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Preface 

Physical theories, while devised to model a particular range of phenomena, are 
evidently linked in a hierarchical fashion. It is this structure which keeps fascinat
ing me. In statistical mechanics, my scientific home-town, the link between atomic 
and macroscopic properties is one central issue. There we are taught that the emer
gence of a more restricted theory from a more general one has a richer structure 
than merely letting some parameter tend to infinity. I understood at some point, by 
accident, that similar issues appear in the dynamics of classical charges coupled to 
the Maxwell field. Since I could not find a satisfactory discussion in the literature, 
I decided to write up my own account. The theory so covered is the classical elec
tron theory, a subject which is commonly regarded as settled with some modest 
revival through astrophysical applications. On the other hand, the quantized ver
sion of this theory is more lively than ever through the amazing advances in atomic 
physics and quantum optics. It thus seemed to me a welcome opportunity to expand 
my enterprise and to cover also nonrelativistic quantum electrodynamics, stressing 
its classical counterpart more than is done usually. 

The research which has led to this book goes back about seven years and in 
part much longer. I am grateful for the constant help from my collaborators Volker 
Betz, Brian Davies, Rolf Dtimcke, Detlef Dtirr, Christian Hainzl, Masao Hirakawa, 
Fumio Hiroshima, Frank Hovermann, Matthias Hubner, Valery Imaikin, Sasha 
Komech, Markus Kunze, Joel Lebowitz, J 6zsef Lorinczi, Robert Minlos, Gianluca 
Panati, and Stefan Teufel. In this list I also include Michael Kiessling for many 
illuminating observations. In addition I thank him for a careful reading of a draft 
of the book. 

As the project expanded I received comments, criticisms, remarks, and ques
tions which in their total sum shaped my understanding of the subject and the way 
things were written down eventually. All I can do here is to deeply thank Robert 
Alicki, Asao Arai, Volker Bach, Gernot Bauer, Jens Bolte, Thomas Chen, Stephan 

xi 
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De Bievre, Jan Derezinski, Thomas Erber, La.szl6 Erdos, Raffaele Esposito, Jiirg 
Frohlich, Luigi Galgani, Christian Gerard, Shelly Goldstein, Vittorio Gorini, 
Marcel Griesemer, Vojkan Jaksic, Caroline Lasser, Elliott Lieb, Michael Loss, 
Claude-Alain Pillet, Mario Pulvirenti, Markus Rauscher, Luc Rey-Bellet, Fritz 
Rohrlich, Wolfgang Schleicher, Michael Sigal, and Hong-Tzer Yau. In addition, 
I appreciate the help with the figures from Patrik Ferrari. 

This book is dedicated to my parents in deep gratitude for a wonderful child
hood. My father furnished stability and my mother cared for the three boys, en
couraging our curiosity to learn about the marvellously complex world around us. 
This gift constitutes a lasting source of joy. 

Herbert Spohn 
Miinchen 

May 2004 
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1 

Scope, motivation, and orientation 

If one accepts gravitational forces on the Newtonian level of precision and ignores 
nuclear fission and fusion, then most physical phenomena on the scale of the Earth 
are accounted for by electrons, nuclei, and photons. Here photons play a double 
role: they mediate the interaction between charges, and appear freely propagating 
in the form of electromagnetic radiation. In their first role it often suffices to ig
nore all dynamical aspects and replace the photons by the effective electrostatic 
Coulomb interaction. Conversely, in the study of radiation phenomena, matter in 
the form of nuclei and electrons can mostly be replaced by prescribed macroscopic 
quantities like charge, current, and polarization densities. In our treatise we plan 
to dwell on the border area, where the interaction between photons and electrons, 
respectively nuclei, must be fully retained. Our goal is to discuss the dynamics of 
the coupled system, charges and their radiation field. 

Although such a description might give the impression that we will deal with 
relativistic quantum electrodynamics (QED), in fact we will not even touch upon 
it. This theory has been devised for predicting a few very specific effects, like the 
anomalous g-factor of the electron, and it does so with astounding precision. Rel
ativistic QED is, however, not well adapted to discuss, say, the fluorescence of the 
hydrogen atom. Thus the subject to be covered is what is commonly known as 
nomelativistic quantum electrodynamics. In fact our enterprise also has a classical 
part. Just as in studying quantum mechanics a good grasp of classical mechan
ics is most useful, we believe that an understanding of classical electron theory, 
i.e. classical charges in interaction with the Maxwell field, serves as a solid basis 
for taking up the corresponding quantum theory. The classical models discussed 
will be semirelativistic with one exception, namely a fully relativistic theory of 
extended classical charges. 

Classical electron theory was at the forefront of research in the early 1900s 
when the development of a dynamical theory of the then newly discovered elec
tron was attempted. The basic prediction was an energy-momentum relation for 
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the electron (compare with chapter 4), which, however, depended on the details 
of the particular electron model adopted. This enterprise came to a standstill be
cause of the advent of the theory of special relativity, which, advancing with a 
totally different set of arguments, required a relativistically covariant link between 
energy and momentum for massive particles. Classical electron theory further de
teriorated simply because it had become evident that for the investigation of radia
tion from atoms the newly born quantum mechanics had to be used. A brief revival 
occurred in the struggle to formulate a consistent relativistic quantum theory for 
the electron-positron field coupled to the photons. The hope was that a refined 
understanding of the classical theory should give a hint on how to quantize and 
how to handle correctly the ultraviolet infinities. But as the proper quantum field 
theory surfaced, classical considerations faded away. In fact the theory emerged in 
a worse state than before as summarized in the 1963 opinion of R. Feynman: "The 
classical theory of electromagnetism is an unsatisfactory theory all by itself. The 
electromagnetic theory predicts the existence of an electromagnetic mass, but it 
also falls on its face in doing so, because it does not produce a consistent theory." 

Because of its peculiar history, classical electron theory never had any share 
in the good fortune of being rewritten, modernized, and rewritten again, as can 
be seen from a rapid sample of standard textbooks on electrodynamics. While the 
conventional chapters essentially follow the same intrinsic pattern, obviously with 
a lot of variations on details, once it comes to the chapter on radiation reaction, 
Pandora's box opens. As a student I was rather dissatisfied with such a state of 
affairs and promised myself to come back to it at some point. The first few chapters 
of this treatise are my own rewriting of the classical theory. It is based on two 
cornerstones: 

• a well-defined dynamical theory of extended charges in interaction with the elec
tromagnetic field; 

• a study of the effective dynamics of charges under the condition that they are far 
apart and the external potentials vary slowly on the scale given by the size of the 
charge distribution. This is the adiabatic limit. 

Our approach reflects the great progress which has taken place in the theory of 
dynamical systems. After all, charges coupled to their radiation field can be con
sidered as one particular case, but with some rather special features. Perhaps the 
most unusual one is the appearance of a center manifold in the effective dynamics, 
in case friction through radiation is included. 

For nonrelativistic QED the situation could hardly be more different. Through 
the efforts made in atomic physics and quantum optics a structured theory emerged 
which is well covered in textbooks and reviews. It would make little sense in trying 
to compete with them. However, almost exclusively this theory is based either on 
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such drastic simplifications that an exact solution becomes possible or on second
order time-dependent perturbation theory. In recent years there has been substan
tial progress, mostly within the quarters of mathematical physicists, in gaining an 
understanding of nonperturbative properties of the full basic Hamiltonian, among 
others the structure of resonances, the relaxation to the ground state through emis
sion of photons, the nonperturbative derivation of the g-factor of the electron, 
and the stability of matter when the quantized radiation field is included. These 
and other topics will be covered in the second half of the book. Readers less 
interested in the classical theory may jump ahead to chapter 12, where the con
clusions of chapters 2-11 are summarized and the contents of the quantum part 
outlined. 

A few words on the style are in order. First of all, I systematically develop 
the theory and discuss some of the most prominent applications. No review is in
tended. For a subject with a long history, such an attitude looks questionable. After 
all, what did the many physicists working in that area contribute? To compensate, 
I include one historical chapter, which as very often in physics is the history as 
viewed from our present understanding. Since there are excellent historical stud
ies, I hope to be excused. Further, at the end of each chapter I add Notes and Ref
erences intended as a guide to all the material which has been left out. The level 
of the book is perhaps best characterized as being an advanced textbook. I assume 
a basic knowledge of Maxwell's theory of electromagnetism and of nonrelativistic 
quantum mechanics. On the other hand, the central topics are explained in detail 
and, for the reader to follow the discussion, there is no need of further outside 
sources. This brings me to the issue of mathematical rigor. In the case of classical 
electron theory, many claims of uncertain status are in the literature, hardly any nu
merical work is available, and there are no quantitative experimental verifications, 
as yet, with the exception of the lifetime of an electron captured in a Penning trap. 
More than in other fields one has to rely on fixed points in the form of mathematical 
theorems, which seems to be the only way to disentangle hard facts from "truths" 
handed down by tradition. For the quantum theory we venture into the nonpertur
bative regime which by definition requires a certain mathematical sophistication. 
In a few cases I decided to provide the full proof of the mathematical theorem. 
Otherwise I usually indicate its basic idea to proceed then with the formal compu
tation. To give always full details would overload the text on an unacceptable scale 
and, in addition, would be duplication, since mostly the complete argument can be 
found elsewhere in the literature. Of course, there are stretches, possibly even long 
stretches, where such a firm foundation is not available and one has to proceed on 
the basis of limited evidence. 

Our introduction might give the impression that all basic problems are resolved, 
nonrelativistic quantum electrodynamics is in good shape, and one only has to 
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turn to exciting applications. This would be a far too simplistic reading. What I 
hope is to bring the dynamics of charges and their radiation field properly into fo
cus. Once this point is reached, there are many loose ends. On the theoretical side, 
to mention only a few of them: on the classical level, the comparison between 
the true microscopic and approximate particle dynamics could be more precise; a 
similar program for the relativistic theory of an extended charge is hardly tackled; 
in the quantum theory the removal of the ultraviolet cutoff at the expense of en
ergy and mass renormalization is still not understood; and the dynamics of many 
charges remains largely unexplored. Also quantitative experimental confirmation 
of the effective dynamics of an electron, as given through the Lorentz-Dirac equa
tion on its center manifold, remains on the agenda. The greatest reward would be 
if my notes encourage further research. 



Part I 

Classical theory 





2 

A charge coupled to its electromagnetic field 

We plan to study the dynamics of a well-localized charge, like an electron or a pro
ton, when coupled to its own electromagnetic field. The case of several particles is 
reserved for chapter 11. In a first attempt, one models the particle as a point charge 
with a definite mass. If its world line is prescribed, then the fields are determined 
through the inhomogeneous Lorentz-Maxwell equations. On the other hand, if 
the electromagnetic fields are given, then the motion of the point charge is gov
erned by Newton's equation of motion with the Lorentz force as force law. While 
it then seems obvious how to marry the two equations, such as to have a coupled 
dynamics for the charge and its electromagnetic field, ambiguities and inconsisten
cies arise due to the infinite electrostatic energy of the Coulomb field of the point 
charge. Thus one is forced to introduce a slightly smeared charge distribution, i.e. 
an extended charge model. Mathematically this means that the interaction between 
particle and field is cut off or regularized at short distances, which seems to leave a 
lot of arbitrariness. There are also strong constraints, however. In particular, local 
charge conservation must be satisfied, the theory should be of Lagrangian form, 
and it should reproduce the two limiting cases mentioned already. In addition, 
as expected from any decent physical model, the theory should be well defined 
and empirically accurate within its domain of validity. In fact, up to the present 
time only two models have been worked out in some detail: (i) the semirelativis
tic Abraham model of a rigid charge distribution; and (ii) the Lorentz model of a 
relativistically covariant extended charge distribution. The aim of this chapter is 
to introduce and explain both models at some length. On the way we recall a few 
properties of the inhomogeneous Lorentz-Maxwell equations for later use. 

A short preamble on units and other conventions is in order. We use the 
Heaviside-Lorentz units. In particular, the Coulomb potential is simply the inverse 
of the Laplacian with no extra factor. The vacuum susceptibilities are c:o = 1 = fLo, 
which fixes the unit of charge. c is the speed of light. Mostly we will set c = 1 for 
convenience, thereby linking the units of space and time. If needed, one can easily 

7 



8 A charge coupled to its electromagnetic field 

retrieve these natural constants in the conventional way. At some parts below we 
will do this without notice, so as to have the dimensions right and to keep better 
track of the order of magnitudes. In the nonrelativistic setting we use V' x for ro
tation, but switch to the more proper exterior derivative, Y'gA, with g the metric 
tensor, in the relativistic context. We will use standard notation as often as possi
ble. Since a fairly broad spectrum of material is covered, double meaning cannot 
be avoided entirely. At the risk of some repetition we strive for minimal ambigu
ity within a given chapter. In the classical part of the book we use boldface italic 
letters, x, for three-vectors and boldface roman letters, x, for four-vectors. In the 
quantum section such a notation tends to be cumbersome and we use lightface 
letters, x, throughout. 

2.1 The inhomogeneous Maxwell-Lorentz equations 

We prescribe a charge density, p(x, t), and an associated current, j(x, t), linked 
through the law of charge conservation 

at p(x, t) + V' · j(x, t) = 0. (2.1) 

Of course, x E .!Pi.3 and t E .!Pi., where we use .!Pi.3 to describe physical space and .!Pi. 

as the time axis. The Maxwell equations for the electric field E and the magnetic 
field B consist of the two evolution equations 

c- 1atB(x, t) = -V' x E(x, t), 

(2.2) 

and the two constraints 

V' · E(x, t) = p(x, t), V' · B(x, t) = 0. (2.3) 

<)How are the Maxwell equations written and named? According to my survey, 
there seems to be no universally accepted standard. As indicated by the name 
"electromagnetic", the order E, B is very common and also adopted here. In 
the Lagrangian version B is position-like and - E is velocity-like, which would 
suggest the opposite order, namely (B, -E). In the nineteenth century the time
derivative was written at the right side of the equation. By present standards, in 
evolution equations like the Boltzmann, Navier-Stokes, and Schrodinger equation, 
the time-derivative is always at the left, which is also our convention here. 

The common practice is to call the first equation of (2.2) together with the sec
ond equation of (2.3) the "homogeneous Maxwell equations" and the remaining 

Paragraphs indicated by 0 give explanations of notation and names. 



2.1 The inhomogeneous Maxwell-Lorentz equations 9 

pair the "inhomogeneous Maxwell equations". We follow here the convention 
used in the context of wave equations and call (2.2) with j = 0 the "homogeneous 
Maxwell-Lorentz equations" and (2.2) with j =J. 0 the "inhomogeneous Maxwell
Lorentz equations". The constraints (2.3) are always understood. "Maxwell
Lorentz equations" and "Maxwell equations" are used synonymously. <) 

We solve the Maxwell equations as a Cauchy problem, i.e. by prescribing the 
fields at time t = 0. If the constraints (2.3) are satisfied at t = 0, then by the con
tinuity equation (2.1) they are satisfied at all times. Thus the initial data are 

E(x, 0), B(x, 0) (2.4) 

together with the constraints 

V' · E(x, 0) = p(x, 0), V' · B(x, 0) = 0. (2.5) 

The choice t = 0 is merely a convention. In some cases it is preferable to prescribe 
the fields either in the remote past or the distant future. We will only consider 
physical situations where the fields decay at spatial infinity and thus have the finite 
energy 

(2.6) 

In a thermal state at nonzero temperature, typical fields fluctuate without decay 
and one would be forced to consider infinite-energy solutions. 

The Maxwell equations (2.2), (2.3) are inhomogeneous wave equations and are 
thus easy to solve. This will be done in Fourier space first, where the Fourier trans
form is denoted by~ and defined through 

(2.7) 

Then, setting c = 1, (2.2) becomes 
~ ~ 

atB(k, t) = -ik x E(k, t), 

atE(k, t) = ik x B(k, t) -l(k, t) (2.8) 

with the constraints 

ik 0 E(k, t) = p(k, t)' ik 0 B(k, t) = 0 (2.9) 

and the conservation law 

atiJCk, t) + ik. }Ck, t) = o. (2.10) 
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To solve the inhomogeneous equations (2.8), we rely, as usual, on the solution of 
the homogeneous equations, 

Eo(k, t) = (cos lklt + (1 - cos lklt)k Q9 k)E(k, 0) + (I~ I sin lklt )ik x B(k, 0), 

Bo(k, t) = (cos lklt + (1- cos lklt)k Q9 k)ii(k, 0) - (_..!__sin lklt)ik x E(k, 0). 
lkl 

(2.11) 

Here k = k Ilk I is the unit vector along k and for any pair of vectors a, b, a Q9 b is 
the tensor of rank 2 defined through (a Q9 b )c = a (b · c) as acting on the vector c. 

We insert (2.11) in the time-integrated version of (2.8). Taking account of the 
constraints, making a partial integration, and using charge conservation, we arrive 
at 

E(k, t) =(cos lklt)E(k, 0) + (lkl- 1 sin lklt)ik x B(k, 0) 
t 

+ J ds(- (lkl- 1 sin lkl(t- s))ikp(k, s)- (cos lkl(t- s))l(k, s)) 

0 

= Eini(k, t) + Eret(k, t), 

B(k, t) =(cos lklt)B(k, 0)- (lkl- 1 sin lklt)ik x E(k, 0) 
t 

+ J ds(lkl- 1 sin lkl(t- s))ik x l(k, s) 

0 
~ ~ 

= Bini (k, t) + Bret(k, t). 

(2.12) 

(2.13) 

The first terms are the initial fields propagated up to timet, while the second terms 
are the retarded fields. If one wanted to solve the Maxwell equations run into the 
past, then the retarded fields should be replaced by the advanced fields. 

Next, let us introduce the fundamental propagator, Gt(X), of the wave equation 
which is defined as the Fourier transform of (2rr)-312 1kl-1 sin lklt and satisfies 

a; G- ~G = 8(x)8(t). 

This means Gt(x) = (2rr)- 1 8(1xe- t 2) and in particular fort > 0 

I 
Gt(x) = -8(1xl- t). 

4nt 

(2.14) 

(2.15) 



2.1 The inhomogeneous Maxwell-Lorentz equations I I 

Then in physical space the solution (2.12), (2.13) of the inhomogeneous Maxwell
Lorentz equations reads as 

t 

E(t) = (JrGt * E(O) + \7 x Gt * B(O)- f ds(Y'Gt-s * p(s) + utGt-s * j(s)) 

0 

t 

B(t) = OtGt * B(O)- \7 x Gt * E(O) + J ds\7 x Gt-s * j(s) 

0 

= Bini(t) + Bret(t). 

Here* denotes convolution, i.e. !1 * h(x) = J dnyf1 (x- y)f2(y). 

(2.16) 

(2.17) 

For later purposes it will be convenient to have a more concise notation. In 
matrix form, the solution of the homogeneous Maxwell-Lorentz equations can be 
written as 

~ (E(t)) = ( 0 V'x) (E(t)) ' ~F(t) = AF(t) 
dt B(t) -V'x 0 B(t) dt 

(2.18) 

with the column vector F = (E, B). They have the solution 

F(t) = U(t)F(O), U(t) =eAt (2.19) 

with U(t) given explicitly by the terms with subscripts 'ini' in (2.17), (2.16). If we 
set g(t) = (j (t), 0) as a column vector, then 

~F(t) = AF(t)- g(t), F(t) = U(t)F(O)- (' dsU(t- s)g(s). (2.20) 
~ k 

The expressions (2.16), (2.17) remain meaningful even in case p, j are gener
ated by the motion of a single point charge. Let us denote by q (t) the position and 
by v(t) = q (t) the velocity ofthe particle carrying charge e. Then 

p(x, t) = eo(x- q(t))' j(x, t) = eo(x- q(t))v(t) 0 (2.21) 

Upon inserting this in (2.16), (2.17) one arrives at the Lie nard-Wiechert fields. 
Since their derivation is presented in most textbooks, we do not repeat the com
putation here and only discuss the result. We take the world line, t r+ q (t), of the 
particle to be given for all times. Since the particle is assumed to have a relativistic 
kinetic energy, lq (t) I < 1. Next we prescribe the initial data for the fields at time 
t = to and take the limit to ---+ -oo in (2.16), (2.17). Then, at a fixed space-time 
point (x, t), the contribution from the initial fields vanishes and the retarded fields 
become the Lienard-Wiechert fields. To describe them we introduce the retarded 
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time tret. depending on x, t, as the unique solution of 

tret = t- lx- q(tret)l. (2.22) 

tret is then the uniquely defined time point at which the world line crosses the 
backward light cone with apex at (x, t). Furthermore, we introduce the unit vector 

X- q(tret) 
n=----

lx - q (tred I 
(2.23) 

Then the electric field generated by the moving point charge is given by 

e [ (1 - if)(ii- v) ii X [(ii- v) X v] ] I 
E(x, t) = - + (2.24) 

4rr (1- v · ii)31x- ql 2 (1- v · ii)31x- ql t=tret 

and the corresponding magnetic field is 

B(x, t) =nx E(x, t). (2.25) 

Equations (2.24) and (2.25) are less explicit than they appear to be, since tret 
depends through (2.22) on the reference point (x, t) and the particle trajectory. 
The first contribution in (2.24) is proportional to lx- ql-2 and independent of 
the acceleration. This is the near field, which in a certain sense remains attached 
to the particle all through its motion. The second contribution is proportional to 
lx - q 1-1 as well as to the acceleration. This is the far field, which carries the 
information on the radiation field escaping to infinity. Whenever q (t) is smooth 
in t, the Lie nard-Wiechert fields are also smooth functions except at x = q ( t), 

where they diverge as lx- q(t)l-2 . The corresponding potentials have a Coulomb 
singularity at the world line of the particle. 

2.2 Newton's equations of motion 

We take now the point of view that the electromagnetic fields E, B are given. The 
motion of a charged particle, with chargee, position q (t), and velocity v(t), is then 
governed by Newton's equations of motion, 

d 
-(moyv(t)) = e(E(q(t), t) + c- 1v(t) x B(q(t), t)), 
dt 

(2.26) 

y(v) = 1jj1- (vjc) 2, which as an ordinary differential equation has to be sup
plemented with the initial conditions q (0), v(O). The force law is determined 
through the Lorentz force and thus (2.26) is also called the Newton-Lorentz equa
tions. The particle is relativistic with rest mass mo as measured through the re
sponse to external forces. Once the particle is dynamically coupled to the Maxwell 
field, mo will attain a new meaning. 
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The (E, B) fields in (2.26) are not completely arbitrary. They are subject to the 
Maxwell equations with source (p, j). In other words, we have divided all charges 
into a single charged particle whose motion is determined through (2.26) and the 
rest whose motion is taken to be known. 

The Newton-Lorentz equations (2.26) are of Hamiltonian form. To see this we 
introduce vector potentials ¢, A such that 

E(x, t) = -V¢(x, t)- c- 1arA(x, t), B(x, t) = V x A(x, t). (2.27) 

Then the Lagrangian associated with (2.26) is 

To switch to the Hamiltonian framework, one introduces the canonical momentum 

e 
p = moy(q)i[ + -A(q, t) (2.29) 

c 

and obtains the Hamiltonian function 

H(q, p, t) = ((c p- eA(q, t)) 2 + m6c4) 112 + ecp(q, t). (2.30) 

In particular, whenever the fields are time independent, the energy 

£(q, v) = moy(v) + ecp(q) (2.31) 

is conserved along the solution trajectories of (2.26). 
It should be noted that in general the solutions to Newton's equations of motion 

(2.26) will have a complicated structure even for time-independent fields. This 
has been amply demonstrated for particular cases. Depending on how the external 
fields are chosen, the motion would range from regular to fully chaotic with a 
mixed phase space as a rule. 

2.3 Coupled Maxwell's and Newton's equations 

While for most practical purposes, barring a few exceptional cases, it suffices to 
use either Maxwell's equations with prescribed sources or Newton's equations 
with prescribed forces, from a more fundamental point of view such a procedure is 
unsatisfactory. Physically it would seem more natural to have a coupled system of 
equations for the time evolution of the charged particles together with their elec
tromagnetic field and to regard the two cases discussed above as emerging limit 
situations. If for the moment we restrict ourselves to a single particle, it is obvious 
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how to proceed. From (2.2), (2.3) we have 

orB(x, t) = -\7 X E(x, t)' 

orE(x, t) = \7 X B(x, t)- e8(x- q(t))v(t) (2.32) 

with the constraints 

\7 · E(x, t) = e8(x- q(t)), \7 · B(x, t) = 0. (2.33) 

Moreover, from (2.26) we have 

d 
dt (moyv(t)) = e(Eex(q(t)) + E(q(t), t) + v(t) x (Bex(q(t)) + B(q(t), t))). 

(2.34) 

We added the external electromagnetic fields Eex, Bex, which will play a promi
nent role later on. They are derived from potentials as 

Eex = -Y'c/Jex, Bex = \7 X Aex · (2.35) 

We assume the potentials to be time independent for simplicity, although a con
siderable part of the theory to be developed will work also for time-dependent 
fields. As before, (2.32)-(2.34) are to be solved as an initial value problem. Thus 
E(x, 0), B(x, 0), q(O), and v(O) are supposed to be given. Note that the continu
ity equation is satisfied by fiat. 

Equations (2.32), (2.34) are the stationary points of a Lagrangian action, which 
strengthens our trust in these equations, since every microscopic classical evolution 
equation seems to be of that form. We continue to use the underlying electromag
netic potentials as in (2.27), (2.35). Then the action for (2.32), (2.34) reads 

A([q, ¢,A])= J dt[- mo(I- q(t)2) 1/ 2 - e(¢ex(q(t)) + cp(q(t), t) 

-q(t) · (Aex(q(t)) + A(q(t), t)))] 

+ ~ J dt J d3x[ (\lcp(x, t) + OtA(x, t)) 2 - (\7 x A(x, t)) 2]. 

(2.36) 

The only difficulty is that (2.32) and (2.33) taken together with (2.34) make no 
proper mathematical sense. As explained, the solution of the Maxwell equations is 
singular at x = q ( t), and in the Lorentz force we are asked to evaluate the fields 
precisely at that point. One might be tempted to put the blame on the mathematics 
which refuses to handle equations as singular as (2.32)-(2.34). However before 
such a drastic conclusion is drawn, the physics should be properly understood. The 
point charge carries along with it a potential which at short distances diverges as 
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the Coulomb potential, cf. (2.24), and which therefore has the electrostatic energy 

I 

2 

R R I d3xE(x, t) 2 :::::: I drr 2 (r- 2 ) 2 =I drr-2 = oo. 

{lx-q(t)I::OR} 0 0 

(2.37) 

Taken literally, such an object would have an infinite mass and hence would not 
respond to external forces. It would keep its velocity for ever, which is inconsistent 

with what is observed. 
Thus we are forced to regularize at short distances the coupled system consisting 

of the Maxwell equations and Newton's equation of motion with the Lorentzforce. 
In carrying out such a program there are two, in part, complementary points of 

view. The first one, which we will not follow here, starts from the idea that regu
larization is a mathematical device with the sole purpose of making sense of a sin
gular mathematical object through a suitable limiting procedure. To illustrate this 
approach we can think of the following prominent mathematical physics example. 
The free scalar field, ¢(x), in Euclidean quantum field theory in I +I dimensions 

fluctuates so wildly at short distances that an interaction such as J d2 x V ( ¢ (x)) 
with V ( ¢) = ¢ 2 + A¢4 cannot be properly defined. One way, not necessarily op
timal, to regularize the theory is to introduce a spatial lattice with spacing a. 
Such a lattice field theory is well defined in any finite volume. On taking the 
limit a ---+ 0 along with a simultaneous readjustment of the interaction potential, 
V ( ¢) = Va ( ¢), a Euclidean-invariant, interacting quantum field theory is obtained. 
Ideally this limit theory should be independent of the regularization scheme. For 
instance one could start with the free scalar field in the continuum and regularize 

¢(x) as¢* g(x) with a suitable test function g concentrated at 0. Then the reg
ularized interaction is J d2 x V ( ¢ * g (x)) and in the limit g (y) ---+ 8 (y) a quantum 
field theory should be obtained identical to the one from the lattice regularization. 

In the second approach one argues that there is a physical cutoff coming from a 
more refined theory, which is then modeled in a phenomenological way. While this 
is a standard procedure, it is worthwhile to illustrate it again with a concrete exam
ple. Consider a large number (~ I 023 ) of He4 atoms in a container of adjustable 
size and suppose we are interested in computing their free energy according to 

the rules of statistical mechanics. The more refined theory is here nonrelativistic 
quantum mechanics which treats the electrons and nuclei as point particles carry
ing a spin ~, respectively spin 0. As far as we can tell, this model approximately 
covers the temperature range T = 0 K to T = 105 K, i.e. way beyond dissocia

tion, and the density range p = 0 to p = Pep. the density of close packing. Beyond 
these limits relativistic effects must be taken into account. However, there is a 
more limited range where we can get away with a model of classical point par
ticles interacting through an effective potential of Lennard-Janes type. Once this 
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pair potential is specified classical statistical mechanics makes well-defined pre
dictions at any T, p. There is no limitation in principle. Only outside a certain 
range of parameters would the classical model lose the correspondence with the 
real world. Already from the way the physical cutoff is described, there is a con
siderable amount of vagueness. How much error should we allow in the free en
ergy? What about more detailed properties like density correlations? An effective 
potential can be defined quantum mechanically, but it is temperature dependent 
and never strictly a pair potential. Despite all these imprecisions and shortcom
ings, the equilibrium theory of fluids relies heavily on the availability of a classical 
model. 

In the same spirit we modify the coupled Maxwell and Newton equations by 
introducing an extended charge distribution as a phenomenological model for the 
omitted quantum electrodynamics. The charge distribution is stabilized by strong 
interactions which act outside the realm of electromagnetic forces. On the classical 
level, say, an electron appears as an extended charged object with a size roughly of 
the order of its Compton wavelength, i.e. 4 x w-ll em. We impose the obvious 
condition that the extended charge distribution has to be adjusted such that, in 
the range where classical electrodynamics is applicable, the coupled Maxwell and 
Newton equations correctly reproduce the empirical observations. 

Such general clauses seem to leave a lot of freedom in the construction of the 
theory. However, charge conservation and the Lagrangian form of the equations 
of motion severely limit the possibilities. In fact, essentially only two models of 
extended charge distribution have been investigated so far. 

(i) The semirelativistic Abraham model of a rigid charge distribution. The 
chargee is assumed to be smeared out over a ball of radius Rep. This means that in 
(2.32)-(2.34) the 8-function is replaced by a smooth charge distribution ecp. cp(x) 

is taken to be radial, vanishing for lxl >Rep, and normalized as J d3xcp(x) = 1. 
Equivalently, having (2.32)-(2.34) recast in Fourier space, the couplings between 
the field modes with lkl ~ 1 I Rep and the particle become suppressed. This partic
ular choice for the internal structure of the charge is called the Abraham model 
(for a single nonrotating charge). For zero coupling the model is relativistic. How
ever, cp is taken to be rigid, thus velocity independent in a prescribed coordinate 
frame, which breaks Lorentz invariance. The standard examples are that the charge 
is uniformly distributed either over the ball, cp(x) = (4rr R~/3)- 1 for lxl ::::; Rep, 

cp(x) = 0 otherwise, or over the sphere, cp(x) = (4rr R~)- 1 8(1xl- Rep). In the 
quantized version of the Abraham model, cf. chapter 13 below, often a sharp cutoff 
in Fourier space is adopted, i.e. cp(k) = (2rr)-312 for lkl ::::; A = R; 1, cp(k) = 0 
otherwise; this has the slight disadvantage of being oscillating and having slow 
decay in position space. 
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Once the charge distribution is extended, besides its center of charge, also ro
tational degrees of freedom must be taken into account. The Abraham model al
lowing for a spinning charge will be discussed in chapter 10. Since the dynamical 
behavior then becomes more complex, it is advisable to omit spin in the first round. 

The Abraham model will be studied in considerable detail. While defined for 
all velocities lv(t) I < c, it becomes empirically inaccurate at velocities close to c. 
Despite this drawback we hope that the Abraham model will serve as a blueprint 
towards a more realistic description of matter. 

(ii) The Lorentz model of a relativistically rigid charge distribution. More in 
accord with special relativity is to require that ecp is the charge distribution in the 
momentary rest frame of the particle. While such a principle was already stated by 
Lorentz and Poincare, a satisfactory dynamical theory has been arrived at only very 
recently. As we will explain in section 2.5, in a relativistic theory translational and 
rotational degrees of freedom are intrinsically coupled. To gain an understanding 
of how relativistic invariance would modify the theory, we insert some features of 
the Lorentz model, although our understanding of its dynamical properties is far 
less developed than that of the Abraham model. 

We emphasize that for extended charge models the diameter Rep of the charge 
distribution defines a length (and upon dividing by c also a time) scale, relative to 
which the approximate validity of effective theories, like the Lorentz-Dirac equa
tion, can be addressed quantitatively. In fact, apart from the external forces, Rep is 
the only natural length scale available. 

2.4 The Abraham model 

Following Abraham, we model the charged particle as a spherically symmetric, 
rigid body to which the charge elements are permanently attached. The charge dis
tribution is prescribed and independent of the particle's velocity, which singles out 
the laboratory frame. In a relativistic theory the charge distribution would appear 
to be Lorentz contracted. To be specific the charge distribution ecp is assumed to 
be smooth, radial, and supported in a ball of radius Rep, and normalized toe, i.e. 

Condition (C): 

cp E C 00 (IR3), cp(x) = CfJr(lxl), cp(x) = 0 for lxl ::0: Rep, f d3xcp(x) = 1. 

(2.38) 

<) ecp(x) is the charge distribution and cp(k) is the form factor, since in Fourier 
space it multiplies the current as (2n) 312cp(k)J(k, t). <) 
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Our goal is to set up the Abraham model as a well-defined dynamical system. 
Usually this point is taken for granted. Since the occurrence of ill-defined equa
tions of motion was one of our main objections to the 8-charge, it is worthwhile to 
understand why this objection is no longer valid for a smeared out 8. 

The equations of motion for the Abraham model are 

atB(x, t) = -V' X E(x, t)' 

atE(x, t) = V' X B(x, t)- ecp(x- q(t))v(t)' (2.39) 

V' · E(x, t) = ecp(x- q(t)), V' · B(x, t) = 0, (2.40) 
d 
dt (mbyv(t)) = e(Eex(q(t)) + Erp(q(t), t) + v(t) X (Bex(q(t)) + Brp(q(t), t))), 

(2.41) 

where we have set c = 1. In (2.41) we use the shorthand Erp(x) = E * cp(x) and 
Brp(x) = B * cp(x) so as to resemble (2.34). Strictly speaking also Eex, Bex should 
be smeared over cp; however, this would only amount to a redefinition of the exter
nal potentials. In contrast to Newton's equations of motion (2.26), for the Abraham 
model we denote the mechanical mass of the particle by mb to emphasize that this 
bare mass will differ from the observed mass of the compound object "particle 
plus surrounding Coulomb field". The external potentials ¢ex, Aex can be fairly 
arbitrary. We only require them and their derivatives to be smooth and locally 
bounded, to avoid too strong local oscillations. No condition on the increase at in
finity is needed, since lv(t) I ::S 1. However, it is convenient to have the energy, as 
defined in (2.44), uniformly bounded from below. To keep things simple we make 
the (unnecessarily strong) assumptions 

Condition (P): 

o/ex E C00 (ffi3 ) , Aex E C 00 (IR3 , lR3), o/ex :=:: cp > -00 . (2.42) 

Moreover, there exists a constant C such that IY'¢exl ::S C, IV' Aexl ::S C. 

The Abraham model is derived from the Lagrangian 

L = - mb(l - q2) l/2 - e(c/Jex(q) + c/Jrp(q) - q · Aex(q) - q · Arp(q)) 

+ ~ J d3 x ( cv ¢ + atA)2 - cv x A)2) . (2.43) 

Correspondingly, the energy 

(2.44) 

is conserved. 
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As for any dynamical system, the first step m dealing with (2.39)
(2.41) is to construct a suitable phase space. The dynamical variables are 
(E(x), B(x), q, v) = Y which is called a state ofthe system. We have q E IPi.3, v E 

V = { v I I vi < I}. In addition, the energy (2.44) should be bounded. Thus it is nat
ural to introduce the (real) Hilbert space 

(2.45) 

with norm liE II = (j d3 x IE(x) 1
2)112 and to define£ as the set of states satisfying 

IIYII£ = IIEII + IIBII + lql + ly(v)vl < oo. (2.46) 

In particular for the field energy, ! (II E 11 2 + II B 11 2) < oo. The norm II · II£ gives 
rise to the metric 

d(Y1, Y2) = IIE1- E2ll + IIB1- B2ll + lq1 -q2l + ly(v1)v1- y(v2)v2l· 
(2.47) 

In addition, the constraints (2.40) have to be satisfied. Thus the phase space, M, 
for the Abraham model is the nonlinear submanifold of£ defined through 

V' · E(x) = ecp(x- q), V' · B(x) = 0. (2.48) 

M inherits its metric from £. 
On various occasions below we will need the property that the system forgets 

its initial field data. For this purpose it is helpful to have a little bit of smoothness 
and some decay at infinity. Formally we introduce the "good" subset Mer c M, 
0 :::; CJ :::; 1, consisting of fields such that componentwise and outside a ball of 
radius Ro, lxl :::: Ro, we have 

IE(x)l + IB(x)l + lxi(IY'E(x)l + IY'B(x)l):::: C lxi-I-cr. (2.49) 

The Lienard-Wiechert fields (2.24), (2.25) are included in M 0 ; moreover, M 0 is 
dense in M. However Mer = 0 for CJ > 1, by Gauss's law (2.40) withe#- 0. 

The evolution equations (2.39)-(2.41) are of the general form 

d 
- Y(t) = F(Y(t)) 
dt 

(2.50) 

with Y (0) = Y0 E M. We tum to the question of the existence and uniqueness of 
solutions of the Abraham model (2.50). 

Theorem 2.1 (Existence of the dynamics for the Abraham model). Let the con
ditions (C) and (P) hold and let Y0 = (E0 (x), B0 (x), q 0 , v0) EM. Then the 
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integral equation associated with (2.50 ), 

t 

Y(t) = Y0 + J ds F(Y(s)), 

0 

(2.51) 

has a unique solution Y(t) = (E(x, t), B(x, t), q(t), v(t)) EM, which is contin

uous in t and satisfies Y (0) = Y0 . Along the solution trajectory 

(2.52) 

for all t, i.e. the energy is conserved. 

For short times existence and uniqueness follow through the contraction mapping 
principle with constants depending only on the initial energy. For smooth initial 
data, energy conservation is verified directly and by continuity it extends to all 
finite-energy data. Thus we can construct iteratively the solution for all times. 

We first summarize some properties of the Maxwell equations. They follow di
rectly from the Fourier and convolution representations (2.12), (2.13), respectively 
(2.16), (2.17). 

Lemma 2.2 In the Maxwell equations (2.2), (2.3), let ecp(x, t) = ecp(x
q(t)), j(x, t) = ecp(x- q(t))v(t), with prescribed t r+ (q(t), v(t)) continuous. 
Then (2.2), (2.3) has a unique solution in C(lR, L 2 EB L 2). The solution map 
(E0 , B 0) r+ (E(t), B(t)) depends continuously on (q(t), v(t)). 

Proof of Theorem 2.1: Let b > 0 be fixed and choose initial data such that 
£(Y0) ::: b. 
(i) There exists a unique solution Y(t) E C([O, 8], M) for 8 = 8(b) sufficiently 
small. 

We write (2.41) in the form 

d 
-(mby v(t)) = Fex(t) + Fini(t) + Fself(t) 
dt 

(2.53) 

by inserting E(x, t), B(x, t) from the Maxwell equations according to (2.16), 
(2.17). Let 
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Fex(t) = e-(Eex(q(t)) + v(t) X Bex(q(t)))' (2.55) 

Fini(t) = J d3x ecp(x- q(t))[otGt * E 0 (x) + V x Gt * B 0 (x) 

+ v(t) x orGt * B 0 (x) - v(t) x (V x Gr * E 0 (x)) J, (2.56) 
t 

Fseif(t) = J ds[- Y'Wt-s(q(t)- q(s))- v(s)or Wr-s(q(t)- q(s)) 

0 

+ v(t) x (V x v(s) Wt-s(q(t)- q(s))) J. (2.57) 

We now integrate both sides of (2.53) over the time interval [0, t]. The resulting 
expression is regarded as a map from the trajectory t c--+ (q(t), v(t)), 0 :S t :S 8, 
to the trajectory t c--+ (ij(t), v(t)) and is defined by 

t 

ij(t) = q 0 + J ds v(s), 

0 
t 

mby(v(t))v(t) = mby(v0)v0 + J ds(Fex(s) + Fini(s) + Fseif(s)), 

0 

(2.58) 

where Fex(s), Fini(s), and Fself(S) are functionals of q(·), v(-) according to 
(2.55)-(2.57). Since cp, W, <Pex, and Aex are smooth, this map is a contraction in 
C([O, t], JR3 x V), i.e. 

sup (liJ 2(s)- ij 1 (s)l + lvz(s)- v1 (s)l) 
O<::s<::t 

:S c(t, b) sup (lq 1 (s)- q 2 (s)l +I vi (s)- vz(s)l), (2.59) 
O<::s<::t 

with a constant c(t, b) depending on band c(t, b) < 1 for sufficiently small t. Such 
a map has a unique fixed point which is the desired solution (q(t), v(t)). By the 
Maxwell equations also B(x, t), E(x, t) are uniquely determined. 
(ii) The solution map Y0 c--+ Y(t) is continuous in M. 

This follows from Lemma 2.2 and the continuous dependence of (q(t), v(t)) on 
the initial data. 
(iii) The energy is conserved. 

We choose smooth initial fields such that E, B E C 00 (JR3) and 

(2.60) 
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Here a= (a1, a2, a3) is a multi-index with ai = 0, 1, 2, .... This subset is dense 
in M. By the convolution representation (2.16), (2.17) of the solution to the 
Maxwell equations we have E(x, t), B(x, t) E C 1([0, 8] x IR3) and IE(x, t)l + 
IB(x, t)l _:::: C(l + lxl)-2. Also v(t) E C 1([0, 8]). Thus we are allowed to differ
entiate, 

~ E(Y(t)) = y 3v · V + V · V¢ex(q) +I d3x(E · OtE + B · OtB) 
dt 

=I d3x(E · (\/ x B)- B · (\/ x E))= 0, (2.61) 

since the fields decay and hence the surface terms vanish. Thus E(Y(t)) = E(Y0 ) 

for 0 _:::: t _:::: 8. By continuity this equality extends to all of M. 
(iv) The global solution exists. 

From (iii) we know thatE(Y(8)) = E(Y0 ) _::::b. Thus we can repeat the previous 
argument for 8 _:::: t _:::: 28, etc. Backwards in time we still have the solution (2.16), 
(2.17) of the Maxwell equations, only the retarded fields have to be replaced by 
the advanced fields. Thereby we obtain the solution for all times. D 

Theorem 2.1 ensures the existence and uniqueness of solutions for the Abraham 
model. For initial data Y0 E M the solution trajectory t --+ Y (t) lies in the phase 
space M, is continuous in t, and its energy is conserved. We have thus established 
the basis for further investigations on the dynamics of the Abraham model. 

2.5 The relativistically covariant Lorentz model 

To improve on the semirelativistic Abraham model, following Lorentz, it is nat
ural to assume that when viewed in a momentary inertial rest frame the charge 
and mass distribution of the particle remain unchanged. This is what one would 
call a relativistically rigid extended charge. Our requirement fixes uniquely the 
four-current density. The equations of motion then follow from a relativistically 
covariant action. 

For obvious reasons we will switch to relativistic notation, where we follow the 
conventions of Misner, Thorne, and Wheeler. Our arena is the Minkowski space
time M4. A Lorentz frame, Ji, in M4 is specified through the tetrad {eo, e1, e2, e3} 

of fixed unit vectors. They have the inner product 

(2.62) 

where g 11 v is the metric tensor with goo = -1, g1111 = 1, fL = 1, 2, 3, and g11 v = 0 
otherwise. Therefore M4 can be identified with lR 1,3. In the given basis, a vector 
x E M4 is expanded as 

(2.63) 
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using the Einstein summation convention over repeated indices. We group x = 
(t, x) with t E lR the time and x E JR3 the space coordinate. The scalar product is 
x · y = g1lvx 11 yv and lxl2 = x · x. 

The motion of a particle is specified through its world line r c--+ q(r) 
parametrized in terms of the eigentime r, dr 2 = -dx · dx. Denoting by q differ
entiation of q( r) with respect tor, the four-velocity is u( r) = q( r). u is time-like, 
u · u = -1, and uo > 0 for a particle moving forward in time. In the given Lorentz 
frame we have 

( ) Y =(I - lvl2)-l/2 u = y, yv , (2.64) 

with v the usual three-velocity. 
If the charged particle is at rest, then, as before, its charge is smeared according 

to the charge distribution ecp. In addition we assume that now the bare mass, mb, 
is smeared also according to cp. In principle, one should distinguish between the 
charge and mass form factor. We suppress such a distinction, since it can be un
ambiguously recovered from the prefactors e and mb. By the definition of a rigid 
charge, we require that in any momentary rest frame the mass, respectively charge, 
distribution are given by mbcp, respectively ecp. 

Since our charged body is extended, in its kinematical description, besides q ( r) 
and the velocity u(r) = q(r), we have to specify its state of rotation. Let us in
troduce the (noninertial) body frame fbody through the tetrad {e;J11=0, ... ,3 of unit 
vectors. fbody is fixed in the charged body and thus comoving and corotating. We 
set e~ = u( r). {e;, e;, e~} gives then the spatial orientation of fbody in the momen
tary rest frame. In the course oftime Fbody evolves according to 

d I I 
-e11 = -n · e1l, 11 = 0, ... ,3, 
dr 

(2.65) 

where n is the antisymmetric tensor of the instantaneous rate of four-gyration of 
fbody as seen in the Lorentz frame FL. 

Even if there is no external torque acting on the rigid charged body, the frame 
fbody rotates. This is the famous Thomas precession, determined by the Fermi
Walker transport equation 

where 

d -e11 = -nFw · e11, 11 = o, ... ,3, 
dr 

f!pw = ti !\ u. 

(2.66) 

(2.67) 

Here the exterior product of two vectors is defined by a !\ b = a ® b - b ® a or, 
as acting on a vector c, (a!\ b) · c = a(b ·c) - b(a ·c). Together with the initial 
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conditions eo(O) = u(O), e11 (0) = e11 , fL = 1, 2, 3, (2.66) defines the noninertial 
frame :Fpw. 

If there is an external torque acting, then Fbody #- :Fpw and it is natural to intro
duce the intrinsic (Eulerian) four-gyration by 

(2.68) 

As n, nFw' also nE is anti symmetric and satisfies 

nE. u = o. (2.69) 

Therefore nE has only three independent components and is dual to a space-like 
four-vector WE which satisfies 

OE · WE = 0 , WE · U = 0 . (2.70) 

In :Fpw, WE is of the form (0, WE), where WE is the usual angular velocity vector 
which points along the instantaneous axis of body gyration in the space-like three
slice of FFW. For zero torque WE = 0. 

We conclude that relative to FFW the rotational state is either given by nE ( r) 
or by WE(r). WE(r) is space-like, lwE(r)l 2 :=:: 0. 

2.5.1 The four-current density 

Our task is to construct a relativistically covariant current density, which will serve 
both as the source term in Maxwell's equations and as the force, respectively 
torque, term in Newton's equations of motion. 

For a given world line let :F£ be the momentary rest frame at time r centered at 
q ( r) with spatial axes oriented as in FL. In the coordinates of :F£, by definition, 
the four-current density is given by 

j'(t', x') = e<;?r(lx'l)8(t')(l, 0). (2.71) 

Transformed to our laboratory frame FL the current density becomes 

j(x) = e<;?r(lx- q(ro)l)u(ro)lrr(ro). (2.72) 

Here rr(r) is the hyperplane defined by rr(r) = {ylu(r) · (y- q(r)) = 0} and 
the subscript in (2.72) means that for given x we have to choose ro such that 
x E rr ( ro), see figure 2.1. In general, there will be several such planes, see figure 
2.2. Of course, they contribute to the current only if x- q(ro) is space-like and 
the distance lx- q(ro)l satisfies lx- q(ro)l _::::Rep. Let us assume for the moment 
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Xo 

Figure 2.1: World line of an extended charge and the associated current density. 

Xo 

left center right 

Figure 2.2: World line of an extended charge with large acceleration and back
ward currents. 
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that with this restriction there is only a single hyperplane intersecting x. Then 

j(x) =I dre<pr(lx- q(r)l)u(r)8(r- ro)la(ro) 

=I dre<pr(lx- q(r)l)u(r)(l + ti(r) · (x- q(r)) )o(u(r) · (x- q(r))). 

(2.73) 

The additional term comes from the change in the volume element, since 

d 
-u · (x - q) = ti · (x - q) - u · u = 1 + ti · (x - q) . 
dr 

(2.74) 

Note that, because of 8(u · (x- q)), the factor u(1 + ti · (x- q)) in (2.73) may 
be replaced by u- f!pw · (x- q). The Thomas precession generates a current in 
addition to that due to translations. 

In general, the body-fixed frame will be rotated by n and we arrive at the final 
form of the four-current density as 

j(x) = 1 dre<pr(lx- ql)8(u. (x- q))(u _ n. ex_ q)). (2.75) 

One readily verifies the charge conservation 

Y'g ·j(x) = 0, (2.76) 

where Y'gf = (-ox0 f, Y' f)· 
Before proceeding to the action for the dynamics, we should understand whether 

the current (2.75) conforms with naive physical intuition. An instructive example 
is a uniformly accelerated charge, the so-called hyperbolic motion. We assume that 
the particle is accelerated along the positive 1-axis starting from rest at the origin. 
In the orthogonal direction the current traces out a tube of diameter 2R'P and it 
suffices to treat the two-dimensional space-time problem. The center, C, of the 
charge moves along the orbit 

(2.77) 

where g > 0 is the acceleration. The curves traced by the right and left ends, C+ 
and C_, are determined from (2.73) and are given in parameter form as 

C± = (0 ± R'Pg)t, g-1((1 + R'Pg)JI + g2t 2 -t)), t::: 0. (2.78) 

The equal-time distance between the center and C+ is t- 1 ((R'Pg) 2 + 2R'Pg)j(2g2 

(1 + R'Pg)) for large t and is thus well bounded. However the left end motion 
depends crucially on the magnitude of R'Pg. If R'Pg < I, then the distance to the 
center is t- 1((R'Pg) 2 - 2R'Pg)j(2g2 (1 - R'Pg)) for large t. On the other hand, for 
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Rrpg > 1, the left end moves into the past and the current density looks strangely 
distorted. To gain a feeling for the order of magnitudes involved we insert the 
classical electron radius. Then 

(2.79) 

which is far beyond the domain of the validity of the theory. Of course, one would 
hope that for reasonable initial data such accelerations can never be reached. But 
the mere fact that charge elements may move backwards in time is an extra diffi
culty. 

2.5.2 Relativistic action, equations of motion 

For given current density, j, the Maxwell equations read 

(2.80) 

where F is the antisymmetric electromagnetic field tensor of rank 2 and *F its 
star dual. Equations (2.80) can be regarded as the Euler-Lagrange equations of an 
action functional Af, which most conveniently is written in terms of a Lagrange 
density Lf(X) + Linr(x). The field part of the Lagrangian is given by 

1 
Lf(x) = --tr[F(x) · F(x)]. 

4 
(2.81) 

The interaction Lagrangian, Linr(x), is defined through minimal coupling. Were
call that (2.80) implies that F is the exterior derivative of a vector potential A, 
F = \7 g 1\ A. If we adopt the Lorentz gauge \7 g · A = 0, then 

Lint(X) = A(x) · j(x). (2.82) 

The variation of 

(2.83) 

with respect to A yields indeed (2.80). 
Thus we are left with writing down the particle Lagrangian. One might be 

tempted to simply take -mb J dr from the relativistic mechanics of a single 
particle. This cannot be correct, unless all mass is concentrated at the center, 
i.e. <p(x) = 8(x), since -mb J dr ignores the energy stored in the inner rotation. 
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Including rotation the Lagrangian density for the particle becomes 

T2 

Lp(x) =-J (1- 1!1E · (x- q)l 2) 112mbcpr(lx- ql)o(u · (x- q))dr, (2.84) 

TJ 

where q = q(r), U = u(r), and !1E = !1E(r) along the world line ofthe particle. 
Let us check that (2.84) yields the physically correct equations of motion when 

A(x) is taken to be given. We have 

Ap = J (£p(x) + £int(x))d4 x (2.85) 

and must work out the variation of the world line r c--+ q ( r) at fixed end points, 
oq(rJ) = 0 = 8q(r2), which induces also a change in the Fermi-Walker frame. 

The second independent variation is the body-fixed frame Fbody relative to FFW. 
Thereby we obtain two equations of motion, which we write as 

d 
-p(r) = f(r), 
dr 

d 
-s(r) + !1pw · s(r) = t(r). 
dr 

(2.86) 

(2.87) 

Let us discuss each equation separately. p is the momentum of the particle, 
related to the velocity by 

p = mgu. 

mg depends on lwEI and is defined by 

mg = [ (1- 1!1E · xl 2)- 112mbcpr(lxl)8(u · x)d4x. 
}jJI{l.3 

(2.88) 

(2.89) 

mg is the bare gyrational mass, a Lorentz scalar. For small gyration frequency it 
can be expanded as 

(2.90) 

with 

2 f 3 2 Inr = mb3 d xcp(x)x , (2.91) 

the moment of inertia in the nonrelativistic limit. f( r) in (2.86) is the Minkowski 
force 

f(r) = 11,3 F(x) · (u- n · (x- q))ecpr(lx- ql)o(u · (x- q))d4 x. (2.92) 
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It reduces to the Lorentz force, eF · u, in the case where F(x) is slowly varying on 
the scale of R'P. 

In the rotational equation (2.87), s is the four-vector of spin angular momentum 
and is related to the four-gyration by 

(2.93) 

with Ib the relativistic moment of inertia relative to q, 

h(lwEI)g = 11,3 (lxl 2g- x Q9 x)(l - IOE · xl 2)- 112mbcpr(lxl)8(u · x)d4x. 

(2.94) 

In (2.87) s is kinematically Fermi-Walker transported by Opw and changed 
through the external Minkowski torque t( r ). From the variation of (2.85) we obtain 

t(r) = { (x- q) 1\ (F(x) · (u- n · (x- q)))_lecpr(lx- ql)8(u · (x- q))d4x, 
}Tit 1,3 

(2.95) 

where by definition a 1_ = (g + u Q9 u) · a. In the case of slow variation ofF, (2. 95) 
becomes the BMT equation, cf. section 10.1. 

We remark that through (2.86), (2.87) the translational and rotational motion are 
coupled in a rather complicated way with some simplification for a slowly varying 
external potential Aex. 

Having discussed the action (2.83) for the field at prescribed currents and the 
action (2.85) for the particle at prescribed fields, the action for the Lorentz model 
of an extended charge is inevitable. The Lagrangian density reads 

(2.96) 

with the corresponding action 

A= l £(x)d4 x. (2.97) 

To include an external potential, Lint from (2.82) has to be merely modified to 

Lint(X) = A(x) · j(x) + Aex (x) · j(x). 
One has to be careful with the domain of integration, S. It is a region of M4 , 

which is bordered by two space-like surfaces, asi, i = 1, 2. One first fixes an 
interval [ T]' T2] of eigentimes. Restricted to a ball of radius Ri(J, a si = {yl u( Ti) 0 

(y - q( Ti)) = 0}, i = I, 2. aS 1, a 82 are then smoothly extended to hypersurfaces 
such that they do not intersect each other, see figure 2.3. The variation is carried 
out at fixed end points, which means that q(rJ), q(r2), nE(rJ), OE(r2), and A on 
the hypersurfaces a Si, i = I, 2, are prescribed. In addition we require a properly 
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Xo 

········· ····· ..... [)32 

Figure 2.3: Space-like boundary surfaces in the variation of the action. 

time-ordered history of momentary charge slices. Then the Euler-Lagrange equa
tions for (2.97) are given by Maxwell's equations (2.80), by Newton's equations 
(2.86) for the translational degrees of freedom together with (2.88), (2.89), (2.92), 
and by Newton's equations (2.87) for the rotational degrees of freedom together 
with (2.93), (2.94), (2.95), as a coupled set of equations for the extended charge 
and the Maxwell field. 

As for the Abraham model we should discuss the existence and uniqueness of 
solutions. This project is hampered by the fact that we have two constraints. The 
equator must have a subluminal speed of gyration, which is ensured by lwEIR'P < 

1. In addition, the charge slices have to move forward in time, which is ensured 
by I q I R'P < 1. The difficulty is that, even if these conditions are met initially, there 
seems to be no mechanism which ensures their validity later on. At present, the 
general Cauchy problem is known to have a solution only for a finite interval of 
time, whose duration depends on the initial data. 

Notes and references 

Sections 2.1 and 2.2 

The material discussed can be found in most textbooks. I find Landau and Lifshitz 
(1959), Panofsky and Phillips (1962), Jackson (1999), and Scharf (1994) particu
larly useful. 

Section 2.3 

In our history chapter, chapter 3, we discuss the Wheeler-Feynman approach 
which cannot be subsumed under short distance regularization. In the literature 
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the size of a classical electron, Tc], is usually determined through equating the rest 
mass with the Coulomb energy, mec2 = e2 / r cl, which gives r cl = 3 x 10- 13 em. 
This is really a lower bound in the sense that an even smaller radius would be 
in contradiction to the experimentally observed mass of the electron (assuming a 
positive bare mass, cf. the discussion in section 6.3). Milonni (1994) argues that 
due to quantum fluctuations the electron appears to have a classical spread, which 
is given by its Compton wavelength Ac =rei/a, with a the fine structure constant. 
Renormalization in Euclidean quantum field theory is covered by Glimm and Jaffe 
(1987) and Huang (1998). Effective potentials for classical fluids are discussed, 
e.g., in Huang (1987). 

Section 2.4 

The Abraham model was very popular in the early 1900s as studied by Abraham 
(1903, 1905), Lorentz (1892, 1915), Sommerfeld (1904a, 1904b, 1904c, 1905), 
and Schott (1912), among others. The extension to a rigid charge with rotation was 
already introduced in Abraham (1903) and further investigated by Herglotz (1903) 
and Schwarzschild (1903); compare with chapter I 0. The dynamical systems point 
of view is stressed in Galgani et al. ( 1989). The proof of existence and uniqueness 
of the dynamics is taken from Komech and Spohn (2000), where a much wider 
class of external potentials is allowed. A somewhat different technique is used 
by Bauer and Durr (2001). They also cover the case of a negative bare mass and 
discuss the smoothness of solutions in terms of the smoothness of initial data. 

Section 2.5 

This section is based on Appel and Kiessling (2001). Amongst many other results 
they explain the somewhat tricky variation of the action (2.97). Global existence 
of solutions is available in the case where the charge moves with constant velocity 
(Appel and Kiessling 2002). Appel and Kiessling (2001) rely on the monumental 
work of Nodvik (1964 ), but differ in one crucial aspect. Nodvik assumes that the 
mass of the extended body is concentrated in its center, which implies h = 0. 
Newton's equations for the torque degenerate then into a constraint, which makes 
the Cauchy problem singular. A discussion of the Nodvik model can be found in 
Rohrlich (1990), chapter 7-4. The relativistic Thomas precession is discussed in 
Thomas (1926, 1927), Moller (1952), and in Misner, Thorne and Wheeler (1973), 
which is an excellent source on relativistic electrodynamics. Another informative 
source is Thirring (1997). 

Of course, relativistic theories were studied much earlier, e.g. Born (1909). I 
refer to Yaghjian (1992) for an exhaustive discussion. The early models use a 
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continuum description of the extended charge where each charge element has a 
velocity. They are not dynamical models in our sense, simply because there are 
more unknowns than equations. Also inner rotation is neglected, which, as we dis
cussed, is not admissible in a relativistic theory. 

The current generated by a point charge can be written as 

00 

j(x) = e I dru(r)8(x- q(r)). (2.98) 

-oo 

McManus (1948) proposes to smear out the 8-function as 

00 

j(x) = e I dru(r)<pMM((x- q(r))2), (2.99) 

-00 

which is to be inserted in the Lagrange density (2.82). He does not identify 
the conserved four-momentum, see also Peierls (1991) for illuminating explana
tions. Schwinger (1983) discusses the structure of the electromagnetic energy
momentum tensor in the case of rectilinear motion of the charge. 

A more radical approach to a fully relativistic theory is to give up the no
tion of a material charged object and to regard electrons as point singularities 
of the Maxwell-Lorentz field. The guiding example are point vortices in a two
dimensional ideal Euler fluid, whose motion is governed by a closed set of differ
ential equations which are of Hamiltonian form with the 1- and 2-component of the 
position as a canonically conjugate pair. In electrodynamics such a program was 
launched by Born (1933) and Born and Infeld (1933) and has not lost in attraction 
even now, mostly through activities in high-energy physics and string theory. Still, 
to have meaningful Newtonian equations of motion for the singularities is not so 
readily achieved. A recent proposal, based on the Hamilton-Jacobi equation, has 
been made by Kiessling (2003). He also provides a coherent overview of earlier 
attempts. 
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Historical notes 

3.1 Extended charge models (1897-1912) 

When in 1897 J. J. Thomson identified the cathode rays as consisting of parti
cles with charge -e, not only had he discovered the first elementary particle, but 
posed the theoretical challenge of computing the energy-momentum relation of 
this novel object. To put it concisely, we write the equations of motion in approxi
mately uniform E and B fields as 

m(v)v = e(E + c- 1v x B) (3.1) 

with m ( v) the velocity-dependent mass as a 3 x 3 matrix. The challenge was to 
predict the ratio m ( v) j e. For small velocities it was well established that the mass 
is independent of v. But for the electron with its tiny mass and unprecedented range 
of accessible velocities the case was wide open. In fact, Thomson (1881) himself 
had pointed out that, in analogy with a ball immersed in a fluid, the coupling to 
the self-generated electromagnetic field will induce a velocity dependence of the 
mass. 

So which theory could be used to determine m(v)? In fact, there was little 
choice. Since the phenomenon under consideration is clearly electromagnetic, the 
Maxwell-Lorentz equations had to be used, and since the trajectory of a single 
charge was measured, one had to couple through Newton's equations of motion. 
Thus the electron was pictured as a tiny sphere charged with electricity. In the 
inhomogeneous Maxwell equations the current generated by that moving sphere 
had to be inserted. On the other hand the electromagnetic fields react back on 
the charge distribution through the Lorentz force. Thereby the so-called extended 
charge model was introduced. Abraham (1903, 1904) adopted a charge distribution 
which is rigid in the laboratory frame. The corresponding energy-momentum re
lation is discussed at length in the second volume of his book on electromagnetism 
(Abraham 1905), compare with section 4.1. For Abraham's model, Sommerfeld 
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(1904a, 1905) obtained an exact equation of motion for the electron. As a com
plicating and unfamiliar feature it contains memory terms through the integration 
over the retarded fields. Lorentz (1904a, b) proposed a charge distribution which 
is rigid in its momentary rest frame, and therefore, as seen from the laboratory 
frame, contracting parallel to its momentary velocity. It was left completely open 
by which forces this charge distribution would be kept in place. Poincare (1905, 
1906) developed nonelectromagnetic models where additional stresses counter
acted the Coulomb repulsion. Bucherer (1904, 1905) and Langevin (1905) intro
duced a charge distribution Lorentz contracted under the constraint of constant 
volume. 

Up to 1900 electromagnetism was dominated by mechanics, in the sense that 
physicists felt compelled to introduce mechanical models for electromagnetic 
fields. Light would propagate through a rather mysterious gas, called the ether, 
and not simply through vacuum. The great revolution of the young electrodynam
icists of the day was to reverse this position and consider inertial mass to be of 
purely electromagnetic origin. This electromagnetic world picture was nourished 
by the fact that in all extended charge models the velocity-dependent mass has the 
additive structure m(v) = mbll + mf(V), as 3 x 3 matrices with 11 the unit matrix, 
where mb is the bare mechanical mass of the particle, in accordance with Newto
nian mechanics taken to be velocity independent, and mf( v) is the mass due to the 
coupling to the field, which was to be computed from the model charge distribu
tion. In the spirit of the electrodynamic world picture it was natural to set mb = 0. 
Then Lorentz predicted the standard relativistic velocity dependence, which only 
for lv/ cl > 0.3 differed significantly from the results of Abraham and Bucherer. 

While experiments were on the way to decide between the competing theories, 
the whole enterprise came to a sudden end, since Einstein ( 1905a, b) forcefully 
argued that just like electromagnetism in vacuum also the mechanical laws had to 
be Lorentz invariant. But if Einstein was right, then the energy-momentum rela
tion of the electron had to be the relativistic one, as emphasized independently by 
Poincare (1906). Thus the only free parameter was the rest mass of the electron 
which anyway could not be deduced from theory, since the actual charge distribu
tion was not known. There was simply nothing left to compute. At the latest with 
the atomic model of Bohr, to say 1913, it became obvious that a theory based on 
classical electromagnetism could not account for the observed stability of atoms 
nor for the sharp spectral lines. Classical electron theory, as a tool for explaining 
properties of atoms, electrons, and nuclei, was abandoned. 

The experimental status remained ambiguous for some time. Kaufmann (1901) 
favored Abraham's model up to 1906. Only through the experiments of Bucherer 
(1908, 1909) were the predictions of Einstein and Lorentz considered to be rea
sonably confirmed. Of course, by that time Einstein had already convinced the 
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theoreticians, and any other outcome would have been in serious doubt. A repeti
tion of these historical experiments dryly concludes that "it seems fair to say that 
the Bucherer-Neumann experiments proved very little, if anything more than the 
Kaufmann experiments, which indicated a large qualitative increase of mass with 
velocity", Zahn and Spees (1938). 

The effective equation of motion for the electron as given by Eq. (3.1) could 
not possibly have been the full story. Through the work of Larmor it was already 
understood that a charge loses energy through radiation at a rate roughly propor
tional to if. Lorentz observed that in the approximation of small velocities this 
loss could be accounted for by the friction or radiation reaction force 

e2 
Frr = --3 V, 

6:rr c-
(3.2) 

which had to be added to the Lorentz force in Eq. (3.1 ). In 1904 Abraham obtained 
this friction force for arbitrary velocities as 

e2 
Frr = -.-3 [y 4c-2 (v · v)v + 3y 6c-4 (v · v) 2v + 3y4c-2 (v · v)v + y 2v]. (3.3) 

6:rr c-

He argued that energy and momentum are transported to infinity through the far 
field. On that scale the charge distribution is like a point charge and the electromag
netic fields can be computed from the Lienard-Wiechert potentials. Using conser
vation of energy and momentum for the total system he showed that the loss at 
infinity could be balanced by the friction-like force (3.3). Von Laue (1909) real
ized that the radiation reaction (3.3) is relativistically covariant and can be written 
as 

e2 
Frr = --3 [ii- c-2 (ti · ti)u J, 

6:rr c-
(3.4) 

with u the four-velocity. It is in this form that the radiation reaction appears in the 
famous 1921 review article of Pauli on relativity. But apparently there was no in
centive to study properties of Newton's equations of motion (3.1) including the full 
radiation reaction correction (3.3). Using the data from the Kaufmann experiment 
Abraham estimated the radiation reaction to be down by a factor of 1 o-9 relative 
to the Hamiltonian motion. Schott (1912) after studying the motion in a uniform 
electric field concluded: "Hence the effect of the reaction due to radiation is quite 
inappreciable in this and probably in all practical cases." 

The first chapter on the dynamics of classical electrons closes around 1912 with 
the relativistic version of elasticity theory for deformable bodies by Born (1909) 
and von Laue (1911 a, b). In essence there were two results: (i) a relativistically 
covariant expression for the radiation reaction and (ii) an energy-momentum rela
tion for the charged particle dependent on the particular model charge distribution. 
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Of these models only Lorentz's model of a charge distribution properly contract
ing along its instantaneous velocity is consistent with Einstein's theory of special 
relativity. 

3.2 Nonrelativistic quantum electrodynamics 

The time lapse was short: In late 1925 Heisenberg formulated his matrix mechan
ics and in early 1926 Schrodinger had come to wave mechanics. Through Dirac's 
transformation theory both approaches were shown to be equivalent. But more 
importantly in our context, Dirac clearly formulated the rules of canonical quanti
zation, providing the tools for quantizing any Hamiltonian system including those 
with an infinite number of degrees of freedom. In 1928 Dirac discovered the rela
tivistic generalization of the Schrodinger equation. From then on the theoretician's 
avant garde strived for creating a relativistic quantum electrodynamics understood 
as a specific quantum field theory - no small effort - which in a broad sense still 
continues with us today. The nonrelativistic theory, our concern here, was regarded 
as being settled. In fact, in its basic theoretical aspects, the research monograph of 
Heitler (1936) does not differ significantly from modern variants. But obviously, 
many fascinating phenomena and theoretical developments still lay ahead. 

Let us briefly recall the major steps. Born, Heisenberg and Jordan (1926) quan
tized the wave equation by regarding it as corresponding to an infinite set of har
monic oscillators. They studied the energy fluctuations and derived Planck's law. 
On 2 February 1927 Dirac proudly reported to Bohr that, on the basis of the new 
quantum theory, he knew how to compute the lifetime and the line shape of an 
excited state of an atom in the approximation where only a single photon is emit
ted. A systematic quantum treatment of emission and absorption of radiation is 
Dirac ( 1927). Fermi (1930) recognized the importance of the Coulomb gauge and 
quantized a system with an arbitrary number of charges. His 1932 review article 
discusses the quantization of the (many-particle) Abraham model as we know it 
today; compare with chapter 13. With the theoretical foundations laid down, most 
physical processes of interest could be handled through second-order perturbation. 
Perturbation theory as applied to an isolated bound state had been well established. 
However, for radiation one has to deal with resonances, i.e. unperturbed energies 
embedded in the continuum energy of field modes. On a practical level Fermi's 
golden rule settled the issue. The reason why and in what sense this was the cor
rect answer triggered a continuing theoretical effort. As the body of radiation phe
nomena explainable through quantum mechanics accumulated, the trust in the new 
theory increased. Divergences were of concern, but, according to Heitler, "it seems 
now that there is a certain limited field within which the present quantum electro
dynamics is correct". High frequencies had to be cut off to taste. In this spirit Be the 
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arrived at his famous prediction for the Lamb shift of the 2S level of the hydrogen 
atom. 

As well as ultraviolet divergence, nonrelativistic quantum electrodynamics is 
also infrared divergent, as discovered by Bloch and Nordsieck (1937) and more 
exhaustively studied by Pauli and Pierz (1938). Even today infrared divergence is a 
somewhat elusive physical phenomenon. It says that an accelerated charge radiates 
an infinite number of photons. Since their total energy is finite, by necessity these 
photons must have ever-increasing wavelengths. 

3.3 The point charge 

In the 1930s and early 1940s it was a fairly widespread belief that one way to 
overcome the difficulties of quantum electrodynamics is a better understanding of 
the classical theory of point charges coupled to their radiation field. Of course, 
this was to be understood only as an intermediate step to the final goal, namely a 
consistent quantized theory. Our third section deals with a single paper: "Classical 
theory of radiating electrons" submitted by P. A. M. Dirac on 15 March 1938. 
Dirac's paper was equally motivated by quantum electrodynamics; however, as 
such it is concerned only with classical electron theory. 

We have to report the findings of Dirac in sufficient detail, since most later 
activities start from there. The formal argument in the original paper can be well 
followed and alternative versions can be found in Rohrlich (1990), Teitelbom et al. 
(1980), and Thirring (1997). Thus there is no need for repetition and we can focus 
on the conclusions. At first reading it is best to disregard all philosophical claims 
and concentrate on the equations. But before that, let us see how Dirac himself 
viewed the 1897-1912 period: 

The Lorentz model of the electron as a small sphere charged with electricity, possessing 
mass account of the energy of the electric field around it, has proved very valuable in 
accounting for the motion and radiation of electrons in a certain domain of problems, 
in which the electromagnetic field does not vary too rapidly and the accelerations of the 
electrons are not too great. 

Dirac's goal was to construct quantum electrodynamics. There the electron is re
garded as an elementary particle with, almost by definition, no internal structure. 
Thus Dirac had to dispense with model charges and develop a theory of point-like 
electrons. 

What then did Dirac really accomplish? Of course, he assumes the validity of 
the inhomogeneous Maxwell equations. The current is generated by a point charge 
whose motion is yet to be determined. Mechanically this point charge is relativistic 
with bare mass mb. There is no explicit reaction of the field back onto the charge, 
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since at no stage would Dirac invoke the Lorentz force. Instead conservation of 
energy and momentum should suffice to fix the true trajectory of the point charge. 
Note that this is very different from the extended charge models where the starting 
point is a closed system of equations for the particle and the Maxwell field. Dirac 
studies the flow of energy and momentum through a thin tube of radius R around 
the world line of the particle. The computation simplifies by writing the retarded 
fields generated by the motion of the point charge as 

1 1 
Fret = - (Fret + F adv) + - (Fret - F adv) 

2 2 
(3.5) 

in all of space-time. The difference term turns out to be finite on the world line of 
the charge and, through a balancing of energy and momentum, yields in the limit 
R ---+ 0, the relativistic radiation reaction (3.4). 

The more delicate term in (3.5) is the sum, which is divergent on the world 
line of the particle. At the expense of ignoring other divergent terms, cf. Thirring 
(1997), Eq. (8.4.16), Dirac obtains the expected result, namely 

e2 . . 
- u = -mfU. 

4n Rc2 
(3.6) 

Adding the radiation reaction (3.4) and equating with the mechanical four
momentum, the final result is an equation of motion which determines the tra
jectory of the particle, 

e2 
(mb + mf)U = mexpll = eFex · u + --3 [ii- c-2 (ti · ti)u] + O(R) (3.7) 

6nc-

with an error of the size of the tube, where we have added the prescribed electro
magnetic field tensor F ex of external fields. 

To complete his argument, Dirac had to take the limit R ---+ 0. Since mf ---+ oo, 
this amounts to 

(3.8) 

where mexp is adjusted such that it agrees with the experimentally determined mass 
of the charged particle. The combined limit (3.8) is the classical mass renormal
ization. 

Dirac admits that "such a model is hardly a plausible one according to current 
physical ideas but this is not an objection to the theory provided we have a reason
able mathematical scheme." 

Equation (3.7), dropping the terms O(R), is the Lorentz-Dirac equation. Within 
the framework of Dirac it makes no sense to ask whether the Lorentz-Dirac equa
tion is "exact", since there is nothing to compare with. The Lorentz-Dirac equation 
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comes as one package, so to speak. One could compare only with real experiments, 
which is difficult since the radiation reaction is very small, or one could compare 
with higher-level theories such as quantum electrodynamics. But this has never 
been seriously attempted, since, to begin with, it would require a well-defined rel
ativistic quantum field theory which is a difficult task. 

The Lorentz-Dirac equation is identical to the effective equations of motion ob
tained from extended charge models, if we ignore for a moment the possibility that 
the kinetic energy might come out differently depending on which model charge 
is used. In this sense Dirac has recovered the previous results through a novel ap
proach. However, there is an important distinction. For extended charge models 
one has a true solution for the position of the charged particle, say q(t). One can 
then compare q(t) with a solution of the Lorentz-Dirac equation and hope for 
agreement in asymptotic regimes, like slowly varying potentials. In addition, for 
an extended charge model one can set the bare mass to some negative value and 
study the consequences. 

Dirac continues with a remark which shattered the naive trust in classical elec
tron theory. He observes that even for zero external fields Eq. (3.7) has solutions 
where lv(t)/cl--+ 1 as t--+ oo and lv(t)l increases beyond any bound. Such un
physical solutions he called runaway solutions. It is somewhat surprising that run
aways apparently went completely unnoticed before, which only indicates that 
no attempt was made to apply the Lorentz-Dirac equation to a concrete physi
cal problem. If one inserts numbers, then runaways grow very fast. For instance, 
for an electron v(t) = v(O)etfr with r = w-23 s. Thus if the Lorentz-Dirac equa
tion (3.7) is a valid approximation in an extended charge model, which after all 
was the general understanding of the 1897-1912 period, then this model must 
also have runaway solutions - a conclusion in obvious conflict with empirical 
evidence. 

Dirac proposed to eliminate the runaway solutions by requiring the asymptotic 
condition 

lim ti(t) = 0. 
t--+00 

(3.9) 

As a bonus the problem of the missing initial condition is resolved: since in (3.7) 
the third derivative appears, one has to know q(O), q(O), as in any mechanical 
problem, and in addition q(O). If one accepts (3.9), the initial condition forti is 
replaced by the asymptotic condition (3.9). Dirac checked that for zero external 
forces and for a spatially constant but time-dependent force the asymptotic condi
tion singles out physically meaningful solutions. By the end of 1938 the classical 
electron theory was in an awkward shape, in fact in a much worse shape than by 
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the end of 1912. Formal, but even by strict standards careful, derivations yielded 
an equation with unphysical solutions. How did they come into existence? While 
Dirac's asymptotic condition seemed to be physically sensible, it was very much 
ad hoc and imposed post festum to get rid of unwanted guests. Even physicists 
willing to accept the asymptotic condition as a new principle, like Haag (1955), 
could not be too happy. Solutions satisfying the asymptotic condition are acausal 
in the sense that the charge starts moving even before any force is acting. To be 
sure, the causality violation is on the time scale of r = I o-23 s for an electron, and 
even shorter for a proton, and thus has no observable consequences. But acausality 
remains as a dark spot in relativistic theory. The clear recognition of runaway so
lutions generated a sort of consensus that the coupled Maxwell-Newton equations 
have internal difficulties. 

In the preface of his book Rohrlich writes: 

Most applications treat electrons as point particles. At the same time, there was the 
widespread belief that the theory of point particles is beset with various difficulties such as 
infinite electrostatic self-energy, a rather doubtful equation of motion which admits phys
ically meaningless solutions, violation of causality, and others. It is not surprising, there
fore, that the very existence of a consistent classical theory of charged particles is often 
questioned. 

In Chapter 28 of the Feynman Lectures we read: 

Classical mechanics is a mathematically consistent theory; it just doesn't agree with ex
perience. It is interesting, though, that the classical theory of electromagnetism is an un
satisfactory theory all by itself. The electromagnetic theory predicts the existence of an 
electromagnetic mass, but it also falls on its face in doing so, because it does not produce 
a consistent theory. 

And finally to quote from the textbook on mathematical physics by Thirring: 

Not all solutions to (3.7) are crazy. Attempts have been made to separate sense from non
sense by imposing special initial conditions. It is to be hoped that some day the real solution 
of the problem of the charge-field interaction will look differently, and the equations de
scribing nature will not be so highly unstable that the balancing act can only succeed by 
having the system correctly prepared ahead of time by a convenient coincidence. 

To be sure, these issues were of concern only to theoretical physicists in search 
of a secure foundation. Synchrotron radiation sources were built anyhow. The 
loss in energy of an electron during one revolution can be accounted for by 
Larmor's formula. This is then the amount of energy which has to be supplied 
in order to maintain a stationary electron current. The radiation emitted from 
the synchrotron source is computed from the inhomogeneous Lorentz-Maxwell 
equations with a point charge source, i.e. from the Lienard-Wiechert potentials. 
No problem. 
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3.4 Wheeler-Feynman electrodynamics 

To avoid the infinities of self-interaction Wheeler and Feynman (1945, 1949) de
signed a radical solution, at least on the classical level, since the quantized version 
of their theory was never accomplished. 

Their basic tenet is to have as dynamical degrees of freedom only the trajectories 
of the particles. As such there are no electromagnetic fields, even though one still 
uses them as a familiar and convenient notational device. As Wheeler (1998) puts 
it later on, the 1940s were his period of "all particles -no fields" and he wanted to 
understand how far this point of view could be pushed. 

Wheeler-Feynman electrodynamics starts from an action which was first writ
ten down by Fokker (1929). Let us consider N particles, where the i-th particle has 
massmi,chargeei,andamotiongivenbytheworldlineqi(ri), i = 1, . .. ,N. The 
world line is parametrized by its eigentime Ti and the dot '·' denotes differentiation 
with respect to this eigentime. The action functional has the form 

A formal variation of S leads to the equations of motion 

N 1 
miqi =: f; 2(Fret(j)(qi) +Fadv(j)(qi)) · <li · (3.11) 

ii'i 

Here Fret(j)(qi) and Factv(j)(qi) are the retarded and advanced Lienard-Wiechert 
fields generated by the charge at q J and evaluated at q i. They are derived from the 
retarded and advanced potentials 

Aret(j)(x) = ejqj(Tjret)[(x- qj(Tjret)) · <i.J(Tjret)r 1 , 

Aactv(j)(X) = eJ<lJ(Tjadv)[(x- qj(Tjadv)) · qj(Tjadv)r 1 

(3.12) 

(3.13) 

with Tjret. respectively Tjadv. the eigentime when the trajectory qi crosses the 
backward, respectively the forward, light cone with apex at x. Notationally (3.11) 
looks like a set of ordinary differential equations. In fact, the locations of the other 
particles have to be known both at the advanced and retarded times, a situation 
which is not covered by any of the standard techniques. Even if the existence of 
solutions is taken for granted, it is widely open which data would single out a 
specific one. 

To transform (3.11) into a familiar form, we use the decomposition (3.5) and 
Dirac's observation that (Fret - F adv) /2 at the trajectory of the particle yields the 
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radiation reaction. Then 

(3.14) 

Of course, being symmetric in time, we could have equally transformed to the 
advanced fields for the force and a radiation reaction with reversed sign. 

As a specific example let us consider the scattering of two charges with all other 
charges far apart. In the framework of the Lorentz model one would start with two 
charges and their comoving Coulomb field, sufficiently far apart and with incoming 
velocities. If radiation reaction is neglected, the bare mass is renormalized, and 
the force on one particle is due to the other particle at the retarded time. In the 
Wheeler-Feynman theory for two particles, the mass is just the bare mass, the 
forces are the average of retarded and advanced, and there is no radiation reaction. 
The Wheeler-Feynman theory seems to be at variance with empirical observations. 

The crucial new element of their theory is that even in the case of two-particle 
scattering, the motion of all other charges cannot be ignored. Thus in (3.14), we 
take only i = I, 2, but sum over large N. Wheeler and Feynman spend a consider
able amount of effort to argue that when averaged over the random-like motion of 
all other charges, the last term in (3.14) vanishes and they call this the condition 
of a perfect absorber. The exact cancellation is hard to check and one has to be 
satisfied with qualitative arguments. The perfect absorber granted, in the first sum 
of (3.14) only the terms j = 1, 2 contribute by assumption and one has achieved 
the reduction to a two-particle problem with retarded forces. In its IS-dimensional 
phase space there is a 12-dimensional submanifold of physical solutions; all others 
run away. Wheeler and Feynman discuss an energy-like quantity for the system of 
N charges which seems to ensure that all solutions to (3.11) are well behaved. As a 
consequence, only the physical solutions to (3.14) with perfect absorber are a valid 
approximation to the motion of N charges as governed by (3.11) and agreement 
with the conventional theory is accomplished. 

Notes and references 

Section 3.1 

An authorative, highly recommended source on the history of the classical elec
tron theory is Miller (1997), which should be augmented by Pais (1972, 1982), 
by Rohrlich (1973), and by the introductory chapters of Rohrlich (1990). For a 
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discussion of the Kaufmann experiments I refer to Cushing (1981) and Miller 
(1997). The monograph by Schott (1912) is the most complete technical account. 
It contains lots of material which has become an integral part of our present-day 
textbooks on electrodynamics and discusses in detail properties of various electron 
models. Reviews of classical electron theory are Honl (1952), Caldirola (1956), 
Erber (1961 ), Barut (1980), Teitelbom et al. (1980), Coleman (1982), and Pearle 
(1982). The interconnection with quantum electrodynamics before the 1947 Shel
ter Island conference is vividly described in Schweber (1994). 

Section 3.2 

There are excellent studies of the historical development of quantum electrody
namics as culminating in the work of Dyson, Feynman, Schwinger, and Tomon
aga, in which as one part also the nonrelativistic theory is discussed. The most 
complete coverage is Schweber (1994), where the mentioned letter by Dirac is re
produced. Miller (1994) covers the history up to 1938 and includes reprints of the 
most important papers. A somewhat different selection is Schwinger (1958) with 
a recommended introduction. A further source is the monumental work of Mehra 
and Rechenberg (2000) on The Historical Development of Quantum Theory. The 
relevant volume is no. 6, part 1. Modern textbooks and research monographs on 
nonrelativistic quantum electrodynamics are Beitler (1936, 1958), Power (1964 ), 
Louisell (1973), Healy (1982), Craig and Thirunamachandran (1984), Cohen
Tannoudji, Dupont-Roc and Grynberg (1989, 1992), Milonni (1994) among others. 
They all have a common core, but emphasize rather diverse aspects once it comes 
to applications. 

Section 3.3 

Kramers' (1948) investigations on the mass renormalization in the classical theory 
were instrumental for a correct computation of the Lamb shift. We refer to Dresden 
(1987) and Schweber (1994). 

Section 3.4 

The two-body problem in Wheeler-Feynman electrodynamics is discussed by 
Schild (1963). The existence and classification of solutions is studied by Bauer 
(1997). A few explicit solutions are listed in Stephas (1992). 

The opposite extreme "no particles- all fields" is briefly mentioned in the Notes 
to section 2.5. 
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The energy-momentum relation 

If the external forces vanish, the equations of motion must have a solution, in which 
the particle travels at constant velocity v in the company of its electromagnetic 
fields. There seems to be no accepted terminology for this object. Since it will be 
used as a basic building block later on, we need a short descriptive name and we 
call this particular solution a charge soliton, or simply soliton, at velocity v, in 
analogy to solitons of nonlinear wave equations. The soliton has an energy and a 
momentum which are linked through the energy-momentum relation. 

For the Lorentz model, by Lorentz invariance, it suffices to determine the four
vector of total momentum in the rest frame, where it is of the form (ms, 0), ms 

being the rest mass of the soliton. ms depends on lwEI· Through a Lorentz boost 
one obtains the charge soliton moving with velocity v and, of course, the relativis
tic energy-momentum relation. No such argument is available for the Abraham 
model and one simply has to compute its energy-momentum relation, which can 
be achieved along two equivalent routes. The first one is dynamic, as alluded to 
above, while the second one is static and directly determines the minimal energy 
at fixed total momentum. The minimizer is the charge soliton. 

In the following two sections we compute the conserved energy and momentum, 
the charge solitons, and the energy-momentum relation for both the Abraham and 
the Lorentz model. r/Jex = 0, Aex = 0 is assumed throughout. 

4.1 The Abraham model 

The mechanical momentum of the particle is given by 

mbyv 

and the momentum of the field by 

Pf = J d3x(E(x) x B(x)). 

44 

(4.1) 

(4.2) 
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Thus we set the total momentum 

(4.3) 

as a functional on M. It is easily checked that P is conserved by the coupled 
Maxwell and Newton equations (2.39)-(2.41 ). To ensure that P corresponds physi
cally to the total momentum we note that the Lagrangian (2.43) of the Abraham 
model is invariant under spatial translations. By Noether's theorem, this symmetry 
is linked with a conserved quantity which turns out to be P. 

We want to minimize the energy at fixed total momentum. One eliminates v 

from (2.44) and (4.3) and thus has to minimize 

(m~ + (P- J d3x(E x B))2Y12 + ~ J d3x(E2 + B2) (4.4) 

at fixed P and subject to the constraints V · E = ecp , V · B = 0. By translation 
invariance we may center cp at an arbitrary q E JR3. For q = 0, say, the minimizer 
is unique and given by 

Ev(x) =-Y'c/Jvcp(x) + v(v · Y'c/Jvcp(x)), 

Bv(x) = -v x Y'c/Jvcp(X) 

with v E V = {vllvl < 1}. Here 

¢v(k) = e[k2 - (v. k) 2r 1 , 

or in physical space 

(4.5) 

(4.6) 

(4.7) 

and c/Jvcp is shorthand for the convolution ¢v * cp, i.e. ¢w(k) = (2n) 312((J(k)¢v(k). 
v has to be adjusted such that P = P s ( v) with 

Ps(v) = mbyv+ e2 J d3ki(/J(k)l 2([k2 - (k · v) 2r 1v 

- y-2[k2 - (k 0 v)2r2(k 0 v)k) 

= v(mby + mf lvl-3 [- lvl + (1 + v2)arctanhlvl]), (4.8) 

where mf is the electrostatic energy of the charge distribution ecp, 

mf = ~e2 J d3x d3 x' cp(x) cp(x1)(4n lx- x'l)- 1 . (4.9) 

The map V 3 v c--+ Ps(v) E JR3 is one-to-one and therefore P = Ps(v) has a 
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unique solution. The minimizing energy is given by 

Es(v) = mby + ~e2 I d3klcp(k)l 2 [k2 - (k · v)2r 2((1 + if)k2 

- (3- if)(v · k)2) 

= mby + mf lvl- 1 [- lvl + 2arctanhlvl]. 

Eliminating now v from Es and P s yields the energy-momentum relation 

Een(p) = Es(v(p)) 

(4.10) 

( 4.11) 

with v(P s) the function inverse to P s ( v). It is emphasized that Eeti depends on the 
charge distribution only through its electrostatic energy. 

We note that 

where 

and that 

T(v) = -mby-I + ~ez Y-2 I d3kli,O(k)l2 [kz- (k. v)2ri 

= -mby- 1 - mf lvl- 1 (1- lvl 2) arctanhlvl, 

Es(V) = Ps(V) · v- T(v). 

(4.12) 

(4.13) 

(4.14) 

This suggests that T will play the role of the inertial term in an effective 
Lagrangian and E s the role of an effective Hamiltonian as our notation in ( 4.11) 
indicates already. In particular, 

and, equivalently, 

dPs(v) 
--- V = Y'v Es(v) 

dv 

(4.15) 

(4.16) 

which implies that v is to be interpreted as a velocity and dP sl dv, regarded as a 
3 x 3 matrix, as the velocity-dependent mass. 

For a relativistic theory one expects that 

( 4.17) 

Since the Abraham model is semirelativistic, there is no reason for such a prop
erty to be satisfied. Still, as in the relativistic case, the energy-momentum relation 
depends on the charge distribution ecp only through mf. 
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To gain a feeling for the field contributions to the mass we define 

d(Ps -mbyv) ~ ~ ~ ~ 
mf(V) = = m[(V)V Q9 V + mt(V)(D- V Q9 v), 

dv 
(4.18) 

where vis the unit vector along v; m1 ( v) is the longitudinal and mt( v) is the trans
verse field mass. Using (4.8) one obtains 

m1(v) = mflvl-3 (21vl(l- lvl 2)-1 - 2arctanhlvl), 

mt(v) = mflvl-3(- lvl + (1 + lvl 2)arctanhlvl), 

and by expanding in small v, i.e. smalllvl/c, 

In particular one has 

Thus the effective mass in the nonrelativistic approximation is 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.24) 

We compare ( 4.19)-( 4.22) with a relativistic particle for small v and of the same 
mass. Then 

mrel = mfelv ® v + m~el(n-v ® v) (4.25) 

with 

(4.27) 

If one sets the bare mass to zero, mb = 0, even for lvl = 0.5 the error in the 
velocity-dependent mass is less than 5%. Only at speeds lvl > 0.5 will the 
Abraham model lose its empirical validity. The model could be partially saved by 
declaring the Compton wavelength as the characteristic size of the charge distri
bution. Then mf/ mb ~ 0.01 and the relativistic dispersion would be violated only 
for speeds very close to one. 
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The energy minimizer has a simple dynamical interpretation. We look for a 
solution of (2.39)-(2.41) traveling at constant velocity. Let us first define 

Sq.v = (Ev(x- q), Bv(X- q), q, v) (4.28) 

with v E V, q E IR3, and Bv, Ev from (4.5). Then the solution traveling at constant 
velocity is 

Y(t) = Sq+vt.v. (4.29) 

The particular state ( 4.28) will play an important role and is called a charge soliton, 
labeled by its center q and its velocity v. It has the energy £(Sq,v) = Es(v) and 
momentum P(Sq,v) = Ps(v). The set of all charge solitons is 

S = {Sq,vl V E V, q E IR3} C M. (4.30) 

Sometimes we use the same words and symbols for the field configuration only. 
There is an instructive alternate way to represent the charge soliton. We consider 

the inhomogeneous Maxwell-Lorentz equations (2.39) and prescribe the initial 
data at time r. We require that the particle travels along the straight line q = vt. 
If we let r --+ - oo and consider the solution at time t = 0, then in (2.16), (2.17) 
the initial fields will have escaped to infinity and only the retarded fields survive. 
Using (2.16), (2.17) this leads to 

0 

Ev(x)=- J dt J d3y(VG_t(x-y)ecp(y-vt) 

-00 

+ at G -t (x - y )veep (y - vt)) , 

0 

Bv(x) = J dt J d3y V' x G_t (x- y) vecp(y- vt), 

-00 

(4.31) 

(4.32) 

which can be checked either in Fourier space or as being a solution of the Maxwell 
equations traveling at constant velocity v. 

4.2 The Lorentz model 

We fix a Lorentz frame, FL, and seek a solution with q(r) = 0, w(r) = w for all 
r. The corresponding four-current is 

j(x) = ecpr(lxl)f! · x (4.33) 
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and provides the source for the electromagnetic vector potential. The inhomoge
neous Maxwell equations yield 

f 3 I 1 I 
¢o w(x) = d- x ecp(x), 

· 4rrlx -x1
1 

(4.34) 

Ao w(x) = J d3 X 1 1 
WE x X1 ecp(x 1

), 

· 4rr lx- X 1
1 

(4.35) 

the index 0 standing for v = 0. 
Outside the support of the charge distribution, ¢o.w is the Coulomb potential, 

e 
"'o (x) = -- lxl > R '~-' ,w 4n lx I ' - lfJ ' 

(4.36) 

and Ao,w is the vector potential generated by the magnetic moment 

p, = ~ J d3xx x (WE x x)ecp(x) = f.lWE with 1-1 = le J d3xcp(x)x2 , 

(4.37) 

which means 

Ao (x) - p, x x I I R 
,w - 4rrlxl 3 ' x:::: <p· 

(4.38) 

To check the Lorentz force and torque we note that a well-defined momentum 
and angular momentum requires the equator to have subluminal speed, i.e. 

(4.39) 

Inserting the fields (4.34), (4.35) in Eqs. (2.92), (2.95) we indeed find f(r) = 0, 
t( r) = 0 and thus (2.86), (2.87) are satisfied. 

The family of charge solitons is obtained from (4.34), (4.35) through a Lorentz 
boost with velocity u = (y, yv). They are labeled by their center at t = 0, set 
equal to zero here, by the velocity v, and by their angular velocity w. Explicitly 
we have 

cp(x, t) = ¢v,w(X- vt), A(x, t) = Av,w(X- vt). (4.40) 

Because of the convolution structure ¢v,w, Av,w are more easily written in Fourier 
space, where 

¢v,w(k) = 2 e [q?(D- 1k) + v · (w X i'Vk~(D- 1k) J, (4.41) 
k - (k. v)2 

Av,w(k) = 2 e 2 [vcp(D- 1k) + _!__(w x i'Vkcp)(D- 1k) 
k - (k. v) y 

+ ~v · (w x i'Vkcp)(D- 1k)] (4.42) 
l+y 
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with D- 1k = k- (y- 1 - 1)(v · k)v. We note that (4.40), (4.42) coincide with 
( 4.5), ( 4.6) for w = 0 and D = 1. Put differently, ( 4.40) and ( 4.42) properly incor
porate the Lorentz contraction of the charge distribution and the extra fields due 
to the nonvanishing magnetic moment. To obtain the energy-momentum relation 
we only have to compute the energy of the soliton in its rest frame. By rotation 
invariance, this energy depends on w through its absolute value w = lw 1. From 
(2.89) the bare gyrational mass of the particle is given by 

mg(w) = mb I d3 xcp(x)(1- lwE x xl 2)-112 

100 1 
= mb dr4Jrr2cpr(r)-arctanhwr. 

o wr 

The field energy is defined through 

mf =~I d3x(E2 + B2). 

Inserting from (4.34), (4.35) results in 

mf(W) = ~e2 I d3klif5P ; 2 + ~w2e2 I d3kl\7kif5P ; 2 . 

Thus the charge soliton carries the energy 

and its energy-momentum relation is necessarily relativistic, 

E = (p2 + m;)l/2. 

(4.43) 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

The rotational degrees of freedom are handled in the same spirit. The charge dis
tribution carries the magnetic moment defined in (4.37). JL sets the rotational cou
pling to the electromagnetic field. Like the charge, it is not renormalized through 
the interaction with the field. According to (2.93), (2.94), the bare angular momen
tum of the particle is 

(4.48) 

where 

100 1 1 + w2r 2 
h(w) = mb dr4nr 2cpr(r)-2 (- 1 + arctanhwr). (4.49) 

o 2w wr 

In addition, the soliton carries a field angular momentum defined by 

Sf = I d3 XX X (E X B) (4.50) 
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with E, B in their rest frame inserted from ( 4.34 ), ( 4.35). One obtains 

22/3 ~21 
Sf= hWE, h = 3e d· kl\lk<pl k2 · (4.51) 

Thus the charge soliton carries the spin 

Ss = Sb +Sf= (h(w) + h)WE. (4.52) 

4.3 The limit of zero bare mass 

The bare mass seems to be an artifact of the theory, since there is no way to 
determine its value through experiments involving only electromagnetic forces 
(unless the charge distribution could be probed). Thus a natural and conceptu
ally attractive proposal is to take mb = 0, thereby declaring all mass to be of 
electromagnetic origin. We discuss here the limit mb --+ 0+ on the level of the 
energy-momentum relation, whereas the correct procedure would be to study 
this limit on the level of a solution to the evolution equations. The problem re
mains unexplored, since for the equations of motion zero bare mass is rather 
singular. 

(i) Abraham model. Since ms is additive, the only choice is simply to set mb = 

0. In particular, the kinetic energy equals ~(1mf)if for small velocities. If we 
equate 4mf!3 with mexp, the experimental mass of the electron, we conclude that 
Rep~ rc1 = 3 x w- 13 em with a prefactor which depends on the choice of the 
form factor (if. 

(ii) Lorentz model. Since mg depends on w, the Lorentz model offers more 
variety. We recall Eq. ( 4.43). If the integral is bounded, which in particular is 
the case for <p bounded and wRep _:::: 1, then mg vanishes in the limit mb --+ 0. 
We conclude that ms = mf(W) and Is = h. A novel situation occurs if the inte
gral in (4.43) can be made to diverge, for which we must choose <p to be well 
concentrated at the sphere with radius Rep. To be concrete let us set R = Rep and 
<p(x) = 8(1xl - R)(4rr R2)- 1. We also reintroduce c. Then the integral in (4.43) 
becomes 

c wR 
ma(w) = mb- arctanh-. 

b wR c 

We let wRjc--+ 1 and mb--+ 0 such that 

wR 
mb arctanh---+ m 

c 

(4.53) 

(4.54) 

with m ::::_ 0 still at our choice. Note that in this limit the equator rotates with 
the speed of light. For the mass, moment of inertia, and magnetic moment of the 
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soliton, one obtains, respectively, 

(4.55) 

which leaves us with R and m as free parameters. They can be fitted through the 
experimentally determined mass and gyro magnetic ratio of the electron. While for 
the mass we simply set ms = mexp. the g-factor requires a more elaborate discus
sion which will be taken up in section 1 0.1. 

Notes and references 

Section 4.1 

Abraham (1905) computes the energy-momentum relation in essence along the 
same lines as outlined here (except for the variational characterization). Sommer
feld ( 1905) uses the expansion of the exact self-force, as will be explained in chap
ter 7. Lorentz (1904a) proposes a model charge which relativistically contracts 
parallel to its momentary velocity. Thus provisionally we replace the charge dis
tribution ecp(x) by its Lorentz contracted version 

This expression is substituted in (4.5) and gives the electromagnetic fields comov
ing with the charge at velocity v. Their energy and momentum are computed as 
before with the result 

PL(v) = v( mby(v) + ~ mfy(v)), 

EL(v) = mby(v) + mfy(v)( 1 + lif). 
(4.57) 

(4.58) 

The momentum has the anticipated form, except for the factor 4/3 which should 
be I. The energy has an unwanted if j3. In particular the relation ( 4.16) does not 
hold, which implies that the power equation it EL(v) differs from the force equa

tion v ·it PL(v). We refer to Yaghjian (1992) for a thorough discussion, which 
however somehow misses step zero, namely to specify a relativistically covariant 
model for an extended charge, as, e.g., in section 2.5. Schott (1912, 1915) em
ploys a deformable elastic medium as a model charge. To compute the velocity
dependent mass he uses essentially the same method as Sommerfeld, an exact 
self-force and an expansion in the charge diameter. Schott considers also elec
tron models different from those of Abraham and Lorentz. Reviews are Neumann 
(1914) and Richardson (1916). 
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There have been various attempts to improve on the oversimplistic version 
( 4.56) of the Lorentz model. Fermi (1922) argues that in a relativistic theory energy 
and momentum have to be redefined. His argument has been rediscovered several 
times and is explained in Rohrlich ( 1990). Poincare ( 1906) takes the elastic stresses 
into account. We refer to Rohrlich ( 1960) and Yaghjian (1992), and the instructive 
example by Schwinger (1983). 

Section 4.2 

Since the Lorentz model is defined through a Lagrangian, the total energy and 
momentum are determined from Noether's theorem for space-time translations. 
The transformation as a four-vector is then automatically guaranteed, a property 
which we used in the computation of the soliton mass. 

Section 4.3 

The limit of zero bare mass is discussed in Appel and Kiessling (2001). 



5 

Long-time asymptotics 

For any dynamical system one of the first qualitative issues is to understand 
whether there are general patterns governing the long-time behavior. In this spirit 
we plan to study the long-time asymptotics of the Abraham model with prescribed 
external potentials. The basic mechanism at work is the loss of energy radiated to 
infinity, which is proportional to v(t) 2 according to Larmor's formula. Since the 
energy is bounded from below, we expect 

lim v(t) = 0 
t--+00 

(5.1) 

under rather general conditions. In fact, one would also expect that the velocity 
tends to a definite limit, 

lim v(t) = V 00 E V, 
t--+00 

(5.2) 

which leaves us with two qualitatively rather different cases. 

(i) v00 = 0. The charged particle comes to rest confined by the external potentials. 
(ii) v00 =J. 0. The charge escapes into a region with zero external potentials and 

travels there with constant velocity. 

If we take also the asymptotics fort --+ -oo into account, then four familiar cases 
arise: excitation by incident radiation and subsequent relaxation, (i)--+ (i); ioniza
tion, (i)--+ (ii); capture through radiation losses, (ii)--+ (i); and scattering of light 

from a freely moving charged particle, (ii)--+ (ii). 
There must be a corresponding long-time asymptotic for the radiation field. It 

consists of a part attached to the motion of the particle and a part scattered to 
infinity. Thus a more complete description of the long-time solution is 

Y(t) ~ Sq(t).v(t) + (Eout(t), Bout(t), 0, 0) (5.3) 

54 
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for large t. Here Sq(t),v(t) is the charge soliton at the current position and momen
tum and Eout(t), Bout(t) are the solution of the homogeneous Maxwell equations 
with appropriately adjusted initial conditions, the scattering data which depend on 
Y(O). 

At present two techniques are at hand for establishing a limit like (5.3). The first 
one exploits the fact that energy cannot be radiated to infinity forever. This route 
requires that all field modes are coupled to the particle as expressed by the 

Wiener condition (W): 

cp(k) > 0 0 (5.4) 

The second route is based on a contraction method. It needs no extra condition and 
gives explicit convergence rates. However, it requires lei to be sufficiently small, 
i.e. lei < e with a suitable e depending only on the initial energy. Presumably (W) 

and e are artifacts of our mathematical technique. 

5.1 Radiation damping and the relaxation of the acceleration 

We will establish the limit (5.1) under the Wiener condition, but otherwise in com
plete generality. The proof follows rather closely physical intuition and leads to an 
equation of convolution type which has a definite long-time limit. 

Let us consider a ball of radius R centered at the origin. At time t the sum of 
the field energy in this ball and of the mechanical energy of the particle is given by 

ER(t) = E(t)- ~ J d3 x(E(x, t)2 + B(x, t)2) 

{lxi::=:R} 

(5.5) 

provided R is sufficiently large. Using the conservation of total energy, E(t) = 
£(0), ER changes in time as 

d 2/2 ~ ~ ~ - ER(t) = -R d w w · [E(Rw, t) x B(Rw, t)], 
dt 

(5.6) 

where w is a vector on the unit sphere, d2w the surface measure normalized to 4rr, 

and E x B the Poynting vector for the flux in energy at the surface of the ball under 
consideration. Since the total energy is bounded from below, we conclude that 

R+t 

ER(R)- ER(R + t) =- J ds ~ ER(s) :S C 

R 

with the constant C = £ (0) - ¢ independent of R and t. 

(5.7) 
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In (5.7) we first take the limit R --+ oo, which yields the energy radiated to 
infinity during the time interval [0, t] through a large sphere centered at the origin. 
Subsequently we take the limit t --+ oo to obtain the total radiated energy. To state 
the result let us define 

~ e I 3 ~ E 00 (w, t) = -- d· y cp(y- q(t + w · y)) 
4rr 

(5.8) 

which is a functional of the actual trajectory of the particle. Whatever its motion 
we must have 

(5.9) 

Note that the integrand in (5.9) is proportional to v(t) 2 , which therefore is expected 
to decay to zero for large t. 

To establish (5.9) is somewhat tedious with pieces of the argument explained 
in the section below and in section 8.5. One imagines that the trajectory t c-+ q(t) 

is given and solves the inhomogeneous Maxwell-Lorentz equations according to 
(2.16), (2.17). If the time-zero fields are in MIT, 0 < a _:::: 1, see the definition 
(2.49), then Eini(t) and Bini(t) decay as stated in (5.28). Therefore lctdv ER(s)l < 

CR2 (1 + s)_2_ 21T and the contribution to (5.7) from the initial fields vanishes in 
the limit R --+ oo. Next one has to study the asymptotics of the retarded fields, 
which is carried out in section 8.5. There£ is fixed, and for our purpose we may 
set£ = 1. In addition in (8.48) the sphere of radius R is centered at q 8 (t), rather 
than at the origin. This means, in the present context one can use the asymptotics 
(8.51 ), (8.52) as R --+ oo with qF; (t) replaced by 0. Combining both arguments 
proves that (5.9) follows from (5.7) in the limit R --+ oo. 

The real task is to extract from (5.9) that the acceleration vanishes for long 
times. 

Theorem 5.1 (Long-time limit of the acceleration). For the Abraham model sat

isfying (C), (P), and the Wiener condition (W) let the initial data be Y(O) = 
(E0 , B0 , q 0 , v0 ) EMIT with 0 <a _:::: 1. Then 

lim v(t) = 0. 
t--+00 

(5.10) 

Proof: By energy conservation lv(t)l _:::: v < 1. Inserting in (2.41) and using (P) 

we conclude that lv(t)l _::::C. Differentiating (2.41) and using again (P) also 
lv(t)l _:::: C uniformly in t. Therefore E 00 (w, t) is Lipschitz continuous jointly in 
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w, t. Since the energy dissipation (5.9) is bounded, this implies 

lim E 00 (w, t) = 0 
t--+00 

(5.11) 

uniformly in w. 
We analyze the structure of the integrand in (5.8). The retarded argument de

pends only on Yll = w · y. Therefore the integration over y 1_ = y - Yll w can be 
carried out and we are left with a one-dimensional integral of convolution type. 

We set Cf!a(X3) = J dx1 dx2 cp(x). Then 

~ e f Eoo(w, t) = 4;r dy11 Cf!a(YII- qll(t + Yll)) 

X [(1- W · v)-2w X ((w- v) X v)]lt+yll 

= _!__ J dscpa(t- (s- qll (s))) 
4rr 

X [ (1 - w 0 v) - 2w X ( (w - v) X v)] Is 0 (5.12) 

Since 1411 (s) I < 1, we can substitute e = s - qll (s) and obtain the convolution rep
resentation 

Eoo(w, t) = f de cpa(t - e)gw(e) = Cf!a * Kw(t), (5.13) 

where 

Kw(e) = 4: [(1- W · v)-2w X ((w- v) X v)Jis(li). (5.14) 

From (5.11) we know that lim Cf!a * Kw(t) = 0. Ifi,O(ko) = 0 for someko, hence 
t--+00 

i,O violating the Wiener condition, then we could choose g w (e) periodic with fre-
quency lkol and still have Cf!a * Kw(t) = 0. At this point no further progress seems 
to be possible. However under the Wiener condition (W) and with the smoothness 
of Kw(e) already established, Pitt's extension to the Tauberian theorem of Wiener 
assures us that 

lim Kw(e) = o, 
11--+oo 

(5.15) 

which, since e (t) ---+ oo as t ---+ oo, implies 

lim W X ((w- v(t)) X v(t)) = 0 
t--+00 

(5.16) 

for every w in the unit sphere. Replacing w by -w and summing both expressions 
yields w x (w x v(t)) ---+ 0 as t ---+ oo. Since this is true for every w, the claim 
follows. D 
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Note that by fiat Theorem 5.1 avoids any claims as regards the convergence of 
(q(t), v(t)) as t--+ oo. 

Since the acceleration vanishes for large times, the comoving electromagnetic 
fields will adjust locally to the appropriate charge soliton. We established already 
that Eini(t) and Bini(t) decay. Thus one only has to consider the retarded fields 
Eret(X + q(t), t), Bret(X + q(t), t) relative to the position ofthe particle and com
pare them with the soliton fields Ev(t)(X), Bv(t)(x) at the current velocity. For 
this purpose one uses the representations (4.31), (4.32) for the charge soliton and 
(2.16), (2.17) for the retarded fields. We insert the explicit form (2.15) of the prop
agator. This yields 

Ev(x) = e J d3y (4nlx- yl)- 1(1x- Yl- 1cp(y- vlx- yl)n 

+v·Y'cp(y-vlx-yl)(v-n)), (5.17) 

Bv(x) = e J d3 y(4n lx- y l)-1n x (- lx- y l-1cp(y - lx- y lv)v 

+v · V'cp(y -lx- ylv)v), (5.18) 

where n = (x - y) I lx - y 1. Similarly for the retarded fields 

Eret(X + q(t), t) = J d3 y (4n lx- y 1)-1 (lx- y l-1cp(y + q(t) - q(r))n 

+ v(r). V'cp(y + q(t)- q(r))(v(r)- n) 

- cp(y + q(t)- q(r))v(r)), (5.19) 

Bret(X + q(t), t) = J d3y(4nlx- yl)- 1n x (- lx- Yl- 1cp(y + q(t) 

- q(r))v(r) + v(r) · V'cp(y + q(t)- q(r))v(r) 

- cp(y + q(t)- q(r))v(r)), (5.20) 

where r = t- lx- yl and t :=:: trp = 2Rrp/(I - v). 

We compare the fields locally and use the result that lim v(t) = 0. Then, for 
t-+CXJ 

any fixed R > 0, 

lim 
t-+CXJ 

J d3x( (E(x + q(t), t)- Ev(t)(X) ) 2 

{lxl:c:R} 

+ (B(x + q(t), t)- Bv(t)(x) ) 2) = 0. (5.21) 

The scattered fields are not covered by (5.21) and will be studied in section 5.3. 
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5.2 Convergence to the soliton manifold 

In the case of zero external potentials, in essence any solution Y (t) rapidly con
verges to the soliton manifoldS as t --+ oo, in particular v(t) --+ v 00 • Such behav
ior will be of importance in the discussion of the adiabatic limit, see chapter 6, 
where it will be explained that in the matching to a comparison dynamics one 
cannot use the naive v(O) but instead must take v00 • For hydrodynamic boundary 
value problems such a property is known as the slip condition, since the extrap
olation from the bulk does not coincide with the boundary conditions imposed 
externally. 

To prove the envisaged behavior we need a little preparation. Firstly we must 
have some decay and smoothness of the initial fields at infinity. We already intro
duced such a set of "good" initial data, Ma, compare with (2.49), and therefore 
require here Y (0) E Ma, 0 < a _:::: I. Secondly, we need a notion for two field 
configurations being close to each other. At a given time and far away from the 
particle the fields are determined by their initial data. Only close to the particle are 
they Coulombic. Therefore it is natural to measure closeness in the local energy 
nann defined by 

for given radius R. 

1 
II(E, B)ll~= 2 J d3x(E(x)2 + B(x)2) 

{lxi::OR} 

(5.22) 

The true solution is Y(t) = (E(x, t), B(x, t), q(t), v(t)) which is to be com
pared with the charge soliton approximation (Evco(x- q(t)), Bv(t)(X- q(t)), 
q(t), v(t) ). We set Z1 (x, t) = E(x, t)- Ev(t)(X- q(t)), Zz(x, t) = B(x, t)

Bv(t) (x - q (t)), Z = (Z 1, Zz) and want to establish that liZ(- + q (t), t)ll R--+ 0 
for large times at fixed R. 

Proposition 5.2 (Long-time limit for the velocity). For the Abraham model with 
zero external potentials and satisfying (C) let lei _:::: e with sufficiently small e and 
let the initial data be Y(O) E Ma for some a E (0, 1]. Then for every R > 0 we 
have 

liZ(· +q(t), t)IIR _:::: CR(1 + ltl)-1-a. (5.23) 

In addition, the acceleration is bounded as 

lv(t)l .:=:: C(1 + ltl)- 1-a (5.24) 

and there exists a V 00 E V such that 

lim v(t) = V 00 • 
t-+CXJ 

(5.25) 
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Proof: Using the Maxwell equations together with the identities (v · \7) Ev = 
-\7 x Bv + ecpv, ( v · \7) Bv = \7 x Ev one obtains 

d 
-Z(t) = AZ(t) - g(t), 
dt 

(5.26) 

where A is defined in (2.18) and g(t) has the components ( v(t) . \7 v)Ev(X - q (t)), 
(v(t) · Y'v)Bv(x- q(t)), and therefore 

Z(t) = U(t)Z(O)- lot ds U(t- s)g(s) (5.27) 

with U(t) =eAt. 

For the first term we note that Z 1 (x, 0) = E 0(x)- EtfJ(X- q0 ), Z 2 (x, 0) = 

B 0(x)- BtfJ(X- q0 ) E Mer by assumption. Using the solution of the inhomo
geneous Maxwell-Lorentz equations in position space and the bound (2.49) one 
has 

IZI (x, t)l + IZ2(X, t)l ::: c t-2 I d3y o(lx- Yl- t)(IZI (y, 0)1 + IZ2(y, 0)1) 

+ c t- 1 I d3y o(lx- Yl- t)(IY'ZJ (y, 0)1 

+ IY'Z2(y, 0)1) 

::: c t-2 I d3y o(lx- Yl- t)(l + IYI)-1-cr 

+C t- 1 I d3y o(lx- y I - t)(l + IY 1)-2
-(T 

::: c (1 + t) -J-CT • (5.28) 

The integrand in the second term of (5.27) will be estimated in section 7.3 with the 
bound 

compare with (7.36). 
We chooseR ::::_ R'P. From (5.29) and (5.28) 

liZ(·+ q(t), t)IIR:::; C(l + t)- 1-cr 

+ C(v)e2 lot ds (1 + (t- s)2)-1 11Z(- + q(s), s)IIR. (5.30) 
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Let K =sup (1 + t)l+a liZ(-+ q(t), t)IIR· Then 
t::':O 

which implies K < oo provided C(v) e2 is sufficiently small. 
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(5.31) 

To estimate the decay rate for the acceleration we start from Newton's equations 
of motion in the form 

d 
-(mbyv(t)) = e(Ecp(q(t))- Ev(t)cp(O) + v X (Bcp(q(t))- Bv(t)cp(O))), 
dt 

(5.32) 

which uses the fact that the force from the soliton field vanishes. By energy con
servation lv(t) I :S v < 1. Therefore (5.32) implies 

lv(t)l :S CeiiZ(·+q(t),t)IIRq? (5.33) 

and (5.24) follows from (5.23). Since v(t) = v(O) + J~ ds v(s), one has lv(t) -
Vool :S C (1 + ltl)-a. D 

5.3 Scattering theory 

We still have to provide an analysis of the scattered wave. Our results are somewhat 
fragmentary and we start with an easy and sufficient integrability condition. 

Theorem 5.3 (Existence of scattering solutions). For the Abraham model satis
fying (C) and (P) let Y(t) EM be a solution. If 

fooo dtlv(t)l < oo, (5.34) 

then there exist scattering data (Esc, Bsc) such that 

lim (IIE(t)- Evu)(· -q(t))- Esc(t)ll 
t--+00 

+ IIB(t)- Bv(t)(·- q(t))- Bsc(t)ll) = 0, (5.35) 

where (Esc(t), Bsc(t)) = U(t)(Esc, Bsc) propagate according to the homoge
neous Maxwell-Lorentz equations. 

Note that in (5.35) the difference is in the global energy norm and therefore 
carries the information on the scattered wave. 
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Proof The difference in (5.35) is Z(t) by definition. (5.26) remains valid in the 
presence of external forces, which means that 

Z(t) = U(t)(Z(O)- lot dsU(-s)g(s)). (5.36) 

We set 

Esc(X) = E 0(x)- Evo(x- q0)-100 
dt(v(t) · 'lv)Ev(X- q(t)), 

Bsc(x) = B 0(x)- Bva(x- q0)-100 
dt(v(t) · 'lv)Bv(x- q(t)). (5.37) 

Since I v(t) I :::; iJ < 1, the integrands have uniformly bounded energy norm. Thus 
by assumption (5.34) the integrals converge in M and define (Esc. Bsc) EM. 
Hence (5.35) follows. D 

There are two cases of interest for which the integrability condition (5.34) can 
be checked. 

(i) Compton scattering (zero external potential). If lei :::; e, then by (5.24) 
lv(t)l :::; C(l + ltl)-l-a which implies (5.34). For a freely moving charge the 
asymptotic motion is rectilinear and the scattered waves propagate according to 
the free Maxwell equations. Such a result also applies to a charge reaching an 
essentially potential-free region. The standard example is a charge scattered by 
an infinitely heavy nucleus. For sufficiently long times the incident fields have de
cayed already and we assume that the charge has reached, with its velocity pointing 
outwards, a large sphere centered at the nucleus. Then the external force decays as 
I j t2 which combined with Theorem 5.3 yields the desired asymptotics. 

(ii) Rayleigh scattering (bounded motion). Under the Wiener condition (W) we 
already know that limt---+oo v(t) = 0. If in addition the motion is bounded, 

lq(t)l :::: q (5.38) 

for all t, then necessarily 

lim v(t) = 0, 
t---+00 

(5.39) 

i.e. the particle comes to rest. Inserting in Newton's equations of motion (2.34) and 
using the fact that the fields become locally soliton-like, we infer that 

lim V</Jex(q(t)) = 0. 
t---+00 

(5.40) 

Let us define the set A of critical points for the potential <Pex. A = {q IV <Pex (q) = 

0}. By (5.40), q(t) approaches A as a set. If A happens to be a discrete set, then, 
by the continuity of solutions in t, q (t) has to converge to some definite q * E A. 
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Such reasoning yields no rate of convergence. The situation improves in the case 
where q* is a stable local minimum of ¢ex· We linearize the Maxwell equations at 
Y* = Sq* .O· The solution to the linearized equations converges exponentially fast 
to zero. Therefore, once q (t) is in the vicinity of q *, the velocity decays exponen
tially ensuring (5.34). In particular, if ¢ex is strictly convex and if (W) holds, then 
the asymptotics (5.35) of Theorem 5.3 hold for every Y (0) E M. 

A standard situation not covered by (i) and (ii) is the motion in a uniform mag
netic field. Even if one assumes that the motion is bounded, one can only conclude 
that v(t) --+ 0. The attractor A equals JR3. Physically one would expect the charge 
to spiral inwards and to come to rest at its center of gyration. Another instruc
tive example is the motion in a confining ¢ex with a flat bottom, say {x llx I _:::: 1} 
and Aex = 0. Each time the particle is reflected by the confining potential, it loses 
energy. Thus v(t) --+ 0 as t --+ oo, but q (t) has no limit. 

Notes and references 

Section 5.1 

The long-time asymptotics are studied in Komech and Spohn (2000), where the 
details of the proof can be found. See also Komech, Spohn and Kunze (1997). 
Pitt's version of the Wiener theorem is proved in Rudin (1977), Theorem 9.7(b). 
We remark that Theorem 5.1 provides no rate of convergence. Thus to investigate 
the asymptotics of the velocity and position requires extra considerations. 

Theorem 5.1 can also be read that under the Wiener condition the Abraham 
model admits no periodic solution. In the literature, Bohm and Weinstein (1948), 
Eliezer (1950), and in particular the review by Pearle (1982), periodic solutions of 
the Abraham model have been reported repeatedly for the case of a charged sphere, 
i.e. cp(x) = (4rra2)- 18(1xl- a), which is not covered by Theorem 5.1 since (W) 

is violated. These computations invoke certain approximations and it is not clear 
whether the full model, as defined by (2.39)-(2.41 ), has periodic solutions. Pearle 
(1977) argues that in the Nodvik model there are no periodic solutions. Kunze 
(1998) proves that ifthere is a periodic solution, its frequency is determined by the 
zeros of the radial part of the form factor (jl, which under (C) form a discrete set. 
If(j;has a zero, then the linearized system admits a periodic solution. However, the 
full nonlinear equations have no periodic solution, at least in a small neighborhood 
of the linearized periodic solution. 

As will be explained in chapter 11, the Abraham model extends in the obvious 
way to the dynamics of many charges. The argument of Theorem 5.1 applied to 
this case yields that the acceleration of the center of mass relaxes to zero. One 
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would expect particles to form neutral lumps, each of which is traveling at constant 
velocity for large t. No argument towards a proof is in sight. 

Section 5.2 

The contraction method was first developed in Komech, Kunze and Spohn (1999). 
Komech and Spohn (1998) prove the convergence to the soliton manifold in the 
case of a scalar wave field requiring only (W) and not the restriction lei < e. No 
convergence rates are obtained. Their result is extended to the Abraham model by 
Imaikin, Komech and Mauser (2003). Orbital stability was established before by 
Bambusi and Galgani (1993). Bambusi (1994) investigates the long-time stability 
in the case of an attractive central potential. 

Section 5.3 

Our results are based on Imaikin, Komech and Spohn (2002). The linearization 
argument is fully carried out in Komech, Spohn and Kunze (1997). 
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Adiabatic limit 

If we assume that the mass of an electron is purely electromagnetic, then by equat
ing its rest energy and electrostatic Coulomb energy the charge distribution must 
be concentrated in a ball of radius 

2 
e -13 

rei = -- = 3 x 10 em 
mec2 

(6.1) 

which is the so-called classical electron radius. Quantum mechanically one argues 
that on the basis of light scattering the electron appears to have an effective size 
of the order of the Compton wavelength Ae = nmefc = (e2 jn,c)- 1 rc1 = 137 rc1. 
Thus empirically RlfJ is limited to rei _:::: RlfJ _:::: 137rel· Electromagnetic fields which 
can be manipulated in the laboratory vary little over that length scale. rei defines 
a time scale through the time span for light to travel across the diameter of the 
charge distribution, 

tel= re1/c = 10-23 s, equivalently a frequency WeJ = 1023 Hz. (6.2) 

Again, manufactured frequencies are much smaller than Wei· Space-time variations 
as fast as (6.1) and (6.2) lead us deeply into the quantum regime. Thus it is natural 
and physically compelling to study the dynamics of a charged particle under exter
nal potentials which vary slowly on the scale of the charge radius RlfJ, which is the 
only length scale available. This means we have to introduce a scale of potentials 
and enquire about an approximately autonomous particle dynamics with an error 
depending on the scale under consideration. We will introduce such a scheme in the 
following section. The resulting problem has many similarities with the derivation 
of hydrodynamics from Newtonian particle dynamics - with the most welcome 
bonus that it is simpler mathematically by many orders of magnitude. Still, the 
comparison is instructive. 

65 
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6.1 Scaling limit for external potentials of slow variation 

For the Abraham model, see Eq. (2.41), the Lorentz force has in addition to the 
dynamical fields E(x, t), B(x, t) also prescribed external fields, which are the gra
dients of the external potentials <Pex (x), Aex (x). 

We want to impose the condition that <Pex and Aex are slowly varying on the scale 
of RlfJ. Formally we introduce a small dimensionless parameter 8 and consider the 
potentials 

(6.3) 

which are slowly varying in the limit 8 --+ 0. Most of our results extend to po
tentials which vary also slowly in time. For simplicity we restrict ourselves to 
time-independent potentials here. Clearly, 8 appears as a parameter of the poten
tial, just like wo is a parameter of the harmonic oscillator potential ~ mw5x2. But 
8 should really be thought of as a bookkeeping device which orders the magnitude 
of the various terms and the space-time scales according to the powers of 8. Such 
a scheme is familiar from very diverse contexts and appears whenever one has to 
deal with a problem involving scale separation. 

So how small is 8? From the discussion above one might infer that if <Pex, Aex 
vary over a scale of 1 mm, then 8 = w- 12 . This is a totally meaningless statement, 
because e</Jex, eAex have the dimension of energy and thus the variation depends 
on the adopted energy scale. In (6.3) we merely stretch the spatial axes by a factor 
8- 1 and fix the energy scale. Since from experience this point is likely to be con
fusing, let us consider the specific example of a charge revolving in the uniform 
magnetic field Bex = (0, 0, Bo). The corresponding vector potential is linear in x, 
and to introduce 8 as in (6.3) just means that the magnetic field strength equals 
8 Bo. The limit 8 --+ 0 is a limit of small magnetic field strength relative to some 
reference field Bo. Thus to obtain 8 we first have to determine the reference field 
and compare it with the magnetic field of interest. This shows that in order to fix 8 

we have to specify the physical situation in detail, in particular the external poten
tials, the mass of the particle, the charge ofthe particle, y(v), and the time span of 
interest. 

The scaling scheme (6.3) has the great advantage that the analysis can be car
ried out in generality. In a second step one has to figure out 8 for a concrete sit
uation, which leads to a quantitative estimate of the error terms. For instance, if 
in the case above we consider an electron with velocities such that y :::; 10, then, 
by comparing the Hamiltonian term and the friction term, the reference field turns 
out to be Bo = 1017 gauss. Laboratory magnetic fields are less than 105 gauss and 
thus 8 < 1 o-12 . In this and many other concrete examples, 8 is very small, less 
than w- 10 , which implies that, firstly, all corrections beyond radiation reaction 
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are negligible. Secondly, we do not have to go each time through the scheme in
dicated above and may as well set s = 1 thereby returning to conventional units. 
Still on a theoretical level the use of the scale parameter s is very convenient. In 
an appendix to this section we will work out the example of a constant magnetic 
field more explicitly. Ifthe reader feels uneasy about the scaling limit, (s)he should 
consult this example first. 

Adopting (6.3), Newton's equations of motion now read 

d 
dt (mbyv(t)) = e(Ecp(q(t), t) + sEex(sq(t)) 

+ v(t) X (Bcp(q(t), t) + E:Bex(Eq(t)) )) , (6.4) 

where 

Eex = - 'V c/Jex , Bex = 'V X Aex . (6.5) 

Note that if Eex, Bex are smeared by cp, as would be proper, the resulting error in 
(6.4) is of order s3, which can be ignored for our purposes. 

Equation (6.4) has to be supplemented with Maxwell's equations (2.39), (2.40). 
Our goal is to understand the structure of the solution for small s, and as a first 
qualitative step one should discuss the rough order of magnitudes in powers of s. 
But before that we have to specify the initial data. We give ourselves q0 , v0 as 
the initial position and velocity of the charge. The initial fields are assumed to be 
Coulombic, i.e. of the form of a charge soliton centered at q0 with velocity v0 , 

compare with (4.28), which we formalize as 

Condition (I): 

(6.6) 

Equivalently, according to (4.31), (4.32), we may say that the particle has traveled 
freely with velocity v0 for the infinite time span ( -oo, 0]. At time t = 0 the ex
ternal potentials are turned on. Geometrically, our initial data are exactly on the 
soliton manifold S considered as a submanifold of the phase space M. If there 
are no external forces, the solution stays on S and moves along a straight line. For 
slowly varying external potentials as in (6.3) we will show that the solution stays 
s-close to S in the local energy distance. 

On general grounds one may wonder whether such specific initial data are re
ally required. In analogy to hydrodynamics, we call this the initial slip problem. In 
times of order tcp ( = Rep I c), the fields close to the charge acquire their Coulombic 
form while the external forces are still negligible; compare with figure 6.1. How
ever, during that period the particle might gain or lose in momentum and energy 
through the interaction with its own field and the data at time tcp close to the particle 
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s 

Figure 6.1: Schematic phase space with attractive soliton manifold S. Away 
from S the motion is fast, on S it is slow. 

are approximately of the form Sq. v• where ij and v are to be computed from the 
full solution. Of course, at a distance ct away from the charge, the field still re
members its t = 0 data. Thus we see that the initial slip problem translates into the 
long-time asymptotics of a charge at zero external potentials but with general ini
tial field data. We refer to section 5.2, where this point has been studied in detail. 
At the moment we just circumvent the initial slip by fiat. 

Let us discuss the three relevant time scales, where we recall that tep = Rep I c. 
(i) Microscopic scale, t = O(tep), q = O(Rep). On this scale the particle moves 

along an essentially straight line. The electromagnetic fields adjust themselves to 
their comoving Coulombic form. As we will see, they do this with a precision O(.s) 
in the energy norm. 

(ii) Macroscopic potential scale, t = O(.s- 1tep), q = O(.s- 1 Rep). This scale 
is defined by the variation of the potentials, i.e. on this scale the potentials are 
<Pex(x), Aex(x). The particle follows the external forces. Since it is in company 
with almost Coulombic fields, the particle responds to the forces according to the 
effective energy-momentum relation, which we determined in chapter 4. On the 
macroscopic scale the motion is Hamiltonian up to errors of order .s. There is no 
dissipation of energy and momentum. 

(iii) Macroscopic friction scale. Accelerated charges lose energy through 
radiation, which means that there must be friction corrections to the effective 
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Hamiltonian motion. According to Larmor's formula the radiation losses are pro
portional to v(t)2 . Since the external forces are of the order s, these losses are 
proportional to s2 when measured in microscopic units. Integrated over a time 
span s -I trp the friction results in an effect of order s. Thus we expect order s 

dissipative corrections to the conservative motion on the macroscopic scale. 
Followed over the even longer time scale s-2trp, the radiation reaction results in 
0(1) deviations from the Hamiltonian trajectory. 

On the friction time scale the motion either comes to a standstill or stays uni
form. In addition, as will be shown, the dissipative effective equation has the same 
long-time behavior as the true solution. Thus we expect no further qualitatively 
distinct time scale beyond the friction scale. 

From our description, in a certain sense, the most natural scale is the macro
scopic scale and we transform Maxwell's and Newton's equations to this new scale 
by setting 

t 1 = E:t , X 1 = EX . (6.7) 

We have the freedom of how to scale the amplitudes of the dynamic part of the 
electromagnetic fields. We require that their energy is independent of s. Then 

E'(x', t') = s-312 E(x, t), B'(x', t') = s-312 B(x, t). (6.8) 

Finally the new position and velocity are 

q'(t') = sq(t), v'(t') = v(t), (6.9) 

so that d~r q' = v'. There is little risk of confusion in omitting the prime. We then 
denote 

which means that J d3 x cp8 (x) = 1 independent of s and that cp8 is supported in 
a ball of radius s Rep. In the macroscopic coordinates the coupled Maxwell's and 
Newton's equations read 

3tB(x, t) = -\7 x E(x, t), 

OtE(x, t) = \7 x B(x, t)- vfsecp8 (x- q 8 (t))v8 (t), 

d 
dt (mbyv~:(t)) = e(Eex(q~:(t)) + V 0 (t) X Bex(q~:(t))) 

+vfse(Erpc(q~:(t),t) +v~:(t) X Brpc(q~:(t),t)) (6.11) 

together with the constraints 

(6.12) 
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On the macroscopic scale the conserved energy is 

1 f 1 ( 2 2) Emac = mby(v) + er/Jex(q) + 2 d- x E(x) + B(x) . (6.13) 

Also the initial data have to be transformed and become 

Condition (I~:): 

(6.14) 

with 

E 8 = -'V"'8 + v(v · 'V"'8 ) B 8 = -v x 'V"' 8 
v 'f'v 'f'v ' v 'f'v ' (6.15) 

where now 

(6.16) 

On the macroscopic scale, the scaling parameter t: can be absorbed into the 
"effective" charge distribution .)Eecp8 • Its electrostatic energy, 

(6.17) 

is independent oft:, while its charge 

(6.18) 

vanishes as .)E. Recall that t: is a "bookkeeping device". 
We argued that on the macroscopic scale the response to external potentials in 

the motion of the charges is of order one. We thus expect that q~: (t) tends to a 
nondegenerate limit as t: ---+ 0, i.e. 

lim q~:(t) = r(t), lim v~:(t) = u(t). 
8--+0 8--+0 

(6.19) 

The positionr (t) and velocity u(t) should be governed by an effective Lagrangian. 
In section 4.1 we determined the effective inertial term. If the potentials add in as 
usual, one has 

Len(q, q) = T(q)- e(r/Jex(q)- q · Aex(q)), (6.20) 

which results in the equations of motion 

r = u' m(u)it = e(Eex(r) + u X Bex(r)). (6.21) 
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The velocity-dependent mass m (u) has a bare and a field contribution. From ( 4.12) 

we conclude that 

dPs(u) 
m(u) = -

du 
(6.22) 

as a 3 x 3 matrix. If instead of the velocity we introduce the canonical momentum, 

p, then the effective Hamiltonian reads 

Heff(r, p) = Eeti(P- eAex(r)) + ec/Jex(r) (6.23) 

with Hamilton's equations of motion 

(6.24) 

Our plan is to establish the limit (6.19) and to investigate the corrections due to 
radiation losses. 

6.1.1 Appendix 1: How small iss? 

We consider an electron moving in an external magnetic field oriented along 
the z-axis, Bex = (0, 0, Bo). The corresponding vector potential is Aex(x) = 
1 Bo( -x2, x1, 0). According to our convention the slowly varying vector potential 

is given by Aex(sx) = ~ sBo(-x2, XJ, 0). Thus Bois a reference field strength, 
which is to be determined, and B = s Bo is the physical field strength in the lab

oratory. The motion of the electron is assumed to be in the 1-2 plane and we set 
v = (u, 0). According to section 9.2, example (iii), within a good approximation 
the motion of the electron is governed by 

yit = Wc(Uj_- f3cvcU). (6.25) 

Here u_i = (-u2, uJ), We= eBfmoc is the cyclotron frequency, and f3 = 

e2 j6n:c3mo. The first term is the Lorentz force and the second term accounts for 

the radiation reaction. 
We now choose the reference field Bo such that the two terms balance, i.e. 

Bo = (f3efmoc)- 1 • (6.26) 

For electrons 

Bo = 1.1 x 1017 gauss (6.27) 

and even larger by a factor (1836)2 for protons. For a laboratory field of 105 gauss 
this yields 

s = w- 12 . (6.28) 
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Written in units of Bo, (6.25) becomes 

y it = cw~(uj_ - cu) (6.29) 

with f3w~ = 1, i.e. w~ = e Bo/ moe= 1.6 x 1028 s- 1. Thus friction is of relative 
order c and higher-order corrections would be of relative order c2 . As will be 
demonstrated, the dimensionless scaling parameter c serves as a bookkeeping de
vice to track the relative order of the various terms contributing to the dynamics. 

6.1.2 Appendix 2: Adiabatic protection 

The adiabatic limit, as discussed above, relies on the fact that photons have zero 
mass. If they had finite mass, radiation damping would be hindered. This point can 
be most easily argued in the context of a scalar wave field. Moreover, rather than 
having a particle interacting with the field, it suffices to have a source fixed at the 
origin. 

The scalar wave field is denoted by <P with canonically conjugate momentum 
field n. They are governed by 

ut</J(x, t) = n(x, t), atn(x, t) = ~</J(x, t)- K 2<jJ(x, t) + a(t)8(x). (6.30) 

a(t) is a smooth function vanishing outside the interval [0, T]. Assuming that <P = 

0, n = 0 initially we want to determine how much energy is radiated in the long
time limit. 

The local field energy is given by 

1 
e(x, t) = -(n(x, t) 2 + ('V</J(x, t)) 2 + K 2<jJ(x, t) 2 ) 

2 

from which, using (6.30), the energy current 

follows. The energy flow through a sphere of radius R is given by 

-100 
dtR2 J d2wn(wR, t)w · 'Vcp(wR, t) 

= -4n R2 100 
dtn(R, t)¢' (R, t) 

= -4n 100 
dt Rn(R, R + t)R¢' (R, R + t). 

(6.31) 

(6.32) 

(6.33) 

The first step uses radial symmetry of the solution to (6.30), while retaining the 
notation for the radial fields and setting ¢' ( R, t) = a R¢ ( R, t), and the second step 
uses the condition that the solution is supported inside the light cone. To separate 
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between near and far field one still has to take the limit R --+ oo in (6.33). Thus 

Ectiss = lim -4rr ()() dtRn(R, R + t)Rcp'(R, R + t). 
R--+oo Jo 

The fundamental solution of (6.30) is 

( cp(t)) ( atG G ) (¢) 
n(t) - a(G atG rr . 

G is the propagator for t :::: 0, 

with 

1 
F(z) = -h (z) 

z 

(6.34) 

(6.35) 

(6.37) 

and J1 the integer Bessel function of order I. For the initial conditions ¢ = 0, ;r = 

0 the solution to (6.30) is then 

cp(x, t) =lot dsG(x, t- s)a(s), n(x, t) =lot dsutG(x, t- s)a(s). (6.38) 

Before inserting them in (6.34) both terms have to be somewhat simplified through 
partial integrations using the condition that a(O) = 0. For the momentum field one 
obtains 

4nRn(R, R + t) = a(t)- K2 R lot dsF (KJ(t- s)(2R + t- s)) a(s) 0 

(6.39) 

For the scalar field there are two subleading contributions, which vanish as R --+ 

oo, and the leading term 

4rr Rep' (R, R + t) = -a(t) + K2 R lot ds F ( KJ (t - s)(2R + t - s)) 

x R a(s) + o(_!_). (6.40) 
R+t-s R 

We insert (6.39) and (6.40) into (6.33), which results in four terms. The first 
one is clearly (4rr)- 1 f0

00 dta(t) 2 . For the cross-term the integral involving F con
verges to a(t) as R--+ oo. Thus the cross-terms add up to -(2rr)-1 J0

00 dta(t) 2 . 

The fourth term requires more work. The t-integration of (6.33) is split into [0, T] 
and [T, oo]. The first integral yields ( 4rr) -I f0

00 dta (t )2, thereby cancelling terms 



74 Adiabatic limit 

1 to 3. The remainder is 

Ectiss = lim -1- {T dsa(s) {T ds'a(s') rXJ dtK4 RF(K/(t- s)(2R + t- s)) 
R---+oo 4rr Jo Jo lr 
x RF(K/(t- s')(2R + t- s')) R . (6.41) 

R + t- s' 

At this point one can use the asymptotics of J1 for large arguments leading through 
oscillating integrands to 

(6.42) 

In the limit K --+ 0 one obtains the familiar analog of the Larmor formula as 

Ectiss = - 1- J dta(t) 2 . 
4rr 

If a has slow time variation, incorporated as a(Et), £ « 1, then 

Ectiss = £ 4~ J dta(t) 2 , 

(6.43) 

(6.44) 

which in our working example would determine the time scale for radiation damp
ing. On the other hand, for K > 0 

Ectiss = £-1-100 dw]_J w2 - (K /£ ) 2 1wii(w) 12 . 
2rr K/£ w 

(6.45) 

If a has exponential decay, a(w) ~ e -y lwl for large lwl, then Ectiss = Ee -yKjs. The 
low frequencies of the source do not couple to the medium. 

If photons were massive, the adiabatic motion of charges would be protected in 
the sense that radiation damping is of order e-l/s rather than of order £ 2 as is the 
case for photons with dispersion w(k) = clkl. 

6.2 Comparison with the hydrodynamic limit 

In hydrodynamics one assumes that a small droplet of fluid with center r has its 
intrinsic velocity, u(r ), and that relative to the moving frame the particles are dis
tributed according to thermal equilibrium with density p (r) and temperature T (r). 
For such notions to be reasonably well defined, the hydrodynamic fields p, u, T 
must be slowly varying on the scale of the typical interparticle distance. This is 
how the analogy with the Maxwell-Newton equations arises. As for them we have 
three characteristic space-time scales. 

(i) Microscopic scale. The microscopic scale is measured in units of a colli
sion time, respectively interatomic distance. On that scale the hydrodynamic fields 
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are frozen. Possible deviations from local equilibrium relax through collisions. To 
prove such behavior one has to establish a sufficiently fast relaxation to equilib
rium. For Newtonian particles no general method is available. For the Maxwell 
field the situation is much simpler. Local deviations from the Coulomb field are 
transported off to infinity and are no longer seen. 

(ii) Macroscopic Euler scale. The macroscopic space-time scale is defined by 
the variation of the hydrodynamic fields. If, as before, we introduce the dimen
sionless scaling parameter t:, then space-time is O(t:- 1) in microscopic units. On 
the macroscopic scale the time between collisions is 0 ( t:), the interparticle dis
tance 0 ( t:), and the pair potential for the particle at position q i and the one at q i 

is V (t:- 1 (q i - q J )). On the macroscopic scale the hydrodynamic fields evolve ac
cording to the Euler equations. These are first-order equations, which must be so, 
since space and time are scaled in the same way. The Euler equations are of Hamil
tonian form. There is no dissipation, and no entropy is produced. In fact, there is a 
slight complication here. Even for smooth initial data the Euler equations develop 
shock discontinuities. There the assumption of slow variation fails and shocks are 
a source of entropy. 

(iii) Macroscopic friction scale. In a real fluid there are frictional forces which 
are responsible for the relaxation to global equilibrium. One adds to the Euler 
equations diffusive-like terms, which are second order in spatial derivatives, and 
obtains the compressible Navier-Stokes equations incorporating the shear and vol
ume viscosity resulting from friction in momentum transport and thermal conduc
tivity resulting from friction in energy transport. On the macroscopic scale these 
corrections are of order c. In the same spirit, based on the full Maxwell-Newton 
equations, there will be dissipative terms of order t: which have to be added to 
(6.21). Of course, in this context one has to deal only with ordinary differential 
equations as effective dynamics. 

6.3 Point-charge limit, negative bare mass 

The conventional point-charge limit is to let the diameter ofthe charge distribution 
tend to zero under the condition that the total charge remains fixed. Accordingly, 
let us consider now RlfJ as a reference scale and let R/ RlfJ -+ 0. Then for the point 
charge one sets 

(6.46) 

and takes the limit R -+ 0. This means that the charge diameter is small in units 
of the variation of the external potential, since this is the only other length scale 
available. At first sight, one just seems to say that the potentials vary slowly on 
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the scale set by the charge diameter and that hence the point -charge limit and 
the adiabatic limit coincide. To see the difference let us consider the electrostatic 
energy 

(6.47) 

In particular, the ratio of field mass to bare mass grows as R- 1 in the point-charge 
limit and remains constant in the adiabatic limit. 

To display the order of magnitude of the various dynamical contributions we 
resort again to our standard example of an electron in a uniform magnetic field 
Bex = Bn, n = (0, 0, 1) with B of the order of 1 tesla = 104 gauss, say. It suf
fices to consider small velocities. In the adiabatic limit we set B = £ Bo where the 
reference field is Bo = 1.1 x 1017 gauss; compare with appendix 1 to section 6.1. 
Up to higher-order corrections, the motion of the electron is then governed by 

( 4 ) e e2 
mb +- mf v =- £Bo(v x ii) + --3 v + 0(£3) 

3 e 6rre 
(6.48) 

on the microscopic scale. Going over to the macroscopic time scale, t' = £-It, 

(6.48) becomes 

( 4 ) . e ~ e2 .. 2 
mb + 3 mf v = ~ Bo(v x n) + 6rre3 EV + 0(£ ) . (6.49) 

Setting mo = mb + 1 mf, w~ = e Bo/ moe, f3 = e2 j6ne3mo, and restricting to the 
motion on the critical manifold, as will be explained in chapter 9, Eq. (6.49) 
becomes 

(6.50) 

equivalently, on the microscopic time scale 

(6.51) 

with the cyclotron frequency We= e £Eo/moe= eB /moe. 
For the point-charge limit we rely on the Taylor expansion of section 7.2. Then, 

for small velocities, 

( 4 ) e e2 
mb + R - 1 - mf v = -B(v x ii) + --3 v + O(R). 

3 e 6rr~ 
(6.52) 

Since based on the same expansion, as long as no limit is taken, of course, we can 
switch back and forth between (6.52) and (6.48), respectively (6.49), provided the 
appropriate units are used. This can be seen more easily if we accept momentarily 
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the differential-difference equation 

(6.53) 

which is exact for a uniformly charged sphere at small velocities, see section 7.1. 
If we expand in the charge diameter R, then 

(6.54) 

which is the analog of (6.52). On the other hand, if we assume that the external 
fields are slowly varying, as explained in section 6.1, then on the macroscopic 
scale 

(6.55) 

where Rep is now regarded as fixed. Taylor expansion ins yields 

(6.56) 

which is the analog of (6.49). 
As can be seen from (6.52), in the point-charge limit the total mass becomes 

so large that the particle hardly responds to the magnetic field. The only way out 
seems to formally compensate the diverging R -l (4j3)mf by setting 

(6.57) 

with mexp the experimental mass of the charged particle. But this is asking for trou
ble, since the energy (2.44) is no longer bounded from below and potential energy 
can be transferred to kinetic mechanical energy without limit. To see this mecha
nism in detail we consider the Abraham model with Bex = 0 and ¢ex varying only 
along the 1-axis. The bare mass of the particle is now -mb, with mb > 0 as before. 
We set q(t) = (qt, 0, 0), v(t) = (vt, 0, 0), Eex = (-cp'(q), 0, 0). ¢is assumed to 
be strictly convex with a minimum at q = 0. Initially the particle is at rest at the 
minimum ofthe potential. Thus E(x, 0) = Eo(x) from (4.5) and B(x, 0) = 0. We 
now give the particle a slight kick to the right, which means qo = 0, vo > 0. By 
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conservation of energy 

-mbc2 y(vr) + e </J(qt) + ~ I d3x (E(x, t) 2 + B(x, t) 2 ) 

= -mbc2y(vo) + e</J(qo) +~I d3x E(x, 0)2 . (6.58) 

We split E into longitudinal and transverse components, E = E11 + E1_, E11 = 
k(k · E). Clearly J d3 x E II • E 1_ = 0 and therefore 

I d3xE(x, t) 2 ::::_I d3xE11(x, t) 2 =I d3k(k· E(k, t)) 2 

= e2 I d3k lkl-2 1$'(k)l2 =I d3x E(x, 0)2 , (6.59) 

since the initial field has zero transverse component. Inserting in (6.58) yields 

(6.60) 

Since y(vo) > 1, 4t > 0 for short times. As the particle moves to the right, 
( </J ( q t) - </J ( qo)) is increasing and therefore q t --+ 1 and q t --+ oo as t --+ oo. Note 
that vo and mb can be arbitrarily small. Not surprisingly, the Abraham model with 
a negative bare mass behaves rather unphysically. A tiny initial kick suffices to 
generate a runaway solution. 

The point-charge limit is honored by a long tradition, which however seems 
to have constantly overlooked that physically it is more appropriate to have the 
external potentials slowly varying on the scale of a fixed-size charge distribution. 
Then there is no need to introduce a negative bare mass and there are no runaway 
solutions. 

Notes and references 

Section 6 

The importance of slowly varying external potentials has been emphasized re
peatedly. In the early literature slow variation appears as the quasi-stationary hy
pothesis and quasi-stationary motion (Miller 1997). Such principles remain vague 
and, interestingly enough, in more mathematical considerations the size Rep of the 
charge distribution is taken as an expansion parameter rather than the appropriate 
parameter in the potential. To me it is rather surprising that, apparently, there is 
no systematic study of the equations of motion with external potentials of slow 
variation. We use the notion "adiabatic limit" to correspond to the adiabatic theo
rem in classical and quantum mechanics which refers to a Hamiltonian with slow 
time-dependence. More appropriately we should speak of "space-adiabatic limit", 
since the slow variation is in space, the slow variation in time being a consequence. 
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Section 6.1 

In the context of charges coupled to the Maxwell field the adiabatic limit was first 
introduced in Komech, Kunze and Spohn (1999) and in Kunze and Spohn (2000a). 
The fundamental solution (6.36) of the Klein-Gordon equation is discussed in 
Morse and Feshbach (1953). De Bievre (private communication) points out that 
the dissipated energy (6.42) can be guessed also from elementary considerations. 
In Fourier space the wave equation becomes 

(6.61) 

with w(k) 2 = k 2 + K 2 . For a forced harmonic oscillator the equation of motion 
reads x = -w2x + f(t) and the energy transferred by the forcing is rrlf(w)l 2 . 

Inserting in (6.61) and integrating over all k yields (6.42). Schwinger (1949) uses 
a similar argument for the radiated energy. 

Section 6.2 

A more detailed discussion of the hydrodynamic limit can be found in Spohn 
(1991). 

Section 6.3 

In the early days of classical electron theory, one simply expanded in R'P. R'P was 
considered to be small, but finite, roughly of the order of the classical electron ra
dius. Schott (1912) pushes the expansion to include the radiation reaction. Appar
ently, the notion of a point charge is first stated explicitly by Frenkel (1925). The 
difficulties resulting from the point charge were clearly understood by P. Ehrenfest 
as stressed by Pauli in his 1933 obituary. The point-charge limit is at the core of 
the famous Dirac (1938) paper, cf. section 3.3. Since then the limit mb --+ -oo has 
become a standard piece of the theory, reproduced in textbooks and survey articles. 
The negative bare mass was soon recognized as a source of instability. We refer 
to the review by Erber (1961 ). On a linearized level stability is studied by Wilder
muth (1955) and by Moniz and Sharp ( 1977) and Levine, Moniz and Sharp (1977). 
Bambusi (1996), Bambusi and Noja (1996), and Noja and Posilicano (1998, 1999) 
discuss the point-charge limit in the dipole approximation and show that then the 
true solution is well approximated by the linear Lorentz-Dirac equation with the 
full, both physical and unphysical, solution manifold explored. An extension to the 
nonlinear theory is attempted by Marino (2002). The bound (6.60) is taken from 
Bauer and Diirr (2001), which seems to be the only quantitative handling of the 
instability for the full nonlinear problem. 



7 

Self-force 

The inhomogeneous Maxwell equations have been solved in (2.16), (2.17). Thus 
it is natural to insert them into the Lorentz force in order to obtain a closed, albeit 
memory equation for the position of the particle. 

According to (2.16), (2.17) the Maxwell fields are a sum of initial and retarded 
terms. We discuss first the contribution from the initial fields. By our specific 
choice of initial conditions they have the representation, for t :=:: 0, 

0 

Eini(X, t) =- I ds I d3y (VGr-s (x- y) ecp(y- q0 - v0s) 

-00 

+ orGt-s (x- y)v0 ecp(y- q0 - v0s)), (7.I) 

0 

Bini(X, t) = I ds I d3y \1 x Gt-s (x- y) v0ecp(y- q0 - v0s); (7.2) 

-oo 

compare with (4.31), (4.32). Since Gt is concentrated on the light cone, one con
cludes from (7.I), (7.2) that Eini(X, t) = 0, Bini(X, t) = 0 for lq0 - xl :S t- R'P. 
If we had allowed for more general initial data, such a property would hold only 
asymptotically for large t. 

Next we note that constrained by energy conservation the particle cannot travel 
too far. Using the bound on the potential, one can find a v < I such that 

sup lv(t)l < v < I, 
tElR 

(7.3) 

cf. Eq. (7.26). The charge distribution vanishes for lx- q(t)l :=:: R'P. Therefore, 
once 

(7.4) 

80 
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the initial fields and the charge distribution have no overlap. We conclude that for 
t > i'P the initial fields make no contribution to the self-force and it remains to 
discuss the effect of the retarded fields. 

We insert (2.12), (2.13) into the Lorentz force for which purpose it is convenient 
to use the scaled version ( 6.11 ). The external potentials are set equal to zero for a 
while. Then on the macroscopic scale, fort ::::_ ci'P, 

with the self-force 

t 

F~elf (t) = e2 J ds 8 J d3k lifJ(8k)l 2 e-ik·(q"(t)-q"(s))( (lkl- 1 sin lkl(t- s))ik 

0 

(7.5) 

-(cos lkl(t- s))v~:(s)- (lkl-l sin lkl(t- s)) v~:(t) x (ik x v~:(s))), 

(7.6) 

which in position space for 8 = 1 was already written down in Eq. (2.57). 
Equation (7.5) is exact under the stated conditions on the initial fields. No in

formation has been discarded. The interaction with the field has been merely tran
scribed into a memory term. To make further progress we have to use a suitable 
approximation which exploits the assumption that the external forces are slowly 
varying. Since this corresponds to small 8, we just have to Taylor-expand F~e1f (t), 
which is carried out in section 7.2 with the proper justification left for section 7.3. 
But before that, and to make contact with previous work, we take a closer look at 
the memory term. 

7.1 Memory equation 

Equation (7.6) can be simplified, for which it is convenient to set 8 = 1. By partial 
integration 

t J ds J d3k lifJ(k)l 2 e-ik·(q(t)-q(s))v(s) ~ lkl- 1 sin lkl(t- s) 

0 

=-J d3k lifJ(k)l 2 e-ik·(q(t)-q(O))v(O)Ikl- 1 sin lklt 

t 

-J ds J d3klifJ(k)l 2 e-ik·(q(t)-q(s))(lkl- 1 sin lkl(t- s))(v(s) 

0 

+ i(k · v(s))v(s)). (7.7) 
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Since t :=:: tlfJ, the boundary term vanishes. Inserting (7.7) into (7.6), returning to 
physical space, and setting t - s = r, one has for t :=:: tlfJ 

00 

Fself (t) = -e2 I dr [ v(t- r) + (1 - v(t). v(t- r))Y'x 

0 

+v(t- r)(v(t)- v(t- r)) · Y'x]Wr(x)lx=q(t)-q(t-r), (7.8) 

where 

(7.9) 

In (7.8) we have extended the integration to oo, since the integrand vanishes any
way for r :=:: tlfJ. Carrying out the integrations on the angles in (7.9) one obtains 

00 

h(w) = 2rr I dk g(k) cos kw 

0 

(7.1 0) 

(7.11) 

with g(lkl) = l$(k)e. Since cp vanishes for lxl :=:: RlfJ, h(w) = 0 for lwl :=:: 2RifJ. 
Note that lq(t)- q(t- r)l ::: v r. Thus for t :=:: tlfJ we indeed have Wr(q(t)

q (t - r)) = 0, as claimed before. F self(t) has a finite memory extending back
wards in time up to t - tlfJ. 

To go beyond (7.1 0) one has to use a specific form factor$. Two choices, popu
lar at the time, are ({Js(x) = (4rr R~)- 1 8(1xl - RlfJ) and ({Jb(x) = e (4rr R~/3)- 1 for 
lx I ::: RlfJ, ({Jb (x) = 0 for lx I :=:: RlfJ. For the uniformly charged sphere one finds 

and for the uniformly charged ball 

for I w I ::: 2 , 
for I w I :=:: 2 , 

-1 9 ~ ~ 

h(R<pw) = { (8rr R<p) 08 h * h(w) for lwl ::: 2, 
for I w I :=:: 2 , 

with h(w) = (1 - w2) for lwl ::: I and h(w) = 0 otherwise. 

(7.12) 

(7.13) 

For the charged sphere Wt(X) is piecewise linear and, by first taking the gradi
ent of W, the time integrations simplify. In the approximation of small velocities 
the motion of the charged particle is then governed by the differential-difference 
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equation 

e2 
mbv(t) = e(Eex(q(t)) + v(t) x Bex(q(t))) + 2 (v(t- 2R<p)- v(t)), 

I2n RlfJ 

(7.14) 

where we have reintroduced the external fields. 
The memory equation (7.I4) is of suggestive simplicity. To have a well-defined 

dynamics one has to prescribe q(O) and v(t) for -2RifJ :S t :S 0 as initial data. 
Of course, the coupled system determines these data completely. However, the 
supporters of differential-difference equations regard (7.I4) as the starting point 
with no instruction for the choice of initial data. Their claim is that solutions to 
(7.14) are not very sensitive to this choice. While there is some evidence on the 
linearized level, the dependence on the initial data for the full nonlinear problem 
remains to be studied. 

7.2 Taylor expansion 

We return to Eq. (7.5). As will be explained in section 7.3, one knows that there 
exists a constant C, independent of s for s < so, such that 

lif'(t)l :S C, lif'(t)l :S C(I + E(E + ltl)-2), 

l.iT'(t)l :s C(I + E(E: + ltl)-2 + E(E: + ltl)-3) (7.I5) 

for all t, provided the total charge e is sufficiently small. This smallness condition 
merely reflects the fact that at present we do not know how to do better mathemat
ically. Physically we expect (7 .I5) to hold no matter how large e. 

Note that in higher time derivatives the mismatch of the initial conditions be
comes visible. Only if the charge is allowed to move for a time span of order s 113 , 

which is short on the macroscopic scale but long as O(s-213) on the microscopic 
scale, do the derivatives become uniformly bounded. 

Because of (7.15) we are allowed to Taylor-expand in (7.6). To simplify notation 
we set v 8 (t) = v and t- s = r. Then 

I 
v 8 (s) = v 8 (t- r) = v- vr + 2 vr2 + O(r3), (7.I6) 

-ik(qE (t)-qE (s)) _ -ik(qE (t)-qE(t-r)) _ -i(k·v)r (I + I 2· (k ·) I 3 · (k ··) e -e -e -Tl ·V--TI ·V 
2 6 

I (I 2 . I 3 .. )2 2 3 ) - 2 2 r (k · v) - 6 r (k · v) + O((lklr )·) . (7.I7) 
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Inserting in (7.6) and substituting s' = .s- 1 s, k' = .sk yields 

8-lt 

F~elf(t) = e2 I du- 1 I d3kl$(k)l 2e-i(k·v)r { (lkl- 1 sin lklr)ik 

0 

-(cos lklr)( v- .srv + ~.s2 r 2v)- (lkl- 1 sin lklr)(v x (ik x v) 

1 1 
- v x (ik x .srv) +- v x (ik x .s2 r 2v)) +- .sr2i(k. v) 

2 2 

x (Cikl- 1 sin lklr)ik-(cos lklr)(v-.srv)-(lkl- 1 sin lklr)(vx(ikxv) 

- v x (ik x .srv))) + (- ~ .s2 r 3i(k. v)- ~ .s2 r 4 (k. v) 2) 

x ( (lkl- 1 sin lklr)ik- (cos lklr)v- (lkl- 1 sin lklr)( v x (ik x v)))} 

+0(.s2). (7.18) 

The terms proportional to .s - 1 cancel by symmetry. We sort all other terms, 

8-lt 

F~elf(t) = e2l d3k l$(k)l 2 { (- (v. v)\lv + v(v. Vv)) I dre-i(k·v)r (lkl- 1 sin lklr) 

0 

8-l t 

+(v+~v(v·\lv)) I drre-i(k·v)r(coslklr)+.s(~[ -(v2 -I) 

0 

x (v · Vv)Vv + v(v · Vv)(v · Vv) + (v · v)\lv- v(v · Vu) J 
I +- [-(I - v2)(v · Vv)Vv- v(v · Vv)(v · Vv) + 3(v · v)(v · Vv)Vv 
6 

1 
-3v(v · Vv)(v · Vv)] +-[(if -l)(v · Vv) 2Vv 

8 
8-lt 

-v(v · Vv)(v · Vv)2J) I dr re-i(k·v)r (lkl- 1 sin lklr) 

0 

t:- 1t 

+.s( -v-~[v(v·\lv)+3v(v·\lv)]) I drr2e-i(k·v)rcoslklr} 

0 

(7.19) 
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To take the limit £ --+ 0 we go back to position space and use the fundamental 
solution of the wave equation. Then 

0-l t 

lim I dr I d3kl$(k)l 2 e-i(k·v)r (lkl-l sin lklr) rP 
8--+0 

0 
(X) =I dt I d3x I d3 ycp(x)cp(y) 4~t8(1x+vt-yl-t)tP 

0 

{ J d3k l$(k)l 2 [k2 - (k · v)2r 1 for p = o, 
- Jd3xcp(x)jd3ycp(y)(y 2 j4n) for p=l. 

By the same method 

8-it 

lim I dr I d3k l$(k)l 2 e-i(k·v)r r 1+P ~ (lkl- 1 sin lklr) 
~:---+0 dr 

0 
(X) 

= -(1 + P + (v · Y'v)) I dt I d3k l$(k)l 2 e-i(k·v)t (lkl- 1 sin lklt)tP 

0 

__ {- f d3k l$(k)l 2 (k2 + (k. v) 2)[k2 - (k. v) 2r 2 for p = o, 
- J d3x cp(x) J d3ycp(y) (2y4 j4rr) for p =I. 

Collecting all terms the final result reads 

F~elf(t) =- mf(v)v + E(e2 j6n) [y 4 (v · v)v + 3y 6(v · v) 2v 

+3y4 (v. v)v + y 2v] + 0(£2) 

fort > 0 with 

mf(v) = me[ (lvl-2y 2 (3- v2)- lvl-3 (3 + if)arctanhlvl)v@v 

(7.20) 

(7.21) 

(7.22) 

+ ( - lvl-2 + lvl-3 (1 + if) arctanhlvl) ll J . (7.23) 

Note that mf(V) = d(Ps- mbyv)jdv as a 3 x 3 matrix. 
Up to order £, F~e1lt) consists of two parts of a rather different character. The 

term -mf( v)v is the contribution from the electromagnetic field to the change in 
total momentum. We computed this term already in section 4.1 via a completely 
different route. As emphasized there, since the Abraham model is semirelativistic, 
the velocity dependence of mf has no reason to be of relativistic form and indeed 
it is not. The term proportional to£ in (7.22) is the radiation reaction. Again there 
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is no a priori reason to expect it to be relativistic, but in fact it is. Using the four
vector notation of section 2.5, the radiation reaction can be rewritten as 

8(e2 j6n)(ii- (u. u)u) = 8(e2 j6n)(g + u Q9 u). ii. (7.24) 

The space part is the term proportional to e2 of (7 .22), i.e. the radiation reaction 
force, and the time part is the work done by this force per unit time. 

7.3 How can the acceleration be bounded? 

We return to the microscopic time scale. From the conservation of energy together 
with condition (P), we have 

Es(v0) + ecp(8q0) = £(E0, B0 , q0 , v0) = £(E(t), B(t), q(t), v(t)) 

:::: mby(v(t)) + e <P 

and therefore 

sup lv(t)l :S v < 1. 
tEJR: 

(7.25) 

(7.26) 

In (6.4) the external forces are of order 8. Superficially the self-force is of order 
one. However for a Coulombic charge soliton field the self-force vanishes. Thus 
if we could show that the deviations from the appropriate local soliton field are of 
order 8, then the acceleration would satisfy 

sup liJ(t)l :S C8 (7.27) 
tEJR: 

with C a suitable constant. This is what we want to prove. We will not keep track 
of the constants, and the value of C changes from equation to equation. We make 
sure, however, that the e-dependence is explicit and that C depends only on v, 
and thus is determined by the initial conditions. Of course, to justify the Taylor 
expansion of section 7.2, we also need analogous estimates of higher derivatives, 
which can be obtained with considerably more effort through the same scheme. 
Here we want to explain how to get (7.27) and why we need e to be sufficiently 
small, at least for the moment. 

From the equations of motion one has 

v = mo(v)-1 [8e(Eex(8q) + v x Bex (8q)) + e(Erp(q) + v x Brp(q))], (7.28) 

where m01(v) = (mby)- 1(11- vQ9v) is the matrix inverse of mo(v). Clearly by 
(7.26) we have llmo(v)- 1 11 :S C and, by condition (P), the first term is bounded as 

(7.29) 
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On the other hand, the self-force looks to be of order one. To reduce it in order 
we have to exploit the fact that E, B deviate only slightly from Ev, Bv close to the 
charge distribution, i.e. we subtract zero and rewrite the self-force as 

Our goal is to show that this difference is of order £. 

Let us define then 

Z(x, t) = (E(x, t)- Ev(t)(x- q(t))) . 
B(x, t)- Bv(t)(X- q(t)) 

(7.31) 

Using Maxwell's equations and the relations ( v · \7) Ev = -\7 x Bv + ecpv, 

(v · \l)Bv = \7 x Ev one obtains 

d 
dtZ(t) = AZ(t)- g(t), (7.32) 

where A is defined in (2.18) and 

(x, t) = ( (~(t) · Y'v)Ev(X- q(t))) . 
g (v(t) · Y'v)Bv(X- q(t)) 

(7.33) 

Therefore (7.32) has again the structure of the inhomogeneous Maxwell equations. 
Since Z (0) = 0 by our assumption on the initial data, one has 

t 

Z(t) =-Ids U(t- s)g(s). 

0 

In terms of Z(t), using (7.28), (7.30), the acceleration is bounded through 

(7.34) 

lv(t)l ::: C(£ +lei) I d3 xcp(x)IZ1 (x + q(t), t) + v(t) x Z2(x + q(t), t)l. 

(7.35) 

Let us set W(t, s) = U(t- s)g(s). Below we will prove that 

IW1 (t, s, q(t) + x)l + IW2(t, s, q(t) + x)l::: leiCiv(s)l(l + (t- s)2)- 1 (7.36) 

for lx I ::::; R'P. Therefore inserting (7 .36) in (7 .35) one obtains 

t 

lv(t)l::: leiC(£ +lei Ids (1 + (t- s)2)-1 lv(s)l). (7.37) 

0 
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LetK =sup lv(t)l. Then(7.37)reads 
t:>:O 

00 

K :s lei c(s + leiK Ids (1 + s2)-l)' 
0 

lei C 
K < 2 8. 

- 1- e C 
(7.38) 

From the computation below we will see that C depends on v (and on model 
parameters like the form factor (j), but not on e. Thus taking lei sufficiently small 

one can ensure e2 C < 1 and therefore K :S C 8 as claimed. 
We still have to establish (7.36). U(t) is given in Eqs. (2.12), (2.13). Since 

V' · g 1 (s) = 0 = V' · g 2(s), the term proportional to k@ k drops out. In real space 
lkl- 1 sin lklt becomes Gt from (2.15) and cos lklt becomes atGt. Therefore 

WI(t,s,x)= 1 
2 !d3y8(1x-yl-(t-s)) 

4n(t- s) 

x [Ct- s)V' x g 2(y, s) + g 1 (y, s)- (x- y) · Y'g 1 (y, s)], 

W2(t,s,x)= 1 
2 Jd3y8(1x-yl-(t-s)) 

4n(t- s) 

X [ - (t - S) Y' X g l (y, S) + g 2 (y, S) - (X - J) · V' g 2 (y, S)] . 

(7.39) 

We insert g from (7.33). Ev and Bv are first-order derivatives of the function </Jvrp 
which according to (4.7) is given by 

Using (4.5) one has componentwise 

I'VvEv(x)l + I'VvBv(x)l :S C ( IY'</Jv(x)l + IY'Y'v</Jv(x)l), 

I'V'VvEv(x)l + I'V'VvBv(x)l :S C ( IY'Y'v</Jv(x)l + IV'Y'Y'v</Jv(x)l) (7.41) 

and taking successive derivatives in (7.40) one obtains the bounds 

IY'</Jv(x)l + IY'Y'v</Jv(x)l :SeC (1 + lxl)-2 , 

IY'Y'</Jv(x)l + IY'Y'Y'v</Jv(x)l :SeC (1 + lxl)-3 , (7.42) 

which imply 

lg1 (x, s)l + lg2(x, s)l :S e Clv(s)l(l + lx- q(s)l 2)-1 , 

IV'gi (x, s)l + IV'g2(x, s)l :S e Clv(s)l(l + lx- q(s)l 3)-1 . (7.43) 
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We insert the bound (7.43) in (7.39) which results m an upper bound on 
W(t, s, q(t) + x). Using the condition that lxl ::::; R'P and lq(t)- q(s)l ::::; lilt- sl 
finally yields (7 .36). 

We summarize our findings as 

Theorem 7.1 (Bounds on the velocity and its derivatives). For the Abraham 
model satisfying conditions (C), (P), and (I) there exist constants C, depending 
through v only on the initial conditions, and e such that 

lv(t)l ::: v < 1, lv(t)l::: Ct:, lv(t)l::: C(t:2 + £(1 + ltl)-2), 

l"v(t)l ::: c(t:3 + £2 (1 + ltl)-2 + £(1 + ltl)-3) (7.44) 

for all t on the microscopic time scale, provided the charge is sufficiently small, 

i.e. lei <e. 

By keeping track of the constant C, one could get a bound on the charge ad
missible in Theorem 7.1. Since we believe this restriction to be an artifact of the 
method anyhow, there is no point in the effort. 

Notes and references 

Section 7.1 

Sommerfeld (1904a, 1905) systematically uses memory equations. In fact he con
siders the Abraham model with the kinetic energy mbif /2 for the particle and 
wants to understand what happens when v(O) > c. He argues that the particle 
rapidly loses its energy to become slower than c by emitting what we now call 
Cerenkov radiation. The differential-difference equation (7 .14) is derived by Page 
(1918) and its relativistic generalization by Caldirola (1956). For reviews we refer 
to Erber (1961) and Pearle (1982). Moniz and Sharp (1974, 1977) supply a linear 
stability analysis and show that the solutions to (7.14) are stable provided R'P is not 
too small. For that reason Rohrlich (1997) regards (7.14) and its relativistic sister 
as the fundamental starting point for the classical dynamics of extended charges. 
We take the Abraham model as the basic dynamical theory. Memory equations are 
a useful tool in analyzing its properties. 

Section 7.2 

The Taylor expansion is taken from Kunze and Spohn (2000a). Such an expansion 
was already used in Sommerfeld (1904a, 1905), to be repeated in various disguises. 
The traditional expansion parameter is the size of the charge distribution, which in 
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our context is replaced by the scaling parameter s controlling the variation of the 
potentials. 

Section 7.3 

The contraction argument appears in Komech, Kunze and Spohn (1999). The 
bound on v(t) is taken from Kunze and Spohn (2000a), where also higher deriva
tives are discussed. It is claimed that lv(t)l::::; Cs2 and l"v(t)l ::::; Cs3 . In the ar
gument some initial terms are overlooked and the correct bounds are as given in 
(7.44). 
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Comparison dynamics 

The expansion of the self-force suggests that if we are willing to accept an error 
of order £ 2 , the trajectory of the charged particle is governed by an autonomous 
equation- a substantial simplification of the hitherto coupled problem. An error of 
order £ 2 in the equation does not imply an error of the same order in the solution. 
This point must be discussed, but let us proceed for a while in good faith and 
simply ignore the error in Eq. (7.22). Then we obtain the following approximate 
equation for the motion of the charge, 

q = v, 

m(v)v = e(Eex (q) + v X Bex (q)) + E(e2 /6rr) [y 4(v. v)v 

+ 3y6(v. v) 2v + 3y4 (v. v)v + y 2v]. (8.1) 

Here m(v) is the effective velocity-dependent mass. It is the sum of the bare mass 
and the mass (7.23) induced by the field, 

(8.2) 

As anticipated in section 4.1, via a distinct route, the leading contribution to 
(8.1) is derived from the effective Lagrangian 

Leff(q, qJ = T(q)- e(c/Jex(q)- q · Aex(q)), (8.3) 

or equivalently from the Hamiltonian 

Heff(q, p) = Eeff(P- eAex(q)) + ec/Jex(q). (8.4) 

For later purposes it is more convenient to work with the energy function 

H(q, v) = Es(V) + ec/Jex(q), (8.5) 

which is conserved by the solutions to (8.1) with £ = 0; compare with ( 4.14 ). 
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The term of order £ in (8.1) describes the radiation reaction. If included, the 
energy of the particle fails to be conserved and the energy balance becomes 

d d 
-H(q, v)- -£ (e2 /6rr) y 4 (v · v) = -£ (e2 /6rr) [y 4v2 + y 6 (v · v)2]. (8.6) 
dt dt 

The term -£(e2 j6n)y 4 (v · v) = Eschou(v, v) is the Schott energy. It has no def
inite sign. The Schott energy is stored in the near field and can be reversibly ex
changed with the mechanical energy of the charge. The right-hand side of (8.6) is 
the irreversible loss of energy through radiation; compare with section 8.4. Equa
tion (8.6) is analogous to the balance equations in hydrodynamics and a familiar 
way to rewrite it is 

d 
ev · Eex(q) = dt (Es(V) + Eschott(V, v)) + £ (e2 /6rr) [y 4v2 + y 6(v · v)2]. 

(8.7) 

In other words, the work done by the external electric field acting on the charge is 
divided up into the change in its kinetic energy, the change of the Schott energy, 
and radiation. 

If we set G 8 = Es + Eschott, then G 8 is decreasing in time, and integrating both 
sides of (8.6) yields 

-G8 (q(t), v(t), v(t)) + G8 (q(O), v(O), v(O)) 
t 

= £ (e2 /6rr) 1 ds [y 4 v(s)2 + y 6 (v(s). v(s))2]. (8.8) 

0 

The mechanical energy is bounded from below, but the Schott energy does not 
have a definite sign. If(!) the Schott energy remains bounded in the course oftime, 
then 

which implies 

00 I dt [y4 v(t) 2 + y 6 (v(t). v(t))2] < oo, 

0 

lim v(t) = 0. 
t --+00 

(8.9) 

(8.1 0) 

The same conclusion was already reached for the Abraham model in Theorem 
5.1, with no adiabatic limit there. Instead of (8.9) we used the bounded energy 
dissipation (5.9). Since both the approximate and the true solutions have the same 
long-time asymptotics, we expect no further time scale, i.e. higher corrections to 
(8.1) should not change the qualitative behavior of solutions and merely increase 
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in precision. One important difference must be stressed, however: Theorem 5.1 
holds for every solution, whereas (8.1 0) holds only for those with bounded Schott 
energy. 

Unfortunately, the energy balance (8.7) by itself does not tell the full story. As 
noticed apparently first by Dirac (1938), Eq. (8.1) has solutions which run away 
exponentially fast. This does not contradict (8.8). G 8 (t) diverges to -oo and the 
time integral diverges to +oo as t ---+ oo. The occurrence of runaway solutions can 
be seen most easily in the approximation of small velocities, setting Bex = 0, and 
linearizing ¢ex around a stable minimum, say at q = 0. Then (8.1) becomes 

q = v, mv= -mw5q +ckmv (8.11) 

with km = e2 j6n. The three components of the linear equation (8.11) decou
ple and for each component there are three modes of the form ezt. The char
acteristic equation is z2 = -w5 + ckz3 and to leading order the eigenvalues 
are Z± = ± iwo- c(kw5f2), Z3 = (1/ck) + 0(1). Thus in the nine-dimensional 
phase space for (8.11) there is a stable six -dimensional hyperplane, C~:. On 
C8 the motion is weakly damped, with friction coefficient 8 (kw5f2), and re
laxes as t ---+ oo to rest at q = 0. Transversal to C8 the solution runs away as 
eUfok). 

Clearly such runaway solutions violate the stability estimate (7.15). Thus the 
full Maxwell-Newton equations do not have runaways. They somehow appear as 
an artifact of the Taylor expansion of F~elf(t) from (7.6). Dirac simply postulated 
that physical solutions must satisfy the asymptotic condition 

lim v(t) = 0. 
t-+00 

(8.12) 

In the linearized version (8.11) this means that the initial conditions have to lie 
in C8 • In Theorem 5.1 we proved the asymptotic condition to hold for the Abra
ham model. Thus only those solutions to (8.1) satisfying the asymptotic condition 
can serve as a comparison dynamics to the true solution. We then have to under
stand how the asymptotic condition arises, even more so the global structure of the 
solution flow to (8.1). 

We note that in (8.1) the highest derivative is multiplied by a small pre factor. 
Such equations have been studied in great detail under the header of (geometric) 
singular perturbation theory. The main conclusion is that the structure found for 
the linear equation (8.11) persists for the nonlinear equation (8.1 ). Of course the 
hyperplane C8 is now deformed into some manifold, called the critical (or center) 
manifold. We explain a standard example in the following section and then apply 
the theory to (8.1). 
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8.1 An example for singular perturbation theory 

As a purely mathematical example we consider the coupled system 

x = f(x, y), 8 y = y- h(x). (8.13) 

h and f are bounded, smooth functions. The phase space is JR2 . The question we 
address is to understand how the solutions to (8.13) behave for small 8. If we set 
8 = 0, then y = h(x) and we obtain the autonomous equation 

x = f(x, h(x)). (8.14) 

Geometrically this means that the two-dimensional phase space has been squeezed 
to the line y = h(x) and the base point, x(t), is governed by (8.14). { (x, h(x )) I x E 

lR} is the critical manifold to zeroth order in 8. 

To see some motion appear in the phase space ambient to Co we change from 
t to the fast time scale r = 8-1t. Denoting differentiation with respect to r by', 
(8.13) goes over to 

x' = 8 j(x, y), y' = y- h(x). (8.15) 

In the limit 8--+ 0 we now have x' = 0, i.e. x(r) = xo andy'= y- h(xo) with 
solution y(r) =(yo- h(xo))er + h(xo). Thus on this time scale, Co consists ex
clusively of repelling fixed points. This is why Co is called critical. The lineariza
tion at Co has the eigenvalue I transverse and the eigenvalue 0 tangential to Co. 
In the theory of dynamical systems zero eigenvalues in the linearization tum out 
to be linked to center manifolds, and thus Co is also called the center manifold 
(at 8 = 0). The basic result of singular perturbation theory is that for small 8 the 
critical manifold deforms smoothly into C8 ; compare with figure 8.1. Thus C8 is 
invariant under the solution flow to (8.13 ). Its linearization at (x, y) E C8 has an 
eigenvalue of 0(1) with eigenvector tangential to C~: and an eigenvalue 1/8 with 
eigenvector transverse to C~:. Thus for an initial condition slightly away from C~: 
the solution very rapidly diverges to infinity. Since Co is deformed by order 8, also 
C~: is ofthe form { (x, h~: (x)) I x E lR}. According to (8.13) the base point evolves as 

x = f(x, h8 (x)). 

Since h~: is smooth in 8, it can be Taylor-expanded as 

m 

h8 (x) = L 8j hj(X) + 0(8111 +1). 
j=O 

By (8.13) and (8.16) we have the identity 

8 uxh~:(x) f(x, h~:(x)) = h~:(x)- h(x). 

(8.16) 

(8.17) 

(8.18) 
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X 

Figure 8.1: Repulsive center manifold C8 . The motion on C8 is slow and the 
motion away from CF is fast. 
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Substituting into (8.17) and comparing powers of£ one can thus determine hi (x) 

recursively. To lowest order we obtain 

ho(x) = h(x), hi (x) = h'(x) f(x, h(x)) (8.19) 

and to order £ the base point is governed by 

x = f(x, h(x)) + £ oy f(x, h(x)) h'(x) f(x, h(x)). (8.20) 

Given the geometric picture ofthe center manifold, the stable (i.e. not runaway) 
solutions to (8.13) can be determined to any required precision. 

8.2 The critical manifold 

Our task is to cast (8.1) into the canonical form used in singular perturbation the

ory. We set (XI, x2) = x = (q, v) E IR3 x V, y = v E IR3, 

and 

j(x, y) = (X2, y) E V X lR3 (8.21) 

g(x,y, E)= y-2K(X2)- 1 ((6rr/e2) [m(x2)Y- Fex(x)] 

-£ [3y 6(X2 · y)2 X2 + 3y4 (X2 · y)y]), (8.22) 

where y = (1 - x~)- 112 as before, Fex(x) = e(Eex(XI) + X2 x Bex(xJ)), and 
K(v) is the 3 x 3 matrix K(v) = 11 + y 2 v ® v with inverse matrix K(v)- 1 = 

11- v ® v. With this notation Eq. (8.1) reads 

X=j(x,y), EJ=g(x,y,£). (8.23) 
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We set h(x) = m(xz)- 1 Fex(x). Then for s = 0 the critical manifold, Co, is 
given by 

Co= {(x, h(x))l X E .!Pi.3 XV}= {(q, v, v)l m(v)v = Fex(q, v)}' (8.24) 

which means that, for s = 0, it is spanned by the solutions of the leading 
Hamiltonian part of Eq. (8.1). Linearizing at Co the repelling eigenvalue is domi
nated by y-2K(xz)- 1 m(xz) which tends to zero as lxzl --+ 1. Therefore Co is not 
uniformly hyperbolic, which is one of the standard assumptions of singular pertur
bation theory. 

To overcome this difficulty we modify g to g 8 , 8 small, which agrees with g 

on .!Pi.3 x {vllvl _:::: I - 8} x .!Pi.3 and which is constantly extended to values lvl :=:: 
I - 8. Thus for lxz(t)l _:::: I - 8 the solution to x = f, sj = g 8 agrees with the 
solution to x = f, sj =g. For sufficiently small s the modified equation then 
has a critical manifold C£ with the properties discussed in the example of section 
8.1. We only have to make sure that the modification is never seen by the solution. 
Thus, for the initial condition lv(O) I _:::: v, we have to find a 8 = 8 (v) such that 
I v(t) I _:::: I - 8 for all times. To do so, one needs the energy balance (8. 7). 

We consider the modified evolution with vector field (f, g 8) and choose the 
initial velocity such that lv(O) I _:::: iJ < I. For s small enough this dynamics has a 
critical manifold of the form v = h£(q, v) and lh8 (q, v)l _:::: CJ = CJ (8). We start 
the dynamics on C8 • According to (8.8), for all t :=:: 0, 

G 8 (q(t), v(t), h 8 (t)) _:::: G8 (0) = H(q(O), v(O))- s(e2 j6rr)(v(O) · h 8 (0)) 

_:::: Es(ii) + er/Jex (q(O)) + Eq. (8.25) 

We now choose 8 such that iJ _:::: 1 - 28. Since the initial conditions are on C8 , 

the solution will stay for a while on C£ until the first time, r, when I v( r) I = 1 - 8 
occurs. After that time the modification becomes visible. At time r we have, using 
the lower bound on the energy and (8.25), 

Es(v(r)) + e¢ _:::: H(q(r), v(r)) = G£(r) + s(e2 j6rr) y 4 (v(r) · h£(r)) 

_:::: Es(ii) + er/Jex (q(O)) + 2EC] 

and therefore 

Es(l- 8) _:::: Es(l- 28) + e (r/Jex (q(O))- ¢) + 2sq. 

Es(1 - 8) ~ 1/vfo for small8, which implies 

1 
./8 .::=:: cz + 4sq 

(8.26) 

(8.27) 

(8.28) 
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with c2 = 2e (c/Jex(q(O))- ¢).We now choose 8 so small that 1/0 > c2 + 1 and 
then t: so small that 4t:q < I. Then (8.28) is a contradiction to the assumption that 
lv(r)l =I- 8. We thus conclude that r = oo and the solution trajectory stays on 
C8 for all times. 

Equipped with this information we have for small t: the critical manifold 

v = h8 (q, v). (8.29) 

On the critical manifold the Schott energy is bounded and from the argument lead
ing to (8.10) we conclude that Dirac's asymptotic condition holds on C~:. On the 
other hand, slightly off C~: the solution diverges with a rate of order 1 j t:. Therefore 
the asymptotic condition singles out, for given q(O), v(O), the unique v(O) on C~:. 

The motion on the critical manifold is governed by an effective equation which 
can be determined approximately following the scheme of section 8.I. We define 

h(q, v) = m(v)- 1 e(Eex(q) + V X Bex(q)). (8.30) 

Then, up to errors of order t:2, 

m(v)v = e (Eex(q) + v x Bex(q)) (8.3I) 

+ c (e2 j6rr) [y 2K(v) ( ( v · Vq )h + (h · \1 v)h + 3y 2 ( v · h)h) J . 

The physical solutions of (8.1 ), in the sense of satisfying the asymptotic condition, 
are governed by Eq. (8.31). Thus it, and not Eq. (8.1), must be regarded as the 
correct comparison dynamics to the true microscopic evolution equations (6.11). 
Note that the error accumulated in going from (8.1) to (8.31) is of the same order 
as the error made in the derivation ofEq. (8.1). 

Because of the special structure of (8.I ), on a formal level the final result (8.3I) 
can be deduced without the help of geometric perturbation theory. We regard 
m(v)v = e (Eex(q) + v x Bex(q)) as the "unperturbed" equation and substitute 
for the terms inside the square bracket, which means replacing v by h and v by 
h = (v · Vq)h + (h · Vv)h. While yielding the correct answer, one misses the geo
metrical picture of the critical manifold and the associated motion in phase space. 

8.3 Tracking of the true solution 

From (6.11) we have the true solution q 8 (t), vE (t) with initial conditions q0 , v0 and 
correspondingly adapted field data. We face the problem of how well this solution 
is tracked by the comparison dynamics (8.I) on its critical manifold. Let us first 
disregard the radiation reaction. From our a priori estimates we know that 

(8.32) 



98 Comparison dynamics 

which should be compared to 

r = u' m(u)it = e (Eex(r) + u X Bex(u)). (8.33) 

We switched to the variables r, u instead of q, v so as to distinguish more clearly 
between the true and comparison dynamics. 

Theorem 8.1 (Adiabatic limit, conservative tracking dynamics). For the Abra
ham model satisfying the conditions (C), (P), and(!) let lei ::: e and s :S so be 
sufficiently small. Let r (t), u(t) be the solution to the comparison dynamics (8.33) 
with initial conditions r (0) = q0, u(O) = v0 . Then for every r > 0 there exist con
stants c( r) such that 

(8.34) 

for 0 :S t :S r. 

ProofLet8(t) = lq 8 (t) -r(t)l + lv8 (t) -u(t)I.Convertingthedifferentialequa
tions (8.32), (8.33) into their integral form, one obtains 

t t 

8(t) ::: 8(0) + C I ds8(s) + s I dsC(I + s(s + s)-2) 

0 0 
t 

::: 8(0) + sC(t +I)+ C I ds8(s). 

0 

(8.35) 

Since 8(0) = 0 by assumption, Gronwall's lemma yields the bound 8(t) ::: 
sCecr. D 

Theorem 8.1 states that, up to an error of orders, the true solution is well approx
imated by the Hamiltonian dynamics (8.33). 

In the next order the comparison dynamics reads 

r =u, 

m(u)it = e (Eex(r) + u X Bex(r)) 

+ s(e2 j6n)[y4 (u · ii)u + 3y6 (u · it) 2 u + 3y4 (u · it)it + y 2ii] 
(8.36) 

restricted to its critical manifold C~:. Since the radiation reaction is proportional to 
s, the solution r(t), u(t) depends now on s, a dependence which is suppressed in 

our notation. Naively one would expect that improving the equation by a term of 
order s increases the precision to order s 2 , i.e. 

(8.37) 
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An alternative option to keeping track of the £-correction is to consider longer 
times, of the order .s - 1 r on the macroscopic time scale. Then the radiative effects 
add up to deviations of order one from the Hamiltonian trajectory. Thus 

(8.38) 

One should be somewhat careful here. In a scattering situation the charged par
ticle reaches the force-free region after a finite macroscopic time. According to 
(8.37) the error in the velocity is then O(.s2), which builds up an error in the po
sition of order .s over a time span .s- 1 r. Thus we cannot hope to do better than 
(8.38). On the other hand, when the motion remains bounded, as e.g. in a uniform 
external magnetic field, the charge comes to rest at some point q* in the long-time 
limit and the rest point q* is the same for the true and the comparison dynamics. At 
least, for an external electrostatic potential with a discrete set of critical points we 
have already established such behavior and presumably it holds in general. Thus 
for small .s we have q 8 (.s- 1 r) ~ q* and alsor 8 (.s- 1 r) ~ q*. Therefore, in the case 
of bounded motion, we conjecture that (8.38) holds for all times. 

Conjecture 8.2 (Adiabatic limit including friction). For the Abraham model sat
isfying (C), (P), and (I) let q(t) be bounded, i.e. lq(t)l _:::: C for all t ::::_ 0, and 
.s _:::: .so. Then there exists (r(O), u(O), u(O)) E C8 such that 

sup lq 8 (t) -r(t)l = O(.s), 
t:;o-0 

where r (t) is the solution to (8.36) with the initial conditions given before. 

(8.39) 

In a more descriptive mode, the true solution q 8 (t) is £-shadowed for all times 
by one solution (and thus by many solutions) of the comparison dynamics. 

At present we are far from such strong results. The problem is that an error of 
order .s2 in (8.36) is generically amplified as .s2etfE:. Although such an increase 
violates the a priori bounds, it renders a proof of (8.39) difficult. We seem to be 
back to (8.34) which carries no information on the radiation reaction. Luckily the 
radiation correction in (8.36) can be seen in the energy balance. 

Theorem 8.3 (Adiabatic limit including friction). Under the assumptions of The
orem 8.1 one has 

for t8 _:::: t _:::: r. Here (r(t), u(t)) is the solution to (8.36) with initial data r(t8 ) = 
q 8 (t~:), u(t~:) = 'lf(t~:), ziE:(t~:) = h~:(q 8 (t~:), v8 (t~:)) and t~: = .s 113. 

To achieve a precision of order .s2 , the initial slip in (7 .15) does not allow one to 
match the true and comparison dynamics at t = 0. One needs l·q·~:(t)l uniformly 
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bounded, which is ensured only for t :::: C £ 1/ 3, i.e. t :::: to with the arbitrary choice 
C=l. 

Proof Let us use the estimate (7.22) on the self-force and denote the error term 
by F(t). Then IF(t)l::::; C£2 for to::::; t. As in (8.7), 

d 
dt Gs (q 8 , V 8 , il) = / 8 (t) · V 8 - £ (e2 j6rr)[y4 (il)2 + y 6 (v8 • il)2 ] (8.41) 

and therefore 

(8.42) 
t +I ds(IF · vF;I + E(e2 j6rr)ly(vF;)4(il)2 

fE 

Since lvol, lui remain bounded away from 1, the y-factors are uniformly 
bounded, and it suffices to estimate the difference on the Hamiltonian level 
of precision. From Theorem 8.1 one has the bound I V 0 (t) - u (t) I ::::; c( r )£. 
Inserting (8.34) into (8.32) and (8.33), we obtain the same bound for the first 
derivative, lil(t)- u(t)l ::: c(r)£. Moreover It: ds IF(s)l::: Ct£2. Working out 
the differences in (8.42), one concludes 

IH(q 8 (t), v 8 (t))- H(r(t), u(t))l::::; C(t + c(t))£2 , (8.43) 

as claimed. D 

8.4 Electromagnetic fields in the adiabatic limit 

So far we have concentrated on the Lorentz force with retarded fields and have 
obtained approximate evolution equations for the charged particle. Such an ap
proximate solution can be reinserted into the inhomogeneous Maxwell-Lorentz 
equations in order to obtain the electromagnetic fields in the adiabatic limit. 

As before, let (q 8 (t), v 8 (t)), t:::: 0, be the true solution. We extend it to q 8 (t) = 
q 0 + v0 t, vE(t) = v0 fort::::; 0. According to (4.31), (4.32) and using the scaled 
fields as in (6.8), one has 

t 

~ E(t) = - I ds(Y'Gt-s * Po(s) + atGt-s * j F;(s)) (8.44) 

-00 
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with p8 (x, t) = ecp8 (x- q 8 (t)), j 8 (x, t) = ecp8 (x- q 8 (t))'lf(t). Inserting from 
(2.I5) and by partial integration, 

t 

~E(x, t) =- f ds f d3 y 1 o(lx- yl- (t- s))V' p8 (y, s) 
...;8 4rr(t-s) 

-()() 

t 

-fdsfd3y I 2 o(lx-yl-(t-s)) 
4rr(t-s) 

-()() 

x[(y-x)· V'jF:(y,s)+jF:(y,s)] 

=-efd3y( I Y'cpF;(y-q 8 (t-lx-yl))v8 (t-lx-yl) 
4rrlx- Yl 

I + 2 vF;(t -lx- Yl)(l + (y -x) · V') 
4rrlx- Yl 

CfJE:(y - qF; (t- lx- y I))) . (8.45) 

In the same fashion 

I f I r;:B(x, t) = -e d3y V 8 (t- lx- Yl) x Y'cpF;(y- q 8 (t- lx- Yl)) . 
...;8 4rrlx- Yl 

(8.46) 

In the limit 8---+ 0 one has cp8 (x)---+ o(x) and, by Theorem 8.I, qF;(t)---+ r(t), 
vF;(t)---+ u(t), wherer(t) = q 0 + v0 t,u(t) = v0 fort :s 0. Wesubstitutey' = y

qF;(t -lx- yl) with volume element det(dyjdy') = [1- 'lf(t -lx- yl) · (x
y)flx- ylr 1• Then o(y') leads to the constraint 0 = y- r(t- lx- yl) which 
has the unique solution y = r Ctret); compare with (2.22). In particular the volume 
element det(dy jdy') becomes [1- ii · uCtret)r 1 in the limit, with ii = ii(x, t) = 
(x - r Ctred) / lx - r Ctred 1. 

We conclude that 

I - I -
lim r;: E(x, t) = E(x, t), lim r;: B(x, t) = B(x, t), (8.47) 
8-+0 v 8 8-+0 v 8 

where E, B are the Lienard-Wiechert fields (2.24), (2.25) generated by a point 
charge moving along the trajectory t r-+ r(t). The convergence in (8.47) is point
wise, except for the Coulomb singularity at x = r ( t). 

8.5 Larmor's formula 

We want to determine the energy per unit time radiated to infinity and consider, for 
this purpose, a ball of radius R centered at qF; (t). At timet + R the energy in this 
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ball is 

1 
ER,qE(t) (t + R) = E(O) - 2 f 

[lx-q"(t)I:>:R} 

(8.48) 

using conservation of total energy. The radiation emitted from the charge at time t 
reaches the surface of the ball at time t + R, and the energy loss per unit time is 
given by 

d 
1R,£(t) = dt ER,q"(t) 

= J d3x 8(1x- q 8 (t)l- R) (~(n(x) · v~:(t)) (E(x, t + R)2 

+B(x, t + R)2) + E(x, t + R) · (n(x) x B(x, t + R))) 

= ~ R 2 f d2w ((w · v~:(t))(E(q~:(t) + Rw, t + R) 2 

+ B(q 8 (t) + Rw, t + R) 2) + 2E(q 8 (t) + Rw, t + R) 

· (w x B(q 8 (t) + Rw, t + R))) , (8.49) 

where n(x) is the outer normal of the ball and !WI= 1, with d2w the integra
tion over the unit sphere. Equation (8.49) holds for sufficiently large R, since we 
used {xl lx- q~:(t)l ::::_ R} n {xl lx- q~:(t + R)l :S c:Rrp} = 0, which is the case 
for (1- v)R ::::_ c:Rrp. 

Equation (8.49) still contains the reversible energy transport between the con
sidered ball and its complement. To isolate that part of the energy which is irre
versibly lost one has to take the limit R --+ oo. For this purpose we first partially 
integrate in (8.45), (8.46) by using the identity 

y-x ( (y-x)·if)-l 
Vcp = Vycp- 1 + (v~: · Vy)cp 

IY -xl IY -xl 
(8.50) 

at the argument y - q 8 (t - IY - x 1). For large R the fields in (8.49) then become 

RE(q~:(t) + Rw, t + R) ~ .;£ J d3y 4: CfJ~:(y- q~:)[- (1- w. v~:)- 1 il 

(1 ~ 8)-2(~ . 8)( 8 ~)J I 
- -W·V W·V V -W t+w·(y-q"(t))' 

(8.51) 
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RB(q~:(t) + Rw, t + R) ~ ~ f d3y 4: CfJ~:(y- q~:)[- (1- w · v~:)- 1 (w x il) 

-(1 - w. V 0 )-2 (w. il)(w X V 8 )] I -
t+w·(y-q"(t)) 

= w x RE(q 8 (t) + Rw, t + R), (8.52) 

where we used the property that t + R- lq 8 (t) + Rw- yl = t + w · 
(y- q 8 (t)) + 0(1/ R) for largeR. Inserting in (8.49) yields 

lim lR.~:(t) = l~:(t) 
R--+oo 

=- lim J d2w(I- w. v8 (t))(RE(q 8 (t) + Rw, t + R)) 2 (8.53) 
R--+oo 

= -8 J d2w(I - w · v8 (t)) 

X ([ 4: f d3 ycp~:(Y- q 8 )(1- w · v8 )-2 (w · il) r 
- [4: J d3ycp~:(y- qs)(l - w. vs)-Iil 

+ (1- w · v~:)-2 (w · il)v~:] 2) I _ . (8.54) 
t+w·(y-qE(t)) 

[ 8 (t) is the energy radiated per unit time at 8 fixed. As argued before, it is indeed 
of order 8. From the expression (8.53) it can be seen that l 8 (t) :S 0. 

Equation (8.54) is not yet Larmor's formula. To obtain it we have to go to 
the adiabatic limit 8---+ 0. Then q 8 (t)---+ r(t). Since cp8 (x)---+ o(x), we have 
y ~ q 8 (t) ~ r(t) in (8.54). From the d3 y volume element we get an additional 
factor of (1- w ·lf)- 1. Thus 

lim 8-I l~:(t) = l(t) = -e2 J d2w(I- w · u(t))(4rr(1 - w · u(t))-3) 2 
~:--+0 

x ( (w. u(t))2 - [(1 - w. u(t))u(t) + (w. u(t))u(t)]2) 

= -(e2 /6rr)[y4u(t)2 + y 6(u(t). u(t))2 ] 

(8.55) 

which is the standard textbook formula of Larmor. Note that the same energy loss 
per unit time was obtained already in (8.6) using only the energy balance for the 
comparison dynamics. 
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Starting from (8.49) one could alternatively first take the limit s- 1 /R,~:(t)---+ 
IR,o(t), which is the change of energy in a ball of radius R centered at the particle's 
positionr(t) in the adiabatic limit As before the irreversible energy loss is isolated 
through 

lim IR o(t) = I(t). 
R---+oo ' 

(8.56) 

The energy loss does not depend on the order of limits, as it should be. 
We recall that in Larmor's treatment the trajectory of the charge, taken as a 

point charge, is prescribed. In our case the charged particle is guided by external 
fields and interacts with its own Maxwell field, which is physically somewhat more 
realistic. Since the charge distribution is extended, by necessity, Larmor's formula 
holds only in the adiabatic approximation. 

Notes and references 

Section 8 

The radiation damped harmonic oscillator is discussed in Jackson (1999) with a 
variety of physical applications. The asymptotic condition was first stated in Dirac 
(1938). It has been reemphasized by Haag (1955) in analogy to a similar condition 
in quantum field theory. 

Section 8.1 

Singular, or geometric, perturbation theory is a standard tool in the theory of dy
namical systems. Sakamoto (1990) presents the theory at the level of generality 
needed here. We refer to Jones (1995) for a review with many applications. In the 
context of synergetics (Haken 1983) one talks of slow and fast variables and the 
slaving principle, which means that fast variables are enslaved by the slow ones. 
Within our context this would correspond to an attractive critical manifold. The 
renormalization group flows in critical phenomena have a structure similar to that 
discovered here: the critical surface corresponds to critical couplings which then 
flow to some fixed point governing the universal critical behavior. The critical sur
face is repelling, and slightly away from that surface the trajectory moves towards 
either the high- or low-temperature fixed points. 

Section 8.2 

Particular cases have been studied before, most extensively the one-dimensional 
potential step of finite width and with linear interpolation (Haag 1955; Baylis and 
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Huschilt 1976; Carati and Galgani 1993; Carati et al. 1995; Blanco 1995; Ruf and 
Srikanth 2000), head-on collision in the two-body problem (Huschilt and Baylis 
1976), the motion in a uniform magnetic field (Endres 1993), and motion in an 
attractive Coulomb potential (Marino 2003). These authors emphasize that there 
can be several solutions to the asymptotic condition. From the point of view of 
singular perturbation theory such behavior is generic. If 8 is increased, then the 
critical manifold is strongly deformed and is no longer given as a graph of a func
tion. For specified q (0), v(O) there are then several v(O) on C8 , which means that 
the solution to the asymptotic condition is not unique. However, these authors fail 
to emphasize that the nonuniqueness in the examples occurs only at such high 
field strengths that a classical theory has long lost its empirical validity. At mod
erate field strengths the worked-out examples confirm our findings. The general 
applicability of singular perturbation theory was first recognized in Spohn (1998). 

Sections 8.3, 8.4, and 8.5 

The discussion is adapted from Kunze and Spohn (2000a, 2000b). 
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The Lorentz-Dirac equation 

We return to the Lorentz model and add slowly varying external potentials. On a 
formal level one can carry out the expansion in s just as for the Abraham model. 
The net result is that the rotational degrees of freedom decouple from the transla
tional degrees of freedom, and the latter are governed by 

(9.1) 

which includes radiation reaction. Equation (9.1) is the Lorentz-Dirac equation, 
written in microscopic units. mo is the experimental rest mass of the particle. We 
reintroduced the speed of light, c. F is the electromagnetic field tensor of the ex
ternal fields, where for better readability we omit the subscript "ex" in this sec
tion. The scaling parameters has been reabsorbed into the definition ofF, which 
amounts to setting s = I. It should be kept in mind that the radiation reaction is a 
small correction to the Hamiltonian part. 

If one fixes an inertial frame of reference and goes over to three-vectors, then 
the time component of the Lorentz-Dirac equation reads 

and the space part becomes 

moy K(v)v = e(E(q) + c- 1v x B(q)) 

+ (e2 j6nc3) y 2K(v) [v + 3y2 c-2 (v. v) v], (9.3) 

where as before K ( v) = n + c-2 y 2 v ® v. Equation (9.3) differs from its semirel
ativistic sister (8.1) only through the proper relativistic kinetic energy. Equation 
(9.2) is identical to the energy balance (8.6), again with proper adjustment of the 
kinetic energy. Thus we can follow the blueprint of section 8.2 to establish the 
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existence of the critical manifold and to derive an effective second-order equation 
for the motion on the critical manifold. 

The Lorentz-Dirac equation makes definite predictions about the orbit of a 
charged particle, including the effects of radiation losses, and one would expect 
that these predictions can be verified experimentally. Of course, if radiation damp
ing is neglected, there is a multitude of laboratory set-ups. The real challenge is to 
observe quantitatively the minute changes in the Hamiltonian orbit due to radiation 
losses. We will discuss two proposals in section 9.3. The first one is the motion of 
an electron in a Penning trap. In the quadratic approximation for the quadrupole 
field, this problem can still be handled analytically, which is done in section 9.2 
along with a few other examples of independent interest. The second proposal is 
the motion of an electron when hit by an ultrastrong laser pulse. In this case the ex
ternal potentials are time dependent and one has to rely on a numerical integration 
of the effective second-order equation. 

9.1 Critical manifold, the Landau-Lifshitz equation 

We write (9.3) in the standard form of singular perturbation theory; compare with 
section 8.2. Then 

x = j(x,y), cy =g(x,y,c) (9.4) 

with 

j(x, y) = (xz, y), (9.5) 

g(x, y, c)= (6rrc3 je2)(mo y-1y- e y-2K(xz)- 1(E(x1) + c-1xz x B(x1))) 

- 3cy 2c-2(xz · y)y. (9.6) 

To conform with (8.1) we reintroduced the small parameter c. At ze
roth order the critical manifold is {(x, h(x))lx E IPi.3 x V} with h(q, v) = 
(efmo)y- 1 K(v)- 1 (E(q) + c-1v x B(q)). Linearizing (9.5), (9.6) at y = h(x) 

the repelling eigenvalue is (6rrc3 je2) moy-1 + O(c), which vanishes as lvl/c--+ 
1. Thus we have to rely on the construction of section 8.2, which ensures that 
for given maximal velocity v one can choose c small enough such that the orbit 
remains on the critical manifold for all times. 

To order c the effective second-order equation is given by (8.31 ), except that 
now m(v) = mo yK(v). We work out the various terms and switch back to mi
croscopic units. Then the motion on the critical manifold of the Lorentz-Dirac 
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equation is governed by 

q =V, 

e2 [ e moy K(v)v = e(E + c-1v x B)+ --3 - y (v · V)(E + c-1v x B) 
6nc- mo 

+ ( ____:____ )2 c- 1 ((Ex B)+ c- 1(v · E)E + c- 1(v · B)B 
mo 

+ (- E 2 - B2 + c-2 (v · E)2 + c-2 (v · B)2 

+ 2c- 1v ·(Ex B) )y2c- 1v) J. (9.7) 

While singular perturbation theory provides a systematic method, Eq. (9.7) 
can also be derived formally. In (9.3) we regard moy K(v)v = e (E + c-1v x B) 
as the unperturbed equation, differentiate it once, and substitute v inside the 
square brackets of (9.3). Resubstituting v from the unperturbed equation results 
in Eq. (9.7). This argument is carried out more easily and in greater general
ity, because it allows for time-dependent potentials, in the covariant form of the 
Lorentz-Dirac equation. The unperturbed equation is 

moil= (e/c)F(q) · u. 

One differentiates with respect to the eigentime, 

(moc/e)ii = (u · 'V'g)F(q) · u + F(q) · il. 

Substituting (9.9) in (9.1) and resubstituting (9.8) yields 

e2 
moil= (ejc)F · u + --3 [ (e/moc)(u · 'V'g)F · u + (e/moc) 2F · F · u 

6nc 

(9.8) 

(9.9) 

-(e/moc2) 2 (F · u) · (F · u)u]. (9.10) 

In three-vector notation the space part of Eq. (9.1 0) coincides with (9.7), except 
for the additional term (e/mo)y(otE + c-1v X orB) because of the time depen
dence of the fields. As usual, the time component of (9.10) provides the energy 
balance. 

Equation (9.10) and its formal derivation appeared for the first time in the sec
ond volume of the Course in Theoretical Physics by Landau and Lifshitz. Hence 
it seems to be appropriate to call Eq. (9.1 0) the Landau-Lifshitz equation. The er
ror in going from (9.1) to (9.1 0) is of the same order as that in the derivation of 
the Lorentz-Dirac equation itself. Thus we regard the Landau-Lifshitz equation as 
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the effective equation governing the motion of a charged particle in the adiabatic 
limit. 

9.2 Some applications 

(i) Zero magnetic field, one-dimensional motion. We assume B = 0 and ¢ex 
to vary only along the 1-axis. Setting v = (v, 0, 0), q = (x, 0, 0), and E = 
( -¢', 0, 0), the Landau-Lifshitz equation becomes 

2 
3· '· e e " moy v=-ecp(x)----y¢ (x)v. 

6rrc3 mo 
(9.11) 

The radiation reaction is proportional to -¢" (x )v, which can be regarded as 
a spatially varying friction coefficient. For a convex potential, ¢" > 0, such as 
an oscillator potential, this friction coefficient is strictly positive and the result
ing motion is damped until the minimum of ¢ is reached. In general, how
ever, ¢" will not have a definite sign, like in the case of the double well 
potential ¢ (x) :::::: (x2 - 1 )2 or the washboard potential ¢ (x) :::::: - cos x. At lo
cations where ¢" (x) < 0 one has antifriction and the mechanical energy in
creases. This gain is always dominated by losses as can be seen from the energy 
balance 

d [ e2 e J - mo y + ecp + --3 - y ¢' v 
dt 6nc- mo 

2 2 I 2 2 
e ( e ) , 2 ( e e ) , " =--- ¢ ----- ycpcpv 

6rr c3 mo mo 6n c3 mo · 
(9.12) 

The last term in (9.12) does not have a definite sign. But its prefactor is down by 
the factor e2 /moc3 and therefore it is outweighed by -¢' 2 . 

Equation (9.11) has one peculiar feature. If cp(x) =-Ex, E > 0, over some 
interval [a_, a+], then ¢" = 0 over that interval and the friction term vanishes. 
The particle entering at a_ is uniformly accelerated to the right until it reaches 
a+. From Larmor's formula we know that the energy radiated per unit time equals 
(e2 /6rrc3)(e/mo)2 E 2. Since the mechanical energy is conserved, the radiated en
ergy must come entirely from the Schott energy stored in the near field. The 
same behavior is found for the Lorentz-Dirac equation. If, locally, E = const. and 
B = 0, then the Hamiltonian part is solved by hyperbolic motion, i.e. a constantly 
accelerated relativistic particle. For this solution the radiation reaction vanishes 
which means that locally the critical manifold happens to be independent of 8. The 
radiated energy originates exclusively from the Schott energy. 
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(ii) Zero magnetic field, central potential. For zero magnetic field the Landau
Lifshitz equation simplifies to 

e2 [ e m0 yK(v)v=eE+--3 -y(v·V)E 
6nc mo 

+ (m:J2 ((v· E)E- y 2 E 2v+ y 2c-2(v· E)2v)]. (9.13) 

We take E = - V <Pex and assume that <Pex is central. Let us set q = r, lr I = 

r, f = r I lr I, <Pex (q) = <P (r) which implies E = -cp'f. Then (9.13) becomes 

mo y K( v)v = -e cp'f + _i_ [---=---- y (- ( v · f)</J"f - ~ ( v- ( v · f)f)¢') 
6nc3 mo r 

+ (m:J2 ¢' 2 ((v·f)f- y 2 v+ y 2 c-2(v·f)2 v)J. (9.14) 

The angular momentum L = r x moyv satisfies 

. e2 [ e 1 1 ( e ) 2 2 ( -2 A 2) 12 J L=-- ---¢- - y 1-c (v·r) <P L. 
6n c3 mo r moe 

(9.15) 

Thus the orientation of L is conserved and the motion lies in the plane perpendic
ular to L. No further reduction seems to be possible and one would have to rely 
on numerical integration. Only for the harmonic oscillator, <P (r) = ~ mow5r2, can 
a closed form solution be achieved. 

(iii) Zero electrostatic field and constant magnetic field. We set B = (0, 0, B) 

with constant B. Then (9. 7) simplifies to 

We multiply by K(v)- 1 to obtain 

e e2 ( e )2 2 mo y v = - ( v x B) + -. - 3 - [ ( v · B) B - B v J. 
c 6nc- moe 

(9.17) 

The motion parallel to B decouples with v3 = 0. We set v3 = 0 and v = 
(u, 0), uj_ = ( -u2, u I). Then the motion in the plane orthogonal to B is governed 
by 

(9.18) 

with the cyclotron frequency We = eB I moe and f3 = e2 16nc3mo. Equation (9.18) 
holds over the entire velocity range. For an electron f3wc = 8.8 x w- 18 B [gauss]. 
Thus even for very strong fields the friction is small compared to the inertial terms. 
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Equation (9 .18) can be integrated as 

d 2 2 
- y = -f3w, (y - 1) 
dt c 

(9.19) 

with solution 

y (t) = [yo + I + (yo - I )e -2flw~t] [yo + I - (yo - I )e -2flw~tr 1, (9.20) 

which tells us how u(t)2 shrinks to zero. To determine the angular dependence we 
introduce polar coordinates as u = u (cos cp, sin cp). Then 

du dcp -1 
dcp = -f3WcU, dt = y W. (9.2I) 

Thus u ( cp) shrinks exponentially, 

u(cp) = u(O)e-f-iuJcCfl. (9.22) 

Since f3wc = 8.8 x 10- 18 B [gauss] for an electron, even for strong fields the 
change of u over one revolution is tiny. 

To obtain the evolution of the position q = (r, 0), lr I = r, we use the fact that 
for zero radiation reaction, f3 = 0, 

u 
r= -y. 

We 
(9.23) 

By (9.22) this relation remains approximately valid for non-zero {3. Inserting u(t) 

from (9.20) one obtains 

r(t) = roe-f-iuJ~t[1 +((yo- 1)/2)(1- e-2f-iuJ~t)r 1 (9.24) 

with ro the initial radius and u(O)jc =(yo- 1) 112 !Yo the initial speed which are 
related through (9.23). In the ultrarelativistic regime, Yo » 1, and for times such 
that f3wzt « 1, (9.24) simplifies to 

1 
r(t) = ro ------=

I + Yof3w~t 
(9.25) 

and the initial decay is according to the power law t- 1 rather than exponential. 
For an electron f3wz = 1.6 x 10-6 (B [gauss])2 s- 1. Therefore if one chooses 

a field strength B = 103 gauss and an initial radius of ro = 10 em, which corre
sponds to the ultrarelativistic case of y = 6 x 104 , then the radius shrinks within 
0.9 s to r(t) = 1 f.tm by which time the electron has made 2 x 1014 revolutions. 

(iv) The Penning trap. An electron can be trapped for a very long time in the 
combination of a homogeneous magnetic field and an electrostatic quadrupole po
tential, which has come to be known as a Penning trap. Its design has been opti
mized towards high-precision measurements of the gyromagnetic g-factor of the 
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electron. Our interest here is that the motion in the plane orthogonal to the mag
netic field consists of two coupled modes, which means that the damping cannot be 
guessed by pure energy considerations using Larmor's formula. One really needs 
the full power of the Landau-Lifshitz equation. 

An ideal Penning trap has the electrostatic quadrupole potential 

I 2 ( I 2 I 2 2) ecp(x) = 2 mwz - 2x1 - 2 x 2 + x 3 , (9.26) 

which satisfies b..¢ = 0, superimposed with the uniform magnetic field 

B = (0, 0, B). (9.27) 

The quadrupole field provides an axial restoring force whereas the magnetic field 
is responsible for the radial restoring force, which however could be outweighed 
by the inverted part of the harmonic electrostatic potential. 

We insert E = -\7 <P and B in the Landau-Lifshitz equation. The terms propor
tional to (v · \l)E, Ex B, (v · B)B, and B 2v are linear in v, respectively q. The 
remaining terms are either cubic or quintic and will be neglected. This is justified 
provided 

M «I (9.28) 
c 

and 

(9.29) 

if rmax denotes the maximal distance from the trap center. With these assumptions 
the Landau-Lifshitz equation decouples into an in-plane motion and an axial mo
tion governed by 

Here q = (r' z), v = (u, z), (XJ' X2)j_ = ( -X2, xJ). 

(9.30) 

(9.3I) 

The axial motion is just a damped harmonic oscillation with frequency Wz and 
friction coefficient 

The in-plane motion can be written in matrix form as 

d 
-1/f = (A+ j3V)1/f 
dt 

(9.32) 

(9.33) 
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Figure 9.1: Orbit of an electron in a Penning trap seen from above. 

with 1/f = (r, u) and Au = 0, A12 = 11, A21 = w~11, A22 = iwzO'v, Vu = 0, 
V12 = 0, V21 = iwcW~O'y, V22 = (w~ - wz) 11, where O'y is the Paul~i spin matrix 
with eigenvectors X±, O'yX± =±X±· The unperturbed motion is governed by the 
4 x 4 matrix A. It has the eigenvectors 1/f +.± = (±i(l I w+ h=r=, X::r=) with eigenval
ues ±iw+ and 1/f-,± = (±i(ljw_)x'f, X::r=) with eigenvalues ±iw_, where 

W± = ~ (We ± J w2 - 2w~ ) . (9.34) 

The mode with frequency w+ is called the cyclotron mode and that with w_ is 
called the magnetron mode. Experimentally We » Wz and therefore w+ « w_. 
The orbit is then an epicycle with rapid cyclotron and slow magnetron motion, 
as shown in figure 9.1. The adjoint matrix A* has eigenvectors orthogonal to the 

1/f's. They are given by <P+.± = (:r=i(w~/w+h=r=, X=r=) with eigenvalues ±iw+ and 
<P-.± = ( -(w~/w-)x::r=, X=r=) with eigenvalues =r=iw_. 

Since f3 is small, the eigenfrequencies of A + f3 V can be computed in first-order 
perturbation. The cyclotron mode attains a negative real part corresponding to the 
friction coefficient 

e2 w3 
+ y + = ------=-- --'------

6rrc3mo w+- w_ 
(9.35) 

and the magnetron mode attains a positive real part corresponding to the antifric-
tion coefficient 

e2 w.3_ 
Y- = 6rrc3mo w_- w+ · 

(9.36) 

As the electron radiates, it lowers its potential energy by increasing the magnetron 
radius. 
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Experimentally B = 6 x 104 gauss and the voltage drop across the trap is 10 V. 

This corresponds to Wz = 4 x 108 Hz, w+ = 1.1 x 1012 Hz, w_ = 7.4 x 104 Hz. 
The conditions (9 .28), (9 .29) are easily satisfied. For the lifetimes (1 j Yz) = 5 x 
108 s, (lfy+) = 8 x 10-2 s, and (ljy_) = -2 x 1023 s are obtained. Thus the 
magnetron motion is stable, as observed through keeping a single electron trapped 
over weeks. The cyclotron motion decays within fractions of a second. The axial 
motion is in fact damped by coupling to the external circuit and decays also within 
a second. 

The variation with the magnetic field can be more clearly discussed in terms of 
the dimensionless ratio (wcfwz) =A. Then 

W± = Wz ~(A± JA2 - 2), Y± = ±,Bw;(A ± JA2 - 2) 3;8)A2 - 2. 

(9.37) 

For large A, w+ ~A, w_ ~ A- 1, while Y+ ~ A2, Y- ~ A-4 . As A---+ ,Ji, we 
have w+ = w_ = wz! ,Ji. However, the friction coefficients diverge as (A -
,Ji)-112 . Let us call Be the critical field at which the mechanical motion becomes 
unstable. For B > Be, one still has periodic motion with frequency wzl ,Ji, but 
the onsetting instability is revealed through the vanishing lifetime. In the men
tioned experiment A = 2.7 x 103 and for fixed Wz the critical field strength is 
Be = 30 gauss. 

9.3 Experimental status of the Lorentz-Dirac equation 

Energy loss through radiation is a well-established phenomenon. Indeed, in syn
chrotron sources electrons slow down because of radiation losses, and energy has 
to be supplied to maintain a steady electron current. The supplied power is com
puted on the basis of Larmor's formula, and synchrotron sources are one promi
nent example to confirm its validity. On the other hand, the Lorentz-Dirac equation 
goes way beyond mere energy balancing and claims to predict the orbit of an elec
tron. Here synchrotron sources provide no test, since the modification of the orbit 
due to radiation damping is lost in the noise of experimental uncertainties. As a 
fair summary, thus we can say that while qualitative aspects of radiation damping 
are well tested, there is no single experiment which probes quantitatively the pre
dictions of the electron motion by the Lorentz-Dirac equation. We propose and 
discuss here two experiments which are within the reach of present-day techni
ques. 

To cope with the smallness of the radiation reaction, in essence, only two 
approaches seem feasible. The first one is to wait long enough until the effects 
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accumulate to something which may be detected, a route followed in the Penning
trap experiment. The other option is to use ultrastrong fields. In either case, there 
is no way to monitor directly the electron orbit and one has to rely on indirect 
evidence, like lifetimes or emission spectra. 

(i) Penning trap. In the previous section we discussed the electron orbits for the 
Penning trap with the quadrupole potential in the quadratic approximation. The 
Lorentz-Dirac equation predicts, in particular, the lifetime of the cyclotron mode. 
For the field strengths used in the high-precision measurement ofthe g-factor, this 
lifetime is measured to 0.8 s in good agreement with the theoretical result. To 
have a more stringent test what would be needed is a systematic determination 
of how the lifetime depends on the magnetic field strength. Another option of 
interest is to turn the B-field out off the symmetry axis. For this case we have not 
computed the cyclotron lifetime, but could have done so by the scheme explained, 
with the welcome complication that all three modes couple. The dependence of 
the cyclotron lifetime on the orientation of the B-field would be a valuable test of 
the validity of the Lorentz-Dirac equation. 

(ii) Ultrastrong laser pulse. A strong laser pulse hits a bound electron. Since the 
atom ionizes instantaneously, the electron is subject only to the time-dependent 
laser field. Thus we set q0 = 0, v0 = 0, and for the external fields 

E(x, t) = h(wt- k · x)Eo cos(wt- k · x), 

B(x, t) = h(wt- k · x)Bo cos(wt- k · x), 

lEo I= IBol, Eo· k = 0 = Bo · k, Eo· Bo = 0. (9.38) 

h is a shape function. The motion of the electron is governed by the Landau
Lifshitz equation (9.7) augmented by the term 

e2 e a 
---- y -(E + c- 1v x B) 
6rrc3 mo at (9.39) 

because of the time dependence of the external fields. Our dynamical problem is 
in fact two dimensional with the motion of the electron lying in the plane spanned 
by Eo and k. Nevertheless one has to rely on numerical integration, and we discuss 
the example from Keitel et al. (1998). 

The ultra-intense laser field has an intensity of 1022 W cm-2 . The frequency is 
chosen to be w = 3.54 x 1015 s- 1, which is in the near-infrared regime. We fol
low the motion of the electron up to 3000 laser cycles, i.e. up to the final time 
t = 3000(2rr /3.54 X 1015) s = 0.53 X 10-11 s. Over that time span the shape 
function is assumed to interpolate linearly between zero and the full field strength. 
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k 

Figure 9.2: Orbit of an electron when hit by an ultrastrong laser pulse. 

The electron motion is highly relativistic, as can be seen from the strong redshift 
corresponding to only the seven electron cycles displayed in figure 9.2. The elec
tron is displaced by 0.1586 em in the propagation direction and has a maximal 
amplitude of 0.795 x w-3 em in the electric field direction. 

The effects of radiation damping are minute. In the propagation direction the 
distance is increased by the fraction 7 X I o-7 and in the electric field direction it 
is decreased by the fraction 10-2 . Thus a direct verification of the radiation re
action is out of reach. However, in the emission spectrum the radiation damping 
results in a roughly I% change as compared to the frictionless solution with the 
Lorentz force from the external fields of (9.38). In an experiment the radiation 
spectrum has to be measured with such precision that, after the theoretical spec
trum, computed without radiation reaction, has been subtracted, there is still a sig
nificant background which allows for a quantitative comparison with the emission 
spectrum predicted by the Lorentz-Dirac equation. 

Notes and references 

Section 9 

The name Lorentz-Dirac is standard but historically inaccurate. Some authors, 
e.g. Rohrlich (1997), therefore propose Abraham-Lorentz-Dirac instead. The 
radiation reaction term was originally derived in Abraham (1905); compare with 
chapters 7 and 8. Von Laue (1909) realized its covariant form. In the Pauli 
(1921) encyclopaedia article on relativity the equation is stated as in (9.1). Dirac's 
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contribution is explained in section 3.3. Plass (1961) is a summary of exact solu
tions of the Lorentz-Dirac equation. 

Section 9.1 

Detailed case studies of the Lorentz-Dirac equation, including its center manifold, 
are listed in the Notes to section 8.2. Baylis and Huschilt (2002) critically explore 
the relation to the Landau-Lifshitz equation. The substitution trick seems to have 
been common knowledge. For example, without further comment it is used by 
Pauli (1929) and Heitler (1936) in the particular case of a harmonic oscillator. In 
its full generality the Landau-Lifshitz equation (9.10) appears already in the first 
edition of Volume II: The Classical Theory of Fields of the Landau-Lifshitz Course 
in Theoretical Physics. At no point is the reader given a hint on the geometrical pic
ture of the solution flow and on the errors involved in the approximation. To me it 
is rather surprising that the contribution of Landau and Lifshitz is ignored in essen
tially all discussions of radiation reaction, one notable exception being Teitelbom 
et al. (1980). Spohn (1998, 2000a) uses singular perturbation theory to rederive the 
Landau-Lifshitz equation. The appearance of singular perturbation theory is diffi
cult to track. For a particular application it is clearly stated by Burke (1970). There 
have been attempts to replace the Lorentz-Dirac equation by a second-order equa
tion (Mo and Papas 1971; Shen 1972b; Bonnar 1974; Parrot 1987; Valentini 1988; 
Ford and O'Connell 1991, 1993). Based on Ford and O'Connell (1991), Jackson 
(1999) uses the substitution trick for a radiation damped harmonic oscillator and 
discusses several applications. In the case of arbitrary time-dependent potentials, 
only Landau and Lifshitz provide the correct center manifold equation. The struc
ture discussed here reappears whenever a low-dimensional system is coupled to a 
wave equation; for an application in acoustics see Templin (1999). 

Section 9.2 

Uniform acceleration is discussed in Fulton and Rohrlich (1960) and Rohrlich 
(1990). A constant magnetic field is of importance for synchrotron sources. Since 
the electron is maintained on a circular orbit, Larmor's formula is precise enough. 
Landau and Lifshitz (1959) give a brief discussion. The power law for the ultra
relativistic case is noted in Spohn (1998). Shen (1972a, 1978) discusses at which 
field strengths quantum corrections will become important. His results are only 
partially reliable, since his starting point is not the Landau-Lifshitz equation. The 
Penning trap is reviewed by Brown and Gabrielse (1986), which includes a discus
sion of the classical orbits and their lifetimes. They state the results (9.35), (9.36) 
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as based on a quantum resonance computation. Since the final answer does not 
contain n, it must follow from the Landau-Lifshitz equation (Spohn 2000a). In 
the classical framework, general trap potentials can be handled through numerical 
integration routines for ordinary differential equations. The self-force in the case 
of synchroton radiation is studied by Burko (2000). 

Section 9.3 

The Penning-trap experiment is proposed in Spohn (2000a). The numerical results 
on ultrastrong laser pulses are taken from Keitel et al. (1998). Another proposal, 
which apparently never received the proper funding, is to measure the mega-gauss 
magnetic bremsstrahlung for ultrarelativistic electrons (Erber 1971; Shen 1970). 
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Spinning charges 

The Lorentz model includes by necessity the inner rotation of charges and, beyond 
the translational degrees of freedom, one has to determine its effective dynamics. 
This will lead to a derivation of the Bargmann-Michel-Telegdi (BMT) equation 
from a microscopic basis including an expression for the gyromagnetic ratio. We 
will also discuss the Abraham model with spin, a little-explored territory, since it 
is more easily controlled mathematically and it teaches us how the BMT equation 
is modified when Lorentz invariance is no longer available. 

10.1 Effective spin dynamics of the Lorentz model 

Let us recall the equations of motion for an extended charge, where for the moment 
the interaction with the self-field is ignored, 

p = f, s + f!pw · s = t . (10.1) 

Here the external force f, respectively the external torque t, are defined through 
(2.92), respectively (2.95). Equation (I 0.1) must be supplemented by 

p = mgu, s = hw, (10.2) 

which define the bare gyrational mass mg and the bare moment of inertia h. Both 
depend on lwl. 

We assume now that the external field tensor is slowly varying, by replacing 
F(q) by the scaled field tensor .sF(.sq) in (2.92), (2.95). Note that this prescription 
automatically includes slow variation in time. f and t simplify in the limit of small 
.sand, on the macroscopic scale, (10.1) becomes 

p = eF · u, s + f!pw · s = 11(F · w)j_ (I 0.3) 

119 
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with the magnetic moment 

fL = ~e J d3xcp(x)x2 (10.4) 

and a_i = (g + u ® u) ·a. Since lwl is conserved, the translational motion is au
tonomous, whereas the spin follows the local fields as they are encountered. 

As a next step we have to include the coupling to the self-field. In principle the 
scheme of chapter 7 has to be repeated, but we prefer to take the static short -cut. 
The energy-momentum relation for the Lorentz model was computed in chapter 4. 
Thus we stipulate that the bare gyrational mass mg is renormalized to mg + mf and 
the bare moment of inertia to h + h; see ( 4.43), ( 4.45), respectively ( 4.49), ( 4.51 ). 
This means that instead of (1 0.2) we have 

p = (mg + mf)u, s = (h + h)w. (10.5) 

Equation (10.3) together with (10.5) is the effective dynamics in the adiabatic limit 
on the Hamiltonian level neglecting radiation damping. 

We want to compare our spin dynamics with the BMT equation which reads 

. g e j_ 
w + f!pw · w = 2m (F · w) , (10.6) 

where m is the experimental mass and g the gyromagnetic ratio, which like the 
charge is an intrinsic property of the particle. Using the fact that f!pw is determined 
by Newton's translational equations of motion one arrives at the perhaps more 
familiar three-vector form for the angular velocity, 

w = _!_w x [(~- 1 + ..!:..)n - (~- 1)-Y-c-2 (v · B )v 
me 2 y ex 2 1 + y ex 

- (~- _Y_)c- 1v x E J. (10.7) 
2 1 + Y ex 

Here v, Eex, Bex are to be evaluated along the given orbit. To compare (10.6) with 
(1 0.3) one uses (1 0.6) and notes that, since lw I is a constant of motion, 

w + f!pw · w = _IL_(F · w)j_. 
h+h 

Therefore the gyromagnetic ratio of the Lorentz model is given by 

2M mg + mf 
g=-

e h+h 

(10.8) 

(1 0.9) 

The magnetic moment fL depends on the charge distribution, all other terms in 
(1 0.9) on the mass distribution. Through their variation any value of g can be real
ized, unless the charge and mass form factors are equal to each other, as assumed 
already. In the case of a uniformly charged sphere [ball] of radius R the integrals 
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in (10.9) can be evaluated with the result (the first term refers to a sphere and 
[ ... ] to a ball) 

11=leR2 , [ =leR2], (10.10) 

m" = mb-1-arctanhwR, [ = mb 3 
3 (wR- (1- (wR)2)arctanhwR)], 

b wR 2(wR)-

I e2 ( 2 ) [ I e2 ( 6 4 ) J ( 10. I I ) 
mf = -- I+ -(wR)2 = -- - + -(wR)2 (10.I2) 

2 4rr R 9 ' 2 4rr R 5 35 ' 

I ( I + (wR)2 ) 
h = mb 2w2 - 1 + wR arctanhwR , 

[= mb~ 3 
3 (3wR- (wR) 3 + ( -3 + 2(wR)2+(wR)4)arctanhwR)], 

2w 4(wR)-

2 e2 [ 4 e2 J (10.I3) 

h = 9 4rr R ' = 35 4rr R · (10.I 4) 

In the limite --+ 0, gsphere decreases from 1 to 2/3 and gball from 1 to 2/5 as wR 
increases from 0 to 1. In the opposite limit mb --+ 0, one obtains 

3 I 2 2I I 2 
gsphere = 2 + 3(wR) , gball = 10 + S(wR) . (10.I5) 

10.2 The Abraham model with spin 

Abraham models the charge as a nonrelativistic rigid body with mass distribution 
mbcp and charge distribution ecp, which for notational simplicity we take to be 
proportional to each other. A complete mechanical description must specify both 
the center of mass, q (t), and the angular velocity, w(t) E JR3, relative to the center. 
The spinning charge generates the current 

j(x, t) = (v(t) + w(t) x (x- q(t)))ecp(x- q(t)), (10.I6) 

which satisfies charge conservation, since cp is radial. Therefore the Maxwell equa
tions have a modified source term and read 

atB(x, t) = -\7 x E(x, t), 

OtE(x, t) = \7 x B(x, t)- (v(t) + w(t) x (x- q(t)))ecp(x- q(t)), 

\7 · E(x, t) = ecp(x- q(t)), \7 · B(x, t) = 0. (10.I7) 
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The momentum of the center of mass is mbv(t) and the angular momentum 
relative to q (t) is 

(10.18) 

Therefore Newton's equations of motion for the translational degrees of freedom 
become 

~mbv(t) =fd3xecp(x- q(t))[E(x, t) + (v(t) + w(t) x (x- q(t))) x B(x, t)] 
dt 

and for the rotational degrees of freedom 

~h w(t) = J d3xecp(x- q(t))(x- q(t)) 
dt 

(10.19) 

x [E(x, t) + (v(t) + w(t) x (x- q(t))) x B(x, t)]. (10.20) 

If in addition there are external forces acting on the charge, then E and B in 
(1 0.19), (1 0.20) would have to be replaced byE+ Eex and B + Bex. respectively. 

The Abraham model of section 2.4 is obtained by formally setting w(t) = 0. 
Note that this is not consistent with Newton's torque equation (1 0.20), since 
w(t) # 0, in general, even for w(t) = 0. 

The Abraham model with spin conserves the energy 

(10.21) 

the linear momentum 

(10.22) 

and in addition the total angular momentum 

(10.23) 

Of course, also the spinless Abraham model is invariant under rotations and there 
must exist a correspondingly conserved quantity, only it does not have the standard 
form of a total angular momentum, which from a somewhat different perspective 
indicates that inner rotations must be included. 

In the by now established tradition, we assume that the external forces are 
slowly varying and want to derive in this adiabatic limit an effective equation of 
motion for the particle including its spin. As a first step of this program we have 
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to determine the charge solitons. We set 

q(t) = vt, w(t) = w, E(x, t) = E(x- vt), B(x, t) = B(x- vt) (10.24) 

and have to determine the solutions of 

-v ·'VB=- 'V x E, - v · 'V E = 'V x B- (v + w x x)ecp, 

'V · E = ecp, 'V · B = 0, (10.25) 

0 = I d3xecp(x)[ E(x) + (v + w x x) x B(x) J, (10.26) 

0 =I d3xecp(x)x x [E(x) + (v + w x x) x B(x) J, (10.27) 

for which we turn to Fourier space. The inhomogeneous Maxwell equations 
(I 0.25) are then solved by 

with 

and 

E I (k) = -i[k2 - (k. v)2r 1 (k- (k. v)v)ecp(k)' 

E2(k) = -[k2 - (k. v)2r\w X k)(v. 'Vk)ecp(k)' 

Bl(k) = i[k2 - (k. v)2r\k X v)ecp(k)' 

B2(k) = -[k2 - (k. v)2r 1 (k X (w X 'Vk))ecp(k). 

Note that E1, B1 are odd, and E2, B2 are even ink. 

(10.28) 

(10.29) 

(10.30) 

(10.31) 

(10.32) 

Since the integral over an odd term vanishes, a zero Lorentz force results in the 
condition 

-I d3k(jJ*[k2 - (v. k)2r 1cw x k)(v. vk)(jJ 

-I d3k(jJ*[k2 - (v. k)2r 1v x (k x (w x vk))(j} 

+I d3k[k2 - (v. k)2r 1 ((w X 'Ilk)~) X (k X v)cp 

=-I d3k~[k2- cv. k)2rllkl-lcp;: 

x ((w xk)(v·k) +vx (k x (w xk))- ((w xk) ·v)k) =0 

for every v and w, using the fact that (jJ is radial. 

(10.33) 
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The Lorentz torque requires more work. Using again the fact that the integral 
over an odd term vanishes, we have 

i J d3ke$"*(Y'k x E1 + Y'k x (v x BJ) + Y'k x ((w x i\lk) x B2)) (10.34) 

= -e2 f d3klkl- 1$;'[k2 - (k · v)2r1cp{k X (k- (k · v)v) 

-k X (v X (k X v))) + e f d3klkl- 1$;'k X ((w X Y'k) X B2) 

= e J d3klkl- 1$;'k x (V'k(w · B2)- w\lk · B2) 

= -e J d3klkl- 1$;' x (k x w)\lk · B2. 

For the divergence of B2 we obtain 

and therefore zero Lorentz torque results in the condition 

J d3kiV'kCiJI 22[k2 - (k · v)2r2(k x w)(w · k- (v · w)(v · k)) = o. (10.36) 

Taking into account that cp is radial, the torque vanishes only if either w II v or 
w_iv. If v = 0, the torque always vanishes. For w oblique to v Eqs. (10.17)
(10.20) have no soliton-like solution. 

Physically the charge distribution is rigid, but the electromagnetic fields are 
Lorentz contracted along v. This mismatch yields a nonvanishing torque unless 
w II v, respectively wl_v. Clearly, the mismatch is an artifact of the semirelativis
tic Abraham model. As discussed in the previous section, for a relativistic ex
tended charge distribution there is a charged soliton for every v and w. Because in 
the Abraham model some charge solitons are "missing", an analysis of the adia
batic limit is hampered at an early stage and we do not really know what happens. 
Through radiation damping the spin could be forced to remain parallel to v(t). 

There could be an effective dynamics separately for the parallel and perpendicular 
components of w(t). Only one particular case lends itself to a more detailed analy
sis. We simply make sure that q(t) = 0 for all t, e.g. by taking Eex = 0, Bex = EB 
with B a spatially constant, possibly time-dependent vector, and suitable initial 
conditions for the Maxwell field. Then the Abraham model without external forces 
has a stationary solution for every w and the adiabatic limit is meaningful and of 
interest. We take up this problem in the following section. 

In the quantized version of the Abraham model, the Pauli-Fierz Hamiltonian to 
be discussed in chapter 13, the spin couples differently and the Lorentz torque is 
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not the quantization of the right-hand side of (10.20). The Pauli-Fierz model has 
a two-fold degenerate ground state for every fixed total momentum (smaller than 
some critical value Pc). Associated to this subspace there is an adiabatic evolution 
which admits an arbitrary spin orientation. Thus through quantization one regains 
some features of the relativistic model. 

10.3 Adiabatic limit and the gyromagnetic ratio 

We consider a spinning charge sitting forever at the origin and hence choose 
Eex = 0, Bex = t:Bo with a constant Bo, the initial E field odd, and the initial 
B field even in x. Then the equations of motion simplify. We recall them for com
pleteness, 

(]rB(x, t) =-V' x E(x, t), (]rE(x, t) = V' x B(x, t)- (w(t) x x)e<;?(x), 

(10.37) 

V' · E(x, t) = e<;?(x), V' · B(x, t) = 0, (10.38) 

together with Newton's rotational equations of motion 

h~w = e J d3x<;?(x)x x (E(x, t) + (w(t) x x) x (t:Bo + B(x, t))). (10.39) 
dt 

To obtain the effective dynamics let us first argue statically. The angular mo
mentum, s, of the charge soliton is the sums = Sb +Sf with Sb = hw and 

Sf = f d3 XX X (E X B) (10.40) 

forE, B the charge soliton field at v = 0 and w. Inserting from (10.28)-(10.32) 
we obtain 

Therefore 

s = (h + h)w. 

The external torque is J-t x Bex with the magnetic moment 

J1 = fLW, fL = ~e f d3x<;?(X)x2 , 

and thus the spin precession reads 

d 
-s = J-t X Bex , 
dt 

d 
(h + h)-w = fLW X Bex. 

dt 

(10.41) 

(10.42) 

(10.43) 

(10.44) 



126 Spinning charges 

The conventional definition of the gyromagnetic ratio g is through 

d e 
-w = g -w x Bex , 
dt 2m 

(10.45) 

where m is the mass of the particle; compare with the BMT equation (10.7) for 
small velocities. Equating (10.44) and (10.45) we deduce the effective g-factor of 

the Abraham model as 

Fore --+ 0 we obtain g = 1, as it has to be. In the opposite limit, mb --+ 0, only 
the second summands survive. We did not discover any simple bounds, but for a 
uniformly charged sphere and ball the integrals have already been computed at the 
end of section 1 0.1. One obtains with R = Rep the radius of the sphere, respectively 
ball, 

1 + (e2 j4rr Rmb)(2j3) 1 + (e2 j4rr Rmb)(4j5) 
gsphere = 1 + (e2 j4rrRmb)(1j3)' gball = 1 + (e2 j4rrRmb)(2/7) · (10.47) 

Thus gsphere--+ 2, respectively gball--+ 14/5, for Rmb--+ 0. For g = 2 the spin 
and orbital precession are exactly in phase, whereas for g = 1 the spin turns once 

during two cyclotron revolutions. 
To provide dynamical support we follow the scheme of chapter 7. One integrates 

(10.37), (10.38) and inserts in the Lorentz torque taking into account that the initial 

fields decay quickly. Then 

d 
h-w(t) = EJLW(t) x Bo + Nself(t), 

dt 

where, after some rearrangement, the retarded torque simplifies to 

t 2 2 f 3 ~2 Nself(t) = Jo ds3e d· kl\lkcpl 

(10.48) 

x (-(cos lkl(t- s))w(s) + l~l (sin lkl(t- s))w(t) x w(s)). 

(1 0.49) 
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Let us denote the solution to (10.48) by w£(t) = w(8t). We insert this ansatz in 
(10.49) and Taylor-expand. Then 

t-It 2 I N~elf(8- 1 t) = Jo ds3e2 d3kiVkiPP(- (cos lkl(8- 1t- s))w(8s) 

+_!_(sin lkl(8- 1t- s))w(8t) x w(8s)) 
lkl 

t-it 2 I ~ Jo ds3e2 d3kiVkiPP(- (cos lkls)(w(t)- 8sw(t) 

1 1 
+ 282s 2w(t)) + lkl(sin lkls)w(t)(w(t) 

-8sw(t) + ~82s 2w(t))). (10.50) 

Let 

fp = 100 
dttP I d3kiVkiPPI~I sinlklt, lp = 100 

dttP I d3kiY'kqJJ 2 coslklt. 

(10.51) 

Then, using the fact that (if is radial, 

Io =I d3kiY'kiP1 2 1kl-2 , h = 0, 

h = - 1 ld3xld3x'<p(x)<p(x')x ·x'lx -x'l = --1 ld3k1Vk(/il 2 1kl-4 , 
4rr 2rr 

(10.52) 

and 

lo = 0, lp = -pfp_1, p = 1, 2, .... (10.53) 

Therefore to order 8 2 

£ () 2 2 "() 212 () ""() N;elf t = -83e low t + 8 3 e hw t x w t , (10.54) 

and inserted in (10.48) 

1 
h8W(t) = 8JLW(t) X Bo- 8hW(t) + 82-e2 hw(t) X w(t)' (10.55) 

3 

where h = 2e2 Io j3 in agreement with the static result (I 0.41 ). 
Beyond the renonnalization of h we have also obtained the radiation reaction 

w(t) x w(t). As for the translational degrees of freedom only the solution on the 
center manifold is of physical relevance. To compute the effective dynamics we 
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regard (10.44) as the unperturbed dynamics and reinsert in (10.55). To be some
what more general let us take Bo to be time dependent and varying on the slow 
time scale. One obtains 

(h + h)w = f-lW x Bo + 8e2 (!-lh/3(h +If) )(w(w · Bo) + (w x CBo x w))). 

(10.56) 

Since w 2 is conserved under (10.56), the radiation reaction only modifies the fre
quency of gyration to order 8. A second-order term like w would lead to friction in 
the effective equation. As can be seen from (I 0.53), its prefactor h vanishes and 
radiation damping appears only at order 8 4 through 14 ·w·. 

Notes and references 

Section 10.1 

BMT is an acronym for Bargmann, Michel and Telegdi (1959). The BMT equa
tion is explained in Jackson (1999). Bailey and Picasso (1970) is an informative 
article on how the BMT equation is used in the analysis of the high-precision mea
surements of the electron and muon g-factor. The BMT equation with g = 2 is 
the semiclassical limit of the Dirac equation (Rubinow and Keller 1963; Bolte 
and Keppeler 1999; Spohn 2000b; Panati et al. 2002a). Appel and Kiessling 
(200 1) compute the effective parameters for a charge distribution concentrated on 
a sphere. 

Just as for translational degrees of freedom, one way to guess the effective spin 
dynamics is to impose Lorentz invariance. In addition, one could require that the 
equations of motion come from a Lagrangian action. In full generality, including 
an electric dipole moment, this program is carried out by Bhabha (1939), Bhabha 
and Corben (1941) with earlier work by Frenkel (1926). Alternative approaches 
are compared in Corben (1961) and Nyborg (1962). Concise summaries are Barut 
(1964), who discusses also how the BMT equation fits into the general scheme, 
Teitelbom et al. (1980), and Rohrlich (1990). A more microscopic approach would 
be to carry out the adiabatic limit for the Lorentz model of section 2.5. In Nodvik's 
version of the model such an expansion is pushed to the order where translational 
and rotational degrees of freedom couple (Nodvik 1964). 

The Lorentz model simplifies if initial data are assumed such that the particle 
moves at constant velocity. Then translational and rotational degrees of freedom 
decouple. Appel and Kiessling (2002) study the existence of solutions and their 
long-time limit. In the adiabatic limit, compare with section 1 0.3, the angular mo
mentum responds to an external torque through the effective gyromagnetic ratio 
of (10.9). 
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Section 10.2 

The nonrelativistic model of a rotating charge is introduced by Abraham (1903) 
and studied by Herglotz (1903), Schwarzschild (1903), and Thomas (1927). 
Schwarzschild ( 1903) notes that a stationary solution exists only if w is either 
parallel or orthogonal to v. Kiessling (1999) remarks that the standard form of 
the total angular momentum is conserved only if the inner rotation of the charged 
particle is included. 

Section 10.3 

Grandy and Aghazadeh (1982) compute the gyromagnetic ratio to order e2 . The 
validity of the equations of motion (10.56) is proved in Imaikin et al. (2004). 
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Many charges 

There is little effort in extending the Abraham model to several particles. We label 
their positions and velocities as q jCt), Vj(t), j = 1, ... , N. The j-th particle has 
bare mass mbj and charge e i, where for simplicity the form factor (ii is assumed 
to be the same for all particles. The motion of each particle is governed by the 
Lorentz force as before, and the current in the Maxwell equations now becomes 
the sum over the single-particle currents. Therefore the equations of motion read 

c- 1atB(x, t) = -\7 x E(x, t), 
N 

c- 1atE(x, t) = \7 x B(x, t)- L ejcp(x- qj(t))c- 1vj(t), 
j=l 

N 

\7 · E(x, t) = L ejcp(x- q 1(t)), \7 · B(x, t) = 0, (11.1) 
j=l 

~(mbi YiVi(t)) = ei(Eep(qi(t), t) + c- 1vi(t) x Bep(qi(t), t)), (11.2) 
dt 

h . - 1 N .th . - (1 ( ·/ )2)-I/2 w ere t - , . . . , Wl y1 - - Vz c . 
There are no external forces. The force acting on a given particle is due to the 

other particles, as mediated through the Maxwell field, and to the self-force, which 
we have discussed already at length. If two particles are at a distance of only a few 
times Rep, then they interact strongly with forces which depend on the details of 
the phenomenological and unknown charge distribution. Thus physically we trust 
our model only if particles are far apart on the scale set by Rep. 

11.1 Retarded interaction 

Let us take as a starting point the condition that initially particles are far 
apart, thus lq?- q~l = O(.s- 1 Rep). The velocities are less than c, not necessarily 
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small, and the initial fields are the linear superposition of N charge soliton 
fields corresponding to the initial conditions q?, v?, i = 1, ... , N. To under
stand the scales involved it is convenient to switch to macroscopic coordinates, 
which simply amounts to replacing in (11.1 ), (11.2) e j by ylce j and cp by cpF; 
with cpF;(x) = 8-3cp(8- 1x); compare with the second half of section 6.1. Then 

lq?- q~l = 0(1). 
We insert the solution of the inhomogeneous Maxwell-Lorentz equations (11.1) 

into the Lorentz force of (11.2). The forces are additive and the force on particle 
i naturally splits into a self-force (i = j) and a mutual force (i =J. j). For the self
force one uses the Taylor expansion of chapter 7. Thereby the mass is renormalized 
and the next order is the radiation reaction. For the mutual force we recall that 
in section 7.2 it was shown already that, to leading order, the field generated by 
charge j is the Lienard-Wiechert field. Thus, one obtains as retarded equations of 
motion 

N 

mi(Vi)Vi = L 8ei(Eretj(qi, t) +Vi X Bretj(qi, t)) 
j=i 
j#i 

+ 8(eT j6n)[yi4 (vi ·Vi )vi+ 3yi6 (vi · Vi) 2vi + 3yi4 (vi ·Vi )vi+ y 2vi ], 

(11.3) 

t ::::_ 0, which accounts for the effective mass mi and the radiation reaction of the 
i-th particle; compare with Eq. (8.1). Eretj(X, t) equals (2.24) withe replaced 
by e j, q replaced by q j, and tret replaced by tretj which is implicitly defined 
through 

tretj = t - IX - q j (tretj) I . (11.4) 

For x = q i the retarded time is of order 1. Similarly Bretj (x, t) equals (2.25) with 
q replaced by q j and tret replaced by tretj. The strength 8 results from the charge, 
vfcei, and the scale factor ylc in (8.47). Viewed differently, on the microscopic 
scale the force is of order (distance)-2 = 8 2 and thus of order 8 when accumulated 
over a time span 8-1. To solve (11.3) one needs the trajectories for the whole past. 
Our assumption of no initial slip is equivalent to 

(11.5) 

which must be added to (11.3). 
Using (11.3) one can estimate the size of the various contributions. The near 

fields of Eretj and Bretj are of order 1. Therefore the acceleration is of order 8, 
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which implies that the far field of Eretj and Bretj is O(s2). The radiation reaction 
term involves Vi and is therefore 0(s3). 

We see that the various contributions are well ordered in powers of s. The 
forces are weak, however, and therefore over longer times the particles will move 
apart, which is of somewhat reduced interest. There are two limiting situations of 
physical relevance, which will be discussed in the following sections. One pos
sibility is to take the initial velocity I vi I cl « 1. Then to lowest order the 
particles interact through the static Coulomb potential and post-Coulombic 
corrections can be studied meaningfully. The other option is to let N --+ oo, 
which yields a kinetic description for charge densities as commonly used in 
plasma physics. 

11.2 Limit of small velocities 

We impose the condition that initially lvj lei « I. Then retardation effects should 
be negligible and the particles interact through the static Coulomb potential. Ac
cording to the standard textbook recipe, I v j I c I « I is to be interpreted as c --+ oo. 
Indeed, from ( 11.1) one concludes B = 0 and 

N 

\7 x E(x, t) = 0, \7 · E(x, t) = L ejCfJ(X- q j(t)), 
j=l 

(11.6) 

which together with Newton's equations of motion yields the desired result. Un
fortunately, our argument fails on two counts. First, the interaction is obtained as 
the smeared Coulomb potential. More severely, in Newton's equations of motion 
only the bare mass of charge i appears, whereas physically it should respond to 
forces with its renormalized mass. Of course, the reason is that c --+ oo does not 
ensure charges to be far apart on the scale of RlfJ. 

To improve we require, as in the previous section, that the initial positions sat
isfy 

(11.7) 

Then the force is of order s2. Under rescaling the dynamical variables should be 
of order 1 as s --+ 0. If in addition we demand the relation q = v to be preserved, 
the only choice remaining is 

(11.8) 
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Indeed, the accumulated force is of order V£, which means that the magnitude of 
the velocity is preserved. We have arrived at the following scale transformation 

t = 0 -3/2[1' -] I (";; I 
c q j = £ q j , V j = y EV j , 

x = £- 1x 1 , E = £ 312£ 1 , B = £ 312B 1 , (11.9) 

where the primed quantities are considered to be of 0(1). The field amplitudes are 
scaled by £3/ 2 so as to preserve the field energy. There is little risk in omitting the 
primes below. We set 

Then the rescaled Maxwell's and Newton's equations of motion are 

,JEatB(x,t) = -V' x E(x,t), 
N 

,J£ atE(x, t) = V' x B(x, t)- L ,J£ejCP8 (x- qj(t)),J£vj(t), 
j=l 

N 

(11.10) 

Y'·E(x,t)= L.:-J£ejC{Jo(x-qj(t)), Y'·B(x,t)=O, (11.11) 
j=l 

d 
£ dt (mbi(l- Evf(t) 2)-112vf(t)) = ,JEei(Erp"(qf(t), t) 

+ ,J£vf(t) X Brp"(qf(t), t)). (11.12) 

On the new scale the velocity of light tends to infinity as c j V£ and the charge 
distribution has total charge V"£e j, finite electrostatic energy mf, and shrinks to a 
8-function as cp8 • Recall that the scale parameter£ is just a convenient way to order 
the magnitudes of the various contributions. 

Before entering into more specific computations, it is useful first to sort out 
what should be expected. We follow our practice from before and denote positions 
and velocities of the comparison dynamics by r j, u j, j = 1, ... , N, i.e. qj (t) ~ 
r j (t), vj (t) ~ u j (t). Since the velocities are small, the kinetic energy takes its 
nonrelativistic limit 

1 ( 4 ) 2 To(u·)=- mb·+-mc u. 
1 2 1 3 1 1' 

(11.13) 

up to a constant; compare with (4.24). Note that the mass of the particle is renor
malized through the interaction with the field. For small velocities, magnetic fields 
are small and retardation effects can be neglected. Thus the potential energy of the 
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effective dynamics should be purely Coulombic and be given by 

(11.14) 

To obtain post-Coulombic corrections, one has to expand properly the self- and 
retarded forces, which we will carry to order £ 512 where the radiation reaction 
appears first. Since, as can be seen from (11.1 ), (11.2), the forces are additive, it 

suffices to consider two particles only. For initial conditions we choose the linear 
superposition of the two charge solitons corresponding to the initial data q?, v?, 
i = I, 2. One solves the Maxwell equations and inserts them in the Lorentz force. 
As already explained, in the self-interaction the contribution from the initial fields 
vanishes fort :=:: drp. In the mutual interaction the initial fields take a time of order 

,JE to reach the other particle and their contribution vanishes fort :=:: ,JSiq~- qgl. 
Thus for larger times one is allowed to insert in ( 11.2) the retarded fields only, 
which yields 

d ( E: ) £- mbl Yl V1 (t) = Fret II (t) +Fret 12(t), 
dt ' ' 

(11.15) 

(11.16) 

where 

t 

Fret,ij(t) = eiej Ids I d3kli{J(Ek)l 2eik·(qj(t)-qj(s)) 

0 

x (- £1/ 2(1kl- 1 sin(lkl(t- s)jy'c))ik- E(cos(lkl(t- s)jy'c))vj(s) 

+£312(1kl-l sin(lkl(t- s)jy'c))vf(t) x (ik x vj(s))), (11.17) 

i, j = 1, 2. 
For the self-interaction we set Ek = k', £-312t = t'. Then 

()() 

Fret,u(t) = £-3/2(q)2 I dr I d3klifJ{k)l2eik·(q"J(t)-q"J(t-~:312r))/t: 
0 

x (- £1/ 2(1kl- 1 sin lklr)ik- £(cos lklr)v~(t- £312r) 

+ £312(1kl- 1 sin lklr)v~ (t) x (ik x v~ (t - £312r))) . (11.18) 
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One Taylor-expands as 

1 1 
s -1 (q~ (t) - q~ (t - s3f2r)) = slf2rv - 2s2r2v + (/ 7 /2r3ii' 

1 
vf (t - s 312r) = v- s312rv + -s3r 2ii. 

2 

Then, up to errors of order s3 , 

()() 

Fret, II (t) = (el)21dr I d3kl~(k)l 2 (s[- (lkl-l sin lklr) ~r2 (k. v)k 

0 

1 
+(cos lklr)rv] + s 2[(- (lkl-l sin lklr)2r2(k. v)k 
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(11.19) 

+(cos lklr)rv) (- ~r2 (k. v)2) -(cos lklr)~r 3 (k. v)(k. v)v 

1 
+ (lkl-l sin lklr)(r2(k · V)V X (k XV)+ -r2(k · v)(v X (k X v)))] 

2 

(11.20) 

For the mutual interaction we leave the k-integration and set s 112t = t'. 

Then 

()() 

Fret,12(t) = -J€e1e2 I dr I d3kl~(sk)l 2eik·(qf(t)-q2(t-v"£r)) 
0 

x (- s 112(1kl-l sin lklr)ik- s(cos lklr)v~(t- -J"€r) 

+s312(1kl- 1 sin lklr)vf(t) x (ik x v~(t- -J"€r))). (11.21) 

One Taylor-expands as 

(11.22) 
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with r = q~ (t) - q~ (t). Then, up to errors of order .s3 , 

()() 

Fret, 12 = e1 e2 I dr I d3klq}(.sk) 12eik·r (- .s(lkl- 1 sin lklr) ik + .s2[ (lkl- 1 sin lklr) 

0 

1 1 
X (- - r 2 (k · V2)k +- r 2 (k · V2) 2ik + V1 X (ik X V2)) 

2 2 

+(cos lklr)(rv2- ir(k · v2)v2)] 

1 1 
+ .s512[ (lkl- 1 sin lklr)( -r3 (k · v2)k- -r3 (k · v2)(k · v2)ik 

6 2 

- ~r3 (k · v2)3k) - (cos lklr)~r2vJ) 
6 2 

= (ele2/4n)(- .SY'rlrl- 1 + .s2[( ~ Y'r(V2 · Y'r)- ~Y'r(V2 · Y'r)2)1rl 
2 2 

- (V2- V2(V2 · Y'r))lrl- 1 +(VI X (Y'r X V2))1rl- 1] 

(11.23) 

We discuss each order separately, where we recall that in (11.15), ( 11.16) the 

acceleration is multiplied by .s. As anticipated, to order 1 one obtains the Coulomb 
dynamics with renormalized mass from F jj (t). Let us define the Coulomb La
grangian 

N N "'1( 4 ) 2 1"' eiej 
Lcoul = L...,; -2 mbj + -3mfj ui- -2 L...,; 4 I . _ ·I . 

. I ·-~-. I JT rt rl j= 1-,-j= 

(11.24) 

Then the comparison dynamics is 

d 
-(Y'u Lcoul)- Y'r Lcoul = 0, j = 1, ... , N, dt J J 

(11.25) 

with the error bounds 

lqj(t) -rj(t)l = O(.s), lvj(t) -uj(t)l = O(.s). (11.26) 

The first-order correction is O(.s). More conventionally the error is counted in 

powers of lv/cl relative to the zeroth-order Coulomb dynamics. To convert, one 
only has to set .s = 1. The first correction is then of order lv/cl 2 (= O(.s), compare 
with (11.8)), and the next-order corrections lv/ cl 3 . The order .s2 terms in (11.20), 
(11.23) combine in a simple fashion and yield the Darwin correction. Let us define 
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the Darwin Lagrangian 

N 

Lctarw = L ( ( mbj + ~mfj) ~u] + £( ~mbj + }:_mfj )c-2uj) 
j=l 3 2 8 15 

137 

N 
1 " eiej [ 1 ( ~ ~ )] -- ~ . . 1-£-2 Ui · Uj + (ui ·rij)(uj ·rij) 
2 i#J=l 4rrlrt -r1 1 2c 

(11.27) 

with Tj j = (r i - r j) I lr i - r j 1. In the first sum one recognizes the correction to 
the kinetic energy, while in the second-term corrections due to retardation and 
the magnetic field combine into a velocity-dependent potential. The comparison 
dynamics is governed by the improved Lagrangian, 

d 
-(Y'u Lctarw)- Y'r Lctarw = 0, ) = 1, ... , N, dt J J 

(11.28) 

with the error bounds 

(11.29) 

At order lvlcl 3 one picks up terms proportional to Vj. Remarkably, the prefac-
tors in Fretjj and Fretji are identical, and one obtains the comparison dynamics 

d e· N 
-(Y'u Lctarw)- Y'r.Lctarw = t:312 __j__3 "eiiii, j = 1, ... , N. 
dt 1 1 6rrc ~ 

1=1 

(11.30) 

The physical solutions have to be on the center manifold of (11.30). At the present 
level of precision it suffices to substitute the Lagrangian dynamics to lowest order, 
which yields 

ii'i' 

If the charge-mass ratio e i I m i does not depend on j, the damping term 
is suppressed. The collection of charges has vanishing dipole moment. This 

can be seen also directly by considering the dipole moment d = 'Lf= 1 e W j = 

J;f= 1(eJimJ)mJqi. If (eJimJ) = const., then d equals the center of mass and 

d = 0. Thus there is no dipole radiation. Only quadrupole radiation is allowed and 
radiation damping would appear at the scale lvlcl 5. 

We briefly return to the limit c ---+ oo from the beginning of this subsection. 
In fact, the expansion for computing the effective dynamics turns out to be not 
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so drastically different as one might have anticipated. To lowest order the kinetic 
energy is mbju]/2 and is modified to (mbj + (4mfj j3c2))u]f2 at the Darwin order 

lvfcl2 . The correction to the quadratic behavior is visible only at order lvfcl4 . The 
friction term is identical to that of (11.30). Only in (11.27) must the Coulomb 
potential be smeared by the charge distribution cp. 

11.3 The Vlasov-Maxwell equations 

If N is large, it is impractical to follow the trajectory of individual particles and, as 
widely used for example in plasma physics, a kinetic description is more appropri
ate. The basic object describing matter is now the distribution function fa (x, v, t). 

For each component a it is a function on the one-particle phase space and defined 
through 

fa (x, v, t )d3 xd3 v = ~ (number of particles with charge ea in the volume element 
d3 xd3 v at timet) . 

The charge density of the a-th component is then 

Pa(X, t) = ea J d3vfa(X, V, t) 

and the total charge density 

p(x, t) = L Pa(X, t). 
a 

Similarly, the current density is 

ja(X, t) = ea J d3vvfa(X, V, t), j(x, t) = Lja(X, t). 
a 

(11.32) 

(11.33) 

(11.34) 

The Maxwell field is governed by (2.2), (2.3) with p from (11.33) and j from 
(11.34) as source terms. As densities on the one-particle phase space the distribu
tion functions evolve according to 

3tfa(X, V, t) + Y'x · (vfa(X, V, t)) + (Y'v · (may)-l 

X (Fa- (v · F a)v)fa(X, V, t)) = 0 (11.35) 

with the Lorentz force 

Fa= ea(E(x, t) + v x B(x, t)). (11.36) 

The system of equations (2.2), (2.3), and (11.32)-(11.36) are called the Vlasov
Maxwell system. They were written down first by Vlasov in 1938 in the more 
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conventional form where the velocity v is replaced by the kinetic momentum 
u = mavf~. Then in (11.35), (11.36) vis to be replaced by ujJm~ + u 2 

and the Vlasov equation for the distribution function fa(x, u, t)d3xd3u reads 

Ot fa(X, U, t) + (m; + u 2)- 112u · Vxfa(X, U, t) +Fa· Vufa(X, U, t) = 0. 
(11.37) 

The static limit of the Vlasov-Maxwell system, namely c ---+ oo yielding B = 0, 
V x E = 0, V · E = p, is the Vlasov equation. 

To establish the link to the Abraham model with N charges it is convenient to 
start on the macroscopic scale, for simplicity for a single component, where 

orB(x, t) = -V X E(x, t)' 
N 

orE(x, t) = v X B(x, t)- c L ecpE:(x- q j(t))Vj(t)' 
j=l 

N 

V · E(x, t) = t: Lecp8 (x -q1(t)), V · B(x, t) = 0, (11.38) 
j=l 

d 
dt (mbYiVi(t)) = e(Eep"(qi(t), t) + Vi(t) x Bep"(qi(t), t)). (11.39) 

We used here the freedom in the scale factor for the amplitude of the electromag
netic fields which accounts for an extra ,JE as compared to (6.11). On a formal 
level, the step to the Vlasov-Maxwell equation is immediate. We set N = t:- 1• 

The typical distance between particles is then t: 113 Rep while the charge diameter is 
t: Rep « t: 113 Rep. Thus particles are still very far apart. If we assume that at time t 
the particle configuration is well approximated by a distribution function, then the 
source term of the Maxwell equations is of the form claimed in (11.33), (11.34). 
For (11.39) we have again to split into the self- and mutual parts. The self-part 
renormalizes the mass to m(v) from (8.2) and the mutual part yields the force 
of (11.36) for the considered component. Put differently, in (11.39) the Maxwell 
fields E, B, smeared by cp8 and evaluated at q i (t), have a singular part which renor
malizes the mass and a smooth part from all the other charges which is governed 
by (11.38). To carry out this program and to thereby derive the Vlasov-Maxwell 
equations along the lines indicated remains as a task for the future. 

11.4 Statistical mechanics 

For a system of many particles the first impetus is to investigate its equilibrium 
statistical mechanics. Although this means venturing into the domain of nonzero 
temperatures, let us see how much will be captured by our oversimplified model 
of matter. Statistical mechanics starts with a Hamiltonian defined on phase space. 
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Since this is also the starting point for canonical quantization, in Chapter 13, our 
discussion of the Pauli-Fierz model necessarily deals with the Lagrangian and 
Hamiltonian structure of the Abraham model. We preview the result (13.24) for a 
system of N particles. The canonical coordinates for the particles are (q j• p j), j = 

I, ... , N. For the Maxwell field we adopt the Coulomb gauge, V ·A= 0. The 
canonical field variables are then (A(x), -Ej_(X)), x E IR3. Both fields are purely 
transverse, V · A = 0 = V · E j_. In terms of these variables the Hamiltonian for 
the Abraham model reads 

(II.40) 

For simplicity we adopt the nonrelativistic kinetic energy, p 2 j2m. The potential 
V<pcoul originates from the longitudinal part of E and is defined through 

(II.4I) 

V<pcoul is the Coulomb potential smeared by the charge distribution cp, which ap
pears twice, since both the i-th and the j-th particles carry a charge distribu
tion. 

The particles are confined to the box A c IR3. We should also restrict the fields 
to the box A, but it will be somewhat simpler to regard them as filling all space. 
Then, formally, the equilibrium distribution at inverse temperature f3 = 1/ kBT is 
given by 

I . N 
ze-,I!HnXA(qj)d3qjd3pj n d2A(x)d2Ej_(X), 

j=] XEJR:3 

(II.42) 

where Z is the normalizing partition function and xA is the indicator function for 
the box A. Since the field energy is quadratic in E j_ and A, combined with the a 
priori measure and the normalization, it follows that E j_ (x) and A(x) are Gaussian 
fields. We will only need A(x). It has mean zero and covariance 

(11.43) 

From the experience with black-body radiation we have little trust in the statis
tics of the Maxwell field at large wave numbers and therefore concentrate on the 
particle degrees of freedom, only. 
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According to (11.40), (11.42) for fixed positions qj, j = 1, ... , N, the mo
menta are Gaussian distributed with mean zero and covariance 

(PiPj)(q 1 ••••• qN) =((Pi+ eiAcp(qi))(Pj + ejAcp(qj))) 

= (PiPj) + eiej(Acp(qi)Acp(qj)) 

= *(mbiDijll+eiej J d3klq}(k)l 2 1kl-2(ll-k0k)eik·(q;-q)). 

(11.44) 

Here in the first equality we shifted p j by e j Acp (q j) which transforms (-) to a 
Gaussian averaging factorized with respect to the p 's and A's. For i = j we re
cover the renormalized mass mbi + mfi. For i #- j, there are momentum correla
tions which decay as lq i - q j 1-1 in the distance of the two particles. 

For the distribution of the positions, we integrate first over p and then over A 
with the result 

(11.45) 

which is the standard Gibbs distribution for a Coulombic system of charges. The 
equilibrium statistics decouples into a positional part and, when conditioned on the 
positions, a Gaussian velocity part. 

The equilibrium properties of Coulomb systems have been studied very exten
sively. To be specific, let us consider a two-component charge-symmetric plasma, 
which is neutral in the sense that both components have the same chemical poten
tial. Since the system is very large, the natural quantities are the free energy and 
the correlation functions in the limit where the volume tends to infinity, A t JR3. 

Indeed this limit has been established together with one major qualitative result, 
namely the validity of the Debye-Hiickel theory at sufficiently low density. One 
inserts an extra charge at the origin into the system at thermal equilibrium. Then 
the charges of opposite sign screen in a statistical sense and the average charge 
density decays on the scale of the De bye length ln = ( 4rr e2 ,Bp) - 1/ 2. 

While we cannot enter into details, it might be useful to understand how the 
smearing of the charge distribution is needed even on the level of equilibrium 
statistical mechanics. Let us assume that the two components have equal charge of 
opposite sign, which means either e j = e ore j = -e. Since Vcpcoul is of positive 
type (the Fourier transform of a positive measure), one has 

1 N 1 N 
- L eiejVcpcoui(qi -qj) :=:: -- LeJVcpcoui(O) 
2 i=lj=1 2 j=1 

= -(~e2 J d3kliP(k)l 2 1k1-2)N. (11.46) 
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The energy is bounded from below by a constant proportional to N, which means 
that V<pcoul defines a thermodynamically stable interaction. To control the behavior 
for large A one uses again the positive definiteness of V<pcoul and introduces the 
auxiliary Gaussian field ¢(x), x E IR\ with mean zero and covariance 

(¢(x)¢(y))G = V<pcouJ(X- y), 

which is well defined since V<pcoul (k) ::::_ 0. Then 

N 

e-fW(ql···· .qN) = ( exp [ift"I:>jc/J(q j) ])0 
j=l 

and the grand canonical partition function becomes 

(11.47) 

(11.48) 

(11.49) 

Thus our system of charges has been converted into a field theory. The a priori 
measure Oc is known as the Gaussian massless free field. In (11.49) it is per
turbed by the interaction f11. d3q cos(,j"pe¢(q)), which is clearly proportional to 
I A 1. Thus we conclude that the pressure is extensive, 

(11.50) 

Despite the long-range forces, a neutral Coulomb system has extensive (volume
proportional) thermodynamics, provided the charges are somewhat smeared. 

Notes and references 

Section 11.1 

On the quantized level the retarded interaction between neutral atoms shows as 
an attractive R-7 decay of the interaction potential in contrast to the nonretarded, 
attractive van der Waals R-6 law. 
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Section 11.2 

The Darwin Lagrangian is discussed in Jackson (1999). In Kunze and Spohn 
(2000c) the errors in ( 11.29) are estimated. Kunze and Spohn (200 1) extend their 
analysis to include radiation reaction. The major novel difficulty is to properly 
match the initial conditions of the comparison dynamics (11.31 ). The next post
Coulombic correction, of order lvlcl 4 , is computed formally by Landau and Lif
shitz (1959), Barker and O'Connell (1980a, 1980b), and Damour and Schafer 
(1991 ). It contains quadrupole corrections to the Coulomb interaction and terms 
proportional to v. It would be of interest to compare these results with the system
atic expansion presented here. 

A qualitatively rather similar problem arises in general relativity. The object 
of interest is a binary pulsar, like the famous Hulse-Taylor pulsar PSR 1913 + 
16. It consists of two neutron stars, each with a mass of roughly 1.4 solar mass 
and a diameter of 10 km. They rotate around their common center of mass with 
a period of 7 h 45 min. The neutron stars move slowly with lvlcl ~ w-3 . Since 
one of the neutron stars is rotating, it emits radio waves through which the orbit 
can be tracked with very high precision, in fact so precise that damping through 
the emission of gravitational waves can be verified quantitatively. I refer to Hulse 
(1994) and Taylor (1994). As in the case of charges, the theoretical challenge is to 
obtain the orbits of the two neutron stars in an expansion in I vI cl. For gravitation 
there is no dipole radiation and damping appears only at order lvlcl 5, with lvlcl0 

being the Newtonian orbit. Since experimental accuracy is expected to increase 
further (Will 1999) various groups have taken up the challenge with the present 
order at lvlcl7 (Jaranowski and Schafer 1998). 

Section 11.3 

The relativistic Vlasov-Maxwell equations already appear in the original 1938 
paper of Vlasov, see Vlasov (1961 ). The existence of solutions is studied at in
creasing level of generality in Glassey and Schaeffer (1991, 1997, 2000). In the 
nonretarded Vlasov-Poisson approximation the existence of solutions is now well 
understood (Pfaffelmoser 1992; Schaeffer 1991) and the link to theN -particle sys
tem has been established for a mollified potential (Neunzert 1975; Braun and Hepp 
1977), a review being Spohn (1991). Physically the natural requirement is to have 
the charge diameter much smaller than the interparticle distance. Since this case is 
somewhat singular, a satisfactory derivation of the Vlasov-Poisson approximation 
is open, with a partial step towards its solution in Batt (2001 ). 

As in the case of N charges, the solution to the Vlasov-Maxwell system can 
be expanded in powers of 1 I c. The leading order is then Vlasov-Poisson, as 
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established by Schaeffer (1986), which is corrected a la Darwin at order c-2 , 

as proved by Bauer and Kunze (2003). A one-component system can dissipate 
energy only through quadrupole radiation, which first appears at order c-5. A 
two-component system emits dipole radiation at order c-3. Properties of the for
mally derived Vlasov equation including radiative friction are studied by Kunze 
and Rendall (2001 ). 

Section 11.4 

The statistical mechanics of charges plus Maxwell field is usually treated only 
on the level of thermodynamics (Alastuey and Appel 2000). Lebowitz and Lieb 
(1969) and Lieb and Lebowitz (1972) prove the existence of the, in fact shape
dependent, thermodynamic limit for Coulomb systems. A very readable review 
is Lieb and Lebowitz (1973). The existence of the infinite-volume limit of the 
correlation functions in the case of charge-symmetric systems is proved by 
Frohlich and Park (1978). For the Debye-Hiickel theory I recommend the excellent 
survey by Brydges and Martin (1999). 
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Summary and preamble to the quantum theory 

Within the framework of specific models for the coupling between charges and the 
electromagnetic field we have presented a fair amount of rather detailed arguments 
and computations. Thus before embarking on the quantized theory, it might be 
useful to summarize our main findings. 

• Extended charge. To have a well-defined dynamics, a smeared charge distri
bution has to be used. This can be done either on the semirelativistic level 
of the Abraham model or in the form of a relativistically covariant theory, 
i.e. the Lorentz model. In the latter case internal rotation must be included by 
necessity. 

• Adiabatic regime. Situations for which the classical electron theory can be exper
imentally tested fall in the adiabatic regime with a remarkable level of accuracy. 
Quantum mechanics must be used way before one leaves the domain of validity 
of the adiabatic approximation. A good example is the hydrogen atom in a bound 
state. Sufficiently far from the nucleus, which is certainly satisfied when at least 
a Bohr radius away from it, the assumptions for the adiabatic approximation are 
fulfilled and the dynamics of the electron is well governed by Eq. (9.14). On 
the other hand, it is known that the fluorescent spectrum of the hydrogen atom 
is accounted for only by quantum mechanics. To test the classical electron the
ory on the basis of this system is simply not feasible. Thus, in the range where 
the classical electron theory is applicable by necessity one is inside its adiabatic 
regime. In this regime the particle becomes point-like and is characterized by a 
charge, an effective mass, and, in the case of internal rotation, by an effective 
magnetic moment; compare with sections 4.2 and 10.1. From the full charge and 
mass distribution, which in principle constitute an infinite number of free param
eters, only a few of their low-order moments are retained. They then enter in the 
Landau-Lifshitz equation (9.10), which governs the motion of the charge with 
great precision and properly accounts for friction through radiation. In addition, 
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the electromagnetic fields are determined from the Lienard-Wiechert potentials 
as generated by the motion of a point charge. 

• Point-charge limit. As judged from the context of chapter 28 of the Feynman 
Lectures, "consistency" in the 1963 opinion of R. Feynman, compare with the 
citation at the end of section 3.3, refers to the point-charge limit RlfJ --+ 0. I agree, 
but as argued at length there is no need ever to take this limit. Letting the size 
RlfJ of the extended charge distribution shrink to zero yields objects of infinite 
mass. While the mere mathematical operation is admissible, it would result in 
a theory with very little physical content. The attempt to compensate through a 
proper adjustment of the bare mass fails, since the electromagnetic mass merely 
adds to the bare mass. Thus, the bare mass necessarily becomes negative which 
results in an unstable Hamiltonian. 

The transition to the quantum theory of photons, electrons, and nuclei could 
hardly be less spectacular. I find it truly amazing that the simple rules of canonical 
quantization work so well for the Abraham model and thus open the gateway to 
a theory describing a vast territory of physical experience. Of course, just as the 
Abraham model, the theory is semirelativistic, and is thus also known as nonrela
tivistic quantum electrodynamics. No quantization of the Lorentz model seems to 
be available. In the relativistic domain one has to rely on conventional quantum 
electrodynamics. 

We continue to adhere to the principle of restricting our attention to dynamical 
problems, for which the interaction between the charged particles and the photon 
field must be included. In particular, the emission and absorption of light by atoms 
and the scattering of photons from charges will play an important role. Adiabatic
type limits will be studied again. They show up in the limit of slow motion, where 
the photon field is approximated by the static Coulomb interaction, and in the 
derivation of the effective mass and the effective magnetic moment. To keep the 
topics within manageable size, many things had to be left out. In terms of applica
tions the most serious omission is macroscopic electrodynamics, where the photon 
field is treated in the classical limit and matter is taken into account in a continuum 
description in terms of suitable electric and magnetic susceptibilities. Needless to 
say, they must be based on an atomistic quantum model of matter. 



Part II 

Quantum theory 
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Quantizing the Abraham model 

Classical theories must emerge from quantum mechanics and there is no reason to 
expect a simple recipe which would yield the physically correct quantum theory 
from the classical input. On the other hand, at least in the nonrelativistic domain, 
the rules of canonical quantization have served well and it is natural to apply them 
to the Abraham model. There is one immediate difficulty. Canonical quantization 
starts from identifying the canonical variables of the classical theory. Thus we first 
have to rewrite the equations of motion for the Abraham model in Hamiltonian 
form. For this purpose we adopt the Coulomb gauge, as usual, so as to eliminate 
the constraints. In the quantized version we thereby obtain the Pauli-Pierz Hamil
tonian which has an obvious extension to include spin. 

We have to ensure that the Pauli-Pierz Hamiltonian generates a unitary time 
evolution on the appropriate Hilbert space of physical states. Mathematically this 
means that we have to specify conditions under which the Pauli-Pierz Hamiltonian 
is a self-adjoint operator, an issue which can be satisfactorily resolved. Still, the 
true physical situation is more subtle and in fact not so well understood. It is related 
to the abundance of very low-energy photons, i.e the infrared problem, and to the 
arbitrariness of the cutoff at high energies, i.e. the ultraviolet problem. There are 
many items of interest before these, and it will take us a while to start discussing 
these subtleties. 

Some words on our notation: In the beginning we keep c, n, and later set them 
equal to one, mostly without notice. The vector notation, like x, tends to be a little 
heavy, in particular since some of the objects become either operators or random 
variables. Therefore we stick with x, whose vector character has to be inferred 
from the context. 
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13.1 Lagrangian and Hamiltonian rewriting of the Abraham model 

We consider N charges coupled to the Maxwell field. Their motion is governed by 
(11.1), (11.2), which we repeat with the only difference that the relativistic kinetic 

energy is replaced by its Galilean cousin. 

(Inhomogeneous Maxwell-Lorentz equations) 

c - 1 Ot B = - V x E , c - 1 Ot E = V x B - c - 1 j , 

Y'·E=p, Y'·B=O, 

where the charge and current density are given by 

N N 

(13.1) 

(13.2) 

p(x,t) = LeJCP(X -qj(t)), j(x,t) = Lejcp(x -qj(t))vj(t) (13.3) 
j=l j=l 

satisfying charge conservation by fiat. 

(Newton's equations ofmotion) 

(13.4) 

j = I, ... , N. cp is the charge distribution. It satisfies Condition (C), Eq. (2.38). 

The Lagrangian for a charge subject to external potentials is discussed in every 
text on classical mechanics. The Lagrangian of the coupled system, charges plus 
Maxwell field, can almost be guessed on that basis. We introduce the electromag
netic potentials through 

E = -c- 1otA- V¢, B = V x A, (13.5) 

hence guaranteeing V · B = 0 and the first half of (13.1), and regard as position
like variables {qj, j = 1, ... , N, ¢ (x ), A(x ), x E .!Pi.3}. Let us define the Lagrange 
density 

1 
Lo(x) = - (E(x) 2 - B(x)2) + c- 1 j (x) · A(x) - p(x)rp(x), 

2 
(13.6) 

where, according to (13.3), p, j depend on the positions and velocities of the 
charges. The Lagrangian of the Abraham model is then 

~ 1 ·2 f 3 L = L..,; -miqi + d·x£o(x). 
j=1 2 

(13.7) 
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We only have to verify that the Euler-Lagrange equations for the action obtained 
from L yield (13.1), (13.2), and (13.4). Indeed 

d aL aL 
----=0 
dt oilj oqj 

(13.8) 

are Newton's equations of motion. Using '·' for at as concise notation, variation 

with respect to <P yields 

d 8L 8L 
-----0 
dt 8¢ 8¢ - ' 

(13.9) 

which is equivalent to 

(13.10) 

and which we recognize as the first half of (13.2). Finally 

d 8L 8L 
--. --=0 
dt 8A 8A 

(13.11) 

amounts to 

(13.12) 

which is nothing but the second half of (13.1). 
Since (13.9) represents only a constraint and is not an equation of motion, 

clearly we are using a redundant set of dynamical variables. Let us do the counting. 
We split the electromagnetic fields into longitudinal and transverse components, 

(13.13) 

Since \7 · B = 0, we have B11 = 0. From \7 · E = p we conclude 

(13.14) 

E 1_ and B 1_ satisfy a first -order evolution equation. Thus, in the sense of 
Lagrangian mechanics, there are two independent field degrees of freedom at every 
space point, while in (13.6) we employed four degrees of freedom. 

We first eliminate <P through (13.10), i.e. 

(13.15) 
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Then, using Fourier transforms and Parseval's identity, (13.7) transforms to 

N 

L = L ~mA] +~I d3k[c-2JG · A_1_ + k-2p*p- (k x A~). (k x A_1_)] 
j=1 2 2 

+~I d3k[c- 1}* ·A+ c- 1). A*- 2k-2p*p 

. - 1 k-2 (~*k A.-:._ ~k A~)] - Ic P . II - P . II · (13.16) 

The term p-*p depends only on the qj 'sand is recognized as the Coulomb potential, 

N 
1 I 1 2~*~ 1 " I 3 3 I I 1 I - d- kk- p p =- ~ eiej d yd y <;?(y)(4rrlqi- qj- y + y 1)- <P(Y) 
2 2 .. I 

l,j= 

= Vrpcou!(q1, ... , qN). (13.I7) 

The Coulomb potential is smeared by <fl, which as before is indicated by the sub
script. <P appears twice, since both the i -th and the j -th particle carry a charge 
distribution. To simplify the last term of (13.16) we use the conservation law 

p + ik · } = 0. Then 

~ 1 ·2 1 I 3 [ -2~ -=- 2~* ~] L = ~ -m jqj - Vrpcoul +- d k c A _1_ • A_1_- k A _1_ • A_1_ 
j=l 2 2 

I I ~ I~ ~ I~ ~ +2 d-ok[c- j*·A_!_+C- }·A~] 

-I d (I ld1klki- 1 '[~A~* ~*A~ J) + c dt 2 - t p II - p II . (13.I8) 

Since A 11 appears only inside a total time derivative, we have identified A II as the 
second redundant field. To drop the redundant degrees of freedom, the simplest 

choice is to set A 11 = 0 by exploiting the gauge freedom, which means selecting 
the Coulomb gauge defined by 

Y'·A=O. (13.I9) 

The vector potential is purely transverse and we henceforth drop the subscript ..l. 
Transforming back to real space, the Lagrangian of the Abraham model reads 

N 

L = L ~mjl}J- Vrpcoul + ld3x.C(x) 
j=1 2 

with the Lagrange density 

.c =~[ee-l A)2 - (\7 X A)2] + c- 1 j. A. 
2 

(13.20) 

(13.21) 
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The transverse vector field A(x ), x E JR3, should be regarded as position-like vari
ables. 

The step from Lagrange to Hamilton is standard. One introduces the momentum 
Pi canonically conjugate to qi by 

Pi= m /Ii + c- 1eiArp(qi). (13.22) 

For the momentum field canonically conjugate to A we obtain 

8L 2. I 
-. = c- A = -c- E1_. 
8A 

(13.23) 

Then the Hamiltonian corresponding to L reads 

~ 1 ( -I )2 H = L.,; -- Pi-C ejArp(qj) + Vrpcoul 
i=l 2m J 

+ ~ J d3x[E1_(x)2 + (V x A(x))2] (13.24) 

with the canonically conjugate pairs qi, Pi and A(x), -c- 1 E1_(x). 

13.2 The Pauli-Fierz Hamiltonian 

In the form (13.24) we are ready to apply the rules of canonical quantization. The 
position and momentum of the j -th particle are elevated to algebraic objects (linear 
operators) which satisfy the commutation relations 

(13.25) 

a, f3 = 1, 2, 3, i, j = 1, ... ,N. In the Schrodinger representation, which will be 
used throughout, the Hilbert space of wave functions is 

(13.26) 

restricted to either the symmetric or antisymmetric subspace depending on whether 
the particles are bosons or fermions. Positions and momenta become 

(13.27) 

as linear operators on Hp, i.e. if 1/f(xJ, ... ,xN) E L 2(JR3N) is the wave function 
for the particles, then qiljf(x1, ... ,xN) = xiljf(x1, ... , XN), Pil/f(xl, ... , XN) = 
-inY'x ljf(x1, ... , xN). 

J 

For the fields A(x), -c1 E1_(x) one is tempted to postulate commutation rela-
tions analogous to (13.25). The difficulty is that the quantization has to satisfy the 
transversality constraint (13.19) which is nonlocal. Fortunately it is linear and it 
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becomes local in Fourier space as k · A= 0. We thus introduce at each k E IR3 the 
standard dreibein 

k = kflkl, e1 (k), e2(k), (13.28) 

which satisfies k · ei (k) = 0, i = 1, 2, q (k) · e2 (k) = 0. There is some freedom 
of how to choose e1, e2, but the transverse projection Ql_(k) = 1- k 0 k = 1-
lkl-21k)(kl is unique. The two transverse components e1(k) · A(k), e2(k) · A(k) 

are regarded as independent variables, correspondingly for -c1 E1_. Since A is 
real, we have A(k)* = A( -k). Ther~ore one has to restrict k to a half-space and 
take the real and imaginary parts of A (k) as independent variables which are sub
ject to the rules of canonical quantization. To achieve this goal it is helpful to 
introduce two standard Bose fields with creation and annihilation operators 

a*(k,A.), a(k,A.), kEIR3 , A-=1,2, (13.29) 

satisfying the canonical commutation relations 

[a(k, A.), a*(k', A.')] = ou,o(k- k'), 

[a(k, A.), a(k', A.')] = 0, [a*(k, A.), a*(k', A.')] = 0. (13.30) 

<)For a linear operator A, the adjoint operator is denoted by A*. <) 

In terms of these Bose fields we set 

A(k) = L cJnf2w(eJc(k)a(k, A.)+ eJc( -k)a*( -k, A.)), (13.31) 
A=l,2 

E1_(k) = L Jn,wf2(ieJc(k)a(k, A.)- ieJc(-k)a*(-k, A.)) (13.32) 
Jc=L2 

with 

w(k) = clkl. (13.33) 

Then indeed A, E1_ are transverse, A(k)* =A( -k), E(k)* = E( -k), and 

(13.34) 

which should be understood in analogy to (13.25). 
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In physical space (13.31), (13.32) become 

A(x) = L J d3kcJnj2we;,.(k)(2n)-312 (eik·xa(k, A.)+ e-ik-xa*(k, A.)), 
A.=l,2 

(13.35) 

Ej_(x) = L J d3kJnwj2e;,.(k)(2n)-312i(eik-xa(k, A.)- e-ik-xa*(k, A.)). 
A.=l,2 

(13.36) 

Clearly A *(x) = A (x ), Ef (x) = E j_ (x ). The commutator (13.34) translates into 

(13.37) 

with the transverse delta function 

j_ ( )-3! d3k ik·X ~k ~k ) 2 ( 1 ~ ~ 8afJ x) = (2rr e (OafJ- a fJ = -OafJO x)- --3 (OafJ - 3xaXfJ), 
3 4rrlxl-

(13.38) 

where Xa = Xa/lx 1. 
At this p~nt w~ have left the classical world. A (x), E j_ (x) and their Fourier 

transforms A(k), Ej_(k) will now always stand for operator-valued fields. In the 
atomic and solid state physics literature by tradition one uses at as the boson 
creation operator adjoint to the annihilation operator a. We try to avoid such a 
profileration of symbols. 

Next on the agenda should be the Fock representation of the Bose fields a(k, A.) 
and the definition of A(x), Ej_(X) as operator-valued fields acting on Fock space. 
But let us keep this for the beginning of the next section and proceed immedi
ately to our goal, namely the Hamiltonian of the quantized Abraham model. All 
we have to do is to insert (13.35), (13.36) into the classical Hamiltonian. This re
sults, after omitting the zero-point energy of photons, in the (spinless) Pauli-Fierz 
Hamiltonian 

(13.39) 

with the field Hamiltonian 

Hf = L J d3krUJJ(k)a*(k, A.)a(k, A.). 
A.=l.2 

(13.40) 

There is no ambiguity in the operator ordering, since Pi· A<p(qi) = A<p(qi) ·Pi 
by the transversality condition (13.19). We recall that the spherically symmetric 
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form factor (ii cuts couplings to the field, more explicitly 

A'P(q) = L J d3kc)n/2weA.(k)(cp(k)eik·qa(k, A)+ (/J*(k)e-ik·qa*(k, A)). 
A.=l.2 

(13.41) 

To simplify notation, (ii will be assumed to be real, which can always be achieved 
through a suitable canonical transformation of the form a(k, A)---+ eil!(k)a(k, A). 

Two immediate generalizations are noted. First of all it is convenient to add 
external potentials <Pex, Aex, where the abbreviation e</Jex(x) = V(x) will be em
ployed frequently. This should be thought of as a limiting case of (13.39): we 
imagine that some charges are nailed down by letting their masses m ---+ oo; then 
their kinetic term in (13.39) disappears and V<pcoul splits into an external potential 
plus an interaction potential for the movable charges. Similarly one can produce 
an external current which then generates Aex· Thus the external potentials are not 
quantized and are added into the Hamiltonian as in the classical theory which 
yields 

N 

+ V<pcoul + L e j</Jex (qj) + Hf. 
j=l 

(13.42) 

Secondly, particles have spin. Of course, an electron has spin 1· In our approxima
tion nuclei are modeled as structureless particles carrying a nuclear spin, ranging 
from 0 to 9/2 according to experimental evidence. The classical theory is now of 
little help. The natural guess is to include spin as in the nonrelativistic one-particle 
Schrodinger theory. For a single electron in infinite space, no external potentials, 
the Hamiltonian then becomes 

1 ( 1 )2 H =- CJ • (p- c- ejA<p(q)) + Hf, 
2m 

(13.43) 

where CJ = (CJI, CJ2, CJ3) is the vector of Pauli spin-1 matrices. If necessary, one 
could include higher terms in (13.43) as they emerge from the Foldy-Wouthuysen 
expansion of the Dirac equation. 

Having introduced the Pauli-Pierz Hamiltonian as the major player of the quan
tum part of the treatise, we pause for a while with a few general remarks. 

Zero-point energy. In the Pauli-Pierz Hamiltonian we have omitted the zero-point 
energy J d3 krUJJ, which is infinite. The Heisenberg equations of motion remain un
altered by this reset in the zero of energy. However, one has to be careful. If one 
wants to compute the change in energy of the quantized Maxwell field through the 
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insertion of a pair of perfectly conducting plates, then in this energy difference the 
zero-point energy has to be properly handled; compare with section 13.6. A further 
change in the zero of the energy scale comes from the Coulomb self-interaction, 
namely the diagonal part 

(13.44) 

in the sum (13.17), which is finite only because the form factor cuts off the high
frequency modes. 
Range of validity, limiting cases. The claimed range of validity of the Pauli-Pierz 
Hamiltonian is flabbergasting. To be sure, on the high-energy side, nuclear physics 
and high-energy physics are omitted. On the long-distance side, we could phe
nomenologically include gravity on the Newtonian level, but anything beyond that 
is ignored. As the bold claim goes, any physical phenomenon in between, includ
ing life on Earth, is accurately described through the Pauli-Pierz Hamiltonian 
(13.39) (and a suitably chosen initial wave function). There have been specula
tions that quantum mechanics is modified roughly at the w-5 m scale. But so far 
there seems to be no evidence in this direction. On the contrary, whenever a de
tailed comparison with the theory can be made, it reassuringly seems to work well. 
Of course, our trust is not based on strict mathematical deductions from the Pauli
Pierz Hamiltonian. This is too difficult a program. Our confidence comes from 
well-studied limit cases. In the static limit we imagine turning off the interaction 
to the quantized part of the Maxwell field. This clearly results in Schrodinger parti
cles interacting through a purely Coulombic potential, for which many predictions 
are accessible to experimental verification. But beware, even there apparently sim
ple questions remain to be better understood. For example, the size of atoms as 
we see them in nature remains mysterious if only the Coulomb interaction and the 
Pauli exclusion principle are allowed. Another limiting case is a region completely 
free of charges. At standard field strengths there are sufficiently many photons per 
unit volume for the predictions from the quantized Maxwell field to match with 
the ones of the classical Maxwell field. As will be discussed, radiation phenomena 
are well grasped by the Pauli-Pierz Hamiltonian. These and many other limiting 
cases are the reason for regarding (13.39) as an accurate description of low-energy 
phenomena. 
Model parameters, renormalization. If we focus our attention on (13.43), there are 
four model parameters: the mass m, the charge e, the gyromagnetic ratio g = 2, 
and the form factor cp. c and It, which also appear, are constants of nature. As dis
cussed at length for the classical theory, what is observed experimentally is always 
the compound object consisting of the particle and its photon cloud. Thus m, e, g 
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have to be regarded as bare parameters and their observed value must be computed 
from the theory. The bare values are renormalized through the interaction with the 
Maxwell field. As will be shown below, the charge e is not renormalized, since 
there is no vacuum polarization. One way to argue is to imagine two charged par
ticles with a very large mass separated by a distance R. According to (13.39) their 
mutual force is then e1 e2/4rr R2 with the bare charges e1, e2. Further support is the 
response of a particle to slowly varying external potentials. In this adiabatic limit, 
e enters in the effective equation with its bare value while m and g are renormal
ized. The Pauli-Pierz model is not in a position to predict the experimental value 
of the mass, since the bare mass is unaccessible, in principle. The renormalized 
(effective) mass has to be given as an empirical input, to which the bare mass is 
correspondingly adjusted. On the other hand, the dimensionless gyromagnetic ra
tio g is a definite (though empirically slightly inaccurate) prediction ofthe theory; 
compare with sections 16.6 and 19.3.5. Perhaps the most unwanted feature of the 
Pauli-Pierz Hamiltonian is the form factor cp. The pragmatic attitude is to choose 
cp with some taste. On the classical level we concluded that the form factor cannot 
be removed. In the limit cp (x) --+ 8 (x) the particle-like objects become infinitely 
heavy. The simple structure of the energy-momentum relation ( 4.11) does not al
low for compensation, since in a stable theory the bare mass has to be positive. 
The quantum theory has a richer structure and it seems that one can carry out the 
limit cp(x)--+ 8(x) and at the same time take m--+ 0 such that the observed mass 
remains fixed. We will come back to this point in due course. 

The quest for a closed physical theory. We have commented on this point already. 
But let us expand on it in the present context. The static limit of the Pauli-Pierz 
Hamiltonian, i.e. Schrodinger particles interacting through the static Coulomb po
tential, is a closed theory for electrons and nuclei. The Hamiltonian is a self-adjoint 
linear operator and generates a unitary time evolution. This is also the case for the 
quantized Maxwell field without charges. Of course, this does not mean that we 
have solved any physical problem. It just assures us of a definite mathematical 
framework within which consequences can be explored. One would hope to have 
such a secure foundation also for the Pauli-Pierz model and it remains to be seen 
how much of this program can be realized. 

We still have to complete the story of the Pauli-Pierz model. One defines the 
time-evolved linear operator A(t) through 

A(t) = eiHtfn Ae-iHtfn (l3.45) 

in the Heisenberg picture. Then 

:t A(t) = ~[H, eiHt/n Ae-iHtfn] = ~[H, A](t). (13.46) 
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On this level, so to speak, as a control of the quantization prescription, we use 
the commutation relations (13.25) and (13.37) to verify that the operator-valued 
fields indeed satisfy the Maxwell equations and that the particles satisfy Newton's 
equations of motion. Computing the commutators as in (13.46) one obtains 

where now 

c - 1 Ot B = - V' X E ' c - 1 Ot E = V' X B - c - 1 j ' 

Y'·E=p, Y'·B=O, 

N 

p(x, t) = I>j<P(x- qj(t)), 
j=1 

(13.47) 

N 1 
j(x, t) = L -ej(vJ(t)<;?(x- qj(t)) + <;?(x- qj(t))vj(t)) (13.48) 

j=l 2 

with the velocity operator 

(13.49) 

Similarly, one obtains the symmetrized Lorentz force as 

If there are external fields, E'P, B'P is to be replaced by E'P + Eex, B'P + Bex· In 
(13.47)-(13.49), qj(t), PJ(t), respectively A(t), -c- 1 Ej_(t), are operators satis
fying the commutation relations (13.25), respectively (13.37), at all times. 

Also of interest is to record the Heisenberg equations of motion for the Pauli
Pierz Hamiltonian (13.43) including spin. The Maxwell equations are as before. 
However, in the case of a single charged particle, the current density is now 

1 ( ) eft j (x) = -e V<j?(X- q) +<;?(X- q)v +-a X Y'q<;?(X- q) 
2 2m 

(13.51) 

with the velocity operator v = (p- c 1eA'P(q))jm. The Schrodinger equation 
reads 

1 en 
mq = e(E'P(q, t) + -(v x B'P(q, t)- B'P(q, t) x v)) +-a· Y'qB<p(q, t), 

~ ~c 
(13.52) 
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consistent with the general rule that the magnetic force equals c -I J d3 x j (x) x 
B(x), and the Pauli equation for the spin reads 

. e 
a= --B'P(q, t) x a. 

me 
(13.53) 

If one compares (13.52), (13.53) with the classical equations of motion of a 
spinning charge, cf. section 1 0.2, then one observes that in quantum mechanics 
the spin degrees of freedom couple somewhat differently to the Maxwell field than 
the classical internal angular momentum. Since cp is radial, in fact Y'x({Jr(lxl) = 
cp~(lx l)x and the spin part of the current (13.51) has the effective charge distribution 
cp;(lxl)/lxl. However, the evolution equation for a has only superficial similarity 
with Eq. (10.20) for w. 

13.3 Fock space, self-adjointness 

To define the Pauli-Pierz Hamiltonian as a linear operator, one has to introduce a 
suitable Hilbert space of wave functions. Provisionally we assume that the number 
of photons, either virtual or real in the usual parlance, is finite, though necessar
ily arbitrary, since H does not conserve the number of photons. This means that 
we will have to work in the Fock representation of the Bose fields a(k, A). We 
introduce the one-particle Hilbert space 

(13.54) 

~ consists of wave functions 1/f(k, A), with the photon wave number 
k E JR3 and the helicity A = 1, 2. The inner product in ~ is (cp, 1/f}Q = 
~A= I 2 J d3kcp*(k, A)ljf(k, A). Out of~ we construct the Fock space Fin the usual 
way 

(X) 

F = E9 (~Q9n)sym' (13.55) 
n=O 

where ~Q9n denotes then-fold tensor product and where "sym" means that were
strict to the subspace of wave functions symmetric under interchange of labels, i.e. 

(13.56) 

for an arbitrary permutation n. By definition an element 1/f E F is of the form 
( 1/fo, 1/JI, ... ) and 

(X) 

(cp, 1/J):F = L(({Jn, 1/Jn)[J0n. (13.57) 
n=O 

The Fock vacuum, 1/fo, will be denoted by Q. 
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<) As the reader will have noticed, for the inner product in a Hilbert space we 
use the notation ( cp, 1/f), which is linear in the second and antilinear in the first 
argument. The standard physics notation would be the Dirac bracket (cplo/), which 
is also linear in the second argument. (A further widespread convention is a scalar 
product linear in the first argument.) The subscript in (cp, 1/f):F is used to indicate 
the Hilbert space under consideration: it will be omitted if it is obvious from the 
context. The length of a vector is II 1/f II = ( 1/f, 1jf) 112 . <) 

For f E ~ one defines the smeared creation and annihilation operators 

a(f) = L I d3kj*(k, A)a(k, A), 
A=l,2 

a*(f) = L I d3kj(k, A)a*(k, A). 
A=l,2 

As operators in :F they act through 

(a(f)o/)n(kJ, A], ... , kn, An)=~ L I d3kj*(k, A) 
A=l,2 

x 1/fn+l(kl, AJ, ... , kn, An, k, A), 
1 n 

(a*(f)o/)n(kJ, A], ... , kn, An)= r;:; L f(kj, Aj) 
vn j=l 

(13.58) 

(13.59) 

x 1/fn-l(kJ, AJ, ... , ki, Aj, ... , kn, An), (13.60) 

where ~ means that this variable is to be omitted. The field Hamiltonian 

Hf = L I d3knw(k)a*(k, A)a(k, A) 
A=L2 

(13.61) 

acts as multiplication by LJ=l !tw(kj) on then-particle subspace ~®n. With all 
these definitions we see that the Pauli-Pierz Hamiltonian operates on the Hilbert 
space 

(13.62) 

with Hp = L 2 (l~3N) and Hf = :F. Physically the particle Hilbert space Hp is too 
large, since in nature only symmetric, respectively antisymmetric, wave functions 
are realized. Still mathematically it is convenient to work with all of L 2 (1Pi.3N). 

In any dynamical theory, usually the first step is to establish the existence of 
solutions of the evolution equations. In our case this means to prove that H is a 
self-adjoint operator on a suitable domain of functions, where for concreteness we 
consider the Pauli-Pierz operator of (13.43) for a single electron. If not even the 
self-adjointness question can be resolved, there is little hope of rigorously handling 
qualitative properties of interest. 
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We observe that ( 1/f, H 1/f hi 2::: 0, clearly. This means that H has equal defect 
indices and therefore at least one self-adjoint extension. Amongst those there is a 
distinguished extension, called the Friedrichs extension, which is obtained through 
the closure of the quadratic form ( 1/f, H 1/f hi with smooth wave functions of a finite 
number of photons. The Friedrichs extension gives no information on the domain 
of self-adjointness and, in principle, there could be other extensions. A more con
crete approach is to prove that, for the purpose of the existence of dynamics, the 
interaction can be regarded as small. We decompose H as 

H = Ho + H1 (13.63) 

1 2 e ( ) = 2mp +Hf- 2mc p·Acp(x)+Acp(x)·p 

e2 en 
+--A (x) 2 --CY·B (x), 

2mc2 cp 2mc cp 

Bcp(x) = V' x Acp(x), Pl = p for the momentum, and q1 = x for the position of 
the particle, and want to prove that H1 is small compared to Ho, Ho = (p2 /2m)+ 

Hf. 
Abstractly one uses the Kato-Rellich theorem. We consider the densely defined 

linear operators A, B on a Hilbert space H with inner product ( ·, ·) and suppose 
that 
(i) for the domains D(B) ::J D(A), 
(ii) for some constants a, band allljf E D(A) 

IIBl/fll ::: aiiAl/f II+ blll/fll. (13.64) 

Then B is said to be A-bounded. The smallest a is called the relative bound. Usu
ally a can be made smaller at the expense of b. 

Theorem 13.1 (Kato-Rellich theorem). Suppose A is self-adjoint, B is symmet
ric, and B is A-bounded with relative bound a < 1. Then A+ B is self-adjoint on 
D(A) and essentially self-adjoint on any core of A. 

For multi particle Schrodinger operators of the form - ~ ~ + V the Kato-Rellich 
theorem is a standard technique and yields the existence of dynamics for a very 
large class of potentials V including the Coulomb potential. For the Pauli-Pierz 
operator the form version of Theorem 13.1 is more convenient. 

Theorem 13.2 (KLMN theorem). Let A be a positive self-adjoint operator. Let 

f3( 1/f, cp) = (1/f, Bcp) be a symmetric quadratic form defined for allljf, cp E D(A 112) 

such that for some constants a < I, b < oo 

1(1/f, Bl/f)l :S a(l/f, Aljf) + b(ljf, 1/f) (13.65) 

for all 1/f E D(A 112). Then there exists a unique self-adjoint operator C with 
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D(C) C D(A 112) such that 

(1/f, Co/)= (1/f, Ao/) + (1/f, B1/f). (13.66) 

Moreover, Cis bounded from below by -b. 

Let us see how the KLMN theorem works in the case of the Pauli-Pierz 
Hamiltonian H, which means that one has to establish 

(13.67) 

with a < 1. We set It = c = m = 1 and, following the convention (13.58), put 

Acp(x) = a(fx) + a*(fx) (13.68) 

with 

(13.69) 

The creation and annihilation operators are bounded through (Hf) 112 as 

lla*(f)o/IIF::: IIJ/v'wiiiJII(Hf) 112o/IIF+ IIJIIIJIIo/IIF, 
lla(f)o/IIF :S IIJ/v'wiiiJII(Hf) 112o/IIF 

and by the Schwarz inequality 

1(1/f, (a(f) + a*(f))21/f).FI :S 2(1/f, a*(f)a(f)o/).F + 11!11~111/fll} 
+ 21(1/f, a*(f)a*(f)o/).FI 

(13.70) 

:S 511J/-JWII~(1/f, Hfo/).F + 311!11~111/fll}. 
(13.71) 

Therefore the A~-term has a relative bound less than 1 only if e is sufficiently 
small. 

We do not attempt to optimize the constants and thus write 

1 2 1 . 2 1(1/f, p · Acp(x)o/hil :S 2(1/f, p o/hi + 2(1/f, Acp(x) o/hi, (13.72) 

1 2 3 2 
1(1/f, a· Bcp(x)o/hil :S 2(1/f, Bcp(x) 1/Jhi + 2111/JIIH. (13.73) 

Also, by using (13.69), (13.71), 

(1/f, Acp(x)21/f)H :S 511$/wll~(o/, Hfo/)H + 311$/-JWII~IIo/11~, (13.74) 

(1/f, Bcp(x)21/f)H :S 5111kl$/wll~ ( 1/f, Hf1/f)H + 3111kl$/ -JWII~IIo/11~. (13.75) 
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Thus if 

J d3kl$(k)l 2(w-2 + w) < oo, (13.76) 

one can find a constant eo such that for lei _:::: eo the operator H1 is Ho form
bounded with a bound less than I. By a similar reasoning form-bounded can be 
replaced by bounded. From Theorem 13.2 we conclude 

Theorem 13.3 (Self-adjointness, Kato-Rellich). If lei _:::: eo with suitable eo and 
if the form factor$ satisfies the condition ( 13. 76), then the Pauli-Fierz operator 
H of(I3.63) is self-adjoint on the domain D( 2~7 p2 + Hf). 

Since $(0) = (2n) - 312 , the condition (13. 76) is satisfied if, as assumed, $cuts off 

ultraviolet wave numbers. 

<) We denote constants by co, q, ... , eo, etc., depending on the context. The nu
merical value of these constants may change from equation to equation. Since 
we always work with computable bounds, in principle these constants can be ex
pressed through the parameters of the Pauli-Pierz Hamiltonian. To do so actually 
would overburden the notation. <) 

The restriction one is intrinsic to the method, since only then is e2 Arp(x) 2 small 
compared to Hf. To go beyond one needs a completely different technique which 
is based on functional integration, as will be explained in chapter 14. 

Theorem 13.4 (Self-adjointness, functional integration). If ( 13. 76) holds, then 
the N -particle Pauli-Fierz Hamiltonian H of ( 13.39) is self-adjoint on the domain 

DC'f:.f=l (PJ/2m j) + Ht} Furthermore His bounded from below. 

Proof Hiroshima (2002). 

Theorem 13.4 remains valid under the inclusion of spin and the addition of external 
potentials with very mild conditions on their regularity. 

In summary, the Pauli-Pierz Hamiltonian uniquely generates the unitary time 
evolution e-iHt/n on 1-i provided the condition (13.76) holds. Under a suitable 

ultraviolet cutoff the quantum dynamics of charges and photons is well defined. 

13.4 Energy and length scales 

The characteristic energy and length scales will depend on the physical situation. 

In our context two distinct cases are of particular importance. For the point-charge 
( = ultraviolet) limit relativistic units are used, which means that lengths are mea
sured in units of the Compton wavelength 

(13.77) 
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and energies in units of the rest energy mec2 of the electron. For applications in 
atomic physics and quantum optics, atomic units are more appropriate, where the 
size of an atom is set by the Bohr radius 

4rrn2 _ 1 It 
113 = --2 = (){ --

mee mec 

and the energy scale is set by the ionization energy 

with 

4 e me 2 2 
------,------o- - a (m c ) 
(4rr)2ft2 - e 

e2 
a=--

4rrnc' 

(13.78) 

(13.79) 

(13.80) 

the Sommerfeld fine-structure constant written in Heaviside-Lorentz units. The 
ionization energy corresponds to the length a-1113 which approximately equals 
the wavelength of the Lyman alpha line. The scales compare as 

ionization rest 

(){ 

length [nj mec] 1 

Lyman alpha Bohr radius Compton 

Since a :::::: 1 j 137 in nature, the scales are well separated. 
These scales necessarily reappear in the Pauli-Fierz Hamiltonian with the cru

cial difference that the physical mass me of the electron is replaced by its bare 
mass m. To have a concrete example let us discuss the hydrogen atom as the sim
plest two-particle case. We assume that the nucleus is infinitely heavy. Then the 
Pauli-Fierz Hamiltonian reads 

1 ( 1 . )2 2 H = - CJ • (p + c- eArp(x)) + Hf- e Vrpcou!(x), 
2m 

(13.81) 

where -e is the charge of the electron and for the purpose of this subsection only 
we set 

(13.82) 
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We transform to dimensionless form, such that the energy unit is a 2 (mc2), the 
length scale for the electron is rB = n/ a me, and that for the photons is a-1 rB. 

This is achieved through the canonical transformation U defined through 

U*a(k, A)U = (a-2Ac)312a(a-2Ack, A), 

U*xU = a- 1 Ax U*pU = aA -lp 
c ' c ' (13.83) 

where now the Compton wavelength 

Ac = njmc (13.84) 

depends on the bare mass rather than the physical mass as in (13.77). Then 

U* HU = a2mc2 (~(rr · ( -iY'x- ~aA<P(ax)) )2 

+ L J d3klkla*(k, A)a(k, A)- 4nV<pacoul(x)) (13.85) 
A=l.2 

with 

Acji(x) = L J d3kfj(a2A~ 1 k) ~lkl e;_(k)(eik·xa(k, A)+ e-ik·xa*(k, A)) 
A=l,2 V ~1/\,1 

(13.86) 

and (/Ja(k) = cp(ak/Ac). We infer from (13.85) that the Maxwell field is weakly 
coupled to the electron. Thus, cum grano salis, perturbation theory around a = 0 
should provide a qualitatively correct picture. In particular, spectral lines should 
be rather sharp. In addition, since A<P varies only on the scale a- 1 ~, the dipole 
approximation Acji(ax) ~ Acji(O) will suffice as long as the electron remains bound 
to the nucleus. 

The dimensionless form (13.85) teaches us also how to choose the wave number 
cutofff;. Thus, iff;= (2n)-312 for lkl <A, fi= 0 for lkl 2::: A, then A» 1/rB 

to have a negligible smearing of the Coulomb potential. On the other hand, at the 
scale of the rest energy of the electron, the Pauli-Pierz model cannot be expected 
to describe the physics correctly. Thus the cutoff should satisfy 

1 «A~ « a- 1 . (13.87) 

It is instructive to compare the atomic units with relativistic units. In the latter 
case the scale transformation U reads 

U*a(k, A)U = A~12a(Ack, A), U*xU = Acx, U* pU = A~ 1 p. (13.88) 
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Then 

U*HU = mc2 (~(0' · (-iY'x- ~A'PAc(x)))2 

+ L J d3klkla*(k, A)a(k, A)- 4naV'P>-ccoui(x)) (13.89) 
A=l.2 

with the form factor in units of the Compton wavelength, fP;,_c = cp(k/Ac). Note that 
the cutoff depends through the Compton wavelength on the bare electron mass. 

13.5 Conservation laws 

The Pauli-Pierz Hamiltonian (13.42) is invariant under translations and rotations. 
Therefore the total momentum and the total angular momentum will be conserved. 
One only has to identify the generators of these symmetries. The generator for the 
translations of the j -th particle is its momentum p J, which means 

(13.90) 

Similarly the field translations are generated by the momentum of the Maxwell 
field 

Pf = L J d3knka*(k, A)a(k, A) 
A=l.2 

with the property that 

eia·Pt!na(k, A)e-ia·Pt/n = e-ia·ka(k, A). 

Thus the total momentum 

must be conserved and indeed 

N 

p = LPi + pf 
}=1 

[H, P] = 0. 

(13.91) 

(13.92) 

(13.93) 

(13.94) 

Next we consider a rotation R by an angle e relative to the axis of rotation n 
through the origin. For position and momentum we have 

eiefi.(qixPi)/nq1e-iefi.(qjXPj)/n = RqJ, eilin·(qixPi)/nPJe-ien·(qixPi)/n = RpJ. 

(13.95) 

For the Maxwell field we define the angular momentum relative to the origin 

Jf =- L J d3ka*(k, A)(k x inY'k)a(k, A) 
A=l,2 

(13.96) 
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and the helicity 

sf= c-1 f d3 xE(x) X A(x) =in f d3kk(a*(k, 2)a(k, 1)- a*(k, 1)a(k, 2)) 

(13.97) 

with k = k/lkl. Their sum rotates the vector potential as 

ei!!n·Ut+St)/11 A(x)e-i!!n-(Jt+St)/11 = RA(R-1x) (13.98) 

and correspondingly for the transverse electric field E 1_ (x). We conclude that the 
total angular momentum 

is conserved and indeed 

N 

1 = L_)q 1 x p 1) + Jf + sf 
j=l 

[H, J] = 0. 

If the j -th particle carries spin Oj, then 

N N 1 
1 = 2_)q1 x PJ) + L -na1 + Jf +sf 

. 1 . 1 2 
]= ]= 

is the conserved total angular momentum. 

(13.99) 

(13.IOO) 

(13.101) 

The helicity Sf is diagonalized through transforming to circularly polarized pho
tons. We define the left-circularly and right-circularly polarized annihilation oper-
a tors 

I I 
a+(k) = ~(a(k, I)- ia(k, 2)), a_(k) = ~(a(k, I)+ ia(k, 2)). (13.I02) 

Then 

sf= f d3kk(a~(k)a+(k)- a':_(k)a_(k))' (13.103) 

which establishes that the photon has spin I. However, only two helicity states 
are admissible, +I for left and -I for right polarization. The corresponding one
photon states are 

e±(k)(2n)-312ei(k·x=r=wt), e±(k) = ~(e1 (k) ± ie2(k)). (13.I04) 

For the + index the photon state represents a plane wave whose polarization vector 
rotates in a right-handed sense about k and thus appears to an observer facing the 
incoming wave as left polarized. 
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13.6 Boundary conditions and the Casimir effect 

So far we took for granted that the Maxwell field lives in infinite space. In many 
applications one has a macroscopically finite geometry, like a cavity or a wave 
guide, and it is necessary to include it as a boundary condition into the Hamilto
nian. For concreteness, let us assume then some bounded region A whose surface 
a A is defined through a perfect, grounded conductor. Momentarily there are no 
charges inside A. Then the Maxwell equations are 

e- 1atB = -\7 X E' e- 1atE = \7 X B' \7 ° E = 0, \7 ° B = 0. (13.105) 

Ifn(x) denotes the outward normal at x E a A, the boundary conditions for a per
fect conductor are 

n ° B(x) = 0' n X E(x) = 0 at X E a A 0 (13.106) 

The rules of canonical quantization apply as before, only the final expressions 
are less explicit, since (13.105) together with the boundary conditions (13.106) 
cannot be solved through simple Fourier transformation. Let L 2 (A, JR3) be the 
space of (complex valued) vector fields on A. A E L 2 is divergence free if 
\7 · A = 0 and we denote by Q* the projection onto all such fields. The quan
tum mechanical Fock space is built up from Q* L 2 as one-particle Hilbert space. 
Notationally it is slightly more convenient to start from L 2(A, JR3) and incorpo
rate the projection into the definition of the quantized fields. We introduce then the 
three-component Bose field a(x ), a* (x) satisfying 

(13.107) 

with all other commutators vanishing. The quantized Maxwell field will depend 

only on Q*a and Q*a*. 
As before the vector potential A satisfies the Coulomb gauge, which implies 

(13.108) 

with boundary conditions 

n ° (\7 X A) = 0' n X A= 0 at X E a A 0 (13.109) 

Since E1_ = -e-1atA, one can write the solution to (13.108), (13.109) on Q*L2 

as in (13.108) 

( A(t)) (cosQt -en-1 sinru)(A) 
E1_(t) = c 1Q sin Qt cos Qt E1_ ' 

(13.110) 

where, as a linear operator, Q = e(- ,6. Q9 11) 112 restricted to Q* L 2 and with 
the mixed Dirichlet-Neumann boundary condition (13.1 09). Q is a positive 
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self-adjoint operator. In analogy to (13.35), (13.36) the canonically quantized 
fields are obtained as 

A(x) = cjfifi Q- 112 Q*(a(x) + a*(x)), 

Ej_(x) = jfif2Q 112 Q*i(a(x)- a*(x)). 

Clearly their commutation relations are 

(13.111) 

(13.112) 

(13.113) 

with the right-hand side denoting the integral kernel of Q* in L 2 (A, IPi.3). The field 
energy is a sum over the energy in each mode, which in position space becomes 

Hf = n i d3xa*(x) · QQ*a(x). (13.114) 

In case there are charges enclosed in the cavity, their mutual Coulomb interac
tion has to respect the perfect conductor boundary condition (13.106). For exam
ple, since E11 is not quantized, for a single charge at q the potential ¢A satisfies the 
Poisson equation 

f..r/JA(X) = ecp(x- q), r/JA(X) = 0 for X E oA (13.115) 

and the potential acting on the particle is given by 

er/JArp(q) = e J d3xcp(q- x)¢A (x). (13.116) 

Close to the surface ¢A (x) is determined by the image charge and looks like an 
attractive Coulomb potential. Thus we have to add phenomenologically to the 
Hamiltonian a surface potential Vsur which keeps the particle confined to the cavity 
A. Altogether the Pauli-Pierz Hamiltonian for a single charge enclosed in a cavity 
IS 

(13.117) 

To return to the charge-free situation, according to (13.114) we calibrated the 
ground state energy of the cavity at zero, which is an acceptable choice for a closed 
cavity. If, however, the cavity is open, as for example two plane parallel, grounded 
metal plates, then the natural zero of energy refers to the energy of the field vacuum 
in infinite space. In the presence of the plates this vacuum energy is lowered by 
an amount which depends on the separation of the plates. Therefore there is an 
effective attractive force between the plates - the famous Casimir effect. Together 
with the spectrum of the black-body radiation it provides the most direct evidence 
for the quantum nature of the Maxwell field. 
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If one adopts the boundary conditions as in (13.109), the energy difference
with and without plates- diverges because of high-frequency modes, which re
flects the fact that the metal plates cannot be perfect conductors up to arbitrarily 
high frequencies. We therefore choose a cutoff function g with g ( w) = 1 for small 
w and rapidly decreasing at infinity. The plates are parallel to each other, have a 
distanced, and an area £2 which is taken to be very large. Then the energy differ
ence per unit area is given by 

1 rr 2nc(1 00 100 
) 2!::.E(d) = --3 -G(O) + L G(n)- dKG(K) , 

e 4d- 2 n=l 0 
(13.118) 

where 

G(K) = 2100 
duu 2g(rrujd). (13.119) 

For analytic gone can use in (13.118) the Euler-MacLaurin summation formula, 

1 ~ 100 1 I 1 Ill -F(O) + ~ F(n)- dKF(K) = --F (0) + -F (0) 
2 n=l 0 12 720 

+higher derivatives, (13.120) 

and note that F 1 (0) = 0, F"1 (0) = -4, since g(O) = 1, whereas every extra deriva
tive carries a factor 1 I d. Thus to leading order 

1 rr 2nc _4 
£2 !::.E(d) = -720d3 + O(d ) ' (13.121) 

independently of the choice of the cutoff function g, and the force per unit area 
between the conducting plates is given by 

1 rr 2 ftc -5 
£2 F(d) =- 240d4 + O(d ) . (13.122) 

13.7 Dipole and single-photon approximation 

Even for a single charge the Pauli-Pierz Hamiltonian resists exact diagonalization 
and one has to rely on approximations. As suggested by (13.85), since the coupling 
to the photon field is weak, an obvious strategy is to expand in a. Such a perturba
tive treatment is covered extensively in standard texts and there is no need to repeat 
it here. Since one of our aims is to explain why perturbation theory works so well, 
we will make contact with the conventional results later on. Another strategy is to 
truncate the Hamiltonian to taste, so as not to throw out the physics. In essence 
there are only two such schemes, the dipole approximation and the single-photon 
approximation. 
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(i) Dipole approximation 

We consider a single charge confined by an external potential er/Jex, centered at the 
origin. Since the potential inhibits large excursions, one loses little by evaluating 
the vector potential at the origin instead of at q, the true position of the charged 
particle. This leads to the dipole Hamiltonian 

1 ( 1 )2 H = - p- c- eArp(O) + e¢ex(q) + Hf. 
2m 

(13.123) 

The interaction p · Arp (0) couples p to the fluctuating vector potential at the origin. 
We can transform it to a fluctuating electric field coupled to the position q through 
the unitary operator 

u = exp[ic- 1 eq . Arp (0) In,]. (13.124) 

Then 

U*pU=p+c- 1eArp(O), U*qU=q, 

U*a(k, A.)U = a(k, A.)+ iq · e;,.(k)ecp(k)j1j2nw, (13.125) 

which imply 

U*HU = -1 p 2 + e¢ex(q) + Hf- eq · E_irp(O) + ~(~ f d3ke2 1cp(k)1 2)q2 . 
2m 2 3 

(13.126) 

The extra harmonic potential balances q · E _irp so as to make the sum of the last 
three terms positive. 

Even in the form (13.123), respectively (13.126), H is not tractable and in a 
second approximation one assumes the external potential to be harmonic. Then 
the dipole Hamiltonian reads 

H = - 1-(p- c- 1eArp(O) )2 + ~mw5l + Hf. 
2m 2 

(13.127) 

Clearly, the Hamiltonian is quadratic in the dynamical variables and consequently 
the Heisenberg equations of motion are linear, 

1 
q(t) = -(p(t)- c- 1eArp(O, t)), p(t) = -mw5q(t), 

m 

c-2a; A(x, t) = ,0.A(x, t) + (ejc)8~(x)q(t) (13.128) 

with 8_1_ the transverse 8-function of (13.38). As before the index cp denotes con
volution with the form factor cp. At this point (13.128) can be solved as classical 
equations of motion. One obtains the exact line shape, the Lamb shift, and the 
Rayleigh scattering of light from a bound charge. It should be noted that, since the 
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energy levels of the harmonic oscillator are equidistant, several emitted photons 
will interfere, which makes the emission spectrum distinct from, say, the hydrogen 
atom; compare with section 17.4. 

Even though the equations of motion (13.128) are linear, their solution is not 
a back of the envelope computation and one often resorts to yet another approx
imation, the rotating wave approximation. One starts from (13.126) with the har
monic potential !mw§q2, which already includes the last summand in (13.126), 
and rewrites the harmonic oscillator in terms of its creation and annihilation oper
ator b, b*. Then 

H = nwob*b- iJn/2mwo(b- b*) · eE_Lp(O) + Hf. (13.129) 

In the coupling, one ignores the counter-rotating terms ba and b* a*, which results 
in 

Hrw = (b, a) · h(b, a)t. (13.130) 

Our notation emphasizes that the rotating wave Hamiltonian Hrw is quadratic in 
( b, a) and should be regarded as the second quantization of the one-particle Hamil
tonian h. The one-particle space is JC = CC3 EB (L2 (1Pi.3) Q9 CC2), the CC3 subspace 
corresponding to b, b*. A wave function in JC is of the form (x, 1/f(k, A)), x the 
one-particle amplitude for the oscillator and 1/f(k, A) the one-particle photon am
plitude. h acting on a pair (X, 1/f) is defined by 

h( x ) = (!twox-! L;_= 1•2 f d3kerp*n,Jwjmw0e;_(k)l/f(k, A)) 
1/f(k, A) -~e(/Jn,Jwjmwoe;_(k) ·X+ rUJJljf(k, A) ' 

(13.131) 

cp= cp(k), w = w(k). h will reappear as the Friedrichs-Lee Hamiltonian. For 
e = 0, the eigenvalue nwo is embedded in the continuous spectrum [0, oo). The 
coupling turns this eigenvalue into a resonance; compare with section 17.3. 

A further popular variant is to set wo = 0 in (13.127) and to regard the Hamil
tonian as describing a freely propagating charge. One finds that the mass of the 
particle is increased due to the coupling with the field. However, quantitatively 
such a result cannot be trusted, since the dipole approximation is based on the as
sumption that the electron remains close to the origin. There is no such mechanism 
for a free particle. 

(ii) Single-photon approximation 

We restrict the Fock space to CC EB ~- Then the wave functions 1/f are pairs 
(1/fo(x), 1/JJ (x, k, A)). 1/fo(x) is the wave function for an electron and no photon 
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present, while 1/f 1 (x, k, A) is the wave function for the electron plus one photon 
with momentum nk and helicity A.. The correspondingly restricted Pauli-Pierz 
Hamiltonian is denoted by H1. From (13.39), setting N = I, n = I = c, one infers 

I 2 """' f 3 ~ I ik·x I (HI o/)o(x) = -p o/o(x) + L.,; d· keep ~e -eA.· Po/1 (x, k, A.), 
2m A.=l. 2 v 2w m 

( I 2 ) ~ I ik X I (HI o/)1 (x, k, A.)= -p + w o/1 (x, k, A.)+ ecp ~e- · -eA.· po/o(x), 
2m v2w m 

(13.132) 

where the A~ contribution has been neglected. H1 is a two-particle problem with a 

translation-invariant interaction. The electron has kinetic energy 2~7 p2 . The photon 
can be either "dead" (o/o) or "alive" (o/J). The kinetic energy is zero in the dead 
state and rUJJ in the alive state. Through the interaction a photon is either created or 
annihilated, which corresponds to a transition between dead and alive. Because of 
the I I y'w-factor, this interaction has a long range and decays only as r-312 in the 
relative distance between the electron and the photon. 

Notes and references 

Section 13.1 

The Hamiltonian form of the Abraham model in the Coulomb gauge is standard 
and explained in Cohen-Tannoudji et al. ( 1989) and Sakurai (1986), for example. 

Section 13.2 

The name "Pauli-Pierz" is not accurate historically. The Hamiltonian (13.42) ap
pears at the beginning of paragraph two of Pauli and Pierz (I938) as a matter of 
fact, without citation. Pauli and Pierz study the generation of infrared photons in 
Compton scattering. Cohen-Tannoudij et al. (1989) call (13.42) "of basic impor
tance" and Milonni (I994) refers to (13.42) simply as "the Hamiltonian". Thus 
despite its fundamental nature the Hamiltonian (13.42) carries no specific name in 
the literature. Lately, "nonrelativistic quantum electrodynamics" and "Pauli-Pierz" 
have become common usage in some quarters. We stick to the latter convention, 
which is certainly better than to be speechless. 

The quantization of the electromagnetic field as a system of harmonic oscilla
tors was common knowledge right after the advent of quantum mechanics through 
the work of Dirac (1927), Landau (I927), Jordan and Pauli (1928), Fermi (1930), 
and Landau and Peierls (1930), and was immediately applied to atomic radiation 
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by many quantum theorists. The systematic derivation of the Hamiltonian (13.42) 
is not so well documented and was presumably regarded as more or less obvious, 
although the advantage of the Coulomb gauge was only slowly realized. The re
view articles by Breit (1932) and by Fermi (1932) and the research monograph by 
Beitler (1936, 1958) explain the quantization in its modern form, in essence. Since 
"one cannot comb the hair on a sphere", the polarization vectors eA. (k) are necessar
ily discontinuous ink, which causes poor decay in their Fourier transform. We refer 
to Lieb and Loss (2004) for a formulation using only the transverse projection. 

The size of atoms as based exclusively on the Coulomb Hamiltonian is a long
standing open problem. We refer to Lieb (1990, 2001). 

Textbooks on nonrelativistic quantum electrodynamics are listed in Notes and 
References to section 3.2. 

Section 13.3 

Criteria for self-adjointness are given in Reed and Simon ( 1980, 197 5). In our con
text the Kato-Rellich theorem has been applied by Nelson (1964b) and Frohlich 
(1974), amongst others. Self-adjointness without restriction on the magnitude of 
the charge is proved by Hiroshima (2000b, 2002). A review is Hiroshima (2001 ). 

Section 13.5 

A more detailed treatment of conservation laws is Huang (1998). 

Section 13.6 

Casimir (1948) discovered the attraction of two conducting plates through vacuum 
fluctuations. Casimir and Polder (1948) compute the attractive force between two 
atoms, the retarded van der Waals force, and the force between an atom and a wall. 
The forces are minute and direct experimental evidence had to wait for a while. We 
refer to Sparnaay (1958) and Lamoreaux (1997). On the theoretical side a complete 
coverage is Milloni (1994), Huang (1998), with the finite-temperature corrections 
discussed by Schwinger et al. (1978), Bordag et al. (2000), and Feinberg et al. 
(2000). 

Section 13.7 

Apparently the first systematic study of the dipole approximation with a harmonic 
external potential is Kramers (1948) and van Kampen (1951 ). Various aspects are 
covered by Senitzky (1960), Schwab] and Thirring (1964), Ford, Kac and Mazur 
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(1965), Ullersma (1966), Ford, Lewis and O'Connell (1988a, 1988b), Grabert, 
Schramm and Ingold (1988), Unruh and Zurek (1989). A mathematical study is the 
series by Arai (1981, 1983a, 1983b, 1990, 1991). Since the dipole approximation 
provides a reasonable description of radiation processes, one might regard the har
monic potential as the lowest-order approximation and expand in the anharmonic
ity. This program has been carried through in Maassen (1984 ), Spohn (1997), 
Maassen, Guta and Botvich (1999), and Fidaleo and Liverani (1999). If the an
harmonicity is small, in fact so small that the external potential remains convex 
and grows as ~mw5q2 for large q, then the convergence of the time-dependent 
Dyson series can be controlled uniformly in t. With such a strong estimate one can 
show that qualitatively the properties of the damped harmonic oscillator persist 
into the nonlinear regime. 

The dipole approximation is not restricted to a single particle. For example one 
may consider two harmonically bound charges with their center of charge at r1 and 
r2 . Then the kinetic energies are approximated by (p J - c-1 e J Arp (r J) )2 j2m J, j = 

I, 2. Denoting R = lr1- r2l, one is interested in the ground state energy, E(R), 
as a function of the separation. Because of retardation E (R) ~ - R-7 for large R 
and E(R) ~ -R-6 in an intermediate regime. 

If c/Jex = 0, then the Hamiltonian (13.123) can be unitarily transformed to H' = 
(p2 j2meti) + Hf. meff agrees with the effective mass of the Abraham model to 
lowest order in lvlfc; compare with section 4.1. 

The single-photon approximation was already used in disguise by Dirac (I927) 
and Weisskopf and Wigner (1930). It is instructive to extend this approximation 
by cutting Fock space at N photons (Hubner and Spohn, unpublished manuscript; 
Skibsted 1998). If one artificially adds to the space of single-photon wave functions 
a one-dimensional subspace for a "dead" photon, then the theory has a structure 
very similar to an (N + I)-particle SchrOdinger equation. The photons interact 
only indirectly through the atom. The cluster decomposition consists of n free 
photons and N - n photons bound by the atom, n = 0, I, ... , N. 
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The statistical mechanics connection 

Models from quantum mechanics can be converted into statistical mechanics 
systems through the Wick rotation t ~ -it. Within quantum field theory this 
technique has been very powerful, both in proving qualitative properties and as a 
computational tool. Besides these more practical aspects, the statistical mechanics 
formulation is an additional source of intuition which cannot so easily be extracted 
from the Schri:idinger differential equation. The price to pay is that, in essence only 
ground state properties can be handled. Truly time-dependent problems must be 
treated in physical time. For charges interacting with the Maxwell field the Wick 
rotation is equally attractive. There is one additional bonus: since the field Hamil
tonian is quadratic and since the coupling to the field is linear, as first observed by 
Feynman, the Gaussian integration over the Maxwell field can be done explicitly. 
This results in a fairly concise statistical-mechanical description for the particles. 

In Euclidean language the possible paths of the charge and the fields become 
fluctuating quantities. To distinguish in notation we use t c--+ qt for a random path 
of the charge and t c--+ At (x) for a random history of the transverse vector field. 
IE.(-) refers to expectation with respect to the measure of integration, either spec
ified through the context or indicated by a subscript. Sometimes we also use the 
statistical mechanics shorthand ( ·) for averages. 

14.1 Functional integral representation 

For a single particle, subject to the potential V (x), the imaginary time Schri:idinger 
equation is, setting It = 1 = m, 

(14.1) 

and its solution for t :=:: 0 is constructed through the Trotter product formula as 

(e-tHP1/f)(x) = lim (etl'>.j2ne-tV/n)n1/f(x). (14.2) 
n---+oo 

177 
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We recognize exp[~t 6.] as the transition probability for a Brownian motion, whose 
paths will be denoted here by t r-+ qt. Brownian motion is a Gaussian process and 
therefore defined through the mean and covariance. Explicitly, 

(14.3) 

If the Brownian motion starts at x, we indicate the start point as a subscript 
in the expectation and have lEx(qt) = x, lEx((q8 - x)a(qt- X)fJ) = Oaf1 min(s, t), 
a, f3 = I, 2, 3. In particular the transition probability is obtained as 

IP'x({qt E d3y}) = (2nt)- 312 exp[ -(y- x) 2 j2t]d3y = (etl1.f2)(x, y)d3 y. 

(14.4) 

Writing out (14.2) in position space representation, one infers the Feynman-Kac 
formula 

(e-tHP1/f)(x) =lEx( exp [-lot dsV(qs)]o/Cqt)). (14.5) 

The Brownian motion path has acquired a non-Gaussian weight, which is the ex
ponential of the potential energy integrated along the path qt. 

The statistical mechanics connection becomes more obvious upon discretizing 
time in units of r. We set c/Jn = qn,, c/Jn E !Pi.3 . Then, in approximation, (14.5) reads 

I I I N-1 
- d3¢o ... d3¢N8(¢o -x)exp[-- L(¢J+l-¢J)2] 
Z 2r J=O 

N 

x exp [- r L V(¢J)]o/(¢N), 
j=l 

(14.6) 

N r = t. The statistical mechanics model lives on a one-dimensional lattice and 
has at each site a continuous "spin" with three components. The first exponen
tial is a quadratic nearest-neighbor interaction and, except for the normalization, 
represents a discrete-time Gaussian random walk in !Pi.3 . The potential can be com
bined with the Lebesgue measure as exp[ -rV(¢J)]d3¢J and thus provides a non
Gaussian single-site measure. 

For (14.5) to make sense one needs some minimal conditions on V to en
sure that the expectation is defined. An obvious sufficient condition is to have 
V ::::_ co > -oo. Equation (14.5) indicates that very roughly there are three families 
of potentials: (i) Binding, V increases at infinity. Under the measure in (14.5) qt 

has in essence bounded fluctuations. For t --+ oo the path measure for qt becomes 
a stationary diffusion process. (ii) No binding, e.g. a repulsive potential decay
ing to zero at infinity or a bounded periodic potential. A typical path qt fluctuates 
and diffuses to infinity as a Brownian motion with some effective diffusion coeffi
cient. (iii) Local binding, like an attractive square-well potential. For the purpose 
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of discussion let us set the potential as A V with V attractive near the origin and 
decaying to zero at infinity. For large A the potential dominates and qt is con
fined as a stationary diffusion process. As A decreases, qt makes longer and longer 
excursions until it unbinds at some critical Ac. For A < Ac the Brownian motion 
dominates. Since Brownian motion is recurrent in dimension d = 1, 2, one has 
Ac = 0, whereas ford = 3 generically Ac > 0. 

It is of use to translate the path properties of the particle to spectral properties 
of the particle Hamiltonian Hp = - ~ ~ + V. We denote by L the continuum edge 
of Hp and, if it exists, by 1/fo the unique ground state of Hp, i.e. Hpl/fo = Eol/fo. In 
case (i) the spectrum of Hp is purely discrete, formally L = oo. In the second case 
Hp has a purely continuous spectrum and no eigenvalues. For a locally binding 
potential which decays to zero at infinity, case (iii), the continuum edge is L = 0. 
For sufficient attraction there are bound states with an energy below L, in particu
lar Eo < 0. In dimension d = 1, 2 an arbitrarily weak attraction results in a bound 
state, whereas for d :=:: 3 a minimal strength is required. As is well understood, 
there is more complicated spectral behavior around with various borderline cases. 
For our purposes the schematic classification above will suffice. 

Our goal is to extend the Feynman-Kac formula (14.5) to e-tH with H the 
Pauli-Fierz Hamiltonian. This will be done in two steps. Firstly we study a one
particle Hamiltonian including an external vector potential, and secondly we write 
e-tHf in terms of a suitable Gaussian measure. Combining both elements yields 
the desired generalization. 

Let us assume then that the quantum particle is subject to a magnetic field and 
denote the corresponding vector potential by a(x ), to distinguish from the fluctu
ating vector potential At used later on. The imaginary time Schrodinger equation 
becomes 

1 . 2 
otl/f = -Hpl/f, Hp = 2(-1\l- a) + V. (14.7) 

Then, as before, we represent e-tHr through the Trotter product formula. The vec
tor potential yields a term proportional to q, as can be guessed from the corre-
sponding classical action. More precisely one obtains 

The stochastic integral appearing in (14.8) is defined as Ito integral, which means 
that the discretization of a (x) is evaluated at the left end point, 

lo t nt 

dqs · a(qs) = lim L a(%n-l)jn) · (qm;n - %n-l)jn). 
0 n---+oo 

m=l 

(14.9) 
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This limit exists almost surely with respect to Brownian motion. Through the 
Ito convention one picks up in (14.8) the additional term containing V' ·a. It 
disappears, if in (14.9) we were to use the, in our context perhaps more nat
ural, Feynman-Stratonovich midpoint rule where a(%n-1)fn) is replaced by 
!Ca(qm;n) + a(%n-1)jn)). Note that in the Coulomb gauge the stochastic inte
gral does not depend on the particular choice of the rule for the discretization, 
since V' · a = 0. 

On a purely formal level, following Feynman, the quantum propagator is written 
as a sum over all paths from x' to x in the time span t "weighted" by the exponential 
of the classical action, 

(e-iHrt)(x, x') =I fl d3qs8(qo- x')8(qt- x) exp [i lot dsL(qs, iJs) J 
O~s~t 0 

(14.10) 

with the classical Lagrangian L(q, q) = !iJ2 - V(q) + q · a(q). Note that com
pared to the right side of (14.8) the role of x and x' has been interchanged. Upon 
Wick rotation t "--'+ -it and time reversal qs "--'+ qt-s (14.1 0) becomes 

(e-tHr)(x, x') =I fl d3qs8(qo- x)8(qt- x') 
O~sg 

X exp [-lot ds(~q,; + V(qs) + iqs · a(qs)) J. (14.11) 

One recognizes the potential term and the stochastic integral -i J~ dsqs · a(qs) 

with the mid point rule. The exponential of the kinetic term combines with the 
infinite-product Lebesgue measure to Brownian motion, denoted by lEx in (14.8), 
which starts at x according to the factor 8(qo- x). 

We turn to the functional integral for the Maxwell field, which we can think 
of as an infinite collection of harmonic oscillators. Let us first recall the single 
harmonic oscillator with Hamiltonian 

(14.12) 

as a differential operator acting on L 2 (JR, dx). It has the normalized eigenvectors 
In), n = 0, 1, ... , i.e. 

Hln) = Enln), En= wn. (14.13) 

10) is the ground state of H. In the position representation H o/o = 0 with 
o/o(x )2 = ,jWJiie-uJx2

• Thus, alternatively we can use the linear span of the 
In)' s as the Hilbert space of states. This corresponds to the Fock space :F over 
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the one-particle space CC, which means 1/f E :F is of the form 1/f = (1/fo, o/1, ... ), 

1/f = ~~0 1/f n In). A further, as it will tum out natural, choice is the Hilbert space 
Ho = L 2 (JR, 1/fo (x )2dx) with weight given by the square of the ground state wave 
function. 

Of course, these Hilbert spaces are unitarily equivalent. Of interest is the uni
tary map from :F to Ho which is achieved through the Wick ordering of poly
nomials. We regard x as a random variable on lR equipped with the normalized 
Gaussian measure o/o(x)2dx. Then, denoting expectation by (-),the Wick order 
of x is defined recursively through :x0: = 1, ox:xn: = n:xn- 1:, and (:xn:) = 0, 
n = 1, 2, .... Note that the Wick order depends both on the random variable and 
on the underlying measure. Thus :1: = 1, : x: = x - (x) = x, : x 2: = x 2 - 2(x )x -
(x2 ) + 2(x )2 = x2 - (1 j2cv ), etc., in our case. Let Pn denote the n-th Hermite 
polynomial, 

[n/2] 1 
p (x) - "' n. (-l)i xn-2} 

n - L_.,; ( _ 2 .) 1 • 1 2 ' 
J=O n 1 .J. 

(14.14) 

with [ n] the integer part. Then the Wick -ordered mononomial of order n is given 
by 

(14.15) 

One has 

(14.16) 

By linearity Wick order extends to all finite polynomials. Let us also introduce 

* 1 1 
a = ;;:;-:-(cvx- ox), a= ;;:;-:-(cvx +Ox) 

v2cv v2cv 
(14.17) 

as creation and annihilation operators of the harmonic oscillator. Their Wick or
der means that all annihilation operators are moved to the right, e.g. : aa*: = a* a. 

Then 

(14.18) 

Comparing with (14.16) the map U from :F to Ho should be defined through 

(14.19) 
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and extended by linearity. By the very construction the closure of U as a linear 
map :F--+ Ho is then unitary. Note that e-tH is implemented as 

(14.20) 

Through the Feynman-Kac formula (14.5) we boost (14.12) to a Gaussian 
stochastic process denoted by Xt. It takes real values, is stationary in time, has 
mean zero, and covariance 

I JE.(x X ) = -e-wlt-sl . 
t s 2w (14.21) 

We recognize Xt as the stationary Omstein-Uhlenbeck process governed by the 
stochastic differential equation 

dXt = -WXtdt + dbt , (14.22) 

where bt is standard one-dimensional Brownian motion. Note that 

IE.(f(xr)) = IE.(f(xo)) = (1/fo, !1/fo) = (1, fhio = J dx1/fo(x) 2 f(x), 

(14.23) 

where we used the similarity transformation 

1/f()le-tH 1/fo = etL' t ::::_ 0' 

with L the generator of the Omstein-Uhlenbeck process Xt, 

L = -wxox +~a;. 

(14.24) 

(14.25) 

(14.26) 

According to (14.23) the Ornstein-Uhlenbeck process Xt has 1/fo(x)2 as stationary 
measure. With probability one t r+ Xt is continuous and we may choose C(.!Pi., IR), 
the space of all continuous functions over IR, as path space. In fact, Xt has in 
essence bounded fluctuations and increases at most logarithmically for large t. 

The point of our exercise is that it carries over essentially verbatim to the 
infinite-dimensional setting, except for the flat Hilbert space L2 (IR, dx). Hf plays 
the role of the harmonic oscillator. The boson Fock space over the transverse 
vector fields L 3_ (JR3 , JR3) plays the role of the Fock space over CC. The Omstein
Uhlenbeck process Xt is replaced by the infinite-dimensional Ornstein-Uhlenbeck 
process At (x). Let us start with the latter. At (x) is a Gaussian process with mean 
zero and covariance 
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a, a'= I, 2, 3. Because of the transverse projection Q~ar(k) = 8aa 1 - kakar the 
covariance (14.27) implies that 

V' ·At= 0 (14.28) 

almost surely. At (x) becomes a proper Gaussian random variable once it is inte
grated over the real test function f, 

3 

At(f) = L J d3xfa(x)Ata(x). 
a= I 

(14.29) 

From (14.27) we conclude that 

(14.30) 

Thus At (f) has a bounded variance provided II!/~~~~ < oo. 
In quantum field theory Lorentz invariance is of central importance; this be

comes more evident by treating time and space on an equal footing. We thus 
Fourier transform in (14.27) also with respect to t and obtain 

which is more symmetric. However, fixing the Coulomb gauge spoils full rotation 
invariance in IR4 . 

In our context time is singled out and we prefer to think oft c--+ At as a stochas
tic process with values in the transverse vector fields. Most conveniently, we regard 
At as the element of a Hilbert space JC', which is chosen such that t c--+ At is con
tinuous in t. At (x) is somewhat singular in x, which has to be balanced by defining 
the norm of the Hilbert space JC' through the inner product 

(f, g)Jcr = L J d3kfck, A)*u}/2 ( -/:::,.k + k2)-Kw112g{k, A) (14.32) 
A=L2 

with some K :::: 0. The predual Hilbert space is denoted by /C. It has the inner 
product 

(f, g)K = L J d3kj(k, A)*w-112( -/:::,.k + k2 )K w- 112g{k, A). (14.33) 
A=L2 

Lemma 14.1 (Regularity properties for sample paths of the Omstein-Uhlenbeck 
process). We regard the Ornstein-Uhlenbeck process At(x) with covariance 

(14.27) as taking values in the Hilbert space JC' with K > ~· Then t c--+ At E JC' 
is almost surely (norm) continuous. The path space of the Ornstein-Uhlenbeck 
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process can be taken as C (.!Pi., JC'), the space of continuous functions with values 

in JC'. 

Proof: The Omstein-Uhlenbeck process At is Markov and time reversible. A gen
eral estimate for such processes gives 

lE( sup At(J)2) :::; 3lE(Ao(f)2) + 72TD(Ao(J), Ao(J)), 
Og~T 

where D is the Dirichlet form defined through 

(14.34) 

1 
D( Ao(J), Ao(f)) = lim - (lE( At (f)Ao(f)) - lE( Ao(f)2)) . (14.35) 

t-+0 t 

Therefore 

(14.36) 

The eigenfunctions of ( -~k + k2) are the Hermite functions hn, n E N\ with 
eigenvalue An = 1 + 2 2:::;= 1 n 01 • Therefore 

lE( sup II At II~J = lE( sup L_)An) -KAt ( v'Whn)2) 
Og~T O~t~T nEN3 

:::; coL (An)-K J d3klhn(k)l 2 (1 + w). (14.37) 
nEN3 

Using operator monotonicity as (k2) 112 :::; (- ~k + k2 ) 112 yields the bound 

which is finite provided K > ; . 

co L (An) -K+~ , 
nEN3 

(14.38) 

The inequality (14.37) establishes that At lies in JC' with probability one. Con
tinuity is proved by a similar argument. The complete details can be found, e.g., in 
Giacomin et al. (2001 ), Lemma 5.5. D 

The path measure for At (x), as a probability measure on C (]Pi., JC'), is denoted 
by dP. The time-zero field is Ao(x). Ao(x) has the distribution dP 0 as a proba
bility measure on JC'. According to (14.30) dP 0 is Gaussian with mean zero and 
covariance 

lEctpo(Ao(f)Ao(g)) = J d3k(2w)- 1 j* · Qj_g. (14.39) 

As in the case of a single oscillator, there is a natural unitary map U from 
Fock space :F to L 2 (JC', dP0) which is achieved through Wick order. The Wick 
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order for operators on :F is defined by moving all creation operators to the left. 
The Wick-ordered polynomials on JC' are defined through a multilinear exten
sion of the orthogonalization scheme for a single oscillator. Let X 1, ... , Xk be 
k random variables. Their Wick order, relative to (·), is defined recursively by 
:(XJ)0 ... (Xk)0: = 1, (:(X1)n 1 ••• (Xk)nk:) = 0, and ojoXr(X1)n 1 ••• (Xk)nk:= 
n1 :(XJ)ni ... (Xj)ni- 1 ... (Xk)nk:. Clearly, for a single degree of freedom, i.e. 

JC' = IR, dP 0 = ,JW7J[e-u}x2 dx, the Wick order agrees with the construction in 
(14.15). The unitary map U : :F ---+ L 2 (JC', dP 0) is then given by 

UQ = 1, U:A(JI) ... A(fn): Q = :Ao(f1) ... Ao(fn): (14.40) 

Here Q denotes the Fock vacuum of :F. A UJ) is the quantized vector potential 
(13.35) smeared by fJ as A(JJ) = J d3xfJ(x) · A(x), whereas to the right stands 
the Wick order of polynomials as functions on JC'. We note that the dynamics is 
implemented as 

Ue-tHtu- 1 :Ao(fl) ... Ao(fn): = :Ao(e-wt fl) ... Ao(e-uJt fn): (14.41) 

fort :::: 0. U HtD- 1, a linear operator acting on L 2 (1C', dP 0), is referred to as the 
Schrodinger representation of Hf. 

Next we couple the charge and the Maxwell field. According to (14.39) the 
natural Hilbert space is 

(14.42) 

the subscript 's' standing for Schrodinger. The particle Hamiltonian reads 
Hp = -! ~ + V, with the shorthand V (q) = e¢ex (q ), and the field Hamiltonian 

U Hfu- 1 is defined through (14.41). Let us denote by lEctwxctP expectation with 
respect to the path measure dW x dP, where dP is the path measure for the 
Ornstein-Uhlenbeck process At (x) and dW the Wiener measure for q, i.e. the 
path measure of Brownian motion with starting distribution d3 x. Let F, G E Hs. 
Then, combining (14.5) and the infinite-dimensional analog of (14.24), we con
clude that for the uncoupled system 

lEctwxctP(F(qo, Ao)*exp [-lot dsV(qs)]G(qt, At)) 

= (1@ u-1 F, e-t(Hp<S11+1<S!Ht)1@ u-1G)Hs' (14.43) 

t :::: 0. In the following, the somewhat pedantic 1@ will be omitted, in particular U 

acts on L2 (IR\ d3x)@ :F as 1 on the first and as (14.40) on the second factor. 
The missing step is to include the minimal coupling to the field through the 

vector potential. For this purpose we note that in the Hilbert space L 2 (JC', dP 0) 

of the Schrodinger representation the transverse vector potential A (x) acts as a 
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multiplication operator, compare with (14.40), and in the functional integral the 
operator A (x) becomes a fluctuating vector potential At (x ), which is to be inserted 
in the minimal coupling as ~(p- eAt<p(q))2. Thus one can use (14.7) and (14.8), 
properly adapted to time-dependent vector potentials respecting the Coulomb 
gauge V · At = 0. For later convenience let us reintroduce the mass of the quantum 
particle, which amounts to replacing (p- eAt<p(q))2 /2 by (p- eAt<p(q))2 j2m 
and hence taking the Wiener process dW with diffusion coefficient 1 I m instead 
of 1, i.e. Eo(qsaqtf3) = m- 18af3 min(s, t). As a result we obtain the functional in
tegral representation for the semigroup e -t H, t :::: 0, of the spinless Pauli-Pierz 
Hamiltonian (13.39) for a single particle as 

(F Ue-tH u-1G) 
' 'Hs 

= EctwxctP(F(qo, Ao)* exp [-lot dsV(qs)- ie lot dqs · As<p(qs)]G(qr, Ar)). 

(14.44) 

Recall that Ar<p(q) = J d3x<;?(q- x)At(x). Equation (14.44) is the basic result of 
this section. It says that the measure on paths is weighted by the exponential of the 
classical action. The quadratic terms yield dW x dP and constitute the Gaussian 
a priori measure of the uncoupled system. The external potential and the minimal 
coupling to the quantized transverse vector potential are displayed explicitly. 

We still have to check that the random variable in the exponential of (14.44) 
remains finite almost surely. The function q, s c--+ As<p(q) is (almost surely) con
tinuous in both variables, which makes the stochastic integral well defined. To 
compute the variance, one notes 

(14.45) 

W is the transverse photon propagator, 

(14.46) 

which is bounded by our assumption on (if. The average of (14.45) with respect to 
Brownian motion yields 

( r )2 2 I 3 2 EctwxctP(o(qo) Jo dqs · As<p(qs) ) = t 3m d kl$1 j2w, (14.47) 

since one of the two stochastic differentials points in the future except at the diag
onal where dqtadqtf3 = m -lOaf3dt. Thus the action appearing in the exponential of 
(14.44) has a bounded variance. 
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14.2 Integrating out the Maxwell field 

We return to the basic formula (14.44) and assume that F, G are of the special 
form F(q, A)= G(q, A)= 1/f(q) with 1/f 2::: Oandofrapiddecrease. The Gaussian 
integration over dP can then be carried out with the result 

(1/f Q9 Q, e-tH 1/f Q9 Q)H 

= lEctw( 1/f(qo) exp [-fotds V (qs) - ~e2fotfotdqs · W (qs - qs', s - s')dqsJ 1/f(qt)) . 

(14.48) 

Since dqu1 dqtf-! = m-18afJdt almost surely, we may remove the diagonal cut in the 
double stochastic integral at the expense ofthe factor t(2j3m) J d3kliPP j2w. W is 
the transverse photon propagator (14.46), written more traditionally 

W(x, t) = 2~ J d3kdkolcp(k)l 2(k2 + k6)- 1ei(k·x-kot) Qj_(k) (14.49) 

as a 3 x 3 matrix. If one removes the ultraviolet cutoff by replacing cp(k) by 
(2rr) - 312 , then (14.49) can be computed explicitly. For our purpose it suffices that 
qualitatively 

(14.50) 

with some modifications due to the transverse projection. Reintroducing (if smooths 
this function at (x, t) = 0, but keeps the slow t-2 decay. For massive photons, 

w (k) = (k2 + m~h) 112, this decay would switch to an exponential. 
Equation (14.48) looks like the partition function of an equilibrium statistical 

mechanics system. We regard dW as the a priori measure on continuous paths in 
three-dimensional space. The time interval [0, t] corresponds to the volume. From 
the point of view of statistical mechanics it is more natural to place it symmetric 
relative to the origin, i.e. as [ -t, t]. Configurations are paths qs, Is I _:::: t. The fac
tors 1/f (q -t), 1/f (qt) constrain their end points to be most likely close to the origin. 
The paths have a Boltzmann weight consisting of two contributions, a single time 
integral from the external potential and a double time integral induced through the 
Maxwell field. Our observation suggests that the basic object must be the Gibbs 
measure for paths qs, Is I _:::: t, as given through 

f t 1 ft ft 
x exp[- dsV(qs)- -e2 dqs · W(qs -qs',s -s')dqs']dW 

-t 2 -t -t 

(14.51) 
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relative to the Wiener measure dW with Z(2t) the normalizing constant (14.48). 
The average with respect to the probability measure (14.51) is denoted below by 

Ot and by o? fore= o. 
The relationship to usual spin systems becomes even more evident upon dis

cretizing time in steps of r; compare with (14.6). Then, setting qnr = ¢n, ¢n E IPi.3, 

Nr = t, (14.51) becomes 

1 N 1 N-1 N - n d3¢no/(o/-N )1/r(c/JN) exp [--m L (¢J+l- c/lj) 2 - r L V(c/Jj) 
z n=-N 2 r j=-N j=-N 

I N-1 

- 2e2 L (¢J+I - ¢J) · W(c/Ji- ¢}, i- j)(¢i+I - c/Ji) J, 
i,j=-N 

(14.52) 

which is the Gibbs measure for a three-component continuous spin system with 
external potential V, a quadratic nearest-neighbor interaction, and a long-range 
interaction W. The spin configurations are over a one-dimensional lattice. Alter
natively, we may interpret ¢J as the position of the j-th monomer of an elastic 
string (polymer) curling in three-dimensional space. The term (¢J+I - ¢J)2 is the 
usual nearest-neighbor elastic energy. Integrating over the Maxwell field results in 
an additional long-range elastic interaction between the monomers. 

In the picture of an elastic string, cf. figure 14.1, it is natural to distinguish 
between the case V = 0 and a confining potential. Let us first discuss V = 0 and 
for definiteness pin the polymer at both end points, i.e. q_t = 0 = qt. If e = 0, 
then the mean square displacement at the midpoint, given by 

(14.53) 

reflects the stiffness of the free string. We expect that the interaction renormalizes 
the stiffness as 

(14.54) 

for large t, which defines the (effective) stiffness rr. The expectation in ( 14.54) is 
with respect to the interacting measure (14.51). The long-range interaction should 
make the polymer stiffer as compared to the free case e = 0, which means that the 
effective stiffness should be increasing with increasing coupling e2 . 

To gain a crude idea whether such a picture is at least qualitatively correct we 
replace W(q, t) by W(O, t) in (14.51). Going back to (14.44) this is equivalent 
to replacing A.Hp(q8 ) by Asrp(O) which is the dipole approximation. By rotation 
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Figure 14.1: Elastic string with end points pinned at the origin. 

invariance 

(14.55) 

and we recall that w(t) ~ ljt2 for large t. In the dipole approximation the Gibbs 
measure (14.51) is Gaussian and (14.54) can be computed explicitly. One obtains 

~ = I (dqr · dqo), (14.56) 

where (-) is the infinite-time limit in the dipole approximation, which is Gaussian 
and has the covariance 

(14.57) 

Therefore, 

a = m + e2w(O) = m + ~e2 I d3kliPP ~2 , (14.58) 

which as anticipated is increasing, in fact linearly in e2 . We remark that if w(t) 

decays like 1 It or even slower, the interaction is so strong that the stiffness is 
infinite, in the sense that the typical fluctuations of qo are no longer of the order 
vft but grow more slowly with t. 
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If one pins only the left end point, q_t = 0, one may think of qt as a random 
walk with mean square displacement (qr) = 3D(2t) for large t. Dis the diffusion 
coefficient and D = rr -I in our units. Thus (14.56), written as 

D = J dt(qr · qo), (14.59) 

is the standard Green-Kubo formula, which expresses D as a time integral over 
the velocity autocorrelation function. From (14.57) one concludes 

1 1 f 2 ~ ( 2 ~ ) -1 ik t (qt · qo) = -8(t)-- dkoe w(ko) m(m + e w(ko)) e 0 , 
m 2rr 

(14.60) 

which is regular except for the 8-function at t = 0. The structure (14.60) turns out 
to be general. For the full Pauli-Fierz Hamiltonian one obtains 

(14.61) 

with a notation which will be explained in section 15.2. Here we just state that 
with the Definition 15.3 of the effective mass one has the identity 

1 f . . 1 - = dt(qt · qo) = D =-. 
meff rr 

(14.62) 

Thus the stiffness of the polymer in the Euclidean framework equals the effective 
mass of the charge coupled to the Maxwell field. Note that the regular part of 
(14.61) is negative, which means that the stiffness is increased as compared to 
the bare value m. With this background the result (14.58) looks familiar. It is the 
effective mass of the Abraham model in the nonrelativistic limit; compare with 
(4.24). The true effective mass of the Pauli-Fierz model has a more complicated 
dependence on the bare parameters e and m, however. 

The second case of interest is a confining potential. For large t the partition 
function is dominated by the ground state of H, provided it exists at all. In fact, as 
we will see, ground state expectations can be computed through the limit t --+ oo. 
Thus, as for thermodynamic systems, the infinite-volume limit is of direct physical 
interest. If the ground state exists, it should be unique and independent of the 
particular limit procedure. Translated to (14.51) uniqueness means that the limit 
t --+ oo exists and is independent of the boundary conditions q_t and qt, at least 
if they are not allowed to increase too fast. Since t is one-dimensional, such a 
property will hold, if the energy across the origin is bounded uniformly in the 
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1° (XJ dqs · W (qs - qs', S - s')dqs' :S co . 
-oo lo 
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(14.63) 

Because of the stochastic integration, (14.63) cannot be true literally, but only in 
the sense that there is a small probability for the interaction across the origin to 
take large values. Stochastic integrals like (14.63) are not easily estimated, but if 
we set qs - qs' = 0, which is reasonable since V is supposed to be confining, then 
the interaction energy is 

(14.64) 

Note that from the stochastic integration we obtain two extra derivatives, which 
means that w"(t) ~ t-4 for large t. If the path qs does not make too wild ex
cursions, the interaction energy in (14.63) is essentially bounded, which implies 
uniqueness of the Gibbs measure in (14.51). To have a phase transition for a Gibbs 
measure in one dimension the interaction has to decay as t-2 or slower, which is 
avoided by two powers in our context. 

The statistical mechanics intuition applied to (14.51) suggests that if Hp has a 
ground state tfro(x ), i.e. if the ground state for the uncoupled system is tfro Q9 Q, 

then, as the coupling is turned on, the ground state will persist and remain unique 
at any coupling strength. For large e2 fluctuations are suppressed and the ground 
state must be essentially classical. 

14.3 Some applications 

(i) Positivity improvement 

Let us consider a general measure space (M, /-1) and the corresponding Hilbert 
space L 2(M, /-1) of square integrable functions on M. In addition, we have 
the semigroup e-tH, t :=:: 0, acting on L 2 (M, /-1) with (e-tH)* = e-tH and 
inf a (H) = 0, i.e. II e -t H II = 1 fort :=:: 0. We say that e -t H is positivity preserving, 
if for f :=:: 0 we have e-tH f :=:: 0. e-tH is positivity improving iff:=:: 0 implies 
e-tH f > 0 fort > 0. We remark that positivity is not a Hilbert space notion, it 
depends on the choice of M. Positivity means that, up to normalization, e-tH is 
a Markov semigroup and some sort of stochastic model is lurking behind. Our 
interest in the notion of positivity improvement comes from the fact that it im
plies uniqueness of the ground state. In essence, positivity improvement is the 
only general criterion available. The reason for uniqueness is simple. Let tfr be an 
eigenfunction of H with eigenvalue 0. Then by positivity le-tH tfr I :::; e-tH ltfr I and 
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thus 

As a consequence, since e -t H is a contraction, one has e -t HI tfr I = I tfr I and, since 
e-tH ispositivityimproving,e-tHio/1 = ltfrl > O.Butthenalsoe-tH(Io/1- tfr) = 

I tfr I - tfr. Either I tfr I - tfr = 0 in which case tfr > 0 or else I tfr I - tfr > 0 in which 
case tfr < 0. We conclude that a second eigenvector with eigenvalue zero could not 
be orthogonal to tfr. 

In view of this technique, it is desirable to prove that U e -t H U -l, where H is the 
spinless Pauli-Pierz Hamiltonian (13.39) with Aex = 0, is positivity improving on 
IR3 x }('with measure d3x x dP 0 . A look at (14.44) makes positivity an unlikely 
fact because of the fluctuating phase. The trick to achieve the desired property is 
to interchange the role of A and E 1_ through the unitary transformation e -irr Nt/2 

with 

Nf = L J d3ka*(k, A)a(k, A) 
A=L2 

the total number of photons. 

(14.66) 

Theorem 14.2 (Positivity improving). Let H = ~(p- eArp(x))2 + Hf + V(x) 
be the spinless Pauli-Fierz Hamiltonian with external potential V. Then the semi
group U eirr Nf12e-tH e-irr Nf!2u-1 is positivity improving on IR3 x JC' with measure 

d3x x dP 0. 

Proof Hiroshima (2000a). 

Corollary 14.3 (Uniqueness of the ground state). If the spinless Pauli-Fierz 
Hamiltonian has a ground state, then the ground state is necessarily unique. 

The actual proof of Theorem 14.2 is somewhat technical. But there is a simple 
heuristic reason to see that it should be correct. We have 

eirrNt/2 He-irrNt/2 = ~(p- eE1_q;(x))2 + Hf + V(x), (14.67) 

where the smoothing function cp is replaced by (j5 with I$= cpjw. We formally 
discretize the Maxwell field in (14.67) as 

1 ( ) 2 1 I - P-eL (/5(j- x)pj +- L PJ +- L (qi- qj)2 + V(x) (14.68) 
2 . 2 . 2 I .. I 1 J J l-j= 

up to a constant. Here (qj, p J) are a canonical pair of position and momentum 
operators and the sum is over a discrete lattice in position space. We employ the 
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usual Feynman-Kac formula. The first two terms define a multidimensional Brow
nian motion. It has a position-dependent diffusion matrix, which by inspection is 
strictly positive. Thus the "free" measure is positivity improving, a property which 
is preserved when adding the potential. 

( ii) Diamagnetic inequality 

In (14.44) the fluctuating magnetic field appears as a phase, which leads immedi
ately to the diamagnetic inequality 

(14.69) 

As one application we derive a bound on the electronic charge density in the 
ground state. We assume the existence of a ground state, Hlj!g = Ego/g, with 
ground state energy Eg. Then the electronic charge density is 

Pg(X) = llo/g(X, ·)II}= f L I d3nklo/gn(X, k1, )q, ... , kn, An)l 2 . (14.70) 
n=O Jc 

We choose F = f(x)Ulj!g, f ::::_ 0 and bounded, G = Ulj!g. Since e-tHo/g = 
e-tEgo/g and since e-tHt is a contraction, one concludes from the diamagnetic 

inequality that 

e-(t+r)Eg I d3 xf(x)pg(x) :S (fpi/2, e-(t+r)Hp Pi/2) L2 

( -tHpj 1/2 -rHp 1/2) = e Pg , e Pg £2 . (14.71) 

From the Feynman-Kac formula (14.5) it follows that (e-r Hr p~ 12)(x) ::: q. Using 
this bound in (14.71) and letting f shrink to a 8-function at x we obtain 

(14.72) 

with 1 the constant function. Inequality (14.72) is the desired bound on the elec
tronic charge density. 

To make this bound explicit we rewrite 

(14.73) 

according to ( 14.5) for the particular choice 1jJ (x) = 1. If the potential has a lower 
bound as V(x) ::::_ co+ q lxiY, q > 0, y > 1, then for fixed t the weight in (14.73) 
is dominated by the potential and one has Pg (x) ::: ce- v (x). On the other hand if 
V(x)---+ 0 as lxl ---+ oo, then the expression in (14.73) tends to 1 as x---+ oo. Thus 
we should optimize in t for fixed x. Very crudely this means minimizing the action 
J~ ds ( ~q} + V (q8 )) for a fixed initial condition qo = x and then to optimize in t. 
In this variation one has to include the contribution from the exponentially growing 
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factor eEgt. To have a bound state at all, Vmin = minx V (x) < 0. For sufficiently 
small e also Vmin- Eg < 0 and the variational bound decays exponentially in x, 
i.e. Pg(x)::: ce-ylxl. For larger e one can no longer balance Eg and the bound 
(14.72) becomes vacuous. 

The diamagnetic inequality suggests that the decay of the electronic charge den
sity in the ground state does not worsen by the coupling to the Maxwell field. If one 
imagines, rather crudely, the effective mass of the electron to be increased through 
the interaction with the field, then the electron density should become even better 
localized for larger e and point-like as e ---+ oo. 

(iii) Photon expectations 

We discovered in section 14.2 that, through integrating over the Maxwell field, 
one obtains a path integral (functional measure) for the electron paths which has 
the structure of an equilibrium measure relative to an a priori weight given by the 
Wiener measure. Here we expand on this observation by computing averages for 
the photon field in the ground state. Let 1/fo be the ground state of Hp and let us 
introduce the approximate ground state 

(14.74) 

of H, which is normalized to one and, if the limit does not vanish, converges as 
T ---+ oo to the unique ground state 1jf g of H. For observables of the form f (x) the 
same argument as for (14.48) leads to 

(1/fT, f(x)o/Thi (14.75) 

= (o/o ® Q, e-2TH o/o ® Q)}/ (o/o ® Q, e-T H f(x)e-T H o/o ® Q)H 

= lEY-T.TJ(!Cqo)). 

The "volume" [-T, T] is arranged symmetrically relative to the origin. lEY-T.T] 
refers to the normalized expectation 

with the normalizing partition function 

Z(2T) = lEctw(o/o(q-T)o/o(qT) exp [- i: dtV(qt)- S[-T,TJ]) (14.77) 

and with the effective action 

1 !T !T S[-T,T] = -e2 dqt · W(qt- qs, t- s)dqs. 
2 -T -T 

(14.78) 
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Clearly, in the infinite-volume limit 

lim (o/T, f(x)o/Thi = (o/g, f(x)o/g)H = J d3xf(x)pg(x) = (f(qo)). 
T --+oo 

(14.79) 

Thus the electronic charge density is the distribution of qo, the position of the 
path at time t = 0, under the infinite-volume Gibbs measure (-), i.e. under the 
probability measure obtained in the limit T ---+ oo in (14.76) which we denote by 
(.). 

With (14.79) we have opened the first page in the dictionary for the translation 
from Fock space expectations to Gibbs averages. We plan to expand the dictionary 
by considering a bounded operator 1 0 B referring only to the photons and want 
to compute the expectation 

(14.80) 

which for large T goes over to the ground state expectation (o/g, 1 0 Bo/g)Ji. 

Using the basic identity (14.44) one can write 

(U e-TH 1/fo 0 Q)(q, A) 

= lEqlEA(o/o(qt)exp [-loT dtV(qt)- ie loT dqt · Atrp(qt)]), (14.81) 

where lEA refers to the Omstein-Uhlenbeck process At (x) with fixed initial field 
Ao = A. The Gaussian expectation lEA can be carried out with the result 

(14.82) 

where 

!~ (k) -loT d ~ -ik·q1 -wt + - qtcpe e , 
0 

(14.83) 

which depends on the path q, 0 ::::; t ::::; T. 
We have to take the expectation of 1 0 B with respect to the wave function 

(14.81 ), for which it is convenient to regard the adjoint wave function as coming 
from an integration relative to a Brownian motion running from 0 to - T. For 
this purpose one time-reverses the Brownian motion, which starts then at q_T and 
ends at q. Upon integrating over dqo one obtains the Wiener measure for Brownian 
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paths t r-+ q, It I ::: T. The expectation lEA for the adjoint wave function yields an 
expression as in (14.82) where f+ is replaced by f- and 

!~ (k) _ 1° d ~ -ik·q1 -wltl - -- qtcpe e 
-T 

(14.84) 

with a minus sign, since dqt is odd under time-reversal. The expectation for B is 
most easily written in Fock space. Then 

(tfro Q9 Q, e-TH (I Q9 B)e-TH t/fo Q9 Q)H 

= lEctw ( tfro(q_ T )t/fo(qr )e- !'I'T V(q, )dt (Q, eieA(.f_) Be -ieA(f+) Q) :F 

x exp [- ~e2 (1° 1° + {T {T) J d3klqJJ 2dqt · Ql_dqseik·(q,-q,) 
2 -T -T lo lo 

X _l_(e-wlt-sl _ e-wltle-wlsl)]). 
2cv 

(14.85) 

To make further progress we have to choose particular observables. One exam
ple is the generating function for the photon number density in momentum space, 
i.e. 

with JL ::::_ 0. Then 

B = exp [- L J d3kJL(k)a*(k, A.)a(k, A.) J 
A.=l,2 

(Q, eieA(f_) Be-ieA(f+)Q):F = exp [ _ ~c(:_, cv-l/2Ql_w-112 j_)fJ 

(14.86) 

_ ~(~-, cv-l/2Ql_w-1!2 h)fJ _ ~(j_, cv-l/2Ql_e-tlw-1!2 h)fJJ. 
4 2 

Collecting all terms yields 

(tfrr,exp[- L J d3kJL(k)a*(k,A.)a(k,A.)]tfrr)H 
A.=l,2 

= JEf-r.TJ( exp [- e2 j_OT loT J d3kliPPdqt · Ql_dq8 eik·(q,-q,) 

x _I_e-wltle-wlsl(e-11 _ t)]). 
2cv 

(14.87) 

(14.88) 
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We differentiate with respect to JL(k) and obtain the ground state photon number 
density in momentum space, 

(14.89) 

the average with respect to the infinite-volume Gibbs measure. In particular one 
has the remarkable identity that (1/fg. Nfl/fg)H equals the average interaction energy 
between the right and left half-line in the statistical mechanics system. By the same 
technique, the photon density in physical space is given by 

where 

L (1/fg, a*(x, A.)a(x, A.)l/fg)H 
A=l.2 

= -e2 I: tXJ fo (dqt. J;_(x- qt. t)dqs . J;,_(x- qs, s)), (14.90) 
A=I,2 lo -oo 

(14.91) 

Equations (14.89) and (14.90) are only partially useful, since there is too lit
tle information on the dqt · Qj_dqs correlations, except for the soft photon bound 
(15.9), (15.14) from which one concludes that 

with some positive constant co. The interaction energy between right and left is 
bounded and negative on the average. One would expect also its exponential mo
ments to be bounded. If so, (1/fg, e-ANfl/fg)H < oo for all A by (14.88), which im
plies that in the ground state the number of photons has a super-exponential decay. 

Our method may be applied to other observables of interest. For example the 
ground state expectation and variance of the vector potential is given by 

(14.93) 

(1/fg, A(x)21/fg)H = (Q, A(x)2Q)F- ;,_~2 ( ( /_: dqt · JA;,_(x -qt. t)) 2}, 

(14.94) 
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where 

f~ ~ 1 -wltl 
AA. = e;,.cp-e . 

2w 
(14.95) 

Similarly for the transverse electric field one has 

(14.96) 

(o/g, Ej_(x)2o/g)H = (Q, Ej_(x)2Q)F + ;,.~2 ((/_: dqr · fE;..(x- qr, t)) 2
) 

(14.97) 

with !EA. = at fAA.. In fact, the vacuum variances are infinite but become finite 
when the fields are slightly smeared out. Through the presence of a bound electron 
the electric field fluctuations are increased whereas the vector field fluctuations are 
suppressed. Their product remains constant, as required by the uncertainty rela
tion. 

We recall that (E) = (Ell) + (Ej_), the second term being zero by (14.96). From 
the equations of motion, \7 · (o/g, E(x)t/fg)H = e(cp(x- qo)) = ecp * Pg(x), Pg be
ing the electron ground state density of (14. 70). Thus, at large distances the average 
electric field generated by a charge bound in the ground state is the Coulomb field 
with a strength determined through the bare charge e, from which we conclude 
that in the Pauli-Fierz model there is no charge renormalization. 

Notes and references 

Section 14.1 

Gentle introductions to path integrals are Schulman (1981) and Kleinert (1995) 
emphasizing statistical mechanics aspects. Roepstorff (1994) treats in detail the 
quantized Maxwell field. Path integrals with a focus on relativistic quantum field 
theory are explained in the advanced textbook of Huang (1998). Simon (1979) is 
a beautiful discussion on the connection between functional integration and the 
Schrodinger equation. In particular, he explains the Feynman-Kac-Ito formula 
used in (14.8). Gaussian processes, Wick ordering, and the Schrodinger represen
tation are exhaustively covered in Simon (1974) and Glimm and Jaffe (1987). The 
functional measure for the Pauli-Fierz Hamiltonian is discussed by Hiroshima 
(1997b). A standard reference on infinite-dimensional Ornstein-Uhlenbeck pro
cesses is Holley and Stroock (1978). In Giacomin et al. (2001) martingale-type 
estimates are explained. 

Functional integration has two historical roots which developed apparently 
completely independently. Feynman (1948), cf. also the textbook by Feynman and 
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Hibbs (1965), uses space-time histories to visualize quantum processes. This led 
to quantum propagators as a "sum over histories". On the other hand, Wiener, 
Levy, and many other probabilists developed the theory of probability measures 
on function space ( = the space of trajectories) to have a mathematical framework 
for Brownian motion and diffusion processes. Kac (1950) realized that the two 
approaches are related through the Wick rotation. The extension to models of 
quantum fields is achieved by Nelson (1966, 1973). With his insights functional 
integration became the "secret weapon" and is at the heart of the technical devel
opment in constructive quantum field theory through the hands of Glimm, Jaffe, 
Spencer, Simon, and many, many others. I refer to Glimm and Jaffe (1987). 

Section 14.2 

The integration over field degrees of freedom is discussed in Feynman and Hibbs 
(1965) and in Feynman (1948). He tackled a variety of physical problems with 
this technique. The most widely known is the ground state energy of the polaron 
(Feynman 1955) for which the analog of (14.48) is estimated through a variational 
method with a result which covered both the intermediate and strong coupling 
regime for the first time. To view the effective mass as the stiffness of a polymer 
is proposed in Spohn (1987). If the Maxwell field is replaced by a scalar field, cf. 
section 19.2, the double stochastic integral becomes a double Riemann integral, 
which is much easier to handle. In particular, one obtains reasonable bounds on the 
effective stiffness with a technique borrowed from Brascamp, Lieb and Lebowitz 
(1976). To view the path measure (14.51) as a Gibbs measure relative to Brownian 
motion is stressed in L6rinczi and Minlos (2001), Betz et al. (2002), and L6rinczi 
et al. (2002a, 2002b ). 

Section 14.3 

Positivity-improving semigroups are treated in Reed and Simon (1978), Chapter 
XIII.12. For the existence of the ground state we refer to section 15.1. Whenever 
magnetic fields are involved, the diamagnetic inequality is very helpful; compare 
for example with Cycon, Froese, Kirsch and Simon (1987). Carmona (1978) uses 
Brownian motion to estimate ground state properties of - ~ + V. His techniques 
extend to a charge coupled to a scalar field as discussed in Betz et al. (2002). There 
is also a functional analytic proof of exponential localization, which is patterned 
after Agmon (1982) in the case of the SchrOdinger equation, see Theorem 20.1. 
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States of lowest energy: statics 

Quantizing the Abraham model results in the Pauli-Fierz Hamiltonian which is a 
self-adjoint operator under rather general conditions. Thus the dynamics is well 
defined and we can start to investigate some of its properties. The most basic item 
is the states of lowest energy. They really come in two varieties: (i) If the electron 
is bound by a strong external electrostatic potential, like the Coulomb potential of 
a nailed-down nucleus, then the lowest energy state is the ground state, where the 
electron is at rest modulo quantum fluctuations. (ii) If there are no external poten
tials, then the total momentum is conserved and the state of lowest energy must be 
determined for every fixed total momentum, which then describes the electron to
gether with its surrounding photon cloud traveling at constant velocity. Physically 
the most important information is the energy-momentum relation which gives the 
lowest energy E at given total momentum P. Both item (i) and item (ii) are dis
cussed in this chapter. In case (i) one expects to have always a ground state pro
vided the external potential is binding. In case (ii) the infrared divergence of the 
Pauli-Fierz model becomes visible. As will be explained in more detail in section 
19.1, for total momentum P #- 0 the state of lowest energy is not in Fock space. 
An electron traveling at nonzero velocity binds an infinite number of photons. To 
avoid such a subtlety, for item (ii) we proceed as if the photon had a tiny mass. 

The external fields manufactured with macroscopic devices under laboratory 
conditions are weak and have a slow variation when measured in units of the effec
tive size of the charge, roughly given through the inverse size of the form factor (if. 
Such external fields thus constitute a small perturbation in item (ii) and, as for the 
Abraham model, an important dynamical issue is to understand the motion of the 
charge in terms of an effective one-particle Hamiltonian. The energy-momentum 
relation must play an important role, but there will be additional pieces accounting 
for the spin precession. Our discussion of this topic is postponed to section 16, to 
keep the lengths of the chapters in reasonable proportion. 

200 



15.1 Bound charge 201 

15.1 Bound charge 

The hydrogen atom has a stable ground state and thus makes the size of atoms of 
the order of a few angstroms. The problem under discussion is whether this ground 
state persists as the quantized transverse modes of the Maxwell field are taken 
into consideration. Since the electron now has the opportunity to bind photons, 
one would expect it to have effectively a larger mass. This intuition is confirmed 
through the path integral of chapter 14, which suggests that the fluctuations in the 
stochastic trajectories are reduced due to the additional interaction energy W from 
the integration over the Maxwell field. Thus the coupling to the photons should 
enhance binding. 

To put such reasoning on more solid grounds, we recall that for a Schrodinger 
operator Hs = -(Ij2m),6. + V with a Coulomb-like potential, i.e. a potential V 

such that limlxl--+oo V (x) = 0, it is rather straightforward to ensure a stable ground 
state. Let us assume that V is infinitesimally bounded with respect to - ,6.. Then 
the bottom of the continuous spectrum, denoted by Ec, satisfies Ec = 0 and one 
only has to make sure that the energy is lowered when the electron is moved from 
infinity to the potential region. This means that one has to find a trial wave function 
such that ( 1/f , Hs 1/f) < 0. By the Kato-Rellich theorem Hs is bounded from below. 
Thus Hs must have an eigenvalue at the bottom of its spectrum. The ground state 
wave function o/g is nodeless, since e-tHs is positivity improving; compare with 
section 14.3(i). Hence the ground state is unique. To adapt such reasoning to the 
Pauli-Pierz Hamiltonian 

I 
H = -(p- eAcp(x))2 + Hf + V(x) = H 0 + V, 

2m 
(15.1) 

one faces the difficulty that there are photon excitations of arbitrarily small ener
gies. Thus H has no spectral gap and a variational bound will not do. The 
convential approach is to first assume an infrared cutoff in the form factor cp by 
setting cp(k) = 0 for lkl :Sa and to adopt the construction explained in property 
(vi) of section 15.2.1. This yields the existence of a ground state 1jf g,a for the cutoff 
Hamiltonian Ha . One is then left to show that as a --+ 0 the sequence of ground 
states 1/f g,a has a limit 1/f g which is the desired ground state for H. The difficulty is 
that as a --+ 0 the number of bound photons could increase without limit resulting 
in the physical ground state lying outside of Fock space. This is one aspect of the 
infrared problem to be discussed in more detail in section 19.1. Thus one has toes
tablish a bound on the number of low-energy (soft) photons in the ground state. We 
explain some parts of the argument which allow us to illustrate the pull-through 
formula that will also be handy later on. 
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Theorem 15.1 (Soft photon bound). Let 1/fg be a ground state of the Pauli-Fierz 

Hamiltonian H of (1 5.1), H 1/fg = El/fg. Then the average number of photons is 

bounded as 

(15.2) 

Proof Clearly 

(1/fg, Nfl/fg) = L J d3klla(k, A)l/fgll 2 . 

A.=l,2 

(15.3) 

Through a virial-type argument we plan to make use of the fact that 1/fg is an 
eigenfunction, and start with the pull-through formula 

1 'k 1 
[H, a(k, A)]= -w(k)a(k, A)+ ecp ~e-1 ·x_eA.(k) · (p- eA'P(x)). (15.4) 

v2w m 

Note that 

1 
-(p- eA'P(x)) = i[H, x]. 
m 

(15.5) 

Therefore 

1 'k 
(H + w)a(k, A)- a(k, A)H = ecp ~(i[H, e-1 ·xeA.(k) · x] 

v2w 
-i[H, e-ik·x]eA.(k) · x). (15.6) 

The commutator with e-ik·x is 

'k 1 'k 1 2 'k [H -[ ·X] - k ( A ( )) -[ ·X k -[ ·X , e --- · p- e x e -- e 
m 'P 2m 

(15.7) 

and applied to 1/fg, 

I 
a(k, A)l/fg = ie(ii ~(H-E+ w)- 1 

v2w 

( 1 2 1 ) ik X (H-E)+ 2m k + m k · (p- eA'P(x)) e- · eA.(k). xl/fg 

~ 1 = iecp ~((Pi+ (h + (/JJ). (15.8) 
v2w 

Thus, choosing e > 0 for notational convenience, 

~ 1 
lla(k, A)l/fgll::: elcpl ~(11(/Jlll + ll(hll + ll¢311) (15.9) 

v2w 
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and 

To estimate the norm of ¢3 we use 

II(H- E + w)- 1 k· (p- eA10 (x))ll =Ilk· (p- eA10 (x))(H- E + w)- 1 11 
(15.11) 

and 

(1/f, (H - E + w)- 1 (k · (p- eA10 (x))) 2(H - E + w)- 11/f) 
:S (1/f, (H-E+ w)- 1(p- eA10 (x)) 2(H- E + w)- 11/f) 
::: (1/f, (H-E+ w)-\qH + c2)(H- E + w)- 11/f) 

:S (1/f, 1/f)[ sup (c1 (A+ E)+ c2)(A + w)-2], 
A.:>:O 

provided V_ isH bounded. Inserting in (15.10) 

ll¢311 :S lk I ( c1 ~ + c2v'w) llxl/fg II 

is obtained. With these estimates we return to (15.3) to get 

which proves (15.2). 

(15.12) 

(15.13) 

D 

Bounds on llxl/fgll are available from the diamagnetic inequality combined with 
functional integration, see section 14.3(i), and from yet another pull-through-type 
argument, see section 20.1. 

Note that in (15.14) we can still afford the two extra powers w-2 close to k = 0. 
This is consistent with a decay as It 1-4 in the effective action given at the end of 
section 14.2. 

The modern variant for the existence of a ground state relies on having an energy 
gain when the electron is moved from infinity to the potential region. Thereby, as 
discussed at length in section 20.1, the existence of a ground state for atoms and 
molecules is also ensured. To be complete we now state 

Theorem 15.2 (Unique ground state). Let V = V+- V_ be the decomposition 
of the external potential V into positive and negative parts. It is assumed that V _ is 
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injinitesimallyboundedrelativeto p2, i.e.l(o/, V_1fr)l::: £(1/r, p21jr) +b(t:)('ljr, 1/r) 
for every£ > 0, and that 2:11 p2 + V has a ground state with isolated ground state 

energy. Then the Hamiltonian H of(J5.1) has a unique ground state 1/rg E 1-i, i.e. 
H 1/rg = E'ljrg and E is the lowest energy. 

Proof The existence is proved by Griesemer, Lieb and Loss (2001 ). The unique
ness relies on the fact that the semigroup e-tH is positivity improving in a suitable 
basis, see Hiroshima (2000a) and section 14.3. D 

Note that in Theorem 15.2 there is no restriction on the magnitude of the charge. 

15.2 Energy-momentum relation, effective mass 

For the Abraham model the motion of the charge subject to slowly varying ex
ternal potentials is determined by the energy-momentum relation E ( P). There is 
good reason to expect the same scenario quantum mechanically, which poses two 
problems. First of all one has to study E(P), which makes a two-line computation 
classically but turns out to be much harder in quantum theory. Secondly, given 
E(P), we have to explain how it governs the effective one-particle theory. This 
topic is deferred to chapter 16. 

Since there are no external forces acting on the electron, the Pauli-Pierz Hamil
tonian reads 

1 2 
H = 2m (p- eAcp(x)) + Hf. 

As shown already, the total momentum 

P = p + L J d3kka*(k, A)a(k, A) = p + Pf 
A=l,2 

(15.15) 

(15.16) 

is conserved, [H, P] = 0. Therefore H can be decomposed according to the sub
spaces of constant P. This is achieved through the unitary transformation 

(15.17) 

which more explicitly is given by 

n 

(Uo/)n(k, k1, )q, ... , kn, An)= Vrn(k- LkJ, k1, A], ... , kn, An), (15.18) 
J=l 

using the momentum representation p = k, x = iY'k. Then 

I 1 2 U HU- = -(P- Pf- eAcp) + Hf 
2m 

(15.19) 
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with the shorthand 

Arp = Arp (0). (15.20) 

Not to overload notation we return top instead of P, remembering that p is still 
canonically conjugate to x but now stands for the total momentum. The Hamilto
nian under study is then 

1 2 
H = -(p- Pf- eA ) + Hf. 

P 2m rp (15.21) 

For each fixed p, Hp acts on Fock space F. Thus we may think of the uni
tary U as a map from L 2 (l~3 ) Q9 :F to the direct integral J'B d3 p:Fp such that 
U Hu- 1 = J'B d3 pHp. For the remainder of this section we will regard p sim
ply as a parameter. The scalar product(-,·) is in Fock space throughout. 

Definition 15.3 The energy-momentum relation, E (p ), of the Pauli-Fierz 

Hamiltonian is given by 

E(p) = inf (1/f, Hpl/f). 
1/1.111/rll=l 

(15.22) 

The effective mass meti is the inverse curvature of E (p) at p = 0. Since E (p) is 
rotation-invariant, 

(15.23) 

There is no simple scheme to compute E (p) and men, but we will establish 
some qualitative properties of E (p) which point in the right direction. In order not 
to lose sight of the goal we state 

Claim 15.4 (Energy-momentum relation). Let w(k) = Jm~h + k2 with mph > 

0. There exists a threshold value, Pc· of the total momentum such that for all I pI < 

Pc. Hp has a unique ground state 1/fp E F, 

(15.24) 

E (p) is separated by a gap from the continuous spectrum, i.e. if Ec (p) denotes the 

bottom of the continuous spectrum, then 

Ec(p)- E(p) = f:.(p) > 0. (15.25) 

In Claim 15.4 we assumed a small photon mass mph· Thus at p = 0 excitations 
require at least an energy mph· For physical photons mph = 0, however. Arbitrarily 
small-energy excitations are possible and the spectral gap closes, which is one 
part of the infrared behavior of the Pauli-Pierz model. The assumption mph > 0 
introduces a spectral gap, so to speak, by hand. An alternative scheme to separate 
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the ground state band from the continuum is to decouple all modes with lkl ::: CJ 

by replacing the true $by $cr, where $cr =$for lkl :::: CJ and $cr = 0 for lkl < CJ. 

We made the proviso that the ground state band ceases to exist beyond the 
threshold Pc, where we allow for Pc = oo. If Pc < oo, then the electron cannot 
be accelerated beyond the maximal momentum Pc· For IPI > Pc, Hp has no 
ground state. States with IPI > Pc decay into lower-momentum states through the 
emission of Cerenkov radiation. In fact the same phenomenon occurs classically 
if in the given medium the speed of light propagation is less than the maximal 
speed of the charge. 

To investigate E (p), let us first have a look at the uncoupled system, 
e = 0. Then the eigenstate in (15.24) is the Fock vacuum Q with eigenvalue 
p2 /2m. The energies in the one-photon subspace are w(k) + (p- k) 2 /2m, 
which is already part of the continuous spectrum. The energy in the n-photon 

subspace is (2m)- 1(p- LJ=l kj)2 + LJ=l w(kj):::: (2m)- 1(p- LJ=l kj)2 + 
w (LJ=l k j) and for low energies it suffices to take the one-photon part of the con
tinuous spectrum into account. If pis small, IPI < m (=me), the lowest energy 
is p 2 /2m separated by a gap of order w (0) = mph from the continuum. On the 
other hand, for IPI > m, the eigenvalue p2 /2m is embedded in the continuum and 
expected to turn into a resonance, once e is different from zero. In some model 
systems it is found that Pc < oo for e = 0, but Pc = oo at any e =J. 0. Whether 
Pc = oo depends also on the form of the kinetic energy of the electron. If instead 
of 2~7 p 2 as kinetic energy one repeats the argument just given for the relativis-

tic cousin J p 2 + m2 , then Pc = oo at e = 0 and it remains so for e > 0. For the 
Pauli-Pierz model (in three dimensions) the accepted opinion is that the electron 
cannot be accelerated beyond Pc ~ O(mc). 

Perturbation theory assures us that the isolated ground state energy band for 
I pI < Pc at e = 0 will persist for small nonzero e. The range of validity of per
turbation theory is set by w (0) = mph and is therefore very narrow. To improve 
and to be able to let mph --+ 0 we have to employ nonperturbative techniques, for 
which we follow Frohlich (1974). Only the core of each argument is explained; the 
shorter ones are given immediately in the text and the longer ones are shifted to an 
appendix. Here is our list. 

Property (i): E (p) is rotation invariant. 

According to section 13.5 there is a unitary operator U R such that U~ H PUR = 
HRp with Ran arbitrary rotation. Therefore E(p) = E(Rp). 

Property (ii): The bound 

E(O) :S E(p) (15.26) 

holds. 
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From the functional integral representation, compare with chapter 14 and the fur
ther explanations in the appendix, it will become clear that 

I(F, UeirrNtl2e-tHPe-irrNtl2u-lF)I::: (IFI, ue-tHou-liFI) (15.27) 

fort:::: 0. We choose e-irrNtl2u-I F = 1/fp, or else an approximate ground state 
if 1/f P does not exist. Let J-L ( dA.) be the spectral measure for U -I IF I under Ho and 
Amin be the left edge of its support. Taking the limit t --+ oo in (15.27), we obtain 

E(p) :::: Amin:::: E(O). (15.28) 

One would expect E(p) to be increasing in I pi, but no conclusive argument seems 
to be available. 

Property (iii): As a bound we have 

1 
E(p)- E(O) ::::; 2m p2. 

The inequality (15.29) follows from a variational argument. One has 

(15.29) 

( 1 2 1 ) 
E(p) ::: (1/fo, Hpo/o) = (1/fo, 2m p +Ho-m p · (Pf +eArp) o/o) 

1 2 1 
= E(O) + 2m p - m p · (1/fo, (Pf + eArp)o/o) 

1 
= E(O) + -p2 , 

2m 
(15.30) 

since Hoo/o = E(O)o/o and ~(1/fo, (Pf + eArp)o/o) = \7 E(O) = 0 by rotation in
variance. 

Property (iv): As a bound we have 

E(p) ::::; E(p- k) + w(k). (15.31) 

In particular, E(p)- E(O) ::::; w(p). 

The proof is given in the appendix. There is also a corresponding lower bound. 

Property (v): There are constants CJ > 0, c2 such that E(p) :::: c1IPI + c2. 

The proof is given in the appendix. 

The next property expresses the stability against one-photon excitations. Define 

~(p) = inf{E(p- k)- E(p) + w(k)}. 
k 

Then by property (iv) ~(p) :::: 0. 

(15.32) 
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Property (vi): For the bottom of the continuous spectrum we have 

Ec(P) = E(p) + l:!.(p). (15.33) 

If l:!.(p) > 0, then Hp has a ground state at E(p). 

The proof is given in the appendix. We want to infer from the bounds on E (p) 
that ~::!,. (p) > 0, at least for small I p 1. As a substitute for the missing proof of the 
monotonicity of E (p ), note that from second-order perturbation in p 

I 
oPa()Pf! E(p) = m Oaf! - 2(1/fp, (m- 1 (p- Pf- eArp) - V E(p) t(Hp - E(p))- 1 

x (m- 1(p- Pf- eArp)- V E(p)) 13 1/fp). (15.34) 

This leads to 

Property (vii): E (p) = 2~ p2 + t (p). t is convex down. 

From property (ii) we conclude that t(p)- t(O) ::::_ - 2~p2 , which means that 
t (p) - t (0) cannot bend down too fast. This allows us to establish 

Property (viii): If IPI ::: (,J3- 1)m, then l:!.(p) > 0 and Hp has a ground state 
separated by the gap l:!. (p) from the continuum. 

Finally, the uniqueness follows from the overlap with the Fock vacuum. 

Property (ix): If I pI < Pc and if 

- d3ki9Jfw- 1 E(p)(E(p- k)- E(p) + w)-2 < -, 2e2 I 1 
m 2 

(15.35) 

then Hp has a unique ground state. 

Again the proof is given in the appendix. If IPI < (,J3- 1)m::: Pc and (15.35) 
holds, then E(p, e) is analytic jointly in p and e as a standard consequence of 
perturbation theory. 

In summary, properties (i)-(ix) lend support to the qualitative behavior of the 
energy-momentum relation as schematically presented in figure 15.1. The bold 
line indicates the ground state. E (0) increases with the coupling. The gap of size 

mph is not shown. As mph ---+ 0 the gap closes. To understand what really happens 
in this limit, one has to study the infrared scaling of the Pauli-Pierz Hamiltonian 
with care. Explicit expressions for E (p) do not seem to be available. Computa

tionally only perturbation in e is accessible. To second order one obtains 

E(p) =.!!:._~I d3k19JP(2w)- 1 
2m3 

+ -1 p 2(1- e
2 ~I d3kl~1 2 (2w(w + -1 k2))-I) + 0(e4), (15.36) 

2m m3 2m 

which can be trusted only for sufficiently small p. E(O) increases in e and in the 
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E 

p 

Figure 15.1: The energy-momentum relation for the Pauli-Fierz Hamiltonian. 

ultraviolet cutoff, as does m eff. Equation (15.36) confirms the physical intuition 
that the coupling to the Maxwell field effectively increases the mass of the electron. 
Note that already to order e2 the effective mass differs from that obtained in the 
dipole approximation, compare with (14.58), and thus from the effective mass of 
the classical cousin, the Abraham model. 

The nature of the excited states, even close to the ground state band, is left un
touched by the present considerations. Physically one expects, as we have indeed 
established for the Abraham model, a dynamically transient stage when by radi
ating photons the electron adjusts to the long-time freely propagating state of the 
form e-itE(p) f(p)l/fg(p). Here the amplitudes f(p) vanish for IPI > Pc and are 
determined through the initial conditions. In spectral terms, this implies that H P 

has a purely absolutely continuous spectrum except for the possible eigenvalue at 
E (p). The only powerful technique available for establishing such a property is 
the method of positive commutators and, as its sisters, Mourre estimates and com
plex dilations, cf. chapter 17. Let us see how this method applies to the Pauli-Pierz 
Hamiltonian Hp. 

In the abstract setting one starts from a self-adjoint operator H on some Hilbe1t 
space Hand searches for another self-adjoint operator, the conjugate operator D, 
such that 

[H, iD] ::::co > 0. (15.37) 

Then H has a purely absolutely continuous spectrum. The example to keep in 
mind here isH= x and iD =-ox. In our context, clearly, (15.37) is too strong. 
The appropriate modification reads 

[H, iD] :::: co- R (15.38) 
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with R a positive trace class operator. This form allows one to count eigenvalues. 
If H1.frn = Enlfn, 111/fnll = 1, then (1/fn, [H, iD]1/fnhi = 0 :=::co- (1/fn, R1/fn) and, 
by summing over n, trPpp :::; c01trR, where Ppp is the projection onto the linear 
span of all eigenfunctions. The Mourre estimate (15.38) ensures that H restricted 
to (1 - Ppp)H has a purely absolutely continuous spectrum. Inequality (15.38) 
could be still too strong and is weakened by projecting onto an appropriate energy 
interval ,6. as 

(15.39) 

where E!:;. is the spectral projection of H for the interval ,6. c JR. 
For the Pauli-Pierz operator the natural candidate for the conjugate operator is 

the generator D1 of dilations in photon space, i.e. (e-iD1t f)(k) = t 312 f(tk). Then 

(15.40) 

as operator on L 2 (JR3 , d3 k). We denote the second quantization of D1 by 

D = L J d3ka*(k, A)D1a(k, A). 
A.=l.2 

(15.41) 

With these preparations 

1 1 
[Hp, iD] = Nf- -dl(k) · (p- Pf- eAcp) + -eAcp1 • (p- Pf- eAcp), 

m m 
(15.42) 

where dr(k) = LA.=l.Z J d3kka*(k, A)a(k, A) and tPI = y'WiD1 JwiP. 
Let us abbreviate B = p- Pf- eAcp. By the Kato-Rellich theorem 

__:__ (Acp 1 • B) :::; ____:____ ( (Acp 1 )
2 + B2) 

m 2m 
e 

:::; 2m (CJHp + cz) + eHp :::; e(qHp + cz) (15.43) 

with coefficients CJ, cz independent of p and e and whose value may change from 
line to line. Similarly, using the fact that [Nf, B] is Hp-bounded and O(e), 

(15.44) 
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Let Er:. be the spectral projection of Hp onto the interval ( -oo, ~]. Combining 
(15.42), (15.43), and (15.44) and using the property that Nf :=:: 1 -Po,, the final 
result reads 

Er:. [Hp, iD]Er:. :=:: Er:. (1 - Po,)Er:. (~ - ~ ~) - e(q ~ + c2)Er:.. (15.45) 

Inequality (15.45) has the structure anticipated in (15.39) with ~ = ( -oo, ~] 
and R the one-dimensional projection Po,. Thus we count the number of eigenval
ues in ( -oo, ~] as 

( ( 1 1 )-])-] 
tr[PppEr:.] ::::; 1- e(c1 ~ + c2) l- m ~ (15.46) 

which can be made strictly less than 2 by adjusting e. We have not tried to optimize 
the constants. But the net result is that, upon fixing eo, Pc sufficiently small and 
~ = p;j4m, say, in the interval ( -oo, ~]the operator Hp has a purely absolutely 
continuous spectrum and a single, nondegenerate eigenvalue located at E(p), 

provided lei < eo and IPI ::::; Pc· To study the high-energy/high-momentum part 
of the spectrum other methods will have to be developed. 

15.2.1 Appendix: Properties of E (p) 

We prove properties (iv), (v), (vi), (viii), and (ix). 

Property (vi): Fix p and choose the momentum lattice (8:23) 3 with lattice spacing 
8 > 0. The 3-axis of the lattice is parallel to p. Correspondingly, JR3 is partitioned 
into cubes Cs(n) = {kl(na- ~)8 ::::; ka < (na + ~)8, a= 1, 2, 3} with integer na. 

The one-particle space L 2 (JR3) @ CC2 = ~ is decomposed into a discrete and a fluc
tuating part, 

(15.47) 

1/f E ~dis constant over each cube and 1/f E ~f satisfies fcs(n) d3kljf(k, A)= 0 for 

all n E :233. Such an orthogonal decomposition of the one-particle space factorizes 
the Fock space as 

(15.48) 

If Qf is the Fock vacuum of :Ff, we set Fs = Fct @ Qf and :F = Fs EB Fl. 
We want Hp to respect the factorization (15.48). This is achieved by replacing 

k, cpj,JlW, and w by their lattice approximation ks, (cpj,JlW)s, and ws, where 
we set fs(k) = 8-3 fcs(n) d3kj(k) for k E Cs(n). Then Hp is approximated 
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by Hp(8) = 2~ (p- Pf(8) - eAcp(8))2 + Hf(8), which factorizes according to 
(15.48) as 

1 2 
Hp(8) = 2m (p- Pf,d ®I- I® Pf,f- eAcp,d ® 1) + Hf,d ®I+ 1 ® Hf,f. 

(15.49) 

The fluctuating part of Acp(8) vanishes, since J d3k(cpj~)sljf = 0 for each 
o/ E fJf. Note that [Hp(8), 1 ® PQt] = 0, with P!:lt the projection onto Qf, and 
therefore H P ( 8) is reduced by the subs paces Fo, :F f. The bottom of the spectrum 
of Hp(8) is denoted by E(p, 8). 

We want to establish a lower bound on Hp(8) r Ff. We choose o/ E Fct and e E 

:Ff with fixed n, i.e. e Cfs_, ~) = e (kJ' )q' ... ' kn' An), n ::: I. Then, with cp = o/ ®e' 

(cp, Hp(8)cp)F = (o/ ® e, Hp(8)1/f ® e)F 

=~I d3n~_le(k, ~)1 2 (1/f, 2~ (P- Pf,d-~ kjo -eAcp,d )
2 

o/)Fct 

+ (1/f, Hf,ctlfr)Fct(e, e)Ft + (1/f, o/)Fct(e, Hue)Ft 

= L I d3n~le(~, ~)1 2 (1/f, Hp-'£]= 1 k; 3 .ctlfr)Fct 
A. 

+ (1/f, o/)Fct (e, Hf,tB)Ft 
n n 

::: inf{E(p- Lkjo. 8) + .L:wo(kj)}(ljf, o/):Fct(e, e)Ff 
k . . 
- j=l j=l 

::: inf{E(p- k, 8) + w0 (k)}(cp, cp)F. (15.50) 
k 

By finite linear combinations this bound extends to a dense set: if cp = o/1 ® e1 + 
o/2 ® e2 with both e1 and e2 in the n-photon subspace, one only has to repeat the 
computation in (15.50). If they belong to different photon numbers, we use e1..le2 . 

If Ej_(p, 8) denotes the bottom of the spectrum of Hp(8) r Ff, we conclude that 

Ej_(p, 8) :=:: inf{E(p- k, 8) + w0(k)}. 
k 

(15.51) 

Hp(8) r Fo consists of a large, but finite number of oscillators with strictly pos
itive frequencies. Therefore H p ( 8) r Fo has a discrete spectrum. Let 

~(p, 8) = inf{E(p- k, 8)- E(p, 8) + w0(k)}. 
k 

(15.52) 

If ~(p, 8) :=:: ~o > 0 independently of 8, then Ej_(p, 8)- E(p, 8) :=:: ~(p, 8) :=:: 
~0 by (15.5I) and the ground state of Hp(8) is in :F8. The spectral projection 

X[E(p,8),E(p,8)+!1oJ(Hp(8)) is a nonzero compact operator. 
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The next step is to show that Hp(8) converges to Hp as 8 --+ 0. Technically one 
proves that for the difference of resolvents the limit 

lim II(Hp(8)- z)- 1 - (Hp- z)- 1 11 = 0 
8--+0 

(15.53) 

holds provided z is sufficiently negative. The argument uses the first-order ex
pansion for the resolvent and Kato-Rellich bounds of the type used in the 
proof of Theorem 13.3. The norm resolvent convergence (15.53) ensures that 

X[E(p,8),E(p,8)+t:.oJ(Hp(8)) converges in norm to X[E(p),E(p)+t:.oJ(Hp) and that this 
operator is compact as a norm limit of compact operators. Since the limit operator 
is nonzero by construction, Hp has a ground state at E(p). 

To confirm that Ec(p) = E(p) + ~(p) with ~(p) = infk{E(p- k)- E(p) + 
w(k)} the first part of (15.50) is repeated with a one-photon wave function 
8(k1, AJ) well concentrated at ko with ko such that ~(p) = E(p- ko)- E(p) + 
w (ko). There is an infinite number of orthogonal states, which by construction have 
an energy arbitrarily close to E(p) + ~(p). This proves (vi). 

Property (iv ): From the pull-through formula for a* we obtain 

* * e ~ Hpa (k, A.)= a (k, A.)(Hp-k + w(k))- ~ cp(k)eA. · (p- Pf- eArp). 
mv2w(k) 

(15.54) 

Let 1/f p-k,8 be an approximate ground state for Hp-k with energies in the inter
val [ E (p - k), E (p - k) + 8] (or let 1/f p-k be equal to the ground state if it exists), 
and let us consider the one-photon excitation cp0 = a*(f0)o/p-k,8 with fo sharply 
centered at k. From (15.54) one infers 

E(p)(cp8, CfJ8) :S (cp8, HpCfJ8) 

= (cp8, Hpa*(f8)o/p-k,8) 

= w(k)(cp8, CfJ8) + (cp8, a*(f8)Hp-ko/p-k,8) 

-" J d3 k' e ~(k') f' (k' A.') 7 mJ2w(k') cp Jo ' 

X (cp0 , eA.r(k') · (p- Pf- eArp)o/p-k,8) 

:S (cp8, CfJo)(w(k) + E(p- k) + 0(8)) 

1 1 1/2 I /2 + rmuo. ~rp)f)(CfJ8, C(J8) (o/p-k,8. Hpo/p-k,8) . (15.55) 

We can now choose fo such that the last term multiplied by (cp0, cp0)- 1 vanishes in 
the limit 8 --+ 0. Thereby the bound of property (iv) results. 
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Property (v): We have for 0 < a1 < 1, a2 > 0, (1- ai)(1 + a2) = 1, 

( 2 2 2 2m(tjf, Hpt/f) :=: a1 (tfr, p- Pf) tfr)- a2(tjf, e Acptfr) + 2m(tfr, Hft/f) 

:=: a1 (tfr, (p- Pf)2 tfr) +(2m- a2a)(tjf, Hft/f)- a2b(tjf, tfr), 

(15.56) 

where the relative bound ( tfr, e2 A~ tfr) :S a ( tfr, Hft/f) + b ( tfr, tfr) is used. We choose 
a2 such that 2m - a2a > 0. Since for a > 0 

(15.57) 

the constants in (15.57) and (15.56) can be adjusted so as to give the desired 
bound. 

Property (viii): By rotational invariance it suffices to consider (15.32) along a line 
passing through the origin. We will denote these functions by the same symbol as 
before. Using properties (ii) and (iv) we obtain 

E(p- k)- E(p) + w(k) = E(p- k)- E(O)- E(p) + E(O) + w(k) 

:=: -w(p) + w(k) (15.58) 

and it suffices to take the minimum over the intervallkl :S I PI· By reflection sym
metry, one may pick p :=: 0. We use the decomposition of E from property (vii) 
and will show that 

f..(p) = min {-1 (p- k) 2 - _I p 2 + t(p- k)- t(p) + w(k)} > 0 (15.59) 
lkl<::p 2m 2m 

provided p < m j2. This will come about by 

Lemma: Let f: lR--+ lR be convex, even, with f(O) = 0 and f(x) :S 2~x2 . Then 

the bounds 

1 I I 
-I + -x :S f (x) :S I + -x (15.60) 

m m 

hold for lx I :S m. 

Proof If (15.60) holds for x :=: 0, by reflection symmetry it also holds for x :S 0. 
So let us take x :=: 0. f' (0) = 0 and f' is increasing. Therefore we only have to 
check the upper bound. Let xo be the smallest x such that f' (xo) = I + ~ xo. Then, 
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since j 1 is increasing, 

1 
0:S-f(x)+ 2mx2 

1 . 2 ~X ( 1 1 ) = -x0 - f(xo)- dy f (y)- -y 
2m xo m 

1 2 ~X ( I 1 ) :S -x0 - dy f (xo)- -y 
2m xo m 

1 2 ( 1 ) = -x + 1 + -xo (xo- x) 
2m m 

for all x 2::: xo, which can be satisfied only if xo 2::: m. 
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(15.61) 

D 

The lemma is used in (15.59) with f(k) = -t(k) + t(O), which by properties 
(ii) and (vii) satisfies the assumptions, and we set 

f p-k 

t(p- k)- t(p) = P dxt 1(x). (15.62) 

If k > 0, the lower bound in (15.60) is applicable provided p < m, 0 :S k :S 2p. 

If k < 0, the upper bound in (15.60) is applicable provided p- k :S m and thus 
p :S m j2. The bounds put together yield 

1 1 
- (p- k) 2 -- p2 + t(p- k)- t(p) + w(k) 2::: -lkl + w(k) > 0 (15.63) 
2m 2m 

for p :S m /2 and lk I :S p. Refining the last step of the argument the bound can be 
improved to p :S ( .J3 - 1 )m, which implies Pc 2::: ( .J3 - 1 )m. 

Property (ix): As in the second part of the proof of Theorem 15.5 below, one 
estimates the overlap of the ground state vector with Q by using the analog of 
the pull-through formula (15.76). (15.69) is replaced then by (15.35). 

Finally we have to show (15.27), for which purpose we Trotterize Hp as 
the sum of 2~7 (p - Pf- eA'P)2 and Hf in the function space representation. 
We have 

since [Hf, Nf] = 0 and e-tHt has a positive kernel in function space. Recall the 
transformation (14.67). Linearizing the square with the Gaussian measure /.lG of 
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mean zero and variance t / m, one obtains 

(U ein Nfi2e-t(p-Pt-eA.p)2 /2me-in Nf!2u-1 F)(A(-)) 

= (U e-t(p-Pt-eEj_0)2 /2m u-1 F)(A(·)) 

= J f-lc(dA)eiA.·rue-iA.·(Pt+eEj_0)u-1 F(A(·)) 

= f /-lc(dA)eiA.·p F(A(· +A)+ Aecp(-)), (15.65) 

since Pf shifts and E _icji translates the field. In fact the components of (p - Pf -
eE_1_cji) do not commute and in (15.65) there are errors of order t2 which vanish as 
the Trotter spacing tends to zero. Taking absolute values on both sides of (15.65) 
yields 

I· I :::: f /-lc(dA)IF(A(x +A)+ Aecp(x))l 

and similarly for functionals of a finite number of fields. Therefore 

IU ein Ntf2e-t(p-Pt-eA'P) 2 j2me-in Nt/2 u-1 Fl 

:=:: UeinNfi2e-t(Pt+eA'P)2 /2me-inNf!2u-1IFI. 

Iterating the bounds (15.64) and (15.67) results in (15.27). 

15.3 Two-fold degeneracy in the case of spin 

(15.66) 

(15.67) 

For the effective spin dynamics a crucial input is the two-fold degeneracy of the 
ground state of the Pauli-Pierz operator with spin, which will be established here 
for sufficiently small e. The restriction one is presumably an artifact of the method. 

The Hamiltonian under consideration is 

1 2 e 
Hp = 2m (p- Pf- eArp) - 2m a· Brp + Hf (15.68) 

acting on C2 @ :F, where Arp = Arp(O), Brp = Brp(O); compare with Eq. (15.21). 
We require mph > 0. Let Pg be the projection onto the ground state subspace and 
Po be the projection onto the subspace spanned by X@ Q, X E C2, trPo = 2. We 
assume IPI < Pc· Then trPg :::: 1 by the arguments for the proof of property (vi). 

Theorem 15.5 (Two-fold degeneracy of the ground state band). If~ (p) > 0 and 
whenever 

2e2 f d3klqJJ2w-1 (E(p) + _1 k2) (E(p- k)- E(p) + wr2 < ~' (15.69) 
m 2m 3 

then tr Pg = 2. 
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For the Pauli-Pierz model with spin a proof of property (ii) is missing. If, very 
reasonably, it is assumed, then ~ (p) > 0 for I pI ::::; ( v'3 - 1 )m. 

Proof We assume cp to be real which can always be achieved through a suitable 
canonical transformation. 

Let z be real and sufficiently negative. We claim that 

Po(z- Hp)-1 Po= a(z)Po (15.70) 

with real coefficient a(z). 

In (15.68) we set Ho = 2~7 (p- Pf)2 + Hf and Hp = Ho + H1. Ho does not 
depend on spin and when restricted to the n-photon subspace it is multiplication 
by a real function. By the Kato-Rellich theorem the resolvent expansion 

00 

(x Q9 n, (z- Hr)- 1x Q9 Q) = L(X Q9 n, (z- Ho)- 1(HI(z- Ho)- 1tx Q9 Q) 
n=O 

is convergent. Expanding the product yields as generic term 

m 

n(aj +ibj ·a) 
}=1 

(15.71) 

(15.72) 

with real coefficients a i, b i, depending on k 1, A. 1, ... , k 111 , Am. Using the equality 

(a1 + ib1 · a)(a2 + ib2 ·a)= a1a2- b1 · b2 + ia · (a1b2 + a2b1 - b1 x b2) 
(15.73) 

it follows that 

(X Q9 Q, (z- Hp)- 1 X Q9 Q) = a(z)(x, X)+ ib(z) ·(X, ax) (15.74) 

with real coefficients a(z), b(z). Since the left-hand side is real, b(z) = 0 which 
proves (15.70). 

Equation (15. 70) holds on the negative real axis and therefore extends by ana
lyticity to the full resolvent set. In particular, one can integrate (15.70) over a small 
contour encircling E(p), the ground state energy of Hp. Then 

(15.75) 

By the pull-through argument 

[a(k, A.), Hp] = (Hp-k - Hp + w(k))a(k, A.) 

e cp 1 
----(eA.· (p- Pf- eA ) --(eA. x ik) ·a). (15.76) 
m~ rp 2 
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Let now 1/f E Pg H. Then 

(1/f, Nfl/f) = L J d3klla(k, A)l/fll 2 

A=l,2 

(15.77) 

Since tr[Pg(1- Po)] ::: tr[PgNf] ::: cotrPg, one concludes 

(1 - co)trPg::: tr[PgPo] ::: 2. (15.78) 

If co < 1, then q > 0, with q the constant in (15.75). Suppose trPg = I. Then 
Pg projects along 1/f and PoPgPo along Pol/f which contradicts (15.75). Thus 
trPg ::::_ 2. On the other hand if co < ~'then trPg < 3. In conjunction, trPg = 2 as 
was to be shown. D 

An alternative approach would be to use the positive commutator technique as 
explained at the end of section 15.2. It says that, provided lei < eo, IPI < Pc, the 
ground state of H P is exactly two-fold degenerate and that in a band above the 
ground state energy there is only an absolutely continuous spectrum. 

Notes and references 

Section 15.1 

Our discussion of the soft photon bound is taken from Bach (private lecture notes) 
and Bach, Frohlich and Sigal (1998a). If the potential V is attractive, but so weak 
that Hat has no ground state, then a sufficiently strong coupling to the radiation 
field will generate a ground state, since the mass of the particle is effectively in
creased (Hiroshima and Spohn 2001; Hainzl2002; Hainzl et al. 2003; Chen et al. 
2003). The property of e-tH to be positivity improving is not known to hold un
der additional terms, for instance including an external vector potential or spin. As 
explained to us by V. Bach, a soft photon bound as in Theorem 15.1 automatically 
estimates the overlap with the Fock vacuum. If lei is sufficiently small, this overlap 
is larger than I j2 and uniqueness is guaranteed. 

With the Maxwell field replaced by a scalar field, compare with section 19.2, 
ground state properties are investigated in Gerard (2000) and Betz et al. (2002), 
where references to earlier work are given. 
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Section 15.2 

The key properties of the energy-momentum relation are established in Frohlich 
(1974), where also the missing points of rigor are supplied. In fact Frohlich dis
cusses Nelson's model of a particle coupled to a scalar field, compare with sec
tion 19.2. In that case, as for example explained in Spohn (1988), e-tH(p), t > 0, 
is positivity improving in Fock space, within an exponentially small error e-t. 
From this property uniqueness of the ground state 1/f P is deduced by the argu
ment explained in section 14.3. The overlap argument of property (ix) is a sub
stitute which works only for small e. In his recent PhD thesis Chen (2001) es
tablishes that E (p) has a limit as mph ---+ 0. The limit function E (p) is twice 
continuously differentiable for I pI sufficiently small. Thus the effective mass of 
the electron remains well defined even in the physical case mph = 0, under the 
restriction of small e and, of course, an ultraviolet cutoff. An example where 
Pc = 1 for e = 0 and Pc = oo for e > 0 is the Frohlich polaron in two dimensions 
(Spohn 1988). Positive commutator methods at fixed total momentum are devel
oped in the highly recommended paper by Frohlich, Griesemer and Schlein (2003), 
where the complete proof for the Nelson model, see section 19.2 for its definition, 
can be found. Positive-commutator methods and the related Mourre estimates are 
most useful also in cases where the electron is confined by an external potential. 
We refer to Skibsted ( 1998), Bach, Frohlich and Sigal ( 1998b ), Derezinski and 
Gerard (1999), Bach, Frohlich, Sigal and Soffer (1999), and Georgescu, Gerard 
and Moller (2004). A precusor is Hubner and Spohn (1995b). 

Section 15.3 

The material is taken from Hiroshima and Spohn (2002). 
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States of lowest energy: dynamics 

As for classical dynamics, in many applications the external potentials have a slow 
variation in space-time. The standard procedure is then to ignore the quantized 
Maxwell field and to proceed with an effective one-particle Hamiltonian. This is 
justified since the photons very rapidly adjust to the motion of the electron. To put 
it differently, if a classical trajectory of the electron is prescribed, then the photons 
are governed by a Hamiltonian of slow time-dependence and essentially remain 
in their momentarily lowest state of energy. We propose first to study slow time 
variation, which abstractly falls under the auspices of the time-adiabatic theorem. 
However, the real issue is how, from the slow variation in space, to extract, rather 
than assume, the slow variation in time. It seems appropriate to call such a situation 
space-adiabatic. 

We will work for a start with time-dependent perturbation theory using the in
sights gained from the time-adiabatic theorem. It turns out that these methods lead 
us astray in the case of slowly varying external vector potentials. Thus we are 
forced to develop more powerful techniques. They come from the area of pseudo
differential operators. In fact this theory provides a much sharper picture of adia
batic decoupling and a systematic scheme for computing effective Hamiltonians. 
To avoid technical complications we restrict ourselves to matrix-valued symbols. 
Transcribing these results formally to the Pauli-Pierz Hamiltonian we will com
pute the effective Hamiltonian governing the motion of the electron in the band of 
lowest energy, including spin precession. The effective Hamiltonian can be anal
ysed through semiclassical methods which eventually leads to the nonperturbative 
definition of the gyromagnetic ratio. 

There are other properties of the Pauli-Pierz Hamiltonian which can be han
dled semiclassically. Most notably we may consider a physical situation, where 
classical currents are prescribed. Then the Pauli-Pierz operator reduces to a time
dependent operator on Pock space quadratic in the bosonic annihilation/creation 
operators. Such quasi-free theories can be studied in great detail. In particular, 

220 
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coherent states of the photon field evolve in time according to the classical inhomo
geneous Maxwell equations. Under standard macroscopic conditions field fluctua
tions are small and the classical Maxwell theory can be used safely. For example, 
a city radio station with a power of 100 kW at a wavelength of 100m emits 1030 

photons per second, and at a distance of 100 km a flux of 1015 photons s- 1 cm-2 

is still observed. On the other hand, experimentally even the smallest field intensi
ties can be controlled and quantum features are of importance, as for example in 
photon counting statistics. For the Maxwell field an amazingly wide span of scales 
can be probed, from the classical deterministic behavior down to single-photon 
randomness. 

16.1 The time-adiabatic theorem 

In the case where no external forces are present, the total momentum is conserved; 
compare with sections 13.5 and 15.2. Thus under slowly varying external poten
tials the total momentum can be expected to change slowly, and the appropriate 
starting point is the Pauli-Fierz Hamiltonian in the representation diagonal with 
respect to the total momentum, i.e. 

1 2 
H =-(a· (p- Pf- eAcp- eAex(8x))) + e</Jex(8x) + Hf. 

2m 
(16.1) 

Here p refers to the total momentum and 8 is a dimensionless parameter regulating 
the variation of the external potentials <Pex, Aex· Let us assume for the moment 
that a classical trajectory of the electron is given. Because of the slow variation 

of <Pex, Aex it has to be of the form (qet• Pet), 0 :S t:::; 8- 1r with (8qet• Pet) of 
order 1. Inserting in (16.1), the time-dependent Hamiltonian can be written as 

1 2 e 
H(8t) = 2m (Pet- Pt- eAcp- eAex(8qet)) - 2m a· (Bcp + 8Bex(8qet)) 

+ e</Jex(8qer), (16.2) 

which governs the motion of photons and acts on :F. t is measured in atomic units. 
Bcp = Bcp (0) is the quantized magnetic field. We have already studied the spectrum 
of H (t) for fixed t. The term proportional to Bex is of order 8 and can be neglected. 
Provided IPrl < Pc, H(t) has a two-fold degenerate ground state with energy 

(16.3) 

Physically it is expected that through radiation the photons approach very rapidly a 
state of lowest energy. Subsequently only very few photons escape, since the time 
variation is slow and E(t) is separated by a gap from the continuous spectrum. 
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The time-adiabatic theorem of quantum mechanics makes an abstraction of the 
particular situation and simply postulates the time-dependent Hamiltonian H (t) as 
given and acting on the Hilbert space H. The role of the ground state subspace is 
played by a physically distinguished, "relevant" subspace with corresponding in
stantaneous spectral projection P (t) and energy E (t), i.e. H (t) P (t) = E (t) P (t). 
It is assumed that for every t the energy E (t) is isolated by a finite gap from the rest 
of the spectrum of H(t). The slow variation in time is introduced through H(8t) 

with 8 « 1 as a dimensionless adiabaticity parameter and one is interested in the 
solution of the Schrodinger equation 

iutl/f(t) = H(8t)l/f(t), (16.4) 

where the initial wave function 1/f(O) is assumed to lie already in the relevant sub
space, P(O)l/f(O) = 1/f(O). tis chosen to be so long that P(t) rotates by some finite 
amount, implying that 

(16.5) 

Sometimes it is convenient to switch to the slow time scale 

t' = 8t 0 (16.6) 

Then our problem becomes 

i8ut'1f(t1) = H(t')l/f(t'), P(O)l/f(O) = 1/f(O), 0 :S t' :Sr. (16.7) 

To stress the similarity with the space-adiabatic situation, however, we stick to the 
fast time scale of (16.4 ). 

As one of the basic results it is established that the subspace P(8t) is adiabati
cally protected in the sense that 

11(1- P(8t))l/f(t)ll :S co8 for 0::: t::: 8-1r (16.8) 

with some suitable constant co. Up to an error of order 8 the solution to the 
Schrodinger equation (16.4) clings to the relevant subspace P(8t)H. 

It is of interest briefly to recall the proof of (16.8), since some central elements 
will reappear later. We denote the unitary propagator for (16.4) by U F; (t, s). The 
idea is to define a "diagonal" propagator U Jg (t, s) such that it preserves P (t) ex
actly, i.e. 

(16.9) 

The unitary propagator UJg(t, s) is generated by the Hamiltonian Hctg(8t). From 
(16.9) it follows that 

[Hctg(8t), P(8t)] = i8P(8t). (16.10) 
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We look for a solution which is s-close to H (st). Using the identities . . 
P(t)P(t)P(t) = 0, (1- P(t))P(t)(l- P(t)) = 0, we obtain 

Hctg(st) = H(st) + is[P(st), P(st)]. (16.11) 

To prove (16.8) one thus has to estimate the difference 

While H (st) - Hctg(st) is of orders, this is not good enough, since errors might 
add up over the long times s- 1r. To make progress we note that P[JJ, P]P = . . 
0 = (1- P)[P, P](1- P), whereas P[P, P](l- P) # 0. Thus to improve on 
(16.12) one has to exploit the time averaging, which is most easily achieved by 
writing [P, P] as a time derivative. Let us assume for a moment that the commu
tator equation 

[H(t), X(t)] = [P(t), P(t)] (16.13) 

has a bounded solution X(t). Then, using again (16.11), 

U8 (s- 1r, 0)- u~g(s- 1 r, 0) (16.14) 

£-lr 

=- sfo dsU 8 (s- 1r, s)(H(ss)X(ss)- X(ss)Hctg(ss))U~g(s, 0) + O(s) 

,{£-lr d d 
= is}

0 
ds(ds U8 (s- 1r, s)X(ss)U~g(s, 0)- U8 (s- 1r, s)X(ss) ds U~g(s, 0)) 

+O(s) 

i £-lr d . 
=is ds( -(U8 (s- 1r, s)X(ss)U~g(s, 0))- U8 (s- 1r, O)sX(ss)U~g(s, 0)) 

o ds 
+ O(s), 

which implies 

IIU 0 (s- 1r, 0)- u~g(s- 1 r, 0)11 ::: co(1 + r)s. (16.15) 

The adiabatic theorem (16.8) follows from 

11(1- P(r))U~:(s- 1 r, O)P(O)lfrll = 11(1- P(r))U~g(s- 1 r, O)P(O)lfrll + O(s) 

= 11(1- P(r))P(r)U~g(s- 1 r, O)lfrll + O(s) 

= O(s), (16.16) 

where (16.9) has been used. 
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It remains to see whether the commutator equation (16.13) has a solution. Be
cause of the spectral gap we may set 

X= P P(l - P)(H- E)-1 + (H- E)-1(1 - P)P P (16.17) 

and verify (16.13) directly. In particular, IIX(t)ll :S g- 111P(t)ll, with g the width 
ofthe gap and IIX(t)ll :s 3g-2 11H(t)IIIIP(t)II-

While undoubtedly correct the estimate (16.8) does not specify the origin of the 
error. As we will explain below the order E is not due to dispersion into all of H. 
Rather the true solution 1/f(t) is slightly tilted out of the subspace P(Et)H. If this 
effect is properly taken into account, the error in (16.8) can be made smaller than 
any given power En at the expense of adjusting the projection P(t) to the slightly 
tilted projection P 8 (t). The second missing aspect is more of a computational na
ture. Since (1- P 8 (t))H is in essence decoupled from the relevant subspace, one 
would like to have an, in our case time-dependent, effective Hamiltonian govern
ing the solution in the subspace P 8 (t)H, at least approximately. We will return to 
this point below. 

16.2 The space-adiabatic limit 

With these preparations done we return to the Pauli-Pierz model with the slowly 
varying electrostatic potential V (Ex) = e¢ex (Ex), 

1 2 
H = -(p- Pf- eAcp) + Hf + V(Ex) = Ho + V(Ex). 

2m 
(16.18) 

The case of a slowly varying vector potential will be discussed in section 16.6. Spin 
is omitted only for notational simplicity. H acts on L 2 (l~3 , d3 x) ® F. For the wave 
functions it is convenient to use the momentum representation 1/f(k, fsJ, also for 
the electron, with the shorthand fs. = (k1, A1, ... , kn, An), n arbitrary, 1/f(k, 0) = 
1/f (k) ® Q. Ho then has the direct integral decomposition 

Ho = JEB d3kHo(k). (16.19) 

We assume a small photon mass and the validity of claim 15.4. Then, for every 
k, lkl < Pc, Ho(k) has a unique ground state o/g, Ho(k)o/g(k, fs.) = E(k)o/g(k, fs.). 
Since in the momentum representation Ho(k) is a real operator, the phase of 
o/g(k) can be chosen such that the wave function is real. In particular, using 
(o/g(k), o/g(k)):F = 1, this implies (o/g(k), ''ho/g(k)):F = 0. E(k) is separated by 
a finite gap from the continuum edge Ec(k). Since our aim is to demonstrate the 
basic principle, we deliberately ignore the fact that the ground state band exists 
only up to Pc and continue as if Pc = oo. At the cost of a suitable restriction on 
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the initial state, the assumption Pc = oo can be avoided. We refer to the Notes at 
the end of the chapter for further explanations. 
~The ground state band is the subspace of wave functions of the form 
f(k)o/g(k, Is_), and the corresponding projection is denoted by Pg. Pg1-i is invariant 
under e-iHot, [Ho, Pg] = 0, and 

(e-iH0 t Jo/g)(k, Is_)= (e-iE(k)t fck) )1/fg(k, k). (16.20) 

Thus wave functions in the ground state band propagate according to a free quan
tum evolution with the effective energy-momentum relation E(k). 

If the slowly varying potential is turned on, the subspace Pg1-i is no longer 
invariant. The in-band dynamics is modified and there are transitions to excited 
states. For times which are not too long their effect remains negligible and one 
expects that 

where, as for the time-adiabatic theorem, the time scale is determined by the con
dition that the electron should feel the presence of the potential V. The effective 
one-particle Hamiltonian, Hen, is defined through the Peierls substitution 

Heff = E(p) + V(c:x). (16.22) 

Coupling to the Maxwell field renormalizes the kinetic energy of the quantum 
particle. In particular, for small velocities we have 

1 2 
Heff = --p + V(c:x). 

2meti 
(16.23) 

The mass is renormalized, but the coupling to the electrostatic potential is still 
given by the bare charge e. 

Let us now argue with some care that the Peierls substitution gives the correct 
time evolution in the ground state band. The Hamiltonian is the one specified in 
(16.18) and the relevant subspace is the ground state band Pg1-i. In particular, ini
tially Pgo/(0) = 1/f(O). By construction, [Ho, Pg] = 0 and one has to understand 
the transitions between Pg1-i and (1- Pg)1-i = Qg1-i induced by V(cx). For this 
purpose we decompose into a diagonal and an off-diagonal piece as 

V = Vctg + Vact, 

Vctg = Pg V Pg + Qg V Qg, Vact = Pg V Qg + Qg V Pg. (16.24) 

It should be recalled that the time evolution must be controlled over the time span 
c:- 1r, r = 0(1). Thus only terms of order c:2 can be ignored safely. 
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We consider first Pg V Pg, which in the ground state band acts as 

(Pg V Pgo/)(k, 15_) = f d3k'V(k')j(k- ck')(o/g(k), o/g(k- ck')):Fo/g(k, 15_) 

(16.25) 

~ 

with f(k) = (o/g(k), lj!(k)):F. The Peierls substitution amounts to V(t:PgxPg), 
since 

with the second term vanishing by the argument given above. The difference is 
estimated as 

(PgV(t:x)Pg- V(t:PgxPg))o/(k,!5_) 

= j d3k'V(k')j(k- t:k')((o/g(k), o/g(k- t:k')):F- 1)o/g(k, Is_). (16.27) 

In the Taylor expansion, the first order vanishes, since (o/g(k), 'ho/g(k)):F = 0 as 
before, and the error is 0(t:2). Thus we are left with showing that V0 ct acts as a 
small perturbation only. 

Since Ho(k) = 2~7 (k- Pt- eArp)2 + Ht, one has 'hHo(k) = ~(k- Pt

eArp) and, with P(k) denoting the projection onto o/g(k), then Pg = Jffi d3kP(k), 

Q(k) = 1- P(k), and Qg = 1- Pg. If clear from the context, the variable "Is_" 
will be dropped. With these conventions 

V(cx)Pgo/(k) = f d3k'V(k')P(k- t:k')lj!(k- t:k') 

= f d3k'V(k')P(k)lj!(k- t:k') 

- t: f d3k'V(k')k' · 'hP(k)lj!(k- t:k') + O(t:2). (16.28) 

By first-order perturbation theory 

'hP(k) = -Q(k)(Ho(k)- E(k))- 1\hHo(k)P(k) + h.c., (16.29) 

h.c. denoting the Hermitian conjugate. Therefore 

(16.30) 

with the shorthand \7 Pg = Jffi d3k\7kP(k) and the force F(x) = -\lV(x). 
The approximate time evolution is generated by 

(16.31) 
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and our goal is to compare it with the full time evolution e-iHt = U (t) over times 
of order s -I, i.e. to estimate the difference 

(I£ 
U(s- 1t)- Uctg(s- 1t) = -i Jo dsU(s- 1t- s)VoctUctg(s) (16.32) 

with t = 0(1). 
At this point we have arrived at a structure very similar to the time-adiabatic dif

ference (16.14). V0 ct = O(s) and time averaging must be used. As before, the trick 
is to write V0 ct as a time derivate, i.e. as a commutator with Ho, up to unavoidable 
errors of order s2 . We set 

B(k) = -Q(k)(Ho(k)- E(k))-2'hHo(k)P(k). (16.33) 

Then 

Q(k)\lkP(k) = -[Ho(k), B(k)]. (16.34) 

With the shorthand B = Jffi d3kB(k) one has 

Qg \1 Pg · F = [Ho, B] · F = [Ho, B · F]- B · [Ho, F] = [Ho, B · F] + O(s), 
(16.35) 

since [Ho, F] = ~(p- Pf- eArp)· [p, F] + h.c. and [p, F] = -is\lxF(sx). It 
remains to substitute Hctg for Ho. One has [Vdg, B] = Qg[V, B]Pg. Since B = 
Jffi d3kB(k) and V = V (is\lk), the commutator is of orders, hence 

Qg \1 Pg. F = [Hctg, B · F] + O(s). (16.36) 

On inserting in (16.32), we get 

r/£ 
U(s- 1t)- Uctg(s- 1t) = -s Jo dsU(s- 1t- s)[Hctg, B · F + F · B*]Uctg(s) 

+O(s) 

t/£ 
= -s Jo dsU(s- 1t- s)Uctg(s)Uctg(-s)[Hctg, B · F + F · B*]Uctg(s) + O(s) 

=is f'1~sU(s- 1t- s)Uctg(s)~(B · F + F · B*)(s) + O(s) 
Jo ds 

= is(B · F + F · B*)Uctg(s- 1t)- isU(s- 1t)(B · F + F · B*) 

t/£ ( d ) -is Jo ds ds U(s- 1t- s)Uctg(s) (B · F +F. B*)(s) + O(s) 

= O(s), (16.37) 
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since 11 U(-s)Uctg(s) = iU(-s)V0 ctUctg(s) = 0(£) by (16.30). As in the time
adiabatic setting the leakage out of the ground state subspace PgH is 0(£) for 
times of order£ -I. In addition we have identified the effective Hamiltonian ( 16.22) 
which approximately governs the time evolution inside PgH. 

16.3 Matrix-valued symbols 

If in (16.18) a slowly varying vector potential is added through minimal coupling, 
then even on a formal level the argument of the previous section breaks down. 
The reason is that the ground state subspace PgH is no longer even approximately 
invariant under the time evolution. There is another subspace to take its role, but it 
has to be computed rather than guessed. We immediately consider the general case 
( 16.1) and switch to the macroscopic space scale through the substitution x for Ex. 
Then the Hamiltonian under study is 

1 . 2 e 
H = 2m (- IEY'x - Pf- eAcp- eAex(x)) - 2m a· (Bcp + EBex(x)) 

+ e<f>ex (x) + Hf. (16.38) 

As before, -iY'x refers to the total momentum, Acp = Acp(O), Bcp = Bcp(O). 
The first step is to mold (16.38) into the canonical space-adiabatic form. For this 

purpose we have to distinguish between the classical phase space variable (q, p) 

and the corresponding operators, which exclusively for the purpose of sections 
16.3-16.5 are denoted by q = x, p = -iEY'x. To the Hamiltonian (16.38) in the 
obvious way we associate the operator-valued function(= symbol) 

H(q, p) = Ho(q, p) + t:H1(q, p), 

1 2 e 
Ho(q, p) = -(p- Pt·- eAcp- eAex(q)) --a· Bcp + e<f>ex(q) + Ht, 

2m 2m 
e 

H1(q, p) =--a· Bex(q). 
2m 

(16.39) 

For fixed (q, p), H (q, p) acts as an operator on CC2 Q9 :F, CC2 standing for the spin 
degrees of freedom. Ho is called the leading symbol and H1 the subleading symbol 
for H because of the extra prefactor of£ in the first line of (16.39). To a symbol 
one associates an operator through the Weyl quantization, which can be thought of 
as a specific prescription for ordering x and -i£Y'x.]'o be general, let A(q, p) be 
an operator-valued function with Fourier transform A (ry, ~), 

(16.40) 
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The Weyl quantization of A is then simply 

Ws(A) = (2rr)-3 J d3 r]d3 ~ A(rJ, ~)ei(IJ·IiH·PJ. (16.41) 

A(q, p) is an operator-valued function and W 8 (A) is an operator on the large 
Hilbert space H = L 2 (1Pi.3) 0 CC2 0 F. We will also use the notation 

(16.42) 

as a shorthand. Using the inverse Fourier transform in (16.40), W~:(A) can be writ
ten in the form of an integral operator as 

W 8 (A)ljf(x) = (2rr)-3 J d3~d3yA(~(x + y), s~)eii;·(x-y)ljf(y). (16.43) 

Here A acts on lfr(x) which is a CC2 0 F-valued wave function, ljf E L2 (IP?.3 , CC2 0 
F)= L2 (IP?.3) 0 (CC2 0 F)= H, and W~:(A) is an operator acting on H. Note 
that f(q) = f(x), f(j}) = f( -is'Vx) as operators. Also W~:(A) being Hermitian 
is equivalent to A(q, p) = A(q, p)* for all (q, p). For the Weyl quantization of 
H(q, p) from (16.39) one obtains simply 

(16.44) 

as it should be. Thus the adiabatic evolution problem associated with (16.38) can 
be written as 

a 
is-ljf(x, t) = H(x, -is'Vx)tfr(x, t) at (16.45) 

with the Weyl rule for the ordering of operators. Consistent with the macroscopic 
space scale we switched also to macroscopic times through the substitution of t 
for st. Equation (16.45) looks like a standard Schri:idinger equation, apart from 
the fact that ljf(x, t) takes values in CC2 0 F and H(q, p) acts as an operator on 
CC2 0 F. 

Ho(q, p) has a subspace of lowest energy with the corresponding projection 
denoted by P(q, p). Deliberately ignoring Pc < oo, from section 15.3 we know 
already that tr[P(q, p)] = 2 and 

H0 (q, p)P(q, p) = E(q, p)P(q, p) ( 16.46) 

with the eigenvalue 

E(q, p) = E(p- eAex(q)) + er/Jex(q). (16.47) 

One would expect that the Peierls substitution E (q, Ji) somehow plays the role of 
the effective one-particle Hamiltonian. Note that this would leave spin precession 
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still hidden and, in fact, it will appear as the .s-order correction to the Peierls sub
stitution E(q, /i). 

At this stage, as for the time-adiabatic theorem, it is convenient to abstract 
from the specific origin of the space-adiabatic evolution (16.45). Thereby the 
general structure of space-adiabatic problems becomes visible with the bonus 
of wide applicability. For simplicity CC2 Q9 :F is replaced by ccn with n arbitrary. 
In fact, a finite-dimensional internal Hilbert space is not essential and only al
lows us to remain in familiar territory. We record that the Hamiltonian H (q, p) = 
Ho(q, p) + .sH1 (q, p) is a matrix-valued function, assumed to be smooth in q, p. 
There is a relevant subspace of physical interest with energy band E (q, p) of con
stant multiplicity f. This means that Ho ( q, p) has the eigenprojection P ( q, p), 
[Ho(q, p), P(q, p)] = 0, with tr[P(q, p)] = £, 1::::; £ < n, such that 

Ho(q, p)P(q, p) = E(q, p)P(q, p). (16.48) 

Most importantly, Ho is assumed to have a spectral gap in the sense that 

IE(q, p)- Ej(q, p)l 2:: g > 0 (16.49) 

for all (q, p) and all other eigenvalues E j (q, p) of Ho(q, p ). As before, the space
adiabatic evolution is governed by 

a ~~ 
i.s at 1/f(x, t) = H(q, PJl/f(x, t) (16.50) 

with 1/f (x, t) an n-spinor, i.e. the Hilbert space for the Schrodinger equation ( 16.50) 
is L2 (IR3) Q9 ccn = 1-i. Note that, if in (16.50) H(q, /i) is replaced by H(t), then 
(16.50) turns into its time-adiabatic cousin (16.7) where the role of the relevant 
projection P ( q, p) is taken over by P (t). 

The analysis of (16.50) will be carried out in such a way as to make use only of 
(16.48) and (16.49) with no further assumptions at all on the spectrum of Ho(q, p) 
in the subspace orthogonal to P (q, p )CCn. For this reason we are confident that the 
final result will apply also to the Pauli-Pierz Hamiltonian. 

With the more general perspective gained, one can understand why the case 
Aex = 0 can be handled by more elementary means. In that case Ho(q, p) = 

2~ (p- Pf- eAcp)2 + er/Jex(q). Thus P(q, p) depends only on p and P(q, /i) = 
Pg, the projection onto the ground state subspace. This suggests that also in the 
general case P(q, /i)1-i is the adiabatically decoupled subspace. Unfortunately 
P(q, /i) 2 =!= P(q, /i),ingeneral,althoughP(q, p)2 = P(q, p).Ontheotherhand, 
as will be shown, P(q, /i)(l - P(q, /i)) = O(.s). Since P(q, /i) is Hermitian, its 
spectrum is of order .s concentrated near 0 and 1. Thus, at the expense of an error 
of order .s, we can associate to P (q, /i) a true projection operator P (q, /i), and 
P(q, /i)1-i is the adiabatically protected subspace in lowest-order approximation. 
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From the example of P (q, Ji) just discussed, it is clear that for a study of the 
Schri:idinger equation (16.50) in the limit of small e one has to understand the re
lationship between the multiplication of symbols and the multiplication of their 
Weyl quantization, which is taken up next. Let A, B be two matrix-valued func
tions. One defines their Moyal product A#B implicitly through the condition 

(16.51) 

The Moyal product is best grasped in the case where the symbols are given as 
formal power series, 

A(q, p) =Lei A1(q, p), B(q, p) =Lei B1(q, p), (16.52) 
i?:.O i?:.O 

where the expansion coefficients A i, B i do not depend on e. The equality is un

derstood as lA - ~}~6 ei A i I ::: Cnen with constants en possibly growing so fast 
inn that the partial sums in (16.52) do not converge. Then A#B also has a formal 
power series, which is written as 

A#B = Lei(A#B)1. 
i?:.O 

Equating power by power in (16.51) one finds 

(16.53) 

(-1)1/!1 
(2i)-(lal+l/11) aa al-i AI (q p)ua at! B (q p) 

lai!I,BI! q P ' P q m ' ' 
(A#B)j(q, p) = 

lal+l/-il+l+m=j 
(16.54) 

where it is understood that j, l, m EN and a, ,8 are multi-indices, a, ,8 E N 3. To 
lowest order 

1 
(A#B)o = AoBo, (A#B)1 = AoB1 + A1Bo- l{Ao, Bo}. (16.55) 

We introduced here the Poisson bracket { ·, ·} for matrix-valued functions. It is 
defined by 

(16.56) 

the dot referring to the scalar product of the two gradients. Thus even if the formal 
power series for A, B consists only of the leading term, A= Ao, B = Bo, as is the 
case for P(q, p), their Moyal product is a formal power series starting with 

1 
A#B = AB- e-{A, B} + 0(e2) 

2 
(16.57) 



232 States of lowest energy: dynamics 

and, by definition, the lowest-order product becomes 

(16.58) 

Note that in (16.56) the order of matrices must be respected. In general, it is not 
true that {A, A}= 0, or {A, B} = -{B, A}, as one is used to from the standard 
calculus of Poisson brackets. 

In the sequel, very roughly the idea is to use (16.51) as a link between functions 
of operators, like the time-evolved position operator q(t) = eiH t I F;qe -iH t IF;, and 
matrix-valued symbols. In particular, one can regard the matrix-valued function 
P (q, p) as the lowest-order symbol for the true Hilbert space projection onto the 
adiabatically decoupled relevant subspace. 

16.4 Adiabatic decoupling, effective Hamiltonians 

As noticed already, in general P (q, Ji) is not a projection, due to errors of order E. 

This suggests to successively correct P (q, p) with the goal in Weyl quantization 
to get a projection up to precision En, n arbitrary, a situation denoted by the symbol 
0(E00). We make the ansatz 

rr(q, p) = Z..:.t:in:j(q, p), rro(q, p) = P(q, p) 
j:;,O 

and recall that in general 

H(q, p) =LEi Hj(q, p), 
j:;,O 

(16.59) 

(16.60) 

where in our specific application Hi = 0 for j ::::_ 2. The Weyl quantization for rr 
should be a projection and commute with H(q, Ji) up to errors 0(E00). rr has then 
to satisfy the conditions 

rr* = rr, rr#rr = rr, n:#H = H#n:. (16.61) 

Through an iterative procedure it can be shown that the symbol rr is in fact 
uniquely determined by (16.61). By construction WF;(rr)2 = WF;(rr) + 0(E00 ) and 
there is a projection operator 0 on 1-i naturally associated to W 8 (rr). If we assume 
the initial wave function 1/f to lie in 01-i, 0 1/f = 1/f, then for the true solution 
1/f(t) = e-iHtloo/ one has 

(16.62) 

For this reason 01-i is called an almost invariant subspace, associated to the 
relevant projection P(q, q). On the adiabatic scale transitions out of 01-i are 
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exponentially suppressed as e-(~£) and the dynamics on ITH is governed by the 
diagonal Hamiltonian Hctg = OHO. 

Equation (16.62) solves the adiabatic problem only in principle. To have a work
able scheme it is required to have a basis in OH which is in some sense naturally 
adapted to the slow degrees of freedom and in which Hctg can be computed per
turbatively. Of course, the hope is that low-order perturbation will suffice. For this 
purpose we pick a fixed ( q, p)-independent basis I X a), a = 1, . . . , n, in ccn and 
define the £-dimensional reference projection 

e 
7Tr = L IXa)(Xal· (16.63) 

O'=l 

Since lxa) does not depend on (q, p), 1 ® 7Tr = Hr = W8 (nr) is a projection 
and its range defines the reference Hilbert space L 2 (IR3) ® 7TrCCn = Hr as a sub
space of H. Of course, at this stage the reference subspace is fairly arbitrary 
and a convenient choice must be made in concrete applications. The projection 
P(q, p) is spanned by the eigenvectors tfra(q, p), a= 1, ... , £, of Ho(q, p), 
(tfra(q, p), lfrf:l(q, p))cn = Daf:l· The unitary map from P(q, p)CCn to the reference 
subspace is then 

e 
uo(q, p) = L lxa)(tfra(q, p)l. (16.64) 

0'=1 

If uo were completed to a unitary operator uo on ccn, then for every q, p the n x n 
matrix uoHou0 is block diagonal, with block sizes£ and n - £,and has in the f X £ 
left upper block only the diagonal entries E (q, p ). 

As in the case of the projection P(q, p ), W8 (uo) is in general not unitary with 
an error of order s. Thus we iteratively correct so as to obtain a proper unitary 
operator from OH to the reference subspace Hr. The ansatz is 

u(q, p) = LEjuj(q, p), 
j:;-,0 

(16.65) 

with uo as in (16.64). Unitarity and transformation of JT to 7Tr translates into 

u*#u = 1, u#u* = 1, u#n#u* = 7Tr. (16.66) 

One can show that such a symbol u exists. Since uo is already not unique, neither 
is u. As with n(q, p), one associates with u a unitary operator U : OH---+ Hr. On 
Hr the motion is governed by UOHOU* and it agrees with the true solution up 
to O(s00). UOHOU* has a symbol determined through 

h = u#H#u*. (16.67) 
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We call h the effective Hamiltonian, associated to the almost invariant subspace 
ITH. The crux of the construction is that h can be represented by a formal power 
series, 

(16.68) 

and the effective Hamiltonian is successively approximated through the Weyl 
quantization 

(16.69) 

Let us work out the two lowest orders. Clearly 

(16.70) 

Its Weyl quantization is E (q, ji)rrr which is the anticipated Peierls substitution. In 
spin or space E (q, p )rrr is diagonal, see (16.63), and there is no internal motion 
at this order yet. For h 1 it is easier to rewrite (16.67) as H #u = u#h and there
fore (Ho + c;HI)#(uo + cu1) = (uo + cu1)#(ho + ch1). Using (16.57) one thus 
obtains 

( i i ) * h1 = u1Ho + uoH1- hou1- 2{uo, Ho} + 2{ho, uo} u0 . (16.71) 

Projecting onto rr r, the terms Hou 1 and u 1 ho cancel and h 1 simplifies to 

(16.72) 

uo is inserted from Eq. (16.64). In the basis of the reference Hilbert space one then 
obtains to first order 

i 
(Xa, (ho + chJ)xf3kn = E8af3 + c(tfra, H1 lfr13kn- 82(tfra, {Ho + E, lfrf3}kn 

+ O(c2), (16.73) 

where a, f3 = 1, ... , 1!, and where the Poisson bracket is understood as 

(16.74) 

with Ho acting on tfra as a matrix. The Weyl quantization of ho +chi is the effec
tive Hamiltonian in L2 (1Pi.3) 0 ce to that order. 

In principle, our scheme can be pushed up to arbitrary order. Formulas for h2 

are available, but they are already so involved that h3 is out of reach. Physically 
the dominant effects are in ho, h 1, and to some extent in h2. Further terms will add 
only a minute correction. Of course, the adiabatic decoupling relies on the gap 
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assumption (16.49). In the case where the energy bands of Ho(q, p) cross, or 
almost cross, transition between bands become possible and the qualitative picture 
developed so far breaks down. Away from crossings the description through the 
effective Hamiltonian is still accurate, but close to nearly avoided crossings new 
techniques come into play. 

The formula (16.73) looks unfamiliar. To get acquainted, a simple but instruc
tive way is to return to the time-adiabatic setting of section 16.1, where H(t) is a 
time-dependent n x n matrix and the relevant subspace has a constant multiplicity 
f. It is spanned by the instantaneous eigenvectors CfJa(t), H(t)cpa(t) = E(t)cpa(t), 

a = 1, ... , £, and the projection onto the relevant subspace is given by P(t) = 
L;=l lcpa(t))(cpa(t)l. As before, one needs a reference subspace of dimension e 
with time-independent basis I X a), a = 1, ... , e. We do not spell out the details 
of the computation, but state the final result. Including order c:, the unitary UF; (t)* 
from the reference space cc£ into ccn = 1-if is given by 

e 
U 8 (t)* = L_)lcpa(t)) + lic:(H(t)- E(t))- 1(1- P(t))CJ?a(t)))(xal + O(c:2). 

a=l 
(16.75) 

U 8 (t)* should be thought of as a kinematical component. It says, for each t, how 
the adiabatically protected subspace lies in ccn. To order 1 the subspace is just 
P (t)CCn and (16.75) provides the first-order correction. The dynamical piece pro
vides the information of how the solution vector rotates inside the almost invariant 
subspace. It is governed by the effective Hamiltonian acting in cce, which to order 
c:2 has the form 

har.;(t) = DafJE(t)- ic:(cpa(t), CJ?r.;(t))rcn 

1 + 2c:2 (CJ?a(t), (H(t)- E(t))- 1 (1 - P(t))CJ?fJ(t))rcn + O(c:3), (16.76) 

a, f3 = 1, ... , e. The second term of h(t) is the Berry phase. The approximate so
lution to (16.7) is obtained by first solving the time-dependent Schri:idinger equa
tion with hen(t) in the reference subspace cce and then mapping into 1-i through 
the unitary (16.75). Thereby the error in (16.8) is improved to order c:2 . In addition 
we know how the vector 1/f (t) rotates inside the relevant subspace. With some 
effort the precision could be improved to 0(c:3). Abstractly, an error 0(c:00 ) is 
guaranteed. 

Matrix-valued symbols are a very powerful tool in the analysis of the space
adiabatic limit. But, in the end, one would like to have a result on the Schri:idinger 
equation (16.45). This is always possible because the two frames of description 
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are linked through Weyl quantization. To orders the result is 

e-iH(q,PJt/£1/1 = uo(q, ji)*e-i(ho(q,PJ+E:h,(q,PJ)t/E:uo(q, ji)1f; + (1 + lti)O(s) 

(16.77) 

provided the initial wave function lies in the relevant subspace, i.e. no(q, ji)1f; = 
1f;. On the right, one has the effective dynamics in the reference subspace L 2 (1Pi.3) 0 
ce as generated by WE:(ho + sh1). Then W~:(uo) which, up to error s, is uni
tary turns the effective evolution into the physical Hilbert space L 2 (.!Pi.3) 0 en. 
The error (1 + lti)O(s) comes from the correction of no to no+ sn1, of uo 

to uo + E:UJ, and from the correction of ho + sh1 to ho + sh1 + s2h2. Equation 
(16. 77) agrees with our findings for the particular case studied in section 16.2. 
There ho(q, p) = E(p) + V(q) and h1 (p) = -i(1f;g(p), 'llpo/g(p)):F = 0 by our 
choice of the phase for 1f; g (p). Once the spin is included, h 1 no longer vanishes, 
see section 16.6. 

At the risk of repeating the obvious: expectations of physical observables have 
the form (1/lt. Ao/t). Thus if 1/lt is unitarily transformed so must be the observable 
A. When using the effective Hamiltonian of (16.67) one has to properly transform 
the observables of physical interest. To lowest order x and -i'Vx transform into 
themselves. But, in general, to first order there will be corrections. Also, the basis 
1/la (q, p ), a = 1, ... , l, of the relevant subspace must be selected judiciously such 
that in the I Xa) -basis observables of interest have a simple representation. We will 
come back to this point in the context ofthe Pauli-Fierz operator; see section 16.6 
below. The Weyl quantization of the effective Hamiltonian (16.67) still carries the 
small parameter s which suggests using semiclassical methods, a subject to be 
taken up in the following section. For general E(q, p), the semiclassical regime is 
limited by the Ehrenfest time which in our units is of order log s-1. We stress that 
the adiabatic limit has no such restrictions, as can be seen from (16. 77): if one had 
included the term h2, the approximation with the given precision would be valid 
for macroscopic times of order s - 1. 

16.5 Semiclassical limit 

According to Eq. (16.73) the effective Hamiltonian has the form 

H = H(q, p) = E(q, ji)n + sHsp(q, ji) (16.78) 

acting on L 2 (1Pi.3) 0 ce' where for clarity n denotes thee X l unit matrix. The last 
two terms in (16.73) have been renamed as Hsp anticipating that they are respon
sible for the precession of the l-spinor. 
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The semiclassical limit can be guessed most directly by considering the Heisen
berg evolution of the semiclassical observable a = a (q, Ji) as 

(16.79) 

a(t) has a semiclassical representation through a(q, p, t) = 'E.j::::_ociaj(q, p, t). 
From the equations of motion 

d~ ) 0 ~( c:-a(t = t[H, a t)], 
dt 

using [En, aj(t)] = 0, one finds to lowest order 

d 0 

-ao(t) = {E, ao(t)} + t[Hsp, ao(t)] + O(c:) 
dt 

with initial conditions ao(O) = a. 

(16.80) 

(16.81) 

Ignoring the error O(c:), the solution to (16.81) is easily constructed. First one 
defines the classical flow IPt on phase space through 

(16.82) 

Secondly, given the initial condition (q, p) with corresponding trajectory (qt, Pt) 

one obtains the time-dependent spin Hamiltonian Hsp(t) = Hsp(qt, Pt). It deter
mines the spinor evolution as 

d 
i-x(t) = Hsp(t)x(t), x(t) E Ce. 
dt 

(16.83) 

The unitary propagator for (16.83) from s tot is denoted by U (t, s lq, p ), recalling 
that it depends on the trajectory through its initial conditions. Then 

ao(q, p, t) = U(t, Olq, p)*a(cf>t(q, p))U(t, Olq, p), (16.84) 

as can be verified by inserting in (16.81). 
In the semiclassical limit there is no back-reaction of the spin on the orbit. Such 

an effect could be seen in corrections to the semiclassical limit and in the next
order correction, h2, to the effective Hamiltonian. 

The predictions of the semiclassical limit move more sharply into focus through 
considering the dual Schri:idinger picture. One picks a possibly c:-dependent initial 
wave function such that for expectations of semiclassical observables the limit 

(16.85) 

holds, examples being listed below. Here tr is over c£. Pel ( d3 qd3 p) is a matrix
valued classical probability measure on phase space, Pel ( d3 qd3 p) :=:: 0 as a matrix 
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and J tr[pc~(d3qd3 p)] = 1. Then at later times, from (16.82) and (16.84), 

lim (e-iHtjsljrs, ae-iHtjsljrs) = lim (ljrs, a(t)ljrs) 
s~o s~o 

=I tr[pc~(d3qd3 p)U(t, Olq, p)*a(cf>t(q, p))U(t, Olq, p)] 

=I tr[U(t, Olq, p)Pel o cf>_t(d3qd3p)U(t, Olq, p)*a(q, p)]. (16.86) 

The classical part of the measure is transported through the classical flow, while 
the spinor part evolves through the spin Hamiltonian Hsp(qt, Pt). In this sense the 
quantum expectation on the left of (16.86) is approximated by the classical aver
age on the right, keeping in mind that the internal spinor motion remains of full 
quantum nature. 

We list a few conventional choices, where the position variable refers to the 
macroscopic scale. In wave packet dynamics one assumes a sharp concentration 
as Pei(d3qd3 p) = IX) (X 18(q - qo)8(p- po)d3qd3 p. Then at later times the wave 
packet is concentrated at (qr, Pt) and the spin Xt precesses according to (16.83). A 
particular choice would be an initially Gaussian wave packet, which depends on s 
such that (x) 8 = qo, (-isY'x) = po, ((x- qo) 2) 8 --+ 0, and ((-isY'x- po)2 ) 8 --+ 

0 as s --+ 0. Note that to achieve the concentration in momentum the position is 
necessarily broadly distributed on the atomic scale. A WKB wave function is of 
the form ljr 8 (x) = x (x )eiS(x)/s. In the limit E: --+ 0 it defines the initial distribu

tion Pel (d3 qd3 p) = IX (q)) (X (q) 18 (p - \7 S(q ))d3 qd3 p. As a measure on the six
dimensional phase space it is concentrated on a three-dimensional hypersurface, 
a property which is retained by the flow cf>r. Since this surface may in general 
fold up in the course of time, it cannot be represented as the graph of a func
tion. For fixed q there could be several values of p. The wave function U 8 (t)ljr 8 

has the standard WKB form only locally in phase space. A further choice is 
a microscopic wave packet which in our units reads as ljr 8 (x) = xs-312 ljr(xjs) 

with some given wave function ljr on the microscopic scale. Then Pel ( d3 qd3 p) = 

lx)(xl8(q)l1fr(p)l 2d3qd3p. The wave packet is spatially localized, necessarily 
with a spread in momentum. Pel is concentrated on the three-dimensional surface 
{ (q, p) lq = 0} in phase space. Thus at a later time it will be of WKB form locally. 

If we look back at our starting point, an electron subject to slowly varying exter
nal potentials governed by the Hamiltonian (16.1), it may appear that we have lost 
sight of our goal. To improve, we summarize our main findings on a qualitative 
level. First, slow variation is satisfied for all laboratory fields including those em
ployed in the big accelerator machines. The translational degrees of freedom of the 
electron are thus governed in an excellent approximation by an effective Hamil
tonian obtained from the Peierls substitution, Heff = E(p- eAexCq)) + e¢exC(j). 
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In particular for small velocities, relying on the results from chapter 15, 

1 ~ -;::, 2 -;::, 
Heff = --(p- eAex(q;) + e</Jex(q;. 

2meff 
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(16.87) 

To understand the spin precession, one has to compute the first-order correction h 1 

to the effective Hamiltonian, which is the topic of the section to follow. 

16.6 Spin precession and the gyromagnetic ratio 

The time of pleasant harvest has come. The Hamiltonian is (16.38) with principal 
symbol 

Ho(q, p) = H(p- eAex(q)) + e</Jex(q); (16.88) 

compare with (16.39). H(p) acts on C2 0 :F and is defined in (15.68), where for 
notational convenience we use H(p) instead of Hp. From section 15.3 we know 
that H(p) has a two-fold degenerate ground state with energy E(p) and projec
tor P(p), tr[P(p)] = 2 provided IPI _:::: Pc (~ m). Therefore P(q, p) = P(p
eAex(q)) as a projection operator on C 2 0 :F defines the relevant subspace for 
Ho(q, p) with corresponding eigenvalue E(q, p) = E(p- eAex(q)) + e</Jex(q). 

To lowest order the symbol of the effective Hamiltonian is then 

ho(q, p) = E(q, p) ll = (E(p- eAex(q)) + e</Jex(q)) ll, (16.89) 

with n the 2 x 2 unit matrix, and the orbital motion is approximately governed by 

ho(q, ji) = (E(-icY'x- eAex(x)) + e</Jex(x))n. (16.90) 

The spin precession requires more attention. First of all one has to specify 
a basis in P (p )C2 0 :F. The singled-out choice is the eigenvectors of the to
tal angular momentum component parallel to p, which we denote by o/g±(p, Is_), 

(o/g-(p), o/g+(p))c2rg;F = 0. To define them properly, we follow section 13.5 and 
introduce the total angular momentum 

1 
1 = -rr + it+ St, 

2 
(16.91) 

see (13.96), (13.97). If R is a rotation by angle e relative to the axis of rotation n 
through the origin, then 

eii!/1:-J e;,(k)a(k, A)e-ilin·l = Re;,(R- 1k)a(R- 1k, A) (16.92) 

and therefore 

eilin·l Arpe-ilin·l = RArp, eilin·l Brpe-ilin·l = RBrp, eilin·l rre-ilin·l = Rrr. 

(16.93) 
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If n is parallel to p, n = pI I pI, these relations imply that the component of 1 
along p is conserved, 

[H(p), p · 1] = 0. (16.94) 

IPI- 1 p · 1 has the eigenvalues±!,±~, .... Fore = 0, IPI- 1 p · 1 has eigenval

ues±! in the ground state subspace of H (p ). By continuity, fore =J. 0, the eigen

value equations H(p)t/fg±(P) = E(p)t/fg±(p), IPI- 1p · 1t/fg±(p) = ±!lfrg±(p) 
uniquely determine the basis vectors t/fg±(p), up to phase factors e-iii±(P). We 
interpret these states as having spin pointing parallel, eigenvalue !, and anti

parallel, eigenvalue -!, to p. On the other hand, except for p = 0, one has 
[H(p), p' · 1] =J. 0 unless I PI-I p = ±lp'l- 1 p'. 

The effective spin Hamiltonian in the p · 1 -basis is derived with the help 
of (16.73), recalling the subprincipal symbol H1(q, p) from (16.39). Setting 
o/g±(q, p) = o/g±(P- eAex(q)) one obtains 

e 
(aiHsp(q, p)l/3) =- 2m Bex(q) · (o/ga(q, p), at/fg{:l(q, p))rr}&JF 

i 
- l(t/fga(q, p), {Ho(q, p) + E(q, p), t/fgf:l(q, p)})c2&JF• 

(16.95) 

a, f3 = ±.Working out the Poisson bracket yields 

(aiHsp(q, p)l/3) =- Bex(q) · ( 2~ (o/ga(fJ), at/fgj-J(fJ))r;2&JF 

- ~e(\lpt/fga(fJ), x(H(p)- E(p))\lpt/fgtJ(fJ))r;2&JF) 

+ e( - \1 qc/Jex (q) + V X Bex (q)) · ( o/ga (p), i\lp o/gfJ (jj) }c2&JF 

(16.96) 

with the velocity v = \lpE(p) and jJ = p- eAex(q). The spin Hamiltonian has 
a simple interpretation: through the coupling to the field the electron acquires the 
effective magnetic moment 

e 
(aiMm(fJ)I/3) = 2m (o/ga(fJ), at/fgtJ(fJ))r;2&JF 

1 
- 2e(\lpt/fga(fJ), x(H(p)- E(p))\lpt/fgtJ(fJ))r;2&JF (16.97) 

and the effective electric moment 

(16.98) 



16.6 Spin precession and the gyromagnetic ratio 241 

They are operators on spin space depending on the kinetic momentum p. The spin 
Hamiltonian then reads 

(16.99) 

with the Lorentz force h = - Vq</Jex(q) + v x Bex(q). Note that on top of the ob
vious magnetic splitting, the effective moments are determined through geometric 
phases. 

The semiclassical analysis of (16.90) together with (16.96) was discussed in the 
previous section. Of particular interest is the case of a small uniform magnetic field 
B, i.e. </Jex = 0, Aex (q) = ~ B x q. For small velocities the orbital motion is then 
governed by 

d 
men-Vt = evt x B; 

dt 
(16.100) 

see (15.23) for the definition of the effective mass, which yields the cyclotron 
frequency 

We= eiBifmeff. (16.101) 

Since j5 = 0, we may pick arbitrarily the f)-basis with eigenvectors t/fg± = 

t/fg±(O) determined through H(O)t/fg± = E(O)t/fg±. ht/fg± = ±~t/fg±· Using first
order perturbation theory for '\1 P tfr g± (0), the spin Hamiltonian simplifies to 

e 
(aiHspi,B) = - 2mB· (o/ga, at/fgj3}rr}@F 

i 1 1 1 
+ -eB · (o/ga, -(Pf +eArp) x (Pf + eArp)o/gf3)rr:}®F· 

2 m H (0) - E (0) m 
(16.102) 

H (0) is rotation invariant; see the discussion leading to (16.94 ). Therefore Hsp is 
necessarily of the form 

e g 
H =---B·a sp 2m2 ' (16.103) 

which yields gas 

1~ 
2g = (o/g+• a3t/fg+)rr:}®F 

2 1 
--lm(t/fg+, (Pf + eArp)2 (Pf +eArp) 1 o/g+)IC2®F· 

m H(O)- E(O) 

(16.104) 
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Note that Hsp does not depend on the choice of the phase e-i!:J+(P) for 1/fg+(p). In 

our approximation, the spin motion is governed by 

d e ~ 
-a(t) = --gB x a(t), 
dt 2m 

from which the frequency of spin precession 

Ws = e1Big/2m 

follows. 
The conventional definition of the gyromagnetic factor is 

Comparing (16.1 00) and (16.105) yields 

meff~ 
g=-g. 

m 

(16.105) 

(16.106) 

(16.107) 

(16.108) 

We stress that Eq. (16.1 08) is nonperturbative in the sense that it is valid for any 
coupling strength e. In the derivation it is assumed that the external magnetic field 
is weak, an assumption which certainly holds, since experimentally the radius of 
gyration is of the order of meters. Equation (16.108) is the g-factor at p = 0. At 
p =J. 0, since the Pauli-Pierz model is nomelativistic, there is a p-dependent g

factor with components parallel and transverse top. 
Under our standard assumptions, g depends analytically on the coupling 

strength e and it is of interest to obtain the order e2 correction to g = 2 at e = 0. 
For this purpose it is convenient to switch to the dimensionless units of section 
19.3. The effective mass is defined through (15.23). Compared to (15.36) there is 
an extra contribution from the fluctuating magnetic field and one obtains 

(16.109) 

Next we have to determine g, which is the sum g1 + g2. H (0) is written as H (0) = 
I 2 ~ ~ 

Ho + eH1 + 2e H2. Ate= 0, o/g+ =X+ 0 Q, a3X+ =X+, and g1 = 2, g2 = 0. 

Expanding o/g+ to first order in e as o/g+ = X+ 0 Q + (ej2)H0- 1a · BrpX+ 0 Q + 
O(e2), we insert in (16.104). For g1 there is a contribution from the normaliza
tion of o/g+ and one contribution involving (e2 /4)(X+ 0 Q, a· BrpH0- 1a3H0- 1a · 
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~:g~ = 1- ~e2 I d3ki9J(k/Ac)1 2 [1k1(1 + ~lk1) 2r 1 

- / 2 e2 I d3kl$(k/Ac)l 2 [1k1(1 + ~lk1) 2r 1 + O(e4). (16.110) 

For g2 only one of the two ground states is expanded to order e. Hence 
one has a contribution proportional to (X+@ Q, (Arp2H0- 1 PnH0-

1CJ • Brp- CJ • 

BrpH0- 1 PuH0- 1 Arplh+@ Q)iC2Q9F· The net result is 

(16.111) 

Adding up (16.1 09), (16.110), and (16.111 ), the g-factor to order e2 is given by 

In Heaviside-Lorentz units e2 = 4na. We also set the sharp cutoff cp(k) = 

(2n)-312 for lkl _:::: A, cp(k) = 0 for lkl > A. Then 

(16.113) 

Clearly g > 2, as observed experimentally. It is remarkable that g stays bounded 
in the limit A --+ oo and 

goo= 2(1 + ~ ( 2:)) + O(a2), (16.114) 

which is to be compared with 2( 1 + (a j2n)) + O(a2) from fully relativistic QED. 
Evidently the nonrelativistic Pauli-Pierz model overestimates the contribution 
from large wave numbers by a factor 8/3. The result (16.114) is satisfactory, since 
it nourishes the hope that the Pauli-Pierz model makes reasonable predictions even 
when the ultraviolet cutoff A is removed. 

Notes and references 

Section 16.1 

In the old quantum theory classical adiabatic invariants were associated with 
good quantum numbers (Ehrenfest 1916). Thus the time-adiabatic theorem was an 
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important consistency check of the Heisenberg-Schrodinger quantum mechanics 
(Born 1926; Born and Fock 1928). Kato (1958) proves the adiabatic theorem under 
the condition that the relevant subspace has finite dimension and is separated by a 
spectral gap. In fact, the theorem holds in much greater generality than explained 
in the text. Only a corridor separating the relevant energy band from the rest is 
needed. The spectrum inside the band can be arbitrary. The error in (16.8) may be 
improved to any order at the expense of a slight tilt of the subspace P(t:t)H, as first 
recognized by Lenard (1959) and further refined by Garrido (1965), Berry (1990), 
Joye et al. (1991), Nenciu (1993), and Joye and Pfister (1994). We refer also to the 
interesting collection of articles by Shapere and Wilczek (1989). Sjostrand (1993) 
discusses the higher-order corrections from the point of view of pseudodifferential 
operators; compare with section 16.4 and Panati et al. (2003a). If H (t) depends 
analytically on t, the error becomes e-l/~:, which complements the Landau-Zener 
formula for almost crossing of eigenvalues (Joye and Pfister 1993). If there is no 
gap, but a smooth t-dependence as before, the adiabatic theorem still holds (Avron 
and Elgart 1999; Bornemann 1998; Teufel 2001). The error depends on the con
text. It can be as small as in (16.8), but in general it will be larger. 

Section 16.2 

Our discussion of the space-adiabatic limit ignores technical details on purpose. 
They are supplied in Teufel and Spohn (2002), Spohn and Teufel (2001), and 
Teufel (2003). Most importantly, since Pe < oo, one needs a local version of 
the result explained in the text in the following sense. In the limit t: ---+ 0 the 
initial state defines a classical probability measure Pel ( d3 qd3 p) on phase space 
IR6 ; compare with section 16.5. Pel is transported by the classical flow <I>r with 
Hamiltonian (16.22) as Pel o <l>-t· If Pel is supported in IR3 x {piiPI < PeL then 
there is a first time thit at which the support of Pel o <I> -t hits the boundary 
IR3 x {piiPI = Pe}. The approximation through an effective Hamiltonian is valid 
for times 0::: t < t:- 1thit· 

Section 16.3 

Weyl quantization, the Moyal product, and matrix-valued symbols are discussed in 
Robert (1987, 1998), Dimassi and Sjostrand (1999), Martinez (2002), and Panati 
et al. (2003a). The Moyal product is introduced in Moyal (1949). 

Section 16.4 

The methods explained in this section have a rich history with motivations ranging 
from singular partial differential equations and Fourier integral operators to the 
motion of electrons in solids subject to a small magnetic field. Blount (1962a, b, c) 
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develops a similar scheme for computing effective Hamiltonians and applies it to 
Bloch electrons and to the Dirac equation. In particular, he computes the second
order symbol h2. In the solid state physics literature his work is a standard ref
erence, but his method is hardly applied to concrete problems. We refer to the 
discussion in Panati et al. (2003b) for an example in the case of magnetic Bloch 
bands. Starting from coupled wave equations Littlejohn and Flynn (1991) and Lit
tlejohn and Weigert (1993) develop the technique of unitary operators close to the 
identity on the level of symbols in the case where the principal symbol is a nonde
generate matrix. They apply their scheme to Born-Oppenheimer-type problems, 
where Ho(q, p) = p 2 11 + V(q) with V(q) ann x n matrix. On an abstract level 
the Born-Oppenheimer approximation is similar to the Pauli-Pierz model with a 
slowly varying external electrostatic potential only. The role of the invariant sub
space is emphasized by Nenciu (1993). The formal power series for the projector 
rr(q, p) is constructed by Brummelhuis and Nourrigat (1999) for the Dirac equa
tion, by Martinez and Sordoni (2002) for Born-Oppenheimer-type Hamiltonians 
and in the general matrix-valued case by Nenciu and Sordoni (2001 ). Our discus
sion is based on Panati et al. (2003a). The lecture notes by Teufel (2003) give de
tailed coverage with many examples, including the case of Bloch electrons (Panati 
et al. 2003 b). There also a more complete listing of the literature can be found. 

Section 16.5 

There is a vast literature on semiclassical methods, both on the theoretical physics 
and on the mathematical side; to mention only a few representatives: Maslov 
and Fedoriuk (1981), Gutzwiller (1990), and Robert (1987, 1998). These works 
are mostly concerned with the scalar case. An alternative technique is to employ 
matrix-valued Wigner functions (Gerard et al. 1997; Spohn 2000b). In this 
approach the adiabatic and semiclassical limits are fused, which is conceptually 
misleading. Also higher-order corrections are not accessible. An important 
example is the Dirac equation which has matrix dimension n = 4 and degeneracy 
1! = 2 of, for example, the electron subspace. The adiabatic limit yields the BMT 
equation of chapter 10, as discussed in Panati et al. (2003a). Blount (1962c) 
computes the next-order correction. It seems to be of interest in accelerator 
physics (Heinemann and Barber 1999), despite its fairly complicated structure. 
Yajima (1992) studies the derivation of the BMT equation using WKB methods, 
which are rather difficult to handle because of the necessity to switch coordinate 
systems on the Lagrangian manifold. 

The classical limit of the free Maxwell field with classical sources is regarded as 
sort of obvious. An instructive discussion is Thirring (1958) and Sakurai (1986). 
Photon counting statistics is covered by Carmichael (1999). 
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Section 16.6 

The gyromagnetic ratio of the electron is the most famous and precise predic
tion of QED with the current value gtheor/2 = 1.001 159 652 459 (135) as based 
on an eight-loop computation, see Kinoshita and Sapirstein (1984) for a review. 
This result compares extraordinarily well with the experimental value gexp/2 = 
1.001159652193 (4) of van Dyck, Schwinberg and Dehmelt (1986) based on 
measurements on a single electron in a Penning trap, see also Brown and Gabrielse 
(1986), and Dehmelt (1990). The nonrelativistic theory yields g000 /2 = 1.0031, 
with no cutoffs. The nonperturbative formula (16.108) seems to be novel and is 
described in Panati et al. (2002b). A rough approximation is provided by Welton 
(1948). Grotch and Kazes (1977) discuss the g-factor for the Pauli-Pierz model 
and obtain the second-order result ( 16.113) through computing energy shifts; com
pare with section 19.3.5. Surprisingly, they do not stress the obvious point: the 
g-factor is not too far off the truth even in the limit A --+ oo. After all, the mis
trust in QED up to the early 1940s was based mainly on the results being cutoff
dependent and diverging as A --+ oo; see Schweber (1994). 



17 

Radiation 

The theoretical understanding of the emission of light from atoms is inseparably 
linked with the development of quantum mechanics - the first glimpse of the full 
answer unraveled by P. A.M. Dirac in February 1927. A minimal model for radi
ation has to consist of at least one atom and the photons. Thus we fix an infinitely 
heavy nucleus at the origin, say, and describe the motion of a single electron by 
the spinless Pauli-Fierz Hamiltonian 

I . 2 
H = 2m (p- eArp(x)) + Vrpcoul(x) + Hf (17.1) 

with VrpcouJ(X) = -e2 J d3xld3xz<p(xJ)<p(xz)(4nlx + XJ- xzl)- 1, the smeared 
Coulomb potential. Besides radiation, (I7.I) describes a multitude of physical pro
cesses of interest. If the electron is free, i.e. far away from the nucleus, photons 
scatter off the electron (Compton effect). As the electron approaches the nucleus it 
will be scattered under the emission of bremsstrahlung (Rutherford scattering). In 
contrast, in this chapter we are interested in processes where the electron remains 
tightly bound to the nucleus. Of course, these two worlds are not strictly separated. 
The electron might be captured by the nucleus at the expense of radiated energy. 
Conversely, the atom may become ionized by hitting it with sufficiently energetic 
radiation (photoelectric effect). Even in the realm of a bound electron, several 
processes should be distinguished. The most basic one is spontaneous emission, 
through which the atom in an excited state loses energy and ends up in the radi
ationless ground state. A photon may be scattered by the atom leaving the atom 
behind in either its ground state (elastic Rayleigh scattering) or in an excited state 
(inelastic Rayleigh scattering) which is then followed by spontaneous emission. 
Both processes will be discussed in separate sections. 

Under usual circumstances the wavelength of emitted light is much larger than 
the size of an atom. In this case one can ignore the variation of the vector poten
tial in (17 .I) and replace Arp (x) by Arp (0), the so-called dipole approximation. In 
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addition we want to restrict the electron Hilbert space to bound states only. Tak
ing into account the first N of them results in an N -level system coupled to the 
radiation field. We point out that an enormous effort has been invested precisely 
to avoid such a mutilation of the Pauli-Pierz Hamiltonian (17 .I). Still, in the first 
round a simplified version will suffice. 

Radiation as discussed here has no classical counterpart. Of course, as ex
plained, in the context of the Abraham model a charge loses energy through radia
tion. Its analog would be an extension of the results given in the previous chapter. 
There one has to give up mph > 0. Then the spectral gap closes and the strict adia
batic protection is lost. For example, (16.105) would have a dissipative correction 
at the next order associated with a gradual emission of photons. In contrast, for 
the radiation processes studied here the emission of photons occurs on the atomic 
scale. 

17.1 N-level system in the dipole approximation 

The dipole approximation reads 

I 
H = -(p- eArp(0))2 + V(x) + Hf. 

2m 
(17.2) 

If in addition we were to choose V to be harmonic, V (x) = ~mw6x2 , then 
(17.2) is a quadratic Hamiltonian, as can be seen, if on top of the Bose fields 
a(k, A.), a*(k, A.) one introduces the annihilation and creation operators b, b* for 
the particle; compare with section I3.7(i). The analysis of this model can be 
reduced to a Hamiltonian on the one-particle space CC3 EB (L2 (l~3 ) Q9 CC2), where 
CC3 corresponds to the b, b* degrees of freedom. While such an analysis is very 
instructive, we stick here to the more realistic Coulomb-type potential. We rewrite 
(17.2) as 

1 2 e e2 2 
H = 2m p + V (x) + Hf - m p · Arp (0) + 2m Arp (0) , (17.3) 

drop the Arp (0)2 term, and expand in the eigenbasis of 2~7 p 2 + V (x) up to the 
N-th eigenvalue, including multiplicity. This results in 

(17.4) 

Here Hat and Q = (QJ, Q2, Q3) are symmetric N x N matrices. In our repre
sentation Hat is diagonal with nondegenerate smallest eigenvalue cJ and Q is 
proportional to the dipole moments 

(17.5) 

i, j =I, ... , N, where we used the facts that i[ 2~11 p2 + V(x), x] = ~p and 
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( 2~ p2 + V (x)) 1/f J = s J 1/f J counting eigenvalues and eigenfunctions including 
their multiplicity. We also introduced explicitly the dimensionless small coupling 
parameter A. If one follows the conventions of section 13.4, then A= a 312 . 

Note that in the functional integral representation of e-tH~o, HJc of (17.4), the 

effective action is quadratic with the interaction potential 

Wctip(t) = A2 I d3kl~f 2~ e-coltl, (17.6) 

which decays as t-2 for large t. Thus (17.4) is marginally infrared divergent. 
Generically HJc will lose its ground state at strong enough coupling, in contrast 
to the full Pauli-Pierz model, and (17.4) can be trusted only at small coupling. 

An alternative route to the N -level approximation is first to transform to the 

x · ElfJ (0) coupling through the unitary transformation 

(17.7) 

Then 

U*pU=p+eAifJ(O), U*xU=x, 

U*a(k, A)U = a(k, A)+ i(eJc(k) · x)ecp(k)/J2w(k) (17.8) 

and therefore 

u* HU = 2~ p2 + V(x) + (~e2 I d3klqJJ 2)x2 + Hf- ex 0 E<p(O). (17.9) 

As before, we expand in the eigenbasis of 2:11 p2 + V (x) up to the N-th eigenvalue. 
This results in the Hamiltonian 

(17.10) 

with the matrix of dipole moments QiJ = (o/i, xo/j), ElfJ = ElfJ(O), and A= -e. 
Since now the coupling is to ElfJ(O), the effective action (17.6) gains an extra factor 
of w2 and therefore has a decay as t-4 in accordance with the full model. 

For the remainder of the chapter, we take ( 17.1 0) as the starting point. The par
ticular origin of Hat and Q is of no importance. We only record that they satisfy 

H:r_ =Hat. Q* = Q. Hat has the spectrum CJ(Hat) C JR. It consists of the eigen
values labeled without multiplicity as El < E2 < · · · < EfV, N ::S N. The corre
sponding spectral projections are denoted by P1, ... , P iV. Their degeneracies are 

tr[Pj] = m i with m1 = 1 and L_f=l m i = N. In particular one has the spectral 
representation 

N 

Hat= LEJPj. 
}=1 

(17.11) 
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17.2 The weak coupling theory 

We plan to study the emission of light from atoms. The atom is assumed to have 
already been prepared in an excited state and thus the initial state of the coupled 
system is of the form 1/f Q9 Q with the atomic wave function 1/f E rrf. To deter
mine the radiated field one has to understand the long-time asymptotics of the 
solution e-iHt 1/f Q9 Q of the time-dependent Schrodinger equation. For small cou
pling, which is well satisfied physically, the dynamics approximately decouples: 
the atom is governed by an autonomous reduced dynamics and the field evolves 
with the decaying atom as a source term. In this section we will first study the 
reduced dynamics of the atom in the weak coupling regime with our results to be 
supported through a nonperturbative resonance theory in section 17 .3. In a follow
up we discuss the spectral characteristics of the emitted light. 

By definition, the reduced dynamics refers to the reduced state of the atom, 
which allows one to determine atomic observables such as the probability of being 
in the n-th level at time t. Although by assumption the initial state of the atom is 
pure, it will not remain so because of the interaction with the radiation field. Thus 
it will be more natural to work directly in the set of all density matrices. The initial 
state is then of the form p Q9 Po, with p the atomic density matrix, and Po, the 
projection onto Fock vacuum. The time evolution is given through 

(17.12) 

Here LAW = [HA, W] is the Liouvillean as acting on 7] (CN Q9 F), the trace class 
over eN Q9 F. To distinguish typographically, LA is written as a slanted symbol, 
like other operators, sometimes called superoperators, which act either on 7] or on 
B(CN Q9 F), the space of bounded operators on eN Q9 F. Clearly, states evolve 
into states, i.e. if W E ~ is positive and normalized, so is e -iL)J W. Sometimes, it 
is convenient to think of (17.12) as a Schri:idinger evolution in a Hilbert space. This 
can be done by adopting the space Tz(CN Q9 F) of Hilbert-Schmidt operators with 
inner product (AlB)= tr[A* B]. In this space the Liouvillean LA is a self-adjoint 
operator, which explains our sign convention in front of the commutator. A fur
ther choice comes from regarding B(CN Q9 F) as the space dual to 7] (CN Q9 F) 

through the duality relation W r-+ tr[A W], W E 7] (CN Q9 F), A E B(CN Q9 F). 

Then the dual of LA is -[HA, ·],which generates the Heisenberg evolution of op
erators. 

The reduced dynamics is defined through 

(17.13) 

where tr.r[·] denotes the partial trace over Fock space. ~A acts on B(CN). It is 
linear, preserves positivity and normalization. In fact, since it originates from a 
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Hamiltonian dynamics, the even stronger property of complete positivity is satis
fied. In such generality, T~ is intractable. But scales become separated for small 
A into atomic oscillations of the uncoupled dynamics e-iHart and the weak radia

tive damping of order A 2 ( = a 3 = I I 1373). When viewed on the dissipative scale 
the atomic oscillations are very rapid and effectively time-averaged. For small A 

memory effects are negligible and T~ becomes a dissipative semigroup, which is 
the autonomous dynamics we are looking for. 

To write a formal evolution equation for pA(t) one employs the Nakajima
Zwanzig projection operator method. We define the Liouvilleans Lat = [Hat, ·] 
as acting on B(CN) = 7i (CN), Lf = [Hf, ·] as acting on 7i (F), and Lint= [Q · 
Erp, ·] as acting on 7i (CN@ F). For an arbitrary density matrix W on eN@ F 
the Nakajima-Zwanzig projection is 

Clearly P2 = P and 

Pe-iL1J p Q9 Po, = pA(t) Q9 Po,. 

Let W(t) = e-iL)J p@ Po,. Then 

d 
i-PW(t) = PLA W(t) = PLAPW(t) + PLA(l- P) W(t), 
dt 

d 
i-(1- P)W(t) = (1- P)LA W(t) = (1- P)LAPW(t) 
dt 

+ (1- P)LA(1- P) W(t). 

Substituting (17.17) back in (17.16) and using PLintP = 0, we obtain 

d A · A - p (t) = -ILatP (t) 
dt 

(17.14) 

(17.15) 

(17.16) 

(17.17) 

-A2 lot dstr.F[LintO- P)e-i(l-P)LA(l-P)(t-s)(I- P)LintPo,]pA(s), 

(17.18) 

which is an exact memory-type equation. 
As argued traditionally, the memory decays rapidly on the time scale of the 

variation of pA(t). For small A one may ignore the interaction and replace LA by 
Lat + Lf in the exponential. In this approximation for small A 

d . 2 
-p(t) = ( -ILat +A Ko)p(t) 
dt 

(17.19) 
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is obtained as reduced dynamics with 

Kop = - fooo dt trF[Linte-i(Lat+Lt)t LintPQ]p. (17.20) 

This argument misses the point that both pJc(t) and the memory kernel have 
oscillatory contributions from e-iHatt. In general, their products cannot be approx
imated as in ( 17 .19), (17 .20). To subtract the oscillations from the memory kernel 
we rewrite (17.18) as an integral equation, 

pA(t) = e-iLatt p- A2fot dse-iLatU-s) 

X fo 8du trF[LintO- P)e-i(l-P)LA(l-P)(s-u)(1- P)LintPQ]pA(u). 

(17.21) 

After the change of variables v = s - u, one has 

PA (t) = e -iLatt p - A 2 lot du e -iLatCt-u) 

X { fot-u dv eiLatVtrF[LintO- P])e-i(l-P)LA(l-P)v (1- P)LintPQ]} pA(u). 

(17.22) 

Now in the memory kernel the fast oscillations are properly counterbalanced and 
to a good approximation pJc(t) is governed by 

where 

~p(t) = (-iLat + A.2 K)p(t), 
dt 

Kp = - fooo dt eiLatftrF[Linte-i(Lat+Lt)f LintPQ]p. 

We state our result as 

Theorem 17.1 (Weak coupling quantum master equation). Let 

e2 (Q, E<pae-iHtt E<pf3Q)F = haf3(t) = Daf3h(t), 

a, f3 = I, 2, 3. If 

(17.23) 

(17.24) 

(17.25) 

(17.26) 

(17.27) 
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for some 8 > 0, then 

lim sup llnp-e(-iLat+A2K)tPII=O. 
A.---+0 O<::t<::A. -2r 

(17.28) 

r is on the dissipative time scale. Thus in (17.28) a, possibly long, time interval 
on the dissipative time scale is fixed. Over that time span the true reduced dy
namics is well approximated by a Markovian dynamics consisting of fast atomic 
oscillations, -iLat, and slow dissipation, K. 

The integrability condition (17.27) is seen to hold by transforming back to po
sition space. Then 

J d3klcpfwe-iwt = J d3klcpfw(cos wt- i sinwt) 

=-a( J d3xd3x'd3ycp(x')lx- x'l-24n~8(1x- yl- t)cp(y) 

+ ial f d3 xd3ycp(x)-1-8(1x - yl - t)cp(y), (17.29) 
4nt 

which decays as fast as t-4 , since cp is localized. 
We still have to carry through properly the time-averaging, accounting for the 

fast oscillations of e -iLatt. We claim that, without further error, K can be replaced 
by its time average 

" 1 ~T . . K~p = lim - dteiLattKe-ILatt, 
T---+oo 2T -T 

(17.30) 

as can be seen from going to the slow time scale and considering the interaction 
representation 

eiA.-2LatTe(-iA.-2 Lat+K)r p = p +for du{eiA.-2 LatUKe-iA.-2 LatU} 

X eiA.-2 LatUe(-iA.-2 Lat+K)u p. (17.31) 

The term inside { } is rapidly oscillating and we are allowed to replace it by Kq. 
Theorem 17.1 remains valid when Kis replaced by Kq. 

In conclusion, we have arrived at the approximate reduced dynamics of the 
atom: 

(17.32) 

To understand the properties of this dynamics, the dissipative generator Kq must 
be worked out more concretely. It is time-averaged with respect to the Liouvil
lean Lat = [Hat, ·] and thus depends on the spectrum of Lat. which is given by 
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{Ei - s j I i, j = 1, ... , N} = u (Lat). Accordingly we define 

fv 
Q(w) = I: (17.33) 

The degeneracy of Hat enters through the projections Pj whereas the degeneracy 
of the Liouvillean is reflected by the sum in (17.33). For instance, a harmonic os

cillator has a nondegenerate Hamiltonian but a highly degenerate Liouvillean. The 
strength of the various transitions is determined by the one-sided Fourier transform 
of the field correlation (17.25). We decompose it into real and imaginary parts 

as 

dt e-uvth(t) = -r(w)- i~(w), 100 . 1 

0 2 
(17.34) 

which gives 

~r(w) = e
2 J d3kl~(k)l 2w(k)rr8(w(k) + w), 

2 3 
(17.35) 

~(w) = e
2 PV/d3kl~(k)l 2w(k) 1 , 

3 w(k) + w 
(17.36) 

PV denoting the principal value of the integral. Using this notation, after working 
out the oscillatory integrals in (17.30), one obtains 

3 

Kqp = L L {- i~(w)[Qa(w)Q~(w), p] 

where the w-sum runs over all eigenvalues of the Liouvillean Lat· 
The first term in (17.37) merely adds an extra term of order 'A 2 to the atomic 

Hamiltonian Hat· Thereby the eigenvalues s j are shifted and their degeneracy is 
possibly lifted. The second term represents the radiation damping. It is of Lind

blad form which ensures that 7t = exp[(-i[Hat. ·] + 'A2 Kq)t] is completely pos
itive and in particular preserves positivity. For the nonaveraged variant K such a 
property is in general not valid. 

The details ofthe damping mechanism depend on Hat. Q, and h. Since r(w) = 
0 for w ::::_ 0, only transitions to energetically lower levels are possible. Thus gener
ically we expect that in the long-time limit the atom reaches its ground state, 

lim 7(p = P1 
t-+00 

(17.38) 
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independently of the initial state. Basically, there are two obstructions to (17.38). 
The analog of the classical Wiener condition (5.4) could be violated in the sense 
that l(.si- Ej) = 0 for some Ei < Ej. Even if we assume r(w) > 0 for w < 0, 
Hat and Q could be too commutative. For instance, in the extreme case [Hat, Q] = 

0, the damping vanishes and Kqp = -i~(O)[Q2 , p]. Under the Wiener condition 
a sufficient criterion for (17 .38) to hold is {Hat, Qa, a = I, 2, 3 }' = CCI, i.e. the 
commutant of {Hat, Qa, a = I, 2, 3} (all operators which commute with Hat and 
Q) consists only of multiples of the unit matrix. 

If the spectrum of Hat is nondegenerate, then the set of density matrices com
muting with Hat is left invariant by "ft. We set "ftp = L~=l Pn(t)Pn, tr[Pn] = 1. 
The probabilities Pn (t) are governed by the Pauli master equation 

d N 
dtPn(t) = L (wmnPm(t)- WnmPn(t)), 

m=l 
(17.39) 

where 

3 

Wmn = L ['(En- Em)tr[Pm QaPn Qa] (17.40) 
a= I 

is the transition rate from level m to level n. Thus the coupling to the radiation field 
induces a Markov jump process on diagonal density matrices with transition rates 
given through Fermi's golden rule. The ground state is an absorbing state of the 
Markov chain. If every other state can be linked to the ground state by a sequence 
of jumps with nonzero rates, then limHoo Pl(t) = 1 and limHoo Pn(t) = 0 for 
n :=:: 2 exponentially fast. 

A much-studied variation is to immerse the atom in a black-body cavity at some 
temperature T. Based on rather general principles of statistical mechanics, Einstein 
came up with a phenomenological description of the atomic transitions in terms 
of his A, B -coefficients. Thereby he completely circumvented the yet nonexistent 
quantum statistical mechanics. Given such historical importance, we violate for a 
moment our principle of "zero temperature only", to provide a more fully fledged 
theory in chapter 18. Since we have already used density matrices, in the defi
nition of the reduced dynamics we only have to replace Po, by the thermal state 
z-le-Hf/kBT. The physically correct procedure is to first enclose the radiation 
field in the cavity [ -1!, 1!] 3 , i.e. the k-integration is to be replaced by a k-sum over 
the momentum lattice ( (rr j 1!):23)3 , followed by the infinite-volume limit 1! ---+ oo. 
In the weak coupling approximation, as the only difference to the zero-temperature 
case, the time-correlation haf3 (t) for the field is to be computed from the thermal 
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average. Explicitly, with (- )kB T denoting thermal average, 

haf3(t) = e2(eiHft E<pae-iHft E<pf3hBT 

2 2 

= e2 L I d3kcp~eA.a(k) L I d3k'(fi~eA.'f3(k1) 
A.=l A.'=l 

i2 ((e-iw(k)ta(k, A.)- eiw(k)ta*(k, A.))(a(k', A.')- a*(k', A.')))kBT 

= DafJh(t), (17.41) 

h(t) = e: I d3kliPPw(k)(e-iw(k)t 

(17.42) 

The friction coefficient, rkBT, and the level shifts are still defined through (17.34). 
r kB T satisfies the condition of detailed balance as 

(17.43) 

At nonzero temperatures rkBT(w) > 0 for all w, except for accidental zeros, and 
the energy can flow either way between atom and thermal bath. If the atom 
is well coupled to the black -body radiation, in the sense that r kB T ( w) > 0 and 
{Hat, Qa, a = 1, 2, 3}' = C1, then theN -level system relaxes to the thermal state 
z-Ie-Hat!kBT in the long-time limit. This is most easily seen in case all Ej are 

nondegenerate. Then the off-diagonal elements of Tr p decay exponentially while 
the diagonal elements are still governed by the Pauli master equation (17.39), in 
which the transition rates now satisfy 

(17.44) 

as a result of the detailed balance (17.43). Under "good coupling" (17.44) ensures 
that the thermal state is the only invariant state for (17 .39) and therefore 

lim "ftp = z-le-HatfkBT. 
t--+00 

(17.45) 

As will be explained in chapter 18 the relaxation to thermal equilibrium can be 
established also for small, but fixed coupling strength and in fact should hold at 
arbitrary A.. 

We note that in (17 .41) there are two terms inside the big round bracket with the 
first one being temperature independent. This is the Einstein A-coefficient which 
regulates the spontaneous emission of a photon. The second term in (17.41) is 
the B-coefficient of stimulated emission and adsorption of a photon. It dominates 
for '*i - £ J I « kB T. From the point of view of the atom, there is no way to 
distinguish the two emission processes. 
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17.3 Resonances 

The virtue of the weak coupling theory consists in yielding a concise dynami
cal scenario with level shifts and lifetimes computed in terms of the microscopic 
Hamiltonian. High-precision experiments, e.g. of the Lamb shift in the hydrogen 
atom, show small deviations from the prediction of the theory, which however 
should not be regarded as a failure of the weak coupling theory. Rather, it is a fail
ure of the Pauli-Pierz model at relativistic energies. Barring such fine details the 
weak coupling theory is the standard tool in atomic physics and there seems to be 
little incentive to go beyond. Still, we have not yet developed a firm link with the 
Hamiltonian. Are there corrections to the predicted exponential decay? Can one, 
at least in principle, obtain systematic corrections of higher order in A? What is 
the long-time limit for small, but fixed A? To answer such questions one has to 
go beyond perturbation theory and simple resummations. At present there is only 
one sufficiently powerful technique available, which is complex dilation. We ex
plain this method first for the standard example of the Friedrichs-Lee model. The 
extension to the Pauli-Pierz model requires rather complex technical machinery, 
certainly beyond the present scope. We will, however, use complex dilations to 
study the return to equilibrium at nonzero temperatures in chapter 18, which turns 
out to be much simpler since the spectrum is the full real line and is translated 
rather than rotated. 

We imagine a single energy level t: > 0, coupled to the continuum, which is 
labeled by x ::::_ 0, and should be thought of as energy. The Hilbert space of wave 
functions is then C EB L 2 (JR+, dx) and the Hamiltonian reads 

( c 0) ( 0 (cpl) HA. = Ho + AHint = 0 x +A lcp) 0 (17.46) 

in Dirac notation. HA. is known as the Friedrichs-Lee model. For some time we 
choose to denote by HA. the Hamiltonian of (17.46) and will give a warning to the 
reader when we return to the Hamiltonian (17.10). One needs cp E L2 to have HA. 
well defined and (cp, x- 1 cp) < oo for A Hint to be form-bounded with respect to Ho. 
With no loss one can choose cp to be real. For A = 0 the eigenvalue t: is embedded 
in the continuum and we want to understand its fate for small A. 

From scattering theory and the stability of the essential spectrum under rank
one perturbations it can be seen that the absolutely continuous spectrum of HA. 
is [0, oo) for all A. In addition, there exists a critical Ac such that for I A I < Ac 
there is no further spectrum, whereas for IAI > Ac the eigenvalue c(A) < 0 gets 
expelled from the continuum. We are interested here in small A only, i.e. lA I « Ac, 
but, beyond mere spectral information, we want to know the decay of the survival 
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amplitude 

(17.47) 

of the unperturbed eigenstate 1/fo = @. 
G(t) has the spectral decomposition 

G(t) = J dcvg(cv)e-iwt, (17.48) 

g(cv) :=:: 0 for cv :=:: 0, g(cv) = 0 for cv < 0, and J dcvg(cv) =I. Thus, IG(t)l 2 ~ 
I - t2 for small t and G (t) ---+ 0 as t ---+ oo by the Riemann-Lebesgue lemma. 
On the other hand, G (t) cannot decay exponentially, for this would imply g(cv) 
to be analytic in a strip around the real axis and thus g = 0, by the reasoning of 
Paley and Wiener. Since Hint is a one-dimensional projection, g(cv) is in fact easily 
computed. First, the resolvent is determined as 

~ 1 [ 2 I ]-I G(z) = (1/fo, (z- H;,J- 1/fo) = z- 8- A (cp, --. cp) , 
z-x 

z E CC \ IR+. Then 

Since 

with 

one has 

g(cv) = (2rri)- 1 lim [G(cv + i77)- G(cv- i77)]. 
1)-+0+ 

lim (cp, (cv ± i77- x)- 1cp) = ~(cv) =f il(cv)/2 
1)-+0+ 

I A2r(cv) 

g(cv) = 2rr (cv- 8- A2 ~(cv))2 + (A2r(cv)/2)2 

(17.49) 

(17.50) 

(17.5I) 

(17.53) 

for cv :=:: 0, and g(cv) = 0 for cv < 0. For small A, g(cv) has a huge bump located 
near cv = 8. In the weak coupling theory, one ignores the variation of r and ~ and 
approximates g(cv) for all cv by 

1 A21(8) 
gw(cv) = 2;r (cv- 8- A2~(8))2 + (A21(8)/2)2' 

(17.54) 

which corresponds to the survival amplitude 

Gw(t) = e-(J,2r(£)/2)1tle-i(£+A2L'l(£))t. (17.55) 
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For the true survival amplitude one still obtains the bound 

(17.56) 

uniformly in t, provided cp has some smoothness. The errors in (17.56) come from 
very short times, A 2t « I, and very long ones, A 2t » I. In the intermediate regime 
Gw(t) does very well. 

For models like the Pauli-Pierz model one cannot hope for such explicit 
formulas. Instead, !?r the purpose of computing g(w ), the strategy is to con
tinue the resolvent G(z) from the upper half of the complex plane across .!Pi.+ into 
the second Riemann sheet. Ideally, one should discover a simple pole, the reso
nance, located at zr(A) = 8 +A 2 .6.. - iA 2r /2 with r > 0. For small A one expects 
.6.. ~ .6..(8), r ~ r(8), but as A is increased the pole Zr(A) will move further away 
from the real axis. The resonance pole is responsible for the exponential decay as in 
(17.55) with .6..(8), r(8) replaced~ the true .6.., r. The error, as in (17.56), comes 
from the background spectrum of G(z) on the second Riemann sheet, unavoidable 
due to the branch cut at z = 0. 

One would hope that Zr(A) is an intrinsic property of H;,. and not merely of 
the particular matrix element under study. Of course, we can always pick a bad 
coupling function cp such that ( cp, (z - x) -I cp) cannot be analytically continued 
across .!Pi.+ or for a nice coupling cp, we could pick a bad wave function 1/f such that 
(1/f, (z- H;,.)- 11/f) cannot be analytically continued across .!Pi.+· Thus the best we 
can expect is that for a given sufficiently smooth cp the location of the resonance 
pole is independent of the choice of 1/f within a reasonably large set. To accomplish 
the desired analytic continuation we will implement a complex dilation of H;,.. 

For real e a dilation is defined by 

(17.57) 

U(e) is unitary and H;,. transforms under U(e) as 

U(e)H;,.U(e)- 1 = H;..(e) = Ho(e) + AHint(e) 

= ( 8 0 ) + A ( 0 ( CfJii I ) 
0 e-li x ICfJii) 0 ' 

(I7.58) 

where CfJii(x) = e-li/2cp(e-li x). 

We want to extend (17.57), (17.58) to complex e withe inside the strip SfJ = 
{e I lime I < ,8} with some j3 > 0. e-li is clearly analytic. For cp we require that CfJii 

extends as an analytic function to Sr-; such that J0
00 dx I e-li 12cp(e-li x) 12 < oo. Then 

H;,. (8) is an analytic family of operators of type A in the sense of Kato, separately 
fore E SfJ and lA I sufficiently small. Note that H;,.(8)* = H;,.(8*) for real A, since 
cp is real. The point of our construction is that for purely imaginary e, e = it?-, 
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£ 

Figure 17.1: Spectrum of the rotated Hamiltonian HA. (iz?-) for small coupling A. 

0 < 7J < (3, the continuous spectrum of Ho(i7J) rotates clockwise by the angle 7J, 
see figure 17.1. Thereby the previously embedded eigenvalue s becomes isolated 
and we can use ordinary perturbation theory to show that it shifts downwards to 
become the resonance pole Zr(A) on the second Riemann sheet. zr(A) is analytic in 
e as long as it remains isolated. If one sets e = K + i7J, K, 7J E IR, then HA. (K + i7J) 
is unitarily equivalent to HJc (K 1 + i7J ). Therefore Zr(A) is constant along lines of 
fixed i7J and by analyticity independent of e. As the continuous spectrum rotates 
clockwise, the resonance pole is uncovered and stays put. We summarize as 

Theorem 17.2 (Analytic continuation of the resolvent). For A sufficiently small, 

there exists a dense set DC H = CC EB L2(IR+, dx) such that for o/1, o/2 ED the 
resolvent (o/I, (z- HJc)-1o/2) has an analytic continuation from CC+ across IR+ 
into the second Riemann sheet. (o/I, (z- HJc)-1o/2) has a simple pole at Zr(A), 
Imzr(A) < 0, with the property that limJc-+0 Zr(A) = £. Zr(A) does not depend on 

the choice of o/1, o/2-

Proof Let D c H be the set of all vectors such that e ~---+ U (8)1/f is an analytic 
vector-valued function on S13. Dis dense in H. For o/1, o/2 E D we have 

For given e with Ime > 0, we can choose oo sufficiently small such that inside the 
open disc lz - s I ::: oo the location Zr(A) ofthe pole is an analytic curve starting at 
Zr(O) =E. D 

Let us follow the first step of the perturbation expansion. We fix e = i7J, 0 < 

7J < (3. For A = 0, Ho(8) has the eigenvalue s with corresponding projector 
11/fo)(o/ol. The eigenvalue persists for small A and we expand in A. The first-order 
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term vanishes and to second order we have 

Zr(A.) = c + A-2 (1/fo, Hint(e)(c- Ho(e))- 1 Hint(e)o/o) 

= 8 + lim A-2 (1/fo, Hint(E + iry- Ho)- 1 Hinto/o) 
rJ---+0+ 

= 8 + A. 2 ~(c)- iA.2 l(c)/2. 
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(17.60) 

No surprise, we recover the result from the weak coupling theory. We will see 
that this is a rather general fact and argue that the master equation (17.32) can be 
understood as arising from the resonances of the Liouvillean to lowest order. If the 
expansion in (17.60) is continued, the next order is A. 4 and the eigenprojection of 
the resonance will be slightly tilted. 

With the Friedrichs-Lee model as a blueprint in hand we plan to implement 
complex dilation for the Pauli-Fierz model in the N -level approximation (17 .10). 
As in the example above the complex dilation acts only on the photon degrees of 
freedom. For an n-photon vector we define 

Uf(e)1/fn(kJ, AJ, ... , kn, An)= e-3ne;21/fn(e-11 kJ, AJ, ... , e-ekn, An) (17.61) 

for e E R In particular 

Uf(e)a*(f)Uf(e)- 1 = a*(fe), fe(k, A.)= e-3e;2 f(e- 11 k, A.). (17.62) 

Then for the field energy 

Uf(e)HfUf(e)- 1 = Hf(e) = e-e Hf 

and for the electric field 

Uf(e)E<pUf(e)- 1 = EIP(e) 

= L J d3ke- 31112(ii(e-l! k)e-ef2 j w(k)/2 
A.=l,2 

(17.63) 

x eA.(k)i(a(k, A.)- a*(k, A.)). (17.64) 

We want to extend (17.63), (17.64) to complex e E s13 . Clearly Hf(e) is analytic in 
e. For the charge distribution we require that Cfe (k) extends as an analytic function 
to S13 and 

J d3k1Cfel 2 (w(k) + w(k)- 1) < oo. (17.65) 

Then EIP(e) is bounded relative to Hf(e) and 

HA.(e) =Hat+ Hf(e) + A.Q · E<p(e) (17.66) 

is an analytic family of operators oftype A separately in e E s/3 and A, with lA. I < 

A.o and A.o sufficiently small. Thus we have established the abstract framework 
needed for complex dilation. 
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Figure 17.2: Spectrum of the rotated Hamiltonian Ho (iz?-) at zero coupling. 

The difficulty already becomes apparent when the case of zero coupling is con
sidered, i.e. A= 0 (=-e). Hf has a zero eigenvalue and the continuous spectrum 
.!Pi.+ is of infinite multiplicity. If e = ilJ, the continuous spectrum rotates by the an
gle lJ. Thus for Hat+ Hf(e) we have a spectrum as shown in figure 17.2, where the 
eigenvalues s j, j = 1, ... , N, are at the tip of the continuous spectrum. In contrast 
to the Friedrichs-Lee model, they are not isolated. We can make them become iso
lated by giving the photons a small mass mph· Then w(k) = (m~h + k2) 112 which 

becomes w11(k) = (e- 211 k2 + m~h) 112 when complex dilated. The eigenvalues are 
now iso~ated provided they do not lie in the set of thresholds { s j + nmph I j = 
1, ... , N, n = 1, 2, ... } . Our previous arguments apply, but the range of allowed 
A is bounded by mph· 

In a beautiful piece of analysis V. Bach, J. Frohlich, and I. M. Sigal succeed in 
controlling the situation depicted in figure 17 .3. They prove that for sufficiently 
small "A and a dense set D of vectors the resolvent (1/f, (z- H;,J- 1cp), 1/f, cp E D, 
can be analytically continued into a domain, schematically drawn in figure 17.3. 
For A = 0 the eigenvalues ares j with multiplicity m j. Except for j = 1, for small 
A they turn into a group of resonances z jm ("A), m = 1, ... , m j, with the property 
that lim;,._.oZjm("A) = Ej. The ground state energy EI is nondegenerate and ZI(A) 
stays on the real axis. ZI ("A) is the ground state energy of the coupled system. The 
z j m ("A) are eigenvalues ofthe complex dilated Hamiltonian H;,. ( 8). The resonances 
are located at the apex of a cone, which is tilted by the angle e and has a square 
root singularity at its tip. 

To ensure that the resonances are strictly below the real axis we use the condi
tion from second-order perturbation and require that 

(17.67) 
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Figure 17.3: Spectrum of the rotated Hamiltonian HJ.. (i'IJ) at small nonzero cou
pling. The domain of analyticity is {zllmz > -bo} with small bo > 0 and away 
from the shaded regions. 
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as an m j x m j matrix for j = 1, ... , N. The eigenvalues of this matrix are: 
Imz j m (A), m = 1, ... , m j, to order A 2 . To second-order the imaginary part of 
the resonance poles agrees with the decay rates from the quantum master equa
tion (17.32). Their real part coincides with the eigenvalues of Hat corrected by the 
Hamiltonian part of Kq from (17 .37). To obtain the full generator Kq one has to 
study the resonances of the Liouvillean as will be discussed in chapter 18. 

17.4 Fluorescence 

We have described in considerable detail how the atom decays to its ground 
state, at least for small coupling. So what then are the spectral characteristics 
of the fluorescent light? How does the theory account for the experimental fact 
that the line shapes differ for equally and for unequally spaced unperturbed 
energy levels? We will address such questions only within the weak coupling 
theory. 

The initial state of the atom is chosen to be a pure state 1jf E eN and that of the 
field to be the vacuum. We want to determine e-iH)..t ljf 0 Q for small A and large 
t, order of A - 2. One method is to use second-order perturbation theory for the res
onance poles of the resolvent, as explained for a particular case in the previous 
section. Another method is to expand the resolvent (rp ® TIJ=l a*(kj , Aj)Q, (z

H;..)-11/f ® Q) and to resum all nonoverlapping internal photon lines lying in 
between either the external photon legs or the atom legs. The results turn out to 
be identical and have a simple physical interpretation. 
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To state the approximation to e-iH;J 1jf 0 Q, we rewrite the generator of the 
reduced atom dynamics as, compare with (17.37), (17.32), 

Then 

Lop= [Hat, p] + i'A2 Kqp 
3 

=[Hat+ 'A2 Ht:,.- i'A2 Hr, p] + i L L r(w)Qa(w)*pQa(cv) 
a= I WECT (Lar) 

=LooP+ LDJp. (17.68) 

3 3 R 
Ht:,. = L L ~(w)Qa(w)Qa(cv)* = L L ~(8i- 8j)PjQaPiQaPj, 

a= I uJEcr(Lar) a=l i,j=l 

(17.69) 

and 

3 3 R 
Hr = L L r(cv)Qa(cv)Qa(cv)* = L L r(ci- 8j)PjQaPiQaPj, 

a=1 wEcr(Latl a=1 i <}=1 

(17.70) 

where we used the relation r ( cv) = 0 for cv 2::: 0. We introduce the convenient 
shorthand 

(17.71) 

Note that Hct is not symmetric. As a photon is emitted, the energy of the atom 
decreases by at least one level, which is described by the atom lowering part of the 
interaction Hamiltonian, 

N 

Q- · E: = -i L PiQPi 0 ( L J d3kcp(k)rwJ2 · e;Jk)a*(k, 'A)). 
i<}=l A=l,2 

(17.72) 

With this notation the approximate solution is 

R-1 { 
e-iH;_to/ 0 Q ~ e-iHctto/ 0 Q + ~(-i)n Jo<:JJ<C ... <Cfn<Ct dtn ... dt1 

x e-i(Hct+Ht)(t-tn) 'AQ- . E: ... e-i(Hct+Ht)(t2-t1) 

x 'AQ-. E:e-i(Hct+Ht)tJo/ 0 s-2. (17.73) 

The sum is finite, since (Q-)N 1jf = 0. 
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Taking in (17. 73) the trace over the atom results in the reduced state of the 
photon field. Taking the trace over the field yields the reduced state of the atom. 
But this state was already determined in section 17.2. To be consistent with it we 
must have 

(17.74) 

at least for small A, Pv1 the projection onto 1/f. If (17.74) holds, the case of an 
arbitrary initial density matrix follows by linearity. 

To prove (17.74) we insert (17.73) and obtain 

(17.75) 

3 3 

X [ dsn ... ds1 L ... L 
Josq-s ... <esn<Ct a 1.f-J1=1 an.f-in=l 

n 
X n 8 h(s. _ t ·)e-iHct(t-tn) Q- e-iHct(tn-tn-1) Q- Q- e-iHcttl p 

GYj/3j j j an an_ 1··· a1 1/1 

j=l 

X eiHJs1 Q-* ... Q-* eiHJ(sn-Sn-1) Q-*eiHJ(t-sn). 
f31 f3n-1 f3n 

Since [Hat, HL'>.] = 0 =[Hat, Hr], one can use the spectral representation 

N 
e-iHctt = L e-ie.it Pje-iA.2Ht-J-A2 Hrt (17.76) 

j=l 

and insert it for each propagator in (17.75). On the time scale A - 2r, r = 0(1), h(t) 

decays quickly and the factors e-iet are rapidly oscillating. The generic integral in 
(17.75) is ofthe form 

(17.77) 

In the limit A ---+ 0 it converges to 

. ( ') I d h ( ) -i(om -t:n)t r _ . ( ') r ( ) r mini, i t t e 0 0 i-l:j.l:m-l:n- m1n i, i Em- En 0 0 i-Ej.l:m-l:n· 

(17.78) 



266 Radiation 

Using (17.78) and (17.76), the small-A limit of the expression in (17.75) is given 
by 

e-iLnot Pv1 + ~ ( -i)n 1 dtn ... dt1 
n=l O:'Ot1 ::: ... :::tn:'Ot 

X e -iLno(t-tn) L e-iLnoUn -tn-1) L e-iLnotl p 
Dl · · · Dl 1/1 

= e-iLnt p1/l (17.79) 

as was to be shown. 
The approximate solution ( 17.73) describes the decay of the atom and the build

up of photons. Such details are experimentally inaccessible. However, what can 
be easily seen are the spectral characteristics of the fluorescent light, which are 
obtained from (17.73) in the limit t --+ oo (on the time scale A - 2). Then the atom 
is in its ground state and 

(17.80) 

where ¢ is a photon state propagating freely to infinity through e -iHtt. ¢ can be 
read off from (17.73) as 

1/JJ@ rjJ = Pil/f@ Q + ~(-i)n fo:':t!:':···:':tn<OO dtn .. . dtJ Plei(Hct+Ht)fn 

x AQ-. E: ... e-i(Hct+Ht)(t2-tJ)AQ-. E:e-i(Hct+Ht)t11/f@ Q. 

(17.81) 

The projection P1 comes in, since states in (17.73) which are orthogonal to the 
uncoupled ground state 1/JI decay exponentially and only the piece parallel to 1/JI 
persists in the long-time limit. 

To see how (17.80) translates to the spectrum of the emitted light, it might be 
useful to work out two concrete cases. 

(i) Two-level atom. We consider two nondegenerate levels 11), 12) with resonance 
poles Zj = Ej + ~j- iij/2, j = 1, 2, !1 = 0. Initially the atom is in state 12). 
Then the scattering state ¢ of (17.80) has only one photon, ¢ = (0, ¢1, 0, ... ), 
with wave function 

where 

!I2(k, A)= e~(k)(11xl2) · eJc(k)jw(k)/2. (17.83) 



17.4 Fluorescence 

E 

C3 + ,6.3 I ) --~----~------~-- 3 

E2 + LJ.2 
--+----------+--- 12) 

Figure 17.4: Radiation cascade for a three-level atom. 
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The spectral distribution is lo/11 2. Since r2 is small, the variation from !12 can be 
ignored to obtain 

2 "' [ 2 2] -I ~ lo/1 (k, A.) I = C (E2 + 6.2- EI - 6.1 - w) + (r2/2) = I (w, k, A.) 
(17.84) 

with the constant C = I!I2(k, A.)l 2 evaluated at w(k) = E2- EI, C = e21$(E2-
::_J)1 2((E2- EI)/2)1(11xl2) · e;_(k)l 2, which depends on the direction of emission, 
k = k I I k I, and on the polarization. As a function of the frequency w of the emitted 
light, the line shape is Lorentzian of natural width r2 and centered at E2 + 6.2 -
EI - 6.1, differing from the bare line E2 - EI by the shift 6.2- 6.1. 

Ifthe initial state of the atom is ql1) + c212), normalized as lql2 + lc2l 2 = 1, 
then cp = (qQ, c2¢1(k1, AI), 0, ... ). With probability lcii2 no photon is emitted 
and with probability lc21 2 the line shape is that of (17.84 ). 

(ii) Three-level atom. We consider three nondegenerate levels 11), 12), 13) with 
resonance poles z i = E i + 6. i - ir i /2, j = 1, 2, 3, r 1 = 0. The initial state of 
the atom is 13). There is a direct transition 13)---+ 11) as in case (i). In ad
dition we have the cascade 13)---+ 12)---+ 11). Therefore the scattering state is 
cp = (0, ¢I, ¢2, 0, ... ), see figure 17.4. ¢I is as in (17.82) with label 2 replaced 
by label 3. For the cascade one obtains 
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(/J2(ki, AI, k2, A2) = S{ (13/2 + i(.s3 + ~3- £I - ~~ - w(ki)- w(k2)) r 1 

x(12/2 + i(£2 + ~2- £]-~I- w(k2))ri 

xJ2J12(k2, A2)h3(k1, AJ)} (17.85) 

with S denoting symmetrization. If the variation and the direction dependence 
from !I2, h3 are ignored, the intensity distribution for the two photons in the 
cascade is 

(17.86) 

with the shorthand 83 = £3 + ~3 - .s2- ~2. 82 = .s2 + ~2- £I -~I· If £3 -
.s2 =j:. .s2 - .s I, then in the frequency spectrum one will observe a Lorentzian at 82 
with natural width 12 and a Lorentzian at 03 with natural width 12 + 13. On the 
other hand if £3 - £2 = £2 -£I and, just as an example, also ~2 = ~3, 212 = 13, 
then 

(17.87) 

which corresponds to a single Lorentzian at 82 = 83 of natural width 12 with dou
ble intensity. The two photons interfere when emitted. Otherwise, the intensity 
would be the sum of a Lorentzian of natural width 12 and one of natural width 
12 + 13 = 312. If £3- .s2 ~ .s2- £I, the exact intensity distribution (17.86) has 
to be analyzed anew. 

17.5 Scattering theory 

From a very general perspective scattering theory is a comparison between an 
interacting dynamics and a simplified "free" dynamics in the limit of long times. 
In our context this means a study of 

(17.88) 

for an arbitrary initial state 1/f E H = c_N 0 :F. We stay within the dipole approx
imation and consider 

H =Hat+ Hf- eQ · Erp, (17.89) 

Erp = Erp (0). Since the coupling is fixed, we omit the index A and return to e = 

-A, see (17.10). Also, (-, ·) always denotes the scalar product in H. From the 
outset we state 
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Condition 17.3 (Uniqueness and localization of the ground state). H has a 
unique ground state t/fg, Ht/fg = Egt/fg with the property that (t/fg, e8Nto/g) < oo 
for some 8 > 0. H has no other eigenvalues. 

On physical grounds it is easy to conjecture the limit in (17.88). Photons are 
traveling outwards according to a scattering state ¢ and the atom decays to its 
ground state t/fg· Thus for given tfr E eN 0 :F, there exists a¢ E :F such that 

(17.90) 

In rough terms, the state e-iHtt ¢ lives far away from the ground state t/fg· Still, 
the bound photons of t/fg must be properly symmetrized with the freely propagat
ing photons of e-iHtt ¢. This is achieved by the symmetrization 0s as defined in 
(17.91), (17.92) below. We note that in the previous sections we have discussed 
an initial state of the particular form x 0 Q. The relation (17.90) constitutes a 
vast generalization thereof. Of course, the limit (17.90) can be considered also for 
t ---+ -oo. Combining both limits then yields the S-matrix for Rayleigh scattering 
of photons from an atom. 

To establish the limit (17.90) in this generality is a tough analytical problem, 
since no exceptions are allowed. The limit is supposed to hold for all states tfr E 1-i. 
We will only outline the general framework, in particular the proper definition of 
the wave operators and their intertwining between the free and interacting dynam
ics. As an easy step a Cook-type argument is established ensuring (17.90) at least 
for a large class of states. One important consequence of the limit (17.90) is the 
relaxation of the atom to its ground state without taking recourse to weak coupling, 
respectively resonance theory. As will be explained, such a relaxation holds also 
for local field observables. 

Let us first have a look at the right-hand side of (17.90). The symmetrization 0s 
can be defined for two arbitrary states in Fock space. We consider the Fock space 

:F = F(~) over the one-particle space ~· Then F(~ EB ~) = F(~) 0 F(~). On the 
one-particle space we define the map 

(17.91) 

The second quantization of this map defines o/1 0 o/2 E F(~) 0 F(~) 1---+ o/1 0s 
o/2 E F(~). More explicitly, one has 

n m n m 

( fl a*(fj )Q) 0s ( fl a*(gi)Q) = fl a*(fj) fl a*(gi )Q. (17.92) 
J=l i=l j=l i=l 
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In our case one factor is the ground state o/g which can be thought of as a spinor
valued vector in :F. We then define 1 : :F ---+ eN 0 :F through 

(17.93) 

smce o/g is considered as given. If ¢ is an n-photon vector, ¢ = 
(0, ... , r/Jn, 0, ... ), then 

(17.94) 

with S denoting the symmetrizer. 
As can be seen from (17 .91 ), the symmetrization 0s is unbounded. In particular, 

:=:: ~t (~}lr/Jn-JII 2e-Si to llo/gill 2e8i. (17.95) 

Let us define D8 = {¢ lllr/Jn II :=:: c(l - e-812)n}. Then for ¢ E D8, we have 
II 1¢ II < oo, which is the reason for assuming the exponential bound in condi
tion 17 .3. Without it, we would have to go into details in what sense ¢ is far away 
from the atom. 

Ifthe state¢ shifted to infinity, either by the spatial shift e-iw·Pt or by the time 
shift e-iHtt, then only the coupled ground state remains in focus. To see this on 
a more formal level, we introduce the strictly local Weyl algebra WR consisting 
of operators of the form W(f) = exp[a*(f)- a (f)] with j(x, A.)= 0 for lxl :=:: 

R. The quasi-local Weyl algebra W is the norm closure of UR>OWR. The local 
character is of importance, e.g. g(Hf) with g bounded is obviously a bounded 
operator, but g(Hf) does not lie in W. Let A E B(CN) 0 W. Shifting to infinity 
then 

lim (o/g 0s e-iw·Ptr.p, Ao/g 0s e-iw·Ptr.p) = (o/g, Ao/g)(¢, rp)J:, (17.96) 
lwl---+oo 

lim (o/g 0s e-iHttr.p, Ao/g 0s e-iHttr.p) = (o/g, Ao/g)(¢, ¢)F (17.97) 
It I-+ oo 

for all¢ E Ds. 

To prove (17.96), (17.97), we choose an n-photon state of the form ¢ = 
(0, ... ,¢n,O, ... ) with r/Jn(XJ,AJ, ... ,Xn,An)=STI}=1 fJ(xj,Aj), in other 
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words ¢ = (n!)- 112 TI'J=l a*(Jj)Q. We set hw(Xj, Aj) = fj(Xj- w, Aj) and 

similarly Jjt(kj, Aj) = e-iw(kj)t Jj(kj, Aj). Equations (17.96) and (17.97) go in 
parallel and we consider only the latter. Then, forM E B(CN), W(f) E W, and 
since W(f)a*(h) = a*(h)W(J)- (f, hh W(f), we get 

1 
+- " n' L · Ac{l, ... ,n},A#ffl 

n 

n (- (f, hr)Q)(n a*(hr)l/fg, n a*(fjt)Ml/fg). 
jEA j=l jEAc 

(17.98) 

Since f is local, by the Riemann-Lebesgue lemma, limH 00 (f, ht)fJ = 0. Simi
larly, for space translations, limlwl---+oo(f, hw)fJ = 0. Therefore each term having 
at least one contraction vanishes in the limit t ---+ oo, respectively I w I ---+ oo. We 
still have to discuss the first summand corresponding to zero contraction which 
written out explicitly is 

(17.99) 

by using (17.94) and setting <Pnt = (e-iHtt¢)n. There are two types of terms in 
the scalar product. If a <Pnt is integrated either against 1/fgj or against (M@ 
W (f) 1/f g) j, then all such terms vanish as t ---+ oo, again by the Riemann-Lebesgue 
lemma. The only terms which survive in the limit are of the form ( 1/f gj, (M @ 
W(f)l/fg)j)(r/Jnt, <Pnt)F = (1/fgj, (M@ W(J)l/fg)j)(r/Jn, r/Jn)F by unitarity. We 
conclude that the limit t ---+ oo in (17.99) equals 

()() 

L(l/fgj, (M@ W(J)l/fg)j)(r/Jn, r/Jn)F = (1/fg, M@ W(J)l/fg)(¢, r/J):F, 
j=O 

(17.100) 

as claimed. To cover the general case one has to take suitable linear combinations 
and uniform limits. 
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With these preparations the limit in (17.90) can be formulated more concisely. 
We define the wave operators Q'f through the strong limit 

Q'f¢ = s _ lim ei(H-Eg)t Je-iHftcp. 
t--+±oo 

(17.101) 

The existence of this limit will be shown for all ¢ E De, by a Cook estimate in 
Proposition 17.6 below. But we first want to explore some consequences of our 
definition. 

In the usual definition of wave operators one projects onto the scattering states 
of the comparison dynamics e-iHft. This is not needed here because for¢= Q, 
the limit in (17.10I) equals 1/fg. The formulation (17.I OI) assumes that H has no 
other bound state. If this had been the case, one would have to allow in ( I7 .I 0 I) 
for several atomic channels, corresponding to the possibility that the atom remains 
in an excited state forever. 

The wave operators Q± are isometries from :F to eN 0 :F, as can be seen from 

(17.102) 

by (17.97) for¢ E De,. By continuity this property extends to all of :F. n± inter
twines between the free and interacting dynamics as 

(17.I03) 

which is an immediate consequence of the definition: for ¢ E Ds one has 
e-iHftc/J E Ds and 

Q- cp = lim ei(H -Eg)(t+s) j e-iHf(t+s)cp 
S--+00 

= lim ei(H-Eg)tei(H-Eg)s Je-iHfse-iHftcp 
S--+ 00 

(17.104) 

Since Ds is dense in :F, (17.103) holds. As a consequence, Ran Q'f are reducing 
subspaces for H and H - Eo restricted to Ran Q'f is unitarily equivalent to Hf on 

:F. 
As emphasized, the limit in ( I7 .90) should not only hold for some states but for 

all1/f E eN 0 :F. It is useful to have a name for such a property. 

Definition 17.4 n± are called asymptotically complete if 

(17.105) 

If n± are asymptotically complete, then they are unitary and diagonalize H as 

(17.106) 
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In particular, H has the absolutely continuous spectrum [Eg, oo) of infinite multi
plicity. 

Under asymptotic completeness the long-time dynamics is fully characterized 
through 

Proposition 17.5 (Relaxation to the ground state). Let A be local in the sense 
that A E B(CN) 0 W. Thenforevery 1/f E Ran Q- with 111/fll = 1 we have 

(17.107) 

In particular, if asymptotic completeness holds, then the limit (I 7. I 07) is valid for 
alll/f E c_N 0 :F. 

Proof: Let 1/f = Q-¢ with¢ E D0 . By (17.101) one has 

lim (e-iHt1jf, Ae-iHt1jf) = lim (Je-iHtt¢, AJe-iHtt¢), 
t-+00 t-+00 

(17.108) 

which converges to the limit ( 17.1 07) as is seen by the argument explained in 
(17.98). Any 1/f E Ran Q- can be approximated through states of the form Q-¢ 
with cp E D0 . D 

Proposition 17.6 (Cook estimate). Let the integrability condition (17.27) be sat
isfied. Then for all¢ E D0 the strong limit 

lim ei(H-Eg)t 1 e -iHtt ¢ = Q-¢ 
t-+00 

(17.109) 

exists. 

Proof: If¢ = Q, the limit exists and is 1/fg. Let then (Q, ¢) = 0 and ¢ E Do n 
D(Hf). Then Je-iHtt¢ E D(H) and we have 

Here 

and we used 

E; = i L J d3kcp(k)jw(k)j2eJc(k)a(k, A) 
Jc=l.2 

a(f)(l/fg 0s ¢) = a(f)l/fg 0s ¢ + 1/fg 0s a(f)¢, 

a*(f)(l/fg 0s ¢) = a*(f)l/fg 0s ¢, 

(17.110) 

(17.111) 

(17.112) 

(17.113) 
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which follow from the definition (17 .92). Thus 

ei(H-Eg)t Je-iHttr.p = J¢ _ e lot ds ei(H-Eg)s Ql/fg 18ls ·E;;;e-iHtsr.p (1 7.114) 

and it is to be shown that t--+ II Ql/fg 18ls ·E;;;e-iHtt¢11 is integrable for a dense 

set of ¢'s. For this purpose we define L'P c L 3_ (IR3 , IR3) to be the linear subspace 
spanned by the set {e-iwt;p-JW/2e;_ It E IR}. We choose ann-photon vector in prod
uct form,¢ = (0, ... , r/Jn. 0, ... ), r/Jn = S TI}= 1 J; with each factor being a sum 

fj 

l;(k, A)= LCXJ£e-iw(k)tJt<;9(k)jw(k)j2e;_(k) + ljj_(k, A) 
£=1 

with J;j_ orthogonal to L'P. Then 

(17.115) 

IIQl/fg 18ls ·E;;;e-iHtt¢11:::; t I L I d3k<;9(k)Jw(k)j2e;_(k) · l;(k, A)e-ico(k)tl· 
j=l A=l.2 

(17.116) 

Inserting from (17.115) yields a finite sum of terms of the form 

I d3 k liP(k) 12w (k) Q j_ (k )e -iw(k)(t+s) (17.117) 

which are integrable, either by assumption or as a matter of fact for the Pauli-Pierz 
model, cf. the remark below Theorem 17 .1. 

Our argument establishes the limit ( 17.1 09) for a dense set of vectors in the 
n-photon subspace. By linearity and by taking uniform limits, this extends to all of 
D8. D 

For 1/f E Ran s-2± one has all the desired properties, relaxation to the ground 
state as in Proposition 17.5, long-time asymptotics as in (17.90), and spectral mea
sures which are absolutely continuous except for a possible mass at Eg with weight 
(1/f, 1/fg). Asymptotic completeness, i.e. the property Ran s-2± = rrf Q9 :F, ensures 
that there are no states with unphysical dynamics. 

Notes and references 

Section 17.1 

The dipole approximation in conjunction with the N -level approximation is com
mon practice in atomic physics, for example Agarwal (1974), Cohen-Tannoudji 
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et al. (1992). The unitary transformation (17.7) is linked with Power and Zienau 
(1959). It is also used by Bloch and Nordsieck (1937). For the special case of 
N = 2 the transition from Fock to non-Fock ground state is studied in consid
erable detail by Leggett et al. (1987), Spohn (1989), Amann (1991 ), and Weiss 
(1999). The corresponding Hamiltonian, Hsb. is known as the spin-boson model. 
The vector character of the Bose field is ignored and one sets Hat= caz, Q · Acp = 
ax J d3k(i(k)a*(k) + g(k)*a(k)). The t-2-decay of (17.6) is the so-called Ohmic 
case, which is marginal for the transition to non-Fock. For small coupling Hsb has 
a unique ground state in CC2 @ :F, whereas for large coupling Hsb acquires an in
finite number of bosons, which leads to a two-fold degenerate ground state, both 
lying outside Fock space. Form factors with a decay different from t-2 have been 
also investigated. 

Section 17.2 

Landau (1927) uses density matrices in the description of the reduced state of 
the atom. He arrives at a variant of the master equation (17.32). Its diagonal part 
is often referred to as the Pauli master equation (Pauli 1928). A further influen
tial work is Bloch (1928). The systematic weak coupling theory goes back to van 
Hove (1955, 1957) and has been further developed in response to the theoreti
cal challenges in quantum optics. Just to remind the reader: In theoretical models 
of the laser one has to include dissipation for the field modes of the cavity to 
account for lossy reflection at the walls. For photon counting statistics one has 
to devise a simple model of a detector. An interesting exchange is Srinivas and 
Davies (1981) and Mandel (1981). For laser cooling and trapping the spontaneous 
emission and its associated recoil must be described in a concise way (Metcalf and 
van der Straten 1999). Thus the general problem of how to model open quantum 
systems necessarily comes into focus. On the classical level the addition of friction 
forces and possibly of noise serves well. But quantum mechanics poses constraints 
which are still of current research interest. As a short sample out of a large body 
of literature we refer to Lax (1968), Glauber (1969), Kossakowski (1972), Haake 
(1973), Spohn (1980), Carmichael (1999), Weiss (1999), and Breuer and Petruc
cione (2002). Our presentation here is based on Davies (1974, 1975, 1976a). He 
emphasizes time-averaging which has been overlooked mostly, but is done cor
rectly in Cohen-Tannoudji et al. (1992) and Breuer and Petrucci one (2002). The 
various generators of the dissipative evolution in the weak coupling limit are com
pared in Diimcke and Spohn (1979). In the text we discussed only single-time 
statistics. Stationary two-time statistics appear frequently in applications. Multi
time statistics are studied by Diimcke (1983) within the presented framework. 
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Although even the most simplistic theory yields a shift of the spectral line, such 
predictions were not taken seriously. The rough estimate of Bethe (1947) and the 
more sophisticated computation of Grotch (1981) resulting in a cutoff-independent 
shift could have been done as early as 1930. It is only through the war-related re
search on radar that experimental techniques became available to measure such 
fine effects. The theory followed soon; see Schweber (1994) for an excellent ac
count. 

The weak coupling theory is also a useful tool in studying decoherence. In 
essence one starts the dynamics with a coherent superposition of two spatially 
well-separated wave packets. According to the appropriate quantum master equa
tion such a coherence is destroyed on a time scale which is much, much shorter 
than the friction time scale. Properly speaking the master equation should not be 
used on such short time scales. When decoherence is due to the coupling to the 
quantized rediation field, Diirr and Spohn (2002) provide an analysis based on 
the dipole approximation. A complete discussion, avoiding the dipole approxima
tion, is given by Breuer and Petrucci one (2001 ), who also list references to earlier 
work. 

The weak coupling theory had a mathematical spin-off, going way beyond the 
specific application at hand. The basic observation is that the dissipative semigroup 
Tt is the classical analog of the transition probability of a classical Markov process, 
the Markov character being embodied in the semigroup property Tr T1 = Tr+s, 
t, s :=:: 0. Tr is positivity and normalization preserving, in the sense that if p is a 
density matrix so is Tr p. As recognized by Lindblad (1976) the stronger notion of 
complete positivity is very natural. It means that if H is extended to H ® en and 
Tt in the trivial way to Tt ® 1, then T, ® 1 is positivity preserving for every n. In 
this framework the possible types of generators are classified by Lindblad (1976). 
He also characterizes dissipation through the decrease of relative entropy (Lind
blad 1975). Mixing and the long-time limit t --+ oo are studied by Spohn (1976), 
Frigerio (1978), and Frigerio and Verri (1982). The generalization of the notion 
of detailed balance to the quantum context is discussed by Gorini et al. (1984). 
Most recommended introductions are Davies (1976b) and Alicki and Lendi ( 1987). 
Clearly the next level is to inquire about multitime statistics and their build-up 
from the semigroup Tt. This is a fairly straightforward step for classical Markov 
processes through the concept of conditional independence of past and future. No 
such thing seems to exist on the quantum level and the theory of quantum stochas
tic processes tries to provide a consistent framework, possibly guided by specific 
model systems, that can be analyzed in detail. We refer to Accardi, Frigerio and 
Lewis (1982), Lindblad (1983), Hudson and Parthasarathy (1984 ), Accardi et al. 
(1991 ), and Parthasarathy ( 1992), and the recent monographs by Alicki and Fannes 
(2001) and by Accardi et al. (2001 ). 
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Section 17.3 

Already in his first work on radiation theory Dirac (1927) simplifies the problem 
to a single level coupled to a continuum of modes. A two-level atom coupled to 
the radiation field in the rotating wave approximation also reduces to a Friedrich
Lee-type Hamiltonian. 

Complex dilations were investigated in connection with the study of Regge 
poles, cf. Reed and Simon (1978) for references. The mathematical framework 
is developed by Aguilar and Combes (1971) and Balslev and Combes (1971 ). A 
beautiful survey is Simon (1978). For an introduction we refer to Cycon et al. 
(1987). Hunziker (1990) focuses on the question of how to translate the results on 
the resolvent back to the real time-domain. Okamoto and Yajima (1985) observe 
that the dilation of the massive photon field can be used to unfold resonances. Res
onances of the Pauli-Fierz model are studied in Bach, Frohlich and Sigal (1995, 
1998a, 1998b, 1999). They develop a renormalization-type iterative procedure to 
pin down the domain of analyticity of the complex dilated resolvent. This method 
is refined by Bach et al. (2002). An infinitesimal version based on Mourre-type 
estimates and the Feshbach method is Derezinski and Jaksic (2001 ). 

Section 17.4 

Our discussion is based on Davies (1976a). Lo is the Davies generator in the weak 
coupling theory. Line shapes are discussed by Weisskopf and Wigner (1930). Our 
examples for the spectral characteristics of the emitted light are taken from Cohen
Tannoudji et al. (1992), Chapter IIIC and Exercise 15. 

Section 17.5 

Potential scattering is discussed in Reed and Simon (1979) and N -body scatter
ing in Cycon et al. (1987). We follow the presentation in Hubner and Spohn 
(1995a). The Cook argument is based on H0egh-Krohn (1970) who also studies 
the asymptotic electromagnetic fields; for a complete discussion see (Frohlich, 
Griesemer and Schlein 2001). In the meantime the mathematical investigation of 
scattering of photons from an atom has flourished. For simplicity often the scalar 
field model of section 19.2 is studied. An important step is Derezinski and Gerard 
(1999) who establish asymptotic completeness in the case of massive photons, 
w (k) = (k2 + m~h) 112, mph > 0, and a strictly confining potential. Earlier work 
restricted to an N -level atom is Gerard (1996) and Skibsted (1998). An extension 
to massless photons under the condition $(0) = 0 is Gerard (2002). For mph > 0 
Frohlich, Griesemer and Schlein (2001, 2002) allow for potentials which are not 
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strictly confining, like the Coulomb potential. Thereby the channel for a freely 
propagating electron is opened up as it occurs in the description of the photoelec
tric effect (Bach, Klopp and Zenk 2002). Ammari (2000) establishes asymptotic 
completeness for the Nelson model of section 19.2 with ultraviolet cutoff removed. 
In these works asymptotic completeness is defined in such a way that H could 
have other eigenvalues besides its ground state. To exclude them one has to resort 
to Bach, Frohlich and Sigal (1998a) and Frohlich, Griesemer and Schlein (2002). 

A different approach is to take the dipole approximation with harmonic con
fining potential. Since the Hamiltonian is quadratic, the scattering theory can be 
reduced to one-particle scattering with a finite rank perturbation. Maassen (1984) 
notices that for a weakly anharmonic confining potential the time-dependent 
perturbation series can be controlled uniformly in time. His estimates are improved 
and optimized in Maassen, Guta and Botvich (1999) and Fidaleo and Liverani 
(1999). With this input one can prove asymptotic completeness in the strong sense 
of Definition 17 .4. The perturbing potential must be bounded and so small that the 
confining potential remains convex (Spohn 1997). The harmonic case is investi
gated by Arai (1983b). 



18 

Relaxation at finite temperatures 

The weak coupling theory of chapter 17 is the workhorse of quantum optics and 
serves very well in practice, also at nonzero temperatures. From the viewpoint of 
the theory one might wonder about the structure at fixed small, but nonzero, cou
pling strength, which needs to go beyond the analysis of the weak coupling theory. 
Much effort has been invested to achieve this goal, basically by trying to iden
tify corrections within time-dependent perturbation theory. Unfortunately, since 
the long-time behavior must be extracted, the details quickly become unwieldy 
and one has to rely on ad hoc approximations. 

Over recent years a novel approach has been pursued which investigates the 
pole structure of the analytic continuation of the resolvent of HA. across the real 
axis through complex dilations; compare with section 17.3. The techniques are 
demanding but simplify substantially at finite temperatures when the Hamiltonian 
is replaced by the Liouvillean and, since its spectrum is the full real line, complex 
dilations are replaced by complex translations which can be handled more easily. 
From the pole structure a fairly complete picture of the long-time dynamics can be 
extracted with the potential of computing systematically higher corrections to the 
weak coupling theory. 

The finite temperature relaxation is a digression into the realm of time
dependent statistical mechanics with small deviations from thermal equilibrium. 
While this is of independent interest and has important applications in quantum 
optics and condensed matter, our goal is merely to illustrate the power of complex 
translations and make the connection to the weak coupling theory. 

For completeness we recall once again the set-up. In the dipole approximation 
and N -level approximation the Hamiltonian is 

(18.1) 

see ( 17 .I 0). Hat acts on eN. Diverging from our previous convention, the energies 
c: j are labeled as cJ ::S c:2 ... ::S c: N allowing for possible degeneracies. Q is the 

279 
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dipole operator as an N x N matrix. The field energy Hf, and the electric field 
E'P = E'P (0) are operators on Fock space :F. For finite temperatures we need some 
extra structure, which will be explained below. 

The photon field is at temperature T > 0. It will be more convenient to work 
with the inverse temperature and set f3 = I j kB T. In the initial state the atom and 
its nearby photons are out of equilibrium and the goal is to understand how the 
coupled system relaxes back to global equilibrium. In the weak coupling theory 
one disentangles the effective dynamics of the atom and regards the field as driven 
by the atomic source. At fixed A such a distinction becomes hazy and a more global 
view is adopted with the separation deduced in the small-A limit. 

The analysis of thermal relaxation relies on the following strategy. One intro
duces coordinates which encode the finite energy excitations away from equi
librium. Doing this properly relies on tools from the representation theory of 
C* -algebras which for our context was mostly developed in the I960-70s. For 
noninteracting photons the representation of Araki and Woods (I963) is of a suf
ficiently concrete form and also allows the incorporation of the coupling to the 
atom. Note that at zero coupling the spectrum of finite energy excitation covers 
the full real axis IR, since w(k) = lkl and energy can be either below or above its 
equilibrium value. The energy differences of the atom are embedded in this spec
trum as discrete eigenvalues. As the coupling is turned on, they become resonances 
which are uncovered by a complex downward translation of the photon excitation 
spectrum. The location of the resonance poles and the corresponding eigenspaces 
can be handled through standard analytic perturbation theory. 

To convince the reader that the Araki-Woods Liouvillean correctly describes the 
finite energy excitation, we need some background material on quantum systems 
at finite temperature. We conform with established notation which to some extent 
deviates from our previous conventions. 

18.1 Bounded quantum systems, Liouvillean 

We start with an abstract quantum system on a separable Hilbert space H equipped 
with the scalar product ( ·, ·). We assume that the Hamiltonian H is bounded from 
below and has a purely discrete spectrum such that 

(18.2) 

for arbitrary f3 > 0. The algebra of observables, A, is the set of all bounded op
erators on H, denoted by B(H). A general quantum state is given through the 
density matrix p, satisfying p :=:: 0, trp = I. In particular p E 7] (H), denoting the 
two-sided ideal of trace class operators on H. In the Heisenberg picture the time 
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evolution is given through 

(1803) 

as acting on a E B(1-i)o The dual Schri:idinger picture provides the time evolution 
of states as 

p r-+ Pt = a_t(P) = e-itH peitHO (18.4) 

We want the evolution of density matrices to look like the evolution of vectors 
on a Hilbert space and, for this purpose, introduce the two-sided ideal of Hilbert
Schmidt operators 72 (1-i) 0 A bounded operator a belongs to 72 (1-i) if and only if 
tr[ a* a] < oo 0 72 (1-i) becomes a Hilbert space under the scalar product 

(alb) = tr[a*b], a, bE 72(1-i)o (1805) 

It will be useful to represent A= B(1-i) as an algebra of operators on 72(1-i)o 
72 (1-i) carries a left representation through 

£(a)K = aK E 72(1-i)o (1806) 

Later on we will need also the right antirepresentation defined through 

r(a)K = Ka* E 72(1-i)o (1807) 

This representation is antilinear since r(za)K = z*r(a)K for z E C 
We transcribe states and dynamics to 72(1-i)o To every element K E 72(1-i) a 

state p is associated through 

The expectation of a E B (1-i) is given by 

(a)p = tr[pa] = (KIK)- 1(KI£(a)K)o 

The time evolution becomes 

(at(a))p = (KIK)- 1tr[K*at(a)K] = (KIK)- 1(KI£(at(a))K) 

and for K, a E 72 (1-i) 

(KI£(at(a))a) = tr[K*at(a)a] = tr[(e-itH KeitH)*a(e-itH aeitH)] 

(1808) 

(1809) 

(18010) 

= (a-t(K)I£(a)a-t(a)) = (e-it£KI£(a)e-it£K)o (18011) 

The last identity defines the Liouvillean £0 Clearly 

LK = [H, K] (18012) 
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and Kt = a_t(K) is governed by the Schr6dinger-like equation 

.d 
I-Kt = LXt. 
dt 

The Liouvillean is a symmetric operator as can be seen from 

(KI£a) = tr[K*[H, a]]= tr[([H, KJ)*a] = (£Kia). 

(18.I3) 

(18.I4) 

To work concretely with the left, respectively right, representation of A and the 
Liouvillean £it is convenient to identify Tz(H) with H@ H through the isomor
phism 

Ic : Tz(H) --+ H Q9 H. (18.15) 

In a suitable basis C is simply complex conjugation. More abstractly C is an anti
unitary involution on H, i.e. 

C 2 =I and (Ctfr, Ccp) = (cp, tfr). (18.I6) 

Then with K defined through K tfr = o/1 ( o/2, tfr) one sets 

(18.I7) 

which extends by linearity. Note that 

Icf(a)K = leaK = ao/1 @ Co/2 = (a@ 1)IcK. (18.18) 

Thus I c intertwines with the left representation f of A on H @ H given by 

f(a) =a@ 1. (18.19) 

Similarly 

Icr(a)K = Ic(Ka*) = o/1@ Cao/2 = 1@ CaClcK (18.20) 

and 

r (a) = I @ C aC on H @ H. (18.2I) 

In particular for the Liouvillean 

Ic£K = Ho/1 Q9 Co/2- o/1 Q9 CHo/2 = Ho/1 Q9 Co/2- o/1 Q9 (CHC)Co/2 

= (H Q9 1- 1 Q9 CHC)(tfrl Q9 Co/2) = (H Q9 1- 1 Q9 CHC)IcK (18.22) 

and 

L=lc£1(;1 =HQ91-1Q9CHC on HQ9H. (18.23) 
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If H is invariant under time-reversal, we may choose C = T, with time-reversal 
T, and C H C = T H T = H. Then the Liouvillean is given by 

L=H&;d-10H (18.24) 

as an operator on H 0 H. Clearly the spectrum of L consists of the energy 
differences {Ei- Ejl i, j = 0, 1, ... }, where Ei, i = 0, 1, ... , are the eigenval
ues of H. 

18.2 Equilibrium states and their perturbations, KMS condition 

Of the many possible quantum states thermal equilibrium plays a special role. It is 
defined by the density matrix 

P/3 = z-Ie-f3H, Z = tr[e-f3H]. (18.25) 

As an element of 72 (H) we set 

Kf3 = z-If2e-f3Hf2. (18.26) 

Then P/3 = Kf3K;. Since P/3 is strictly positive, (a* a) f3 = tr[pf3 a* a] = 0 for a E A 
implies a = 0. Equivalently, 

l(a)Kf3 = 0 implies a = 0, (18.27) 

which means that Kf3 is separating for the algebra £(A). In principle, one should 
allow for additional conservation laws like total charge or total number of particles. 
However, this is ignored here since the Hamiltonian (18.1) does not have such a 
structure. 

For the photon field in infinite space the spectrum of H is continuous and 
z-Ie-f3H as such makes no sense. On the other hand, the atom is a small per
turbation. Thus the equilibrium state of the coupled system relative to that of the 
uncoupled system remains meaningful even at infinite volume and is the object of 
thermal perturbation theory. 

We consider 

H = Ho+I. (18.28) 

Ho is the unperturbed reference system and I is the perturbation, assumed to be 
bounded, II I II < oo. By the Golden-Thompson inequality 

Zf3 = tr[e-f3H] = tr[e-f-!(Ho+I)] ::: tr[e-f3Hoe-f-!l] 

:S ef311IIItr[e-f1Ho] = ef311III z~. (18.29) 

Thus if Z~ < oo, as assumed, then P/3 = T/e-f3H E 7] (H). 
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The Liouvillean of the reference system is given by 

£o = £(Ho) - r(Ho) 

and the Liouvillean of the perturbed system by 

£=£(H)- r(H). 

Under the isomorphism Ic the Liouvilleans become 

L = Ic£1(; 1 = (Ho +I) Q9 I -I Q9 C(Ho + I)C = Lo + W, 

Lo = Ho Q9I- I Q9 CHoC, W =I Q9I -I Q9 CIC. 

We also define the Radon-Nikodym operators, £e and Lr, through 

L£ = LO + £(/), Lr = LO- r(I). 

Then, with KfJ = (Zj1)- 112e-fJH/2, Kg= czg)- 112e-fJHo/2, we have 

e-fJ£tf2KO _ e-f1(£(Ho)H(J)-r(Ho))/2KO _ e-fl(Ho+l)/2KOef1Ho/2 
/1- /1- /1 

(18.30) 

(18.31) 

(18.32) 

(18.33) 

= (ZtJ/Zg)l/2(ZfJ)-l/2e-fJH/2 = (ZtJ/Zg)l/2KfJ (18.34) 

and by a similar calculation 

(18.35) 

Kg is in the domain of the operators e-fl££12 and ef1£r/2 and their action maps 
unperturbed to perturbed equilibrium, 

(18.36) 

The thermal state e-/1H is related to the unitary time evolution e-itH through an
alytic continuation to f3 = it, which gives rise to a very powerful analytic structure 
of equilibrium time correlations known as the Kubo-Martin-Schwinger (KMS) 
boundary condition. We define the time correlations as 

(aar(b))fJ = Fab(t), (ar(b)a)fJ = Gab(t). (18.37) 

They are linked through 

(aat(b)) fJ = Zi 1tr[e-f3H aeitH be-itH] = Zi 1 tr[e-flH e(fl+it)H be-(fl+it)H a] 

= (a-ifJ+t(b)a)fJ, (18.38) 

which is the KMS condition. It states that Fab(t) is the boundary value of a function 
Gab(Z) which is analytic in the strip S_fJ = {z I - f3 < Imz < 0} such that 

lim Gab(t- ir]) = Fab(t). 
r]t fJ 

(18.39) 
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Equivalently, Gab(t) is the boundary value of a function Fab(Z) analytic in the strip 
sfJ such that 

lim Fab(t + i77) = Gab(t). 
IJtfJ 

(18.40) 

A state which satisfies either of these boundary conditions is called a KMS state 
with respect to the time evolution at. In our set-up, the only KMS state is PfJ· The 
KMS condition is used as a defining property for equilibrium states in infinitely ex
tended systems. In general, for the same group of automorphisms there could then 
be several KMS states. Physically they represent distinct thermodynamic phases. 

18.3 Spectrum of the Liouvillean and relaxation 

As discussed in section 17.5, at zero temperature the relaxation to the ground state 
can be reduced to a scattering problem, see Proposition 17.5. As a simplification, 
at finite temperature it suffices to have sufficiently strong spectral properties of 
the Liouvillean. We have in mind now a situation where the size of the black-body 
cavity is huge on the atomic scale. Therefore the relevant mathematical idealization 
is to have the photon field infinitely extended. The algebra B(1-i) must be replaced 
then by a suitable algebra A of quasi-local observables. Its construction will be 
explained in the following. At the moment we focus on the abstract structure. Thus 
we have given the C* -algebra A and a one-parameter group at of *-automorphisms 
as the dynamics. The distinguished state on A is the KMS state wr.; at inverse 
temperature f3. Its time correlations are defined by 

Fab(t) = WfJ(aat(b)), Gab(t) = WfJ(at(b)a) (18.41) 

and they satisfy the KMS boundary condition 

Gab(t- i/3) = Fab(t), Fab(t + i/3) = Gab(t); (18.42) 

compare with (18.39), (18.40). Note that wr.; is necessarily time-invariant, since 
wr.;(1at(b)) = wr.;(at(b)1) and by the KMS condition 

(18.43) 

Let us define the *-algebra A0 through smoothing in time with a test function of 
compact support in Fourier space, 

A0 = {ar = J dtf(t)at(a) I a E A, f E Coo(IR) }. (18.44) 

Forb E A0, z 1---+ Flb(Z) is an entire function bounded as IFib(z)l :S llaz(h)ll :S 
llaiimz(h)ll. By (18.43) F1b is periodic with period i/3. Hence F1b is bounded and 
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thus constant by Liouville's theorem, which implies 

wr-;(at(b)) = wr-;(b) (18.45) 

for all t E R 
We assume that A is a simple C* -algebra, which means that the only two-sided 

*-ideals of A are either {0} or A itself. The KMS condition then ensures that for 
every a E A 

WfJ(a*a) = 0 implies a= 0. (18.46) 

To prove (18.46) we define N = {a E AI wr-;(a*a) = 0} with the goal of establish
ing that N is a two-sided *-ideal. Clearly, if WfJ (a* a) = 0 and b E A, then 

(18.47) 

by the Schwarz inequality. Hence AN c N. To show the converse one chooses 
b E A. By the KMS condition 

WfJ(b*a*ab) = WfJ((b*a*a)b) = WfJ(a-ifJ(b)b*a*a) = 0 (18.48) 

by the Schwarz inequality as before. Thus N A c Nand N is a two-sided *-ideal. 
Since A is simple, (18.46) follows. 

Next we need the analog of 72. (H) and of the Liouvillean, which is the content 
of the Gelfand-Naimark-Segal (GNS) construction. TheGNS Hilbert space HfJ is 
defined as the completion of A equipped with the scalar product 

(alb) = WfJ(a*b). (18.49) 

By the argument above (a Ia) = 0 implies a = 0, as it should. In our context Hr-; is 
a separable Hilbert space. We set s-2 11 = 1 and define the left representation of A 
through 

l(a)b = ab. (18.50) 

Thereby l(A) c B(HfJ)· In addition we define 

(18.51) 

on HtJ. Since (ble-it.Ca) = w(b*ata) = w(a-rb*a) = (eit.Cbla) and since 
(e-it.Cble-it.Ca) = w(at(b*a)) = (bla) by time-invariance of WfJ, e-it£ is a 

strongly continuous unitary group on HtJ. By Stone's theorem it has a self-adjoint 
generator, which by definition is the Liouvillean £. 

The initial state of interest is a local perturbation of the equilibrium state wr-;. It 
can be written as 

p(a) = wr-;(b*ab), bE A, wr-;(b*b) = 1. (18.52) 



18.3 Spectrum of the Liouvillean and relaxation 287 

In theGNS representation p corresponds to the state given by the vector b E HfJ· 

More generally, a perturbed state can be written as 

00 

p(a) = L PnWf-;(b~abn) (18.53) 
n=l 

with bn E A, w(b~bn) = 1, Pn 2:::0, 2:::~ 1 Pn = 1. States of the form (18.53) are 
called normal. A state not covered by this class would be a two-temperature state 
of the photon gas, for example, where the temperature to the far right differs from 
that to the far left. In fact, its long-time behavior would be rather different from 
that of the initial states discussed here. 

Let p be a normal state with time evolved Pr(a) = p(at(a)). By relaxation to 
equilibrium we mean 

lim Pr(a) = WfJ(a) 
t--+ 00 

(18.54) 

for all a EA. 

Proposition 18.1 (Relaxation to equilibrium as a spectral property). Suppose the 

Liouvillean £ has a purely absolutely continuous spectrum except for a nondegen

erate eigenvalue at 0. Then for all a E A 

lim Pt(a) = wr-; (a). 
t--+ ±oo 

(18.55) 

Proof Since WfJ is time invariant, the (unique) zero eigenvector of£ is QfJ· By as
sumption the spectral measure of ( 1jJ 1e-it£<p) has the point mass ( 1jJ I QfJ) (QfJ liP) at 
zero and is otherwise absolutely continuous. Therefore by the Riemann-Lebesgue 
lemma 

for all1j!, <p E Hr-;. 

In view of the structure of normal states it suffices to study 

WfJ(b*at(a)c) = Wf-;(a-if-J(C)b*at(a)) 

= (f(b )f(aifJ (c*)) QfJ lf(at (a)) QfJ) 

= (f(b)f(aif-! (c*))s-21-; le -it£ f(a)s-21-;). 

(18.56) 

(18.57) 

We assume that a, b, c E A0 , see (18.44). Then f(b)f(aif-J(c*))QfJ, f(a)s-2r-; E HtJ. 

Therefore from (18.56) 

lim WfJ(b*at(a)c) = (f(b)f(aif-J(c*))s-2r-;IS"2tJ)(QtJif(a)QfJ) 
t--+ 00 

= wr-;(a_ifJ(c)b*)wr-;(a) 

= WfJ(b*c)wfJ(a), (18.58) 
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which, upon inserting in (18.53), implies the limit (18.55). Note that the KMS 
condition is used twice, in the first identity of (18.57) and in the last identity of 
(18.58). D 

Proposition 18.1 suggests that relaxation to equilibrium can be established in 
two steps: (i) One has to find for the equilibrium state a sufficiently concrete repre
sentation of the algebra of local observables and of the Liouvillean. (ii) The spec
tral properties of the Liouvillean must be studied. For (i) the natural representation 
is the Araki-Woods representation of the free photon gas in infinite volume. It will 
be taken up in the following section. The coupled system is constructed through 
perturbation series. For the dynamics the time-dependent Dyson series is used and 
for the thermal state the thermal perturbation theory of section 18.2. Of course, the 
convergence of both series relies on the atom being modeled as an N -level system 
and on the explicit control of the free photon gas. Only through the convergence 
of the perturbation series are we assured of the correct representation spaces for 
the interacting system. Nevertheless, we skip this important point completely and 
jump to the spectral analysis of the interacting Liouvillean. 

18.4 The Araki-Woods representation of the free photon field 

For photons in a cavity A, the spectrum of allowed momenta is discrete, 
tr[ exp[- f3 Hf.All < oo, and the rules of thermal equilibrium for bounded quantum 
systems are applicable, through which the time-correlations of local observables 
in the form w~ (aat (b)) are defined. A macroscopic cavity with its surface 
kept at a uniform temperature is extremely well approximated by the infinite
volume limit A t JR3 . For the Hamiltonian (18.1) the infinite-volume limit of time
correlations can be established. Rather than going through the construction, we 
merely state the final answer, which will serve as a basis for the study of relaxa
tion. 

We work in the momentum space representation. Without risk of confusion we 
set k = (k, A) E IR3 x {1, 2} and L;_=l 2 J d3k = J dk, 8(k- k') = 8;_,;_,8(k

k'). The bosonic field operators are 

a(f) =I dkf(k)a(k) = L I d3kj(k, A)a(k, A), a* (f)= I dkf(k)a*(k) 
A=l,2 

(18.59) 

with f E So(IR3 x {1, 2}), the Schwartz space of functions that decrease rapidly 
and vanish at k = 0. Observe that our convention for the complex conjugation 
of the test function f differs from that in (13.59), (13.60). Let us also intro
duce the complex conjugation rf(k) = f(k)* = (J(k, 1)*, f(k, 2)*). Its second 
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quantization is the anti-unitary time-reversal operator T on :F with the properties 

(18.60) 

Note that (a* (f))*= a(rf) and (f, g)[J = J dk(rf)g. The boson fields satisfy the 
canonical commutation relations (CCR), 

[a* (f), a*(g)] = 0 = [a(f), a(g)], 

[a(rf), a*(g)] = (f, g)[]. 

Let P denote the polynomial *-algebra generated by 

On P the time evolution ar is defined through 

a~·(a*(k)) = eitw(k)a*(k), a~·(a(k)) = e-itw(k)a(k). 

(18.61) 

(18.62) 

(18.63) 

(18.64) 

The equilibrium state w~ of the photon field at inverse temperature f3 is a quasi-free 
state on P. Set 

1 
PfJ (k) = eflw(k) - 1. (18.65) 

Then the two-point function is given by 

(18.66) 

and all other moments by 

n m 

w~ ( fl a*( rfi) fl a(gj)) = Omn det{ (fi, PfJgi )[J}i.J=l ..... n. (18.67) 
i=l j=l 

wj1 satisfies the KMS condition as can be seen directly from 

wj1(a(k)a*(k')) = 8(k- k') + wj1(a*(k')a(k)) 

= eflw(k) Pr-;(k)8(k- k') 

= w~(a~ifJ(a*(k'))a(k)). (18.68) 

Through the GNS construction the data (P, ai, w~) determine a separable 

Hilbert space H~, a left representation f of P on H~, a vector Q~ E H~ cyclic 

for f(P), and a unitary one-parameter group e-itL:f, t E .!Pi., such that 

w~(a) = (Q~ lf(a)Q~) 
f(at(a)) = eit£f£(a)e-it£f, a E P. (18.69) 
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We follow Araki and Woods to construct, as for a bounded quantum system, an 
isomorphism Ir between H~ and :F @ :F. On :F @ :F we introduce the Bose fields 

(18.70) 

Note that a~ is an antilinear representation of the CCR. The isomorphism Ir is 
then defined through the following relations, 

f frr?.r.;=r2Q9r?., 

fr£(a(J))Ii 1 = ae(Jl + Prd) + a:(~J), 

frr(a(J))Ii 1 = a;(~rf) + ar(Jl + PtJif). 

As it should be, (18.72) is linear and (18.73) is antilinear in f. 

(18.71) 

(18.72) 

(18.73) 

Ir£(a~(J))Ii 1 and lrr(a~(f))Ii 1 satisfy the CCR and one only has to check 
that the two-point function is properly transported, 

(Q@ r21fr£(a*(f))£(a(g))Ii 1r?.@ Q) 

= (Q@ r?.lar(~f)a:(~g)Q@ Q) = (rf, PfJg)f) 

= w~ (a* (J)a(g)) = (Q~ ll(a*(J))l(a(g ))Q~) (18.74) 

and likewise for the right representation. We conclude that, indeed, IT : H~ --+ 
:F @ :F is an isometry. 

The Liouvillean is transported as Lf = Ir Lf I i 1• From the bounded systems 
one would expect that 

(18.75) 

Then indeed, as required, 

eitLtae(k)e-itLt = e-itco(k)ae(k), eitLtar(k)e-itLt = eitw(k)ar(k) (1 8.76) 

and 

similarly for the right representation. 

18.5 Atom in interaction with the photon gas 

The atomic Hamiltonian Hat has N, possibly degenerate, eigenvalues, c: 1 _:::: c:z _:::: 

· · · _:::: c: N, and the atomic Hilbert space is Hat = «:f. We fix a corresponding 
eigenbasis, HatCfJ j = c: j cp j, j = I, ... , N. The algebra of observables is the N x N 
complex matrices MN and it carries the thermal state w~t = z-le-/1Hat. As long 
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as there is no interaction we merely tensor the atom with the photon field. The 
algebra of observables is MN @ P, the thermal state is 

(18.78) 

and the dynamics is generated by a? = a;t Q9 ar As before, the GNS construction 
determines a separable Hilbert space 1-i~ with cyclic vector Q~ and a unitary time 

evolution e-itLo. With C denoting complex conjugation in the given basis of 1-iat. 
the map Io = Ic@ lr : 1-i~ ---+ 1-iat@ 1-iat@ :F@ :F = H13 is an isomorphism. In 

particular, Io!J~ = Q~ with 

N 

B~ = L e-/3£jCfJj Q9 CfJj Q9 Q Q9 Q. 

j=l 

The Liouvillean is mapped as 

(18.79) 

Io£ol0- 1 = Lo = Lat@ 1 + 1@ Lf, Lat =Hat@ 1- 1@ Hat· (18.80) 

The real task is to find out how the interaction is mapped to the Araki-Woods 
representation space. According to ( 18.1) one has 

Hint= Q · Erp = L I d3k cp(k)~Q · eJc(ia(k, A)- ia*(k, A)). (18.81) 
Jc=1,2 

It is more convenient to slightly generalize from (18.81) as 

Hint= I dk( G(k)@ a*(k) + G(k)*@ a(k) ), (18.82) 

where G : JR3 x {1, 2} ---+ MN as a matrix-valued function, with the memo that 
some specific features of the coupling in (18.81) will be used in the spectral ana
lysis below. 

If G E So(IR3 x {1, 2}, MN) as matrix-valued function, one has Hint E 

MN@ P. Thus the Liouvillean in theGNS space necessarily takes the form 

(18.83) 

and only the transformations (18.72), (18.73) have to be applied, resulting in 

Lint= loLintl0- 1 

=I dk{(J1 + P!oGe(k)- v'Pf, c;(k))at(k) 

+ (J1 + P!3G£(k)- v'Pf, Gr(k) )ac(k) 

+ (vfrif,G£(k)- j1 + P/3 Gr(k) )a;(k) 

+ (v'Pf,Gc(k)- j1 + P/3 c;(k) )ar(k)}. 

(18.84) 
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Here G~ = G~ Q91, G~ =I Q9 G~. G~ = IcG~I(; 1 • Extending the test function 
notation to matrix-valued test functions, Lint may be written more concisely as 

Lint= a;(J1 + PflGe- vlfJi,G;) + ae(J1 + PflGe- vlfJi,Gr) 

+a;(vlfJi,G£- J1 + PfJ Gr) + ar (vlfJi,Ge- J1 + PfJ c;). (18.85) 

With some effort we thus achieved our goal of writing the Liouvillean for the exci
tations away from equilibrium. Note that through PfJ the interaction is temperature
dependent and becomes singular as f3 ---+ oo, which only reflects the fact that the 
ground state does not fall into the scheme explained before. 

Two problems remain t<?...._be sorted out. First, LA = Lo + 'ALint must generate a 
unitary time evolution on Hfl· If 

J dk(w(k) + w(k)-3)11G(k)ll 2 < oo, (18.86) 

then the self-adjointness of LA follows from the Nelson commutator theorem. 
Note that for the physical case (18.81) the condition (18.86) translates to 
J d3kliPP(w2 + w-2) < oo, which is satisfied. 

Secondly,_!he equilibrium state ofthe interacting system must be represented by 
a vector in Hfl. The thermal perturbation theory of section 18.2 tells us that this 
new vector is formally given by 

Q.~ = (Zr-;)-l/2e-fJL£!2f2~ = (ZfJ)-112ef-!Lr!2Q.~, 

where, according to (18.33), (18.85) 

Le = Lo + 'ALint£, Lr = Lo- 'ALintr 

and 

(18.87) 

(18.88) 

Lint£= a;(JI + PtJGe) + ae(JI + PfJG£) + a;(v1fii,G1) + ar(vlfJi,Ge), 

Lintr = a1(v1fii, c;) + ae(vlfJi, Gr) + a;(j1 + Pfl Gr) + ar(J1 + PfJ c;). 
(18.89) 

(Zfl)- 112 normalizes the vector to one. It can be shown that Zfl < oo provided 

f dk(l + w- 1)11G(k)ll 2 < oo. (18.90) 

Therefore under the condition (18.86), Q~ E HtJ. 
By construction LAQ~ = 0. Thus LA has a zero eigenvector, which does not 

change under the dynamics and represents the state of global equilibrium. Accord
ing to Proposition 18.1, we have to make sure that Q~ is the only eigenvector 
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of L;, and that apart from the zero eigenvalue, the spectrum is purely absolutely 
continuous. 

18.6 Complex translations 

Lf has the full real line as spectrum. Its structure is more easily investigated by 
switching to spherical coordinat~ in momentum space and to the corresponding 
Bose field denoted here by b(w, k). We set 

~ 2 ~ 

(k, A.) = (w, k), dk = w dwdk, (18.91) 

~ 

where k = (k/lkl, A.). The right representation in Lf has negative excitation en-
ergies, which we associate with w < 0. Thus the Bose field b~(w, k) lives on 
JR X S2 X {1, 2} and is defined by 

b~(w, k) = {wa~(k) for w = lkl, 
wa~(k) for w = -lkl. 

From the definition of a~, a~ one confirms that b, b~ satisfy the CCR as 

[b(w, k), b(w', k')] = 0 = [b*(w, k), b*(w', k')] 

and 

[b(w, k), b*(w', kt)] = o(w- w')o(k- k'). 

In the new coordinates the Liouvillean becomes 

Lf = [ dwj dkwb*(w, k)b(w, k). 
}fit S2x(1,2] 

We rewrite the interaction. Let us define the matrix-valued functions 

~ { '" -'l'a, (k l for (J) = lkl, 
Fe w, k = 

( ) -( -w)-112G*(k) for (J) = -lkl, £ 

~ { w 112cG;(k)C for (J) = lkl, 
Fr (w, k) = 

-( -w)-112CGr (k)C for (J) = -lkl, 

Fjf!)(w, k) = (w(l - e-f!w)- 1) 112 Fe(w, k), 

Fp;>(w, k) = (- w(l - ef-!co)-1) 112 Fr(W, k). 

(18.92) 

(18.93) 

(18.94) 

(18.95) 

(18.96) 

(18.97) 

(18.98) 
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Then 

(18.99) 

with 

1m 1 ~ (/3) ~ * ~ (/3) ~ * ~ 
LintU = dw dk(Fu (w, k)b (w, k) + Fu (w, k) b(w, k)). 

JR?. s2 x {1,2} 

(18.100) 

With (18.95) and the definitions (18.99), (18.1 00) one concludes 

L;,. = Lat + Lf + ALint = Lo + ALint· (18.101) 

Since Lf has the real line for its continuous spectrum, it is natural to try to move 
it through a downward translation. The generator T of translations along thew-axis 
is given by 

(18.102) 

Let e E C Then 

(18.103) 

with the number operator 

Nf = J dw J lkb*(w, k)b(w, k). (18.104) 

We set e = W, 7J > 0. Then L0 (e) has lR- i7J as continuous spectrum and the 
isolated eigenvalues {c:i - c: J I i, j = I, ... , N} on the real axis. 

To be able to apply the theory of complex deformations e c--+ e-ieT Linteii!T = 

Linr(e) has to be analytic in a strih around the real axis. Lint(e) is obtained br shift
ing Fu(fJ) (w, k) in (18.100) to FuU1 (w + e, k). Thus the issue is whether FuU1 (w, k) 

extends to an analytic function near the real axis. For the physical coupling 

G(k, A)= -iQ · e;,. rwficp(k). (18.105) 

By assumption cp is radial and has compact support in position space. Thus (A. is an 
analytic function on C Therefore Fe, Fr of (18.96), (18.97) are analytic in w. The 
prefactors in (18.98) have simple poles at ±2nif3n, n = 1, 2, .... We conclude 
that Fu(/3) (w,k) are analytic in win the strip S2rr; fJ = {e I lime I < 2rr I {3}. L;,. (e) = 

Lo(e) + ALint(e) is jointly analytic in A and e E S2rr/f3· To derive this result we 
used the assumption that the photons have zero mass. Otherwise Lf would have a 
spectral gap and complex translations could not be implemented. We also assumed 
that there is a ,jW prefactor in the physical coupling. Both assumptions could be 
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Figure 18.1: Spectrum of the complex translated Liouvillean in the case of a 
two-level atom for zero and nonzero coupling. 
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1/ (3 

avoided at the expense of a considerably more involved analysis. Note that the 
width of the strip of analyticity decreases as 1 I f3 which indicates that our estimates 
worsen as zero temperature is approached. 

We are now in a position to use the considerations from section 17.3 and choose 
e = it?- with o- close to the optimal value 2n I {3. For zero coupling the eigenvalues 
of Lo(e) are EiJ = Ei- EJ, i, j = 1, ... , N , see figure 18.1. The zero eigenvalue 
is at least N -fold degenerate. As the coupling is turned on, A f. 0, the eig~nvalues 
EiJ (A) move. From the general theory, there is a dense set of vectors, E C 'HfJ, such 
that for 1/f, cp E E the resolvent (o/l(z- L)..)- 1cp) can be continued analytically 
from the upper complex plane to {z I Imz > -0" }. In this domain (o/ l(z- L)..)- 1cp) 
is analytic except for poles at z = EiJ (A). Thus EiJ (A) are the resonance poles of 
the resolvent. These assertions remain valid up to the first A when a resonance hits 
the line {z = - W }. Thereby the theory is restricted up to some maximal coupling 
AQ, IAI < AQ. 

In our convention Im Eij (A) < 0 corresponds to exponential decay. Thus, since 
expectation values remain bounded in t, the resonances cannot move in the upper 
half complex plane. From the thermal perturbation theory we know that at least 
one eigenvalue remains at 0. Somewhat arbitrarily we label this eigenvalue by 
.su(A). To prove relaxation to equilibrium, according to Proposition 18.1, it must 
be ensured that all other resonances acquire a strictly negative imaginary part for 
A f. 0. At this point, second-order perturbation theory comes in handy. We require 
that the dissipative part Kq in (17 .32) has a nondegenerate eigenvalue 0. Then 
Im EiJ (A) = O(A 2) and, possibly further reducing Ao, the second order controls 
the higher orders, which implies Im Eij < 0 for IAI < Ao, except for £ II (A). 
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Theorem 18.2 (Absolute continuity of the spectrum of the Liouvillean). If Kq 
has a simple eigenvalue 0 and if lA I < Aofor sufficiently small Ao, then LA has 0 as 
a simple eigenvalue. The remainder of the spectrum is absolutely continuous and 
covers the real line. 

From Theorem I8.2 in conjunction with Proposition I8.I we conclude that an 
N -level atom coupled to the photon field relaxes to thermal equilibrium in the 
long-time limit. 

For lA I < Ao, the discrete part of LA(e) is cut out through the contour integral 

(18.I06) 

where y is a contour in the complex plane which encircles all eigenvalues Eij (A) 
and stays away from the half-space {z I Imz ::: -7J }. ~A remains unchanged under 
small shifts of 7J. By the same token one can construct two maps wA±E---+ MN 
such that 

(18.I07) 

for t 2::: 0. Equation (18.107) defines the level shift operator ~A· Its eigenval
ues are Eij(A), i, j = 1, ... , N. Thus (18.107) establishes exponentially fast 
relaxation to equilibrium for a large class of initial states and of observa
bles. 

Our scheme leaves somewhat open how rapidly specific expectation values de
cay. For example one could prepare the atom in the n-th level and ask how the 
probability of survival decays as t ---+ oo. If Pn denotes the projection on the 
n-th eigenstate CfJn, then the observable under consideration is Pn Q9 I. As initial 
state one could take the uncorrelated state Pn Q9 w~. A physically more realis

tic choice would be the state w(n)(a) = Wf3(Pn Q9 IaPn Q9 I)fwf3(Pn Q9 I) with 
Wf3 the equilibrium state of the coupled system. The issue is to compute the 
decay of w(n)(at(Pn Q9 1)). Equation (18.107) suggests that w(n)(at(Pn Q9 1))

WfJ(Pn Q9 1) decays exponentially to zero. To verify this one has to find the rep
resentation vectors and determine their analytic continuation in e. In our example 
the observables do not depend on the field and therefore the representation vectors 
are in E, which ensures exponential decay. 

In specific systems, say only two levels, also the order A 4 could be computed. 
Up to errors from O(e-7Jt) the line shape is still a Lorentzian, whose location and 
width are given with a precision superior to the weak coupling theory. 
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18.7 Comparison with the weak coupling theory 

The weak coupling theory of section 17.2 predicts the decay of atomic expectations 
in the form 

tr[Ae -iLot (Bp11 B*)], (18.108) 

which is written somewhat differently than before to ease comparison. The trace 
is over eN, A= A* is some atomic observable, P/3 = z-le-f1Hat, Bp13B* is 
the initial density matrix of the atom normalized as tr[p f3 B * B] = 1, and Lo is 
the Davies generator of (17.68). We assume {H, Qa, a= 1, 2, 3}' = C1 and the 
Wiener condition l(w) > 0 for all w. Then (18.108) converges exponentially fast 
to the thermal equilibrium expectation of A, tr[pr.; A], independently of the choice 
of B. 

In the full microscopic theory the expectation in spirit closest to (18.1 08) is 
given by 

(18.109) 

where, as before, Wf3 is the thermal state of the coupled system and a~ is the time 
evolution with Liouvillean (18.83). From the thermal perturbation theory one con
cludes that there exists a local operator c such that Wf3(B* Q9 laB Q9 I)= w13(ca) 

for all a E MN Q9 A. Thus 

(18.110) 

Since B Q9 1, A Q9 1 are atomic observables, in the GNS representation c and 
A Q9 1 become vectors in£. Therefore the long-time behavior of the expectation 
in (18.109) is determined by the resonances EijCA.). If lA. I < A.o, then Im£ij(A) < 0 
except for ij = II when £11 (A.) = 0. Thus also the expectation value in (18.109) 
decays exponentially fast to its equilibrium value w13(A Q9 1). 

Optimally, one would like to compare (18.1 08) and (18.1 09) for small A.. The 
form (18.1 08) is a sum of N 2 exponentials, decaying except for one constant term. 
Likewise, (18.1 09) is a sum of N 2 exponentials plus an error which has an even 
faster exponential decay independent of A. and can be neglected for small A.. Most 
naturally, amplitudes and decay rates are compared. The amplitudes differ by or
der A.2 , since from the thermal perturbation theory wr.;(A Q9 1) = tr[pf3A] + O(A.2) 

using that w1 (E) = 0. 
The decay rates for (18.108) are the eigenvalues of Lo. The eigenvalues of 

Lat =[Hat,·] are Ei- Ej = Eij, i, j =I, ... , N. Since Lat and iKq commute, Lo 
is block diagonal with respect to the eigenvalues of Lat· The eigenvalues £B of Lo 
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are then necessarily of the form 

D 2 q 
E:.. = Ct'j' +A £ .. 
lj lj 

(18.111) 

with c0 the eigenvalues of iKq and they cluster at the eigenvalues of Lat· iKq 
decomposes as 

(18.112) 

with H!:;. given by (17.69). [H!:;., Hat] = 0 by construction. H!:;. shifts the atomic 
levels and lifts possible degeneracies of Hat· K~ and Lat also commute. By detailed 

balance K~ is symmetric with respect to the weighted inner product tr[pr-; A* B]. 

Thus the eigenvalues of K~ are negative, real, and with a nondegenerate eigenvalue 

at 0. In general, [H!:;., ·] and iK~ do not commute. If, however, the eigenvalues of 

Hat are nondegenerate, then they do and the eigenvalues of [H!:;., ·] and iK~ can 
simply be added. 

As explained the decay rates for (18.109) are determined by the resonances 
E:ij(A.). As a basic result one obtains that 

(18.113) 

where the naive error O(A. 4) is reduced because of possible crossings of eigenval
ues. In the weak coupling theory there is some freedom in choosing the generator. 
For example, K and Kq cannot be distinguished, see (17.28), (17.31). The non
perturbative theory of resonances identifies Kq as the optimal small-A. limit. Any 
other version, like K, would have eigenvalues in general different from Kq, and its 
eigenvalues could thus not satisfy the bound (18.113). 

Notes and references 

Sections 18.1-18.6 

These sections are based on the first part of Bach, Frohlich and Sigal (2000). Jaksic 
and Pillet (1995, 1996a, 1996b, 1997) establish the relaxation to thermal equilib
rium with the help of complex translations of the Liouvillean. Their method can 
be extended to the case when the small system is coupled to several reservoirs at 
distinct temperatures (Jaksic and Pillet 2002). By more sophisticated techniques 
one can control the analytic continuation of the resolvent uniformly in f3 (Bach, 
Frohlich and Sigal 2000). Derezinski and Jaksic (2003a) use an infinitesimal ver
sion based on Mourre-type estimates. Such a technique has been used before in the 
simplification of the spin-boson Hamiltonian (Hubner and Spohn 1995b ). Positive 
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commutator techniques are employed by Merkli (2001). Derezinski, Jaksic and 
Pillet (2003) systematically develop the W* -algebraic approach. 

The standard reference on the algebraic formulation of quantum statistical me
chanics is Bratteli and Robinson (1987, 1997); see also Sewell (1986) for a more 
gentle introduction. The representation theory for the free Bose gas is due to Araki 
and Woods (1963). A very readable introduction to free quantum gases in the frame 
of the algebraic approach is Dubin ( 197 4 ). 

Within the thermal context also the translation-invariant model (15.15) is of con
siderable interest. The initial state can be taken to be factorized as p 0 w~, with 
p some density matrix of the electron. For small coupling, the electron has a rate 
proportional to 'A 2 to be scattered by the photons. The collisions are approximately 
independent and result in a finite energy and momentum transfer. Between consec
utive collisions the electron travels freely. Such a situation is well approximated 
by a classical linear Boltzmann equation. Only the jump rates know about the 
quantum nature of the electron. We refer to Spohn (1978), Erdos and Yau (1998, 
2000), and Erdos (2002). Transport of independent electrons by scattering either 
through phonons or through impurities is discussed in Fujita (1966) and Vollhardt 
and WOlfte (1980). 

Section 18.7 

Jaksic and Pillet (1997) and Derezinski and Jaksic (2003a) introduce the level shift 
operator ~A· Derezinski and Jaksic (2003b) discuss in more detail the relation 
to the weak coupling theory. If one defines L D A = (p fJ) -I 12 L 'b ( (p fJ) 112 A), then 

they establish that II ~A - LD II = O('A 3). 



19 

Behavior at very large and very small distances 

For the classical Abraham model, and its relativistic generalization, we had to ac
cept a phenomenological charge distribution. The physically appealing idea to let 
this charge distribution shrink to a point charge failed because the charged particle 
acquires a mass which grows beyond any limit. There is simply no bare parameter 
in the model which would balance the divergence in a meaningful way. Neverthe
less the situation is much less dramatic than it sounds. When probed over distances 
that are large compared to the size of the charge distribution and correspondingly 
long times, only global properties of the charge distribution, like total charge and 
total electrostatic energy, are needed, thereby greatly reducing the dependence on 
the choice of the form factor. In the quantized version one has to investigate the 
problem anew, which requires the study ofthe properties of the Pauli-Fierz Hamil
tonian at very small distances. The form factor (f; cuts off the interaction with the 
Maxwell field at large wave numbers. The point-charge limit thus means removing 
this ultraviolet cutoff. If it could be done, we would be in the very satisfactory posi
tion of having the empirical masses and empirical charges of the quantum particles 
as the only model parameters. Of course, the validity of the theory would not ex
tend beyond what we have discussed already. In particular, relativistic corrections 
are not properly accounted for. 

As we will see, the ultraviolet behavior of the Pauli-Fierz model is not so well 
understood. If the Maxwell field is replaced by a scalar Bose field, the ultraviolet 
divergencies simplify considerably and have been studied by E. Nelson in detail. 
To have a sort of blueprint we therefore include a section on the scalar field model. 

Since the photons have zero mass, the Coulomb potential decreases as 
-e2 I 4rr lx 1. In a quantized field theory one has to check whether states which 
have such a slow decay for the average fields still lie in Fock space, the Hilbert 
space which we used throughout to develop our theory. This issue leads to a study 
of the infrared behavior of the Pauli-Fierz Hamiltonian. Note that for this purpose 
the dispersion relation w(k) = lkl is crucial, whereas an ultraviolet cutoff in the 

300 
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interaction can be accommodated without harm. On the other hand, for the point

charge limit we may assign the photons a small mass. The infrared and ultraviolet 
behavior appear as disjoint properties. 

19.1 Infrared photons 

A classical charge traveling at constant velocity v carries with it the electric field 
E~1 and the magnetic field B~1 , see Eq. ( 4.5), where we omitted the boldface and 
added the superscript "cl" to distinguish from the quantized sister. One would ex

pect that the quantized theory reproduces these fields on the average, at least very 
far away from the charge. Thus we are led to consider states tfr in Fock space such 
that 

(tfr, Erp(x)tfr)F = E~j_ (x), (19.1) 

Under these constraints the average number of photons is minimal for the coherent 
state tfr~oh having averages (19.1) and the minimum is given by 

e2 f (tfr~oh, Nft/f~oh):F = 2 d3klq?'(k)l2(k2- (v. k)2)-2 

x w(l + w-2 (v · k) 2)(v · Qj_v). (19.2) 

Ifq?'(O) = (2rr)-312 and w(k) = lkl, then the integrand diverges as lkl-3 for small 
k which makes the integral in (19.2) logarithmically infrared divergent. There is 
no vector in Fock space which satisfies (19.1), unless v = 0. 

A natural consequence is to take tfr~oh as the basic object and to build the Fock 
space :Fv out of finite photon excitations away from it. If in :Fv one searches for a 
vector reproducing the classical fields at velocity u on the average, then the con
straint (19.1) becomes 

(tfr, Erp(x)tfr)Fv = E~j_ (x)- E~j_ (x), (tfr, Brp(x)tfr)Fv = B~1 (x)- B~1 (x). 
(19.3) 

The minimal photon number consistent with (19.3) is 

¢v(k) from (4.6), which again diverges logarithmically for small k, unless u = 

v. The family of coherent states { tfr~oh II vI < 1} leads to mutually inequivalent 
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representations of the canonical commutation relations. Mathematically it is bad 
news, since there is no single Hilbert space which can accommodate states corre
sponding to the electron freely traveling at arbitrary uniform velocity. 

To probe the subject further let us consider the scattering of photons where, to 
simplify matters, it is assumed that the motion ofthe quantized particle is replaced 
by a classical current. To figure out the Hamiltonian we return to (13.47) and regard 
j (x, t) as a given current. In the Coulomb gauge Eq. (13.47) reads 

3rA = -E, atE= -~A- j, (19.5) 

where it is understood that (19.5) refers to the transverse components only. 
The longitudinal piece of E is determined through the Poisson equation. Equa
tions (19.5) are the Heisenberg equations of motion for the time-dependent 
Hamiltonian 

H(t) = Hf- J d3xj(x, t)A(x) (19.6) 

acting on F. Since H (t) is quadratic in a, a*, its unitary propagator can be com
puted explicitly. Fort :=:: 0 one obtains, with time ordering denoted by T, 

t 

U(t, 0) = Texp[- i J ds H(s) J 
0 

t 

= e-iHft exp [i J ds L J d3k(2w)- 112 (e;,_ · J(k, s)*e-iwsa(k, A) 

O A=l,2 

t t 

~ . 1 f f +e;,_ · j(k, s)e1uJsa*(k, A))+ lilm ds ds' G(s- s') 

0 0 

X L J d3k(2w)- 1(e;,_ · J(k, s))(e;,_ · }(k, s'))*eiuJ(s-s')] 
A=l,2 

with G(s) = 1 for s :=:: 0, G(s) = -1 for s < 0. 

(19.7) 

Let us first examine the case where the charge travels at constant velocity, i.e. 
j (x, t) = ecp(x- vt)v, I vi < 1, and the initial 1/f = Q. Classically, the current 
would build up the charge soliton; compare with ( 4.31 ), ( 4.32). There is no ac
companying radiation. The quantum wave function 1/f(t) = U(t, O)Q is a coherent 
state of the Maxwell field. This implies that Nf has a Poisson distribution with 
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average 

(1/f(t), Nfl/f(t))F 

= e2 L I d3kl~fw- 1 (e;_ · v)2(w- k · v)-2(1- cos((w- v · k)t)) 
A=l,2 

303 

~ v2 1og t (19.8) 

for large t. On the other hand, ( 1/f (t), Hfl/f (t)) F stays bounded because of the extra 
factor of w from the definition of the energy. Also, in every bounded region in posi
tion space and in any region in momentum space avoiding the origin, the number of 
photons is Poisson-distributed with a finite mean. The photons in (19.8) are bound 
to the charge, i.e. virtual in the usual parlance. For the Pauli-Pierz Hamiltonian 
virtual photons can be probed only indirectly, e.g. through the effective dynamics 
discussed in chapter 16. As long as the energy remains finite no qualitative changes 
are expected, as confirmed by the fact that the g-factor and the effective mass are 
infrared convergent at least to order e2. 

As a second example let us study the generation of photons through accelerated 
motion. We prescribe the trajectory qt with velocity Vt of the classical charge, and 
thus the current j (x, t) = ecp (x - qt) Vt. The scattering process is captured most 
conveniently through the S-matrix defined by 

S = lim U(t, O)*e2iHftU(O, -t). 
t-+CXJ 

(19.9) 

From ( 19. 7) we conclude 

CXJ 

S = exp [- i I dt L I d3k(2w)- 112e;,_ · vt(ecp*e-i(wt-k·q,)a(k, A) 
_ 00 A=l,2 

CXJ CXJ 

+ ecpei(wt-k·q,)a*(k, A))- ~ilm I ds I ds'8(s- s') 

-CXJ -CXJ 

X L I d3ke21cpf(2w)-l(e;,_. Vs)(e;_. Vs')ei(cos-cos'-k·q,+k·q,'1 

A=l,2 

(19.10) 

Note that for constant velocity, Vt = v, lvl < 1, the time-integration yields the 8-
function 8(w- k · v) and therefore the S-matrix is trivial, S = 1. For the sake of 
an example let us assume that there are no incoming photons. Then the scattering 
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state of interest is SQ, which is a coherent state with average number of photons 

(SQ, NfSQ):F = e2 L J d3klqJJ 2 (2w)- 11 J dt(eA. · Vt)ei(wt-k·qr)l 2 . (19.11) 
A.=1,2 

In standard scattering Vt ---+ V± fort ---+ ±oo. If v+ = v_, from the previous ar
gument one concludes that (SQ, NfSQ):F < oo. However if v+ #- v_, then from 
the time-integration a factor lk 1-2 appears which together with the factor 1 I w 

makes the integral in (19 .11) logarithmically divergent at small k. As before, 
(SQ, HfSQ):F < oo. Also the number of photons is finite in any region of the 
form {kllkl > 8} with 8 > 0. 

If an electron is scattered by, say, a short-range electrostatic potential then in the 
collision process a large number of infrared photons is generated. Strictly speak
ing, there is no channel with elastic scattering. Since the total energy of scattered 
photons is bounded, the collision cross-section is slightly modified but remains fi
nite. These infrared photons are however somewhat elusive objects. For example, 
for the state SQ the photon density in position space decays as lx 1-3 for large lx I, 
which means that there is a small probability for the photons to have been created 
very far away from the source. A real detector necessarily makes a cutoff in the 
energy range and in position, thus necessarily misses the infrared part. 

19.2 Energy renormalization in Nelson's scalar field model 

On the classical level we consider a scalar wave field and couple it to a mechanical 
particle in such a way that the interaction is linear in the field, local, and translation 
invariant. This fixes the Hamiltonian function to be of the form 

(19.12) 

Here q, p are the position and momentum of the particle with bare mass m and 
;r (x) is the momentum field canonically conjugate to the scalar wave field ¢ (x). 
The wave speed c is set equal to one. e is the coupling strength, and mph 2::: 0 is the 
mass of the bosons. The equations of motion read 

a'f¢(x, t) = (6.- m~h)cp(x, t)- ecp(x- qt), 

mqt = -e'V'cp'P(qt). 

(19.13) 

(19.14) 

The solutions to (19.13) and (19.14) bear a fair qualitative similarity to the 
Abraham model, in particular, our discussion of the energy-momentum relation, 
the radiation reaction, and the center manifold could be repeated almost word for 
word. 
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The quantization of (19.12) is straightforward. rr(x) and cp(x) become a scalar 
Bose field with commutation relations 

[cp(x), rr(x')] = io(x- x'), (19.15) 

setting n = 1. It is convenient to introduce the scalar creation and annihilation 
operators a*(k), a(k) in momentum space. Then 

cp(x) = J d3k-1-(2n)-312 (eik·xa(k) + e-ik-xa*(k) ), (19.16) 
.j2W 

n(x) = J d3kfo/2(2n)-312 (- ieik·xa(k) + ie-iba*(k)) (19.17) 

with w(k) = (k2 + m;h) 112. The quantized Hamiltonian reads 

1 2 
H = 2m p + Hf + ec/Jrp(x), (19.18) 

where the momentum operator p = -iY'x is canonically conjugate to the position 
x and 

c/Jrp(x) = J d3kcp(k) vk(eik-xa(k) +e-ik·xa*(k)) (19.19) 

with cp assumed to be real. H acts on L2 (l~3 ) Q9 :F; we call it the Nelson 

Hamiltonian. If J d3kl$1 2 (w-2 + 1) < oo, then the interaction ec/Jrp(x) is infinites
imally bounded with respect to 2~ p2 + Hf and, by the Kato-Rellich theorem, H 
is self-adjoint with domain D((p2 j2m) + Hf). 

Since H is invariant under translations, the total momentum 

P = p + Pf, Pf = J d3kka*(k)a(k), (19.20) 

is conserved. As in section 15.2, H can be unitarily transformed to fixed total 
momentum with the result 

1 2 
H(P) = -(P- Pf) + Hf + ec/Jrp 

2m 
(19.21) 

and c/Jrp = c/Jrp (0). The ground state energy of (19 .21) defines the energy
momentum relation E(P). If one sets 

1 2 
H(O) = -Pf + Hf + ec/Jrp, 

2m 

then the effective mass is given by 

m 2 1 
meff = 1 - 3m (1/fg, pf. H(O)- E(O) Pfo/g):F, 

where 1/fg is the ground state of H(O), i.e. H(O)o/g = E(O)o/g· 

(19.22) 

(19.23) 
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With this somewhat rapid introduction the problem under consideration is 
whether the Nelson Hamiltonian (19.18) remains well-defined in the point-charge 
limit cp (x) --+ 8 (x). Following the usual convention to denote the ultraviolet cutoff 
in momentum space by A, the point-charge limit means scaling the form factor as 

Cf?A(x) = A 3cp(Ax), respectively (j}A(k) = (j}(k/A) (19.24) 

with A --+ oo. 
The interaction rp'P (x) is bounded relative to Hf only if J d3 k l(iJe I oi < oo. At 

A = oo this condition is violated indicating that the limit A --+ oo is singular. To 
find out how singular we compute the ground state energy to second order in e2 , 

regarding in (19 .22) erp'P as a perturbation. Then 

(19.25) 

which diverges as -log A for A --+ oo. Physically only energy differences count 
and one may want to subtract E(O) from H(O). After all, in the definition of Hf 

an infinite zero-point energy was already subtracted. There are two caveats to this. 
First, E(O) from (19.25) is only a second-order perturbation and a priori one does 
not know which energy to subtract. More importantly, it must be ensured that phys
ical properties are not distorted as A --+ oo. In the classical model the effective 
mass is the relevant indicator and we adopt the same criterion here. From (19.23) 
we compute, compare with (15.36), 

_!!!____ = 1- _3_e2 J d3kl(j;A (k)l 2 - 1 k2 (w + -1-k2)-
3 + O(e4), (19.26) 

meff 3m 2w 2m 

which stays finite as A --+ oo, at least to second order, fostering our hope that 
H (0) - E (0) is a well-defined Hamiltonian as A --+ oo. 

The Nelson model has the simplifying feature that the energy renormalization 
can be made explicit through a unitary transformation originally introduced by 
E. P. Gross. It is constructive to work out the case of N charges coupled to the 
Bose field. The Hamiltonian ( 19 .18) then generalizes to 

N 1 N 

HN = 2..:-.PJ+Hf+ Leir/J'P(xj). 
. I 2mJ . I 
j= j= 

(19.27) 

Here the j -th particle has position x J, momentum p J = - i \7 x , mass m J, and 
.I 

charge e J. We define 

(19.28) 
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with /3j = (w + 2~ k 2)- 1. e-T is the Gross transformation. Since J d3kf3J jw < 
J 

oo provided mph > 0, e-T is unitary and well defined in H even at A = oo. Let us 
set 

(19.29) 

() We here use on purpose the same notation as for the transverse vector potential, 
since through the Gross transformation Arpj (x) appears in the Hamiltonian in the 
same way as the transverse vector potential does for the Pauli-Pierz model. How
ever Arpj (x) is longitudinal and [p, Arpj (x)] #- 0. It is better behaved at small x 

because the factor f3 j gains one extra power in decay at large k. Only for section 
19.2, Arp is defined through (19.29). () 

e-T acts as 

(19.30) 

When normally ordered, the Gross-transformed Hamiltonian becomes 

(19.31) 

Note that Arpj(Xj) does not commute with Pi· The last term in (19.31) is the en
ergy renormalization, granted for a moment that the remainder is a well-defined 
Hamiltonian with energy bounded from below. The energy renonnalization co
incides with E (0) as computed from second-order perturbation theory, compare 
with (19.25), and diverges as - N log A. 
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The next to last term in (19.31) is the instantaneous interaction between the 
particles which dominates their dynamics at small velocities; see section 20.2. 
Let us set mph = 0 and A = oo. Then the interaction potential for particles i and 
j is 

(19.32) 

as a function of their relative distance. Vij(x) ~ -eiej/4nlxl for large lxl, and 
Vij(x) ~ eieJ log lxl for smalllxl. Even in the point-charge limit the interaction 
deviates from a strict Coulomb law at distances on the scale of the Compton wave
length for particles i, j. This confirms our previous findings that it is natural to 
regard the Compton wavelength as an effective size of the charged particles in the 
quantized theory. Even more importantly, the sign of the interaction is -ei e J. In 
the scalar theory particles of equal charge attract, those of opposite charge repel 
each other. Thus particles of opposite charge tend to segregate and a big cluster of 
one sign would be separated from a big cluster of the opposite sign. There could 
not be the delicate balance between nuclei (ions) and electrons which is respon
sible for the formation of atoms and molecules. If the photons were spinless, the 
world would have no similarity to the one we know. 

We are left with the first piece of (19.31). Since it is additive in the particles, for 
notational simplicity we return to N = 1 and rewrite it as 

lim eT(H + e2 J d3ki9JAI 2 - 1-f3)e-T 
A-oo 2w 

1 2 e _ + 
= -p - -(p ·A (x) +A (x) · p) 

2m m 
e2 

+ -(A-(x)2 + A+(x)2 + 2A+(x) · A-(x)) + Hf 
2m 

= Hren· 

Here, using 9JA (0) = (2rr)-312, we have 

(19.33) 

(19.34) 

Hren is the physical Hamiltonian in the point-charge limit. The splitting into A
and A+ results from normal ordering. The A-field is longitudinal but otherwise 
plays a role very similar to the vector potential in the Pauli-Pierz model. 
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In the following it will be convenient to rewrite Hren in dimensionless form. 
Through the canonical transformation (13.88) one obtains 

Hren = mHren 

= m(~p2 - e(p · A-(x) + A+(x) · p) 

+ ~e2 (A-(x)2 + A+(x)2 + 2A+(x) · A-(x)) + Hf) 

= m(Ho +Hind (19.35) 

with w = (k2 + (mph/m)2) 112, f3 = (w + ~k2)- 1 , and A -(x) as in (19.34). We 
repeat the relative form bound estimates from section 13.3 with the result 

(19.36) 

If 

3e2 (2rr)-3 J d3kk2{3 2w-2 < 1, (19.37) 

then Hint is Ho-form bounded with a bound less than 1, which implies that Hren is 
a self-adjoint operator bounded from below. 

The total momentum transforms as eT (p + Pf)e-T = p + Pf = P and 

[Hren, P] = 0, 

as can also be checked directly. For fixed total momentum Hren becomes 

Hren(P) = ~(P- Pf)2 - e((P- Pf) ·A-+ A+· (P- Pf)) 
2 

(19.38) 

1 + -e2 (A +·A++ A-· A-+ 2A +·A-)+ Hf (19.39) 
2 

as acting on :F with the shorthand A= A(O). 

The expression in (19.37) is finite also for mph = 0. Thus Hren and Hren ( P) are 
well-defined Hamiltonians even for massless bosons with infrared and ultraviolet 
cutoffs removed. However, e-T is unitarily implemented only for mph > 0. At 
mph = 0, Hand Hren are not unitarily equivalent. As can be seen from (19.30) the 
Gross-transformed ¢-field has a vacuum expectation which decays as -e / 4rr lx I 
for large x and thus singles out the P = 0 representation; compare with our dis
cussion in section 19.1. Hren (0) has a ground state in Fock space, whereas Hren ( P), 

P #- 0, has no ground state in Fock space, just as is the case for the Pauli-Pierz 
model. 

Hren is the result of a mathematical limit procedure and it is not automatically 
guaranteed that the limit Hamiltonian inherits the physically desired properties. 
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For a modest check we compute the self-energy, the effective mass, and the bind

ing energy for hydrogen-like atoms in low-order perturbation theory. While these 
quantities are well defined, it is not known whether they can be expanded around 

e = 0. Only if the bosons had the strictly positive mass mph > 0, Hren(P) for small 
I PI and Hren - Z e2 Vcoul have a gap between their ground state and the continuous 
spectrum, which implies a convergent Taylor expansion ate = 0. 

( i) Self-energy 

We expand Eren (0) in powers of e2. Hren (0) is split as 

1 2 
Hren(O) = Ho + eH1 + -e H2 

2 
(19.40) 

with Ho = ~ Pl + Hf, H1 = Pf · A- + A+ · Pf, H2 = A- · A- + A+ · A+ + 
2A + · A-. The unperturbed ground state is Q with energy 0. The expansion is 
written as 

1 1 1 
E (0) = -e2 E(2) + -e4 E(4) + -e6 E(6) + 0(e8). 

ren 2 4! 6! 
(19.41) 

£(2) = 0, since H1 Q = 0. The next order is 

1 I I 
-e4 E(4 ) = -e4 -(Q A-· A--A+· A+Q)F 
4! 2 ' Ho 

4 6/ 3 I 3 1 2 1 2 2 1 = -e (2rr)- d k1 d k2-f31-f32 (ki · k2) -
2cv 1 2cv2 E 12 

(19.42) 

With Wi = cv(ki), f3i = (cv(ki) + ~kfr 1 , i = 1, 2, and £12 = CV1 + CV2 + ~(k1 + 
k2) 2. 

For the discussion below we still need the sixth order, which is given by 

6 I (6) 6 1 ( _ _ I _ 1 + 1 + + e-E =e- -(Q,A ·A -Pf·A -A ·Pf-A ·A !J).r 
6! 4 Ho Ho Ho 

1 + 1 1 + + - (Q, A-· A--A · Pf-Pf ·A--A ·A !J).r 
Ho Ho Ho 

I I ) + (Q, A-· A--A+· A--A+· A+Q)F . 
Ho Ho 

(19.43) 

The integrals appearing in the expressions for £(4) and £(6) are convergent. 

( ii) Effective mass 

From the definition (15.23) and (19.39) one concludes 

m 2 _ 1 - = 1- -(1/fg, (Pf + eA) · (Hren(O)- Eren(O)) (Pf + eA)l/fg)F (19.44) 
meff 3 
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with Hren(O)o/g = Eren(O)o/g· m/meff is even in e and, provided mph> 0, analytic 
for small e. Expanding in (19.44) to order e2 by the scheme already explained, one 
finds 

meff = 1 + ~e2(2rr)-3 I d3k(k2f33 j2w) + O(e4) 
m 3 

(19.45) 

which agrees with (19.26) in the limit A --+ oo. For mph= 0, 

meti = m(1 + 6~ 2 e2 + O(e4)) (19.46) 

is obtained. Since the mass renormalization is finite, the relation (19.46) allows us 
in principle to obtain the bare mass m from an acceleration experiment at small 
velocities which measures meff according to our discussion in section 16.6. 

(iii) Binding energy 

We consider two charges, a nucleus of charge Ze of infinite mass nailed down 
at the origin and a "meson" of charge e. According to (19.31) the renormalized 
Hamiltonian for A --+ oo reads then 

Ze2 
H = Hren- --

4rrlxl 
(19.47) 

in units of m. For sufficiently small e, e #- 0, H has a ground state. Denoting its 
ground state energy by E, by definition the (positive) binding energy is 

Ebin = m(Eren(O)- E), (19.48) 

since mEren(O) is the energy of the meson far away from the nucleus. Ebin is even 
in e and proportional to the bare mass m. Physically the natural units for Ebin are 
meffC2 and we write 

(19.49) 

which is regarded as a definition of hbin· 

We expand E in powers of e2. To better follow the subtraction of the self-energy 
we first transform to the total momentum representation. Then the split-up for H 
lS 

(19.50) 
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The atomic Hamiltonian is Hat = ~ p2 - Ze2 I 4n lx I with ground state en
ergy Eat= -~(Ze214rr) 2 and ground state tfrat(X) = (rrr~)- 1 12e-lxl/rB, rB = 
4rr I Ze2 . The unperturbed ground state is tfrat ® Q with energy Eat· The perturba
tion expansion up to order e6 is given as in (19.42), (19.43) with the corresponding 
substitutions for Ho, H1. Let us first consider those terms not containing either 
p ·A- or A+· p. The inverse operator (Hat+ Hf + ~Pl- p · Pf)- 1 is expanded 
in p · Pf. Since (tfrat. p 2 tfrat) £2 = -2Eat. only the leading term contributes and all 
the self-energy terms cancel including order e6. The only remaining contribution is 

with E1 = {3- 1• Expanding in p · k and in Hat- Eat yields 

Ebin =-Eat+ ~e2 (2rr)-3 J d3k-1-f32k2 (tfrat, (EJ)-l p 2 tfrat) £2 + O(e8) 
3 2cv 

= -Eat( 1 + ~e2 (2rr)- 3 J d3k(k2 {3 3 12cv)) + O(e8). (19.52) 

Note that in (19.51) the Taylor coefficient of order e 10 is infrared divergent, which 
implies that Ebin cannot be analytic ate = 0. 

As a final step, we carry out the mass renormalization to order e2 as required 
according to (19.49). The corrections O(e6) cancel and 

(19.53) 

hbin acquires a radiative correction at least as small as O(e8), which confirms 
the conventional picture. For small coupling the predictions of the one-particle 
theory are reliable. The coupling to the field generates to leading order the attrac
tive Coulomb potential. Further effects of the interaction with the scalar field are 
small. Having no compelling incentive, the strong coupling regime of Hren is ap
parently little explored. It is conceivable that for large e the kinetic energy of the 
meson cannot balance the singular Coulomb attraction. If so, H of (19.50) would 
no longer be bounded from below. 

19.3 Ultraviolet limit, energy and mass renormalization 

The ultraviolet limit of the Pauli-Fierz model is a poorly understood subject. 
All we can do is to explain the few hints available, which in their optimistic 
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interpretation indicate that the ultraviolet cutoff may be removed at the expense 
of a renormalization in energy and mass. 

As we learned from the Nelson model, the indicative quantities are the self
energy, the effective mass, and the binding energy of the electron. To study these 
properties in the point-charge ( = ultraviolet) limit, it is convenient to switch to 
relativistic units as explained at the end of section 13.4. To repeat, for constant 
total momentum p one has 

(19.54) 

where 

Hf = L J d3klkla*(k, A)a(k, A), Pf = L J d3kka*(k, A)a(k, A), 
A=l.2 A=l.2 

A 10 = L J d3k(jl(k/ AAc) ~(a(k, A)+ a*(k, A)). (19.55) 
A=l,2 v21kl 

Here a = e2 I 4rr ne is the fine-structure constant written in Heaviside-Lorentz 
units, Ac = nj me the Compton wavelength, and A the large k cutoff, A ---+ oo 
eventually. Energies are measured in units of me2, momenta in units of me. In the 
case of the hydrogen atom with the nucleus pinned down at the origin, in relativis
tic units the Hamiltonian reads 

1 . ~ 2 aZ 
H =-(-IV' - v4rraA (x)) + Hf- -.-

2 x 10 lxl ' (19.56) 

where we ignored the smearing of the Coulomb potential by cp; compare with 
(13.89). 

19.3.1 Self-energy 

Since E (p) has its minimum at p = 0, the self-energy is given by 

(19.57) 

and the first task is to get some idea of how EA diverges as A ---+ oo. Of course, 
the self-energy has no observable consequences. Still, it is a sort of theoretical 
test which must be passed before more difficult problems can be tackled. We 
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normal-order H (0) as 

I I 
H(O) = lPl + Hf + e(Pf ·A;+ A~· Pf) + 2e2 (A~ ·A~+ A;· A; 

+ 2A~ ·A;)+ 4na I d3klcp(k/ AAc)l 2 - 1-
21kl 

I 2 
= Ho + eH1 + -e Hz +Eo, 

2 
(19.58) 

where Arp is the transverse vector potential split as Arp = A~ +A;, A~ = (A;)*. 

Eo is the lowest order of the self-energy and diverges as A 2 . The next order is 
computed as in the Gross-transformed Nelson Hamiltonian with the result 

21 1 + + EA=Eo-(4na) -(Q A-·A--A ·A Q).F 2 ' rp rp Ho rp rp 

= Eo- (4rra)2 I d3k1 I d3kzl$(ki I AAc) 12 1$(kz/ AAc)l 2 ( (21kii)(21kzl) 

I 2 -I ~ ~ 2 1 
x 4(1kii + lkzl + 2(k1 + kz) ) ) (I + (ki · kz) ) + O(a- ). (19.59) 

The order a 2 diverges also as A 2 with a negative prefactor, however. Thus in con
trast to the Nelson model, mere perturbation theory does not tell of the self-energy. 
If the electron spin were included, there are cancellations between Eo and the spin 
contribution which yields a divergence proportional to A. 

A second attempt is to guess a variational wave function. Variation over coher
ent states leads to the trivial minimizer 1/f = Q, which reflects that for p = 0 the 
transverse vector field vanishes classically. A more ingenious approach is due to 
Lieb and Loss. They give up the zero total momentum restriction and consider 

1 ~ 2 
H = -(- iY'x- v4rraArp(x)) + Hf. 

2 
(19.60) 

The minimum of H equals the self-energy EA; see section 15.2. The variational 
wave function is taken to be of the Pekar form 1/f = ¢ 0 <I>, with <I> E :F and ¢ (x) 
a real function. Therefore 

EA :S (1/f, H1/f)H 

=~I d3xl\7¢(x)l 2 + 2na I d3x¢(x)2 (<1>, Arp(x)2 <1>).F + (<1>, Hf<I>).F, 

(19.6I) 

since the cross-term has average zero. For <I> we choose the ground state of 

H¢ = 2na I d3x¢(x)2 Arp(x)2 + Hf. (19.62) 
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H¢ is a quadratic Hamiltonian and thus its ground state energy is given by 

Here the trace is over L 2 (l~3 , JR3), Q _1_ is the projection onto transverse vector 
fields, cp is regarded as a multiplication operator in momentum space, and -,6. + 
4rra¢(x)2 is diagonal with respect to the vector indices. Combining (19.61) and 
(19.63) we obtain 

(19.64) 

as a nonlinear variational bound for EA. 

The difference of square roots is unpleasant. To simplify we use that 
tr[ J A + B - JA - JB] ::: 0. Then 

E¢ ::: J7W tr[(Qj_cpcp2cpQ_1_)112] ::: J7W tr[(cp¢2(jJ)1f2], (19.65) 

since the square root is increasing. In spirit, the bound (19.65) equals tr[cp¢] = 
(2rr)312cp(0)4J(O). To actually achieve it, one sets ¢(x) = ¢K(x) = K 312¢s(Kx) 

with scaling parameter K ~ A 617, such that 1Js has support in a ball of radius 1 

and ll¢sll = l.LetuschoosecpA(k) = x(lki/AA.c).x(lkl) = (2rr)-312 forlkl::: 1, 
X = 0 for lkl > 1. If K < AAc, then cp2A;j;KcpA = ;j;KcpA. Thus 

tr[ (cpA c/Jkcp A) 112 ] = tr[ (cpA c/JKcp2A c/JKcpA) 112 ] :S tr[ (cp2A c/JKcp2A c/JKcp2A) 112 ] 

= tr[cp2A¢K] = (2rr)-112(2/3rr 3)(AAc) 3 J d3x¢K(x). (19.66) 

Hence 

~ 

One can choose ¢s such that ¢s (0) > 0. Then 

(19.68) 

with CJ, c2 > 0. Optimizing with respect to K yields, for AA.c sufficiently large, 

( 12/7 2 Eself :S c+ AA.c) me . (19.69) 

The guess is that 12/7 is the correct power. The best available lower bound is of 
order (AA.c)312mc2. 



316 Behavior at very large and very small distances 

19.3.2 Effective mass 

We tum to the effective mass, which is defined by 

(19.70) 

where o/g is the ground state of H(O), H(O)o/g = E(O)o/g. setting p = 0 in 
(19.54). meff!m is an even function of e. The issue of interest is its cutoff de
pendence for fixed e. Clearly the right-hand side depends only on AAc, compare 
with (19.55). This allows us to write 

meti - = hmas(fi,Ajmc), 
m 

which defines hmas· hmas depends on a with hmas 2::: 1 and hmas(O) = 1. 
If hmas has a finite limit as A --+ oo, then 

(19.71) 

(19.72) 

where m;ff is the effective mass in the model with removed ultraviolet cutoff. This 
situation is realized for the Nelson Hamiltonian (19.18). On the other hand, if 
asymptotically hmas increases linearly in A, i.e. hmas(A) = bA, b > 0, for large A, 
then 

m;ff = lim mAhmas(nA/mAc) = oo 
A---+oo 

(19.73) 

for any choice of m = m A as long as m A > 0, which is required by a stable theory. 
Such a linear dependence we found for the classical Abraham model, where in the 
point-charge limit the electron becomes infinitely heavy with no counterbalancing 
mechanism. 

The most intriguing case, presumably realized in the Pauli-Pierz model, is 

for large A with 0 < y < I and y possibly depending on a. Then 

meff = bo(c-I n,A)Y m l-y. 

Setting now 

we obtain 

(19.74) 

(19.75) 

(19.76) 

(19.77) 
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Thus, as A ---+ oo simultaneously we have to let m ---+ 0 in accordance with 
(19.76), recall that y < L The effective mass m;ff stays finite in this limit. Such a 
limiting procedure is the standard mass renonnalization. bo is dimensionless and 
defined through ( I9. 70). b 1 has the dimension of mass and is a free scaling parame
ter adjustable to the effective mass m;ff as supplied from sources outside oftheory, 
e.g. from an experiment. Note that, in contrast to a finite mass renormalization, the 
bare mass m has disappeared from the scene. 

At present the only way of deciding whether y < 1 is a sort of consistency check 
by expanding meff in powers of a. We use the normal-ordered Ho from (19.5S) and 
follow the scheme outlined in the case of Nelson's model. 

The order a is straightforward, since the approximations 1/f g = Q and E (0) = 0 
suffice, giving the result 

The conventional sharp ultraviolet cutoff is made through the choice cp(k) = 
(2rr)-312 for lkl ::: A and cp(k) = 0 for lkl > A. Inserting in (19.78) we obtain 

- = 1 - - dk 1 + -k + 0(a2) 
m 4a loAAc ( 1 )-1 

meff 3rr o 2 

=I- Sa log (I+ ~AA.c) + O(a2). 
3rr 2 

(I9.79) 

To order a, meti diverges as log A in contrast to the classical Abraham model 
which has a divergence proportional to A. Equation (19.79) suggests that 

meti = (AA.c)8a/3rr 
m 

(19.SO) 

for small a and large A. If so, y = Sa j3n. If the electron spin is included, then 
there is an extra contribution from the fluctuating magnetic field, see Eq. (15.6S), 
and Saj3n is increased to 16aj3n. 

The order a 2 requires more effort. The normalized ground state is needed up to 
order e3 and is given by 

( 2 I I + + 3 I _ + I + +) o/ a = I - e --A · A + e - ( Pf · A + A · Pf)-A · A Q. 
b 2 Ho 'P 'P Ho 'P 'P Ho 'P 'P 

(19.S1) 
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Expanding (H(O)- E(0))- 1 results in six terms proportional to a 2. The details 
are lengthy and not particularly illuminating. We obtain 

with the shorthand 

1 2 
Ei = lki I+ -ki' i = 1, 2, 

2 

1 2 ~ ~ 2 
£12 = lk11 + lk21 + 2(k1 +k2)' s = (k1-k2). 

(19.83) 

The conventional wisdom is to take the lowest-order approximation seriously 
and to make the ansatz 

Expanding in a yields 

meff = (AAc)((8aj3rr)+ba2). 

m 
(19.84) 

meff 8a 1 ( 8a )2 2 3 -=I+ -log(AAc) +- -log(AAc) + ba log(AAc) + O(a· ). 
m 3n 2 3rr 

(19.85) 

To be consistent, the (log(AAc))2 term must have the correct prefactor, whereas 
the log(AAc) term identifies the as yet unknown coefficient b. Indeed, inserting 
in (19.82) the sharp cutoff cp results in terms which diverge as log(AAc) and 
(log(AAc) )2 . Only the second term inside the curly brackets diverges as (AAc) 112 . 

This would suggest hmas (A) = .jj. for large A and y = ~ independent of a, at least 
for small a. Whether this is an artifact of our method remains to be understood. 

To have an intuitive picture why in the ultraviolet limit the Pauli-Fierz model 
can behave so differently from its classical relative, it is useful to tum to the func
tional integral (14.51) with the Maxwell field already integrated out. First note that 
the self-energy is automatically cancelled by the normalizing partition function. 
Also, since we study the ultraviolet limit, to be definite we may set t = I, V = 0, 
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and pin the Brownian motion at both ends, q_l = 0 = q1. m --+ 0 means that in 
(14.51) the underlying Wiener measure has local fluctuations diverging as 11 Jfii. 
They fight the singular behavior of W (qs - qs1, s - s') near the diagonal {s = s'}. 
If successfully, the two effects balance each other such that the limit measure lo
cally looks like Brownian motion with effective diffusivity 1 I m:w 

19.3.3 Binding energy 

With E~oul denoting the ground state energy of H from (19.56), the binding energy 
is defined by 

(19.86) 

Since m --+ 0, it is mandatory to take the binding energy in units of meff, and we 
write 

m ( hbin (AA.c) ) 
Ebin = meff--hbin (AA.c) = meff . 

meti hmas (AA.c) 
(19.87) 

The scaling function hbin depends on a, hbin ::::_ 0. For the binding energy to remain 
finite (and nonzero) in the limit A --+ oo, assuming already the validity of (19.74), 
it is required that 

hbin(A.) = b~A.Y 1 and y = y', (19.88) 

for large A.. If (19.88) holds, then 

(19.89) 

I 

in the limit A --+ oo. The ratio b0 1bo is a consequence of the theory. To have 
agreement with experiments, on top of (19.88) one should have 

1 rv 2 b0 1bo = (aZ) 12, (19.90) 

at least for small a. 
As before, a minimal control is provided by perturbation theory. The atomic 

Hamiltonian is 

Hat=-~~- aZIIxl (19.91) 

with eigenvalues E~t and eigenfunctions tfrn, Hattfrn = E~ttfrn, n = 1, 2, ... , 
ground state o/1 = tfrat· E~t = Eat= -(aZ)2 12 is the atomic ground state energy. 
The computation proceeds in perfect analogy with the Nelson model. Replacing m 
by men(m I meff) to order a removes the large k divergence of the matrix element 
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for the perturbed energy. In the limit A --+ oo the net result is 

2[ at 2 -1 I 3 1 ( 1 2)-1 
Ebin = -meffC E 1 + 4rra3(2rr) - d k 2cv cv + 2k 

x (Po/ at, (Hat - E~t) (Hat - E~t + cv + ~k2) - 1 · Po/ at) L2 J + h.o., 

(19.92) 

where h.o. stands for higher orders in a. Of course, the hope is that through mass 
renormalization the cancellation is so precise that h.o. really means smaller than 
the leading correction. 

To compute the matrix element in (19.92) we switch to atomic units through 
the replacements x -v-+ x j a, p -v-+ pa, which implies H -v-+ a 2 H. Let us denote by 
M(dA.) the spectral measure of z-\p2 ) 112 1fat in atomic units. It is normalized as 
z-2 (1/fat, p 21fat)L2 = 1 and has a support starting at E~t- E~t = Z 2 (lj2)(3/4). 
With this notation (19.92) becomes 

Ebin = -meffC2 E~t[I - _!_a3 r M(dA.)A. 
3rr J3z2;s 

X rXJ dk(2 + k)-l (a2A + k + ~k2)- 1 ]. 
lo 2 

(19.93) 

Because of the coupling to the radiation field the binding energy is reduced. The 
shift is, however, rather small, a 3 11og a I in relative and a 5 11og a I in absolute order. 
Evaluating the integral in (19.93) yields a shift which is only a few percent away 
from the experimental value of 8173 MHz, which should be compared with the 
ionization energy of 3 x 109 MHz for the unperturbed hydrogen atom. 

In addition the upper bound 

y' ::: 6/7 (19.94) 

is available. While the bound could be far from truth, the crucial point is its being 
less than one. The proof of (19.94) is based on the operator bound 

1 
-~::: -KI- iY'x + A(x)l (19.95) 

which holds for any vector field A. The numerical coefficient is K = ;r Z /2 + 
2.22z213 + 1.04. Setting T = (- i V' x - ~ Arp (x) )2 /2 we obtain for H of 
(19.56) with Z = I 

(19.96) 

Let now 1/f be the ground state of H. Then by Jensen's inequality and with the 
abbreviation f(x) = x-Ka~ 

E~oul::: (1/f, f(T + Hf)o/)::: f((o/, (T + Hf)o/)). (19.97) 
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f attains its minimum at Xmin = ~ (Ka ) 2 . If E A 2::: Xmin, which is the case for suf
ficiently large A, then 

(19.98) 

Therefore by (19.69) 

(19.99) 

and 

(19.100) 

for large A. 

19.3.4 Lamb shift and line width 

As explained in chapter 17, through the coupling to the quantized radiation field the 
energy levels of the hydrogen atom are shifted and acquire a finite lifetime which is 
measured by the inverse width of the spectral line. The expressions (17.35), (17.36) 
are derived for an N -level atom in the dipole approximation. For the removal of 
the ultraviolet cutoff, retardation effects are of importance and the translation
invariant coupling must be used. Thus the arguments of chapter 17 have to be 
adapted to the Hamiltonian (19.56), which could be easily done. An alternative, 
for our purposes equivalent, route is to use perturbation theory for the level shift. 
The lifetime then follows from a Kramers-Kronig relation, since both quantities 
are linked to the same spectral measure; compare with Eq. (17.34). 

We follow this second route. The computation is basically identical to that lead
ing to (19.92) and uses the virial theorem (tfrn, p 2 tfrn) = -2E~t. If 8En denotes 
the level shift relative to E A, the net result reads 

2 [ at !d3k ~ k ) 2 1 (, 1 k2\ -1 at 8En = metiC En + 4na - l<p( / A'Ac I 2W ~ + 2 } ('llxtfrn, (Hat- En) 

X (Hat- E~t + W + ~k~ -I· Ql_(k)'llxtfrn)L2] + h.o. (19.101) 

For large k the matrix element decays as lkl-2 , which makes the integral (19.101) 
ultraviolet convergent. The Lamb shift refers to the frequency of emitted radiation 
and is therefore an energy difference. In fact, experimentally the splitting between 
the 2S 1/2 and 2P1;2 levels is 1058 MHz, in comparison to the unperturbed ground 
state energy of 3 x 109 MHz, and is mostly due to the coupling to the quantized 
radiation field. Evaluating numerically the intergrals in (19.1 01) at A = oo and 
taking into account the coupling of the electron to the quantized magnetic field, 
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a few percent effect only, yields a Lamb shift which is 2.5% lower than the true 
value. 

19.3.5 g-factor of the electron 

The gyromagnetic ratio was discussed in section 16.6 through investigating the 
motion of an electron in a homogeneous weak magnetic field. Here we point out 
that the g-factor can also be obtained from the Zeeman splitting of the ground state 
energy at total momentum P = 0, which is the basis ofthe high-precision Penning 
trap experiment. For a constant external magnetic field B, in relativistic units, the 
Hamiltonian reads 

( 1 2 
Hs = m 2(a · (p- eA 10 (x))) + Hf 

e e e2 ) --a· B- -((p-eA (x)) x x) · B + -(x x B)2 . 
2m2 2m2 10 8m2 

(19.102) 

Let 1/f be an approximate ground state for H = Hs=O· Then the linear Zeeman 
splitting, /1£, is given through first-order perturbation theory in Bas 

11E = ~ B · (- ~(1/f, ao/hi- ~(1/f, (p- eA10 (x)) x xo/hi). (19.103) 

Next we write 

(H- E(O) )xo/ = [H- E(O), x]o/ = -i(p- eA10 (x))o/. (19.104) 

In this form the total momentum can be fixed at P = 0. Then H becomes 

(19.105) 

with 1/f the ground state o/g of H(O). Hence 

We orient the B-field along the z-axis and take as ground state the one with 
total angular momentum pointing parallel to B; compare with section 16.6. Since 
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(rr3 + 2Jf3 + 2Sf3)o/g+ = o/g+• the g-factor is thus given by 

1 ( 2 )-1 lg = 1- 3(1/fg+, (Pf + eA'P)(H(O)- E(0))- 1 (Pf + eA'P)o/g+}r·)®:F 

X (1 - 2(1/fg+, (Jf3 + Sf3)o/g+)(')®:F 

- 2Im(o/g+, (Pf + eA'P)z(H(O)- E(0))- 1 (Pf + eA<p)l o/g+)iC2®F ), 

(19.107) 

in agreement with (19.104). 
We recall that, to second order and with no cutoffs, the g-factor is computed to 

(19.108) 

which is 0.2% away from the true value. For fixed, small e both numerator and 
denominator in ( 19.1 07) are expected to tend to 0 as A --+ oo in such a way that 
their ratio is close to 1. 

Notes and references 

Section 19.1 

The infrared behavior of radiative corrections to scattering was first studied by 
Bloch and Nordsieck (1937), Nordsieck (1937), and Pauli and Fierz (1938). Within 
the framework of the massless scalar Nelson model of section 19.2, Frohlich 
(1973) constructs the one-particle shell and investigates the scattering theory. 
Further progress in this direction is Pizzo (2000). In his thesis Chen (2001) estab
lishes the infrared limit of the energy-momentum relation. In contrast to the Pauli
Pierz model the scalar Nelson model is infrared divergent also at p = 0. The Gross 
transformation (19.28) switches to the representation corresponding to p = 0. In 
fact it implements the shift </J(x)- eV<pcoul(x). We refer to Arai (2001), L6rinczi, 
Minlos and Spohn (2002b) and Hirakawa, Hiroshima and Spohn (2002). The quan
tized Maxwell field coupled to a classical current is a standard textbook example 
(Kibble 1968; Thirring 1958). The representation theory for coherent states is de
veloped by Klauder, McKenna and Woods (1966) with follow-ups within the alge
braic framework (Emch 1972; Dubin 1974; Bratteli and Robinson 1987, 1997). 

Section 19.2 

The scalar field model is studied in solid state physics and includes a large body of 
experimental work. It describes an electron coupled to the optical mode of a polar 
crystal and is known as a polaron (Landau 1933; Frohlich 1954). In the standard 
approximation the dispersion of the field is w(k) = wo and the coupling function 
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cp(k) = lkl- 1• The ground state energy is well approximated by the variational 
approach of Feynman (1955). Upper and lower bounds are proved by Lieb and 
Yamazaki (1958). A large coupling theory is available (Pekar 1954 ). A rigorous 
proof of the Pekar limit can be found in Donsker and Varadhan (1983) and Lieb and 
Thomas (1997). The effective mass is studied in Spohn (1987) who also provides 
an extensive list of references. The Pekar limit of the effective mass still remains 
an open problem. Useful reviews are Devreese and Peeters (1984) and Gerlach and 
Lowen (1991). Gross (1976) develops systematic corrections to the large coupling 
theory. Nelson (1964a) studies the scalar model through functional integration; see 
chapter 14. Nelson (1964b) uses the transformation of Gross (1962), itself inspired 
by Lee, Low and Pines (1953), to control the removal of the ultraviolet cutoff. 
Nelson's analysis is pushed much further in Frohlich (1973, 1974). The discussion 
of chapter 14 transcribes word for word to the Nelson model with the welcome 
simplification that stochastic Ito integrals become Riemann integrals. We refer to 
L6rinczi and Min los (2001 ), L6rinczi et al. (2002a), and Betz et al. (2002). For suf
ficiently small coupling the existence of a ground state for H of (19.18) is proved 
in Hirakawa et al. (2002). On the one-particle level, H = J p2 + m2 - e2 j4n lx I 
is not bounded from below for large e. Since for the Nelson model E(p) :::::: IPI for 
large p, the same instability could be present for the Hamiltonian (19.18). Hainzl, 
Hirakawa and Spohn (2003) provide upper and lower bounds on Ebin which estab
lish (19.52) with an error O(e7 1og e). 

Section 19.3 

The estimates of the ground state energy are taken from Lieb and Loss (2000, 
2002), who study in addition the case of many particles and semirelativistic mod
els. The scaling (19.80) follows also from a perturbative one-loop renormalization 
(Chen 1996; Bugliaro et al. 1996). The effective mass to order a 2 seems to be 
novel. Details of the perturbative computation leading to (19.82) can be found 
in Hiroshima and Spohn (2003). Frohlich argues that the effective mass depends 
nonanalytically on a and therefore the interchange of limits, a ---+ 0 and A ---+ oo, 
leads to erroneous results. In a more proper treatment one should successively 
eliminate the interaction at high momenta. The resulting renormalization group 
flow equations yield a plausible outcome and, indeed, reflect the nonanalytic de
pendence in a. Moniz and Sharp (1974, 1977) and Grotch et al. (1982) claim 
cutoff dependences of the effective mass which are in contradiction to our find
ings. The bound for y' is from Lieb and Loss (2002), which is based on the lower 
operator bound (19.95) for the Coulomb potential as proved in Lieb, Loss and 
Siedentop (1996). The famous calculation of the Lamb shift by Bethe (1947) is 
based on the dipole approximation and has a divergence as log A. As pointed out 
immediately (Kroll and Lamb 1949), the shift becomes ultraviolet convergent in a 
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relativistic theory which necessarily includes positrons. The role of retardation is 
mentioned by Kroll (1965). An accurate calculation is Au and Feinberg (1974), ig
noring spin however. It is included in Grotch (1981), from which our numbers are 
taken. Quantum electrodynamic effects are most dominant for the 1 S Lamb shift, 
which experimentally is determined with higher accuracy than the 2S1;2 - 2P1;2 
splitting. We refer to Weitz et al. (1994 ). For small coupling quantitative estimates 
on the binding energy are available. One constructs upper and lower bounds with 
the leading terms given by formal perturbation theory, which is not directly ap
plicable because of the missing spectral gap; see Catto and Hainzl (2004), Chen, 
Voulgater and Vulgater (2003), Hainzl (2002, 2003), Hainzl, Seiringer (2002), and 
Hainzl, Voulgater, Vulgater (2003). At present, one obstacle is that no correspond
ing result for the effective mass is available. Since physically energies are cali
brated through metrc2, such a bound is mandatory. The g-factor as based on the 
shift in energy is computed in Grotch and Kazes (1977) to second order in e. The 
derivation ofthe nonperturbative expression (19.1 07) seems to be new. 



20 

Many charges, stability of matter 

In the low-energy sector, to an excellent approximation, the world consists of pho
tons, electrons, and nuclei. To simplify the forthcoming discussion, let us consider 
only one species of nuclei with charge eZ, Z = 1, 2, .... In fact, we also assume 
that the nuclei are infinitely heavy and located at positions q, ... , r K E JR3. This 
is hardly realistic, but not of central importance for the stability issues studied here. 
We also ignore nuclear spins. To include them would require yet another layer of 
considerations. With these assumptions we have an arbitrary number of photons, 
N electrons, and K nuclei governed by the Hamiltonian 

N 1 2 
H = L -(CJj · (pj- eA'P(Xj)) + Hf + V<pcoul, 

J=l 2m 
(20.1) 

compare with (13.39). CJj are the Pauli spin matrices for the j-th electron. Since 
electrons are fermions, the corresponding Hilbert space is 

(20.2) 

with Pa denoting the projection onto the subspace of antisymmetric wave func
tions. V<pcoul is the smeared Coulomb potential, cf. (13.17), which in the case con
sidered here is given through 

V<pcou!(X], ... , XN) = e2 I d3klcp(k)l 2 1k1-2 ( L eik·(x;-x;) 

l~i<j~N 

N K 
-Z L L eik·(x;-r;) + z2 L eik·(r;-r;)). (20.3) 

i=l j=l l~i<j~K 

One of the most basic facts about nature, which the Hamiltonian (20.1) should 
better explain, is the apparent stability of ordinary matter over extremely long pe
riods of time. It has become customary to divide the issue roughly into 
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(i) atomic stability, 
(ii) energy stability (or H-stability), 

(iii) thermodynamic stability. 

327 

An atom is the special case of (20.1) with K = 1 (hence q = 0) and N, Z 
arbitrary. Atomic stability means that the ground state for H looks like what we 
know from real atoms in nature. In particular, provided that N < Z + 1, or per
haps N ::S Z + 1 admitting a negatively charged ion, H has a ground state eigen
vector with an exponentially localized electronic density. Also the ultraviolet cutoff 
should not have to be fine-tuned. Our understanding of the stability of atoms and 
molecules within nonrelativistic QED has advanced spectacularly over the past 
few years. An overview is provided in section 20.1. 

Energy stability and thermodynamic stability refer to the property that matter at 
the human scale is (volume) extensive: Adding two buckets of water of 10 liters 
each merely results in 20 liters of water. Since now many molecules are involved, 
(20.1) is to be considered for large N with N ~ K Z, Z ::S 1 00. For an energy 
stable system, the volume of the combined system in its ground state is at least 
as large as the sum of the volumes of the subsystems. It is more convenient to 
re-express this property in energetic terms. If E (N; K, q, ... , r K) denotes the 
ground state energy of H in (20.1), then for an H-stable system 

E (N; K, q, ... , r K) :::: -co (N + K) (20.4) 

with suitable co :::: 0 independent ofthe location of the nuclei. In fact, such a bound 
obviously holds, since 

H :=:: Vcpcoul :::: -~( J d3klq?'(k)l 2 1kl-2)(e2 N + e 2Z 2 K). (20.5) 

While correct, (20.5) teaches us little about the physics involved, since the bound 
is cutoff-dependent and is not of the order of one Rydberg, as expected. 

The condition (20.4) overlooks the fact that even when the electrons are stripped 
off to infinity they still carry a self-energy. Denoting as before the self-energy of a 
single electron by Eself, the sharper stability condition is 

E(N; K, r1, ... , rK)- NEself :::: -c1 (N + K) (20.6) 

with some suitable constant q independent of the location ofthe nuclei. Hopefully 
q is of order of a Rydberg and less sensitive to the cutoff than co. Energy stability, 
as far as aspects of the quantized radiation field are involved, is discussed in section 
20.3. 

As the name indicates, thermodynamic stability means that the thermodynamic 
potentials are volume extensive. In particular, the thermodynamic pressure, i.e. 
the force per unit area on the confining container, is in essence size independent. 
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For proper statistical mechanics also the nuclei should have a finite mass. In our 
context a natural model would be to assume charge neutrality, i.e. N = K Z, and 
that the nuclei form a regular crystal lattice. Then one aspect of thermodynamic 
stability is a ground state energy proportional to the number of particles, which 
requires (20.6) to be augmented by an upper bound linear in N + K. We refer to 
the notes at the end of the chapter for further details. 

No surprise, energy and thermodynamic stability are best understood in the case 
when the interaction with the radiation field is neglected. This raises the question: 
In what sense is the standard N -body Coulomb Hamiltonian a good approximation 
to (20.1)? In the classical context we discussed this problem rather exhaustively in 
section 11.2. Quantum mechanics adds a layer of difficulty, as will be explained in 
section 20.2. 

20.1 Stability of atoms and molecules 

The number of electrons, N, is regarded as fixed and the goal is to understand 
under what conditions, in their lowest-energy state, they are all bound to the nuclei. 
For this purpose the interaction between nuclei can be dropped. We also ignore 
the smearing of the Coulomb potential. On the other hand, we want to allow a 
variation in the nucleon charge, i.e. the j-th nucleus is located at ri and has charge 
e Z J, Z J > 0, j = 1, ... , K. With these modifications, the Hamiltonian reads 

(20.7) 

The form factor ensures a smooth cutoff at large k, but qi(O) = (2n)-312 as it 
should. The bottom ofthe spectrum for Hv (N) is 

Ev (N) = infrr(Hv (N)) = inf (1/f, Hv (N)o/)H. 
1/1,111/riiH=l 

(20.8) 

We will have to compare with free electrons whose Hamiltonian is 

(20.9) 
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Its lowest energy is denoted by E 0 (N). It is unlikely that the effective interaction 
induced by the photon cloud overrules the combined Coulomb repulsion and Fermi 
exclusion. Thus E 0 ( N) = N E 0 (1) is expected, but will not be assumed here. 

The general strategy is to introduce a suitable notion of the ionization energy 
Eion(N). Then the binding energy is defined by 

(20.10) 

If Ebin(N) > 0, the energy interval6. = [Ev (N), Eion(N)) is nonempty and states 
with an energy distribution supported by 6. should be well localized near the nu
clei. Amongst them there will be the stable ground state. 

It seems clear how to proceed. If one electron is moved to infinity it has en
ergy E 0 (1) and the corresponding lowest-energy state of Hv (N) has the energy 
Ev (N- 1) + E 0 (1). Of course it could be energetically more favorable to move 
two electrons to infinity, etc. Thus 

(20.11) 

with the convention Ev (0) = 0. Note that if the interaction with the photon field 
is turned off, formally setting (jJ = 0, then E 0 (N) = 0 and (20.11) agrees with the 
standard definition of the ionization energy for the Coulomb Hamiltonian. 

There is a more direct way of moving electrons to infinity. As in chapter 16, 
we regard tfr(x) as a C2N ® F-valued wave function, x = (xi, ... ,XN ). We define 
PR as the projection on the subspace of wave functions satisfying tfr (x) = 0 for 
lx I < R. Then the alternative definition is 

Eion(N) = lim infa(PRHV (N)PR). 
R---+oo 

(20.12) 

As proved by Griesemer (2002) the definitions (20.11) and (20.12) of the ioniza
tion energy agree in the context of the Pauli-Pierz Hamiltonian. Note that with 
(20.12) it is obvious that Ebin :::: 0. Also, if Hv (N) admits surplus electrons, nec
essarily Ebin = 0. 

Let us denote byE;,.= E;,.(Hv (N)) the spectral resolution of Hv (N), i.e. E;,. 
is the projection corresponding to the energy interval ( -oo, A.]. 

Theorem 20.1 (Exponential localization). Let Ebin(N) > 0 and let us choose 

A, f3 such that A+ (/32 /2m)< Eion(N), Ev (N) :SA, f3 > 0. If E;,.tjf = tjf, then 

(20.13) 

The proof is due to Griesemer (2004). In fact, the proof exploits only properties 
of the Laplacian. As in chapter 16, we regard H = L 2 (IRn, Hf) = L 2 (IRn, dn x) ® 
Hf with some Hilbert space Hf of "internal degrees of freedom". The operator 
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H with domain D (H) is self-adjoint on H. Let f E C 00 (IRn, IR) with f and \7 f 
bounded. The crucial assumption concerns the double commutator 

[[H, f], f] = -21\7 !12 (20.14) 

with f regarded as a multiplication operator. Note that (20.14) holds in the case 
:F = CC and H =-~.But (20.14) holds also for H = Hv (N) setting n = 3N. As 
before the ionization threshold for H is 

Eion = lim inf C5(PRH PR). 
R--+oo 

(20.15) 

Proposition 20.2 Let H satisfy (20.14) and let A+ {3 2 < Eion. f3 > 0. Then 

(20.16) 

Let us return to the existence of a ground state for Hv (N). If Ebin > 0, the 
exponential localization is a favorable indication. But it could happen that more 
and more photons are bound by the electrons. Thus we need a soft photon bound 
of the type of Theorem 15.1. The proof is now considerably more demanding and 
established by Griesemer, Lieb and Loss (2001 ). 

Theorem 20.3 (Existence of a ground state). If Ebin(N) > 0, then Hv (N) has a 
ground state. 

Because of Pauli exclusion and spin, no obvious positivity is available which 
would ensure uniqueness. Note that there is no restriction on the coupling strength 
e. Also, by Proposition 20.2, the ground state is exponentially localized with length 
less than 1j--/2mEbin(N). 

The existence of a ground state is reduced to the issue of whether Ebin (N) > 0. 
While the statement looks innocent and seems to require only the clever choice of 
a wave function, the actual construction is ingenious and has been achieved only 
very recently by Lieb and Loss (2003). The main obstacle is the, in position space, 
nonlocal nature of the photon kinetic energy. 

Theorem 20.4 (Strictly positive binding energy). Let eZtot be the total nuclear 

charge, Ztot = ~f=l Zj.lf 

N < Ztot + 1, (20.17) 

then Ebin (N) > 0. 

In nature ions carrying one, or perhaps two, extra electrons are rather common. 
Such fine chemical features are difficult to access. In fact, even on the level of the 
Coulomb Hamiltonian the excess charge for stable ions is poorly understood. 
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20.2 Quasi-static limit 

We plan to investigate under what limiting conditions the many-particle Pauli
Pierz Hamiltonian can be approximated by the Coulomb Hamiltonian with possi
ble corrections. The implementation of the limit (11.8) on the quantum level has 
not yet been attempted. Thus we have to be satisfied with the more down-to-earth 
limit c --+ oo already discussed briefly at the beginning of section 11.2. c --+ oo 
means that the interaction between the charges becomes instantaneous, a princi
ple on which the Coulomb Hamiltonian is built. To study this limit we had better 
reintroduce the velocity of light, which amounts to 

N 1 1 2 
H(c) = L -. (uj · (Pj- r;:;ejA<p(Xj))) + V<pcoul + cHf. (20.18) 

j=l 2m1 vc 

A'P(x), V<pcou!. and Hf do not depend on c. The prefactors as written result from 
reintroducing w(k) = clkl. The masses and charges are arbitrary. 

c has a dimension. So what we really mean is lvl/c--+ 0, where v is some 
characteristic velocity of the charges. Thus either c --+ oo at fixed I vI or I vI --+ 0 
at fixed c. The latter can also be achieved by assuming the particles to be 
heavy and, hence, by replacing in (20.18) m j by 8-2m j, 8 « 1. On the classi
callevel the limits c --+ oo and 8 --+ 0 are related through the time scale change 
t to 8t, and thus are completely equivalent. Quantum mechanically the two 
Hamiltonians are not unitarily related, which reflects the additional scale coming 
from n. 

Let us first study the limit c --+ oo. Except for normal order the Hamiltonian 
(20.18) reads 

N 1 1 N e· 
H(c) = L -pJ + V<pcoul- r;:; L -1 Pj · A'P(Xj) 

j=l 2m j v c j=l m j 

1 ~ ej 1 ~ e7 . 2 
- r;:; L-Uj · B'P(xj) +-L- :A'P(xj): +cHf. 

vc j=l 2mj c j=l 2mj 

(20.19) 

H (c) should be compared with the weak coupling Hamiltonian (17 .4 ), written for 
the long-time scale A - 2 r and with the abbreviation Hint= Q · A'P(O), 

HJc =A - 2 Hat + A -I Hint + A - 2 Hf. (20.20) 

The interaction part Hint satisfies (Q, Hints-2)F = 0, which holds also for (20.19), 
since (Q, A'P(xj) Q)F = 0, (Q, B'P(xj) Q)F = 0, and (Q, :A'P(Xj)2: Q)F = 0. 
The central insight of the weak coupling theory is that the correction to Hat results 
from balancing A - 2 (Hint)2 with the time averaging due to A - 2 Hf; compare with 
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(17.22). Clearly this balance can be achieved also in (20.19) by considering the 
long-time scale 

t = c2 r with r = 0(1). (20.21) 

Then Hf has the prefactor c3 , Hint the prefactor c312 with a sub leading correction 
of order c, and Hat has the prefactor c2 . The analog of (17.24) becomes 

(20.22) 

In the limit c ---+ oo the dependence on Lat drops out. In particular, this implies 
that the correction term must be nondissipative; compare with (17 .35) which is 
evaluated at w = 0. 

Let us first write out the limiting objects. The analog of Hat is 

It is corrected by 

N 1 
Hrpcoul = L -2 . PJ + Vrpcoul · 

j=l mJ 

()() 

(-i)Vrpdarw = i I dt (Q, Hinte-itHtHintQ):F, 

0 

which upon working out the integrals becomes 

which is the Darwin correction. We set 

(20.23) 

(20.24) 

(20.25) 

(20.26) 

Note that the integrability condition (17.27) is satisfied, since the integrand in 
(20.24) is bounded by (1 + t 2)-1. In contrast to section 17.2, Hint has an un
bounded factor acting on H.p, which necessitates a restriction on the initial wave 
function. We summarize as 
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Theorem 20.5 (Coulomb Hamiltonian and correction). Let 1jf E L 2 with 

(1/f, Hcoulo/) £2 < 00. Then 

lim II (e-iH(c)c2t- e-i(H<pctarw+CHf)c2t)o/ ® !:211 = 0. 
C---+00 

(20.27) 

Since the limit (20.27) is on the long-time scale c2 , the Darwin correction is mean
ingfully singled out. 

Except for operator ordering, (20.27) is in accordance with the results in section 
11.2. However in Lctarw of (11.27) the kinetic energy is modified and the Coulomb 
potential is not smeared out, which reflects the fact that limits here and in section 
11.2 differ somewhat. 

For the limit m j ---+ oo we can also rely on methods developed before. We start 
with the classical symbol 

q = (qJ, ... , qN), p = (pJ, ... , PN). The Weyl quantization of H(q, p) is 
H (c) of (20.18) with m i replaced by s-2m i, where for convenience we returned 
to c = 1. The leading symbol for H (q, p) is 

N 1 
Ho(p, q) = L -2 . PJ + Vcpcoui(q) + Hf. 

i=l ml 

(20.29) 

Its ground state band has the projection Po(q, p) = 1 ® Pa,, independent of q, p, 

and the eigenvalue eo(q, p) = L_f=l (PJ /2m j) + Vcpcoui(q). Thus, following sec
tion 16.4, the Coulomb Hamiltonian can be understood as Peierls' substitution for 
(20.28). It approximates on the time scale s- 1 t the true unitary evolution projected 
to 1 ® Pa,. 

To obtain corrections we have to first compute h 1· Since (Q, HintQ) = 0 and 
since Po does not depend on p, q, h 1 = 0, in accordance with the previous find
ings that the Darwin correction is of order s-2 . Thus we need h2. In section 16.4 no 
explicit formula was given, since it is already somewhat lengthy. In our particular 
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case, many simplifications occur and as a net result one finds that 

(20.30) 

While, since in agreement with the previous result, (20.30) is very satisfactory on 
a formal level, a complete proof has to deal with the fact that the ground state band 
is not separated by a gap from the remainder of the spectrum. If one is willing to 
impose a gap by hand through a massive dispersion w, then a suitable version of 
the results described in section 16.4 becomes available. The picture so derived is 
somewhat different from the c --+ oo limit: the almost invariant subspace is tilted 
by order £ relative to (1 @ P0.)H. Over the time scale £-2t the motion in this 
subspace is governed by ho + E2h2. 

20.3 H-stability 

For the (no-cutoff) Coulomb Hamiltonian 

(20.31) 

the H-stability is a famous result by Dyson and Lenard. An independent proof 
was achieved by Lieb and Thirring, who succeeded in a fairly realistic estimate 
of the stability constant. For stability to hold the electrons must satisfy the Pauli 
exclusion principle, as they do in nature. For bosons the energy would decrease as 
- N 5 13. If the nuclei have a finite mass, for a H -stable system at least one of the 
two species must be fermions. 

To extend H-stability to the realm of nonrelativistic quantum electrodynamics, 
one has to establish a lower bound on Hv (N) = H, see (20.7), linear inK+ N. 
Note that for spinless electrons H ::::_ Hcoul by the diamagnetic inequality (14.69) 
and one is back to the H-stability in (20.31 ). Thus the difficult point is to deal with 
electron spin and the associated magnetic energy. The Schrodinger representation, 
as explained in chapter 14, suggests that for the purpose of a lower bound, Hf 
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could be substituted by the classical field energy stored in the A-field, i.e. by 

If 3 2 Emagn = 2 d xB(x) . (20.32) 

If it could be established that Hf - Emagn :::: 0, then 

N 1 2 
H = H + Emagn- Emagn :=:: L l(o-J · (pj- eA<p(Xj))) + Vcoul + Emagn. 

}=I 

(20.33) 

H-stability of the Coulomb Hamiltonian with magnetic field energy added would 
have to be shown for an arbitrary external transverse vector potential. 

To progress towards our goal we note that, for an arbitrary operator A, 

I (1/1, A 21/1) I :::: II A *1/1 II II A 1/1 II :::: ~ (1/1, (AA * +A* A)o/) and therefore 

(A + A *)2 :::: 2(AA * + A* A) . (20.34) 

We split the magnetic field as B'P (x) = B;}; (x) + B;; (x) and apply (20.34 ), 

B'P(x)2 :=:: 4B;};(x)B;;(x) + 2[B;};(x), B;;(x)], (20.35) 

which remains true when multiplied by f (x) :::: 0. Then 

~ J d3xf(x)B'P(x)2 :=:: llflloo L J d3k(2n) 3 1$(k)l2 1kla*(k, A)a(k, A) 
2 A=l.2 

+llfll1 f d3kl$(k)l 2 1kl. (20.36) 

Let us assume that l$(k)l :=:: (2n)-312 and J d3kl$(k)l lkl = CA < oo. For f we 
choose f (x) = I if lx - r J I :=:: I for some j and f (x) = 0 otherwise. Then 

N 

H :=:: L ~(o-J · (Pj- eA'P(xj))) 2 + Vcoul + ~ J d3xf(x)B(x)2 - KCA. 
}=I 2 2 

(20.37) 

The energy stability with an arbitrary external B-field is difficult, but has been 
done. Unfortunately the field energy balances the Coulomb attraction only for lei 
sufficiently small. To have H-stability for all e one also has to include the B-field 

gradients. In addition, the choice of f should be optimized. As one result we state 

Theorem 20.6 (H-stability of nonrelativistic QED). Let iP be the fonn factor 

with sharp cutoff at A. Then there exists a positive constant C(e, Z) such that 

H:::: -C(e, Z)(A + I)K (20.38) 

independently of N. 
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The proof of Theorem 20.6 relies on the H-stability ofthe Hamiltonian on the right 
hand side of (20.37) and thus requires the electrons to be fermions. 

In the Pauli-Fierz Hamiltonian (20.7) the self-energy of the electrons is not 
subtracted. Thus, in principle, the stability bound (20.38) could exclusively be due 
to the positive contribution from the self-energy. To rule out such an unphysical 
mechanism we employ a technique, briefly touched upon already in section 19.3. 
The results available are sharper in the case of spin less electrons with Hamiltonian 

N 1 2 
HN = L -(Pj- eArp(Xj)) + Hf + Vcoul =TN+ Hf + Vcoul· (20.39) 

j=l 2 

Since N is the important parameter, it is displayed explicitly. The no-cutoff 
Coulomb potential carries the information on the K nuclei located at r1, ... , rK. 

Let E(N) be the bottom of the spectrum of HN and Eo(N) that of TN+ Hf. The 
binding energy for H N is defined as in (20.1 0) with the nucleon repulsion as an 
additive constant. Then, using (20.11) and assuming E 0 (N) = Eo(N), 

Ebin(N) _:::: Eo(N)- E(N). 

Similar to (19.95) the Coulomb energy is bounded from below as 

N 

Vcoul 2::: -Ke2 L IPj- eArp(Xj)l 
j=l 

(20.40) 

(20.41) 

with K = ((rr/2)Z + (2.22)Z213 + 1.03)/4rr. Therefore, usmg Schwarz's in
equality, 

(20.42) 

The function f(x) = x- Ke2V2F/ -JX takes its minimum at Xmin = !(Ke2 ) 2 N, 

j(Xmin) = -!(Ke2) 2 N. Thus, if 

1 
Eo(N) _:::: 2N(Ke2) 2 (easel), (20.43) 

then HN 2::: -~(Ke2) 2 Nand E(N)- Eo(N) 2::: -(Ke2 ) 2 N. On the other hand, if 

1 
Eo(N) 2::: 2N(Ke2) 2 (caseii), (20.44) 

we can use the fact that f is monotonically increasing to conclude that H N 2::: 
f(Eo(N)) and E(N) 2::: Eo(N)- (e2K)V2F/ -J Eo(N). We summarize as 

Theorem 20.7 (Upper bound for N -particle binding energy). For the Hamilto

nian HN of(20.39), in case I 

(20.45) 
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and in case II 

(20.46) 

Note that energies are in units of mc2. 

The bound (20.46) is unexpected, since the binding energy is estimated in terms 
of the self-energy of a system of N electrons without Coulomb repulsion. The 
Pauli exclusion principle has not yet been invoked. 

To make further progress one needs a good estimate on Eo(N). Fermions like to 
stay alone and the state of lowest energy should be achieved once they are infinitely 
separated. 

Conjecture 20.8 For fermions 

Eo(N) = N Eo(l). (20.47) 

If Conjecture 20.8 is assumed to hold, then the condition for the two cases reads 

1 1 
(case I): Eo(l) ::: 2(Ke2) 2 , (case II): Eo(l) 2::: 2(Ke2) 2 . 

As explained in section 19.3, Eo (I) ::: cze4!7 (A"Ac) 1217 . Consequently 

Ebin :S (Ke2)2 N 

Ebin :S (Ke2)vf2C2e217 (A"Ac) 617 N 

(case I), 

(case II). 

(20.48) 

(20.49) 

The binding energy is extensive. However, our estimate on the stability bound di
verges with the cutoff A. Since energies are calibrated in units of mc2 , the folklore 
tells us that multiplying the true stability constant by m / meti should result in a 
A-independent pre factor. 

Notes and references 

Stability for the Coulomb Hamiltonian is covered extensively and excellently in 
survey articles. Particularly recommended are Lieb (1976, 1990), which have 
become classics. Some of the original articles are reprinted in the Lieb Selecta 
(2001), where the reader should in addition consult the introduction by Thirring, 
see also Thirring (2002). The first proof of stability is Dyson and Lenard (1968). 
The use of the Thomas-Fermi theory as a comparison standard is introduced in 
Lieb and Thirring (1975). Extensions to Coulomb systems with relativistic kinetic 
energy are investigated by Conlon (1984), Feffermann and de la Llave (1986), and 
were finally settled in Lieb and Yau (1988a, b). The basic discovery is that stabil
ity holds only under a smallness condition on Za and a. If electrons were bosons, 
they would cluster with a density increasing with N. In the ground state energy 
this can be seen in a faster than linear decrease with N. For bosons and fixed 
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nuclei it is known that EN :::::: -N513 (Lieb 1979 and references therein), while 
with bosonic nuclei of finite mass, EN ~ - N 7 15 (Dyson 1967; Conlon, Lieb and 
Yau 1988). 

Thermodynamic stability for Coulomb systems is proved by Lieb and Lebowitz 
(1972), 

If photons were scalar, then the Coulomb potential has the "wrong" sign; see 
section 19.2. This leads to instability, some partial aspects of which are studied in 
Gallavotti, Ginibre and Velo (1970). 

Section 20.1 

For Schrodinger operators, :F = C, the exponential localization of Proposition 
20.2 goes back to Agmon (1982). Griesemer (2004) observes that it remains valid 
for general F. Theorem 20.4 is proved by Lieb and Loss (2003). For the helium 
atom, N = 2, the strict positivity of the binding energy is established by Barbaroux 
et al. (2003). 

Section 20.2 

For the Nelson model, i.e. a scalar Bose field, the limit c --+ oo is studied by Davies 
(1979), see also Hiroshima (1997a), and the limit m --+ oo by Teufel (2002). They 
prove that the dynamics is well-approximated through the Coulomb Hamiltonian. 
Our observation seems to be new, but could have been made already by Davies, if 
he had chosen the Gross-transformed Nelson Hamiltonian as a starting point. 

Section 20.3 

The argument leading to Theorem 20.6 is taken from Fefferman, Frohlich and 
Graf (1997), see also Bugliaro, Frohlich and Graf (1996). The harder part is to 
establish stability for the Hamiltonian on the right hand side of (20.37), which is 
achieved by Feffermann (1996) with a "sufficiently small" constant and is sub
sequently improved and simplified by Lieb, Loss and Solovej (1995) to include 
the physical case. Theorem 20.7 is a result by Lieb and Loss (2002). They also 
establish that the self-energy for N electrons is bounded as c1 a 112(A'Ac)312 N _:::: 
Eo(N) _:::: c2a2l 7 (A'Ac) 1217 N with suitable constants c1, c2, which is somewhat 
weaker than our Conjecture 20.8. The discussion does not change; only the 
prefactors are less sharp. For bosons the bounds c3a 112 (A'Ac)312 N 112 _:::: Eo(N) _:::: 
c4a 217 (A'Ac) 1217 N 517 are available, which together with Theorem 20.7 strongly 
indicate that, as to be expected, bosons remain unstable when the quantized radi
ation field is added. The basic inequality (20.41) holds also in the case where the 
electron spin is included, see Lieb and Loss (2002). 
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