculated
by low-energy methods. They have been the subject of various calculations, which
we shall mention briefly. Within the framework described in this section we can
outline the calculation of ε′/ε.

Among the amplitudes which enter the calculation, Re A0 and Re A2 are taken
from experimental data (Devlin and Dickey, 1979):

Re A0 = 0.338 × 10−6 GeV and Re A2 = 0.015 × 10−6 GeV.
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They are much larger than their imaginary parts. The amplitudes Im A0 and Im A2

are calculated in terms of the effective Hamiltonian

Im AI = G√
2

8∑
i=1

[(
Cc

i − Cu
i

)
Im λc + (

C t
i − Cu

i

)
Im λt

]〈Qi 〉I . (15.73)

With a phase convention of the CKM matrix whereby Vus and Vud are real, the
unitarity of the CKM matrix provides one additional relation,

Im λt = −Im λc = λ5 Aη. (15.74)

Substitution of this relation eliminates the u quarks in intermediate states, since the
Wilson coefficients for top and charm quarks are subtracted from each other. This
leads to the result

ε′

ε
= GF√

2

ω

|ε|
1

Re A0
Im λt

∑
yt

i (µ)

[
〈Qi (µ)〉0 − 1

ω
〈Qi (µ)〉2

]
, (15.75)

with yt
i (µ) = C t

i (µ) − Cc
i (µ) and ω = Re A2/Re A0. The superscripts denote con-

tributions from top and charm quarks in the intermediate states. The unitarity of the
CKM matrix helps by eliminating the Wilson coefficients of the u quarks and mak-
ing the QCD contribution sensitive to the energy scales between mc and m t, where
the short-distance expansion is acceptable. The Wilson coefficients are available
and have been tabulated (Buchalla et al., 1996).

The hadronic matrix elements have been the subject of numerous calculations.
From the early estimates it was evident that 〈Q6〉0 plays an important role. The
matrix element is generated by the penguin diagrams and, since it involves pseudo-
scalar densities, it is enhanced. In chiral perturbation theory it is expressed in terms
of coupling constants divided by the mass of the strange quark. It was also calculated
by vacuum saturation or the tree contribution of the chiral perturbation theory. It
was noted that the lowest-order contribution must be supplemented by chiral loops
(Bardeen et al., 1987, 1998). The final results indicate that 〈Q6〉0 is important,
especially because it is further enhanced by contributions from chiral loops.

An additional complication arises from the matrix element 〈Q8〉2, whereby in
the penguin diagrams the gluon is replaced by a photon. It was argued that the elec-
troweak term can be very important because it is multiplied by a large factor, 1/ω.
Calculations in chiral perturbation theory indicate that its contribution is moderate
and it is further reduced by loops. A good approximation consists of taking the
dominance 〈Q6〉0 and 〈Q8〉2. As an illustrative example we give typical values for
the Wilson coefficients,

y6 = −0.110 and y8 = 1.15 × 10−3, (15.76)
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and the matrix elements,

〈Q6〉0 = −3.4 GeV3 and 〈Q8〉2 = 0.46 GeV3, (15.77)

obtained in chiral perturbation theory for ms = 150 MeV. The CKM term is pre-
cisely known to be

Im λt = (1.35 ± 0.35) × 10−3. (15.78)

On collecting all terms together in Eq. (15.75), we obtain the value(
ε′

ε

)
K

= 16.9 × 10−4, (15.79)

which is consistent with the experimental values. The contribution of the electro-
weak penguin is less than 20%. Many quantities entering the calculation carry
uncertainties and the final range for the ratio is larger, in the range (10−20) × 10−4

(Hambye et al., 2000). Calculations in the chiral quark model give a similar range.
These values are consistent with the newest experimental values,

(14.7 ± 2.2) × 10−4 NA(48) (Fanti et al., 1999), (15.80)
(

ε′

ε

)
K

=
{

(22.7 ± 2.8) × 10−4 KTeV (Alavi-Harati et al., 1999). (15.81)

At this time it seems that the experiments are more precise than the theory. This
is the outcome of four large experiments that invested great efforts in measuring
precisely decays and interference phenomena in K-meson decays.

It would be an omission not to mention a good deal of work done on lattice gauge
theories, which tries to determine the matrix elements. Unfortunately, their results
are not stable enough yet. They give a wide range of values for the matrix elements
and the CP parameter.

This is an introduction to the calculations of the CP parameter intended for
students who may use it as a guide to the published articles. The bottom line is
that theoretical analyses in the standard model are consistent with experimental
measurements. The CKM paradigm gives a consistent – albeit not very accurate –
picture for the K-meson decays and it remains to find out whether it continues being
successful for mesons containing heavy quarks.

15.7 Calculation of a penguin diagram

In K-meson and B-meson decays an important contribution comes from the penguin
diagram. We have mentioned already that in Eq. (15.71) the penguin diagram with
gluonic corrections produces four operators. It is worthwhile to give several steps
of the calculation, which demonstrate how the various operators are generated. This



15.7 Calculation of a penguin diagram 199
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W, k
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Figure 15.3. Momentum assignments for the penguin diagram.

section contains long algebraic manipulations and is presented here for those who
are theoretically inclined.

The notation for the penguin diagram is introduced in Fig. 15.3. The external
momenta are those of the strange and down, quarks, which correspond to typical
momenta within light mesons and are small relative to the mass of the W boson. For
this reason external momenta are kept in the spinors but will be neglected within the
four-dimensional integral. A peculiarity of the penguin diagram is the presence of
the gluon propagator with momentum q, which is kept throughout the calculation.
Following standard rules, the matrix element is written in the form

MP = g2
w

8

g2
s

q2

∫
s̄γµγ−

k/ + q/ + mi

(k + q)2 − m2
i

γν

λα

2

k/ + mi

k2 − m2
i

γ µγ−d
1

k2 − M2
W

d4k

(2π )4

× Q̄γ ν λα

2
Q ·V ∗

isVid. (15.82)

The quarks in the loop and their masses are denoted by the subscript i and mi ,
respectively. The index for the intermediate quarks occurs also in the CKM matrix
elements Vis and Vid. The rest of the notation is standard, with gw and gs the
weak and strong coupling constants, respectively, γ− = (1 − γ5), and λα the color
matrices.

We follow several of the steps for the calculation of loops described in
Section 14.7.2. We rewrite the matrix element as

MP = g2
w

8

g2
s

q2
s̄γµγ−γαγν

(
λα

2

)
γβγ µγ−d Q̄

(
λα

2

)
Q I αβ(mi , q), (15.83)

with

Iαβ(mi , mi , q) =
∫

d4k

(2π )2

(k + q)αkβ[
(k + q)2 − m2

i

](
k2 − m2

i

)(
k2 − M2

W

)V ∗
isVid.

(15.84)
In this way we have separated the spinor structure from the four-dimensional
integral. We ignored fermion masses in the numerator, since they are small relative
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to the integration momenta, and set s̄q/d = 0 because we consider masses for
external quarks that are small. There is a logarithmic divergence independent of
the quark masses. It is multiplied by

∑
i V ∗

isVis = 0 and vanishes. Similarly, in the
limit in which the gluon momentum transfer q2 is much larger than all internal
quark masses, it is easy to check that the penguin diagram vanishes. However, for
problems involving q2  m2

c or m2
t the cancellation is not complete.

The remaining two integrals appear with the factors kαkβ or qαkβ in the numer-
ator. Using the method of Feynman parameters and the integrations described in
Problem 4, the dominant contribution of the integral for mc, m t  MW is

Iαβ(mi , q) = −qαqβ

M2
W

1

16π2i
ln

(
M2

W

m2
i

)(
1

3
− 1

2

)
V ∗

isVid, (15.85)

with the 1
3 coming from the kαkβ term and the 1

2 from the qαkβ term. Finally, we
simplify the spin structure by using known identities:

qαqβ s̄γβγνγαγ−d = s̄(2qν − γνq/)q/γ−d = −q2s̄γνγ−d. (15.86)

The q2 factor cancels out the gluon propagator in Eq. (15.82).
On collecting terms together, we arrive at the final result

MP = − G√
2

αs

12π
ln

(
M2

W

m2
i

)
s̄Lγνλ

αdL Q̄γ νλa Q(V ∗
isVid). (15.87)

We note that the coupling s̄L . . . dL contains left-handed quarks, in contrast to the
gluon coupling Q̄γν Q being a vector. By decomposing the latter into left- and right-
handed couplings, we generate two distinct operators. Finally, using an identity for
the product of color matrices,∑

a

λa
i jλ

a
kl = 2

(
δilδ jk − 1

3
δi jδkl

)
, (15.88)

we double the number of operators. In the end, the penguin diagram generates four
operators, Q3, Q4, Q5, and Q6, which were absent at the tree level.

There are two ways to treat the penguin diagram. One of them considers its
contribution as a short-distance operator creating a four-fermion interaction among
the quarks. This would be the case when the top quark dominates a process. The
exchange of additional gluons may still be soft and some sort of summation is
again necessary. A final step is the estimation of the four-quark operator between
hadronic states.

The alternative method considers the four operators generated by the penguin
diagrams as basic operators and sums up higher-order QCD corrections. This is
achieved by considering gluonic corrections to each of the operators Q1, . . ., Q6,
which renormalizes and in addition mixes them up; that is, gluonic corrections to
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one operator generate several of the others. The problem to be solved is one of
coupled differential equations. The initial conditions are defined at high momenta
when only Q2 has an initial value and all other operators are zero. Following this
method (Peskin and Schroeder, 1995; Buchalla et al., 1996), one arrives at the
effective Hamiltonian similar to that in Eq. (15.69). The theory is effective because
the additional corrections are proportional to higher powers of αs(p2), which for
large momenta become very small.

Problems for Chapter 15

1. Introduce in Eq. (15.62) the Wu–Yang phase convention, then substitute for eiξ in terms
of ε and derive Eqs. (15.63) and (15.64).

2. (i) The normalizations that occur in Eqs. (15.30) and (15.32) describe how many K0 or
K̄0 mesons, respectively, are present at time t = 0. Argue that for normalized wave
functions |K 0〉 and |K̄ 0〉 they should be N = N ′ = 1

2 .
(ii) Consider the time development of the state |K 0〉 and the decays to π+π−. Describe

the interference term and find an argument justifying the large interference at a
distance corresponding to six to seven lifetimes of the KS meson.

3. Show that the operators Q1, Q2, Q3, and Q4 satisfy the relation

−Q1 + Q2 + Q3 = Q4.

4. The calculation of the integral in Eq. (15.84) contains in the numerator two terms: one
with kαkβ and the other with qαkβ . Write each of the integrals in terms of Feynman
parameters. The four-dimensional integrations are of the form∫

d4k

(2π )4

{kα, kαkβ}
(k2 + 2k · p − �)3

= 1

32π2i

[ {−pα; pα pβ}
� + p2 + iε

+
{

0;
1

2
gαβ ln(� + p2 + iε) + A0

}]
.

The function � contains masses of the quarks, the mass MW, q2, and Feynman parame-
ters. The constant A0 is cut-off-dependent but independent of quark masses; it disappears
when we sum over the quarks in the loop. The remaining two integrations are elemen-
tary. Arrange the integrations in an appropriate way to extract the leading ln(MW/mi )
term and obtain Eq. (15.85).

Comment We described the integrals in the limit mi  MW. For m t > MW you can
again study the elementary integrals and obtain a modified logarithmic term.
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16

CP violation: D and B mesons

16.1 Introduction

In previous chapters we mentioned that the analysis of bound states with heavy
quarks varies from meson to meson. For heavy mesons the hadronic structure
becomes simpler and approaches the spectator model with corrections given by
HQET. Their weak properties, on the other hand, remain distinct because they
depend on the interplay between CKM couplings and the masses of the mesons.
For this reason we discuss the mixing and CP violation in D and B mesons in a
separate chapter.

The system D0–D̄0 is quite different because the decay width is much larger than
the mass and width differences, which makes the observation of mixing and of CP
asymmetries very difficult. In fact, they have not been observed yet. This motivated
several authors to suggest that the observation of these effects, at a higher level than
expected, will be an indication of contributions beyond the standard model.

The observation of these effects in the neutral B mesons was experimentally
promising because the decay of the b quark to its heavier partner, the top quark,
is not possible for kinematic reasons. The suppressed decay width is comparable
to the difference in mass of the Bd mesons. Consequently, the mixing over their
lifetimes is substantial and has been observed. In addition, the mixing of the states
provides another phase that interferes with phases of decay amplitudes and produces
oscillations observable in the experiments. These are some of the topics to be
covered in this chapter.

16.2 The D0–D̄0 transition amplitude

The calculation of the mass difference for KS and KL mesons in terms of the box
diagrams gave a sizable fraction (≥50%) of the observed value. This suggests that
similar calculations for heavier mesons may be more accurate. Indeed, estimates of
�M and �� for D0 mesons give small values relative to the decay width of these

203
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particles. For this reason, mixing of the neutral D states and CP asymmetries have
not yet been observed. Similar calculations for the B mesons give values consistent
with the data, because box diagrams are dominated by top quarks in the intermediate
states.

As mentioned in Section 14.7, mixing of states depends on the size of the decay
width relative to the value of the off-diagonal matrix elements of the effective
Hamiltonian. We can estimate both of these terms for D mesons. The decay width
in the spectator model is given approximately by

� = G2m5
c

192π3
|Vcs|2. (16.1)

This should be compared with the following matrix element of the effective
Hamiltonian:

〈D̄0|H12|D0〉 = − G2

16π2
M2

W

[
ξ 2

s E(xs) + 2ξsξb E(xs, xb) + ξ 2
b E(xb)

]
×〈D̄0|c̄γµ(1 − γ5)uc̄γ µ(1 − γ5)u|D0〉. (16.2)

The factors ξs = V ∗
usVcs and ξb = V ∗

ubVcb are given in terms of Kobayashi–Maskawa
matrix elements, which in the Wolfenstein parametrization are of order λ and λ5,
respectively. The E(xs) and E(xb) pertain to strange and bottom quarks and are
approximated for m2

i � M2
W by

E(xi ) ≈ −xi . (16.3)

The reduced matrix element

XD = 〈D̄|c̄αγµ(1 − γ5)uα c̄βγ µ(1 − γ5)uβ |D〉, (16.4)

withα andβ color indices, is similar to the matrix element encountered for K mesons
in Section 15.4. An order-of-magnitude estimate is given by the vacuum-insertion
approximation, which consists of introducing the vacuum state in all possible ways.
For the above case we obtain

XD = 〈D̄|c̄αγµ(1 − γ5)uα|0〉〈0|c̄βγµ(1 − γ5)uβ |D〉
+ 〈D̄|c̄αγµ(1 − γ5)uβ |0〉〈0|c̄βγµ(1 − γ5)uα|D〉

=
(

1 + 1

3

)
|〈D̄|c̄αγµ(1 − γ5)uα|0〉|2

= 8

3
F2

D MD. (16.5)

The second equation is obtained by Fierzing the second and the fourth spinors
and the factor of 1

3 by transforming the matrix elements to color singlets (use
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Eq. (15.88)). The decay coupling constant is defined as

〈0|c̄LγµuL|D〉 = i
FD pµ√

2MD
, (16.6)

with uL being a normalized left-handed spinor.
It is straightforward to estimate ratios of the mass and width differences to the

width. The b-quark exchange graphs are smaller than that for the strange-quark
exchange, because of the very small b coupling. Estimates of the strange-quark
graph give

x = �M

�
≈ O(10−4) and y = ��

2�
≈ O(10−4), (16.7)

with more precise estimates depending on values for the parameters. Alternatively,
one may use hadronic intermediate states, but very few amplitudes are known at
present and their phases are unknown. The above values of x and y give very small
mixing.

Since the lifetime of D mesons is very short, only time-integrated effects can be
observed. They are defined in terms of the transition probabilities |〈D̄0|D0(t)〉|2 and
|〈D0|D0(t)〉|2, whose functional forms in terms of widths and masses are similar
to those for the K mesons given at the end of Section 15.3:

r =
∫ ∞

0 |〈D̄0|D0(t)〉|2∫ ∞
0 |〈D0|D0(t)〉|2 =

∣∣∣∣q

p

∣∣∣∣
2 ∫ | f−(t)|2 dt∫ | f+(t)|2 dt

=
∣∣∣∣q

p

∣∣∣∣
2

�M2 + (��/2)2

2�2 + (�M)2 − (��/2)2 =
∣∣∣∣q

p

∣∣∣∣
2 x2 + y2

2 + x2 − y2
. (16.8)

These equations imply that the expected mixing for neutral D mesons for the values
in (16.7) will be of order 10−8 and any observable mixing must be attributed to
another mechanism beyond the standard model.

Even though the estimates for D0 are very approximate, the methods we described
in this section are general and can be taken over for other mesons. The vacuum-
insertion approximation of Eq. (16.5) has already been used for K mesons and
we will meet it again in the next section. Vacuum insertion is an approximation
that several authors tried to improve. It is hoped that lattice gauge theories will
eventually give precise values.

The second result of this section, Eq. (16.8), gives the mixing of short-lived states
integrated over long intervals of time. This is a general result that depends on the
quantum-mechanical development of a two-state system. In a tagged D0 beam, the
ratio r gives the number of wrong-sign leptons produced in the decays divided by
the number of right-sign leptons. The wrong-sign leptons are those which originate
from the oscillation of D0 to D̄0 mesons. We mentioned leptons as an example, but
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they can be substituted by decays into K mesons of specific strangeness. Such
a ratio was in fact used to determine B0–B̄0 mixing, which we shall explain in
Section 16.4.

16.3 Comparison of K0 and B0 mesons

It is instructive at the very beginning to compare several properties of the K0 and
B0 mesons, because these two mesons are quite different. For the K mesons there
are two physical states with very different lifetimes:

τ (KS) = 89.35 ps and τ (KL) = 51 700 ps. (16.9)

This big difference comes about because the mass and width differences of the K
mesons are comparable:

�MK = −1

2
��K = −1

2
�s. (16.10)

For the B mesons the situation is very different. The lifetime of the B mesons is
much smaller:

τ (B) = 1.55 ± 0.06 ps. (16.11)

In addition �12 � M12 for Bd mesons, which makes the lifetimes of the two physical
states almost identical. For this reason we characterize them by their masses, as
heavy and light, and denote them by BH and BL, respectively. From the mixing of
the two states we know the ratio

�M

�
= 0.73 ± 0.18. (16.12)

The mixing of the B states is described by box diagrams analogous to those in
Fig. 14.4, with the top quark dominating in the intermediate states. Computation
of the diagrams gives the mixing parameter, εB, as

q

p
= 1 − εB

1 + εB
≈ Vtd

V ∗
td

= e−2iβ, (16.13)

with β the phase of the V ∗
td matrix element; see Eq. (16.27). It follows from this

relation that εB is mostly imaginary with a small real part. Consequently, the leptonic
asymmetry that was useful in K decays is too small, so another method for observing
CP violation has had to be discovered.

Among the interesting phenomena are the mixing of Bd states and CP asym-
metries which have been observed in decays of these mesons. It is mathematically
easier to discuss the CP asymmetry because it deals with the time development
for single states |B0(t)〉 and |B̄0(t)〉. The mixing, on the other hand, observes the
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correlated development of two states and its calculation is more complicated. His-
torically, mixing was observed first and the CP asymmetries were observed only
very recently. We shall follow the historical development and describe first the
mixing of B0

d and B̄0
d states. So far we have mentioned Bd states as typical mesons

because experimental results on their decays are available. There are also the Bs

mesons, which are very interesting because several of the parameters are different.
We postpone a comparison of Bs and Bd states until Section 16.6.

16.4 Mixing in the Bd system

The mixing between Bd and B̄d mesons was discovered in electron–positron col-
lisions in which a B0–B̄0 pair is produced. As the produced pair develops in time,
the particles oscillate. The time development of each state separately is given by
the following equations. A state that starts as |B0(t = 0)〉 develops according to

|B0(t)〉 = N

[
f+(t)|B0〉 + q

p
f−(t)|B̄0〉

]
. (16.14)

Similarly, a state that starts as |B̄0(t = 0)〉 develops as

|B̄0(t)〉 = N

[
p

q
f−(t)|B0〉 + f+(t)|B̄0〉

]
, (16.15)

with

f±(t) = e−i(MH−i�H/2) t ± e−i(ML−i�L/2)t . (16.16)

and N the normalization factor. To describe the oscillation data properly, we must
use quantum-mechanical wave functions for a B0–B̄0 pair. The pair of B mesons
created at the Y(4S) resonance is a state with odd charge conjugation with the two
mesons flying apart from each other with momenta 	k and −	k. The oscillations that
set in are highly correlated. The time evolution of the pair is now given by

|B0(t), 	k〉|B̄0(t ′), −	k〉 − |B̄0(t), 	k〉|B0(t ′), −	k〉. (16.17)

It is evident that the decays can take place at different times, with the production of
leptons through semileptonic decays. For example, we can consider events of the
type

e+e− −→ B0 + B̄0

| |−→ Y+�−ν̄ −→ X−�+ν

or X−�+ν or Y+�−ν̄. (16.18)

Consequently, events are produced in which the pairs of primary leptons emitted are
�+�+, �+�−, �−�+, and �−�−. We denote the corresponding rates by l++, l+−, l−+,
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and l−−, respectively. The observation of the parameter

R ≡ (l++ + l−−)/(l+− + l−+) (16.19)

characterizes particle–antiparticle mixing. We denote by A−− the amplitude that
one of the mesons with momentum −k decays at time t ′ into �− and the other meson
decays at time t also to �−. Using the time dependence of the |B0(t)〉 and |B̄0(t)〉
states given explicitly in Eqs. (16.14) and (16.15), we obtain for the amplitude A−−

A−−(t ′, t)=〈�−Y +|H |B0,−k〉〈�−Y +|H |B0,+k〉(p/q)[ f−(t ′) f+(t)− f+(t ′) f−(t)],
(16.20)

and, in the same notation,

A−+(t ′, t) = 〈�−Y +|H |B0, −k〉〈�+ X−|H |B̄0, +k〉[ f−(t ′) f−(t) − f+(t ′) f+(t)
]
.

(16.21)

There are two more equations defining the amplitudes A+−(t ′, t) and A++(t ′, t),
Paschos and Türke, 1989, p. 218).

For the matrix elements, we introduce the abbreviations

M = 〈�−Y +|H |B0, ±k〉, M̄ = 〈�+ X−|H |B̄0, ±k〉,
which, according to CPT symmetry, satisfy

|M| = |M̄| = M. (16.22)

It is easy to calculate the rates of decay to each pair of charges by squaring the
amplitudes and integrating over the times t and t ′, separately. After some algebra
and a few integrations, the final answer is

R = 1

2

(∣∣∣∣q

p

∣∣∣∣
2

+
∣∣∣∣ p

q

∣∣∣∣
2
)

x2 + y2

2 + x2 − y2
, (16.23)

with x and y defined for B mesons with �M = MH − ML and �� = �H − �L. It
is interesting to note that Eq. (16.23) is similar in many respects to Eq. (16.8).

Experiments measured the ratio in e−e+ collisions and found

R = 0.23 ± 0.09 ± 0.03. (16.24)

For |q/p| = 1 and y � 1, which will be shown later to be an excellent approxima-
tion,

�M

�
= 0.73 ± 0.18. (16.25)

It is now a theoretical problem to calculate �M and �� for the B system and
compare it with the above values.
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Figure 16.1. Absorptive parts contributing to the B0–B̄0 width mixing.

The mass difference is given by the box diagrams. Estimates similar to those of
the previous sections indicate that the B0–B̄0 transition amplitude is dominated by
the exchange of two top quarks in the box diagram. This is indeed a short-distance
contribution. Formula (15.48) translates into

M12 = − G2

16π2
M2

W XBξ 2
t E(xt)η̃, (16.26)

with

ξt = VtbV ∗
td = Aλ3(1 − ρ − iη), (16.27)

XB = 〈B0| b̄γµ(1 − γ5)db̄γ µ(1 − γ5)d|B̄0〉, (16.28)

and η̃ ≈ 0.87 is a factor originating from QCD corrections. The reduced matrix
element is parametrized in terms of the vacuum-insertion term times a B factor,

XB = 8

3
|〈B0| b̄γµ(1 − γ5)d|0〉|2 Bb = 8

3
F2

B MB Bb. (16.29)

The factor 8
3 originates from the various terms in the product of the currents and

rearrangement of the color indices, as was explained in Section 16.2.
Before we consider the magnitude of the mass difference, it will be useful to

calculate the width difference computed as the absorptive part of the box diagrams.
For the calculation of the absorptive part we set the intermediate states on the

mass shell. This is equivalent to cutting the diagrams in the manner shown in
Fig. 16.1 and then integrating over the two-body phase space.

After completion of the integrations and substitution of the reduced matrix
element from Eq. (16.29), one obtains (Hagelin, 1981)

�12  −G2m2
b

8π
F2

B MBd B

[
(ξc + ξu)2 − 8

3

m2
c

m2
b

(
ξ 2

c + 2ξcξu
) + O

(
m4

c

m4
b

)]
.

(16.30)

This is a relatively simple formula, which can be compared with M12. Neglecting
terms of order (mc/mb)2, we observe that �12 has the same phase as M12. This is
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evident from the unitarity of the Kobayashi–Maskawa matrix, which gives

ξu + ξc = −ξt (16.31)

and consequently

�12 = −G2m2
b

8π
F2

Bd
MBd Bξ 2

t . (16.32)

Whenever M12 and �12 have the same phase,

q

p
=

(
M∗

12

M12

) 1
2

= Vtd

V ∗
td

= e−2iβ, (16.33)

as was already given in Eq. (16.13). This ratio will be important for the discussion
of CP violation.

A second consequence is the magnitude of �12 relative to M12:

�12

M12
≈ 6π

(
mb

m t

)2

≈ 10−2. (16.34)

Numerical estimation of the mass difference gives the value �M ≈ 0.73�, in agree-
ment with the mixing of the B0 and B̄0 states.

16.5 Decay rates and CP violation

B-meson decays are frequently described in terms of quark diagrams, which are
classified as tree, penguin, or other types of diagrams. The classification is very
useful since it specifies how the CP phases appear in amplitudes, that is as couplings
of the CKM-matrix elements. The detailed dynamics are not completely understood
and we presented several methods for analyzing them in Chapter 14.

In the spectator model, the simplest diagrams for the decay of a b̄ involve only
one intermediate W+ boson, as shown in Fig. 16.2.

We denote the decays of the W+ boson as ud̄ or cs̄ and we indicate in closed
ovals the final hadronic states. Thus the diagrams (a) denote the decays

Bd → D+
s D−

d or Bd → π+D−
d , (16.35)

with the couplings V ∗
cbVcs and V ∗

cbVud, respectively. Similarly, the decays in diagram
(b) are

Bd → J/ψ + Ks or Bd → D0
uπ

0, (16.36)

with the couplings V ∗
cbVcs and V ∗

cbVud, respectively.
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Figure 16.2. Tree-diagram decays of B0
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Figure 16.3. A gluonic penguin diagram.

In addition to the tree diagrams, there are penguin diagrams analogous to the
ones we discussed in the previous chapter. A typical diagram for gluonic decays is
shown in Fig. 16.3.

The final state is determined by the quark assignments. They can produce the
following states:

Bd → J/ψ + Ks, Bd → φKs, (16.37)

Bd → π+π−, π0π0. (16.38)

We see that the J/ψ + Ks decay can originate from tree and penguin diagrams
whose dynamics are very different. The dominant penguin diagrams are those with
charm and top quarks in the intermediate states (see Problem 4) whose couplings
are

V ∗
cbVcs = Aλ2 + O(λ4), (16.39)

and
V ∗

tbVts = −Aλ2, (16.40)

respectively. This CKM coupling can be extracted as a multiplicative factor. The
property is unique to this decay channel and makes the predictions very reliable.
For this reason the decay has been named the gold-plated decay channel. The mode
has several advantages.

(i) The prediction for the CP asymmetry is reliably expressed in terms of CKM parameters
and is large.
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(ii) It has a measurable branching ratio

Br(B → J/ψK0) = (8.7 ± 0.5) × 10−4, (16.41)

with the decays J/ψ → π+π− and K0 → π+π− producing hadrons, which are easily
detectable.

(iii) The final state J/ψ + Ks is a CP eigenstate.

For these reasons the decay of B0 mesons to J/ψ + Ks is an attractive mode and
we describe the decay amplitudes in Problem 4.

Fortunately there is also an experimental method for detecting CP-violating
effects (Carter and Sanda, 1981; Bigi and Sanda, 1981). A B0B̄0 pair is produced
in electron–positron colliders and proceeds to decay. We select a decay mode for
B0 and B̄0 to a common final state | f 〉, which is an eigenstate of CP. Let

Af = 〈 f |H |B0〉 and Āf = 〈 f |H |B̄0〉
be the decay amplitudes. Since the beams of particles created in the collider are a
mixture of B0 and B̄0 and since their lifetimes are almost identical, we cannot a
priori tell whether | f 〉 arose from the decay of B0 or B̄0. Thus we need independent
information on the flavor of the decaying neutral B0 meson. This can be achieved
by observing a semileptonic decay on one side and the decay to | f 〉 on the other
side. In this way we know whether the decay to | f 〉 originates from a B0 or B̄0. The
experimental groups measure these decays as a function of time. A small asymmetry
in the time evolution of the two decays is evidence for CP violation.

We describe the time evolution of particle and antiparticle decays in detail. The
decay amplitudes as a function of time are

〈 f |B0(t)〉 = 1

2

[
f+(t) Af + q

p
f−(t) Āf

]
, (16.42)

〈 f |B̄0(t)〉 = 1

2

[
f−(t) Af + q

p
f+(t) Āf

]
. (16.43)

The amplitude Af is the expectation value of the quark operators between |B〉 and
〈 f | states. It is computed with the help of quark diagrams described at the beginning
of this section. They have a weak phase coming from the CKM-matrix elements
and perhaps a phase of strong origin from final-state interactions. We shall denote
the ratio

ρ = Āf

Af
. (16.44)

In the case of the B0 mesons the factors f±(t) simplify, because

�H = �L = �
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and

f±(t) = e− 1
2 �t

(
e−iMHt ± e−iMLt

)
. (16.45)

The rate for detecting a decay to | f 〉 at a time t after the production of a B0 is
proportional to

�(t) ≈ 1

2
e−�t[1 − Sf sin(�m t) + Cf cos(�m t)] (16.46)

and, for the detection of a decay from an initial B̄0,

�̄(t) ≈ 1

2
e−�t[1 + Sf sin(�m t) − Cf cos(�m t)], (16.47)

with

Sf =
2 Im

(
q

p
ρ

)

1 +
∣∣∣∣q

p
ρ

∣∣∣∣
2 and Cf =

1 −
∣∣∣∣q

p
ρ

∣∣∣∣
2

1 +
∣∣∣∣q

p
ρ

∣∣∣∣
2. (16.48)

In both of these equations there is a time-oscillation superimposed on the expo-
nential decay. The formulas are very general and can be applied to several decays.
We consider some decays in detail.

(a) The gold-plated channel. For the decay B → J/ψ + Ks there are tree and penguin
diagrams. As we discussed in this section, all dominant diagrams have zero CKM phase
(see Eqs. (16.36) and (16.39)). In addition, q/p is given by Eq. (16.13) and we obtain

Sf = −sin(2β), Cf = 0

and

�(t) ≈ e−�t [1 + sin(2β)sin(�m t)]. (16.49)

Thus the time evolution of the B0
d state and its conjugate particle to a common final state

is an efficient method for identifying CP parameters. The asymmetry

α = �(t) − �̄(t)

�(t) + �̄(t)
= sin(2β)sin(�m t) (16.50)

has a sinusoidal dependence on time. This decay has been measured in the BaBar and
Belle experiments, giving the average value

sin(2β) = 0.73 ± 0.03. (16.51)

The angle β extracted from the asymmetry is one of the angles in the unitarity triangle.
It enters the calculation through the element Vtd given in Eq. (9.53).

The unitarity triangle is constrained by other measurements as well; to be precise,
by the magnitude of Vub, the parameter εk , and the mixing of Bd and B̄d states. Each
of these quantities determines a region and their intersection defines the apex of the



214 CP violation: D and B mesons

triangle. This figure has become very popular and is featured in Fig. 9.2 and in many
articles (Branco et al., 1999; Kleinknecht, 2003; Brower and Faccini, 2003). The value
of β in Eq. (16.51) has several solutions and one of them coincides with a direction that
goes through the apex of the triangle. The significance of the sin(2β) measurement is
that for the first time a large CP asymmetry has been observed, proving that CP is not
an approximate symmetry of nature.

(b) Decays to π+π− and π0π0. The B → ππ decays can be analyzed in a similar manner to
the K → ππ decays. For the sake of brevity we shall use a similar notation; however, the
numerical values for the quantities (amplitudes, phases, etc.) in B decays are different.
The amplitude for B0 → π+π− is written as

Af(π
+π

−) =
√

2

3
|A0|ei(δ0−θ0) − 2√

3
|A2|ei(δ2−θ2) (16.52)

and

Ā f (π+π
−) =

√
2

3
|A0|ei(δ0+θ0) + 1√

3
|A2|ei(δ2+θ0). (16.53)

The phases δ0 and δ2 come from strong interactions of the final states, but at this high
energy they cannot be related to ππ phase shifts. The phases θ0 and θ2 come from
weak interactions, which originate from CKM couplings. The tree diagram contributes
to both the I = 0 and the I = 2 amplitude and the penguin diagram only to the I = 0
amplitude.

The attempt to determine the isospin amplitudes by comparing decays of charged
and neutral B mesons has met with limited success. This approach is analogous to that
for the K → ππ decays, in which, after the isospin analysis of the amplitudes, we had
to return to the effective QCD Hamiltonian.

There are also analyses in terms of Feynman diagrams. We have already noted that this
decay mode receives contributions from tree and penguin diagrams. In the Wolfenstein
parametrization all diagrams are of order λ3. The tree diagram has the phase e−iγ . The
penguin diagrams have intermediate states with up, charm, and top quarks, each with a
different phase. The relevant parameter for this decay has the general form

q

p

Af(π+π
−)

Āf(π+π−)
= e−2iβ e−iγ + heiθ

e+iγ + heiθ
, (16.54)

with h being the ratio of a term from the penguin diagram to the remaining contributions
and θ a phase of strong origin. The interference of mixing with the decay amplitude
gives

Sf(π
+π

−) �= 0 and Cf(π
+π

−) �= 0. (16.55)

Consequently, the presence of both cos(�m t) and sin(�m t) terms with coefficients
different from zero is an indication of CP violation in the B amplitudes. For very small
values of h, this mode fixes

Sf = sin(2β + 2γ ),
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which, through the triangle relation β + γ = π − α, can be replaced by α. Thus this
decay mode can determine β + γ and, indirectly, the angle α.

(c) Decays to other channels. In the previous discussion we demonstrated thatβ is accurately
determined and γ , or alternatively α, can be extracted from the B → ππ decay, provided
that the hadronic matrix elements are better understood. There are extensive efforts to
analyze and understand other decay modes. For instance (Fleischer, 2003),

B → φ + Ks

has only penguin contributions. An analysis similar to that of the J/ψKs mode reveals
many similarities. In the absence of new physics, the asymmetries for charmonium and
φ-meson decays should be equal.

This heralds a new era, in which the theory is expected to be scrutinized through a
variety of other Bd and Bs decay asymmetries. Impressive progress is being made in
the search for asymmetries in the aforementioned modes and in addition B0± → Kπ

and B± → DK±. Current measurements are approaching the stage of cross-checking
the theory or even discovering physical phenomena beyond the standard model.

16.6 Mass and lifetime differences for Bs mesons

The analysis of the previous sections can be extended in a straightforward way to
the Bs mesons, which present a very interesting mesonic system. Their masses and
lifetimes are very similar to those of the Bd mesons, but their weak interactions
are different because the CKM couplings are now much bigger. A consequence is
the larger mixing in these states and, it is hoped, a lifetime difference between two
physical particles that may be measurable. The reduced matrix element is given
now as

XBs = 8

3
|〈B0

s | b̄γµ(1 − γ5)s|0〉|2 Bs (16.56)

and is expected to have a numerical value close to XBd because the wave functions
and the general structure of the bound state are expected to be similar. The coupling
which appears in the box diagrams is

ξ ′
t = VtbV ∗

ts = −Aλ2, (16.57)

which is much larger than the coupling in Eq. (16.27). The mass difference is given
by a formula analogous to Eq. (16.26) and, on taking the ratio, one obtains

�Ms

�Md
= F2

s

F2
d

Ms

Md

∣∣∣∣ Vts

Vtd

∣∣∣∣
2

. (16.58)

The ratio of the hadronic matrix parameters is unity in the SU(3) limit or the heavy-
quark limit. A small deviation from unity may still show up, but this will be of order
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10%–20%. The large change comes from the couplings∣∣∣∣ Vts

Vtd

∣∣∣∣
2

= 1

λ2
[
(1 − ρ)2 + η2

] = 20–30. (16.59)

At present there is an experimental bound, �Ms/�Md > 21.2, coming from the
mixing of B0

s and B̄0
s -particles, which is close to 100%. Serious experimental efforts

are being devoted to searching for a precise value of the mixing, which will also
determine the ratio xs = �M/�. Since the mixing approaches 100%, a precise
measurement is required in order to extract a value for the mass difference (see
Eq. (16.23)).

The estimate which makes xs large also increases the width difference of the
two states. The two Bs states can mix to form two distinct eigenstates. To a first
approximation,

��s

�Ms
= 3

2
π

(
mb

m t

)2

≈ 3.7 × 10−3 (16.60)

has been calculated from equations analogous to Eqs. (16.26) and (16.32). The
width difference can be rescaled to give(

��

�

)
s

= 3

2
π

(
mb

m t

)2(
�Ms

�Md

)(
�Md

�

)
d

(
�d

�s

)
. (16.61)

The ratio of the mass difference was estimated in this section, and assuming �d ≈ �s

leads to a width difference that is experimentally interesting. Its value is in the range
7%–14%. Alternative estimates that saturate �12 with physical intermediate states
or form other ratios also give encouraging results. There is a good chance that the
lifetime difference τH − τL is 10% of the lifetime of Bd mesons. Such a large value
would be measurable in the decay

Bs → J/ψ + φ.

Problems for Chapter 16

1. Carry out the integrals
∫ ∞

0 | f±(t)|2 dt and show that the last term in Eq. (16.8) follows.
Hint: it is easier to integrate exponentials and then take real parts.

2. Write the matrix element for the mixing of the B0
d → B̄0

d system, especially the CKM
couplings of the box diagram with the top quark in the intermediate states. Then prove
the ratio

q

p
=

(
H21

H12

)1
2

≈ Vtd

V ∗
ts

.

3. Calculate the amplitude for the diagram in Fig. 16.1(a) with charm and up quarks in the
intermediate states. Then integrate over the two-body phase space to obtain some of the
terms in Eq. (16.30).
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4. The decay Bd → J/ψ + Ks has tree and penguin diagrams. We denote the tree diagram
by

T = V ∗
cbVcsg

and the penguin diagram by

P = V ∗
tbVts f (m t) + V ∗

cbVcs f (mc) + V ∗
ubVus f (mu),

where f (mq ) are functions from the calculation of the penguin diagram with mq the
mass of the q quark in the loop. A naive order-of-magnitude estimate of the tree and
loop diagrams gives (Gronau, 1992)

f (m t)

g
∼ αs(mb)

6π
ln

(
m t

mb

)
∼ 0.04.

Others obtained larger values by computing the penguins with the effective Hamiltonian
(Kramer and Palmer, 1995).

(i) Use the unitarity of the CKM matrix to eliminate V ∗
tbVts and rewrite P in terms of

the other two CKM factors.
(ii) Show that the ratio of the two CKM factors is∣∣∣∣ V ∗

ubVus

V ∗
cbVcs

∣∣∣∣ ∼ λ2 + O(λ4).

Prove that the total amplitude

〈J/ψ Ks|H |B〉 = V ∗
cbVcs[g + ( f (mc) − f (m t))],

which to order λ2 is real.
(iii) Use this form of the matrix element to calculate the asymmetry in Eq. (16.50).

5. Analyze the B → φ + Ks decay along the lines of Problem 4 and derive Eq. (16.54)
with an explicit expression for the function h.
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17

Higgs particles

17.1 Higgs-boson couplings

The electroweak theory depends crucially on the Higgs mechanism. Many aspects
of the theory have been tested in experiments to a high degree of accuracy, especially
properties of the gauge bosons and their couplings to fermions. However, the Higgs
particles have not been discovered yet. In Chapter 7 we discussed the simplest
and, perhaps, the most natural way of breaking the SU(2) symmetry, namely by
introducing a doublet of scalar particles. Among them three fields were eliminated,
becoming the longitudinal degrees of freedom for the gauge bosons. The remaining
neutral particle is physical and should be observed. In the same chapter it was
shown that giving the Higgs field a vacuum expectation value generates masses for
W± and Z0, whose ratio is related to the weak mixing angle. This ratio has been
confirmed experimentally, which provides strong support for the underlying SU(2)
symmetry.

The Higgs doublet contains two complex fields:

(
φ+

φ0

)
. (17.1)

The breaking of the symmetry introduces the vacuum expectation value

〈φ0〉= v√
2
. (17.2)

The scalar Lagrangian introduced in Chapter 7 has two parameters, µ and λ, which
are related to the value of the field at the minimum:

v = µ√
λ

=
(√

2G
)− 1

2
.
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The expansion of the field around the minimum of the potential

φ′ = 1√
2

(
0

v + H

)
(17.3)

introduces the physical field H as a fluctuation around the minimum. The numerical
value of v was determined in Eq. (8.20), leaving the mass of the scalar as the only
undetermined parameter of the Higgs sector,

M2
H

2
= −µ2

2
+ 3

2
λv2 = µ2. (17.4)

Consequently, all couplings of the Higgs particles are rewritten in terms of MH

and other coupling constants already determined in previous chapters. After a short
study of the couplings, one finds

Wν
+

Z0

Z0

H0

H0

H0

H0

H0

Wµ
−

igMWgµν

igMZ
cos θW

gµν

−i3!λv

H0 H0

H0H0

−i3!λ
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H0

f

f

−imf
v

with

v = µ√
λ

= (
√

2G)−1/2 = 246 GeV.

With so many couplings depending on a single parameter, we can proceed to
calculate the decays of Higgses to other particles as well as their production cross
sections. In this way we find processes in which the Higgs particles must be pro-
duced, provided that they are not very heavy, or they should appear in the decay
of ordinary or new heavy particles. All these approaches have been pursued ac-
tively, but no Higgs particles have been discovered yet. Instead we have bounds on
their masses and the production rates. We shall cover several of these topics in this
chapter.

A very important role in all such studies is played by the Higgs mass. There are
efforts to limit the mass by appealing to unitarity or demanding that the electroweak
theory remains renormalizable. An alternative direction of investigation studies the
effects introduced by radiative corrections to several processes. Higgs particles,
together with quarks and gauge bosons, appear as intermediate states of Feynman
diagrams. Many experiments have reached a high level of accuracy so that radia-
tive corrections must be included in order to bring agreement between theory and
experiment. They provide a crucial test of the theory and impose constraints on the
Higgs mass. We study several of them in the next section.

17.2 Precision tests of the theory

The electroweak theory introduces several parameters that are undetermined.
Among them are the mass of the Higgs and the masses and mixing angles of
the fermions. The gauge couplings and the masses of the gauge bosons enter in
many reactions, where they are determined precisely to have the same value. As
two examples we mention the weak mixing angle sin2θW and the Fermi coupling
constant. They have been measured in various reactions so precisely that higher-
order corrections are necessary. The loop corrections include quantum corrections
of the theory testing it to a higher degree of accuracy. In this section we review
the precise measurements for several parameters and point out reactions where
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discrepancies may appear on the horizon. At present the agreement is so good that
we can consider the results from such tests a great success of the theory.

In order to make predictions, we use three quantities as input parameters. They
are defined in various processes where they can be determined precisely, including
radiative corrections, and then they are used to predict other processes.

(i) The first is the fine-structure constant α measured in experiments that involve the
Josephson junction or the anomalous magnetic moment of the electron. It receives
corrections from strong interactions and varies with the momentum at which it is
measured in a way similar to the strong coupling constant described in Section 11.2.

(ii) The second parameter is the Fermi coupling constant determined from the muon life-
time. The corrections include electromagnetic and weak effects.

(iii) As a third parameter, we can select one of the masses MW or MZ. It is customary
to choose MZ determined from the Z lineshape, because it has been measured more
accurately.

With these three parameters we can predict other quantities. For instance,

sin2θW cos2θW = πα√
2GF

1

M2
Z

(17.5)

and MW = MZ cos θW, which is also rewritten as

ρ = M2
W

M2
Z cos2θW

= 1. (17.6)

The ρ parameter determines the strength of neutral currents relative to charge
currents and to lowest order (tree level) it has the value unity. It is modified by cor-
rections, as we will mention below. Measuring quantities and carrying out precision
tests of the theory is a research field in itself. I decided to present here the general
features that enter such calculations and mention a few comparisons, especially
those for which there are small disagreements. The reader who wishes to special-
ize in this field can consult the corresponding section in the particle data group
(Erler and Langacker, 2004) or books devoted to this topic (Bardin and Passarino,
1999).

We have seen in previous chapters that one-loop radiative corrections involve
integrals of the form ∫

d4k
1

(k2 + m2 + iε)α
(17.7)

(see, for instance, Sections 14.7 and (15.7)). When α ≤ 2 the integral diverges. In
a renormalizable theory the infinities are absorbed as corrections to masses and
coupling constants. Since they are arbitrary, it appears, at first glance, that the
corrections are unobservable. An exception to this rule occurs when masses and
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+
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W

Figure 17.1. Self-energies for gauge bosons.

coupling are not free but are related to each other. As a first example, we mention
the equality of the vector couplings occurring in muon decay and β-decay. They
are used to determine a precise value for Vud as given in Section 9.3.1.

Another accurate example is provided by the ρ parameter in Eq. (17.6). It receives
corrections from the self-energies shown in Fig. 17.1, where the intermediate solid
lines represent quarks and the dotted lines Higgs bosons. It is sensitive to the masses
of particles in the intermediate states and provided a benchmark for restricting the
masses of these particles. The above-mentioned corrections give rise to deviations
from unity given by the equation

ρ =1+ GF

8π2

[
m2

1 + m2
2 − 2m2

1m2
2

m2
2 − m2

1

ln

(
m2

2

m2
1

)
− 3MW sin2θW

cos2θW
ln

(
M2

H

M2
W

)]
, (17.8)

with m2 and m1 the masses of the top and bottom quarks, respectively, and MH the
mass of the Higgs boson. Other quark pairs also contribute, but the magnitude of
their correction is smaller.

With the above inputs, sin2θW and MW can be calculated when values for m2
t

and MH are given. Such arguments were used to constrain the top quark’s mass be-
fore its discovery. Experimental results from the Large Electron–Positron Collider
(LEP) combined with loop contributions restricted the mass m t to within the range
160–180 GeV where the top quark was discovered. The standard-model prediction
now is

m t(m t) = 174.3 ± 3.4 GeV. (17.9)

Furthermore, the precision electroweak data accumulated at the LEP, SLAC, and
the Tevatron strongly support the standard model with a weakly coupled Higgs
boson. As described above, the Higgs boson contributes to the W± and Z vacuum
polarization through loop effects. The result of a global fit is shown in Fig. 17.2
and yields the value (Eidelman, 2004)

MH = 126+73
−48 GeV, (17.10)

which is consistent with the lower bound of 114.4 GeV established in direct
searches. These values provide a benchmark for designing experiments aiming
at the discovery of the Higgs particles.
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Figure 17.2. The result of the global fit presented as �χ2 = χ2 − χ2
min versus MH.

Before leaving this section, it is worth mentioning two cases in which, if
we look at the results in detail, they are either not satisfactory or could indi-
cate small disagreements with the predictions of the standard model. A neutrino
experiment at Fermilab completed a precise measurement of sin2θW using the
R ratio of Eq. (12.17) and other ratios. A 3σ deviation from the standard-model
prediction was reported. This conclusion depends on several theoretical param-
eters entering the analysis that are now under active investigation (Gluck et al.,
2005).

A further discrepancy appears in the determination of the effective weak mixing
angle. The adjective “effective” indicates that a specific renormalization scheme has
been introduced for the higher-order corrections. The two most precise measure-
ments of sin2θeff from SLAC from polarized-electron asymmetry ALR and from the
forward–backward asymmetry Ab

FB in the production of b–b̄ pairs differ by ∼3σ .
In fact, the result from ALR is in good agreement with the leptonic asymmetries
measured at the LEP, whereas all other hadronic asymmetries are better compatible
with the Ab

FB.
Besides the efforts for discovering the Higgs bosons, it is also important to

confirm or eliminate these discrepancies. There are theoretical corrections that
have been pointed out and are being actively discussed. Their implications are
so profound that one should continue the investigations. The absence of Higgs
particles in the mass range discussed in this section and/or the persistence of the
discrepancies will be an indication of new physics. A promising candidate for new
physics is supersymmetry, whose presence is capable of modifying the predictions
described in this section.
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17.3 Bounds on masses from general principles

There are many new reactions that are possible in the electroweak theory. At tree
level the amplitudes involve a few partial waves and must satisfy unitarity bounds.
For elastic WW scattering the bounds have been exploited effectively to restrict the
mass of the Higgs boson.

At very high energies the longitudinal polarization of the W bosons is ε
µ

L ≈
pµ/MW. It produces the fastest growing amplitudes as functions of energy and
involves one partial wave. The scattering amplitude can be expanded in terms of
partial waves:

M(s, t) = 1

k

∞∑
�=0

(2� + 1)a�(s)P�(cos θ ). (17.11)

The fact that each partial wave must satisfy a unitarity bound leads to the condition

|a0| ≤ 1

2
(17.12)

and supplies an upper bound for the mass of the Higgs boson (Lee et al., 1977),

M2
H <

4π
√

2

GF
≈ (1.2 TeV)2. (17.13)

This is the simplest bound described also in Problem 2. It can be improved (Lee
et al., 1977) by considering the coupled channels WLWL, ZLZL, ZLH, and HH,
with the subscript L indicating longitudinal polarization, then demanding that the
eigenvalues of these coupled channels satisfy the unitarity conditions. The improved
bound is smaller by a factor of 1/

√
3, i.e.

MH ≤ 700 GeV.

New bounds are obtained by requiring stability of the vacuum. We saw in
Chapter 5 that the Higgs potential must have the specific form of Fig. 5.1 in order to
be able to expand the field around a minimum of the potential. This property must
be preserved even when radiative corrections are included. The coupling constant
λ receives corrections from loop diagrams and it becomes a “running” coupling
depending on the scale � at which it is evaluated. The change of λ is given by a
differential equation that depends on the Yukawa coupling (quark loops) and the
gauge coupling (gauge loops). The corrected potential has the form

Veff = −µ2 H 2 + λ(�)H 4 (17.14)

and its minimum defines again a vacuum expectation value: 〈φ〉 = v/
√

2. If
the corrections are large, it is possible to obtain a negative λ and consequently
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an unstable ground state. On the other hand, for λ large and positive there
is one trivial minimum at the origin. Since V (0) = 0, a non-trivial minimum
exists provided that V (v/

√
2) < 0. This condition gives the lower bound (Linde,

1976)

MH � 50 GeV with � = 1 TeV.

Experimental searches for Higgses have gone much above this value. The best value
available comes from the reaction in Eq. (17.15) to be discussed later on.

17.4 Decays

At the beginning of this chapter we listed several couplings that depend on a single
parameter MH. A characteristic property in models with one Higgs doublet is that
Higgs particles couple strongly to the heaviest particle. For instance, the couplings to
fermions prefer the top quark and the couplings to W and Z bosons are proportional
to their masses. With so many couplings available, it is straightforward to compute
decay widths and production rates. We list in Table 17.1 decay widths for several
channels.

The decays have special properties worth mentioning. The lifetime of the Higgs
particle is very short and, being neutral, it leaves no visible track. Its decay products,
such as bb̄ or ττ pairs, produce detectable tracks. They are used as signatures for
discovering the Higgs boson.

The decays to vector mesons also have several interesting properties. The
formulas for decay widths into the weak vector bosons Z and W look quite similar,
except for an additional factor of 1

2 , accounting for the symmetric final state in the
case of two identical Z bosons. In the limit mZ, mW 	 mH the width of the ZZ pairs
is half of the W+W− width. The vector bosons have three polarizations and it is
interesting to investigate the decays to final states with specific polarizations. The
longitudinal polarizations are created by the Higgs particles and may show irregu-
larities. For large Higgs masses the vector bosons in the final state are dominantly
longitudinally polarized, which may be important for distinguishing this process
from the background.

The decays into fermions or weak vector bosons proceed through tree diagrams,
in contrast to the decays in groups (4) and (5), which contain loop contributions.
For loop contributions one expects the branching ratios to be smaller, which is
indeed the case. However, for MH ≤ 200 GeV they are still measurable because the
sum over all possible particles inside the loop brings an enhancement. The gluonic
decays are drowned in a huge background, in contrast to photonic decays with two
stable particles, which provide a convenient way for identifying the Higgs. Both
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Table 17.1. Partial decay widths of the Higgs boson

Partial decay width 

Higgs boson H decays into . . . with λi = m2
i /m2

H

(1) fermions f: H → f f̄ Nc
GF

4π
√

2
m2

f mH(1 − 4λf)
3/2

Nc is a color factor; Nc =
{

1 for leptons
3 for quarks

(2) weak neutral bosons Z0 :
GF

16π
√

2
m3

H(1 − 4λZ)1/2
(
12λ2

Z − 4λZ + 1
)

H → Z0Z0

(3) weak charged bosons W±:
GF

8π
√

2
m3

H(1 − 4λW)1/2
(
12λ2

W − 4λW + 1
)

H → W+W−

(4) gluons g: H → gg
GF

36π
√

2
m3

H

[
αs

(
m2

H0

)
π

]2 ∣∣∣∣ ∑
q

Iq

∣∣∣∣
2

(via a loop containing quarks q)

with Iq = 3
[
2λq + λq (4λq − 1) f (λq )

]

f (λ) =

⎧⎪⎨
⎪⎩

−2
[
sin−1(1/

√
4λ)

]2
, λ > 1/4

1
2

[
ln(η+/η−) − iπ

]2
, λ < 1/4

η± = 1/2 ± √
1/4 − λ

(5) photons γ: H → γγ
GF

8π
√

2
m3

H

(α

π

)2
|I |2

with I = ∑
q

Q2
q Iq + ∑

l
Q2

l Il + IW (+Is)

Qi is the charge of particle i and

Iq = 3
[
2λq + λq (4λq − 1) f (λq )

]
Il = 2λl + λl(4λl − 1) f (λl)
IW = 3λW(1 − 2λW) f (λW) − 3λW − 1/2
Is = −λs[1 + 2λs f (λs)]

photonic and gluonic modes proceed through loop diagrams; some of them are
shown in Fig. 17.3 (Gunion et al., 1990; Hinchlife, 1998).

The relative importance of various decays depends on the mass of the Higgs
particles. We present in Table 17.2 dominant decays to various modes as a function
of the Higgs mass. In the low-mass range the decay to bb̄ pairs dominates and
is identified by its decay products. The decay to γγ is less frequent (∼10−3) but
has a smaller background. For higher masses, decays to gauge bosons dominate.
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Table 17.2. Higgs decay modes as a
function of its mass

mH (GeV) Decay

90–120 H → bb̄, γγ

120–140 H → bb̄, WW∗, τ+τ−

140–180 H → bb̄, WW∗, ZZ∗, τ+τ−

180–380 H → WW, ZZ

>380 H → WW, ZZ, tt̄

H0

γ

γ
H0

W

W

Z0

γ

γ

Figure 17.3. Some triangle diagrams for decay of a Higgs boson to photons.

Some decay modes may contribute even below the threshold for pair production of
gauge bosons because some of them are present as virtual intermediate states. We
denote them with a star as superscript; for instance W∗, which subsequently decays
to e−ν̄.

The calculation of decays proceeding through tree diagrams involves a matrix
element and a two-body phase space, which are straightforward to calculate. We
suggest some of them as exercises at the end of the chapter.

17.5 Production in electron–positron colliders

The discovery of the Higgs particle is of paramount importance. For this reason there
have been large experiments designed to discover them. The early expectations of a
light Higgs have been ruled out experimentally. A light Higgs appears in the decay
of the known particles, like mesons, charmonium, and the gauge bosons. Intensive
searches in these decays did not produce any evidence for Higgs particles. The next
possibility is to produce them in electron–positron colliders through the process
shown in Fig. 17.4:

e+e− → V ∗ → V + H with (V = W, Z)
|−→ leptons (17.15)
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e−

e+

V ∗

H

Z0 e+

e−

Figure 17.4. Bremsstrahlung from weak bosons.

which is known as bremsstrahlung from the weak gauge bosons. For lower energies
(
√

s ≈ 200–500 GeV) bremsstrahlung dominates and has been searched for at the
LEP collider at CERN. The cross section is maximal at center-of-mass energies
close to the Z resonance, where it is given by (Gunion et al., 1990)

σ (e+e− → ZH) = G2
F M4

Z

96π

[
1 + (1 − 4 sin2θW)2

] 8k√
s

[
k2 + 3M2

Z(
s − M2

Z

)2 + M2
Z2

]
.

(17.16)

Here k is the center-of-mass momentum of the Z boson produced. The detection of
this channel observes the outgoing Z and reconstructs the Higgs boson’s invariant
mass as

M2
H = s − 2

√
s EZ + M2

Z. (17.17)

The searches at CERN established the bound

MH > 114.4 GeV.

A similar process occurs in hadron colliders, where the initial leptons are replaced
by quarks to give

qq̄ → V ∗ → V + H.

For center-of-mass energies higher than 500 GeV, the fusion process

e+e− → νν̄ + H,

shown in Fig. 17.5, begins to dominate. For high energies the initial partons or
leptons radiate not only photons but also W and Z gauge bosons. Here one must be
careful to include all possible diagrams in order to satisfy gauge invariance. The
calculation follows a method very similar to that for the emission of photons, in the
Weizsacker–Williams approximation, with special attention paid to the longitudinal
and transverse polarization (Gunion et al., 1990). In this way one derives an effective
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Figure 17.5. W–W fusion.

W-emission approximation, which leads to the cross section (Wilczek, 1977; Cahn
and Dawson, 1984; Jones and Petkov, 1979)

σ (e+e− → νν̄H) ≈ G3
F M4

W

4
√

2π3

[
ln

(
s

M2
H

)
− 2

]
. (17.18)

This reaction is attractive because it has a low background. It starts smaller than
the bremsstrahlung reaction in Eq. (17.15), but grows with increasing energy to
become dominant at

√
s ≈ 500 GeV.

Finally, it is possible to create the Higgs particle in photon fusion:

γγ → H → bb̄.

For low-energy photons this process is very small. However, for intense high-
energy laser beams it has a resonance structure and may become important. For
Higgs masses larger than 150 GeV the dominant final states are two gauge bosons.

17.6 Production in hadron colliders

The high-energy electron–positron collider (LEP) completed its runs and set the
bound of 114.4 GeV. The next searches will be taking place in hadron colliders.
Searches are already taking place at the Tevatron and a large hadron collider (LHC)
is under construction at CERN. Several of the reactions in the previous section
become hadronic reactions once we replace the initial leptons by quarks or quark–
antiquark pairs.

In hadronic collisions the process of gluon fusion is the most important source
for Higgs-particle production. In this process the Higgs couples via a quark triangle
diagram to the gluons. The point-like cross section at parton level is (Kniehl, 1994)

σ (gg → H) = π2

8

(H → gg)

MH
δ
(
ŝ − M2

H

)
. (17.19)

For the total hadronic cross section it is very important to take higher-order gluonic
corrections into account, because their contribution is positive and increases the
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cross section. The cross section decreases with increasing Higgs mass, although
the Yukawa coupling grows with the loop-quark mass.

At the Tevatron, a p̄p collider at Fermilab, the two efficient mechanisms are
gluon fusion and associated production with a W or a Z:

gg → H → bb̄, (17.20)

qq̄ → W∗/Z∗ → W/Z + H. (17.21)

Although the gg process has the larger cross section, ∼1 pb (one picobarn) at
MH = 115 GeV, it is hard to detect it for MH <130 GeV. In this mass range the
dominant decay is H → bb̄ (see Fig. 1 in Hinchlife (1998)), which is swamped
by a multijet background. For these masses only the production of a Higgs in
association with a vector boson has enough sensitivity. The WH and ZH channels
give a clear signal with lepton(s), missing neutrino(s) and two b-jets. The searches
continue at the Tevatron, where there are plans to reach an integrated luminosity of
∼8 fb−1.

The Tevatron has the potential of discovering the standard-model Higgs with
masses less than ∼170 GeV. Heavier Higgses must wait for the LHC, which will
reach a center-of-mass energy of 14 TeV. It will run for an integrated luminosity of
300 fb−1 and can discover Higgs particles with masses up to 1 TeV = 103 GeV. At
these high energies, in addition to the gluon–gluon fusion, the quarks radiate gauge
bosons. A new process of W–W fusion into Higgs, analogous to the one shown in
Fig. 17.5,

W + W → H → γγ, ZZ∗, . . . (17.22)

becomes significant. If the standard-model Higgs has a mass above twice the
Z mass, the discovery will be through the channel

pp → H + hadrons → ZZ + · · · → (l+l−)(l+l−) + · · ·. (17.23)

This is called the golden channel for Higgs production and decays. Both lepton
pairs will have the mass of the Z boson, making possible the reduction of many
backgrounds.

If the mass of the Higgs boson is much bigger than the mass of the W or Z boson,
MH � 2MW, the width is

(H → WW) ≈ 3GF

16π
√

2
M3

H ≈ 0.48 TeV

(
MH

1 TeV

)3

. (17.24)

This width grows rapidly with the mass of the Higgs particle and is very broad for
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large masses. The increased width of the Higgs and the reduced production rate
determine the upper limit for detecting a heavy Higgs.

17.7 Other symmetry-breaking schemes

There is so much supporting evidence for a Higgs particle with a mass lower than
1 TeV that the chances of discovering it at the LHC are very high. If the Higgs
is not of the simple form discussed in this chapter, there are strong arguments
from unitarity and from higher-order corrections that another mechanism must be
operating to reduce the fast growth of amplitudes and cross sections. Thus either
the Higgs will show up as the simple scalar of the standard model, or a more
complicated structure must appear.

Extensions of the standard model can have more complicated spectra of Higgs
bosons. A popular extension is supersymmetry with two Higgs doublets whose
neutral components have two vacuum expectation values. The physical particles
are now a charged boson (H±), two neutral scalar Higgses (H0

1 and H0
2), and one

pseudoscalar (A) (Hinchlife, 1998).
Charged Higgs bosons can be pair-produced in e+e− and qq̄ annihilation. The

chance of detecting them depends on the energy of the collider and the branching
ratios to ντ, cs̄, and cb̄. Searches at the LEP did not discover them and thereby set
upper limits on their masses.

In the simplest version of the supersymmetric model the mass of the lightest neu-
tral scalar depends on the top quark’s mass, the ratio of the two vacuum expectation
values, and the masses of other supersymmetric particles. For Mtop = 175 GeV,
there is a bound MH0

1 � 130 GeV, provided that the ratio of the vacuum expecta-
tion values is large. This mass is within the range of the Tevatron and LHC, as we
discussed earlier.

We mention a final possibility, whereby the Higgs particle is a bound state of
quark–antiquark pairs. In such theories a new strong interaction must be present
to bind the quark pair together. A dynamical symmetry breaking has been formu-
lated with a top-quark condensate (Bardeen et al., 1996), in analogy with the BCS
theory of superconductivity. The low-energy effective theory is the standard model
supplemented with relationships connecting masses of the top quark, W boson, and
Higgs boson.

Another extension introduces new quarks (techniquarks) coupled to W and Z
bosons and bound together by new gluons, the technigluons. There is a new cou-
pling constant, which runs to become strong at a scale ∼1 TeV. The theory is a
scaled-up version of QCD with heavy fermions U and D imitating the light up and
down quarks. The strong interactions at 1 TeV cause a spontaneous breaking of the
SU(2)L × SU(2)R symmetry of the new quarks, producing heavy color scalars – the
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new Goldstone bosons (Fahri and Susskind, 1979). Searches for the new scalars
follow the methods we described in this and the previous section.

Problems for Chapter 17

1. Show that the decay rates to transverse (±) and longitudinally (L) polarized W bosons
are

(H0 → W+W+) = (H0 → W−W−) = g2

16π

M2
W

MH

(
1 − 4M2

W

M2
H

)1
2

(H0 → WLWL) = g2

64π

M3
H

M2
W

(
1 − 2MW

M2
H

)2(
1 − 4M2

W

M2
H

)1
2

(H0 → WLW±) = 0.

Hence, for MH � MW, the W bosons from Higgs decay are dominantly longitudinally
polarized.

2. Show that the amplitude for W+
L W−

L → W+
L W−

L in the limit where s, M2
H � M2

W, M2
Z

is

M(W+
L W−

L → W+
L W−

L ) = −
√

2Gm2
H

(
s

s − M2
H

+ t

t − M2
H

)

with s and t the Mandelstam variables. If mH → ∞, the amplitude grows linearly in s.
Calculate now the l = 0 partial-wave contribution

a0 = 1

16πs

∫ 0

−s
dtM(W+

L W−
L → W+

L W−
L )

and show that, for s � M2
H, the result for a0 is

a0 = − G M2
H

8π
√

2
.

This result together with the unitarity condition (17.12) gives Eq. (17.13).
3. A simple estimate of the process of gluon–gluon fusion is obtained by calculating the

Drell–Yan process. Consider the reaction gg → H → γγ with the mass MH varying,
i.e. the Higgs is off the mass shell. The point cross section is given in Eq. (17.19) and
the decay width is listed in Table 17.1.
(i) Identify Q2 in Section 10.5 with M2

H and write the Drell–Yan cross section. For the
gluon distribution function adopt the simplified form

fg(x) = 8
1

x
(1 − x)7 .

Compute the production cross section in proton–proton collisions.
(ii) Compute the cross section numerically for a Higgs of 130 GeV for pp collisions of

center-of-mass energy 5–20 TeV. To simplify the calculation, you may treat I (λ)
with λ = m2

t /m2
H as constant.
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Epilogue

In this book, the reader has had the opportunity to follow the development of the
electroweak theory and the discovery of several new phenomena predicted by the
theory. We have analyzed several of them in various chapters. The richness of the
field and its high level of accuracy have been achieved with the help of several very
large, very accurate, and refined experiments.

The potential for discovery has not yet been exhausted because the theory must
be completed with the discovery of the Higgs particle(s) or some other symmetry-
breaking scheme. Experiments at the LHC will either discover the Higgs boson
or find new interactions indicating another mechanism for the breaking of sym-
metry. There is another observation in addition to symmetry-breaking that demands
extension of the theory: the mixing and mass differences of neutrinos. Most of our
colleagues speculate about a larger theory. Grand unified theories will unify the
electroweak with the strong interactions, at some high energy bringing the three
coupling constants together. The main issue here is to find predictions unique to
the grand unified theory that will be verified by experiment. The symmetry of the
new theory and the particle classification within the group remain open issues.

An alternative theory is supersymmetry, with many more particles. Supersym-
metry is a symmetry relating fermions to bosons and must be broken. There are
many different symmetry-breaking schemes. Predictions of the minimal supersym-
metric theory will be tested at the LHC.

A parallel development has been the association of weak and electromagnetic
interactions with astronomical and cosmological phenomena. For instance, particle
interactions determine the spectrum of the cosmic background radiation. Further-
more, with small extensions, the present theory explains the generation of baryons.
One attractive scenario considers the generation of a lepton asymmetry converted
into a baryon asymmetry at the energy scale of the electroweak phase transition
(v = 246 GeV), generating an excess of matter. The interplay between gravity
and particle interactions is responsible for the formation of large structures. Such
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developments have brought about a closer cooperation between particle physicists
and cosmologists.

I was tempted to include possible new developments that would lead to diverse
predictions. This is a difficult task, where past experience indicates that Nature
frequently selects solutions beyond our imagination. I resisted this temptation, and
decided to stop here with an open-ended conclusion that invites future thought.



Appendix A

Conventions, spinors, and currents

A.1 Conventions

The space-time coordinates (t, x, y, z) = (t, �x) are denoted by a contravariant four-vector
(c and h are set equal to 1):

xµ = (x0, x1, x2, x3) = (t, x, y, z). (A.1)

The metric tensor is

gµν = gµν =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠, (A.2)

pµ = (p0, �p), pµ = gµν pν = (p0, − �p ). (A.3)

Momentum four-vectors are similarly defined,

pµ = (E, px , py, pz), (A.4)

and the inner product

p1 · p2 = p1µ pµ

2 = (E1 E2 − �p1 �p2). (A.5)

We frequently meet products of the totally antisymmetric tensor εαβγµ (note gν
µ = δν

µ)

εαβγµεαβγ ν = −6δ ν
µ , (A.6)

εαβµνε
αβρσ = −2

∣∣∣∣∣
δρ
µ δρ

ν

δσ
µ δσ

ν

∣∣∣∣∣, (A.7)

εαµνσ εαλρτ =

∣∣∣∣∣∣∣
δλ
µ δλ

ν δλ
σ

δρ
µ δρ

ν δρ
σ

δτ
µ δτ

ν δτ
σ

∣∣∣∣∣∣∣. (A.8)
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A.2 Dirac matrices and spinors

Anticommutation of γ -matrices:

{γ µ, γ ν} = γ µγ ν + γ νγ µ = 2gµν, (A.9)

γ 5 ≡ iγ 0γ 1γ 2γ 3, {γ µ, γ 5} = 0. (A.10)

The σ -matrix:

σµν = i

2
[γ µ, γ ν]. (A.11)

Reduction of the product of three γ -matrices:

γ µγ ργ ν = Sµρν + iεµνρ
λ γ λγ5, (A.12)

with

Sµρν = gµργ ν + gρνγ µ − gµνγ ρ. (A.13)

A familiar representation of γ -matrices is

γ 0 =
[

1 0
0 −1

]
, (A.14)

{γ i } = γ =
[

0 σ
−σ 0

]
, γ5 = γ 5 =

[
0 1
1 0

]
, (A.15)

where

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 –i
i 0

]
, σ3 =

[
1 0
0 −1

]
(A.16)

are the familiar Pauli matrices and

1 =
[

1 0
0 1

]

is the 2 × 2 unit matrix.
The spinors u and v satisfy the Dirac equation,

(p/ − m)u(p, s) = 0, (A.17)

(p/ + m)v(p, s) = 0. (A.18)

The normalization of spinors is

ū(p, s)u(p, s) = 2m, (A.19)

v̄(p, s)v(p, s) = −2m, (A.20)

and the completeness relation is∑
s

u(p, s)ū(p, s) = p/ + m, (A.21)

∑
s

v(p, s)v̄(p, s) = p/ − m. (A.22)
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A.3 Currents

Vector:

Jµ(x) = �̄(x)γµ�(x) = �(x)+γ0γµ�(x). (A.23)

Axial:

Jµ5(x) = �̄(x)γµγ5�(x). (A.24)

Decompositions of the currents or products of them are very useful. Let µ = pµ + p′
µ

and qµ = p′
µ − pµ, then

ū(p′)γ µu(p) = 1

2m
ū(p′)(µ + iσµνqν)u(p), (A.25)

ū(p′)γ µγ5u(p) = 1

2m
ū(p′)(γ5qµ + iγ5σ

µνν)u(p), (A.26)

ū(p′)iσµννu(p) = −ū(p′)qµu(p), (A.27)

ū(p′)iσµνqνu(p) = ū(p′)(2mγ µ − µ)u(p). (A.28)

Additional identities can be found in Appendix A of the article by M. Nowakowski, E.
Paschos and J. M. Rodriguez (Eur. J. Phys. 26, 545–560, 2005) and in Appendix C of this
book.
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Cross sections and traces

B.1 Cross sections

The matrix element M appearing in cross sections and decay rates is Lorentz-invariant
and dimensionless. The expression for the cross section is

dσ = 1

|�v1 − �v2|
1

2E p1

1

2E p2

|M|2(2π )4δ4

(
p1 + p2 −

n∑
i=1

ki

)
d3k1

2E1(2π )3
. . .

d3kn

2En(2π )3
s.

(B.1)

The flux factor is frequently computed in the laboratory frame or the center-of-mass
frame. In general,

1

|�v1 − �v2| = mM[
(p1 · p2)2 − m2 M2

]1/2 . (B.2)

The factor s is

s =
∏

i

1

ki !
(B.3)

if there are ki identical particles of species i in the final state.
The decay width for a particle moving with energy E is

d� = 1

2E
|M|2(2π )4δ4

(
p −

n∑
i=1

ki

)
d3k1

2E1(2π )3
. . .

d3kn

2En(2π )3
s. (B.4)

B.2 Contraction identities and traces
/a/b = 2a · b − /b/a, (B.5)

γ λγλ = 4, (B.6)

γ λγ µγλ = −2γ µ, (B.7)

γ λγ µγ νγλ = 4gµν, (B.8)

γ λγ µγ νγ ργλ = −2γ ργ νγ µ, (B.9)

γ λγ µγ νγ ργ σ γλ = 2(γ σ γ µγ νγ ρ + γ ργ νγ µγ σ ), (B.10)

γ λσµνγλ = 0, (B.11)

γ λσµνγ ργλ = 2γ ρσµν. (B.12)
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The trace of an odd product of γ µ-matrices vanishes:

Tr(γ 5) = 0 (B.13)

Tr(γ µγ ν) = 4gµν (B.14)

Tr(σµν) = 0 (B.15)

Tr(γ µγ νγ 5) = 0 (B.16)

Tr(γ µγ νγ ργ σ ) = 4(gµνgρσ − gµρgνσ + gµσ gνρ) (B.17)

Tr(γ 5γ µγ νγ ργ σ ) = −4iεµνρσ = 4iεµνρσ (B.18)

Tr(/a1/a2 . . . /a2n) = Tr(/a2n . . . /a2/a1) (B.19)

Tr(/a1/a2 . . . /a2n) = a1 · a2 Tr(/a3 . . . /a2n) − a1 · a3 Tr(/a2/a4 . . . /a2n) + · · · (B.20)

+ a1 · a2n Tr(/a1 . . . /a2n−1)

= 4
∑

ε(ai1 · a j1 ) . . . (ain · a jn ).

ε is the signature of the permuatation i1 j1 . . . in jn and the sum runs over the (2n)!/(2nn!)
different pairings satisfying 1 = i1 < i2 < · · · in, ik < jk .

B.3 Some Feynman rules

In the text we gave Feynman rules for several vertices. We present here additional rules for
vertices of gauge bosons:

W+
ν (k2) W−

λ (k3)

Aµ(k1)

−ie[(k1 − k2)λgµν + (k2 − k3)µgνλ + (k3 − k1)νgλµ]

W+
ν (k2) W−

λ (k3)

Zµ(k1)

−ig cos θW[(k1 − k2)λgµν + (k2 − k3)µgνλ + (k3 − k1)νgλµ]
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W+
νW+

µ

W−
λ W−

ρ

ig2Hµγ,λρ

AνAµ

W+
λ W−

ρ

−ie2Hµν,λρ

ZνZµ

W−
λ W+

ρ

−g2 cos θWHµγ,λρ

with Hµν,λρ = 2gµνgλρ − gµλgνρ − gµρgνλ. In graphs all momenta are taken to be
entering into the vertices.
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Identities for quark bilinears

There are four identities for the product of two quark bilinears:[
s̄γ µγ ργ νγ±d

][
q̄iγµγ τγνγ±q j

] = 4gρτ
[
s̄γ λγ±d

][
q̄iγλγ±q j

]
, (C.1)[

s̄γ µγ ργ νγ±d
][

q̄iγµγ τγνγ∓q j
] = 4

[
s̄γ τγ±d

][
q̄iγ

ργ∓q j
]
, (C.2)[

s̄γ νγ ργ µγ±d
][

q̄iγµγ τγνγ±q j
] = 4

[
s̄γ τγ±d

][
q̄iγ

ργ±q j
]
, (C.3)[

s̄γ νγ ργ µγ±d
][

q̄iγµγ τγνγ∓q j
] = 4gρτ

[
s̄γ λγ±d

][
q̄iγλγ∓q j

]
. (C.4)

The derivation follows from the identity

γ µγ λγ ν = gµλγ ν + gλνγ µ − gµνγ λ + iεµλνργργ5 (C.5)

and can be found in A. Sirlin, Nucl. Phys. B 192, 93 (1981).

242



Index

Adler sum rule 116
anapole moment 10
anomalous moment 9
antineutrinos 106, 107, 114, 115, 127, 137, 149, 180

in reactors 146
Altarelli et al., see spectator model
atmospheric neutrinos 146
axial current 16–18, 23–25, 49, 86, 87, 100, 127

B-meson mixing 207–210, 215, 216
beta decay 14, 85, 86
Bjorken 101, 105, 108, 111
Bjorken scaling 101, 107
b quark 206–216
bosons 108, 172, 175, 199, 210, see also W and Z
bound states 119, 157, 172
box diagram 175–178

Cabibbo 15, 80, 121
Callan–Gross relation 113
charge conjugation 180
charm quark and charmed states 84, 87, 156–158, 169,

195, 211, 217
chiral symmetry 25, 153, 197, 198
chirality 78, 96, 128
chirality of neutrinos 137
CKM 80, 81, 159, 172, 189, 195, 197, 198, 210, 211,

217
color 26
conservation laws 24, 51
CP 82, 90–92, 148, 181
CP in D and B mesons 203–215
CP in K mesons 180–198
CPT 181–184, 191
current algebra 23, 25

D-meson mixing 204–205
decays 182, 183, 239

B meson 88, 89, 158–164, 169–171, 210–215, 217
width difference 174, 175, 188, 191, 209, 215
D meson 88, 157, 158
Higgs 225–227, 232
hyperon 87

K meson 86, 87, 188, 192
muon 12, 14, 85
pion 16
top quark 172
W boson 68–70, 88
Z boson 70, 77

Dirac Lagrangian and/or mass 4, 34, 137, 138, 149,
153, 165

Dirac matrices 3, 28, 237
Drell–Yan 108–111

effective Hamiltonian 189, 194–197, 204
effective Lagrangian 164–168
electrodynamics 3–5, 8–10, 35, 49–51
Euclidean 176–178
Euler angles 46, 81
Euler–Lagrange 143, 166
evolution of distribution functions 117–120

Fermi coupling 3, 12, 85, 221
Fermi motion 160
Feynman 105, 123
Feynman rules 62, 66, 67, 72, 73, 219, 220, 240
Fierz 71, 143, 204
flavor-changing neutral couplings 82–84
flux factor 99, 239
form factors 7–10, 13, 121, 164, 169
fragmentation function 162

gauge
’t Hooft–Feynman 67, 176
Landau 67
unitary 67

gauge symmetry 33–39, 49–51, 100, 228
Gell-Mann 21, 22
Gell-Mann matrices 23, 33
Gell-Mann–Nishijima formula 22, 54, 78
GIM 84, 179
Glashow 57–63, 84, 92
global symmetry 33, 44, 47
gluon, see QCD
gluon–gluon fusion 110, 229, 230
gluon propagator 199–200

243



244 Index

gluons in decays 157, 158, 164–166
Goldberger–Treiman relation 16–18
Goldstone bosons 45–48, 50, 51, 251
Gordon identity 7, 8, 121
ground state 42, 43, 49, 52, 58, 225

helicity 84, 98, 114, 115, 130, 138
helicity cross section 98
Higgs 110, 128, 218–232

boson 218
couplings 79, 219, 220
doublet 57–60, 149, 218
exchange 172, 175
mass 220, 222–225, 227
mechanism 57–61, 173
production 110, 227–230
vacuum expectation value 61, 79, 155

isospin
strong 13, 14, 18, 22–26, 49, 116, 126, 192, 214
weak 53, 54, 62

K meson 181, 187–189, 192–195, 206
Kobayashi–Maskawa, see CKM matrix

Lee, B. 62, 224
Lee, T. D. 180
lepton mass 61
local symmetry 33, 50
longitudinal polarization 38, 39, 50, 60, 164, 173
Lorentz

invariance 9, 13, 16, 100, 138, 149, 160
gauge 38, 39

loop diagrams 118, 173–176, 194, 198–201, 225

Maiani parametrization 81
Majorana mass 138, 149–150, 153
Majorana neutrinos 10, 136, 148–150
magnetic moment 6, 8, 18, 19, 167, 168
Marshak 11, 13, 19
mass difference 188, 191, 209, 215
mass formula 60, 61

for B mesons 191
Mikhegev–Smirnov 144
muon 12, 14, 68, 85, 221
muon neutrinos 139–141, 143, 146

Nambu 41, 52
Neeman 21
neutral current

in atoms 133, 134
hadronic 82–84, 124–130
in electron–positron collisions 76, 77
in electron–proton collisions 130–134
leptonic 65, 66, 70–76

neutrino mass
oscillations 61, 120, 136, 139–148

neutrino–electron scattering 70–76
neutrino oscillations in matter 142–145
neutrinoless double beta decay 148, 150–152
neutrinos in accelerators 147

neutrinos, number of 70
Noether’s theorem 24

orthogonal 80, 139, 150
oscillation of mesons 184–187, 207, 213

parity 7, 9, 10, 21, 77, 129, 180, 182
parity violation 12, 130–134
partial wave 4, 19, 224
parton model 104–108, 116, 117, 128–130

in semileptonic decays 160–163
Pauli 19, 28
Pauli matrices 33, 237
PCAC 16–18
Paschos 184, 92, 105, 108
Paschos–Wolfenstein relation 128
penguin diagram 198–201, 211, 213, 214
polarization 69, 224, 225, 228

vectors 38, 97, 98
precision tests 220–223
propagator 5, 15, 16, 67, 68, 71, 76, 122, 131, 132,

151, 155, 166, 176–178, 190, 199, 200

QCD (quantum chromodynamics) 26, 27, 109,
117–120, 156–158, 164, 178, 197, 200, 209,
see also strong interaction

quarks 21–26
gauge 78, 79
physical 78, 79
spin of 114, 115

quasi-elastic scattering 120–123

radiative corrections 8, 9, 155, 172, 224
to coupling constants 12, 14, 85, 90
to ρ parameter 128, 172, 221, 222

running coupling constant 118–119

s quark 114, 116, 205
Salam 57–63
scalar electrodynamic 38, 39, 49
scaling 101–103, 107, 109, 113
Sirlin identities 242
solar neutrinos 146
spectator model 158–160
strangeness 14, 15, 21, 84
strong interaction 9, 13, 18, 22, 36, 54, 192–198
SU(2)

strong 14, 21, 49
weak 33, 53–61, 124, 128, 149

SU(3) 14, 15, 21–26, 36, 86, 87, 117
Sudbury experiment 146
Sudarshan 19

’t Hooft 62, 176
time evolution 184, 185, 207, 208, 213
time-reversal 9, 10, 13, 19, 121, 180
top quark 84, 156, 171–173, 222, 231

as intermediate state 209, 222

ultraviolet-finite 174
unitarity 3, 4, 62, 224, 232



Index 245

unitarity of mixing matrix 80–82, 90, 195, 197, 210,
213, 217

unitary gauge 60, 67
unitarity triangle 90–91, 231, 214
universality 15, 85

vacuum polarization 222
Veltman 62

W boson 60, 108, 172, 199, 210
W–W fusion 230
Weinberg 57–63, 71, 76, 84, 92

Wilson coefficients 194–198
Wolfenstein 82, 90, 142, 144, 189, 204, 214

Yang 180
Yang–Mills theory 33–36
Yukawa couplings 61, 79, 137

Z boson 60, 68, 70, 76–77, 110, 124, 131, 227,
228

zero mass 17, 47–49
Zinn-Justin 62
Zweig 21




	Paschos_ElectroweakTheory
	Paschos_9781009402378
	Half-title page
	Title page
	Copyright page
	Dedication page
	Contents
	Preface
	Part I The road to unification
	1 The electromagnetic current and its properties
	1.1 Introduction
	1.2 The current for hadronic states
	1.3 Parity-violating form factors
	References
	Select bibliography

	2 The weak currents
	2.1 The weak currents and some of their properties
	2.2 The partially conserved axial current
	2.3 Regularities among the forces
	Problems for Chapters 1 and 2
	References
	Select bibliography

	3 The quark model
	3.1 Introduction
	3.2 Current algebra
	3.3 Quantum chromodynamics
	Problems for Chapter 3
	References
	Select bibliography


	Part II Field theories with global or local symmetries
	4 Yang–Mills theories
	4.1 The Yang–Mills field
	4.2 Gauge invariance in scalar electrodynamics
	Problems for Chapter 4
	Select bibliography

	5 Spontaneous breaking of symmetries
	5.1 Spontaneous breaking of global symmetries: discrete symmetry
	5.2 Continuous global symmetries
	5.3 Spontaneous breaking of local symmetries
	Problems for Chapter 5
	Select bibliography

	6 Construction of the model
	Select bibliography

	7 The Higgs mechanism in the Glashow–Salam–Weinberg model
	7.1 Masses for gauge bosons
	7.2 Masses for leptons
	Problems for Chapter 7
	References
	Select bibliography

	8 The leptonic sector
	8.1 Feynman rules
	8.2 Predictions in the leptonic sector
	8.3 Leptonic neutral currents
	8.4 Weak effects in electron–positron annihilation
	Problem for Chapter 8

	9 Incorporating hadrons
	9.1 The mixing matrix
	9.2 Flavor-changing neutral couplings (FCNCs)
	9.3 The elements of the mixing matrix
	References
	Select bibliography


	Part III Experimental consequences and comparisons
	10 Deep inelastic scattering
	10.1 Kinematics for deep inelastic scattering
	10.2 Hadronic structure functions
	10.3 Scaling and the total cross section
	10.4 The parton model
	10.5 The Drell–Yan process
	Problems for Chapter 10
	References

	11 Charged-current reactions
	11.1 Deep inelastic scattering
	11.2 Evolution of distribution functions
	11.3 Quasi-elastic scattering
	References

	12 Neutral currents in semileptonic reactions
	12.1 Neutrino–hadron neutral-current interactions
	12.2 Model-independent predictions
	12.3 Neutral-current cross sections
	12.4 Parity violation in electron scattering
	Problems for Chapter 12
	References

	13 Physics of neutrinos
	13.1 Neutrino masses
	13.2 Neutrino oscillations
	13.3 Experimental results
	13.4 Majorana neutrinos
	13.5 Neutrinoless double beta decay
	Problems for Chapter 13
	References
	Select bibliography

	14 Heavy quarks
	14.1 Introduction
	14.2 Semileptonic and inclusive B-meson decays
	14.3 Exclusive semileptonic decays
	14.4 Heavy-quark effective theory
	14.5 The effective Lagrangian: 1/mQ corrections
	14.6 The top quark and its physical properties
	14.7 Loop diagrams with heavy quarks
	Problems for Chapter 14
	References
	Select bibliography

	15 CP violation: K mesons
	15.1 Introduction
	15.2 General properties
	15.3 Time development of states
	15.4 The K0–¯K0 transition amplitude
	15.5 CP violation in amplitudes
	15.6 The effective Hamiltonian
	15.7 Calculation of a penguin diagram
	Problems for Chapter 15
	References
	Select bibliography

	16 CP violation: D and B mesons
	16.1 Introduction
	16.2 The D0–¯D0 transition amplitude
	16.3 Comparison of K0 and B0 mesons
	16.4 Mixing in the Bd system
	16.5 Decay rates and CP violation
	16.6 Mass and lifetime differences for Bs mesons
	Problems for Chapter 16
	References
	Select bibliography

	17 Higgs particles
	17.1 Higgs-boson couplings
	17.2 Precision tests of the theory
	17.3 Bounds on masses from general principles
	17.4 Decays
	17.5 Production in electron–positron colliders
	17.6 Production in hadron colliders
	17.7 Other symmetry-breaking schemes
	Problems for Chapter 17
	References
	Select bibliography

	Epilogue
	Appendix A Conventions, spinors, and currents
	Appendix B Cross sections and traces
	Appendix C Identities for quark bilinears
	Index





