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1

Introduction

It is well known that supersymmetric theories may have Bogomol’nyi–Prasad–
Sommerfield (BPS) sectors in which some data can be computed at strong coupling
even when the full theory is not solvable. Historically, this is how the first exact
results on particle spectra were obtained [1]. Seiberg–Witten’s breakthrough results
[2, 3] in the mid 1990s gave an additional motivation to the studies of the BPS
sectors.

BPS solitons can emerge in those supersymmetric theories in which superalge-
bras are centrally extended. In many instances the corresponding central charges
are seen at the classical level. In some interesting models central charges appear as
quantum anomalies.

First studies of BPS solitons (sometimes referred to as critical solitons) in
supersymmetric theories at weak coupling date back to the 1970s. De Vega and
Schaposnik were the first to point out [4] that a model in which classical equations
of motion can be reduced to first-order Bogomol’nyi–Prasad–Sommerfeld (BPS)
equations [5, 6] is, in fact, a bosonic reduction of a supersymmetric theory. Already
in 1977 critical soliton solutions were obtained in the superfield form in some two-
dimensional models [7]. In the same year miraculous cancellations occurring in
calculations of quantum corrections to soliton masses were noted in [8] (see also
[9]). It was observed that for BPS solitons the boson and fermion modes are degen-
erate and their number is balanced. It was believed (incorrectly, we hasten to add)
that the soliton masses receive no quantum corrections. The modern – correct –
version of this statement is as follows: if a soliton is BPS-saturated at the classical
level and belongs to a shortened supermultiplet, it stays BPS-saturated after quan-
tum corrections, and its mass exactly coincides with the central charge it saturates.
The latter may or may not be renormalized. Often – but not always – central charges
that do not vanish at the classical level and have quantum anomalies are renormal-
ized. Those that emerge as anomalies and have no classical part typically receive no
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2 Introduction

renormalizations. In many instances holomorphy protects central charges against
renormalizations.

Critical solitons play a special role in gauge field theories. Numerous paral-
lels between such solitonic objects and basic elements of string theory have been
revealed in recent years. At first, the relation between string theory and supersym-
metric gauge theories was mostly a “one-way street” – from strings to field theory.
Now it is becoming exceedingly more evident that field-theoretic methods and
results, in their turn, provide insights in string theory.

String theory, which emerged from dual hadronic models in the late 1960s and
70s, elevated to the “theory of everything” in the 1980s and 90s when it expe-
rienced an unprecedented expansion, has seemingly entered a “return-to-roots”
stage. The task of finding solutions to “down-to-earth” problems of QCD and other
gauge theories by using results and techniques of string/D-brane theory is currently
recognized by many as one of the most important and exciting goals of the commu-
nity. In this area the internal logic of development of string theory is fertilized by
insights and hints obtained from field theory. In fact, this is a very healthy process
of cross-fertilization.

If supersymmetric gauge theories are, in a sense, dual to string/D-brane theory –
as is generally believed to be the case – they must support domain walls (of the
D-brane type) [10], and we know, they do [11, 12]. A D-brane is defined as a
hypersurface on which a string may end. In field theory both the brane and the
string arise as BPS solitons, the brane as a domain wall and the string as a flux tube.
If their properties reflect those inherent to string theory, at least to an extent, the
flux tube must end on the wall. Moreover, the wall must house gauge fields living
on its world volume, under which the end of the string is charged.

The purpose of this review is to summarize developments in critical solitons in
two, three and four dimensions, with emphasis on four dimensions and on most
recent results. A large variety of BPS-saturated solitons exist in four-dimensional
field theories: domain walls, flux tubes (strings), monopoles and dyons, and various
junctions of the above objects. A list of recent discoveries includes localization of
gauge fields on domain walls, non-Abelian strings that can end on domain walls,
developed boojums, confined monopoles attached to strings, and other remarkable
findings. The BPS nature of these objects allows one to obtain a number of exact
results. In many instances nontrivial dynamics of the bulk theories we will consider
lead to effective low-energy theories in the world volumes of domain walls and
strings (they are related to zero modes) exhibiting novel dynamical features that
are interesting by themselves.

We do not try to review the vast literature accumulated since the mid 1990s in
its entirety. A comparison with a huge country the exploration of which is not yet
completed is in order here. Instead, we suggest what may be called “travel diaries”
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of the participants of the exploratory expedition. Recent publications [13, 14, 15,
16, 17] facilitate our task since they present the current developments in this field
from a complementary point of view.

The “diaries” are organized in two parts. The first part (entitled “Short excur-
sion”) is a bird’s eye view of the territory. It gives a brief and largely nontechnical
introduction to basic ideas lying behind supersymmetric solitons and particular
applications. It is designed in such a way as to present a general perspective that
would be understandable to anyone with an elementary knowledge in classical and
quantum fields, and supersymmetry.

Here we present some historic remarks, catalog relevant centrally extended super-
algebras and review basic building blocks we consistently deal with – domain walls,
flux tubes, and monopoles – in their classic form. The word “classic” is used here
not in the meaning “before quantization” but, rather, in the meaning “recognized
and cherished in the community for years.”

The second part (entitled “Long journey”) is built on other principles. It is
intended for those who would like to delve in this subject thoroughly, with its
specific methods and technical devices. We put special emphasis on recent devel-
opments having direct relevance to QCD and gauge theories at large, such as
non-Abelian flux tubes (strings), non-Abelian monopoles confined on these strings,
gauge field localization on domain walls, etc. We start from presenting our bench-
mark model, which has extended N = 2 supersymmetry. Here we go well beyond
conceptual foundations, investing efforts in detailed discussions of particular prob-
lems and aspects of our choosing. Naturally, we choose those problems and aspects
which are instrumental in the novel phenomena mentioned above. In addition to
walls, strings and monopoles, we also dwell on the string-wall junctions which play
a special role in the context of dualization.

Our subsequent logic is from N = 2 to N = 1 and further on. Indeed, in certain
instances we are able to descend to non-supersymmetric gauge theories which are
very close relatives of QCD. In particular, we present a fully controllable weakly
coupled model of the Meissner effect which exhibits quite nontrivial (strongly
coupled) dynamics on the string world sheet. One can draw direct parallels between
this consideration and the issue of k-strings in QCD.
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Short excursion
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Central charges in superalgebras

In this Section we will briefly review general issues related to central charges (CC)
in superalgebras.

2.1 History

The first superalgebra in four-dimensional field theory was derived by Golfand and
Likhtman [18] in the form

{Q̄α̇Qβ} = 2Pμ
(
σμ
)
αβ

, {Q̄αQ̄β} = {QαQβ} = 0, (2.1.1)

i.e. with no central charges. Possible occurrence of CC (elements of superalgebra
commuting with all other operators) was first mentioned in an unpublished paper of
Lopuszanski and Sohnius [19] where the last two anticommutators were modified as

{QI
αQ

G
β } = ZIGαβ . (2.1.2)

The superscripts I ,Gmark extended supersymmetry. A more complete description
of superalgebras with CC in quantum field theory was worked out in [20]. The
only central charges analyzed in this paper were Lorentz scalars (in four dimen-
sions), Zαβ ∼ εαβ . Thus, by construction, they could be relevant only to extended
supersymmetries.

A few years later, Witten and Olive [1] showed that in supersymmetric theories
with solitons, central extension of superalgebras is typical; topological quantum
numbers play the role of central charges.

It was generally understood that superalgebras with (Lorentz-scalar) central
charges can be obtained from superalgebras without central charges in higher-
dimensional space-time by interpreting some of the extra components of the
momentum as CC’s (see e.g. [21]). When one compactifies extra dimensions one
obtains an extended supersymmetry; the extra components of the momentum act
as scalar central charges.

7



8 Central charges in superalgebras

Algebraic analysis extending that of [20] carried out in the early 1980s (see
e.g. [22]) indicated that the super-Poincaré algebra admits CC’s of a more general
form, but the dynamical role of additional tensorial charges was not recognized
until much later. Now it is common knowledge that central charges that originate
from operators other than the energy-momentum operator in higher dimensions can
play a crucial role. These tensorial central charges take non-vanishing values on
extended objects such as strings and membranes.

Central charges that are antisymmetric tensors in various dimensions were intro-
duced (in the supergravity context, in the presence of p-branes) in Ref. [23] (see
also [24, 25]). These CC’s are relevant to extended objects of the domain wall type
(membranes). Their occurrence in four-dimensional super-Yang–Mills theory (as a
quantum anomaly) was first observed in [11]. A general theory of central extensions
of superalgebras in three and four dimensions was discussed in Ref. [26]. It is worth
noting that those central charges that have the Lorentz structure of Lorentz vectors
were not considered in [26]. The gap was closed in [27].

2.2 Minimal supersymmetry

The minimal number of supercharges νQ in various dimensions is given in Table 2.1.
Two-dimensional theories with a single supercharge, although algebraically possi-
ble, are quite exotic. In “conventional” models inD = 2 with local interactions the
minimal number of supercharges is two.

The minimal number of supercharges in Table 2.1 is given for a real represen-
tation. Then, it is clear that, generally speaking, the maximal possible number of
CC’s is determined by the dimension of the symmetric matrix {QiQj } of the size
νQ × νQ, namely,

νCC = νQ(νQ + 1)

2
. (2.2.1)

In fact, D anticommutators have the Lorentz structure of the energy-momentum
operator Pμ. Therefore, up to D central charges could be absorbed in Pμ, gener-
ally speaking. In particular situations this number can be smaller, since although
algebraically the corresponding CC’s have the same structure as Pμ, they are
dynamically distinguishable. The point is that Pμ is uniquely defined through the
conserved and symmetric energy-momentum tensor of the theory.

Additional dynamical and symmetry constraints can further diminish the number
of independent central charges, see e.g. Section 2.2.1.

The total set of CC’s can be arranged by classifying CC’s with respect to their
Lorentz structure. Below we will present this classification forD = 2, 3 and 4, with
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Table 2.1. The minimal number of supercharges, the complex dimension of the
spinorial representation and the number of additional conditions (i.e. the Majorana
and/or Weyl conditions).

D 2 3 4 5 6 7 8 9 10

νQ (1∗) 2 2 4 8 8 8 16 16 16
Dim(ψ)C 2 2 4 4 8 8 16 16 32
# cond. 2 1 1 0 1 1 1 1 2

special emphasis on the four-dimensional case. In Section 2.3 we will deal with
N = 2 superalgebras.

2.2.1 D = 2

Consider two-dimensional non-chiral theories with two supercharges. From the
discussion above, on purely algebraic grounds, three CC’s are possible: one Lorentz-
scalar and a two-component vector,

{Qα , Qβ} = 2(γ μγ 0)αβ(Pμ + Zμ)+ i(γ 5γ0)αβZ . (2.2.2)

We refer to Appendix A for our conventions regarding gamma matrices. Zμ �= 0
would require existence of a vector order parameter taking distinct values in dif-
ferent vacua. Indeed, if this central charge existed, its current would have the
form

ζ μν = ενρ ∂
ρAμ, Zμ =

∫
ζ
μ

0 dz,

where Aμ is the above-mentioned order parameter. However, 〈Aμ〉 �= 0 will break
Lorentz invariance and supersymmetry of the vacuum state. This option will not be
considered. Limiting ourselves to supersymmetric vacua we conclude that a single
(real) Lorentz-scalar central charge Z is possible in N = 1 theories. This central
charge is saturated by kinks.

2.2.2 D = 3

The central charge allowed in this case is a Lorentz-vector Zμ, i.e.

{Qα ,Qβ} = 2(γ μγ 0)αβ(Pμ + Zμ). (2.2.3)
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One should arrange Zμ to be orthogonal to Pμ. In fact, this is the scalar central
charge of Section 2.2.1 elevated by one dimension. Its topological current can be
written as

ζμν = εμνρ ∂
ρA, Zμ =

∫
d2x ζμ0. (2.2.4)

By an appropriate choice of the reference frameZμ can always be reduced to a real
number times (0, 0, 1). This central charge is associated with a domain line oriented
along the second axis.

Although from the general relation (2.2.3) it is pretty clear why BPS vortices
cannot appear in theories with two supercharges, it is instructive to discuss this
question from a slightly different standpoint. Vortices in three-dimensional theories
are localized objects, particles (BPS vortices in 2 + 1 dimensions were previously
considered in [28]; see also references therein). The number of broken translational
generators is d, where d is the soliton’s co-dimension, d = 2 in the case at hand.
Then at least d supercharges are broken. Since we have only two supercharges in
the problem at hand, both must be broken. This simple argument tells us that for a
1/2-BPS vortex the minimal matching between bosonic and fermionic zero modes
in the (super) translational sector is one-to-one.

Consider now a putative BPS vortex in a theory with minimal N = 1 super-
symmetry (SUSY) in 2 + 1D. Such a configuration would require a world volume
description with two bosonic zero modes, but only one fermionic mode. This is
not permitted by the argument above, and indeed no configurations of this type
are known. Vortices always exhibit at least two fermionic zero modes and can be
BPS-saturated only in N = 2 theories.

2.2.3 D = 4

Maximally one can have 10 CC’s which are decomposed into Lorentz representa-
tions as (0, 1)+ (1, 0)+ (1/2, 1/2):

{Qα , Q̄α̇} = 2(γ μ)αα̇(Pμ + Zμ), (2.2.5)

{Qα ,Qβ} = (μν)αβZ[μν], (2.2.6)

{Q̄α̇ , Q̄β̇} = (̄μν)α̇β̇ Z̄[μν], (2.2.7)

where (μν)αβ = (σμ)αα̇(σ̄
ν)α̇β is a chiral version of σμν (see e.g. [29]). The

antisymmetric tensorsZ[μν] and Z̄[μν] are associated with domain walls, and reduce
to a complex number and a spatial vector orthogonal to the domain wall. The (1/2,
1/2) CC Zμ is a Lorentz vector orthogonal to Pμ. It is associated with strings (flux
tubes), and reduces to one real number and a three-dimensional unit spatial vector
parallel to the string.
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2.3 Extended SUSY

In four dimensions one can extend superalgebra up to N = 4, which corresponds
to sixteen supercharges. Reducing this to lower dimensions we get a rich variety
of extended superalgebras in D = 3 and 2. In fact, in two dimensions the Lorentz
invariance provides a much weaker constraint than in higher dimensions, and one
can consider a wider set of (p, q) superalgebras comprising p + q = 4, 8, or 16
supercharges. We will not pursue a general solution; instead, we will limit our task
to (i) analysis of central charges in N = 2 in four dimensions; (ii) reduction of
the minimal SUSY algebra in D = 4 to D = 2 and 3, namely the N = 2 SUSY
algebra in those dimensions. Thus, in two dimensions we will consider only the
non-chiral N = (2, 2) case. As should be clear from the discussion above, in the
dimensional reduction the maximal number of CC’s stays intact. What changes is
the decomposition in Lorentz and R-symmetry irreducible representations.

2.3.1 N = 2 in D = 2

Let us focus on the non-chiral N = (2, 2) case corresponding to dimensional
reduction of the N = 1,D = 4 algebra. The tensorial decomposition is as follows:

{QI
α ,QJ

β } = 2(γ μγ 0)αβ

[
(Pμ + Zμ)δ

IJ + Z(IJ )μ

]
+ 2i (γ 5γ 0)αβ Z

{IJ }

+ 2i γ 0
αβZ

[IJ ], I , J = 1, 2. (2.3.1)

Here Z[IJ ] is antisymmetric in I , J ; Z{IJ } is symmetric while Z(IJ ) is symmetric
and traceless. We can discard all vectorial central chargesZIJμ for the same reasons
as in Section 2.2.1. Then we are left with two Lorentz singletsZ(IJ ), which represent
the reduction of the domain wall charges inD = 4 and two Lorentz singlets TrZ{IJ }
andZ[IJ ], arising fromP2 and the vortex charge inD = 3 (see Section 2.3.2). These
central charges are saturated by kinks.

Summarizing, the (2, 2) superalgebra in D = 2 is

{QI
α ,QJ

β } = 2(γ μγ 0)αβ Pμ δ
IJ + 2i(γ 5γ 0)αβ Z

{IJ } + 2i γ 0
αβZ

[IJ ]. (2.3.2)

It is instructive to rewrite Eq. (2.3.2) in terms of complex superchargesQα andQ†
β

corresponding to four-dimensional Qα , Q̄α̇ , see Section 2.2.3. Then

{
Qα ,Q†

β

}
(γ 0)βγ = 2

[
Pμγ

μ + Z
1 − γ5

2
+ Z† 1 + γ5

2

]
αγ

, (2.3.3)

{
Qα ,Qβ

}
(γ 0)βγ = −2Z′ (γ5)αγ ,

{
Q†
α ,Q†

β

}
(γ 0)βγ = 2Z′† (γ5)αγ .
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The algebra contains two complex central charges,Z andZ′. In terms of components
Qα = (QR ,QL) the nonvanishing anticommutators are

{QL,Q†
L} = 2(H + P), {QR ,Q†

R} = 2(H − P),

{QL,Q†
R} = 2iZ, {QR ,Q†

L} = −2iZ†,

{QL,QR} = 2iZ′, {Q†
R ,Q†

L} = −2iZ′†.

(2.3.4)

It exhibits the automorphism QR ↔ Q
†
R , Z ↔ Z′ associated [30] with the transi-

tion to a mirror representation [31]. The complex central charges Z and Z′ can be
readily expressed in terms of real Z{IJ } and Z[IJ ],

Z = Z[12] + i

2

(
Z{11} + Z{22}) , Z′ = Z{12} + Z{21}

2
− i

Z{11} − Z{22}

2
. (2.3.5)

Typically, in a given model either Z or Z′ vanish. A practically important example
to which we will repeatedly turn below (e.g. Sections 3.5 and 4.5.3) is provided by
the so-called twisted-mass-deformed CP(N − 1) model [32]. The central charge
Z emerges in this model at the classical level. At the quantum level it acquires
additional anomalous terms [33, 34]. Both Z �= 0 and Z′ �= 0 simultaneously in a
contrived model [33] in which the Lorentz symmetry and a part of supersymmetry
are spontaneously broken.

2.3.2 N = 2 in D = 3

The superalgebra can be decomposed into Lorentz and R-symmetry tensorial
structures as follows:

{QI
α ,QJ

β } = 2(γ μγ 0)αβ[(Pμ + Zμ)δ
IJ + Z(IJ )μ ] + 2i γ 0

αβZ
[IJ ], (2.3.6)

where all central charges above are real. The maximal set of 10 CC’s enter as a
triplet of spacetime vectors ZIJμ and a singlet Z[IJ ]. The singlet CC is associated
with vortices (or lumps), and corresponds to the reduction of the (1/2,1/2) charge
or the 4th component of the momentum vector inD = 4. The tripletZIJμ is decom-
posed into an R-symmetry singlet Zμ, algebraically indistinguishable from the

momentum, and a traceless symmetric combination Z(IJ )μ . The former is equiva-

lent to the vectorial charge in the N = 1 algebra, while Z(IJ )μ can be reduced to a
complex number and vectors specifying the orientation. We see that these are the
direct reduction of the (0,1) and (1,0) wall charges in D = 4. They are saturated
by domain lines.
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2.3.3 On extended supersymmetry (eight supercharges) in D = 4

Complete algebraic analysis of all tensorial central charges in this problem is anal-
ogous to the previous cases and is rather straightforward. With eight supercharges
the maximal number of CC’s is 36. Dynamical aspect is less developed – only a
modest fraction of the above 36 CC’s are known to be non-trivially realized in
models studied in the literature. We will limit ourselves to a few remarks regarding
the well-established CC’s. We will use a complex (holomorphic) representation of
the supercharges. Then the supercharges are labeled as follows

QF
α , Q̄α̇ G, α, α̇ = 1, 2, F ,G = 1, 2. (2.3.7)

On general grounds one can write

{QF
α , Q̄α̇ G} = 2δFG Pαα̇ + 2(ZFG)αα̇ ,

{QF
α , QG

β } = 2Z{FG}
{αβ} + 2 εαβ ε

FG Z,

{Q̄α̇ F , Q̄β̇ G} = 2
(
Z̄{FG}

)
{α̇β̇} + 2εα̇β̇ εFG Z̄. (2.3.8)

Here (ZFG)αα̇ are four vectorial central charges (1/2, 1/2), (16 components alto-

gether) while Z{FG}
{αβ} and the complex conjugate are (1,0) and (0,1) central charges.

Since the matrix Z{FG}
{αβ} is symmetric with respect to F ,G, there are three fla-

vor components, while the total number of components residing in (1,0) and (0,1)
central charges is 18. Finally, there are two scalar central charges, Z and Z̄.

Dynamically the above central charges can be described as follows. The scalar
CC’s Z and Z̄ are saturated by monopoles/dyons. One vectorial central charge Zμ
(with the additional conditionPμZμ = 0) is saturated [35] by Abrikosov–Nielsen–
Olesen string (ANO for short) [36]. A (1,0) central charge with F = G is saturated
by domain walls [37].

Let us briefly discuss the Lorentz-scalar central charges in Eq. (2.3.8) that are sat-
urated by monopoles/dyons. They will be referred to as monopole central charges.
A rather dramatic story is associated with them. Historically they were the first to
be introduced within the framework of an extended 4D superalgebra [19, 20]. On
the dynamical side, they appeared as the first example of the “topological charge ↔
central charge” relation revealed by Witten and Olive in their pioneering paper [1].
Twenty years later, the N = 2 model where these central charges first appeared,
was solved by Seiberg and Witten [2, 3], and the exact masses of the BPS-saturated
monopoles/dyons found. No direct comparison with the operator expression for
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the central charges was carried out, however. In Ref. [38] it was noted that for
the Seiberg–Witten formula to be valid, a boson-term anomaly should exist in the
monopole central charges. Even before [38] a fermion-term anomaly was identi-
fied [37], which plays a crucial role [39] for the monopoles in the Higgs regime
(confined monopoles).



3

The main building blocks

3.1 Domain walls

3.1.1 Preliminaries

In four dimensions domain walls are two-dimensional extended objects. In three
dimensions they become domain lines, while in two dimensions they reduce to
kinks which can be considered as particles since they are localized. Embeddings of
bosonic models supporting kinks in N = 1 supersymmetric models in two dimen-
sions were first discussed in [1, 7]. Occasional remarks on kinks in models with
four supercharges of the type of the Wess–Zumino models [40] can be found in the
literature in the 1980s but they went unnoticed. The only issue which caused much
interest and debate in the 1980s was the issue of quantum corrections to the BPS
kink mass in 2D models with N = 1 supersymmetry.

The mass of the BPS saturated kinks in two dimensions must be equal to the
central chargeZ in Eq. (2.2.2). The simplest two-dimensional model with two super-
charges, admitting solitons, was considered in [41]. In components the Lagrangian
takes the form

L = 1

2

(
∂μφ ∂

μφ + ψ̄ i � ∂ψ + F 2
)

+ W ′(φ)F − 1

2
W ′′(φ)ψ̄ψ , (3.1.1)

where φ is a real field, ψ is a two-component Majorana spinor in two dimensions,
and W(φ) is a real “superpotential” which in the simplest case takes the form

W(φ) = m2

λ
φ − λ

3
φ3. (3.1.2)

Moreover, the auxiliary field F can be eliminated by virtue of the classical equa-
tion of motion, F = −W ′. This is a real reduction (two supercharges) of the

15
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Wess–Zumino model (Section 3.1.2). The kink (antikink) BPS equation is

∂zφ = ±dW
dφ

, (3.1.3)

with the boundary condition that φ(z) tends to two distinct vacua, φvac = ±m/λ
at z → ±∞. It can be readily integrated.

The story of kinks in this model is long and dramatic. In the very beginning
it was argued [41] that, due to a residual supersymmetry, the mass of the soliton
calculated at the classical level remains intact at the one-loop level. A few years
later it was noted [42] that the non-renormalization theorem [41] cannot possi-
bly be correct, since the classical soliton mass is proportional to m3/λ2 (where
m and λ are the bare mass parameter and coupling constant, respectively), and
the physical mass of the scalar field gets a logarithmically infinite renormaliza-
tion. Since the soliton mass is an observable physical parameter, it must stay finite
in the limit Muv → ∞, where Muv is the ultraviolet cut off. This implies, in
turn, that the quantum corrections cannot vanish – they “dress” m in the classical
expression, converting the bare mass parameter into the renormalized one. The
one-loop renormalization of the soliton mass was first calculated in [42]. Techni-
cally the emergence of the one-loop correction was attributed to a “difference in
the density of states in continuum in the boson and fermion operators in the soli-
ton background field.” The subsequent work [43] dealt with the renormalization
of the central charge, with the conclusion that the central charge is renormalized
in just the same way as the kink mass, so that the saturation condition is not
violated.

Then many authors repeated one-loop calculations for the kink mass and/or cen-
tral charge [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. The results reported and the
conclusion of saturation/non-saturation oscillated with time, with little sign of con-
vergence. Needless to say, all authors agreed that the logarithmically divergent term
in Z matched the renormalization ofm. However, the finite (non-logarithmic) term
varied from work to work, sometimes even in the successive works of the same
authors. Polemics continued unabated through the 1990s. For instance, Nastase
et al. [53], presenting a perfectly valid calculation of the kink mass, concluded
that the BPS saturation was violated at one loop. This assertion reversed the ear-
lier trend [42, 49, 50], according to which the kink mass and the corresponding
central charge are renormalized in a concerted way. A somewhat later publication
[54] again changed the scene, advocating BPS saturation. However, a dimension-
ally regularized kink mass determined in [54] was not consistent with that found
in [53].

The story culminated in 1998 with the discovery of a quantum anomaly in the
central charge [55]. Classically, the kink central charge Z is equal to the difference
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between the values of the superpotential W at spatial infinities,

Z = W[φ(z = ∞)] − W[φ(z = −∞)]. (3.1.4)

This is known from the pioneering paper [1]. Due to the anomaly, the central charge
gets modified in the following way

W −→ W + W ′′

4π
, (3.1.5)

where the term proportional to W ′′ is anomalous [55]. The right-hand side of
Eq. (3.1.5) must be substituted in the expression for the central charge (3.1.4)
instead of W . Inclusion of the additional anomalous term restores the equal-
ity between the kink mass and its central charge. The BPS nature is preserved,
which is correlated with the fact that the kink supermultiplet is short in the
case at hand [56]. All subsequent investigations confirmed this conclusion (see
e.g. the review paper [57] and original papers [58] by van Nieuwenhuizen and
collaborators).

Critical domain walls in N = 1 four-dimensional theories (four supercharges)
started attracting attention in the 1990s. What is the domain wall? It is a two-
dimensional object of co-dimension one. It is a field configuration interpolating
between vacuum i and vacuum f with some transition domain in the middle. Say,
to the left you have vacuum i, to the right you have vacuum f, in the middle you
have a transition domain which, for obvious reasons, is referred to as the wall
(Fig. 3.1). The most popular model of this time supporting such domain walls was
the generalized Wess–Zumino model with the Lagrangian

L =
∫
d2θ d2θ̄ K(�̄a ,�a)+

(∫
d2θ W (�)+ H.c.

)
(3.1.6)

whereK is the Kähler potential and�a stands for a set of the chiral superfields. The
number of the chiral superfields can be arbitrary, but the superpotential W must
have at least two critical points, two vacua.

(This model can be considered, upon dimensional reduction, in two dimensions
as well.) A popular choice was a trivial Kähler potential,

K =
∑
a

�̄a�a .

BPS walls in this system satisfy the first-order differential equations [59, 24, 60,
61, 62]

gāb ∂z�
b = eiη ∂āW̄ , (3.1.7)
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where the Kähler metric is given by

gāb = ∂2K

∂�̄ā ∂�b
≡ ∂ā∂bK , (3.1.8)

and η is the phase of the (1,0) central charge Z as defined in (2.2.6). The phase
η depends on the choice of the vacua between which the given domain wall
interpolates,

Z = 2
(Wvac f − Wvac i

)
. (3.1.9)

A useful consequence of the BPS equations is that

∂zW = eiη ‖∂a W‖2, (3.1.10)

and thus the domain wall describes a straight line in the W-plane connecting
the two vacua. Needless to say, the first-order BPS equation (3.1.7) guarantees
the validity of the second-order equation of motion. The opposite is not true,
generally speaking. However, if one deals with a single chiral field �, one can
prove [63] that the BPS equation does follow from the second-order equation of
motion.

Construction and analysis of BPS saturated domain walls in four dimensions
crucially depends on the realization of the fact that the central charges relevant to
critical domain walls are not Lorentz scalars; rather they transform as (1,0) + (0,1)
under the Lorentz transformations. It was a textbook statement ascending to the pio-
neering paper [20] that N = 1 superalgebras in four dimensions leave place to no
central charges. This statement is correct only with respect to Lorentz-scalar central
charges. Townsend was the first to note [64] that “supersymmetric branes,” being
BPS saturated, require the existence of tensorial central charges antisymmetric in the
vectorial Lorentz indices. That the anticommutator {Qα ,Qβ} in four-dimensional
Wess–Zumino model contains the (1,0) central charge is obvious. This anti-
commutator vanishes, however, in super-Yang–Mills theory at the classical level
(Section 3.1.3).

3.1.2 Domain wall in the minimal Wess–Zumino model

The Wess–Zumino model describes interactions of an arbitrary number of the chi-
ral superfields. We will consider the minimal Wess–Zumino model [65] which
describes one chiral superfield,

�(xL, θ) = φ(xL)+ √
2 θαψα(xL)+ θ2F(xL), (3.1.11)

(xL)αα̇ = xαα̇ ∓ 2i θαθ̄α̇ , (3.1.12)
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with the canonic kinetic termK = �̄�. In components the Lagrangian has the form

L = (∂μφ̄)(∂μφ)+ ψαi∂αα̇ψ̄
α̇ + F̄F +

{
F W ′(φ)− 1

2
W ′′(φ)ψ2 + H.c.

}
.

(3.1.13)

From Eq. (3.1.13) it is obvious that F can be eliminated by virtue of the classical
equation of motion,

F̄ = − ∂W(φ)

∂φ
, (3.1.14)

so that the scalar potential describing self-interaction of the field φ is

V (φ, φ̄) =
∣∣∣∣∂W(φ)

∂φ

∣∣∣∣
2

. (3.1.15)

In what follows we will often denote the chiral superfield and its lowest (bosonic)
component by one and the same letter, making no distinction between capital and
small φ. Usually it is clear from the context what is meant in each particular case.

If one limits oneself to renormalizable theories, the superpotential W must be
a polynomial function of � of power not higher than three. In the model at hand,
with one chiral superfield, the generic superpotential can be always reduced to the
following “standard” form:

W(�) = m2

λ
�− λ

3
�3. (3.1.16)

The quadratic term can be always eliminated by a redefinition of the field�. More-
over, by using symmetries of the model one can always choose the phases of the
constants m and λ at will.

The superpotential (3.1.16) implies two degenerate classical vacua,

φvac = ±m
λ

. (3.1.17)

Both vacua are physically equivalent. This equivalence could be explained by the
spontaneous breaking of Z2 symmetry, � → −�, present in the action.

Field configurations interpolating between two degenerate vacua are the domain
walls. They have the following properties: (i) the corresponding solutions are static
and depend only on one spatial coordinate; (ii) they are topologically stable and
indestructible – once a wall is created it cannot disappear. Assume for definiteness
that the wall lies in the xy plane. This is the geometry we will always keep in mind.
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Then the wall solution φw will depend only on z. Since the wall extends indefinitely
in the xy plane, its energy Ew is infinite. However, the wall tension Tw (the energy
per unit area Tw = Ew/A) is finite, in principle measurable, and has a clear-cut
physical meaning.

The wall solution of the classical equations of motion superficially looks very
similar to that of the two-dimensional kink,

φw = m

λ
tanh(|m|z). (3.1.18)

Note, however, that the parametersm and λ are not necessarily assumed to be real;
the field φ is complex in the Wess–Zumino model. A remarkable feature of this
solution is that it preserves 1/2 of supersymmetry, much in the same way as the
kink of Section 3.1.1. The difference is that 1/2 BPS in the two-dimensional model
meant one supercharge, now it means two supercharges.

The SUSY transformations generate the following transformation of the fields:

δφ = √
2εψ , δψα = √

2
[
εαF + i ∂μφ (σ

μ)αα̇ ε̄α̇

]
. (3.1.19)

The domain wall we consider is purely bosonic, ψ = 0. Moreover, the BPS
equation is

F |φ̄=φ∗
w

= −e−iη ∂zφw(z), (3.1.20)

where

η = arg
m3

λ2
, (3.1.21)

and F = −∂W̄/∂φ̄. This is a first-order differential equation. The solution quoted
above satisfies this condition. The reason for the occurrence of the phase factor
exp(−iη) on the right-hand side of Eq. (3.1.20) will become clear shortly. Note
that no analog of this phase factor exists in the two-dimensional N = 1 problem on
which we dwelled in Section 3.1.1. There was only a sign ambiguity: two possible
choices of signs corresponded to kink versus antikink.

If the BPS equation is satisfied, then the second supertransformation in
Eq. (3.1.19) reduces to

δψα ∝ εα + i eiη (σ z)αα̇ ε̄
α̇ . (3.1.22)

The right-hand side vanishes provided that

εα = −i eiη (σ z)αα̇ ε̄α̇ . (3.1.23)
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This picks up two supertransformations (out of four) which do not act on the
domain wall (alternatively people often say that they act trivially). Quod erat
demonstrandum.

Now, let us calculate the wall tension. To this end we rewrite the expression for
the energy functional as

E =
∫ +∞

−∞
dz
[
∂zφ̄ ∂zφ + F̄F

]

≡
∫ +∞

−∞
dz

{[
e−iη ∂zW + H.c.

]
+
∣∣∣ ∂zφ + eiη F

∣∣∣2} , (3.1.24)

where φ is assumed to depend only on z. In the literature this procedure is called the
Bogomol’nyi completion. The second term on the right-hand side is non-negative –
its minimal value is zero. The first term, being full derivative, depends only on the
boundary conditions on φ at z = ±∞.

Equation (3.1.24) implies that E ≥ 2 Re
(
e−iη �W). The Bogomol’nyi com-

pletion can be performed with any η. However, the strongest bound is achieved
provided e−iη �W is real. This explains the emergence of the phase factor in the
BPS equations. In the model at hand, to make e−iη �W real, we have to choose
η according to Eq. (3.1.21).

When the energy functional is written in the form (3.1.24), it is perfectly obvious
that the absolute minimum is achieved provided the BPS equation (3.1.20) is sat-
isfied. In fact, the Bogomol’nyi completion provides us with an alternative way of
derivation of the BPS equations. Then, for the minimum of the energy functional –
the wall tension Tw – we get

Tw = |Z| . (3.1.25)

Here Z is the topological charge defined as

Z = 2 {W(φ(z = ∞))− W(φ(z = −∞))} = 8m3

3 λ2
. (3.1.26)

In the problem at hand, the central extension of the superalgebra is tensorial,
with the Lorentz structure (1,0)+(0,1),{

Qα ,Qβ

} = −4αβ Z̄ ,
{
Q̄α̇ , Q̄β̇

}
= −4 ̄α̇β̇ Z . (3.1.27)

Here

αβ = −1

2

∫
dx[μdxν] (σμ)αα̇(σ̄ ν)α̇β (3.1.28)

is the wall area tensor.
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The expressions for two supercharges Q̃α that do annihilate the wall are

Q̃α = eiη/2Qα − 2

A
e−iη/2αβ nβα̇ Q̄

α̇ , (3.1.29)

where
nαα̇ = Pαα̇

TwA
(3.1.30)

is the unit vector proportional to the wall four-momentum Pαα̇; it has only the
time component in the rest frame. The subalgebra of these “residual” (unbroken)
supercharges in the rest frame is{

Q̃α , Q̃β

}
= 8

∑
αβ

{Tw − |Z|} . (3.1.31)

The existence of the subalgebra (3.1.31) immediately proves that the wall tension
Tw is equal to the central charge Z . Indeed, Q̃|wall〉 = 0 implies that Tw −|Z| = 0.
This equality is valid both to any order in perturbation theory and nonperturbatively.

From the non-renormalization theorem for the superpotential [65, 66] we
additionally infer that the central charge Z is not renormalized. This is in con-
tradistinction with the situation in the two-dimensional model of Section 3.1.1. The
fact that in four dimensions there are more conserved supercharges than in two
turns out crucial. As a consequence, the result

Tw = 8

3

∣∣∣∣m3

λ2

∣∣∣∣ (3.1.32)

for the wall tension is exact [62].
The wall tension Tw is a physical parameter and, as such, should be expressible in

terms of the physical (renormalized) parametersmren andλren. One can easily verify
that this is compatible with the statement of non-renormalization of Tw. Indeed,

m = Zmren, λ = Z3/2λren,

where Z is the Z factor coming from the kinetic term. Consequently,

m3

λ2
= m3

ren

λ2
ren

.

Thus, the absence of the quantum corrections to Eq. (3.1.32), the renormalizability
of the theory, and the non-renormalization theorem for superpotentials – all these
three elements are intertwined with each other. In fact, every two elements taken
separately imply the third one.
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What lessons have we drawn from the example of the domain walls? In the
centrally extended SUSY algebras the exact relation Evac = 0 is replaced by
the exact relation Tw − |Z| = 0. Although this statement is valid both pertur-
batively and nonperturbatively, it is very instructive to visualize it as an explicit
cancellation between bosonic and fermionic modes in perturbation theory. The
non-renormalization of Z is a specific feature of four dimensions. We have seen
previously that it does not take place in minimally supersymmetric models in two
dimensions.

Finding the solution to the BPS equation

In two-dimensional theory integration of the first-order BPS equation (3.1.3) was
trivial. Now the BPS equation (3.1.20) presents in fact two equations – one for the
real part and one for the imaginary. Nevertheless finding the solution is still trivial.
This is due to the existence of an “integral of motion,”

∂

∂z

(
Im e−iηW

)
= 0. (3.1.33)

The proof is straightforward and is valid in the generic Wess–Zumino model with
arbitrary number of fields. Indeed, differentiating W and using the BPS equations
we get

∂

∂z

(
e−iηW

)
=
∣∣∣∣∂W∂φ

∣∣∣∣
2

, (3.1.34)

which immediately entails Eq. (3.1.33). The constraint

Im e−iηW = const (3.1.35)

can be interpreted as follows: in the complex W plane the domain wall trajectory
is a straight line (see Section 3.1.1).

Living on a wall

What is the fate of two broken supercharges? As we already know, two out of
four supercharges annihilate the wall – these supersymmetries are preserved in
the given wall background. Two other supercharges are broken: being applied to
the wall solution they create two fermion zero modes. These zero modes corre-
spond to (2+1)-dimensional Majorana (massless) spinor field ψ(t , x, y) localized
on the wall.

To elucidate the above assertion it is convenient to turn first to the fate of another
symmetry of the original theory which is spontaneously broken for each given wall,
namely, translational invariance in the z direction.
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Indeed, each wall solution, e.g. Eq. (3.1.18), breaks this invariance. This means
that in fact we must deal with a family of solutions: if φ(z) is a solution, so is
φ(z − z0). The parameter z0 is a collective coordinate – the wall center. People
also refer to it as a modulus (in plural, moduli). For the static wall z0 is a fixed
constant.

Assume, however, that the wall is slightly bent. The bending should be negligible
compared to the wall thickness (which is of the order ofm−1). The bending can be
described as an adiabatically slow dependence of the wall center z0 on t , x, and y.
We will write this slightly bent wall field configuration as

φ(t , x, y, z) = φw(z− ζ(t , x, y)). (3.1.36)

Substituting this field in the original action we arrive at the following effective
(2+1)-dimensional action for the field ζ(t , x, y):

S
ζ
2+1 = Tw

2

∫
d3x

(
∂mζ

)
(∂mζ ) , m = 0, 1, 2. (3.1.37)

It is clear that ζ(t , x, y) can be viewed as a massless scalar field (called the trans-
lational modulus) which lives on the wall. It is nothing but a Goldstone field
corresponding to the spontaneous breaking of the translational invariance.

Returning to two broken supercharges, they generate a Majorana (2+1)-
dimensional Goldstino field ψα(t , x, y), (α = 1, 2) localized on the wall. The total
(2+1)-dimensional effective action on the wall world volume takes the form

S2+1 = Tw

2

∫
d3x

{(
∂mζ

)
(∂mζ )+ ψ̄∂mγ

mψ
}

(3.1.38)

where γm are three-dimensional gamma matrices (in the Majorana representation,
see Appendix A, Section A.1).

The effective theory of the moduli fields on the wall worldvolume is supersym-
metric, with two conserved supercharges. This is the minimal supersymmetry in
2+1 dimensions. It corresponds to the fact that two out of four supercharges are
conserved.

3.1.3 D-branes in gauge field theory

In 1996 Dvali and Shifman found in supersymmetric gluodynamics [11] an anoma-
lous (1, 0) central charge in superalgebra, not seen at the classical level. They argued
that this central charge is saturated by domain walls interpolating between vacua
with distinct values of the order parameter, the gluino condensate 〈λλ〉, labeling
N distinct vacua of super-Yang–Mills theory with the gauge group SU(N ).
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|vaci >

|vacf >

Transition domain

Figure 3.1. A field configuration interpolating between two distinct degenerate
vacua.

x

x

x

x

x

x

k−wall

x

x

Im <λλ>

Re <λλ>

elementary wall

Figure 3.2. N vacua for SU(N). The vacua are labeled by the vacuum expectation
value 〈λλ〉 = −6N �3 exp(2π i k/N) where k = 0, 1, . . . ,N − 1. Elementary
walls interpolate between two neighboring vacua.

Supersymmetric gluodynamics (it is often referred to as pure super-Yang–Mills
theory) is defined by the Lagrangian

L = 1

g2

∫
d2θ TrW 2 + H.c. = 1

g2

{
−1

4
Faμν F

aμν + iλaαDαβ̇ λ̄
aβ̇

}
, (3.1.39)

where λaα is the Weyl spinor in the adjoint representation of SU(N ).
The domain wall is a field configuration interpolating between two distinct degen-

erate vacua (see Fig. 3.1). There is a large variety of walls in supersymmetric
gluodynamics. Minimal, or elementary, walls interpolate between vacuan andn+1,
while k-walls interpolate between n and n + k, see Fig. 3.2. In [11] a mechanism
was suggested for localizing gauge fields on the wall through bulk confinement.
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Later this mechanism was implemented in models at weak coupling, as we will
see below.

Shortly afterwards, Witten interpreted the BPS walls in supersymmetric gluody-
namics as analogs ofD-branes [12]. This is because their tension scales asN ∼ 1/gs
rather than 1/g2

s typical of solitonic objects (here gs is the string constant). Many
promising consequences ensued. One of them was the Acharya–Vafa derivation of
the wall worldvolume theory [67]. Using a wrapped D-brane picture and certain
dualities they identified the k-wall worldvolume theory as 1+2 dimensional U(k)
gauge theory with the field content of N = 2 and the Chern–Simons term at level
N breaking N = 2 down to N = 1.

In N = 1 gauge theories with arbitrary matter content and superpotential the
general relation (2.2.5) takes the form{

Qα ,Qβ

} = −4αβ Z̄, (3.1.40)

where

αβ = −1

2

∫
dx[μdxν] (σμ)αα̇(σ̄ ν)α̇β (3.1.41)

is the wall area tensor, and [62, 68]

Z = 2

3
�

⎧⎨
⎩
⎡
⎣3W −

∑
f

Qf

∂W
∂Qf

⎤
⎦

−
⎡
⎣3N −∑f T (Rf )

16π2
TrW 2 + 1

8

∑
f

γf D̄
2(Q̄f e

VQf )

⎤
⎦
⎫⎬
⎭
θ=0

(3.1.42)

In this expression � implies taking the difference at two spatial infinities in the
direction perpendicular to the surface of the wall. The first term in the second
line presents the gauge anomaly in the central charge. The second term in the
second line is a total superderivative. Therefore, it vanishes after averaging over
any supersymmetric vacuum state. Hence, it can be safely omitted. The first line
presents the classical result, cf. Eq. (3.1.9). At the classical levelQf (∂W/∂Qf ) is
a total superderivative too which can be seen from the Konishi anomaly [69],

D̄2 (Q̄f e
VQf ) = 4Qf

∂W
∂Qf

+ T (Rf )

2π2
TrW 2. (3.1.43)

If we discard this total superderivative for a short while (forgetting about quantum
effects), we return to Z = 2�(W), the formula obtained in the Wess–Zumino
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model. At the quantum level Qf (∂W/∂Qf ) ceases to be a total superderivative
because of the Konishi anomaly. It is still convenient to eliminate Qf (∂W/∂Qf )

in favor of TrW 2 by virtue of the Konishi relation (3.1.43). In this way one arrives at

Z = 2�

{
W − N −∑f T (Rf )

16π2
TrW 2

}
θ=0

. (3.1.44)

We see that the superpotential W is amended by the anomaly; in the operator form

W −→ W − N −∑f T (Rf )

16π2
TrW 2. (3.1.45)

Of course, in pure Yang–Mills theory only the anomaly term survives.
Beginning from 2002 we developed a benchmark N = 2 model, weakly coupled

in the bulk (and, thus, fully controllable), which supports both BPS walls and BPS
flux tubes. We demonstrated that a gauge field is indeed localized on the wall; for
the minimal wall this is a U(1) field while for non-minimal walls the localized
gauge field is non-Abelian. We also found a BPS wall-string junction related to the
gauge field localization, see Chapter 8. The field-theory string does end on the BPS
wall, after all! The end-point of the string on the wall, after Polyakov’s dualization,
becomes a source of the electric field localized on the wall. In 2005 Norisuke Sakai
and David Tong analyzed generic wall-string configurations. Following condensed
matter physicists they called them boojums.1

Equation (3.1.42) implies that in pure gluodynamics (super-Yang–Mills theory
without matter) the domain wall tension is

T = N

8π2

∣∣∣〈Trλ2〉vac f − 〈Trλ2〉vac i

∣∣∣ (3.1.46)

where vaci,f stands for the initial (final) vacuum between which the given wall inter-
polates. Furthermore, the gluino condensate 〈Trλ2〉vac was calculated – exactly –
long ago [70], using the very same methods which were later advanced and per-
fected by Seiberg and Seiberg and Witten in their quest for dualities in N = 1
super-Yang–Mills theories [71] and the dual Meissner effect in N = 2 (see [2, 3]).
Namely,

2 〈Trλ2〉 = 〈λaαλa,α〉 = −6N�3 exp

(
2πik

N

)
, k = 0, 1, . . . ,N − 1. (3.1.47)

1 “Boojum” comes from L. Carroll’s children’s book The Hunting of the Snark. Apparently, it is fun to hunt a
snark, but if the snark turns out to be a boojum, you are in trouble! Condensed matter physicists adopted the name
to describe solitonic objects of the wall-string junction type in helium-3. Also: The boojum tree (Mexico) is the
strangest plant imaginable. For most of the year it is leafless and looks like a giant upturned turnip. G. Sykes,
found it in 1922 and said, referring to Carroll, “It must be a boojum!” The common Spanish name for this tree
is Cirio, referring to its candle-like appearance.
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Here k labels the N distinct vacua of the theory, see Fig. 3.2, and� is a dynamical
scale, defined in the standard manner (i.e. in accordance with Ref. [72]) in terms
of the ultraviolet parameters,Muv (the ultraviolet regulator mass), and g2

0 (the bare
coupling constant),

�3 = 2

3
M3

uv

(
8π2

Ng2
0

)
exp

(
− 8π2

Ng2
0

)
. (3.1.48)

In each given vacuum the gluino condensate scales with the number of colors
asN . However, the difference of the values of the gluino condensates in two vacua
which lie not too far away from each other scales as N0. Taking into account
Eq. (3.1.46) we conclude that the wall tension in supersymmetric gluodynamics

T ∼ N .

(This statement just rephrases Witten’s argument why the above walls should be
considered as analogs of D-branes.)

The volume energy density in both vacua, to the left and to the right of the
wall, vanish due to supersymmetry. Inside the transition domain, where the order
parameter changes its value gradually, the volume energy density is expected to be
proportional toN2, just because there areN2 excited degrees of freedom. Therefore,
T ∼ N implies that the wall thickness in supersymmetric gluodynamics must scale
as N−1. This is very unusual, because normally we would say: the glueball mass
is O(N0), hence, everything built of regular glueballs should have thickness of
order O(N0).

If the wall thickness is indeedO(N−1) the question “what consequences ensue?”
immediately comes to one’s mind. This issue is far from complete understanding,
for relevant discussions see [73, 74, 75].

As was mentioned, there is a large variety of walls in supersymmetric
gluodynamics as they can interpolate between vacua with arbitrary values of k.
Even if kf = ki + 1, i.e. the wall is elementary, in fact we deal with several walls,
all having one and the same tension – let us call them degenerate walls. The first
indication on the wall degeneracy was obtained in Ref. [76], where two degenerate
walls were observed in SU(2) theory. Later, Acharya and Vafa calculated the k-wall
multiplicity [67] within the framework of D-brane/string formalism,

νk = CkN = N !
k!(N − k)! . (3.1.49)

For N = 2 only elementary walls exist, and ν = 2. In the field-theoretic setting
Eq. (3.1.49) was derived in [77]. The derivation is based on the fact that the index
ν is topologically stable – continuous deformations of the theory do not change ν.
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Thus, one can add an appropriate set of matter fields sufficient for complete Higgsing
of supersymmetric gluodynamics.The domain wall multiplicity in the effective low-
energy theory obtained in this way is the same as in supersymmetric gluodynamics
albeit the effective low-energy theory, a Wess–Zumino type model, is much simpler.

3.1.4 Domain wall junctions

Two degenerate domain walls can coexist in one plane – a new phenomenon
which, to the best of our knowledge, was first discussed in [78]. It is illustrated
in Fig. 3.3. Two distinct degenerate domain walls lie on the plane; the transition
domain between wall 1 and wall 2 is the domain wall junction (domain line).

Each individual domain wall is 1/2 BPS-saturated. The wall configuration with
the junction line (Fig. 3.3) is 1/4 BPS-saturated. We start from N = 1 four-
dimensional bulk theory (four supercharges). Naively, the effective theory on the
plane must preserve two supercharges, while the domain line must preserve one
supercharge. In fact, they have four and two conserved supercharges, respectively.
This is another new phenomenon – supersymmetry enhancement – discovered in
[78]. One can excite the junction line endowing it with momentum in the direc-
tion of the line, without altering its BPS status. A domain line with a plane wave
propagating on it (Fig. 3.3) preserves the property of the BPS saturation, see [78].

Let us pass now to more conventional wall junctions. Assume that the theory
under consideration has a spontaneously broken ZN symmetry, with N ≥ 3, and,
correspondingly, N vacua. Then one can have N distinct walls connected in the
asterisk-like pattern, see Fig. 3.4. This field configuration possesses an obvious
axial symmetry: the vacua are located cyclically.

P3
wall 1

wall 2

junction (P3 ¹ 0)

Figure 3.3. Two distinct degenerate domain walls separated by the wall junction.
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wall junction

vac 1

vac N

vac 2

....

vac 4

vac 5

vac N−1

vac 3

Figure 3.4. The cross section of the wall junction.

This configuration is absolutely topologically stable, as stable as the wall itself.
Moreover, it can be 1/4 BPS-saturated for any value of N . It was noted [24] that
theories with either U(1) or ZN global symmetries may contain 1/4-BPS objects
with axial geometry. They saturate two central charges simultaneously, (1,0) +
(0,1) (the walls) and (1/2, 1/2) (the junction line).

The corresponding Bogomol’nyi equations were derived in [62] and shortly after
rediscovered in [79]. Further advances in the issue of the domain wall junctions of
the hub-and-spokes type were presented in [80, 81, 82, 83], see also later works
[84, 85, 86, 87, 88]. We would like to single out Ref. [81] where the first analytic
solution for a BPS wall junction was found in a specific generalized Wess–Zumino
model. Among stimulating findings in this work is the fact that the junction ten-
sion turned out to be negative in this model. The model has Z3 symmetry. It is
derived from a SU(2) Yang–Mills theory with extended supersymmetry (N = 2)
and one matter flavor perturbed by an adjoint scalar mass. The original model
contains three pairs of chiral superfields and, in addition, one extra chiral super-
field. In fact, the model of [81] can be simplified and adjusted to cover the case
of arbitrary N , which was done in [83]. The latter work demonstrates that the
tension of the wall junctions is generically negative although exceptional mod-
els with the positive tension are possible too. Note that the negative sign of the
wall junction tension does not lead to instability since the wall junctions do not
exist in isolation. They are always attached to walls which stabilize this field
configuration.

Returning to SU(N ) supersymmetric gluodynamics (N ≥ 3) one expects to get
in this theory the 1/4 BPS junctions of the type depicted in Fig. 3.4. Of course,
this theory is strongly coupled; therefore, the classical Bogomol’nyi equations are
irrelevant. However, assuming that such wall junctions do exist, one can find their
tension at largeN even without solving the theory. To this end one uses [74, 83] the
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expression for the (1/2,1/2) central charge2 in terms of the contour integral over the
axial current [27]. At large N the latter integral is determined by two things: the
absolute value of the gluino condensate and the overall change of the phase of
the condensate when one makes the 2π rotation around the hub. In this way one
arrives at the prediction

Twall junction ∼ N2. (3.1.50)

The coefficient in front of the N2 factor is model dependent.
Can one interpret this N2 dependence of the hub of the junction? Assume that

each wall has thickness 1/N and there are N of them. Then it is natural to expect
the radius of the intermediate domain where all walls join together to be of the
order (1/N) × N ∼ N0. This implies, in turn, that the area of the hub is O(N0).
If the volume energy density inside the junction is N2 (i.e. the same as inside the
walls), one immediately gets Eq. (3.1.50).

3.1.5 Webs of walls

Domain walls can form a network when many junctions are connected together –
webs or honeycombs, see Fig. 3.5 borrowed from Ref. [86]. 1/4 BPS solutions
of such type were found (in the strong gauge coupling limit) in [86, 87] in
four-dimensional N = 2 supersymmetric Yang–Mills theory with the gauge

Figure 3.5. Honeycomb web of domain walls. This web in this figure divides 37
vacua and has 18 external legs and 19 internal faces. The moduli space corresponds
to CP(36) whose dimension is 72.

2 There is a subtle point here which must be noted. For the wall type of the hub-and-spokes type the overall
tension is the sum of two tensions: the tension of the walls and the tension of the hub. The first is determined by
the (1,0) central charge, the second by (1/2,1/2). Each separately is somewhat ambiguous in the case at hand.
The ambiguity cancels in the sum [27].
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group U(Nc) and Nf flavor hypermultiplets in the fundamental representation
(Nf > Nc). This model is described in detail in Sections 4.1 and 4.7. The
solution saturates two central charges, (1,0) + (0,1) and ( 1/2,1/2 ). The mod-
uli space of this particular web of walls is the complex Grassmann manifold
GNf ,Nc = SU(Nf )/[SU(Nf −Nc)× SU(Nc)× U(1)].

The web of walls can contain several external legs and loops whose maximal
numbers are determined by Nf and Nc. If the gauge group is U(1) rather than
U(Nc) (with Nc ≥ 2) the moduli space of the web of walls simplifies and becomes
CP(Nf − 1).

Further studies of dynamics of the domain wall loops, as in Fig. 3.5, were carried
out in [89]. The authors used the moduli approximation and found that a phase
rotation induces a repulsive force which can be interpreted as a Noether charge of
Q solitons.

3.2 Vortices in D = 3 and flux tubes in D = 4

Vortices were among the first examples of topological defects treated in the
Bogomol’nyi limit [5, 4, 1] (see also [90]). Explicit embedding of the bosonic
sector in supersymmetric models dates back to the 1980s. In [91] a three-
dimensional Abelian Higgs model was considered. That model had N = 1 super-
symmetry (two supercharges) and thus, according to Section 2.2.2, contained
no central charge that could be saturated by vortices. Hence, the vortices dis-
cussed in [91] were noncritical. BPS saturated vortices can and do occur in
N = 2 three-dimensional models (four supercharges) with a non-vanishing Fayet–
Iliopoulos term [92, 93]. Such models can be obtained by dimensional reduction
from four-dimensional N = 1 models. We will start from a brief excursion
in SQED.
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3.2.1 SQED in 3D

The starting point is SQED with the Fayet–Iliopoulos term ξ in four dimensions.
The SQED Lagrangian is

L =
{

1

4 e2

∫
d2θ W 2 + H.c.

}
+
∫

d4θ Q̄ ene V Q

+
∫

d4θ
¯̃
Qe−ne V Q̃− ne ξ

∫
d2θd2θ̄ V (x, θ , θ̄ ), (3.2.1)

where e is the electric coupling constant, Q and Q̃ are chiral matter superfields
(with charges ne and −ne, respectively), and Wα is the supergeneralization of the
photon field strength tensor,

Wα = 1

8
D̄2DαV = i

(
λα + iθαD − θβ Fαβ − iθ2∂αα̇λ̄

α̇
)

. (3.2.2)

In four dimensions the absence of the chiral anomaly in SQED requires the matter
superfields enter in pairs of the opposite charges, e.g.

iDμψ = (i∂μ + neAμ
)
ψ , iDμψ̃ = (i∂μ − neAμ

)
ψ̃ . (3.2.3)

Otherwise the theory is anomalous, the chiral anomaly renders it non-invariant
under gauge transformations. Thus, the minimal matter sector includes two chiral
superfields Q and Q̃, with charges ne and −ne, respectively. (In the literature
a popular choice isne = 1. In Part II we will use a different normalization,ne = 1/2,
which is more convenient in some problems that we address in Part II.)

In three dimensions there is no chirality. Therefore, one can consider 3D SQED
with a single matter superfieldQ, with charge ne. Classically it is perfectly fine just
to discard the superfield Q̃ from the Lagrangian (3.2.1). However, such “crudely
truncated” theory may be inconsistent at the quantum level [94, 95, 96]. Gauge
invariance in loops requires, as we will see shortly, simultaneous introduction of a
Chern–Simons term in the one matter superfield model [94, 95, 96]. The Chern–
Simons term breaks parity. That’s the reason why this phenomenon is sometimes
referred to as parity anomaly.

A perfectly safe way to get rid of Q̃ is as follows. Let us start from the two-
superfield model (3.2.1), which is certainly self-consistent both at the classical
and quantum levels. The one-superfield model can be obtained from that with two
superfields by making Q̃ heavy and integrating it out. If one manages to introduce
a mass m̃ for Q̃ without breaking N = 2 supersymmetry, the large m̃ limit can be
viewed as an excellent regularization procedure.

Such mass terms are well known, for a review see [97, 98, 96]. They go under the
name of “real masses,” are specific to theories with U(1) symmetries dimensionally
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reduced from D = 4 to D = 3, and present a direct generalization of twisted
masses in two dimensions [32]. To introduce a “real mass” one couples matter fields
to a background vector field with a non-vanishing component along the reduced
direction. For instance, in the case at hand we introduce a background field Vb as

�Lm =
∫
d4θ

¯̃
QeVb Q̃ , Vb = m̃ (2 i)

(
θ1 θ̄ 2̇ − θ2 θ̄ 1̇

)
. (3.2.4)

The reduced spatial direction is that along the y axis. We couple Vb to the U(1)
current of Q̃ ascribing to Q̃ charge one with respect to the background field. At the
same time Q is assumed to have Vb charge zero and, thus, has no coupling to Vb.
Then, the background field generates a mass term only for Q̃, without breaking
N = 2. Needless to say, there is no kinetic term for Vb. Equation (3.2.4) implies
that m̃ = (Ab)2.

After reduction to three dimensions and passing to components (in the Wess–
Zumino gauge) we arrive at the action in the following form (in the three-
dimensional notation):

S =
∫
d3x

{
− 1

4e2
Fμν F

μν + 1

2e2

(
∂μ a

)2 + 1

e2
λ̄ i � ∂ λ

+ 1

2e2
D2 − ne ξ D + ne D

(
q̄ q − ¯̃q q̃

)
+ [Dμq̄ Dμq + ψ̄ i �Dψ]+

[
Dμ ¯̃q Dμq̃ + ¯̃

ψ i �D ψ̃
]

− a2q̄ q − (m̃+ a)2 ¯̃q q̃ + a ψ̄ ψ− (m̃+ a)
¯̃
ψ ψ̃

+ ne
[√

2
(
λ̄ ψ
)
q̄ + H.c.

]
− ne

[√
2
(
λ̄ ψ̃
) ¯̃q + H.c.

] }
. (3.2.5)

Here a is a real scalar field,
a = −ne A2,

λ is the photino field, and q, q̃ and ψ , ψ̃ are matter fields belonging to Q and
Q̃, respectively. The covariant derivatives are defined in Eq. (3.2.3). Finally, D is
an auxiliary field, the last component of the superfield V . Eliminating D via the
equation of motion we get the scalar potential

V = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2 + a2q̄ q + (m̃+ a)2 ¯̃q q̃, (3.2.6)

which implies a potentially rather rich vacuum structure. For our purposes – the
BPS-saturated vortices – only the Higgs phase is of importance. We will assume
that

ξ > 0, m̃ ≥ 0. (3.2.7)
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If ψ̃ and q̃ are viewed as regulators (i.e. m̃ → ∞), they can be integrated out
leaving us with the one matter superfield model. It is obvious that integrating them
out we get a Chern–Simons term at one loop,3 with a well-defined coefficient that
does not vanish in the limit m̃ = ∞. We prefer to keep m̃ as a free parameter,
assuming that m̃ �= 0.

From the standpoint of vortex studies, the model (3.2.1) per se is not quite
satisfactory due to the existence of the flat direction (correspondingly, there is a
gapless mode which renders the theory ill-defined in the infrared, see Section 5.1).
The flat direction is eliminated at m̃ �= 0. Thus, there are three relevant parameters
of dimension of mass,

e2, ξ , and m̃.

The weak coupling regime implies that e2/ξ � 1.
If m̃ �= 0 the vacuum field configuration is as follows:

q̃ = 0, a = 0, q̄q = ξ . (3.2.8)

The vanishing of the D term in the vacuum requires q̄ qvac = ξ . Then the term
a2q̄q in (3.2.6) implies that a = 0 in the vacuum. Up to gauge transformations the
vacuum is unique. The Higgs phase is enforced by our choice m̃ �= 0 and ξ �= 0.
The fields q̃ , ψ̃ play a role only at the level of quantum corrections, providing
a well-defined regularization in loops.

Central charge

The general form of the centrally extended N = 2 superalgebra in D = 3 was
discussed in Section 2.3.2. The central charge relevant in the problem at hand –
vortices – is presented by the last term in Eq. (2.3.6). It can be conveniently derived
using the complex representation for supercharges and reducing from D = 4 to
D = 3. In four dimensions [27]

{Qα , Q̄α̇} = 2Pαα̇ + 2Zαα̇ ≡ 2
(
Pμ + Zμ

) (
σμ
)
αα̇

, (3.2.9)

where Pμ is the momentum operator, and

Zμ = ne ξ

∫
d3x ε0μνρ

(
∂νAρ

)+ · · · (3.2.10)

Here ellipses denote full spatial derivatives of currents 4 that fall off exponentially
fast at infinity. Such terms are clearly inessential.

3 In passing from two matter superfields to one, in order to justify integrating out Q̃, one must consider m̃ � e
√
ξ .

Given that e2/ξ � 1, the condition m̃ � e
√
ξ does not necessarily imply that m̃ � ξ .

4 Moreover, these currents are not unambiguously defined, see [27].
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In three dimensions the central charge of interest reduces to P2 + Z2. Thus, in
terms of complex supercharges the appropriate centrally extended algebra takes
the form5{
Q,
(
Q†
)
γ 0
}

= 2
(
P0 γ

0 + P1 γ
x + P3 γ

z
)

+ 2

{
1

e2

∫
d2x �∇

( �E a
)

+ m̃ q − ne ξ

∫
d2xB

}
, (3.2.11)

where �E is the electric field, B is the magnetic field,

B = ∂Az

∂x
− ∂Ax

∂z
, (3.2.12)

and q is a conserved Noether charge,

q =
∫
d2x j0, jμ ≡ ¯̃

ψ γμ ψ̃ + ¯̃q i ↔
Dμ q̃ . (3.2.13)

The second line in Eq. (3.2.11) presents the vortex-related central charge.6 The
term proportional to a gives a vanishing contribution to the central charge. How-
ever, the q term (sometimes omitted in the literature) plays an important role. It
combines with the ξ term in the expression for the vortex mass converting the bare
value of ξ into the renormalized one. In the problem at hand, the vortex mass gets
renormalized at one loop, and so does the Fayet–Iliopoulos parameter.

BPS equation for the vortex

At the classical level the fields a and q̃ play no role. They will be set

q̃ = 0, a = 0 . (3.2.14)

The first-order equations describing the ANO vortex in the Bogomol’nyi limit
[5, 4, 1] take the form

B − ne e
2(|q|2 − ξ) = 0,

(Dx + iDz) q = 0, (3.2.15)

with the boundary conditions

q → √
ξ eikα at r → ∞ ,

q → 0 at r → 0 , (3.2.16)

5 In the following expression terms containing equations of motion of the type a( �∇ �E − J0) are omitted.
6 The emergence of the U(1) Noether charge m̃q in the central charge is in one-to-one correspondence with

a similar phenomenon taking place in the two-dimensional CP(N − 1) models with the twisted mass [34].
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Figure 3.6. Polar coordinates on the x, z plane.

where α is the polar angle on the x, z plane, while r is the distance from the origin
in the same plane (Fig. 3.6). Moreover k is an integer, counting the number of
windings.

If Eqs. (3.2.15) are satisfied, the flux of the magnetic field is 2πk (the winding
number k determines the quantized magnetic flux), and the vortex mass (string
tension) is

M = 2πξ k, (3.2.17)

The linear dependence of the k-vortex mass on k implies the absence of their
potential interaction.

For the elementary k = 1 vortex it is convenient to introduce two profile functions
φ(r) and f (r) as follows:

q(x) = φ(r) ei α , An(x) = − 1

ne
εnm

xm

r2
[1 − f (r)] . (3.2.18)

The ansatz (3.2.18) goes through the set of equations (3.2.15), and we get the
following two equations on the profile functions:

−1

r

df

dr
+ n2

ee
2
(
φ2 − ξ

)
= 0, r

dφ

dr
− f φ = 0. (3.2.19)

The boundary conditions for the profile functions are rather obvious from the
form of the ansatz (3.2.18) and from our previous discussion. At large distances

φ(∞) = √ξ , f (∞) = 0 . (3.2.20)
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Figure 3.7. Profile functions of the string as functions of the dimensionless variable
mγ r . The gauge and scalar profile functions are given by f and s ≡ φ/

√
ξ ,

respectively.

At the same time, at the origin the smoothness of the field configuration at hand
(the absence of singularities) requires

φ(0) = 0, f (0) = 1 . (3.2.21)

These boundary conditions are such that the scalar field reaches its vacuum value
at infinity. Equations (3.2.19) with the above boundary conditions lead to a unique
solution for the profile functions, although its analytic form is not known. The
vortex size is ∼ e−1 ξ−1/2. The solution can be readily obtained numerically. The
profile functions φ and f which determine the Higgs field and the gauge potential,
respectively, are shown in Fig. 3.7.

The fermion zero modes

Quantization of vortices requires the knowledge of the fermion zero modes for
the given classical solution. More precisely, since the solution under consideration
is static, we are interested in the zero-eigenvalue solutions of the static fermion
equations which, thus, effectively become two- rather than three-dimensional,

i
(
γ x Dx + γ z Dz

)
ψ + ne

√
2 λ q = 0, (3.2.22)

i
(
γ x ∂x + γ z ∂z

)
λ+ e2ne

√
2ψ q̄ = 0.

These equations are obtained from (3.2.5) where we dropped the tilded terms (since
q̃ = 0). The fermion operator is Hermitean implying that every solution for {ψ , λ}
is accompanied by that for {ψ̄ , λ̄}.

Since the solution to equations (3.2.15) discussed above is 1/2 BPS, two of
the four supercharges annihilate it while the other two generate the fermion zero
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modes – superpartners of translational modes. One can show [99] that these are the
only normalizable fermion zero modes in the problem at hand.

Short versus long representations

The (1+2)-dimensional model under consideration has four supercharges. The
corresponding regular super-representation is four-dimensional (i.e. contains two
bosonic and two fermionic states).

The vortex we discuss has two fermion zero modes. Hence, viewed as a particle
in 1+2 dimensions it forms a super-doublet (one bosonic state plus one fermionic).
Hence, this is a short multiplet. This implies, of course, that the BPS bound must
remain saturated when quantum corrections are switched on. Both the central charge
and the vortex mass get corrections [100, 99], but they remain equal to each other.

Vortex mass and central charge renormalizations

Assuming that ne = 1 and saturating the central charge in Eq. (3.2.11) by the
vortex soliton we get

Zvortex = −ξ
∫
d2xB + m̃q = −2π ξ + m̃

2
. (3.2.23)

Here we use the fact that the induced q charge of the vortex is 1/2. This is not
difficult to see for any value of m̃ [101]. Proving this assertion becomes especially
simple at large m̃when one can just integrate the tilded fields out in the given vortex
field. One then arrives at

q =
∫
d2x

1

4π
B = 1

2
. (3.2.24)

Since the renormalized value of the FI parameter ξ is

ξR = ξ + mq − m̃

4π
(3.2.25)

wheremq = √
2ξ e is the mass of the untilded particles, we can rewrite Eq. (3.2.23)

in the form
Zvortex = −2π

(
ξR − mq

4π

)
. (3.2.26)

In the very same “physical” regularization scheme outlined above the vortex mass
shifts by the same amount [100, 101], and

Mvortex = 2π
(
ξR − mq

4π

)
= |Zvortex| . (3.2.27)
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3.2.2 Four-dimensional SQED and the ANO string

In this section we will discuss N = 1 SQED. SQED with extended supersymmetry
(i.e. N = 2) is also very interesting. This latter model is presented in
Appendix C.

The Lagrangian is the same as in Eq. (3.2.1). We will consider the simplest case:
one chiral superfield Q with charge ne = 1/2, and one chiral superfield Q̃ with
charge ne = −1/2. The electric charge of matter is chosen to be half-integer to
make contact with what follows. This normalization is convenient in the case of
non-Abelian models, see Part II. The Lagrangian in components can be obtained
from Eq. (3.2.5) by setting a = m̃ = 0. The scalar potential obviously takes the form

V = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2
. (3.2.28)

The vacuum manifold is a “hyperboloid”

q̄ q − ¯̃q q̃ = ξ . (3.2.29)

Thus, we deal with the Higgs branch of real dimension two. In fact, the vacuum
manifold can be parametrized by a complex modulus q̃q. On this Higgs branch
the photon field and superpartners form a massive supermultiplet, while q̃q and
superpartners form a massless one.

As was shown in [102], no finite-thickness vortices exist at a generic point on
the vacuum manifold, due to the absence of the mass gap (presence of the massless
Higgs excitations). The moduli fields get involved in the solution at the classical
level generating a logarithmically divergent tail. An infrared regularization can
remove this logarithmic divergence, and vortices become well-defined, see [103]
and Chapter 7. One of the possible infrared regularizations is considering a finite-
length string instead of an infinite string. Then all infrared divergences are cut off
at distances of the order of the string length. The thickness of the string is of the
order of logarithm of this length. This is discussed in detail in Chapter 7. Needless
to say, such string is not BPS-saturated.

At the base of the Higgs branch, at q̃ = 0, the classical solutions of the BPS
equations for q and Aμ are well-defined. The form of the solution coincides with
that given in Section 3.2.1.

The fact that there is a flat direction and, hence, massless particles in the bulk
theory does not disappear, of course. Even though at q̃ = 0 the classical string
solution is well-defined, infrared problems arise at the loop level. One can avoid
massless particles in the spectrum if one embeds the theory (3.2.5) in SQED with
eight supercharges, see Section 5.1 and Appendix C. Then the Higgs branch is
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eliminated, and one is left with isolated vacua. After the embedding is done, one
can break N = 2 down to N = 1, if one so desires.

A simpler framework is provided by the so-called M model. Its non-Abelian
version is considered in Section 5.2. Here we will outline the construction of this
model in the context of N = 1 SQED.

We introduce an extra neutral chiral superfield M , which interacts with Q and
Q̃ through the super-Yukawa coupling,

LM =
∫
d2θ d2θ̄

1

h
M̄ M +

{∫
d2θ QMQ̃+ (H.c)

}
. (3.2.30)

Here h is a coupling constant. As we will see momentarily the Higgs branch is
lifted. An obvious advantage of this model is that it makes no reference to N = 2.
This is probably the simplest N = 1 model which supports BPS-saturated ANO
strings without infrared problems.

The scalar potential (3.2.28) is now replaced by

VM = e2

2
n2
e

[
ξ −

(
q̄ q − ¯̃q q̃

)]2 + h |q q̃|2 + |q M|2 + |M q̃|2 . (3.2.31)

The vacuum is unique modulo gauge transformations,

q = q̄ = √ξ , q̃ = 0 , M = 0. (3.2.32)

The classical ANO flux tube solution considered above remains valid as long as
we set, additionally, q̃ = M = 0. The string tension is the same, Tstring = 2πξ .
(Note that in Eq. (3.2.31) the parameter ξ is defined with n2

e factored out. See
also Eq. (C.11) and its derivation.) The quantization procedure is straightfor-
ward, since one encounters no infrared problems whatsoever – all particles in the
bulk are massive. In particular, there are four normalizable fermion zero modes
(cf. Ref. [35]).

For further thorough discussions we refer the reader to Section 7.2.

3.2.3 Flux tube junctions

In theories with ZN symmetry the ANO flux tubes can form junctions of the type
depicted in Fig. 3.8. As an example, let us consider a U(1) × U(1) × U(1) gauge
theory with three “photons” and three (scalar) matter fields, φ, χ , and η,

L = − 1

4e2

3∑
i=1

(Fi)μν(Fi)
μν + (Dμφ̄)(D

μφ)+ (Dμχ̄)(D
μχ)

+ (Dμη̄)(D
μη)+ V (φ,χ , η), (3.2.33)
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Table 3.1. Couplings of φ, χ , and η with respect to three photons A1, A2, and A3
of the U(1)3 theory (3.2.33).

φ χ η

A1 2/3 2/3 −1/3
A2 2/3 −1/3 2/3
A3 −1/3 2/3 2/3

h

B3

B1B2

f

c

Figure 3.8. A junction of three flux tubes (“Mercedes logo”) in the Z3 invariant
theory (3.2.33). The letters φ, χ , and η show which fields have windings in three
sectors.

whose electric charges with respect to three photons are presented in Table 3.1.
The potential V (φ,χ , η) is assumed to be symmetric under the interchange of φ, χ ,
and η. Another requirement to V (φ,χ , η) is spontaneous breaking of all three U(1)
gauge groups through nonvanishing expectation values 〈φ〉 = 〈χ〉 = 〈η〉 �= 0.

The three flux tubes form a planar structure of the “Mercedes logo” type, with
2π/3 angles between them. The flux tube in the left-hand side of Fig. 3.8 carries
the magnetic fluxes of the third and second photons, the next (clockwise) flux tube
the magnetic fluxes of the first and second photons, and the last flux tube of the first
and third.
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3.3 Monopoles

In this section we will discuss magnetic monopoles – very interesting objects which
carry magnetic charges. They emerge as free magnetically charged particles in
non-Abelian gauge theories in which the gauge symmetry is spontaneously broken
down to an Abelian subgroup.7 The simplest example was found by ’t Hooft [105]
and Polyakov [106]. The model they considered had been invented by Georgi and
Glashow [107] for different purposes. As it often happens, the Georgi–Glashow
model turned out to be more valuable than the original purpose, which is long
forgotten, while the model itself is alive and well and is being constantly used by
theorists.

3.3.1 The Georgi–Glashow model: vacuum and elementary excitations

Let us begin with a brief description of the Georgi–Glashow model. The gauge
group is SU(2) and the matter sector consists of one real scalar field φa in the
adjoint representation (i.e. SU(2) triplet). The Lagrangian of the model is

L = − 1

4g2
Faμν F

μν,a + 1

2
(Dμφ

a)(Dμφa)− 1

8
λ(φaφa − v2)2, (3.3.1)

where the covariant derivative in the adjoint acts as

Dμφ
a = ∂μφ

a + εabcAbμφ
c. (3.3.2)

Below we will focus on the limit of BPS monopoles. This limit corresponds to a
vanishing scalar coupling, λ → 0. The only role of the last term in Eq. (3.3.1) is
to provide a boundary condition for the scalar field. As is clear from Chapter 2 the
monopole central charge exists only in N = 2 and N = 4 superalgebras. Therefore,
one should understand the theory (3.3.1) (at λ = 0) as embedded in super-Yang–
Mills theories with extended superalgebra. In Part II we will extensively discuss
such embeddings in the context of N = 2.

The classical definition of magnetic charges refers to theories that support a
long-range (Coulomb) magnetic field. Therefore, in consideration of the isolated
monopole the pattern of the symmetry breaking should be such that some of the
gauge bosons remain massless. In the Georgi–Glashow model (3.3.1) the pattern
is as follows:

SU(2) → U(1). (3.3.3)

7 In the confining regime monopoles can be obtained in some theories with no adjoint fields, in which the gauge
symmetry is broken completely [104]. This is a recent development.



44 The main building blocks

To see that this is indeed the case let us note the φa self-interaction term (the last
term in Eq. (3.3.1)) forces φa to develop a vacuum expectation value,

〈φa〉 = vδ3a . (3.3.4)

The direction of the vector φa in the SU(2) space (to be referred to as “color space”
or “isospace”) can be chosen arbitrarily. One can always reduce it to the form
(3.3.4) by a global color rotation. Thus, Eq. (3.3.4) can be viewed as a (unitary)
gauge condition on the field φ.

This gauge is very convenient for discussing the particle content of the theory,
elementary excitations. Since the color rotation around the third axis does not
change the vacuum expectation value of φa ,

exp
{
iα
τ3

2

}
φvac exp

{
−iα τ3

2

}
= φvac, φvac = v

τ3

2
, (3.3.5)

the third component of the gauge field remains massless – we will call it a “photon,”

A3
μ ≡ Aμ, Fμν = ∂μAν − ∂νAμ. (3.3.6)

The first and the second components form massive vector bosons,

W±
μ = 1√

2 g

(
A1
μ ± A2

μ

)
. (3.3.7)

As usual in the Higgs mechanism, the massive vector bosons eat up the first and
the second components of the scalar field φa . The third component, the physical
Higgs field, can be parametrized as

φ3 = v + ϕ, (3.3.8)

where ϕ is the physical Higgs field. In terms of these fields the Lagrangian (3.3.1)
can be readily rewritten as

L = − 1

4g2
Fμν Fμν + 1

2
(∂μϕ)

2

− (DαW+
μ

) (
DαW

−
μ

)+ (DμW+
μ

) (
DνW

−
ν

)+ g2(v + φ)2W+
μ W

−
μ

− 2W+
μ Fμν W

−
ν + g2

4

(
W+
μ W

−
ν −W+

ν W
−
μ

)2
, (3.3.9)

where the covariant derivative now includes only the photon field,

Dα W
± = (∂α ± iAα)W

±. (3.3.10)
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The last line presents the magnetic moment of the charged (massive) vector bosons
and their self-interaction. In the limit λ → 0 the physical Higgs field is massless.
The mass of the W± bosons is

MW = g v. (3.3.11)

3.3.2 Monopoles – topological argument

Let us explain why this model has a topologically stable soliton.
Assume that the monopole’s center is at the origin and consider a large sphere

SR of radius R with the center at the origin. Since the mass of the monopole is
finite, by definition, φaφa = v2 on this sphere. φa is a three-component vector in
the isospace subject to the constraint φaφa = v2 which gives us a two-dimensional
sphere SG. Thus, we deal here with mappings of SR into SG. Such mappings split
in distinct classes labeled by an integer n, counting how many times the sphere SG
is swept when we sweep once the sphere SR , since

π2(SU(2)/U(1)) = Z. (3.3.12)

SG = SU(2)/U(1) because for each given vector φa there is a U(1) subgroup which
does not rotate it. The SU(2) group space is a three-dimensional sphere while that
of SU(2)/U(1) is a two-dimensional sphere.

An isolated monopole field configuration (the ’t Hooft–Polyakov monopole)
corresponds to a mapping with n = 1. Since it is impossible to continuously deform
it to the topologically trivial mapping, the monopoles are topologically stable.

3.3.3 Mass and magnetic charge

Classically the monopole mass is given by the energy functional

E =
∫
d3x

{
1

2 g2
Bai B

a
i + 1

2

(
Diφ

a
) (
Diφ

a
)}

, (3.3.13)

where

Bai = −1

2
εijkF

a
jk . (3.3.14)

The fields are assumed to be time-independent, Bai = Bai (�x), φa = φa(�x). For
static fields it is natural to assume that Aa0 = 0. This assumption will be veri-
fied a posteriori, after we find the field configuration minimizing the functional
(3.3.13). Equation (3.3.13) assumes the limit λ → 0. However, in performing min-
imization we should keep in mind the boundary condition φa(�x)φa(�x) → v2 at
|�x| → ∞.
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Equation (3.3.13) can be identically rewritten as follows:

E =
∫
d3x

{
1

2

(
1

g
Bai −Diφ

a

)(
1

g
Bai −Diφ

a

)
+ 1

g
Bai Diφ

a

}
. (3.3.15)

The last term on the right-hand side is a full derivative. Indeed, after integrating by
parts and using the equation of motion DiBai = 0 we get∫

d3x

{
1

g
Bai Diφ

a

}
= 1

g

∫
d3x ∂i

(
Bai φ

a
)

= 1

g

∫
SR
d2Si

(
Bai φ

a
)

. (3.3.16)

In the last line we made use of Gauss’ theorem and passed from the volume integra-
tion to that over the surface of the large sphere. Thus, the last term in Eq. (3.3.15)
is topological.

The combination Bai φ
a can be viewed as a gauge invariant definition of the

magnetic field �B. More exactly,

Bi = 1

v
Bai φ

a . (3.3.17)

Indeed, far away from the monopole core one can always assume φa to be aligned
in the same way as in the vacuum (in an appropriate gauge), φa = vδ3a . Then
Bi = B3

i . The advantage of the definition (3.3.17) is that it is gauge independent.
Furthermore, the magnetic chargeQM inside a sphere SR can be defined through

the flux of the magnetic field through the surface of the sphere,8

QM =
∫

SR
d2Si

1

g
Bi . (3.3.18)

From Eq. (3.3.30) (see below) we will see that

Bi ≡ 1

v
Bai φ

a −→ ni
1

r2
at r → ∞, (3.3.19)

and, hence,

QM = 4π

g
. (3.3.20)

8 A remark: Conventions for the charge normalization used in different books and papers may vary. In his
original paper on the magnetic monopole [108], Dirac uses the convention e2 = α and the electromagnetic
Hamiltonian H = (8π)−1( �E2 + �B2). Then, the electric charge is defined through the flux of the electric field as
e = (4π)−1 ∫SR d2SiEi , and analogously for the magnetic charge. We use the convention according to which

e2 = 4πα, and the electromagnetic Hamiltonian H = (2g2)−1( �E2 + �B2). Then e = g−1 ∫SR d2SiEi while

QM = g−1 ∫SR d2SiBi .
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Combining Eqs. (3.3.18), (3.3.17) and (3.3.16) we conclude that

E = v QM +
∫
d3x

{
1

2

(
1

g
Bai −Diφ

a

)(
1

g
Bai −Diφ

a

)}
. (3.3.21)

The minimum of the energy functional is attained at

1

g
Bai −Diφ

a = 0. (3.3.22)

The mass of the field configuration realizing this minimum – the monopole mass —
is obviously equal

MM = 4π v

g
. (3.3.23)

Thus, the mass of the critical monopole is in one-to-one relation with its magnetic
charge. Equation (3.3.22) is nothing but the Bogomol’nyi equation in the monopole
problem. If it is satisfied, the second-order differential equations of motion are
satisfied too.

3.3.4 Solution of the Bogomol’nyi equation for monopoles

To solve the Bogomol’nyi equations we need to find an appropriate ansatz for φa .
As one sweeps SR the vector φa must sweep the group space sphere. The simplest
choice is to identify these two spheres point-by-point,

φa = v
xa

r
= vna , r → ∞. (3.3.24)

whereni ≡ xi/r . This field configuration obviously belongs to the class withn = 1.
The SU(2) group index a got entangled with the coordinate �x. Polyakov proposed
to refer to such fields as “hedgehogs.”

Next, observe that finiteness of the monopole energy requires the covariant
derivative Diφa to fall off faster than r−3/2 at large r , cf. Eq. (3.3.13). Since

∂iφ
a = v

1

r

{
δai − nani

}
∼ 1

r
(3.3.25)

one must chooseAbi in such a way as to cancel (3.3.25). It is not difficult to see that

Aai = εaij
1

r
n j , r → ∞. (3.3.26)

Then the term 1/r is canceled in Diφa .
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Equations (3.3.24) and (3.3.26) determine the index structure of the field
configuration we are going to deal with. The appropriate ansatz is perfectly clear
now,

φa = v naH(r), Aai = εaij
1

r
n j F (r), (3.3.27)

where H and F are functions of r with the boundary conditions

H(r) → 1, F(r) → 1 at r → ∞, (3.3.28)

and

H(r) → 0, F(r) → 0 at r → 0. (3.3.29)

The boundary condition (3.3.28) is equivalent to Eqs. (3.3.24) and (3.3.26), while
the boundary condition (3.3.29) guarantees that our solution is nonsingular at
r → 0.

After some straightforward algebra we get

Bai =
(
δai − nani

) 1

r
F ′ + nani

1

r2

(
2F − F 2

)
,

Diφ
a = v

{(
δai − nani

) 1

r
H(1 − F)+ naniH ′

}
, (3.3.30)

where prime denotes differentiation with respect to r .
Let us return now to the Bogomol’nyi equations (3.3.22). This is a set of nine

first-order differential equations. Our ansatz has only two unknown functions. The
fact that the ansatz goes through and we get two scalar equations on two unknown
functions from the Bogomol’nyi equations is a highly nontrivial check. Comparing
Eqs. (3.3.22) and (3.3.30) we get

1

g
F ′ = v H(1 − F),

H ′ = 1

g v

1

r2

(
2F − F 2

)
. (3.3.31)

The functions H and F are dimensionless. It is convenient to make the radius r
dimensionless too. A natural unit of length in the problem at hand is (gv)−1. From
now on we will measure r in these units,

ρ = r (gv). (3.3.32)
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Figure 3.9. The functions F (solid line) and H (long dashes) in the critical
monopole solution, vs. ρ. The short-dashed line shows the flux of the magnetic
field Bi (in the units 4π ) through the sphere of radius ρ.

The functionsH and F are to be considered as functions of ρ, while the prime will
denote differentiation over ρ. Then the system (3.3.31) takes the form

F ′ = H(1 − F),

H ′ = 1

ρ2

(
2F − F 2

)
. (3.3.33)

These equations have known analytical solutions,

F = 1 − ρ

sinhρ
,

H = coshρ

sinhρ
− 1

ρ
. (3.3.34)

At large ρ the functions H and F tend to unity (cf. Eq. (3.3.28)) while at ρ → 0

F = O(ρ2), H = O(ρ).

They are plotted in Fig. 3.9. Calculating the flux of the magnetic field through the
large sphere we verify that for the solution at hand QM = 4π/g.

3.3.5 Collective coordinates (moduli)

The monopole solution presented in the previous section breaks a number of valid
symmetries of the theory, for instance, translational invariance. As usual, the sym-
metries are restored after the introduction of the collective coordinates (moduli),
which convert a given solution into a family of solutions.
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Our first task is to count the number of moduli in the monopole problem.
A straightforward way to count this number is counting linearly independent zero
modes. To this end, one represents the fields Aμ and φ as a sum of the monopole
background plus small deviations,

Aaμ = Aa(0)μ + aaμ, φa = φa(0) + (δφ)a , (3.3.35)

where the superscript (0) marks the monopole solution. At this point it is necessary
to impose a gauge-fixing condition. A convenient condition is

1

g
Dia

a
i − εabcφb(δφ)c = 0, (3.3.36)

where the covariant derivative in the first term contains only the background field.
Substituting the decomposition (3.3.35) in the Lagrangian one finds the quadratic

form for {a, (δφ)}, and determines the zero modes of this form (subject to the
condition (3.3.36)).

We will not trace this procedure in detail, referring the reader to the original
literature [109]. Instead, we suggest a simple heuristic consideration.

Let us ask ourselves what are the valid symmetries of the model at hand? They are:
(i) three translations; (ii) three spatial rotations; (iii) three rotations in the SU(2)
group. Not all these symmetries are independent. It is not difficult to check that
the spatial rotations are equivalent to the SU(2) group rotations for the monopole
solution. Thus, we should not count them independently. This leaves us with six
symmetry transformations.

One should not forget, however, that two of those six act non-trivially in the
“trivial vacuum.” Indeed, the latter is characterized by the condensate (3.3.4).
While rotations around the third axis in the isospace leave the condensate intact
(see Eq. (3.3.5)), the rotations around the first and second axes do not. Thus,
the number of moduli in the monopole problem is 6 − 2 = 4. These four
collective coordinates have a very transparent physical interpretation. Three of
them correspond to translations. They are introduced in the solution through the
substitution

�x → �x − �x0. (3.3.37)

The vector �x0 now plays the role of the monopole center. The unit vector �n is now
defined as �n = (�x − �x0)/|�x − �x0|.

The fourth collective coordinate is related to the unbroken U(1) symmetry of the
model. This is the rotation around the direction of alignment of the field φ. In the
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“trivial vacuum” φa is aligned along the third axis. The monopole generalization
of Eq. (3.3.5) is

A(0) → U−1A(0)U − iU−1∂U ,

φ(0) → U−1φ(0)U = φ(0),

U = exp
{
iαφ(0)/v

}
, (3.3.38)

where the fields A(0) and φ(0) are understood here in the matrix form,

A(0) = Aa(0) (τ a/2), φ(0) = φa(0) (τ a/2) .

Unlike the vacuum field, which is not changed under (3.3.5), the monopole solution
for the vector field changes its form. The change looks as a gauge transformation.
Note, however, that the gauge matrix U does not tend to unity at r → ∞. Thus,
this transformation is in fact a global U(1) rotation. The physical meaning of the
collective coordinateαwill become clear shortly. Now let us note that (i) for smallα
Eq. (3.3.38) reduces to

δAai = α
1

v
(Diφ

(0))a , δφ = 0, (3.3.39)

and this is compatible with the gauge condition (3.3.36); (ii) the variable α is
compact, since the points α and α + 2π can be identified (the transformation of
A(0) is identically the same for α and α+2π ). In other words, α is an angle variable.

Having identified all four moduli relevant to the problem we can proceed to the
quasiclassical quantization. The task is to obtain quantum mechanics of the moduli.
Let us start from the monopole center coordinate �x0. To this end, as usual, we assume
that �x0 weakly depends on time t , so that the only time dependence of the solution
enters through �x0(t). The time dependence is important only in time derivatives, so
that the quantum-mechanical Lagrangian of the moduli can be obtained from the
following expression:

LQM = −MM + 1

2
(ẋ0)k(ẋ0)j

∫
d3x

{[
1

g
F
a(0)
ik

] [
1

g
F
a(0)
ij

]

+
[
Dkφ

a(0)
] [
Djφ

a(0)
]}

, (3.3.40)

where ∂kA and ∂kφ where supplemented by appropriate gauge transformations to
satisfy the gauge condition (3.3.36).
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Averaging over the angular orientations of �x yields

LQM = −MM + 1

2
(�̇x0)

2
∫
d3x

{
2

3

1

g2
B
a(0)
i B

a(0)
i + 1

3
Diφ

a(0)Diφ
a(0)
}

= −MM + MM

2
(�̇x0)

2. (3.3.41)

This last result readily follows if one combines Eqs. (3.3.13) and (3.3.22). Of course,
this final answer could have been guessed from the very beginning since this is
nothing but the Lagrangian describing free non-relativistic motion of a particle of
mass MM endowed with the coordinate �x0.

Now, having tested the method in the case where the answer was obvious, let us
apply it to the fourth collective coordinate α. Using Eq. (3.3.39) we get

LαQM = 1

2

MM

M2
W

α̇2, (3.3.42)

or, equivalently,

Hα = 1

2

M2
W

MM

p2
α , pα ≡ −i d

dα
, (3.3.43)

where Hα is the part of the Hamiltonian relevant to α. The full quantum-mechanical
Hamiltonian describing the moduli dynamics is, thus,

H = MM + p2

2MM

+ 1

2

M2
W

MM

p2
α , p ≡ −i d

dx0
. (3.3.44)

It describes free motion of a spinless particle endowed with an internal (compact)
variable α. While the spatial part of H does not raise any questions, the α dynamics
deserves additional discussion.

The α motion is free, but one should not forget that α is an angle. Because of the
2π periodicity, the corresponding wave functions must have the form

�(α) = eikα , (3.3.45)

where k is an integer, k = 0, ±1, ±2, . . . . Strictly speaking, only the ground state,
k = 0, describes the monopole – a particle with the magnetic charge 4π/g and
vanishing electric charge. Excitations with k �= 0 correspond to a particle with the
magnetic charge 4π/g and the electric charge kg, the dyon.

To see that this is indeed the case, let us note that for k �= 0 the expectation value
of pα is k and, hence, the expectation value of α̇ = (M2

W/MM)pα is M2
Wk/MM .
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Moreover, let us define a gauge-invariant electric field Ei (analogous to Bi of Eq.
(3.3.17)) as

Ei ≡ 1

v
Eai φ

a = 1

v
φa(0) Ȧ

a(0)
i = 1

v2
α̇ φa(0) (Diφ

a(0)). (3.3.46)

Since for the critical monopole Diφa(0) = (1/g)Ba(0)i we see that

Ei = α̇
1

MW

Bi , (3.3.47)

and the flux of the gauge-invariant electric field over the large sphere is

1

g

∫
SR
d2Si Ei = M2

Wk

MM

1

MW

1

g

∫
SR
d2SiBi (3.3.48)

where we replaced α̇ by its expectation value. Thus, the flux of the electric field
reduces to

1

g

∫
SR
d2Si Ei = kg, (3.3.49)

which proves the above assertion of the electric charge kg.
It is interesting to note that the mass of the dyon can be written as

MD = MM + 1

2

M2
W

MM

k2 ≈
√
M2
M +M2

W k
2 = v

√
Q2
M +Q2

E . (3.3.50)

Although from our derivation it might seem that the square root formula is approx-
imate, in fact, the prediction for the dyon mass MD = v(Q2

M +Q2
E)

1/2 is exact;
it follows from the BPS saturation and the central charges in N = 2 model (see
Chapter 2).

Magnetic monopoles were introduced in theory by Dirac in 1931 [108]. He
considered macroscopic electrodynamics and derived a self-consistency condition
for the product of the magnetic charge of the monopole QM and the elementary
electric charge e,9

QM e = 2π . (3.3.51)

This is known as the Dirac quantization condition. For the ’t Hooft–Polyakov
monopole we have just derived that QMg = 4π , twice larger than in the Dirac

9 In Dirac’s original convention the charge quantization condition is, in fact, QMe = (1/2).
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quantization condition. Note, however, that g is the electric charge of theW bosons.
It is not the minimal possible electric charge that can be present in the theory at hand.
If quarks in the fundamental (doublet) representation of SU(2) were introduced in
the Georgi–Glashow model, their U(1) charge would be e = g/2, and the Dirac
quantization condition would be satisfied for such elementary charges.

3.3.6 Singular gauge, or how to comb a hedgehog

The ansatz (3.3.27) for the monopole solution we used so far is very convenient
for revealing a nontrivial topology lying behind this solution, i.e. the fact that
SU(2)/U(1) ∼ S2 in the group space is mapped onto the spatial S2. However, it
is often useful to gauge-transform it in such a way that the scalar field becomes
oriented along the third axis in the color space, φa ∼ δ3a , in all space (i.e. at all x),
repeating the pattern of the “plane” vacuum (3.3.4). Polyakov suggested to refer to
this gauge transformation as “combing the hedgehog.” Comparison of Figs. 3.10a
and 3.10b shows that this gauge transformation cannot be nonsingular. Indeed, the
matrix which combs the hedgehog,

U† (naτa)U = τ 3, (3.3.52)

has the form

U = 1√
2

(√
1 + n3 + i

νaτ a√
1 + n3

)
, (3.3.53)

where

νa = ε3ab nb, νaνa = 1 − (n3)2, (3.3.54)

and �n is the unit vector in the direction of �x. The matrix U is obviously singular at
n3 = −1 (see Fig. 3.10). This is a gauge artifact since all physically measurable
quantities are nonsingular and well-defined. In the “old” Dirac description of the
monopole [110] the singularity of U at n3 = −1 would correspond to the Dirac
string.

In the singular gauge the monopole magnetic field at large |�x| takes the “color-
combed” form

Bi → τ 3

2

ni

r2
= 4π

τ 3

2

ni

4π r2
. (3.3.55)

The latter equation naturally implies the same magnetic charge QM = 4π/g, as
was derived in Section 3.3.2.
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Dirac string

fa “combed”

fa

radial gauge(a) (b) singular gauge

Figure 3.10. Transition from the radial to singular gauge or combing the hedgehog.

3.3.7 Monopoles in SU(N )

Let us now extend the construction presented above from SU(2) to SU(N ) [111,
112]. The starting Lagrangian is the same as in Eq. (3.3.1), with the replacement of
the structure constants εabc of SU(2) by the SU(N) structure constants f abc. The
potential of the scalar-field self-interaction can be of a more general form than in
Eq. (3.3.1). Details of this potential are unimportant for our purposes since in the
critical limit the potential tends to zero; its only role is to fix the vacuum value of
the field φ at infinity.

Recall that all generators of the Lie algebra can be always divided into two
groups – the Cartan generators Hi , which all commute with each other, and a set
of raising (lowering) operators Eα ,

E
†
α = E−α . (3.3.56)

For SU(N ) – and we will not discuss other groups – there areN−1 Cartan generators
which can be chosen as

H 1 = 1

2
diag {1, −1, 0, . . . , 0} ,

H 2 = 1

2
√

3
diag {1, 1, −2, 0, . . . , 0} ,

. . .

Hm = 1√
2m(m+ 1)

diag {1, 1, 1, . . . , −m, . . . , 0} ,

. . . (3.3.57)

HN−1 = 1√
2N(N − 1)

diag {1, 1, 1, . . . , 1, −(N − 1)} ,
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N(N−1)/2 raising generatorsEα , andN(N−1)/2 lowering generatorsE−α . The
Cartan generators are analogs of τ3/2 while E±α are analogs of τ±/2. Moreover,
N(N − 1) vectors α, −α are called root vectors. They are (N − 1)-dimensional.

By making an appropriate choice of basis, any element of SU(N) algebra can
be brought to the Cartan subalgebra. Correspondingly, the vacuum value of the
(matrix) field φ ≡ φaT a can always be chosen to be of the form

φvac = h H, (3.3.58)

where h is an (N − 1)-component vector,

h = {h1, h2, . . . , hN−1}. (3.3.59)

For simplicity we will assume that for all simple roots h γ > 0 (otherwise, we will
just change the condition defining positive roots to meet this constraint).

Depending on the form of the self-interaction potential distinct patterns of gauge
symmetry breaking can take place. We will discuss here the case when the gauge
symmetry is maximally broken,

SU(N) → U(1)N−1. (3.3.60)

The unbroken subgroup is Abelian. This situation is general. In special cases, when
h is orthogonal to αm for some m (or a set of m’s) the unbroken subgroup will
contain non-Abelian factors, as will be explained momentarily. These cases will
not be considered here.

The topological argument proving the existence of a variety of topologically
stable monopoles in the above set-up parallels that of Section 3.3.2, except that
Eq. (3.3.12) is replaced by

π2

(
SU(N)/U(1)N−1

)
= π1

(
U(1)N−1

)
= ZN−1. (3.3.61)

There are N − 1 independent windings in the SU(N ) case.
The gauge field Aμ (in the matrix form, Aμ ≡ Aaμ T

a) can be represented as

Aaμ T
a =

N−1∑
m=1

Amμ H
m +

∑
α

Aα
μ Eα , (3.3.62)

where Amμ ’s (m = 1, . . . ,N − 1) can be viewed as “photons,” while Aα
μ ’s as

“W bosons.” The mass terms are obtained from the term

Tr
([
Aμ, φ

])2
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in the Lagrangian. Substituting here Eqs. (3.3.58) and (3.3.62) it is easy to see that
the W -boson masses are

Mα = g hα. (3.3.63)

N−1 massive bosons corresponding to simple roots γ play a special role: they can
be thought of as fundamental, in the sense that the quantum numbers and masses
of all other W bosons can be obtained as linear combinations (with non-negative
integer coefficients) of those of the fundamental W bosons. With regards to the
masses this is immediately seen from Eq. (3.3.63) in conjunction with

α =
∑
γ

kγ γ . (3.3.64)

Construction of SU(N ) monopoles reduces, in essence, to that of a SU(2)
monopole through various embeddings of SU(2) in SU(N). Note that each simple
root γ defines an SU(2) subgroup10 of SU(N ) with the following three generators:

t1 = 1√
2

(
Eγ + E−γ

)
,

t2 = 1√
2 i

(
Eγ − E−γ

)
,

t3 = γ H, (3.3.65)

with the standard algebra [t i , t j ] = iεijk tk . If the basic SU(2) monopole
solution corresponding to the Higgs vacuum expectation value v is denoted as
{φa(r; v), Aai (r; v)}, see Eq. (3.3.27), the construction of a specific SU(N )
monopole proceeds in three steps: (i) choose a simple root γ ; (ii) decompose the
vector h in two components, parallel and perpendicular with respect to γ ,

h = h‖ + h⊥ ,

h‖ = ṽγ , h⊥γ = 0 ,

ṽ ≡ γ h > 0 ; (3.3.66)

(iii) replace Aai (r; v) by Aai (r; ṽ) and add a covariantly constant term to the field
φa(r; ṽ) to ensure that at r → ∞ it has the correct asymptotic behavior, namely,
2 Tr φ2 = h2. Algebraically the SU(N ) monopole solution takes the form

φ = φa(r; ṽ) ta + h⊥H, Ai = Aai (r; ṽ) ta . (3.3.67)

10 Generally speaking, each root α defines an SU(2) subalgebra according to Eq. (3.3.65), but we will deal only
with the simple roots for reasons which will become clear momentarily.
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Note that the mass of the corresponding W boson Mγ = gṽ, in full parallel with
the SU(2) monopole.

It is instructive to verify that (3.3.67) satisfies the BPS equation (3.3.22). To this
end it is sufficient to note that [h⊥H, Ai] = 0, which in turn implies

Di (h⊥H) = 0.

What remains to be done? We must analyze the magnetic charges of the SU(N )
monopoles and their masses. In the singular gauge (Section 3.3.6) the Higgs field
is aligned in the Cartan subalgebra, φ ∼ h H. The magnetic field at large distances
from the monopole core, being commutative with φ, also lies in the Cartan sub-
algebra. In fact, from Eq. (3.3.65) we infer that combing of the SU(N ) monopole
leads to

Bi → 4π γ H
ni

4π r2
, (3.3.68)

which implies, in turn, that the set ofN−1 magnetic charges of the SU(N) monopole
is given by the components of the (N − 1)-vector

QM = 4π

g
γ . (3.3.69)

Of course, the very same result is obtained in a gauge invariant manner from a
defining formula

2Tr (Biφ) −→
r → ∞

(
QMh

) g
4π

ni

r2
. (3.3.70)

Equation (3.3.15) implies that the mass of this monopole is

MMγ = QMh = 4π ṽ

g
, (3.3.71)

to be compared with the mass of the corresponding W bosons,

Mγ = gγ h = gṽ, (3.3.72)

in perfect parallel with the SU(2) monopole results of Section 3.3.3. The general
magnetic charge quantization condition takes the form

exp
{
igQMH

} = 1. (3.3.73)

Let us ask ourselves what happens if one builds monopoles on non-simple
roots. Such solutions are in fact composite: they consist of the basic “simple-root”
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monopoles – the masses and quantum numbers (magnetic charges) of the composite
monopoles can be obtained by summing up the masses and quantum numbers of
the basic monopoles, according to Eq. (3.3.64).

3.3.8 The θ term induces a fractional electric charge
for the monopole (the Witten effect)

There is a P - and T -odd term, the θ term, which can be added to the Lagrangian
for the Yang–Mills theory without spoiling renormalizability. It is given by

Lθ = θ

32π2
FaμνF̃

aμν = − θ

8π2
�Ea · �Ba . (3.3.74)

This interaction violatesP andCP but notC.As is well known, this term is a surface
term and does not affect the classical equations of motion. There is, however, a θ
dependence in instanton effects which involve nontrivial long-range behavior of
the gauge fields. As was realized by Witten [113], in the presence of magnetic
monopoles θ also has a nontrivial effect, it shifts the allowed values of electric
charge in the monopole sector of the theory.

Since the equations of motions do not change, the monopole solution obtained
above stays intact. What changes is the effective quantum-mechanical Lagrangian.
As usual, we assume an adiabatic time dependence of moduli. In the case at hand we
must replace the constant phase modulus α by α(t). This generates the electric field

Eai = α̇ (δAai /δα) = α̇

v

(
Diφ

(0)
)a

,

where Eq. (3.3.39) is used. The magnetic field does not change, and can be expressed
through

(
Diφ

(0)
)a

using Eq. (3.3.22). As a result, the quantum-mechanical
Lagrangian for α acquires a full derivative term,

LαQM = 1

2μ
α̇2 − θ

2π
α̇, μ = M2

W

MM

. (3.3.75)

This changes the expression for the canonic momentum conjugated to α. If
previously pα was α̇/μ, now

pα = α̇

μ
− θ

2π
. (3.3.76)

Correspondingly,

α̇ = μ

(
pα + θ

2π

)
. (3.3.77)
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From Sect. 3.3.5 we know that the electric charge of the field configuration at hand
is (see Eq. (3.3.49))

QE = 1

MW g
〈α̇〉

∫
SR
d2Si Bi . (3.3.78)

Substituting Eq. (3.3.77) and 〈pα〉 = k we arrive at

QE =
(
k + θ

2π

)
g. (3.3.79)

We see that at θ �= 0 the electric charge of the dyon is non-integer. As θ changes
from zero to the physically equivalent point θ = 2π the dyon charges shift by one
unit. The dyon spectrum as a whole remains intact.

3.4 Monopoles and fermions

The critical ’t Hooft–Polyakov monopoles we have just discussed can be embedded
in N = 2 super-Yang–Mills. There are no N = 1 models with the ’t Hooft–
Polyakov monopoles (albeit N = 1 theories supporting confined monopoles
are found [104]). The minimal model with the BPS-saturated ’t Hooft–Polyakov
monopole is the N = 2 generalization of supersymmetric gluodynamics, with the
gauge group SU(2). In terms of N = 1 superfields it contains one vector superfield
in the adjoint describing gluon and gluino, plus one chiral superfield in the adjoint
describing a scalar N = 2 superpartner for gluon and a Weyl spinor, an N = 2
superpartner for gluino.

The couplings of the fermion fields to the boson fields are of a special form,
they are fixed by N = 2 supersymmetry. In this section we will first present the
Lagrangian of N = 2 supersymmetric gluodynamics, including the part with the
adjoint fermions, and then consider effects due to the adjoint fermions. We conclude
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Section 3.4 with a comment on fermions in the fundamental representation in the
monopole background.

3.4.1 N = 2 super-Yang–Mills (without matter)

Two N = 1 superfields are used to build the model,

Wα = i
(
λα + iθα D − θβ Fαβ − iθ2Dαα̇λ̄

α̇
)

, (3.4.1)

and

A = a + √
2ψ θ + θ2F . (3.4.2)

Here the notation is spinorial, and all fields are in the adjoint representation of
SU(2). The corresponding generators are(

T a
)
bd

= i εbad . (3.4.3)

The Lagrangian contains kinetic terms and their supergeneralizations. In compo-
nents

L = 1

g2

{
−1

4
Fa μνF aμν + λα,a i Dαα̇ λ̄

α̇,a + 1

2
DaDa

+ ψα,a iDαα̇ ψ̄
α̇,a + (Dμ ā)(Dμ a)

− √
2 εabc

(
āa λα,b ψcα + aa λ̄bα̇ ψ̄

α̇,c
)

− i εabc D
a āb ac

}
. (3.4.4)

As usual, theD field is auxiliary and can be eliminated via the equation of motion,

Da = i εabc ā
bac. (3.4.5)

There is a flat direction: if the field a is real allD terms vanish. If a is chosen to be
purely real or purely imaginary and the fermion fields ignored we obviously return
to the Georgi–Glashow model discussed above.

Let us perform the Bogomol’nyi completion of the bosonic part of the Lagrangian
(3.4.4) for static field configurations. Neglecting all time derivatives and, as usual,
setting A0 = 0, one can write the energy functional as follows:

E =
∑

i=1,2,3; a=1,2,3

∫
d3x

[
1√
2g
F ∗a
i ± 1

g
Dia

a

]2

∓
√

2

g2

∫
d3x ∂i

(
F ∗a
i aa

)
, (3.4.6)
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where

F ∗
m = 1

2
εmnk Fnk ,

and the square of theD term (3.4.5) is omitted – theD term vanishes provided a is
real, which we will assume. This assumption also allows us to replace the absolute
value in the first line by the square brackets. The term in the second line can be
written as an integral over a large sphere,

√
2

g2

∫
d3x ∂i

(
F ∗a
i aa

) =
√

2

g2

∫
dSi

(
aa F ∗a

i

)
. (3.4.7)

The Bogomol’nyi equations for the monopole are

F ∗a
i ± √

2Di a
a = 0. (3.4.8)

This coincides with Eq. (3.3.22) in the Georgi–Glashow model, up to a normaliza-
tion. (The field a is complex, generally speaking, and its kinetic term is normalized
differently.) If the Bogomol’nyi equations are satisfied, the monopole mass is deter-
mined by the surface term (classically). Assuming that in the “flat” vacuum aa is
aligned along the third direction and taking into account that in our normalization
the magnetic flux is 4π we get

MM =
√

2 a3
vac

g2
4π , (3.4.9)

where – we recall – a3
vac is assumed to be positive. This is in full agreement with

Eq. (3.3.23).

3.4.2 Supercurrents and the monopole central charge

The general classification of central charges in N = 2 theories in four dimensions
is presented in Section 2.3.3. Here we will briefly discuss the Lorentz-scalar central
charge Z in the theory (3.4.4). It is this central charge that is saturated by critical
monopoles.

The model, being N = 2, possesses two conserved supercurrents,

J I
αββ̇

= 2

g2

{
iF aβαλ̄

a

β̇
+ εβαD

aλ̄a
β̇

+ √
2
(
Dαβ̇ā

a
)
ψaβ

}
+ f .d.,

J II
αββ̇

= 2

g2

{
iF aβαψ̄

a

β̇
+ εβαD

aψ̄a
β̇

− √
2
(
Dαβ̇ā

a
)
λaβ

}
+ f .d., (3.4.10)
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where f.d. stands for full derivatives. Both expressions can be combined in one
compact formula if we introduce an SU(2) index f (f = 1, 2) (to be repeatedly
used in Part II) in the following way:

λf =
{
λ, f = 1
ψ , f = 2.

(3.4.11)

Then λ1 = −ψ and λ2 = λ. The supercurrent takes the form ( f = 1, 2)

Jαββ̇, f = 2

g2

{
iF aβαλ̄

a

β̇, f
+ εβαD

aλ̄a
β̇, f

− √
2
(
Dαβ̇ā

a
)
λaβ, f

+
√

2

6

[
∂αβ̇(λβ, f ā)+ ∂ββ̇(λα, f ā)− 3εβα∂

γ

β̇
(λγ , f ā)

]}
. (3.4.12)

Classically the commutator of the corresponding supercharges is

{QI
α , QII

β } = 2Z εαβ = −2
√

2

g2
εαβ

∫
d3x div

(
āa
( �Ea − i �Ba

))

= −2
√

2

g2
εαβ

∫
dSj

(
āa
(
Eaj − i Baj

))
. (3.4.13)

Z in Eq. (3.4.13) is sometimes referred to as the monopole central charge. For the
BPS-saturated monopoles MM = Z.

Quantum corrections in the monopole central charge and in the mass of the BPS
saturated monopoles were first discussed in Refs. [8, 114, 43] two decades ago. The
monopole central charge is renormalized at one-loop level. This is obvious due to
the fact that the corresponding quantum correction must convert the bare coupling
constant in Eq. (3.4.13) into the renormalized one. The fact that the logarithmic
renormalizations of the monopole mass and the gauge coupling constant match was
established long ago. However, there is a residual non-logarithmic effect which
cannot be obtained from Eq. (3.4.13). It was not until 2004 that people realized
that the monopole central charge (3.4.13) must be supplemented by an anomalous
term [39].

To elucidate the point, let us consider (following [38]) the formula for the
monopole/dyon mass obtained in the exact Seiberg–Witten solution [2],

Mne , nm = √
2
∣∣∣a (ne − aD

a
nm

)∣∣∣ , (3.4.14)
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where ne,m are integer electric and magnetic numbers (we will consider here only
a particular case when either ne = 0, 1 or nm = 0, 1) and

aD = i a

(
4π

g2
0

− 2

π
ln
M0

a

)
. (3.4.15)

The subscript 0 is introduced for clarity, it marks the bare charge. The renormalized
coupling constant is defined in terms of the ultraviolet parameters as follows:

∂aD

∂a
≡ 4πi

g2
. (3.4.16)

Because of the a ln a dependence, ∂aD/∂a differs from aD/a by a constant (non-
logarithmic) term, namely,

aD

a
= i

(
4π

g2
− 2

π

)
. (3.4.17)

Combining Eq. (3.4.14) and (3.4.17) we get

Mne ,nm = √
2

∣∣∣∣a
(
ne − i

(
4π

g2
− 2

π

)
nm

)∣∣∣∣ , (3.4.18)

This does not match Eq. (3.4.13) in the non-logarithmic part (i.e. the term
2
√

2 nm/π ). Since the relative weight of the electric and magnetic parts in
Eq. (3.4.13) is fixed to be g2, the presence of the above non-logarithmic term
implies that, in fact, the chiral structure Eaj − i Baj obtained at the canonic commu-
tator level cannot be maintained once quantum corrections are switched on. This is
a quantum anomaly.

So far no direct calculation of the anomalous contribution in {QI
α , QII

β } in the
operator form has been carried out. However, it is not difficult to reconstruct it
indirectly, using Eq. (3.4.18) and a close parallel between N = 2 super-Yang–
Mills theory and N = 2 CP(N − 1) model with twisted mass in two dimensions
in which a similar problem was solved [34],

{
QI
α , QII

β

}
anom

= 2 εαβ δZanom = − (εαβ) 2
√

2
1

4π2

∫
dSj 

j(3.4.19)

where

j = i

2

∂

∂θ̄ β̇

(Āa W̄ a
α̇

) (
σ j
)α̇β̇ ∣∣∣

θ̄=0

= āa
( �Ea + i �Ba

)j −
√

2

2
λ̄aα̇

(
σ j
)α̇β̇

ψ̄a
β̇

, (3.4.20)
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to be added to Eq. (3.4.13). The (1,0) conversion matrix
(
σ j
)α̇β̇

is defined in
Section A.5. Equation (3.4.20) is to be compared with that obtained at the end
of Section 4.5.3. We hasten to note that the bifermion term λ̄ψ̄ in δZanom was
calculated in Ref. [39].

In the SU(N ) theory we would have N/8π2 instead of 1/4π2 in Eq. (3.4.19).
Adding the canonic and the anomalous terms in {QI

α , QII
β } together we see that

the fluxes generated by color-electric and color-magnetic terms are now shifted,
untied from each other, by a non-logarithmic term in the magnetic part. Normalizing
to the electric term, MW = √

2a, we get for the magnetic term

MM = √
2 a

(
4π

g2
− 2

π

)
, (3.4.21)

as it is necessary for the consistency with the exact Seiberg–Witten solution.

3.4.3 Zero modes for adjoint fermions

Equations for the fermion zero modes can be readily derived from the Lagrangian
(3.4.4),

iDαα̇λ
α, c − √

2 εabc a
a ψ̄bα̇ = 0

iDαα̇ψ
α, c + √

2 εabc a
a λ̄bα̇ = 0, (3.4.22)

plus Hermitean conjugate. After a brief reflection we can get two complex (four
real) zero modes.11 Two of them are obtained if we substitute

λα = Fαβ , ψ̄α̇ = √
2Dαα̇ ā. (3.4.23)

The other two solutions correspond to the following substitution:

ψα = Fαβ , λ̄α̇ = √
2Dαα̇ ā. (3.4.24)

This result is easy to understand. Our starting theory has eight supercharges. The
classical monopole solution is BPS-saturated, implying that four of these eight
supercharges annihilate the solution (these are the Bogomol’nyi equations), while
the action of the other four supercharges produces the fermion zero modes.

With four real fermion collective coordinates, the monopole supermultiplet is
four-dimensional: it includes two bosonic states and two fermionic. (The above
counting refers just to monopole, without its antimonopole partner. The anti-
monopole supermultiplet also includes two bosonic and two fermionic states.) From

11 This means that the monopole is described by two complex fermion collective coordinates, or four real.
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the standpoint of N = 2 supersymmetry in four dimensions this is a short multiplet.
Hence, the monopole states remain BPS saturated to all orders in perturbation theory
(in fact, the criticality of the monopole supermultiplet is valid beyond perturbation
theory [2, 3]).

3.4.4 Zero modes for fermions in the fundamental representation

This topic, being related to an interesting phenomenon of charge fractionalization,
is marginal for this review. Therefore, we will limit ourselves to a brief comment.
The interested reader is referred to [16, 115, 17] for further details. The fermion
part of the Lagrangian can be obtained from (3.4.4) with the obvious replacement
of the adjoint Dirac fermion by the fundamental one, which we will denote by χ ,

L = 1

g2

{
−1

4
Fa μνF aμν + 1

2
(Dμ φ)(Dμ φ)+ χ̄ i �Dχ − χ̄ φχ

}
. (3.4.25)

The Dirac equation then takes the form

(iγ μDμ − φ)χ = 0. (3.4.26)

Gamma matrices can be chosen in any representation. The one which is most
convenient here is

γ 0 =
(

0 −i
i 0

)
, γ i =

( −iσ i 0
0 iσ i

)
. (3.4.27)

For the static ’t Hooft–Polyakov monopole configuration (with A0 = 0) the zero
mode equations reduce to two decoupled equations

�Dχ− ≡ (σ iDi + φ)χ− = 0.

�D†χ+ ≡ (σ iDi − φ)χ+ = 0, i = 1, 2, 3. (3.4.28)

provided we parametrize χ(�x) in terms of the following two-component spinors:

χ =
(
χ+
χ−

)
. (3.4.29)

Now we can use the Callias theorem [116] which says

dim ker �D − dim ker �D† = nm , (3.4.30)

where nm is the topological number, nm = 1 for the monopole and nm = −1 for the
antimonopole. This implies, in turn, that Eq. (3.4.28) has one complex zero mode,
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i.e. in the case at hand we characterize the monopole by one complex fermion
collective coordinate (and a conjugate, of course). This fact leads to a drastic con-
sequence: the monopole acquires a half-integer electric charge. It becomes a dyon
with charge 1/2 even in the absence of the θ term. This phenomenon – the charge
fractionalization in the cases with a single complex fermion collective coordinate –
is well known in the literature [115, 16, 34, 17] and dates back to Jackiw and
Rebbi [117].

3.4.5 The monopole supermultiplet:
dimension of the BPS representations

As was first noted by Montonen and Olive [118], all states in N = 2 model –
W bosons and monopoles alike – are BPS saturated. This results in the fact
that supermultiplets of this model are short. Regular (long) supermultiplet would
contain 22N = 16 helicity states, while the short ones contain 2N = 4 helic-
ity states – two bosonic and two fermionic. This is in full accord with the
fact that the number of the fermion zero modes on the given monopole solu-
tion is four, resulting in dim-4 representation of the supersymmetry algebra. If
we combine particles and antiparticles together, as is customary in field the-
ory, we will have one Dirac spinor on the fermion side of the supermultiplet.
This statement is valid in both cases, the monopole supermultiplet and that of
W -bosons.

3.5 More on kinks (in N = 2 CP(1) model)

Kinks in two-dimensional N = 2 CP(N − 1) models will play a crucial role in
our subsequent studies of confined monopoles in Part II of this book (see e.g.
Sections 4.4.1, 4.4.3, 4.4.4, and 4.5). Here we will review basic features of such
kinks using CP(1) as the simplest example.
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The Lagrangian of the CP(1) model with the twisted mass has the form [32]

LCP(1) = G
{
∂μφ

† ∂μφ − |m|2φ† φ + i

2

(
ψ

†
L

↔
∂R ψL + ψ

†
R

↔
∂LψR

)
− i

1 − φ† φ

χ

(
mψ

†
LψR + m̄ψ

†
RψL

)
− i

χ

[
ψ

†
LψL

(
φ†

↔
∂R φ

)+ ψ
†
R ψR

(
φ†

↔
∂Lφ

)]
− 2

χ2
ψ

†
L ψL ψ

†
R ψR

}
+ ig2 θ

4π
Gεμν∂μφ

† ∂νφ, (3.5.1)

where

∂L = ∂

∂t
+ ∂

∂z
, ∂R = ∂

∂t
− ∂

∂z
, (3.5.2)

and

G = 2

g2 χ2
, χ = 1 + φφ†. (3.5.3)

Moreover, m is a complex mass parameter and θ is the vacuum angle. The above
Lagrangian has an obvious U(1) symmetry. At m = 0 it describes the N = 2
supergeneralization of the σ model on the sphere S2 (see Appendix B). The metric
of the sphere G is chosen in the Fubini–Study form.

It is not difficult to derive the supercurrent,

Jμα = √
2G
[
∂νφ

†γ νγ μψ + iφ†γ μμψ
]
α

, (3.5.4)

where

μ = m
1 + γ5

2
+ m̄

1 − γ5

2
. (3.5.5)

The superalgebra is centrally extended, as in Eq. (2.3.4) with Z′ = 0 and

Z = mqU(1) − i

∫
dz ∂z

{
mD − 1

2π

(
mg2

0D − i R ψ
†
R ψL

)}
, (3.5.6)

where

R = 2

χ2
, D = 2

g2

φ†φ

χ
, (3.5.7)

and qU(1) is the Noether charge corresponding to the U(1) current

Jμ = G
[
φ†i

↔
∂μφ + ψ̄γμ

(
ψ + �φ ψ

)]
, � = −2

φ†

χ
. (3.5.8)
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Thus, the term mqU(1) in Z represents the Noether charge while the integral
represents the topological charge.

The first two terms are classical, while the term in parentheses is the quantum
anomaly derived in [33, 34].12 At large |m| the theory is at weak coupling.

3.5.1 BPS solitons at the classical level

The U(1) invariant scalar potential term

V = |m|2G φ̄φ (3.5.9)

lifts the vacuum degeneracy leaving us with two discrete vacua: at the south and
north poles of the sphere (Fig. 3.11) i.e. φ = 0 and φ = ∞.

The kink solutions interpolate between these two vacua. Let us focus, for
definiteness, on the kink with the boundary conditions

φ → 0 at z → −∞, φ → ∞ at z → ∞ . (3.5.10)

Consider the following linear combinations of supercharges

Q = QR − i e−iβQL, Q̄ = Q̄R + i eiβQ̄L, (3.5.11)

Figure 3.11. Meridian slice of the target space sphere (thick solid line). Arrows
present the scalar potential in (3.5.1), their length being the strength of the potential.
Two vacua of the model are denoted by closed circles.

12 In the first of these papers only the bifermion part of the anomaly was obtained. The full anomalous term in
the central charge (3.5.6) was found in [34]; later it was confirmed in [119].
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where β is the argument of the mass parameter,

m = |m| eiβ . (3.5.12)

Then

{QQ̄} = 2H − 2Z , {QQ} = {Q̄Q̄} = 0. (3.5.13)

Now, let us require Q and Q̄ to vanish on the classical solution. Since for static
field configurations

Q = − (∂zφ̄ − |m|φ̄) (�R + ie−iβ�L
)

,

the vanishing of these two supercharges implies

∂zφ̄ = |m|φ̄ or ∂zφ = |m|φ . (3.5.14)

This is the BPS equation in the CP(1) model with the twisted mass.
The BPS equation (3.5.14) has a number of peculiarities compared to those in

more familiar Wess–Zumino models. The most important feature is its complexifi-
cation, i.e. the fact that Eq. (3.5.14) is holomorphic in φ.

The solution of this equation is, of course, trivial, and can be written as

φ(z) = e|m|(z−z0)−iα . (3.5.15)

Here z0 is the kink center while α is an arbitrary phase. In fact, these two parameters
enter only in the combination |m|z0 + iα. We see that the notion of the kink center
also gets complexified.

The physical meaning of the modulusα is obvious: there is a continuous family of
solitons interpolating between the north and south poles of the target space sphere.
This is due to U(1) symmetry. The soliton trajectory can follow any meridian
(Fig. 3.12).

Equation (3.5.6) for the central charge implies that classically the kink mass is

M0 = |m| (D(∞)−D(0)) = 2|m|
g2

. (3.5.16)

(The subscript 0 emphasizes that this result is obtained at the classical level.)
Quantum corrections will be considered shortly.
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Figure 3.12. The soliton solution family. The collective coordinate α in Eq.
(3.5.15) spans the interval 0 ≤ α ≤ 2π . For given α the soliton trajectory on
the target space sphere follows a meridian, so that when α varies from 0 to 2π all
meridians are covered.

3.5.2 Quantization of the bosonic moduli

To carry out conventional quasiclassical quantization we, as usual, assume the
moduli z0 and α in Eq. (3.5.15) to be (weakly) time-dependent, substitute (3.5.15)
in the bosonic part of the Lagrangian (3.5.1), integrate over z and arrive at

LQM = −M0 + M0

2
ż2

0 +
{

1

g2|m| α̇
2 − θ

2π
α̇

}
. (3.5.17)

The first term is the classical kink mass, the second describes free motion of the
kink along the z axis. The term in the braces is most interesting. The variable α is
compact. Its very existence is related to the exact U(1) symmetry of the model. The
energy spectrum corresponding to α dynamics is quantized. It is not difficult to see
that

E[α] = g2|m|
4

q2
U(1), (3.5.18)

where qU(1) is the U(1) charge of the soliton,

qU(1) = k + θ

2π
, k = an integer. (3.5.19)

Here we see the Witten phenomenon at work, analogously to that discussed in
Section 3.3.8 for monopoles. The kink U(1) charge is no longer integer in the
presence of the θ term, it is shifted by θ/(2π).
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3.5.3 The kink mass and holomorphy

Taking account of E[α] – the energy of an “internal motion” – the kink mass can be
written as

M = 2|m|
g2

+ g2|m|
4

(
k + θ

2π

)2

= 2|m|
g2

{
1 + g4

4

(
k + θ

2π

)2
}1/2

= 2|m|
∣∣∣∣ 1

g2
+ i

θ + 2πk

4π

∣∣∣∣ . (3.5.20)

Formally, the second equality here is approximate, valid to the leading order in the
coupling constant. In fact, it is exact. The important circumstance to be stressed is
that the kink mass depends on a special combination of the coupling constant and
θ , namely,

τ = 1

g2
+ i

θ

4π
(3.5.21)

In other words, it is the complexified coupling constant that enters.
Note that g2 in Eq. (3.5.20) is the bare coupling constant. It is quite clear that the

kink mass, being a physical parameter, should contain the renormalized constant
g2(m), after taking account of radiative corrections.

Since the kink mass M = |Z| radiative corrections must replace the bare 1/g2

by the renormalized 1/g2(m) inZ. One-loop calculation is quite trivial. First, rotate
the mass parameter m in such a way as to make it real, m → |m|. Simultaneously,
the θ angle is replaced by an effective θ ,

θ → θeff = θ + 2β, (3.5.22)

where the phase β is defined in Eq. (3.5.11). Next, decompose the field φ into a
classical plus quantum part,

φ → φ + δφ.

Then the D part of the central charge

Z = mq − i

∫
dz ∂z mD

becomes

D → D + 2

g2

1 − φ†φ(
1 + φ̄φ

)3 δφ† δφ. (3.5.23)
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(The term in parentheses in (3.5.6) – the anomaly – gives a non-logarithmic con-
tribution which we ignore for the time being.) Contracting δφ† δφ into a loop and
calculating this loop we arrive at

D → φ†φ

χ

[
2

g2
− 2

4π
ln
M2

uv

|m|2
]

, (3.5.24)

which, in turn, yields

Z = 2im

{
τ − 1

4π
ln
M2

uv

m2
− i

k

2

}
≡ 2im

{
τren − i

k

2

}
. (3.5.25)

A salient feature of this formula is the holomorphic dependence of Z on m and τ .
Such holomorphic dependence would be impossible if two and more loops con-
tributed to D renormalization. Thus, D renormalization beyond one loop must
cancel, and it does.13 Note also that the bare coupling in Eq. (3.5.25) conspires with
the logarithm in such a way as to replace the bare coupling by that renormalized at
|m|, as was expected.

The analysis carried out above is quasiclassical. It tells us nothing about possible
occurrence of nonperturbative terms in Z. In fact, all terms of the type

{
M2

uv

m2
exp (−4πτ)

}�
, � = integer

are fully compatible with holomorphy; they can and do emerge from instantons.
An indirect calculation of nonperturbative terms was performed in Ref. [30].

The exact formula for this central charge obtained by Dorey is

Z = mq − imD T , (3.5.26)

where the subscript D in mD appears for historical reasons, in parallel with the
Seiberg–Witten solution (it stands for dual), and

mD = m

π

⎡
⎣1

2
ln
m+ √

m2 + 4�2

m− √
m2 + 4�2

−
√

1 + 4�2

m2

⎤
⎦ . (3.5.27)

Furthermore, T is the topological charge of the kink under consideration, T = ±1.
The limit |m|/� → ∞ corresponds to the quasiclassical domain, while corrections
of the type (�/m)2k are induced by instantons.

13 Fermions are important for this cancellation.
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It is instructive to consider the quasiclassical limit of Eq. (3.5.27) when the mass
m is real and large, m � �. In this limit

〈
Z
〉
kink = − i m

2π

[
ln
(
− m2

�2

)
− 2

]

= 1

2
m− im

(
2

g2
0

− 1

2π
ln
M2

uv

m2

)
+ i m

π
, (3.5.28)

where g2
0 is the bare coupling constant, and Muv is the ultraviolet cut off. The first

term in the second line reflects the fractional U(1) charge, q = 1/2, carried by
the soliton at θ = 0. The reason for the occurrence of half-integer charge will be
explained in detail in Section 3.5.5. The second term coincides with the one-loop
corrected average of (−i∫dz∂zOcanon) in the central charge. The third term im/π

represents the anomaly.
What happens when one travels from the domain of large |m| to that of small |m|?

If m = 0 we know (e.g. from the mirror representation [120]) that there are two
degenerate two-dimensional kink supermultiplets, corresponding to the Cecotti–
Fendley–Intriligator–Vafa (CFIV) index = 2 [121]. They have quantum numbers
{q, T } = (0, 1) and (1, 1), respectively. Away from the point m = 0 the masses
of these states are no longer equal; there is one singular point with one of the two
states becoming massless [34]. The region containing the pointm = 0 is separated
from the quasiclassical region of large m by the curve of marginal stability (CMS)
on which an infinite number of other BPS states, visible quasiclassically, decay,
see Fig. 3.13.14 Thus, the infinite tower of the {q, T } BPS states existing in the
quasiclassical domain degenerates in just two stable BPS states in the vicinity of
m = 0.

3.5.4 Fermions in quasiclassical consideration

Non-zero modes are irrelevant for our consideration since, being combined with the
boson non-zero modes, they cancel for critical solitons, a usual story. Thus, for our
purposes it is sufficient to focus on the (static) zero modes in the kink background
(3.5.15). The coefficients in front of the fermion zero modes will become (time-
dependent) fermion moduli, for which we are going to build corresponding quantum
mechanics. There are two such moduli, η̄ and η.

14 CMS for CP(N − 1) with N > 2 is considered in [122].
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Figure 3.13. Curve of marginal stability in CP(1) with twisted mass. We set
4�2 → 1. From Ref. [34].

The equations for the fermion zero modes are

∂z�L − 2

χ

(
φ̄∂zφ

)
�L − i

1 − φ̄φ

χ
|m|eiβ�R = 0,

∂z�R − 2

χ

(
φ̄∂zφ

)
�R + i

1 − φ̄φ

χ
|m|e−iβ�L = 0 (3.5.29)

(plus similar equations for �̄; since our operator is Hermitean we do not need to
consider them separately).

It is not difficult to find a solution to these equations, either directly, or using
supersymmetry. Indeed, if we know the bosonic solution (3.5.15), its fermionic
superpartner – and the fermion zero modes are such superpartners – is obtained
from the bosonic one by those two supertransformations which act on φ̄, φ
nontrivially. In this way we conclude that the functional form of the fermion zero
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mode must coincide with the functional form of the boson solution (3.5.15).
Concretely,

(
�R

�L

)
= η

(
g2|m|

2

)1/2 ( −ie−iβ
1

)
e|m|(z−z0) (3.5.30)

and (
�̄R

�̄L

)
= η̄

(
g2|m|

2

)1/2 (
ieiβ

1

)
e|m|(z−z0), (3.5.31)

where the numerical factor is introduced to ensure proper normalization of the
quantum-mechanical Lagrangian. Another solution which asymptotically, at large
z, behaves as e3|m|(z−z0) must be discarded as non-normalizable.

Now, to perform quasiclassical quantization we follow the standard route: the
moduli are assumed to be time-dependent, and we derive quantum mechanics of
moduli starting from the original Lagrangian (3.5.1). Substituting the kink solution
and the fermion zero modes for � one gets

L′
QM = i η̄η̇. (3.5.32)

In the Hamiltonian approach the only remnants of the fermion moduli are the
anticommutation relations

{η̄η} = 1, {η̄η̄} = 0, {ηη} = 0, (3.5.33)

which tell us that the wave function is two-component (i.e. the kink supermultiplet
is two-dimensional). One can implement Eq. (3.5.33) by choosing e.g. η̄ = σ+,
η = σ−.

The fact that there are two critical kink states in the supermultiplet is consistent
with the multiplet shortening in N = 2. Indeed, in two dimensions the full N = 2
supermultiplet must consist of four states: two bosonic and two fermionic. 1/2 BPS
multiplets are shortened – they contain twice less states than the full supermultiplets,
one bosonic and one fermionic. This is to be contrasted with the single-state kink
supermultiplet in the minimal supersymmetric model of Section 3.1.1. The notion
of the fermion parity remains well-defined in the kink sector of the CP(1) model.

3.5.5 Combining bosonic and fermionic moduli

Quantum dynamics of the kink at hand is summarized by the Hamiltonian

HQM = M0

2
˙̄ζ ζ̇ (3.5.34)
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acting in the space of two-component wave functions. The variable ζ here is a
complexified kink center,

ζ = z0 + i

|m| α. (3.5.35)

For simplicity, we set the vacuum angle θ = 0 for the time being (it will be reinstated
later).

The original field theory we deal with has four conserved supercharges. Two of
them, Q and Q̄, see Eq. (3.5.11), act trivially in the critical kink sector. In moduli
quantum mechanics they take the form

Q = √
M0 ζ̇ η, Q̄ = √

M0
˙̄ζ η̄ ; (3.5.36)

they do indeed vanish provided that the kink is at rest. Superalgebra describing
kink quantum mechanics is {Q̄ Q} = 2HQM. This is nothing but Witten’s N = 1
supersymmetric quantum mechanics [123] (two supercharges). The realization we
deal with is peculiar and distinct from that of Witten. Indeed, the standard Wit-
ten quantum mechanics includes one (real) bosonic degree of freedom and two
fermionic, while we have two bosonic degrees of freedom, x0 and α. Neverthe-
less, superalgebra remains the same due to the fact that the bosonic coordinate is
complexified.

Finally, to conclude this section, let us calculate the U(1) charge of the
kink states. We start from Eq. (3.5.8), substitute the fermion zero modes and
get15

�qU(1) = 1

2
[η̄η] (3.5.37)

(this is to be added to the bosonic part, Eq. (3.5.19)). Given that η̄ = σ+ and
η = σ− we arrive at �qU(1) = 1

2σ3. This means that the U(1) charges of two kink
states in the supermultiplet split from the value given in Eq. (3.5.19): one has the
U(1) charge

k + 1

2
+ θ

2π
,

15 To set the scale properly, so that the U(1) charge of the vacuum state vanishes, one must antisymmetrize the
fermion current, �̄γ μ� → (1/2)

(
�̄γ μ� − �̄cγ μ�c

)
where the superscript c denotes C conjugation.
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and another

k − 1

2
+ θ

2π
.

In this way we explain the occurrence of 1/2 seen from the quasiclassical expansion
of the exact formula (3.5.28).



Part II

Long journey



Warning

In Part II we switch to Euclidean conventions. This is appropriate and convenient
from the technical point of view, since we mostly study static (time-independent)
field configurations, and A0 = 0. Then the Euclidean action reduces to the energy
functional. See Appendix A, Section A.7.
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Ever since ’t Hooft [124] and Mandelstam [125] put forward the hypothesis of
the dual Meissner effect to explain color confinement in non-Abelian gauge the-
ories, people were trying to find a controllable approximation in which one could
reliably demonstrate the occurrence of the dual Meissner effect in these theories.
A breakthrough achievement was the Seiberg–Witten solution [2] of N = 2 super-
symmetric Yang–Mills theory. They found massless monopoles and, adding a small
(N = 2)-breaking deformation, proved that they condense creating strings carry-
ing a chromoelectric flux. It was a great success in qualitative understanding of
color confinement.

A more careful examination shows, however, that details of the Seiberg–Witten
confinement are quite different from those we expect in QCD-like theories. Indeed,
a crucial aspect of Ref. [2] is that the SU(N) gauge symmetry is first broken, at a
high scale, down to U(1)N−1, which is then completely broken at a much lower scale
where condensation of magnetic monopoles occurs. Correspondingly, the strings
in the Seiberg–Witten solution are, in fact, Abelian strings [36] of the Abrikosov–
Nielsen–Olesen (ANO) type which results, in turn, in confinement whose structure
does not resemble at all that of QCD.1 In particular, the “hadronic” spectrum is
much richer than that in QCD [126, 127, 128, 35, 129]. To see this it is sufficient to
observe that, given the low-energy gauge group U(1)N−1, one has N − 1 Abelian
strings associated with each of the N − 1 Abelian factors. Since

π1
(
U(1)N−1) = ZN−1, (3.5.38)

1 It is believed, however, that the transition from thisAbelian to non-Abelian confinement is smooth. The Seiberg–
Witten construction has an adjustable parameter μ which governs the strength of the (N = 2)-breaking
deformation. In passing from the Abelian strings at small μ to non-Abelian at large μ no phase transition
is expected. One cannot prove this statement at present because the large-μ side is inaccessible. In contrast,
in the models to be discussed below, we can address and explore directly non-Abelian strings and associated
dynamics.

81



82 Introduction to Part II

theAbelian strings and, therefore, the meson spectrum come inN−1 infinite towers.
This feature is not expected in real-world QCD. Moreover, there is no experimental
indication of dynamical Abelization in QCD.

Here in Part II we begin our long journey which covers the advances of the last
decade. Most developments are even fresher, they refer to the last five years or so.
First we dwell on the recent discovery of non-Abelian strings [130, 131, 132, 133]
which appear in certain regimes in N = 2 supersymmetric gauge theories. More-
over, they were found even in N = 1 theories, the so-called M model, see
Section 5.2. The most important feature of these strings is that they acquire orienta-
tional zero modes associated with rotations of their color flux inside a non-Abelian
SU(N) subgroup of the gauge group. The occurrence of these zero modes makes
these strings non-Abelian.

The flux tubes in non-Abelian theories at weak coupling were studied in the past
in numerous papers [134, 135, 136, 137, 138, 139, 140]. These strings are referred
to as ZN strings because they are related to the center of the gauge group SU(N).
Consider, say, the SU(N) gauge theory with a few (more than one) scalar fields in
the adjoint representation. Suppose the adjoint scalars condense in such a way that
the SU(N) gauge group is broken down to its center ZN . Then string solutions are
classified according to

π1

(
SU(N)

ZN

)
= ZN .

In all these previous constructions [134, 135, 136, 137, 138, 139, 140] of the ZN
strings the flux was always directed in a fixed group direction (corresponding to a
Cartan subalgebra), and no moduli that would allow to freely rotate its orientation
in the group space were ever obtained. Therefore it is reasonable to call these ZN
strings Abelian, in contrast with the non-Abelian strings, to be discussed below,
which have orientational moduli.

Consideration of non-Abelian strings naturally leads us to confined non-Abelian
monopoles. We follow the fate of the classical ’t Hooft–Polyakov monopole (classi-
cal not in the sense of “non-quantum” but rather in the sense of something belonging
to textbooks) in the Higgs “medium” – from free monopoles, through a weakly con-
fined regime, to a highly quantum regime in which confined monopoles manifest
themselves as kinks in the low-energy theory on the string world sheet. The con-
fined monopoles are sources (sinks) to which the magnetic flux tubes are attached.
We demonstrate that they are dual to quarks just in the same vein as the magnetic
flux tubes are dual to the electric ones.

Our treatise covers the non-Abelian flux tubes both in theories with the mini-
mal (N = 1) and extended (N = 2) supersymmetry. The world sheet theory for
the Abelian strings contains only translational and supertranslational moduli fields.
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At the same time, for the non-Abelian strings the world sheet theory acquires addi-
tional massless (or very light) fields. Correspondingly, the Lüscher term coefficient,
which counts the number of such degrees of freedom, changes [141].

The third element of the big picture which we explore is the wall-string junction.
From string/D brane theory it is well known that fundamental strings can end on
the brane. In fact, this is a defining property of the brane. Since our task is to reveal
in gauge theories all phenomena described by string/D brane theory we must be
able to see the string-wall junctions. And we do see them! The string-wall junctions
which later got the name boojums were first observed in an N = 2 gauge theory
in Ref. [142]. This construction as well as later advances in the boojum theory are
thoroughly discussed in Part II.

The domain walls as brane prototypes must possess another remarkable feature –
they must localize gauge fields. This localization was first proven to occur in an
N = 2 gauge theory in Ref. [37]. The domain-wall world sheet theory is the theory
of three-dimensional gauge fields after all!

All the above elements combined together lead us to a thorough understanding
of the Meissner effect in non-Abelian theories. To understand QCD we need to
develop a model of the dual Meissner effect. Although this problem is not yet fully
solved, we report here on significant progress in this direction.





4

Non-Abelian strings

In this chapter we discuss a particular class of N = 2 supersymmetric gauge theo-
ries in which non-Abelian strings were found. One can pose the question: what is so
special about these models that makes an Abelian ZN string become non-Abelian?
Models we will dwell on below have both gauge and flavor symmetries broken
by the condensation of scalar fields. The common feature of these models is that
some global diagonal combination of color and flavor groups survive the breaking.
We consider the case when this diagonal group is SU(N)C+F , where the subscript
C + F means a combination of global color and flavor groups. The presence of
this unbroken subgroup is responsible for the occurrence of the orientational zero
modes of the string which entail its non-Abelian nature.

Clearly, the presence of supersymmetry is not important for the construction of
non-Abelian strings. In particular, while here we focus on the BPS non-Abelian
strings in N = 2 supersymmetric gauge theories, in Chapter 5 we review non-
Abelian strings in N = 1 supersymmetric theories and in Chapter 6 in non-
supersymmetric theories.

4.1 Basic model: N = 2 SQCD

The model we will deal with derives from N = 2 SQCD with the gauge group
SU(N + 1) and Nf = N flavors of the fundamental matter hypermultiplets which
we will call quarks [3]. At a generic point on the Coulomb branch of this theory,
the gauge group is broken down to U(1)N . We will be interested, however, in a
particular subspace of the Coulomb branch, on which the gauge group is broken
down to SU(N)×U(1). We will enforce this regime by a special choice of the quark
mass terms.

The breaking SU(N + 1) → SU(N)×U(1) occurs at the scale m which is
supposed to lie very high, m � �SU(N+1), where �SU(N+1) is the scale of the
SU(N + 1) theory. Correspondingly, the masses of the gauge bosons from the
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SU(N + 1)/SU(N)×U(1) sector and their superpartners, are very large – propor-
tional tom – and so are the masses of the (N + 1)-th color component of the quark
fields in the fundamental representation. We will be interested in the phenomena at
the scales � m. Therefore, our starting point is in fact the SU(N)×U(1) model with
Nf = N matter fields in the fundamental representation of SU(N), as it emerges
after the SU(N+1)→ SU(N)×U(1) breaking. These matter fields are also coupled
to the U(1) gauge field.

The field content of SU(N)×U(1) N = 2 SQCD with N flavors is as follows.
The N = 2 vector multiplet consists of the U(1) gauge field Aμ and the SU(N)
gauge field Aaμ, (here a = 1, . . . ,N2 − 1), and their Weyl fermion superpartners
(λ1
α , λ2

α) and (λ1a
α , λ2a

α ), plus complex scalar fields a, and aa . The latter are in the
adjoint representation of SU(N). The spinorial index of λ’s runs over α = 1, 2.
In this sector the global SU(2)R symmetry inherent to the N = 2 model at hand
manifests itself through rotations λ1 ↔ λ2.

The quark multiplets of the SU(N)×U(1) theory consist of the complex scalar
fields qkA and q̃Ak (squarks) and the Weyl fermions ψkA and ψ̃Ak , all in the funda-
mental representation of the SU(N) gauge group. Here k = 1, . . . ,N is the color

index whileA is the flavor index,A = 1, . . . ,N . Note that the scalars qkA and ¯̃q kA
form a doublet under the action of the global SU(2)R group.

Then the original SU(N + 1) theory is perturbed by adding a small mass term
for the adjoint matter, via the superpotential W = μTr�2. Generally speaking,
this superpotential breaks N = 2 down to N = 1. The Coulomb branch shrinks
to a number of isolated N = 1 vacua [2, 3, 126, 143, 144]. In the limit of μ → 0
these vacua correspond to special singular points on the Coulomb branch in which
N monopoles/dyons or quarks become massless. The first (N + 1) of these points
(often referred to as the Seiberg–Witten vacua) are always at strong coupling. They
correspond to N = 1 vacua of the pure SU(N + 1) gauge theory.

The massless quark points – they present vacua of a distinct type, to be referred to
as the quark vacua – may or may not be at weak coupling depending on the values
of the quark mass parameters mA. If mA � �SU(N+1), the quark vacua do lie at
weak coupling. Below we will be interested only in these quark vacua assuming
that the condition mA � �SU(N+1) is met.

In the low-energy SU(N)×U(1) theory, which is our starting point, the pertur-
bation W = μTr�2 can be truncated, leading to a crucial simplification. Indeed,
since the A chiral superfield, the N = 2 superpartner of the U(1) gauge field,1

A ≡ a + √
2λ2θ + Fa θ

2, (4.1.1)

1 The superscript 2 in Eq. (4.1.1) is the global SU(2)R index of λ rather than λ squared.
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it not charged under the gauge group SU(N)×U(1), one can introduce a super-
potential linear in A,

WA = − N

2
√

2
ξ A. (4.1.2)

Here we expand Tr�2 around its vacuum expectation value (VEV), and truncate
the series keeping only the linear term in A. The truncated superpotential is a
Fayet–Iliopoulos (FI) F -term.

Let us explain this in more detail. In N = 1 supersymmetric theory with the
gauge group SU(N)×U(1) one can add the following FI term to the action [145]
(we will call it the FI D-term here):

ξ3 D (4.1.3)

whereD is theD-component of the U(1) gauge superfield. In N = 2 SUSY theory
the field D belongs to the SU(2)R triplet, together with the F components of the
chiral field A, (F and F̄ ). Namely, let us introduce a triplet Fp (p = 1, 2, 3) using
the relations 2

D = F3,

FA = 1√
2
(F1 + iF2),

F̄A = 1√
2
(F1 − iF2). (4.1.4)

Now, the generalized FI term can be written as

SFI = −N
2

∫
d4x

∑
p

ξpFp. (4.1.5)

Comparing this with Eq. (4.1.2) we identify

ξ = (ξ1 − iξ2),

ξ̄ = (ξ1 + iξ2) (4.1.6)

This is the reason why we refer to the superpotential (4.1.2) as to the FI F -term.
A remarkable feature of the FI term is that it does not break N = 2 super-

symmetry [127, 35]. Keeping higher order terms of the expansion of μTr�2 in
powers of A would inevitably explicitly break N = 2. For our purposes it is crucial

2 Attention: The index p is an SU(2)R index rather than the color index!
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that the model we will deal with is exactly N = 2 supersymmetric. This ensures
that the flux tube solutions of the model are BPS-saturated. If higher order terms
in A are taken into account, N = 2 supersymmetry is broken down to N = 1 and
strings are no longer BPS, generally speaking. The superconductivity in the model
becomes of type I [35].

4.1.1 SU(N)×U(1) N = 2 QCD

The bosonic part of our SU(N)×U(1) theory has the form [131]

S =
∫
d4x

[
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2 + 1

g2
2

∣∣Dμaa∣∣2 + 1

g2
1

∣∣∂μa∣∣2

+ ∣∣∇μq A∣∣2 + ∣∣∇μ ¯̃qA∣∣2 + V (q A, q̃A, aa , a)

]
. (4.1.7)

Here Dμ is the covariant derivative in the adjoint representation of SU(N), and

∇μ = ∂μ − i

2
Aμ − iAaμ T

a . (4.1.8)

We suppress the color SU(N ) indices, and T a are the SU(N ) generators
normalized as

Tr (T aT b) = (1/2) δab.

The coupling constants g1 and g2 correspond to the U(1) and SU(N) sectors, respec-
tively. With our conventions, the U(1) charges of the fundamental matter fields are
±1/2.

The potential V (q A, q̃A, aa , a) in the action (4.1.7) is a sum of D and F terms,

V (q A, q̃A, aa , a) = g2
2

2

(
i

g2
2

f abcābac + q̄A T
aq A − q̃AT

a ¯̃q A
)2

+ g2
1

8

(
q̄Aq

A − q̃A ¯̃q A −Nξ3
)2

+ 2g2
2

∣∣q̃AT aq A∣∣2 + g2
1

2

∣∣∣∣q̃Aq A − N

2
ξ

∣∣∣∣
2

+ 1

2

N∑
A=1

{∣∣(a + √
2mA + 2T aaa)q A

∣∣2
+ ∣∣(a + √

2mA + 2T aaa) ¯̃q A∣∣2} . (4.1.9)
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Here f abc stand for the structure constants of the SU(N) group, and the sum over
the repeated flavor indices A is implied.

The first and second lines representD terms, the third line theFA terms, while the
fourth and the fifth lines represent the squark F terms. Using the SU(2)R rotations
we can always direct the FI parameter vector ξp in a given direction. Below in
most cases we will align the FI F -term to make the parameter ξ real. In other
words,

ξ3 = 0, ξ2 = 0, ξ = ξ1. (4.1.10)

4.1.2 The vacuum structure and excitation spectrum

Now we briefly review the vacuum structure and the excitation spectrum in our
basic SU(N)×U(1) model. As was mentioned, the underlying N = 2 SQCD with
the gauge group SU(N + 1) has a variety of vacua [143, 144, 140]. In addition
to N strong coupling vacua which exist in pure gauge theory, there is a number
of the so-called r quark vacua, where r is the number of the quark flavors which
develop VEV’s in the given vacuum. We will limit ourselves3 to a particular isolated
vacuum, with the maximal possible value of r ,

r = N .

The vacua of the theory (4.1.7) are determined by the zeros of the potential
(4.1.9). The adjoint fields develop the following VEV’s:

〈�〉 = − 1√
2

⎛
⎝ m1 . . . 0
. . . . . . . . .

0 . . . mN

⎞
⎠, (4.1.11)

where we defined the scalar adjoint matrix as

� = 1

2
a + T a aa . (4.1.12)

For generic values of the quark masses, the SU(N) subgroup of the gauge group is
broken down to U(1)N−1. However, for a special choice

m1 = m2 = · · · = mN , (4.1.13)

3 There are singular points on the Coulomb branch of the underlying SU(N +1) theory where more thanN quark
flavors become massless. These singularities are the roots of Higgs branches [143, 144, 140].
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which we will be mostly interested in in this section, the SU(N)×U(1) gauge
group remains classically unbroken. In fact, the common value m of the quark
masses determines the scale of breaking of the SU(N + 1) gauge symmetry of
the underlying theory down to SU(N)×U(1) gauge symmetry of our benchmark
low-energy theory (4.1.7).

If the value of the FI parameter is taken real we can exploit gauge rotations to
make the quark VEV’s real too. Then in the case at hand they take the color-flavor
locked form

〈qkA〉 = 〈 ¯̃qkA〉 =
√
ξ

2

⎛
⎝ 1 . . . 0
. . . . . . . . .

0 . . . 1

⎞
⎠,

k = 1, . . . ,N , A = 1, . . . ,N , (4.1.14)

where we write down the quark fields as an N × N matrix in the color and
flavor indices. This particular form of the squark condensates is dictated by the
third line in Eq. (4.1.9). Note that the squark fields stabilize at non-vanishing val-
ues entirely due to the U(1) factor represented by the second term in the third
line.

The vacuum field (4.1.14) results in the spontaneous breaking of both gauge and
flavor SU(N )’s. A diagonal global SU(N ) survives, however,

U(N)gauge × SU(N)flavor → SU(N)C+F . (4.1.15)

Thus, a color-flavor locking takes place in the vacuum. A version of this pattern of
the symmetry breaking was suggested long ago [146].

Let us move on to the issue of the excitation spectrum in this vacuum [35, 131].
The mass matrix for the gauge fields (Aaμ,Aμ) can be read off from the quark kinetic
terms in Eq. (4.1.7). It shows that all SU(N) gauge bosons become massive, with
one and the same mass

MSU(N) = g2
√
ξ . (4.1.16)

The equality of the masses is no accident. It is a consequence of the unbroken
SU(N)C+F symmetry (4.1.15).

The mass of the U(1) gauge boson is

MU(1) = g1

√
N

2
ξ . (4.1.17)
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Thus, the theory is fully Higgsed. The mass spectrum of the adjoint scalar excitations
is the same as the one for the gauge bosons. This is enforced by N = 2.

What is the mass spectrum of the quark excitations? It can be read off from
the potential (4.1.9). We have 4N2 real degrees of freedom of quark scalars q and
q̃. Out of those N2 are eaten up by the Higgs mechanism. The remaining 3N2

states split in three plus 3(N2 −1) states with masses (4.1.17) and (4.1.16), respec-
tively. Combining these states with the massive gauge bosons and the adjoint scalar
states we get [35, 131] one long N = 2 BPS multiplet (eight real bosonic plus
eight fermionic degrees of freedom) with mass (4.1.17) and N2 − 1 long N = 2
BPS multiplets with mass (4.1.16). Note that these supermultiplets come in repre-
sentations of the unbroken SU(N)C+F group, namely, the singlet and the adjoint
representations.

To conclude this section we want to discuss quantum effects in the theory (4.1.7).
At a high scale m the SU(N + 1) gauge group is broken down to SU(N)×U(1) by
condensation of the adjoint fields if the condition (4.1.13) is met. The SU(N) sector
is asymptotically free. The running of the corresponding gauge coupling, if non-
interrupted, would drag the theory into the strong coupling regime. This would
invalidate our quasiclassical analysis. Moreover, strong coupling effects on the
Coulomb branch would break SU(N) gauge subgroup (as well as the SU(N)C+F
group) down to U(1)N−1 by the Seiberg–Witten mechanism [2]. No non-Abelian
strings would emerge.

A possible way out was proposed in [143, 144]. One can add more flavors to
the theory making Nf > 2N . Then the SU(N) sector is not asymptotically free
and does not evolve into the strong coupling regime. However, the ANO strings in
the multiflavor theory (on the Higgs branches) become semilocal strings [147] and
confinement is lost (see Section 4.7).

Here we take a different route assuming the FI parameter ξ to be large,4

ξ � �SU(N). (4.1.18)

This condition ensures weak coupling in the SU(N) sector because the SU(N)
gauge coupling does not run below the scale of the quark VEV’s which is determined
by ξ . More explicitly,

8π2

g2
2(ξ)

= N ln

√
ξ

�SU(N)
� 1. (4.1.19)

4 We discuss this important issue in more detail at the end of Section 4.9.
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Alternatively one can say that

�NSU(N) = ξN/2 exp

(
− 8π2

g2
2(ξ)

)
� ξN/2. (4.1.20)

4.2 ZN Abelian strings

Strictly speaking, N = 2 SQCD with the gauge group SU(N + 1) does not have
stable flux tubes. They are unstable due to monopole–antimonopole pair creation in
the SU(N +1)/SU(N )×U(1) sector. However, at largem these monopoles become
heavy. In fact, there are no such monopoles in the low-energy theory (4.1.7) (where
they can be considered as infinitely heavy). Therefore, the theory (4.1.7) has stable
string solutions. When the perturbation μTr�2 is truncated to the FI term (4.1.2),
the theory enjoys N = 2 supersymmetry and has BPS string solutions [127, 35,
148, 140, 131]. Note that here we discuss magnetic flux tubes. They are formed in
the Higgs phase of the theory upon condensation of the squark fields and lead to
confinement of monopoles.

Now, let us briefly review the BPS string solutions [140, 130, 131] in the model
(4.1.7). We will consider the case of equal quark mass terms (4.1.13) when the
global SU(N )C+F group is unbroken. First we review the Abelian solutions forZN
strings and then, in Section 4.3 show that in the limit m1 = m2 = · · · = mN ≡ m

they acquire orientational moduli.
In fact, the ZN Abelian strings considered below are just partial solutions of

the vortex equations (see Eq. (4.2.10) below). In the equal mass limit (4.1.13) the
global SU(N)C+F group is restored and the general solution for the non-Abelian
string gets a continuous moduli space isomorphic to CP(N − 1). The ZN strings
are just N discrete points on this moduli space.
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In the generic case of unequal quark masses, the SU(N)C+F group is explicitly
broken, and the continuous moduli space of the string solutions is lifted. Only the
ZN Abelian strings survive this breaking. We will dwell on the case of generic
quark masses in Section 4.4.4.

It turns out that the string solutions do not involve the adjoint fields a and aa .
The BPS strings are “built” from gauge and quark fields only. Therefore, in
order to find the classical solution, in the action (4.1.7) we can set the adjoint
fields to their VEV’s (4.1.11). This is consistent with equations of motion. Of
course, at the quantum level the adjoint fields start fluctuating, deviating from
their VEV’s.

We use the ansatz

qkA = ¯̃qkA = 1√
2
ϕkA (4.2.1)

reducing the number of the squark degrees of freedom to one complex field for
each color and flavor. With these simplifications the action of the model (4.1.7)
becomes

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2

+|∇μϕA|2 + g2
2

2

(
ϕ̄AT

aϕA
)2 + g2

1

8

(|ϕA|2 −Nξ
)2} , (4.2.2)

while the VEV’s of the squark fields (4.1.14) are

〈ϕ〉 = √ξ diag {1, 1, . . . , 1}. (4.2.3)

Since the spontaneously broken gauge U(1) is a part of the model under con-
sideration, the model supports conventional ANO strings [36], in which one can
discard the SU(N)gauge part of the action altogether. The topological stability of
the ANO string is due to the fact that π1(U(1)) = Z.

These are not the strings we are interested in. At first sight, the triviality of the
homotopy group, π1(SU(N)) = 0, implies that there are no other topologically
stable strings. This impression is false. One can combine the ZN center of SU(N )
with the elements exp(2πik/N) ∈U(1) to get a topologically stable string solution
possessing both windings, in SU(N ) and U(1). In other words,

π1
(
SU(N)× U(1)/ZN

) �= 0. (4.2.4)
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It is easy to see that this nontrivial topology amounts to selecting just one element
of ϕ, say, ϕ11, or ϕ22, etc, and make it wind, for instance,5

ϕstring = √ξ diag(1, 1, . . . , eiα), x → ∞. (4.2.5)

Such strings can be called elementary; their tension is 1/N th of that of the ANO
string. The ANO string can be viewed as a bound state of N elementary strings.

More concretely, one of theZN string solutions (a progenitor of the non-Abelian
string) can be written as follows [131]:

ϕ =

⎛
⎜⎜⎜⎜⎜⎝

φ2(r) 0 . . . 0

. . . . . . . . . . . .

0 . . . φ2(r) 0

0 0 . . . eiαφ1(r)

⎞
⎟⎟⎟⎟⎟⎠,

A
SU(N)
i = 1

N

⎛
⎜⎜⎜⎜⎜⎝

1 . . . 0 0

. . . . . . . . . . . .

0 . . . 1 0

0 0 . . . −(N − 1)

⎞
⎟⎟⎟⎟⎟⎠
(
∂iα
)[− 1 + fNA(r)

]
,

A
U(1)
i = I

2
Ai = I

N

(
∂iα
)[

1 − f (r)
]
, A

U(1)
0 = A

SU(N)
0 = 0, (4.2.6)

where i = 1, 2 labels the coordinates in the plane orthogonal to the string axis,
r and α are the polar coordinates in this plane, and I is the unit N × N matrix.
Other ZN string solutions are obtained by permutations of the rotating flavor.

The profile functions φ1(r) and φ2(r) determine the profiles of the scalar fields,
while fNA(r) and f (r) determine the SU(N ) and U(1) fields of the string solu-
tions, respectively. These functions satisfy the following rather obvious boundary
conditions:

φ1(0) = 0,

fNA(0) = 1, f (0) = 1, (4.2.7)

at r = 0, and

φ1(∞) = √ξ , φ2(∞) = √ξ ,

fNA(∞) = 0, f (∞) = 0 (4.2.8)

at r = ∞.

5 As explained below, α is the angle of the coordinate �x⊥ in the perpendicular plane.
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Now, let us derive the first-order equations which determine the profile functions,
making use of the Bogomol’nyi representation [5] of the model (4.2.2). We have

T =
∫
d2x

{[
1√
2g2

F ∗a
3 + g2√

2

(
ϕ̄AT

aϕA
)]2

+
[

1√
2g1

F ∗
3 + g1

2
√

2

(|ϕA|2 −Nξ
)]2

+ ∣∣∇1 ϕ
A + i∇2 ϕ

A
∣∣2 + N

2
ξ F ∗

3

}
, (4.2.9)

where
F ∗

3 = F12 and F ∗a
3 = Fa12,

and we assume that the fields in question depend only on the transverse coordinates
xi , i = 1, 2.

The Bogomol’nyi representation (4.2.9) leads us to the following first-order
equations:

F ∗
3 + g2

1

2

(∣∣ϕA∣∣2 −Nξ
) = 0,

F ∗a
3 + g2

2

(
ϕ̄AT

aϕA
) = 0,

(∇1 + i∇2)ϕ
A = 0. (4.2.10)

Once these equations are satisfied, the energy of the BPS object is given by the last
surface term in (4.2.9). Note that the representation (4.2.9) can be written also with
the opposite sign in front of the flux terms. Then we would get the Bogomol’nyi
equations for the anti-string.

For minimal winding we substitute the ansatz (4.2.6) in Eqs. (4.2.10) to get the
first-order equations for the profile functions of the ZN string [140, 131],

r
d

dr
φ1(r)− 1

N

(
f (r)+ (N − 1)fNA(r)

)
φ1(r) = 0,

r
d

dr
φ2(r)− 1

N

(
f (r)− fNA(r)

)
φ2(r) = 0,

−1

r

d

dr
f (r)+ g2

1N

4

[
(N − 1)φ2(r)

2 + φ1(r)
2 −Nξ

] = 0,

−1

r

d

dr
fNA(r)+ g2

2

2

[
φ1(r)

2 − φ2(r)
2] = 0. (4.2.11)

These equations present a ZN -string generalization of the Bogomol’nyi equations
for the ANO string [5] (see also (3.2.19) and (C.13)). They were solved numerically
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B
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Figure 4.1. Two distinct Z2 strings in U(2) theory.

for the U(2) case (i.e. N = 2) in [131]. Clearly, the solutions to the first-order
equations automatically satisfy the second-order equations of motion.

The tension of this elementary ZN string is

T1 = 2π ξ . (4.2.12)

Since our string is a BPS object, this result is exact and has neither perturbative
nor nonperturbative corrections. Note that the tension of the ANO string isN times
larger; in our normalization

TANO = 2π N ξ . (4.2.13)

Clearly, the ansatz (4.2.6) admits permutations, leading to other ZN string solu-
tions of type (4.2.6). They can be obtained by changing the position of the “winding”
field in Eq. (4.2.6). Altogether we have N elementary ZN strings. For instance, if
N = 2 (i.e. the gauge group is SU(2)×U(1)), we have two distinct Z2 strings dif-
fering by the orientation of the flux of the U(1) magnetic field with respect to that
of the third isocomponent of the SU(2) magnetic field, see Fig. 4.1.

Of course, the first-order equations (4.2.11) can be also obtained using super-
symmetry. We start from the supersymmetry transformations for the fermion fields
in the theory (4.1.7),

δλfα = 1

2
(σμσ̄νε

f )αFμν + εαpFm(τm)
f
p + · · · ,

δλaf α = 1

2
(σμσ̄νε

f )αF aμν + εαpF am(τm)
f
p + · · · ,

δ
¯̃
ψkAα̇ = i

√
2 ∇̄/α̇αqkAf εαf + · · · ,

δψ̄α̇Ak = i
√

2 ∇̄/α̇αq̄fAkεαf + · · · (4.2.14)
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Here f = 1, 2 is the SU(2)R index and λfα and λafα are the fermions from the
N = 2 vector supermultiplets of the U(1) and SU(2) factors, respectively, while
qkAf denotes the SU(2)R doublet of the squark fields qkA and ¯̃qAk in the quark
hypermultiplets. The parameters of the SUSY transformations in the microscopic
theory are denoted as εαf . Furthermore, the F terms in Eq. (4.2.14) are

F 1 + iF 2 = i
g2

1

2

(
Tr |ϕ|2 −Nξ

)
, F 3 = 0 (4.2.15)

for the U(1) field, and

Fa1 + iF a2 = i g2
2 Tr

(
ϕ̄T aϕ

)
, Fa3 = 0 (4.2.16)

for the SU(N) field. The dots in (4.2.14) stand for terms involving the adjoint
scalar fields which vanish on the string solution (in the equal mass case) because
the adjoint fields are given by their vacuum expectation values (4.1.11).

In Ref. [35] it was shown that four supercharges selected by the conditions

ε12 = −ε11, ε21 = ε22 (4.2.17)

act trivially on the BPS string. Imposing the conditions (4.2.17) and requiring the
left-hand sides of Eqs. (4.2.14) to vanish6 we get, upon substituting the ansatz
(4.2.6), the first-order equations (4.2.11).

6 If, instead of (4.2.17), we required other combinations of the SUSY transformation parameters to vanish (chang-
ing the signs in (4.2.17)) we would get the anti-string equations, with the opposite direction of the gauge
fluxes.
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4.3 Elementary non-Abelian strings

The elementary ZN strings in the model (4.1.7) give rise to non-Abelian strings
provided the condition (4.1.13) is satisfied [130, 131, 132, 133]. This means that,
in addition to trivial translational moduli, they have extra moduli corresponding
to spontaneous breaking (on the string) of a non-Abelian symmetry acting in the
bulk theory in the infrared. Indeed, while the “flat” vacuum (4.1.14) is SU(N)C+F
symmetric, the solution (4.2.6) breaks this symmetry7 down to U(1)×SU(N − 1)
(at N > 2). This ensures the presence of 2(N − 1) orientational moduli.

To obtain the non-Abelian string solution from the ZN string (4.2.6) we apply
the diagonal color-flavor rotation preserving the vacuum (4.1.14). To this end it is
convenient to pass to the singular gauge where the scalar fields have no winding
at infinity, while the string flux comes from the vicinity of the origin. In this gauge
we have

ϕ = U

⎛
⎜⎜⎝
φ2(r) 0 . . . 0
. . . . . . . . . . . .

0 . . . φ2(r) 0
0 0 . . . φ1(r)

⎞
⎟⎟⎠U−1,

A
SU(N)
i = 1

N
U

⎛
⎜⎜⎝

1 . . . 0 0
. . . . . . . . . . . .

0 . . . 1 0
0 0 . . . −(N − 1)

⎞
⎟⎟⎠U−1 (∂iα) fNA(r),

A
U(1)
i = − 1

N

(
∂iα
)
f (r), A

U(1)
0 = A

SU(N)
0 = 0, (4.3.1)

where U is a matrix ∈ SU(N)C+F . This matrix parametrizes orientational zero
modes of the string associated with flux rotation in SU(N ). Since the diagonal
color-flavor symmetry is not broken by the VEV’s of the scalar fields in the bulk
(color-flavor locking) it is physical and has nothing to do with the gauge rotations
eaten by the Higgs mechanism. The orientational moduli encoded in the matrix U
are not gauge artifacts.

The orientational zero modes of a non-Abelian string were first observed in
[130, 131]. In Ref. [130] a general index theorem was proved which shows that
the dimension of elementary string moduli space is 2N = 2(N − 1) + 2 where
2 stands for translational moduli while 2(N − 1) is the dimension of the internal
moduli space.8 In Ref. [131] the explicit solution for the non-Abelian string which
we review here was found and explored.

7 At N = 2 the string solution breaks SU(2) down to U(1).
8 The index theorem in [130] deals with more general multiple strings. It was shown that the dimension of the

moduli space of the k-string solution is 2kN .
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In fact, non-translational zero modes of strings were discussed earlier in a
U(1)×U(1) model [149, 150], and somewhat later, in more contrived models, in
Ref. [151]. (The latter paper is entitled “Zero modes of non-Abelian vortices”!) It
is worth emphasizing that, along with some apparent similarities, there are drastic
distinctions between the “non-Abelian strings” we review here and the strings that
were discussed in the 1980s. In particular, in the example treated in Ref. [151]
the gauge group is not completely broken in the vacuum, and, therefore, there are
massless gauge fields in the bulk. If the unbroken generator acts non trivially on
the string flux (which is proportional to a broken generator) then it can and does
create zero modes. Infrared divergence problems ensue immediately.

In the case we treat here the gauge group is completely broken (up to a dis-
crete subgroup ZN ). The theory in the bulk is fully Higgsed. The unbroken group
SU(N)C+F , a combination of the gauge and flavor groups, is global. There are no
massless fields in the bulk.

It is possible to model the example considered in [151] if we gauge the unbroken
global symmetry SU(N)C+F of the model (4.1.7) with respect to yet another gauge
field Bμ.

Let us also note that a generalization of the non-Abelian string solutions in six-
dimensional gauge theory with eight supercharges was carried out in [152] while
the non-Abelian strings in strongly coupled vacua were considered in [153].

4.4 The world-sheet effective theory

The non-Abelian string solution (4.3.1) is characterized by two translational moduli
(the position of the string in the (1,2) plane) and 2(N − 1) orientational moduli.
Below we review the effective two-dimensional low-energy theory on the string
world sheet. As usual, the translational moduli decouple and we focus on the inter-
nal dynamics of the orientational moduli. Our string is a 1/2-BPS state in N = 2
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supersymmetric gauge theory with eight supercharges.Thus it has four supercharges
acting in the world sheet theory. This means that we have extended N = 2 super-
symmetric effective theory on the string world sheet. This theory turns out to be
a two-dimensional CP(N − 1) model [130, 131, 132, 133]. In Section 4.4 we will
first present a derivation of this theory and then discuss the underlying physics.

4.4.1 Derivation of the CP(N − 1) model

Now, following Refs. [131, 132, 154], we will derive the effective low-energy
theory for the moduli residing in the matrix U in the problem at hand. As is clear
from the string solution (4.3.1), not each element of the matrix U will give rise to a
modulus. The SU(N − 1)×U(1) subgroup remains unbroken by the string solution
under consideration; therefore the moduli space is

SU(N)

SU(N − 1)× U(1)
∼ CP(N − 1). (4.4.1)

Keeping this in mind we parametrize the matrices entering Eq. (4.3.1) as follows:

1

N

⎧⎪⎪⎨
⎪⎪⎩U

⎛
⎜⎜⎝

1 . . . 0 0
. . . . . . . . . . . .

0 . . . 1 0
0 0 . . . −(N − 1)

⎞
⎟⎟⎠U−1

⎫⎪⎪⎬
⎪⎪⎭
l

p

= −nln∗
p + 1

N
δlp , (4.4.2)

where nl is a complex vector in the fundamental representation of SU(N ), and

n∗
l n
l = 1, (4.4.3)

(l,p = 1, . . . ,N are color indices). As we will show below, one U(1) phase will
be gauged away in the effective sigma model. This gives the correct number of
degrees of freedom, namely, 2(N − 1).

With this parametrization the string solution (4.3.1) can be rewritten as

ϕ = 1

N

[
(N − 1)φ2 + φ1

]+ (φ1 − φ2)

(
n · n∗ − 1

N

)
,

A
SU(N)
i =

(
n · n∗ − 1

N

)
εij
xj

r2
fNA(r),

A
U(1)
i = 1

N
εij
xj

r2
f (r), (4.4.4)

where for brevity we suppress all SU(N) indices. The notation is self-evident.
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Assume that the orientational moduli are slowly varying functions of the string
world-sheet coordinates xk , k = 0, 3. Then the moduli nl become fields of a (1+1)-
dimensional sigma model on the world sheet. Since nl parametrize the string zero
modes, there is no potential term in this sigma model.

To obtain the kinetic term we substitute our solution (4.4.4), which depends on
the moduli nl , in the action (4.2.2), assuming that the fields acquire a dependence on
the coordinates xk via nl(xk). In doing so we immediately observe that we have to
modify our solution: we have to include in it the k = 0, 3 components of the gauge
potential which are no longer vanishing. In the CP(1) case, as was shown in [132],
the potential Ak must be orthogonal (in the SU(2) space) to the matrix (4.4.2), as
well as to its derivatives with respect to xk . Generalization of these conditions to
the CP(N − 1) case leads to the following ansatz:

A
SU(N)
k = −i [∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)

]
ρ(r), α = 0, 3, (4.4.5)

where we assume the contraction of the color indices inside the parentheses,

(n∗∂kn) ≡ n∗
l ∂kn

l ,

and introduce a new profile function ρ(r).
The function ρ(r) in Eq. (4.4.5) is determined through a minimization procedure

[131, 132, 154] which generates ρ’s own equation of motion. Now we will outline
its derivation. But at first we note that ρ(r) vanishes at infinity,

ρ(∞) = 0. (4.4.6)

The boundary condition at r = 0 will be determined shortly.
The kinetic term for nl comes from the gauge and quark kinetic terms in

Eq. (4.2.2). Using Eqs. (4.4.4) and (4.4.5) to calculate the SU(N ) gauge field
strength we find

F
SU(N)
ki = (∂kn · n∗ + n · ∂kn∗) εij xj

r2
fNA

[
1 − ρ(r)

]
+ i
[
∂kn · n∗ − n · ∂kn∗ − 2n · n∗(n∗∂kn)

] xi
r

dρ(r)

dr
. (4.4.7)

In order to have a finite contribution from the term TrF 2
ki in the action we have to

impose the constraint

ρ(0) = 1. (4.4.8)
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Substituting the field strength (4.4.7) in the action (4.2.2) and including, in addition,
the quark kinetic term, after rather straightforward but tedious algebra we arrive at

S(1+1) = 2β
∫
dt dz

{
(∂k n

∗∂k n)+ (n∗∂k n)2
}
, (4.4.9)

where the coupling constant β is given by

β = 2π

g2
2

I , (4.4.10)

and I is a basic normalizing integral

I =
∫ ∞

0
rdr

{(
d

dr
ρ(r)

)2

+ 1

r2
f 2
NA

(
1 − ρ

)2

+ g2
2

[
ρ2

2

(
φ2

1 + φ2
2

)+ (1 − ρ)(φ2 − φ1)
2
]}

. (4.4.11)

The theory in Eq. (4.4.9) is nothing but the two-dimensional CP(N − 1) model.
To see that this is indeed the case we can eliminate the second term in (4.4.9)
introducing a non-propagating U(1) gauge field. We review this in Section 4.4.3
(see also Appendix B), and then discuss the underlying physics of the model.

Thus, we obtain the CP(N − 1) model as an effective low-energy theory on the
world sheet of the non-Abelian string. Its coupling constant β is related to the four-
dimensional coupling g2

2 via the basic normalizing integral (4.4.11). This integral
must be viewed as an “action” for the profile function ρ.

Varying (4.4.11) with respect to ρ one obtains the second-order equation which
the function ρ must satisfy, namely,

− d2

dr2
ρ − 1

r

d

dr
ρ − 1

r2
f 2
NA(1 − ρ)+ g2

2

2

(
φ2

1 + φ2
2

)
ρ − g2

2

2
(φ1 − φ2)

2 = 0.

(4.4.12)

After some algebra and extensive use of the first-order equations (4.2.11) one can
show that the solution of (4.4.12) is

ρ = 1 − φ1

φ2
. (4.4.13)

This solution satisfies the boundary conditions (4.4.6) and (4.4.8). Substituting this
solution back in the expression for the normalizing integral (4.4.11) one can check
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that this integral reduces to a total derivative and is given by the flux of the string
determined by fNA(0) = 1. In this way we arrive at

I = 1. (4.4.14)

This result can be traced back to the fact that our theory (4.2.2) is N = 2 super-
symmetric theory, and the string is BPS saturated. In Section 4.5 we will see that
this fact is crucial for the interpretation of confined monopoles as sigma-model
kinks. Generally speaking, for non-BPS strings, I could be a certain function of N
(see Ref. [155] for a particular example).

Equation (4.4.14) implies

β = 2π

g2
2

. (4.4.15)

The two-dimensional coupling is determined by the four-dimensional non-Abelian
coupling. This relation is obtained at the classical level. In quantum theory both
couplings run. Therefore, we have to specify a scale at which the relation (4.4.15)
takes place. The two-dimensional CP(N − 1) model (4.4.9) is an effective low-
energy theory appropriate for the description of internal string dynamics at low
energies, lower than the inverse thickness of the string which is given by the masses
of the gauge/quark multiplets (4.1.16) and (4.1.17) in the bulk SU(N)×U(1) theory.
Thus, the parameter g

√
ξ plays the role of a physical ultraviolet (UV) cut off in

the action (4.4.9). This is the scale at which Eq. (4.4.15) holds. Below this scale,
the coupling β runs according to its two-dimensional renormalization-group flow,
see Section 4.4.3. It is worth noting that if the bulk theory were not Higgsed the
running law of the bulk theory would exactly match that of the CP(N − 1) model.
Indeed, Eq. (4.4.15) implies that

(
4πβCP(N−1)

)
0 =

(
8π2

g2
2

)
0

. (4.4.16)

To get the running couplings we must add −bCP(N−1) ln(M0/μ) on the left-hand
side of Eq. (4.4.16) and −bSU(N)×U(1) ln(M0/μ) on the right-hand side. The coef-
ficients of the two- and four-dimensional Gell-Mann–Low functions coincide,
bCP(N−1) = bSU(N)×U(1) = N .

Thus – we repeat again – the model (4.4.9) describes the low-energy limit: all
higher-order terms in derivatives are neglected. Quartic in derivatives, sextic, and
so on, terms certainly exist. In fact, the derivative expansion runs in powers of

(
g2
√
ξ
)−1

∂α , (4.4.17)
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where g2
√
ξ gives the order of magnitude of masses in the bulk theory. The

sigma model (4.4.9) is adequate at scales below g2
√
ξ where the higher-derivative

corrections are negligibly small.
To conclude this section let us narrow down the model (4.4.9) setting N = 2. In

this case we deal with the CP(1) model equivalent to the O(3) sigma model. The
action (4.4.9) can be represented as (see Appendix B)

S(1+1) = β

2

∫
dt dz (∂k S

a)2, (4.4.18)

where Sa (a = 1, 2, 3) is a real unit vector, (Sa)2 = 1, sweeping the two-
dimensional sphere S2. It is defined as

Sa = −n∗τan. (4.4.19)

The model (4.4.18), as an effective theory on the world sheet of the non-Abelian
string in SU(2)×U(1) SQCD with N = 2 supersymmetry, was first derived in
[131] in a field-theoretical framework. This derivation was generalized for arbitrary
N in [154]. A brane construction of (4.4.9) was presented in [130].

4.4.2 Fermion zero modes

In Section 4.4.1 we derived the bosonic part of the effective N = 2 supersymmetric
CP(N−1)model. Now we will find fermion zero modes for the non-Abelian string.
Inclusion of these modes into consideration will demonstrate that the internal world
sheet dynamics is given by N = 2 supersymmetric CP(N−1)model. This program
was carried out in [132] for N = 2. Here we will focus on this construction.

The string solution (4.4.4) in the SU(2)×U(1) theory reduces to

ϕ = U

(
φ2(r) 0

0 φ1(r)

)
U−1,

Aai (x) = −Sa εij xj
r2
fNA(r),

Ai(x) = εij
xj

r2
f (r), (4.4.20)

while the parametrization (4.4.2) reduces to

Saτa = Uτ 3U−1, a = 1, 2, 3, (4.4.21)

by virtue of Eq. (4.4.19).
Our string solution is 1/2 BPS-saturated. This means that four supercharges,

out of eight of the four-dimensional theory (4.1), act trivially on the string solution
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(4.4.20). The remaining four supercharges generate four fermion zero modes which
were termed supertranslational modes because they are superpartners to two trans-
lational zero modes. The corresponding four fermionic moduli are superpartners
to the coordinates x0 and y0 of the string center. The supertranslational fermion
zero modes were found in Ref. [35] for the U(1) ANO string in N = 2 theory.
This is discussed in detail in Appendix C, see Section C.3. Transition to the non-
Abelian model at hand is absolutely straightforward. We will not dwell on this
procedure here.

Instead, we will focus on four additional fermion zero modes which arise
only for the non-Abelian string, to be referred to as superorientational. They are
superpartners of the bosonic orientational moduli Sa .

Let us see how one can explicitly construct these four zero modes (in CP(1)) and
study their impact on the string world sheet.

At N = 2 the fermionic part of the action of the model (4.1.7) is

Sferm =
∫
d4x

{
i

g2
2

λ̄af D̄/λ
af + i

g2
1

λ̄f ∂̄/λ
f + Tr

[
ψ̄i∇̄/ψ]+ Tr

[
ψ̃i∇/ ¯̃

ψ
]

+ 1√
2
εabcāa(λbf λ

cf )+ 1√
2
εabc(λ̄bf λ̄cf )a

c

+ i√
2

Tr
[
q̄f (λ

f ψ)+ (ψ̃λf )q
f + (ψ̄λ̄f )q

f + q̄ f (λ̄f
¯̃
ψ)
]

+ i√
2

Tr
[
q̄f τ

a(λaf ψ)+ (ψ̃λaf )τ
aq f + (ψ̄λ̄af )τ

aq f + q̄ f τ a(λ̄af
¯̃
ψ)
]

+ i√
2

Tr
[
ψ̃
(
a + aaτa

)
ψ
]

+ i√
2

Tr
[
ψ̄
(
a + aaτa

) ¯̃
ψ
]}

, (4.4.22)

where we use the matrix color-flavor notation for the matter fermions (ψα)kA

and (ψ̃α)Ak . The traces in Eq. (4.4.22) are performed over the color-flavor indices.
Contraction of spinor indices is assumed inside the parentheses, say, (λψ) ≡ λαψ

α .
As was mentioned in Section 4.2, the four supercharges selected by the conditions

(4.2.17) act trivially on the BPS string in the theory with the FI term of the F type.
To generate superorientational fermion zero modes the following method was used
in [132]. Assume the orientational moduli Sa in the string solution (4.4.20) to
have a slow dependence on the world-sheet coordinates x0 and x3 (or t and z).
Then the four (real) supercharges selected by the conditions (4.2.17) no longer act
trivially. Instead, their action now generates fermion fields proportional to x0 and
x3 derivatives of Sa .

This is exactly what one expects from the residual N = 2 supersymmetry in
the world sheet theory. The above four supercharges generate the world-sheet
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supersymmetry in the N = 2 two-dimensional CP(1) model,

δχa1 = i
√

2
[
(∂0 + i∂3) S

a ε2 + εabcSb (∂0 + i∂3) S
c η2

]
,

δχa2 = i
√

2
[
(∂0 − i∂3) S

a ε1 + εabcSb (∂0 − i∂3) S
c η1

]
. (4.4.23)

Here χaα (α = 1, 2 is the spinor index) are real two-dimensional fermions of the
CP(1) model. They are superpartners of Sa and are subject to the orthogonality
condition (see Appendix B)

Saχaα = 0. (4.4.24)

The real parameters of the N = 2 two-dimensional SUSY transformations
εα and ηα are identified with the parameters of the four-dimensional SUSY
transformations (with the constraint (4.2.17)) as follows:

ε1 − iη1 = 1√
2
(ε21 + ε22) = √

2ε22,

ε2 + iη2 = 1√
2
(ε11 − ε12) = √

2ε11. (4.4.25)

In this way the world-sheet supersymmetry was used to re-express the fermion
fields obtained upon the action of these four supercharges in terms of the (1 + 1)-
dimensional fermions. This procedure gives us the superorientational fermion zero
modes [132],

ψ̄Ak2̇ =
(
τa

2

)
Ak

1

2φ2
(φ2

1 − φ2
2)
[
χa2 + iεabc Sb χc2

]
,

¯̃
ψkA

1̇
=
(
τa

2

)kA 1

2φ2
(φ2

1 − φ2
2)
[
χa1 − iεabc Sb χc1

]
,

ψ̄Ak1̇ = 0, ¯̃
ψkA

2̇
= 0,

λa22 = i

2

x1 + ix2

r2
fNA

φ1

φ2

[
χa1 − iεabc Sb χc1

]
,

λa11 = i

2

x1 − ix2

r2
fNA

φ1

φ2

[
χa2 + iεabc Sb χc2

]
,

λa12 = λa11, λa21 = λa22, (4.4.26)

where the dependence on xi is encoded in the string profile functions, see
Eq. (4.4.20).
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Now let us directly check that the zero modes (4.4.26) satisfy the Dirac equations
of motion. From the fermion action of the model (4.4.22) we get the Dirac
equations for λa ,

i

g2
2

D̄/λaf + i√
2

Tr
(
ψ̄τ aq f + q̄ f τ a

¯̃
ψ
)

= 0. (4.4.27)

At the same time, for the matter fermions,

i∇/ψ̄ + i√
2

[
q̄f λ

f − (τ aq̄f )λ
af + (a − aaτa)ψ̃

]
= 0,

i∇/ ¯̃
ψ + i√

2

[
λf q

f + λaf (τ
aq f )+ (a + aaτa)ψ

]
= 0. (4.4.28)

Next, we substitute the orientational fermion zero modes (4.4.26) into these
equations. After some algebra one can check that (4.4.26) do satisfy the Dirac
equations (4.4.27) and (4.4.28) provided the first-order equations for the string
profile functions (4.2.11) are satisfied.

Furthermore, it is instructive to check that the zero modes (4.4.26) do produce
the fermion part of the N = 2 two-dimensional CP(1) model. To this end we return
to the usual assumption that the fermion collective coordinates χaα in Eq. (4.4.26)
have an adiabatic dependence on the world-sheet coordinates xk (k = 0, 3). This
is quite similar to the procedure of Section 4.4.1 for bosonic moduli. Substituting
Eq. (4.4.26) in the fermion kinetic terms in the bulk theory (4.4.22), and taking
into account the derivatives of χaα with respect to the world-sheet coordinates, we
arrive at

β

∫
dtdz

{
1

2
χa1 (∂0 − i∂3) χ

a
1 + 1

2
χa2 (∂0 + i∂3) χ

a
2

}
, (4.4.29)

where β is given by the same integral (4.4.15) as for the bosonic kinetic term, see
Eq. (4.4.18).

Finally we must discuss the four-fermion interaction term in the CP(1) model. We
can use the world sheet N = 2 supersymmetry to reconstruct this term. The SUSY
transformations in the CP(1) model have the form (see e.g. [156] for a review)

δχa1 = i
√

2 (∂1 + i∂3) S
a ε2 − √

2ε1 S
a(χb1χ

b
2 ),

δχa2 = i
√

2 (∂1 − i∂3) S
a ε1 + √

2ε2 S
a(χb1χ

b
2 ),

δSa = √
2(ε1χ

a
2 + ε2χ

a
1 ), (4.4.30)
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where we put ηα = 0 for simplicity. Imposing this supersymmetry leads to the
following effective theory on the string world sheet

SCP(1) = β

∫
dtdz

{
1

2
(∂kS

a)2 + 1

2
χa1 i(∂0 − i∂3) χ

a
1

+1

2
χa2 i(∂0 + i∂3) χ

a
2 − 1

2
(χa1 χ

a
2 )

2
}

, (4.4.31)

This is indeed the action of the N = 2 CP(1) sigma model in its entirety.

4.4.3 Physics of the CP(N − 1) model with N = 2

As is quite common in two dimensions, the Lagrangian of our effective theory
on the string world sheet can be cast in many different (but equivalent) forms. In
particular, the N = 2 supersymmetric CP(N − 1)model (4.4.9) can be understood
as a strong-coupling limit of a U(1) gauge theory [157]. Then the bosonic part of
the action takes the form

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β |σ |2|n�|2 + 2e2β2(|n�|2 − 1)2
}

, (4.4.32)

where ∇k = ∂k − iAk while σ is a complex scalar field. The condition (4.4.3) is
implemented in the limit e2 → ∞. Moreover, in this limit the gauge fieldAk and its
N = 2 bosonic superpartner σ become auxiliary and can be eliminated by virtue
of the equations of motion,

Ak = − i
2
n∗
�

↔
∂k n

�, σ = 0. (4.4.33)

Substituting Eq. (4.4.33) in the Lagrangian, we can readily rewrite the action in the
form (4.4.9).

The coupling constant β is asymptotically free [158]. The running coupling, as
a function of energy E, is given by the formula

4πβ = N ln
E

�σ
, (4.4.34)

where �σ is a dynamical scale of the sigma model. The ultraviolet cut off of the
sigma model on the string world sheet is determined by g2

√
ξ . Equation (4.4.15)

relating the two- and four-dimensional couplings is valid at this scale. Hence,

�Nσ = gN2 ξ
N
2 e

− 8π2

g2
2 = �NSU(N). (4.4.35)
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Here we take into account Eq. (4.1.20) for the dynamical scale �SU(N) of the
SU(N) factor of the bulk theory. Note that in the bulk theory per se, because of
the VEV’s of the squark fields, the coupling constant is frozen at g2

√
ξ ; there are

no logarithms below this scale. The logarithms of the string world-sheet theory
take over. Moreover, the dynamical scales of the bulk and world-sheet theories turn
out to be the same! We will explain the reason why the dynamical scale of the
(1 + 1)-dimensional effective theory on the string world sheet is identical to that
of the SU(N) factor of the (3 + 1)-dimensional gauge theory later, in Section 4.6.

The CP(N − 1) model was solved by Witten in the large-N limit [159]. We will
briefly summarize Witten’s results and translate them in terms of strings in four
dimensions [132].

Classically the field n� can have arbitrary direction; therefore, one might naively
expect a spontaneous breaking of SU(N ) and the occurrence of massless Goldstone
modes. Well, the Coleman theorem [160] teaches us that this cannot happen in two
dimensions. Quantum effects restore the symmetry. Moreover, the condition (4.4.3)
gets in effect relaxed. Due to strong coupling we have more degrees of freedom than
in the original Lagrangian, namely all N fields n become dynamical and acquire
masses �σ .

As was shown by Witten [159], the model has N vacua. These N vacua differ
from each other by the expectation value of the chiral bifermion operator, see e.g.
[156]. At strong coupling the chiral condensate is the order parameter. The U(1)
chiral symmetry of the CP(N − 1) model is explicitly broken to a discrete Z2N

symmetry by the chiral anomaly. The fermion condensate breaks Z2N down to Z2.
That’s the origin of the N -fold degeneracy of the vacuum state.

The physics of the model becomes even more transparent in the mirror repre-
sentation which was established [120] for arbitrary N . In this representation one
describes the CP(N−1)model in terms of the Coulomb gas of instantons (see [161]
where this was done for non-supersymmetric CP(1) model) to prove its equivalence
to an affine Toda theory. The CP(N − 1) model (4.4.32) is dual to the following
N = 2 affine Toda model [120, 162, 61, 163],

Smirror =
∫
d2xd2θ d2θ̄ β−1

N−1∑
i=1

Ȳi Yi

+
{
�σ

∫
d2xd2θ

(
N−1∑
i=1

exp (Yi)+
N−1∏
i=1

exp (−Yi)
)

+H.c.

}
. (4.4.36)

Here the last term is a dual instanton-induced superpotential. In fact, the exact
form of the kinetic term in the mirror representation is not known because it is not
protected from quantum correction in β. However the superpotential in (4.4.36)
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is exact. Since the vacuum structure is entirely determined by the superpotential
(4.4.36), one immediately confirms Witten’s statement of N vacua.

Indeed, the scalar potential of this affine Toda theory hasN minima. For example,
for N = 2 this theory becomes N = 2 supersymmetric sine-Gordon theory with
scalar potential

VSG = β

4π2
�2

CP(1) |sinh y|2, (4.4.37)

which obviously has two minima, at y = 0 and y = ±iπ (warning: the points
y = iπ and y = −iπ must be identified; they present one and the same vacuum).

This mirror model explicitly exhibits a mass gap of the order of�σ . It shows that
there are no Goldstone bosons (corresponding to the absence of the spontaneous
breaking of the SU(N)C+F symmetry). In terms of strings in the four-dimensional
bulk theory, this means, in turn, that the magnetic flux orientation in the target space
has no particular direction, it is smeared all over. The N vacua of the world-sheet
theory (4.4.32) are heirs of the N “elementary” non-Abelian strings of the bulk
theory. Note that these strings are in a highly quantum regime. They are not the ZN
strings of the quasiclassical U(1)N−1 theory since n� is not aligned in the vacuum.

Hori and Vafa originally derived [120] the mirror representation for the CP(N−1)
model in the form of the Toda model. Since then other useful equivalent represen-
tations were obtained, and they were expanded to include the so-called twisted
masses of which we will speak in Section 4.4.4 and subsequent sections. A particu-
larly useful mirror representation of the twisted-mass-deformed CP(N − 1)model
was exploited by Dorey [30].

4.4.4 Unequal quark masses

The fact that we haveN distinct vacua in the world sheet theory –N distinct elemen-
tary strings – is not quite intuitive in the above consideration. This is understandable.
At the classical level the N = 2 two-dimensional CP(N − 1) sigma model is char-
acterized by a continuous vacuum manifold. This is in one-to-one correspondence
with continuously many strings parametrized by the moduli n�. The continuous
degeneracy is lifted only after quantum effects are taken into account. These quan-
tum effects become crucial at strong coupling. Gone with this lifting is the moduli
nature of the fields n�. They become massive. This is difficult to grasp.

To make the task easier and to facilitate contact between the bulk and world sheet
theories, it is instructive to start from a deformed bulk theory, so that the string mod-
uli are lifted already at the classical level. Then the origin of theN -fold degeneracy
of the non-Abelian strings becomes transparent. This will help us understand, in an
intuitive manner, other features listed above. After this understanding is achieved,
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nothing prevents us from returning to our problem – strings with non-Abelian
moduli at the classical level – by smoothly suppressing the moduli-breaking defor-
mation. The N -fold degeneracy will remain intact as it follows from the Witten
index [123].

Thus, let us drop the assumption (4.1.13) of equal mass terms and introduce
small mass differences. With unequal quark masses, the U(N) gauge group is
broken by the condensation of the adjoint scalars down to U(1)N , see (4.1.11). Off-
diagonal gauge bosons, as well as the off-diagonal fields of the quark matrix qkA,
(together with their fermion superpartners) acquire masses proportional to various
mass differences (mA −mB). The effective low-energy theory contains now only
diagonal gauge and quark fields. The reduced action suitable for the search of the
string solution takes the form

S =
∫
d4x

{
1

4g2
2

(
Fhμν

)2 + 1

4g2
1

(
Fμν

)2

+ |∇μϕA|2 + g2
2

2

(
ϕ̄AT

hϕA
)2 + g2

1

8

(
|ϕA|2 −Nξ

)2
, (4.4.38)

where the index h = 1, . . . , (N − 1) runs over the Cartan generators of the gauge
group SU(N), while the matrix ϕkA is reduced to its diagonal components.

The same steps which previously lead us to Eqs. (4.2.10) now give the first-order
string equations in the Abelian model (4.4.38),

F ∗
3 + g2

1

2

(∣∣∣ϕA∣∣∣2 −Nξ

)
= 0,

F ∗h
3 + g2

2

(
ϕ̄AT

hϕA
)

= 0,

(∇1 + i∇2)ϕ
A = 0. (4.4.39)

As soon as theZN -string solutions (4.2.6) have a diagonal form, they automatically
satisfy the above first-order equations.

However, the Abelian ZN strings (4.2.6) are now the only solutions to these
equations. The family of solutions is discrete. The global SU(N)C+F group is
broken down to U(1)N−1 by the mass differences, and the continuous CP(N − 1)
moduli space of the non-Abelian string is lifted. In fact, the vector n� gets fixed in
N possible positions,

n� = δ��0 , �0 = 1, . . . ,N . (4.4.40)

These N solutions correspond to the Abelian ZN strings, see (4.2.6) and (4.4.4). If
the mass differences are much smaller than

√
ξ the set of parameters n� becomes

quasimoduli.
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Now, our aim is to derive an effective two-dimensional theory on the string world
sheet for unequal quark mass terms. With small mass differences we will still be able
to introduce orientational quasimoduli n�. In terms of the effective two-dimensional
theory on the string world sheet, unequal masses lead to a shallow potential for the
quasimoduli n�. Let us derive this potential.

Below we will review the derivation carried out in [132] in the SU(2)×U(1)
model. The case of general N is considered in [133]. In the N = 2 case two
minima of the potential at S = {0, 0, ±1} correspond to two distinct Z2 strings.

We start from the expression for the non-Abelian string in the singular gauge
(4.4.20) parametrized by the moduli Sa , and substitute it in the action (4.1.7). The
only modification we actually have to make is to supplement our ansatz (4.4.20)
by that for the adjoint scalar field aa; the neutral scalar field a will stay fixed at its
vacuum expectation value a = −√

2m.
At large r the field aa tends to its VEV aligned along the third axis in the color

space,

〈a3〉 = −�m√
2

, �m = m1 −m2, (4.4.41)

see Eq. (4.1.11). At the same time, at r = 0 it must be directed along the vector
Sa . The reason for this behavior is easy to understand. The kinetic term for aa

in Eq. (4.1.7) contains the commutator term of the adjoint scalar and the gauge
potential. The gauge potential is singular at the origin, as is seen from Eq. (4.4.20).
This implies that aa must be aligned along Sa at r = 0. Otherwise, the string tension
would become divergent. The following ansatz for aa ensures this behavior:

aa = −�m√
2

[
δa3 b + Sa S3 (1 − b)

]
. (4.4.42)

Here we introduced a new profile function b(r)which, as usual, will be determined
from a minimization procedure. Note that at Sa = (0, 0, ±1) the field aa is given
by its VEV, as expected. The boundary conditions for the function b(r) are

b(∞) = 1, b(0) = 0. (4.4.43)

Substituting Eq. (4.4.42) in conjunction with (4.4.20) in the action (4.1.7) we get
the potential

VCP(1) = γ

∫
d2x

�m2

2

(
1 − S2

3

)
, (4.4.44)
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where γ is given by the integral

γ = 2π

g2
2

∫ ∞

0
r dr

{(
d

dr
b(r)

)2

+ 1

r2
f 2
NA b

2

+ g2
2

[
1

2
(1 − b)2

(
φ2

1 + φ2
2

)+ b (φ1 − φ2)
2
]}

. (4.4.45)

Here two first terms in the integrand come from the kinetic term of the adjoint scalar
field aa while the term in the square brackets comes from the potential in the action
(4.1.7).

Minimization with respect to b(r), with the constraint (4.4.43), yields

b(r) = 1 − ρ(r) = φ1

φ2
(r), (4.4.46)

cf. Eqs. (4.4.11) and (4.4.13). Thus,

γ = I × 2π

g2
2

= 2π

g2
2

. (4.4.47)

We see that the normalization integrals are the same for both the kinetic and the
potential terms in the world-sheet sigma model, γ = β. As a result we arrive at the
following effective theory on the string world sheet:

SCP(1) = β

∫
d2x

{
1

2
(∂kS

a)2 + |�m|2
2

(
1 − S2

3

)}
. (4.4.48)

This is the only functional form that allows N = 2 completion.9 See also
Section 3.5.

The fact that we obtain this form shows that our ansatz is fully adequate. The
informative aspect of the procedure is (i) confirmation of the ansatz (4.4.42) and
(ii) constructive calculation of the constant in front of (1 − S2

3) in terms of the bulk
parameters. The mass-splitting parameter�m of the bulk theory exactly coincides
with the twisted mass of the world-sheet model.

The CP(1) model (4.4.48) has two vacua located at Sa = (0, 0, ±1), see Fig. 3.11.
Clearly these two vacua correspond to two elementary Z2 strings.

For generic N the potential in the CP(N − 1) model was obtained in [133]. It
has the form

VCP(N−1) = 2β

{∑
�

|m̃�|2|n�|2 −
∣∣∣∣∑
�

m̃�|n�|2
∣∣∣∣
2
}

, (4.4.49)

9 Note, that although the global SU(2)C+F is broken by �m, the extended N = 2 supersymmetry is not.
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where

m̃� = m� −m, m ≡ 1

N

∑
�

m�, � = 1, . . . ,N . (4.4.50)

From the perspective of the bulk theory the index � of the CP(N − 1) model
coincides with the flavor index, � ≡ A. The above potential has N vacua (4.4.40)
which correspond to N distinct ZN strings in the bulk theory.

The CP(N − 1) model with the potential (4.4.49) is nothing but a bosonic
truncation of the N = 2 two-dimensional sigma model which was termed the
twisted-mass-deformed CP(N − 1)model. This is a generalization of the massless
CP(N − 1)model which preserves four supercharges. Twisted chiral superfields in
two dimensions were introduced in [32] while the twisted mass as an expectation
value of the twisted chiral multiplet was suggested in [31]. CP(N −1)models with
twisted mass were further studied in [30] and, in particular, the BPS spectra in these
theories were determined exactly.

From the bulk theory standpoint the two-dimensional CP(N − 1) model is an
effective world sheet theory for the non-Abelian string, and the emergence of N = 2
supersymmetry should be expected.As we know, the BPS nature of the strings under
consideration does require the world sheet theory to have four supercharges.

The twisted-mass-deformed CP(N−1)model can be nicely rewritten as a strong
coupling limit of a U(1) gauge theory [30]. With twisted masses of the n� fields
taken into account, the bosonic part of the action (4.4.32) becomes

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 2e2β2(|n�|2 − 1)2
}

. (4.4.51)

In the limit e2 → ∞ the σ field can be excluded by virtue of an algebraic equation
of motion which leads to the potential (4.4.49).

As was already mentioned, this sigma model gives an effective description of
our non-Abelian string at low energies, i.e. at energies much lower than the inverse
string thickness. Typical momenta in the theory (4.4.51) are of the order of m̃.
Therefore, for the action (4.4.51) to be applicable we must impose the condition∣∣m̃�∣∣� g2

√
ξ . (4.4.52)

The description in terms of the twisted-mass-deformed CP(N−1)model gives us
a much better understanding of dynamics of the non-Abelian strings. If masses m̃�
are much larger than the scale of the CP(N−1)model�σ , the coupling constant β
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is frozen at a large scale (of the order of m̃�) and the theory is at weak coupling.
Semiclassical analysis is applicable. The theory (4.4.51) has N vacua located at

n� = δ��0 , σ = m̃�0√
2

, �0 = 1, . . . ,N . (4.4.53)

They correspond to the Abelian ZN strings of the bulk theory, see (4.4.4). As we
reduce the mass differences m̃� and hit the value �σ , the CP(N − 1) model under
consideration enters the strong coupling regime. At m̃� = 0 the global SU(N)C+F
symmetry of the bulk theory is restored. Now n� has no particular direction. The
condition (4.4.3) is relaxed. Still we have N vacua in the world sheet theory (Wit-
ten’s index!). They are seen in the mirror description, see Section 4.4.3. These vacua
correspond to N elementary non-Abelian strings in the strong coupling quantum
regime. Thus, we see that for the BPS strings the transition from the Abelian to
non-Abelian regimes is smooth. As we will discuss in Chapter 5, this is not the case
for non-BPS strings. In the latter case the two regimes are separated by a phase
transition [154, 164].

4.5 Confined monopoles as kinks of the CP(N − 1) model

Our bulk theory (4.1.7) is in the Higgs phase and therefore the magnetic monopoles
of this theory must be in the confinement phase. If we start from a theory with the
SU(N + 1) gauge group broken to SU(N)×U(1) by condensation of the adjoint
scalar a from which the theory (4.1.7) emerges, the monopoles of the SU(N + 1)/
SU(N) × U(1) sector can be attached to the endpoints of the ZN strings under
consideration. In the bulk theory (4.1.7) these monopoles are infinitely heavy at
m → ∞, and hence the ZN strings are stable. However, the monopoles residing in
the SU(N) gauge group are still present in the theory (4.1.7). As we switch on the
FI parameter ξ , the squarks condense triggering confinement of these monopoles.
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In this section we will show that these monopoles manifest themselves as string
junctions of the non-Abelian strings and are seen as kinks in the world sheet theory
interpolating between distinct vacua of the CP(N − 1) model [165, 132, 133].

Our task in this section is to trace the evolution of the confined monopoles
starting from the quasiclassical regime, and deep into the quantum regime. For
illustrative purposes it will be even more instructive if we started from the limit
of weakly confined monopoles, when in fact they present just slightly distorted
’t Hooft–Polyakov monopoles (Fig. 4.3).

Let us start from the limit |�mAB | � √
ξ and assume all mass differences to be

of the same order. In this limit the scalar quark expectation values can be neglected,
and the vacuum structure is determined by VEV’s of the adjoint fieldaa , see (4.1.11).
In the non-degenerate case the gauge symmetry SU(N) of our bulk model is broken
down to U(1)N−1 modulo possible discrete subgroups. This is the textbook situation
for occurrence of the SU(N ) ’t Hooft–Polyakov monopoles. The monopole core
size is of the order of |�mAB |−1. The ’t Hooft–Polyakov solution remains valid up
to much larger distances, of the order of ξ−1/2. At distances larger than ∼ ξ−1/2

the quark VEV’s become important. As usual, the U(1) charge condensation leads
to the formation of the U(1) magnetic flux tubes, with the transverse size of the
order of ξ−1/2 (see the upper picture in Fig. 4.3). The flux is quantized; the flux
tube tension is tiny in the scale of the square of the monopole mass. Therefore, what
we deal with in this limit is basically a very weakly confined ’t Hooft–Polyakov
monopole.

Let us verify that the confined monopole is a junction of two strings. Consider
the junction of two ZN strings corresponding to two “neighboring” vacua of the
CP(N − 1) model. For the �0-th vacuum n� is given by (4.4.53) while for the
�0 + 1-th vacuum it is given by the same equations with �0 → �0 + 1. The flux
of this junction is given by the difference of the fluxes of these two strings. Using
(4.4.4) we get that the flux of the junction is

4π × diag
1

2
{. . . 0, 1, −1, 0, . . . }, (4.5.1)

with the nonvanishing entries located at positions �0 and �0 + 1. These are exactly
the fluxes of N − 1 distinct ’t Hooft–Polyakov monopoles occurring in the SU(N )
gauge theory provided that SU(N ) is spontaneously broken down to U(1)N−1. For
instance, in U(2) theory the junction of two Z2 strings is shown in Fig. 4.2.

We see that in the quasiclassical limit of large |�mAB | the Abelian monopoles
play the role of junctions of the AbelianZN strings. Note that in various models the
monopole fluxes and those of strings were shown to match each other [166, 167,
168, 169, 140, 170, 171] so that the monopoles can be confined by strings in the
Higgs phase.
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B

B3
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Figure 4.2. The junction of two distinct Z2 strings in the U(2) theory.
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Confined monopole,
quasiclassical regime

Λ−1

m     0

Confined monopole,
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| m | >> ξ1/2

ξ−1/2

Figure 4.3. Evolution of the confined monopoles.

Now, let us reduce |�mAB |. If this parameter is limited inside the interval

� � |�mAB | � √
ξ , (4.5.2)

the size of the monopole (∼ |�mAB |−1) becomes larger than the transverse size
of the attached strings. The monopole gets squeezed in earnest by the strings – it
becomes a bona fide confined monopole (the lower left corner of Fig. 4.3). A natural
question is how this confined monopole is seen in the effective two-dimensional
CP(N−1)model (4.4.51) on the string world sheet. Since theZN strings of the bulk
theory correspond toN vacua of the CP(N−1)model the string junction (confined
monopole) is a “domain wall” – kink – interpolating between these vacua, see
Fig. 3.11.

Below we will explicitly demonstrate that in the semiclassical regime (4.5.2) the
solution for the string junction in the bulk theory is in one-to-one correspondence
with the kink in the world sheet theory. Then we will show that the masses of
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the monopole and kink perfectly match. This was demonstrated in [132] in the
N = 2 case.

4.5.1 The first-order master equations

In this section we derive the first-order equations for the 1/4-BPS junction of theZN
strings in the SU(N)×U(1) theory in the quasiclassical limit (4.5.2). In this limit
�mAB is sufficiently small so that we can use our effective low-energy description
in terms of the twisted-mass-deformed CP(N − 1) model (4.4.51). On the other
hand,�mAB is much larger than the dynamical scale of the CP(N−1)model; hence,
the latter is in the weak coupling regime which allows one to apply quasiclassical
treatment.

The geometry of our junction is shown in the left corner of Fig. 4.3. Both strings
are stretched along the z axis. We assume that the monopole sits near the origin,
the n� = δ��0-string is at negative z while the n� = δ�(�0+1)-string is at positive z.
The perpendicular plane is parametrized by x1 and x2. What is sought for is a static
solution of the BPS equations, with all relevant fields depending only on x1, x2

and z.
Ignoring the time variable we can represent the energy functional of our theory

(4.2.2) as follows (the Bogomol’nyi representation [5]):

E =
∫
d3x

{[
1√
2g2

F ∗a
3 + g2

2
√

2

(
ϕ̄Aτ

aϕA
)

+ 1

g2
D3a

a

]2

+
[

1√
2g1

F ∗
3 + g1

2
√

2

(|ϕA|2 − 2ξ
)+ 1

g1
∂3a

]2

+ 1

g2
2

∣∣∣∣ 1√
2

(
F ∗a

1 + iF ∗a
2

)+ (D1 + iD2
)
aa
∣∣∣∣
2

+ 1

g2
1

∣∣∣∣ 1√
2

(
F ∗

1 + iF ∗
2

)+ (∂1 + i∂2
)
a

∣∣∣∣
2

+ ∣∣∇1 ϕ
A + i∇2 ϕ

A
∣∣2

+
∣∣∣∣∇3ϕ

A + 1√
2

(
aaτa + a + √

2mA
)
ϕA
∣∣∣∣
2
}

(4.5.3)

plus surface terms. As compared to the Bogomol’nyi representation (4.2.9) for
strings we keep here also terms involving the adjoint fields. Following our con-
ventions we assume the quark mass terms to be real implying that the vacuum
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expectation values of the adjoint scalar fields are real too. The surface terms
mentioned above are

Esurface = ξ

∫
d3xF ∗

3 + √
2 ξ
∫
d2x 〈a〉

∣∣∣∣
z=∞

z=−∞
− √

2
〈aa〉
g2

2

∫
dSn F

∗a
n , (4.5.4)

where the integral in the last term runs over a large two-dimensional sphere at
�x 2 → ∞. The first term on the right-hand side is related to strings, the second to
domain walls, while the third to monopoles (or the string junctions).

The Bogomol’nyi representation (4.5.3) leads us to the following first-order
equations:

F ∗
1 + iF ∗

2 + √
2(∂1 + i∂2)a = 0,

F ∗a
1 + iF ∗a

2 + √
2(D1 + iD2)a

a = 0,

F ∗
3 + g2

1

2

(∣∣ϕA∣∣2 − 2ξ
)

+ √
2 ∂3a = 0,

F ∗a
3 + g2

2

2

(
ϕ̄Aτ

aϕA
)

+ √
2D3a

a = 0,

∇3ϕ
A = − 1√

2

(
aaτa + a + √

2mA
)
ϕA,(∇1 + i∇2

)
ϕA = 0. (4.5.5)

These are our master equations. Once these equations are satisfied the energy of
the BPS object is given by Eq. (4.5.4).

Let us discuss the central charges (the surface terms) of the string, domain wall
and monopole in more detail. Say, in the string case, the three-dimensional integral
in the first term in Eq. (4.5.4) gives the length of the string times its flux. In the wall
case, the two-dimensional integral in the second term in (4.5.4) gives the area of
the wall times its tension. Finally, in the monopole case the integral in the last term
in Eq. (4.5.4) gives the magnetic-field flux. This means that the first-order master
equations (4.5.5) can be used to study strings, domain walls, monopoles and all
their possible junctions.

It is instructive to check that the wall, the string and the monopole solutions,
separately, satisfy these equations. For the domain wall this check was done in
[37] where we used these equations to study the string-wall junctions (we review
this in Chapter 9). Let us consider the string solution. Then the scalar fields
a and aa are given by their VEV’s. The gauge flux is directed along the z axis,
so that F ∗

1 = F ∗
2 = F ∗a

1 = F ∗a
2 = 0. All fields depend only on the perpendicular

coordinates x1 and x2. As a result, the first two equations and the fifth one in (4.5.5)
are trivially satisfied. The third and the fourth equations reduce to the first two
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equations in Eq. (4.2.10). The last equation in (4.5.5) reduces to the last equation
in (4.2.10).

Now, turn to the monopole solution. The ’t Hooft–Polyakov monopole equations
[105, 106] arise from those in Eq. (4.5.5) in the limit ξ = 0. Then all quark fields
vanish, and Eq. (4.5.5) reduces to the standard first-order equations for the BPS
’t Hooft–Polyakov monopole (see Section 3.4),

F ∗a
k + √

2Dk a
a = 0. (4.5.6)

The U(1) scalar field a is given by its VEV while the U(1) gauge field vanishes.
Now, Eq. (4.5.4) shows that the central charge of the SU(2) monopole is deter-

mined by 〈aa〉 which is proportional to the quark mass difference, see (4.1.11).
Thus, for the monopole on the Coulomb branch (i.e. at ξ = 0) Eq. (4.5.4) yields

MM = 4π(m�0+1 −m�0)

g2
2

. (4.5.7)

This coincides, of course, with the Seiberg–Witten result [2] in the weak coupling
limit.As we will see shortly, the same expression continues to hold even if�mAB �√
ξ (provided that�mAB is still much larger than�SU(N)). An explanation will be

given in Section 4.6.
The Abelian version of the first-order equations (4.5.5) were derived in Ref.

[142] where they were exploited to find the 1/4 BPS-saturated solution for the wall-
string junction. The non-Abelian equations (4.5.5) in the SU(2)× U(1) theory were
derived in [165] where the confined monopoles as string junctions were considered
at �m �= 0. Then the non-Abelian equations (4.5.5) were extensively used in the
analysis [37] of the wall-string junctions in the problem of non-Abelian strings
ending on a stack of domain walls. Next, Eqs. (4.5.5) for the confined monopoles
as string junctions were solved in [132] in the SU(2) × U(1) theory. Below we
will review this solution. Later all 1/4 BPS solutions for junctions (in particular,
semilocal string junctions) were found in [172].

4.5.2 The string junction solution in the quasiclassical regime

Now we will apply our master equations at N = 2 in order to find the junction
of the Sa = (0, 0, 1) and Sa = (0, 0, −1)-strings via an SU(2) monopole in the
quasiclassical limit. We assume that the Sa = (0, 0, 1)-string is at negative z, while
the Sa = (0, 0, −1)-string is at positive z. We will show that the solution of the
BPS equations (4.5.5) of the four-dimensional bulk theory is determined by the
kink solution in the two-dimensional sigma model (4.4.48).

To this end we will look for the solution of equations (4.5.5) in the follow-
ing ansatz. Assume that the solution for the string junction is given, to the
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leading order in �m/
√
ξ , by the same string configuration (4.4.20), (4.4.5) and

(4.4.42) which we dealt with previously (in the case �m �= 0) with Sa slowly
varying functions of z, to be determined below, replacing the constant moduli
vector Sa .

Now the functions Sa(z) satisfy the boundary condition

Sa(−∞) = (0, 0, 1), (4.5.8)

while

Sa(∞) = (0, 0, −1). (4.5.9)

This ansatz corresponds to the non-Abelian string in which the vector Sa

slowly rotates from (4.5.8) at z → −∞ to (4.5.9) at z → ∞. We will
show that the representation (4.4.20), (4.4.5) and (4.4.42) solves the mas-
ter equations (4.5.5) provided the functions Sa(z) are chosen in a special
way.

Note that the first equation in (4.5.5) is trivially satisfied because the field a is
constant and F ∗

1 = F ∗
2 = 0. The last equation reduces to the first two equations

in (4.2.11) because it does not contain derivatives with respect to z and, therefore,
is satisfied for arbitrary functions Sa(z). The same remark applies also to the third
equation in Eq. (4.5.5), which reduces to the third equation in (4.2.11).

Let us inspect the fifth equation in Eq. (4.5.5). Substituting our ansatz in this
equation and using the formula (4.4.13) for ρ we find that this equation is satisfied
provided Sa(z) are chosen to be the solutions of the equation

∂3S
a = �m

(
δa3 − SaS3). (4.5.10)

Below we will show that these equations are nothing but the first-order kink
equations in the massive CP(1) model.

By the same token, we can consider the second equation in (4.5.5). Upon substi-
tuting there our ansatz, it reduces to Eq. (4.5.10) too. Finally, consider the fourth
equation in (4.5.5). One can see that in fact it contains an expansion in the param-
eter �m2/ξ . This means that the solution we have just built is not exact; it has
corrections of the order of O(�m2/ξ). To the leading order in this parameter the
fourth equation in (4.5.5) reduces to the last equation in (4.2.11). In principle, one
could go beyond the leading order. Solving the fourth equation in (4.5.5) in the
next-to-leading order would allow one to determineO(�m2/ξ) corrections to our
solution.

Let us dwell on the meaning of Eq. (4.5.10). This equation is nothing but the
equation for the kink in the CP(1) model (4.4.48). To see this let us write the
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Bogomol’nyi representation for kinks in the model (4.4.48). The energy functional
can be rewritten as

E = β

2

∫
dz

{∣∣∣∂zSa −�m
(
δa3 − SaS3

)∣∣∣2 + 2�m∂zS
3
}

. (4.5.11)

The above representation implies the first-order equation (4.5.10) for the BPS-
saturated kink. It also yields 2β�m for the kink mass.

Thus, we have demonstrated that the solution describing the junction of the
Sa = (0, 0, 1) and Sa = (0, 0, −1) Z2 strings is given by the non-Abelian string
with a slowly varying orientation vectorSa . The variation ofSa is described in terms
of the kink solution of the (1 + 1)-dimensional CP(1) model with the twisted mass.

In conclusion, we would like to match the masses of the four-dimensional mono-
pole and two-dimensional kink. The string mass and that of the string junction is
given by the first and the last terms in the surface energy (4.5.4) (the second term
vanishes). The first term obviously reduces to

Mstring = 2π ξ L, (4.5.12)

i.e. proportional to the total string length L. Note that both the Sa = (0, 0, 1) and
Sa = (0, 0, −1) strings have the same tension (4.2.12). The third term should give
the mass of the the monopole. The surface integral in this term reduces to the flux
of the Sa = (0, 0, −1)-string at z → ∞ minus the flux of the Sa = (0, 0, 1)-string
at z → −∞. The F ∗3 flux of the Sa = (0, 0, −1)-string is 2π while the F ∗3 flux
of the Sa = (0, 0, 1)-string is −2π . Thus, taking into account Eq. (4.1.11), we get

MM = 4π

g2
2

�m. (4.5.13)

Note, that although we discuss the monopole in the confinement phase at |�m| �√
ξ (in this phase it is a junction of two strings), nevertheless the �m and g2

2
dependence of its mass coincides with the result (4.5.7) for the unconfined monopole
on the Coulomb branch (i.e. at ξ = 0). This is no accident – there is a deep
theoretical reason explaining the validity of this unified formula. A change occurs
only in passing to a highly quantum regime depicted in the right lower corner of
Fig. 4.3. We will discuss this regime shortly in Section 4.5.3.

It is instructive to compare Eq. (4.5.13) with the kink mass in the effective CP(1)
model on the string world sheet. As was mentioned, the surface term in Eq. (4.5.11)
gives

Mkink = 2β �m. (4.5.14)
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Now, expressing the two-dimensional coupling constant β in terms of the coupling
constant of the microscopic theory, see Eq. (4.4.15), we obtain

Mkink = 4π

g2
2

�m, (4.5.15)

thus verifying that the four-dimensional calculation ofMM and the two-dimensional
calculation of Mkink yield the same,

MM = Mkink. (4.5.16)

Needless to say, this is in full accordance with the physical picture that emerged
from our analysis, that the two-dimensional CP(1) model is nothing but the macro-
scopic description of the confined monopoles occurring in the four-dimensional
microscopic Yang–Mills theory. Technically the coincidence of the monopole and
kink masses is based on the fact that the integral in the definition (4.4.10) of the
sigma-model coupling β reduces to unity.

4.5.3 The strong coupling limit

Here we will consider the limit of small �mAB , when the effective world sheet
theory develops a strong coupling regime. For illustrative purposes we will consider
the simplest case, N = 2. Generalization to generic N is straightforward.

As we further diminish |�m| approaching �σ and then send �m to zero we
restore the global SU(2)C+F symmetry. In particular, on the Coulomb branch,
the SU(2) × U(1) gauge symmetry is restored. In this limit the monopole size
grows, and, classically, it would explode. Moreover, the classical formula (4.5.13)
interpreted literally shows that the monopole mass vanishes (see the discussion of
the so-called “monopole clouds” in [112] for a review of the long-standing issue of
understanding what becomes of the monopoles upon restoration of the non-Abelian
gauge symmetry). Thus, classically one would say that the monopoles disappear.

That’s where quantum effects on the confining string take over.As we will explain
below, they materialize the confined non-Abelian monopole as a well-defined stable
object [132].

While the string thickness (in the transverse direction) is ∼ ξ−1/2, the z-direction
size of the kink representing the confined monopole in the highly quantum regime
is much larger, ∼ �−1

σ , see the lower right corner in Fig. 4.3. Still, it remains finite
in the limit �m → 0, stabilized by non-perturbative effects in the world sheet
CP(1) model. This is due to the fact that the CP(N−1)models develop a mass gap,
and no massless states are present in the spectrum, see Section 4.4.3. Moreover, the
mass of the confined monopole (the CP(1) model kink) is also determined by the
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scale �σ . This sets the notion of what the confined non-Abelian monopole is. It is
a kink in the massless two-dimensional CP(1) model [132].

We can get a more quantitative insight into the physics of the world-
sheet theory at strong coupling if we invoke the exact BPS spectrum of the
twisted-mass-deformed CP(N−1)model obtained in [30]. For a detailed discussion
in CP(1) see Section 3.5.

The exact expression for the central charge in CP(N − 1) with twisted mass
was derived [30] by generalizing Witten’s analysis [157] that had been carried
out previously for the massless case. The BPS states saturate the central charge Z
defined in Eq. (2.3.4). The exact formula for this central charge is

Z2d = i �mq +mD T , (4.5.17)

where the subscript 2d reminds us that the model in question is two-dimensional.
The subscriptD inmD appears for historical reasons, in parallel with the Seiberg–
Witten solution (it stands for dual). Furthermore, T is the topological charge of the
kink under consideration, T = ±1, while the parameter q

q = 0, ±1, ±2, . . . (4.5.18)

This global U(1) charge of the “dyonic” states arises due to the presence of a U(1)
group unbroken in (4.4.48) by the twisted mass (the SU(2)C+F symmetry is broken
down to U(1) by �m �= 0).

The quantitymD was introduced [30] in analogy with aD of Ref. [2]. In the case
N = 2 it has the form presented in Eq. (3.5.27) with the substitutions

m → �m, � → �σ , (4.5.19)

where �m is now assumed to be complex. The two-dimensional central charge is
normalized in such a way that Mkink = |Z2d |.

As we discussed in Section 3.5, there are no massless states in the CP(1) model
at �m = 0. In particular, the kink (confined monopole) mass is

MM = 2

π
�σ , (4.5.20)

as it is clear from (3.5.27). On the other hand, in this limit both the last term in
(4.5.4) and the surface term in (4.5.11) vanish for the monopole and kink masses,
respectively. What’s wrong?

This puzzle was solved by the following observation: anomalous terms in the
central charges of both four-dimensional and two-dimensional SUSY algebras are
present in these theories. In two dimensions the anomalous terms were obtained
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in [33, 34]. In four dimensions the bifermion anomalous term was discovered in
[132]. We refer the reader to Section 3.4.2 for a more detailed discussion.

In the bulk theory the central charge associated with the monopole is defined
through the anticommutator

{Q̄ f
α̇ Q̄

g

β̇
} = 2 εα̇β̇ ε

fg Z̄4d , (4.5.21)

where Z̄4d is an SU(2)R singlet; the subscript 4d will remind us of four dimensions.
It is most convenient to write Z̄4d as a topological charge (i.e. the integral over a
topological density),

Z̄4d =
∫
d3x ζ̄ 0(x). (4.5.22)

In the model at hand10

ζ̄ μ = 1√
2
εμνρσ ∂ν

(
i

g2
2

aaF aρσ + i

g2
1

aFρσ − i

2π2
aaF aρσ

+ i

8
√

2π2

[
λafα(σρ)

αα̇(σ̄σ )α̇βλ
af β + 2g2

2ψ̃Aα(σρ)
αα̇(σ̄σ )α̇βψ

Aβ
])

.

(4.5.23)

Note that the general structure of the operator in the square brackets is unambigu-
ously fixed by dimensional arguments, the Lorentz symmetry and other symmetries
of the bulk theory. The numerical coefficient was first found in [132] by matching
the monopole and kink masses at �m = 0.

The above expression is an operator equality. In the low-energy limit, the Seiberg–
Witten exact solution allows one to obtain the full matrix element of the operator
on the right-hand side (which includes all perturbative and non-perturbative
corrections) by replacing a by aD .

The fermion part of the anomalous term plays a crucial role in the Higgs phase for
the confined monopole. On the Coulomb branch it does not contribute to the mass of
the monopole due to a fast fall off of the fermion fields at infinity. On the Coulomb
branch the bosonic anomalous terms become important. The relationship between
the ’t Hooft–Polyakov monopole mass and the N = 2 central charge is analyzed
in [38], which identifies an anomaly in the central charge explaining a constant (i.e.
non-logarithmic) term in the monopole mass on the Coulomb branch. The result of
Ref. [38] is in agreement with the Seiberg–Witten formula for the monopole mass.
In Section 3.4.2 we presented the operator form of the central charge anomaly.

10 In Eq. (4.5.23) in the bosonic part we keep only terms containing the magnetic field �B and drop those with the
electric field �E which are relevant for dyons. For more details see Section 3.4.2.
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Note, that the coefficient in front of the fermionic term involving λ-fermions in
(4.5.23) coincides with the one in (3.4.20) obtained by supersymmetrization of the
bosonic anomalous term.

4.6 Two-dimensional kink and four-dimensional
Seiberg–Witten solution

Why is the ’t Hooft–Polyakov monopole mass (i.e. that on the Coulomb branch
at ξ = 0) given by the same formula (4.5.7) as the mass (4.5.13) of the strongly
confined large-ξ monopole (subject to condition

√
ξ � �m)?

This fact was noted in Section 4.5.2. Now we will explain the reason lying
behind this observation [132, 133]. En route, we will explain another striking obser-
vation made in Ref. [30]. A remarkably close parallel between four-dimensional
SU(2) Yang–Mills theory with Nf = 2 and the two-dimensional CP(1) model
was noted, at an observational level, by virtue of comparison of the correspond-
ing central charges. The observation was made on the Coulomb branch of the
Seiberg–Witten theory, with unconfined monopoles/dyons of the ’t Hooft–Polyakov
type. Valuable as it is, the parallel was quite puzzling since the solution of the
CP(1) model seemed to have no physics connection to the Seiberg–Witten solu-
tion. The latter gives the mass of the unconfined monopole in the Coulomb regime
at ξ = 0 while the CP(1) model emerges only in the Higgs regime of the bulk
theory.

We want to show that the reason for the correspondence mentioned above is that
in the BPS sector (and only in this sector) the parameter ξ , in fact, does not appear
in relevant formulae. Therefore, one can vary ξ at will, in particular, making it
less than |�m| or even tending to zero, where CP(1) is no more the string world
sheet theory for our bulk model. Nevertheless, the parallel expressions for the
central charges and other BPS data in four dimensions and two dimensions, trivially
established at |�m| � ξ , will continue to hold even on the Coulomb branch. The
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“strange coincidence” we observed in Section 4.5.2 is no accident. We deal with an
exact relation which stays valid including both perturbative and non-perturbative
corrections.

Physically the monopole in the Coulomb phase is very different from the one in
the confinement phase, see Fig. 4.3. In the Coulomb phase it is a ’t Hooft–Polyakov
monopole, while in the confinement phase it becomes related to a junction of two
non-Abelian strings. Still let us show that the masses of these two objects are given
by the same expression,

MCoulomb
M = Mconfinement

M (4.6.1)

provided that�m and the gauge couplings are kept fixed. The superscripts refer to
the Coulomb and monopole-confining phases, respectively.

The crucial observation here is that the mass of the monopole cannot depend on
the FI parameter ξ . Start from the monopole in the Coulomb phase at ξ = 0. Its
mass is given by the exact Seiberg–Witten formula [3]

MCoulomb
M = √

2

∣∣∣∣a3
D

(
a3 = −�m√

2

)∣∣∣∣
=
∣∣∣∣∣�mπ ln

�m

�SU(2)
+�m

∞∑
k=0

ck

(
�

�m

)2k
∣∣∣∣∣, (4.6.2)

where a3
D is the dual Seiberg–Witten potential for the SU(2) gauge group. We take

into account the fact that for Nf = 2 the first coefficient of the β function is 2.
In Eq. (4.6.2) a3 = −�m/√2 is the argument of a3

D , the logarithmic term takes
into account the one-loop result (4.1.19) for the SU(2) gauge coupling at the scale
�m, while the power series represents instanton-induced terms – small corrections
at large a.

Now, if we switch on a small FI parameter ξ �= 0 in the theory, on dimensional
grounds we could expect corrections to the monopole mass in powers of

√
ξ/�SU(2)

and/or
√
ξ/�m in Eq. (4.6.2).

But … these corrections are forbidden by the U(1)R charges. Namely, the U(1)R
charges of�SU(2) and�m are equal to 2 (and so is the U(1)R charge of the central
charge under consideration) while ξ has a vanishing U(1)R charge. For convenience,
the U(1)R charges of different fields and parameters of the microscopic theory are
collected in Table 4.1. Thus, neither (

√
ξ/�SU(2))

k nor (
√
ξ/�m)k can appear.

By the same token, we could start from the confined monopole at large ξ , and
study the dependence of the monopole (string junction) mass as a function of ξ as
we reduce ξ . Again, the above arguments based on the U(1)R charges tell us that
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Table 4.1. The U(1)R charges of fields and parameters of the bulk theory.

Field/parameter a aa λα q ψα mA �SU(N) ξ

U(1)R charge 2 2 1 0 −1 2 2 0

no corrections in powers of �SU(2)/
√
ξ and �m/

√
ξ can appear. This leads us to

Eq. (4.6.1).
Another way leading to the same conclusion is to observe that the monopole mass

depends on a (anti)holomorphically, cf. Seiberg–Witten’s formula (4.6.2). Thus, it
cannot depend on the FI parameter ξ which is not holomorphic (it is a component
of the SU(2)R triplet [127, 35]).

Now let us turn to the fact that the mass of the monopole in the confinement
phase is given by the kink mass in the CP(1) model, see (4.5.16). In this way we
obtain

MCoulomb
M ↔ Mconfinement

M ↔ Mkink. (4.6.3)

In particular, at one loop, the kink mass is determined by renormalization of the
CP(1)-model coupling constantβ, while the monopole mass on the Coulomb branch
is determined by the renormalization of g2. This leads to the relation

�σ = �SU(2)

between the two- and four-dimensional dynamical scales. It was noted earlier as a
“strange coincidence,” see Eq. (4.4.35). The first coefficient of the β functions is
two (N for generic N ) for both theories. Now we know the physical reason behind
this coincidence.

Clearly, the above relation can be generalized (cf. [30, 133]) to cover the
SU(N )×U(1) case with Nf = N flavors on the four-dimensional side, and
CP(N − 1) sigma models on the two-dimensional side.

This correspondence can be seen in more quantitative terms [30, 133]. Four-
dimensional U(N) SQCD with N = 2 and Nf = N flavors is described by the
degenerate Seiberg–Witten curve

y2 = 1

4

[
N∏
i=1

(x + m̃i)−�NSU(N)

]2

(4.6.4)
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in the special point (4.1.11) on the Coulomb branch which becomes a quark vacuum
upon the ξ deformation. The periods of this curve give the BPS spectrum of the
two-dimensional CP(N − 1) model [30]. We quoted this spectrum for CP(1) in
Eqs. (4.5.17) and (3.5.27).

In fact, Dorey demonstrated [30] that the BPS spectra of the two-dimensional
CP(N − 1)model and four-dimensional SU(N) SQCD coincide with each other if
one chooses a point on the Coulomb branch corresponding to the baryonic Higgs
branch defined by the condition

∑
mA = 0 (in the SU(2) case the gauge equivalent

choice is to set m1 = m2).
At the same time, we observe that the BPS spectra of the massive states in the

SU(2) and U(2) theories, respectively, coincide in the corresponding quark vacua
upon identification of mA of the SU(N) theory with m̃A of the U(N) theory. In
particular, in the N = 2 case one must identify m1 = m2 of the SU(2) theory with
�m/2 of the U(2) theory. Note that the vacuum (4.1.11) and (4.1.14) of the U(N)
theory is an isolated vacuum rather than a root of a Higgs branch. There are no
massless states in the U(N) bulk theory in this vacuum, see Section 4.1.2 for more
details.

Note also that the BPS spectra of both theories include not only the
monopole/kink and “dyonic” states but elementary excitations with T = 0 as well.
On the two-dimensional side they correspond to elementary fields n� in the large
�mAB limit. On the four-dimensional side they correspond to non-topological (i.e.
T = 0 and q = ±1) BPS excitations of the string with masses proportional to
�mAB confined on the string.

The latter can be interpreted as follows. Inside the string the squark profiles van-
ish, effectively bringing us into the Coulomb branch (ξ = 0) where the W bosons
and quarks would become BPS-saturated states in the bulk. Say, for N = 2 on the
Coulomb branch, the W boson and off-diagonal quark mass would reduce to �m.
Hence, the T = 0 BPS excitation of the string is a wave of such W bosons/quarks
propagating along the string. One could term it a “confined W boson/quark.” It is
localized in the perpendicular but not in the longitudinal direction. What is impor-
tant, it has no connection with the bulk Higgs phaseW bosons, which are non-BPS
and are much heavier than �m. Nor do these non-topological excitations have
connection to the bulk quarks of our bulk model, which are not BPS-saturated too.

To conclude, let us mention that Tong compared [173] a conformal theory
with massless quarks and monopoles arising on the Coulomb branch of the four-
dimensional N = 2 SQCD (upon a special choice of the mass parameters�mAB),
at the so-called Argyres–Douglas point [174], with the twisted-mass-deformed
two-dimensional CP(N − 1) model.

The coincidence of the monopole and kink masses explained above ensures
that the CP(N − 1) model flows to a non-trivial conformal point at these values
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of �mAB . The scaling dimensions of the chiral primary operators in four- and
two-dimensional conformal theories were shown to agree [173]; a very nice result,
indeed.

4.7 More quark flavors

In this section we will abandon the assumption NF = N and consider the theory
(4.1.7) with more fundamental flavors, NF > N . In this case we have a number of
isolated vacua such as (4.1.11) and (4.1.14), in whichN squarks out ofNf develop
VEV’s, while the adjoint VEV’s are determined by the mass terms of these quarks,
as in Eq. (4.1.11).

Now, let us focus on the equal mass case. Then the isolated vacua coalesce, and
a Higgs branch develops from the common root whose location on the Coulomb
branch is given by Eq. (4.1.11) (with all masses set equal). The dimension of this
branch is 4N(Nf − N), see [143, 140]. The Higgs branch is noncompact and has
a hyper-Kähler geometry [3, 143]. It has a compact base manifold defined by the
condition

¯̃qkA = qkA. (4.7.1)

The dimension of this manifold is twice less than the total dimension of the Higgs
branch, 2N(Nf −N), which implies 4 forNf = 3 and 8 forNf = 4 in the simplest
N = 2 case. The BPS string solutions exist only on the base manifold of the Higgs
branch. The flux tubes become non-BPS-saturated if we move away from the base
along noncompact directions [175]. Therefore, we will limit ourselves to the vacua
which belong to the base manifold.

Strings that emerge in multiflavor theories, i.e. Nf > N (typically on the Higgs
branches), as a rule are not conventional ANO strings. Rather, they become the
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so-called semilocal strings (for a comprehensive review see [147]). The simplest
model where the semilocal strings appear is the Abelian Higgs model with two
complex flavors

SAH =
∫
d4x

{
1

4g2
F 2
μν + ∣∣∇μq A∣∣2 + g2

8

(|q A|2 − ξ
)2}, (4.7.2)

where A = 1, 2 is the flavor index.
If ξ �= 0 the scalar fields develop VEV’s breaking the U(1) gauge group. The

photon field becomes massive, together with one real scalar field.
In fact, for the particular choice of the quartic coupling made in Eq. (4.7.2) this

scalar field has the same mass as the photon. In fact, the model (4.7.2) is the bosonic
part of a supersymmetric theory; the flux tubes are classically BPS-saturated. The
topological reason for the existence of the ANO flux tubes is that

π1[U(1)] = Z

for the U(1) gauge group. On the other hand, in Eq. (4.7.2) we can pass to the
low-energy limit integrating out the massive photon and its scalar counterpart. This
will lead us to a four-dimensional sigma model on the manifold

|q A|2 = ξ . (4.7.3)

The vacuum manifold (4.7.3) has dimension 4 − 1 − 1 = 2, where we subtract
one real condition mentioned above, as well as one phase that can be gauged away.
Thus, the manifold (4.7.3) represents a two-dimensional sphere S2. The low-energy
limit of the theory (4.7.2) is the O(3) sigma model.

We should remember that

π2[S2] = π1[U(1)] = Z,

and this is the topological reason for the existence of instantons in the two-
dimensional O(3) sigma model [176]. Uplifted in four dimensions, these instantons
become string-like objects (lumps).

Just as the O(3) sigma-model instantons, the semilocal strings possess two addi-
tional zero modes associated with its complexified size modulus ρ in the model
(4.7.2). Hence, the semilocal strings interpolate between the ANO strings and two-
dimensional sigma-model instantons uplifted in four dimensions. At ρ = 0 we
have the ANO string while at ρ → ∞ the string becomes nothing but the two-
dimensional instanton elevated in four dimensions. At generic ρ �= 0 the semilocal
string is characterized by a power fall-off of the profile functions at infinity, to be
contrasted with the exponential fall-off characteristic of the ANO string.
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Now, if we return to our non-Abelian theory (4.1.7), we will see that the semilocal
strings in this theory have size moduli, in addition to the 2(N − 1) orientational
moduli n�. The total dimension of the moduli space of the semilocal string was
shown [130] to be

2Nf = 2 + 2(N − 1)+ 2(Nf −N), (4.7.4)

where the first, the second and the third terms above correspond to the translational,
orientational and the size moduli.

No studies of geometry of the moduli space of the semilocal strings were carried
out for quite some time due to infrared problems. It was known [177, 178] that the
size-zero modes are logarithmically non-normalizable in the infrared, as is the case
for the sigma-model instantons in two dimensions. This problem was addressed
in [179] where non-Abelian strings in the U(2) gauge theory were treated. The
effective theory on the string world sheet was shown to have the form

S(1+1) = β MW

∫
dt dz

{
ρ2

4
(∂k S

a)2 + |∂k ρi |2
}

ln
1

|ρ| δ m , (4.7.5)

where MW is the W -boson mass, see Eq. (4.1.16). The subscript i = 3, . . . ,Nf ,
while ρi stand for (Nf − 2) complex fields associated with the size moduli. The
parameter δm here measures small quark mass differences, acting as an infrared
regulator. It is necessary to introduce this infrared parameter, slightly lifting the
size moduli ρi , in order to regularize the infrared logarithmic divergence.

The metric (4.7.5) is derived in [179] for large – but not too large – values of
|ρ|2 ≡ |ρ2

i | lying inside the window

1

MW

� |ρ| � 1

δm
. (4.7.6)

The inequality on the left-hand side refers to the limit in which the semilocal string
becomes an O(3) sigma-model lump. The inequality on the right-hand side ensures
the validity of the logarithmic approximation. The action (4.7.5) was obtained in
the logarithmic approximation.

For ρi’s lying inside the window (4.7.6), with a logarithmic accuracy, one can
introduce new variables

zi = ρi

[
M2
W ln

1

|ρ| δm
]1/2

. (4.7.7)
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In terms of these new variables the metric of the world sheet theory (4.7.5) was
shown11 to become flat [179]. Corrections to this flat metric run in powers of

1

MW |ρ| and

(
ln

1

|ρ| δm
)−1

.

These corrections have not yet been calculated within the field-theory approach.
On the other hand, the very same problem was analyzed from theD-brane theory

side. Using brane-based arguments Hanany and Tong conjectured [130, 133] (see
also Ref. [152]) that the effective theory on the world sheet of the non-Abelian
semilocal string is given by the strong-coupling limit (e2 → ∞) of the following
two-dimensional gauge theory:

S =
∫
d2x

{
2β |∇kn�|2 + 2β |∇kzi |2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 4β

∣∣∣∣σ − m̃i√
2

∣∣∣∣
2

|zi |2

+ 2e2 β2[ |n�|2 − |zi |2 − 1
]2}, (4.7.8)

where � = 1, . . . ,N and i = N + 1, . . . ,Nf . Furthermore, zi denote (Nf − N)

complex fields associated with the size moduli. The fields n� and zi have the charges
+1 and −1 with respect to the U(1) gauge field in Eq. (4.7.8). This theory is similar
to the model (4.4.51) describing the Nf = N non-Abelian strings.

The Hanany–Tong conjecture is supported by yet another argument. As was
discussed in Section 4.6, the BPS spectrum of dyons on the Coulomb branch of
the four-dimensional theory must coincide with the BPS spectrum in the two-
dimensional theory on the string world sheet. We expect that this correspondence
extends to theories withNf > N . The two-dimensional theory (4.7.8) was studied
in [181] where it was shown that its BPS spectrum agrees with the spectrum of four-
dimensional U(N) SQCD with Nf flavors. In particular, the one-loop coefficient
of the β function is 2N − Nf in both theories. This leads to the identification of
their scales, see Eq. (4.4.35). As a matter of fact, Ref. [181] deals with the SU(N)
theory at the root of the baryonic Higgs branch, much in the same vein as [30].
However, as was explained in Section 4.6, the BPS spectra of the massive states in
these four-dimensional theories are the same.

11 Warning: a different metric on the moduli space of the non-Abelian semilocal string was suggested in [180].
It has a kinetic cross-term for the orientational and size moduli fields. However, at large ρi , inside the allowed
window (4.7.6), this metric is also flat.
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The above argument shows that the two-dimensional theory (4.7.8) is a promising
candidate for an effective theory on the semilocal string world sheet. In par-
ticular, the metric in (4.7.8) is asymptotically flat. The variables zi in (4.7.8)
should be identified with the ones in Eq. (4.7.7) introduced within the field-
theory framework in Ref. [179]. It is quite plausible that corrections to the flat
metric in powers 1/(MW |ρ|) are properly reproduced by the world sheet the-
ory (4.7.8). Nevertheless, the results of [179] clearly demonstrate the approximate
nature of the world sheet theory (4.7.8). Namely, corrections at large ρi sup-
pressed by large infrared logarithms (ln (1/|ρ| δm))−1 are certainly not captured in
Eq. (4.7.8).

The implication of the “semilocal nature” of the semilocal strings which is
most important from the physical standpoint is the loss of the monopole con-
finement [175, 179] i.e. the loss of the Meissner effect. To study the monopole
confinement as a result of the squark condensation we must consider a string of
a finite length L stretched between a heavy probe monopole and antimonopole
from the SU(N + 1)/SU(N) × U(1) sector. The ANO string has a typical trans-
verse size (g

√
ξ)−1. If L is much larger than this size the energy of this probe

configuration is

V (L) = T L, (4.7.9)

where T is the string tension. The linear potential in Eq. (4.7.9) ensures confinement
of monopoles.

For semilocal strings this conventional picture drastically changes. Now the
transverse string size can be arbitrarily large. Imagine a configuration in which
the string transverse size becomes much larger than L. Then we will clearly deal
with the three-dimensional rather than two-dimensional problem. The monopole
flux is no longer trapped in a narrow flux tube. Instead, it freely spreads over
a large three-dimensional volume, of the size of order of L in all directions.
Obviously, this will give rise to a Coulomb-type potential between the probe
monopoles,

V (L) ∼ 1/L, (4.7.10)

possibly augmented by logarithms ofL.At largeL the energy of this configuration is
lower than the one of the flux-tube configuration (4.7.9); therefore, it is energetically
favorable.

To summarize, semilocal strings can indefinitely increase their transverse size
and effectively disintegrate, so that the linear potential (4.7.9) gives place to the
Coulomb potential (4.7.10). In fact, lattice studies unambiguously show that the
semilocal string thickness always increases upon small perturbations [182].



4.8 Non-Abelian k-strings 135

Formation of semilocal strings on the Higgs branches leads to a dramatic physical
effect – deconfinement.

4.8 Non-Abelian k-strings

In this section we will briefly review how multi-strings, with the winding number
k > 1, can be constructed. One can consider them as bound states of k BPS
elementary strings. The Bogomol’nyi representation (4.2.9) implies that the tension
of the BPS-saturated k-string is determined by its total U(1) flux, 2πk. This entails,
in turn, that inN = 2 SQCD, see Eq. (4.1.7), the k-string tension has the form (4.1.7)

Tk = 2πk ξ . (4.8.1)

Equation (4.8.1) implies that the elementary strings that form composite k-strings
do not interact.

If one considers k elementary strings, forming the given k-string, at large sep-
arations the corresponding moduli space obviously factorizes into k copies of the
moduli spaces of the elementary strings. This suggests that the dimension of the
total moduli space is

2kNf = 2k + 2k(N − 2)+ 2k(Nf −N), (4.8.2)

see (4.7.4). The total dimension is written as a sum of dimensions of the trans-
lational, orientational and size moduli spaces. This result was confirmed by the
Hanany–Tong index theorem [130] which implies (4.8.2) at any separations. The
moduli space of well-separated elementary strings forming the given k-string, say,
at Nf = N is [

C × CP(N − 1)
]k

Sk
, (4.8.3)

where Sk stands for permutations of the elementary string positions.
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An explicit solution for a non-Abelian 2-string at zero separation in the simplest
bulk theory with N = Nf = 2 was constructed in [183]. It has a peculiar feature.
If the orientation vectors of the two strings Sa1 and Sa2 are opposite, the composite
2-string becomes an Abelian ANO string. It carries no non-Abelian flux. Therefore,
SU(2)C+F rotations act trivially on this particular string. This means that the internal
moduli space of this string is singular [184, 183]. The section of the orientational
moduli space corresponding to Sa1 = −Sa2 degenerates into a point. In [183] it was
argued that the internal moduli of the 2-string at zero separation is equivalent to
CP(2)/Z2. This differs by a discrete quotient from the result CP(2) obtained in
[184]. Later results obtained in [185, 186] confirm the CP(2)/Z2 metric.

The metric on the k-string moduli space for generic k is not known. For Abelian
k-strings exponential corrections to the flat metric were calculated in [187]. Expo-
nentially small corrections are natural since in this case the vortices are characterized
by an exponential fall off of their profile functions at large distances.

Hanany and Tong exploited [130, 133] a D-brane construction to obtain the
k-string metric in terms of the Higgs branch of a two-dimensional gauge theory,
see (4.4.51) and (4.7.8). What they came up with is an N = 2 supersymmetric
U(k) gauge theory with N fundamental and (Nf − N) anti-fundamental flavors
n� and ρi , respectively, (� = 1, . . . ,N and i = N , . . . ,Nf ), plus an adjoint chiral
multiplet Z. The D-term condition for this theory is

1

2β
[Z̄,Z] + n�n̄� − ρiρ̄

i = 1. (4.8.4)

The metric defined by this Higgs branch has corrections to the factorized metric
which run in (inverse) powers of separations between the elementary strings. Thus,
it exhibits a dramatic disagreement with the field-theory expectations. Still the
metric is believed [130, 133, 13, 14] to correctly reproduce some data protected by
supersymmetry, such as the BPS spectrum.

To derive all moduli of the general k-string solution the so-called moduli matrix
method was developed in [188]. It was observed that the substitution

ϕ = S(z, z̄) H0(z), A1 + iA2 = S−1∂̄zS, (4.8.5)

solves the last of the first-order equations (4.2.10). Here z = x1 + ix2 andH0 is an
N ×Nf matrix with a holomorphic dependence on z.

Then the equations for the gauge field strength in (4.2.10) yield an equation on
S(z, z̄) which is rather hard to solve in the general case. It was argued, however,
that the factor S involves no new moduli parameters [188]. Therefore, all moduli
parameters reside in the moduli matrix H0(z).
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DeterminingH0(z) gives one a moduli space which agrees with the moduli space
corresponding to the Higgs branch (4.8.4).

4.9 A physical picture of the monopole confinement

In this section we will return to our basic N = 2 SQCD with the U(N) gauge
group and Nf = N flavors (4.1.7) and discuss an emerging physical picture of the
monopole confinement. As was reviewed in detail in Section 4.5, elementary con-
fined monopoles can be viewed as junctions of two elementary strings. Therefore,
the physical spectrum of the theory includes monopole-antimonopole “mesons”
formed by two elementary strings in a loop configuration shown in Fig. 4.4.

If spins of such “mesons” are of order one, their mass is of the order of the square
root of the string tension

√
ξ . Deep in the quantum non-Abelian regime (m̃l = 0),

the CP(N − 1)-model strings carry no average SU(N ) magnetic flux [159],

〈nl〉 = 0, (4.9.1)

see Eq. (4.4.4). What they do carry is the U(1) magnetic flux which determines
their tension.

Monopoles are seen in the world sheet theory as CP(N − 1) kinks. At m̃l = 0
they become non-Abelian too, much in the same way as strings. They carry no
average SU(N ) magnetic flux. (Unlike strings, even in the classical regime they do
not carry the U(1) magnetic flux, see (4.5.1).)

Moreover, the monopoles acquire global flavor quantum numbers. We know that
the CP(N − 1) model kinks at strong coupling are described by the nl fields [159,
120] and, therefore, in fact, they belong to the fundamental representation of the
global SU(N )C+F group. This means that the monopole-antimonopole “mesons”
formed by the string configuration shown in Fig. 4.4 can belong either to singlet or to
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Figure 4.4. Monopole and antimonopole bound into a “meson.” The binding is
due to strings. Open and closed circles denote the monopole and antimonopole,
respectively.

adjoint representations of the global “flavor” group SU(N )C+F , in full accordance
with our expectations.

Singlets resemble glueballs. In weakly coupled bulk theory (g2
1,2 � 1) the singlet

mesons can decay into massive vector multiplets formed by gauge and quark fields,
with mass (4.1.17), see Section 4.1.2. The monopole-antimonopole mesons with
the adjoint flavor quantum numbers are also metastable in weakly coupled bulk
theory, they decay into massive gauge/quark multiplets which carry the adjoint
quantum numbers with respect to the global unbroken SU(N )C+F group and have
masses determined by Eq. (4.1.16).

Two elementary strings of the monopole-antimonopole meson shown in Fig. 4.4
can form a non-BPS bound state. Hence, in practice the composite meson looks as if
the monopole was connected to the antimonopole by a single string. In fact, there are
indications that this is what happens in the theory at hand. Interactions of elementary
Z2 strings were studied in [140] in the simplest caseN = 2.An interaction potential
for the elementary Z2 strings with Sa = (0, 0, +1) and Sa = (0, 0, −1) was found
to be attractive at large distances,

U ∼ −
{
MSU(2) R

}−1/2
e−MSU(2)R , (4.9.2)

whereR stands for the distance between two parallel strings. The gauge boson mass
is given in Eq. (4.1.16). This attractive potential leads to formation of a bound state,
a composite string.

Note that we have N distinct elementary strings. As was discussed in Sec-
tion 4.4.3, in the quantum regime N elementary strings differ from each other
by the value of the bifermion condensate of the CP(N − 1) model fermions [156].
Therefore, the physical picture of the monopole confinement is not absolutely sim-
ilar to what we expect in QCD, see the discussion in the beginning of this section.
Namely, we haveN different degenerate “mesons” (atN > 2) of the type discussed
above, associated with N different elementary strings.
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(a) (b)

Figure 4.5. (a) A schematic picture of the “baryon” formed by monopoles and
strings for N = 6; (b) The “baryon” acquires the shape of a star once the
neighboring strings form non-BPS bound states.

In QCD (and in nature) we have instead a single meson with the given quantum
numbers, plus its radial excitations which have higher masses. This is typical for
BPS strings in supersymmetric gauge theories. We will see in Chapter 6 that in
non-supersymmetric theories the situation is different: elementary strings are split
and, therefore, different “mesons” become split too.

In addition to the “mesons” and gauge/quark multiplets, the physical spectrum
contains also “baryons” built of N elementary monopoles connected to each other
by elementary strings forming a closed “necklace configuration,” see Fig. 4.5a. In
the classical limit m̃l � �σ all strings carry the SU(N ) magnetic fluxes given by∫

d2x F ∗
SU(N) = 2π

(
n · n∗ − 1

N

)
, (4.9.3)

with nl = δll0 , l0 = 1, . . . ,N for N elementary strings forming the “baryon.” The
monopoles carry the SU(N ) magnetic fluxes given in Eq. (4.5.1) and, therefore,
can be located at the corners of the polygon in Fig. 4.5a.

In the highly quantum regime, at m̃l = 0, both strings and monopoles carry no
average SU(N ) magnetic flux, see (4.9.1). The confined monopoles are seen as
kinks interpolating between the “neighboring” quantum vacua of the CP(N − 1)
model (a.k.a. strings) in the closed necklace configuration in Fig. 4.5a.

As was mentioned, the monopoles/kinks acquire flavor global quantum numbers.
They become fundamentals in SU(N)C+F . Thus, the “baryon” is in the

N∏
1

(N)

representation of SU(N)C+F . Note that both quarks and monopoles do not carry
baryon numbers. Therefore, our “baryon” has no baryon number too. The reason
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for this is that the U(1) baryon current is coupled to a gauge boson in the U(N )
gauge theory that we consider here. This means, in particular, that the “baryons”
can decay into the monopole “mesons” or gauge/quark multiplets.

We mentioned that the “neighboring” elementary strings can form a non-BPS
bound state, a composite string. It is plausible then that in practice the monopole
“baryon” actually resembles a configuration shown in Fig. 4.5b.

Let us emphasize that all states seen in the physical spectrum of the theory are
gauge singlets. This goes without saying. While color charges of the gauge/quark
multiplets are screened by the Higgs mechanism, the monopoles are confined by
non-Abelian strings.

Let us also stress in conclusion that in the limit m̃l = 0 the global group
SU(N )C+F is restored in the bulk and both strings and confined monopoles
become non-Abelian. One might argue that this restoration could happen only
at the classical level. One could suspect that in quantum theory a “dynamical
Abelization” (i.e. a cascade breaking of the gauge symmetry U(N )→U(1)N →
discrete subgroup ) might occur. This could have happened if the adjoint VEV’s that
classically vanish at m̃l = 0 (see (4.1.11)) could develop dynamically in quantum
theory.

At m̃l �= 0 the global SU(N )C+F group is explicitly broken down to U(1)N−1

by the quark masses. At m̃l = 0 this group is classically restored. If it could
be proven to be dynamically broken at m̃l = 0, this would mean a sponta-
neous symmetry breaking, with obvious consequences, such as the corresponding
Goldstone modes.

We want to explain why this cannot and does not happen in the theory at hand.
First of all, if a global symmetry is not spontaneously broken at the tree level then it
cannot be broken by quantum effects at weak coupling in “isolated” vacua. Second,
if the global group SU(N )C+F were broken spontaneously at m̃l = 0 this would
imply massless Goldstone bosons. However, we know that there are no massless
states in the spectrum of the bulk theory, see Section 4.1.

Finally, the breaking of SU(N )C+F in the m̃l = 0 limit would mean that the
twisted masses of the world sheet CP(N − 1) model would not be given by m̃l ;
instead they would be shifted, say,

m̃l(tw) = m̃l + cl�CP(N−1),

where cl are some coefficients. In Section 4.6 it was shown [132, 133] that the BPS
spectrum of the CP(N −1)model on the string should coincide with the BPS spec-
trum of the four-dimensional bulk theory on the Coulomb branch.The BPS spectrum
of the CP(N − 1) model is determined by m̃l(tw) while the BPS spectrum of the

bulk theory on the Coulomb branch is determined by m̃l . In [30] it was shown that
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the BPS spectra of both theories coincide at m̃l(tw) = m̃l . Thus, we conclude that

cl = 0, and the twisted masses vanish in the m̃l = 0 limit.
Hence, the global SU(N )C+F group is not broken in the bulk and both strings

and confined monopoles become non-Abelian at m̃l = 0.



5

Less supersymmetry

Let us move towards less supersymmetric theories. In this chapter we will review
non-Abelian strings in four-dimensional gauge theories with N = 1. In Chapter 6
we will deal with N = 0.

As was discussed in the Introduction to Part II, the Seiberg–Witten mechanism of
confinement [2, 3] relies on a cascade gauge symmetry breaking: the non-Abelian
gauge group breaks down to an Abelian subgroup at a higher scale by condensation
of the adjoint scalars, and at a lower scale the Abelian subgroup breaks down to a
discrete subgroup by condensation of quarks (or monopoles, depending on the type
of vacuum considered). This leads to formation of the ANO flux tubes and ensures
an Abelian nature of confinement of the monopoles (or quarks, respectively). The
gauge group acting in the infrared, where the confinement mechanism becomes
operative, is Abelian.

On the other hand, non-supersymmetric QCD-like theories as well as N = 1
SQCD have no adjoint scalars and, as a result, no cascade gauge symmetry
breaking occurs. The gauge group acting in the infrared is non-Abelian. Confine-
ment in these theories is non-Abelian. This poses a problem of understanding
confinement in theories of this type. Apparently, a straightforward extrapola-
tion of the Seiberg–Witten confinement scenario to these theories does not
work.

The discovery of the non-Abelian strings [130, 131, 132, 133] suggests a novel
possibility of solving this problem. In the N = 2 gauge theory (4.1.7) the SU(N)
subgroup of the U(N) gauge group remains unbroken after the squark condensation;
the vacuum expectation value 〈aa〉 = 0, see (4.1.11). This circumstance demon-
strates that the formation of the non-Abelian strings does not rely on the presence of
adjoint VEVs. This suggests, in turn, that we can give masses to the adjoint fields,
make them heavy, and eventually decouple the adjoint fields altogether, without
losing qualitative features of the non-Abelian confinement mechanism reviewed
above.

142
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This program – moving towards less supersymmetry – was initiated in Ref. [189]
which we will discuss in this section. In [189] we considered N = 2 gauge theory
(4.1.7), with the gauge group U(N). This theory was deformed by a mass term μ

for the adjoint matter fields breaking N = 2 supersymmetry down to N = 1. The
breaking terms do not affect classical solutions for the non-Abelian strings. The
latter are still 1/2 BPS-saturated. However, at the quantum level the strings “feel”
the presence of N = 2 supersymmetry breaking terms. Effects generated by these
terms first show up in the sector of the fermion zero modes.

Upon breaking N = 2 supersymmetry in the bulk theory down to N = 1, the
fermionic sector of the world sheet theory modifies. The number of the fermion
zero modes on the string (and hence the number of the fermion fields in the world
sheet theory) does not change. It is determined by the index theorem [104] which
we discuss in Section 5.4. However, supersymmetry of the world sheet model
changes. The N = (2, 2) supersymmetry of the undeformed CP(N − 1) model is
broken down to N = (0, 2) by the bulk mass term μ [190, 191]. Moreover, the
superorientational sector of the model gets mixed with the supertranslational one.
The world sheet model emerging after deformation is called the heterotic CP(N−1)
model. We will review in this section how the heterotic world sheet model emerges,
as well as the physics of the heterotic CP(N − 1) model which happens to be
solvable in the large-N expansion [192]. The solution exhibits supersymmetry
breaking at the quantum level.

If the adjoint mass parameter μ is kept finite, the non-Abelian string in the
N = 1 model at hand is well-defined and supports confined monopoles. How-
ever, at μ → ∞, as the adjoint superfield becomes very heavy (i.e. we approach
the limit of N = 1 SQCD) an infrared problem develops. This is due to the
fact that in N = 1 SQCD defined in a standard way the vacuum manifold is
no longer an isolated point. Rather, a flat direction develops (a Higgs branch).
The presence of the massless states obscures physics of the non-Abelian strings.
In particular, the strings become infinitely thick [189]. Thus, one arrives at a
dilemma: either one must abandon the attempt to decouple the adjoint super-
field, or, if this decoupling is performed, confining non-Abelian strings cease to
exist [189].

A way out was suggested in [104]. A relatively insignificant modification of the
benchmark N = 2 model cures the infrared problem. All we have to do is to add
a neutral meson superfield M coupled to the quark superfields through a super-
potential term. Acting together with the mass term of the adjoint superfield, M
breaks N = 2 down to N = 1. The limit μ → ∞ in which the adjoint superfield
completely decouples, becomes well-defined. No flat directions emerge. The lim-
iting theory is N = 1 SQCD supplemented by the meson superfield. It supports
non-Abelian strings. The junctions of these strings present confined monopoles,
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or, better to say, what becomes of the monopoles in the theory where there are no
adjoint scalar fields. There is a continuous path following which one can trace the
monopole evolution in its entirety: from the ’t Hooft–Polyakov monopoles which
do not exist without the adjoint scalars to the confined monopoles in the adjoint-free
environment.

5.1 Breaking N = 2 supersymmetry down to N = 1

In Section 5.1 we will outline main results of Ref. [189, 190, 191] where non-
Abelian strings were considered in an N = 1 gauge theory obtained as a
deformation of the N = 2 theory (4.1.7) by mass terms of the adjoint matter.

5.1.1 Deformed theory and string solutions

Let us add a superpotential mass term to our N = 2 SQCD,

WN=1 =
√
N

2

μ1

2
A2 + μ2

2
(Aa)2 , (5.1.1)

whereμ1 andμ2 are mass parameters for the chiral superfields belonging to N = 2
gauge supermultiplets, U(1) and SU(N), respectively, while the factor

√
N/2 is

included for convenience. Clearly, the mass term (5.1.1) splits these supermultiplets,
breaking N = 2 supersymmetry down to N = 1.

The bosonic part of the SU(N)×U(1) theory has the form (4.1.7) with the
potential

V (qA, q̃A, aa , a)N=1 = g2
2

2

(
1

g2
2

f abcābac + q̄A T
a qA − q̃AT

a ¯̃qA
)2

+ g2
1

8

(
q̄Aq

A − q̃A ¯̃qA −Nξ
)2

+ g2
2

2

∣∣2q̃AT aqA + √
2μ2a

a
∣∣2 + g2

1

2

∣∣q̃AqA + √
Nμ1a

∣∣2
+ 1

2

N∑
A=1

{∣∣(a + 2T aaa)qA
∣∣2

+ ∣∣(a + 2T aaa) ¯̃qA
∣∣2} , (5.1.2)

where the sum over repeated flavor indicesA is implied. The potential (5.1.2) differs
from the one in (4.1.9) in two ways. First, we use SU(2)R invariance of the original
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N = 2 theory with the potential (4.1.9) to rotate the FI term. In Eq. (5.1.2) it is the
FI D term, while in Chapter 4 we considered the FI F term.

Second, there are N = 2 supersymmetry breaking contributions from F

terms in Eq. (5.1.2) proportional to the mass parameters μ1 and μ2. Note that
we set the quark mass differences at zero and redefine a to absorb the average value
of the quark mass parameters.

As in Eq. (4.1.9), the FI term triggers spontaneous breaking of the gauge
symmetry. The vacuum expectation values of the squark fields can be chosen as

〈qkA〉 = √ξ
⎛
⎝ 1 0 . . .

. . . . . . . . .

. . . 0 1

⎞
⎠ , 〈 ¯̃qkA〉 = 0,

k = 1, . . . ,N , A = 1, . . . ,N , (5.1.3)

while the adjoint field VEVs are

〈aa〉 = 0, 〈a〉 = 0, (5.1.4)

see (4.1.11).
We see that the quark VEVs have the color-flavor locked form (see (4.1.14))

implying that the SU(N)C+F global symmetry is unbroken in the vacuum. Much
in the same way as in N = 2 SQCD, this symmetry leads to the emergence of the
orientational zero modes of the ZN strings.

Note that VEVs (5.1.3) and (5.1.4) do not depend on supersymmetry breaking
parametersμ1 andμ2. This is due to the fact that our choice of parameters in (5.1.2)
ensures vanishing of the adjoint VEVs, see (5.1.4). In particular, we have the same
pattern of symmetry breaking all the way up to very large μ1 and μ2, where the
adjoint fields decouple. As in N = 2 SQCD we assume

√
ξ � �SU(2) to ensure

weak coupling.
Now, let us discuss the mass spectrum in the N = 1 theory at hand. Since both

U(1) and SU(N) gauge groups are broken by squark condensation, all gauge bosons
become massive. Their masses are given in Eqs. (4.1.16) and (4.1.17).

To obtain the scalar boson masses we expand the potential (5.1.2) near the vacuum
(5.1.3), (5.1.4) and diagonalize the corresponding mass matrix. Then, N2 compo-
nents of 2N2 (real) component scalar field qkA are eaten by the Higgs mechanism
for the U(1) and SU(N) gauge groups. Other N2 components are split as follows.
One component acquires mass (4.1.17) and becomes the scalar component of a mas-
sive N = 1 vector U(1) gauge multiplet. Moreover, N2 − 1 components acquire
masses (4.1.16) and become scalar superpartners of the SU(N) gauge bosons in
N = 1 massive gauge supermultiplets.
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Other 4N2 real scalar components of the fields q̃Ak , aa and a produce the follow-
ing states: two states acquire mass

m+
U(1) = g1

√
N

2
ξ λ+

1 , (5.1.5)

while the mass of other two states is given by

m−
U(1) = g1

√
N

2
ξ λ−

1 , (5.1.6)

where λ±
1 are two roots of the quadratic equation

λ2
i − λi(2 + ω2

i )+ 1 = 0 , (5.1.7)

for i = 1, where we introduced two N = 2 supersymmetry breaking parameters
ω1,2 associated with the U(1) and SU(N) gauge groups, respectively,

ω1 = g1μ1√
ξ

, ω2 = g2μ2√
ξ

. (5.1.8)

Other 2(N2 − 1) states acquire mass

m+
SU(N) = g2

√
ξλ+

2 , (5.1.9)

while the remaining 2(N2 − 1) states become massive, with mass

m−
SU(N) = g2

√
ξλ−

2 , (5.1.10)

where λ±
2 are two roots of the quadratic equation (5.1.7) for i = 2. Note that all

states come either as singlets or adjoints with respect to the unbroken SU(N)C+F .
When the SUSY breaking parameters ωi vanish, the masses (5.1.5) and (5.1.6)

coincide with the U(1) gauge boson mass (4.1.17). The corresponding states form
the bosonic part of a long N = 2 massive U(1) vector supermultiplet [35], see also
Section 4.1.2.

If ω1 �= 0 this supermultiplet splits into an N = 1 vector multiplet, with mass
(4.1.17), and two chiral multiplets, with masses (5.1.5) and (5.1.6). The same hap-
pens with the states with masses (5.1.9) and (5.1.10). In the limit of vanishing ω’s
they combine into bosonic parts of (N2 − 1) N = 2 vector supermultiplets with
mass (4.1.16). If ωi �= 0 these multiplets split into (N2 − 1) N = 1 vector mul-
tiplets (for the SU(N) group) with mass (4.1.16) and 2(N2 − 1) chiral multiplets
with masses (5.1.9) and (5.1.10). Note that the same splitting pattern was found in
[35] in the Abelian case.
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Now let us take a closer look at the spectrum obtained above in the limit of large
N = 2 supersymmetry breaking parameters ωi , ωi � 1. In this limit the larger
masses m+

U(1) and m+
SU(N) become

m+
U(1) = mU(1)ω1 = g2

1

√
N

2
μ1 , m+

SU(N) = mSU(N)ω2 = g2
2μ2 . (5.1.11)

In the limit μi → ∞ these are the masses of the heavy adjoint scalars a and aa . At
ωi � 1 these fields decouple and can be integrated out.

The low-energy theory in this limit contains massive gauge N = 1 multiplets
and chiral multiplets with the lower masses m−. Equation (5.1.7) gives for these
masses

m−
U(1) = mU(1)

ω1
=
√
N

2

ξ

μ1
, m−

SU(2) = mSU(2)

ω2
= ξ

μ2
. (5.1.12)

In particular, in the limit of infinite μi these masses tend to zero. This reflects the
presence of a Higgs branch in N = 1 SQCD. To see the Higgs branch and calculate
its dimension, please observe that our theory (4.1.7) with the potential (5.1.2) in
the limit μi → ∞ flows to N = 1 SQCD with the gauge group SU(N)×U(1) and
the FI D term. The bosonic part of the action of the latter theory is

S =
∫
d4x

{
1

4g2
2

(F aμν)
2 + 1

4g2
1

(Fμν)
2 + ∣∣∇μqA∣∣2 + ∣∣∇μ ¯̃qA∣∣2

+ g2
2

2

(
q̄A T

aq A − q̃AT
a ¯̃q A)2 + g2

1

8

(
q̄ Aq

A − q̃A ¯̃q A −Nξ
)2} .(5.1.13)

All F terms disappear in this limit, and we are left with theD terms. We have 4N2

real components of the q and q̃ fields while the number of the D term constraints
in (5.1.13) is N2. Moreover, N2 phases are eaten by the Higgs mechanism. Thus,
the dimension of the Higgs branch in Eq. (5.1.13) is

4N2 −N2 −N2 = 2N2 .

The vacuum (5.1.3) corresponds to the base point of the Higgs branch with q̃ = 0.
In other words, flowing from N = 2 theory (4.1.7), we do not recover the entire
Higgs branch of N = 1 SQCD. Instead, we arrive at a single vacuum – a base point
of the Higgs branch.

The scale of N = 1 SQCD
�N=1

SU(N)
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is expressed in terms of the scale�SU(N) of the deformed N = 2 theory as follows:

(
�N=1

SU(N)

)2N = μN2 �
N
SU(N) . (5.1.14)

To keep the bulk theory at weak coupling in the limit of large μi we assume that

√
ξ � �N=1

SU(N) . (5.1.15)

Now, considering the theory (4.1.7) with the potential (5.1.2), let us return to the
case of arbitraryμi and discuss non-Abelian string solutions. The BPS saturation is
maintained. By the same token, as for the BPS strings in N = 2 we use the ansatz

qkA ≡ ϕkA , q̃Ak = 0 . (5.1.16)

The adjoint fields are set to zero. Note that Eq. (5.1.16) is an SU(2)R-rotated version
of (4.2.1). The FI F term considered in Chapter 4 is rotated into the FI D term
in (5.1.2).

With these simplifications the N = 1 model (4.1.7) with the potential (5.1.2)
reduces to the model (4.2.2) which was exploited in Chapter 4 to obtain non-
Abelian string solutions. The reason for this is that the adjoint fields play no role in
the string solutions, and we let them vanish, see Eq. (5.1.4). Then N = 2 breaking
terms vanish, and the potential (5.1.2) reduces to the one in Eq. (4.1.9) (up to an
SU(2)R rotation).

This allows us to parallel the construction of the non-Abelian strings carried out
in Section 4.3. In particular, the elementary string solution is given by Eq. (4.4.4).
Moreover, the bosonic part of the world sheet theory is nothing but the CP(N − 1)
sigma model (4.4.9), with the coupling constant β determined by the coupling g2

of the bulk theory via Eq. (4.4.15) at the scale
√
ξ . The latter scale plays the role

of the UV cut off in the world sheet theory.
At small values of the deformation parameter,

μ2 � √
ξ ,

the coupling constant g2 of the four-dimensional bulk theory is determined by the
scale �SU(N) of the N = 2 theory. Then Eq. (4.4.15) implies (see (4.4.35))

�σ = �SU(N) , (5.1.17)

where we take into account that the first coefficient of the β function is N both in
the N = 2 limit of the four-dimensional bulk theory and in the two-dimensional
CP(N − 1) model, see (4.4.34).
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Instead, in the limit of large μ2,

μ2 � √
ξ ,

the coupling constant g2 of the bulk theory is determined by the scale �N=1
SU(N) of

N = 1 SQCD (5.1.13), see (5.1.14). In this limit Eq. (4.4.15) gives

�σ =
(
�N=1

SU(N)

)2
g2

√
ξ

, (5.1.18)

where we take into account the fact that the first coefficient of the β function in
N = 1 SQCD is 2N .

5.1.2 Heterotic CP(N − 1) model

In this section we will discuss the fermionic sector of the low-energy effective theory
on the world sheet of the non-Abelian string in the deformed bulk theory (4.1.7)
with the potential (5.1.2), as well as supersymmetry of the world sheet theory. First,
we note that our string is classically 1/2 BPS-saturated. Therefore, in the N = 2
limit (with N = 2 breaking parameters μi vanishing) four supercharges out of
eight present in the bulk theory are automatically preserved on the string world
sheet. They become supercharges in the CP(N − 1) model.

What happens when we break N = 2 supersymmetry of the bulk model by
switching on parameters μi (for simplicity we consider the case μ1 = μ2 ≡ μ

here)? The 1/2 “BPS-ness” of the string solution requires only two supercharges
on the world sheet. However, as we will show in Section 5.4, the number of the
fermion zero modes in the string background does not change. This number is fixed
by the index theorem. Thus, the number of (classically) massless fermion fields in
the world sheet model does not change.

It is well known that the N = (2, 2) supersymmetric sigma model with the
CP(N − 1) target space does not admit N = (0, 2) supersymmetric deformations
[156]. A way out was indicated in [190]: the world-sheet theory is in fact CP(N −
1)×C rather than the CP(N−1)model. The factorC comes from the translational
sector. In the N = 2 limit the translational and the orientational sectors of the
world-sheet theory are totally decoupled. Breaking N = 2 supersymmetry in the
bulk mixes fermions from these two sectors on the world sheet.

The translational sector of the effective theory on the string in the N = 2 limit
contains the bosonic field x0i , i = 1, 2 (position of string’s center in the (1,2) plane),
and two fermion fields ζL and ζR . Two supercharges that survive on the string world
sheet at non-zero μ protect x0i and ζL. The world-sheet fields x0i(t , z) and ζL(t , z)
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remain free fields decoupled from all others. This is no longer the case with regards
to ζR which gets an interaction with fermions of the orientational sector.

As a result, the heterotic N = (0, 2) model in the gauged formulation (see
(4.4.32)) takes the form [190]

S =
∫
d2x

{
1

2
ζ̄R i∂L ζR + [2√β i δ λ̄L ζR + H.c.

]
+ |∇knl|2 + 1

4e2
F 2
kl +

1

e2
|∂kσ |2 + 1

2e2
D2 + 2|σ |2|nl|2 + iD(|nl|2 − 2β)

+ ξ̄lR i∇L ξ lR + ξ̄lL i∇R ξ lL + 1

e2
λ̄R i∂L λR + 1

e2
λ̄L i∂R λL

+ [
i
√

2 σ ξ̄lRξ
l
L + i

√
2 n̄l (λRξ

l
L − λLξ

l
R)+ H.c.

]+ 8β |δ|2 |σ |2
}

, (5.1.19)

where we omitted the fields x0i(t , z) and ζL(t , z) as irrelevant for the present
consideration, while ∂L,R = ∂0 ∓ i ∂3. Here ξ lR,L are fermionic superpartners of

the bosonic orientational fields nl . For convenience we change the normalization
of nl as compared with the one in (4.4.32) absorbing the coupling constant 2β in
the kinetic term for n’s.

Much in the same way as the N = (2, 2) CP(N − 1)model, this heterotic model
should be considered in the strong coupling limit e2 → ∞. The gauge multiplet
consists of the U(1) gauge field Ak , complex scalar σ , fermions λR,L and axillary
field D. Integrating over D gives constraint (4.4.3) modified due to the change of
normalization of n as follows:

|nl|2 = 2β . (5.1.20)

The terms in Eq. (5.1.19) containing the deformation parameter δ break N =
(2, 2) supersymmetry down to N = (0, 2). The parameter δ is complex and dimen-
sionless. It was calculated in terms of the deformation parameter μ of the bulk
theory in [191]. We review this result below.

Integrating over the axillary fields λ we arrive at the constraints

n̄l ξ
l
L = 0, ξ̄lR n

l = √2β δ ζR , (5.1.21)

replacing those in Eq. (4.4.24) (the latter equation in the gauged formulation for
arbitraryN takes the form n̄l ξ

l = 0). We see that the constraint (4.4.24) is modified
for the right-handed fermions ξR implying that the supertranslational sector of the
world sheet theory is no longer decoupled from the orientational one. The general
structure of the deformation in (5.1.19) is dictated by N = (0, 2) supersymmetry.

Integrating over Ak and σ produces four-fermion interactions in the model
(5.1.19). Once the coefficient in front of |σ |2 is modified by the N = 2 breaking
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deformation the coefficient in front of the four-fermion interaction is modified as
well (as compared with Eq. (4.4.31)).

The model (5.1.19) has a U(1) axial symmetry which is broken by the chiral
anomaly down to the discrete subgroup Z2N [159]. The σ field is related to the
fermion bilinear operator by the following formula:

σ = − i

2
√

2β(1 + 2|δ|2) ξ̄lLξ
l
R . (5.1.22)

Moreover, it transforms under the above Z2N symmetry as

σ → e
2πk
N
i σ , k = 1, . . . ,N − 1 . (5.1.23)

We will see below that theZ2N symmetry is spontaneously broken by a condensate
of σ , down to Z2, much in the same way as in the conventional N = (2, 2) model
[159]. This is equivalent to saying that the fermion bilinear condensate 〈ξ̄lLξ lR〉
develops, breaking the discrete Z2N symmetry down to Z2.

We can rewrite the indirect interactions between superorientational and super-
translational sectors of the theory coded in the constraint (5.1.21) by shifting the
field ξR as follows:

ξ̄R → ξ̄R − δ
1√
2β

n̄ ζR . (5.1.24)

Then we return to unmodified constraints

n̄l ξ
l
L = 0, ξ̄lR n

l = 0 . (5.1.25)

Performing a rather straightforward algebraic analysis based on the relation
between the gauged and O(3) formulations (see Appendix B.4) we get

S1+1 = β

∫
d2x

{
1

2

(
∂kS

a
)2 + 1

2
χaR i ∂L χ

a
R + 1

2
χaL i ∂R χ

a
L − c2

2
(χaRχ

a
L)

2

+ c

2
√

2β
χaR
(
i ∂L S

a (α ζR + ᾱ ζ̄R)+ iεabcSbi ∂L S
c (α ζR − ᾱ ζ̄R)

)
+ 1

2β
ζ̄R i ∂L ζR + |α|2 c

2

4β
ζ̄RζR iε

abcSaχbLχ
c
L

}
, (5.1.26)

where

c2 = 1

1 + |α|2 , (5.1.27)

we restrict ourselves to N = 2 and rename χa1,2 of Section 4.4.2, χa1,2 → χaR,L.
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The relation of the deformation parameter introduced here and the one in the
gauged formulation of the theory (see Eqs. (5.1.19)) is as follows:

δ = α√
1 − |α|2 . (5.1.28)

As a result of the shift (5.1.24), crucial bifermionic terms of the type χR∂LSζR
appear in the second line of Eq. (5.1.26).

Now the problem is to actually derive the heterotic world sheet CP(N − 1)
model from the bulk theory. The general structure of the theory (5.1.19) is fixed
by N = (0, 2) supersymmetry. In order to derive this theory as an effective low-
energy theory on the string we have to calculate the deformation parameter δ in
terms of the bulk parameters. The kinetic cross-terms χR∂SζR in the formula-
tion (5.1.26), bilinear in the fermion fields, allow us to do so. In Ref. [191] the
μ-deformation of the fermion zero modes was considered. Both supertranslational
and superorientational fermion zero modes on the string were found in the limits
of small and large μ by solving the Dirac equations. The overlap of the transla-
tional and orientational fermion zero modes gives the kinetic cross-term χ1∂SζR

in (5.1.19).
This derivation provides us with a relation between the bulk and world sheet

deformation parameters, namely [191],

δ =

⎧⎪⎪⎨
⎪⎪⎩

const
g2

2μ

MSU(N)
, small μ ,

const μ
|μ|

√
ln

g2
2 |μ|

MSU(N)
, large μ ,

(5.1.29)

where the mass of the gauge boson MSU(N) is given in Eq. (4.1.16). The constants
here are determined by the profile functions of the string solution [191].

The physical reason for the logarithmic behavior of the world sheet deformation
parameter at large μ is as follows. In the large-μ limit certain states in the bulk
theory become light [189, 191], see Section 5.1.1. This reflects the presence of the
Higgs branch in N = 1 SQCD to which our bulk theory flows in theμ → ∞ limit.
The argument of the logarithm in (5.1.29) is the ratio ofMSU(N) and the small mass
of the light states associated with this would-be Higgs branch [191].

To conclude this section, let us mention that more general deformations of N = 2
theory (4.1.7) preserving N = 1 supersymmetry were also considered in [190, 191].
In particular, deformations of (4.1.7) with unequal quark masses with a polynomial
superpotential

W = Tr
N∑
k=1

ck

k + 1
�k+1 (5.1.30)
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do not spoil the BPS nature of string solutions if the critical points of the super-
potential coincide with the quark mass parameters. Associated N = (0, 2) heterotic
deformations of the CP(N − 1) world-sheet theory were derived in [191]. For
polynomial deformations (5.1.30) a non-polynomial (logarithmic) response was
found in the world-sheet model. The heterotic CP(N − 1) model in the geometric
formulation is presented in Appendix B.5.

5.1.3 Large-N solution

The N = (2, 2)model as well as the non-supersymmetric CP(N − 1)model were
solved by Witten in the large-N limit [159]. The same method was used in [192] to
study the N = (0, 2) heterotic CP(N − 1) model. In this section we will briefly
review this analysis.

Since the action (5.1.19) is quadratic in the fields nl and ξ l we can integrate
out these fields and then minimize the resulting effective action with respect to
the fields from the gauge multiplet. The large-N limit ensures the corrections to
the saddle point approximation to be small. In fact, this procedure boils down to
calculating a small set of one-loop graphs with the nl and ξ l fields propagating in
loops. After integrating nl and ξ l out, we must check self-consistency.

Integration over nl and ξ l in (5.1.19) yields the following determinants:

[
det
(−∂2

k + iD + 2|σ |2)]−N [det
(−∂2

k + 2|σ |2)]N , (5.1.31)

where we dropped the gauge field Ak . The first determinant here comes from the
boson loops while the second from fermion loops. Note, that the nl mass is given
by iD+ 2|σ |2 while that of the fermions ξ l is 2|σ |2. If supersymmetry is unbroken
(i.e.D = 0) these masses are equal, and the product of the determinants reduces to
unity, as it should be.

Calculation of the determinants in Eq. (5.1.31) is straightforward. We easily get
the following contribution to the effective action:

N

4π

{(
iD + 2|σ |2) [ln

M2
uv

iD + 2|σ |2 + 1

]
− 2|σ |2

[
ln

M2
uv

2|σ |2 + 1

]}
, (5.1.32)

where quadratically divergent contributions from bosons and fermions do not
depend on D and σ and cancel each other. Here Muv is an ultraviolet cut off.
Remembering that the action in (5.1.19) presents an effective low-energy theory on
the string world sheet one can readily identify the UV cut off in terms of the bulk
parameters,

Muv = MSU(N) . (5.1.33)
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Invoking Eq. (4.4.15) we conclude that the bare coupling constant β in (5.1.19) can
be parameterized as

β = N

8π
ln
M2

uv

�2
σ

. (5.1.34)

Substituting this expression in (5.1.19) and adding the one-loop correction (5.1.32)
we see that the term proportional to iD ln M2

uv is canceled out, and the effective
action is expressed in terms of the renormalized coupling constant,

βren = N

8π
ln
iD + 2|σ |2

�2
σ

. (5.1.35)

Assembling all contributions together we get the effective potential as a function
of the D and σ fields in the form

Veff =
∫
d2x

N

4π

{
−
(
iD + 2|σ |2

)
ln
iD + 2|σ |2

�2
σ

+ iD

+ 2|σ |2 ln
2|σ |2
�2
σ

+ 2|σ |2 u
}

, (5.1.36)

where instead of the deformation parameter δ we introduced a more convenient
(dimensionless) parameter u which does not scale with N ,

u = 16π

N
β |δ|2. (5.1.37)

Minimizing this potential with respect to D and σ we arrive at the following
relations:

βren = N

8π
ln
iD + 2|σ |2

�2
σ

= 0 ,

ln
iD + 2|σ |2

2|σ |2 = u . (5.1.38)

Equations (5.1.38) represent the master set which determines the vacua of the
theory. Solutions can be readily found,

2|σ |2 = �2
σ e

−u , σ = 1√
2
�σ exp

(
−u

2
+ 2π i k

N

)
, k = 0, . . . ,N − 1,

iD = �2
σ (1 − e−u) . (5.1.39)

The phase factor of σ does not follow from (5.1.38), but we know of its existence
from the fact of the spontaneous breaking of the discrete chiral Z2N down to Z2,
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see the discussion in Section 5.1.2. Substituting this solution in Eq. (5.1.36) we get
the expression for the vacuum energy density [192],

Evac = N

4π
iD = N

4π
�2
σ (1 − e−u) . (5.1.40)

We see that the vacuum energy does not vanish! The N = (0, 2) supersymmetry
is spontaneously broken. The breaking of N = (0, 2) supersymmetry was first
conjectured in Ref. [193]. Of course, the large-N solution presented above is the
most clear-cut demonstration of its spontaneous breaking. However, even in the
absence of this solution one can present general arguments in favor of this scenario.
Indeed, addition of the extra right-handed field ζR in the CP(N−1)model changes
Witten’s index from N to zero [191].

Another argument comes from the bulk theory in the limit of large deformation
parameterμ. The breaking of supersymmetry for the N = (0, 2)world-sheet theory
could be argued from consistency with the absence of localized BPS solutions of
the required type in N = 1 gauge theories. The argument could go along the
following lines: If the N = (0, 2) world-sheet theory is to have supersymmetric
vacua, it would need to haveN degenerate vacua due to the breaking of the discrete
ZN symmetry. This is likely to imply the existence of BPS kinks preserving one
supercharge. From the bulk point of view, these configurations would be 1/4 BPS-
saturated confined monopoles. However, such solutions are not supported by the
allowed central charges in the N = 1 superalgebra and, therefore, are not expected.
Thus, the breaking of world sheet supersymmetry is consistent with the absence of
such bulk BPS configurations.

Needless to say, the linear N dependence of the vacuum energy we see in
Eq. (5.1.40) was expected.

It is instructive to discuss the first condition in (5.1.38). That βren = 0 was a
result of Witten’s analysis [159] too. This fact, βren = 0, implies that in quantum
theory (unlike the classical one)

〈 |nl|2 〉 = 0 , (5.1.41)

i.e. the global SU(N) symmetry is not spontaneously broken in the vacuum and,
hence, there are no massless Goldstone bosons. All bosons get a mass.

If the deformation parameter u vanishes, the vacuum energy vanishes too and
supersymmetry is not broken, in full accord with Witten’s analysis [159] and with
the fact that the Witten index is N in this case [123]. The σ field develops a
vacuum expectation value (5.1.39) breaking Z2N symmetry.1 As we switch on the

1 The vacuum structure (5.1.39) of the N = (2, 2) model at u = 0 was also obtained by Witten for arbitrary N
in [157] using a superpotential of the Veneziano–Yankielowicz type [194].
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deformation parameter u, the D component develops a VEV; hence, N = (0, 2)
supersymmetry is spontaneously broken. The vacuum energy density no longer
vanishes.

In the limit μ → ∞, the deformation parameter u behaves logarithmically
with μ,

u = const

(
ln
MSU(N)

�N=1
SU(N)

)(
ln

g2
2|μ|

MSU(N)

)
, (5.1.42)

where the constant above does not depend on N . At any finite u the σ -field con-
densate does not vanish, labeling N distinct vacua as indicated in Eq. (5.1.39). In
each vacuum Z2N symmetry is spontaneously broken down to Z2. As we explain
in Section 5.1.4 we cannot trust the world-sheet theory at very large values of μ
due to the presence of the Higgs branch in N = 1 SQCD. Therefore, the vacuum
structure outlined above persists in the whole window of the allowed values of the
deformation parameter u.

The mass spectrum of the heterotic CP(N−1)model was determined in Ref. [192]
in the large-N limit. In the regime of large u the masses of the nl bosons and ξ l

fermions become drastically different. They are

mn =
√
iD + 2|σ |2 = �σ , mξ = √

2|σ | = �σ exp
(
−u

2

)
, (5.1.43)

where we used Eqs. (5.1.39). The fermions are much lighter than their bosonic
counterparts.

Much in the same way as in the N = (2, 2) CP(N − 1) model [159], the fields
belonging to the U(1) gauge multiplet, introduced as axillary fields in (5.1.19),
acquire kinetic terms at one loop and become dynamical. Moreover, the photon
acquires mass proportional to the VEV of the σ field due to the chiral anomaly.
The σ field also becomes massive, with mass determined by 〈σ 〉 in (5.1.39).

Due to the spontaneous supersymmetry breaking the theory always has a mass-
less Goldstino. At small u its role is played by ζR with a small admixture of
other fermions, while in the large u limit the gaugino λR becomes massless. In
the large u limit when 〈σ 〉 is small the low-energy effective theory contains the
light (but massive!) photon, two light σ states and only one fermion: the massless
Goldstino λR .

As was shown above, in the N = (0, 2) theory supersymmetry is spontaneously
broken. The vacuum energy density does not vanish, see (5.1.40). This means that
strings under consideration are no longer BPS and their tensions get a shift (5.1.40)
with respect to the classical value Tcl = 2πξ . However, this shift is the same for
all N elementary strings. Their tensions are strictly degenerate; Z2N symmetry is
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spontaneously broken down to Z2. The order parameter (the σ field VEV) remains
nonvanishing at any finite value of the bulk parameter μ.

The kinks that interpolate between different vacua of the world sheet theory are
described by the nl fields. Their masses are given in Eq. (5.1.43). In the N = (0, 2)
theory the masses of the boson and fermion superpartners are split. The bosonic
kinks have masses ∼ �σ in the large-μ limit, while the fermionic kinks become
light. Still their masses remain finite and nonvanishing at any finite μ.

We already know that, from the standpoint of the bulk theory, these kinks are
confined monopoles [189, 104, 192]. The fact that tensions of all elementary strings
are the same ensures that these monopoles are free to move along the string, since
with their separation increasing, the energy of the configuration does not change.
This means they are in the deconfinement phase on the string.2 The kinks are
deconfined both in N = (2, 2) and N = (0, 2) CP (N−1) theories. In other words,
individual kinks are present in the physical spectrum of (1+1) dimensional theory.
The monopoles, although attached to strings, are free to move on the strings. We
will see in Chapter 6 that this is not the case for monopoles in non-supersymmetric
theories. Kinks in non-supersymmetric CP(N − 1) models are in the confinement
phase on the string, therefore a monopole and an antimonopole attached to the
string come close to each other forming a meson-like configuration.

5.1.4 Limits of applicability

As was discussed above, both the string solution and the bosonic part of the world
sheet theory for the non-Abelian strings in N = 1 with the potential (5.1.2) are
identical to those in N = 2. However, the occurrence of the Higgs branch in
the limit μ → ∞ manifests itself at the quantum level [189]. At the classical
level light fields appearing in the bulk theory in the large-μ limit do not enter the
string solution. The string is “built” of heavy fields. However, at the quantum level
couplings to the light fields lead to a dramatic effect: an effective string thickness
becomes large due to long-range tails of the string profile functions associated with
the light fields. As a matter of fact, we demonstrated [189, 191] that in the fermion
sector this effect is seen already at the classical level. Some of the fermion zero
modes on the string solution acquire long-range tails and become non-normalizable
in the limit μ → ∞.

Below we will estimate the range of validity of the description of non-Abelian
string dynamics by the CP(N−1)model (5.1.19). To this end let us note that higher
derivative corrections to (5.1.19) run in powers of

�∂k , (5.1.44)

2 We stress that these monopoles are confined in the bulk theory being attached to strings.
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where � is the string transverse size (thickness). At small μ it is quite clear that
� ∼ 1/g

√
ξ . A typical energy scale on the string world sheet is given by the scale

�σ of the CP(N − 1) model which, in turn, is given by (5.1.17) at small μ. Thus,
∂ → �σ , and higher-derivative corrections run in powers of�σ/g

√
ξ . At small μ

the higher-derivative corrections are suppressed by powers of �σ/g
√
ξ � 1 and

can be ignored. However, with μ increasing, the fermion zero modes acquire long-
range tails [189, 191]. This means that an effective thickness of the string grows.
The thickness is determined by masses of the lightest states (5.1.12) of the bulk
theory,

� ∼ 1

m− = μ

ξ
. (5.1.45)

The higher-derivative terms are small if (��σ ) � 1. Substituting here the scale
of the CP(N −1)model given at largeμ by (5.1.18) and the scale of N = 1 SQCD
(5.1.14) we arrive at the constraint

μ � μ∗ , (5.1.46)

where the critical value of μ is

g2
2μ

∗ = g2
2ξ

�σ
= M3

SU(N)(
�N=1

SU(N)

)2 . (5.1.47)

If the condition (5.1.46) is met, the N = 2 CP(N−1)model gives a good description
of world-sheet physics. A hierarchy of relevant scales in our theory is displayed in
Fig. 5.1.

If we increaseμ above the critical value (5.1.47) the non-Abelian strings become
thick and their world-sheet dynamics is no longer described by N = 2 CP(N − 1)
sigma model. The higher-derivative corrections on the world-sheet explode. Note
that the physical reason for the growth of the string thickness � is the presence of
the Higgs branch in N = 1 SQCD. Although the classical string solution (4.4.20)
retains a finite transverse size, the Higgs branch manifests itself at the quantum
level. In particular, the fermion zero modes feel the Higgs branch and acquire
long-range logarithmic tails.

Now, let us abstract ourselves from the fact that the theory (5.1.19) is a low-
energy effective model on the world sheet of the non-Abelian string. Let us consider

m*2ΛCP(1)

energy

xΛN=1

Figure 5.1. Relevant scale hierarchy in the limit μ � √
ξ .
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this model per se, with no reference to the underlying four-dimensional theory.
Then, of course, the parameter u can be viewed as arbitrary. One can address a
subtle question: what happens in the limit u → ∞? In this limit the σ field VEV
tends to zero (see Eq. (5.1.39)) and N degenerate vacua coalesce. Moreover, the
U(1) gauge field, σ and the fermionic kinks ξ become massless (in addition to
the λR field which, being the Goldstino in this limit, is necessarily massless). The
model seemingly becomes conformal. It is plausible to interpret this conformal
fixed point as a phase transition point from the kink deconfinement phase to the
Coulomb/confining phase.

A similar phenomenon occurs in two-dimensional conformal N = (4, 4) super-
symmetric gauge theory [195]. In this theory the same tube metric |dσ |2/|σ |2
appears (as in (5.1.19), see [192]) and the point σ = 0 is interpreted as a transition
point between two distinct phases.

5.2 The M model

In Section 5.1 we learned that the occurrence of the Higgs branch in N = 1 SQCD
obscures physics of the non-Abelian strings. Thus, it is highly desirable to get rid of
the Higgs branch, keeping N = 1. This was done in [104]. Below we will review
key results pertinent to the issue.

To eliminate light states we will introduce a particular N = 2 breaking defor-
mation in the U(N) theory with the potential (5.1.2). Namely, we uplift the quark
mass matrix mBA (see Eq. (4.1.9) where this matrix is assumed to be diagonal) to
the superfield status,

mBA → MB
A ,

and introduce the superpotential

WM = QMQ̃ . (5.2.1)
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The matrix M represents N2 chiral superfields of the mesonic type (they are color
singlets). Needless to say, we have to add a kinetic term for MB

A ,

SMkin =
∫
d4x d2θ d2θ̄

2

h
Tr M̄M , (5.2.2)

where h is a new coupling constant (it supplements the set of the gauge couplings).
In particular, the kinetic term for the scalar components of M takes the form∫

d4x

{
1

h

∣∣∂μM0
∣∣2 + 1

h

∣∣∂μMa
∣∣2} , (5.2.3)

where we use the decomposition

MA
B = 1

2
δAB M

0 + (T a)AB M
a . (5.2.4)

At h = 0 the matrix field M becomes sterile, it is frozen and in essence returns
to the status of a constant numerical matrix. The theory acquires flat directions
(a moduli space). With nonvanishing h these flat directions are lifted, and M is
determined by the minimum of the scalar potential, see below.

The uplift of the quark mass matrix to superfield is a crucial step which allows
us to lift the Higgs branch which would develop in this theory in the large-μ limit
if M were a constant matrix. We will refer to this theory as the M model.

The potential V (qA, q̃A, aa , a,M0,Ma) of the M model is

V (q A, q̃A, aa , a,M0,Ma) = g2
2

2

(
1

g2
2

f abc ābac + Tr q̄ T aq − Tr q̃ T a ¯̃q
)2

+ g2
1

8

(
Tr q̄q − Tr q̃ ¯̃q −Nξ

)2 + g2
2

2

∣∣2Tr q̃T aq + √
2μ2a

a
∣∣2

+ g2
1

2

∣∣Tr q̃q + √
Nμ1a

∣∣2 + 1

2
Tr

{∣∣∣∣(a + 2 T a aa)q + 1√
2
q(M0 + 2T aMa)

∣∣∣∣
2

+
∣∣∣∣(a + 2 T a aa) ¯̃q + 1√

2
¯̃q(M0 + 2T aMa)

∣∣∣∣
2
}

+ h

4
|Tr q̃q|2 + h|Tr qT aq̃|2 .

(5.2.5)

The last two terms here areF terms of theM field. In Eq. (5.2.5) we also introduced
the FI D-term for the U(1) field, with the FI parameter ξ .

The FI term triggers the spontaneous breaking of the gauge symmetry. The VEV’s
of the squark fields and adjoint fields are given by (5.1.3) and (5.1.4), respectively,
while the VEV’s of M field vanish,

〈Ma〉 = 0, 〈M0〉 = 0 . (5.2.6)
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The color-flavor locked form of the quark VEV’s in Eq. (5.1.3) and the absence of
VEVs of the adjoint fieldaa and the meson fieldsMa in Eqs. (5.1.4) and (5.2.6) result
in the fact that, while the theory is fully Higgsed, a diagonal SU(N )C+F symmetry
survives as a global symmetry, much in the same way as in μ-deformations of
N = 2 SQCD. Namely, the global rotation

q → UqU−1, aaT a → UaaT aU−1, M → U−1MU , (5.2.7)

is not broken by the VEVs (5.1.3), (5.1.4) and (5.2.6). Here U is a matrix from
SU(N ). As usual, this symmetry leads to the emergence of orientational zero modes
of the ZN strings in the theory with the potential (5.2.5).

At large μ one can readily integrate out the adjoint fields Aa and A. The bosonic
part of the action of the M model takes the form

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(Fμν)
2 + Tr |∇μq|2 + Tr |∇μ ¯̃q|2

+ 1

h
|∂μM0|2 + 1

h
|∂μMa|2 + g2

2

2

(
Tr q̄ T aq − Tr q̃T a ¯̃q)2

+ g2
1

8

(
Tr q̄q − Tr q̃ ¯̃q −Nξ

)2 + Tr|qM|2 + Tr| ¯̃qM|2

+ h

4

∣∣Tr q̃q
∣∣2 + h

∣∣Tr qT aq̃
∣∣2}. (5.2.8)

The vacuum of this theory is given by Eqs. (5.1.3) and (5.2.6). The mass spectrum
of elementary excitations over this vacuum consists of the N = 1 gauge multiplets
for the U(1) and SU(N ) sectors, with masses given in Eqs. (4.1.16) and (4.1.17).
In addition, we have chiral multiplets q̃ and M , with masses

mU(1) =
√
hNξ

4
(5.2.9)

for the U(1) sector, and

mSU(N) =
√
hξ

2
(5.2.10)

for the SU(N ) sector.
It is worth emphasizing that there are no massless states in the bulk theory. At

h = 0 the theory with the potential (5.2.5) develops a Higgs branch in the large-μ
limit (see Section 5.1). If h �= 0, M becomes a fully dynamical field. The Higgs
branch is lifted, as follows from Eqs. (5.2.9) and (5.2.10).
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The N = 1 SQCD with theM field, theM model, belongs to the class of theories
introduced by Seiberg [196] to provide a dual description of conventional N = 1
SQCD with the SU(Nc) gauge group andNf flavors of fundamental matter, where

Nc = Nf −N

(for reviews see Refs. [197, 198]). There are significant distinctions, however.
Let us outline the main differences of theM model (5.2.8) from those introduced

[196] by Seiberg:
(i) The theory (5.2.8) has the U(N ) gauge group rather than SU(N );
(ii) It has the FI D term instead of a linear in M superpotential in Seiberg’s

models;
(iii) Following [104] we consider the case Nf = N which would correspond to

Seiberg’s Nc = 0 in the original SQCD. The theory (5.2.8) is asymptotically free,
while Seiberg’s dual theories are most meaningful (i.e. have the maximal predictive
power with regards to the original strongly coupled N = 1 SQCD) below the
left edge of the conformal window, in the range Nf < (3/2)Nc, which would
correspond to Nf > 3N rather than Nf = N . Note that at Nf > 3N the theory
(5.2.8) is not asymptotically free and is thus uninteresting from our standpoint.

In addition, it is worth noting that atNf > N the vacuum (5.1.3), (5.2.6) becomes
metastable: supersymmetry is broken [199]. The Nc = Nf − N supersymmetry-
preserving vacua have vanishing VEV’s of the quark fields and a non-vanishing
VEV of the M field.3 The latter vacua are associated with the gluino condensation
in pure SU(N ) theory, 〈λλ〉 �= 0, arising upon decoupling Nf flavors [197]. In the
case Nf = N to which we limit ourselves the vacuum (5.1.3), (5.2.6) preserves
supersymmetry. Thus, despite a conceptual similarity between Seiberg’s models
and ours, dynamical details are radically different.

Now, it is time to pass to solutions for non-Abelian BPS strings in theM model
[104]. Much in the same way as in Section 5.1 we use the ansatz (5.1.16). Moreover,
we set the adjoint fields and the M fields to zero. With these simplifications the
N = 1 model with the potential (5.2.5) reduces to the model (4.2.2) which we used
previously in the original construction of the non-Abelian strings.

In particular, the solution for the elementary string is given by (4.4.4). More-
over, the bosonic part of the effective world-sheet theory is again described by the
CP(N−1) sigma model (4.4.9) with the coupling constantβ determined by (4.4.15).
The scale of this CP(N − 1) model is given by Eq. (5.1.18) in the limit of large μ.

The full construction of the world-sheet theory in theM model has not been yet
carried out. One can conjecture as to what the fermion part of this theory is. There
are good reasons to expect that we will get the heterotic N = (0, 2) CP(N − 1)

3 This is correct for the version of the theory with the ξ -parameter introduced via superpotential.
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theory much in the same way as in Section 5.1.2 (see also Appendix B.5). The
relation between the bulk and world sheet deformation parameters are likely to
change, but all consequences (such as spontaneous SUSY breaking at the quantum
level) presumably will stay intact.

To conclude this section let us note a somewhat related development: non-BPS
non-Abelian strings were considered in metastable vacua of a dual description of
N = 1 SQCD at Nf > N in Ref. [200].

5.3 Confined non-Abelian monopoles

As was mentioned, the effective low-energy Lagrangian describing world-sheet
physics of the non-Abelian string in the M model, must be supersymmetric, pre-
sumably, N = (0, 2). The heterotic sigma model dynamics is known (see Section
5.1.3); in particular, we will have N degenerate vacua and kinks that interpolate
between them, similar to the kinks that emerge in N = 2 SQCD. These kinks are
interpreted as (confined) non-Abelian monopoles [165, 132, 133], the descendants
of the ’t Hooft–Polyakov monopole.

Let us discuss what happens with these monopoles as we deform our theory
and eventually end up with the M model. It is convenient to split this deformation
into several distinct stages. We will describe what happens with the monopoles
as one passes from one stage to another. Some of these steps involving deforma-
tions of N = 2 SQCD were already discussed in Section 4.5. Here we focus on
deformations of N = 2 SQCD leading to the M model.

A qualitative evolution of the monopoles under consideration as a function of
the relevant parameters is presented in Fig. 4.3.

(i) We start from N = 2 SQCD turning off the N = 2 breaking parameters
h and μ’s as well as the FI parameter in the potential (5.2.5), i.e. we start from the
Coulomb branch of the theory,

μ1 = μ2 = 0, h = 0, ξ = 0, M �= 0 . (5.3.1)
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As was explained in Section 5.2, the field M is frozen in this limit and can take
arbitrary values (the notorious flat direction). The matrix MA

B plays the role of a
fixed mass matrix for the quark fields. As a first step let us consider the diagonal
matrix M , with distinct diagonal entries,

MA
B = diag {M1, . . . ,MN } . (5.3.2)

Shifting the field a one can always make
∑
AMA = 0 in the limit μ1 = 0.

Therefore M0 = 0. If all MA’s are different the gauge group SU(N ) is broken
down to U(1)(N−1) by a VEV of the SU(N ) adjoint scalar (see (4.1.11)),

〈akl 〉 = − 1√
2
δkl Ml . (5.3.3)

Thus, as was already discussed in Section 4.5, there are ’t Hooft–Polyakov
monopoles embedded in the broken gauge SU(N). Classically, on the Coulomb
branch the masses of (N − 1) elementary monopoles are proportional to

|(MA −MA+1) |/g2
2 .

In the limit (MA −MA+1) → 0 the monopoles tend to become massless, for-
mally, in the classical approximation. Simultaneously their size becomes infinite
[112]. The mass and size are stabilized by highly quantum confinement effects. The
monopole confinement occurs in the Higgs phase, at ξ �= 0.

(ii) Now let us make the FI parameter ξ non-vanishing. This triggers the squark
condensation. The theory is in the Higgs phase. We still keep N = 2 breaking
parameters h and μ’s vanishing,

μ1 = μ2 = 0, h = 0, ξ �= 0, M �= 0. (5.3.4)

The squark condensation leads to formation of the ZN strings. Monopoles become
confined by these strings. As we discussed in Section 4.5, (N − 1) elementary
monopoles become junctions of pairs of elementary strings.

Now, if we reduce |�MA|,

�CP(N−1) � |�MA| � √
ξ , (5.3.5)

the size of the monopole along the string ∼ |(MA − MA+1) |−1 becomes larger
than the transverse size of the attached strings. The monopole becomes a bona fide
confined monopole (the lower left corner of Fig. 4.3). At nonvanishing �MA the
effective theory on the string world sheet is the CP(N−1)model with twisted mass
terms [165, 132, 133], see Section 4.4.4. Two ZN strings attached to an elementary
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monopole correspond to two “neighboring” vacua of the CP(N − 1) model. The
monopole (a.k.a. the string junction of two ZN strings) manifests itself as a kink
interpolating between these two vacua.

(iii) Next, we switch off the mass differences �MA still keeping the N = 2
breaking parameters vanishing,

μ1 = μ2 = 0, h = 0, ξ �= 0, M = 0 . (5.3.6)

The values of the twisted masses in CP(N −1)model coincide with�MA while
the size of the twisted-mass sigma-model kink/confined monopole is of the order
of ∼ |(MA −MA+1) |−1 .

As we decrease �MA approaching �CP(N−1) and then getting below the scale
�CP(N−1), the monopole size grows, and, classically, it would explode. This is
where quantum effects in the world sheet theory take over. It is natural to refer to
this domain of parameters as the “regime of highly quantum dynamics.” While the
thickness of the string (in the transverse direction) is ∼ ξ−1/2, the z-direction size
of the kink representing the confined monopole in the highly quantum regime is
much larger, ∼ �−1

CP(N−1), see the lower right corner in Fig. 4.3.
In this regime the confined monopoles become non-Abelian. They no longer

carry average magnetic flux since

〈nl〉 = 0 , (5.3.7)

in the strong coupling limit of the CP(N − 1) model [159]. The kink/monopole
belongs to the fundamental representation of the SU(N )C+F group [159, 120].

(iv) Thus, with vanishing�MA we still have confined “monopoles” (interpreted
as kinks) stabilized by quantum effects in the world sheet CP(N − 1) model. Now
we can finally switch on the N = 2 breaking parameters μi and h,

μi �= 0, h �= 0, ξ �= 0, M = 0 . (5.3.8)

Note that the last equality here is automatically satisfied in the vacuum, see
Eq. (5.2.6).

As was discussed in Section 5.2 the effective world sheet description of the non-
Abelian string is given by a heterotic deformation of the supersymmetric CP(N−1)
model. This two-dimensional theory has N vacua which should be interpreted as
N elementary non-Abelian strings in the quantum regime, with kinks interpolating
between these vacua. These kinks should be interpreted as non-Abelian confined
monopoles/string junctions.

Note that although the adjoint fields are still present in the theory (5.2.5) their
VEV’s vanish (see (5.1.4)) and the monopoles cannot be seen in the semiclassical
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approximation. They are seen solely as world sheet kinks. Their mass and inverse
size are determined by �σ which in the limit of large μi is given by Eq. (5.1.18).

(v) At the last stage, we take the limit of large masses of the adjoint fields in
order to eliminate them from the physical spectrum altogether,

μi → ∞, h �= 0, ξ �= 0, M = 0 . (5.3.9)

The theory flows to N = 1 SQCD extended by the M field.
In this limit we get a remarkable result: although the adjoint fields are eliminated

from our theory and the monopoles cannot be seen in any semiclassical descrip-
tion, our analysis shows that confined non-Abelian monopoles still exist in the
theory (5.2.8). They are seen as kinks in the effective world sheet theory on the
non-Abelian string.

(vi) The confined monopoles are in the highly quantum regime, so they carry
no average magnetic flux (see Eq. (5.3.7)). Thus, they are non-Abelian. Moreover,
they acquire global flavor quantum numbers. In fact, they belong to the fundamen-
tal representation of the global SU(N )C+F group (see Refs. [159, 120] where this
phenomenon is discussed in the context of the CP(N − 1)-model kinks).

It is quite plausible that the emergence of these non-Abelian monopoles can
shed light on mysterious objects introduced by Seiberg: “dual magnetic” quarks
which play an important role in the description of N = 1 SQCD at strong coupling
[196, 197].

5.4 Index theorem

In this section we will discuss an index theorem establishing the number of the
fermion zero modes on the string. For definiteness we will consider the M model
[104]. Similar theorems can be easily proved for ordinary N = 1 SQCD (5.1.13)
as well as for theories with potentials (5.1.2) or (5.2.5) at intermediate values of μ.
They generalize index theorems obtained long ago for simple non-supersymmetric
models [201].



5.4 Index theorem 167

The fermionic part of the action of the model (5.2.8) is

Sferm =
∫
d4x

{
i

g2
2

λ̄aD̄/ λa + i

g2
1

λ̄∂̄/λ+ Tr
[
ψ̄i∇̄/ψ]+ Tr

[
ψ̃i∇/ ¯̃

ψ
]

+ 2i

h
Tr
[
ζ̄ ∂̄/ζ
]+ i√

2
Tr
[
q̄(λψ)− (ψ̃λ) ¯̃q + (ψ̄λ̄)q − q̃(λ̄

¯̃
ψ)
]

+ i√
2

Tr
[
q̄ 2T a (λaψ)− (ψ̃λa) 2T a ¯̃q + (ψ̄λ̄a) 2T a q − q̃ 2T a (λ̄a ¯̃

ψ)
]

+ i Tr
[
q̃(ψζ )+ (ψ̃qζ )+ (ψ̄ ¯̃qζ̄ )+ q̄(

¯̃
ψζ̄ )

]
+ i Tr

(
ψ̃ψM + ψ̄

¯̃
ψM̄

)}
, (5.4.1)

where the matrix color-flavor notation is used for the matter fermions (ψα)kA

and (ψ̃α)Ak , and the traces are performed over the color-flavor indices. Moreover,
ζ denotes the fermion component of the matrix M superfield,

ζAB = 1

2
δAB ζ

0 + (T a)AB ζ
a . (5.4.2)

In order to find the number of the fermion zero modes in the background of the
non-Abelian string solution (4.4.4) we have to carry out the following program.
Since our string solution depends only on two coordinates xi (i = 1, 2), we can
reduce our theory to two dimensions. Given the theory defined on the (x1, x2) plane
we have to identify an axial current and derive the anomalous divergence for this
current. In two dimensions the axial current anomaly takes the form

∂iji5 ∼ F ∗ , (5.4.3)

where F ∗ = (1/2)εijFij is the dual U(1) field strength in two dimensions.
Then, the integral over the left-hand side over the (x1, x2) plane gives us the

index of the 2D Dirac operator ν coinciding with the number of the 2D left-handed
minus 2D right-handed zero modes of this operator in the given background field.
The integral over the right-hand side is proportional to the string flux. This will
fix the number of the chiral fermion zero modes4 on the string with the given flux.
Note that the reduction of the theory to two dimensions is an important step in this
program. The anomaly relation in four dimensions involves the instanton charge
F ∗F rather than the string flux and is therefore useless for our purposes.

4 Chirality is understood here as the two-dimensional chirality.
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Table 5.1. The U(1)R and U(1)
R̃

charges of fields of the two-dimensional reduction
of the theory.

Field ψ+ ψ− ψ̃+ ψ̃− λ+ λ− ζ+ ζ− q q̃

U(1)R charge −1 1 −1 1 −1 1 −1 1 0 0
U(1)

R̃
charge −1 1 1 −1 −1 1 1 −1 0 0

The reduction of N = 1 gauge theories to two dimensions is discussed in detail
in [157] and here we will be brief. Following [157] we use the rules

ψα → (ψ−,ψ+), ψ̃α → (ψ̃−, ψ̃+),
λα → (λ−, λ+), ζ α → (ζ−, ζ+). (5.4.4)

With these rules the Yukawa interactions in (4.4.22) take the form

LYukawa = i
√

2 Tr
[−q̄(λ̂−ψ+ − λ̂+ψ−)+ (ψ̃−λ̂+ − ψ̃+λ̂−) ¯̃q + H.c.

]
− i Tr

[
q̃(ψ−ζ+ − ψ+ζ−)+ (ψ̃−qζ+ − ψ̃+qζ−)+ H.c.

]
, (5.4.5)

where the color matrix λ̂ = (1/2) λ+ T aλa .
It is easy to see that LYukawa is classically invariant under the chiral U(1)R

transformations with the U(1)R charges presented in Table 5.1. The axial current
associated with this U(1)R is not anomalous [157]. This is easy to understand. In
two dimensions the chiral anomaly comes from the diagram shown in Fig. 5.2.
The U(1)R chiral charges of the fields ψ and ψ̃ are the same while their elec-
tric charges are opposite. This leads to cancellation of their contributions to this
diagram.

It turns out that for the particular string solution we are interested in the clas-
sical two-dimensional action has more symmetries than generically, for a general
background. To see this, please note that the field q̃ vanishes on the string solution
(4.4.4), see (5.1.16). Then the Yukawa interactions (5.4.5) reduce to

i
√

2 Tr
[−q̄(λ̂−ψ+ − λ̂+ψ−)

]− i Tr
[
ψ̃−qζ+ − ψ̃+qζ−

]+ H.c. (5.4.6)

The fermion ψ interacts only with λ’s while the fermion ψ̃ interacts only with ζ .
Note also that the interaction in the last line in (5.4.1) is absent because M = 0 on
the string solution. This property allows us to introduce another chiral symmetry
in the theory, the one which is relevant for the string solution. We will refer to this
extra chiral symmetry as U(1)

R̃
.
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Figure 5.2. Diagram for the chiral anomaly in two dimensions. The solid lines
denote fermionsψ , ψ̃ , the dashed line denotes the photon, while the cross denotes
insertion of the axial current.

The U(1)
R̃

charges of our set of fields are also shown in Table 5.1. Note that
ψ and ψ̃ have the opposite charges under this symmetry. The corresponding current
then has the form

j̃i5 =
(

ψ̄−ψ− − ψ̄+ψ+ − ¯̃
ψ−ψ̃− + ¯̃

ψ+ψ̃+ + · · ·
−iψ̄−ψ− − iψ̄+ψ+ + i

¯̃
ψ−ψ̃− + i

¯̃
ψ+ψ̃+ + · · ·

)
, (5.4.7)

where the ellipses stand for terms associated with the λ and ζ fields which do not
contribute to the anomaly relation.

It is clear that the U(1)
R̃

symmetry is anomalous in quantum theory. The con-
tributions of the fermions ψ and ψ̃ double in the diagram in Fig. 5.2 rather than
cancel. It is not difficult to find the coefficient in the anomaly formula

∂i j̃i5 = N2

π
F ∗ , (5.4.8)

which can be normalized e.g. from [202]. The factorN2 appears due to the presence
of 2N2 fermions ψkA and ψ̃Ak .

Now, taking into account the fact that the flux of the ZN string under con-
sideration is ∫

d2x F ∗ = 4π

N
, (5.4.9)

(see the expression for the U(1) gauge field for the solution (4.2.6) or (4.4.4)) we
conclude that the total number of the fermion zero modes in the string background5

ν = 4N . (5.4.10)

This number can be decomposed as

ν = 4N = 4(N − 1)+ 4 , (5.4.11)

5 Equations (5.4.9) and (5.4.10) are very similar in essence to analogous four-dimensional relations connecting
the instanton topological charge with the number of the fermion zero modes in the instanton background. For a
review see [203].
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where 4 is the number of the supertranslational modes while 4(N−1) is the number
of the superorientational modes. Four supertranslational modes are associated with
four fermion fields in the two-dimensional effective theory on the string world sheet,
which are superpartners of the bosonic translational moduli x0 and y0. Furthermore,
4(N−1) corresponds to 4(N−1) fermion fields in the N = 2 CP(N−1)model on
the string world sheet. CP(N − 1) describes dynamics of the orientational moduli
of the string. For N = 2 the latter number (4(N − 1) = 4) counts four fermion
fields χa1 , χa2 in the model (4.4.31).

A similar theorem can be formulated for N = 1 theory with the potential (5.1.2)
as well; it implies 4(N − 1) orientational zero modes in this case too, i.e. the
doubling of the number of the fermion zero modes on the string as compared with
the one which follows from “BPS-ness.”

In [189] and [104] four orientational fermion zero modes were found explicitly
in N = 1 SQCD and the M model, by solving the Dirac equations in the string
background. Note that these fermion zero modes in the M model are perfectly
normalizable provided we keep the coupling constant h non-vanishing. Instead, in
conventional N = 1 SQCD without the M field the second pair of the fermion
zero modes (proportional to χa1 ) become non-normalizable in the large-μ limit
[189]. This is related to the presence of the Higgs branch and massless bulk states
in conventional N = 1 SQCD. As was already mentioned more than once, in the
M model, Eq. (5.2.8), we have no massless states in the bulk.

Note that in both translational and orientational sectors the number of the fermion
zero modes is twice larger than the one dictated by 1/2 “BPS-ness.” Fermion
supertranslational zero modes of the non-Abelian string in N = 1 theory with
the potential (5.1.2) were found in [191]. Just like superorientational modes, they
acquire long-range tails in the large-μ limit and become non-normalizable.
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Non-BPS non-Abelian strings

In this chapter we will review non-BPS non-Abelian strings. In particular, they
appear in non-supersymmetric theories. We will see that, although for BPS strings
in supersymmetric theories the transition from quasiclassical to quantum regimes in
the world sheet theory on the string goes smoothly (see Section 4.4.4), for the non-
Abelian strings in non-supersymmetric theories these two regimes are separated by
a phase transition.

Next, we will show that the same behavior is typical for non-BPS strings in
supersymmetric gauge theories. As an example we consider non-Abelian strings in
the so-called N = 1∗ theory which is a deformed N = 4 supersymmetric theory
with supersymmetry broken down to N = 1 in a special way.

6.1 Non-Abelian strings in non-supersymmetric theories

In this section we will review some results reported in [154, 164] treating non-
Abelian strings in non-supersymmetric gauge theories. The theory studied in [154]
is essentially a bosonic part of N = 2 supersymmetric QCD with the gauge group
SU(N)×U(1) described in Chapter 4 in the supersymmetric setting.1 The action of
this model is

S =
∫
d4x

{
1

4g2
2

(
Faμν

)2 + 1

4g2
1

(
Fμν

)2 + 1

g2
2

|Dμaa|2

+ |∇μϕA|2 + g2
2

2

(
ϕ̄AT

aϕA
)2 + g2

1

8

(
|ϕA|2 −Nξ

)2

+ 1

2

∣∣∣(aaT a + √
2mA

)
ϕA
∣∣∣2 + i θ

32π2
FaμνF

∗a
μν

}
, (6.1.1)

1 In addition to the substitution (4.2.1) we discard the f abc āb ac term in Eq. (4.1.9). This term plays no role in
the consideration presented below.
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where F ∗a
μν = (1/2) εμναβFαβ and θ is the vacuum angle. This model is a bosonic

part of the N = 2 supersymmetric theory (4.1.7) where, instead of two squark
fields qk and q̃k , only one fundamental scalar ϕk is introduced for each flavor
A = 1, . . . ,Nf , see the reduced model (4.2.2) in Section 4.2. We also limit ourselves
to the case Nf = N and drop the neutral scalar field a present in (4.1.7) as it plays
no role in the string solutions. To keep the theory at weak coupling we consider
large values of the parameter ξ in (6.1.1), ξ � �SU(N).

We assume here that

N∑
A=1

mA = 0. (6.1.2)

Later on it will be convenient to make a specific choice of the parameters mA,
namely,

mA = m× diag
{
e2πi/N , e4πi/N , . . . , e2(N−1)πi/N , 1

}
, (6.1.3)

wherem is a single common parameter. Then the constraint (6.1.2) is automatically
satisfied. We can (and will) assume m to be real and positive. We also introduce a
θ term in the model (6.1.1).

Clearly the vacuum structure of the model (6.1.1) is the same as of the theory
(4.1.7), see Section 4.1. Moreover, the ZN string solutions are the same; they are
given in Eq. (4.2.6). The adjoint field plays no role in this solution and is given by
its VEV (4.1.11). The tensions of these strings are given classically by Eq. (4.2.12).
However, in contrast with the supersymmetric theory, now the tensions of ZN
strings acquire quantum corrections in loops.

If masses of the fundamental matter vanish in (6.1.1) this theory has unbroken
SU(N)C+F much in the same way as the theory (4.1.7). In this limit theZN strings
acquire orientational zero modes and become non-Abelian. The corresponding solu-
tion for the elementary non-Abelian string is given by Eq. (4.3.1). Below we will
consider two-dimensional effective low-energy theory on the world sheet of such
non-Abelian string. Its physics appears to be quite different as compared with the
one in the supersymmetric case.

6.1.1 World-sheet theory

Derivation of the effective world-sheet theory for the non-Abelian string in the
model (6.1.1) can be carried out much in the same way as in the supersymmetric
case [154], see Section 4.4. The world-sheet theory now is two-dimensional non-
supersymmetric CP(N − 1) model (4.4.9). Its coupling constant β is given by
the coupling constant g2

2 of the bulk theory via the relation (4.4.10). Classically
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the normalization integral I is given by (4.4.11). Then it follows that I = 1 as in
supersymmetric case. However, now we expect quantum corrections to modify this
result. In particular, I can become a function of N in quantum theory.

Now, let us discuss the impact of the θ term which we introduced in our bulk
theory (6.1.1). At first sight, seemingly it cannot produce any effect because our
string is magnetic. However, if one allows for slow variations of nl in z and t , one
immediately observes that the electric field is generated via A0,3 in Eq. (4.4.5).
Substituting Fki from (4.4.7) into the θ term in the action (6.1.1) and taking into
account the contribution from Fkn times Fij (k, n = 0, 3 and i, j = 1, 2) we get the
topological term in the effective CP(N − 1) model (4.4.9) in the form

S(1+1) =
∫
dt dz

{
2β
[
(∂αn

∗∂αn)+ (n∗∂αn)2
]

− θ

2π
Iθεαγ (∂αn

∗∂γ n)
}

,

(6.1.4)

where Iθ is another normalizing integral given by the formula

Iθ = −
∫
dr

{
2fNA(1 − ρ)

dρ

dr
+ (2ρ − ρ2)

df

dr

}

=
∫
dr
d

dr

{
2fNAρ − ρ2fNA

}
. (6.1.5)

As is clearly seen, the integrand here reduces to a total derivative, and is determined
by the boundary conditions for the profile functions ρ and fNA. Substituting (4.4.6),
(4.4.8), and (4.2.8), (4.2.7) we get

Iθ = 1, (6.1.6)

independently of the form of the profile functions. This latter circumstance is
perfectly natural for the topological term.

The additional term in the CP(N − 1) model (6.1.4) we have just derived is the
θ term in the standard normalization. The result (6.1.6) could have been expected
since physics is 2π -periodic with respect to θ both in the four-dimensional bulk
gauge theory and in the two-dimensional world sheet CP(N − 1)model. The result
(6.1.6) is not sensitive to the presence of supersymmetry. It will hold in supersym-
metric models as well. Note that the complexified bulk coupling constant converts
into the complexified world sheet coupling constant,

τ = 4π

g2
2

+ i
θ

2π
→ 2β + i

θ

2π
. (6.1.7)

Now let us introduce small masses for the fundamental matter in (6.1.1). Clearly
the diagonal color-flavor group SU(N)C+F is now broken by adjoint VEV’s down
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to U(1)N−1 ×ZN . Still, the solutions for the Abelian (orZN ) strings are the same as
was discussed in Section 4.4.4 since the adjoint field does not enter these solutions.
In particular, we have N distinct ZN string solutions depending on what particular
squark winds at infinity, see Section 4.4.4. Say, the string solution with the winding
last flavor is still given by Eq. (4.2.6).

What is changed with the color-flavor SU(N)C+F explicitly broken bymA �= 0,
is that the rotations (4.3.1) no longer generate zero modes. In other words, the fields
n� become quasimoduli: a shallow potential (4.4.49) for the quasi-moduli nl on the
string world sheet is generated [132, 133, 154]. Note that we can replace m̃A by
mA due to the condition (6.1.2). This potential is shallow as long as mA � √

ξ .
The potential simplifies if the mass terms are chosen according to (6.1.3),

VCP(N−1) = 2β m2

⎧⎨
⎩1 −

∣∣∣∣∣
N∑
�=1

e2πi �/N |n�|2
∣∣∣∣∣
2
⎫⎬
⎭ . (6.1.8)

This potential is obviously invariant under the cyclic ZN substitution

� → �+ k, n� → n�+k , ∀�, (6.1.9)

with k fixed. This property will be exploited below.
Now our effective two-dimensional theory on the string world sheet becomes a

massive CP(N − 1) model (see Appendix B). As in the supersymmetric case the
potential (6.1.8) has N vacua at

n� = δ��0 , �0 = 1, 2, . . . ,N . (6.1.10)

These vacua correspond to N distinct Abelian ZN strings with ϕ�0�0 winding at
infinity, see Eq. (4.4.4).

6.1.2 Physics in the large-N limit

The massless non-supersymmetric CP(N − 1) model (6.1.4) was solved a long
time ago by Witten in the large-N limit [159]. The massive case with the potential
(6.1.8) was considered at largeN in [154, 164] in connection with the non-Abelian
strings. Here we will briefly review this analysis.

As was discussed in Section 4.4.4, the CP(N − 1) model can be understood as a
strong coupling limit of a U(1) gauge theory. The action has the form

S =
∫
d2x

{
2β |∇kn�|2 + 1

4e2
F 2
kp + 1

e2
|∂kσ |2 − θ

2π
εkp∂kAp

+ 4β

∣∣∣∣σ − m̃�√
2

∣∣∣∣
2

|n�|2 + 2e2β2(|n�|2 − 1)2
}

, (6.1.11)
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where we also included the θ term. As in the supersymmetric case, in the limit
e2 → ∞ the σ field can be eliminated via the algebraic equation of motion which
leads to the theory (6.1.4) with the potential (4.4.49).

The ZN -cyclic symmetry (6.1.9) now takes the form

σ → ei
2πk
N σ , n� → n�+k , ∀�, (6.1.12)

where k is fixed.
It turns out that the non-supersymmetric version of the massive CP(N−1)model

(6.1.11) has two phases separated by a phase transition [154, 164]. At large values
of the mass parameterm we have the Higgs phase while at smallm the theory is in
the Coulomb/confining phase.

The Higgs phase

At largem,m � �σ , the renormalization group flow of the coupling constant β in
(6.1.11) is frozen at the scalem. Thus, the model at hand is at weak coupling and the
quasiclassical analysis is applicable. The potential (6.1.8) has N degenerate vacua
which are labeled by the order parameter 〈σ 〉, the vacuum configuration being

n� = δ��0 , σ = m̃�0√
2

, �0 = 1, . . . ,N , (6.1.13)

as in the supersymmetric case, see (4.4.53). In each given vacuum theZN symmetry
(6.1.12) is spontaneously broken.

These vacua correspond to Abelian ZN strings of the bulk theory. N vacua of
the world-sheet theory have strictly degenerate vacuum energies. From the four-
dimensional point of view this means that we haveN strictly degenerateZN strings.

There are 2(N − 1) elementary excitations. Here we count real degrees of free-
dom. The action (6.1.11) containsN complex fields n�. The common phase of n�0 is
gauged away. The condition |n�|2 = 1 eliminates one more field. These elementary
excitations have physical masses

M� = |m� −m�0 |, � �= �0. (6.1.14)

Besides, there are kinks (domain “walls” which are particles in two dimensions)
interpolating between these vacua. Their masses scale as

Mkink
� ∼ β M�. (6.1.15)

The kinks are much heavier than elementary excitations at weak coupling. Note that
they have nothing to do with Witten’s n solitons [159] identified as solitons at strong
coupling. The point of phase transition separates these two classes of solitons.
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As was already discussed in the supersymmetric case (see Section 4.5) the flux
of the Abelian ’t Hooft–Polyakov monopole is the difference of the fluxes of two
“neighboring” strings, see (4.5.1). Therefore, the confined monopole in this regime
is obviously a junction of two distinct ZN strings. It is seen as a quasiclassical kink
interpolating between the “neighboring” �0th and (�0 + 1)th vacua of the effective
massive CP(N − 1) model on the string world sheet. A monopole can move freely
along the string as both attached strings are tension-degenerate.

The Coulomb/confining phase

Now let us discuss the Coulomb/confining phase of the theory occurring at
small m. As was mentioned, at m = 0 the CP(N − 1) model was solved by Witten
in the large-N limit [159]. The model at small m is very similar to Witten’s solu-
tion. (In fact, in the large-N limit it is just the same.) The paper [164] presents a
generalization of Witten’s analysis to the massive case which is then used to study
the phase transition between the ZN asymmetric and symmetric phases. Here we
will briefly summarize Witten’s results for the massless model.

The non-supersymmetric CP(N − 1) model is asymptotically free (as its super-
symmetric version) and develops its own scale �σ . If m = 0, classically the field
n� can have arbitrary direction; therefore, one might naively expect spontaneous
breaking of SU(N) and the occurrence of massless Goldstone modes. This cannot
happen in two dimensions. Quantum effects restore the full symmetry making the
vacuum unique. Moreover, the condition |n�|2 = 1 gets in effect relaxed. Due to
strong coupling we have more degrees of freedom than in the original Lagrangian,
namely all N fields n become dynamical and acquire masses �σ .

This is not the end of the story, however. In addition, one gets another composite
degree of freedom. The U(1) gauge field Ak acquires a standard kinetic term at
one-loop level,2 of the form

N �−2 FkpFkp. (6.1.16)

Comparing Eq. (6.1.16) with (6.1.11) we see that the charge of the n fields with
respect to this photon is 1/

√
N . The Coulomb potential between two charges in

two dimensions is linear in separation between these charges. The linear potential
scales as

V (R) ∼ �2
σ

N
R, (6.1.17)

whereR is separation. The force is attractive for pairs n̄ and n, leading to formation
of weakly coupled bound states (weak coupling is the manifestation of the 1/N

2 By loops here we mean perturbative expansion in 1/N perturbation theory.
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n* n

k=0 k=0k=1

Figure 6.1. Linear confinement of the n-n∗ pair. The solid straight line represents
the string. The dashed line shows the vacuum energy density (normalizing E0 to
zero).

suppression of the confining potential). Charged states are eliminated from the
spectrum. This is the reason why the n fields were called “quarks” by Witten. The
spectrum of the theory consists of n̄n- “mesons.” The picture of confinement of n’s
is shown in Fig. 6.1.

The validity of the above consideration rests on largeN . IfN is not large Witten’s
solution [159] ceases to be applicable. It remains valid in the qualitative sense, how-
ever. Indeed, at N = 2 the model was solved exactly [204, 205] (see also [206]).
Zamolodchikovs found that the spectrum of the O(3) model consists of a triplet of
degenerate states (with mass ∼ �σ ). At N = 2 the action (6.1.11) is built of dou-
blets. In this sense one can say that Zamolodchikovs’ solution exhibits confinement
of doublets. This is in qualitative accord with the large-N solution [159].

Inside the n̄ n mesons, we have a constant electric field, see Fig. 6.1. Therefore
the spatial interval between n̄ and n has a higher energy density than the domains
outside the meson.

Modern understanding of the vacuum structure of the massless CP(N−1)model
[207] (see also [208]) allows one to reinterpret confining dynamics of the n fields
in different terms [155, 154]. Indeed, at large N , along with the unique ground
state, the model has ∼ N quasi-stable local minima, quasi-vacua, which become
absolutely stable atN = ∞. The relative splittings between the values of the energy
density in the adjacent minima are of the order of 1/N , while the probability of
the false vacuum decay is proportional to N−1 exp(−N) [207, 208]. The n quanta
(n quarks-solitons) interpolate between the adjacent minima.

The existence of a large family of quasi-vacua can be inferred from the study
of the θ evolution of the theory. Consider the topological susceptibility, i.e. the
correlation function of two topological densities

∫
d2x 〈Q(x), Q(0)〉, (6.1.18)

where

Q = i

2π
εkp∂kAp = 1

2π
εkp
(
∂kn

∗
� ∂pn

�
)
. (6.1.19)
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Vacuum energy

k0 1 2−1−2

Figure 6.2. The vacuum structure of CP(N − 1) model at θ = 0.

The correlation function (6.1.18) is proportional to the second derivative of the
vacuum energy with respect to the θ angle. From (6.1.19) it is not difficult to deduce
that this correlation function scales as 1/N in the largeN limit. The vacuum energy
by itself scales as N . Thus, we conclude that, in fact, the vacuum energy should be
a function of θ/N .

On the other hand, on general grounds, the vacuum energy must be a 2π -periodic
function of θ . These two requirements are seemingly self-contradictory. A way
out reconciling the above facts is as follows. Assume that we have a family of
quasi-vacua with energies

Ek(θ) ∼ N �2
σ

{
1 + const

(
2πk + θ

N

)2
}

, k = 0, . . . ,N − 1. (6.1.20)

A schematic picture of these vacua is given in Fig. 6.2. All these minima are entan-
gled in the θ evolution. If we vary θ continuously from 0 to 2π the depths of the
minima “breathe.” At θ = π two vacua become degenerate, while for larger values
of θ the former global minimum becomes local while the adjacent local minimum
becomes global. It is obvious that for the neighboring vacua which are not too far
from the global minimum

Ek+1 − Ek ∼ �2
σ

N
. (6.1.21)

This is also the confining force acting between n and n̄.
One could introduce order parameters that would distinguish between distinct

vacua from the vacuum family. An obvious choice is the expectation value of the
topological charge. The kinks n� interpolate, say, between the global minimum and
the first local one on the right-hand side. Then n̄’s interpolate between the first local
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minimum and the global one. Note that the vacuum energy splitting is an effect
suppressed by 1/N . At the same time, these kinks have masses which scale as N0,

Mkink
� ∼ �σ . (6.1.22)

The multiplicity of such kinks is N [67], they form an N -plet of SU(N). This is in
full accord with the fact that the large-N solution of (6.1.11) exhibits N quanta of
the complex field n�.

Thus we see that the CP(N − 1)model has a fine structure of “vacua” which are
split, with the splitting of the order of�2

σ /N . In four-dimensional bulk theory these
“vacua” correspond to elementary non-Abelian strings. Classically all these strings
have the same tension (4.2.12). Due to quantum effects in the world sheet theory
the degeneracy is lifted: the elementary strings become split, with the tensions

T = 2πξ + c1N �
2
σ

{
1 + c2

(
2πk + θ

N

)2
}

, (6.1.23)

where c1 and c2 are numerical coefficients. Note that (i) the splitting does not
appear to any finite order in the coupling constant; (ii) since ξ � �σ , the splitting
is suppressed in both parameters, �σ/

√
ξ and 1/N .

Kinks of the world-sheet theory represent confined monopoles (string junctions)
in the four-dimensionalbulk theory.Thereforekinkconfinement inCP(N−1)model
can be interpreted as follows [155, 154]. The non-Abelian monopoles, in addition to
the four-dimensional confinement (which ensures that the monopoles are attached
to the strings) acquire a two-dimensional confinement along the string: a monopole–
antimonopole forms a meson-like configuration, with necessity, see Fig. 6.1.

In summary, the CP(N − 1) model in the Coulomb/confining phase, at small m,
has a vacuum family with a fine structure. For each given θ (except θ = π , 3π , etc.)
the true ground state is unique, but there is a large number of “almost” degenerate
ground states. The ZN symmetry is unbroken. The classical condition (4.4.3) is
replaced by 〈n�〉 = 0. The spectrum of physically observable states consists of
kink-anti-kink mesons which form the adjoint representation of SU(N).

Instead, at large m the theory is in the Higgs phase; it has N strictly degenerate
vacua (6.1.13); theZN symmetry is broken. We haveN −1 elementary excitations
n� with masses given by Eq. (6.1.14). Thus we conclude that these two regimes
should be separated by a phase transition at some critical valuem∗ [154, 164]. This
phase transition is associated with theZN symmetry breaking: in the Higgs phase the
ZN symmetry is spontaneously broken, while in the Coulomb phase it is restored.
For N = 2 we deal with Z2 which makes the situation akin to the Ising model.

In the world-sheet theory this is a phase transition between the Higgs and
Coulomb/confining phase. In the bulk theory it can be interpreted as a phase
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Figure 6.3. Schematic dependence of string tensions on the mass parameterm. At
small m in the non-Abelian confinement phase the tensions are split while in the
Abelian confinement phase at large m they are degenerative.

transition between the Abelian and non-Abelian confinement. In the Abelian con-
finement phase at largem, theZN symmetry is spontaneously broken, allN strings
are strictly degenerate, and there is no two-dimensional confinement of the 4D-
confined monopoles. In contrast, in the non-Abelian confinement phase occurring
at small m, the ZN symmetry is fully restored, all N elementary strings are split,
and the 4D-confined monopoles combine with antimonopoles to form a meson-like
configuration on the string, see Fig. 6.1. We show schematically the dependence of
the string tensions on m in these two phases in Fig. 6.3.

In [164] the phase transition point is found using large-N methods developed by
Witten in [159]. It turns out that the critical point is

m∗ = �σ . (6.1.24)

The vacuum energy is calculated in both phases and is shown to be continuous at the
critical point. If one approaches the critical point, say, from the Higgs phase some
composite states of the world sheet theory (6.1.11), such as the photon and the kinks,
become light. One is tempted to believe that these states become massless at the
critical point (6.1.24). However, this happens only in a very narrow vicinity of the
phase transition point where 1/N expansion fails. Thus, the large-N approximation
is not powerful enough to determine the critical behavior.
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To conclude this section we would like to stress that we encounter a crucial
difference between the non-Abelian confinement in supersymmetric and non-
supersymmetric gauge theories. For BPS strings in supersymmetric theories we
have no phase transition separating the phase of the non-Abelian strings from that
of the Abelian strings [132, 133]. Even for small values of the mass parameters
supersymmetric theory strings are strictly degenerate, and the ZN symmetry is
spontaneously broken. In particular, at�mA = 0 the order parameter for the broken
ZN , which differentiates theN degenerate vacua of the supersymmetric CP(N−1)
model, is the bifermion condensate of two-dimensional fermions living on the string
world sheet of the non-Abelian BPS string, see Section 4.4.3 and Section 5.1.3.

Moreover, the presence of the phase transition between Abelian and non-Abelian
confinement in non-supersymmetric theories suggests a solution for the problem of
enrichment of the hadronic spectrum mentioned in the beginning of Section 4, see
also a more detailed discussion in Section 4.9. In the phase of Abelian confinement
we have N strictly degenerative Abelian ZN strings which give rise to too many
“hadron” states, not present in actual QCD. Therefore, the Abelian ZN strings can
hardly play a role of prototypes for QCD confining strings.Although the BPS strings
in supersymmetric theories become non-Abelian as we tune the mass parameters
mA to a common value, still there are N strictly degenerative non-Abelian strings
and, therefore, still too many “hadron” states in the spectrum.

As was explained in this section, the situation in non-supersymmetric theories
is quite different. As we make the mass parameters mA equal we enter the non-
Abelian confinement phase. In this phase N elementary non-Abelian strings are
split. Say, at θ = 0 we have only one lightest elementary string producing a single
two-particle meson with the given flavor quantum numbers and spin, exactly as
observed in nature. If N is large, the splitting is small, however. If N is not-so-
large the splitting is of the order of�2

σ . Therefore, the mesons produced by excited
strings are unstable and may appear invisible experimentally.
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6.2 Non-Abelian strings in N = 1∗ theory

So far in our quest for the non-Abelian strings we focused on a particular model, with
the SU(N)×U(1) gauge group and fundamental matter. However, it is known that
solutions for ZN strings were first found in simpler models, with the SU(N) gauge
group and adjoint matter [134, 135, 136, 137] (in fact, the gauge group becomes
SU(N)/ZN if only adjoint matter is present in the theory). A natural question
which immediately comes to one’s mind is: can theseZN strings under some special
conditions develop orientational zero modes and become non-Abelian? The answer
to this question is yes. Solutions for non-Abelian strings in the simplest theory with
the SU(2) gauge group and adjoint matter were found in [155] (actually, the gauge
group of this theory is SO(3)). Here we will briefly review the results of this paper.

Although the model considered in [155] is supersymmetric the price one has to
pay for its simplicity is that the strings which appear in this model are not BPS.
The reason is easy to understand. One cannot introduce the FI term in the theory
with the gauge group SU(N) and, therefore, one cannot construct the string central
charge [27].

The model considered in [155] is the so-called N = 1∗ supersymmetric theory
with the gauge group SU(2). It is a deformed N = 4 theory with the mass terms for
three N = 1 chiral superfields. Let us take two equal masses, say m1 = m2 = m,
while the third mass m3 is assumed to be distinct. Generally speaking, N = 4
supersymmetry is broken down to N = 1, unless m3 = 0. If m3 = 0 the theory
has N = 2 supersymmetry. It exemplifies N = 2 gauge theory with the adjoint
matter (two N = 1 flavors of adjoint matter with equal masses).

Classically the vacuum structure of this theory was studied in [209], while quan-
tum effects were taken into account in [210]. The N = 4 theory with the SU(2)
gauge group has three vacua, and if the coupling constant of the N = 4 theory is
small,3 g2 � 1, one of these vacua is at weak coupling. All three adjoint scalars
condense in this vacuum. Therefore, it is called the Higgs vacuum [209, 210]. Two
other vacua of the theory are always at strong coupling. For small m3 they corre-
spond to the monopole and dyon vacua of the perturbed N = 2 theory [2]. Here
we will concentrate on the Higgs vacuum in the weak coupling regime.

In this vacuum the gauge group SU(2) is broken down toZ2 by the adjoint scalar
VEV’s. Therefore there are stable Z2 non-BPS strings associated with

π1(SU(2)/Z2) = Z2. (6.2.1)

If we choose a special value of m3,

m3 = m,

3 Note that the coupling of the unbroken N = 4 theory g2 does not run since the N = 4 theory is conformal.
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there is a diagonal O(3)C+F subgroup of the global gauge group SU(2), and the
flavor O(3) group, unbroken by vacuum condensates. In parallel with Refs. [131,
130, 132, 133] (see also Chapter 4), the presence of this group leads to emergence of
orientational zero modes of theZ2-strings associated with rotation of the color mag-
netic flux of the string inside the SU(2) gauge group, which converts the Z2 string
into non-Abelian.

Let us discuss this model in more detail. In terms of N = 1 supermultiplets,
the N = 4 supersymmetric gauge theory with the SU(2) gauge group contains
a vector multiplet, consisting of the gauge field Aaμ and gaugino λαa , and three
chiral multiplets �aA, A = 1, 2, 3, all in the adjoint representation of the gauge
group, with a = 1, 2, 3 being the SU(2) color index. The superpotential of the
N = 4 gauge theory is

WN=4 = −
√

2

g2
εabc�

a
1�

b
2�

c
3. (6.2.2)

One can deform this theory, breaking N = 4 supersymmetry down to N = 2, by
adding two equal mass terms m, say, for the first two flavors of the adjoint matter,

WN=2 = m

2g2

∑
A=1,2

(
�aA
)2. (6.2.3)

Then, the third flavor combines with the vector multiplet to form an N = 2 vector
supermultiplet, while the first two flavors (6.2.3) can be treated as N = 2 massive
adjoint matter. If one wishes, one can further break supersymmetry down to N = 1,
by adding a mass term to the �3 multiplet,

WN=1∗ = m3

2g2

(
�a3
)2 . (6.2.4)

The bosonic part of the action is

SN=1∗ = 1

g2

∫
d4x

(
1

4

(
Faμν

)2 +
∑
A

∣∣Dμ �aA∣∣2
+ 1

2

∑
A,B

[
(�̄A�̄B)(�A�B)− (�̄A�B)(�̄B�A)

]

+
∑
A

∣∣∣∣ 1√
2
εabcε

ABC�bB�
c
C −mA�

a
A

∣∣∣∣
2
)

, (6.2.5)

where Dμ �aA = ∂μ�
a
A + εabcAbμ�

c
A, and we use the same notation �aA for the

scalar components of the corresponding chiral superfields.
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As was mentioned above, we are going to study the so-called Higgs vacuum of
the theory (6.2.5), where all three adjoint scalars develop VEVs of the order of
m,

√
mm3. The scalar condensates �aA can be written in the form of the following

3×3 color-flavor matrix (convenient for the SU(2) gauge group and three chiral
flavor superfields)

〈�aA〉 = 1√
2

⎛
⎝

√
mm3 0 0
0

√
mm3 0

0 0 m

⎞
⎠. (6.2.6)

These VEV’s break the SU(2) gauge group completely. The W -bosons masses are

m2
1,2 = m2 +mm3 (6.2.7)

for A1,2
μ , while the mass of the photon field A3

μ is

m2
γ = 2mm3. (6.2.8)

In what follows, we will be especially interested in a particular point in the
parameter space: m3 = m. For this value of m3, (6.2.6) presents a symmetric
color-flavor locked vacuum

〈�aA〉 = m√
2

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠. (6.2.9)

This symmetric vacuum respects the global O(3)C+F symmetry,

� → O�O−1, Aaμ → OabAbμ, (6.2.10)

which combines transformations from the global color and flavor groups, similarly
to the SU(N)C+F group of the U(N) theories, see Chapter 4. It is this symmetry that
is responsible for the presence of the non-Abelian strings in the vacuum (6.2.9).

Note that at m3 = m all gauge bosons have equal masses,

m2
g = 2m2, (6.2.11)

as is clearly seen from (6.2.7) and (6.2.8). This means, in particular, that in the point
m3 = m we lose all traces of the “Abelization” in our theory, which are otherwise
present at generic values of m3.
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Let us also emphasize that the coupling g2 in Eq. (6.2.5) is the N = 4 coupling
constant. It does not run in the N = 4 theory at scales above m, and we assume it
to be small,

g2 � 1. (6.2.12)

At the scale m the gauge group SU(2) is broken in the vacuum (6.2.9) by the
scalar VEVs. Much in the same way as in the U(N) theory (see Chapter 4),
the running of the coupling constant below the scale m is determined by the
β function of the effective two-dimensional sigma model on the world sheet of
the non-Abelian string.

Skipping details we present here the solution for the non-Abelian string in the
model (6.2.5) found in [155]. When m3 approaches m, the theory acquires addi-
tional symmetry. In this case the scalar VEVs take the form (6.2.9), preserving
the global combined color-flavor symmetry (4.1.15). On the other hand, the Z2

string solution itself is not invariant under this symmetry. The symmetry (4.1.15)
generates orientational zero modes of the string. The string solution in the singular
gauge is

�aA = O

⎛
⎜⎝

g√
2
φ 0 0

0 g√
2
φ 0

0 0 a0

⎞
⎟⎠O−1

= g√
2
φδaA + SaSA

(
a0 − g√

2
φ

)
,

Aai = Sa
εij xj

r2
f (r), i, j = 1, 2, (6.2.13)

where we introduced the unit orientational vector Sa ,

Sa = Oa
b δ
b3 = Oa

3 . (6.2.14)

It is easy to see that the orientational vector Sa defined above coincides with the
one we introduced in Section 4, see Eq. (4.4.21). The solution (6.2.13) interpolates
between the Abelian Z2 strings for which �S = {0, 0, ±1}. We see that the string
flux is determined now by an arbitrary vector Sa in the color space, much in the
same way as for the non-Abelian strings in the U(N) theories.
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Since this string is not BPS-saturated, the profile functions in (6.2.13) satisfy
now the second-order differential equations,

φ′′ + 1

r
φ′ − 1

r2
f 2φ = φ

(
g2φ2 − √

2m3a0

)
+ 2φ

(
a0 − m√

2

)2

,

a′′
0 + 1

r
a′

0 = −m3√
2

(
g2φ2 − √

2m3a0

)
+ 2g2φ2

(
a0 − m√

2

)
,

f ′′ − 1

r
f ′ = 2g2f φ2, (6.2.15)

where the primes stand for derivatives with respect to r , and the boundary condi-
tions are

φ(0) = 0, φ(∞) =
√
mm3

g
,

a′
0(0) = 0, a(∞) = m√

2
,

f (0) = 1, f (∞) = 0. (6.2.16)

The string tension is

T = 2π
∫ ∞

0
rdr

⎡
⎣ f ′ 2

2g2r2
+ φ′ 2 + a′ 2

0

g2
+ f 2φ2

r2

+ g2

2

(
φ2 −

√
2m3

g2
a0

)2

+ 2φ2
(
a0 − m√

2

)2
⎤
⎦.

(6.2.17)

The second-order equations for the string profile functions were solved in [155]
numerically and the string tension was found as a function of the mass ratiom3/m.
Note that for the BPS string (which appears in the limit m3 → 0) the tension is

TBPS = 2π mm3/g
2.

The effective world sheet theory for the non-Abelian string (6.2.13) was shown
to be the non-supersymmetric CP(1) model [155]. Its coupling constant β is
related to the coupling constant g2 of the bulk theory via (4.4.10), where now
the normalization integral

I ∼ 0.78.

In this theory there is a ’t Hooft–Polyakov monopole with the unit magnetic charge.
Since theZ2-string charge is 1/2, it cannot end on the monopole, much in the same
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way as for the monopoles in the U(N) theories, see Section 4.5. Instead, the confined
monopole appears to be a junction of the Z2 string and anti-string. In the world
sheet CP(1) model it is seen as a kink interpolating between the two vacua.

At small values of the mass difference m3 − m the world sheet theory is in
the Coulomb/confining phase, see Section 6.1.2, although, strictly speaking, the
large-N analysis is not applicable in this case. Still, the monopoles, in addition
to four-dimensional confinement ensuring that they are attached to a string, also
experience confinement in two dimensions, along the string [155]. This means that
each monopole on the string must be accompanied by an antimonopole, with a
linear potential between them along the string. As a result, they form a meson-like
configuration, see Fig. 6.1. As was mentioned in Section 6.1.2, this follows from
the exact solution of the CP(1) model [204, 205]: only the triplets of SU(2)C+F are
seen in the spectrum.
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Strings on the Higgs branches

One common feature of supersymmetric gauge theories is the presence of moduli
spaces – manifolds on which scalar fields can develop arbitrary VEVs without
violating the zero energy condition. If on these vacuum manifolds the gauge group is
broken, either completely or partially, down to a discrete subgroup, these manifolds
are referred to as the Higgs branches.

One may pose a question: what happens with the flux tubes and confinement in
theories with the Higgs branches? The Higgs branch represents an extreme case of
type-I superconductivity, with vanishing Higgs mass. One may ask oneself whether
or not the ANO strings still exist in this case, and if yes, whether they provide
confinement for external heavy sources.

This question was posed and studied first in [102] where the authors concluded
that the vortices do not exist on the Higgs branches due to infrared problems. In
Refs. [211, 212] the N = 1 SQED vortices were further analyzed. It was found that
at a generic point on the Higgs branch strings are unstable. The only vacuum which
supports string solutions is the base point of the Higgs branch where the strings
become BPS-saturated. The so-called “vacuum selection rule” was put forward in
[211, 212] to ensure this property.

On the other hand, in [103, 175] it was shown that infrared problems can be
avoided provided certain infrared regularizations are applied. Say, in [103, 175] the
infrared divergences were regularized through embedding of N = 1 SQED in softly
broken N = 2 SQED. Another alternative is to consider a finite length-L string
instead of an infinitely long string. In this case the impact of the Higgs branch was
shown to “roughen” the string, making it logarithmically “thick.” Still, the string
solutions do exist and produce confinement for heavy trial sources. However, now
the confining potential is not linear in separation; rather it behaves as

V (L) ∼ L

lnL

188
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at largeL. Below we will briefly review the string solutions on the Higgs branches,
starting from the simplest case of the flat Higgs branch and then considering a more
common scenario, when the Higgs branch is curved by the FI term.

7.1 Extreme type-I strings

In this section we will review the classical solutions for the ANO vortices (flux
tubes) in the theories with the flat Higgs potential which arises in supersymmetric
settings [103]. Let us start from the Abelian Higgs model,

SAH =
∫
d4x

{
1

4g2
F 2
μv + |∇μq|2 + λ

(
|q|2 − v2

)2
}

, (7.1.1)

for a single complex field q with the quartic coupling λ → 0. Here

∇μ = ∂μ − ineAμ,

where ne is the electric charge of the field q. Following [103], we will first consider
this model with a small but nonvanishing λ and then take the limit λ = 0.

Obviously, the field q develops a VEV, q = v, spontaneously breaking the U(1)
gauge group. The photon acquires the mass

m2
γ = 2n2

eg
2v2, (7.1.2)

while the Higgs particle mass is

m2
q = 4λv2. (7.1.3)

The model (7.1.1) is the standard Abelian Higgs model which supports the ANO
strings [36]. For generic values of λ the Higgs mass differs from that of the photon.
The ratio of the photon mass to the Higgs mass is an important parameter – in
the theory of superconductivity it characterizes the type of the superconductor in
question. Namely, for mq < mγ we have the type-I superconductor in which two
well-separated ANO strings attract each other. On the other hand, for mq > mγ

we have the type-II superconductor in which two well-separated strings repel each
other. This is due to the fact that the scalar field gives rise to attraction between two
vortices, while the electromagnetic field gives rise to repulsion.

Now, let us consider the extreme type-I limit in which

mq � mγ . (7.1.4)

We will assume the weak coupling regime in the model (7.1.1), λ � g2 � 1.
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The general guiding idea which will lead us in the search for the string solution
in the extreme type-I limit is a separation of different fields at distinct scales which
are obviously present in the problem at hand due to the “extremality” condition
(7.1.4). This method goes back to the original paper by Abrikosov [36] in which
the tension of the type-II string had been calculated under the conditionmq � mγ .
A similar idea was used in [103] to calculate the tension of the type-I string under
the condition mq � mγ .

To the leading order in lnmγ /mq the vortex solution has the following structure
in the plane orthogonal to the string axis: The electromagnetic field is confined in
a core with the radius

Rg ∼ 1

mγ
ln
mγ

mq
. (7.1.5)

At the same time, the scalar field is close to zero inside the core. Outside the core
the electromagnetic field is vanishingly small, while the scalar field behaves as

q = v

{
1 − K0(mqr)

ln(1/mqRg)

}
eiα , (7.1.6)

where r and α are polar coordinates in the orthogonal plane (Fig. 3.6). Here K0 is
the (imaginary argument) Bessel function1 with the exponential fall-off at infinity
and logarithmic behavior at small arguments,

K0(x) ∼ ln(1/x) at x → 0.

The reason for this behavior is that in the absence of the electromagnetic field
outside the core the scalar field satisfies the free equation of motion, and (7.1.6)
presents the appropriate solution to this equation. From (7.1.6) we see that the scalar
field slowly (logarithmically) approaches its boundary value v.

The tension of this string is [103]

T = 2πv2

ln
(
mγ /mq

) . (7.1.7)

The main contribution to the tension in (7.1.7) comes from the logarithmic “tail”
of the scalar field q. It is given by the kinetic term for the scalar field in (7.1.1).
This term contains a logarithmic integral over r . Other terms in the action are

1 It is also known as the McDonald function.
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suppressed by inverse powers of ln
(
mγ /mq

)
as compared with the contribution

quoted in (7.1.7).
The results in Eqs. (7.1.5) and (7.1.7) imply that if we naively take the limit

mq → 0 the string becomes infinitely thick and its tension tends to zero [103]. This
apparently means that there are no strings in the limit mq = 0. As was mentioned
above, the absence of the ANO strings in the theories with the flat Higgs potential
was first noted in [102].

One might think that the absence of the ANO strings means that there is no
confinement of monopoles in the theories with the Higgs branches.

We hasten to say that this is a wrong conclusion.
As we will see shortly confinement does not disappear [103]. It is the formulation

of the problem that has to be changed a little bit in the case at hand.
So far we considered infinitely long ANO strings. However, an appropriate setup

in the confinement problem is in fact slightly different [103]. We have to consider
a monopole–antimonopole pair at a large but finite separation L. Our aim is to take
the limit mq → 0. This limit will be perfectly smooth provided we consider the
ANO string of a finite length L, such that

1

mγ
� L � 1

mq
. (7.1.8)

Then it turns out [103] that 1/L plays the role of the infrared (IR) cutoff in Eqs.
(7.1.5) and (7.1.7), rather thanmq . The reason for this is that for r � L the problem
is two-dimensional and the solution of the two-dimensional free equation of motion
for the scalar field given by (7.1.6) is logarithmic. If we naively putmq = 0 in this
solution the McDonald function reduces to the logarithmic function which cannot
reach a finite boundary value at infinity. Thus, as we mentioned above, infinitely
long flux tubes do not exist.

However, for r � L, the problem becomes three-dimensional. The solution to
the three-dimensional free scalar equation of motion behaves as

(q − v) ∼ 1/|�x|

where xn (n = 1, 2, 3) are the spatial coordinates in the three-dimensional space.
With this behavior the scalar field reaches its boundary value at infinity. Clearly,

1/L plays the role of an IR cutoff for the logarithmic behavior of the scalar field.
Now we can safely putmq = 0. The formula for the radius of the electromagnetic

core of the vortex takes the form

Rg ∼ 1

mγ
ln
(
mγL

)
, (7.1.9)



192 Strings on the Higgs branches

while the string tension now becomes [103]

T = 2πv2

ln
(
mγL

) . (7.1.10)

The ANO string becomes “thick.” Nevertheless, its transverse size Rg is much
smaller than its length L,

Rg � L,

so that the string-like structure is clearly identifiable.As a result, the potential acting
between the probe well-separated monopole and antimonopole confines but is no
longer linear in L. At large L [103]

V (L) = 2πv2 L

ln
(
mγL

) . (7.1.11)

The potential V (L) is an order parameter which distinguishes different phases
of a given gauge theory (see, for example, [71]). We conclude that on the Higgs
branches one deals with a new confining phase, which had never been observed
previously. It is clear that this phase can arise only in supersymmetric theories
because we have no Higgs branches without supersymmetry.

7.2 Example: N = 1 SQED with the FI term

Initial comments regarding this model are presented in Part I, see Section 3.2.2.
The SQED Lagrangian in terms of superfields is presented in Eq. (3.2.1), while the
component expression can be found in (3.2.5). For convenience we reiterate here
crucial features of N = 1 SQED, to be exploited below.

The field content of N = 1 SQED is as follows. The vector multiplet contains
the U(1) gauge field Aμ and the Weyl fermion λα , α = 1, 2. The chiral matter
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multiplet contains two complex scalar fields q and q̃ as well as two complex Weyl
fermions ψα and ψ̃α . The bosonic part of the action is

SSQED =
∫
d4x

{
1

4g2
F 2
μv + ∇̄μq̄∇μq + ∇̄μq̃∇μ ¯̃q + V (q, q̃)

}
, (7.2.1)

where

∇μ = ∂μ − i

2
Aμ, ∇̄μ = ∂μ + i

2
Aμ.

Thus, we assume the matter fields to have electric charges ne = ±1/2. The scalar
potential of this theory comes from the D term and reduces to

V (q, q̃) = g2

8
(|q|2 − |q̃|2 − ξ)2. (7.2.2)

The parameter ξ is the Fayet–Iliopoulos parameter introduced through ξ3.
The vacuum manifold of the theory (7.2.1) is the Higgs branch determined by

the condition

|q|2 − |q̃|2 = ξ . (7.2.3)

The dimension of this Higgs branch is two. To see this please observe that in the
problem at hand we have two complex scalars (four real variables) subject to one
constraint (7.2.3). In addition, we have to subtract one gauge phase; thus, we have
4 − 1 − 1 = 2.

In general, the physics of the massless modes in theories with the Higgs branches
can be described in terms of an effective low-energy sigma model

SLE =
∫
d4xgMN(ϕ)∂μϕ

N∂μϕ
M , (7.2.4)

where ϕM are massless scalar fields parametrizing the given Higgs branch and gMN
is the metric which depends on ϕ.

For example, the squark fields in N = 1 SQED subject to the constraint (7.2.3)
can be parametrized as follows:

q = √ξ eiα+iβ cosh ρ,
¯̃q = √ξ eiα−iβ sinh ρ, (7.2.5)

where α is an (irrelevant) gauge phase while ρ(x) and β(x) are two massless fields
living on the Higgs branch. With this parametrization the sigma model (7.2.4) on
the Higgs branch takes the form [175]

SLE = ξ

∫
d4x
{

cosh 2ρ
[
(∂μρ)

2 + (∂μβ)
2 tanh2 2ρ

]}
. (7.2.6)
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From this expression one can immediately read off the two-by-two metric tensor.
The mass spectrum of N = 1 SQED with the FI term, as it is defined in Eqs.

(7.2.1) and (7.2.2), consists of one massive vector N = 1 multiplet, with mass

m2
γ = 1

2
g2v2, (7.2.7)

(four bosonic + four fermionic states) and one chiral massless field associated with
fluctuations along the Higgs branch. The VEV of the scalar field above is given by

v2 = |〈q〉|2 + |〈q̃〉|2. (7.2.8)

Next, following [175], let us consider strings supported by this theory. First we
will choose the scalar field VEV to lie on the base point of the Higgs branch,

q = √ξ , q̃ = 0. (7.2.9)

Then the massless field q̃ plays no role in the string solution and can be set to zero.
This case is similar to the case of non-Abelian strings in N = 1 SQCD described
in detail in Section 5.1. On the base of the Higgs branch we do have (classically)
the BPS ANO strings with the tension given by (4.2.12). In particular, their profile
functions are determined by (3.2.18) and satisfy the first-order equations (3.2.19).

Now consider a generic vacuum on the Higgs branch. The string solution has
the following structure [175]. The electromagnetic field, together with the massive
scalar, form a string core of size ∼ 1/(g

√
ξ). The solution for this core is essentially

given by the BPS profile functions for the gauge field and massive scalar q. Outside
the core the massive fields almost vanish, while the light (massless) fields living
on the Higgs branch produce a logarithmic “tail.” Inside this “tail” the light scalar
fields interpolate between the base point (7.2.9) and the VEVs of scalars q and q̃ on
the Higgs branch (7.2.3). The tension of the string is given by the sum of tensions
coming from the core and “tail” regions,

T = 2πξ + 2πξ

ln (g
√
ξ L)

l2, (7.2.10)

where l is the length of the geodesic line on the Higgs branch between the base
point and the VEV,

l =
∫ 1

0
dt

√
gMN

(
∂tϕN

)(
∂tϕN

)
, (7.2.11)

where gMN is the metric on the Higgs branch, while ϕN stand for massless scalars
living on the Higgs branch (see e.g. (7.2.6)). For example, for v2 � ξ

l2 = v2/ξ ,



7.2 Example: N = 1 SQED with the FI term 195

and the “tail” contribution in (7.2.10) matches the result (7.1.10) for the string
tension on the flat Higgs branch.

In (7.2.10) we consider the string of a finite length L to ensure infrared regular-
ization. It is also possible [175] to embed N = 1 SQED (7.2.1) in softly broken
N = 2 SQED much in the same way as it was done in Section 5.1 for non-Abelian
strings. This procedure slightly lifts the Higgs branch making even infinitely long
strings well defined. Note, however, that within this procedure the string is not
BPS-saturated at a generic point on the Higgs branch.
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Domain walls as D-brane prototypes

D branes are extended objects in string theory on which strings can end [10].
Moreover, the gauge fields are the lowest excitations of open superstrings, with
the endpoints attached to D branes. SU(N) gauge theories are obtained as a
field-theoretic reduction of a string theory on the world volume of a stack of
N D branes.

Our task is to see how the above assertions are implemented in field theory. We
have already thoroughly discussed field-theoretic strings. Solitonic objects of the
domain wall type were also extensively studied in supersymmetric gauge theories in
1+3 dimensions. The original impetus was provided by the Dvali–Shifman observa-
tion [11] of the critical (BPS-saturated) domain walls in N = 1 gluodynamics, with
the tension scaling as N�3. The peculiar N dependence of the tension prompted
[12] a D-brane interpretation of such walls. Ideas as to how flux tubes can end on
the BPS walls were analyzed [213] at the qualitative level shortly thereafter. Later
on, BPS-saturated domain walls and their junctions with strings were discussed
[214, 215] in a more quantitative aspect in N = 2 sigma models. Some remarkable
parallels between field-theoretical critical solitons and the D-brane string theory
construction were discovered.

In this and subsequent chapters we will review the parallel found between the
field-theoretical BPS domain walls in gauge theories andD branes/strings. In other
words, we will discuss BPS domain walls with the emphasis on localization of the
gauge fields on their world volume. In this sense the BPS domain walls become
D-brane prototypes in field theory.

As was mentioned, research on field-theoretic mechanisms of gauge field local-
ization on the domain walls attracted much attention. The only viable mechanism
of gauge field localization was outlined in Ref. [11] where it was noted that if a
gauge field is confined in the bulk and is unconfined (or less confined) on the brane,
this naturally gives rise to a gauge field on the wall (for further developments see
Refs. [216, 217]). Although this idea seems easy to implement, in fact it requires

196
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a careful consideration of quantum effects (confinement is certainly such an effect)
which is hard to do at strong coupling.

Building on these initial proposals models with localization of gauge fields on
the world volume of domain walls at weak coupling in N = 2 supersymmetric
gauge theories were suggested in [142, 37, 218]. Using a dual language, the basic
idea can be expressed as follows: the gauge group is completely Higgsed in the bulk
while inside the wall the charged scalar fields almost vanish. In the bulk magnetic
flux tubes are formed while inside the wall the magnetic fields can propagate freely.
In Ref. [142] domain walls in the simplest N = 2 SQED theory were considered
while Refs. [218, 37, 219] deal with the domain walls in non-Abelian N = 2 gauge
theories (4.1.7), with the gauge group U(N). Below we will review some results
obtained in these papers.

The moduli space of the multiple domain walls in N = 2 supersymmetric gauge
theories and corresponding sigma models were studied in [220, 221, 222, 223, 224].
Note that the domain walls can intersect [84, 85, 88]. In particular, in [86, 87]
honeycomb webs of walls were obtained in Abelian and non-Abelian gauge
theories, respectively. We briefly discussed this phenomenon in Part I, Section 3.1.5.

We start our discussion of the BPS domain walls as D-brane prototypes in the
simplest Abelian theory – N = 2 SQED with 2 flavors [142]. It supports both
the BPS-saturated domain walls and the BPS-saturated ANO strings if the Fayet–
Iliopoulos term is added to the theory.

8.1 N = 2 supersymmetric QED

N = 1 SQED (four supercharges) was discussed in Section 3.2. Now we will
extend supersymmetry to N = 2 (eight supercharges). Some relevant features of
this model are summarized in Appendix C.

The field content of N = 2 SQED is as follows. In the gauge sector we have the
U(1) vector N = 2 multiplet. In the matter sector we have Nf matter hypermulti-
plets. In this section we will limit ourselves to Nf = 2. This is the simplest case
which admits domain wall interpolating between quark vacua. The bosonic part of
the action of this theory is

S =
∫
d4x

{
1

4g2
F 2
μν + 1

g2
|∂μa|2 + ∇̄μq̄A∇μqA + ∇̄μq̃A∇μ ¯̃qA

+ g2

8

(|qA|2 − |q̃A|2 − ξ
)2 + g2

2

∣∣q̃AqA∣∣2 + 1

2
(|qA|2 + |q̃A|2)∣∣a + √

2mA
∣∣2},

(8.1.1)
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where

∇μ = ∂μ − i

2
Aμ, ∇̄μ = ∂μ + i

2
Aμ. (8.1.2)

With this convention the electric charges of the matter fields are ±1/2 (in the units
of g). Parameter ξ in Eq. (8.1.1) is the coefficient in front of the Fayet–Iliopoulos
term. It is introduced as in Eq. (4.1.5) with F3 = D and F1,2 = 0. In other words,
here we introduce the Fayet–Iliopoulos term as the D term. Furthermore, g is the
U(1) gauge coupling. The index A = 1, 2 is the flavor index.

The mass parameters m1,m2 are assumed to be real. In addition we will assume

�m ≡ m1 −m2 � g
√
ξ . (8.1.3)

Simultaneously, �m � (m1 + m2)/2. There are two vacua in this theory: in the
first vacuum

a = −√
2m1, q1 = √ξ , q2 = 0, (8.1.4)

and in the second one

a = −√
2m2, q1 = 0, q2 = √ξ . (8.1.5)

The vacuum expectation value of the field q̃ vanishes in both vacua. Hereafter in
the search for domain wall solutions we will stick to the ansatz q̃ = 0.

Now let us discuss the mass spectrum in both quark vacua. Consider for definite-
ness the first vacuum, Eq. (8.1.4). The spectrum can be obtained by diagonalizing
the quadratic form in (8.1.1). This is done in Ref. [35]; the result is as follows: one
real component of the field q1 is eaten up by the Higgs mechanism to become the
third component of the massive photon. Three components of the massive photon,
one remaining component of q1 and four real components of the fields q̃1 and a
form one long N = 2 multiplet (8 boson states + 8 fermion states), with mass

m2
γ = 1

2
g2 ξ . (8.1.6)

The second flavor q2, q̃2 (which does not condense in this vacuum) forms one
short N = 2 multiplet (4 boson states + 4 fermion states), with mass�m which is
heavier than the mass of the vector supermultiplet. The latter assertion applies to
the regime (8.1.3). In the second vacuum the mass spectrum is similar – the roles
of the first and the second flavors are interchanged.

If we consider the limit opposite to that in Eq. (8.1.3) and tend �m → 0, the
“photonic” supermultiplet becomes heavier than that of q2, the second flavor field.
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Therefore, it can be integrated out, leaving us with the theory of massless moduli
from q2, q̃2, which interact through a nonlinear sigma model with the Kähler term
corresponding to the Eguchi–Hanson metric. The manifold parametrized by these
(nearly) massless fields is obviously four-dimensional. Both vacua discussed above
lie at the base of this manifold. Therefore, in considering the domain wall solutions
in the sigma model limit�m → 0 [220, 221, 215] one can limit oneself to the base
manifold, which is, in fact, a two-dimensional sphere. In other words, classically,
it is sufficient to consider the domain wall in the CP(1) model deformed by a
twisted mass term (related to a nonvanishing �m), see Fig. 3.11. This was first
done in [221]. A more general analysis of the domain walls on the Eguchi–Hanson
manifold can be found in [225]. An interesting N = 1 deformation of the model
(8.1.1) which was treated in the literature [226] in the quest for “confinement on
the wall” automatically requires construction of the wall on the Eguchi–Hanson
manifold, rather than the CP(1) wall, since in this case the two vacua of the model
between which the wall interpolates do not lie on the base.

8.2 Domain walls in N = 2 SQED

A BPS domain wall interpolating between the two vacua of the bulk theory (8.1.1)
was explicitly constructed in Ref. [142].Assuming that all fields depend only on the
coordinate z = x3, it is possible to write the energy by performing the Bogomol’nyi
completion [5],

E =
∫
dx3

{∣∣∣∣∇3q
A ± 1√

2
qA(a + √

2mA)

∣∣∣∣
2

+
∣∣∣∣1g ∂3a ± g

2
√

2

(
|qA|2 − ξ

)∣∣∣∣
2

± 1√
2
ξ∂3a

}
. (8.2.1)

Requiring the first two terms above to vanish gives us the BPS equations for the
wall. Assuming that �m > 0 we choose the upper sign in (8.2.1) to get

∇zqA = − 1√
2
qA
(
a + √

2mA
)

,

∂za = − g2

2
√

2

(
|qA|2 − ξ

)
. (8.2.2)

These first-order equations should be supplemented by the following boundary
conditions:

q1(−∞) = √ξ , q2(−∞) = 0, a(−∞) = −√
2m1;

q1(∞) = 0, |q2(∞)| = √ξ , a(∞) = −√
2m2, (8.2.3)



200 Domain walls as D-brane prototypes

which show that our wall interpolates between the two quark vacua. Here we use
a U(1) gauge rotation to make q1 in the left vacuum real.

The tension is given by the total derivative term (the last one in Eq. (8.2.1)) which
can be identified as the (1, 0) central charge of the supersymmetry algebra,

Tw = ξ �m. (8.2.4)

We can find the solution to the first-order equations (8.2.2) compatible with the
boundary conditions (8.1.3). The range of variation of the field a inside the wall is
of the order of�m (see Eq. (8.2.3)). Minimization of its kinetic energy implies that
this field slowly varies. Therefore, we may safely assume that the wall is thick; its
size R � 1/g

√
ξ . This fact will be confirmed shortly.

We arrive at the following picture of the domain wall at hand. The wall solution
has a three-layer structure [142], see Fig. 8.1. In the two outer layers – let us call
them edges, they have thicknessO((g

√
ξ)−1) which means that they are thin – the

squark fields drop to zero exponentially; in the inner layer the field a interpolates
between its two vacuum values.

Then to the leading order we can put the quark fields to zero in (8.2.2) inside the
inner layer. The second equation in (8.2.2) tells us that a is a linear function of z.
The solution for a takes the form

a = −√
2

(
m−�m

z− z0

R

)
, (8.2.5)

x −1/2 x −1/2

field profile

R

z

q1 q2

a

E1 M E2

z0

Figure 8.1. Internal structure of the domain wall: two edges (domains E1,2) of
the width ∼ (g

√
ξ)−1 are separated by a broad middle band (domain M) of the

width R, see Eq. (8.2.7).
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where the collective coordinate z0 is the position of the wall center (and �m is
assumed positive). The solution is valid in a wide domain of z

|z− z0| < R

2
, (8.2.6)

except narrow areas of size ∼ 1/g
√
ξ near the edges of the wall at z− z0 = ±R/2.

Substituting the solution (8.2.5) in the second equation in (8.2.2) we get

R = 4�m

g2ξ
= 2�m

m2
γ

. (8.2.7)

Since �m/g
√
ξ � 1, see Eq. (8.1.3), this result shows that R � 1/g

√
ξ , which

justifies our approximation. This approximation will be referred to as the thin-edge
approximation.

Furthermore, we can now use the first relation in Eq. (8.2.2) to determine tails of
the quark fields inside the wall.As was mentioned above, we fix the gauge imposing
the condition that q1 is real at z → −∞, see a more detailed discussion in [142].

Consider first the left edge (domainE1 in Fig. 8.1) at z−z0 = −R/2. Substituting
the above solution for a in the equation for q1 we get

q1 = √ξ e−m2
γ

4

(
z−z0+R

2

)2

, (8.2.8)

wheremγ is given by (8.1.6). This behavior is valid in the domainM , at (z− z0 +
R/2) � 1/g

√
ξ , and shows that the field of the first quark flavor tends to zero

exponentially inside the wall, as was expected.
By the same token, we can consider the behavior of the second quark flavor near

the right edge of the wall at z − z0 = R/2. The first equation in (8.2.2) for A = 2
implies

q2 = √ξ e−m2
γ

4

(
z−z0−R

2

)2−iσ , (8.2.9)

which is valid in the domainM provided that (R/2 − z+ z0) � 1/g
√
ξ . Here σ is

an arbitrary phase which cannot be gauged away. Inside the wall the second quark
flavor tends to zero exponentially too.

It is not difficult to check that the main contribution to the wall tension comes
from the middle layer while the edge domains produce contributions of the order
of ξ3/2 which makes them negligibly small.

Now let us comment on the phase factor in (8.2.9). Its origin is as follows [142].
The bulk theory at �m �= 0 has the U(1)×U(1) flavor symmetry corresponding
to two independent rotations of two quark flavors. In both vacua only one quark
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develops a VEV. Therefore, in both vacua only one of these two U(1)’s is broken.
The corresponding phase is eaten by the Higgs mechanism. However, on the wall
both quarks have nonvanishing values, breaking both U(1) groups. Only one of the
corresponding two phases is eaten by the Higgs mechanism. The other one becomes
a Goldstone mode living on the wall.

Thus, we have two collective coordinates characterizing our wall solution, the
position of the center z0 and the phase σ . In the effective low-energy theory on
the wall they become scalar fields of the world volume (2+1)-dimensional theory,
z0(t , x, y) and σ(t , x, y), respectively. The target space of the second field is S1.

This wall is a 1/2 BPS solution of the Bogomol’nyi equations. In other words,
four out of eight supersymmetry generators of the N = 2 bulk theory are broken.
As was shown in [142], the four supercharges selected by the conditions

ε̄2
2̇

= −iε21, ε̄1
2̇

= −iε22,

ε̄1
1̇

= iε12, ε̄2
1̇

= iε11, (8.2.10)

act trivially on the wall solution. They become the four supersymmetries acting in
the (2+1)-dimensional effective world volume theory on the wall. Here εαf and
ε̄
f
α̇ are eight supertransformation parameters.

8.3 Effective field theory on the wall

In this section we will review the (2+1)-dimensional effective low-energy theory
of the moduli on the wall [142]. To this end we will make the wall collective
coordinates z0 and σ (together with their fermionic superpartners) slowly varying
fields depending on xn (n = 0, 1, 2), For simplicity let us consider the bosonic fields
z0(xn) and σ(xn); the residual supersymmetry will allow us to readily reconstruct
the fermion part of the effective action.

Because z0(xn) and σ(xn) correspond to zero modes of the wall, they have no
potential terms in the world sheet theory. Therefore, in fact our task is to derive their
kinetic terms, much in the same way as it was done for strings, see Section 4.4. For
z0(xn) this procedure is very simple. Substituting the wall solution (8.2.5), (8.2.8),
and (8.2.9) in the action (8.1.1) and taking into account the xn dependence of this
modulus we immediately get

Tw

2

∫
d3x(∂nz0)

2. (8.3.1)
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As far as the kinetic term for σ(xn) is concerned more effort is needed. We start
from Eqs. (8.2.8) and (8.2.9) for the quark fields. Then we will have to modify our
ansatz introducing nonvanishing components of the gauge field,

An = χ(z) ∂nσ (xn). (8.3.2)

These components of the gauge field are needed to make the world volume action
well-defined. They are introduced in order to cancel the x dependence of the quark
fields far away from the wall (in the quark vacua at z → ∞) emerging through the
x dependence of σ(xn), see Eq. (8.2.9).

Thus, we introduce a new profile function χ(z). It has no role in the construction
of the static wall solution per se. It is unavoidable, however, in constructing the
kinetic part of the world sheet theory of the moduli. This new profile function is
described by its own action, which will be subject to minimization procedure. This
is quite similar to derivation of the world sheet effective theory for non-Abelian
strings, see Section 4.4.

The gauge potential in Eq. (8.3.2) is pure gauge far away from the wall and is
not pure gauge inside the wall. It does lead to a nonvanishing field strength.

To ensure proper vacua at z → ±∞ we impose the following boundary
conditions on the function χ(z)

χ(z) → 0, z → −∞ ,

χ(z) → −2, z → +∞ . (8.3.3)

Remember, the electric charge of the quark fields is ±1/2.
Next, substituting Eqs. (8.2.8), (8.2.9) and (8.3.2) in the action (8.1.1) we arrive at

Sσ2+1 =
[∫

d3x
1

2
(∂nσ )

2
]

×
∫
dz

{
1

g2
(∂zχ)

2 + χ2|q1|2 + (2 + χ)2|q2|2
}

. (8.3.4)

The expression in the second line must be considered as an “action” for theχ profile
function.

Our next task is to explicitly find the function χ . To this end we have to minimize
(8.3.4) with respect to χ . This gives the following equation:

−∂2
z χ + g2χ |q1|2 + g2(2 + χ)|q2|2 = 0. (8.3.5)

The equation for χ is of the second order. This is because the domain wall is
no longer BPS state once we switch on the dependence of the moduli on the
“longitudinal” variables xn.
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To the leading order in g
√
ξ/�m the solution of Eq. (8.3.5) can be obtained in

the same manner as it was done previously for other profile functions. Let us first
discuss what happens outside the inner part of the wall. Say, at z − z0 � R/2 the
profile |q1| vanishes while |q2| is exponentially close to

√
ξ and, hence,

χ → −2 + const e−mγ (z−z0). (8.3.6)

At z0 −z � R/2 the profile function χ falls off exponentially to zero. Thus, outside
the inner part of the wall, at |z−z0| � R/2, the function χ approaches its boundary
values with the exponential rate of approach.

Of most interest, however, is the inside part, the middle domainM (see Fig. 8.1).
Here both quark profile functions vanish, and Eq. (8.3.5) degenerates into ∂2

z χ = 0.
As a result, the solution takes the form

χ = −1 − 2
z− z0

R
. (8.3.7)

In the narrow edge domainsE1,2 the exact χ profile smoothly interpolates between
the boundary values, see Eq. (8.3.6), and the linear behavior (8.3.7) inside the wall.
These edge domains give small corrections to the leading term in the action.

Substituting the solution (8.3.7) in the χ action, the second line in Eq. (8.3.4),
we finally arrive at

Sσ2+1 = ξ

�m

∫
d3x

1

2
(∂nσ )

2. (8.3.8)

As well-known [227], the compact scalar field σ(t , x, y) can be reinterpreted
to be dual to the (2+1)-dimensional Abelian gauge field living on the wall. The
emergence of the gauge field on the wall is easy to understand. The quark fields
almost vanish inside the wall. Therefore the U(1) gauge group is restored inside the
wall while it is Higgsed in the bulk. The dual U(1) is in the confinement regime in
the bulk. Hence, the dual U(1) gauge field is localized on the wall, in full accordance
with the general argument of Ref. [11]. The compact scalar field σ(xn) living on
the wall is a manifestation of this magnetic localization.

The action in Eq. (8.3.8) implies that the coupling constant of our effective U(1)
theory on the wall is given by

e2 = 4π2 ξ

�m
. (8.3.9)

In particular, the definition of the (2+1)-dimensional gauge field takes the form

F (2+1)
nm = e2

2π
εnmk ∂

kσ . (8.3.10)
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This finally leads us to the following effective low-energy theory of the moduli
fields on the wall:

S2+1 =
∫
d3x

{
Tw

2

(
∂nz0

)2 + 1

4 e2

(
F (2+1)
nm

)2 + fermion terms

}
. (8.3.11)

The fermion content of the world volume theory is given by two three-dimensional
Majorana spinors, as is required by N = 2 in three dimensions (four supercharges,
see (8.2.10)). The full world volume theory is a U(1) gauge theory in (2+1) dimen-
sions, with four supercharges. The Lagrangian and the corresponding superalgebra
can be obtained by reducing four-dimensional N = 1 SQED (with no matter) to
three dimensions.

The field z0 in (8.3.11) is the N = 2 superpartner of the gauge fieldAn. To make
it more transparent we make a rescaling, introducing a new field

a2+1 = 2πξ z0. (8.3.12)

In terms of a2+1 the action (8.3.11) takes the form

S2+1 =
∫
d3x

{
1

2e2

(
∂na2+1

)2 + 1

4e2

(
F (2+1)
mn

)2 + fermions

}
. (8.3.13)

The gauge coupling constant e2 has dimension of mass in three dimensions. A char-
acteristic scale of massive excitations on the world volume theory is of the order of
the inverse thickness of the wall 1/R, see (8.2.7). Thus, the dimensionless parameter
that characterizes the coupling strength in the world volume theory is e2R,

e2R = 16π2

g2
. (8.3.14)

This can be interpreted as a feature of the bulk–wall duality: the weak coupling
regime in the bulk theory corresponds to strong coupling on the wall and vice
versa [142, 228]. Of course, finding explicit domain wall solutions and deriving
the effective theory on the wall assumes weak coupling in the bulk, g2 � 1. In this
limit the world volume theory is in the strong coupling regime and is not very useful.

The fact that each domain wall has two bosonic collective coordinates – its center
and the phase – in the sigma model limit was noted in [214, 221].

To summarize, we showed that the world volume theory on the domain wall is
the U(1) gauge theory (8.3.13) with extended supersymmetry, N = 2. Thus, the
domain wall in the theory (8.1.1) presents an example of a field-theoreticD brane: it
localizes a gauge field on its world volume. In string theory gauge fields are localized
on D branes because fundamental open strings can end on D branes. It turns out
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that this is also true for field-theoretic “D branes.” In fact, various junctions of field-
theoretic strings (flux tubes) with domain walls were found explicitly [215, 142, 37].
We will review 1/4-BPS junctions in Chapter 9. Meanwhile, in Section 8.4 we will
consider non-Abelian generalizations of the localization effect for the gauge fields.

8.4 Domain walls in the U(N ) gauge theories

In this section we will review the domain walls in N = 2 SQCD (see Eq. (4.1.7))
with the U(N) gauge group. We assume that the number of the quark flavors in
this theory Nf > N , so the theory has many vacua of the type (4.1.11), (4.1.14)
depending on which N quarks out of Nf develop VEVs. We can denote different
vacua as (A1,A2, . . . ,AN) specifying which quark flavors develop VEVs. Mostly,
we will consider a general case assuming all quark masses to be different.

Let us arrange the quark masses as follows:

m1 > m2 > · · · > mNf . (8.4.1)

In this case the theory (4.1.7) has

Nf !
N !(Nf −N)! (8.4.2)

isolated vacua.
Domain walls interpolating between these vacua were classified in [218]. Below

we will briefly review this classification.
The Bogomol’nyi representation of the action (4.1.7) leads to the first-order

equations for the wall configurations [229], see also [37],

∂zϕ
A = − 1√

2

(
aaτ

a + a + √
2mA

)
ϕA,

∂za
a = − g2

2

2
√

2

(
ϕ̄Aτ

aϕA
)

,

∂za = − g2
1

2
√

2

(
|ϕA|2 − 2ξ

)
, (8.4.3)

where we used the ansatz (4.2.1) and introduced a single quark field ϕkA instead of
two fields qkA and q̃Ak . These walls are 1/2 BPS saturated. The wall tensions are
given by the surface term

Tw = √
2ξ
∫
dz ∂za . (8.4.4)
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They can be written as [218]

Tw = ξ �g �m, (8.4.5)

where we use Eq. (4.1.11) and define �m = (m1, . . . ,mNf ), while

�g =
Nf−1∑
i=1

ki �αi . (8.4.6)

Here ki are integers while αi are simple roots of the U(Nf ) algebra,1

�α1 = (1, −1, 0, . . . , 0),

�α2 = (0, 1, −1, . . . , 0),

... ,

�αNf−1 = (0, . . . , 0, 1, −1). (8.4.7)

Elementary walls arise if one of the ki’s reduces to unity while all other integers in
the set vanish. The tensions of the elementary walls are

T iw = ξ (mi −mi+1). (8.4.8)

The ith elementary wall interpolates between the vacua (..., i, ...) and (..., i+ 1, ...).
All other walls can be considered as composite states of elementary walls.

As an example let us consider the theory (4.1.7) with the gauge group U(2) and
Nf = 4. Explicit solutions for the elementary walls in the limit

(mi −mi+1) � g
√
ξ (8.4.9)

were obtained in [37]. They have the same three-layer structure as in the Abelian
case, see Section 8.2. Say, the elementary wall interpolating between the vacua
(1, 2) and (1, 3) has the following structure. At the left edge the quark ϕ2 varies
from its VEV

√
ξ to zero exponentially, while at the right edge the quark ϕ3 evolves

from zero to its VEV
√
ξ . In the broad middle domain the fields a and a3 linearly

interpolate between their VEVs in two vacua. A novel feature of the domain wall
solution as compared to the Abelian case (see Section 8.2) is that the quark field ϕ1

does not vanish both outside and inside the wall.

1 Each �α in Eq. (8.4.7) is an Nf -component vector, rather than (Nf − 1)-component vector of SU(Nf ). The
Cartan generators Hi (i = 1, 2, . . . ,Nf ) are Nf × Nf diagonal matrices, (Hi)kl = δkiδli , while the relevant
non-Cartan generators E�αi are defined as (E�αi )i,i+1 = 1, with all other entries vanishing.
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The solution for the elementary wall has two real moduli much in the same way
as in the Abelian case: the wall center z0 and a compact phase. The phase can be
rewritten as a U(1) gauge field. Therefore, the effective theory on the elementary
wall is of the type (8.3.13), as in the Abelian case. The physical reason behind the
localization of the U(1) gauge field on the wall world volume is easy to understand.
Since the quark ϕ1 does not vanish inside the wall only an appropriately chosen
U(1) field, namely (Aμ − A3

μ), which does not interact with this quark field can
propagate freely inside the wall.

In the case of generic quark masses the effective world volume theory for compos-
ite domain walls contains U(1) gauge fields associated with each elementary wall.
However, the metric on the moduli space can be more complicated. For example
the metric for the �α1 + �α2 composite wall was shown [221, 230] to have a cigar-like
geometry.

We conclude this section noting that the case of the degenerate quark masses
was considered in [37, 219]. In particular, in [37] the N = 2 case was studied
and it was argued that the composite wall made of two elementary walls localizes
a non-Abelian U(2) gauge field. In [219] non-localized zero modes which were
called “non-Abelian clouds” were found on the composite wall.
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Wall-string junctions

In Chapter 8 we reviewed the construction of D-brane prototypes in field theory.
In string theory D branes are extended objects on which fundamental strings can
end. To make contact with this string/brane picture one may address a question
whether or not solitonic strings can end on the domain wall which localizes gauge
fields. The answer to this question is yes. Moreover, the string endpoint plays a
role of a charge with respect to the gauge field localized on the wall surface. This
issue was studied in [215] in the sigma-model setup and in [217] for gauge theories
at strong coupling. A solution for a 1/4-BPS wall-string junction in the N = 2
supersymmetric U(1) gauge theory at weak coupling was found in [142], while
[37] deals with its non-Abelian generalization. Further studies of the wall-string
junctions were carried out in [172] where all 1/4-BPS solutions to Eqs. (4.5.5)
were obtained, and in [218, 231] where the energy associated with the wall-string
junction (boojum) was calculated, and in [232, 228] where a quantum version of
the effective theory on the domain wall world volume which takes into account
charged matter (strings of the bulk theory) was derived. Below we will review the
wall-string junction solutions and then briefly discuss how the presence of strings
in the bulk modifies the effective theory on the wall.

9.1 Strings ending on the wall

To begin with, let us review the solution for the simplest 1/4-BPS wall-string junc-
tion in N = 2 SQED obtained in [142]. As was discussed in Chapter 8, in both
vacua of the theory the gauge field is Higgsed while it can spread freely inside the
wall. This is the physical reason why the ANO string carrying a magnetic flux can
end on the wall [11, 213].

Assume that at large distances from the string endpoint which lies at r = 0,
z = 0 the wall is almost parallel to the (x1, x2) plane while the string is stretched
along the z axis. As usual, we look for a static solution assuming that all relevant

209
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fields can depend only on xn, (n = 1, 2, 3). The Abelian version of the first-order
equations (4.5.5) for various 1/4-BPS junctions in the theory (8.1.1) is [142]

F ∗
1 − iF ∗

2 − √
2(∂1 − i∂2)a = 0 ,

F ∗
3 − g2

2

(∣∣qA∣∣2 − ξ
)− √

2 ∂3a = 0 ,

∇3q
A = − 1√

2
qA(a + √

2mA) ,

(∇1 − i∇2)q
A = 0 . (9.1.1)

These equations generalize the first-order equations for the wall (8.2.2) and the
Abelian ANO string.

Needless to say, the solution of the first-order equations (9.1.1) for a string ending
on the wall can be found only numerically especially near the endpoint of the string
where both the string and the wall profiles are heavily deformed. However, far away
from the string endpoint, deformations are weak and we can find the asymptotic
behavior analytically.

Let the string be on the z > 0 side of the wall, where the vacuum is given by
Eq. (8.1.5). First note that in the region z → ∞ far away from the string endpoint
at z ∼ 0 the solution to (9.1.1) is given by an almost unperturbed ANO string.
Now consider the domain r → ∞ at small z. In this domain the solution to (9.1.1)
is given by a perturbation of the wall solution. Let us use the ansatz in which the
solutions for the fields a and qA are given by the same equations (8.2.5), (8.2.8)
and (8.2.9) in which the size of the wall is still given by (8.2.7), and the only
modification is that the position of the wall z0 and the phase σ now become slowly
varying functions of r and α, the polar coordinates on the (x1, x2) plane. It is quite
obvious that z0 will depend only on r , as schematically depicted in Fig. 9.1.

Substituting this ansatz into the first-order equations (9.1.1) one arrives at the
equations which determine the adiabatic dependence of the moduli z0 and σ on
r and α [142],

∂rz0 = − 1

�mr
, (9.1.2)

∂σ

∂α
= 1,

∂σ

∂r
= 0 . (9.1.3)

Needless to say our adiabatic approximation holds only provided the r derivative
is small, i.e. sufficiently far from the string,

√
ξr � 1. The solution to Eq. (9.1.2)

is straightforward,

z0 = − 1

�m
ln r + const. (9.1.4)
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ξ−1/2  {

r

r

γ

r
*

z0

Figure 9.1. Bending of the wall due to the string-wall junction. The flux tube ex-
tends to the right infinity. The wall profile is logarithmic at transverse distances
larger than ξ−1/2 from the string axis. At smaller distances the adiabatic
approximation fails.

We see that the wall is logarithmically bent according to the Coulomb law in 2 + 1
dimensions (see Fig. 9.1). This bending produces a balance of forces between the
string and the wall in the z direction so that the whole configuration is static. The
solution to Eq. (9.1.3) is

σ = α . (9.1.5)

This vortex solution is certainly expected and welcome. One can identify the com-
pact scalar field σ with the electric field living on the domain wall world volume
via (8.3.10). Equation (9.1.5) implies

F
(2+1)
0i = e2

2π

xi

r2
(9.1.6)

for this electric field, where the (2 + 1)-dimensional coupling is given by (8.3.9).
This is the field of a point-like electric charge in 2 + 1 dimensions placed at

xi = 0. The interpretation of this result is that the string endpoint on the wall plays
a role of the electric charge in the dual U(1) theory on the wall. From the standpoint
of the bulk theory, when the string ends on the wall, the magnetic flux it brings
with it spreads out inside the wall in accordance with the Coulomb law in (2 + 1)
dimensions.

From the above discussion it is clear that in the world volume theory (8.3.13),
the fields (9.1.4) and (9.1.6) can be considered as produced by classical point-like
charges which interact in a standard way with the electromagnetic field An and the
scalar field a2+1,

S2+1 =
∫
d3x

{
1

2e2
(∂na2+1)

2 + 1

4e2
(F (2+1)
mn )2 + An jn − a2+1 ρ

}
, (9.1.7)
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where the classical electromagnetic current and the charge density of static
charges are

jn(x) = ne{δ(3)(x), 0, 0}, ρ(x) = nsδ
(3)(x). (9.1.8)

Here ne and ns are electric and scalar charges associated with the string endpoint
with respect to the electromagnetic field An and the scalar field a, respectively
[228],

ne = +1, incoming flux,

ne = −1, outgoing flux, (9.1.9)

while their scalar charges are

ns = +1, string from the right,

ns = −1, string from the left. (9.1.10)

These rules are quite obvious from the perspective of the bulk theory. The anti-
string carries the opposite flux to that of a string in (9.1.6) and the bending of the
wall produced by the string coming from the left is opposite to the one in (9.1.4)
associated with the string coming from the right.

9.2 Boojum energy

Let us now calculate the energy of the wall-string junction, the boojum. There are
two distinct contributions to this energy [231]. The first contribution is due to the
gauge field (9.1.6),

EG(2+1) =
∫

1

2e2
2+1

(F0i)
2 2πr dr

= πξ

�m

∫
dr

r
= πξ

�m
ln
(
g
√
ξL
)
. (9.2.1)

The integral
∫
dr/r is logarithmically divergent both in the ultraviolet and infrared.

It is clear that the UV divergence is cut off at the transverse size of the string
∼ 1/g

√
ξ and presents no problem. However, the infrared divergence is much

more serious. We introduced a large size L to regularize it in (9.2.1).
The second contribution, due to the z0 field (9.1.4), is proportional to

∫
dr/r too,

EH(2+1) =
∫
Tw

2

(
∂r z0

)2 2πr dr

= πξ

�m
ln
(
g
√
ξL
)
. (9.2.2)
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wall

string

anti-string

Figure 9.2. String and anti-string ending on the wall from different sides. Arrows
denote the direction of the magnetic flux.

Both contributions are logarithmically divergent in the infrared. Their occurrence
is an obvious feature of charged objects coupled to massless fields in (2 + 1)
dimensions due to the fact that the fields An and a2+1 do not die off at infinity,
which means infinite energy.

The above two contributions are equal (with the logarithmic accuracy), even
though their physical interpretation is different. The total energy of the string
junction is

EG+H = 2πξ

�m
ln
(
g
√
ξL
)
. (9.2.3)

We see that in our attempt to include strings as point-like charges in the world
volume theory (9.1.7) we encounter problems already at the classical level. The
energy of a single charge is IR divergent. It is clear that the infrared problems will
become even more severe in quantum theory.

A way out was suggested in [231, 228]. For the infrared divergences to cancel
we should consider strings and anti-strings with incoming and outgoing fluxes as
well as strings coming from the right and from the left. Clearly, only configurations
with vanishing total electric and scalar charges have finite energy (see (9.1.9) and
(9.1.10)).

In fact, it was shown in [231] that the configuration depicted in Fig. 9.2 is a
non-interacting 1/4-BPS configuration. All logarithmic contributions are canceled;
the junction energy in this geometry is given by a finite negative contribution

E = −8π

g2
�m, (9.2.4)
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which is called the boojum energy [218]. In fact this energy was first calculated
in [172]. A procedure allowing one to separate this finite energy from logarithmic
contributions described above (and make it well-defined) was discussed in [231].

9.3 Finite-size rigid strings stretched between the walls.
Quantizing string endpoints

Now, after familiarizing ourselves with the junctions of the BPS walls with the
semi-infinite strings, the boojums, we can ask whether or not the junction can
acquire a dynamical role. Is there a formulation of the problem in which one can
speak of a junction as of a particle sliding on the wall?

The string energy is its tension (4.2.12) times its length. If we have a single wall,
all strings attached to it have half-infinite length; therefore, they are infinitely heavy.
In the wall world volume theory (9.1.7) they may be seen as classical infinitely
heavy point-like charges. The junctions are certainly non-dynamical objects in this
case.

In order to be able to treat junctions as “particles” we need to make strings “light”
and deprive them of their internal dynamics, i.e. switch off all string excitations. It
turns out a domain in the parameter space is likely to exist where these goals can
be achieved.

In this section we will review a quantum version of the world volume theory
(9.1.7) with additional charged matter fields. The latter will represent the junctions
on the wall world volume [232, 228] (of course, the junctions have strings of the
bulk theory attached to them; these strings will be rigid).

Making string masses finite is a prerequisite. To this end one needs at least two
domain walls at a finite distance from each other with strings stretched between
them. This scenario was suggested in [232]. A quantum version of the wall world
volume theory in which the strings were represented by a charged chiral matter
superfield in 1+2 dimensions was worked out. However, in the above scenario the
strings were attached to each wall from one side. From the discussion in Section 9.2
it must be clear that this theory is not free from infrared problems. The masses of
(1 + 2)-dimensional charged fields are infinite.

To avoid these infinities we need a configuration with strings coming both from
the right and from the left sides of each wall. This configuration was suggested in
[228], see Fig. 9.3.

Let us describe this set-up in more detail. First, we compactify the x3 = z

direction in our bulk theory (8.1.1) on a circle of length L. Then we consider
a pair “wall plus antiwall” oriented in the {x1, x2} plane, separated by a dis-
tance l in the perpendicular direction, as shown in Fig. 9.3. The wall and antiwall
experience attractive forces. Strictly speaking, this is not a BPS configuration –
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wall

antiwall

string

string

Figure 9.3. A wall and antiwall connected by strings on the cylinder. The
circumference of the circle (the transverse slice of the cylinder) is L.

supersymmetry in the world volume theory is broken. However, the wall-antiwall
interaction due to overlap of their profile functions is exponentially suppressed at
large separations,

L ∼ l � R, (9.3.1)

where R is the wall thickness (see Eq. (8.2.7)). In what follows we will neglect
exponentially suppressed effects. If so, we neglect the effects which break super-
symmetry in our (2 + 1)-dimensional world volume theory. Thus, it continues to
have four conserved supercharges (N = 2 supersymmetry in (2 + 1) dimensions)
as was the case for the isolated single wall.

Let us denote the wall position as z1 while that of the antiwall as z2. Then

l = z2 − z1.

On the wall world volume z1,2 become scalar fields. The kinetic terms for these
fields in the world volume theory are obvious (see (8.3.11)),

Tw

2

[
(∂nz1)

2 + (∂nz2)
2
]

= 1

2e2

[(
∂na

(1)
2+1

)2 + (∂na(2)2+1

)2], (9.3.2)
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where we use (8.3.12) to define the fields a(1,2)
2+1 . The sum of these fields,

a+ ≡ 1√
2

(
a
(2)
2+1 + a

(1)
2+1

)
,

with the corresponding superpartners, decouples from other fields forming a free
field theory describing dynamics of the center-of-mass of our construction. This is
a trivial part which will not concern us here.

An interesting part is associated with the field

a− ≡ 1√
2

(
a
(2)
2+1 − a

(1)
2+1

)
. (9.3.3)

The factor 1/
√

2 ensures that a− has a canonically normalized kinetic term. By
definition, it is related to the relative wall-antiwall separation, namely,

a− = 2πξ√
2
l . (9.3.4)

Needless to say, a− has all necessary N = 2 superpartners. In the bosonic sector
we introduce the gauge field

A−
n ≡ 1√

2

(
A(1)n − A(2)n

)
, (9.3.5)

with the canonically normalized kinetic term. The strings stretched between the
wall and antiwall, on both sides, will be represented by two chiral superfields,
S and S̃, respectively. We will denote the corresponding bosonic components by s
and s̃.

In terms of these fields the quantum version of the theory (9.1.7) is completely
determined by the charge assignments (9.1.9) and (9.1.10) and N = 2 supersym-
metry. The charged matter fields have the opposite electric charges and distinct
mass terms, see below. A mass term for one of them is introduced by virtue of a
“real mass,” a three-dimensional generalization [96] of the twisted mass in two
dimensions [32]. It is necessary due to the fact that there are two inter-wall dis-
tances, l and L− l. The real mass breaks parity. The bosonic part of the action has
the form

Sbos =
∫
d3x

{
1

4e2
F−
mnF

−
mn + 1

2e2

(
∂n a−

)2 + |Dns|2 + |D̃ns̃|2

+ 2a2−s̄ s + 2(m− a−)2 ¯̃s s̃ + e2(|s|2 − |s̃|2)2} . (9.3.6)
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According to our discussion in Section 9.1, the fields s and s̃ have charges +1 and
−1 with respect to the gauge fields A(1)n and A(2)n , respectively. Hence,

Dn = ∂n − i
(
A(1)n − A(2)n

) = ∂n − i
√

2A−
n ,

D̃n = ∂n + i
(
A(1)n − A(2)n

) = ∂n + i
√

2A−
n . (9.3.7)

The electric charges of boojums with respect to the field A−
n are ±√

2. The last
term in (9.3.6) is the D term dictated by supersymmetry.

So far, m is a free parameter whose relation to L will be determined shortly.
Moreover, F−

mn = ∂m A
−
n − ∂n A−

m. The theory (9.3.6) with the pair of chiral multi-
plets S and S̃ is free of IR divergences and global Z2 anomalies [96, 98] (see also
Section 3.2.1). At the classical level it is clear from our discussion in Section 9.2.
A version of the world volume theory (9.3.6) with a single supermultiplet S was
considered in Ref. [232] but, as was mentioned, this version is not free of IR
divergences.

It is in order to perform a crucial test of our theory (9.3.6) by calculating the
masses of the charged matter multiplets S and S̃. From (9.3.6) we see that the mass
of S is

ms = √
2 〈a−〉. (9.3.8)

Substituting here the relation (9.3.4) we get

ms = 2πξ l. (9.3.9)

The mass of the charged matter field S reduces to the mass of the string of the
bulk theory stretched between the wall and antiwall at separation l, see (4.2.12).
A great success! Of course, this was expected. Note that this is a nontrivial check
of consistency between the world volume theory and the bulk theory. Indeed, the
charges of the strings’ endpoints (9.1.9) and (9.1.10) are unambiguously fixed by
the classical solution for the wall-string junction.

Now, imposing the relation between the free mass parameter m in (9.3.6) and
the length of the compactified z-direction L in the form

m = 2πξ√
2
L (9.3.10)

we get the mass of the chiral field S̃ to be

ms̃ = 2πξ (L− l) . (9.3.11)



218 Wall-string junctions

mKKms energy

1/R
Δmx1/2e2

Figure 9.4. Mass scales of the bulk and world volume theories.

The mass of the string S̃ connecting the wall with the antiwall from the other side
of the cylinder is the string tension times (L − l), in full accordance with our
expectations, see Fig. 9.3.

The theory (9.3.6) can be considered as an effective low-energy (2 + 1)-
dimensional description of the wall-antiwall system dual to the (3+1)-dimensional
bulk theory (8.1.1) under the choice of parameters specified below (Fig. 9.4). Most
importantly, we use the quasiclassical approximation in our bulk theory (8.1.1)
to find the solution for the string-wall junction [142] and derive the wall-antiwall
world volume effective theory (9.3.6). This assumes weak coupling in the bulk,
g2 � 1. According to the duality relation (8.3.14) this implies strong coupling in
the world volume theory.

In order to be able to work with the world volume theory we want to continue
the theory (9.3.6) to the weak coupling regime,

e2 � 1

R
, (9.3.12)

which means strong coupling in the bulk theory, g2 � 1. The general idea is that
at g2 � 1 we can use the bulk theory (8.1.1) to describe our wall-antiwall system
while at g2 � 1 we better use the world volume theory (9.3.6). In [228] this set-up
was termed bulk–brane duality. In spirit – albeit not in detail – it is similar to the
AdS/CFT correspondence.

In order for the theory (9.3.6) to give a correct low-energy description of the wall-
antiwall system the masses of strings (including boojums) in this theory should be
much less than the masses of both the wall and string excitations. These masses are
of order of 1/R and mKK = k/l ∼ k/(L− l), respectively, where k is an integer.
The high mass gap for the string excitations make strings rigid.

These constraints were studied in [228]. It was found that for the constraints to
be satisfied different scales of the theory must have a hierarchy shown in Fig. 9.4.

The scales �m,
√
ξ and e2

2+1 ∼ ξ/�m are determined by the string and wall
tensions in our bulk theory, see (4.2.12) and (8.2.4). In particular, the (2 + 1)-
dimensional coupling e2 is determined by the ratio of the wall tension to the square
of the string tension, as follows from Eqs. (8.3.11) and (8.3.12). Since the strings and
walls in the bulk theory are BPS-saturated, they receive no quantum corrections.
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Equations (4.2.12) and (8.2.4) can be continued to the strong coupling regime in
the bulk theory. Therefore, we can always take such values of the parameters �m
and

√
ξ that the conditions

e2 � √
ξ � �m (9.3.13)

are satisfied.
To actually prove duality between the bulk theory (8.1.1) and the world volume

theory (9.3.6) we only need to prove the condition

√
ξ � 1

R
, (9.3.14)

which ensures that strings are lighter than the wall excitations. This will give us
the hierarchy of the mass scales shown in Fig. 9.4. With the given values of the
parameters�m and

√
ξ we have another free parameter of the bulk theory to ensure

(9.3.14), namely, the coupling constant g2. However, the scale 1/R (the mass scale
of various massive excitations of the wall) is not protected by supersymmetry and
we cannot prove that the regime (9.3.14) can be reached at strong coupling in the
bulk theory. Thus, the above bulk–brane duality is in fact a conjecture essentially
equivalent to the statement that the regime (9.3.14) is attainable under a certain
choice of parameters. Note, that if the condition (9.3.14) is not met, the wall exci-
tations become lighter than the strings under consideration, and the theory (9.3.6)
does not correctly describe low-energy physics of the theory on the walls.

9.4 Quantum boojums. Physics of the world volume theory

What is a boojum loop?
Let us integrate out the string multiplets S and S̃ and study the effective theory

for the U(1) gauge supermultiplet at scales below ms . As long as the string fields
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enter the action quadratically (if we do not resolve the algebraic equations for the
auxiliary fields) the one-loop approximation is exact.

Integration over the charged matter fields in (9.3.6) leads to generation of the
Chern–Simons term [94, 95, 96] with the coefficient proportional to

1

4π
[sign(a)+ sign(m− a)]εnmkA−

n ∂mA
−
k . (9.4.1)

Another effect related to the one in (9.4.1) by supersymmetry is generation of a
nonvanishing D-term,

D

2π
[|m− a−| − |a−|] = D

2π
(m− 2a−), (9.4.2)

where D is the D-component of the gauge supermultiplet. As a result we get from
(9.3.6) the following low-energy effective action for the gauge multiplet:

S2+1 =
∫
d3x

{
1

2e2(a−)
(∂na−)2 + 1

4e2(a−)
(F−
mn)

2

+ 1

2π
εnmkA

−
n ∂mA

−
k + e2(a−)

8π2 (2a− −m)2
}

, (9.4.3)

where we also take into account a finite renormalization of the bare coupling
constant e2 [233, 234, 98],

1

e2(a−)
= 1

e2
+ 1

8π |a−| + 1

8π |m− a−| . (9.4.4)

This is a small effect since 1/e2 is the largest parameter (see Fig. 9.4). Note that in
Eq. (9.4.3) the coefficient in front of the Chern–Simons term is an integer number
(in the units of 1/(2π)), as required by gauge invariance.

The most dramatic effect in (9.4.3) is the generation of a potential for the field a−.
Remember a− is proportional to the separation l between the walls. The vacuum
of (9.4.3) is located at

〈a−〉 = m

2
, l = L

2
. (9.4.5)

There are two extra solutions at a− = 0 and a− = m, but they lie outside the limits
of applicability of our approach.

We see that the wall and antiwall are pulled apart; they want to be located at the
opposite sides of the cylinder. Moreover, the potential is quadratically rising with
the deviation from the equilibrium point (9.4.5).As was mentioned in the beginning
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R L
l

V(l)

L /2

Figure 9.5. Classical and quantum wall-antiwall interaction potential. The dashed
line depicts the classical exponentially small potential while the solid line the
quantum potential presented in Eq. (9.4.3).

of this section, the wall and antiwall interact with exponentially small potential due
to the overlap of their profiles. However, these interactions are negligibly small at
l � R as compared to the interaction in Eq. (9.4.3). The interaction potential in
(9.4.3) arises due to virtual pairs of strings (“boojum loops”) and it pulls the walls
apart.

Clearly, our description of strings in the bulk theory was purely classical
and we were unable to see this quantum effect. The classical and quantum
interaction potential of the wall-antiwall system is schematically shown in Fig. 9.5.
The quantum potential induced by virtual string loop is much larger than the classi-
cal exponentially smallWW̄ attraction at separations l ∼ L/2. The quantum effect
stabilizes the classically unstable WW̄ system at the equilibrium position (9.4.5).

Note, that if the wall-antiwall interactions were mediated by particles they would
have exponential fall-off at large separations l (there are no massless particles in
the bulk). Quadratically rising potential would never be generated. In our case
the interactions are due to virtual pairs of extended objects – strings. Strings are
produced as rigid objects stretched between walls. The string excitations are not
taken into account as they are too heavy. The fact that the strings come out in our
treatment as rigid objects rather than local particle-like states propagating between
the walls is of a paramount importance. This is the reason why the wall-antiwall
potential does not fall off at large separations. Note that a similar effect, power-
law interactions between the domain walls in N = 1 SQCD, was obtained via a
two-loop calculation in the effective world volume theory [235].
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The presence of the potential for the scalar field a− in Eq. (9.4.3) makes this field
massive, with mass

ma = e2

π
. (9.4.6)

By supersymmetry, the photon is no longer massless too, it acquires the same mass.
This is associated with the Chern–Simons term in (9.4.3).As it is clear from Fig. 9.4,
ma � ms . This shows that integrating out massive string fields in (9.3.6) to get
(9.4.3) makes sense.

Another effect seen in (9.4.3) is the renormalization of the coupling constant
which results in a non-flat metric. Of course, this effect is very small in our range
of parameters since ms � e2. Still we see that the virtual string pairs induce
additional power interactions between the walls through the nontrivial metric
in (9.4.3).
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Conclusions

This concludes our travel diary in the land of supersymmetric solitons in gauge
theories. It is time to summarize the lessons.

Advances in supersymmetric solitons, especially in non-Abelian gauge theories,
that have taken place since 1996, are impressive. In the bulk of this book we thor-
oughly discussed many aspects of the subject at a technical level. Important and
relevant technical details presented above should not overshadow the big picture,
which has been in the making since 1973. Sometimes people tend to forget about
this big picture which is understandable: its development is painfully slow and
notoriously difficult.

Let us ask ourselves: what is the most remarkable feature of quantum chromo-
dynamics and QCD-like theories? The fact that at the Lagrangian level one deals
with quarks and gluons while experimentalists detect pions, protons, glueballs and
other color singlet states – never quarks and gluons – is the single most salient fea-
ture of non-Abelian gauge theories at strong coupling. Color confinement makes
colored degrees of freedom inseparable. In a bid to understand this phenomenon
Nambu, ’t Hooft and Mandelstam suggested in the mid 1970s (independently but
practically simultaneously) a “non-Abelian dual Meissner effect.” At that time their
suggestion was more of a dream than a physical scenario. According to their vision,
“non-Abelian monopoles” condense in the vacuum resulting in formation of “non-
Abelian chromoelectric flux tubes” between color charges, e.g. between a probe
heavy quark and antiquark. Attempts to separate these probe quarks would lead to
stretching of the flux tubes, so that the energy of the system grows linearly with
separation. That’s how linear confinement was visualized. However, at that time the
notions of non-Abelian flux tubes and non-Abelian monopoles (let alone condensed
monopoles in non-Abelian gauge theories) were nonexistent. Nambu, ’t Hooft and
Mandelstam operated with nonexistent objects.

223
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One may ask where these theorists got their inspiration from. There was one
physical phenomenon known since long ago and well understood theoretically
which yielded a rather analogous picture.

In 1933 Meissner discovered that magnetic fields could not penetrate
inside superconducting media. The expulsion of the magnetic fields by supercon-
ductors goes under the name of the Meissner effect. Twenty years later Abrikosov
posed the question: “What happens if one immerses a magnetic charge and an
anticharge in type-II superconductors [which in fact he discovered]?” One can
visualize a magnetic charge as an endpoint of a very long and very thin solenoid.
Let us refer to theN endpoint of such a solenoid as a positive magnetic charge and
the S endpoint as a negative magnetic charge.

In the empty space the magnetic field will spread in the bulk, while the energy
of the magnetic charge-anticharge configuration will obey the Coulomb 1/r law.
The force between them will die off as 1/r2.

What changes if the magnetic charges are placed inside a large type-II
superconductor?

Inside the superconductor the Cooper pairs condense, all electric charges are
screened, while the photon acquires a mass. According to modern terminology, the
electromagnetic U(1) gauge symmetry is Higgsed. The magnetic field cannot be
screened in this way; in fact, the magnetic flux is conserved. At the same time the
superconducting medium does not tolerate the magnetic field.

The clash of contradictory requirements is solved through a compromise. A thin
tube is formed between the magnetic charge and anticharge immersed in the super-
conducting medium. Inside this tube superconductivity is ruined – which allows
the magnetic field to spread from the charge to the anticharge through this tube.
The tube transverse size is proportional to the inverse photon mass while its tension
is proportional to the Cooper pair condensate. These tubes go under the name of
the Abrikosov vortices. In fact, for arbitrary magnetic fields he predicted lattices
of such flux tubes. A dramatic (and, sometimes, tragic) history of this discovery is
nicely described in Abrikosov’s Nobel Lecture.

Returning to the magnetic charges immersed in the type-II superconductor under
consideration, one can see that increasing the distance between these charges (as
long as they are inside the superconductor) does not lead to their decoupling – the
magnetic flux tubes become longer, leading to a linear growth of the energy of
the system.

The Abrikosov vortex lattices were experimentally observed in the 1960s.
This physical phenomenon inspired Nambu, ’t Hooft and Mandelstam’s ideas on
non-Abelian confinement. Many people tried to quantify these ideas. The first
breakthrough, instrumental in all current developments, came 20 years later, in
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the form of the Seiberg–Witten solution of N = 2 super-Yang–Mills. This the-
ory has eight supercharges which makes dynamics quite “rigid” and helps one to
find the full analytic solution at low energies. The theory bears a resemblance to
quantum chromodynamics, sharing common “family traits.” By and large, one can
characterize it as QCD’s “second cousin.”

An important feature which distinguishes it from QCD is the adjoint scalar field
whose vacuum expectation value triggers the spontaneous breaking of the gauge
symmetry SU(2) → U(1). The ’t Hooft–Polyakov monopoles ensue. They are read-
ily seen in the quasiclassical domain. Extended supersymmetry and holomorphy
in certain parameters which is associated with it allows one to analytically con-
tinue in the domain where the monopoles become light – eventually massless – and
then condense after a certain small deformation breaking N = 2 down to N = 1
is introduced. After that, at a much lower scale the (dual) U(1) gauge symmetry
breaks, so that the theory is fully Higgsed. Electric flux tubes are formed.

This was the first ever demonstration of the dual Meissner effect in non-Abelian
theory, a celebrated analytic proof of linear confinement, which caused much
excitement and euphoria in the community.

It took people three years to realize that the flux tubes in the Seiberg–Witten solu-
tion are not those we would like to have in QCD.1 Hanany, Strassler and Zaffaroni,
who analyzed the chromoelectric flux tubes in the Seiberg–Witten solution in 1997,
showed that these flux tubes are essentially Abelian (of the Abrikosov–Nielsen–
Olesen type) so that the hadrons they would create would not have much in common
with those in QCD. The hadronic spectrum would be significantly richer.And, say, in
the SU(3) case, three flux tubes in the Seiberg–Witten solution would not annihilate
into nothing, as they should in QCD ...

Ever since, searches for non-Abelian flux tubes and non-Abelian monopoles
continued, with a decisive breakthrough in 2003. By that time the program of
finding field-theory analogs of all basic constructions of string/D-brane theory
was in full swing. BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. BPS-saturated string-wall junctions had
been constructed. And yet, non-Abelian flux tubes, the basic element of the non-
Abelian Meissner effect, remained elusive.

They were first found in U(2) super-Yang–Mills theories with extended super-
symmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are

1 The Seiberg–Witten strings hopefully belong to the same universality class as the QCD strings, but this is
impossible to prove with existing knowledge.
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Figure 10.1. Various regimes for monopoles and strings in the simplest case of
two flavors.

massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 �= m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ , the mass difference�m and a dynamical
scale parameter �, an analog of the QCD scale �QCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

As various parameters vary, this theory evolves in a very graphic way, see
Fig. 10.1 which is almost the same as Fig. 4.3 (the first stage of unconfined ’t Hooft–
Polyakov monopole is added in the left upper corner). At ξ = 0 but �m �= 0 (and
�m � �) it presents a very clear-cut example of a model with the standard
’t Hooft–Polyakov monopole. The monopole is free to fly – the flux tubes are not
yet formed.

Switching on ξ �= 0 traps the magnetic fields inside the flux tubes, which are
weak as long as ξ � �m. The flux tubes change the shape of the monopole far away
from its core, leaving the core essentially intact. Orientation of the chromomagnetic
field inside the flux tube is essentially fixed. The flux tubes are Abelian.

With |�m| decreasing, fluctuations in the orientation of the chromomagnetic
field inside the flux tubes grow. Simultaneously, the monopole seen as the string
junction, loses resemblance with the ’t Hooft–Polyakov monopole. It acquires a
life of its own.

Finally, in the limit �m → 0 the transformation is complete. A global SU(2)
symmetry restores in the bulk. Orientational moduli develop on the string world
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sheet making it non-Abelian. The junctions of degenerate strings present what
remains of the monopoles in this highly quantum regime. It is remarkable that,
despite the fact we are deep inside the highly quantum regime, holomorphy allows
one to exactly calculate the mass of these monopoles.

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2.

And then, N = 0 theories – sister theories of QCD – loom large ...



Appendix A

Conventions and notation

The conventions we use in Parts I and II are slightly different. In Part I presenting
mainly a conceptual introduction to the subject of supersymmetric solitons we
choose the so-called Minkowski notation. Here our notation is very close (but not
identical!) to that of Bagger and Wess [40]. The main distinction is the conventional
choice of the metric tensor gμν = diag(+ − −−) as opposed to the diag(− + ++)
version of Bagger and Wess. Both the spinorial and vectorial indices will be denoted
by Greek letters. To differentiate between them we will use the letters from the
beginning of the alphabet for the spinorial indices, e.g. α, β and so on, reserving
those from the end of the alphabet (e.g. μ, ν, etc.) for the vectorial indices.

Those readers who venture to delve into Part II will have to switch to the so-called
Euclidean notation which is more convenient for technical studies. The distinctions
between these two notations are summarized in Section A.7.

A.1 Two-dimensional gamma matrices

In two dimensions we choose the gamma matrices as follows

γ 0 = γ t = σ2, γ 1 = γ z = iσ1, γ 5 ≡ γ 0γ 1 = σ3. (A.1)

In three dimensions

γ t = σ2, γ x = −iσ3, γ z = iσ1. (A.2)

A.2 Covariant derivatives

The covariant derivative in the Minkowski space is defined as

Dμ = ∂μ − iAaμ T
a . (A.3)

228
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Then for the spatial derivatives we have

D1 = ∂

∂x
+ iAax T

a , (A.4)

and similar expressions for D2,3.

A.3 Superspace and superfields

The four-dimensional space xμ can be promoted to superspace by adding four
Grassmann coordinates θα and θ̄α̇ , (α, α̇ = 1, 2). The coordinate transformations

{xμ, θα , θ̄α̇} : δθα = εα , δθ̄α̇ = ε̄α̇ , δxαα̇ = −2i θαε̄α̇ − 2i θ̄α̇εα (A.5)

add SUSY to the translational and Lorentz transformations.
Here the Lorentz vectorial indices are transformed into spinorial according to

the standard rule

Aββ̇ = Aμ(σ
μ)ββ̇ , Aμ = 1

2
Aαβ̇(σ̄

μ)β̇α , (A.6)

where

(σμ)αβ̇ = {1, �τ }αβ̇ , (σ̄ μ)β̇α = (σμ)αβ̇ . (A.7)

We use the notation �τ for the Pauli matrices throughout the book. The lowering and
raising of the indices is performed by virtue of the εαβ symbol (εαβ = i(τ2)αβ).
For instance,

(σ̄ μ)β̇α = εβ̇ρ̇ εαγ (σ̄ μ)ρ̇γ = {1, −�τ }β̇α . (A.8)

Note that

ε12 = −ε12 = 1, (A.9)

and the same for the dotted indices.
Two invariant subspaces {xμL , θα} and {xμR , θ̄α̇} are spanned on 1/2 of the

Grassmann coordinates,

{xμL , θα} : δθα = εα , δ(xL)αα̇ = −4i θαε̄α̇;

{xμR , θ̄α̇} : δθ̄α̇ = ε̄α̇ , δ(xR)αα̇ = −4i θ̄α̇εα , (A.10)

where

(xL,R)αα̇ = xαα̇ ∓ 2i θαθ̄α̇ . (A.11)



230 Appendix A

The minimal supermultiplet of fields includes one complex scalar field φ(x) (two
bosonic states) and one complex Weyl spinor ψα(x), α = 1, 2 (two fermionic
states). Both fields are united in one chiral superfield,

�(xL, θ) = φ(xL)+ √
2θαψα(xL)+ θ2F(xL), (A.12)

where F is an auxiliary component. The field F appears in the Lagrangian without
the kinetic term.

In the gauge theories one also uses a vector superfield,

V (x, θ , θ̄ ) = C + iθχ − iθ̄ χ̄ + i√
2
θ2M − i√

2
θ̄2M̄

− 2θαθ̄α̇v
α̇α +

{
2iθ2θ̄α̇

[
λ̄α̇ − i

4
∂αα̇χ

]
+ H.c.

}

+ θ2θ̄2
[
D − 1

4
∂2C

]
. (A.13)

The superfield V is real, V = V †, implying that the bosonic fields C, D and
vμ = σ

μ
αα̇v

α̇α/2 are real. Other fields are complex, and the bar denotes the complex
conjugation. The field strength superfield has the form

Wα = i
(
λα + iθα D − θβ Fαβ − iθ2Dαα̇λ̄

α̇
)
. (A.14)

The gauge field strength tensor is denoted by Faμν . Sometimes we use the
abbreviation F 2 for

F 2 ≡ Faμν F
μν a , (A.15)

while

FF ∗ ≡ Faμν F
∗μν a ≡ 1

2
εμνρσF aμνF

a
ρσ . (A.16)

The transformations (A.10) generate the SUSY transformations of the fields
which can be written as

δV = i
(
Qε + Q̄ε̄

)
V (A.17)

where V is a generic superfield (which could be chiral as well). The differential
operators Q and Q̄ can be written as

Qα = −i ∂
∂θα

+ ∂αα̇θ̄
α̇ , Q̄α̇ = i

∂

∂θ̄ α̇
− θα∂αα̇ ,

{
Qα , Q̄α̇

} = 2i∂αα̇ . (A.18)
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These differential operators give the explicit realization of the SUSY algebra,

{
Qα , Q̄α̇

} = 2Pαα̇ ,
{
Qα ,Qβ

} = 0,
{
Q̄α̇ , Q̄β̇

} = 0,
[
Qα ,Pββ̇

] = 0,

(A.19)

whereQα and Q̄α̇ are the supercharges whilePαα̇ = i∂αα̇ is the energy-momentum
operator. The superderivatives are defined as the differential operators D̄α , Dα̇
anticommuting with Qα and Q̄α̇ ,

Dα = ∂

∂θα
− i∂αα̇θ̄

α̇ , D̄α̇ = − ∂

∂θ̄ α̇
+ iθα∂αα̇ ,

{
Dα , D̄α̇

} = 2i∂αα̇ . (A.20)

A.4 The Grassmann integration conventions

∫
d2θ θ2 = 1,

∫
d2θd2 θ̄ θ2 θ̄2 = 1. (A.21)

A.5 (1, 0) and (1, 0) sigma matrices

To convert the two-index spinorial symmetric representation in the vectorial
representation we will need the following sigma matrices:

(�σ)αβ = {τ 3, i, −τ 1}αβ , (�σ)αβ = {−τ 3, i, τ 1}αβ ,

(�σ)α̇β̇ = {τ 3, −i, −τ 1}α̇β̇ , (�σ)α̇β̇ = {−τ 3, −i, τ 1}α̇β̇ . (A.22)

A.6 The Weyl and Dirac spinors

If we have two Weyl (right-handed) spinors ξα and ηβ , transforming in the repre-
sentations R and R̄ of the gauge group, respectively, then the Dirac spinor � can
be formed as

� =
(
ξα

η̄α̇

)
. (A.23)

The Dirac spinor � has four components, while ξα and ηβ have two components
each.

A.7 Euclidean notation

As was mentioned, in Part II we switch to a formally Euclidean notation e.g.

F 2
μν = 2F 2

0i + F 2
ij , (A.24)
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and

(∂μa)
2 = (∂0a)

2 + (∂ia)
2, (A.25)

etc. This is appropriate, since we mostly consider static (time-independent) field
configurations, and A0 = 0. Then the Euclidean action is nothing but the energy
functional.

Then, in the fermion sector we have to define the Euclidean matrices

(σμ)
αα̇ = (1, −i �τ)αα̇ , (A.26)

and

(σ̄μ)α̇α = (1, i �τ)α̇α . (A.27)

Lowering and raising of the spinor indices is performed by virtue of the
antisymmetric tensor defined as

ε12 = ε1̇2̇ = 1,

ε12 = ε1̇2̇ = −1. (A.28)

The same raising and lowering convention applies to the flavor SU(2)R indices
f , g, etc.

When the contraction of the spinor indices is assumed inside the parentheses we
use the following notation:

(λψ) ≡ λαψ
α , (λ̄ψ̄) ≡ λ̄α̇ψ̄α̇ . (A.29)

A.8 Group-theory coefficients

As was mentioned, the gauge group is assumed to be SU(N). For a given repre-
sentation R of SU(N ), the definitions of the Casimir operators to be used below
are

Tr(T aT b)R = T (R)δab, (T aT a)R = C(R) I , (A.30)

where I is the unit matrix in this representation. It is quite obvious that

C(R) = T (R)
dim(G)

dim(R)
, (A.31)

where dim(G) is the dimension of the group (= the dimension of the adjoint rep-
resentation). Note that T (R) is also known as (one half of) the Dynkin index, or
the dual Coxeter number. For the adjoint representation, T (R) is denoted by T (G).
Moreover, T (SU(N)) = N .
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A.9 Renormalization-group conventions

We use the following definition of the β function (also known as the Gell–Mann–
Low function) and anomalous dimensions:

μ
∂α

∂μ
≡ β(α) = − β0

2π
α2 − β1

4π2
α3 + · · · (A.32)

while

γ = −d lnZ(μ)/d lnμ. (A.33)

In supersymmetric theories

β(α) = − α2

2π

[
3 T (G)−

∑
i

T (Ri)(1 − γi)

](
1 − T (G) α

2π

)−1

, (A.34)

where the sum runs over all matter supermultiplets. This is the so-called Novikov–
Shifman–Vainshtein–Zakharov (NSVZ) beta function [236]. The anomalous
dimension of the ith matter superfield is

γi = −2C(Ri)
α

2π
+ · · · (A.35)

Sometimes, when one-loop anomalous dimensions are discussed, the coefficient in
front of −α/(2π) in (A.33) is also referred to as an “anomalous dimension.”
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Many faces of two-dimensional supersymmetric
CP(N − 1) model

B.1 O(3) sigma model

Supersymmetric extension of the O(3) sigma model in the form discussed in this
section was suggested in Refs. [7, 237]. We refer the reader to the book [238] for
a pedagogical discussion of the non-supersymmetric O(3) sigma model.

One can construct supersymmetric sigma model in terms of two-dimensional
N = 1 superfields as follows. Let us introduce a triplet of real superfields Na ,

Na(x, θ) = Sa(x)+ θ̄χa(x)+ 1

2
θ̄ θ F a(x), a = 1, 2, 3, (B.1)

where θ is a two-component Majorana (real) spinor (θ̄ = θ γ 0), χa is a two-
component Majorana fermion field and Fa is an auxiliary boson field which will
enter in the Lagrangian with no kinetic term. The superfield Na(x, θ) is subject to
the constraint

Na(x, θ)Na(x, θ) = 1. (B.2)

In components this is equivalent to

SaSa = 1, Saχa = 0, SaF a = 1

2
χ̄aχa . (B.3)

The action of the model takes the form

S = 1

2g2
0

∫
d2x d2θ εαβ

(
DαN

a
)(
DβN

a
)

= 1

g2
0

∫
d2x

[
1

2

(
∂μS

a
)2 + 1

2
χ̄aiγ μ∂μχ

a + 1

8
(χ̄χ)2

]
(B.4)

234
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where g2
0 is the (bare) coupling constant and

Dα = ∂

∂θ̄α
− i(γ μθ)α ∂μ. (B.5)

This model describes two independent (real) degrees of freedom in the bosonic
and fermionic sectors. The interaction inherent to this model is due to the con-
straints (B.3) and the four-fermion term in (B.4). The model is O(3) symmetric, by
construction. Also by construction it has N = (1, 1) supersymmetry (i.e. one left-
handed real supercharge, and one right-handed). In fact this model has an extended
N = 2 supersymmetry (more exactly, N = (2, 2)). The occurrence of two extra
supercharges (four altogether) is automatic and is explained by the fact that the
target space of the bosonic sector is S2, which is a Kähler manifold. Minimal
N = (1, 1) supersymmetrization of any Kählerian sigma model automatically pro-
duces N = (2, 2) supersymmetry. Further details can be found in the review paper
[156].

B.2 CP(1) sigma model

The same model expressed in terms of unconstrained variables is usually referred
to as the CP(1) model. If the unit vector Sa parametrizes the sphere, one can pass to
unconstrained variables by performing the stereographic projection of the sphere
onto the complex φ plane,

φ = S1 + iS2

1 + S3
. (B.6)

The complex fieldφ replaces two independent components ofSa .The unconstrained
two-component complex fermion field ψ is introduced as follows:

ψ = χ1 + iχ2

1 + S3
− S1 + iS2

(1 + S3)2
χ3. (B.7)

The inverse transformations have the form

S1 = 2(Reφ)

1 + |φ|2 , S2 = 2(Imφ)

1 + |φ|2 , S3 = 1 − |φ|2
1 + |φ|2 (B.8)

and

χ1 = 2(Reψ)

1 + |φ|2 − 2(Reφ)[φ†ψ + H.c.]
(1 + |φ|2)2 ,



236 Appendix B

χ2 = 2(Imψ)

1 + |φ|2 − 2(Im φ)[φ†ψ + H.c.]
(1 + |φ|2)2 ,

χ3 = −2
[φ†ψ + H.c.]
(1 + |φ|2)2 . (B.9)

Substituting Eqs. (B.8) and (B.9) in the action (B.4) we get [239]

LCP(1) = G

{
∂μφ

† ∂μφ + iψ̄γ μ∂μψ − 2i

χ
φ†∂μφ ψ̄γ

μψ + 1

χ2
(ψ̄ψ)2

}
(B.10)

where

G = 2

g2
0 χ

2
, χ = 1 + |φ|2. (B.11)

The above Lagrangian can be obtained in terms of N = 2 superfields which
will make its N = (2, 2) supersymmetry explicit. Namely, let us introduce a chiral
superfield

�(xL, θ) = φ(xL)+ √
2 εαβ θ

αψβ(xL)+ εαβ θ
αθβ F (xL), (B.12)

where θ is a two-component complex Grassmann variable, while

x
μ
L = xμ + iθ̄γ μθ . (B.13)

Moreover, �† depends on xμR = xμ − iθ̄γ μθ and θ̄ , a conjugation of (B.12). In
terms of these superfields the Lagrangian of the CP(1) model can be written as

LCP(1) =
∫
d4θ K(�, �†), (B.14)

where K is the Kähler potential,

K = 2

g2
0

ln(1 +�†�). (B.15)

Needless to say, N = 2 supersymmetry is built in here. And what about the target
space symmetry? The U(1) symmetry corresponding to the rotation around the third
axis in the target space is realized linearly,

� → �+ iα ·�, �† → �† − iα ·�†, (B.16)

where α is a real parameter. At the same time, two other symmetry rotations are
realized nonlinearly,

� → β + β∗ ·�2, �† → β∗ + β · (�†)2, (B.17)

with a complex parameter β.
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B.3 Geometric interpretation

Equations (B.14) and (B.15) suggest a geometric interpretation (for a review see
e.g. [240]) for the above formulation of the CP(1) model which, in turn, allows one
to readily generalize it to the case of CP(N − 1) with arbitrary N . Indeed, let us
consider N − 1 complex superfields

�i(xμ + iθ̄γ μθ), �†j̄ (xμ − iθ̄γ μθ),

and the Kähler potential

K = 2

g2
0

ln

⎛
⎝1 +

N−1∑
i, j̄=1

�† j̄ δj̄ i�
i

⎞
⎠. (B.18)

(As we will see momentarily, it corresponds to the so-called round Fubini–Study
metric.) The Kähler potential determines the metric of the target space according
to the formula

Gij̄ = ∂2K(φ, φ†)

∂φi∂φ† j̄
. (B.19)

For CP(N − 1) the Riemann tensor is expressed in terms of the metric (B.19) as
follows:

Rij̄km̄ = −g
2
0

2

(
Gij̄Gkm̄ +Gim̄Gkj̄

)
, (B.20)

while the Ricci tensor

Rij̄ = g2
0

2
N Gij̄ . (B.21)

In components the Lagrangian of the CP(N − 1) model takes the form [241]

L =
∫

d4θ K = Gij̄
[
∂μφ

† j̄ ∂μφ
i + iψ̄ j̄ γ μDμψ

i
]− 1

2
Rij̄kl̄ (ψ̄

j̄ψi)(ψ̄ l̄ψk),

(B.22)

where D is the covariant derivative,

Dμψ
i = ∂μψ

i + �ikl
(
∂μφ

k
)
ψl , (B.23)

and �ikl is the Christoffel symbol.
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If N = 2 the above expressions simplify and we get

G = G11̄ = ∂φ∂φ† K
∣∣
θ=θ̄=0 = 2

g2
0 χ

2
,

� = �1
11 = −2

φ†

χ
, �̄ = �1̄

1̄1̄
= −2

φ

χ
,

R ≡ R11̄ = −G−1R11̄11̄ = 2

χ2
, (B.24)

where we use the notation

χ ≡ 1 + φ φ†. (B.25)

Substituting (B.24) and (B.25) in (B.22) we arrive at the CP(1) Lagrangian (B.10).

B.4 Gauged formulation

Here we will discuss yet another formulation of N = 2 supersymmetric sigma
models with the target space

SU(N)

SU(N − 1)× U(1)
= CP(N − 1), (B.26)

which goes under the name of the gauged formulation [242]. This formulation is
built on an N -plet of complex scalar fields ni where i = 1, 2, ...,N . We impose the
constraint

n
†
i n

i = 1. (B.27)

This leaves us with 2N−1 real bosonic degrees of freedom. To eliminate one extra
degree of freedom we impose a local U(1) invariance ni(x) → eiα(x)ni(x). To this
end we introduce a gauge field Aμ which converts the partial derivative into the
covariant one,

∂μ → ∇μ ≡ ∂μ − i Aμ. (B.28)

The fieldAμ is auxiliary; it enters in the Lagrangian without derivatives. The kinetic
term of the n fields is

L = 2

g2
0

∣∣∇μni∣∣2. (B.29)
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The superpartner to the field ni is an N -plet of complex two-component spinor
fields ξ i ,

ξ i =
{
ξ iR

ξ iL

. (B.30)

The auxiliary fieldAμ has a complex scalar superpartner σ and a two-component
complex spinor superpartner λ; both enter without derivatives. The full N = 2
symmetric Lagrangian is

L = 2

g2
0

{∣∣∇μni∣∣2 + ξ̄i iγ
μ∇μ ξ i + 2|σ |2 |ni |2

+
[
i
√

2 σξ†iR ξ
i
L + i

√
2 n†

i

(
λRξ

i
L − λLξ

i
R

)+ H.c.
]}

. (B.31)

The auxiliary fields can be eliminated by virtue of the equations of motion which
yield the following relations:

n
†
l ξ
l
L = 0, n

†
l ξ
l
R = 0 ;

Aμ = − i
2
n

†
l

↔
∂μ n

l − 1

2
ξ̄lγμξ

l ,

σ = i√
2
ξ

†
lLξ

l
R . (B.32)

Substituting (B.32) in (B.31) we arrive at the final expression for the Lagrangian
of N = 2 sigma model with the target space (B.26),

L = 2

g2
0

{∣∣∂μni∣∣2 + 1

4

(
n

†
i

↔
∂μ n

i
)2

+ ξ̄i iγ
μ

(
∂μ − 1

2
n

†
l

↔
∂μ n

l

)
ξ i

− (
ξ

†
iR ξ

i
R · ξ†lL ξ lL + ξ

†
iR ξ

i
L · ξ†lL ξ lR

)}
, (B.33)

n
†
i n

i = 1, n
†
i ξ

i = 0. (B.34)

For N = 2 there exists a simple local transformation converting the Lagrangian
of the O(3) model discussed in Appendix B.1 into (B.33),

Sa = n
†
i

(
τa
)i
k
nk ,

χa = n
†
i

(
τa
)i
k
ξ k + ξ

†
i

(
τa
)i
k
nk , (B.35)
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where τa are the Pauli matrices. If we use the Fierz identity for the Pauli matrices,

(τ a)ik (τ
a)ĩ
k̃

= −1

2
(τ a)ĩk(τ

a)i
k̃
+ 3

2
δĩk δ

i

k̃
, (B.36)

and substitute Eq. (B.35) in the Lagrangian (B.4) taking account of the constraints
(B.3) we arrive at (B.33). The constraints (B.34) are satisfied automatically.

B.5 Heterotic CP(1)

Here we will outline derivation of the heterotic CP(1) model elaborated in
Ref. [191]. We will start from the general geometric formulation presented in
Appendix B.3, specify it to the CP(1) case using Eq. (B.24) and then introduce
a deformation that breaks N = (2, 2) down to N = (0, 2). As is well known, if we
limit ourselves to the set of fields present in the N = (2, 2) sigma model, such a
deformation does not exist. However, it does exist if we agree to introduce an extra
right-handed fermion ζR [190].

One can obtain the deformed Lagrangian as follows. Introduce the operators

B = {ζR(xμ + iθ̄γ μθ)+ √
2θRF}θ†L,

B† = θL
{
ζ

†
R(x

μ − iθ̄γ μθ)+ √
2θ†RF†}. (B.37)

Since θL and θ†
L enter in Eq. (B.37) explicitly, B and B† are not superfields with

regards to the supertransformations with parameters εL, ε†
L. These supertransfor-

mations are absent in the heterotic model. Only those survive which are associated
with εR , ε†

R . Note that B and B† are superfields with regards to the latter.
It is convenient to introduce a shorthand for the chiral coordinate

x̃μ = xμ + iθ̄γ μθ . (B.38)

Then the transformation laws with the parameters εR , ε†
R are as follows:

δθR = εR , δθ
†
R = ε

†
R , δx̃0 = 2iε†

RθR , δx̃1 = 2iε†
RθR . (B.39)

With respect to such supertransformations, B and B† are superfields. Indeed,

δζR = √
2 F εR , δF = √

2 i(∂LζR)ε
†
R , (B.40)

plus Hermitean conjugate transformations. To convert LCP(1) into Lheterotic we add
to LCP(1) the following terms:

�L =
∫
d4θ
{− 2 B† B + [g2

0

√
2 γ BK + H.c.

]}
, (B.41)
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where γ is generally speaking a complex constant. For simplicity we will assume
γ to be real. Thus, we obviously deal here with a single deformation parameter.

First, let us check that the extra term (B.41) preserves invariance on the tar-
get space. Indeed, the invariance under the U(1) transformation of the superfields
�, �†,

� → iδ �, �† → −iδ �†, (B.42)

is obvious. Two other rotations on the sphere manifest themselves in nonlinear
transformations with a complex parameter β,

� → β + β∗�2, �† → β∗ + β(�†)2. (B.43)

Under these transformations

δK = 2

g2
0

(β∗�+ β �†). (B.44)

It is not difficult to see that

∫
d4θ B δK = 0. (B.45)

In other words, even before performing the component decomposition we are certain
that the term (B.41) is invariant on the target space of the CP(1) model. Needless
to say, it is N = (0, 2) invariant by construction.

As usual, the F term enters without derivatives and can be eliminated by virtue
of equations of motion,

F = −2 γ ∗ χ−2 ψ
†
R ψL, F† = −2 γ χ−2 ψ

†
L ψR . (B.46)

In addition, the F terms of the superfields �, �† also change. If before the
deformation e.g. F = (i/2) � ψ γ 0 ψ , after the deformation

F = i

2
� ψ γ 0 ψ − g2

0 γ ψL ζ
†
R , (B.47)

plus the Hermitian conjugated expression for F †.
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Assembling all these pieces together we get the Lagrangian of the heterotic CP(1)
model,

Lheterotic = ζ
†
R i∂L ζR + [γ ζR R (i ∂Lφ†)ψR + H.c.

]− g2
0|γ |2(ζ†

R ζR
)(
Rψ

†
LψL

)
+G

{
∂μφ

† ∂μφ + i

2

(
ψ

†
L

↔
∂R ψL + ψ

†
R

↔
∂LψR

)

− i

χ

[
ψ

†
LψL

(
φ†

↔
∂R φ

)+ ψ
†
R ψR

(
φ†

↔
∂Lφ

)]

−2(1 − g2
0|γ |2)

χ2
ψ

†
L ψL ψ

†
R ψR

}
, (B.48)

where R stands for the Ricci tensor, and

∂L = ∂

∂t
+ ∂

∂z
, ∂R = ∂

∂t
− ∂

∂z
. (B.49)

Generalization for arbitrary N (i.e. the N = (0, 2) deformed CP(N − 1)model)
is as follows:

Lheterotic = ζ
†
R i∂L ζR + [γ g2

0 ζR Gij̄
(
i ∂Lφ

† j̄ )ψiR + H.c.
]

− g4
0 |γ |2 (ζ†

R ζR
)(
Gij̄ ψ

† j̄
L ψ

i
L

)
+Gij̄

[
∂μφ

† j̄ ∂μφ
i + iψ̄ j̄ γ μDμψ

i
]

− g2
0

2

(
Gij̄ψ

† j̄
R ψiR

)(
Gkm̄ψ

† m̄
L ψkL

)
+ g2

0

2

(
1 − 2g2

0|γ |2)(Gij̄ψ† j̄
R ψiL

)(
Gkm̄ψ

† m̄
L ψkR

)
. (B.50)
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Strings in N = 2 SQED

In this Appendix we briefly review the Abelian Abrikosov–Nielsen–Olesen strings
in N = 2 supersymmetric QED in four dimensions. The BPS strings in this theory
were first considered in [148, 35].

C.1 N = 2 supersymmetric QED

N = 2 supersymmetric QED is discussed in Section 8.1. Here we summarize
basic features of this theory for convenience. The field content of N = 2 super-
symmetric QED consists of a U(1) vector N = 2 multiplet as well as Nf matter
hypermultiplets. The mass terms are introduced via the superpotential

W =
∑
A

(
mAQ

AQ̃A + 1√
2
AQAQ̃A

)
. (C.1)

For the definition of the Fayet–Iliopoulos term see Eq. (3.2.1). In this form it is the
same in N = 1 and N = 2, cf. Eq. (4.1.5). The bosonic part of the action of this
theory is

S =
∫
d4x

{
1

4g2
F 2
μν + 1

g2
|∂μa|2 + ∇̄μq̄A∇μqA + ∇̄μq̃A∇μ ¯̃qA

+ n2
e

g2

2

(|qA|2 − |q̃A|2 − ξ
)2 + 2n2

eg
2
∣∣q̃AqA∣∣2

+1

2
(|qA|2 + |q̃A|2)∣∣a + √

2mA
∣∣2} , (C.2)

where

∇μ = ∂μ − ineAμ, ∇̄μ = ∂μ + ineAμ. (C.3)
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Here ξ is the coefficient in front of the Fayet–Iliopoulos term; we consider the FI
D-term here while g is the U(1) gauge coupling and ne is the electric charge. It
can be integer or half integer. The index A = 1, . . . ,Nf is the flavor index. Below
we consider the case Nf = 1. This is the simplest case which admits BPS string
solutions.

The FI term triggers the squark condensation. The vacuum of this theory is
given by

a = −√
2m, q = √ξ , q̃ = 0. (C.4)

Hereafter in search for string solutions we will stick to the ansatz q̃ = 0.
Now let us discuss the mass spectrum of the light fields in this vacuum. The

spectrum can be obtained by diagonalizing the quadratic form in (C.2). This is done
in Ref. [35]; the result is as follows: one real component of the field q is eaten up by
the Higgs mechanism to become the third component of the massive photon. Three
components of the massive photon, one remaining component of q and four real
components of the fields q̃ and a form one long N = 2 multiplet (8 boson states + 8
fermion states), with mass

m2
γ = 2n2

e g
2 ξ . (C.5)

C.2 String solutions

As soon as fields a and q̃ play no role in string solutions we can look for these
solutions using the reduced theory with these fields set to zero. The bosonic action
(C.2) reduces to

S =
∫

d4x

{
1

4g2
F 2
μν + |∇μq|2 + g2

2
n2
e

(|q|2 − ξ
)2}. (C.6)

Since the U(1) gauge group is spontaneously broken, the model supports con-
ventional ANO strings [36]. The topological stability of the ANO string is due to
the fact that π1(U(1)) = Z.

Let us derive the first-order equations which determine the string solution making
use of the Bogomol’nyi representation [5] of the model (C.6). We have for the string
tension

T =
∫
d2x

{[
1√
2g
F ∗

3 + g√
2
ne
(|q|2 − ξ

)]2

+ ∣∣∇1 q + i∇2 q
∣∣2 + ne ξ F

∗
3

}
, (C.7)

where F ∗
3 = F12 and we assume that the fields in this expression depend only on

the coordinates xi , i = 1, 2.
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The Bogomol’nyi representation (C.7) leads us to the following first-order
equations:

F ∗
3 + gne

(|q|2 − ξ
) = 0,

(∇1 + i∇2)q = 0. (C.8)

Once these equations are satisfied the energy of the BPS object is given by the
last surface term in (C.7). Note that representation (C.7) can be written also with
different sign in front of the terms proportional to the gauge fluxes. This would give
first-order equations for the anti-string, with negative values of gauge fluxes.

For the topologically stable string solution, the scalar field winds n times in U(1)
gauge group when we move around the string along a large circle in the (x, y) plane
(we assume that the string stretches along the z-axis),

q ∼ √ξ einα ,

Ai ∼ n

ne
∂iα, r → ∞, (C.9)

where r andα are the polar coordinates in the (x, y) plane (see Fig. 3.6) and i = 1, 2.
This ensures that the flux of the string is

∫
d2xF ∗

3 = 2πn

ne
. (C.10)

The tension of the string with winding number n is determined by the surface term
in (C.7),

Tn = 2πn ξ . (C.11)

For the elementary n = 1 string the solution can be found using the standard
ansatz [5]

q(x) = φ(r) ei α , Ai(x) = 1

ne
∂iα [1 − f (r)] , (C.12)

where we introduced two profile functions φ and f for the scalar and gauge fields,
respectively.

The ansatz (C.12) goes through the set of equations (C.8), and we get the
following two equations for the profile functions:

−1

r

df

dr
+ n2

eg
2(φ2 − ξ) = 0 , r

d φ

dr
− f φ = 0. (C.13)
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The boundary conditions for the profile functions are the following. At large
distances we have

φ(∞) = √ξ , f (∞) = 0. (C.14)

At the origin the smoothness of the field configuration at hand requires

φ(0) = 0, f (0) = 1. (C.15)

These boundary conditions are such that the scalar field reaches its vacuum value
at infinity. The same first-order equations arise for the BPS vortex in N = 1 QED
in (2 + 1) dimensions, see Chapter 3. The fermion zero modes for the BPS vortices
in (3 + 1) and (2 + 1) dimensions are different, however. Equations (C.13) have a
unique solution for the profile functions, which can be found numerically [4], see
Fig. 3.7. The string transverse size is ∼ 1/mγ .

First-order equations (C.13) can also be obtained using supersymmetry. We start
from the supersymmetry transformations for the fermion fields in the theory (C.2),

δλαf = 1

2
(σμσ̄νε

f )αFμν + εαpFm(τm)
f
p + . . . ,

δ
¯̃
ψAα̇ = i

√
2 ∇̄/α̇αqAf εαf + · · · ,

δψ̄α̇A = i
√

2 ∇̄/α̇αq̄fAεαf + · · · (C.16)

Here f = 1, 2 is the SU(2)R index so λαf are the fermions from the N = 2 vector
supermultiplet, while qAf denotes the SU(2)R doublet of the squark fields qA and
¯̃qA in the quark hypermultiplets. The parameters of the SUSY transformations are
denoted as εαf . Furthermore, the F terms in Eq. (C.16) are

F 3 = −i ne g2 (Tr |q|2 − ξ), F 1 + iF 2 = 0. (C.17)

The dots in (C.16) stand for terms involving the a field which vanish on the string
solution because it is given by its vacuum expectation value (C.4).

In Ref. [35] it was shown that four (real) supercharges generated by

ε12, ε21 (C.18)

act trivially on the BPS string. Namely imposing conditions ε11 = ε22 = 0 and
requiring that the left-hand sides of Eqs. (C.16) are zero we get the first-order
equations (C.13) upon substitution of the ansatz (C.12).1

1 If we instead of (C.18) impose that different combinations of SUSY transformation parameters act trivially we
get the equations for anti-string with the opposite directions of gauge fluxes.
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C.3 The fermion zero modes

The string is half-critical, so 1/2 of the supercharges (related to the SUSY
transformation parameters ε12 and ε21), act trivially on the string solution. The
remaining four (real) supercharges parametrized by ε11 and ε22 generate four (real)
supertranslational fermion zero modes. They have the form [35]

ψ̄2̇ = −2
√

2
x1 + ix2

r2
f φ α11,

¯̃
ψ1̇ = 2

√
2
x1 − ix2

r2
f φ α22,

ψ̄1̇ = 0, ¯̃
ψ2̇ = 0,

λ11 = −ineg2(φ2 − ξ)α11,

λ22 = ineg
2(φ2 − ξ)α22,

λ12 = 0, λ21 = 0, (C.19)

where the modes proportional to complex Grassmann parameters α11 and α22 are
generated by ε11 and ε22 transformations, respectively.
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