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Many different representations of space are needed for a GIS. This chapter ex-

plores the fundamental concepts and relationships underlying these different

spaces. The topics covered in this chapter provide a guide for learning to:

• manipulate Euclidean geometry, in which distances, angles, and coordinates

may be defined;

• understand topology, and its construction from the basic concept of a neigh-

borhood;

• construct simple representations of space using sets and graphs; and

• appreciate how ametric space formalizes the concept of distance between

points in space.

Space is a term that is difficult to precisely define (see Box 3.1 on the next
page). We all have an intuitive idea about the concrete space in which

our bodies move. In the context of GIS, we normally use the term “space”
to refer to “geographic space”: the structure and properties of the relation-
ships between locations at the Earth’s surface. In this chapter we examine
“space” more carefully by considering the different ways of representing and
reasoning about geographic space.

A fundamental concept underlying these different representations is
that of geometry. A geometry provides a formal representation of the abstract

geometryproperties and structures within a space. Modern treatments of geometry are
founded on the notion of invariance: geometries can be classified according to

invariancethe group of transformations of space under which their propositions remain
true. This idea was first proposed in 1872, by the German mathematician
Felix Klein in his inaugural address to the University of Erlangen (known as
the Erlangen Program).

To illustrate, consider a space of three dimensions and our usual notion
of distance between two points. Then a geometry is formed by the set of
all transformations that preserve distances (that is, for which distance is an
invariant). Into this set would fall translations and rotations, because the
distance between two points is the same before and after a translation or
rotation is effected. Scalings (enlargements) would not be members because
they usually change distance. Looking at this the other way around provides
us with a definition of a geometry as the study of the invariants of a set of

This chapter has been made available under a CC-BY-NC-ND license.
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Box 3.1: What is space?

The notion of space is not easy to define. Gatrell (1991)

defines space as “a relation defined on a set of objects,”

which includes just about any structured collection. This

definition is too general to describe the spaces of interest

in a GIS. A distinction is often made between the space

we can apprehend using our visual perception, termed

perceptual; and space that is too big for humans to ob-

serve all at once, termed transperceptual (see Kuipers,

1978; Montello, 1993). Zubin (1989) provides more detail

and distinguishes four types of space: A-space contains

manipulatable everyday objects, like phones and books;

B-space contains objects larger than humans, but still

observable from a single perspective, like buildings and

buses; C-space contains geographic scenes that are too

large to apprehend at one time, like landscapes; D-space

contains objects that are too large for any human to truly

experience, like the solar system or the galaxy. Freund-

schuh & Egenhofer (1997) give a full overview and syn-

thesis of the different classifications of space that have

been proposed. In GIS, we are primarily interested in Zu-

bin C-spaces, although there is also growing interest in in-

tegrating information from B- and even A-spaces, as well

as other types of virtual spaces, such as the Internet and

cyberspace (an area of study termed “cybergeography,”

see Dodge & Kitchin, 2002; Fabrikant & Buttenfield, 2001;

Kwan, 2001).

transformations. Thus the invariants of the set of translations, rotations, and
scalings include angle and parallelism, but not distance.

Coordinatized Euclidean geometry provides a view of space that is intu-
itive, at least in Western culture, so this is our starting point (Section 3.1).
In later sections we discuss the most primitive space of all—just collections
of objects with minimal structure (Section 3.2)—and proceed to build up to
richer geometries (Sections 3.3–3.4). Because of the nature of the topic, the
treatment will of necessity sometimes be abstract and formal, but examples
are provided along the way.

3.1 Euclidean space

Spatial phenomena are most commonly modeled as embedded in a physical 2-
or 3D space, called Euclidean space. We assume here for simplicity a 2D model,Euclidean space

although all the concepts in this section can be generalized to higher dimen-
sional spaces. For the 2D Euclidean plane, we can set up a coordinate frame
consisting of a fixed, distinguished point (origin) and a pair of orthogonal linesorigin

(axes), intersecting in the origin. This coordinatized model of the Euclideanaxis

plane, known as the Cartesian coordinate plane or simply the Cartesian plane,Cartesian plane

transforms spatial properties into properties of tuples of real numbers and is
the primary focus of this section.

3.1.1 Point objects

A point in the Cartesian plane has associated with it a unique pair of realpoint

numbers (𝑥, 𝑦) measuring its distance from the origin in the direction of each
axis, respectively. The collection of all such points is often written as ℝ2. It
is often useful to view Cartesian points (𝑥, 𝑦) as vectors, measured from thevector

origin to the point (𝑥, 𝑦), having direction and magnitude and denoted by
a directed line segment (Figure 3.1). Vectors may be added, subtracted, and
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multiplied by scalars according to the rules:

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2)
(𝑥1, 𝑦1) − (𝑥2, 𝑦2) = (𝑥1 − 𝑥2, 𝑦1 − 𝑦2)
𝑘(𝑥, 𝑦) = (𝑘𝑥, 𝑘𝑦)

To distinguish clearly between points as locations and vectors as displace-
ments, we use the over-arrow notation ⃗𝑎 to identify vectors (see Figure 3.1).
Given a point vector, ⃗𝑎 = (𝑥, 𝑦), we may form its norm, defined as follows: norm

‖ ⃗𝑎‖ = √(𝑥2 + 𝑦2)

a
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Figure 3.1: Distance | ⃗𝑎𝑏|,
angle 𝛼, and bearing 𝛽
between points (vectors)

⃗𝑎 and ⃗𝑏 in the Euclidean

plane

In a coordinatized system, measures of distance may be defined in a variety
of ways (see Section 3.4.2 on metric spaces). A Euclidean plane is a Cartesian Euclidean plane

coordinate plane with the particular measures of distance and angle given
below.1 These measures form the foundation of most school geometry courses 1 Conversely, a Cartesian plane is

a Euclidean plane parameterized
with coordinates.

and refer to the “as the crow flies” concept of distance. Given points (vectors)
⃗𝑎, ⃗𝑏 in ℝ2, the distance from ⃗𝑎 to ⃗𝑏, | ⃗𝑎𝑏|, is given by:

| ⃗𝑎𝑏| = ‖ ⃗𝑏 − ⃗𝑎‖

Suppose that the points ⃗𝑎, ⃗𝑏 in ℝ2 have coordinates (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏),
respectively. Then the distance | ⃗𝑎𝑏| is precisely the Pythagorean distance
familiar from school days, given by:

| ⃗𝑎𝑏| = √(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2

The angle 𝛼 (see Figure 3.1) between vectors ⃗𝑎 and ⃗𝑏 is given as the solution angle

of the trigonometrical equation:

cos𝛼 = 𝑥𝑎𝑥𝑏 + 𝑦𝑎𝑦𝑏
‖ ⃗𝑎‖ × ‖ ⃗𝑏‖
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The bearing 𝛽 (see Figure 3.1) of ⃗𝑏 from ⃗𝑎 is given by the unique solution inbearing

the interval 0 ≤ 𝜃 < 360 of the simultaneous trigonometrical equations:

sin 𝜃 = 𝑥𝑏 − 𝑥𝑎
| ⃗𝑎𝑏|

cos 𝜃 = 𝑦𝑏 − 𝑦𝑎
| ⃗𝑎𝑏|

3.1.2 Line objects

Line objects are very common spatial components of a GIS, representing the
spatial attributes of objects and their boundaries. The definitions of some
commonly used types of line are introduced below in a parameterized form.
The parameter 𝜆 is a real number constrained to vary over a given range
(the range depending upon the object type). As 𝜆 varies, so the set of points
constituting the linear object is defined.

• Given two distinct points (vectors) ⃗𝑎 and ⃗𝑏 in ℝ2, the line incident with ⃗𝑎line

and ⃗𝑏 is defined as the point set {𝜆 ⃗𝑎 + (1 − 𝜆) ⃗𝑏}.
• Given two distinct points (vectors) ⃗𝑎 and ⃗𝑏 in ℝ2, the line segment betweenline segment

⃗𝑎 and ⃗𝑏 is defined as the point set {𝜆 ⃗𝑎 + (1 − 𝜆) ⃗𝑏 | 0 ≤ 𝜆 ≤ 1}.
• Given two distinct points (vectors) ⃗𝑎 and ⃗𝑏 in ℝ2, the half line radiatinghalf line

from ⃗𝑏 and passing through ⃗𝑎 is defined as the point set {𝜆 ⃗𝑎 + (1 − 𝜆) ⃗𝑏 | 𝜆 ≥
0}.

Figure 3.2 shows some examples.

Figure 3.2: Parame-

terized representa-

tion of linear objects

a

b

λ < 0

0 < λ < 1

λ > 1

λ = 1

λ = 0
⃗

⃗

Straight lines may also be specified by a single bivariate polynomial equa-
tion of degree one (𝑎𝑥 + 𝑏𝑦 = 𝑘). Not only straight lines are of interest for
GIS, though. Higher-degree bivariate polynomials specify further classes of
one-dimensional (1D) objects. Thus, polynomials of degree two (quadratics of
the form 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 = 𝑘) specify conic sections, which could be circles,
ellipses, hyperbolas, or parabolas.

3.1.3 Polygonal objects

A polyline in ℝ2 is defined to be a finite set of line segments (called edges) suchpolyline
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that each edge end-point is shared by exactly two edges, except possibly for
two points, called the extremes of the polyline. If, further, no two edges inter-
sect at any place other than possibly at their end-points, the polyline is called
a simple polyline. A polyline is said to be closed if it has no extreme points. A simple

(simple) polygon in ℝ2 is defined to be the area enclosed by a simple closed polygon

polyline. The polyline forms the boundary of the polygon. Each end-point of boundary

an edge of the polyline is called a vertex of the polygon. Some possibilities are vertex

shown in Figure 3.3. An extension to the definition would allow a general
polygon to contain holes, islands within holes, etc.

polyline simple closed polyline

polygon convex polygon star-shaped polygon

Figure 3.3: Polylines and

types of polygons

Many different types of polygon have been defined in the computational
geometry literature. A useful category is the set of convex polygons, each of convex polygon

which has an interior that is a convex set and thus has all its internal angles
not greater than 180∘. For a convex polygon, every interior point is visible
from every other interior point in the sense that the line of sight lies entirely
within the polygon. A star-shaped polygon has the weaker property that there star-shaped polygon

exists at least one point which is visible from every point of the polygon (see
Figure 3.3). Convexity is discussed further in Section 3.2.4.

The definition of monotone polygons depends upon the concept of mono-
tone chains. Let chain 𝐶 = [𝑝1, 𝑝2, ..., 𝑝𝑛] be an ordered list of 𝑛 points in the monotone

Euclidean plane. Then 𝐶 is monotone if and only if there is some line in the
Euclidean plane such that the projection of the vertices onto the line pre-
serves the ordering of the list. Figure 3.4 shows monotone and non-monotone
chains.

A polygon is a monotone polygon if its boundary can be split into two monotone polygon

polylines, such that the chain of vertices of each polyline is a monotone chain.
Clearly, every convex polygon is monotone. However, the converse of this
statement is not true. It is not even true that every monotone polygon is star
shaped, as may be seen from the example in Figure 3.5.

A triangulation of a polygon is a partition of the polygon into triangles triangulation
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Figure 3.4: Monotone and

non-monotone chains

that intersect only at their mutual boundaries. It is not too hard to show
that a triangulation of a simple polygon with 𝑛 vertices that introduces an
extra 𝑚 internal vertices (sometimes called Steiner points) will result in exactlySteiner point

𝑛 + 2𝑚 − 2 triangles.

3.1.4 Transformations of the Euclidean plane

This section describes some common transformations of the Euclidean plane.
A transformation of ℝ2 is a function from ℝ2 to itself. Thus every point of thetransformation

plane is transformed into another (maybe the same) point. Some transforma-
tions preserve particular properties of embedded objects:

Euclidean transformations (also termed congruences) preserve the shape andcongruences

size of embedded objects. An example of a Euclidean transformation is
a translation. For example, a translation of the point (𝑥, 𝑦) through real
constants 𝑎 and 𝑏 has the formula (𝑥 + 𝑎, 𝑦 + 𝑏).

Similarity transformations preserve the shape but not necessarily the size ofsimilarity transformation

embedded objects. All Euclidean transformations are also similarities. An
example of a similarity transformation is a scaling. Scaling a point (𝑥, 𝑦) by
real constants 𝑎 and 𝑏 has the formula (𝑎𝑥, 𝑏𝑦).

Affine transformations preserve the affine properties of embedded objects, suchaffine transformation

Figure 3.5: A mono-

tone but not star-

shaped polygon
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as parallelism. All similarity transformations are also affine. Examples of
affine transformations of the point (𝑥, 𝑦) include rotations, e.g., through rotation

angle 𝜃 about the origin with the formula (𝑥 cos 𝜃−𝑦 sin 𝜃, 𝑥 sin 𝜃+𝑦 cos 𝜃);
reflections, e.g., reflected in the line through the origin at angle 𝜃 to the reflection

𝑥-axis with the formula (𝑥 cos 2𝜃 + 𝑦 sin 2𝜃, 𝑥 sin 2𝜃 − 𝑦 cos 2𝜃); and shears, shear

e.g., parallel to the 𝑥-axis with real constant 𝑎 and formula (𝑥 + 𝑎𝑦, 𝑦).

Projective transformations preserve the projective properties of embedded ob- projective transformation

jects. An intuitive idea of a central projection is the action of a point light
source, sending a figure to its projection upon a screen. For example, the
projection of a circle may result in an ellipse. All affine transformations
are also projective.

Topological transformations (homeomorphisms or bicontinuous maps) preserve
topological properties of embedded objects. We shall study this class in
detail later.

3.2 Set-based spaces

The Euclidean plane is a highly organized kind of space, with many well-
defined operations and relationships that can act upon objects within it. This
section retreats to the much more rarefied realm of set-based space, and then
gradually builds up more structure with topological and metric spaces.

3.2.1 Sets

The set-based model of space does not have the rich set of constructs of the
Euclidean plane. The set-based model simply involves:

• The constituent objects to be modeled, called elements or members. element

• Collections of elements, called sets. For computer-based models, such set

collections are usually finite, or at least countable.
• The relationship between the elements and the sets to which they belong,
termed membership. We write 𝑠 ∈ 𝑆 to indicate that an element 𝑠 is a membership

member of the set 𝑆.

The set-based model is abstract and provides little in the way of construc-
tions for modeling spatial properties and relationships. Nevertheless, sets are
a rich source of modeling constructs (see “Russell’s paradox,” Box 3.2 on the
following page) and are fundamental to the modeling of any spatial informa-
tion. For example, relationships between different base units of spatial refer-
ence may be modeled using set theory. States or counties may be contained
within (i.e., members of) a country; countries may themselves be members of
continents; continents may be elements of the set of landmasses. Such hierar-
chical relationships are adequately modeled using set theory. Sometimes, areal
units are not so easily handled. For example, in the US there is no simple set-
based relationship between zip codes, used for the distribution of mail, and
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Box 3.2: Russell’s paradox

Even though the set concept expresses the most rudi-

mentary relationships and structuring of space, it is sur-

prisingly difficult to capture the essence of a set in a few

words. A first attempt might be “a set is any collection of

objects,” but this lays itself open to Russell’s paradox (af-

ter the British mathematician Bertrand Russell). Russell’s

paradox is sometimes explained in terms of a library in-

dex. Imagine that an assiduous librarian wishes to index

every book in the library that does not contain a refer-

ence to itself (unlike this book, Duckham, Sun, & Worboys,

2023). The librarian can write down the names of books

that do not refer to themselves in a new index book. To

be complete, this index should list itself, as it does not

contain a self-reference. But as soon as the librarian adds

a self-reference to the index, that reference should be

removed, because now the index book does cite itself!

We can express this tortuous problem mathematically

by considering the set 𝑆 of all sets that are not members

of themselves. If 𝑆 is a member of itself, then by defini-

tion it is not a member of itself; on the other hand, if 𝑆 is

not a member of itself, then it must be a member of it-

self. Either way, we arrive at a contradiction. This paradox

spurred considerable efforts in the 20th century to find a

more adequate definition of a set, but no definition has

proved completely satisfactory.

the administrative units such as city, county, and state (as already noted in
Box 2.4 on page 58). This mismatch causes considerable problems when data
referenced to one set of spatial units is compared or combined with spatial
data referenced to a different set (discussed further in Box 8.5 on page 321).

In classical set theory an object is either an element of a particular set or it
is not. There is no halfway house or degree of membership. If the binary on-
off nature of the membership condition is relaxed, then it is possible to arrive
at some more expressive models. Some of these models are important for
modeling uncertainty in spatial information, a topic tackled in Chapter 10.

From the basic constructs of element, set, and membership, a large number
of modeling tools may be constructed. We shall consider just a few here.

• Equality is defined as a relationship between two sets that holds when theequality

sets contain precisely the same members.
• The relationship between two sets where every member of one set is a
member of the second is termed subset. The relationship that set 𝑆 is asubset

subset of set 𝑇 is denoted 𝑆 ⊆ 𝑇.
• A power set is the set of all subsets of a set. The power set of set 𝑆 is de-power set

noted 𝒫(𝑆).
• A partition of a set is a set of subsets such that each and every member ofpartition

the original set appears in exactly one subset in the partition.
• The empty set is the set containing no members, denoted ∅.empty set

• The number of members in a set is termed cardinality. The cardinality ofcardinality

set 𝑆 is denoted #𝑆 or |𝑆|.
• The intersection operation is a binary operation that takes two sets andintersection

returns the set of elements that are members of both the original sets. The
intersection of sets 𝑆 and 𝑇 is denoted 𝑆 ∩ 𝑇.

• The union operation is a binary operation that takes two sets and returnsunion

the set of elements that are members of at least one of the original sets.
The union of sets 𝑆 and 𝑇 is denoted 𝑆 ∪ 𝑇.

• The difference operation is a binary operation that takes two sets and re-difference
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turns the set of elements that are members of the first set but not the
second set. The difference of sets 𝑆 and 𝑇 is denoted 𝑆\𝑇.

• The complement operation is a unary operation that when applied to a complement

set returns the set of elements that are not in the set. The complement is
always taken with reference to an (implicit) universal set. The complement
of set 𝑆 is denoted 𝑆′.

Figure 3.6 shows by shading on set diagrams some of the Boolean set
operations described above.

𝐴 ∩ 𝐵 𝐴 ∪ 𝐵 𝐴\𝐵

Figure 3.6: Set intersec-

tion, union, and difference

Some sets, particularly sets of numbers, are used so often that they have a
special name and symbol. Some of these are listed in Table 3.1. The Boolean
set 𝔹 is used whenever there is a two-way choice to be made. This choice may
be viewed as between on and off, true and false, or one and zero, depending
upon the context. The set of integers ℤ is used in discrete models. Sometimes,
only the positive integers are needed, written ℤ+.

For continuous models, the real numbers ℝ are required. In fact, it is prov-
ably impossible to capture the reals completely using a computer; therefore,
rational numbers are used in practice. Rational numbers are real numbers
that can be expressed as a ratio of integers, e.g., 123/46. Like real numbers,
rational numbers have the property that they are dense: that is, between any dense set

two rationals 𝑎 and 𝑏, where 𝑎 is greater than 𝑏, no matter how close 𝑎 and
𝑏 are, it is always possible to find a third rational 𝑐 such that 𝑎 < 𝑐 < 𝑏 (see
Figure 3.7). In this way, the rationals are a useful approximation for modeling
continuous processes. Any particular computer implementation will place a
restriction upon the precision of the rationals.

Name Symbol Description

Booleans 𝔹 Two-valued set of true/false, 1/0, or on/off

Integers ℤ Positive and negative numbers, including zero

Rationals ℚ Ratios of two integers

Reals ℝ Measurements on the number line

Real plane ℝ2 Ordered pairs of reals, the Cartesian plane

Closed interval [𝑎, 𝑏] All reals between 𝑎 and 𝑏 (including 𝑎 and 𝑏)
Open interval ]𝑎, 𝑏[ All reals between 𝑎 and 𝑏 (excluding 𝑎 and 𝑏)
Semi-open interval [𝑎, 𝑏[ All reals between 𝑎 and 𝑏 (including 𝑎 and

excluding 𝑏)

Table 3.1: Some distin-

guished sets

Some subsets of the reals are particularly useful. Intervals are connected interval

sets of real numbers. They may or may not contain their end-points and are
then called closed or open, respectively. It is also possible for intervals to be
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Figure 3.7: The ra-

tionals are dense

a bc

closed at one end and open at the other. Such intervals are called semi-open (or
semi-closed). Thus the closed interval [2, 5] denotes the set of all real numbers
not less than two and not greater than five. The semi-open interval ]2, 5]
denotes the set of all real numbers greater than two but not greater than five.

3.2.2 Relations

Sets on their own are limited in their application to modeling. Life becomes
more interesting when relationships between two or more sets are modeled.
In order to provide these tools, a further set-based operation is defined.

• The binary operation product returns the set of ordered pairs, whose firstproduct

element is a member of the first set and second element is a member of the
second set. The product of sets 𝑆 and 𝑇 is denoted 𝑆 × 𝑇.

10

1

0

0.5

0.5

(0,1)

(0,0) (1,0)

(1,1)

Figure 3.8: The

unit square

An example of a product set is the set of points in the Cartesian coordi-
nate plane, introduced in Section 3.1.1. Each point in the Cartesian plane is
represented as an ordered pair of real numbers, measuring the point’s distance
from a given origin in the direction of the two axes. In set-theoretic terms,
the collection of all such points is a product set, being the product of the set
of real numbers with itself. This set is denoted by ℝ × ℝ or ℝ2. This notion
may be generalized to Cartesian coordinate 3-space ℝ3 or indeed Cartesian
𝑛-space ℝ𝑛. A second example would be the set of points in the unit square,
the square with vertices (0, 0), (0, 1), (1, 0), and (1, 1) in the Cartesian plane
(Figure 3.8). This set is the product of two intervals, [0, 1] × [0, 1]. It is the case
that [0, 1] × [0, 1] ⊆ ℝ2.

Product spaces provide a means of defining relationships between objects.
Hence the following construction:

• A binary relation is a subset of the product of two sets, whose ordered pairsbinary relation

show the relationships between members of the first set and members of
the second set.

Suppose that 𝑆 = {Fred, Mary} and 𝑇 = {apples, oranges, bananas}. Then
the formal way of expressing the relationship “likes” between people and fruit
is by means of a relation, constructed as a set of ordered pairs {(Fred, apples),
(Fred, bananas), (Mary, apples)}. This set of ordered pairs is a subset of the
entire product space 𝑆 × 𝑇, containing six pairs.

Relations may in general apply to the product of more than two sets (as
in the relations in the relational database model). However, even binary
relations have many modeling applications. For example, suppose that we
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are given two sets: the places of interest in The Potteries 𝑃 and town centers
in The Potteries 𝑇. A relation 𝑅1 ⊆ 𝑃 × 𝑇 might provide for each a place
of interest 𝑝 ∈ 𝑃 the nearest town center 𝑡 ∈ 𝑇 to 𝑝. Figure 3.9 shows the
relation 𝑅1 diagrammatically. The fact that Hanley is the nearest town center
to the City Museum is indicated in Figure 3.9 with an arrow from the City
Museum to Hanley, and would be written (City Museum,Hanley) ∈ 𝑅1.

A34

A500

A500
M6

A53

A52

A50

A34

City Museum

Royal Doulton
Pottery

Spode Pottery
Minton Pottery

Wedgwood 
Visitor Centre

Coalport Pottery

Beswick 
Pottery

Gladstone 
Pottery Museum

Ford Green
Hall

Westport
Lake

Newcastle
Museum

New Victoria Theatre

Town centers

Motorway

Secondary roads

Primary roads

Places of interest

Tunstall

Burslem

Fenton

Stoke
Newcastle-
under-Lyme

Longton

Hanley

Figure 3.9: Binary relation

on the sets of Potteries

places of interest and

town centers

As we have seen with the relation ℝ2, a relation may act upon a single set.
Suppose for the set of places 𝑃, a place of interest 𝑝 ∈ 𝑃 is related to 𝑝′ ∈ 𝑃
if 𝑝′ is the nearest place of interest to 𝑝. This relation 𝑅2 ⊆ 𝑃 × 𝑃 is shown
in Figure 3.10. The fact that Spode Pottery is the nearest place of interest to
the City Museum is indicated with an arrow from the City Museum to Spode
Pottery, and written (City Museum, Spode Pottery) ∈ 𝑅2.

Some binary relations between objects of the same set have special proper-
ties.

• A binary relation 𝑅 on 𝑋 where every element of the set 𝑥 ∈ 𝑋 is related
to itself, (𝑥, 𝑥) ∈ 𝑅, is termed a reflexive relation. A relation is irreflexive if reflexive

irreflexiveevery element of the set is not related to itself, (𝑥, 𝑥) ∉ 𝑅 for all 𝑥 ∈ 𝑋 .
• A binary relation 𝑅 where if 𝑥 is related to 𝑦, then 𝑦 is related to 𝑥 is
termed a symmetric relation. A relation is antisymmetric if for every pair of symmetric

antisymmetricelements, 𝑥 and 𝑦 in 𝑋 , if 𝑥 related to 𝑦 then 𝑦 is not related to 𝑥.
• A binary relation 𝑅 where if 𝑥 is related to 𝑦 and 𝑦 is related to 𝑧, then 𝑥 is
related to 𝑧 is termed a transitive relation. transitive
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Figure 3.10: Binary rela-

tion on the sets of Pot-

teries places of interest
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In the example of Figure 3.10, there is an implicit assumption that a place
cannot be related to itself; therefore, the relation is not reflexive and is also
irreflexive. It is less obvious whether or not the relation “has nearest place
of interest” is symmetric. For example, Spode Pottery is nearest to Minton
Pottery and vice versa. However, the nearest place to the City Museum is also
Spode Pottery while the converse is not true, so the relation “has nearest place
of interest” cannot be symmetric. Also, the relation is not transitive because
if 𝑝 has nearest place of interest 𝑞 and 𝑞 has nearest place of interest 𝑟, then
𝑝 cannot have nearest place of interest 𝑟 unless 𝑞 = 𝑟 or 𝑞 = 𝑝 (and we have
already disallowed a place being nearest to itself).

A binary relation that is reflexive, symmetric, and transitive is termed an
equivalence relation. Another useful class of relations is order relations, whichequivalence relation

satisfy the transitive property and are also irreflexive and antisymmetric.
These further properties and partial orders are discussed in Section 3.4.1.

3.2.3 Functions

A function is a special type of relation which has the property that each mem-function

ber of the first set relates to exactly one member of the second set. Thus, a
function provides a rule that transforms each member of the first set, called
the domain, into a member of the second set, called the codomain. We use thedomain

codomain notation:

𝑓 ∶ 𝑆 → 𝑇
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to mean that 𝑓 is a function, 𝑆 is the domain, and 𝑇 is the codomain. If the
result of applying function 𝑓 to element 𝑥 of 𝑆 is 𝑦, we write 𝑦 = 𝑓(𝑥) (read
“𝑦 equals 𝑓 of 𝑥”) or 𝑓 ∶ 𝑥 ↦ 𝑦 (read “𝑓 maps 𝑥 to 𝑦”). Figure 3.11 shows
schematically the relationship between function, domain, codomain, and
image (defined shortly).

f

codomain

domain image

Figure 3.11: An abstract

function 𝑓

For example, suppose that 𝑆 is the set of points on a spheroid and 𝑇 the set
of points in the plane. A map projection is essentially a function with domain
𝑆 and codomain 𝑇. Usually, map projection functions are constructed to leave
some properties of the sets invariant, for example, lengths, angles, or areas.
The familiar Universal Transverse Mercator (UTM) projection is a function
that preserves angles. The UTM projection has a further property that any
two different points in the domain are transformed to two distinct points in
the codomain. Such a function is said to be an injection. Map projections are injection

discussed further in the context of cartography, in Section 8.2.3.
Not all functions are injections. Consider, for example, the function that

computes the square of any integer. Then, because both 2 and −2 square to
the same number, 4, the square function is not an injection. The two relations
described in the previous section (Figures 3.9 and 3.10) are also functions (i.e.,
each member in the first set relates to exactly one member in the second set)
but not injections.

The set of outputs from the application of a function to elements in its do-
main will form a subset of the codomain. Thus the UTM map projection will
project a spheroid onto a finite subset of the plane. The set of all possible out-
puts is called the image or range of the function. If the image actually equals image

the codomain, then the function is termed a surjection. The UTM projection surjection

is not a surjection because the spheroid projects onto only a finite portion of
the plane and not the whole plane. A function that is both a surjection and an
injection is termed a bijection. bijection

Injective functions have the special property that they have inverse func-
tions. Consider again the UTM projection from the spheroid to the plane.
Given a point in the plane that is part of the image of the transformation, it
is possible to reconstruct the point on the spheroid from which it came. This
reversal of the process allows us to form a new function whose domain is the
image of the UTM, and which maps the image back to the spheroid. This is
called the inverse function. inverse function
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3.2.4 Convexity

Convexity has already been discussed for polygons and is now generalized to
the same property for arbitrary point-sets in the Euclidean plane. The same
notion is also meaningful in Euclidean 3-space, and the definition is easily
extensible to this case. The essential idea is that a set is convex if every point
is visible from every other point within the set. To make this idea precise, we
define visibility and then convexity. Let 𝑆 be a set of points in the Euclidean
plane. Then:

• the point 𝑥 in 𝑆 is visible from point 𝑦 in 𝑆 if either 𝑥 = 𝑦 or it is possible
to draw a straight-line segment between 𝑥 and 𝑦 that consists entirely of
points of 𝑆;

• the point 𝑥 in 𝑆 is an observation point for 𝑆 if every point of 𝑆 is visible
from 𝑥;

• the set 𝑆 is semi-convex (star-shaped if 𝑆 is a polygonal region) if there issemi-convex

some observation point for 𝑆; and
• the set 𝑆 is convex if every point of 𝑆 is an observation point for 𝑆.convex

Figure 3.12 shows the visibility relation within a set between three points
𝑥, 𝑦, and 𝑧. Points 𝑥 and 𝑦 are visible from each other, as are points 𝑦 and 𝑧.
But, points 𝑥 and 𝑧 are not visible from each other. The visibility relation is
reflexive and symmetric, but not transitive. Also, observe that any convex
set must be semi-convex (although the converse is not necessarily true). Fig-
ure 3.13 gives some examples of sets that are not semi-convex, semi-convex
but not convex, and convex, respectively.

Figure 3.12: Visibility be-

tween points 𝑥, 𝑦, and 𝑧

x

y

z

The intersection of a collection of convex sets is also convex, and therefore
any collection of convex sets closed under intersection has a minimum mem-
ber. This leads to the definition of a convex hull of a set of points 𝑆 in ℝ2 as theconvex hull

intersection of all convex sets containing 𝑆. From above, the convex hull must
be the unique smallest convex set that contains 𝑆 (Figure 3.14). A convex hull
of a finite set of points is always a polygonal region.



Fundamental Spatial Concepts 91

Not semi-convex Semi-convex
Not convex

Convex

Figure 3.13: Degrees of

convexity in point sets

3.3 Topology of space

The word “topology” derives from Greek and literally translates to “study of
form.” This may be contrasted with the word “geometry,” which translates to
“measurement of the Earth.” Topology is a branch of geometry concerned with topology

a particular set of geometrical properties—those that remain invariant under
topological transformations. So, what is a topological transformation? In fact,
topology is a general notion that can be applied to many different kinds of
space.

3.3.1 Topological spaces

To gain some topological intuition, imagine the Euclidean plane to be an
unbounded sheet of fine-quality rubber that has the ability to stretch and
contract to any desired degree. Imagine a figure drawn upon this rubber
sheet. Allow this sheet to be stretched but not torn or folded. Certain proper-
ties of the original figure will remain, while others will be lost. For example, if
a polygon were drawn upon the sheet, and a point was drawn inside the poly-
gon, then after any amount of stretching the point would still be inside the
polygon; on the other hand, the area of the polygon may well have changed.
The property of “insideness” is a topological property (because it is invariant
under rubber sheet transformation), while “area” is not a topological property.
The transformation induced by stretching a rubber sheet is called a topological
transformation or homeomorphism. Thus we have the following definitions:

Figure 3.14: Convex hull of

a point set
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Topological properties properties that are preserved by topological transforma-
tions of the space.

Topology the study of topological transformations and the properties that are
left invariant by them.

Table 3.2 lists some topological and non-topological properties of objects
embedded in the Euclidean plane. For object types we take points, arcs, and
area. Later, these types will be defined more carefully; for now, assume the
obvious meanings to arc (possibly curved linear object) and area (2D piece of
plane, possibly with holes and islands).

Table 3.2: Topological

and non-topological

properties of objects

in the Euclidean plane

with the usual topology

A point is at an end-point of an arc

A point is on the boundary of an area

A point is in the interior/exterior of an area

An arc is simple

An area is open/closed/simple

Topological

An area is connected

Distance between two points

Bearing of one point from another point

Length of an arc
Non-topological

Perimeter of an area

The discussion will cover two branches of topology: point-set (or analytic)
topology and combinatorial (or algebraic) topology. In point-set topology,point-set topology

the focus, as one would expect, is on sets of points and in particular on the
concepts of neighborhood, nearness, and open sets. We shall see that several
important spatial relationships, such as connectedness and boundary may
be expressed in point-set topological terms. The other important branch of
topology, which has been applied to spatial data modeling, is combinatorial
topology, in particular the theory of simplicial complexes. Even though thesecombinatorial topology

ideas may at times seem rarefied and far removed from spatial databases, in
fact they do form the basis of several prominent conceptual models used in
GIS. It is certainly true that the construction of sound and lasting generic
spatial models relies on knowledge of the material that is introduced here.

3.3.2 General point-set topology

It is possible to define a topological space in several different ways. The
definition below is based upon a single primary notion, that of neighborhood.
A set upon which a well-defined notion of neighborhood is provided is then
a topological space. It turns out that all the familiar topological properties
are definable in terms of the single concept of neighborhood. Given any
set, the approach is to define a collection of its subsets, constituting the
neighborhoods, and thus provide a neighborhood topology on the set. The
formal definition is now given.

• Let 𝑆 be a given set of points. A topological space is a collection of subsets oftopological space

𝑆, called neighborhood, that satisfy the following two conditions.neighborhood
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𝑇1 Every point in 𝑆 is in some neighborhood.
𝑇2 The intersection of any two neighborhoods of any point 𝑥 in 𝑆 contains

a neighborhood of 𝑥.

Figure 3.15 shows the two conditions of a topological space in action.
Neighborhoods are shown surrounding each point in the set, and two neigh-
borhoods are shown overlapping and containing in their intersection another
neighborhood.

Topological space S

The intersection of two 
neighborhoods of a point 
contains a neighborhood
of that point

neighborhood
point

Each point is in
a neighborhood

Figure 3.15: Points and

neighborhoods in a

topological space

By far, the most important example of a topological space, for our pur-
poses, is the usual topology for the Euclidean plane. The usual topology is so
called because it is the topology that naturally comes to mind with the Eu-
clidean plane, and it corresponds to the rubber-sheet topology introduced
earlier. It is possible to define other (unusual?) topologies on the Euclidean
plane (see Box 3.3 on the next page), and one important example of these,
travel time topology, follows the usual topology.

The usual topology of the Euclidean plane Define an open disk to be a set of open disk

points bounded by a circle in the Euclidean plane, but not including the
boundary. An example is given in Figure 3.16. The convention is that a
hatched line at the boundary indicates that the boundary points are excluded,
whereas a continuous line indicates that boundary points are included.

Figure 3.16: An open disk

in the Euclidean plane

with the usual topology

Define a neighborhood of a point 𝑥 in ℝ2 to be any open disk that has
𝑥 within it (see Figure 3.17). We now show that, under this definition of
neighborhood, ℝ2 is a topological space. To check that condition 𝑇1 for a
topological space holds, it is sufficient to observe that every point in ℝ2 can
certainly be surrounded by an open disk. For 𝑇2, take any point 𝑥 in ℝ2 and
surround it by two of its neighborhoods (open disks with 𝑥 inside), 𝑁1 and
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Box 3.3: Topological spaces

There are many common topological spaces other than

the usual topology. For example, let 𝑆 be any set, and

define the neighborhoods to be all the subsets of 𝑆. It
is easy to confirm that this neighborhood structure de-

fines a topological space (by checking conditions 𝑇1 and
𝑇2). The space is called the discrete topology, because

the smallest neighborhood of each point 𝑥 in 𝑆 is {𝑥}, so
each point in 𝑆 is separated by a neighborhood from ev-

ery other point. Another example of an extreme topology

occurs if we let 𝑆 be any set, and define the only neigh-

borhood to be the set 𝑆 itself. Again, this may easily be

verified to be a topological space, called the indiscrete

topology. The usual topology of the Euclidean plane may

be scaled up or down to Euclidean space of any dimen-

sion. This is illustrated with the usual topology on the Eu-

clidean line. For any real number 𝑥 ∈ ℝ, define a neigh-
borhood of 𝑥 to be any open interval containing 𝑥. This is
the 1D equivalent of the usual topology on the Euclidean

plane, and it can be shown to satisfy properties 𝑇1 and
𝑇2 in a similar way.

𝑁2. Now, 𝑥 will lie in the intersection of these two neighborhoods, and it is
always possible to surround 𝑥 with an open disk entirely within this inter-
section. To see this, let 𝑑1 be the minimum distance of 𝑥 from the boundary
of 𝑁1 and 𝑑2 be the minimum distance of 𝑥 from the boundary of 𝑁2. Then
the open disk with center 𝑥 and radius the minimum of 𝑑1 and 𝑑2 will con-
tain 𝑥 and lie entirely in the intersection of 𝑁1 and 𝑁2 (see Figure 3.18). Thus
𝑇1 and 𝑇2 are satisfied, and under this definition of neighborhood, ℝ2 is a
topological space, called the usual topology for ℝ2.usual topology

Figure 3.17: A neigh-

borhood of 𝑥 in ℝ2

with the usual topology

An open disk that is a
neighborhood of x

point x

Figure 3.18: Condition

𝑇2 is satisfied for ℝ2

with the usual topology

point x

d1

d2

Disk center x
radius d1

N1

N2

Travel time topology Another important topology for spatial information is
travel time topology. Let 𝑆 be the set of points in a region of the plane. Supposetravel time topology

that the region contains a transportation network and that we know the
average travel time between any two points in the region using the network,
following the optimal route. For the purposes of this example, we need to
assume that the travel time relation is symmetric: that is, it must always be
the case that the travel time from 𝑥 to 𝑦 is equal to the travel time from 𝑦
to 𝑥. For each time 𝑡 greater than zero, define a 𝑡-zone around point 𝑥 to be
the set of all points reachable from 𝑥 in less than time 𝑡. As an illustration,
Figure 3.19 shows a 5-zone, 10-zone, and 15-zone around the Spode Pottery.
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Let the neighborhoods be all 𝑡-zones (for all times 𝑡) around all points. Then,
clearly 𝑇1 is satisfied, since each point will have some 𝑡-zones surrounding it.
The argument that 𝑇2 is satisfied is similar to that used for the usual topology
of the Euclidean plane and is omitted. However, the symmetry of the travel
time relation is required at a critical stage in this argument.

A34

A500

A500
M6

A53

A52

A50

A34

Spode Pottery

Places of interest

Travel
time

15 mins
10 mins

5 mins

Figure 3.19: Travel-time

topology example, show-

ing some neighborhoods

(𝑡-zones)

The symmetric travel time measure between two points is an example of a
metric (discussed later in Section 3.4.2). The travel time topology is a special
case of the topology that can be induced by any metric on a space.

3.3.3 Properties of a topological space

It is surprising that out of the single primitive notion of neighborhood it is
possible to construct all the features and properties of a topological space.
This section describes some of these constructions, in a similar way to Henle
(1979), beginning with the definition of “nearness.” Many topologists use the
phrase “limit point” to replace our use of “near point.”

• Let 𝑆 be a topological space. Then 𝑆 has a set of neighborhoods associated
with it. Let 𝑋 be a subset of points in 𝑆 and 𝑥 an individual point in 𝑆.
Define 𝑥 to be near 𝑋 if every neighborhood of 𝑥 contains some point of 𝑋 .

For example, in the Euclidean plane with the usual topology, let 𝐶 be the
open unit disk, centered on the origin, 𝐶 = {(𝑥, 𝑦)|𝑥2 + 𝑦2 < 1}. Then the point
(1, 0), although not a member of set 𝐶, is near to 𝐶, because any open disk
(no matter how small) that surrounds (1, 0) must impinge into 𝐶. In fact, any
point on the circumference of 𝐶 is near to 𝐶, as indeed is any point inside 𝐶.
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However, any point exterior to 𝐶 and not on the circumference is not near
𝐶, since it will always be possible to surround it with a neighborhood that
separates it from 𝐶 (see Figure 3.20).

Figure 3.20: Points

near and not near to

the open unit disk 𝐶
in the Euclidean plane

with the usual topology

Neighborhood
separating from C

Not near to C

Near to C

C

A fundamental topological invariant of any set is its boundary. This notion
can be constructed out of our primitives as follows. First, open and closed
sets are introduced using the neighborhood idea. It will emerge that an open
set is a set that does not contain its boundary, whereas a closed set is a set thatopen set

closed set contains all its boundary.

• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then 𝑋 is
open if every point of 𝑋 can be surrounded by a neighborhood that is
entirely within 𝑋 .

• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then 𝑋 is
closed if it contains all its near points.

The open unit disk 𝐶 above is (obviously) open, because any point, no
matter how close to the circumference, may be surrounded by a neighborhood
made sufficiently small that it is entirely within 𝐶. 𝐶 is not closed, because
points on the circumference are near points to 𝐶 but not contained in 𝐶. For
𝐶 to be closed, it would have to include its circumference. Note that it is
possible for a topological space to contain sets that are both open and closed
or neither open nor closed (see Box 3.4 on the facing page).

This leads us to the related definition of closure.

• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then the
closure of 𝑋 is the union of 𝑆 with the set of all its near points. The closureclosure

of 𝑋 is denoted 𝑋−.

Clearly the closure of a set is itself closed; in fact the closure of set 𝑋 is the
smallest closed set containing 𝑋 . In our example, the closure of the open unit
disk 𝐶 is formed by annexing its circumference. Thus 𝐶 = {(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1}.
This set is called the closed unit disk. We may also force a set to be open by
stripping away unwanted near points, constructing the interior of a set as
follows:

• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then the
interior of 𝑋 consists of all points which belong to 𝑋 and are not nearinterior

points of 𝑋 ′, the complement of 𝑋 . The interior of set 𝑋 is denoted 𝑋∘.
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Box 3.4: Topological spaces (open and closed sets)

Recall from the previous “Topological spaces” Box 3.3

on page 94, that the discrete topology on a space 𝑆 de-

fined the neighborhoods to be all the subsets of 𝑆. Let
𝑋 be any subset of 𝑆, then the only near points of 𝑋 are

the points of 𝑋 itself (since any point not in 𝑋 may be

surrounded by the neighborhood containing just that

point). Thus 𝑋 is closed. 𝑋 is also open, because we can

surround any point of 𝑋 with a neighborhood entirely

in 𝑋 containing just that point. The discrete topology is

therefore odd in that every set within it is both open and

closed. This is not the case for the indiscrete topology.

Let 𝑆 be a set upon which the indiscrete topology is de-

fined and let 𝑋 be any subset of 𝑆. Then, the only neigh-
borhood in 𝑆 is 𝑆 itself. Therefore, every point in 𝑆 is a

near point of 𝑋 . Thus, unless 𝑋 is either empty or equal

to 𝑆, it is neither open nor closed. For the travel time

topology, an example open set is the set of all points less

than 1 hour’s traveling time from a specified point, say,

Spode Pottery. This set has as its boundary the set of all

points that are exactly 1 hour from Spode Pottery, and

as its closure the set of all points having travel time from

Spode Pottery not greater than 1 hour.

Notice that for a point 𝑥 to be near to the complement of set 𝑋 , it must be
the case that each neighborhood of 𝑥 impinges upon 𝑋 ′. Therefore, a point in
𝑋 which is not a near point of 𝑋 ′ has at least one neighborhood of it that is
entirely within 𝑋 . Thus, the interior of a set is open. In fact, the interior of a
set 𝑋 is the largest open set contained in 𝑋 . As an example, if 𝐷 is the closed
unit disk, then 𝐷∘ is the open unit disk. Figure 3.21 shows a further example
of an open and closed set in the Euclidean plane with the usual topology.

Open set Closed set

Figure 3.21: Open and

closed sets in the Eu-

clidean plane with the

usual topology

We are now sufficiently prepared to define the boundary of a set in purely boundary

topological terms.

• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then the
boundary of 𝑋 consists of all points which are near to both 𝑋 and 𝑋 ′. The
boundary of set 𝑋 is denoted 𝜕𝑋 .

Let point 𝑥 be a member of 𝜕𝑋 . Since 𝑥 is near to 𝑋 , then 𝑥 must be in 𝑋−.
Since 𝑥 is near to 𝑋 ′, then 𝑥 cannot be in 𝑋∘. Thus 𝜕𝑋 is the set difference
of 𝑋− and 𝑋∘. In the case of the unit disk 𝐶 in the Euclidean plane with the
usual topology, 𝜕𝑋 is the circumference of 𝐶, as we would expect. As a further
example using the Euclidean plane with the usual topology, suppose that 𝑆 is
the connected region of the plane containing a single hole shown in Figure
3.22. We see that the outer boundary of 𝑆 is excluded from 𝑆, but the inner
boundary of 𝑆 (i.e., the boundary of the hole) is contained in 𝑆. The interior,
closure, and boundary of 𝑆 are as shown in Figure 3.22. 𝑆∘ contains all the



98 GIS: A Computing Perspective

points of 𝑆 excluding its inner boundary. 𝑆− includes both inner and outer
boundaries. 𝜕𝑆 is the union of the inner and outer boundaries of 𝑆.

Figure 3.22: Interior,

closure, and bound-

ary of a region in the

Euclidean plane with

the usual topology

Set S
Interior
of S

Closure
of S

Boundary
of S

It is important to realize that it is not possible to consider the topological
properties of sets in exclusion from the larger spaces in which they are em-
bedded. To illustrate this point, consider a finite length of straight line. If
we take the line to be embedded in a 2D (or higher-dimensional) Euclidean
space, as shown in Figure 3.23a, then its interior is the empty set, and its
boundary and closure are both the line itself. On the other hand, if the same
line is embedded in a 1D Euclidean space, that is, in the real number line, as
shown in Figure 3.23b, then its interior is the line excluding its end-points,
its closure is the line itself, and its boundary consists of the end-points of the
line.

Figure 3.23: Interior, clo-

sure, and boundary of a

line segment in Euclidean

2-space and 1-space

with the usual topology
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a. Topology of a line in

Euclidean 2-space

b. Topology of a line in

Euclidean 1-space

We conclude this brief excursion into point-set topology by considering
the notion of connectedness. In fact, point-set topology recognizes several
different kinds of connectedness. This section defines a simple form based
directly upon the neighborhood properties of a topological space. The next
section includes a description of further forms, including weak, strong, and
path-connectedness.
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• Let 𝑆 be a topological space and 𝑋 be a subset of points of 𝑆. Then 𝑋 is
connected if whenever it is partitioned into two non-empty disjoint subsets, connected

𝐴 and 𝐵, then either 𝐴 contains a point near 𝐵, or 𝐵 contains a point near
𝐴, or both.

Consider the three sets shown in Figure 3.24. In the case of Figures 3.24a
and b, no matter how we choose to divide them into two, the partition will
always satisfy the condition of the definition of connectedness above. Even if
the set in Figure 3.24a is partitioned into its upper and lower disks, with the
point of intersection included in the upper disk, then this point is certainly
a near point of the lower disk. Therefore, the sets in Figures 3.24a and b
are connected. Figure 3.24c shows a set that is not connected. To see this,
partition the set in Figure 3.24c into its upper and lower component disks.
Then no point of the upper disk is a near point of the lower disk, and no
point of the lower disk is a near point of the upper disk. This example shows
that the topological definition of connectedness accords with our intuition.

a. b. c.

Figure 3.24: Connected

(a, b) and disconnected (c)

sets in the Euclidean plane

with the usual topology

3.3.4 Point-set topology of the Euclidean plane

The Euclidean plane with the usual topology provides by far the most impor-
tant example of a topological space, for the purposes of GIS. A homeomorphism homeomorphism

(or topological transformation) of ℝ2 is a bijection of the plane that transforms
each neighborhood in the domain to a neighborhood in the image. Further-
more, any neighborhood in the image must be the result of the application of
the transformation to a neighborhood in the domain. Put more simply and
intuitively, a homeomorphism corresponds to the notion of a rubber sheet
transformation, which stretches and distorts the plane without folding or
tearing.

If the result of applying a homeomorphism to a point-set 𝑋 is point-set
𝑌 , we say that 𝑋 and 𝑌 are topologically equivalent. Thus, in Figure 3.25, the topological equivalence

disk 𝑆 and the area 𝑇 are topologically equivalent, but neither is topologically
equivalent to the area 𝑈 . From an intuitive point of view, it is clearly possible
(at least, in the mind’s eye, with a lot of stretching) to transform 𝑆 to 𝑇 (and
back again) by stretching and contracting a rubber sheet. However, the only
option to arrive at the area 𝑈 from 𝑆 is to tear the sheet, so as to form the
hole in 𝑈 . Tearing is not allowed and therefore 𝑆 and 𝑈 are not topologically
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equivalent. Set 𝑉 , which is formed by gluing the disk to itself at a single
point, is homeomorphic to none of the sets 𝑆, 𝑇, or 𝑈 .

Figure 3.25: Topologi-

cally equivalent and in-

equivalent planar objects

U V

S T

Many mapping ideas are based upon the idea of homeomorphism. For ex-
ample, Figures 3.26 and 3.27 show two maps of The Potteries’ bus routes, first
(Figure 3.26) as a similarity transformation of the actual routings (neglecting
the Earth’s curvature), and second (Figure 3.27) as a topological transfor-
mation of the actual routings. The two bus route maps are topologically
equivalent.

Figure 3.26: Map (sim-

ilarity transformation)

of Potteries’ bus routes

Tunstall

Burslem

Hanley

Newcastle-
under-Lyme

Stoke
Fenton

Longton

A34

A500

A500M6

A53

A52

A50

A34
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Motorway

Secondary roads
Primary roads

Built-up area
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Route 28
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Hanley

Burslem

Newcastle-
under-Lyme

Tunstall

Stoke

Fenton

Longton

27 109

109
28

28

2827
27

27
109

Figure 3.27: Map of

Potteries’ bus routes,

topologically equivalent to

Figure 3.26

Properties that are preserved by homeomorphisms are called topological
invariants. From the definition of a homeomorphism, it is clear that the topological invariance

configuration of neighborhoods of a space is a topological invariant. Other
constructs, such as open set, closed set, and boundary, are also topological
invariants because they are defined purely in terms of neighborhoods.

The paradigm for all open sets in the Euclidean plane is the unit open disk,
with its center at the origin. Therefore, all topologically equivalent areas to
this are open as well. Any set homeomorphic to the unit open disk we term
an open cell. Any set homeomorphic to the closed unit disk is a closed cell (see open cell

closed cellalso Box 3.5 on the following page). An open cell is clearly an open set, and
similarly a closed cell is clearly a closed set. In general, if a set of points owns
its entire boundary then it is closed, and if it owns none of its boundary then
it is open.

Connectedness has already been defined in the context of a general topo-
logical space. Connectedness is defined purely in terms of the topology, so it
is a topological invariant. Essentially, a connected set is “all of a piece,” such
as a line, a cell, or an annulus (a ring). Connected sets are not necessarily
homeomorphic to each other; a cell is not homeomorphic to an annulus be-
cause the rubber sheet would need to be torn to make the hole. Connected
sets that do not have holes are called simply connected. Being simply connected simply connected

is a topological invariant. Cells are simply connected; annuli are not simply
connected.

Two basic 1D object types are the straight-line segment and the circle
(a circle is the boundary of a disk). Using the notion of homeomorphism,
we may generalize these two basic object types as follows. A simple arc is simple arc

topologically equivalent to a straight-line segment: it is clearly connected. The
homeomorphism from a straight-line segment to a simple arc is a bijection, so
it cannot be possible for a simple arc to cross over itself or for its end-points
to be coincident. If the condition on no self-crossings is relaxed, then the
resulting 1D object is termed an arc. If the end-points are coincident and arc

self-crossings are not allowed, then the object is termed a simple loop. If the simple loop
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Box 3.5: Brouwer’s fixed point theorem

Cells, though basic to topological work, are the subject

of one of the most intriguing of results in introductory

topology. Imagine a cell laid out as a rubber shape on the

plane. Now deform the cell by twisting, stretching, even

folding, but not tearing, and replace the cell on the plane

in such a way that it is entirely within its original outline.

Then, there will always be at least one point that has not

moved from its original position! Such a point is called

a fixed point and the result is known as Brouwer’s fixed

point theorem. Brouwer’s fixed point theorem holds for

Euclidean 𝑛-space and has many intriguing and counter-

intuitive implications. As a 3D example, assume the water

within a lake is homeomorphic to the closed unit sphere.

Assume further that the currents within the lake operate

as a continuous rubber sheet transformation of the wa-

ter. Then according to Brouwer’s fixed point theorem, for

any two points in time there must always be some water

that is in exactly the same location within the lake at both

points in time (although it may have moved in between).

Fixed point theorems have played an important role in

computer science, in particular underpinning the theory

of recursion.

end-points are coincident and self-crossings are allowed, then the object is
termed a loop. A simple loop is topologically equivalent to a circle. Examplesloop

of some 1D planar objects are shown in Figure 3.28.

Figure 3.28: Some

1D planar objects

simple arc arc simple loop loop

Moving up a dimension, we have already defined the cell as the primary 2D
topological object, topologically equivalent to the disk and simply connected.
Another notable class of areal objects is the annuli (cells with a single hole).
We can also allow the holes to be occupied by further objects (islands) and so
on (see Figure 3.29).

Figure 3.29: Holes within

holes within holes

The next paragraphs explore further the concept of connectedness, partic-
ularly as it relates to areal objects. The topological property of connectedness
was defined earlier, in Section 3.3.2. We begin by providing a different defini-
tion.

• A set in a topological space is path-connected if any two points in the setpath-connected

can be joined by a path that lies wholly in the set.
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A natural first question is: Given that there are two notions of connect-
edness, namely, connectedness (as defined earlier) and path-connectedness,
do these notions define the same property? The answer to this question is, in
general, no. Although it is possible to show that every path-connected set is
connected, there are sets that are connected but not path-connected. How-
ever, in the special case of the Euclidean plane with the usual topology, each
example of a connected but not path-connected set is pathological, involving
an infinite number of twists and turns. Therefore, for practical purposes, we
may identify notions of connectedness and path-connectedness, certainly for
the areal objects that we will define shortly. Path-connectedness is a more
intuitive notion than pure connectedness, and can therefore be used as a test
for connectedness in practical cases. To summarize, test for connectedness
by asking the question: Given any two points in the set, is it possible to move
from one point to the other along a path entirely within the set?

Many applications of spatial analysis require classes of planar objects that
are purely areal, that is, not mixtures of points, lines, and areas. Also they do
not have isolated missing points (punctures) or arcs (cuts). Interestingly, it is
possible to define the notion of a purely areal object using only topological
notions.

• Let 𝑋 be a set of points in the Euclidean plane under the usual topology.
Then define the regularization of 𝑋 to be the closure of the interior of 𝑋 , regularization

that is, reg(𝑋) = 𝑋∘−.

The regularization process has the effect of eliminating from a set any
pathological and non-areal features. Consider the example shown in Fig-
ure 3.30a, which is an amalgamation of a punctured and cut cell with some
arcs and isolated points. The regularization of the set in Figure 3.30b removes
all cuts, punctures, extraneous arcs, and isolated points. Regularization first
finds the interior of the object, which will remove exterior arcs and points.
Taking the closure will then remove cuts and punctures. What remains is al-
ways a closed, purely areal object. In our example, shown in Figure 3.30b, the
result is a cell.

isolated arc

cut puncture

isolated point

a. 𝑋 b. reg(𝑋)

Figure 3.30: Spatial object

𝑋 comprising an area with

cut, puncture, arcs, and

points, and reg(𝑋), its
regularization

The regularization concept can now be used to characterize pure area.
If an object is already purely areal, then regularizing it will have no effect.
An object for which regularization has no effect is termed regular closed. The
regular closed sets are exactly the purely areal objects that we require. The
formal definition follows.
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• Let 𝑋 be a set of points in the Euclidean plane under the usual topology.
Then 𝑋 is regular closed if and only if 𝑋∘− = 𝑋 .regular closed

Having finally arrived at a topological characterization of objects that are
purely areal, we now reconsider in more detail the notion of connectedness.
Figure 3.31 shows three connected sets.

Figure 3.31: Three

connected sets

X Y Z

There are some clear differences in the kinds of connectedness here. In
the first two cases 𝑋 and 𝑌 , given any two points in each set, there are few
constraints upon the path of connection from the first point to the second.
All that is required is that the path starts at the first point, stays within the
set, and ends at the second point. However, in the case of set 𝑍, if the two
points are in the upper portion and lower portion, respectively, then the
path is constrained to pass through one of the two points on the horizontal
diameter. This difference is expressed by saying that 𝑋 and 𝑌 are strongly
connected, but that 𝑍 is weakly connected. To arrive at a formal definition, note
that 𝑍 may be made disconnected by removing a finite number of points (in
fact, the two points on its horizontal diameter). However, no matter how
large a finite number of points we remove from 𝑋 and 𝑌 , they will remain
connected.

• A connected set 𝑋 in the Euclidean plane with the usual topology is weakly
connected if it is possible to transform 𝑋 into an unconnected set by theweakly connected

removal of a finite number of points.
• A connected set 𝑋 in the Euclidean plane with the usual topology is
strongly connected if it is not weakly connected.strongly connected

Figure 3.32 shows some more strongly and weakly connected sets. While
the sense of strongly and weakly connected sets will resonate with the defi-
nitions of strongly and weakly connected directed graphs introduced in the
previous chapter (Section 2.4.1), the two ideas are quite distinct as can be
seen from their definitions. The notions of strong and weak connectedness in
sets play an important role later in the categorization of planar objects in the
object-based approach to spatial modeling.

The 4-intersection model (4IM) We have seen above how point-set topol-
ogy leads directly to formal of boundary, interior, and closure. An important
characterization of the topological relationships between spatial objects—
more widely cited in the literature than any other—is based on the question:
What can be deduced about the topological relationship between two spa-
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Strongly connected Weakly connected

Figure 3.32: More strongly

and weakly connected

sets

tial regions from the set-theoretic relationship of intersection between their
interiors and boundaries?

To be more precise, let 𝑋 and 𝑌 be the spatial cells, and assume that the
boundaries, 𝜕𝑋 and 𝜕𝑌 , and interiors, 𝑋∘ and 𝑌 ∘, are known. In order to find
the topological relationship between 𝑋 and 𝑌 , compute the set-oriented rela-
tionships between 𝜕𝑋 , 𝑋∘, 𝜕𝑌 , and 𝑌 ∘. In fact, for a first-pass determination
of the topological relationships, we consider the following four sets:

𝜕𝑋 ∩ 𝜕𝑌 𝜕𝑋 ∩ 𝑌 ∘

𝑋∘ ∩ 𝑌 ∘ 𝑋∘ ∩ 𝜕𝑌

Each of these point sets may either be empty (written ∅, the empty set) or
non-empty (¬∅). There are 4 × 4 = 16 different mutually exclusive combi-
nations of possibilities. Each possibility is a condition on the boundaries and
interiors of sets, so each possibility will lead to a relationship between the sets
that is preserved under topological transformations (homeomorphisms). For
general sets in a point-set topology, each of the 16 combinations can exist and
lead to a distinct topological relationship between the two sets 𝑋 and 𝑌 . We
are, however, concerned only with spatial cells embedded in the Euclidean
plane. In this case, only eight of the 16 combinations can occur. Table 3.3
shows the eight possibilities, together with their common names.

𝜕𝑋 ∩ 𝜕𝑌 𝑋∘ ∩ 𝑌 ∘ 𝜕𝑋 ∩ 𝑌 ∘ 𝑋∘ ∩ 𝜕𝑌 Name Alternative

∅ ∅ ∅ ∅ 𝑋 disjoint 𝑌
¬∅ ∅ ∅ ∅ 𝑋 meets 𝑌 𝑋 touches 𝑌
¬∅ ¬∅ ∅ ∅ 𝑋 equals 𝑌
∅ ¬∅ ¬∅ ∅ 𝑋 inside 𝑌 𝑌 contains 𝑋

¬∅ ¬∅ ¬∅ ∅ 𝑌 covers 𝑋 𝑋 covered by 𝑌
∅ ¬∅ ∅ ¬∅ 𝑌 inside 𝑋 𝑋 contains 𝑌

¬∅ ¬∅ ∅ ¬∅ 𝑋 covers 𝑌 𝑌 covered by 𝑋
¬∅ ¬∅ ¬∅ ¬∅ 𝑋 overlaps 𝑌

Table 3.3: Eight relations

between cells in the

Euclidean plane

Any pair of spatial cells in the Euclidean plane must satisfy one and only
one of these possibilities. In technical language, the eight topological relation-
ships are JEPD: jointly exhaustive (i.e., no other possibilities) and pairwise
disjoint (i.e., a pair of regions cannot satisfy two possibilities simultaneously).
These eight possibilities are summarized graphically in Figure 3.33. Because
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four intersections are tested for empty in this method, it is usually known as
the 4-intersection model (4IM).4-intersection model

𝜕𝑋 ∩ 𝜕𝑌  𝑋∘ ∩ 𝑌∘ 𝜕𝑋 ∩ 𝑌∘  𝑋∘ ∩ 𝜕𝑌 𝜕𝑋 ∩ 𝜕𝑌  𝑋∘ ∩ 𝑌∘ 𝜕𝑋 ∩ 𝑌∘  𝑋∘ ∩ 𝜕𝑌 𝜕𝑋 ∩ 𝜕𝑌  𝑋∘ ∩ 𝑌∘ 𝜕𝑋 ∩ 𝑌∘  𝑋∘ ∩ 𝜕𝑌 𝜕𝑋 ∩ 𝜕𝑌  𝑋∘ ∩ 𝑌∘ 𝜕𝑋 ∩ 𝑌∘  𝑋∘ ∩ 𝜕𝑌

Disjoint

Equals

Meets

Overlaps

Contains

Inside

Covers

Covered by

¬∅¬∅ ∅ ∅ ¬∅¬∅ ¬∅ ¬∅ ¬∅∅ ¬∅ ∅ ¬∅¬∅ ¬∅ ∅

¬∅¬∅ ∅ ¬∅¬∅∅ ∅ ¬∅∅¬∅ ∅ ∅∅∅ ∅ ∅

Figure 3.33: The eight

JEPD topological re-

lationships of the 4-

intersection model (4IM)

It can now be seen that 4IM relations meets and overlaps are topological
refinements of the set-oriented operation intersection, while inside and covers

are refinements of the subset of relationship.
This work has been extended for higher-dimensional spaces, and where

the co-dimension is non-zero (i.e., where the dimension of the spatial objectsco-dimension

is less than the dimension of the space in which they are embedded). In this
case, three topological operations are used: boundary, interior, and set com-
plement. The binary spatial relation between two spatial objects 𝑋 and 𝑌 is
classified by checking for emptiness/non-emptiness of the nine combinations
of the operations applied to 𝑋 and 𝑌 , known as the 9-intersection model (9IM).9-intersection model

The 9 combinations are2:2 Recall that𝑋′ is the set
complement or exterior of𝑋 .

𝜕𝑋 ∩ 𝜕𝑌 𝜕𝑋 ∩ 𝑌∘ 𝜕𝑋 ∩ 𝑌′

𝑋∘ ∩ 𝜕𝑌 𝑋∘ ∩ 𝑌∘ 𝑋∘ ∩ 𝑌′

𝑋′ ∩ 𝜕𝑌 𝑋′ ∩ 𝑌∘ 𝑋′ ∩ 𝑌′

3.3.5 Combinatorial topology of the Euclidean plane

The other topological area considered in this chapter is combinatorial topol-
ogy. In some ways, combinatorial topology is more pertinent to computer-
based models than point-set topology, because the often finite and discrete
structures that arise in combinatorial topology are highly suitable for repre-
sentation in computer-based data structures. A typical result of combinato-
rial topology is Euler’s famous formula:Euler’s formula
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• Given a polyhedron with 𝑓 faces, 𝑒 edges, and 𝑣 vertices, then
𝑓 − 𝑒 + 𝑣 = 2.

B
C

E
D

F

A C

F

E

DAB

a. Cube b. Planar configuration homeomorphic

to a cube

Figure 3.34: Example

polyhedron and 3-space

homeomorphism

For example, Figure 3.34a shows a cube (six faces, 12 edges, and eight
vertices). A very similar formula applies to an arrangement of cells in the
plane. Remove a single face from a polyhedron (for example, in Figure 3.34a
remove face 𝐹) and apply a 3-space homeomorphism to flatten the shape onto
the plane. What results is a configuration of cells, with arcs forming common
boundaries and nodes forming the intersection points of the arcs. Flattening
the cube in Figure 3.34a results in the planar configuration in Figure 3.34b.
Since we have removed a face from the polyhedron (it has actually become
the exterior to the cellular configuration, as in Figure 3.34b), we may simply
modify Euler’s formula for the sphere to derive Euler’s formula for the plane.

• Given a cellular arrangement in the plane, with 𝑓 cells, 𝑒 edges, and 𝑣
vertices, 𝑓 − 𝑒 + 𝑣 = 1.

Figure 3.35 shows an example of a planar configuration of cells, with 25 faces,
72 edges, and 48 nodes (inspired by the configuration of the 25 wards of the
City of London).

The topological content of these results becomes clear when we observe
that no matter how the surface of the sphere is divided into polyhedral ar-
rangements, the result of 𝑓 − 𝑒 + 𝑣 is always two, and for planes the result
is always one. Thus the number two characterizes a sphere and distinguishes
it from a plane. If we were to perform the same exercise on the surface of a
torus (doughnut shape), the result is always zero. The result of 𝑓 − 𝑒 + 𝑣 is
called the Euler characteristic of a surface. Euler characteristic

Simplexes and complexes As we will see in later chapters, many of the models
of space found in a GIS use variations of the planar cellular arrangements
described above. The most fundamental formal model of such cellular ar-
rangements uses the notion of a simplicial complex. In the two-dimensional
case, simplicial complexes are simple triangular network structures in the
Euclidean plane.
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Figure 3.35: Planar cellular

arrangement where 𝑓 =
25, 𝑒 = 72, and 𝑛 = 48

• A 0-simplex is a set consisting of a single point in the Euclidean plane.
• A 1-simplex is a closed finite straight-line segment.1-simplex

• A 2-simplex is a set consisting of all the points on the boundary and in the2-simplex

interior of a triangle whose vertices are not collinear.

The vertices of a simplex are defined as: for a 0-simplex the point itself; for
a 1-simplex its end-points; and for a 2-simplex the vertices of the triangle.
A face of a simplex 𝑆 is a simplex whose vertices form a proper subset of
the vertices of 𝑆. Figure 3.36 shows examples of 0-, 1-, and 2-simplexes. The
boundary of a simplex 𝑆, written 𝜕𝑆, is the union of all its faces. For example,
suppose that a 2-simplex 𝑆 has vertices 𝑥, 𝑦, and 𝑧. Then the faces of 𝑆 are the
three 1-simplexes 𝑥𝑦, 𝑥𝑧, 𝑦𝑧 and the three 0-simplexes 𝑥, 𝑦, 𝑧. The boundary
of 𝑆 is the union of these faces, thus corresponding to the usual point-set
topological definition of boundary.

Figure 3.36: Examples

of 0-, 1- and 2-simplexes

0-simplex 1-simplex 2-simplex

Simplexes are the building blocks of larger structures, called simplicial
complexes. Complexes are built out of simplexes in a way that is now made
precise. A simplicial complex 𝐶 is a finite set of simplexes satisfying the proper-simplicial complex

ties:

1. A face of a simplex in 𝐶 is also in 𝐶.
2. The intersection of two simplexes in 𝐶 is either empty or is also in 𝐶.

Figure 3.37 shows examples of configurations, two of which are simplicial
complexes and two are not. In fact, the complexes on the right are formed by
adding sufficient nodes and edges to the configurations on the left to make
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them satisfy the simplicial complex formation rules, a form of “completing
the topology.” In the case of the 2-simplexes 𝑎𝑏𝑐 and 𝑑𝑒𝑓, their intersection
is not a face of either simplex. This is rectified by adding nodes 𝑘 and 𝑙 and
decomposing the original simplexes 𝑎𝑏𝑑 and 𝑑𝑒𝑓 into simplexes 𝑎𝑘𝑓, 𝑎𝑓𝑏, 𝑏𝑓𝑐,
𝑐𝑓𝑙, 𝑓𝑘𝑙, 𝑑𝑘𝑙, and 𝑑𝑒𝑙. These simplexes, along with their faces 𝑎𝑏, 𝑎𝑓, 𝑎𝑘, 𝑏𝑐, 𝑏𝑓,
𝑐𝑓, 𝑐𝑙, 𝑑𝑘, 𝑑𝑙, 𝑑𝑒, 𝑒𝑙, 𝑓𝑙, 𝑓𝑘, 𝑘𝑙 and vertices 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑘, 𝑙, form a simplicial
complex. The 1-simplexes in the lower part of the figure are enhanced in a
similar way by adding vertex 𝑚.

not complexes complexes

a

b

c

ed

f

g
h

ji

a

b

c

ed

f

k l

g
h

ji

m

Figure 3.37: Aggregations

of simplexes

The set of points contained in the constituent simplexes of a simplicial
complex is a set in the Euclidean plane, called the planar embedding of the planar embedding

complex. Figure 3.38 shows the planar embedding of the upper complex in
Figure 3.37.

Figure 3.38: Planar em-

bedding of a simplicial

complex from Figure 3.37

Even though we have given an abstract presentation of simplicial com-
plexes, such structures are common in GI science. An 𝑛-simplex is said to
have dimension 𝑛. The dimension of a simplicial complex is the maximum
dimension of its constituent simplexes. The constructions performed in this
section are all planar, but the ideas can be generalized to higher dimensional
structures. Thus a 3-simplex would be a tetrahedron.

For an 𝑛-complex, 𝐶, the boundary of 𝐶, 𝜕𝐶, is a simplicial complex of
dimension 𝑛 − 1. 1D complexes are graphs, covered previously in Sections
2.4.1 and 3.4.1. 2D complexes may be used to model the triangulated irregular
networks (TINs) used in terrain modeling, or indeed any areal objects.

Combinatorial map A different approach to combinatorial topology is known
as the combinatorial map. Assume that the boundary of a cellular arrangement combinatorial map

is decomposed into simple arcs and nodes, as in Figure 3.35. Next, distin-
guish the two directions of each arc, akin to a bidirected graph structure. A
combinatorial map is then:
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• The set of directed arcs 𝐷, called darts. In Figure 3.39, the set of darts
𝐷 = {𝑎𝑏, 𝑎𝑔, 𝑎ℎ, 𝑏𝑎, 𝑏𝑐, 𝑏𝑖, 𝑐𝑏, 𝑐𝑖, 𝑐𝑑, 𝑑𝑐, 𝑑𝑒, 𝑑𝑖, ...} and so on.

• A function 𝜎 ∶ 𝐷 → 𝐷 that for each dart specifies the next dart in a
counterclockwise direction at each node. For example, in Figure 3.39
𝜎(𝑎𝑏) ↦ 𝑎𝑔, 𝜎(𝑎𝑔) ↦ 𝑎ℎ, 𝜎(𝑎ℎ) ↦ 𝑎𝑏 and so on. Written as a relation,
𝜎 = {(𝑎𝑏, 𝑎𝑔), (𝑎𝑔, 𝑎ℎ), (𝑎ℎ, 𝑎𝑏), (𝑏𝑎, 𝑏𝑖), (𝑏𝑖, 𝑏𝑐), (𝑏𝑐, 𝑏𝑎), ...}. The function 𝜎
is a bijection (an injection and a surjection).

• A function 𝛼 ∶ 𝐷 → 𝐷 that for each dart specifies the other dart that
makes up that arc. For example, in Figure 3.39 𝛼(𝑎𝑏) ↦ 𝑏𝑎, 𝛼(𝑏𝑎) ↦ 𝑎𝑏,
𝛼(𝑎𝑔) ↦ 𝑔𝑎 and so on. The function 𝛼 is also a bijection, as well as a sym-
metric, irreflexive function. Written as a relation, 𝛼 = {(𝑎𝑏, 𝑏𝑎), (𝑎𝑔, 𝑔𝑎),
(𝑎ℎ, ℎ𝑎), (𝑏𝑎, 𝑎𝑏), (𝑏𝑐, 𝑐𝑏), (𝑏𝑖, 𝑖𝑏), (𝑐𝑏, 𝑏𝑐), ...}.

Figure 3.39: A planar

cellular arrangement,

augmented with a set

of darts 𝐷 as the basis

for a combinatorial map
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Intriguingly, this abstract structure of darts and functions provides a
unique and unambiguous representation of a cellular arrangement, such as
that in Figure 3.39. Adopting the rule that a dart bounds the face on its right
as we traverse it, we can use the functions 𝜎 and 𝛼 to reconstruct each face.
For example, let us reconstruct the boundary of face 7 in Figure 3.39. We start
with any one of its bounding darts, say 𝑎ℎ. Next, alternating the functions
𝛼 and 𝜎 will allow us to trace around face 7: 𝛼(𝑎ℎ) ↦ ℎ𝑎, 𝜎(ℎ𝑎) ↦ ℎ𝑔,
𝛼(ℎ𝑔) ↦ 𝑔ℎ, 𝜎(𝑔ℎ) ↦ 𝑔𝑎, 𝛼(𝑔𝑎) ↦ 𝑎𝑔, and finally back to the start of the
cycle with 𝜎(𝑎𝑔) ↦ 𝑎ℎ. The choice of starting dart was arbitrary; we might
have picked any of the darts that bound 7 on their right: 𝑎ℎ, ℎ𝑔, or 𝑔𝑎. Each
of the other faces may be similarly traversed. Dart ℎ𝑎, for example, bounds
face 1: 𝛼(ℎ𝑎) ↦ 𝑎ℎ, 𝜎(𝑎ℎ) ↦ 𝑎𝑏, 𝛼(𝑎𝑏) ↦ 𝑏𝑎, 𝜎(𝑏𝑎) ↦ 𝑏𝑖, ... and so on.
For completeness, we must also include the external face, 𝑋 , bounded by 𝑏𝑎,
𝛼(𝑏𝑎) ↦ 𝑎𝑏, 𝜎(𝑎𝑏) ↦ 𝑎𝑔, 𝛼(𝑎𝑔) ↦ 𝑔𝑎, 𝜎(𝑔𝑎) ↦ 𝑔𝑓, 𝛼(𝑔𝑓) ↦ 𝑓𝑔, 𝜎(𝑓𝑔) ↦ 𝑓𝑒, ...
and so on.

The combinatorial map is the foundation of the NAA (node-arc-area) and
DCEL representations of planar configurations, discussed in more detail in
Chapter 5.
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3.4 Further spaces

The picture emerging over this chapter is that space is not just one thing,
one reality; rather it is a family of related representations each of which
foregrounds particular properties of space and offers particular characteristics
and operations. This final section visits three further types of spaces: network
spaces build on the foundations of abstract graphs introduced in the previous
chapter; metric spaces formalize the concept of distance between objects
in the space; and fractal geometry tackles spatial objects that exhibit self-
similarity and scale dependence.

3.4.1 Network spaces

A great many spatial problems can be represented using a network. For
example, a system of roads or rail links is often thought of as a network; the
task of deciding what route to take when traveling by car is essentially the
task of finding a suitable route through a network. Several famous spatial
problems have been solved by representing the problem as a network, such as
the Königsberg bridge problem (see Box 3.6 on the next page).

We have already encountered abstract graphs as a formal model of the
network, in connection with graph databases in the previous chapter (Sec-
tion 2.4.1). Building on these foundations, this section introduces some fur-
ther graph concepts important for modeling geographic spaces, including trees
and planar graphs.

Abstract graphs revisited Recall from Section 2.4.1 that a graph is a set of
nodes together with a set of edges that connect pairs of nodes. Armed with
our knowledge of sets, relations, and functions gained in the previous section,
we can now more precisely define the following graph structures already
encountered:

• An undirected graph 𝐺 = (𝑁, 𝐸) is a set of nodes 𝑁 together with a set 𝐸 of
unordered pairs of nodes, called edges.

• A directed graph 𝐺 = (𝑁, 𝐸) is a set of nodes 𝑁 together with a set of edges
drawn from a relation on the set of nodes, 𝐸 ⊆ 𝑁 × 𝑁.

• An (edge) labeled graph 𝐺 = (𝑁, 𝐸, 𝑤) is a set of nodes 𝑁, edges 𝐸, together
with an edge-labeling function 𝑤 ∶ 𝐸 → 𝐿 mapping each edge to a label in
the set 𝐿.

• An (edge) weighted graph is a labeled graph 𝐺 = (𝑁, 𝐸, 𝑤) where the labels
are drawn from positive numbers, e.g., 𝑤 ∶ 𝐸 → ℚ+.

• A (directed) multigraph 𝐺 = (𝑁, 𝐸, 𝑠, 𝑡) is a set of nodes 𝑁, a set of edges 𝐸,
and two functions 𝑠 ∶ 𝐸 → 𝑁 and 𝑡 ∶ 𝐸 → 𝑁 mapping each edge to its start
and end node, respectively.

Recall also from Section 2.4.1 that a path is an ordered sequence of nodes
in a graph, where each consecutive pair of nodes is connected by an edge; a
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Box 3.6: Königsberg bridge problem

The Königsberg bridge problem addresses the question

of whether it is possible to walk a circuit that crosses each

of seven bridges (shown below left) in the city of Königs-

berg once and only once. You might try to find such a

route yourself. However, don’t try for too long as in 1786

the mathematician Leonard Euler succeeded in prov-

ing that the task is impossible. Euler’s proof is based on

a model of the topological relationships between the

Königsberg bridges (shown below right). The nodes, la-

beled 𝑤, 𝑥, 𝑦, and 𝑧, are abstractions of the regions of dry
land. The edges between nodes are abstractions of the

bridges connecting regions of dry land. Euler noted that

apart from the start and end nodes, any path through

a node must come in along one edge and out along an-

other edge. So, if the problem is to be solvable, then the

number of edges incident with each intermediate node

must be even. However, in Königsberg none of the nodes

is incident with an even number of edges. Thus, Euler

proved that it was impossible to cross each bridge just

once. A path through a graph that visits each edge exactly

once is still termed an Eulerian trail.
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w

y
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cycle is a path from a node to itself traversing at least one edge; a graph is
connected if there exists a path between every pair of nodes.

Trees and DAGs An especially useful class of graphs is the tree. A tree is atree

connected acyclic graph. Figure 3.40 shows the three non-isomorphic trees,
each with five nodes.

A rooted tree is a tree that has one of its nodes, the root, distinguished fromrooted tree

the others. Rooted trees (often we omit the word “rooted”) are conventionally
drawn with the root at the top and nodes occupying successive levels down,
depending upon their distance (in terms of path) from the root. Nodes im-
mediately below the root are termed immediate descendants of the root; they
themselves may have descendants, and so on. A node with no descendants is
termed a leaf . Figure 3.41 shows an example of a layered rooted tree. Treesleaf

Figure 3.40: The

three non-isomorphic

trees with five nodes
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provide some useful data structures for computational purposes, to which we
return in later chapters.

root

leaf

leaf

Figure 3.41: Rooted tree

with five levels and eight

leaves

The class of directed graphs that have no cycles is particularly useful for
a wide range of applications. These graphs are termed directed acyclic graphs
or DAGs. A DAG defines a partial order on its nodes. As introduced above, a DAG

(strict) partial order is a special form of relation on a set, which is irreflexive, partial order

antisymmetric, and transitive.
An example of a partial ordering is the relation “greater than,” between

two real numbers. No number can be greater than itself (irreflexive); if 𝑥 is
greater than 𝑦, then it cannot be that 𝑦 is greater than 𝑥 (antisymmetric);
and 𝑥 greater than 𝑦 greater than 𝑧 implies 𝑥 greater than 𝑧 (transitive). For
a DAG, if we define a relation 𝑅 where (𝑎, 𝑏) ∈ 𝑅 means “there exists a path
from 𝑎 to 𝑏,” then it can be shown that this relation is a partial order.

Planar graphs A further level of information may be added to the graph-
theoretic model by considering the embedding of the graph in the Euclidean
plane. A planar graph is a graph that can be embedded in the plane in a planar graph

way that preserves its structure. In particular, a planar graph’s edges are
embedded as arcs that may only intersect at nodes of the graph. Figure 3.42a
shows a planar graph while Figure 3.42b shows a non-planar graph. For the
non-planar graph in Figure 3.42b, no rearrangement of arcs in the plane
will preserve the original connectivity without leading to edges crossing
somewhere other than at a node.

a. Planar b. Non-planar

Figure 3.42: Planar and

non-planar graphs

In general, there are many topologically inequivalent planar embeddings of
a planar graph in the plane. A planar graph together with an embedding into
the plane such that arcs intersect only at nodes of the graph is called a plane
graph. plane graph
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Figure 3.43 shows three embeddings of the planar graph of Figure 3.42.
The upper two embeddings are homeomorphic, but not homeomorphic to the
lowest, with respect to the usual topology of the Euclidean plane. There is no
way, using topological transformations (rubber-sheet geometry), to move the
node of degree two inside the triangle to a position outside the triangle.

This last discussion raises an interesting consideration. Configurations
that are taken to be equivalent in one model may very well be inequivalent
in another. The second and third configurations are equivalent in a graph-
theoretic sense, both being identically connected. However, when viewed as
embeddings in the plane, they are inequivalent in the topological sense (and
certainly in the metric sense). It all depends on the level of abstraction.

Figure 3.43: Three planar

embeddings of a planar

graph (plane graphs a, b,

and c, where b and c are

also homeomorphic) and

one non-planar embed-

ding of a planar graph (d) a d

cb

A planar embedding of a planar graph determines a subdivision of the
plane into faces or regions. A simple integrity constraint upon a planar graph
discussed in an earlier section is given by the Euler formula for the plane,
which provides a relationship between the number of nodes 𝑛, arcs 𝑎, and
faces 𝑓, as 𝑓 − 𝑎 + 𝑛 = 1.

A useful concept associated with planar embedded (i.e., plane) graphs is
that of duality. The dual 𝐺∗ of a plane graph 𝐺 is obtained by associating adual graph

node in 𝐺∗ with each face in 𝐺. Two nodes in 𝐺∗ are connected by an edge
if and only if their corresponding faces in 𝐺 are adjacent. Given an edge 𝑒 in
𝐺, the dual edge 𝑒∗ joins the nodes in 𝐺∗ corresponding to the two faces in 𝐺
incident with 𝑒. Figure 3.44 shows a plane graph (nodes filled in black, edges
marked with continuous lines) and its dual (nodes shown filled in color, edges
marked with dotted lines).

When the planar graph 𝐺 is a diagonal triangulation of a polygon (with no
Steiner points), then the dual graph 𝐺∗ has the properties that the degree of
each node is no more than three (because triangles have three sides), and that
𝐺∗ is acyclic and connected: it is a tree.
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Figure 3.44: A planar

graph and its dual

3.4.2 Metric spaces

This final section explores the kind of properties a model of space should have
if it is to include the concept of distance between objects in the space. Such
a space is called a metric space. The formal definition follows, but it should
be noted that it does not always accord with our commonsense notion of
distance.

A point-set 𝑆 is said to be a metric space if there exists a distance function metric space

𝑑 that takes ordered pairs (𝑠, 𝑡) of elements of 𝑆 and returns a distance which
satisfies the following three conditions:

1. for each pair 𝑠, 𝑡 in 𝑆, 𝑑(𝑠, 𝑡) > 0 if 𝑠 and 𝑡 are distinct points and 𝑑(𝑠, 𝑡) = 0
if 𝑠 and 𝑡 are identical;

2. for each pair 𝑠, 𝑡 in 𝑆, the distance from 𝑠 to 𝑡 is equal to the distance from
𝑡 to 𝑠, 𝑑(𝑠, 𝑡) = 𝑑(𝑡, 𝑠);

3. for each triple 𝑠, 𝑡, 𝑢 in 𝑆, the sum of the distances from 𝑠 to 𝑡 and from 𝑡
to 𝑢 is always at least as large as the distance from 𝑠 to 𝑢, that is: 𝑑(𝑠, 𝑡) +
𝑑(𝑡, 𝑢) ≥ 𝑑(𝑠, 𝑢).

d(y,z)

d(x,z)

d(x,y)

x

z

y

Figure 3.45: Triangle

inequality

Put into more informal language, the first condition stipulates that the
distance between points must be a positive number unless the points are
the same, in which case the distance will be zero and the points will be in-
discernible from each other. The second condition ensures that the distance
between two points is independent of which way around it is measured, i.e.,
its distance measure is symmetric. The third condition states that it must al-
ways be at least as far to travel between two points via a third point rather
than to travel directly. This third property is termed the triangle inequality triangle inequality

(i.e., any two sides of a triangle must together be longer than the third side)
due to the configuration shown in Figure 3.45.

These three properties of a distance measure—indiscernibility, symmetry,
and the triangle inequality—together define a metric. In order to motivate this metric

definition, we give below some possible distance functions and consider them
with respect to properties 1–3 above. Let 𝑆 be a set of cities on the globe and
distance between two cities in 𝑆 defined as follows (see Figure 3.46):
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Geodesic distance The distance “as the crow flies” is termed the geodesic distance.geodesic distance

In our example, it is the distance along the great circle of the Earth passing
through the two city centers.

Spherical Manhattan distance The name “Manhattan distance” arises because in
Manhattan many of the streets are arranged in a grid-like configuration.
In the plane, the Manhattan distance is simply the sum of the difference inManhattan distance

𝑥 and 𝑦 coordinates. Similarly, the spherical Manhattan distance is the
difference in latitudes plus the difference in longitudes (see Box 3.7 on the
facing page).

Travel time distance The minimum time required to travel from one city to
the other (for example, using a sequence of scheduled airline flights) is the
travel time distance.travel time distance

Lexicographic distance The absolute value of the difference between the posi-
tions of cities in a fixed list of place names (gazetteer) is termed the lexico-
graphic distance.lexicographic distance

Figure 3.46: Distances

defined on the globe

Manhattan
distance

travel time
distance

lexicographic
distance

geodesic
distance

A A
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B B

B B

city A

city B

...

The first property of a metric space is quite uncontroversial, and satisfied
by any self-respecting distance function. Sensible distances cannot be allowed
to be negative. Also, the distance between an element and itself is always
zero, whereas the distance between two distinct elements is always greater
than zero. All the distance functions in our city example possess these proper-
ties. The third property, the triangle inequality, would also be a surprise if it
did not hold for our distance measure. In plain English, the triangle inequal-
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Box 3.7: Latitude and longitude

Many of the models in this chapter have been founded

upon the plane. The plane is a useful approximation to

the Earth’s surface over small distances, but the Earth

is not flat, so over larger distances other approxima-

tions are needed. The most common such approxima-

tion is the sphere. The surface of the sphere, although

embedded in Euclidean 3-space, is 2D. Thus, any point

on it may be uniquely specified by two numbers. A fa-

miliar system of coordinates for points on the surface of

the sphere is latitude and longitude. In the diagram be-

low, 𝑜 is origin of the coordinate system, 𝑝 is an arbitrary

point on the sphere, and 𝑞 is the projection of 𝑝 onto the

𝑥𝑦-plane. The angle between 𝑜𝑝 and 𝑜𝑞 is the latitude of
the point 𝑝. The angle between 𝑜𝑞 and the 𝑥-axis is the

longitude of 𝑝. The great circle of the sphere in the 𝑥𝑦-
plane is the equator and the great circle in the 𝑥𝑧-plane
is themeridian. The usual topology of the surface of the

sphere is similar to the usual topology of the Euclidean

plane. Neighborhoods are sets of points with a constant

distance from a fixed point, measured along a geodesic

(great circle). Computing distances, angles, and areas on

the sphere requires spherical trigonometry, with substan-

tial differences to the planar geometry introduced in this

chapter. On the sphere, straight lines meet at two points

and the internal angles of a triangle sum to more than

180∘, for example. A more detailed introduction to lati-

tude and longitude may be found in Longley et al. (2015).

z

x

y

p

q
o

Equator

Meridian

ity implies that it is never any farther to go by a direct route than an indirect
route. All the above examples obey the triangle inequality.

Only the second property—of symmetry, that the distance from 𝑎 to 𝑏 is
always the same as the distance from 𝑏 to 𝑎—is a little more controversial. The
geodesic, Manhattan, and lexicographic distances do all satisfy this condition.
However, the travel time distance is not necessarily symmetric. For example,
it is perfectly possible (and indeed usual due to prevailing winds) for the
flight times between two cities to be different in each direction. A distance
function that obeys properties 1 and 3 but not 2 is called a quasimetric. quasimetric

So, the collection of cities together with the geodesic distance function,
the Manhattan distance function, and the lexicographic distance function are
all metric spaces. The collection of cities with the travel time function is a
quasimetric but not a metric space. The archetypal example of a metric space
is Euclidean space, where the distance between two points is defined by the
Pythagorean formula given earlier (Section 3.1.1). This distance function can
easily be extended to higher dimensions.
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Topology of metric spaces It turns out that a metric space has a natural topol-
ogy. Let 𝑆 be a metric space with distance function 𝑑. For each point, 𝑥 in
𝑆 and each real number 𝑟, define the open ball 𝐵(𝑥, 𝑟) to be the set of points
whose distance from the point 𝑥 is less than the number 𝑟. Expressed for-
mally:

𝐵(𝑥, 𝑟) = {𝑦|𝑑(𝑦, 𝑥) < 𝑟}

Define the set of neighborhoods to be the set of open balls. It is not hard
to verify that this defines a topology for 𝑆. In the case of the Euclidean met-
ric, this example reduces to the usual topology of the Euclidean plane. In the
case of the Manhattan metric, then the open ball 𝐵(𝑥, 𝑟) will contain all points
for which the sum of the horizontal and vertical distances from 𝑥 is less than
𝑟. In the case of the Manhattan metric applied to a flat planar space, the open
balls 𝐵(𝑥, 𝑟) will be squares of diagonal 2𝑟, as shown in Figure 3.47.

Figure 3.47: An open

ball induced by the

Manhattan metric

r

grid

open
ball

Travel time measures have some interesting properties. We have seen that,
in general, they do not lead to metric spaces because they are not necessarily
symmetric (for example, in a one-way traffic system). Let us for the moment
make the simplifying assumption that distances are symmetric, so a topol-
ogy may be defined as above. This is the travel-time topology introduced in
Section 3.3.2. Computing topological neighborhoods can be illuminating in
this case. Figure 3.48 shows a travel-time neighborhood (𝑡-zone) of Liège,
computed by Dussart and redrawn and considered by Tobler (1993).

The shaded region shows the area within 1 hour’s travel time of the center
of Liège in 1958 by the common means of travel available at that time. This
“neighborhood” is not even connected, being the disjoint union of a finite
number of cells. This type of pattern arises because of the discontinuous
nature of travel on public transport, boarding and alighting at fixed and
discrete points. As Tobler points out, such travel-time configurations are
not amenable to modeling within the framework of Euclidean space. Such
problems force us to use network models. Later chapters further develop this
theme.
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20 km

Figure 3.48: A travel-

time neighborhood of

Liège, computed by

Dussart (Tobler, 1993).

Shading indicates areas

attainable within 1 hour

from Liège center in

1958 by a combination of

tramway, autobus, chemin

de fer, and walking (5

km/h)

3.4.3 Fractal geometry

The appearance and characteristics of many geographic and natural phenom-
ena, such as landscapes and coastlines, depend on the scale at which these
phenomena are observed, termed scale dependence. For example, Figure 3.49 scale dependence

shows a satellite image of the Ganges River delta, Bangladesh, at three differ-
ent scales. More detail is revealed at each finer scale, with detail revealed at
finer scales tending to resemble details at coarser scales, termed self-similarity. self-similar

The shape of the coastline and sinuosity of the rivers are similar at each scale,
making it difficult to gauge the size of land forms in Figure 3.49. The scale has
been deliberately omitted from Figure 3.49 to emphasize the effect; in fact,
the first image is of an area about 60 km across, the final image approximately
15 km across. We can imagine repeating the process of zooming in over and
over, perhaps until we reach the microscopic level. At every scale, new and
self-similar detail would be revealed.

The straight lines and smooth curves of Euclidean geometry are not well
suited to modeling self-similarity and scale dependence. In a classic book, the
Polish mathematician Benoit Mandelbrot (1982) argued that a fundamentally
different type of geometry, which he dubbed fractal geometry, provides a more fractal geometry

faithful representation of such natural and geographic phenomena. Fractal
geometry concerns the study of shapes, called fractals, that are self-similar fractal

across all scales. Although the term “fractal” is relatively recent, fractal shapes
and the problems they cause mathematicians have been known for hundreds
of years (see Box 3.8 on page 121).

True fractals are self-similar because they are defined recursively, rather
than by describing their shape directly. For example, Figure 3.50 shows the
first four stages in the construction of a famous fractal, the Koch snowflake, Koch snowflake

named after a Swedish mathematician, Helge von Koch. Building a Koch
snowflake starts with an equilateral triangle, termed the initiator step. Then
each straight line is divided into three equal parts. The middle part of each
line is replaced with a new equilateral triangle, correctly scaled and with no
base, termed the generator step. The Koch snowflake is the result of iterating
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Figure 3.49: False-

color composite using

green, infrared, and

blue wavelengths of

Ganges River delta at

three levels of detail

(Source: NASA Landsat-

7 image, February 2000)

the generator step an infinite number of times. Irrespective of the scale at
which the Koch snowflake is viewed, it always exhibits the same level of detail.

Simple fractals like the Koch snowflake form a useful analogy to natural
self-similar phenomena. More complex fractals can produce more “realistic”
looking shapes. Figure 3.51 shows a synthetic “fractal landscape.” Like the
Koch snowflake, this landscape (including the clouds and water) is the result
of recursively applying a feedback generator. The generator step of the Koch
snowflake is essentially a similarity transformation, introducing at each
iteration scaled copies of the original shape at one-third of the size of the
previous iteration. In addition to being self-similar, fractals like those in
Figure 3.51 are self-affine. Self-affine fractals can be constructed using affineself-affine

transformations within the generator, so rotations, reflections, and shears
can be used in addition to scaling (recall from Section 3.1.4 that all affine
transformations are also similarity transformations).

Figure 3.50: First four

stages in the construction

of the Koch snowflake

Aside from producing attractive pictures, fractal geometry has a number
of more serious uses in GIS, for example, for map generalization (discussed
further in Chapter 8). In order to produce maps at a range of different scales,
it is often important to be able to decrease, and occasionally increase, the
level of detail in the representation of spatial data while still retaining the
essential characteristics of that line (for example, its “wiggliness”). Simplifica-
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Box 3.8: Jordan curve theorem

In 1887, the French mathematician Camille Jordan formu-

lated a famous theorem about simple loops, now known

as the Jordan curve theorem. The theorem states that,

given any simple loop, then the complement of the sim-

ple loop is not connected, but is partitioned into two con-

nected components, one of which is bounded (called the

inside of the loop) and one not bounded (called the out-

side of the loop). This proposition may seem so blindingly

obvious as to be the sort of thing that gives mathemati-

cians a bad name. In fact, it is quite difficult to prove con-

vincingly. The problem lies in the wide variety of shapes,

including some fractals, that qualify as loops. For exam-

ple, the Koch snowflake in Figure 3.50 is a loop, but does

not have a defined slope at any point on it. Technically, it

is nowhere differentiable (see Chapter 4). The effort in-

volved in proving the Jordan curve theorem resulted in

the development of techniques that were instrumental in

the birth of topology as a major branch of mathematics.

The theorem has a practical application in the field of GIS,

being the foundation of the point-in-polygon operation,

discussed in more detail in Chapter 5.

tion requires less detail; enhancement requires more detail. By approximating
the shape of a river, for example, as a fractal we can easily generate represen-
tations of that river at arbitrary levels of detail.

Figure 3.51: Entirely syn-

thetic fractal landscapesOther uses of fractals are often based on the concept of fractal dimension.
Fractal dimension is an important property of fractals, which provides a
measure of the degree to which new detail is revealed at different scales. fractal dimension

The fractal dimension of a shape lies somewhere between the Euclidean
dimensions of the shape and its embedding space. For example, the fractal
dimension of the Koch snowflake in Figure 3.50 lies between 1, the dimension
of a line, and 2, the dimension of the Euclidean plane.3 Fractal dimension 3 The Koch snowflake, for

example, has a fractal dimension
of 1.26.

is an indicator of shape complexity: a shape with a high fractal dimension is
complex enough to nearly fill its embedding space (e.g., a curve with a fractal
dimension of 1.8 almost fills the plane). As a result, fractals are often referred
to as space-filling. The space-filling characteristics of fractals are useful for space-filling

indexing spatial information, as we shall see in Chapter 6.
Fractal dimension can also be a useful descriptor of a geographic shape.

The fractal dimension of a river may be used as an indicator of the underlying
geomorphological and hydrological processes involved in river formation.
Similarly, fractal dimension analysis is used in landscape ecology to assess
the complexity of geographic patches, such as plant or animal habitats. The
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fractal dimension of a “true” fractal shape, like the Koch snowflake, can be
determined using theoretical analysis of the fractal generator. However, the
fractal dimension of natural geographic phenomena, such as rivers, terrain
surfaces, and animal habitats, must be determined empirically. Such empirical
measurements of fractal dimension are notoriously unreliable and require
careful analysis.

3.4.4 Summary of operations

This chapter has set out the fundamental spatial concepts that underpin most
GIS. While other important spatial concepts exist, the Euclidean, geometric,
topological, metric, and network spaces and concepts in this chapter are
those most commonly encountered. We close this chapter by taking a slightly
different perspective, summarizing some of the most important operations
covered in this chapter in Table 3.4.

Table 3.4: Catalog of

spatial operations

Group Operation Symbol Operand(s) Output

Set-oriented equals = region, region Boolean

member of ∈ point, region Boolean

subset of ⊆ region, region Boolean

disjoint from region, region Boolean

intersection ∩ region, region region

union ∪ region, region region

difference \ region, region region

adjacent node, node BooleanNetwork-

oriented incident node, edge Boolean

connected node, node Boolean

degree node integer

connected graph Boolean

semi-connected directed graph Boolean

Topological boundary 𝜕 cell loop

interior ∘ cell open cell

closure − cell closed cell

meets cell, cell Boolean

overlaps cell, cell Boolean

inside cell, cell Boolean

covers cell, cell Boolean

connected region Boolean

extremes arc set(points)

within point, loop Boolean

distance || point, point real

bearing/angle ∠ point, point [0, 2𝜋[Euclidean,

metric length || arc real

area cell real

perimeter cell real

The operations in Table 3.4 are grouped into general, set-oriented, network-
oriented, topological, and Euclidean and metric. The types for inputs to each
operation (called operands) are shown along with the resulting output type.
The spatial types used are points, of course, the basis of so many spatial struc-
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tures; regions (arbitrary one- or two-dimensional point sets); cells (point sets
homeomorphic to a disk); arcs (one-dimensional curves); loops (closed arcs
with no self-intersections); as well as network types nodes, edges, and graphs,
introduced in the previous chapter.

Some operations are unary (applying to a single operand); others are
binary (applying to two operands). In addition to operations we have already
seen in this chapter, the operation extremes acts on an object of type arc and
returns the pair of points of the arc that constitute its end-points. Operation
within provides a relationship between a point and a loop, returning true if
the point is enclosed by the loop. This relationship is the often-used point-in-
polygon operation, discussed in detail in Chapter 5.

The operations in Table 3.4 are a summary and guide, but by no means
provide a complete typology.4 For example, the operations distance, bearing,

4 It should be noted that not
all operations in Table 3.4 are
independent. For set theoretic
operations, the usual set-
theoretic constraints hold (for
example, De Morgan’s laws,
𝑋\(𝑌 ∩ 𝑍) = (𝑋\𝑌) ∪ (𝑋\𝑍)
and𝑋\(𝑌 ∪ 𝑍) = (𝑋\𝑌) ∩
(𝑋\𝑍)). Other examples of
interdependencies exist between
the topological boundary,
interior, closure, and set
complement operations:
for example, 𝜕𝑋 is the set
difference of𝑋− and𝑋∘; and
𝑋− is the set complement
of (𝑋′)∘ , the interior of the
complement of𝑋 .

and angle are defined between the point elements of the space. In practice,
it is often important to measure distances and angles between objects of
different dimensions. For example, we might wish to know the distance of a
town from a motorway. There are several ambiguities here. Do we mean the
town center or the town as an area? Are we measuring distance along roads as
the crow flies, or by some other means? If, for example, we are measuring as
the crow flies, do we want the distance to the nearest point on the motorway
or to the nearest intersection? These ambiguities must be resolved before
the question can be answered properly. We return to some of the options in
Chapter 5.

Reflections

Space is so much more than coordinates! While Euclidean geometry and the
Cartesian plane are the most familiar and arguably most intuitive represen-
tations of space, a GIS employs multiple different representations in tandem.
Geographic information scientists are experts in selecting the representa-
tion of space appropriate to the problem at hand, and they are also adept at
switching between representations as required.

A wealth of mathematical texts exists to support those who wish to deepen
their knowledge of the different types of spaces. Readers already more math-
ematically inclined may enjoy Coxeter (1961), which gives a fascinating
overview of the variety that geometry offers, from basic work with triangles
and polygons, through tessellations and 2D crystallography, to the platonic
solids and golden section. A similarly stimulating tour of some of the most
engaging ideas in graph theory can be found in Hartsfield & Ringel (2003),
with a more systematic introduction to the topic in Saoub (2021).

Algebraic or combinatorial topology can be quite inaccessible to all but
the mathematically gifted. A book that has withstood the test of time as a
readable elementary introduction is Giblin (1977). Combinatorial maps were
introduced in the Master’s dissertation of distinguished computer scientist



124 GIS: A Computing Perspective

Jack Edmonds (1960). Ohori, Ledoux, & Stoter (2015) explore the application
of combinatorial structures, including simplicial complexes, to 3D and higher
dimensional GIS. Zlatanova, Rahman, & Shi (2004) give a readable overview
of some of the key concepts and challenges in capturing the topology in 3D
GIS.

In connection with fractal geometry, Mandelbrot (1982) has become a
modern classic. Burrough (1981) and Goodchild (1988) are two early examples
of fractal geometry applied to spatial information, with further examples of
fractal geometry applied to spatial information and GIS found in Lam & De
Cola (1993) and Duckham, Drummond, & Forrest (2000).




