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16.1 � DETERMINANTS OF HEALTH

While estimates of the exact contributions vary between studies, at least 50% of 
a person’s health can be attributed to their environment, lifestyle, and behavior 
(Centers for Disease Control and Prevention 2019, Tarlov 1999, McGinnis, Williams-
Russo, and Knickman 2002, Choi and Sonin 2019). A study in England attributed 
40% of all disease burden to identifiable risk factors and almost 75% of these to 
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a combination of individuals’ environmental, behavioral, and metabolic profiles 
(Newton et al. 2015). About one in four deaths worldwide, and a similar proportion 
of deaths among children under five, are due to modifiable environmental factors 
(Prüss-Üstün et al. 2016, Landrigan et al. 2018). These 12.6 million deaths are attrib-
uted to more than 100 different diseases (World Health Organization 2016a,b).

By itself, air pollution is linked to one in eight deaths globally (World Health 
Organization 2014, 2017). About two billion children live in areas exceeding 
the World Health Organization’s annual limits for fine particles (United Nations 
International Children’s Emergency Fund 2016). It is noted that 169,250 and 531,000 
child deaths are attributable to ambient and household air pollution, respectively 
(World Health Organization 2017). The global social cost of air pollution is about 
$3 trillion per year (Erickson and Jennings 2017). Recent studies have provided 
strong evidence associating air quality with pediatric asthma (Pollock, Shi, and 
Gimbel 2017). At the same time, there is discussion about our environment being 
cleaner than ever before and the unprimed nature of our immune systems being 
responsible for disease manifestation (Richtel 2019). While it is reasonably well 
understood that continuous exposure to high levels of pollution is unhealthy, much 
less is known about health effects of low levels, intermittent exposure, and combi-
nations of exposures. Studying the latter requires informatics infrastructures that 
can aggregate environmental and physiological data from multiple sources at high 
temporal and spatial resolutions. Research and development of such multi-scale 
and multi-model informatics infrastructure is just beginning; and in this chap-
ter, we describe the requirement, design, and development activities undertaken to 
address these issues.

16.2 � THE EXPOSOME AND ITS GENERATION

Comprehensive quantification of effects of the modern environment on health 
requires taking into account data from all contributing environmental exposures 
and how those exposures relate to health; this is termed the exposome, a comple-
mentary concept to the genome (Wild 2005, 2012). Measuring the exposome can 
span a lifetime of exposures starting from conception and includes endogenous 
processes within the body, biological responses of adaptation to environment, 
physiological manifestations of these responses, and socio-behavioral factors 
(Wild 2005, 2012). Generating exposomes at high resolution requires integration 
of data from wearable and stationary sensors, environmental monitors, personal 
activities, physiology, medication use and other clinical data, genomic and other 
biospecimen-derived, person-reported and computational models. Exposomic 
research is translational in nature, as the exposome includes direct biological path-
way alterations, as well as mutagenic and epigenetic mechanisms of environmental 
influences on the phenome (Miller 2013, Miller and Jones 2014, Lioy and Weisel 
2014, NIOSH 2018). The phenome, which is an individual’s state of well-being and 
disease, is a result of the interaction between a person’s genome and their expo-
some. See Figure 16.1 for a holistic understanding of disease, integration of the 
exposome, genome, and other factors.
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There is a need for understanding an individual’s total exposure including 
simultaneous, cumulative, and latent exposure to multiple environmental species 
on health (Pollock, Shi, and Gimbel 2017). We refer to any physical (e.g., tempera-
ture, humidity), chemical (e.g., particulate matter (PM), ozone), or biological (e.g., 
pollen, mold) environmental or physiological (e.g., breath rate, forced expiration 
volume) entity measured by a sensor as a species. Processes to support this aggre-
gation and integration must accommodate variable spatio-temporal resolutions 
and account for multiple study, experimental and analytical designs. Gaps in mea-
sured data may need to be filled with modeled data along with characterization 
of uncertainties.

The air quality exposome is important to our improved understanding of 
pediatric asthma and other respiratory conditions (Pollock, Shi, and Gimbel 2017), 

FIGURE 16.1  Holistic understanding of disease requires integration of the exposome with 
the genome with other biomedical data.
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cardiovascular disease (Lee, Kim, and Lee 2014), cancers (Santibáñez-Andrade 
et al. 2017), pregnancy (Leiser et al. 2019), suicide (Bakian et al. 2015, Gładka, 
Rymaszewska, and Zatoński 2018), and its mechanistic role in damage to deoxy-
ribonucleic acid (Bosco et al. 2018, Miri et al. 2019). It includes a combination of 
chemical (PM, ozone, and volatile organic compounds), biological (pollen, spores) 
and physical (temperature, humidity) environmental species. Studies involving the 
exposome can be observational, epidemiological, interventional, or mechanistic in 
nature (Röhrig et al. 2009).

16.3 � THE PEDIATRIC RESEARCH USING INTEGRATED 
SENSOR MONITORING SYSTEMS PROGRAMS

The Pediatric Research using Integrated Sensor Monitoring Systems (PRISMS) pro-
gram was launched in 2015 to develop a sensor-based, data-intensive infrastructure 
for measuring environmental, physiological, and behavioral factors for performing 
pediatric and adult epidemiological studies (https://www.nibib.nih.gov/research-
funding/pediatric-research-using-integrated-sensor-monitoring-systems). PRISMS 
is administered by the National Institutes of Health (NIH) National Institute of 
Biomedical Imaging and Bioengineering (NIBIB). Figure 16.2 shows the various 
projects under the PRISMS program.

The University of Utah was funded through this program to identify informatics 
challenges and develop solutions to address them (http://prisms.bmi.utah.
edu/). Recognizing that solving these challenges will require a wide range of 
perspectives,  the Utah team is a diverse group of faculty, research staff, software 
developers, post-doctoral fellows, and graduate and undergraduate students from 
atmospheric science, bioengineering, biomedical informatics, chemical engineering, 
chemistry, clinical and translational science, computer science, electrical and com-
puter engineering, industrial engineering, nursing, occupational health, pediatrics 
and pulmonary medicine.

16.4 � EXPOSOMIC RESEARCH CHALLENGES 
AND INFORMATICS SOLUTIONS

Exposomic research requires simultaneous measurement of many types of environ-
mental, physiological, and behavioral factors using sensors. These measurements 
can be obtained using sensor technologies that are often novel and in various stages 
of development, evolving to capture measurements of novel species, with improve-
ments in their sensitivity, performance, and validity in measuring different species, 
in their form factor so that they can be used in personal and mobile settings, and 
price. In addition, these sensors use diverse device communication protocols and 
require additional hardware and software modifications for using research studies 
and for secure data acquisition and transmittal.

Environmental species have spatial and temporal variations and humans are 
mobile and spend time at home, commuting, at work or school, and in recreation. 

https://www.nibib.nih.gov
https://www.nibib.nih.gov
http://prisms.bmi.utah.edu
http://prisms.bmi.utah.edu
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Generation of comprehensive spatio-temporal records of exposures requires collec-
tion and integration of data from different types of sensors that might be available 
at different locations and times corresponding to the locations of the subject under 
consideration (Gouripeddi et al. 2017). For example, an air quality exposome may 
require the integration of data from indoor and mobile sensors, stationary regulatory 
monitors, citizen’s networks, and finally supplementation with data from computa-
tional models to fill in the gaps when there is an absence of experimental data. All 
of these would require appropriate spatio-temporal dimensions and resolution with 
their absence often limiting the quality of studies and potentially leading to errone-
ous results (Gouripeddi et al. 2017).

Moreover, sensors used for measurements of exposures are not always collocated 
with the subject under consideration. The lack of proximity of the sensor to the sub-
ject leads to uncertainties when using their measurements as exact quantifications 
of exposures. In addition, sensors have varied capabilities, granularities and resolu-
tions in measuring different environment species, which need to be harmonized 
prior to analysis.

Total exposure research studies need to be performed across health conditions, 
age ranges, and sensor types and utilize heterogeneous data at multiple levels of 
granularities in their semantics and temporalities. Different translational research 
archetypes require different data, data transformations, data integration work-
flows, and analytics to support observational and interventional study designs 
(Gouripeddi 2016).

Addressing these challenges in exposomic research requires an informatics 
architecture that embeds multiple features that are loosely coupled and interoperable 
(Sward et al. 2017, Martin Sanchez et al. 2014):

	 1.	Sensor data acquisition: The evolving nature of sensors requires a sensor 
data acquisition paradigm that is agnostic to the sensor and the type of 
the species it is measuring. In addition, acquiring these sensor data should 
accommodate mobile and stationary devices that measure personal and 
ambient environments.

	 2.	Selection of heterogeneous data sources: Prospective studies require use 
of sensors that are well-matched for the purposes of the study. Secondary 
analyses require descriptions about sources and methods including types of 
sensors used, to support appropriate analysis. In both cases, research teams 
require metadata about the sensors and the data sources.

	 3.	Computational modeling for filling gaps: It may not be possible to measure 
every environmental variable at the desired temporal and spatial resolu-
tion, either due to availability and/or challenges with use of sensors, cost, 
privacy, number of sensors needed in large cohort studies, etc. Having 
computational models to help fill gaps can provide substitutes for or aug-
ment sensor-measured environmental factors, activities, and locations of 
individuals.

	 4.	Uncertainty characterization of data: Understanding limitations and data 
quality of sensors, their measurements and, similarly, computational models 
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would enable their proper use within data pipelines, designing appropriate 
studies, and performing apt analysis. These limitations and uncertainties 
can be captured and shared as metadata.

	 5.	Generation of a high-resolution spatio-temporal grid of exposures: 
Exposures are intrinsically tied to location and time. Different sources of 
exposure data, sensors, and computational model need to be combined to 
generate a high-resolution grid of personal exposure. These sources could 
have different granularities and resolution, and their integration would need 
to support these heterogeneity.

	 6.	Data integration: To support the above requirements, integration of these 
heterogeneous exposomic data would need to be semantically consistent 
(Habre et al. 2016) and metadata driven. In addition, the diversity of differ-
ent objects represented in translational exposomic research require them to 
be integrated on their spatial and temporal dimensions. Representing data 
as events permits temporal analysis and reasoning around a diverse array 
of environmental measurements, physiological responses, and conditions. 
An event-based infrastructure would support multi-scale and multi-omics 
integration.

	 7.	Presentation and visualization: In order to make meaningful use of the data 
and processes in exposomic research, there is a need for acceptable and 
user-friendly interfaces for study participant and investigator interactions. 
These interfaces will provide feedback, allow participants to be provided 
instructions for interventions, and a means for participants to input addi-
tional requested data. Investigators will be able to manage study processes, 
assess ongoing data collections, and tailor interventions. There will likely 
be a need to have these presentation and visualization layer be person-
centered and on mobile platforms.

	 8.	Support a diverse set of translational research archetypes: The informatics 
infrastructure would need to support diverse study types, including observa-
tional, epidemiological, interventional, secondary analysis, and mechanis-
tic study. In addition the infrastructure would need to enable reproducibility 
and transparency of study results with metadata to track data and process 
provenances.

16.5 � EXPOSURE HEALTH INFORMATICS ECOSYSTEM

In order to meet the diverse requirements listed above, we are developing a scal-
able informatics infrastructure, Exposure Health Informatics Ecosystem (EHIE) 
(Sward and Facelli 2016, Sward et al. 2017, Gouripeddi et al. 2019b) following an 
ecosystemic approach. An ecosystem is a collection of loosely coupled software 
and hardware platforms that co-evolve, interact with one another and with human 
actors to serve a common business need (i.e., research, in this case), by maintain-
ing symbiotic operational relationships with each other through exchange of data, 
metadata, knowledge, and process artifacts (Messerschmitt and Szyperski 2003, 
Jansen, Finkelstein, and Brinkkemper 2009, Lungu 2009, Popp and Meyer 2010, 
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Jansen, Brinkkemper, and Cusumano 2013, Bala Iyer 2014). Adopting this approach 
enables researchers to sustain healthy large-scale infrastructures, by having a 
diversity in tasks performed by different actors within the ecosystem (Manikas 
and Hansen 2013). In addition, having this diversification in niche components 
simplifies the management and evolution of the ecosystem as a whole, as each 
component has its own development cycle managed by a team of experts (Dittrich 
2014). Modifications from a specific component can be independently scaled as 
needed for a particular research use case. Similarly, operational use of the eco-
system paradigm for research studies would have support from several actors with 
appropriate expertise together providing greater value than on their own (Wnuk et 
al. 2014).

EHIE is derived from the federally funded National Institutes of Health’s 
(NIH) National Institute of Biomedical Imaging and Bioengineering (NIBIB) 
Pediatric Research Using Integrated Sensor Monitoring Systems (PRISMS) pro-
gram (Sward et al. 2016). EHIE addresses the above list of exposomic research 
challenges by providing informatics solutions at scale, incorporating the latest 
Big Data approaches. The infrastructure is a comprehensive, standards-based, 
open-source informatics platform that provides semantically consistent, meta-
data-driven, event-based management of exposomic data. Using an event-driven 
architecture allows the modeling and storage of all activities related to the study 
itself and its operations in their primitive form on a timeline as events that can 
be transformed to higher/analytical models based on use cases. Moreover, its 
implementation using advanced graph and document store technologies limits 
semantic dissonance and enables the use of novel Big Data approaches in a natu-
ral way. EHIE is aligned with the goals of modern environmental health research 
supporting meaningful integration of sensor and biomedical data (National 
Institute of Environmental Health Sciences 2012, Barksdale Boyle et al. 2015, 
National Institute of Environmental Health Sciences 2018). See Figure 16.3 for an 
overview of EHIE informatics ecosystem.

Conceptually, all the evolving software and hardware artifacts within EHIE can 
be grouped into the following components:

	 1.	Data acquisition pipeline: Hardware and software tools, wireless network-
ing, and protocols to support easy sensor system deployment and robust 
sensor data collection.

	 2.	Participant-facing tools: Collect and annotate a variety of patient-reported 
and activity data, as well as inform and provide feedback to study partici-
pants on their current clinical and environmental exposure status.

	 3.	Researcher-facing platforms: Tools and processes for researchers 
undertaking exposomic studies for a variety of experimental designs or for 
clinical care.

	 4.	Computational modeling platform: Generate comprehensive spatio-
temporal data in the absence of measurements and for recognition of 
activity signatures from sensor measurements.
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	 5.	Central Big Data federation/integration platform: Standards-based, open-
access infrastructure that integrates measured and computationally modeled 
data with biomedical information along with characterizing uncertainties 
associated with using these data.

In the following sections, we describe key features of each of these components.

16.5.1 � Data Acquisition Pipeline

Current Internet-of-Things (IoT) solutions are not necessarily designed for health 
research. Systems are not designed for large study-based deployments wherein 
the cost and resources required for management of IoT sensors exceeds the cost 
of the sensors themselves. Research solutions are required to be compliant with 
pertinent privacy laws applicable at different jurisdictions (e.g., deployment site(s), 
study site, and/or study sponsor location) for data transmission (Luxton, Kayl, and 

FIGURE 16.3  Exposure Health Informatics Ecosystem (EHIE) and its main components.
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Mishkind 2012) and storage. While IoT sensors provide low-cost and smart solutions 
to measure study participants’ environments, they usually use custom software 
and hardware, require regular maintenance, and have data integrity problems. We, 
therefore, needed to design an open-source platform that is customizable to different 
sensors, study designs, and participant requirements. Such a platform would need to 
have a short deployment time, provide high-quality data, and stream data in real time 
enabling control loops of feedback and interventions.

In order to meet these needs, we developed a multi-pronged approach for data acqui-
sition. We developed EpiFi (Figure 16.4) (Lundrigan et al. 2018) to overcome these 
limitations and extend the use of off-the-shelf sensor technologies as IoT solutions for 
health research. In addition, we developed methods and processes for sensors that can 
directly transmit data to data acquisition servers, using protocols such as the Message 
Queuing Telemetry Transport (MQTT) (Hunkeler, Truong, and Stanford-Clark 2008) 
or HTTP/HTTPS. Our collaborators at Columbia University have adopted AethLabs 
sensors (www.aethlabs.com) to use these protocols to measure and transmit measure-
ments for PM composition, black carbon, temperature and relative humidity, accel-
erometry and volatile organic compounds levels (Cox et al. 2019). In order to help 
investigators choose an appropriate approach, we developed a framework that consid-
ers the type of sensors and their transmission, study design, and participant involve-
ment (Tiase et al. 2018). EpiFi provides flexibility in using existing participant home 
infrastructure and accommodates participant-in-the-loop study designs.

EpiFi brings IoT to health research by providing robustness to consumer applica-
tions needed by different study designs. It allows researchers, participants and their 
families, and clinicians to process data in real time. It simplifies the process of IoT 
deployment and management in hundreds of participant homes as might be needed in 
clinical studies. EpiFi consists of a small single-board computer (i.e., Raspberry Pi) 
gateway and open-source Home Assistant home automation platform (Home Assistant 
2019), with custom code to address challenges of using sensors for research data acqui-
sition. It has means to reliably transfer to a remote database using a home WiFi router 

FIGURE 16.4  Overview of EpiFi.

http://www.aethlabs.com
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and local storage that can act as a buffer when transmission to the remote database is 
not available or required. The system architecture of EpiFi is shown in Figure 16.5.

EpiFi (Lundrigan et al. 2018) supports multiple features that make it appropriate 
for use as an IoT solution in clinical studies:

	 1.	Device observability: Allows a remote study manager to know if a WiFi 
device is functioning or not. It distinguishes between WiFi disruptions 
and other types of disruptions, so that appropriate troubleshooting can be 
performed.

	 2.	Secure WiFi bootstrapping: Allows secure bootstrapping of WiFi connec-
tivity of multiple devices by making the gateway a temporary access point. 
By overloading the use of source and destination addresses of an Ethernet 
frame, the Secure Transfer of Association Protocol (STRAP) (Lundrigan, 
Kasera, and Patwari 2018) allows a trusted device on the network to send 
data to unconnected WiFi devices (Figure 16.6). This protocol addresses 
the challenges of securely connecting new sensors within a home. It pro-
tects against eavesdroppers, modified messages, replay attacks, and rogue 
access point attacks. STRAP also reduces deployment time by needing the 
entry home WiFi credentials only on EpiFi and eliminating the need of 
entry by each individual sensor.

FIGURE 16.5  Architecture of EpiFi.
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	 3.	Secure sensor reuse: Tracking of sensors when their location changes and 
management of backlogged data on sensors. Sensors learn their locations 
based on network characteristics. A change in network characteristics indi-
cates that the sensor is now in a new location, which then sets off processes 
to update deployment metadata. Also, each location has a key that is used to 
encrypt data, which prevents backlogged data from being read by a person 
at a different location.

	 4.	Study management tools: Provides a presentation layer to support a diverse 
range of tools for study management (Figure 16.5). Integrated bi-direc-
tional communications with the gateway device help with remote man-
agement and troubleshooting potential sources of signal disruption and 
apply fixes. We currently use the following study management tools for the 
PRISMS pilot study (Collingwood et al. 2018, Gouripeddi et al. 2019c):

	 a.	 Deployment status page: Provides the status of various deployments.
	 b.	 Export tool: Export streaming data in various formats for ad hoc analysis.
	 c.	 Grafana (2019): Streaming data visualization, monitoring, and analytics.
	 5.	Support of multiple wireless protocols: Supports among other cellular, 

Z-Wave (Yassein, Mardini, and Khalil 2016), ZigBee (Farahani 2011), 
LoRa (Lee and Ke 2018), and HaLow (802.11ah) (Adame et al. 2014).

	 6.	Data integrity: Prevents data loss arising due to packet losses, gateway out-
ages, home WiFi router outages, and internet outages by persisting data 
at every opportunity, deleting persisted data only after acknowledgment 
of receipt from remote storage, and sending multiple data packets when 
backlogged.

EpiFi is currently deployed for pilot studies at Utah for facilitating acquisition of 
data from:

	 1.	WiFi sensors
	 a.	 Utah Modified Dylos (UMD) (Min et al. 2018, Vercellino et al. 2018, 

Collingwood et al. 2019): PM as PM2.5 (i.e., PM which is 2.5 µm and 
smaller) and PM10 (i.e., 10 micrometers and smaller), temperature, and 
humidity.

	 b.	 AirU (Kelly et al. 2017): PM.

FIGURE 16.6  The Secure Transfer of Association Protocol (STRAP).
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	 2.	Bluetooth Low Energy (BLE) sensors
	 a.	 Wearable air quality sensor from George Washington University 

(Li et al. 2019): Nitrogen dioxide (NO2), ozone (O3), ambient tempera-
ture, formaldehyde, other aldehydes, and relative humidity.

	 b.	 Wearable air quality sensor from Arizona State University (Wang and 
Tao 2017): O3, volatile organic compounds (VOCs), ambient tempera-
ture, relative humidity, accelerometry, nitrogen oxides (NOx), formal-
dehyde (CH2O), and PM.

	 c.	 Wearable device from the University of Maryland (Chatterjee et al. 
2014, Kukkapalli et al. 2016): PM, temperature, transcutaneous partial 
carbon dioxide (CO2) pressure, and respiratory rate.

EpiFi has been evaluated in different types of deployment designs, including:

	 1.	High-resolution air sensing (Min et al. 2018): EpiFi acquired data from 
eight UMDs and AirUs deployed indoors and outdoors, respectively, to 
create a profile of air quality within a home due to various activities. For 
example, one of our findings for a home under study showed that, while the 
furnace fan rapidly improves PM levels in the kitchen, there were short-
term increases in PM in other rooms.

	 2.	Automation of interventions (Min et al. 2018): We demonstrated that EpiFi 
can be integrated into home automated control systems, such as a furnace 
fan, via an Ecobee thermostat which triggers the furnace fan to switch 
on when PM levels crossed a present threshold measured by UMDs. This 
smart control of the furnace fan led to a 70% reduction in power consump-
tion when compared to periodically turning it on.

	 3.	Requisition of clinical status, feedback, and activity annotation 
(Collingwood et al. 2018): Using EpiFi, we were able to send text notifica-
tions to participants when specific thresholds of PM levels were crossed, to 
acquire participant clinical status, feedback, and log the activities they were 
performing.

	 4.	Acquisition heterogeneous sensor data from participant homes: Including 
motion sensors, door sensors, tracking smartphones, participant locations, 
smart light bulbs, WiFi usage, temperature, humidity, energy meters, and 
any other commercial IoT device to get a sense of participant activities.

Data from EpiFi is stored remotely in a time-series database (Figure 16.5), i.e., 
InfluxDB (InfluxData 2019). Metadata about the deployments is authored through 
a graphical user interface into a deployment metadata repository (DMDR) that has 
been instantiated in a MongoDB database (MongoDB 2019). Together these two 
stores, along with a set of Software Services (SS), support the presentation layer 
which provides displays that can be used by participants, researchers, and additional 
administrative tools. A tracking page was developed to provide the real-time health 
status of each deployed sensor allowing the administrative team to detect, analyze, 
and troubleshoot issues in various deployments using established procedures and 
protocols (Figure 16.7).



246 Total Exposure Health

In addition to supporting the presentation layer, data and metadata from the time-
series database and the DMDR are consumed by the SS of the data federation and 
integration component for assimilation, generation of exposure records, and study 
analysis. Software details on EpiFi are available in Lundrigan (2019). We are cur-
rently evaluating blockchain approaches for systematically capturing the versioning 
of sensor deployment metadata as sensors go through life-cycles of deployment and 
maintenance and to support robust provenance of data arising from these sensors 
(Sarbhai et al. 2019). Moreover, implementation of blockchain technology will allow 
us to provide much higher control of data access.

16.5.2 � Participant-Facing Tools

Exposure studies involve multiple stakeholders: participants and their families, 
clinical coordinators, researchers, sensor developers, and system administrators. 
In order to meet the needs of all these stakeholders, we utilized user-centered 
design (UCD) approaches (McMullen et al. 2011) to develop methods for their 
interactions with EHIE, including data collection, visualization, and analysis. UCD 
is a multidisciplinary approach rooted in cognitive and behavioral science, based on 
deep understanding of who will be using the system, their tasks, expectations, and 

FIGURE 16.7  Example troubleshooting protocol.
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contexts of use. UCD methodologies are congruent with the international standard 
ISO 9241-210:2010, Ergonomics of Human-System Interaction. In this section, we 
cover the tools and methods for participant interactions with EHIE.

We use participant-facing tools in exposure health studies to collect participant-
reported data prior to the start of a study and during the study phases. We also use 
these tools to support the collection of data representing participant behavior and envi-
ronmental sensing, as well as provide feedback and inform participants about interven-
tions for different study designs (Figure 16.8). These interactions could be triggered 
by environmental and physiological sensor-, clinical-, or participant-reported events.

We developed processes and methods for selection, use, and integration of various 
types of tools for different study designs. A video titled “Utah PRISMS Informatics 
Ecosystem” shows these tools in use and can be viewed at https://www.youtube.
com/watch?v=FT7Yz5l94fQ. For demonstrative purposes, we used exemplar tools 
including a generic clinical study tool, a domain-specific exposure health study tool, 
a visualization tool, and annotation tools:

	 1.	REDCap (Harris et al. 2009): A highly used, open-source study data 
management tool for designing and administering surveys and data 
collection. It is a Health Insurance Portability and Accountability Act 
(HIPAA)–compliant online platform. Participants use REDCap surveys in 
a PRISMS pilot study for providing their demographics and periodic symp-
toms. We integrate project-specific data from REDCap using its application 
programming interface (API).

	 2.	eAsthmaTracker (eAT) (Nkoy et al. 2012, 2013): Integrated asthma 
patient self-management, education, research and clinician communi-
cation platform with alerts developed by the Department of Pediatrics, 
University of Utah. It collects data on pediatric asthma symptomology 
through validated instruments to calculate daily and weekly asthma control 
scores. It also collects participant perceived exposures to asthma triggers 
(e.g., pollen). In addition, eAT presents participants with air quality indices, 

FIGURE 16.8  Uses of participant-facing tools.

https://www.youtube.com
https://www.youtube.com
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pollutant levels from the Environmental Protection Agency (EPA), weather, 
and pollen counts. We integrate participant symptoms, daily and weekly 
asthma scores by accessing eAT’s MySQL database.

	 3.	Visualization (Moore et al. 2018): We use open-source Grafana software 
(Grafana 2019) to provide real-time visuals of sensor data to participants in 
their homes.

	 4.	Activity annotator (Moore et al. 2018): Often, sensor readings require addi-
tional information on activities performed by participants or happenings in 
their environments to provide context to data and its analysis. The activity 
annotator allows participants to make free-form or prompted annotations, 
linked to artifacts on the sensor data feed. For example, our participants 
would note activities such as cooking or cleaning which caused a spike 
in particulate counts. We examined three approaches to annotation: text 
messaging, visualization screens (see above), and voice annotations using 
Google Home. We stored these annotation data into a MongoDB-based 
annotation document store that then can be consumed for data integration.

	 5.	Ecological momentary assessments (EMAs) (Shiffman, Stone, and Hufford 
2008): Obtain participant behaviors and experiences in real time and in 
their natural environments using short answers to questions. We used EpiFi 
along with REDCap and Twilio (Twilio 2019) to administer EMAs as text 
messages that were triggered randomly, periodically at specific dates and 
times, or by sensor measurement artifacts (e.g., assessments triggered by 
spikes in sensor readings). See Figure 16.9. Participant responses via text 
messages were then recorded into REDCap and made available for study 
data integration, as described above.

FIGURE 16.9  Ecological momentary assessments administered using text messages and 
orchestrated by EpiFi, REDCap, and Twilio.
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16.5.3 �R esearcher-Facing Tools

Exposure health studies vary widely in design and purpose and, hence, researcher-
facing tools must support a wide spectrum of requirements. The studies may range 
from sensor development projects to highly complex epidemiologic, retrospective 
observational, or prospective observational designs. Additionally, many of these 
studies entail real-time interactive data collection (e.g., EMAs) (Gouripeddi et  al. 
2017, Habre et al. 2016). Both primary and secondary sensor data may be used in 
studies. The use of primary sensors necessitates collection, storage, and management 
of real-time data, often with substantial data volume. The sensors may be personal 
and wearable or stationary, positioned indoors or outdoors, and may measure a wide 
variety of variables associated with multiple species. If measurements or study inter-
ventions must be triggered by sensor values, additional decision support tools are 
needed to support or automatically initiate the appropriate actions. Secondary sensor 
data may or may not be pre-processed prior to use, can be high in volume, and details 
about any pre-processing may be elusive.

The sensor data collected in these studies must often be analyzed jointly with a 
similarly diverse variety of variables and data types, including patient-reported out-
comes, activity annotations, self-reported symptoms, electronic health record data, 
biospecimen data, computational models, and aggregates of these data types. For 
this wide variety of data that is used in diverse ways, researchers require support for 
the collection, monitoring, and integration of data. They also require tools that help 
them design and monitor studies, with alerting when participants or sensors require 
attention. In order to achieve the goals of the study, researchers also need additional 
tools that aid analysis.

Using UCD has allowed us to use some of the same tools used for participants 
to provide researchers with tools for system interaction. Here, we present examples 
of researcher-facing tools corresponding to different stages in the life-cycle of an 
exposomic study:

	 1.	Study design: We developed and use process diagram templates 
(Figure  16.10) for describing study recruitment, sensor deployment, and 
data integration pipelines that a researcher could design and then can be 
used by the research administration team to assemble various artifacts.

	 2.	Sensor selection: Exposure health studies often use sensors to measure 
participant environments and physiology. In order to allow researchers 
to select appropriate sensors, we developed a library that stores detailed 
descriptions about sensors, which researchers can browse in order to 
select appropriate sensors for their study needs (Burnett et al. 2018b). The 
sensor library (Figure 16.11) includes metadata about the owners of the 
device, methodology used to measure environmental and physiological 
species, device characteristics (e.g., battery usage), calibration, validation 
and measurement details, as well as an inventory of number of available 
devices. We deployed the sensor library using a Neo4j graph database 
(Neo4j 2019). We are similarly developing a library of computational 
models.
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	 3.	Data and metadata collection: At times, the research team itself would 
need to collect study data, metadata, or other information when performing 
studies. Using REDCap projects, we can collect:

	 a.	 Dwelling unit survey (Jacobs et al. 2009): Details about home environ-
ment including structural characteristics and indoor features such as 

FIGURE 16.10  A high-level process diagram of a pilot study used to evaluate EHIE depict-
ing data streams and their management, including their collection, integration, and final 
submission.
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carpeting, appliances, heating, ventilation, and air conditions, which 
can be used for study analysis. Sensor deployment metadata: informa-
tion about which sensors and where/when they have been deployed is 
then ingested into the DMDR (i.e., a MongoDB store) (Figure 16.5) for 
use within the acquisition and integration pipelines.

	 b.	 Sensor metadata collection (Burnett et al. 2018b): Collection of detailed 
metadata describing sensors (e.g., measurement species, unit of mea-
sure, detection limit, sample volume, temperature, humidity) by means 
of an easy-to-use online tool that can be filled by the sensor owner and 
then ingested into the Neo4j store of the sensor library. Forms for col-
lecting these metadata are available at http://j.mp/2U3Ixqw.

	 4.	Study monitoring: We provide visualizations using the Grafana platform 
and the deployment status page to get real-time health of each deployed 
sensor.

	 5.	Study data analysis: Various data can be integrated by the central Big Data 
integration platform. These data are available in different analytical data 
models or custom formatted databases or as exports. These data can be ana-
lyzed by the research team using traditional statistical software (e.g., SAS) 
or machine learning packages (e.g., R, TensorFlow (Abadi et al. 2016)). 
They can also be consumed in analytical pipelines as shown in Figure 16.12 
or through dashboarding tools.

16.5.4 �C omputational Modeling Platform

It is often not possible to measure participant environments with resolution neces-
sary to perform exposure health studies. Also, participants are not always in the 
proximity of a sensor to measure their environmental exposure. For example, the 
sparse placement of the EPA air quality monitoring stations in Salt Lake County 
fails to capture fine-grained variation in air quality due to weather, elevation, and 
topography. Basic interpolation methods are insufficient for capturing this variation, 

FIGURE 16.12  An example analytic pipeline used in EHIE.

http://j.mp
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due to geographical and structural irregularities. Increased monitoring (e.g., fine 
grid or mobile monitoring) is expensive to implement. These limitations can be over-
come using computational models to fill gaps in the measured data. In this section, 
we describe developments within EHIE related to computational modeling:

	 1.	Activity and location recognition: While there are multiple models to pre-
dict and simulate environmental measurements, a major gap in using these 
models for exposure health studies is the assignment of either measured or 
modeled levels of environmental species to participant locations at differ-
ent times. Human populations are mobile. In addition, situational context of 
what activities individuals are performing is also important. While it is pos-
sible to track locations and activities of participants, there are several major 
issues, for example, GPS devices do not work reliably in indoor settings, 
privacy issues complicate activity tracking, and population-scale monitor-
ing is difficult and expensive. To address this, we developed the Spatio-
Temporal Human Activity Model (STHAM), which assigns locations and 
activities to individuals based on their demographic profile. This model can 
then be integrated with exposure levels to generate comprehensive spatio-
temporal records of exposure (Figure 16.13).

STHAM is an agent-based Monte-Carlo model (Sward et al. 2017, Lund, 
Gouripeddi, and Facelli 2019a,b, Lund et al. 2017). It is semi-empirical 
and utilizes externally collected datasets: (1) 2010 US Census (US Census 

FIGURE 16.13  Overview of the Spatio-Temporal Human Activity Model (STHAM), which 
integrates simulated activities and locations to develop comprehensive spatio-temporal 
records of exposures.



254 Total Exposure Health

Bureau 2010), (2) American Community Survey (US Census Bureau 2017), 
(3) US Bureau of Labor Statistics American Time Use Survey (ATUS) 
(U.S. Bureau of Labor Statistics 2017), and (4) Census Bureau Longitudinal 
Employer-Household Dynamics (LEHD) Origin-Destination Employment 
Statistics (LODES) (US Census Bureau Center for Economic Studies 2016). 
Steps taken in building STHAM are summarized in Figure 16.14.

We briefly discuss the use of STHAM for the Salt Lake, Utah, 
metropolitan area:

	 a.	 Household assignment: Using data from the census, we assign an age 
category (0–17, 18–64, 65+ years old) for each household in Salt Lake 
Valley, based on age of majority of members in that household.

	 b.	 Activity classification: The ATUS dataset has approximately 10,000 
respondents each year and includes their daily activity diaries 
consisting of about 500 macro activity categories, demographic data, 
and contextual information for each activity. We performed unsuper-
vised classification using random forests, followed by a dimensionality 
reduction using t-distributed stochastic neighbor embedding (t-SNE) 
and, finally, a density-based clustering to result in 90 demographic 
classes and 40 activity day classes.

	 c.	 Activity sequence construction: Humans usually follow a schedule, but 
typically have intra- and inter-person variations. To account for this, we 
used the activity classes to construct activity windows, probabilistically 
sorted these windows, and then used a Monte-Carlo based activity gen-
erator to construct sequences of activities.

	 d.	 Assessing diurnal patterns: In the final step, we probabilistically 
assigned demographic classes to a day type and built activity sequences 
for each demographic class based on day type. We then assigned these 
demographic-specific activity sequences at an hourly basis to popula-
tion distributions at a 500-m grid level.

FIGURE 16.14  Schema of steps used in building STHAM.
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	 2.	 Indoor activity recognition: Sensor readings on their own might not always 
be sufficient to get contexts of triggers leading to changes in environments. 
We, therefore, have developed methods for participants to annotate sensor 
data using various approaches as described above. But, often participants 
are overburdened annotating their activities. In order to automate some of 
this, we trained machine learning methods with existing annotations and 
sensor streams to predict activity signatures from the profile of the sensor 
readings.

	 3.	Personal exposure modeling (An et al. 2018): Estimating exposures at a 
personal level not only needs to account for the environment, locations, and 
activities of individuals but also their biological characteristics. We extend 
our current work from STHAM to such multi-scale models that can then be 
utilized in research studies.

	 4.	Modeling metadata of computational models (Lund et al. 2018): Many 
environmental modeling algorithms have been developed by the EPA 
and other groups (e.g., US Environmental Protection Agency 2016a–c, 
McMillan et al. 2010, US Environmental Protection Agency 2005, Yanosky 
et al. 2014). We are also able to accommodate models of different resolu-
tions, such as those available from Mesowest (Horel et al. 2002). All these 
models have varied capabilities, methods, limitations, deployment needs, 
inputs and simulated output details. In order to meet the needs of varied 
exposure health studies, we developed a library of modeling algorithms 
that can be utilized to generated high spatio-temporal resolution data. This 
library captures technical details and methodology of each model, their 
deployment characteristics when used in a particular study, and describes 
inputs consumed and output generated from these models. Similar to the 
sensor library, this library of computational models supports selection and 
use and points to software code that can be executed by workflow engines 
(Deelman et al. 2015). We implemented the library using a Neo4j graph 
database platform, along with detailed metadata about each modeling 
algorithm.

	 5.	Uncertainty quantification (Gouripeddi et al. 2015, Burnett et al. 2015): 
The computational modeling platform also includes methods to quantify 
different types of uncertainties that might be present within data or asso-
ciated with computational models. Uncertainty could be: (1) Inherent: 
Variations in unknown conditions, (2) Reducible: Associated with the 
model and input conditions, and (3) Exposure-related: Arising due to dif-
ferences in person’s exposure and true ambient environmental levels (Zeger 
et al. 2000). For example, STHAM can only provide ranges of activities and 
expected locations, but not actual behaviors. However, in this example, the 
model could be validated by proxy, by evaluating simulated traveling num-
bers against actual measured traffic volumes. Activity or context measure-
ment creates a new and complicated dimension of uncertainty. Multi-agent 
contributions to activity context also need to be measured or simulated (e.g., 
two people in the same household contribute to and experience the activity 
context differently).
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16.5.5 �C entral Big Data Integration Platform

A key challenge to performing exposomic research is integrating multiple sources of 
data for generating comprehensive records of exposure. Such an integration of data 
needs to support the following features (Sward et al. 2017, Gouripeddi et al. 2019a):

	 1.	Generate comprehensive spatio-temporal records of exposures.
	 2.	Semantically consistent metadata-driven integration of heterogeneous data.
	 3.	Maintain spatio-temporal integrity and support reasoning.
	 4.	Associate uncertainties with using data as exact quantifications of exposure.
	 5.	Transform data to support diverse translational research archetypes.

EHIE leverages and extends the OpenFurther (OF) data integration and federa-
tion platform (Bradshaw et al. 2009, Livne, Schultz, and Narus 2011, Gouripeddi 
2019, Gouripeddi et al. 2012, 2013). Main components of OF include an Ontology/
terminology Server (OS); a Metadata Repository (MDR); SS, which can be 
consumed by various tools; Data Source Adapters (DSA); Administrative and 
Security Components (ASC); Virtual Identity Resolution on the GO (VIRGO); 
Quality and Analytics Framework (QAF); a Computational Modeling (CM) 
and Uncertainty Module; Process-Workflow Module (PWM); a Metadata & 
Semantics—Discovery and Mapping Service; a Knowledge Repository; and a 
Federated Query Engine (FQE) that orchestrates queries between the PWM, SS, 
MDR, OS, DSA, ASC, VIRGO, CM, and QAF. For EHIE, we modified OF with 
an Event Document Store (EDS) that stores integrated events as events in a Big 
Data store; and used graphical stores for the MDR. OF supports the selection and 
integration of heterogeneous data for generating high-resolution spatio-temporal 
grids of exposures and associates this data with characterized metadata to sup-
port their proper utilization. By leveraging characterized metadata and semantic 
mappings that are stored within a MDR and an OS, respectively, OF provides 
syntactic and semantic interoperability for dynamically federating data and infor-
mation. This federation can take place in real time or statically, without requiring 
data owners to extract and/or transform their data—facilitating integration by 
retaining data in their native format. Using this approach, OF is able to transform 
and integrate distributed data across multiple scales, models, and semantics into 
consumable formats.

In order to meet the above-mentioned requirements for exposomic research, we 
modified OF as follows:

	 1.	Sensor Common Metadata Specification (SCMS) (Burnett et al. 2017)
Quantifying exposures and their effects requires integration of multiple 
sensors that measure the general and personal environments for chemical, 
physical, and biological species. Even within a given species, there are often 
differences in their composition profiles based on their source and locations 
(Yang et al. 2019). Sensors used to measure these species have different 
instrument characteristics, capabilities, calibrations, and outputs (Williams 
et al. 2019). Integration of diverse sensor data should be context-aware, 
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metadata-driven, and semantically consistent. Further, it needs to be sup-
plemented with metadata to support appropriate use of data as well as pro-
vide a harmonized representation for ease of use in diverse research studies 
and analytic approaches. In order to support these needs, we developed 
SCMS by performing a literature review of studies using sensors, reviewing 
sample data, and iteratively refining it with feedback from sensor experts. 
SCMS is available at https://github.com/uofu-ccts/prisms-sensor-model for 
community review and utilization.

The scope of SCMS includes all types of sensors ranging from nano-
sensors to satellites, measuring physical, chemical, or biological species. 
These sensors could be personal or mobile, stationary in-home, or ambient 
monitoring stations. SCMS covers three sensor domains:
•	 Instrument: Physical characteristics of a sensor device.
•	 Deployment: Description of how a sensor device is used in research 

data collection.
•	 Output: Characteristics of sensor measurements.

The contents of these three domains ensure quality in exposure stud-
ies by providing the content and structure for (1) establishing a library of 
sensors as described in Section 16.5.3, (2) development of a DMDR also 
described in Section 16.5.1, and (3) the development of data harmonization 
MDR (described next). Using SCMS, we develop a similar metadata model 
for interventional devices used in research studies (Morgan, Gouripeddi, 
and Sward 2019).

	 2.	Metadata management (Gouripeddi et al. 2019b,c, Sward et al. 2017).
OF’s MDR (Bradshaw et al. 2009, Mo et al. 2014) is an Object Modeling 
Group specification conformant (Object Management Group 2019), FAIR-
compliant (Wilkinson et al. 2016), standard-based repository of artifacts 
and knowledge. It stores metadata artifacts and relationships of data and 
modular components subscribed by OF. These artifacts include, but are not 
limited to: (1) logical models, local models, model mappings, (2) admin-
istrative information, (3) descriptive information, and (4) translation pro-
grams. These are organized as “assets” in a custom-built, highly generic 
and abstracted entity-relationship model. Assets may have properties and 
associations to other assets. Stored metadata is shared in various structured 
and non-proprietary formats using translation programs and made available 
for consumption by different SS.

Considering the data and process complexity within exposomic research, 
we conceptually divided metadata management into three categories:
•	 Data metadata: Metadata that describes data outputs resulting 

from an observations or measurements. This includes sensor mea-
surements, outputs of computational models, clinical observations, 
genomic sequence annotations, socio-behavioral data, and participant 
report data.

•	 Process metadata: Metadata that describes research or data processes 
within EHIE. This includes sequences of steps followed in differ-
ent computational models in order to generate outputs, and data 

https://github.com
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transformation and integration workflows to harmonize source data as 
events or into analytical models. An example of a research process is 
sensor deployment.

•	 Knowledge resources: Metadata that describes a source or instru-
ment used to collect, measure, or derive data. This includes sensor 
devices, electronic medical records, or study-specific data collection 
instruments.

The SCMS has highly interconnected metadata elements. The labeled 
property graph provides better support for (1) complex relationships, such 
as ternary or higher degrees, many-to-many, and self-referencing rela-
tionship types, and (2) dynamic schemas (Robinson et al. 2015). Unlike 
relational stores, graph metadata management does not require deviating 
from natural relationships representing semantically rich domains in the 
real world. We, therefore, adopted a graph-based MDR for the instrument 
and output domains of SCMS which represent data metadata and knowl-
edge resources aspects of metadata categories. Since the deployment 
domain of the SCMS is fairly simple with one-to-many relationships, we 
adapted a document store that captures metadata about the deployment 
processes as described above. We implemented the instrument domain in 
a Neo4j graph database (Neo4j Graph Platform 2019), which forms the 
backend store for the sensor library (Burnett et al. 2018a), as described 
in the participant-facing tools section. OrientDB graph database sys-
tem (OrientDB 2019) provides better integration with Java classes. We, 
therefore, used OrientDB for storing data metadata which includes data 
transformation functions to transform source data into events. Similarly, 
we have adapted OrientDB for storing data metadata of other data 
domains such as clinical, biospecimen, socio-behavioral, and partici-
pant report which we were originally stored in relational databases. We 
adapted the MongoDB platform (MongoDB 2019) for the deployment 
MDR as described in Section 16.5.1.

These new approaches to metadata management limit the introduction of 
semantic dissonance between conceptual models and their implementation, 
as it retains complex real-world relationships. Detailed metadata stored in 
the MDRs provide a spatio-temporal grid of metadata complementing the 
high-resolution spatio-temporal grid of integrated data, informing end-
users of the limitations and uncertainties associated with the data. As a next 
step, we plan to characterize, develop specifications, consume, and store 
relevant semantics for the exposome domain (Habre et al. 2016, Mattingly 
et al. 2016, Burnett et al. 2018a, Kiossoglou et al. 2017, Gouripeddi, Habre, 
and PRISMS Data Modeling Working 2019, Cummins et al. 2019a, Lopez-
Campos et al. 2019) and supplement this metadata work.

	 3.	Event Document Store (EDS)
Exposomic studies require integrity of spatial and temporal dimensions of 
data in order to ascertain relationships between patient-reported symptoms, 
physiological measurements, and clinical manifestations, with environ-
mental changes (Gouripeddi et al. 2017). This requirement for generating 
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spatio-temporal records of exposures and the need to provide data in differ-
ent analytic models and formats led us to transform all data as events occur-
ring in spatio-temporal coordinates. Based on the uncertainty associated 
with the proximity of data collection to the subject under consideration, 
and the usage of different data collections in different types of translational 
research, we classified events into six domains: sensor, clinical, biospec-
imen-derived, patient-reported, computationally modeled, and aggregates 
(Figure 16.15) (Gouripeddi et al. 2017). These events are informed by logi-
cal models stored in the MDR. Each event is logically a document and we 
call the aggregation of all these documents an EDS. The EDS is conceptu-
ally modeled as events occurring on a timeline and can be implemented 
in any Big Data store. This primitive storage format allows linkage across 
different root objects that do not necessarily belong to a person and can be 
transformed into higher/analytical models based on use cases. Time rep-
resented in these events is modeled as (Combi, Keravnou-Papailiou, and 
Shahar 2010):
•	 Unbounded: Contains upper and/or lower bounds with respect to its 

order relationship.
•	 Dense: An infinite set of smaller units.
•	 Discrete: Every element has both an immediate successor and an imme-

diate predecessor, if unbounded, and within the bounds, if bounded.
•	 Instants and intervals (upper and lower time points).
•	 Finest granularity available with the source.

Similarly, spatial dimensions in these events are continuous and trans-
formable to different reference systems. We stored these events as JavaScript 

FIGURE 16.15  Conceptual representation of different events implemented with allocated 
bins of event identifiers.



260 Total Exposure Health

object notation (JSON) documents in the Couchbase NoSQL platform 
(Couchbase 2019). The EDS supports (1) natural querying for spatio-tem-
poral reasoning of events and knowledge facts—a critical need for complex 
and unpredictable diseases in which sequences and locations of events are 
critical to their understanding and (2) transformation of events into higher/
analytical models to support diverse translational research archetypes.

	 4.	Software workflow
OF transforms and stores data from heterogeneous sensors and other 

health data sources into uniform event-based data structures. In order to 
facilitate these data transformations, we modified OF to be an event-driven 
architecture with the following changes (Figure 16.16): First, data services 
identify user input data criteria for integration. Then, using the contents of 
the MDR, OF orchestrates querying of data sources which could be web 
services, database tables and flat files for attributes described in the user’s 
input. OF’s SS leverage metadata content in the MDR to inform struc-
tural and semantic transformations of selected data to their correspond-
ing events. Using this metadata, OF’s services then write events into the 
EDS. For example, home-based sensor measurements acquired via EpiFi 
(Lundrigan et al. 2017) are transformed into sensor events and integrated as 
JSON documents in EDS (Figure 16.15). OF also exposes several services 
to access and view the documents stored in the EDS.

FIGURE 16.16  OpenFurther (OF) software workflow for exposure health studies. Key 
steps: (1) data sources are characterized, (2) their metadata and mappings to different event 
types are authored, (3) metadata and transformation functions are stored in an OrientDB-
based graph MDR, which is (4) leveraged by OF to generate events stored in a Couchbase 
event document store, and (5) these events are available for querying by time and other down-
stream analytic processes.
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Data in EDS is stored on a study by study basis. A research study is represented 
by a study event and consists of one or more integration events that represent periodic 
data integration runs. We found that the architecture can be scaled for performance. 
The architectural designs of the infrastructure support a semantically consistent, 
metadata-driven approach to multi-scale, multi-omics exposomic Big Data integration 
for diverse translational research ranging from understanding mechanisms of disease 
to developing preventive and therapeutic interventions. The developed architecture 
alleviates informatics challenges associated with exposomic data that originate from 
the characteristics of measurement devices, their deployment, and human behavior.

We index the data using Couchbase’s native indexing and with ElasticSearch 
(Kuc and Rogozinski 2013) to support different spatio-temporal reasoning use 
cases. In addition, we use a similar metadata-driven approach described above to 
transform events into higher analytical models depending on the use case, which 
is then made available via different research-facing tools. We have also submitted 
the integrated data through data streaming pipelines such as the Kafka (Narkhede, 
Shapira, and Palino 2017) instance hosted at the PRISMS data coordinating center 
(Stripelis et al. 2017).

16.6 � UTILIZATION OF EXPOSOME IN TRANSLATIONAL STUDIES

We are utilizing EHIE to generate exposomes for two ongoing studies:

	 1.	PRISMS Pilot (Gouripeddi et al. 2019b,c): This study was approved by 
the University of Utah Institutional Review Board (IRB No._00086107). 
We adopted an ongoing transient receptor potential pediatric asthma study 
(Deering-Rice et al. 2015, 2016), where we collected and integrated environ-
mental data with health data for 10 participants residing in Salt Lake, Davis 
and Utah Counties, Utah, United States, for the period March 1st, 2017 to 
June 30th, 2018 (study processes depicted in Figure 16.10). A summary of 
the data used in this study is presented in Table 16.1. We integrated this data 
into approximately 25 million events for the study period (Figure 16.17). 
The generated events included participant registration, clinical, survey, sen-
sor output, and sensor deployment events, linked by events representing 
different integration batches and the study. On evaluation of the quality of 
the integrated documents, we found the events to be consistent and accurate 
with the source data. In addition, we were able to perform analysis of these 
events to ascertain spatio-temporal relationships between various events. 
We submitted this information to the PRISMS data coordinating center in 
order to test the PRISMS program concept. Statistical and machine learn-
ing analysis results being performed both at the University of Utah and the 
data coordinating center are pending. 

	 2.	Environmental influences on Child Health Outcomes (ECHO) Study 
(Collingwood et al. 2018): This study was approved by the University of 
Utah Institutional Review Board (IRB No._00086107). As part of ECHO, 
we piloted deployment of sensors among urban, rural, frontier, and tribal 
populations to evaluate the acceptability of low-cost, IoT connected air 
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quality measurement devices varied populations. With good results in 
our pilot testing, we deployed multiple sensors in homes of participants 
recruited via a geographic random sampling protocol whereby the primary 
inclusion criteria was a women of childbearing age residing in the home. 
To date, we have deployed multiple sensors in 28 homes of participants 
and collected in excess of 50,000,00 sensor readings measuring PM2.5 
using AirU devices (Kelly et al. 2017) through EHIE over a 1-year period. 

TABLE 16.1
Summary of Data Integrated as Events for the Utah PRISMS Pilot Study for 
the Period from March 1, 2017 to June 30, 2018

Data Stream Description Event Count

Participant demographics Collected using a REDCap questionnaire. 
Data consumed via the REDCap API 
(Harris et al. 2009)

10

Participant home assessment Collected using a REDCap questionnaire. 
Data consumed via the REDCap API

10

Home sensor deployment Details about the indoor home sensor 
deployment. Collected using a REDCap 
questionnaire. Data consumed via the 
REDCap API

145

Asthma severity assessment 
(weekly)

Weekly asthma symptoms and severity 
scores of participants collected from 
eAsthmaTracker (eAT) (Nkoy et al. 2012, 
2013). Data consumed from MySQL 
database of eAT

293

Asthma severity assessment 
(daily)

Daily asthma symptoms and severity scores 
of participants collected from eAT. Data 
consumed from MySQL database of eAT

1,160

Particulate matter (PM2.5) for 
Salt Lake, Davis and Utah 
Counties, Utah, United States

Environmental Protection Agency’s Air 
Quality Datamart API (“AQS Data Mart | 
Air Quality System | US EPA” 2019)

73,995

Temperature, humidity for Salt 
Lake, Davis and Utah 
Counties, Utah, United States

National Weather Service API (US 
Department of Commerce 2019)

703,164

Particulate matter (PM2.5) 
from PurpleAir

Data from Purple Citizen’s Network 
(PurpleAir.Org 2019) aggregated by 
Mesowest (Horel et al. 2002)

1,738,132

Particulate matter (PM2.5) 
from Trax light rail in 
Wasatch front

Mobile Air Quality Assessment from Trax 
(Mitchell et al. 2015, 2018) aggregated by 
Mesowest

7,934,529

Indoor particulate matter 
(PM2.5) measured by Utah 
Modified Dylos

Data made available through EpiFi 
(Lundrigan et al. 2017) and consumed 
from an influx database

14,075,201

Total 24,526,639
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Ongoing investigations relative to these environmental sensors include in-
home air quality variation, relationship between indoor/outdoor & housing 
characteristics, individual sensor measurement variation (drift), and home-
based air quality influences on urinary markers of inflammation. Future 
work will expand the deployment to more than 200 AirU sensors and in 
60 additional homes. In addition, the measurement capability of the AirU’s 

FIGURE 16.17  Different types of events generated by integrating sensor and clinical datas-
ets in the Utah PRISMS pilot study. Data from ten participants for the period March 1st 2017 
to June 30th, 2018 and residing in Salt Lake, Davis and Utah Counties, Utah, United States, 
were integrated resulting in a total of 24,526,659 events. Source data consisting of participant 
registrant data (bottom right to left) including participant demographics and criteria of their 
eligibility to the study, clinical data, home assessment surveys, asthma symptoms, indoor 
and outdoor air quality sensor readings, weather and detailed sensor deployment data. These 
events are linked via integrated events and study events. Counts of events integrated from 
each source are indicated on top of arrows connecting them to their corresponding event 
types.
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will be enhanced by embedding ozone and volatile organic compound 
(VOC) sensors into the unit, using EHIE for management of deployment 
processes, and integration of data arising from over 250 sensors.

Our initial results from these pilots show that it is feasible to use informat-
ics ecosystems like EHIE to perform sensor-based longitudinal cohort studies 
(Collingwood et al. 2018, Gouripeddi et al. 2018, Sward 2019, Cummins et al. 2019b). 
While different sensors capture data at different time resolutions and have varying 
spatial distributions, it is possible to generate spatio-temporal grids of exposures and 
relate to symptoms and clinical observations. Most participants were supportive of 
using their personal WiFi for sensor data transmission, but there is a need for flexible 
data transmission and storage methods to account for limitations in home networks. 
Preliminary statistical analysis of the data using mixed modeling approaches shows 
that particular matter (PM) levels were generally lower indoors compared to out-
doors (p < 0.001). Indoor PM counts were not related to asthma control test (ACT) 
scores and rescue medication usage (p > 0.05). Outdoor PM2.5 was related to wors-
ened ACT scores and increases in asthma treatment (p < 0.001), but outdoor PM10 
counts were not related (p = 0.52).

16.7 � DISCUSSION AND CONCLUSION

In this chapter, we discussed challenges and data needs for performing total expo-
sure health research (Sward et al. 2017). These include (1) acquisition of sensor data, 
(2) selection of heterogeneous data sources, (3) filling gaps in measurements using 
computational modeling, (4) characterization of uncertainties associated with data, 
(5) generation of high-resolution spatio-temporal grids of exposures, (6) integration 
of data, (7) presentation and visualization of data, and (8) support for diverse set of 
translational research archetypes. In order to address these needs, we developed a 
loosely coupled, scalable informatics infrastructure called EHIE that consists of (1) 
data acquisition pipeline, (2) participant-facing tools, (3) researcher-facing platforms, 
(4) a computational modeling platform, and (5) a central Big Data federation/integra-
tion platform. For each of the above components, we provide an introduction and dis-
cuss their subcomponent architecture. The ECHO and PRISMS pilot are examples of 
demonstrative studies utilizing EHIE to generate exposomes for research.

EHIE is a generalizable, multi-scale, and multi-omics platform providing robust 
pipelines for reproducible exposomic research that uses real-time, low-cost sensors to 
provide spatio-temporal records of environmental exposures. Using this component-
based ecosystem, we are able to support the deployment and performance of sensor-
based studies, and the integration, processing, visualization, and secure transmission 
of study data for most research designs. EHIE provides an effective, flexible, and 
open access approach to collecting, managing, and analyzing high-resolution data 
from sensors. Because the infrastructure is based on logical data models for clini-
cally relevant exposomes (environmental exposures such as air quality, which have 
health impacts), the infrastructure is flexible and adaptable to many translational 
research scenarios (Figure 16.18). The infrastructure also provides mechanisms for 
integrating exposure profiles (exposomes) with clinical, self-reported, behavioral, 
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and other research data. In addition, EHIE supports supplementation of direct mea-
surements with computationally-modeled data for exposures, activities and locations 
that can then easily be assimilated into comprehensive spatio-temporal records.

We have formalized the development and sustenance of this ecosystem and our 
team of collaborators as a Center of Excellence for Exposure Health Informatics 
(CEEHI) (http://ceehi.ccts.utah.edu/). CEEHI serves as a collaborative for con-
tinuing investigations and development of state-of-the-art informatics methods for 
exposomics. It is a go-to center for researchers interested in conducting sensor-based, 
mobile, and virtual studies that include measurements of the environment, physiol-
ogy, and behavior of participants by providing expertise, guidance, infrastructure, 
and other resources to the total exposure health research community.

CEEHI provides a key infrastructure that accommodates diverse types of 
future studies, including general and personal environmental exposure monitoring, 
activities, and physiological responses to the environment. From an infrastructure 
perspective, CEEHI seeks to evaluate the ecosystemic health (Jansen 2014) of EHIE. 
We will then advance it as an ultra-large-scale infrastructure with integrated sensor 
health monitoring systems and with added abilities to perform studies using mobile 
sensors during real-life activity and location trajectories of participants (Bill Pollak 
2006, Friedman et al. 2014). We will advance the use of novel sensors (Wang and 
Tao 2017, Li et al. 2019, Mirowsky et al. 2013), sensing paradigms (Schivo et al. 
2013, McCartney et al. 2017, Hichwa and Davis 2018), and sensor networks and 
architectures (Kasera 2019). We will improve upon the science of using appropriate 
resolutions of data for different use cases by testing different data resolutions as avail-
able from the measured and modeled data available in networks such as Mesowest 
(Horel et al. 2002). We will add robust support for management of research pro-
cesses and data for activities related to the study and its operations.

On a health research front, CEEHI is working with multiple researchers at 
the University of Utah and elsewhere to perform studies that seek to understand 
mechanistic, health outcomes, interventional aspects of exposure, and diverse 
disease conditions. Our current pediatric collaborators are interested in pediatric 
asthma and children with complex medical conditions in improving care, better 
self-tracking with environmental changes (Nkoy et al. 2012, 2013) and pharmacoge-
nomics in relation to the environment (Deering-Rice et al. 2015, 2016). The Utah 
Children’s Project, part of the ECHO Consortium (Stanford and Collingwood 2017), 
is continuing a longitudinal cohort study of children starting from pre-conception 
with plans to follow them through 20 years of age while measuring a broad array 
of environmental exposures. These include examining effects of diverse exposures 
(chronic and intermittent) on health and human development; investigating basic 
mechanisms and gene-environment interactions of developmental disorders and 
environmental factors (both risk and protective) that influence health and devel-
opmental processes; indoor and outdoor air sampling; home evaluations; question-
naires; and a diverse array of biomarkers including microbiome, serum antibodies, 
and others. In addition, components of the data acquisition platform are being used to 
investigate exposures in occupational environments (industry and military organiza-
tions), as well as environmental exposures of underserved populations (frontier and 
rural families). Other total exposure health conditions being studied include adult 

http://ceehi.ccts.utah.edu
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pulmonary disease (Pirozzi et al. 2015, 2017), sleep apnea (Sundar, Daly, and Willis 
2013, Zanobetti et al. 2010, Weinreich et al. 2015, Billings et al. 2019), chronic kid-
ney disease (Bowe et al. 2018, Kaskel et al. 2014), diabetes and metabolic disorders 
(Riches et al. 2019), aging and neurological conditions. In addition, at a mechanistic 
level, we are planning studies that look at the interaction of the microbiome with the 
exposome in asthma (Gouripeddi 2019a), and the role of PM chemical constituents 
in pulmonary health (Kitt et al. 2019). We are working on quantifying the digital 
exposome (Lopez-Campos, Merolli, and Martin-Sanchez 2017) and relating it with 
effects on health. Lastly, we are expanding the integration and real-time assimila-
tion capabilities of the platform to obtain objective measures of autonomic nervous 
system physiology to detect real-time status of different conditions, such as impaired 
awareness of hypoglycemia (Groat et al. 2019, Mehta et al. 2019) and neuropathic 
pain (Singleton et al. 2008, 2014), and use them to develop interventions for manag-
ing these conditions.
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