
O
n 

th
e 

In
flu

en
ce

 o
f 

Pi
ec

ew
is

e 
D

efi
ne

d 
C

on
ta

ct
 G

eo
m

et
ri

es
 o

n 
Fr

ic
ti

on
 D

am
p

er
s

40

KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)
SCHRIFTENREIHE DES INSTITUTS FÜR TECHNISCHE MECHANIK

BAND 40

JIMMY ALBERTO ARAMENDIZ FUENTES

On the Influence of Piecewise Defined  
Contact Geometries on Friction Dampers

Jim
m

y 
A

lb
er

to
 A

ra
m

en
di

z 
Fu

en
te

s





Jimmy Alberto Aramendiz Fuentes

On the Influence of Piecewise Defined  
Contact Geometries on Friction Dampers



Eine Übersicht aller bisher in dieser Schriftenreihe erschienenen 
Bände finden Sie am Ende des Buchs.

Karlsruher Institut für Technologie
Schriftenreihe des Instituts für Technische Mechanik

Band 40



On the Influence of Piecewise Defined 
Contact Geometries on Friction Dampers

by
Jimmy Alberto Aramendiz Fuentes



Print on Demand 2023 – Gedruckt auf FSC-zertifiziertem Papier

ISSN  1614-3914
ISBN 978-3-7315-1267-7 
DOI 10.5445/KSP/1000153493

This document – excluding parts marked otherwise, the cover, pictures and graphs – 
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)  
KIT Scientific Publishing 
Straße am Forum 2 
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark  
of Karlsruhe Institute of Technology.  
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
KIT-Fakultät für Maschinenbau

On the Influence of Piecewise Defined  
Contact Geometries on Friction Dampers

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Maschinenbau des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation 

von Jimmy Alberto Aramendiz Fuentes

Tag der mündlichen Prüfung: 15. September 2022
Hauptreferent: Prof. Dr.-Ing. habil. Alexander Fidlin
Korreferent: Prof. Dr.-Ing. Thomas Sattel







Kurzfassung

Die Reduktion von Schwingungen in Maschinen, Anlagen und Gebäuden ist eine
wichtige Aufgabe im Ingenieurwesen. Vibrationen sind oft mit Geräuschen und Rauheit
verbunden und sind im besten Fall nur für die Kundenzufriedenheit nachteilig. Im Worst
Case führen sie zum Systemversagen. Im Gegensatz dazu führt Schwingungsminderung
zu einer längeren Lebensdauer, sichereren Systemen und finanziellen Vorteilen durch
weniger Ausfallzeiten. Daher ist es wichtig, effektive Dämpfer zu konstruieren.

Diese Arbeit betrachtet Dämpfer, die sich nicht auf eine Schwingungsreduktionsstrategie
beschränken, sondern mehrere kombinieren, um optimale Ergebnisse zu erzielen. Die
Möglichkeiten herkömmlicher Reibungsdämpfer werden durch stetige, stückweise
definierten Kontaktgeometrien erweitert. Dies führt zu Reibungsdämpfern, die ihr
Verhalten je nach Amplitude der Schwingungen ändern. Der passive, abgestimmte
Keildämpfer wird entworfen und untersucht. Dieser Dämpfer bringt Dämpfung
bei hohen Schwingungsamplituden in System ein und nutzt Tilgung bei niedrigen
Schwingungsamplituden aus. Es werden numerische und analytische Untersuchungen
durchgeführt. Um das qualitative Verhalten des Dämpfers zu validieren, wird ein
Dämpferprototyp konstruiert und erprobt. Zudem wurde auch eine aktive Variante des
abgestimmten Keildämpfers betrachtet. Es werden zwei Regelstrategien entworfen, die
adaptive Mehrmodellregelung und die langsame, frequenzbasierte Regelung. Diese
werden mit einer State-of-the-Art-Regelungsstrategie in transienten, quasistationären
und Anwendungsszenarien verglichen.

Die Untersuchungen zum passiven, abgestimmten Keildämpfer zeigen, dass Dämpfung
und Tilgung entkoppelt werden. Eine Optimierung der Dämpferparameter ergibt im
Frequenzgang eine Reduktion der Maximalamplitude von 87.47 % unter Beibehaltung
der Tilgung. Die Experimente validieren den Entkopplungseffekt sowie den qualitativen
Einfluss der Parameter. Die aktiven Systeme erreichen mit Amplitudenabsenkungen
von 91.11 % das beste Ergebnis.
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Abstract

The reduction of vibrations in machines, plants, and buildings is a common task in
engineering. Vibrations are often coupled with noise and harshness and are at least
detrimental to customer satisfaction. In the worst case, they cause system failures.
In contrast, the reduction of vibrations yields an increase in the life expectancy, safer
systems, and financial gains due to less downtime. It is therefore essential to design
devices that are capable of mitigating large vibrations.

This work considers dampers that do not solely focus on a single vibration reduction
strategy but instead combine them to achieve optimal results. The dampers are based
on dry friction dampers. However, the capabilities of conventional dry friction dampers
are expanded by taking into account continuous piecewise defined contact geometries.
This leads to friction dampers that change their behavior depending on the amplitude
of the oscillations. The vibration damping device in this work, the tuned wedge damper,
introduces damping at high oscillation amplitudes and takes advantage of absorption
at low oscillation amplitudes. This passive system is investigated numerically and
analytically. Additionally, a damper prototype is constructed and experiments are
performed to validate the qualitative behavior of the damper. An active variant of the
tuned wedge damper is also considered. Two novel control strategies are designed,
namely the adaptive multiple model control and the slow frequency-based control.
These are compared to a state-of-the-art control strategy for friction dampers in transient,
quasistationary, and application scenarios.

The investigations into the passive design of the tuned wedge damper show that the
damper decouples damping and absorption. An optimization of the damper parameters
yields a maximum amplitude reduction in the system’s frequency response function
of 87.47% while maintaining an absorption frequency. The experiments validate the
decoupling effect as well as the qualitative influence of parameter variations. Finally,
the active systems achieve the best results with amplitude reductions of 91.11%.

III





Contents

Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Vorwort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Literature Overview of Friction Research . . . . . . . . . . . . . . 2
1.2.2 Literature Overview of Vibration Reduction Research . . . . . . . 10
1.2.3 Literature Overview of Friction Dampers Research . . . . . . . . 17

1.3 Thesis Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Steady-State Solutions of Dynamical Systems . . . . . . . . . . . . 28
2.1.2 Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.3 Calculation Methods for Periodic Solutions . . . . . . . . . . . . . 29

2.2 Averaging for Two Degrees of Freedom Systems . . . . . . . . . . . . . . 32
2.3 Control Strategies for Friction Dampers . . . . . . . . . . . . . . . . . . . 36

2.3.1 Skyhook Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The Wedge Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1 General Damper Description . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Numerical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Analytical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Damper Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

V



Contents

4 The Tuned Wedge Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1 General Damper Description . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Numerical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Analytical Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Tuned Wedge Damper Optimization . . . . . . . . . . . . . . . . . . . . . 76
4.5 Damper Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Experimental Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Wedge Damper Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3 Tuned Wedge Damper Experiments . . . . . . . . . . . . . . . . . . . . . 88
5.4 Experimental Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Active Tuned Wedge Damper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1 Base System for the Control Strategies . . . . . . . . . . . . . . . . . . . . 93
6.2 Skyhook Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Adaptive Multiple Model Control . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 Slow Frequency-Based Control . . . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Control Strategy Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Energy Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.7 Control Strategy Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VI



Contents

Appendix

A Integration of Piecewise Terms of the Tuned Wedge Damper . . . . . . . . . 129

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Supervised Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VII

155

133

139

153





Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher
Mitarbeiter am Institut für Technische Mechanik, Bereich Dynamik/Mechatronik des
Karlsruher Instituts für Technologie (KIT).

Ich möchte mich bei meinem Doktorvater Prof. Dr.-Ing. habil. Alexander Fidlin für seine
wissenschaftliche Anleitung während meiner Promotionszeit. Ohne seine Ratschläge
und Denkanstöße wäre meine Arbeit nicht in diese Form entstanden. Vor allem hat
aber seine Betreuung mich zu einem besseren Ingenieur und einen Wissenschaftler
mit hohem Standards gemacht. Auch die Freiheiten, die ich in meine Forschung hatte,
haben mich Freude bereitet. Weiterhin möchte ich mich für alle Gespräche außerhalb
des wissenschaftlichen Kontexts bedanken. Ich habe viel Geschichte und interessante
Anmerkungen fürs Leben von Ihnen gelernt.

Für die Übernahme des Zweitgutachtens bedanke ich mich bei Prof. Dr.-Ing. Thomas
Sattel vom Fachgebiet Mechatronik der Technischen Universität Ilmenau. Es freut mich,
ein Korreferent zu haben, den ich schon länger kenne. Unsere Zusammenarbeit im
Rahmen des DFG-SPP 1897 hat mich gefreut, und ich habe mich im Ilmenau sehr
willkommen gefühlt. Für Ihre Anmerkungen im Rahmen des Promotionsverfahrens
möchte ich mich auch bedanken, denn diese haben meine Arbeit bereichert.

Ich danke auch meine Kolleginnen und Kollegen, die mich am Institut für Technische
Mechanik begleitet haben. Ich habe von Eurer Erfahrung und Denkanstöße profitieren
können. Auch die nicht wissenschaftlichen Gespräche haben mich gefreut und
entsprechend für Entspannung oder Ablenkung in stressigen Zeiten gesorgt. Besonders
möchte ich Dr.-Ing. Jens Burgert hervorheben, mit dem ich mich ein Bürozimmer geteilt
haben. Wir haben so viel Zeit miteinander verbracht und dafür bin ich dankbar. Es
hat mich gefreut, dich morgens zu begrüßen und unsere gelegentlichen Überlegungen
über Gott und die Welt. Ein besonderer Dank auch an Dr.-Ing. Ulrich Römer, der
mich zuerst als Masterand den wissenschaftlichen Weg gezeigt hat. Als ich meine Zeit

IX



Vorwort

als wissenschaftlicher Mitarbeiter verbracht habe, hattest du oft gute Ratschläge zur
Problemlösung, vielen Dank dafür! An die nicht namentlich genannten Kolleginnen
und Kollegen möchte ausdrücklich noch mal mein Dank aussprechen. Ich habe mich
wohlgefühlt und ich habe mich gefreut, mit Euch zusammenzuarbeiten. Auch wegen
Euch kam ich gerne zur Arbeit.

Bei meinen Freunden und bei Familie Reumann möchte ich mich bedanken. Ihr habt
mich außerhalb der wissenschaftlichen Arbeit unterstützt und für die notwendigen
Ablenkungen gesorgt. Besonders möchte ich Lou-Ann Reumann hervorheben. Durch
Ihre Unterstützung (und Geduld in schwierigen Zeiten) könnte ich diese Heraus-
forderung meistern.

A mi familia en Colombia les doy las gracias por el sacrificio que han hecho por mí.
A los Aramendiz y a los Fuentes les doy las gracias por acompañarme y recibirme
tan bien en mis visitas anuales. A mi papá y mi mamá les agradezco la posibilidad
de haber podido estudiar en Alemania. Entiendo que fue un sacrificio estar tan lejos,
pero les agradezco esta oportunidad para salir adelante y desenvolver el potencial en
mí. A mis hermanos les doy las gracias por acompañarme. El estar juntos, compartir
y sus concejos me ha formado en parte como persona y por este aporte les doy las gracias.

Karlsruhe, den May 10, 2023
Jimmy Alberto Aramendiz Fuentes

X



1 Introduction

Even without our conscious perception, dry friction dampers are present in our everyday
life and play a role in the technological advancement of mankind. They are found in
the trains we use. They are essential in airplanes, specifically in turbines, used to cross
thousands of kilometers in a matter of hours. They also help ensure the structural
integrity of buildings. This work focuses on such dry friction dampers that help reduce
vibrations in mechanical systems. In general, systems are not designed to withstand
large vibration amplitudes. Prolonged exposure to large vibrations ultimately leads to
failure and additional costs. Dry friction dampers use only the sliding contact between
solid bodies to dissipate energy. The robustness and reliability of these dampers make
them an appealing solution in various fields. Additionally, their natural ability to stick
and slip offers advantages, which haven’t been fully utilized. This work contributes
to a better understanding of the behavior of such dampers. In this chapter, first, the
motivation for the investigations is presented in section 1.1. Second, the state of research
is detailed in section 2.1. Based on this literature overview the open research topics are
identified and the specific purpose of this thesis is stated in section 1.3. The chapter
concludes with the general thesis structure in section 1.4.

1.1 Motivation
Two main reasons drive the study of friction dampers and effective vibration reduction
mechanisms in general: financial and environmental reasons. The implementation of
effective dampers results in reduced vibration amplitudes and therefore lightweight
and efficient machines. Such machines lead to better products and financial savings.
Ultimately, they lead to a company’s competitive edge. Additionally, vibration reduction
also leads to a longer machine life and thus less unplanned downtime. In 2016,
a study by the Wall Street Journal Custom Studios estimated the average cost of
unplanned downtime for industrial manufacturers at $50 Billion per year with 42%
due to equipment failure [181]. Environmental motives come from the energy efficiency
challenges, which are required by politics. Therefore, there is a strong interest in the
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1 Introduction

reduction of unnecessary energy costs in machines. The report of the International
Energy Association "Net Zero by 2050" foresees a worldwide economic growth of 40%
by 2030 with 7% less energy consumption than in 2020 [20]. Friction dampers must
contribute toward the accomplishment of this goal. Specifically, they help to better
understand friction’s role in vibration reduction. In 1966 the costs due to the suboptimal
utilization of friction were estimated at $200 billion [16]. The targeted study of friction
dampers contributes to the efficient use of dry friction.

1.2 State of Research
This work investigates two types of friction dampers focusing on the geometrical
design of the contact surfaces and their influence on vibration reduction. The specific
investigation field of this work is a combination of two major fields: friction and vibration
reduction. It is, therefore, only natural to first treat these two major fields separately and
afterward consider their fusion, namely the field of friction dampers. This approach
represents the structure of the state of research subchapters.

1.2.1 Literature Overview of Friction Research
A detailed review of the friction-induced vibration and friction modeling was made
by Ibrahim [82, 83]. In the first part of the review, he detailed the different aspects
and challenges that arise when modeling friction. In the second part, the review
focused on the mechanisms that cause friction-induced vibrations and on examples
in engineering applications. A detailed historical review was presented by Feeny et
al. [48]. In this review, the contributions of friction towards technological advancements
are made evident. Furthermore, an overview of the friction influence factors, fiction
phenomena, and friction damping was given. Berger [14] gave a detailed report on
the relationship between the system model and the friction model. He concluded that
they cannot be chosen independently from one another and described the physical
implications of the friction models. For the sake of brevity, only the most important
aspects of these reviews are mentioned. Additionally, other sources found relevant by
the author are included. In this chapter, first, the investigation into friction is introduced
from a historical perspective. Second, the different factors that influence friction are
presented. Third, the models that aim to describe such dependencies are detailed.
Lastly, friction-induced phenomena are considered.

The first descriptions of friction in the context of mechanics are attributed to Leonardo Da
Vinci. In his manuscripts, he noted the proportionality between the friction force and the
normal load. These findings were lost because his work was not published [16]. However,
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1.2 State of Research

Da Vinci’s results were independently rediscovered by Guillaume Amontons in 1699.
He postulated two friction laws. The first one stated the proportional relationship
between the friction force and the normal force. The second law postulated the
independence of the friction force on the apparent contact area. The work of Amontons
was verified and further expanded by Charles-Augustin Coulomb in 1785. He added
the third law of friction, which states that the friction ratio is independent of the sliding
velocity between the contact areas. Both Amontons and Coulomb were motivated by
the better understanding and the reduction of friction in machines. As such, they
experimented with wood, copper, iron, and steel material pairings in both dry and
smeared configurations [35]. These three statements make up the Amontons-Coulomb
friction laws and built the basis of macrotribology. Leonhard Euler also made a
substantial contribution in 1750, since he was the first to introduce a friction coefficient
and a difference between static and dynamic friction. His work was theoretical in nature
and it stated both the letter 𝜇 as the friction coefficient and the fundamental geometrical
interpretation of the friction cone. Both these concepts are still used today. Although
not explicitly mentioned in the friction laws, Coulomb and Euler had an intuitive
understanding that the ratio between the normal and friction force was dependent on
the material pairing and lubrication. A modern calculation of these ratios expressed as
the friction coefficient was presented in the work of Maissen [115].

The aforementioned concepts laid a foundation for the study of friction. However,
the state of research shows that friction characterization is not that simple. Since the
Amontons-Coulomb friction laws, additional influence factors of friction have been
identified. This is mainly due to new technological applications and advances. For
example, in contrast to Amonton’s friction laws Boden and Tabor [23] postulated that
friction is dependent on the true contact area. Different from the apparent contact
area, the true contact area is given by the sum of the junctions between the asperities
that are actually in contact with each other. Furthermore, the true contact area is itself
dependent on the surface roughness and the normal load. Both these factors influence
the junctions between the asperities in the contact area. Depending on the normal
load the asperities will deform either elastically, plastically, or even break. The sum
of these behaviors determines the true contact area. Research into this relationship
was further expanded by Andrew et al. [4], Tabor [167], and Sakamoto [148]. Models,
that approximate the contact area, were proposed by Greenwood and Williamson [68]
and Whitehouse and Archard [179]. These works assume a Gaussian distribution of
asperity and demonstrated that the true contact area depends on the normal load and
helped to describe the underlying contact mechanics.

3



1 Introduction

(a) (b)

Figure 1.1: (a) Exemplary Stribeck curve, source: [82]. (b) Acceleration influence on the friction coefficient,
source: [148].

Modern research has also corrected Coulomb’s friction law. One significant work was
derived by Stribeck [163]. His work focused on lubricated bearings and included four
different frictions regimes depending on the sliding velocity: static friction, boundary
lubrication, partial fluid lubrication, and full fluid lubrication, see Fig. 1.1a. However,
Stribeck’s studies do not imply a corresponding relation between the velocity and
the friction coefficient. Sampson et al. [149] measured the effect of acceleration and
deceleration on the friction force and noticed different values. Their measurements
revealed a declining friction coefficient for increasing velocities and a constant friction
value for declining velocities. These results were verified by Ko and Brockley [97] and
Sakamoto [148], see Fig. 1.1b. Ko and Brockley [97] also noticed a humped friction
force curve, which showed a local maximum and afterward a minimum for progressing
velocities. Gao and Kuhlmann-Wilsdorf [63] found similar results for dry friction
contacts in vacuum. However, they measured first a local minimum and afterward a
local maximum for low speeds before the friction coefficient became independent of
the velocity. Additional velocity curves for the friction coefficients were measured by
Vinogradov [174], Grosch [70], Krauter [101], Martins [119], and Kapelke [89].

The static friction force is also dependent on the rate of compression and the time of
stationary contact as suggested by Rabinowicz [142], Brockley [24], and Martins [119].
Both of these influence factors ultimately represent a dependency of friction on time.
The two factors contribute to the shear strength of the asperities in the contact area. The
normal load creates new junctions between the asperities, whereas the stationary time
strengthens the bonds between asperities, i.e. the cold-welding effect. Plint and Plint
also noticed this behavior in their experiments with smeared contacts [138]. However,
they attributed this to the squeeze-film effect. Although the effect was different, the
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1.2 State of Research

underlying result was the same, namely strengthening of the bonds between asperities
due to the passage of time. Aronov et al. [7] and Dweib and D’Souza [42] also carried
out experiments that determined that the friction force depends on the normal load for
a constant sliding velocity, see Fig. 1.2a. The results of this research determined four
regimes for rising normal loads. The first is a steady-state region where the friction is
proportional to the load. Second, comes a nonlinear regime where the friction coefficient
is not constant. Third a transient regime in which the friction fluctuates, and lastly, a
self-excited regime where instabilities are observed.

(a) (b)

Figure 1.2: (a) Normal load influence on friction force, source: [42]. (b) Temperature rise in friction for different
sliding velocities, source: [130].

An additional influence factor in the description of friction is the temperature of the
contact surface. It results from the heat generated due to friction. Bowden and
Tabor [21] and Sarkar [151] published in their books theoretical and experimental
results regarding effects of heat transfer on friction. They measured the well-observed
phenomenon of rising contact temperature with rising contact velocities. Additionally,
they showed that some material pairings show a saturation of the contact temperature.
Similar observations were made by Newcomb [130], see Fig. 1.2b. The heat influence on
friction was considered locally by Bhusan [15] and Kuhlmann-Wilsdorf [103], whereas
Maksimov [116] assumed a uniformly distributed temperature of the contact surfaces.
Their research offered insights into the instability mechanism that arises from the energy
exchange between mechanical and thermal modes.
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1 Introduction

The overview above gives an insight into the most influential factors on friction.
Nevertheless, additional influence factors exist such as the local wear of the contact
surfaces studied by Bowden and Leben [22], the contact stiffness investigated by Andrew
et al. [4], and the effects of dynamic normal or tangential forces acting on the contact
surface as indicated by Godfrey [67] and Keer et al. [92]. Although friction has a variety
of influence factors, this has not kept researchers from proposing models to describe
certain aspects of these dependencies.

Some models focus on the microscopical contact mechanics, which occur between
asperities in the contact surface as in the works of Greenwood and Williamson [68],
Hisikado [79], and Tabor [167]. Partly, these works stated that the friction force is
composed of two portions: one which is attributed to shearing and the other to plowing.
The shearing portion of the friction force is attributed to the van der Waals forces
between the atoms at the asperity junctions. The plowing part of the friction force
represents the force necessary to move aside the material in the path of the penetrating
asperities. This second friction mechanism becomes more relevant when one material
is significantly harder than the other one. If this is not the case, the shear portion is
dominant.

A large number of friction models are phenomenological and focus on the macroscopic
level. The most common model is the Coulomb dry friction. While sticking the
relative velocity is zero and friction force takes on the necessary value to uphold the
corresponding sum of forces. This case holds as long as the friction force does not
exceed the maximum value given by the stiction force 𝐻 = 𝜇𝑁 . In the sliding case, the
Amontons-Coulomb friction laws are expressed in the equation

𝑅 = 𝜇𝑁sgn(𝑣rel) .

Where 𝑅 is the friction force, 𝜇 is the friction coefficient, 𝑁 is the normal load, 𝑣rel is the
relative velocity of the contact surfaces, and sgn(·) represents the sign function

sgn(𝑥) :=


−1, 𝑥 < 0
0, 𝑥 = 0
1, 𝑥 > 0

.

Although it is known that this is not the most accurate description of friction, this
model has proven to yield acceptable results in the description of friction-induced
vibrations. Additionally, for a plastic material behavior, Bowden and Tabor motivated
the proportionality between friction and the normal load with microscopical contact
mechanics. Assuming the dry contact of two rough surfaces with similar hardness, the
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friction coefficient is interpreted as the ratio between the shear strength to the yield
stress [167]. With 𝐴0 as the true contact area, 𝜏0 as the shear strength, and 𝜎0 as the
yield stress this interpretation is summarized the equation

𝑅 = 𝐴0𝜏0 =
𝑁

𝜎0
𝜏0

!
= 𝜇𝑁 → 𝜇 =

𝜏0
𝜎0

.

A similar results for an elastic material behavior was provided by Greenwood and
Williamson [68]. Therefore it is noted that under the assumed conditions the Coulomb
friction model offers an acceptable approximation provided the friction coefficient 𝜇 is
chosen accordingly. Variations and extensions of this model have been proposed to take
into account additional factors. One extension is the consideration of different static
and dynamic friction coefficients. For example, a velocity-dependent friction coefficient
𝜇(𝑣rel) was used by Thomsen and Fidlin [168]. This allows the consideration of the
Stribeck effect and is found in different variations as summarized by Armstrong et al. [6].

In an effort to reduce computational effort, a common modification of the Coulomb model
is the regularization of the sign function [132]. The two most common alternatives are

sgn(𝑥) ≈ tanh
( 𝑥
𝜈

)
and sgn(𝑥) ≈ 2

𝜋
arctan

( 𝑥
𝜈

)
,

where 𝜈 represents the regularization factor. As 𝜈 → 0 the curves tend to the sign
function, however, stiction is impossible in such models. An alternative approach to
reduce the computational effort was presented by Karnopp [90]. He defined a small
velocity region in the vicinity of 𝑣rel = 0 where sticking is allowed even though strictly
𝑣rel ≠ 0. This avoids the computational effort associated with event detection.

(a) (b)

Figure 1.3: (a) Multiple bristle model visualization, source: [26]. (b) Lumped bristle model visualization,
source: [39].
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The models mentioned above are algebraic models of friction. Therefore, they are
not able to take into account the history of the contact and depend exclusively on
the current state of the system. Dahl [31] formulated a friction model in which the
friction force was described with a differential equation. This allowed the model to take
into account the history of the contact and implement a model with memory. Dahl’s
model additionally introduced contact compliance which occurs when the stiction force
is not exceeded. Similar friction models based on a bristle interpretation of friction
were formulated by Haessig and Friedland [73], see Fig. 1.3a. This approach models
the asperities deformation in the contact region as bristle interactions. To this end,
additional variables and differential equations are introduced. Although not originally
formulated as a bristle model the Dahl model is often interpreted as such. An expansion
of these ideas was formulated by Canudas De Wit et al. in the LuGre model [26], which
is named after its origin in the cities of Lund and Grenoble. The LuGre model takes
into account velocity-dependent friction coefficients, which the Dahl model omitted.
Further advancement of bristle models is represented by the elastoplastic friction model
proposed by Dupont et al. [39, 40], see Fig. 1.3b. This model accurately simulates
sticking in comparison to the Dahl and LuGre models, which show a drift when the
forces acting on the friction are lower than the stiction force. For the stationary case, the
Dahl, LuGre, and elastoplastic models all converge to the Coulomb friction model [89].

All the models mentioned above take their chosen representation of friction and solve
the corresponding differential equations. Taking into account that while sticking the
friction force takes on multiple values depending on the acting forces, a set-valued
interpretation of the friction force is possible. This interpretation leads to differential
inclusions and adds a degree of difficulty to the system solution. For example, the
solution of such systems is no longer guaranteed. Advances into the mathematical
solutions of such systems were contributed by Filippov [57]. An analysis of differential
inclusions with dry friction and possible bifurcations was presented by Leine [107].

A variety of models for the simulation of friction exist. For example, the discrete
asperities model proposed by Jenkin and Ewig modeled asperities with the Jenkin
element, a serial combination of a spring and a dry friction element [38]. Another
example is Mindlin’s work. He took the Hertz contact mechanics expanded this work
by taking into account a tangential load [123]. There are more friction models. However,
for the sake of brevity, the author limits himself to friction models described above.

Taking into account the described friction influence factors and using appropriate
models researchers take on the task of describing friction-induced vibrations. If left
unchecked these oscillations cause discomfort, wear, and in worst-case system failure.
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Den Hartog analyzed a case in which such vibrations caused the system failure of a
drawbridge [33]. Two major mechanisms are attributed to friction-induced vibrations:
the negative friction gradient and the modal coupling with nonconservative forces. Such
oscillations may lead to quasi-harmonic oscillations as shown by Brockley and Ko [25]
but may also lead to chaos as studied by Popp and Stelter [139, 141].

An explanation of the negative friction gradient mechanism was proposed by Blok [18].
He linearized the friction velocity curve and described the self-excitation linked to the
negative gradient in the friction velocity curve. At low velocities, the negative slope
causes friction to acts as an energy input which ultimately leads to instability. He also
found that increased linear damping quenches these oscillations. Depending on the
velocity of the oscillations, this self-excitation mechanism leads either to a pure-slip
behavior or to stick-slip oscillations. Low oscillation velocities yield pure-slip oscillations,
whereas oscillations with large enough velocities fulfill the stiction conditions and result
in stick-slip oscillations. Additional works concerning self-excited oscillations due to
a negative friction gradient were made by Hetzler [77, 78] and Thomsen and Fidlin [168].

The second mechanism is commonly referred to as flutter and is caused by modal
coupling due to nonconservative friction forces. A review of the work into the instability
mechanism was presented by Kinkaid et al. [96]. A minimal model that explained the
instability sources of flutter was given by Hoffmann et al. [80], see Fig. 1.4a. Minimal
models in the context of the automotive branch were investigated by von Wagner [175].
Hervé et al. [76], and Fidlin et al. [52], see Fig. 1.4b. The description of this mechanism
leads to the explanation of friction-induced vibrations at high frequencies [77].

(a) (b)

Figure 1.4: (a) A minimal model for flutter instability, source: [80]. (b) A minimal model for flutter instability
in disks, source: [52].

Friction-induced oscillations are found in various engineering applications such as
lubricated bearings, wheel/rail systems, brakes, and machining. The vibrations are
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often audible and in some cases even desired, e.g. string instruments [16, 48]. However,
for the most part, these audible vibrations lead to discomfort. Ibrahim grouped these
phenomena into two groups: chatter and squeal. Chatter occurs at low frequencies,
whereas squeal occurs at higher frequencies. In the rotor dynamics field, friction-induced
oscillations occur at low rotor velocities, when the rotation speed is not able to separate
the rotor from the bearing. In such cases, dry friction contact dominates the contact
dynamics between rotor and bearing. Smith and Pam experimented with these systems
and concluded that such oscillations are caused either by increasing the load at a
constant speed or by reducing the speed at a constant load [157]. Childs also studied
such interactions and found that they lead to a parametric excitation in rotors [28].
Squeal in connection to dry friction and wheel-rail interactions occurs when trains take
curves with a short radius. Bender and Remmington investigated such friction-induced
vibrations [13] and also Scheider et al. [153]. The work of Remmington [143] showed
that such oscillations are caused by a lateral creep of the wheels on the rails. In the
context of disc brakes, the mechanisms that lead to brake noise are the negative friction
gradient, sprag-slip, and flutter. The effect of a negative velocity gradient in the context
of brakes was described by Fosberry and Holubecki [58]. The sprag-slip mechanism
was proposed by Spurr [160] and is caused by a variation of the normal load, which
leads to intermittent oscillations with slip and stick regimes. This mechanism differs
substantially from the typical stick-slip oscillations since the latter occurs for constant
normal loads. Investigations into flutter and disk brakes were made by Kinkaid et
al. [96] and Fidlin and Stamm [55]. In machining, friction-induced vibrations lead
to poor processing quality and are caused mainly by a negative friction gradient.
Investigations and minimal models concerning friction in machining are presented by
Tobias [170], Tlusty [169], and Moon [126].

As summarized above, friction is an intricate field with various influence factors.
Different models are proposed to explain some aspects of these. However, there exists
no valid and general model to take into account all of its influence factors. Friction
serves to dissipate energy, however, under some circumstances it also induces vibrations.
These vibrations are either desired as in the case of string instruments or undesired as
in the case of brake squeal. The quenching of unwanted friction-induced vibrations and
vibrations, in general, is another relevant field for engineers.

1.2.2 Literature Overview of Vibration Reduction Research
Investigations into vibration reduction began more than 100 years ago before Frahm
filed a patent for the first vibration reduction device in October 1909 [59]. Valuable
mechanical insights into the field of vibration reduction were made by Den Hartog
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in the 1930s [33]. He studied vibration reduction mechanisms in linear configurations
with varying degrees of freedom. Such mechanisms rely mainly on either: vibration
absorption, vibration damping, or vibration isolation. Absorbers use a auxiliary mass
that is connected via an auxiliary spring to the main system. The parameters of the
absorber are chosen so that its resulting movement counteracts the forces acting on the
main system. Dampers are vibration reduction devices that dissipate mechanical energy
from the system by converting it into another type, e.g. heat. Isolators are devices that
are placed between the main system and the vibration source. Their task is to transmit
as few vibrations as possible to the main system. Tuned mass dampers combine a
vibration absorber with a dissipative element that is placed in parallel to the auxiliary
spring. Depending on how the parameters are selected, it is absorption focused or
damping focused. Since for all practical purposes material damping is present in every
spring, the term vibration absorber is often used in the literature to indicate a lightly
damped tuned mass damper. There is certainly no lack of creativity when designing
tuned mass dampers, as shown in a survey by Sun et al. [164]. In this work passive,
adaptive, and active variations of the linear tuned mass damper were considered. A
review of tuned mass dampers in the context of structural engineering was presented by
Gutierrez Soto and Adeli [71] and by Elias and Matsagar [45]. A review of nonlinear
vibration dampers is given by Lu et al. [113]. A general way of classifying vibration
reduction mechanisms is either by their linearity (linear or nonlinear systems) or by
their energy source (passive or active systems). The combination of these two classifying
qualities yields four categories: passive linear mechanisms, active linear mechanisms,
passive nonlinear mechanisms, and active nonlinear mechanisms. This state of research
subchapter is presented according to these categories.

(a) (b)

Figure 1.5: (a) A mass-spring tuned mass damper for arctic pipelines, source: [74]. (b) Vibration absorber in
the Taipei 101, source: [176].

The simplest implementation of a tuned mass damper is the conventional spring-mass
system, as shown in Frahm’s original patent [59]. However, this variant still proves
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effective in modern applications. Hart et al. used this simple variant to reduce vibrations
in arctic pipelines [74], see Fig. 1.5a. More involved implementations have been realized,
such as the beam-type tuned mass damper proposed by Aida et al. [1] or the tuned
mass damper with cables found in the Taipei 101 [176], see Fig. 1.5b. Described by
linear differential equations, the solution, handling, and design of these devices were
thoroughly investigated in the first half of the 20th century. Such systems are designed
to optimize either the vibration reduction at a single oscillation frequency or a desired
frequency range. To this end, either the whole system is considered [33] or only the
driving point, where the device is attached [46]. The latter constitutes the impedance
coupling method proposed by Ewins. The single frequency optimization yields high
peaks at the structural resonance frequencies of the system. If a broadband approach is
required the equal peak method offers the best possible results. In the literature mainly
two variations of this method are considered and were proposed by Den Hartog [33]
and Snowdon [158]. Both these works offer approximations, to achieve equal peaks
at the system’s structural resonance regimes. A closed-form solution to this problem
was presented recently by Asami and Nishihara [8]. The different goals of these design
strategies represent the limitation of the classical tuned mass damper: an optimization
of both the structural resonances and the tuned frequency is not possible [33]. To
further improve the results of Frahm’s original proposal researchers consider active and
nonlinear variations of the tuned mass damper.

The next natural step in the improvement of such systems is the study of active vibration
reduction mechanisms. Advances in this field started in the 1950s [91], and practical
applications were realized in the late 1960s in the aerospace field by Smith and Lum [156]
and Schubert and Ruzicka [154]. Since then, these concepts have only been developed
further. Depending on their design these systems are classified into fully active, hybrid,
or semi-active [164]. Fully active systems generate a force that acts on the oscillating
structure and have an input-affine structure. Thus, their solution is calculated with
manageable effort. However, this is normally coupled with high energy costs. An active
implementation of a vibration damper was presented by Bailey and Hubbard [11]. In
their work, they used a distributed piezoelectric actuator and a Ljapunov controller to
reduce vibration oscillations in a Cantilever Beam. Kim et al. made similar investigations
in the damping of beam vibrations [95]. However, they used a local piezoelectric actuator
and an active dynamic vibration absorber controller to suppress structural resonances,
see Fig. 1.6a. The hybrid vibration absorbers work in a partially active and a partially
passive way depending on the external conditions and are often found in seismic
structures. Fujita used the active modes of the hybrid damper to reduce vibrations
due to winds and weak earthquakes, whereas the passive mode was used to control
vibrations caused by strong earthquakes. The proposed system was implemented in the
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Long Term Credit Bank of Japan [61]. Additionally, Lee-Glauser et al. found that hybrid
dampers were effective in the vibration reduction of broadband earthquakes [106].
On the other hand, semi-active mechanisms change a parameter, e.g. a damping or
stiffness coefficient, to change the force acting on the oscillating structure. However,
this indirect change of the force has its disadvantages. Since the controlled parameter
often multiplies a state variable of the system, the control design is nonlinear. This
added design effort is one of its main disadvantages. Furthermore, not every desired
force can be generated, due to the parameter range limitation, e.g. positive parameters.
Nevertheless, a semi-active implementation also leads to lower energy costs, making
this an appealing solution. Such vibration reduction mechanisms are found in the
work of Karnopp, where the damping coefficient of an isolator was switched on and
off dependent on the velocities of the system’s structure [91]. Davis and Lesieutre
proposed a semi-active vibration absorber that changed the stiffness of a piezoceramic
element electrically [32]. The stiffness change allowed the vibration absorber to adapt
its absorption frequency to the system’s oscillations and effectively make use of this
vibration reduction mechanism.

(a) (b)

Figure 1.6: (a) An active vibration absorber for beam vibration reduction, source: [95]. (b) An ideal and
schematic depiction of the Skyhook damper, source: [91].

Additional design effort is required by active vibration dampers due to the design of the
control strategy. An essential contribution was made by Karnopp with the development
of the Skyhook Control Strategy. This strategy was used for vibration isolation and
was often implemented in the automotive branch, to isolate automobiles from ground
vibrations. The main idea behind this approach is the semi-active control of a damping
element that tries to emulate a damper connected to an inertial reference frame, cf.
Fig. 1.6b. To this end, the damper dissipates energy whenever possible, and when this
is not the case it does not exacerbate the vibrations of the considered system. Variations
of this control strategy were investigated by Liu et al. [109]. An overview of additional
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control strategies was made by Alkhatib and Golnaraghi [2]. In their review, they
considered feedforward, adaptive, coordinate coupling, robust, and optimal control. A
review of vibration control strategies in the context of offshore structures was presented
by Kandasamy [88].

An alternative way to improve the performance of passive linear vibration reduction
mechanisms is the consideration of nonlinear effects. Although active linear dampers
offer an improvement, they are bound by the limitations of linear systems. Passive
nonlinear devices offer improvements over linear systems albeit they do require a higher
design effort. A review of nonlinear passive elements was presented by Lu et al. [113].
Nonlinear vibration reduction devices were categorized depending on the placement of
their nonlinearity. The nonlinearities appears on the stiffness, the damping, or in both
stiffness and damping terms. This classification is adopted in this work. The categories
are mainly represented by three devices: nonlinear energy sinks, nonlinear viscous
dampers, and vibro-impact dampers.

Nonlinear energy sinks are a realization of nonlinear dissipative devices with nonlinear
stiffness and are composed of three components: an auxiliary mass, a strong nonlinear
stiffness, and a linear damping element see Fig. 1.7a. The nonlinear restoring force
transfers vibrations from the main structure to the nonlinear energy sink. Afterward,
the energy within the nonlinear energy sink is dissipated via the damping element. A
review focused on nonlinear energy sinks and targeted energy transfer was given by
Lee et al. [106]. Noticeable contributions in this field were made by Vakakis mainly in
combination with cubic spring as a nonlinear stiffness [173]. Habib et al. and Detroux et
al. noted a generalization of Den Hartog’s equal peak method for nonlinear systems [72]
and contributed to the design and analysis of such devices [36]. Although not explicitly

(a) (b)

Figure 1.7: (a) An schematic depiction of a nonlinear energy sink, source: [113]. (b) System considered by Jo
and Yabuno source: [86].
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named a nonlinear energy sink, Jo and Yabuno considered the similar effect in a
system with linear damping and quadratic and cubic stiffnesses generated by geometric
configuration with levers [86], see Fig. 1.7b. This configuration reduced parametric
excitations in the considered system.

A detailed work of nonlinear viscous dampers was made by Symans and Constanti-
nou [166] in the context of structural engineering. These nonlinear devices use a viscous
fluid, which is forced to flow through orifices or chambers, and have a damping force
that depends only on the velocity. The resulting force is in general expressed as

𝐹𝑑 = 𝑑sgn(𝑣)|𝑣 |𝛼 .

Where 𝑑 represents the damping coefficient, 𝑣 the velocity, and 𝛼 the velocity exponent
that defines the nonlinear characteristic. Rüdinger found advantages of such dampers
in systems excited by random white noise excitation [146]. Martinez-Rodrigo and
Romero focused on optimal strategies in the post-construction fitting of linear and
nonlinear viscous dampers in buildings. Nonlinear devices reduced vibrations 35%
more than their linear counterparts [118]. Advantages concerning the risk assessment
and vibration reduction in seismic structures were presented by Tubaldi et al. [172].

Devices with nonlinear stiffness and nonlinear damping are constructed in part by
the combination of the aforementioned mechanisms. Starosvetsky and Gendelman
considered a cubic spring, however, in combination with quadratic damping [162].
The work focused on the targeted energy transfers mechanism and combined it with
the advantages of nonlinear damping. On the other hand, some systems have the
combination of nonlinear stiffness and damping intertwined in the system’s design.
This is the case for vibro-impact dampers and tuned liquid dampers. Vibro-impact
dampers, also commonly known as particle impact dampers, are composed of small
particles inside one or more collision chambers. The collision chamber is attached to the
main structure, and the energy of the main structure’s vibrations is dissipated into heat
due to friction and partially inelastic collisions. Valuable contributions in this field date
back to the 1960s by Masri. His work studied a single impact mass and a single impact
chamber [121]. Studies into single impact masses in multiple impact chambers were
conducted by Bapat and Sankar [12]. A particle impact damper with multiple small
particles in a single collision chamber was investigated by Marhadi and Kinra [117],
see Fig. 1.8a. Panossian highlighted that this damping mechanism was implemented in
a non-obtrusive way into a space shuttle main engine liquid oxygen inlet tee [135], see
Fig. 1.8b. Additional overviews of vibro-impact systems are presented by Babitsky [10]
and Lu [112]. Liquid tuned dampers function similarly to vibration impact dampers,
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(a) (b)

Figure 1.8: (a) Frontal view of a particle impact damper on a cantilever beam, source: [117]. (b) A space shuttle
main engine liquid oxygen inlet tee with holes for particles, source: [135].

however, the chamber is filled with a liquid instead of particles. Although there were
other vibration reduction devices using liquids before, the term tuned liquid damper
was introduced by Fujino et al. [60]. In contrast to earlier publications, their work
proposed a shallow filled container which allowed higher damping. Modi and Munshi
considered a tuned liquid damper with obstacles in the tank that lead to increased
energy dissipation [125], see Fig. 1.9a. Multiple liquid tuned dampers attached to the
same structure were investigated by Love and Tait [110]. An equivalent model for such
dampers composed of a vibro-impact damper with a single particle attached via springs
to its impact chamber, was developed by Farid and Gendelman [47], see Fig. 1.9b.

(a) (b)

Figure 1.9: (a) A tuned liquid damper with obstacles, source: [125]. (b) An equivalent model for the tuned
liquid damper, source: [47].

Active nonlinear dampers combine the advantages of active control and nonlinear
dampers. However, they have the highest design effort. Since the whole system is
nonlinear, advanced control strategies are required. Intensely investigated nonlinear
semi-active dampers are magneto- or electro-rheological dampers. These devices apply a
magnetic/electric field to change the properties of a non-Newtonian fluid. Such dampers
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are represented with a Bingham model which is a parallel configuration of a linear spring,
a viscous damper, and a dry-friction element [165]. The spring and damper model the
fluid’s elasticity and viscosity, whereas the dry-friction element models the building of
chains and locking of active particles in the fluid. Depending on the magnitude of the
applied field the break-away force of the friction element is varied. Dyke et al. considered
a magneto-rheological damper combined with a clipped optimal control algorithm in
building structures [43]. Sun and Thomas studied an electro-rheological damper with an
on-off control strategy, to reduce torsional vibrations [165]. Weber developed and tested
a magneto-rheological damper that tuned its absorption frequency to the oscillating
structure [178]. Another example of active nonlinear devices was presented by Ma et
al. [114]. They used a fuzzy neural network to control a nonlinear hydraulic adjustable
isolator and reduce vibrations in automotive suspensions. A quarter vehicle test bench
was excited with white noise and the proposed active nonlinear isolator achieved a 50%
reduction of the oscillation’s root mean square.

As shown in the paragraphs above, the design of vibration reduction devices is
characterized by the vast ingenuity that researchers have embedded in these systems.
Furthermore, the research community has thoroughly studied and asserted the capa-
bilities and limitations of linear systems. Therefore, research into active and nonlinear
devices has taken on a significant role in the field of vibration reduction. Another
example of nonlinear dampers are friction dampers.

1.2.3 Literature Overview of Friction Dampers Research
The targeted use of dry friction to reduce vibrations results in friction dampers. Although
friction takes different forms, e.g. viscous friction, friction dampers refer to devices that
utilize dry friction, i.e. the unsmeared sliding contact of two solid bodies. To portray
the literature of friction dampers, first, the theoretical investigations of such systems
are considered. Second, selected practical applications of passive friction dampers are
presented. Lastly, the active consideration of friction dampers is detailed.

The effort required to characterize these dampers is high since they are not only nonlinear
but also nonsmooth. Mechanical insight into friction dampers is found as early as the
1930s in the work of Den Hartog [34]. He studied a one-degree of freedom system with
a dry friction element, a spring, and a sinusoidal excitation. He found a solution to
the differential equations by considering half of an oscillation and imposing boundary
conditions for a periodic solution. Additionally, he considered the system with viscous
damping in combination with dry friction. This last system was later on investigated by
Shaw. He expanded Den Hartog’s work by considering a difference in the static and
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dynamic friction coefficient and carried out a stability and bifurcation analysis [155]. The
work of Ruzicka and Derby gave valuable insights into friction dampers in an isolator
configuration, in which friction elements were coupled with elastic elements in series and
parallel [147], see Fig. 1.10a. Both devices were able to effectively cut off the resonance
peak, provided the breakaway force of the friction element is chosen appropriately.
The work into the isolator on the right side of Fig. 1.10a was expanded by Fidlin and
Lobos, who used averaging methods to describe these mechanisms. They attributed the
vibration reduction effect to the switching between stiffnesses, i.e. eigenfrequencies, that
resulted due to the sticking of the friction element [54]. A torsional vibrational damper
that consists solely of a friction element to dampen vibration and was considered by
Alspaugh [3]. He grouped the steady-state motion into three types and concluded that
the friction element acted similarly to a low pass filter. Dry friction between the ground
and cantilever beams and in between cantilever beams was investigated theoretically
and numerically by Dowell and Schwarz [37]. They focused on the variation of the
external excitation. With rising excitation magnitude three cases were found: pure
stick oscillations, oscillations with stick-slip regimes, and unbounded oscillations. A
similar system where the friction element is located in between the beams was recently
considered by Krack et al. [99]. However, they focused on modal interactions and their
effects on friction damping. The modal interactions were detrimental to the vibration
reduction capabilities of dry friction and should therefore be avoided. Ricciardelli and
Vickery studied a vibration absorber in combination with a dry friction element between
the masses, see Fig. 1.10b. This device was effective at reducing the resonance peak’s
amplitude provided the breakaway force was tuned correctly to the system [144]. The
examples mentioned above share a common denominator, namely the existence of an
optimal breakaway force or friction value. Too little friction results in low damping and
leads to unbounded oscillations provided there are no other sources of dissipation. Too
much friction results in pure stick oscillations that also lead to low damping and high
amplitudes. The optimal friction level lies in between and offers maximal damping for
a specific excitation level.

(a) (b)

Figure 1.10: (a) Elastically coupled friction elements in an isolator configuration, source: [147]. (b) A tuned
mass damper with a dry friction damping device, source: [144].
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A survey on the useful advantages of dry friction in vibration damping and vibration
isolation was presented by Ferri [50]. He categorized the applications of friction dampers
into four categories: turbomachinery systems, built-up structures, seismic structures,
and railroad applications.

Reviews of friction dampers in the context of turbomachinery applications were
presented by Popp et al. [140] and more recently by Rizvi et al. [145]. Friction dampers
are advantageous in this field since they withstand the extremely harsh conditions
in these applications. They are implemented mainly in three ways: between blades
and rotor disk, between turbine blades, and in segmented interblade shroud rings [50].
The blade to rotor disk interface usually resembles a fir-tree and is named after it, see
Fig. 1.11a. Chan and Tsuba considered a 3D finite element model to describe this region
and focused on the effects of the friction coefficient, the clearance, and the normal
load [27]. In order to improve the lifetime of turbines, Papanikos and Meguid focused
their efforts on the detection and prediction of possible cracks in the blade rotor disk
interface and compared simulations with experiments [136]. Meguid et al. studied the
design parameters; flank angle, the flank length and the number of teeth, and their
effects on the stress in blades and rotor disk [122]. Friction dampers between turbine
blades are known as underplatform dampers and are metal elements that are pressed
between two blade platforms by the centrifugal force in turbines. These dampers are
investigated in two variations: as curved friction dampers and as cottage-roof friction
dampers, see Fig. 1.11b. Csaba focused on a curved friction damper with a Winkler
foundation and a Jenkin element to model the contact dynamics [30]. A more involved
3D finite element model was proposed by Panning et al. [134] and used to model
both curved and cottage-roof dampers. For lower engine orders cottage-roof dampers
proved more efficient. Firrone et al. also used a 3D finite element model, however,

(a) (b) (c)

Figure 1.11: (a) A fir-tree blade rotor disk interface, source: [122]. (b) Curved and wedge friction underplattform
dampers, source: [144]. (c) Interblade shroud rings, source: [182]
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they considered an asymmetrical underplattform damper. Interblade shroud rings are
formed by extrusions along the blade that are in contact with extrusions from adjacent
blades and form a ring, see Fig. 1.11c. Bielawa conducted analytic studies into these
dampers and concluded that, although there was only dry friction in the contact, these
dampers behaved like structural damping for increasing vibrational amplitudes [17]. In
the context of shroud ring optimization, Griffin and Labelle used numerical tools to
optimize the normal load acting on the contact surfaces [69]. A more recent investigation
into these dampers was conducted by Wu et al. and considered 3D finite element models
and experiments, to assess the influence of the rotational speed of the turbines of the
normal load on the shrouds [182].

Built-up systems represent structures that have been built up by detachable connections,
i.e. joints. It is known that friction in such connections provides up to 90% of the damping
in structures. However, there is an unavoidable contradiction when optimizing such
joints. On the one hand, they should be as tight as possible for a rigid structure, on the
other hand, looser joints provide higher structural damping [50]. An overview of the role
of friction in mechanical joints was presented by Gaul and Nitsche [66]. It focused on
the nonlinear transfer behavior of bolted joint connections. Furthermore, it considered
joint models with phenomenological as well as constitutive friction models. The work
suggested phenomenological models for systems with reduced degrees of freedom
and constitutive friction models for the local description of the joint contact mechanics.
A review article by Ibrahim and Pettit [84] focused on the uncertainties involved
when modeling bolted joints, e.g. friction, hardness, joint stiffness, and boundary
conditions. It presented stochastic and fuzzy finite element models to quantify these
uncertainties. Additionally, it considered the identification of bolted joints and the
relaxation phenomenon that leads to changes in the joint’s characteristics. Bograd et
al. [19] gave a more recent overview of the different models which are implemented to
describe bolted joints. This work described three models in detail: the node-to-node
contact with Jenkins friction elements, finite element models with thin layer elements,
and finite element models with zero thickness elements. A common conclusion on all
these three reviews is that uncertainties in parameter estimations are a notable limiting
factor in the description of joints and their damping in built-up systems.

The application of friction dampers in seismic structures is found in two forms: in
moment-resisting frames or in seismic isolation. Examples of both these types of
applications are shown in Ferri’s review [50]. In his general review of structural
control, Houser et al. provided a subchapter dedicated to friction dampers in the
context of building applications [81]. A noticeable mention is the Pall device, which
was proposed by Pall and Marsch [133]. The device consisted of a friction joint
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(a) (b)

Figure 1.12: (a) Pall damper in X-brace configuration, source: [133]. (b) Double concave friction pendulum,
source: [49].

with slotted holes and was placed at X-bracings of the moment-resisting frame, see
Fig. 1.12a. Morgen and Kurama also used friction dampers, however, with curved
slotted holes to reduce vibrations in beam-to-column joints [127]. In these devices, the
breakaway force in the friction joints is set large enough to prevent relative movement
during normal service loads and moderate earthquakes. Simultaneously, the preset
breakaway force is small enough to allow relative movement during severe seismic
excitation. Thus, energy is dissipated and the failure of vital structural components
is prevented. These dampers have the disadvantage that they are not self-centering
since after large vibrations plastic deformations remain. The problem is addressed
by self-centering devices which were initially presented by Nims et al. [131]. Such
mechanisms use friction springs to dissipate energy and return to their original position
after excitations subside. Additionally, the have the added feature that the energy
dissipated is proportional to the relative displacement. Filiatrault et al. considered
a similar damper and experimented with a configuration where the damper is placed
along a diagonal brace in a moment-resisting frame. The experiments showed the
damper was able to dissipate 20% of the energy fed into the structure and thus protected
the structure from plastic deformations [56]. Khoo et al. considered such a damper in
beam-to-column configuration and showed that residual drift in such arrangements
was less than 0.1% [94]. Seismic isolation is achieved in civil engineering structures by
allowing a degree of freedom between the buildings and the ground beneath them. A
historical review on this subject was published by Kelly [93], whereas a more recent
review was given by Warn and Ryan [177]. Initial propositions towards the realization
of this isolation combined rubber-bearing isolators and friction elements in a serial
arrangement, as considered by Constantinou Tadjbakhsh [29]. A more modern and
widely spread implementation of seismic isolation with friction element is realized in
the double concave friction pendulum bearing proposed by Fenz and Constantinou.
It is composed of two concave surfaces, which are separated by a jointed slider, see
Fig. 1.12b. In the presented work the concave surfaces were designed in stainless steel
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and the slider in a PTFE-Composite. Such isolation devices offer a higher number of
design parameters, allowing a better performance than their counterparts with a single
concave surface [49].

A special variant of friction dampers, the so-called wedge dampers, are used in railroad
trucks. Due to their robustness, low cost, and low maintenance they are still investigated
today. Furthermore, they play an essential role in reducing vertical and lateral vibrations
that lead to derailment. A state-of-the-art review into friction wedge dampers in railroad
applications was presented by Wu et al. [183]. Such dampers are composed of a wedge
placed between the bolster, which carries the wagon, and the side frame, which is
connected to the wheels, see Fig. 1.13. Minimal models with low degrees of freedom
were considered by Garnder and Cusumano [64] and by Kaiser et al. [87]. Such minimal
models showed the full range of vibration phenomena that occur with dry friction, e.g.
stick-slip oscillations, subharmonic bifurcations, and chaos [64]. More involved models
with 3D multi-body simulation software were considered by Kovalev et al. [98]. This
work compared simulation results with experiments and show an acceptable agreement.
Furthermore, the models were able to estimate durability and wear.

(a) (b)

Figure 1.13: (a) Free body diagram of a friction damper, source: [87]. (b) Model of a Russian 18-100 bogie,
source: [98].

Friction-based dampers have also been considered in their semi-active variant in which
the normal force is modulated. Lane and Ferri proposed an optimal control and
afterward clipped the desired input since the normal force is only positive for unilateral
contacts [105]. Dupont et al. used a Ljapunov function based controller to maximize
the energy dissipation in the controllable term and derived a corresponding bang-bang
control [41]. This controller was very similar to the Skyhook Control proposed by
Karnopp, however, it was used for vibration dissipation instead of vibration isolation.
Both the clipped optimal control as well as the Skyhook Control were implemented by
Gaul et al. to reduce vibrations in the joints of truss structures [65]. For an impulse
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perturbation, the clipped linear quadratic controller showed a faster reduction of
vibration amplitudes. An alternative approach when controlling friction dampers
is to prevent sticking since it introduces higher frequencies into the system and prevents
dissipation. Such control approaches calculate the necessary normal load for stiction
and set the actual normal load slightly under this limit. This strategy was simulated
by Lu [111] to reduce seismic vibrations. Experiments with this control strategy also in
the context of seismic vibration were performed by Lin et al. [108]. Inaudi proposed an
active friction damper with modulated normal force that resulted in a linearly scalable
response as with linear viscous damping [85]. To this end, the normal force is chosen
proportional to the last local peak. Laffranchi et al. modulated the normal force in the
joints of humanoid robots to emulate viscous damping [104].

1.3 Thesis Purpose
As noted above, friction dampers are a reliable and robust damping alternative to
conventional tuned mass dampers, even though friction is difficult to describe. This
is reflected in the wide range of systems they are implemented in and the amount
of literature available on friction dampers. The classic realization of such a vibration
reduction device relies on the sliding contact of two nominally flat surfaces, i.e. surfaces
that are flat on a macroscopic scale, however, rough on the microscopic scale. In
order to expand the capabilities of these systems, the geometric design of the sliding
surfaces is considered, e.g. curved underplatform dampers, friction pendulums, and
railroad wedge dampers. Further expansions rely on semi-active friction dampers that
modulate the normal force between nominally flat sliding surfaces. In general, friction
dampers have been mainly used to dissipate energy. However, the effective use of the
nonsmooth characteristics of dry friction in the context of vibration reduction has not
been thoroughly investigated. There is, therefore, still room for the improvement of
such dampers.

The main purpose of this thesis is the design and validation of dry friction based
damping mechanisms that rely not solely on dissipation, but instead consider vibration
absorption and targeted stick-slip transitions to reduce vibrations. To this end, this work
focuses on three secondary objectives.

First, the design of passive devices is considered. Prestressed piecewise defined contact
surfaces in combination with a vibration absorber are considered to bring damping,
absorption, and targeted stick-slip transitions into one damper. Most friction dampers
rely on flat surfaces, wedges, or concave surfaces. The piecewise definition of the
contact surfaces allows the damper to operate differently under different amplitude
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regimes. This enhances the vibration reduction ability of the damper. Additionally,
apart from [54, 147], the reviewed literature does not take into account the vibration
reduction potential of a targeted stick-slip transition. Since this transition changes the
system’s eigenfrequencies, it can be used to avoid resonances altogether.

Second, the results from the theoretical investigation and design of such dampers is
validated with experiments. A test bench is designed, built, and the dampers are tested.
A focus is set on the verification of the qualitative behavior of the deigned dampers.

Third, a further extension of the passive systems is sought after in active form. Control
strategies that do not solely focus on damping are designed and applied in combination
with the designed passive device structure. The strategies are tested in different scenarios,
where transient as well as stationary simulations are considered. Additionally, these
strategies are compared to traditional damping focused control.

Focusing on these three secondary objectives contributes to the understanding of dry
friction dampers and the fulfillment of the thesis’ main purpose.

1.4 Thesis Structure
This work contains 7 chapters and is structured as follows:

Chapter 2 introduces the fundamental concepts required for the understanding of this
work. The first section considers periodic orbits and their calculation methods. The
second section focuses on the analytical analysis of nonlinear systems with two degrees
of freedom. The analysis uses the method of averaging to simplify the system’s equations.
Lastly, the basic concepts for active control strategies are presented that are used later on.

Chapter 3 considers the wedge damper. A secondary mass is placed between two
wedges, that are connected via springs, to reduce vibrations. This arrangement yields a
force proportional to the relative displacement. It presents a first step before considering
piecewise-defined contact surfaces. To analyze the damper, first, the equations of
motion of the damper are derived and a general insight is obtained. Subsequently, both
numerical and analytical investigations are carried out. The chapter is concluded with a
damper assessment.

Chapter 4 considers the tuned wedge damper. This device represents an extension of
the wedge damper. Instead of using wedges, the device utilizes a piecewise-defined
contact surface, with a flat segment in the middle, two outer angled segments, and two
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circular connections. Additionally, as with conventional tuned mass dampers, a spring
connects the secondary mass directly to the main system. This arrangement yields
different responses at different amplitude levels. As with the wedge damper, first, the
equations of motion are derived and a general insight is obtained. In addition, numerical
and analytical investigations deepen the understanding of the system. Subsequently,
an optimization of the damper parameters is carried out. Finally, an assessment of the
device is presented.

Chapter 5 handles experimental investigations into the aforementioned dampers. Firstly,
the test bench, as well as the sensor signal post-processing, are described. Afterward,
the experimental results are discussed for each of the dampers.

Chapter 6 presents three active extensions of the tuned wedge damper. The control
strategies are considered separately in different scenarios and are afterward compared.
The considered strategies are the Skyhook Control Strategy, an adaptive multiple model
control, and a slow frequency-based control.

Chapter 7 summarizes the work and presents the main conclusions. Additionally, a
brief insight into future work is given.
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This work analyses two friction dampers with numerical and analytical methods.
Additionally, active dampers are considered. The necessary concepts to address these
three topics are presented in this chapter. First, the numeric methods are considered for
the targeted calculation of periodic solutions. This offers a basis of the numerical
calculations in chapters 3 and 4. Second, the averaging method for two degrees
of freedom systems is presented. This method is the foundation of the analytical
investigations in chapters 3 and 4. Third, the basic concepts of the control strategies,
which are the basis of chapter 6, are described.

2.1 Periodic Orbits
Dynamic systems are expressed via a differential equation of the form

¤x = f(x) , (2.1)
x(𝑡0) = x0 , (2.2)

where x ∈ R𝑛 is the system’s state vector of dimension 𝑛, the dot denotes the total
derivative with respect to the time 𝑡, f : R𝑛 → R𝑛 is a nonlinear function which describes
the system’s dynamics, and x0 is the initial condition’s vector at 𝑡0. All possible values of
the states make up the phase space of a system. Consequently, every momentary state is
expressed as a point in the 𝑛-dimensional phase space. As time passes, this point moves
throughout the phase space and the set of adjacent points is referred to as a trajectory. In
this work, the function f(x) is a nonlinear, autonomous, piecewise continuous function.
It is nonlinear because the function can not be expressed as a linear combination of
the states. Since the time 𝑡 is not found explicitly in the equations, the function f(x) is
autonomous. This last characteristic is not restrictive since non-autonomous systems
can always be converted to autonomous systems [137]. Furthermore, the system is
deterministic if from the initial conditions all the following states of the system are
predictable. For arbitrary initial conditions, solving the differential equations yields
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the transient behavior of the system. As 𝑡 → ∞, the behavior of the system is either
unbounded and tends to infinity or it approaches a steady-state solution.

2.1.1 Steady-State Solutions of Dynamical Systems
Depending on the characteristics of the steady-state solution, it is categorized into one
of four categories [137]: equilibrium point, periodic solution, quasi-periodic solution,
and chaotic solution. Since the periodic solution is considered in detail in the following
subsection, only the remaining steady-state solutions are briefly described.

Equilibrium points are characterized by ¤x = 0. Therefore, the solution stays at the
equilibrium point for all time, provided there aren’t any external perturbations. Linear
systems contain one single equilibrium point, whereas nonlinear systems can have
multiple coexisting equilibrium points. Furthermore, except for some special cases,
non-autonomous systems have no equilibrium points [137].

When two occurring frequencies in a system have an irrational ratio, quasi-periodic
motions occur. Such solutions are separated into periodic functions that interact
nonlinearly with each other [137]. Since there is no dominant frequency, the solution
does not repeat itself after a given time. Instead, for 𝑡 → ∞ the trajectories in the phase
space fill up a torus hypersurface in the 𝑛-dimensional phase space.

Parker and Chua defined chaos as "a bounded steady-state behavior that is not an
equilibrium point, not periodic, and not quasi-periodic" [137]. This definition by
negation shows the difficulty regarding the description of chaos. It is characterized
by various traits, nevertheless, there is no clear definition for it. Chaos, for example,
shows extreme sensitivity to the initial conditions. Therefore, solutions that start close
to each other diverge from one another while staying bounded. Furthermore, a possible
behavior of chaotic systems is the random alternation between regimes. The explanation
of this random characteristic in a deterministic system is still an active research topic.

2.1.2 Periodic Solutions
Periodic solutions repeat themselves after a given time. This is expressed mathematically
by the equation

x(𝑡) = x(𝑡 + 𝑇) ∀𝑡 > 0 (2.3)

where𝑇 is the period and is the smallest positive constant, for which Eq. (2.3) holds. Each
period has a corresponding fundamental frequency 𝑓 = 1/𝑇 and fundamental angular
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frequency Ω = 2𝜋/𝑇. For autonomous systems, the oscillation frequency is determined
by the system characteristics. In monoharmonically excited systems it is determined by
some multiple of the excitation frequency. In comparison, the fundamental frequency
of multiharmonic excited system is given by a combination of the excitation frequencies.

Portraying the periodic motion 𝑥(𝑡) in the phase space yields a closed trajectory. If
there exist no other periodic solutions in the vicinity of this trajectory, the solution is
considered a limit cycle. Depending on the behavior of transient solutions in the vicinity
of the limit cycle, it is considered stable or unstable. If all solutions in a vicinity tend
towards the limit cycle, it is stable, otherwise, it is unstable. A detailed description of
the stability assessment of periodic motions is presented in [5]. The limit cycle together
with its basin of attraction build a subset of the phase space.

2.1.3 Calculation Methods for Periodic Solutions
The most commonly used methods for the targeted calculation of periodic solutions
are forward time simulations, shooting methods, collocation methods, and harmonic
balance methods. Forward time simulations calculate the dynamic system’s behavior
until the system reaches the limit cycle. However, this approach is only viable for
stable limit cycles. Additionally, this approach is time-consuming, when systems are
lightly damped. Shooting methods convert the initial value problem into a boundary
value problem by enforcing the periodicity condition. The method starts with an
approximated guess for the initial values as well as for the oscillation period. The guess
is improved with a Newton-Rhapson Method until the periodicity condition is fulfilled.
Collocation methods do not have a single support point, instead, they consider various
time points along the trajectory. These time points define intervals and the solutions
between the intervals are approximated by polynomials. The method modifies the
polynomials to fulfill the continuity and differentiability conditions at the time points,
as well as the underlying differential equations of the system. A detailed analysis of
shooting and collocations methods is presented by Marx and Vogt in [120]. Lastly,
harmonic balance methods approximate the limit cycle via a truncated Fourier series
and consider the problem in the frequency domain. The method minimizes a residuum
to calculate the amplitudes of the harmonic base functions. Harmonic balance methods
and their application for nonlinear systems are considered by Krack and Gross [100].
The following overview of the harmonic balance method is largely based on their work.

Since the harmonic balance method is based on the Fourier series, the relevant fun-
damentals are introduced. The periodic vector function f(𝑡) ∈ R𝑚 is expressed as a
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linear combination of infinite harmonic base functions. An approximation is derived by
limiting this infinite series with the truncation order 𝐻 in the form

f(𝑡) ≈ f̃(𝑡) = f̂c,0 +
𝐻∑
𝑖=1

f̂c,𝑖 cos(𝑖Ω𝑡) + f̂s,𝑖 sin(𝑖Ω𝑡) . (2.4)

The amplitudes f̂c,0, f̂c,𝑖 , and f̂s,𝑖 of the harmonic functions are calculated by evaluating

f̂c,0 =
1
𝑇

∫ 𝑇

0
f(𝑡)d𝑡 ,

f̂c,𝑖 =
2
𝑇

∫ 𝑇

0
f(𝑡) cos(𝑖Ω𝑡)d𝑡 , and f̂s,𝑖 =

2
𝑇

∫ 𝑇

0
f(𝑡) sin(𝑖Ω𝑡)d𝑡 . (2.5)

The transformation between the approximated vector function f̃(𝑡) and the amplitudes of
the sine-cosine representation f̂sc,𝐻 is written in a compact form as a matrix multiplication

f̃(𝑡) = hsc,𝐻(Ω𝑡)f̂sc,𝐻 . (2.6)

An advantage of the Fourier series approach is the calculation of derivatives, which are
also expressed as a matrix multiplication of the form

¤̃f(𝑡) = Ω∇hsc,𝐻(Ω𝑡)f̂sc,𝐻 , (2.7)
¥̃f(𝑡) = Ω2

∇
2hsc,𝐻(Ω𝑡)f̂sc,𝐻 . (2.8)

In Eqs. (2.6)–(2.8) the amplitudes of the sine-cosine representation f̂sc,𝐻 , the matrix of
the harmonic base functions hsc,𝐻 , and differentiation matrix ∇ are given by

f̂sc,𝐻 =

[
f̂c,𝑖 , f̂c,1 , f̂s,1 , · · · , f̂c,𝐻 , f̂s,𝐻

]ᵀ
, (2.9)

hsc,𝐻 = [1 cos(Ω𝑡) sin(Ω𝑡) · · · cos(𝐻Ω𝑡) sin(𝐻Ω𝑡)] ⊗ I𝑚 , (2.10)

∇ = diag(0,∇1 ,∇2 , · · · ,∇𝐻) with ∇𝑖 =

[
0 𝑖

−𝑖 0

]
. (2.11)

For numerical applications, the discrete Fourier series is required. An effective
calculation of the series is implemented with the Fast Fourier Transformation [100].

The starting point of the harmonic balance method is the vector differential equation

M¥q + D ¤q + Kq + fnl(q, ¤q, 𝑡) = fext(Ω) . (2.12)
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In Eq. (2.12) M, D, and K represent the mass, damping, and stiffness matrices. With the
generalized coordinate vector q and its derivatives, they make up the linear terms of the
system. The term fnl(q, ¤q, 𝑡) introduces the influence of the nonlinear terms, whereas
fext(Ω) considers the external excitation. It is assumed that the excitation terms oscillate
with the frequency Ω and contain a single harmonic term. The generalized coordinates
are approximated by q ≈ q𝐻(𝑡 , q̂sc,𝐻) = hsc,𝐻(𝑡)q̂sc,𝐻 and the residuum is given by

r(𝑡 , ¥q, ¤q, q) = M¥q + D ¤q + Kq + fnl(q, ¤q, 𝑡) − fext(Ω) !
= 0 . (2.13)

The basic idea of the harmonic balance method is to calculate the amplitudes q̂sc,𝐻 so
that the amplitudes of the residuum until the truncation order 𝐻 vanish. To this end,
the amplitudes of the residuum are calculated as

r̂ = 1
𝑇

∫ 𝑇

0
hsc,𝐻(𝑡) r( ¥q, ¤q, q, 𝑡)d𝑡 = f̂lin + f̂nl − f̂ext . (2.14)

In Eq. (2.14) the calculation of the residuum amplitudes is broken down into the
calculation of the linear terms, the nonlinear terms, and the excitation terms. In the case
of a single harmonic excitation, the term f̂ext has a single entry in the corresponding row
depending on the chosen harmonic function. The linear terms are calculated with

f̂lin = (∇2 ⊗ Ω2M + ∇
1 ⊗ ΩD + ∇

0 ⊗ K) q̂sc,𝐻 . (2.15)

The main challenge lies in the calculation of the amplitudes of the nonlinear terms.
This challenge is addressed by implementing the Alternating Frequency-Time Scheme
[100], depicted in Fig. 2.1. First, this algorithm takes the momentary estimate for q̂sc,𝐻
and calculates the corresponding approximated time series q̃(𝑡). Second, this time

Figure 2.1: Visual representation of the Alternating Frequency-Time scheme, source: [100].
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series is used to calculate the corresponding approximated nonlinear forces f̃nl(𝑡) in the
time domain. Third, the algorithm calculates the Fourier series of the approximated
nonlinear forces, which yields the amplitudes in f̂nl.

In order to handle bends and multiple solutions for a single frequency, a continuation
method is implemented. To this end, the fundamental frequency Ω is considered a vari-
able, and a new vector y = [q̂sc,𝐻 ,Ω]ᵀ describes the unknown variables. Consequently,
an additional equation is required. According to the pseudo-arc length parametrization,
an equation is introduced so that the difference between the solution and the initial
guess lies within a hypersphere of radius Δ𝑠. Given an initial guess for the variables y0,
the hypersphere requirement is mathematically expressed as

(y − y0)ᵀ(y − y0) − Δ𝑠2 = 0 . (2.16)

Together with Eq. (2.13), Eq. (2.16) builds the zero point problem

R(y) =
[

f̂lin + f̂nl − f̂ext
(y − y0)ᵀ(y − y0) − Δ𝑠2

]
= 0 (2.17)

which is solved by the numeric optimization algorithms. In order to ease the calculations,
the algorithm is further expanded with a prediction step. The predictor estimate ypre of
the next solution is calculated with

ypre = y0 + Δ𝑠y∗
1 , (2.18)

with y∗
1 =

y1

∥y1∥
and

𝜕R(y)
𝜕y

����
y0

y1 = 0 . (2.19)

In Eq. (2.19) y1 is calculated with the help of a QR-decomposition. The estimate ypre is
then used as an initial guess for the next iteration.

The algorithm above is used together with a shooting method for verification purposes.
Together they make up a solid framework for the calculation of periodic solutions in
nonlinear systems. For more details on the implementation of this algorithm, the reader
is referred to [100] and [120].

2.2 Averaging for Two Degrees of Freedom Systems
Although numerical simulations are a basic initial step, analytical investigations offer a
deeper insight into the system dynamics. Relationships between the system’s behavior
and parameters are derived via the averaging method. Developed by Krylov and
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Bogoulibov [102], the basic principle of this method is to decompose the system behavior
into their slow and fast oscillating parts. Furthermore, the variables of the slow dynamics
are considered constant over one period from the point of view of the fast dynamics.
This motivates the averaging of the slow dynamics over the fast oscillating variables. A
reduced order system and often simpler equations of motion are obtained. For further
details into the averaging method, the reader is referred to the works of Mitroposlkii
[124], Sanders and Verhulst [150], and Fidlin [51]. The general approach involving
the averaging method for systems with two degrees of freedom is considered in this
chapter. To this end, the methods are applied to a general nonlinear dissipative device,
see Fig. 2.2.

Figure 2.2: A general nonlinear dissipative device.

The exemplary system is composed of the main system and the dissipative device. The
main system is represented by the main spring 𝑐1 and the main mass 𝑚1. This main
system is excited by the harmonic force with amplitude 𝐹 and angular frequency Ω.
In order to improve its dynamic behavior, the nonlinear dissipative device is attached
to the main system. The dissipative device is composed of an auxiliary spring 𝑐2, the
nonlinear dissipative element generating the force 𝐹nl, and the auxiliary mass 𝑚2. The
equations of motion of the system are given by

𝑚1 ¥𝑥1 + 𝑐1𝑥1 − 𝑐2(𝑥2 − 𝑥1) − 𝐹nl(𝑥1 , 𝑥2 , ¤𝑥1 , ¤𝑥2) = 𝐹 sinΩ𝑡 , (2.20)
𝑚2 ¥𝑥2 + 𝑐2(𝑥2 − 𝑥1) + 𝐹nl(𝑥1 , 𝑥2 , ¤𝑥1 , ¤𝑥2) = 0 . (2.21)

In order to apply the averaging method, equations Eqs. (2.20) and (2.21) are considered
in the dimensionless time 𝜏. The following transformations are applied

𝜏 = 𝜔01𝑡 ,
d( )
d𝜏 = ( )′ , 𝜔2

01 =
𝑐1
𝑚1

, 𝜔2
02 =

𝑐2
𝑚2

, 𝜂 =
Ω

𝜔01
, 𝛾 =

𝑚2
𝑚1

,

𝑝2 =
𝑐2

𝑚1𝜔2
01

=
𝑐2
𝑐1

, 𝜀 𝑓nl =
𝐹nl(𝑥1 , 𝑥2 , ¤𝑥1 , ¤𝑥2)

𝑚1𝜔2
01

, 𝜀 𝑓 =
𝐹

𝑚1𝜔2
01

, 𝜀 ≪ 1 .

(2.22)
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As noted above, 𝜀 is a small parameter and implies small nonlinear dissipative forces
and small excitation amplitudes. Applying the transformations above results in

𝑥′′1 + 𝑥1 − 𝑝2(𝑥2 − 𝑥1) = 𝜀
(
𝑓 sin𝜂𝜏 + 𝑓nl(𝑥1 , 𝑥2 , 𝑥

′
1 , 𝑥

′
2)
)
= 𝜀 𝑓nl,1 , (2.23)

𝛾𝑥′′2 + 𝑝2(𝑥2 − 𝑥1) = −𝜀
(
𝑓nl(𝑥1 , 𝑥2 , 𝑥

′
1 , 𝑥

′
2)
)
= 𝜀 𝑓nl,2 . (2.24)

The next step in the groundwork for the averaging method is the decoupling of the
equations. Hence, a modal transformation is applied to Eqs. (2.23) and (2.24), which
yields

M =

[
1 0
0 𝛾

]
, C =

[
1 + 𝑝2 −𝑝2

−𝑝2 𝑝2

]
, f =

[
𝑓nl,1
𝑓nl,2

]
, x =

[
𝑥1
𝑥2

]
, (2.25)

R =

[
𝑟11 𝑟12
𝑟21 𝑟22

]
, q = Rx , RᵀMR = I , RᵀCR = diag(𝜂2

01 , 𝜂
2
02) , (2.26)

Mx′′ + Cx = 𝜀f → RᵀMRq′′ + RᵀCRq = 𝜀Rᵀf . (2.27)

The vector q = [𝑞1 , 𝑞2]ᵀ describes the modal coordinates and the modal matrix R is
calculated considering the unperturbed system, i.e. 𝜀 = 0. The modal transformation
leads to

𝑞′′𝑖 +𝜂
2
0𝑖𝑞𝑖 = 𝜀

(
𝑟1𝑖 𝑓nl,1(𝑞𝑖 , 𝑞 𝑗) + 𝑟2𝑖 𝑓nl,2(𝑞𝑖 , 𝑞 𝑗)

)
= 𝜀𝑔(𝑞𝑖 , 𝑞 𝑗) (𝑖 , 𝑗) = {(1, 2), (2, 1)}. (2.28)

Since the terms on the right-hand side of Eq. (2.28) are of 𝒪(𝜀), the system is weakly
coupled. A complete modal decoupling proposed by Fidlin and Gafur in [53, 62]
is applied. In essence, only the corresponding modal coordinate is considered for
each modal equation. However, this assumption is only valid if the eigenfrequencies
𝜂01 and 𝜂02 are far enough from each other, i.e. |𝜂02 − 𝜂01 | = 𝒪(1) [186]. Under this
assumption, the unrelated modal coordinate is of the magnitude order 𝜀 in the vicinity
of the considered eigenfrequency. Therefore, its influence is first observed in the terms
of 𝒪(𝜀2) in Eq. (2.28). This is made evident by considering the dependency 𝑞 𝑗(𝜀) = 𝜀𝑞 𝑗
and a Taylor expansion about the point 𝜀 = 0 up to the terms of 𝒪(𝜀), which is given by

𝑞′′𝑖 + 𝜂2
0𝑖𝑞𝑖 =

(
𝑔(𝑞𝑖 , 𝑞 𝑗(𝜀)) + 𝜀

𝜕𝑔(𝑞𝑖 , 𝑞 𝑗(𝜀))
𝜕𝑞 𝑗(𝜀)

𝜕𝑞 𝑗(𝜀)
𝜕𝜀

)����
𝜀=0

(𝜀 − 0) + 𝒪(𝜀2) . (2.29)

An evaluation of equation Eq. (2.29) ultimately results in

𝑞′′𝑖 + 𝜂2
0𝑖𝑞𝑖 ≈ 𝜀 (𝑟1𝑖 𝑓nl,1(𝑞𝑖 , 0) + 𝑟2𝑖 𝑓nl,2(𝑞𝑖 , 0)) 𝑖 = {1, 2} . (2.30)
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2.2 Averaging for Two Degrees of Freedom Systems

In order to obtain the system in standard form for averaging, the following steps
are taken. First, a Van der Pol Transformation, introduced as 𝑞𝑖 = 𝐴𝑖 sin(𝜑𝑖) and
𝑞′
𝑖
= 𝐴𝑖𝜂0𝑖 cos(𝜑𝑖), is applied to the modal equations. Second, the phase differences

𝜓𝑖 = 𝜑𝑖 − 𝜂𝜏 are considered as slow-changing variables. Third, the response of the
system is investigated in the vicinity of the eigenfrequencies, i.e. 𝜂0𝑖 − 𝜂 = 𝜀𝛿𝑖 . These
transformations lead to

𝐴′
𝑖 = 𝜀

𝑟1𝑖 𝑓nl,1(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖) + 𝑟2𝑖 𝑓nl,2(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖)
𝜂0𝑖

cos(𝜑𝑖) , (2.31)

𝜓′
𝑖 = 𝜀

(
𝛿𝑖 −

𝑟1𝑖 𝑓nl,1(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖) + 𝑟2𝑖 𝑓nl,2(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖)
𝐴𝑖𝜂0𝑖

sin(𝜑𝑖)
)
, (2.32)

𝜑′
𝑖 = 𝜂01 − 𝜀

𝑟1𝑖 𝑓nl,1(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖) + 𝑟2𝑖 𝑓nl,2(𝐴𝑖 ,𝜓𝑖 , 𝜑𝑖)
𝐴𝑖𝜂0𝑖

sin(𝜑𝑖) . (2.33)

Equations (2.31) and (2.32) represent the system in standard form, whereas Eq. (2.33)
denotes the fast oscillating variables. The equations in standard form are averaged over
the fast rotating phases 𝜑1 and 𝜑2 over one oscillation period, i.e. 2𝜋. Additionally, the
averaged variables for the amplitude �̄�′

𝑖
and phase difference �̄�′

𝑖
are introduced. For the

exemplary system, the averaged variables are given by

�̄�′
𝑖 =

〈
𝐴′

𝑖

〉
𝜑𝑖

=
1

2𝜋

∫ 2𝜋

0
𝐴′

𝑖d𝜑𝑖 , (2.34)

�̄�′
𝑖 =

〈
𝜓′

𝑖

〉
𝜑𝑖

=
1

2𝜋

∫ 2𝜋

0
𝜓′

𝑖d𝜑𝑖 . (2.35)

The equations above describe the slow system dynamics and strickly speaking the
difference between the full and the averaged system remains of 𝒪(𝜀) for a time 𝒪(1/𝜀)
[102]. However, Eckhaus [44] proposed theorems that showed an error estimate
extension to 𝑡 → ∞ for the periodic case, provided the right-hand side of Eqs. (2.34)
and (2.35) are uniformly bounded and Lipschitz-continuous with respect to 𝐴𝑖 and 𝜓𝑖 .
The averaged equations are thus considered for the stationary solution (�̄�′

𝑖
= 0 and

�̄�′
𝑖
= 0) and verified with the numerical solution. Additionally, relationships between

the maximum amplitude and the excitation force are found, see sections 3.3 and 4.3.

The last step is to reconstruct the solution in the original coordinates 𝑥1 and 𝑥2. In the
case of linear systems, the transformation takes the form

𝐴𝑥1 =

√
𝑟2

11𝐴
2
1 + 𝑟12𝐴

2
2 + 2𝑟11𝑟12𝐴1𝐴2 (cos𝜃1 cos𝜃2 + sin𝜃1 sin𝜃2) , (2.36)

𝐴𝑥2 =

√
𝑟2

21𝐴
2
1 + 𝑟22𝐴

2
2 + 2𝑟21𝑟22𝐴1𝐴2 (cos𝜃1 cos𝜃2 + sin𝜃1 sin𝜃2) . (2.37)
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However, an explicit solution of the amplitudes 𝐴𝑖 is not guaranteed since Eqs. (2.34)
and (2.35) are nonlinear. Furthermore, since the calculated solutions are only valid in the
vicinity of the corresponding eigenfrequencies, an application outside this frequency
range is not valid. Therefore, the reconstruction is frequency-dependent and results in

𝜂 ≈ 𝜂01 → 𝐴𝑥1 ≈ |𝑟11 |𝐴1 , 𝐴𝑥2 ≈ |𝑟21 |𝐴1 , (2.38)
𝜂 ≈ 𝜂02 → 𝐴𝑥1 ≈ |𝑟12 |𝐴2 , 𝐴𝑥2 ≈ |𝑟22 |𝐴2 . (2.39)

The procedure above describes the foundation of the analytical investigations. These
equations are analyzed, and essential relations are derived from them. Detailed practical
applications of these equations are presented in chapters 3 and 4.

2.3 Control Strategies for Friction Dampers
As mentioned in section 1.2.3 friction dampers have been used in association with
semi-active control strategies. In this subchapter, the fundamental concepts of two
control strategies are discussed in detail. Firstly, the Skyhook Control Strategy developed
by Karnopp et al. [91] is considered. Furthermore, the relationship between this strategy
and the work of Dupont et al. [41] is presented. Subsequently, the basic structure of
adaptive control with a reference model is discussed. These concepts build the basis of
the active damper investigations, which are discussed in chapter 6.

2.3.1 Skyhook Control
The idea of the Skyhook Control Strategy is to emulate a damper attached to an inertial
reference point, even though the damper itself is placed between two moving bodies.
However, this emulation is not always viable. To avoid exacerbating the oscillations of

Figure 2.3: A semi-active isolator system, modified from source: [91].
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the considered mass, the damper force is set to zero whenever damping is not possible.
This leads to a damping-focused strategy. In [91] the damping constant is varied in
combination with the system in Fig. 2.3 resulting in the damper force

𝐹𝑑 =

{
𝑑Sky( ¤𝑥 − ¤𝑥0), ¤𝑥( ¤𝑥 − ¤𝑥0) > 0

0, ¤𝑥( ¤𝑥 − ¤𝑥0) < 0
=

{
𝑑d ¤𝑥, ¤𝑥( ¤𝑥 − ¤𝑥0) > 0

0, ¤𝑥( ¤𝑥 − ¤𝑥0) < 0
. (2.40)

In Eq. (2.40) 𝑑Sky represents the controlled damping coefficient, whereas 𝑑d represents
the desired damping coefficient of the emulated damper. Alternatively, Dupont et al.
motivated this control strategy via Ljapunov functions [41]. A Ljapunov function 𝑉

based on the energy associated with main mass 𝑚 in Fig. 2.3 yields

𝑉 =
1
2 𝑘(𝑥 − 𝑥0)2 +

1
2𝑚

¤𝑥2 > 0 , (2.41)

¤𝑉 = 𝑘(𝑥 − 𝑥0)( ¤𝑥 − ¤𝑥0) + 𝑚 ¤𝑥 ¥𝑥 = −𝑘(𝑥 − 𝑥0) ¤𝑥0 − 𝐹𝑑 ¤𝑥 . (2.42)

Focusing on the controllable terms in the Ljapunov derivative results in

¤𝑉𝑑 = −𝐹𝑑 ¤𝑥 = −𝑑Sky( ¤𝑥 − ¤𝑥0) ¤𝑥 . (2.43)

In order to provide damping, the Ljapunov derivative of the controllable terms must be
negative. To avoid exacerbating the oscillations of the main mass, it cannot be positive.
Since the damping coefficients 𝑑Sky and 𝑑d are strictly positive, this yields

𝑑Sky =


𝑑d ¤𝑥
¤𝑥 − ¤𝑥0

, ¤𝑥( ¤𝑥 − ¤𝑥0) > 0

0, ¤𝑥( ¤𝑥 − ¤𝑥0) ≤ 0
. (2.44)

Equation (2.44) leads to large damping constants in the vicinity of ¤𝑥 ≈ ¤𝑥0. This is
addressed by considering a limit on the input variable, e.g. 𝑑Sky ∈ [0, 𝑑max]. If the
maximal possible damping is desired, the control rule is simplified to

𝑑Sky =

{
𝑑max , ¤𝑥( ¤𝑥 − ¤𝑥0) > 0

0, ¤𝑥( ¤𝑥 − ¤𝑥0) ≤ 0
. (2.45)

This approach does not ensure the stability of the whole system, since only a part of
the Ljapunov derivative is considered. It does. however, provide dissipation whenever
possible and ensures the control strategy does not exacerbate the system’s oscillations.
These qualities are also ensured in the work of Karnopp et al., although Dupont et al.
formulated the strategy in a more general sense.
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2.3.2 Adaptive Control
Adaptive control is characterized by the extension of the classical control structure with
one feedback loop by an additional adaptation loop. The adaptation loop is tasked with
the adjustment of the controller parameters according to an adaption law. This allows
the design of a much more flexible controller that can adapt its behavior to changes in the
environment. This chapter focuses on two adaptive control methods: gain scheduling
and model reference adaptive control.

Figure 2.4: Gain scheduling adaptive control, modified from source: [152].

Gain scheduling extends the classical feedback loop with the help of an external
measurement, see Fig. 2.4. This measurement provides additional insight into the
system’s behavior. Thus, the parameter adaption is given as a function of the additional
measurement. Since the only limitation lies in the sampling time of the external
signal, this method allows a fast change in the controller parameters. However, there
is a drawback to this approach. Since the adaptation loop is open, there is no real
intelligence or ”learning” ability in the system [152]. The gain scheduler requires precise
knowledge of the system, and can only adapt if the changes in the environment are
accounted for. Therefore, it cannot improve itself against unforeseen changes.

Figure 2.5: Model reference adaptive control, modified from source: [152].
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In contrast to gain scheduling, the model reference adaptive control has a closed
adaptation loop and with it intelligence within the control structure. This approach
relies on a reference model, see Fig. 2.5. The reference model contains the desired
behavior of the system. The parameters of the controller are adjusted so that the system
asymptotically matches the reference model. To this end, the adjustment mechanism
changes the controller parameters 𝜃 and is calculated to reduce 𝑒2

o. This results in an
adaptation law of the form

𝜕𝜃

𝜕𝑡
= −2𝑔𝑒o

𝜕𝑦

𝜕𝜃
. (2.46)

As the controller parameters 𝜃 tend to the ideal parameters 𝜃∗, the output error 𝑒o
tends to zero. However, the partial derivatives of the system output depend on the
unknown and in some cases varying system parameters. This obstacle is avoided by
replacing the unknown system parameters with their identified estimates. Alternatively,
approaches via Ljapunov functions are also formulated to ensure the output error and
the difference 𝜃 − 𝜃∗ tends to zero. For a detailed description concerning the calculation
of the adaptation law, the reader is referred to the work of Sastry and Bodson [152].
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3 The Wedge Damper

As previously mentioned, the analysis of the wedge damper, see Fig. 3.1, presents a
first step before taking into account dampers with piecewise defined contact surfaces.
A general description of the damper is presented in section 3.1. This offers a first
impression of the damper’s behavior. These initial insights are expanded by numerical
simulations in section 3.2. To obtain key relationships between the damper behavior
and its parameters, analytical investigations are carried out in section 3.3. Finally, an
assessment of the damper is presented in section 3.4. Works into the characteristics of
this damper are presented in [184, 185]. The minimal model of this damper is based on
a patent from the Schaeffler AG [75, 180].

Figure 3.1: The schematic model of the wedge damper.

3.1 General Damper Description
The wedge damper is attached to the main system, represented by the primary mass
𝑚1 and the primary spring 𝑐1. The main system is excited by the harmonic force with
amplitude 𝐹 and angular frequency Ω, and it is the damper’s task to improve the system
dynamics. The wedge damper is composed of a secondary mass 𝑚2 placed between
two wedge-shaped contact surfaces with the wedge angle 𝛼. The friction coefficient
𝜇 describes the dry friction between the secondary mass and the contact surfaces.
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Furthermore, the wedges are pressed onto the secondary mass by the secondary spring
𝑐2 which has a prestress displacement Δℓ . Due to the damper design, a relative
movement between the primary and secondary masses forces the wedges apart from
each other. This increases the force in the secondary spring and thus the contact forces
between the secondary mass and the wedges. Thus, the contact forces increase with the
absolute value of the relative displacement. In contrast, classical alternatives rely solely
on dry friction, nominally flat surfaces, and constant contact forces.

Due to the nature of dry friction, the dynamics of this system are described by two sets
of equations. When the system slips, there is a relative movement between the masses,
the system has two degrees of freedom, and it is described by the differential equations

𝑚1 ¥𝑥1 + 𝑐1𝑥1 − 𝐹WD = 𝐹 sinΩ𝑡 , (3.1)
𝑚2 ¥𝑥2 + 𝐹WD = 0 . (3.2)

Where 𝑥1 and 𝑥2 are the position coordinates of the primary and secondary mass, the
dot represents the total derivative with respect to the time 𝑡, and 𝐹WD is the horizontal
wedge damper force acting on both masses. The wedge damper force is obtained with
the free body diagram presented in Fig. 3.2.

(a) (b)

Figure 3.2: Free body diagram of the wedge contact and secondary mass for: (a) 𝑥2 − 𝑥1 > 0, ¤𝑥2 − ¤𝑥1 > 0 and
(b) 𝑥2 − 𝑥1 < 0, ¤𝑥2 − ¤𝑥1 > 0.

The sums of forces resulting from Figs. 3.2a and 3.2b are summarized in two equations.
These are given with the sign-function of the relative displacement and result in

𝑅 cos 𝛼 + 𝑁 sin 𝛼 sign(𝑥2 − 𝑥1) −
𝐹WD

2 = 0 , (3.3)

𝑅 sin 𝛼 sign(𝑥2 − 𝑥1) − 𝑁 cos 𝛼 + 𝐹𝑐2 = 0 . (3.4)
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Where 𝑁 and 𝑅 are the friction forces in the contact and 𝐹𝑐2 is the spring force. With
the relation for Coulomb friction 𝑅 = 𝜇𝑁 sign( ¤𝑥2 − ¤𝑥1) and the secondary spring force
𝐹𝑐2 = 𝑐2(2 tan 𝛼 |𝑥2 − 𝑥1 | + Δℓ ), the equations above are solved for the normal contact
force and the wedge damper force. The latter results in

𝐹WD = 2𝑐2 (2 tan 𝛼 |𝑥2 − 𝑥1 | + Δℓ )
tan 𝛼 sgn(𝑥2 − 𝑥1) + 𝜇sgn( ¤𝑥2 − ¤𝑥1)

1 − 𝜇 tan 𝛼 sgn(𝑥2 − 𝑥1)sgn( ¤𝑥2 − ¤𝑥1)
. (3.5)

In contrast, when the system sticks, there is no relative movement between the masses.
The movement of the sticking system are described by one differential equation

(𝑚1 + 𝑚2) ¥𝑥1 + 𝑐1𝑥1 = 𝐹 sinΩ𝑡 . (3.6)

Since both masses move as one, the system has consequently one degree of freedom
and the eigenfrequency 𝜔st =

√
𝑐1/(𝑚1 + 𝑚2).

Additionally the system dynamics are described by sticking conditions, which expressed
as inequalities. Once these conditions are fulfilled the system transitions from the
slipping to the sticking state, and vice versa if the conditions are broken. Depending
on the system’s transition into sticking, two different sticking conditions are evaluated.
However, regardless of the transition mechanism the relative velocity ¤𝑥2 − ¤𝑥1 = 0 at the
transition. The system sticks either at the middle point between the wedges where the
slope changes abruptly (𝑥2 − 𝑥1 = 0) or on the surfaces of two wedges (𝑥2 − 𝑥1 ≠ 0). The
dominant transition is deduced later on after a closer analysis of the damper force.

For the first case, sticking at 𝑥2 − 𝑥1 = 0, the wedge damper force in Eqs. (3.1) and (3.2) is
replaced with the momentary stiction force 𝐻 and it is calculated to ensure ¤𝑥2 − ¤𝑥1 = 0.
The maximal stiction force 𝐻max is given by the limit of 𝐹WD as 𝑥2 − 𝑥1 and ¤𝑥2 − ¤𝑥1
approach 0 from above. This is the maximum stiction force that the damper generates
at 𝑥2 − 𝑥1 = 0. This procedure results in

𝐻 =
𝑚2

𝑚1 + 𝑚2
(𝐹 sinΩ𝑡 − 𝑐1𝑥1) , (3.7)

𝐻max = lim
𝑥2−𝑥1→0+
¤𝑥2− ¤𝑥1→0+

𝐹WD = 2𝑐2Δℓ
tan 𝛼 + 𝜇

1 − 𝜇 tan 𝛼
. (3.8)

|𝐻 | =≤ 𝐻max , 𝑥1 = 𝑥2 , and ¤𝑥1 = ¤𝑥2 . (3.9)

In the second case, sticking at 𝑥2 − 𝑥1 ≠ 0, the stiction is determined by the resulting
contact force of 𝑅 and 𝑁 , which is generated by the necessary stiction force and the
spring force. The sticking condition is fulfilled, when the resulting friction force lies
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within the friction cone given by the friction coefficient 𝜇. In this case, the friction force
𝑅 is not given by the Coulomb friction and is instead a constraint force. Additionally,
𝐹WD is also replaced by 𝐻. Furthermore, Eqs. (3.3) and (3.4) are solved for 𝑅 and 𝑁 and
the sticking conditions result in

𝑅 = 𝐹𝑐2 sin 𝛼 − 𝐻

2 cos 𝛼 , (3.10)

𝑅max = 𝜇𝑁 = 𝜇

(
𝐹𝑐2 cos 𝛼 + 𝐻

2 sin 𝛼

)
, (3.11)

|𝑅 | < 𝑅max , and ¤𝑥1 = ¤𝑥2 . (3.12)

Preliminary characteristics of the system are derived by evaluating the damper force
while sliding. Due to the sign-function, the force 𝐹WD is nonsmooth both on a
displacement and on a velocity level. Thus, the force is highly nonlinear. The
force determines the damper’s behavior during the slip phase and is separated into a
conservative part 𝐹WD,c and a dissipative part 𝐹WD,d. These forces are given by

𝐹WD,c = 𝐹WD(𝜇 = 0) = 2 tan 𝛼𝑐2
(
2 tan 𝛼(𝑥2 − 𝑥1) + Δℓsgn(𝑥2 − 𝑥1)

)
, (3.13)

𝐹WD,d = 𝐹WD − 𝐹WD,c

= 2𝑐2 (2 tan 𝛼 |𝑥2 − 𝑥1 | + Δℓ )
𝜇(1 + tan2 𝛼)sgn( ¤𝑥2 − ¤𝑥1)

1 − 𝜇 tan 𝛼 sgn(𝑥2 − 𝑥1)sgn( ¤𝑥2 − ¤𝑥1)
. (3.14)

The conservative part of 𝐹WD is composed of a spring force proportional to the relative
displacement between the masses and a direction-dependent prestress. The effective
secondary stiffness of the spring force is 𝑐2,eff = 4𝑐2 tan2 𝛼. The dissipative terms are

(a) (b)

Figure 3.3: Exemplary wedge damper force for (a) vanishing prestress displacement and (b) large prestress
displacement.
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proportional to the amplitude of the relative displacement between the masses, i.e.
𝐹WD,d ∼ 𝐴rel. Two qualitative curves of the damper forces are plotted against the relative
displacement 𝑥rel = 𝑥2 − 𝑥1 in Fig. 3.3. For a vanishing prestress there is no discontinuity
at 𝑥rel = 0 and no sticking at this position. In contrast, a large prestress results in a
proportional discontinuity at 𝑥rel = 0 allowing sticking at this point. Discontinuities are
also observed at 𝑥rel ≠ 0 due to the change in the sign of the relative velocity, c.f. Eq. (3.5).
However, these discontinuities are not as pronounced as the one in the middle of the
hysteresis. This indicates that sticking at 𝑥rel = 0 is the dominant transition mechanism
between sliding and sticking for the investigated parameters.

An approximation for the dissipated work of the damper𝑊𝐹WD,d is obtained by assuming
a harmonic oscillation with a phase 𝜑 = Ω𝑡 for the relative coordinate 𝑥rel ≈ 𝐴rel sin 𝜑

and the relative velocity ¤𝑥rel ≈ Ω𝐴rel cos 𝜑. An evaluation of the work integral yields

𝑊𝐹WD,d ≈ −
∫

𝐹WD,d(𝑥rel , ¤𝑥rel)d𝑥rel = −8𝑐2𝜇(tan 𝛼𝐴2
rel +Δℓ𝐴rel)

1 + tan2 𝛼

1 − 𝜇2 tan2 𝛼
. (3.15)

The dissipated work is proportional to the square value of the relative displacement
amplitude, i.e. 𝑊𝐹WD,d ∼ 𝐴2

rel. This is also the case with viscous damping, and a similar
behavior is expected. Therefore, this vibration reduction mechanism is considered
a pseudo-viscous damper. Compared to the dissipated energy of a viscous damper
(𝑊VD = 𝜋𝑑Ω𝐴2

rel), the dissipated energy in the wedge damper is independent of the
excitation frequency. This is especially advantageous at low frequencies.

Before presenting the numerical and analytical investigations, it is helpful to identify
the stick and slip ranges. While sticking, the system is completely linear and its solution
is known. With this solution, an estimate for the adherence to the stiction condition is
obtained for the dominant stick-slip transition. A solution of the form 𝑥1 = 𝐴 sin 𝜑 is
plugged into the stiction inequality Eq. (3.9) and a limit amplitude is estimated. The
estimate is calculated with

|𝐻 | = 𝑚2
𝑚1 + 𝑚2

|𝐹 sin(Ω𝑡) − 𝑐1𝐴 sin 𝜑 | = 𝑚2 | ¥𝑥1 | = 𝑚2Ω
2𝐴| sin 𝜑 |,

≤ 𝑚2Ω
2𝐴 ≤ 𝐻max ,

𝐴 ≤ 𝐻max

𝑚2Ω2 =
2𝑐2Δℓ (tan 𝛼 + 𝜇)
𝑚2Ω2(1 − 𝜇 tan 𝛼) = 𝐴L (3.16)

where 𝐴L is the limit amplitude of the linear system. Equation (3.16) describes the limit
amplitude for sticking at 𝑥2 − 𝑥1 = 0 and offers an acceptable approximation of the
transition between the linear and nonlinear ranges.
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3 The Wedge Damper

3.2 Numerical Investigations
The numerical investigations expand the initial insights into the behavior of the wedge
damper. This section is divided into two parts. First, parameter variations are carried
out. The algorithm described in section 2.1 is implemented to calculate the frequency
response function of the system. The variation of the design parameters leads to initial
insight into the parameters’ effect on the system. In the second part, a stability analysis
of selected frequency response functions is presented. A focus is set on chosen unstable
solutions and Poincaré maps are constructed to characterize the steady-state solutions.
Unless specified otherwise, the standard parameters for the investigations are:

𝑚1 = 1 kg, 𝑚2 = 0.1 kg, 𝑐1 = 1 N/m, 𝑐2 = 0.1 N/m, 𝛼 = 30◦ ,
Δℓ = 0.01 m, 𝜇 = 0.01, 𝐹 = 0.01 N .

The parameter studies of the variations of the secondary spring 𝑐2 and the wedge
angle 𝛼 are presented respectively in Figs. 3.4 and 3.5. By comparing these two studies,
similarities in their effect are found. Both parameters have a similar effect as the variation
of the auxiliary spring in a standard vibration absorber. An increase in the stiffness or
the angle increases the first resonance peak while shifting it towards higher frequencies.
The inverse effect is observed at the second resonance peak. The reason for this lies in
the change in the effective secondary stiffness these parameters cause. These parameters
optimize the performance at the resonance peaks or determine the absorption frequency.
As with linear systems, simultaneous optimization of both cannot be achieved.

The variation of the friction coefficient 𝜇 is presented in Fig. 3.6. This parameter
influences the damping forces 𝐹WD,d as well as the breakaway force 𝐻max of the damper.
An increase in the friction coefficient raises the damping forces and the dissipated

Figure 3.4: Parameter study variation of the stiffness 𝑐2 from 𝑐2 = 0.01 N/m ( ) to 𝑐2 = 0.9 N/m ( ).
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3.2 Numerical Investigations

Figure 3.5: Parameter study variation of the angle 𝛼 from 𝛼 = 5◦ ( ) to 𝛼 = 60◦ ( ).

energy. This leads to an initial decrease of the maximum amplitude for small friction
coefficients, i.e. 𝜇 ≪ 1. This decrease is observed as long as the breakaway force does
not rise substantially. Large friction coefficients increase the breakaway force and lead
to a system that is more likely to stick. Furthermore, large breakaway forces cause
a higher limit amplitude 𝐴L, c.f. Eq. (3.16). This causes a reduction of the sliding
range and two sticking ranges appear at the edges of the frequency response. Thus,
the characteristics of the sticking system become dominant. This causes a shift of the
system’s first resonance peak to the eigenfrequency of the sticking system 𝜔st and higher
amplitudes. A transition between the two and one degree of freedom system is observed.

Figure 3.6: Parameter study variation of the friction coefficient 𝜇 from 𝜇 = 0.01 ( ) to 𝜇 = 1 ( ).

Figure 3.7 presents the variation of the prestress displacement Δℓ . Similar to the friction
coefficient variation, a transition from a two to a one degree of freedom system is
observed. The limit amplitude for sticking is increased, and the resonance is shifted
towards 𝜔st for increasing prestress displacements. However, a substantial difference
lies in the effect on the system, since an increase in the maximum amplitude is observed.
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3 The Wedge Damper

Figure 3.7: Parameter study variation of the prestress displacement Δℓ from Δℓ = 0 m ( ) to Δℓ = 1 m ( ).

Based on the work integral, the influence of Δℓ on the dissipated energy is different.
The prestress displacement increases the dissipated energy associated with the relative
amplitude 𝐴rel. In contrast, the aforementioned parameters increase the dissipated
energy associated with the terms proportional to 𝐴2

rel. In consequence, slipping occurs
at higher amplitudes without the amplitude reduction observed in the friction coefficient
variation. Furthermore, a softening characteristic in the frequency response function is
observed. Sticking leads to high amplitudes at the resonance frequency 𝜔st. Once the
system transitions into slipping, its resonance frequency changes. Two eigenfrequencies
of the slipping system emerge whereas the eigenfrequency of the sticking system
vanishes. The lower eigenfrequency of the slipping system influences the damper’s
dynamics and a softening characteristic develops. The higher the amplitudes the more
the softening tends towards the lower eigenfrequency of the slipping system.

Figure 3.8: Parameter study variation of the force 𝐹 from 𝐹 = 0.01 N ( ) to 𝐹 = 0.09 N ( ).

The last parameter variation in Fig. 3.8 considers the change in the harmonic force
amplitude 𝐹 and its effect on the ratio 𝑉𝑥1 = 𝐴𝑥1/𝐹. In linear systems, this ratio is
equivalent to the amplification factor. The curves are normalized by the value 𝑉0, which
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3.2 Numerical Investigations

is the ratio calculated with the standard parameters. As shown in Fig. 3.8 the curves are
almost identical. The first resonance peak shows a minimal decrease with an increase
in excitation force, whereas the second resonance peak increases. Since these changes
are minimal, the vibration amplitudes of the system are amplified by approximately the
same factor. This implies a kind of scalability of the amplitude responses for the chosen
parameters. Nevertheless, exact scalability is observed only in linear mechanical systems
with viscous damping. The scalability is lost with increasing prestress levels. High
prestress displacements cause large discrepancies in the nonlinear ranges for varying
excitation amplitudes. This is due to the displacement’s effect on the limit amplitude.
These changes in the nonlinear range cause nonscalable frequency response functions.
Nonscalable frequency responses as well as the softening effect noted in the prestress
variations are observed in Fig. 3.9. An advantage, however, is that the ratio 𝑉𝑥1 does not
increase with the excitation force. Instead, the effect noted at the first resonance peak in
Fig. 3.8 is amplified. Since the amplification factors of the maximum amplitude do not
increase, the system is robust. In contrast, systems with a constant friction force have
unbounded amplitudes if the friction force is not tuned to the excitation, c.f. [53].

Figure 3.9: Parameter study variation of the force 𝐹 from 𝐹 = 0.01 N ( ) to 𝐹 = 0.09 N ( ) with Δℓ = 1 m.

A closer examination of the frequency response function with Δℓ = 1 m and the
remaining standard parameters is presented in Fig. 3.10. A stability analysis is carried
out by taking the initial solutions of the harmonic balance method and simulating
the system’s behavior for 1000 additional cycles. The resulting steady-state solution is
compared with the initial periodic solution and the stability is evaluated. Two instability
ranges are observed. In the first instability range on the left of Fig. 3.10 multiple
solutions are observed, whereas in the second instability range they are not. In the
initial instability range, the steady-state solutions drift away from the initial solution and
converge either to the upper solution branch or to a nonperiodic steady-state solution.
The solutions, however, do not converge to the lower solution branch, where a purely
sticking solution is observed. At the second instability range, the steady-state solution
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Figure 3.10: Stability analysis of the frequency response function with Δℓ = 1 m.

converges to nonperiodic state solutions. Exemplary solutions from each of these ranges
are marked with 1O and 2O in Fig. 3.10 and are studied in further detail.

To characterize the nonperiodic solutions, time simulations are performed and Poincaré
maps are constructed, see Fig. 3.11. The states of the system are recorded at multiples of
the period 𝑇 = 2𝜋/Ω and plotted in the 𝑥1 , ¤𝑥1-phase diagram. The Poincaré maps show
the transition from the unstable periodic solution to the stable, steady-state, nonperiodic
solution. The steady-state solution in Fig. 3.11a corresponds to the first instability range
and forms a curve in the phase space. This indicates a quasiperiodic solution. In contrast,
the solution from the second instability range in Fig. 3.11b forms an area-like structure.
This structure, which is neither a line nor a closed area, is a typical feature of chaos.
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Figure 3.11: (a) Quasiperiodic solution 1O at Ω = 0.9376 rad/s with Δℓ = 1 m and the standard parameters. (b)
Chaotic solution 2O at Ω = 0.9507 rad/s with Δℓ = 1 m and the standard parameters.

Unstable solutions are found primarily at high prestress levels. However, they are also
found at low prestress levels. A stability analysis for frequency response function of the
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Figure 3.12: (a) Stability analysis of the frequency response function with the standard parameters. (b)
Quasiperiodic solution 1O at Ω = 1.1446 rad/s with the standard parameters.

system with the standard parameters as shown in Fig. 3.12a. Unstable periodic solutions
at low prestress levels lead to quasiperiodic solutions. An example of such a solution is
presented in Fig. 3.12b. Since the maximal amplitudes of nonperiodic solutions are in
some cases higher than the calculated periodic motion, these solutions have to be taken
into account when designing such dampers and should be avoided.

3.3 Analytical Investigations
The studies above show the influence of the parameters on the frequency response.
However, they do not offer a deeper insight into the system’s dynamics. Therefore,
analytical investigations are carried out with the averaging method described in
section 2.2. The analytical solution is calculated and verified with the numerical
results. Lastly, the analytical insight is used to optimize the damper parameters.

In this section continuous slip is assumed. The equations of motion during the slip
phase are brought into an adequate form for averaging. First, the equations are
nondimensionalized. Subsequently, a complete modal decoupling for nonlinear systems
is applied. The following transformations are introduced:

𝑚2
𝑚1

= 𝛾 ,
𝑐1
𝑚1

= 𝜔2
01 , 𝜏 = 𝜔01𝑡 , ¤( ) = d( )

d𝑡 =
d( )
d𝜏

d𝜏
d𝑡 = 𝜔01( )′ , 𝜂 =

Ω

𝜔01
,

𝑎2 =
4𝑐2 tan2 𝛼

𝑚1𝜔2
01

, 𝜀𝑏 =
4𝜇𝑐2 tan 𝛼

𝑚1𝜔2
01 cos2 𝛼

, 𝜀𝑐 =
2𝑐2Δℓ tan 𝛼

𝑚1𝜔2
01

, 𝜀 𝑓 =
𝐹

𝑚1𝜔2
01

, 𝜀 ≪ 1 .
(3.17)
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3 The Wedge Damper

The parameter 𝜀 tracks the small quantities and is equal to 0.01 for the standard
parameters. This implies small friction coefficients, small prestress displacements,
and small excitation forces. Linearising the wedge damper force with respect to
the friction coefficient and introducing the transformations above yields the coupled
nondimensional equations

𝑥′′1 + 𝑥1 − 𝑎2(𝑥2 − 𝑥1) = 𝜀
(
𝑓 sin𝜂𝜏 + 𝑓WD,lin

)
= 𝜀 𝑓WD,lin,1 , (3.18)

𝛾𝑥′′2 + 𝑎2(𝑥2 − 𝑥1) = 𝜀
(
− 𝑓WD,lin

)
= 𝜀 𝑓WD,lin,2 , (3.19)

𝑓WD,lin = 𝑏 |𝑥2 − 𝑥1 |sgn(𝑥′2 − 𝑥′1) + 𝑐sgn(𝑥2 − 𝑥1) . (3.20)

Equations (3.18)–(3.20) only take into account the terms of 𝒪(𝜀) since only a first
order averaging method is applied to the equations. These equations are decoupled
and considered in the vicinity of the corresponding eigenfrequency 𝜂01 or 𝜂02. This
procedure yields the equations

𝜂 ≈ 𝜂01 → 𝑞′′1 + 𝜂2
01𝑞1 = 𝜀(𝑟11 𝑓WD,lin,1(𝑞1 , 0) + 𝑟21 𝑓WD,lin,2(𝑞1 , 0)) , (3.21)

𝜂 ≈ 𝜂02 → 𝑞′′2 + 𝜂2
02𝑞2 = 𝜀(𝑟12 𝑓WD,lin,1(0, 𝑞2) + 𝑟22 𝑓WD,lin,2(0, 𝑞2)) . (3.22)

In Eqs. (3.21) and (3.22) 𝑟𝑖 𝑗 are the corresponding entries in the decoupling modal matrix
R of the unperturbed system, i.e. 𝜀 = 0. A Van der Pol transformation of the form
𝑞𝑖 = 𝐴𝑖 sin 𝜑𝑖 , 𝑞′𝑖 = 𝐴𝑖𝜂0𝑖 cos 𝜑𝑖 , 𝜑𝑖 = 𝜂𝜏 + 𝜃𝑖 , and 𝜀𝛿𝑖 = 𝜂0𝑖 − 𝜂 for 𝑖 = {1, 2} is applied.
Furthermore, the resulting equations are averaged over one period of the fast oscillation
variables 𝜑1 and 𝜑2. The averaged equations result in

�̄�′
𝑖 = 𝜀

(
−
𝑓 𝑟1𝑖 sin �̄�𝑖

2𝜂0𝑖
− 𝑏�̄�𝑖 (𝑟1𝑖 − 𝑟2𝑖)2

𝜋𝜂0𝑖

)
, (3.23)

�̄�′
𝑖 = 𝜀

(
𝛿𝑖 −

cos �̄�𝑖 𝑓 𝑟1𝑖

2�̄�𝑖 𝜂0𝑖
+ 2

𝑐 (𝑟11 − 𝑟21) sgn (𝑟1𝑖 − 𝑟2𝑖)
𝜋 �̄�𝑖 𝜂0𝑖

)
. (3.24)

Equations (3.23) and (3.24) describe changes in the slow-changing amplitude �̄�𝑖 and the
slow-changing phase difference �̄�𝑖 of the system. The approximation of the resonance
behavior is approximated by setting �̄�𝑖 = −𝜋/2. Although this does not always apply
even for linear systems, it is an acceptable assumption since the system is lightly damped.
This is verified by considering a phase difference of the form 𝜃𝑖 = −𝜋/2 + 𝜀𝜃𝑖 ,1, where
the term 𝜀𝜃𝑖 ,1 represents the slight modification due to light damping. Substituting
this expression in the averaged equations and expanding the trigonometric terms with
a Taylor series yields terms of the magnitude order 𝒪(𝜀2) in Eqs. (3.23) and (3.24). In
consequence, the effect of the damping in the phase difference is first noted with an
averaging method of second order. Using the proposed phase difference in Eq. (3.23)
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yields an expression for the maximum amplitude depending on the excitation force. It
is derived by solving for the stationary solution �̄�′

𝑖
= 0 and leads to

�̄�𝑖 ,max =
𝜋𝑟1𝑖 𝑓

2𝑏(𝑟1𝑖 − 𝑟2𝑖)2
=

𝜋𝑟1𝑖 cos2 𝛼𝐹

8𝜇𝑐2 tan 𝛼(𝑟1𝑖 − 𝑟2𝑖)2
. (3.25)

This equation confirms the linear relationship between the maximum amplitude and the
amplitude of the excitation force. The pseudo-viscous character of the damper is thus
reinforced. Analogously, solving Eq. (3.24) for the resonance case and the stationary
solution, i.e. �̄�′

𝑖
= 0, leads to a backbone curve. This curve defines the relationship

between the maximum amplitude and the resonance frequency. This results in

�̄�𝑖 ,max = 𝜀
2𝑐 |𝑟1𝑖 − 𝑟2𝑖 |
𝜋𝜂0𝑖(𝜂 − 𝜂0𝑖)

. (3.26)

An analytical solution is derived for the frequency response function in the resonance
regimes from Eqs. (3.23) and (3.24) by eliminating the phase difference 𝜃𝑖 for the
stationary solution. This implicit equation is expressed in the original coordinates
with the reconstruction rule presented in section 2.2. The comparison between the
analytical and the numerical solution is shown in Fig. 3.13. The solution approximates
the numerical results with the accuracy of asymptotic methods. The deviations from the
numerical solution are of the order of 𝒪(𝜀), which confirms the validity of the solution.
The validity of the backbone curve is also confirmed.
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Figure 3.13: Comparison of the analytical ( ) and the numerical solution ( * ), as well as the backbone
curve ( ). (a) Ω ≈ 𝜂01. (b) Ω ≈ 𝜂02.

The analytic solution assumes continuous slip and thus cannot account for sticking.
Consequently, the solution is only applied within the valid parameter range, and the
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corresponding parameters remain small, i.e. 𝒪(𝜀). Nevertheless, the added value of the
analytical solution lies in its ability to effectively optimize design functions within its
limits. A targeted optimization of the wedge angle 𝛼 for a broadband damper design is
performed. To this end, an optimization function is defined as the sum of the squares
of the maximum amplitudes of the main mass at the eigenfrequencies. This leads to

𝑔opt(𝛼) = 𝐴2
𝑥1 ,max(𝛼, 𝜂01(𝛼)) + 𝐴2

𝑥1 ,max(𝛼, 𝜂02(𝛼)) . (3.27)

Equation (3.27) is plotted for the standard parameters in the semi-logarithmic plot in
Fig. 3.14a. To ensure the validity of the analytical solution, the wedge angle is limited
to 𝛼 ∈ [0◦ , 45◦]. A minimum of the optimization function is calculated to determine
the optimal angle 𝛼opt = 25.33◦. The resulting frequency response is compared to the
response with the standard parameters, see Fig. 3.14b. As with Den Hartog’s equal
peak method, the optimal broadband solution is found when both structural resonances
have the same amplitude. Additionally, it achieves an amplitude reduction of 72.5 %.

(a) (b)

Figure 3.14: (a) Optimization function 𝑔opt(𝛼). (b) Comparison of the optimized frequency response function
( ) and the response for the standard parameters ( ).

3.4 Damper Assessment
The wedge damper is a realization of a pseudo-viscous damper via dry friction. The
dissipated energy of the damper is proportional to the square value of the relative
vibration amplitude. This leads to the scalability of the amplitude response for certain
parameters. A difference between the wedge damper and the conventional tuned mass
damper lies in the proportionality of the dissipated energy. The dissipated energy of
the tuned mass damper is proportional to the excitation frequency, whereas that of the
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wedge damper is not. This is a useful quality at low frequencies. The damper also has
the practical advantage that no sealing is needed, which reduces manufacturing costs.
Furthermore, the damper is less affected by external changes in the environment in
contrast to its viscous counterpart. The damper is in consequence noted as an effective
alternative to viscous damping.

The advantages of the wedge damper come at the price of a higher degree of nonlinearity.
This eventually leads to quasiperiodic and chaotic solutions, which are detrimental to
the system’s behavior. Such regimes should be avoided when designing the damper.

The next natural step in the betterment of this damper is the investigation of alternative
geometries, such are considered in chapter 4. The extension of this damper into a 3D
configuration opens the possibility of independent damping in different directions. An
ellipsoidal contact surface with different slopes in the intended damping directions
provides a starting point for such investigations.
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The tuned wedge damper, see Fig. 4.1, retains the advantages of the wedge damper
and addresses its main disadvantage, the coupling of damping and absorption. To this
end, the absorption and damping functions are separated by introducing an additional
spring and modifying the contact surface design. To study this device, first, the general
characteristics of the damper are investigated in section 4.1. Second, the numerical
investigations expand the initial insight in section 4.2 by determining the influence of
parameters on the system’s frequency response function. Stability analyses of selected
solutions are also presented. Third, the investigation into the wedge damper is deepened
with the analytical consideration of the system in section 4.3. As with the wedge damper,
the analytical study leads to relationships between the damper’s parameters and key
dynamic features, e.g. maximal amplitude. These analytical and numerical insights are
combined in section 4.4 where an optimized tuned wedge damper is presented. The
chapter is closed in section 4.5 with the damper assessment.

Figure 4.1: The schematic model of the tuned wedge damper.

4.1 General Damper Description
The tuned wedge damper also aims to improve the dynamics of the main system, which
is represented by the main mass 𝑚1, the main spring 𝑐1, and the excitation 𝐹 sinΩ𝑡. In
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contrast to the wedge damper, the tuned wedge damper implements two springs and
a different contact surface profile. In this way, the damper separates two functions,
vibration absorption and vibration damping. The secondary spring 𝑐2 is attached to the
secondary mass 𝑚2 and is responsible for vibration absorption. The vibration damping
is handled by the tertiary spring 𝑐3 and the contact surfaces. The third spring presses
the contact surfaces onto the secondary mass and thus generates a dry friction contact.
If additional damping is desired, the third spring is prestressed by the displacement
Δℓ . The contact surface profile is described by three straight segments and two curved
connections. The middle segment has a distance of 2Δ1 and is connected to the outer
segments with circular segments of radius 𝑟. The connections to the outer segments are
designed so that the transitions are continuous and smooth. The outer segments are
oriented at the wedge angle 𝛼. The form of the varying contact geometry is described
by the function 𝑦, which is specified later on.

The tuned wedge damper is similar to the wedge damper in chapter 3. Both dampers
press the secondary mass between varying contact surfaces. Both generate a friction
force that is proportional to the relative displacement between the masses. For 𝑐2 = 0 and
Δ1 = 0 the wedge damper results as a special case of the tuned wedge damper. Therefore,
the tuned wedge damper is an extension of the wedge damper. It is also a more versatile
damper since it has more design parameters. Furthermore, its basic working principle
is different from the wedge damper. When the oscillations are small, the secondary
mass oscillates within the 2Δ1-range. The contact surfaces are not pressed apart, and
there is low damping. No damping is achieved in the inner segment for a vanishing
prestress displacement (Δℓ = 0). If the oscillations are larger, the secondary mass
oscillates partly outside the 2Δ1-range, and the contact surfaces are pressed apart. This
leads to the aforementioned varying contact forces. Moreover, additional damping is
introduced in a targeted manner, when the oscillations are critical. The basic principle of
the tuned wedge damper is thus based on selective damping with varying contact forces.

The dynamics of the system are described by two differential equations while sliding
and by one differential equation while sticking. For the sliding case, these are given by

𝑚1 ¥𝑥1 + 𝑐1𝑥1 − 𝐹TWD = 𝐹 sinΩ𝑡 , (4.1)
𝑚2 ¥𝑥2 + 𝐹TWD = 0 . (4.2)

Again 𝑥1 and 𝑥2 represent the position coordinates of the primary and secondary mass,
the dot represents the total derivative with respect to the time 𝑡, and 𝐹TWD is the
horizontal force of the tuned wedge damper. The force of the tuned wedge damper is
obtained with the free body diagram presented in Fig. 4.2.
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(a) (b)

Figure 4.2: Free body diagram of the tuned wedge damper contact forces for: (a) 𝑥2 − 𝑥1 > 0, ¤𝑥2 − ¤𝑥1 > 0 and
(b) 𝑥2 − 𝑥1 < 0, ¤𝑥2 − ¤𝑥1 > 0.

In contrast to the equations in chapter 3, the momentary angle of the contact force
changes depending on the relative displacement 𝑥rel = 𝑥2 − 𝑥1. To take all segments
into account in a general way, the momentary contact angle �̃� is introduced. It is equal
to ±𝛼 on the outer segments, zero in the middle segment, and changes from zero to 𝛼

in the transitions segments. A general expression for the sum of forces is generated by
expressing the equations with the tangent of the momentary contact angle. Therefore,
the derivative of the contact geometry function with respect to the relative displacement
𝑦𝑥 = tan(�̃�) is used. The function 𝑦𝑥 includes both cases in Fig. 4.2 and thus sum of
forces for the free body diagrams results in

𝑅 + 𝑁𝑦𝑥 −
𝐹WD

2

√
1 + 𝑦2

𝑥 = 0 , (4.3)

𝑅𝑦𝑥 − 𝑁 + 𝐹𝑐3

√
1 + 𝑦2

𝑥 = 0 , (4.4)

with 𝑅 = 𝜇𝑁 sign( ¤𝑥2 − ¤𝑥1) , and 𝐹𝑐3 = 𝑐3(2𝑦 + Δℓ ) . (4.5)

Since the term
√

1 + 𝑦2
𝑥 = (cos(�̃�))−1 is strictly positive, it limits the considered angles to

the range 𝛼 ∈ [−𝜋/2,𝜋/2]. However, since the relevant range for practical applications
is between 0 and 𝜋/2, this is not a meaningful restriction. While sliding the relationship
between the normal force 𝑁 and the friction force 𝑅 is given by Coulomb friction and
the friction coefficient 𝜇, c.f. Eq. (4.5). Solving the equations above yields the force of
the tuned wedge damper in the compact form

𝐹TWD = 𝑐2(𝑥2 − 𝑥1) + 2𝑐3 (2𝑦 + Δℓ )
𝑦𝑥 + 𝜇sgn( ¤𝑥2 − ¤𝑥1)

1 − 𝜇𝑦𝑥sgn( ¤𝑥2 − ¤𝑥1)
. (4.6)
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(a) (b)

Figure 4.3: (a) Contact function geometry 𝑦 (b) Derivative of the contact function geometry 𝑦𝑥 with respect to
the relative displacement 𝑥rel.

The transition segments are designed to ensure smooth transitions between the straight
segments. To minimize the number of parameters in the design, the transition segments
are designed as circular segments. This design has the radius 𝑟 as its single parameter.
Furthermore, this radius is chosen small (𝑟 ≪ 1), so the dynamics of the system are
mainly defined by the straight segments. The contact surface geometry 𝑦 and its
derivative 𝑦𝑥 result in

𝑦 =



− tan 𝛼(𝑥2 − 𝑥1 + Δ2) + 𝑟(1 − cos 𝛼), 𝑥2 − 𝑥1 < −Δ2

𝑟 −
√
𝑟2 − (𝑥2 − 𝑥1 + Δ1)2 , −Δ2 < 𝑥2 − 𝑥1 < −Δ1

0, |𝑥2 − 𝑥1 | < Δ1

𝑟 −
√
𝑟2 − (𝑥2 − 𝑥1 − Δ1)2 , Δ1 < 𝑥2 − 𝑥1 < Δ2

tan 𝛼(𝑥2 − 𝑥1 − Δ2) + 𝑟(1 − cos 𝛼), Δ2 < 𝑥2 − 𝑥1

, (4.7)

𝑦𝑥 =



− tan 𝛼, 𝑥2 − 𝑥1 < −Δ2
𝑥2 − 𝑥1 + Δ1√

𝑟2 − (𝑥2 − 𝑥1 + Δ1)2
, −Δ2 < 𝑥2 − 𝑥1 < −Δ1

0, |𝑥2 − 𝑥1 | < Δ1
𝑥2 − 𝑥1 − Δ1√

𝑟2 − (𝑥2 − 𝑥1 − Δ1)2
, Δ1 < 𝑥2 − 𝑥1 < Δ2

tan 𝛼, Δ2 < 𝑥2 − 𝑥1

, (4.8)

with Δ2 = Δ1 + 𝑟 sin 𝛼 . (4.9)

The equation of motion while sticking is identical to the sticking case in chapter 3 and,
thus, has the eigenfrequency 𝜔st =

√
𝑐1/(𝑚1 + 𝑚2). This equation is given by

(𝑚1 + 𝑚2) ¥𝑥1 + 𝑐1𝑥1 = 𝐹 sinΩ𝑡 . (4.10)
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Since the transitions in this system are smooth and the masses are modeled as particles,
there is always a defined contact point. Consequently, there is only one sticking
condition. The damper force is replaced in the equations of motion with the relation
𝐹TWD = 𝑐2(𝑥2 − 𝑥1) − 𝐻, where 𝐻 describes the stiction force which prevents relative
movement. The fulfillment conditions for sticking are described by

𝐻 =
𝑚2

𝑚1 + 𝑚2
(𝐹 sinΩ𝑡 − 𝑐1𝑥1) + 𝑐2(𝑥2 − 𝑥1) , (4.11)

𝑅 = -
2𝐹𝑐3𝑦𝑥 + 𝐻

2
√

1 + 𝑦2
𝑥

and 𝑅max = 𝜇𝑁 = 𝜇
2𝐹𝑐3 − 𝐻𝑦𝑥

2
√

1 + 𝑦2
𝑥

, (4.12)

|𝑅 | < 𝑅max , and ¤𝑥1 = ¤𝑥2 . (4.13)

Accordingly, the transition into sliding is thus determined by the failure to comply with
the equations above.

The force of the tuned wedge damper is also separated into a conservative part 𝐹TWD,c
and a dissipative part 𝐹TWD,d. The separation results in

𝐹TWD,c = 𝐹TWD(𝜇 = 0) = 𝑐2(𝑥2 − 𝑥1) + 2𝑐3(2𝑦 + Δℓ )𝑦𝑥 , (4.14)

𝐹TWD,d = 𝐹TWD − 𝐹TWD,c = 2𝑐3(2𝑦 + Δℓ )
𝜇(1 + 𝑦2

𝑥) sign( ¤𝑥2 − ¤𝑥1)
1 − 𝜇𝑦𝑥 sign( ¤𝑥2 − ¤𝑥1)

. (4.15)

The effective secondary stiffness of the damper is defined by the conservative force 𝐹TWD,c.
In the resonance regime, large amplitudes lead to oscillations that are mainly influenced
by the angled segments. The effective secondary stiffness at the resonances is thus given
by 𝑐2,eff,res = 𝑐2 + 4𝑐3 tan2 𝛼. In contrast, when the oscillations are in the vicinity of the
absorption frequency, the relative displacement is within the 2Δ1-range. The angled
segments do not influence on the oscillation and the effective secondary stiffness is
given by 𝑐2,eff,abs = 𝑐2. The structure of the dissipative force is similar to that of the
wedge damper. The force is proportional to the relative displacement, i.e. 𝐹TWD,d ∼ 𝐴rel.
Figure 4.4 shows qualitative curves for the tuned wedge damper force and its individual
conservative and dissipative parts. The damper forces for Δℓ = 0 are presented in
Fig. 4.4a. This parameter choice leads to a dissipation-free segment in the 2Δ1-range.
This is especially useful for absorption. Large prestress displacements lead to the loss
of the low dissipation range, see Fig. 4.4b. Furthermore, due to the smooth transitions,
the large jumps observed with the wedge damper in chapter 3 are not seen in Fig. 4.4b.
This implies that, in comparison to the wedge damper, higher prestress displacements
are necessary at 𝑥rel = 0 for the tuned wedge damper to stick. Nevertheless, the tuned
wedge damper sticks at the angled segments or in the horizontal segment. However,
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(a) (b)

Figure 4.4: Exemplary tuned wedge damper forces for (a) vanishing prestress displacement and (b) large
prestress displacement.

sticking in the horizontal segment is the dominant stick-slip transition range. In the
middle segment, the full force of the spring force generates the normal force, and the
necessary stiction force 𝐻 defines the contact force 𝑅. Since 𝐻 is an oscillating force,
𝑅max is maximized in the horizontal segment. This is verified by setting 𝑦 = 0 and
𝑦𝑥 = 0 in Eqs. (4.11)–(4.13).

The dissipative work of the damper gives insight into the robustness of the damper
and is calculated as with the wedge damper. A harmonic oscillation is assumed for the
relative coordinate, i.e. 𝑥rel = 𝐴rel sin 𝜑 and ¤𝑥rel = 𝐴relΩ cos 𝜑 with 𝜑 = Ω𝑡. The work
integral is evaluated for two cases. First, oscillations in the 2Δ1-range are considered,
which leads to 𝑊𝐹TWD,d ,Δ1 . Subsequently, oscillations in which the secondary mass partly
enters the outer segments are handled and lead to the dissipated energy 𝑊𝐹TWD,d . For
small oscillation, the work integral yields

𝑊𝐹TWD,d ,Δ1 ≈ −
∫

𝐹TWD,d(𝑥rel , ¤𝑥rel)d𝑥rel = −8𝑐3Δℓ𝜇𝐴 . (4.16)

From Eq. (4.16) the dissipation for small oscillations is dependent on the prestress
displacement. If this value is null, there is no dissipation in this segment. Furthermore,
the energy dissipated in this segment is only proportional to the value of the relative
amplitude, i.e. 𝑊𝐹TWD,d ,Δ1 ∼ 𝐴rel. This structure leads to amplitudes larger than Δ1 if the
presstress is not adjusted to the excitation amplitude 𝐹, c.f. [187]. Since in general Δℓ is
not adjusted for 𝐹, the relative amplitudes will in most cases be larger than Δ1. This is
especially true in the resonance regimes. To simplify the calculations of the dissipated
energy for the second case, the radius 𝑟 of the transitions segments is set to null. This
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is not a strong restriction, since the transition segments are small and only functions to
ensure smooth transitions. Only the straight segments are considered and the integral
is evaluated for only for these segments. The work integral yields

𝑊𝐹TWD,d ≈ −
∫

𝐹TWD,d(𝑥rel , ¤𝑥rel)d𝑥rel ,

𝑊𝐹TWD,d ≈ − 8𝜇𝑐3
1 + tan2 𝛼

1 − 𝜇2 tan2 𝛼
(tan 𝛼 𝐴2

rel + Δℓ𝐴rel)

+ 8𝜇𝑐3
1 + tan2 𝛼

1 − 𝜇2 tan2 𝛼

(
2𝐴rel + Δℓ sin 𝛼 cos 𝛼(1 + 𝜇2) − Δ1

)
tan 𝛼Δ1 .

(4.17)

The first part of Eq. (4.17) is identical to the dissipated work of the wedge damper. They
are in part proportional to the square value of the relative displacement amplitude,
i.e. 𝑊𝐹TWD,d ∼ 𝐴2

rel. This ensures the damper’s robustness with respect to the excitation
amplitude. The second term is in part proportional to the distance Δ1 and in part to its
square valueΔ2

1. IfΔ1 is set to zero the dissipated energy of the damper is identical to that
of the wedge damper. The Δ1-terms reduce the dissipated energy. However, since there
are dissipative terms are proportional to the square value of the relative displacement
and independent of Δ2

1, the reduction does not affect the damper’s robustness.

The considered dampers have similar characteristics in the resonance regimes. With
dissipated energy proportional to the square value of the relative amplitude both
dampers are robust against large oscillations. Both dampers also have a dissipated
energy independent of the excitation frequency. This is advantageous at low frequencies
and does not introduce exceedingly high damping at high frequencies. The dampers
differ for small oscillations since the tuned wedge damper exhibits no dissipated energy
in this regime for a vanishing Δℓ value.

The transition between sticking and sliding is also approximated. To this end, sticking
is assumed as well as a harmonic oscillation of the main mass, i.e. 𝑥1 = 𝐴 sin 𝜑. Since
the stick-slip transition occurs mainly in the horizontal segment, 𝑦 and 𝑦𝑥 are set to zero.
The approximation for the adherence to the sticking conditions results in

|𝑅(𝑦 = 0, 𝑦𝑥 = 0)| = |𝐻 |
2 =

|𝑚2 ¥𝑥1 + 𝑐2𝑥rel |
2 ,

𝑅max(𝑦 = 0, 𝑦𝑥 = 0) = 𝜇𝑁(𝑦 = 0, 𝑦𝑥 = 0) = 𝜇𝐹𝑐3 = 𝜇𝑐3Δℓ .

|𝑅(𝑦 = 0, 𝑦𝑥 = 0)| = |𝑚2 ¥𝑥1 + 𝑐2𝑥rel |
2 ≤ 𝑚2 | ¥𝑥1 | + 𝑐2 |𝑥rel |

2 =
𝑚2Ω

2𝐴| sin 𝜑 | + 𝑐2 |𝑥rel |
2

≤ 𝑚2Ω
2𝐴 + 𝑐2 |𝑥rel |

2 ≤ 𝜇𝑁(𝑦 = 0, 𝑦𝑥 = 0) = 𝜇𝑐3Δℓ .
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Solving the last inequality for the amplitude 𝐴 yields the estimate

𝐴 ≤ 2𝜇𝑐3Δℓ − 𝑐2 |𝑥rel |
𝑚2Ω2 = 𝐴L . (4.18)

Since the triangle inequality is used, Eq. (4.18) is a conservative estimate. Consequently,
all amplitudes below the limit curve 𝐴𝐿 are of the linear system, whereas amplitudes
well above the limit curve are of the nonlinear system. Although amplitudes slightly
above the limit curve may still be linear.

4.2 Numerical Investigations
The numerical investigations expand the initial insight of the tuned wedge damper.
This section is divided into two parts. This first one considers parameter variations
and their effect on the frequency response function. The second part of this section
focuses on selected frequency responses. Stability analyses are carried out, and Poincaré
maps are constructed. The standard parameters are chosen with a vanishing prestress
displacement, to focus on the decoupling of absorption and damping characteristics of
the damper. Unless mentioned otherwise, the standard parameters of the tuned wedge
damper are

𝑚1 = 1 kg, 𝑚2 = 0.1 kg, 𝑐1 = 1 N/m, 𝑐2 = 0.1 N/m, 𝑐3 = 0.01 N/m, 𝛼 = 20◦ ,
Δℓ = 0 m, Δ1 = 0.1 m, 𝑟 = 0.01 m, 𝜇 = 0.1, 𝐹 = 0.01 N .

The variations of the tertiary stiffness 𝑐3 and the outer segment angle 𝛼 are considered
first. The effects of these parameters are similar to each other and are presented in
Figs. 4.5 and 4.6. These parameters influence both the amplitude and the position of the

Figure 4.5: Parameter study variation of the stiffness 𝑐3 from 𝑐3 = 0.01 N/m ( ) to 𝑐3 = 0.2 N/m ( ).
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Figure 4.6: Parameter study variation of the stiffness 𝛼 from 𝛼 = 0◦ ( ) to 𝛼 = 60◦ ( ).

peaks. The absorption frequency, however, remains unaffected. The influence of these
parameters is also smaller in comparison to chapter 3. This is due to the structure of
the system. Since these parameters influence the effective secondary stiffness for large
oscillations and not at the absorption frequency, their influence is limited to the resonance
regimes. Furthermore, these parameters modify the effective secondary stiffness in the
resonance only partly, since this stiffness is also determined by the secondary spring
𝑐2. The increase in the effective secondary stiffness caused by these parameters leads to
higher eigenfrequencies. Additionally, optimal values for the stiffness 𝑐3 and the angle
𝛼 are noted for the peak of the first resonance frequency. In contrast, the amplitudes of
the second resonance peak are reduced with increasing values of 𝑐3 and 𝛼.

The variation of the parameter Δ1, which determines the length of the horizontal
segment, is presented in Fig. 4.7. An increase of the Δ1-value leads to higher amplitudes
at both peaks. The increase of the resonance amplitudes is caused by the decrease

Figure 4.7: Parameter study variation of the Δ1-range from Δ1 = 0.001 m ( ) to Δ1 = 1 m ( ).
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in dissipated energy due to the Δ1-terms, c.f. Eq. (4.17). Furthermore, if the Δ1-value
is increased enough frequency ranges with multiple solutions are observed. At low
vibration amplitudes only the stiffness 𝑐2,eff,abs = 𝑐2 is active, whereas for exceedingly
high oscillations the stiffness is approximately given by 𝑐2,eff,res = 𝑐2 + 4𝑐3 tan2 𝛼. This
stiffening in combination with high amplitudes leads to a range with coexisting solutions.
Additionally, the location of the peaks shifts towards lower frequencies. An increase of
the horizontal segment’s length leads to a larger range where only the stiffness 𝑐2,eff,abs
is dominant. Because of this 𝑐2,eff,res is less active and the system’s stiffness is reduced in
comparison to lower Δ1-values. In addition, a positive effect is noted at the absorption
frequency. For longer horizontal segments lower absorption amplitudes are noted.

Figure 4.8: Parameter study variation of the friction coefficient 𝜇 from 𝜇 = 0.01 ( ) to 𝜇 = 1 ( ).

Figure 4.8 depicts the variations of the friction coefficient 𝜇. The decoupling of damping
and absorption is observed. An increase of the friction coefficient leads to lower
resonance peaks while the absorption remains unaffected. This is caused by the
selective damping introduced by the damper. Small vibration amplitudes oscillate
within the horizontal segment, thus little to no damping is introduced. The damper
acts as a vibration absorber and is able to counter the vibrations of the main system. In
the resonance regime, where the vibrations are larger, the angled segments come into
play and introduce damping. This behavior is observed at low prestress levels, where
minimal damping is introduced in the horizontal segment. If the prestress is increased,
the decoupling effect is impaired, see Fig. 4.9. In this case high friction coefficients
introduce excessive damping and the decoupling and absorption are lost. A transition
into a one degree of freedom system is observed. In contrast to the wedge damper, the
shift towards the sticking frequency is less pronounced. The resonance of the sticking
system remains in the vicinity of the first eigenfrequency for the chosen parameters.

The variations of the prestress displacement Δℓ are presented in Fig. 4.10. An increase
in this parameter leads to an increase in the sticking ability of the system. An increase
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Figure 4.9: Parameter study variation of the friction coefficient 𝜇 from 𝜇 = 0.01 ( ) to 𝜇 = 1 ( ) with
Δℓ = 0.01 m.

also leads to lower amplitudes since the dissipated energy increases. However, if
the prestress is set high, the system sticks excessively and less energy is dissipated.
Therefore, for high prestress displacements the resonance amplitudes rise again. Both
eigenfrequencies vanish and the system tends to the resonance frequency of the sticking
system. Like the wedge damper, a softening effect is observed. This again occurs due to
the change in eigenfrequencies caused by the transition from sticking to sliding. Once
the system slips, the sticking eigenfrequency vanishes, and the eigenfrequencies of the
two degrees of freedom system emerge. The system then tends towards the slipping
system’s first eigenfrequency and a softening effect is observed. In contrast to the wedge
damper, the amplitudes do not rise at first. This implies that the transition point from
sticking to sliding is better tuned to its dissipative capabilities than the simple wedge
damper. Lastly, the increase of the prestress displacement introduces dissipation in the
horizontal segment. Thus no absorption is observed for high Δℓ -values.

Figure 4.10: Parameter study variation of the prestress displacement Δℓ from Δℓ = 0.001 m ( ) to Δℓ = 10 m
( ).
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Figure 4.11: Parameter study variation of the force 𝐹 from 𝐹 = 0.01 N ( ) to 𝐹 = 1 N ( ).

The last parameter variations focus on the effect of the excitation on the ratio𝑉𝑥1 = 𝐴𝑥1/𝐹.
The ratio 𝑉𝑥1 is normalized by the value 𝑉0 which is the value of 𝑉𝑥1 for the standard
parameters. In Fig. 4.11 the curves lie nearly over each other and the maximum difference
between the curve peaks is of 4.23 % with respect to the standard parameters. Thus, the
system shows an almost scalable response for the standard parameters. This confirms
the damper’s robustness with respect to the excitation. The ratio 𝑉𝑥1 does not increase
indefinitely as is the case with friction dampers that deliver a constant friction force. In
Fig. 4.12, a similar behavior as with the wedge damper is observed for a high prestress
value. The scalability of the frequency response function is lost. In contrast to the
wedge damper, the amplification factor rises. However, not unbounded as is the case
with conventional friction dampers. Instead a saturation is observed as the system
tends towards a two degree of freedom system. The saturation is due to the decreasing
influence of the horizontal segment. For high excitation forces the dissipation in the
2Δ1-range is nearly irrelevant, whereas for low excitation forces it is the dominant
dissipation mechanism.

Figure 4.12: Parameter study variation of the force 𝐹 from 𝐹 = 0.01 N ( ) to 𝐹 = 1 N ( ) with Δℓ = 1 m.
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(a) (b)

Figure 4.13: Frequency response function for Δℓ = 0.6 m for: (a) Ω ∈ [0.5, 1.5] and (b) Ω ∈ [1.2, 1.3].

The rest of the numerical investigations focuses, in an exemplary manner, on the system’s
solution withΔℓ = 0.6 m. In addition to the softening behavior at the first eigenfrequency,
see Fig. 4.13a, at the second eigenfrequency the solution folds three times, appears to
cross itself, and folds again, see Fig. 4.13b. To further examine this behavior, additional
information is considered. To this end, the phase difference 𝜃𝑥1 of the oscillation with
respect to the excitation is taken into account. Since the system is nonlinear, the phase
difference is not necessarily constant over an oscillation period. Therefore, a reference
point for the phase different is chosen. For the sake of simplicity, the phase difference
at 𝑡 = 0 is considered. However, any other time point can be chosen, as long as the
reference point remains constant for all the solutions. Assuming an oscillation of the
form 𝑥(𝑡) = 𝐴𝑥1 sin(Ω𝑡 + 𝜃𝑥1(𝑡)) and ¤𝑥(𝑡) = 𝐴 ¤𝑥1 cos(Ω𝑡 + 𝜃𝑥1(𝑡)), the phase difference is
calculated with

𝜃𝑥1(𝑡 = 0) = arctan
(
𝑥(𝑡 = 0)/𝐴𝑥1

¤𝑥(𝑡 = 0)/𝐴 ¤𝑥1

)
. (4.19)

A similar approach was presented by Sokolov and Babitsky concerning a system with a
cubic stiffness [159]. The nature of the apparent intersection becomes clear in Fig. 4.14a.
In the 3D perspective, no intersection is observed. The crossing points in Fig. 4.13b are
equal in amplitude and frequency, however, they differ in phase difference. Instead,
these intersections are caused by four bends and the two-dimensional projection of the
3D curve. Furthermore, two projections are derived from Fig. 4.14a and are presented
in Figs. 4.14b and 4.14c. The projection in Fig. 4.14b presents the phase difference 𝜃𝑥1

of the main mass at 𝑡 = 0 with respect to the excitation frequency. The outer ranges of
the Ω-𝜃𝑥1 -curve are similar to a linear system since it starts at 0 and ends at 𝜋. However,
it differs in its transition due to the multiple bends caused by the nonlinearities in the
resonance regimes. The ranges with coexisting solutions for a single frequency are also
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observed. Analogously, in Fig. 4.14b the crossing is a result of the 2D projection of the 3D
curve. Figure 4.14c relates the amplitude and phase difference of the coordinate 𝑥1. It is
noted that the maximum amplitude occurs approximately at−𝜋/2. This corroborates the
assumptions for the subsequent analytical investigations at the resonance in section 4.3.

(a)

1.5

(b) (c)

Figure 4.14: Response function for Δℓ = 0.6 m for: (a) Ω v.s. 𝜃𝑥1 v.s. 𝐴𝑥1 , (b) Ω v.s. 𝜃𝑥1 , and (c) 𝜃𝑥1 v.s. 𝐴𝑥1 .

The stability investigations are carried out by simulating 1000 additional cycles starting
from the calculated solution. If the solution diverges from the calculated solution it is
considered unstable. Otherwise it is considered stable. The results of these simulations
are shown in Fig. 4.15. Four instability ranges are noted. The first occurs in the softening
region with multiple solutions of the first eigenfrequency. The second instability range
is found in between both eigenfrequencies. The third and fourth ranges occur due to
the bends in the vicinity of the second eigenfrequency. Exemplary solutions from each
of these ranges are marked with 1O, 2O, 3O, and 4O and are investigated further in detail.

For the chosen unstable solutions Poincaré maps are constructed. The maps are
constructed by recording the states at subsequent time intervals of the excitation period
𝑇 = 2𝜋/Ω. The results are presented in Fig. 4.16. The first unstable solution in Fig. 4.16a
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(a)

(b) (c)

Figure 4.15: Stability analysis of the frequency response function with Δℓ = 0.6 m: (a) 3D-perspective, (b)
2D-perspective, and (c) 2D-perspective zoom of the second eigenfrequency.

converges to the periodic solution of the upper branch. As with the wedge damper,
the solutions in this instability range does not converge to the sticking solution of the
lower branch. Its Poincaré map is reduced to a curved segment which shows the
transient behavior from the unstable to the sable solution. The stable periodic solution
is reduced to a single point in the Poincaré map. The solution of the second instability
range is shown in Fig. 4.16b and converges to a quasiperiodic solution. This is noted
by the closed curve in the Poincaré map. The chosen quasiperiodic solution is more
involved than the quasiperiodic solutions of the wedge damper and crosses itself on two
occasions. However, not all solutions in this instability range converge to quasiperiodic
solutions with intersections. The last solutions in the third and fourth instability ranges
are presented in Figs. 4.16c and 4.16d present the same behavior as the first solution. The
solutions start from an unstable periodic solution, converge to a stable periodic solution,
and do not stick. Their Poincaré maps are, therefore, reduced to a curve. Throughout
the instability ranges no chaotic solutions were observed.
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(a) (b)

(c) (d)

Figure 4.16: Poincaré maps of the unstable solutions at different frequencies: (a) 1O Ω = 0.865 rad/s (b) 2O
Ω = 1.196 rad/s, (c) 3O Ω = 1.209 rad/s, and (d) 4O Ω = 1.264 rad/s.

4.3 Analytical Investigations
The understanding of the tuned wedge damper dynamics is further expanded via the
analytical methods presented in section 2.2. To this end, continuous slip is assumed,
and only the equations of motion while sliding are considered. First, the equations are
nondimensionalized. Second, the equations are brought in standard form for averaging
with a modal transformation and a modal decoupling. Once the equations are in
proper form, the averaging method is applied and the validity of the solution is verified
by a comparison with the numerical solution. Furthermore, relationships between
the system’s parameters and key dynamic features are derived. These include the
maximum amplitude depending on the system parameters and the excitation amplitude.
Additionally, an expression for the system’s backbone curve is also derived. These
relationships are later used to optimize the system’s frequency response.
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To nondimensionalize the system’s equations of motion the following transformations
are introduced

𝑚2
𝑚1

= 𝛾 ,
𝑐1
𝑚1

= 𝜔2
01 , 𝜏 = 𝜔01𝑡 , ¤( ) = d( )

d𝑡 =
d( )
d𝜏

d𝜏
d𝑡 = 𝜔01( )′ , 𝜂 =

Ω

𝜔01
,

𝑝2 =
𝑐2
𝑐1

, 𝜀𝑎 =
4𝑐3

𝑚1𝜔2
01

, 𝜀𝑏 =
2𝑐3Δℓ

𝑚1𝜔2
01

, 𝜀𝑐 =
4𝑐3𝜇

𝑚1𝜔2
01

, 𝜀𝑑 =
2𝑐3Δℓ𝜇

𝑚1𝜔2
01

,

𝜀 𝑓 =
𝐹

𝑚1𝜔2
01

, 𝑟 = 𝒪(𝜀) , 𝜀 ≪ 1 .

(4.20)

The parameter 𝜀 tracks the small quantities of the system. This implies a soft tertiary
spring and small excitation forces. Additionally, the transition radius is also of the
magnitude order 𝜀. In contrast, the friction coefficient is also small, however, not of
the magnitude order 𝜀. This allows a linearisation of the damper force with respect
to the friction coefficient. The equations with the linearised force are given with the
transformations above and result in

𝑥′′1 + 𝑥1 − 𝑝2(𝑥2 − 𝑥1) = 𝜀( 𝑓 sin𝜂𝜏 + 𝑓TWD,lin) = 𝜀 𝑓TWD,lin,1 , (4.21)
𝛾𝑥′′2 + 𝑝2(𝑥2 − 𝑥1) = −𝜀 𝑓TWD,lin = 𝜀 𝑓TWD,lin,2 , (4.22)
𝑓TWD,lin = 𝑎𝑦𝑦𝑥 + 𝑏𝑦𝑥 + 𝑐𝑦(𝑦2

𝑥 + 1)sgn(𝑥′2 − 𝑥′1) + 𝑑(𝑦2
𝑥 + 1)sgn(𝑥′2 − 𝑥′1) . (4.23)

In order to accurately approximate the system at its resonance frequency, the stiffness
caused by the angled segments is added to both sides of the equations. The introduction
of these terms provides a more accurate description of the underlying linear system at
the resonance. The modified equations are given by

𝑥′′1 + 𝑥1 − 𝑝2(𝑥2 − 𝑥1) − 4𝑎 tan2 𝛼(𝑥2 − 𝑥1)
= 𝜀( 𝑓 sin𝜂𝜏 + 𝑓TWD,lin) = 𝜀 𝑓TWD,lin,1 ,

(4.24)

𝛾𝑥′′2 + 𝑝2(𝑥2 − 𝑥1) + 4𝑎 tan2 𝛼(𝑥2 − 𝑥1) = −𝜀 𝑓TWD,lin = 𝜀 𝑓TWD,lin,2 , (4.25)

𝑓TWD,lin =𝑎𝑦𝑦𝑥 + 𝑏𝑦𝑥 + 𝑐𝑦(𝑦2
𝑥 + 1)sgn(𝑥′2 − 𝑥′1) + 𝑑(𝑦2

𝑥 + 1)sgn(𝑥′2 − 𝑥′1)
− 4𝑎 tan2 𝛼(𝑥2 − 𝑥1) .

(4.26)

A modal transformation is applied to Eqs. (4.24) and (4.25). In addition, only the
corresponding modal coordinate is considered in the vicinity of the eigenfrequencies 𝜂01
and 𝜂02. Again the values 𝑟𝑖 𝑗 correspond to the entries of the decoupling modal matrix
R of the unperturbed system, i.e. 𝜀 = 0. The decoupling results in equations of the form

𝜂 ≈ 𝜂01 → 𝑞′′1 + 𝜂2
01𝑞1 = 𝜀(𝑟11 𝑓TWD,lin,1(𝑞1 , 0) + 𝑟21 𝑓TWD,lin,2(𝑞1 , 0)) , (4.27)

𝜂 ≈ 𝜂02 → 𝑞′′2 + 𝜂2
02𝑞2 = 𝜀(𝑟12 𝑓TWD,lin,1(0, 𝑞2) + 𝑟22 𝑓TWD,lin,2(0, 𝑞2)) . (4.28)

73



4 The Tuned Wedge Damper

Applying a Van der Pol transformation of the form 𝑞𝑖 = 𝐴𝑖 sin 𝜑𝑖 , 𝑞′𝑖 = 𝐴𝑖𝜂0𝑖 cos 𝜑𝑖 ,
𝜑𝑖 = 𝜂𝜏+𝜃𝑖 , and 𝜀𝛿𝑖 = 𝜂0𝑖−𝜂 for 𝑖 = {1, 2}, the equations are brought into standard form
and subsequently averaged. The averaged equations for the slowly varying amplitudes
�̄�𝑖 and the slow varying phase difference �̄�𝑖 are given by

�̄�′
𝑖 = 𝜀

(
−

𝑟1𝑖 𝑓 sin �̄�𝑖

2𝜂0𝑖
±

4𝑐 tan 𝛼
(
�̄�𝑖 (𝑟1𝑖 − 𝑟2𝑖) ± Δ1

)2 sgn(𝑟1𝑖 − 𝑟2𝑖)
𝜋 cos2 𝛼�̄�𝑖𝜂0𝑖

∓
4𝑑

(
�̄�𝑖(𝑟1𝑖 − 𝑟2𝑖) ± Δ1 sin2 𝛼

)
sgn(𝑟1𝑖 − 𝑟2𝑖)

𝜋 cos2 𝛼�̄�𝑖𝜂0𝑖

)
,

(4.29)

�̄�′
𝑖 = 𝜀

(
𝛿𝑖 −

𝑟1𝑖 𝑓 cos �̄�𝑖

2�̄�𝑖𝜂0𝑖
± 4 𝑎 tan2 𝛼(𝑟1𝑖 − 𝑟2𝑖)2

𝜂0𝑖𝜋
arcsin

(
Δ1

(𝑟1𝑖 − 𝑟2𝑖)�̄�𝑖

)
± 4 tan 𝛼(𝑎Δ1 tan 𝛼 − 𝑏)

√
(𝑟1𝑖 − 𝑟2𝑖)2�̄�2

𝑖
− Δ2

1

𝜂0𝑖�̄�
2
𝑖
𝜋

)
.

(4.30)

For more details regarding the explicit integration of the nonlinear piecewise terms of
the tuned wedge damper force, the reader is referred to appendix A. Equations (4.29)
and (4.30) contain plus-or-minus signs as well as minus-or-plus signs. The upper signs
correspond to the first modal coordinate, whereas the lower signs correspond to the
second one. The equations above are only applicable if the relative amplitude is so large
that the outer segments influence the dynamics of the system, i.e. 𝐴rel > Δ1 + 𝑟 sin 𝛼.
Additionally, the existence conditions placed by the arcsin-term and the square root
must be fulfilled. To obtain the stationary solution, the right hand sides of Eqs. (4.29)
and (4.30) are equated to zero, i.e. �̄�′

𝑖
= 0 and �̄�′

𝑖
= 0. Solving these equations yields the

system’s response in the resonance regime. If the behavior at the resonance is sought,
the phase difference �̄�𝑖 = −𝜋/2 is additionally plugged into the resulting equations, c.f.
chapter 3. Thus, from Eq. (4.29) a relationship between the maximal amplitude and the
excitation force is obtained. This relation is given by

�̄�𝑖 ,max =
1

𝑐Θ1

(
𝜋 𝑓 𝑟1𝑖 + Θ2 +

√
𝜋2 𝑓 2𝑟2

1𝑖 + 2Θ2𝜋𝑟1𝑖 𝑓 + 𝑐𝑑Θ3 + 𝑑2Θ4

)
(4.31)

with

Θ1 = ∓16(tan2 𝛼 + 1) tan 𝛼 |𝑟1𝑖 − 𝑟2𝑖 |(𝑟1𝑖 − 𝑟2𝑖) ,
Θ2 = 8(tan2 𝛼 + 1)|𝑟1𝑖 − 𝑟2𝑖 |(2𝑐Δ1 tan 𝛼 − 𝑑) ,
Θ3 = −256Δ1(𝑟1𝑖 − 𝑟2𝑖)2 tan 𝛼(tan2 𝛼 + 1) ,
Θ4 = 64(𝑟1𝑖 − 𝑟2𝑖)2(tan2 𝛼 + 1)2 .
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4.3 Analytical Investigations

In Eq. (4.31) the value of the maximum amplitude is mainly determined by the linear
terms in 𝑓 . This confirms the robustness of the damper, i.e. the scalability of the frequency
response function derived from Fig. 4.11. Additionally, the amplitude is inversely
proportional to 𝑐, i.e. inversely proportional to the friction coefficient 𝜇. Therefore,
an increase in the friction coefficient leads to lower maximum amplitudes provided
the parameters are chosen within the validity range of the asymptotic solution. The
backbone curve of the system, the maximum amplitude dependent on the resonance
frequency, is obtained in an implicit manner by an analogous approach with Eq. (4.30).
This implicit equation is given by

0 =
𝜂0𝑖 − 𝜂

𝜀
± 4 𝑎 tan2 𝛼(𝑟1𝑖 − 𝑟2𝑖)2

𝜂0𝑖𝜋
arcsin

(
Δ1

(𝑟1𝑖 − 𝑟2𝑖)�̄�𝑖 ,max

)
± 4 tan 𝛼(𝑎Δ1 tan 𝛼 − 𝑏)

√
(𝑟1𝑖 − 𝑟2𝑖)2�̄�2

𝑖 ,max − Δ2
1

𝜂0𝑖�̄�
2
𝑖 ,max𝜋

.

(4.32)

The analytical solution for the response function is verified by the numerical solution. To
this end, an implicit equation for the response is derived by considering the stationary
solution and eliminating 𝜃𝑖 . This implicit equation is then expressed in the original
coordinates. A comparison for the standard parameters and 𝜀 = 0.01 is presented
in Fig. 4.17. The solution lies within the acceptable range of the asymptotic method.
Furthermore, the backbone curve accurately describes the maximal amplitude of the
system. In contrast to the wedge damper, the backbone curve bends towards lower
frequencies for decreasing amplitudes.

(a) (b)

Figure 4.17: Comparison of the analytical ( ) and the numerical solution ( * ), as well as the backbone
curve ( ). (a) Ω ≈ 𝜂01. (b) Ω ≈ 𝜂02.
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4 The Tuned Wedge Damper

4.4 Tuned Wedge Damper Optimization
To obtain an optimal damper response, key relationships derived from the analytical
investigations are used as a starting point. First, the optimization function, as well as
the optimization parameters, are defined from the analytical investigations. Second,
optimizations with the analytical functions are carried out. Third, the scope of the
analytical optimization is expanded by considering numerical methods. For the latter,
the result of the analytical optimization is used as a starting point. Finally, the frequency
responses of the optimized systems as well as their stability are considered.

The availability of an analytical solution allows the damper’s targeted optimization.
The numerical investigations show that the amplitude of the first eigenfrequency is
dominant for the chosen parameter ranges. Therefore, a reduction of this amplitude
optimizes the system’s frequency response function. The prestress displacement Δℓ is
set to zero to favor the decoupling of absorption and damping. Furthermore, a variation
of the friction coefficient is not considered. The limitations of this parameter are set
by realizability conditions, life span requirements, or both. Once the limitations are
set, the friction coefficient is chosen as high as possible. The Δ1-parameter is set as
large as necessary to ensure absorption. In practical applications, this is dependent on
the natural occurring damping in the system. Since this again is a practical restriction
on the system a variation of this parameter is not taken into account. The remaining
parameters 𝑐3 and 𝛼 are considered for the optimization. The optimization function
𝑔opt(𝑐3 , 𝛼) is formulated and given by

𝑔opt(𝑐3 , 𝛼) = 𝐴𝑥1 ,max(𝑐3 , 𝛼) = |𝑟11 |�̄�1,max(𝑐3 , 𝛼) . (4.33)

The result of Eq. (4.33) is plotted in Fig. 4.18 for separate optimizations of 𝑐3 and
𝛼. The optimizations are considered for 𝑐3 ∈ [0, 0.1]N/m and 𝛼 ∈ [0◦ , 45◦] since
larger values compromise the validity range of the asymptotic solution. These figures
reflect the behavior of the maximum amplitude observed in Figs. 4.5 and 4.6. For the
standard parameters, the optimal values for the stiffness and angle are respectively
𝑐3,ana,opt = 0.059 N/m and 𝛼ana,opt = 40.12◦. These optimizations yield respectively
maximal amplitudes of 𝐴𝑥1 ,max(𝑐3) = 0.799 m and 𝐴𝑥1 ,max(𝛼) = 1.167 m, which are both
lower than that of the standard parameters by respectively 52.96 % and 31.29 %. The
separate optimizations show that the amplitude reduction has a higher sensitivity to
the tertiary stiffness than to the angle of the outer segments.

The true potential of the analytical solution lies in the cost-effective multi-parameter
optimization of the system’s maximal amplitude. The joint optimization yields the
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4.4 Tuned Wedge Damper Optimization

(a)

4530150

(b)

Figure 4.18: (a) Influence of the stiffness 𝑐3 on 𝐴max. (b) Influence of the wedge angle 𝛼 on 𝐴max.

parameters 𝑐3 = 0.1 N/m and 𝛼 = 10.36◦. The maximum amplitude results in
𝐴𝑥1 ,max(𝑐3 , 𝛼) = 0.547 m which means a 67.79 % amplitude reduction. It is noted that
the optimized value for 𝑐3 lies at the limit of the considered range. Therefore, further
amplitude reduction potential is expected with an increase in this parameter. However,
this is not within the scope of the asymptotic method.

Figure 4.19: Influence of the stiffness 𝑐3 and the wedge angle 𝛼 on 𝐴max.

Although the analytical optimization reaches its validity limits, it constitutes a starting
point for further numerical optimizations. Analogous to Eq. (4.33), the maximum
amplitude of the frequency response function is minimized, however, for each parameter
combination the frequency response function is calculated with the harmonic balance
method described in section 2.1. The computational cost is much higher than the
evaluation Eq. (4.33) since the amplitudes for the frequency range Ω ∈ [0.5, 1.5] rad/s
are calculated instead of directly calculating the maximum amplitude. The parameters
(𝑐3 , 𝛼) = (0.1 N/m, 10.36◦) are used to initialize a numerical optimization. The optimiza-
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4 The Tuned Wedge Damper

tion is carried out with the MATLAB function fminsearch. This function implements
a Nelder-Mead-Algorithm, which is a gradient-free optimization algorithm. This is
essential since the problem is highly nonlinear and therefore gradient-based methods
are costly. Furthermore, the accuracy of the gradient is not guaranteed. For more details
on the Nelder-Mead-Algorithm, the reader is referred to [9].

Figure 4.20 shows the frequency response functions of the standard parameters, the
analytical optimization, and two iterations of the numerical optimization. In addition,
the stability and instability ranges are respectively marked with a solid and dashed
line. In Fig. 4.20 the algorithm’s 12th and 50th iterations are selected. The 50th iteration
corresponds to the algorithm’s final iteration since changes in the parameter are under
the selected tolerance, namely 1e-3. The iterations result in the parameters

𝑐3,opt,12th = 1.606 N/m , 𝛼opt,12th = 1.55◦ ,
𝑐3,opt,50th = 27.621 N/m , 𝛼opt,50th = 1.09◦ .

As is noted from the parameters, with increasing iteration the stiffness rises and the
wedge angle declines. Low wedge angles are advantageous for the smooth transition
between the individual segments. Furthermore, the damping is introduced mainly via
the third spring and not via the wedge angle. Although the peaks of the 50th optimization
iteration are close to another, all responses show their maximum amplitude at the first
resonance peak. The 12th and 50th iterations of numerical optimizations have maximum
amplitude values of 0.213 m and 0.062 m respectively. Compared to the system with
the standard parameters, these values correspond to amplitude reduction of 87.47 %
and 96.38 %. The higher iterations achieve a larger amplitude reduction, however, this
comes at a cost. In certain frequency ranges, the stability of the periodic solution is lost.

Figure 4.20: Frequency response functions of the standard parameters ( ), the analytical optimization ( ),
the 12th iteration of the numerical optimization ( ), and the 50th iteration of numerical optimization ( ).
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This occurs in the vicinity of the resonance regimes as well as in the absorption range.
Although the oscillations are small and absorption is observed, the relative amplitudes
in the absorption range are larger than Δ1. Subsequently, the strong nonlinearities
introduced by the outer segments lead to unstable solutions. Due to these stability
losses, the 50th iteration is not a reliable solution. The 12th iteration shows the lowest
amplitude without the stability loss throughout the whole frequency range.

In order to assess the disturbance of the frequency response due to the unstable ranges,
sweep simulations of the tuned wedge damper are carried out. In comparison to a
simple harmonic excitation, the sweep simulation offers the advantage that it evaluates
multiple frequencies with one simulation. Additionally, by calculating the envelope of
the sweep response an approximation of the system’s amplitude response is derived.
The results are not identical but comparable to the solution of the harmonic balance.
Furthermore, since a forward-time simulation is carried out, only stable solutions are
observed in the results. Therefore, variations are expected in unstable regions. To
implement such an excitation, the harmonic force in Eq. (4.1) is replaced by the sweep
excitation 𝐹sweep(𝑡) = 𝐹 sin

(
𝜑sweep(𝑡)

)
with

𝜑sweep(𝑡) =
∫ 𝑡

0
Ωsweep(𝜏)d𝜏 , Ωsweep(𝑡) =

Ω1 −Ω0
𝑡1 − 𝑡0

(𝑡 − 𝑡0) +Ω0

𝐹 = 0.01 𝑁, Ω0 = 0 rad/s, Ω1 = 2 rad/s, 𝑡0 = 0 s , 𝑡1 = 105 s .

The results of the sweep excitations are plotted in Fig. 4.21. The response of the system
with the standard parameters, the analytical optimization, and the 12th iteration of the
numerical optimization show a similar response as in Fig. 4.20. Due to the instability
ranges substantial differences are noted between the sweep response of the 50th iteration

Figure 4.21: Envelopes of the sweep response for the standard parameters ( ) the analytical optimization
( ), the 12th optimization iteration ( ), and the 50th optimization iteration ( ).
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and the harmonic balance solution, c.f Fig. 4.20. The absorption range and with it the
decoupling of damping and absorption are completely lost. Furthermore, the vibration
reduction observed in the harmonic balance solution is not observed. Instead, the
maximum amplitude of 0.161 m is noted. However, the maximum amplitudes of the
50th iteration are still lower than those of the 12th iteration. If only the minimization
of the maximum amplitude is sought, a numerical optimization, which considers
a frequency response function obtained via sweep calculations, is a more sensible
approach. However, since the damper’s goal is partly to retain the advantages of
absorption, the 12th iteration is considered the optimal response of the tuned wedge
damper for the standard parameters.

4.5 Damper Assessment
The tuned wedge damper provides an advantageous device for vibration reduction.
It reduces the system’s vibrations while maintaining an absorption frequency. A
separation of absorption and damping is achieved by placing the classical vibration
absorber between specially designed contact surfaces. No damping is introduced when
the oscillations are small and in the Δ1-range. If the oscillations are larger, the outer
segments come into play. Energy is damped via dry friction of the contact between
the secondary mass and the outer segments. Amplitude reductions are found with
increasing friction coefficients. An effective amplitude reduction potential is obtained
through the simultaneous optimization of the tertiary stiffness 𝑐3 and the wedge angle
𝛼 via analytical and numerical methods.

The decoupling achieved by this damper is advantageous especially for machines during
run-up procedures since one or more eigenfrequencies usually have to be overcome. In
comparison to conventional friction dampers with a constant force, the tuned wedge
damper also provides a robust solution. This is especially useful in overload scenarios.

Limits on the amplitude reduction are placed by the realizable friction coefficients. High
friction coefficients lead to higher wear which affects the service life of the damper. The
exceeded increase of the friction coefficient, therefore, inhibits the damper’s functionality
in the long-term. The choice of the friction coefficient results from the counterbalancing
between amplitude reduction and life span requirements. Furthermore, the design
freedom of the friction coefficient is decreased in scenarios where additional constraints
are taken into account, e.g. weight, corrosion, or production constraints. In these
scenarios, alternatives to the tuned wedge damper are necessary. An active design of
the tuned wedge damper would amplify its intrinsic targeted dissipation.
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In chapters 3 and 4 theoretical insight was obtained on the friction-based dampers.
This insight is tested via experimental investigations in this chapter. The goal is
therefore to verify the qualitative aspects of the dampers in more realistic conditions.
A quantitative reproduction of the results is not pursued. Furthermore, this chapter
presents the first proof of concept for the implementation of these friction-based dampers.
This chapter is structured as follows. First, the experimental setup is described in
section 5.1. Experimental investigations into the wedge damper and tuned wedge
damper are subsequently presented in sections 5.2 and 5.3. The chapter is closed with
the experimental conclusions in section 5.4.

5.1 Experimental Setup
To describe the experimental setup, first, the general arrangement of the experiments
is presented. Subsequently, its components are described in further detail. Second, the
mechanical components and the design of the friction damper are considered. Third,
the inputs and outputs of the system, namely the shaker and sensors, are presented.
Finally, the software, as well as the post-processing is described.

The test bench is presented and highlighted in Fig. 5.1 and is composed of the vibration
isolation table, the system prototype, the power amplifier, the PULSE front-end driver,
and a laptop with the PULSE software. The laptop determines the measurement
parameters, as well as the input signals. The interface between the laptop and
the shaker/sensors is the PULSE front-end driver. This component implements the
measurement parameters defined by the laptop, e.g. sampling rate. The input signal of
the shaker is generated and sent to the power amplifier. This signal is amplified and
transferred to the shaker. The shaker excites the system and causes vibrations which are
measured by accelerometers. A force sensor is placed to measure the force that acts on
the system. The sensors send the signals to the PULSE front-end driver, which converts
them into processable data for the laptop.
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Figure 5.1: The experimental setup for the investigations.

The prototype is 3D printed with an Ultimaker 5 and includes the main system and the
friction-based damper. Both subsystems are highlighted in Fig. 5.2 and printed with
polylactide fibers. The main system is highlighted in dark gray, whereas the friction
damper is accentuated in light gray. Since the wedge damper is a special case of the
tuned wedge damper, the experimental setup is described for the latter. Furthermore,
the prototype is a realization of the schematic systems described in chapters 3 and 4.
However, this is only partially true. The largest difference to the schematic systems is the
additional damping caused by friction in the guides and joints and material damping.
Another discrepancy lies in the elasticity of the experimental parts which are in the
minimal models assumed rigid.

Figure 5.2: The prototype of the main system and the friction-based damper.
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(a) (b)

Figure 5.3: (a) The shaker-system coupling with a stinger. (b) The design of the friction contact as well as the
pressing arrangement.

The main system is composed of the main mass and the main spring. The main mass is
constructed with inner steel cylinders to achieve the desired weight of approximately
1 kg. Additionally, it is excited by a shaker-stinger arrangement, see Fig. 5.3a. By bending,
the stinger compensates for any manufacturing inaccuracies and ensures a horizontal
force. Furthermore, the main mass is mounted onto the environment with ERO type
R linear guides. This arrangement allows a movement in the horizontal direction. The
main spring is realized by four VD143Q Gutekunst Feder compression springs, that are
mounted to realize a symmetrical spring force in both movement directions.

The friction damper includes the secondary mass and the secondary and tertiary
springs. The secondary mass is entirely 3D printed and weighs approximately 300 g. It
is connected to the main mass in three ways. It is mounted on top of the main mass
with ERO type R linear guides so that both masses move parallel to each other. It is also
connected via the symmetrically mounted secondary springs and via the dry friction
contact. The design of the contact components is modular to vary the contact properties
and is presented in Fig. 5.3b. They are also designed with smooth transitions to avoid
impacts. The smallest roundings in the contact surfaces have a radius of 0.3 mm. To
investigate different friction coefficients the contact components are printed in three
different materials: IGUS IGLIDUR I180 (I180), polylactide (PLA), and thermoplastic
polyurethane (TPU). The IGUS-polymer is designed for low friction and high wear
resistance. PLA is a polymer commonly used printing material with little compliance.
Lastly, TPU is a highly compliant thermoplastic. For a homogeneous material pairing,
friction is lowest in IGUS, medium in PLA, and highest in TPU. Figure 5.3b also
presents the design mechanism by which the tertiary springs press the contact surfaces
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together. The linear guide allows the contact component of the friction damper a vertical
movement, whereas the contact component of the main system is fixed. Via a movement
of the prestress plate above the tertiary spring the prestress of the system is varied. It is
noted that this design is not symmetrical and presents an additional degree of freedom.
However, an interaction of this degree of freedom with the horizontal movement of the
damper is not observed. Additionally, the force of the friction dampers is reduced, since
a relative movement in this arrangement causes half of the spring displacement. Thus,
for a vanishing prestress the theoretical force of the damper prototype is by a factor 2
smaller than the force in the schematic dampers in Figs. 3.1 and 4.1. In contrast, the
effect of the prestress is unaffected by the design.

The experimental setup contains one shaker, one force sensor, and two accelerometers.
The shaker excites the system and is a LDS V201 Shaker with permanent magnets from
Brüel & Kjær. The force sensor is a PCB 208C03 force sensor and is placed between the
stinger and the main system. This placement ensures that the force that acts on the main
system is measured. This way the dynamics of the shaker and stinger are excluded
from the measurements. It is noted that the force drop effect is observed while passing
through the resonance regimes. In these regimes, the oscillations are large enough, that
the magnetic field in the shaker becomes nonlinear and the force acting on the system
drops [171]. An active control, to avoid this effect, was not pursued, since the effect
does not affect the qualitative influence of the parameters on the damper’s behavior.
The accelerometers are piezoelectric with a seismic mass and also from Brüel & Kjær
of type 4507 B004. They are placed on the main and secondary mass and measure the
acceleration. The measured signals are afterwards post-processed.

The PULSE software LabShop is used to determine the measurement parameters. First,
the input signal for the shaker is defined as a sweep-excitation. The frequencies from 6 Hz
to 40 Hz are passed through in 400 s. The system is excited and the resulting vibrations are
measured. A modified low-pass third order Butterworth-filter with a cut-off frequency
of 400 Hz is applied internally by the LapShop-Software. The sampling frequency is
set to 1024 Hz which is above the necessary frequency to fulfill the Nyquist-Shannon
sampling criterion and ensures an accurate signal reconstruction. The three measured
signals are exported and post-processed in MATLAB. A Butterworth high-pass filter
of fifth-order with a cut-off frequency of 4 Hz is applied to the measured signals. This
cuts off the lower frequency components and enables the subsequent integration. The
velocity and displacement signals of the primary and secondary mass are calculated with
a trapezoidal numerical integration. Since a sweep-excitation is applied, the envelope of
the measurement yields an approximation of the system’s amplitude response function.
It is noted that only stable solutions are present in the measurement. Therefore, the
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response is only a valid approximation if the frequency ranges with multiple solutions
are small. In contrast, if the ranges with multiple solutions are pronounced, jumps in
the measurement are expected. To obtain accurate measurements, five envelopes are
averaged. If the amplification factor is sought, an 𝐻2 estimator is used since it presents
an upper bound for the transfer function. It is also more accurate in the resonance
regimes than for example the 𝐻1 estimator. A disadvantage of this estimator is that it
yields a linear approximation of a nonlinear system. Therefore, it is only applied in the
variation of the excitation force and for solutions in which no jumps are noted. The 𝐻2
estimator is calculated as

𝐻2(𝜔) =
����𝑆�̃��̃�(𝑖𝜔)
𝑆�̃��̃�(𝑖𝜔)

���� . (5.1)

where 𝑆�̃��̃�(𝑖𝜔) is the autospectrum of the output and 𝑆�̃��̃�(𝑖𝜔) represents the cross-
spectrum between output and input. Additionally, 𝑖 is in this case the imaginary
unit and 𝜔 the considered angular frequency. These terms are calculated from the
post-processed data with

𝑆�̃��̃�(𝑖𝜔) =
1
𝑁

𝑁∑
𝑗=1

𝑋 𝑗(𝑖𝜔)𝑋𝑗(𝑖𝜔) and 𝑆�̃��̃�(𝑖𝜔) =
1
𝑁

𝑁∑
𝑗=1

𝑋 𝑗(𝑖𝜔)𝐹𝑗(𝑖𝜔) . (5.2)

𝐹𝑗(𝑖𝜔) and 𝑋𝑗(𝑖𝜔) represent the Fourier transformations of the input force 𝐹(𝑡) and the
output 𝑥1(𝑡) of the 𝑗-th measurement. The bar ( ) denotes the complex conjugate. To
reduce leakage, the post-processed signals are multiplied by a Hanning window.

5.2 Wedge Damper Experiments
The experimental investigations consider the effect of parameter variations on the
response of the system. The setup for the wedge damper removes the spring between
the primary and secondary mass. The spring which presses the contact surface together
is thus the secondary spring. A D205D spring from Gutekunst Ferder is chosen. For the
contact surfaces a I180-PLA material pairing is selected, due to its low friction coefficient.
Since the force drop effect is observed, a single force amplitude is not available. Instead,
the excitation force is characterized by the root-mean-square (rms) value of the measured
oscillations. The standard parameters for the wedge damper setup are given by

𝑚1 = 1.057 kg, 𝑚2 = 0.305 kg, 𝑐1 = 15.928 N/mm, 𝑐2 = 24.232 N/mm,

𝛼 = 30◦ , 𝜇 = 𝜇I180−PLA , Δℓ = 0 mm, 𝐹 = 4.072 Nrms .
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The first experimental parameter variation changes the wedge angle 𝛼 of the lower
contact surface and is presented in Fig. 5.4. The figure confirms the qualitative effect of
the angle change in the wedge damper. The effective secondary stiffness changes as in a
conventional tuned mass damper. With an increase in the angle, both peaks are shifted
towards higher frequencies. Moreover, as the peak of the first eigenfrequency increases,
the second decreases. This agrees with the results of Fig. 3.5.

Figure 5.4: Wedge Damper experimental variation of the wedge angle 𝛼.

Figure 5.5 shows the results of the variation of the friction coefficient. The friction
coefficient is varied by considering different material pairings. Since the friction
coefficient is not in the focus of this work, a detailed investigation into its exact value
is not considered. Instead, the curves are arranged by their expected friction value.
Although scattering in the friction coefficient is expected, the curves show the increase
in damping due to the increase in friction. As the friction coefficient increases, the
resonance peaks merge, and only one peak is observed. Deviations from this general

Figure 5.5: Wedge Damper experimental variation of the friction coefficient 𝜇.
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tendency are observed in the curves with a TPU pairing. This is in part due to the
additional compliance introduced by the elasticity of this material.

Figure 5.6: Wedge Damper experimental variation of the prestress displacement Δℓ .

The variation of the prestress displacement Δℓ is presented in Fig. 5.6. This experimental
consideration also coincides with the numerical results in section 3.2. As the prestress
increases the amplitude of the first peak rises and the secondary peak vanishes. The
system tends to a one-degree of freedom system where only sticking is observed. Thus,
absorption is lost. An increase of the first resonance peak for prestresses higher than
0.70 mm is not observed. This increase is prevented by the additional material damping
of the system. In contrast to the numerical simulations, jumps in the amplitude response
are not observed. This is at least partially due to the inherent system damping since it
reduces the system’s maximal amplitudes.

Figure 5.7: Wedge Damper experimental variation of the excitation force 𝐹.

Figure 5.7 presents the investigations of the excitation force 𝐹 and its effect on the
normalized 𝐻2 estimator. The estimator is normalized by the maximum 𝐻2 value for the
standard parameters. The curves lie approximately over each other. Only differences at
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low excitation forces and at the second resonance frequency are noted. At low excitations,
the dry friction in the guides and joints substantially contributes to vibration reduction.
However, at higher excitation forces this is not the case, since the reduction in amplitude
is due to the friction damper dissipation. The estimator curves are approximately equal
which implies the scalability of the response function and the robustness of the damper.
The noise at the end of the frequency range occurs due to the noise in the acceleration
𝑥1(𝑡) since the 𝐻2 estimator is especially sensible to the output noise.

5.3 Tuned Wedge Damper Experiments
As with the experimental investigations of the wedge damper, selected parameter
variations are considered. The setup for the tuned wedge damper is as described
in section 5.1. For the secondary and tertiary spring, a D173CJ and a VD097 from
Gutekunst Feder are respectively selected. The standard material pairing is a PLA-PLA
combination. The standard parameters for the tuned wedge damper setup result in

𝑚1 = 1.065 kg, 𝑚2 = 0.313 kg, 𝑐1 = 15.928 N/mm, 𝑐2 = 5.948 N/mm,

𝑐3 = 2.004 N/mm, 𝛼 = 45◦ , 𝜇 = 𝜇PLA−PLA , Δℓ = 0 mm, Δ1 = 0.5 mm,

𝑟 = 0.5 mm, 𝐹 = 3.151 Nrms .

The first experimental parameter variation considers the variation of the tertiary stiffness
and is presented in Fig. 5.8. The qualitative behavior on both resonance frequencies is
verified. An optimal stiffness exists and yields minimal amplitudes in the first resonance
peak. Furthermore, the amplitudes of the secondary peak sink with rising stiffness
values. This confirms the behavior in Fig. 4.4. Additionally, the absorption frequency
remains largely unaffected. Minimal changes are observed in its position however not

Figure 5.8: Tuned Wedge Damper experimental variation of the tertiary stiffness 𝑐3.
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in the amplitude. The changes in the position are due to imperfections in the assembly
of the contact surfaces.

Figure 5.9: Tuned Wedge Damper experimental variation of the friction coefficient via material changes.

Figure 5.9 presents the investigations into the friction coefficient via the changes in
material pairings described above. The decoupling between vibration damping and
vibration absorption is observed. Both peaks show a substantial reduction and the
absorption frequency remains largely unaffected. Due to the high elasticity of the TPU
material, deviations from the general tendency are again observed in some experiments.
However, the decoupling effect is still observed. This is evident when comparing these
results with Fig. 5.5. In contrast to the wedge damper, the maximum amplitudes are
reduced and a merging of the two resonance peaks into one is not observed.

The prestress displacement is varied in Fig. 5.10. In contrast to the results of the wedge
damper, the amplitudes do not rise monotonically with increasing prestress values. A
shift to a one-degree of freedom system is observed, and an optimal prestress value

Figure 5.10: Tuned Wedge Damper experimental variation of the prestress displacement Δℓ from Δℓ = 0 mm
( ) to Δℓ = 4.9 mm ( ) in 0.23 mm steps.
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for the first resonance peak is noted. This confirms the numerical results in Fig. 4.10.
Furthermore, as the system transitions into complete sticking the second eigenfrequency
vanishes.

Figure 5.11: Tuned Wedge Damper experimental variation of the excitation force 𝐹.

The last experimental study handles the variation of the excitation force and is presented
in Fig. 5.11. The estimator 𝐻2 is again normalized with the value 𝐻20, which corresponds
to the maximum 𝐻2-value of the standard parameters. The curves lie nearly over each
other. This implies the approximate scalability of the estimator 𝐻2. Differences are noted
at the second eigenfrequency. The 𝐻2 values are lower for higher excitation forces, which
implies higher damping with increasing amplitudes. This is caused by the increased
influence of the outer dissipative segments compared to the constant influence of the
dissipation-free segment.

5.4 Experimental Conclusions
The investigations above offer the first proof of concept for the realization of these
friction-based dampers. The theoretical behavior of the damper is modified by the
real conditions of the experiment which introduce additional damping and elasticities.
Some aspects of the dampers’ behavior were confirmed.

Quasiperiodic and chaotic solutions were not observed. These types of solutions appear
as irregularities in measurements. However, no such deviations at the expected ranges
were observed. Jumps in the measurements, that imply multiple solutions, were also
not detected. A possible explanation for the vanishing of such solutions is the increased
damping provided by the experimental conditions. The vanishing of multiple solution
ranges due to increased damping, for example, is also observed with the multiple
solution ranges of systems with cubic stiffness.
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The wedge damper’s behavior as a pseudo-viscous damper is confirmed. A change in
the wedge angle 𝛼 leads to a change in the effective stiffness and damping, whereas the
change in the friction coefficient affects the damper’s effective damping. Additionally,
the increase in amplitudes due to the prestress displacement is also confirmed. The
quasi-viscous behavior of the wedge damper is also verified by the variations of the
excitation force and its influence on the 𝐻2 estimator.

The response of the tuned wedge damper is also validated via experiments. The
existence of an optimal tertiary stiffness is observed, as well as the existence of an
optimal prestress value for the first resonance peak. As with the wedge damper, the
scalability of the response is also confirmed with the variation of the excitation force.
Lastly, the decoupling of vibration damping and vibration absorption, which is the main
advantage of the damper, is experimentally verified.

91





6 Active Tuned Wedge Damper

The investigated friction dampers offer effective vibration reduction alternatives in
comparison to conventional dampers. However, in specific cases, the advantages these
dampers provide are not sufficient. Such cases include exceedingly long service life
requirements or cases where the material pairing is not freely chosen, but subject to
constraints. Such cases especially those with low friction coefficients cannot ensure an
adequate vibration reduction. An active consideration of the tuned wedge damper offers
a vibration reduction solution with small friction coefficients. Additionally, in situations
in which extremely low amplitudes are required, the amplitude reduction provided
by the optimized tuned wedge damper may not be sufficient. The active tuned wedge
damper offers a solution with more selective energy dissipation. This chapter focuses on
three such active considerations. First, the base system for the control strategies and the
framework for the simulations are presented in section 6.1. Second, a Skyhook Control is
considered in section 6.2. This is a well-investigated control strategy for friction dampers
and is taken as a reference point for the control strategies developed in this work. Third,
in section 6.3 an adaptive control strategy with multiple actuation models is detailed.
Section 6.4 focuses on a slow frequency-based control. The efficiencies of the control
strategies with respect to the amplitude reduction are compared in section 6.5, whereas
a consideration of the dissipated energy is made in section 6.6. The investigations into
active friction dampers are concluded in section 6.7 with an assessment of the control
strategies.

6.1 Base System for the Control Strategies
This section presents the general conditions for the investigations of the active system
and is divided into two parts. First, the base system, on which the control strategies are
applied, is presented. Additionally, the input parameters as well as their effect on the
damper force are detailed. The second part presents the framework of the simulations
that are used to investigate the control strategies. This includes the excitation types, the
initial conditions, and the constant damper parameters.
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The tuned wedge damper is chosen as a base system for the control strategies since the
wedge damper is a special case of the former. Furthermore, it has the advantage of
decoupling damping and absorption. The active tuned wedge damper is presented in
Fig. 6.1. The main system is represented by the main mass 𝑚1 and the main spring 𝑐1.
It is also excited by the force 𝐹(𝑡), which is highlighted in red. From the control point
of view, this is a perturbation on the otherwise resting main system. It is the task of
the active tuned wedge damper and its control strategy to counter this perturbation. To
this end, the active wedge damper is attached to the main system. The friction damper
is composed of the secondary mass 𝑚2, the secondary spring 𝑐2, the tertiary spring
𝑐3 (with its prestress displacement Δℓ ), and the contact surfaces. The last component
is defined by the wedge angle 𝛼, the length of the horizontal segment 2Δ1, and the
radius of the transition segments 𝑟. The positions of the main and secondary mass are
respectively described by 𝑥1 and 𝑥2. For a more detailed description of the underlying
mechanical system, the reader is referred to chapter 4. The controlled parameters of
the active tuned wedge damper are highlighted in green. Thus, the damper varies the
wedge angle 𝛼 of the outer segments and the prestress displacement Δℓ .

Figure 6.1: The schematic model of the active tuned wedge damper.

The qualitative influence of the input parameters 𝛼 andΔℓ on the damper force 𝐹TWD, see
Eq. (4.6), is presented in Fig. 6.2. An increase in both of these parameters leads to more
damping. The difference lies in the way the damping is introduced. Higher values of the
angle 𝛼 lead to a damping increase only in the outer segments, whereas higher prestress
values increase the damping over the whole oscillation. From a geometrical point of
view, the wedge angle changes the opening angle of the outer force hysteresis, and the
prestress displacement changes the width of the whole force hysteresis. Furthermore,
their influence on the dissipated energy is also different. The higher angles increase the
dissipated energy proportional to the square of the relative amplitude 𝐴2

rel. In contrast,
the prestress increment affects only the dissipated energy proportional to the relative
amplitude 𝐴rel, c.f. Eq. (4.17). The control strategies vary both of these parameters to
introduce damping in a targeted manner with low friction coefficients.
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(a) (b)

Figure 6.2: Effects of the input parameters on the tuned wedge damper force: (a) wedge angle 𝛼 variation for
Δℓ = 0 m and (b) prestress displacement Δℓ variation.

The following subsections compare the control strategies to their passive counterpart.
Three excitation cases are considered: a rectangular pulse excitation, a sweep excitation,
and an application scenario. The rectangular pulse gives insight into the transient
behavior of the strategies, whereas the sweep excitation gives an approximation for the
stationary behavior. The application scenario provides information about the suitability
of the control strategies for more realistic applications. The sum of insights obtained
via the excitation simulations yields the theoretical basis for an active implementation
of the tuned wedge damper.

In the first case, the system is let go from nontrivial initial conditions, and the free
behavior is investigated. Afterward, a force in the form of a rectangular pulse is
applied. This excitation yields insights into the transient behavior of the control strategies.
Furthermore, understanding into the strategies’ reaction to harsh excitation is obtained.
The excitation force in this case is given by

𝐹rect(𝑡) =


0, 𝑡0 ≤ 𝑡 < 𝑡1
𝐹0 , 𝑡1 ≤ 𝑡 < 𝑡2
0, 𝑡2 ≤ 𝑡 < 𝑡3

with

𝐹0 = 0.01 N, 𝑡0 = 0 s, 𝑡1 = 200 s, 𝑡2 = 300 s, 𝑡3 = 325 s .

The second case applies a sweep excitation and focuses on the approximation of the
system’s stationary behavior. The system starts with zero initial conditions, and a
frequency range including both structural resonances and the absorption frequency is
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slowly passed through. This yields an approximation of the control strategies’ response
at different excitation frequencies. The sweep excitation is described by

𝐹sweep(𝑡) = 𝐹0 sin
(
𝜑sweep(𝑡)

)
with

𝜑sweep(𝑡) =
∫ 𝑡

0
Ωsweep(𝜏)d𝜏 , Ωsweep(𝑡) =

Ω1 −Ω0
𝑡1 − 𝑡0

(𝑡 − 𝑡0) +Ω0 ,

𝐹0 = 0.01 N, 𝑡0 = 0 s , 𝑡1 = 105 s , Ω0 = 0 rad/s, Ω1 = 2 rad/s .

The third case considers an application scenario. First, a run-up to the system’s operation
frequency is performed starting from zero initial conditions. This is followed by a
nominal operation range with a harmonic excitation. Subsequently, an overload section
is simulated, in which the excitation amplitude rises tenfold. Afterward, the excitation is
brought again to its original level in the recovery phase. Finally, the system is shut down
in a controlled manner. In this phase, the excitation force and the excitation frequency
linearly approach zero. The consideration of both the system run-up and run-down has
the advantage that nonlinear phenomena in the system response are taken into account.
The scenario force is given by

𝐹scen(𝑡) = 𝐹A,scen(𝑡) sin(𝜑scen(𝑡)) .

The components 𝐹A,scen(𝑡) and Ωscen(𝑡) are visualized in Fig. 6.3 and given by

𝐹A,scen(𝑡) =



𝐹0 , 𝑡0 ≤ 𝑡 < 𝑡2
𝐹3 − 𝐹2
𝑡3 − 𝑡2

(𝑡 − 𝑡3) + 𝐹3 , 𝑡2 ≤ 𝑡 < 𝑡3

𝐹4 − 𝐹3
𝑡4 − 𝑡3

(𝑡 − 𝑡4) + 𝐹4 , 𝑡3 ≤ 𝑡 < 𝑡4

𝐹5 − 𝐹4
𝑡5 − 𝑡4

(𝑡 − 𝑡5) + 𝐹5 , 𝑡4 ≤ 𝑡 < 𝑡5

,

𝜑scen(𝑡) =
∫ 𝑡

0
Ωscen(𝜏)d𝜏 , Ωscen(𝑡) =


Ω1 −Ω0
𝑡1 − 𝑡0

(𝑡 − 𝑡0) +Ω0 , 𝑡0 ≤ 𝑡 < 𝑡1

Ω1 , 𝑡1 ≤ 𝑡 < 𝑡4
Ω5 −Ω4
𝑡5 − 𝑡4

(𝑡 − 𝑡5) +Ω5 , 𝑡4 ≤ 𝑡 < 𝑡5

,

𝐹0 = 𝐹1 = 𝐹2 = 0.01 N, , 𝐹3 = 10𝐹0 , 𝐹4 = 𝐹0 , 𝐹5 = 0 N,

Ω0 = 0 rad/s, Ω1 = Ω2 = Ω3 = Ω4 = 1 rad/s, Ω5 = 0 rad/s,
𝑡0 = 0 s, 𝑡1 = 5·104 s, 𝑡2 = 6·104 s, 𝑡3 = 11·104 s, 𝑡4 = 15·104 s, 𝑡4 = 20·104 s .
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(a)

(b)

Figure 6.3: Components of the scenario excitation: (a) force amplitude 𝐹A(𝑡) and (b) angular frequency Ω(𝑡).

The initial conditions are given with the state vector x0 = [𝑥10 , 𝑥20 , ¤𝑥10 , ¤𝑥20]⊤. The initial
conditions are chosen x0,rect = [1, 1, 1, 1]⊤ and x0,sweep = x0,scen = [0, 0, 0, 0]⊤ depending
on the excitation. Furthermore, the constant parameters of the tuned wedge damper are

𝑚1 = 1 kg, 𝑚2 = 0.1 kg, 𝑐1 = 1 N/m, 𝑐2 = 0.1 N/m, 𝑐3 = 0.01 N/m,

Δ1 = 0.1 m, 𝑟 = 0.01 m, 𝜇 = 0.1 .

The angle and prestress displacement for the passive system are given by 𝛼pa = 20◦ and
Δℓpa = 0 m. The input parameters of the active system are limited to 𝛼 ∈ [0, 𝛼max] and
Δℓ ∈ [0,Δℓmax]. The limits 𝛼max and Δℓmax are specified for each control strategy later
on and provide more realistic working conditions of the active tuned wedge damper.

6.2 Skyhook Control
As mentioned in section 2.3.1, the Skyhook Control emulates, when possible, a damper
attached to an inertial frame, regardless of the actual damper position. Furthermore,
this is a dissipation-oriented control strategy. To implement the Skyhook Control, it
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is first verified if the structure of dissipative forces is in accordance with the control
strategy. Subsequently, the algorithm for the inputs is defined. Additionally, the input
force is clipped to avoid sticking. Lastly, the section concludes with the simulations of
the Skyhook Control behavior and its comparison to the passive system.

As noted in chapter 4, the dissipative terms of the tuned wedge damper are given by

𝐹TWD,d =
2𝜇𝑐3(2𝑦 + Δℓ )(1 + 𝑦2

𝑥)
1 − 𝜇𝑦𝑥 sign( ¤𝑥2 − ¤𝑥1)

sign( ¤𝑥2 − ¤𝑥1) . (6.1)

The Skyhook Control assumes dissipative forces of the form 𝐹Sky = |𝐹TWD,d | sign( ¤𝑥2− ¤𝑥1),
where the direction of the force is solely defined by the relative velocity. As is noted
from Eq. (6.1), the dissipative force does not strictly comply with this form. This is
due to the denominator, which can change signs depending on the relative velocity.
However, for all practical purposes, this is not the case. Since the maximum input angle
is limited to 𝛼max ≤ 45◦, 𝑦𝑥 has a maximum value of 1. Furthermore, since low friction
coefficients are investigated (𝜇 < 1), it is not possible for the denominator to change
signs. Taking into account the input limitations, the force in Eq. (6.1) complies with the
necessary structure for the implementation of the control strategy.

The Skyhook Control defines a damper force that generates a braking effect on the main
mass. This is only possible when the relative velocity between the masses and the
absolute velocity of the main mass have different signs, i.e. ¤𝑥1( ¤𝑥2 − ¤𝑥1) < 0. When this
is not the case, the damper force accelerates the main mass. To avoid exacerbating the
oscillation of the main mass, the damper force is set to zero in these cases, i.e. when
¤𝑥1( ¤𝑥2 − ¤𝑥1) > 0. This results in the control structure

𝐹TWD,d =

{
𝐹TWD,d,max , ¤𝑥1( ¤𝑥2 − ¤𝑥1) < 0

0, ¤𝑥1( ¤𝑥2 − ¤𝑥1) > 0
. (6.2)

The input parameters are calculated to ensure Eq. (6.2) and maximize the braking effect.
For the wedge angle, this leads to a maximization of the input angle. The prestress
displacement is maximized under the condition that sticking is avoided. If sticking
occurs, no relative movement is observed, and, therefore, no energy is dissipated. Since
this strategy is solely based on damping, sticking is counterproductive. The prestress
displacement is thus calculated to comply with the slipping condition |𝑅 | = 𝜇𝑁 > 𝑅max,
c.f. Eqs. (4.11) and (4.12). This yields for the wedge angle

𝛼Sky =

{
𝛼max , ¤𝑥1( ¤𝑥2 − ¤𝑥1) < 0

0, ¤𝑥1( ¤𝑥2 − ¤𝑥1) > 0
(6.3)
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and for the prestress displacement

ΔℓSky =

{
Δℓmax(𝑅, 𝑅max), ¤𝑥1( ¤𝑥2 − ¤𝑥1) < 0

0, ¤𝑥1( ¤𝑥2 − ¤𝑥1) > 0
. (6.4)

To ensure smooth transitions between the extreme values, Eqs. (6.3) and (6.4) are
regularized with the hyperbolic tangent function (tanh) and the regularization parameter
𝜀Sky. This leads to

𝛼Sky =
𝛼max

2

(
1 − tanh

(
( ¤𝑥2 − ¤𝑥1) ¤𝑥1

𝜀Sky

))
, (6.5)

ΔℓSky =
Δℓmax(𝑅, 𝑅max)

2

(
1 − tanh

(
( ¤𝑥2 − ¤𝑥1) ¤𝑥1

𝜀Sky

))
. (6.6)

Once the desired input parameters are known, the actual input parameters are changed
accordingly. However, this change is not instantaneous, instead, the input variation is
modeled dynamically with two first-order systems

¤𝛼 = −𝜆Sky(𝛼 − 𝛼Sky) and ¤Δℓ = −𝜆Sky(Δℓ − ΔℓSky) (6.7)

where 𝜆Sky is a measure of how fast the input parameters are changed. This input
modeling approach has the advantage that it takes into account oscillations introduced
by the change of the input parameters.

The parameters of the Skyhook Control Strategy are determined by trial and error and
given by

𝛼max,Sky = 20◦ , Δℓmax,Sky = 240 m, 𝜆Sky = 0.64 s−1 , 𝜀Sky = 0.01 m2/s2 .

Figure 6.4 compares the response to the impulse excitation of the Skyhook Control
against its passive counterpart. The passive system introduces low dissipation which
leads to a slow decay of the oscillations. In contrast, the Skyhook Control is able to
introduce damping despite the low relative differences in the initial conditions. The
control strategy dampens the free oscillations in the first 150 s. Furthermore, the rectangle
impulse is countered effectively. The effect of the impulse on the main coordinate is
minimal since in the pulse range it has a maximal value of 0.038 m. Once the excitation
subsides, the amplitudes return to the vicinity of zero. At the end of the simulation,
the amplitudes of the Skyhook Control are zero, whereas the amplitudes of the passive
system are roughly 0.500 m.
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Figure 6.4: Response of the Skyhook Control to the rectangular pulse.

The sweep response of the Skyhook Control is observed in Fig. 6.5. The amplitudes
of both systems are approximately equal for frequencies outside the resonance and
absorption regimes. Furthermore, the maximum amplitudes of the active damper are
substantially lower than its passive counterpart. Compared to the maximum value
of 2.060 m of the passive damper, the active damper has a maximum amplitude of
0.341 m, which represents a reduction of 83.57 %. In the vicinity of the absorption
frequency, the disadvantages of the Skyhook Control are noted. Since this strategy
is dissipation-focused, the amplitudes are higher than its passive counterpart. At the
absorption, the active damper amplitude has a value of 0.046 m. After the absorption
regime the amplitudes of the active damper rise again, however, they remain under
0.101 m. This rise is due to the resonance regime of the second eigenfrequency.

Figure 6.5: Response of the Skyhook Control to the sweep excitation.

The response to the application scenario is presented in Fig. 6.6. During the run-up
phase, the active system shows a lower maximum amplitude than its passive counterpart.
The disadvantages of the active system show starting from the nominal operation phase.
Due to the focus on damping, the oscillation amplitudes are not minimal during this
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phase. Instead, they have a value of 0.049 m. Additionally, the Skyhook Control shows
different amplitude ranges during the overload phase. These are caused by the changes
in the maximum input values that the control allows. Due to the increased amplitude
of the excitation, the maximum stiction force increases and with it the maximum value
of the prestress displacement. The added possibility to introduce more damping leads
to the different ranges in the response and the transition between them. In the overload
phase, a maximum amplitude of 0.580 m is observed, which is by a factor 12.95 higher
than the passive system. The passive system takes advantage of absorption and therefore
has lower amplitudes. Nevertheless, over the whole scenario, the maximum amplitudes
of the Skyhook Control are 45.48 % lower than those of the passive system. During
the recovery phase the amplitudes subside to the nominal operation levels. During
the run-down the system passes once again through the resonance regime and the
amplitudes rise and have a value of 0.156 m. Compared to the passive system during
run-down this represents a 82.65 % amplitude reduction.

Figure 6.6: Response of the Skyhook Control to the application scenario.

6.3 Adaptive Multiple Model Control
The adaptive multiple model control (MMC) is based on the adaptive control with
a reference model. This strategy combines different vibration reduction models to
achieve an optimal response. Accordingly, this control strategy does not focus solely on
damping, but instead also uses absorption and changes in the system’s eigenfrequencies
via sticking. First, the general control structure is presented. Second, the individual
actuation models are described. Third, the decision criterion of the supervising controller
that chooses the applied actuation model is formulated. Lastly, the simulations of the
multiple model control are presented and compared to the passive system.
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The proposed control is based on the investigations of Morse [128] and Narendra and
Balakrishnan [129]. In their work, they extended the classical adaptive control with a
reference model by using several reference models with their corresponding controllers.
All models are simulated in parallel and identify the plant simultaneously. The method
described in this work has in common with [129] that several models are simulated at
the same time. The structure of the decision criterion is also partially taken from this
work. The difference in approach is that the adaptive multiple model control does not
perform an identification. Instead, the control tries, similar to [128], to determine which
input variables of the models cause the greatest vibration reduction. For this purpose,
three models are simulated in parallel. These models represent the mechanisms for
vibration reduction: dissipation, absorption, and shifting of structural resonances via
sticking. Instead of reference models, this control uses actuation models.

Figure 6.7: Control structure of the adaptive multiple model control.

The control structure is presented in Fig. 6.7. The states of the system x = [𝑥1 , 𝑥2 , ¤𝑥1 , ¤𝑥2]⊤
are forwarded to each actuation model. Additionally, they receive the reset signal 𝑠r.
Depending on the period of the reset signal 𝑇r, the states of the models are reset to the
states of the plant with every rising edge. Resetting the states of the actuation models
is necessary so that they can provide a relevant prediction about the system behavior.
Otherwise, the actuation models that are not in use will drift off. Furthermore, the
actuation models simulate the effect of their parameter choice, taking into account any
stick-slip transitions, but without knowledge of the perturbation 𝐹(𝑡). The outputs of the
models 𝑦out,D, 𝑦out,A, and 𝑦out,S are fed back to the supervisory controller, which then
decides which vibration reduction approach is accepted. In Fig. 6.7, the classic control
and adaptation loops cannot be separated from each other. However, the adaptation law
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is noted in the supervising controller. The controller changes its approach depending
on the simulated performance of the actuation models. In this structure, the control
and adaptation loops merge into one branched loop. Although one actuation model
is always active, the system has short intervals where it changes from a closed-loop
to an open-loop control. This is the case when it changes the actuation model. At
this moment, the desired system input and the actual system input are not equal and
therefore differences arise between the actuation model and the plant. However, the
strategy returns to a closed-loop control once these differences subside or the states are
reset.

The dissipation model adjusts the parameters according to the Skyhook Control in
section 6.2. If the relative velocity between the masses and the absolute velocity of the
main mass have different signs, damping is maximized. The angle and the prestress
displacement take their maximum values. Sticking, however, is avoided. If the signs
of the considered velocities are the same, the parameters are set to zero. This avoids
exacerbating the vibrations of the main mass.

The absorption model adjusts the parameters so that absorption is achieved. Both the
angle and the prestress are set to zero. As such the dissipation brought on by the damper
is eliminated. The system behaves like a vibration absorber with the secondary mass 𝑚2
and the secondary stiffness 𝑐2. This model is particularly relevant near the absorption
frequency 𝜔abs =

√
𝑐2/𝑚2.

The sticking model simulates the system as if it were forced to stick. To this end, the
wedge angle 𝛼 = 0 and the prestress displacement Δℓ = Δℓmax are set. Sticking changes
the structure of the system. The two eigenfrequencies of the slipping system vanish and
only the resonance frequency of the sticking system remains. This change is used to
avoid the structural resonance frequencies.

Based on the parameter suggestions of the actuation models, the supervisory controller
decides which of these candidates is best for vibration reduction. For this purpose, each
model is assigned a performance index. The performance index 𝐽𝑖 is calculated using
the performance function 𝑝𝑖(x) with 𝑖 = {D,A, S}. These are given by

𝐽𝑖 = 𝛾𝑝𝑖(𝑡 , x) + 𝛽

∫ 𝑡

𝑛𝑇r

e−𝜆f(𝑡−𝜏)𝑝𝑖(𝜏, x)d𝜏 and 𝑝𝑖(x) = |𝑦out,d − 𝑦out,𝑖 | . (6.8)

In Eq. (6.8), 𝛾 and 𝛽 are the weight factors of the terms. The first term represents the
current value of the performance function, while the second term corresponds to the
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value of the performance function in the past. To avoid considering irrelevant dynamics
of the past, the integral only takes into account the time interval [𝑛𝑇r , 𝑡] transgressed
since the last state reset with 𝑛 = ⌊𝑡/𝑇r⌋. Additionally, an exponential forgetting with
the forgetting factor 𝜆f determines how the individual values of the past are weighted in
the integral. The underlying performance function represents the absolute value of the
difference between the desired output 𝑦out,d and the output of the respective actuation
model 𝑦out,𝑖 . Since vibration reduction of the main mass is of interest, the position and
velocity of the main mass are implemented in the performance functions with

𝑦out,𝑖 =
√
𝑥2

1 + ¤𝑥2
1 (6.9)

and 𝑦out,d = 0. The actuation model with the minimum performance index is chosen
and its value for the wedge angle and the prestress displacement are set as the desired
input parameters 𝛼MMC andΔℓMMC. As with the Skyhook Control, the effect of changing
the input variables is represented by the differential equations

¤𝛼 = −𝜆MMC(𝛼 − 𝛼MMC) and ¤Δℓ = −𝜆MMC(Δℓ − ΔℓMMC) . (6.10)

Analogously, the parameter 𝜆MMC in Eq. (6.10) is a measure of the speed at which the
input variables are changed. The advantage of this strategy is that it not only takes
into account the momentary influence of the damper but also its past performance.
Additionally, it is not limited to a single vibration reduction mechanism. Depending
on the parameter choice, the time frame of the control strategy is defined. Large rates
of change 𝜆MMC and small reset periods 𝑇r lead to a strategy that acts on a small time
frame. It is constantly updating and acts within the lapse of a single oscillation. Low
rates of change and large reset periods result in a strategy that acts on a larger time frame.

The multiple model control parameters are derived by trial and error. The control
parameters are chosen to minimize oscillations while achieving stationary solutions.
For this strategy, parameters are given by

𝛼max,MMC = 20◦ , Δℓmax,MMC = 10 m, 𝜆MMC = 5e−4 s−1 , 𝛾 = 0, 𝛽 = 1,
𝜀Sky = 0.010 m2/s2 , 𝜆f = 0.126 s−1 , 𝑇r = 12.566 s .

The results for the rectangular pulse excitation are presented in Fig. 6.8. In the first 200 s,
the multiple model control reduces the free oscillations of the system, however, small
oscillations with an amplitude of 0.122 m remain. During the pulse, the vibrations of
the main mass oscillate around 0.018 m with an amplitude of 0.139 m. After the pulse
excitation, small oscillations remain and have an amplitude of 0.123 m. Compared to the
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passive systems this results in a 79.53 % reduction in the vibration amplitude. In contrast
to the Skyhook Control, the system oscillations are not brought to a halt. Therefore, a
parameter or strategy change is sensible for small oscillations.

Figure 6.8: Response of the adaptive multiple model control to the rectangular pulse.

Figure 6.9 presents the response of the multiple model control to a sweep excitation.
The maximum amplitudes of the sweep response have a value of 0.247 m. This equates
to an 88.08 % reduction compared to the passive system. Disadvantages of this control
strategy appear in the absorption range where the optimal solution via absorption is not
recognized. Although complete absorption is not observed, the amplitudes remain low.
At the absorption frequency, an amplitude of 0.052 m is observed.

Figure 6.9: Response of the adaptive multiple model control to the sweep excitation.

The response of the multiple model control to the application scenario is presented in
Fig. 6.10. In the run-up phase, the control strategy has a maximum amplitude of 0.248 m,
which corresponds to a 76.72 % reduction compared to the passive system. During the
nominal operation, the passive system responds with lower amplitudes than the active
control strategy. As with the sweep excitation, the control strategy does not recognize
the amplitude reduction potential via absorption. However, the amplitudes are low and
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have a value of 0.037 m. Throughout the overload phase, the amplitudes rise and attain
a maximum value of 0.156 m. Although the excitation plays an increasing role in the
system’s dynamics and the actuation models do not simulate it, a substantial increase in
the amplitude of the main mass is not observed. Even though the excitation increases
tenfold, the maximal amplitudes of the overload phase are only 4.20 times lager than
the amplitude during the nominal operation phase. Compared to the passive system,
the maximal overload amplitude is higher by a factor of 3.49. The oscillation amplitudes
fall to 0.034 m at the end of the recovery phase. During the passage through resonance
of the run-down phase the resonance peak is lower than during the run-up phase and
has a value of 0.101 m, which is 88.75 % lower than its passive counterpart.

Figure 6.10: Response of the adaptive multiple model control to the application scenario.

6.4 Slow Frequency-Based Control
The slow frequency-based control (SFC) is similar to the gain scheduling control
strategies. It uses prior knowledge of the systems and defines the system parameters
accordingly. In this case, the prior knowledge used is based on the frequency response
of the tuned wedge damper. To describe the slow frequency-based control, first, the
ideal change of the control strategy is described. Second, the control structure, as well
as the necessary frequency identification, is presented. Third, the rule for the parameter
choice is formulated. Lastly, the simulations of the active control strategy are presented.

This control method uses knowledge of the frequency response to determine the system
parameters. The two frequency responses and an ideal case, are plotted in Fig. 6.11. The
figure shows the responses of the sticking (Δℓ → ∞) and slipping (Δℓ = 0) systems. The
sticking response is modeled with Eq. (4.10), and the slipping response corresponds to
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Figure 6.11: The ideal change between the sticking and slipping frequency response functions.

an undamped tuned mass damper with the secondary stiffness 𝑐eff,res = 𝑐2 + 4𝑐3 tan2 𝛼.
The ideal response is built by selecting the branch with the lowest amplitude. The ideal
response has the advantages of low vibration amplitudes without having to forego an
absorption frequency. The slow frequency-based control method aims to reproduce
this ideal curve. The underlying basic principle of the system is the change in the
system’s structure caused by the transitions between sticking and slipping. As the
system transitions, the eigenfrequencies change from two slipping eigenfrequencies to
a single sticking frequency or vice versa. The targeted change aims to avoid resonances
and achieve absorption.

Figure 6.12: The control structure of the slow frequency-based control.

The overall system structure is shown in Fig. 6.12 and consists of three blocks: the
mechanical system block, the frequency identification block, and the controller block.
To influence the mechanical system, the two input parameters 𝛼 and Δℓ are varied.
These two parameters serve as inputs to the mechanical system. This block contains and
simulates the equations of motion of the tuned wedge damper with the corresponding
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parameters. The resulting movement of the auxiliary mass 𝑥2(𝑡) is recorded and passed
to the frequency identification block. This variable is chosen since it does not tend to
zero in the absorption regime. This simplifies the identification. The identification block
detects the main frequency of the system using a Fourier Transformation. The identified
frequency Ωid is then passed on to the controller, which sets the parameters 𝛼 and
Δℓ . The idea of this controller is based on the adaptive gain scheduling considered in
section 2.3. It is similar in the sense that an additional quantity, the identified frequency,
is used, to gain additional knowledge of the system. However, it is noted that the
structure in Fig. 6.12 is that of the open-loop control, since the output is not fed back
to the system. Furthermore, as is stated later on, the strategy does not change the
parameters of a controller, but instead directly defines the desired input parameters.

Figure 6.13: Structure of the frequency identification block

A detailed view of the identification block is shown in Fig. 6.13. The measurement of
𝑥2(𝑡) is sampled with the sampling time 𝑡s and the last 𝑁 points are collected in a time
series. A Fast Fourier Transformation (FFT) of the time series is calculated. Subsequently,
the oscillation frequency is determined by the frequency identification function. This
function establishes the frequencies of the FFT peaks as possible frequency candidates.
The candidates are compared to the moving average of the identified frequency so far.
The oscillation frequency is identified as the candidate with the smallest distance to the
moving average. This frequency is then forwarded to the controller.

The controller chooses the desired input values 𝛼SFC and ΔℓSFC according to

𝛼SFC =

{
𝛼max,SFC , Ω1 ≤ Ωid ≤ Ω2

0, else
, (6.11)

ΔℓSFC =

{
0, Ω1 ≤ Ωid ≤ Ω2

Δℓmax,SFC , else
. (6.12)
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In Eqs. (6.11) and (6.12), Ω1 and Ω2 represent the crossings frequencies between the
linear sticking and slipping systems, see Fig. 6.11. Outside the Ω1-Ω2-range, the lowest
amplitudes are achieved by the sticking system. Thus, the system parameters are chosen
so that the tuned wedge damper sticks. The outer segments are flat and the prestress
displacement is maximized. In the Ω1-Ω2-range, absorption is the chosen vibration
reduction mechanism. To this end, the prestress is set to zero to minimize damping.
Additionally, the wedge angle 𝛼 is maximized to insert damping outside the 2Δ1-range.
This parameter choice funnels large oscillations into the dissipation-free range. The
control strategy highly depends on the identified frequency since the parameters are
solely determined by it. This is problematic in the presence of noise in the measured
signal. This is manageable by applying a low pass filter to the measured signal provided
the magnitude of the noise is small compared to 𝑥2(𝑡). The frequencies Ω1 and Ω2
are calculated based on the crossings of the linear systems in Fig. 6.11. These are
independent of the excitation amplitude and are given by

Ω1,2 = 𝜔01

√
𝛾 + (1 + 𝛾)𝑝2 ∓

√
(1 + 𝛾)2𝑝4 − 2𝛾𝑝2 + 𝛾2

𝛾(2 + 𝛾) (6.13)

with 𝛾 =
𝑚2
𝑚1

, 𝑝2 =
𝑐2,eff

𝑐1
, 𝜔2

01 =
𝑐1
𝑚1

, 𝑐2,eff = 𝑐2 + 4𝑐3 tan2 𝛼max,SFC .

As with the aforementioned strategies a dynamic input model is considered. With the
rate of change for the inputs 𝜆SFC, the differential equations for the inputs are given by

¤𝛼 = −𝜆SFC(𝛼 − 𝛼SFC) and ¤Δℓ = −𝜆SFC(Δℓ − ΔℓSFC) . (6.14)

The slow frequency-based control does not aim to counter vibration in the lapse of
one oscillation. Instead, it focuses on the attenuation of vibrations over a large time
frame. It is therefore important that the changes of the parameter don’t introduce high
frequency oscillations in the system since the control strategy cannot promptly react
to these. To this end, the rate of change 𝜆SFC, the maximum wedge angle 𝛼max,SFC,
and the maximum prestress displacement Δℓmax,SFC are chosen as small. However, not
unreasonably small that vibration reduction is not realized. The first two parameters
are found by trial and error. The maximum prestress value is approximated with the
transition estimate in Eq. (4.18). From the parameters of the passive system and the
amplitude of the excitation, the maximum value results in

Δℓmax,SFC =
𝐴𝐿(Ω1)Ω2

1𝑚2

2𝑐3𝜇
with 𝐴L(Ω1) =

𝐹0

|𝑐1 − (𝑚1 + 𝑚2)Ω2
1 |

. (6.15)
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Although the parameter 𝐹0 is found in Eq. (6.15), the exact value is not required.
Equation (6.15) is meant as an estimate for the maximum prestress value, accordingly
an estimate of the magnitude order of 𝐹0 is sufficient. The expression above yields the
minimal prestress displacement to ensure that the system sticks until Ω1.

For the identification, the sampling parameter 𝑡s and the series length 𝑁 have to be
counterbalanced. These parameters determine the maximal identified frequency Ωid,max
as well as the minimal change of the identified frequency ΔΩid. The latter affects the
resolution of the FFT. With the Nyquist-Shannon criterion, these values are given by

Ωid,max =
𝜋
𝑡s

and ΔΩid =
2𝜋
𝑁𝑡s

. (6.16)

Low sampling times 𝑡s lead to a larger frequency range, however, they also cause
low resolution in the FFT, i.e. large ΔΩid values. This is especially impairing in the
vicinity of the transition frequencies since the targeted stick-slip transition is not executed
accurately. A high time series length 𝑁 helps improve the resolution of the FFT. However,
it increases the initial buffer time 𝑁𝑡s in which the oscillation frequency is not correctly
identified. These inaccuracies appear because at first the buffer in the identification
block is mostly filled with zeros. Low 𝑁 values, therefore, shorten this time and improve
the speed with which correct frequencies are identified. A counterbalancing of all these
properties is needed. However, since this control strategy orients itself to larger time
frames, the covering of the required frequency range and the resolution of the FFT have
priority over the initial buffer time.

The parameters for the slow frequency-based control are chosen as

𝛼max,SFC = 20◦ , Δℓmax,SFC = 3.219 m, 𝜆SFC = 0.001 s−1 , 𝐹0 = 0.01 N,

𝑁 = 256, 𝑡s = 1 s, Ω1 = 0.892 rad/s, Ω2 = 1.122 rad/s .

The behavior in response to the rectangular impulse is presented in Fig. 6.14. Although
the control strategy is not designed for the transient response, it effectively reduces the
oscillation amplitudes. The amplitudes nearly vanish in the first 200 s of the simulation.
During the rectangular pulse, the amplitudes rise to 0.080 m. At the end of the simulation,
an amplitude reduction of 91.83 % is achieved. However, small oscillations remain in
the active system and have an amplitude of 0.049 m.

Figure 6.15 depicts the sweep response of the slow frequency-based control. Although
the ideal change is not precisely realized, the control strategy has an advantageous
response. It follows the sticking system on the outer frequency range and in the vicinity
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Figure 6.14: Response of the slow frequency-based control to the rectangular pulse.

of the absorption it follows the passive system. Due to the changes in the wedge angle
during the transition between the sticking and slipping systems, oscillations in the
maximum amplitude are noted. Furthermore, a maximum amplitude of 0.180 m is
noted. This results in a 91.11 % amplitude reduction compared to the passive system.
With the targeted stick-slip transition, the resonance frequencies are avoided and the
advantages of sticking and slipping are combined.

Figure 6.15: Response of the slow frequency-based control to a sweep excitation.

The response of the slow frequency-based control to the application scenario is presented
in Fig. 6.16. The strategy results in a significant improvement on the passive system.
During the run-up phase, the control strategy shows a maximum amplitude of 0.154 m,
which is 85.56 % lower than the passive system. Since the maximum amplitude of the
passive system is larger, it is not able to realize full absorption during the nominal
operation range. In contrast, the amplitudes of the slow frequency-based control are
in the vicinity of zero. Both systems show the same response during the overload and
recovery phase and have a maximum amplitude of 0.045 m. During the run-down phase,
the oscillation amplitudes rise again. The maximum amplitude in this range is higher
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than during the run-up phase and has a maximum value of 0.247 m. This amplitude
equates to a 75.55 % amplitude reduction compared to its passive counterpart.

Figure 6.16: Response of the slow frequency-based control to the application scenario.

6.5 Control Strategy Comparison
After investigating the control strategies separately, the focus is set on their comparison.
The comparison is carried out according to the aforementioned excitations. First, the
rectangular pulse is considered. Second, the sweep excitation is taken into account.
Finally, the strategies are compared in the application scenario.

Figure 6.17 portrays the comparison of the control strategies in response to the
rectangular pulse. The Skyhook Control shows the best results since its approach
attenuates vibrations faster. Additionally, it brings the system to a halt. In the beginning,

Figure 6.17: Comparison of the control strategies for the rectangular pulse.
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the adaptive multiple model control reduces the oscillations as well as the Skyhook
Control. However, at the end small oscillations remain. Nevertheless, it has the
advantage that it does not solely rely on damping. Therefore, a longer life span is
expected with the multiple model control. The slow frequency-based control takes
longer to mitigate the vibrations. However, large oscillations are reduced even though
this strategy was not designed for transient behavior. The amplitude of the Skyhook
Control in reaction to the rectangular pulse is smaller than the other control strategies
by a factor of 2.16 and 4.16 for the slow frequency-based control and the multiple
model control, respectively. In the end, the multiple model control and the slow
frequency-based control do not bring the system to a halt and small oscillations remain.

The comparison of the active control strategies’ response to the sweep excitation is
presented in Fig. 6.18. The slow frequency-based control yields the best response. It has
a maximal amplitude of 0.180 m which is 46.14 % lower than the Skyhook Control and
25.65 % lower than the multiple model control. Furthermore, in the absorption range,
the slow frequency-based control achieves the lowest amplitudes. It uses vibration
absorption as its primary vibration reduction mechanism and only dissipates when the
oscillations are partly outside the 2Δ1-range. Outside the resonance and absorption
regimes, the control strategies yield approximately the same results.

Figure 6.18: Comparison of the control strategies for the sweep excitation.

Figure 6.19 shows the comparison of the active control strategies in the application
scenario. Due to the higher velocity, with which the structural resonances are passed
through, the maximum amplitudes during the run-up phase are smaller than in Fig. 6.18.
However, the qualitative behavior of the control strategies remains the same. The
slow frequency-based control still shows the lowest amplitudes. This establishes the
advantages of absorption and shifting structural resonances via sticking as effective
vibration reduction mechanisms. The second-best results are shown by the multiple
model control and the highest amplitudes are shown by the Skyhook Control. This
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is noted from the run-up to the recovery phase and confirms that dissipation is not
always the best vibration reduction strategy. During the overload phase, the slow
frequency-based control achieves the lowest maximal amplitudes of 0.045 m. These are
92.28 % smaller than the Skyhook Control and 71.32 % smaller than the multiple model
control. The slow frequency-based control only shows a suboptimal response during the
run-down phase. During this phase, the oscillations of the slow frequency-based control
are 1.58 times higher than the Skyhook Control and 2.44 times higher than the multiple
model control. Considering that the slow frequency-based control shows overall the
lowest amplitudes, its behavior represents the optimal response.

Figure 6.19: Comparison of the control strategies for the application scenario.

6.6 Energy Investigations
The active control strategies introduce dissipation in a more targeted manner compared
to the passive system. This targeted dissipation yields lower amplitudes, however, too
much dissipation results in a shorter service life. Therefore, a counterbalancing between
amplitude reduction and life span is required. Since the control strategies suggested
in this work do not solely rely on dissipation, they are able to reduce vibrations with
a lower dissipated energy. Thus, achieving a longer damper service life and energy
savings with low vibrations amplitudes. To assess these qualities, the dissipated energy
and the input energy of the control strategies are investigated. First, the formulas
for the dissipated energy is derived. Second, the expression for the input energy is
formulated. Afterward, the formulas are used to evaluate the strategies in the three
excitation scenarios.
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The calculation of the dissipated energy 𝐸TWD,d(𝑡) is derived from the dissipated power
𝑃TWD,d(𝑡). The latter is calculated from the product of the dissipative force 𝐹TWD,d
and the relative velocity ¤𝑥rel = ¤𝑥2 − ¤𝑥1. The dissipated energy is associated with the
wear of materials. Increasing levels of dissipated energy lead to higher wear volume
[161]. This is especially relevant for friction dampers since surfaces are often rubbing
against each other. In the optimal case, dampers are able to reduce vibration with low
𝐸TWD,d(𝑡)-values. Lower values yield a longer damper life span. Considering Eq. (6.1)
and the time-dependent values 𝛼(𝑡) and Δℓ (𝑡), the dissipative power results in

𝑃TWD,d(𝑡) = −𝐹TWD,d(𝑡)( ¤𝑥2 − ¤𝑥1) = −
2𝜇𝑐3

(
2𝑦(𝑡) + Δℓ (𝑡)

) (
1 + 𝑦2

𝑥(𝑡)
)

1 − 𝜇𝑦𝑥(𝑡) sign( ¤𝑥2 − ¤𝑥1)
| ¤𝑥2 − ¤𝑥1 | . (6.17)

The dissipated power is always negative since mechanical energy is taken from the
system. This is confirmed by the terms above since the fraction in Eq. (6.17) is always
positive, as noted in section 6.2. From the expression above, the dissipated energy is
calculated by integrating the dissipated power above over time. This results in

𝐸TWD,d(𝑡) =
∫ 𝑡

0
𝑃TWD,d(𝜏)d𝜏 . (6.18)

Since concrete designs for the actuators are not considered, a conservative estimate for
the minimal energy consumption is approximated. To calculate the approximation, the
minimal mechanical power required by the wedge angle and the mechanical power
required by the prestress displacement are approximated. The input power of the
wedge angle is estimated by considering the minimal torque 𝑀𝛼 needed to rotate the
outer flanks. This is determined by the minimal force �̃� to overcome the normal force
𝑁 and the lever arm ℓ𝛼, see Fig. 6.20a. The pivot point is assumed at the transition
from the horizontal segments to the circular segments. The product of the moment

(a) (b)

Figure 6.20: Free body diagrams for the calculation of the necessary power and energy of (a) the wedge angel
𝛼 and (b) the prestress displacement Δℓ .
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𝑀𝛼 = �̃�ℓ𝛼 = 𝑁ℓ𝛼 and the angular velocity of the outer segments ¤𝛼 yields the power
associated with the angle 𝛼. Since the prestress displacement is associated with a
portion of the spring force 𝐹𝑐3 , the mechanical power associated with this input is
directly calculated. The input power of the prestress displacement is determined by
considering the force 𝐹Δℓ = 𝑐3Δℓ and the velocity with which the surfaces are pressed
apart ¤𝑦, see Fig. 6.20b. Since the circular transition segments are small, the lever arm is
approximated with

ℓ𝛼 =
1 + sign(|𝑥2 − 𝑥1 | − Δ1)

2

√
(|𝑥2 − 𝑥1 | − Δ1) + 𝑦2 .

The dissipated power is thus given by

𝑃inputs = 𝑃𝛼 + 𝑃Δℓ = 2 max(𝑀𝛼 ¤𝛼, 0) + 2 max(-𝑐3Δℓ ¤𝑦, 0) . (6.19)

Analogous to the dissipated energy, the input energy results from

𝐸inputs(𝑡) =
∫ 𝑡

0
𝑃inputs(𝜏)d𝜏 . (6.20)

Equation (6.20) has three implicit assumptions. First, since only the mechanical power
is used as the basis for the calculation, energy is only introduced with a displacement
of the contact surfaces or the rotation of the outer surfaces. Energy consumption
for the holding of a position is not considered. This is accurate for a self-locking
design. Furthermore, an increase in the input energy due to prestress changes, while
¤𝑦 = 0, is not considered since, again, only the mechanical power is taken into account.
Second, the use of the max-function considers only positive power values. Therefore,
energy recovery is not considered, yielding a more conservative estimate. Third, the
power associated with the angle considers only the two flanks in contact and only
the minimal resistance force. The additional force required to move the flanks with a
defined progression and the energy needed to move the flanks, not in contact, are not
considered. Nevertheless, Eq. (6.20) represents a lower limit for the input energy of
the control strategies. Furthermore, it allows the evaluation of the input energy of the
strategies in the absence of a specific actuator model.

The equations derived above are used to evaluate the control strategies with respect
to dissipated energy and input energy. First, the evaluations regarding the dissipated
energy are made for the rectangular pulse, the sweep excitation, and the application
scenario. Equation (6.18) is also applied to the passive system and compared to the
semi-active control strategies. Subsequently, the evaluations for the input energy are
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presented for the control strategies and the aforementioned excitation.

Figure 6.21 shows the dissipated energy of the passive damper and the control strategies
for the rectangular pulse. The Skyhook Control Strategy dissipates 1.421 J and thus
dissipates the most energy. Furthermore, the dissipation is introduced in the first
106 s in a targeted manner. The second fastest control strategy is the multiple model
control which dissipates 1.043 J in 60 s. The slow frequency-based control dissipates
slightly more energy, 1.046 J, than the multiple model control. However, it requires
191 s, resulting in a slower strategy. The passive system does not reach a saturation level
and at the end of the simulations it has the lowest dissipated energy, namely 0.731 J.
Nevertheless, the main goal, vibration reduction, is not achieved since its vibration
amplitudes are much higher than the active variants, c.f. Figs. 6.4, 6.8 and 6.14. The
curves show that the control strategies are able to introduce damping in a more targeted
manner, which results in lower amplitudes in a shorter time. Taking the passive
system at the end of the simulation as a reference point, the dissipated energy of the
multiple model control, the slow frequency-based control, and the Skyhook Control are
respectively 42.78 %, 43.06 %, and 94.42 % higher than the passive system.

Figure 6.21: Comparison of the dissipated energy for the rectangular pulse.

The dissipated energy for the sweep excitation is shown in Fig. 6.22. Once again the
Skyhook Control shows the highest dissipated energy. Over the whole sweep range,
the strategy dissipates 21.365 J. The highest increase in dissipated energy is observed
between the two eigenfrequencies. However, a change is noted in the rate of change
in the curve at 5e4 s. This is attributed to the phase change between the movement
of the primary and secondary mass, once the absorption frequency is crossed. The
passive system has the second-highest dissipation energy and two clear saturation
levels, namely 7.321 J and 15.635 J. These are attributed to the passage through the two
resonance frequencies. In the absorption range, the energy remains nearly constant.
The multiple model control has the third-highest dissipated energy. It shows only one
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range, in which the dissipated energy increases substantially, and reaches the saturation
level of 9.556 J. The control strategy with the lowest dissipated energy is the slow
frequency-based control. Similar to the passive system it shows two saturation levels,
but with noticeably lower energy levels. The first saturation level has a value of 3.028 J,
whereas the second has a level of 3.457 J. The low dissipation is attributed to the foci of
the control strategy, namely vibration absorption and structural changes via sticking.
Relative to the passive system, the slow frequency-based control and the multiple model
control respectively dissipate 77.89 % and 38.88 % less energy, whereas the Skyhook
Control dissipates 36.74 % more energy than its passive counterpart.

Figure 6.22: Comparison of the dissipated energy for the sweep excitation.

Figure 6.23 shows the dissipated energy for the application scenario. The curves in
the application scenario have a similar progression. The largest increases in dissipated
energy are observed during the overload and recovery phases. This is mainly due to
the large oscillation amplitudes. Noticeable increases are also noted at the passages

Figure 6.23: Comparison of the dissipated energy for the application scenario.
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through resonances during the run-up and the run-down phases. The Skyhook Controls
remains the strategy with the highest dissipated energy, namely 583.016 J at the end
of the simulation. The multiple model control also has a high energy dissipation rate,
and dissipates 278.295 J throughout the simulation. The passive system and the slow
frequency-based control have similar results, namely 14.548 J and 12.592 J respectively.
Thus, the slow frequency-based control dissipates the least amount of energy. The
passive variant shows better results than the multiple model control since it relies on
absorption during the overload and the recovery phases. Compared to the passive
variant, the slow frequency-based control dissipates 13.44 % less energy. In contrast, the
multiple model control and the Skyhook Control respectively dissipate 1812.90 % and
3907.45 % more energy relative to the passive system.

The minimal input energy is presented in Fig. 6.24 for the rectangular pulse. The
curves show a similar progression compared to the dissipated energy, c.f. Fig. 6.21. In
descending order of input energy, the Skyhook Control, the slow frequency-based
control, and the multiple model control consume respectively 1.968 J, 0.003 J, and
6.489e-4 J. Although the slow frequency-based control dissipates less energy than the
multiple model control, it uses more energy to vary the wedge angle and the prestress
displacement. This is due to the larger oscillations of the relative coordinate 𝑥rel = 𝑥2−𝑥1
over a longer time period. These oscillations lead to an increase in the input power
by the prestress displacement. Apart from the Skyhook Control, it is noted that the
energies used by the control strategies of this work are lower than the dissipated energy.
Since fully active systems directly generate the necessary force to reduce oscillations, the
dissipated energy represents the minimal energy required by a such systems. Therefore,
this confirms the advantage of a semi-active system over an active system. Furthermore, it
shows that the Skyhook Control Strategy is not an optimal strategy for the proposed base
system. Compared to multiple model control, the input energy of slow frequency-based
control and Skyhook Control are higher by a factor of 4.61 and 3,033.17, respectively.
Figure 6.25 shows the input energy of the control strategies for the sweep excitation. The
form of the curves is the same as with the dissipated energy, however, the saturation
levels are different, c.f Fig. 6.22. Once again, the Skyhook Control consumes the
most energy, namely 16.521 J. The second highest energy usage is found in the slow
frequency-based control with 0.907 J. Requiring only 0.688 J, the multiple model control
shows the lowest energy consumption. A noticeable spike is noted in the input energy
of the slow frequency at the passage of the first resonance frequency. The main cause
for this energy spike and the strategy’s higher energy consumption is the input power
of the prestress displacement, which is caused by higher oscillation amplitudes of the
relative coordinate during the transitions between the sticking and slipping systems.
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Figure 6.24: Comparison of the input energy for the rectangular pulse.

Compared to the multiple model control, the input energy of the slow frequency-based
control and the Skyhook Control are higher by the factors 1.32 and 24.03.

Figure 6.25: Comparison of the input energy for the sweep excitation.

The last observation regarding the damper energy is presented in Fig. 6.26 and considers
the minimal input energy in the application scenario. The structure of the curves remains
similar to those in Fig. 6.23. The Skyhook Control, the multiple model control, and the
slow frequency-based control, respectively have a total input energy of 649.416 J, 32.235 J,
and 0.702 J. Due to the use of absorption during the overload and recovery phase, where
the oscillation amplitudes are largest, input energy of the slow frequency-based control
is lower than that of the multiple model control. Compared to the slow frequency-based
control, the input energy of the multiple model control and the Skyhook Control are
respectively higher by a factor of 45.953 and 925.803.

With the energy assessments of the control strategies, conclusions regarding the influence
of the strategies on the damper’s service life and its energy costs are derived. The Skyhook
Control shows the highest dissipated energy and the highest input energy. In all cases,
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Figure 6.26: Comparison of the input energy for the application scenario.

the input energy was higher than the dissipated energy. Therefore, this strategy is not
ideal for the base system since it leads to short life spans and high energy costs. The
multiple model control shows a medium energy dissipation. This is coupled with a low
energy requirement. The strategy, therefore, results in an acceptable service life with
low energy costs, provided the design is self-locking. Finally, the slow frequency-based
control provides a solution with low energy dissipation and low input energy. Therefore,
the strategy results in a long service life with low energy consumption.

6.7 Control Strategy Assessment
This section presents an assessment of the control strategies. It condenses the results of
the excitation simulations and evaluates the strategies’ suitability for vibration reduction.
First, the Skyhook Control is addressed. Subsequently, the multiple model control is
evaluated. The section is closed with the assessment of the slow frequency-based control.

The Skyhook Control is a well-investigated control strategy, and it is taken as a reference
for the developed strategies. It maximizes damping whenever possible and prevents
exacerbating oscillations. The best performance of the control strategy is found in the
response to the rectangular pulse. Apart from the ranges where the passive system
utilizes absorption, the Skyhook Control shows an overall better response than the
passive system. The disadvantages of the system are noted in the overload phase of
the application scenario. The changes in the excitation amplitude lead to changes in
the maximum input values. This extended input range proves counter-effective for
vibration reduction. The strategy introduces more damping when absorption is the
ideal damping mechanism, which leads to higher amplitudes. Energy-wise, the strategy
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has high energy dissipation and high energy consumption.

The adaptive multiple model control simulates three models in parallel and decides
which is better suited for vibration reduction. The models are measured with a
performance index, which takes the history of the vibration mitigation into account.
Consequently, the model with the best performance index is chosen. The strategy
is effective at mitigating transient excitations. However, as seen in Fig. 6.9, small
oscillations remain. These oscillations are manageable since they are small and material
damping present in practical applications helps mitigate such behavior. In the sweep
response, the control strategy shows the second-best results. It has low amplitudes in
comparison to the Skyhook Control and the passive system, however, it does not achieve
absorption. The control strategy does not recognize this as the most effective vibration
reduction mechanism. Other performance functions and parameters may offer better
results. Furthermore, the control strategy is computationally costly since three models
are simulated in parallel. However, the strategy has the advantage that it can adapt to
unforeseen circumstances, e.g. polyharmonic and nonharmonic excitations. Finally, the
strategy yields good results as long as the actuation models accurately represent the
controlled system. For practical applications a high model accuracy and a corresponding
identification are required. Regarding the energy investigations, this strategy results in
moderate energy dissipation and low energy consumption.

The slow frequency-based control is designed for the stationary response of the system.
To this end, it measures the position of the secondary mass, identifies the oscillation
frequency, and with it determines the input parameters. The parameters are chosen
to realize a targeted change between sticking and slipping. It has acceptable results
in transient processes. It reduces the system’s vibration, however, small oscillations
remain. As with the multiple model control, these oscillations are manageable. Its
sweep response is nearly optimal. The strategy avoids resonances and also achieves
absorption. The advantage of the latter vibration reduction mechanism is noted in the
overload phase of the application scenario. The vibrations remain smaller than the
maximal amplitudes during the passage through resonance even though the excitation
amplitude increases tenfold. This confirms the advantages of control strategies that are
not solely dissipation-focused. It is also advantageous in slow-changing processes or
in situations where the frequency characteristics of the process are known. In these
cases, the frequency of the absorber is tuned to generate the best possible response.
Furthermore, the quality of the strategy depends highly on the identification of the
oscillation frequency. This can be problematic when more than one excitation frequency
or excessive noise are involved. Energy-wise, the energy dissipated and its minimal
input energy are low.
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This chapter concludes this work and gives a starting point for future investigations.
First, the fulfillment of the thesis purposes and the sub-objectives stated in chapter 1 is
assessed. The most important findings are reiterated. After the studies in this work are
addressed, starting points for further investigations are proposed. These starting points
are given according to the proposed sub-objectives.

The first sub-objective considered the design of passive dry friction dampers with
piecewise-defined contact surfaces. An effective alternative to conventional dampers
was suggested. The tuned wedge damper utilizes vibration damping in combination
with absorption. However, it decouples these two vibration reduction mechanisms.
Furthermore, the damper has the advantage of robustness, i.e. the scalability of the
frequency response function with respect to the intensity of the excitation. Low
amplitudes were found for high friction coefficients, however, such high values have a
detrimental effect on the lifespan of the damper. Furthermore, in situations in which
the material pairing is subject to additional restrictions, the increase of the friction
coefficient is not a reliable choice. Low vibration amplitudes were reliably obtained via
a simultaneous optimization of the system’s tertiary stiffness and wedge angle.

The experimental validation of the theoretical investigations into passive systems with
piecewise-defined contact surfaces is the focus of the second sub-objective. A prototype
of the tuned wedge damper system was designed and tested with sweep excitations.
The experiments validated the qualitative behavior concerning the variation of the
tertiary stiffness, the friction coefficient, the prestress displacement, and the excitation
force amplitude. The most important finding is the validation of the decoupling of
damping and absorption. Some of the theoretical effects, however, were not observed in
the experiments. For example, solutions with quasiperiodic or chaotic behavior were
not found. Ranges with multiple solutions were also not verified. The sum of the
experimental investigations offers the first proof of concept of the implementation of the
tuned wedge damper as an practical vibration reduction mechanism.

123



7 Conclusions and Future Work

The design of active dry friction dampers with piecewise-defined contact surfaces
was considered in the third sub-objective. To this end, two strategies that do not
solely focus on damping were proposed. Both control strategies show overall better
results than a damping-driven strategy. The first strategy, the multiple model control,
reduces vibrations by combining the three vibration reduction mechanisms damping,
absorption, and shifting of structural resonances via sticking. It has a high adaptability
degree, however, this comes with a high computational cost. The second strategy, the
slow frequency-based control, changes its parameters depending on the oscillation
frequency. It achieves the best results for a sweep excitation, namely the lowest maximal
amplitudes while retaining the absorption frequency. Since both strategies do not
focus on damping, they contribute to the enhancement of the life span of active friction
dampers. Furthermore, they confirm that vibration reduction devices, that combine
different vibration reduction mechanisms, achieve overall better results.

This thesis fulfills its main purpose, namely the design and validation of dry friction
dampers that rely not solely on dissipation, but instead consider vibration absorption and
stick-slip transitions to reduce vibrations. The passive investigations and experiments
provide a damper that achieves this by effectively using piecewise-defined contact
surfaces. Additionally, the investigations of active designs yield two active control
strategies. The adaptive multiple model control unites the three vibration mechanisms,
whereas the slow frequency-based control strategy does not rely on damping, but
instead focuses on absorption and resonance avoidance with a targeted stick-slip
transition. These investigations provide a starting point for additional investigations
into mechanisms that combine the vibration reduction mechanisms instead of focusing
on one single strategy.

Considering future work, the passive damping devices only took into account external
excitations. The behavior of the tuned wedge damper with self-excited or parameter
excited oscillations was not considered. It is important to assess the damper’s
effectiveness with different types of excitation. In addition, the damper’s effectiveness in
system with multiple degrees of freedom is of interest. To this end, the damper’s design
as well as its placement should be considered. Taking into account polynomial outer
segments is an additional modification to consider. These segments can offer additional
damping when it is most required, thus, leading to a more robust damper with respect
to the excitation amplitude. Since the damper does not solely rely on damping, it saves
energy. The application of the tuned wedge damper within a system force-flow should,
therefore, be assessed. This placement could improve machine efficiency.
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Extensions of the experimental investigations include more parameter variations and
the quantitative reproduction of the experimental results. The reproduction requires
a minimal model with damping and an identification of the damping present in the
prototype. Another extension is the thorough investigation of the nonperiodic solutions
and multiple solution ranges in an experimental manner. To this end, a test bench with
less damping is required, e.g. a test bench with air bearings. A more practical design
of the damper, which is closer to series production, is also of investigative value. This
has the advantage that it can be used in more realistic situations, e.g. buildings, bridges,
turbines, wheel suspensions, and drive trains.

The investigations into the active tuned wedge damper can also be expanded by
taking into account different types of excitations, i.e. self-excited and parameter excited
oscillations. Furthermore, the full vibration amplitude reduction can be exploited by
applying the control strategies to a damper with optimized parameters. Additionally, the
influence of different performance functions, parameter combinations, and additional
models could improve the vibration reduction of the multiple model control. Additional
scenarios should also be taken into account. For example, the damper can be placed
in a drive train and different driving cycles can be tested. The ability to dampen
vibrations as well as save energy in these applications should be assessed. To improve
the approximation of the consumed energy, actuation models should be taken into
account. Lastly, the experimental design of the tuned wedge damper, as well as the
experimental validation of the control strategies, can offer a proof of concept for the
practical implementation of the active tuned wedge damper.
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A Integration of Piecewise Terms of the
Tuned Wedge Damper

This appendix handles the integration of the piecewise terms in the tuned wedge
damper. The starting point for the integration is the tuned wedge damper force in its
nondimensionalized and modified form

𝑓TWD,lin =𝑎𝑦𝑦𝑥 + 𝑏𝑦𝑥 + 𝑐𝑦(𝑦2
𝑥 + 1)sgn(𝑥′2 − 𝑥′1) + 𝑑(𝑦2

𝑥 + 1)sgn(𝑥′2 − 𝑥′1)
− 4𝑎 tan2 𝛼(𝑥2 − 𝑥1) .

(A.1)

The functions 𝑦 and 𝑦𝑥 are approximated with a zero order Taylor series in 𝑟. This is
applicable since 𝑟 = 𝒪(𝜀) and all higher order terms are irrelevant for the first order
averaging method. This simplification results in Δ2 = Δ1 and

𝑦 ≈

− tan 𝛼(𝑥rel + Δ1), 𝑥rel < −Δ1

0, |𝑥rel | < Δ1
tan 𝛼(𝑥rel − Δ1), Δ1 < 𝑥rel

and 𝑦𝑥 ≈

− tan 𝛼, 𝑥rel < −Δ1

0, |𝑥rel | < Δ1
tan 𝛼, Δ1 < 𝑥rel

. (A.2)

In an exemplary manner, the terms 𝑓𝑎 = 𝑎𝑦𝑦𝑥 are considered. However, the same
procedure is applied for all the terms in 𝑓TWD,lin. The piecewise definition of 𝑦 and 𝑦𝑥

results in the piecewise defined force

𝑓𝑎 =


𝑓𝑎,1 , 𝑥rel < −Δ1
𝑓𝑎,2 , |𝑥rel | < Δ1
𝑓𝑎,3 , Δ1 < 𝑥rel

= 𝑎


tan2 𝛼(𝑥rel + Δ1), 𝑥rel < −Δ1

0, |𝑥rel | < Δ1
tan2 𝛼(𝑥rel − Δ1), Δ1 < 𝑥rel

. (A.3)

The transition points where the relative displacement 𝑥rel surpasses the Δ1 thresholds
are identified. Since these terms are integrated over the fast oscillating phases, the
transitions of 𝑥rel are identified in dependence of 𝜑𝑖 . To this end, the Van der Pol
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Figure A.1: Transition of the relative coordinate 𝑥rel = 𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 .

transformation and the modal decoupling is applied to the relative coordinate. In
dependence of the considered eigenfrequency 𝜂0𝑖 , this yields

𝑥rel,i = 𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 . (A.4)

The transitions of the relative coordinate are visualized in Fig. A.1. Using the symmetry
of the sine function the angles 𝜑0𝑖 are identified as

𝜑01,𝑖 = arcsin
(

Δ1
(𝑟2𝑖 − 𝑟1𝑖)𝐴𝑖

)
, 𝜑02,𝑖 = 𝜋 − 𝜑01,𝑖 ,

𝜑03,𝑖 = 𝜋 + 𝜑01,𝑖 , and 𝜑04,𝑖 = 2𝜋 − 𝜑01,𝑖 .

The force 𝑓𝑎 is multiplied by sin 𝜑𝑖 or cos 𝜑𝑖 . The average of these products over one
period is divided into four integrals. The cosine product results in

𝐼𝑎,cos =
1

2𝜋

∫ 2𝜋

0
𝑓𝑎 cos 𝜑𝑖d𝜑𝑖

=
1

2𝜋

( ∫ 𝜑01,𝑖

−𝜑01,𝑖

𝑓𝑎,2 cos 𝜑𝑖d𝜑𝑖 +
∫ 𝜑02,𝑖

𝜑01,𝑖

𝑓𝑎,3 cos 𝜑𝑖d𝜑𝑖

+
∫ 𝜑03,𝑖

𝜑02,𝑖

𝑓𝑎,2 cos 𝜑𝑖d𝜑𝑖 +
∫ 𝜑04,𝑖

𝜑03,𝑖

𝑓𝑎,1 cos 𝜑𝑖d𝜑𝑖

)
=

1
2𝜋

( ∫ 𝜑02,𝑖

𝜑01,𝑖

tan2 𝛼(𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 + Δ1) cos 𝜑𝑖d𝜑𝑖

+
∫ 𝜑04,𝑖

𝜑03,𝑖

tan2 𝛼(𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 − Δ1) cos 𝜑𝑖d𝜑𝑖

)
= 0 .

(A.5)
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Analogously, the sine product yields

𝐼𝑎,sin =
1

2𝜋

∫ 2𝜋

0
𝑓𝑎 sin 𝜑𝑖d𝜑𝑖

=
1

2𝜋

( ∫ 𝜑02,𝑖

𝜑01,𝑖

tan2 𝛼(𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 + Δ1) sin 𝜑𝑖d𝜑𝑖

+
∫ 𝜑04,𝑖

𝜑03,𝑖

tan2 𝛼(𝐴𝑖(𝑟2𝑖 − 𝑟1𝑖) sin 𝜑𝑖 − Δ1) sin 𝜑𝑖d𝜑𝑖

)
=

4 tan2 𝛼
𝐴𝑖𝜋

(
Δ1

√
(𝑟1𝑖 − 𝑟2𝑖)2 𝐴2

𝑖
− Δ2

1 + 𝐴2
𝑖 (𝑟1𝑖 − 𝑟2𝑖)2 arcsin

(
Δ1

(𝑟1𝑖 − 𝑟2𝑖)𝐴𝑖

))
.

(A.6)

The procedure described above is applied to all the terms in 𝑓TWD,lin. Together with
the average of the excitation, these terms yield the averaged differential equations, i.e.
Eqs. (4.29) and (4.30).
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The reduction of vibrations in machines, plants, and 
buildings is a common task in engineering, since, in 
the worst case, large vibrations cause system failure. 
The reduction of vibrations yields an increase in the 
life expectancy, safer systems, and financial gains. 
It is therefore essential to design effective vibration 
dampers. This work considers dampers that do not 
solely focus on a single vibration reduction strate-
gy but instead combine them to achieve optimal 
results. The capabilities of conventional dry fric-
tion dampers are expanded by taking into account 
continuous piecewise defined contact geometries. 
This leads to friction dampers that change their 
behavior depending on the oscillation amplitude. 
The device in this work, the tuned wedge damper, 
introduces damping at high oscillation amplitudes 
and takes advantage of absorption at low oscillation 
amplitudes. The device is investigated numerically 
and analytically. Additionally, a damper prototype 
is constructed and experiments are performed to 
validate the damper behavior. An active variant of 
the tuned wedge damper is also considered. Two 
novel control strategies are designed. These are 
compared to a state-of-the-art control strategy for 
dry friction dampers in transient, quasistationary, 
and application scenarios.
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