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1 Introduction
The occurrence of vortices is a widespread phenomenon in physics. They are well
known, for instance, from fluid mechanics of gases and liquids [Bes06; ZB22], but
vortices also occur at cryogenic temperatures in superfluids and in the condensate
of superconducting charge carriers in solids [EH05; Tin04]. In the latter case,
vortices of supercurrents exist in Josephson junctions that are superconducting
leads separated by a tunnel barrier [Jos62; AR63]. Here, if the junction is tailored
to an appropriate shape, it allows for spatial and temporal phase distribution with
changes in integer multiples of 2π [Jos64; Swi61]. This phenomenon gives rise
due to a Bohr-Sommerfeld-like quantization of the superconductor’s phase and is
analogous to the angular momentum quantization in atoms [Lon50; DN61; DF61].
As a characteristic of superconductors, such phase drops drive supercurrents, which
are closed rings, namely Josephson vortices. They enclose a quantized magnetic
flux of Φ0 = h/2e [BL64; Jos65], often referred to as “fluxon” [BP82; Lik86].

The basic understanding of the phase dynamics of these vortices comes from the
sine-Gordon model [Kul65; Sco69; FD73], which features a nonlinear wave equation
for the Josephson medium. Its vortex solution is of particular interest [Ust98], as
these excitations are pinned at the tunnel barrier and may propagate along the
nonlinear Josephson medium as a wave packet that maintains its shape, i.e., as
a soliton [Swi61]. Fluxons in long Josephson junctions have been a rich research
field for decades since they serve as an excellent physical system to study highly
nonlinear electrodynamics and soliton dynamics on a microscopic scale [Par78;
Ped83]. Thereby, classical effects such as high-frequency cavity resonances [CFL71;
FD73; FD74b; Fis64; Kul65; Kul67], but also relativistic mass increase and Lorentz
contraction [MS78; Lau+95] have been studied. Among others, applications for
microwave generation [Nag+83; Kos+01] and amplification [Nag+85; Nor95] based
on flux-flow oscillators have been developed.

Although Josephson vortices host quanta of magnetic flux, only their phase is
quantized. However, they do not behave like quantum particles because both
phase and charge of the vortex commute and hence do not feature Heisenberg’s
uncertainty relation.

The key question is whether and how the Josephson medium can be modified so
that Josephson vortices behave like quantum particles.

1



1 Introduction

Experimentally realized Josephson quantum particles are interesting, as there are
theoretical proposals to explore relativistic quantum sine-Gordon physics [Roy+21],
and quantum coherent excitations in spatially periodic potentials simulating solid-
state models. Moreover, topological solitons would theoretically be auspicious
candidates for superconducting quantum bits [KI96; Wal+00b; KWU02; FU03; SK05;
KD11] with good energy relaxation and coherence properties. These characteristic
time scales are expected to be in the order of hundreds of microseconds [KDP06]
since Josephson vortices are well decoupled from other electromagnetic excitations.
This weak interaction is due to the vortices’ small magnetic dipole moment and
the large capacitance of their hosting long junction that serves as an intrinsic filter
for low-frequency charge noise below the Josephson plasma frequency. Unlike
established superconducting quantum bits, which are all compositions of Josephson
junctions, capacitors, and inductors [VD17; Kra+19], these elements are intrinsically
included in Josephson media, enabling very compact circuits.

All these considerations are theoretical, and the experimental implementation
requires junctions that allow for quantum vortices. The system’s quantumness is
governed in essence by the junction impedance, i.e., depends on the inductance of
the electrodes, the capacitance of the junction, and its width. So far, entering the
quantum regime of Josephson vortices has been experimentally very difficult to
reach [Wal+03b] and the coherent quantum regime of Josephson vortices has not
been realized yet.

The goal of this thesis is the experimental realization of Josephson vortices with
a quantum nature in a distributed junction. To increase the long junction’s quan-
tumness, one needs to enhance its impedance. We use the approach of very narrow
junctions and replace the junction’s usual bulk electrodes with thin films of a
high-kinetic inductance superconductor. With this additional parameter of kinetic
inductance, which exceeds the magnetic contribution by orders of magnitude, the
impedance can be increased beyond the purely geometrical limit.

The thesis continues this introduction with a theoretical background on the prin-
ciples of quantum electrodynamics in superconducting circuits, with particular
attention to long Josephson junctions. Following this, experimental methods for
cooling to cryogenic temperatures, the measurement setups, and the fabrication
techniques developed for impedance-tailored long Josephson junctions are speci-
fied.

In the first part of the experimental results, these high-impedance long junctions
are characterized by transport measurements to observe Josephson vortices in the
presence of high-kinetic inductance electrodes and to check whether the impedance

2



1 Introduction

is increased as intended. In the second results chapter, we investigate a suitable
manipulation and readout scheme to explore quantum coherence, where a classical
long junction is embedded in a microwave resonator. In the third experimental
chapter, we experimentally study whether we can indeed observe Josephson vor-
tices with properties of quantum particles with the chosen approach. Finally, I
summarize the main results and conclude with possible future experiments that
could follow this work.
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2 The principles of quantum
electrodynamics in long Josephson
junctions

This chapter summarizes the theoretical background that supports the understand-
ing of later presented experiments on high-impedance long Josephson junctions
(LJJs). As these tunnel junctions are weak link superconductors, basics of the
superconducting phase are introduced, where I devote special attention to the
kinetic inductance of circuits composed of granular superconductors that is uti-
lized to increase the junction’s impedance. After expounding the fundamentals of
lumped element Josephson junctions that remain valid for distributed versions,
one-dimensional long junctions are elaborated, as experimentally studied through-
out this work. Moreover, superconducting microwave circuits are treated, used as a
novel tool to read out long junctions.

2.1 Basics of superconductivity

The successful liquefaction of helium via the Hampson–Linde cycle by Heike
Kamerlingh Onnes in 1908 [Kam08] opened the research field of low temperatures
solid state physics. This technology paved the way for studying metals’ electrical
resistivity near zero temperature. In 1911, Kamerlingh Onnes discovered the re-
sistance of mercury to drop abruptly to zero below a transition temperature, an
effect he named “superconductivity” [Kam11]. Except for exceeding this critical
temperature Tc, superconductivity also vanishes above a critical magnetic field Hc,
which is also linked with a critical current Ic, generating an intrinsic magnetic field
(Silsbee’s rule).

Among many pure metals, superconductivity occurs also in certain alloys, inter-
metallic compounds, and doped semiconductors and the material specific criti-
cal temperatures Tc range from below 1 mK for elementary rhodium over 1.2 K
and 9.2 K for aluminum and niobium, respectively, up to 139 K for the cuprate
Hg0.8Tl0.2Ba2Ca2Cu3O8.33

1 [Kit05].

1 The given Tc values are no physical limit, but merely the extremes yet known at atmospheric pressure.
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2 The principles of quantum electrodynamics in long Josephson junctions

Beyond the superconductor’s zero DC resistance, Walther Meissner and Robert
Ochsenfeld found an even more fundamental property: Up to a critical magnetic
field, superconductors expel external magnetic fields from their interior regardless
of whether the magnetic field is applied before or after the transition to super-
conductivity [MO33]. This behavior is independent of the path that leads to it,
consequently distinguishing superconductors essentially from ideal conductors and
characterizing them as ideal diamagnets. Explaining these results was elementary
for subsequent phenomenological theories, such as the London theory and the
Ginzburg-Landau theory, and suggested already to explain superconductivity as a
macroscopic quantum effect.

2.1.1 Phenomenological description

For a phenomenological description of the superconductor’s unique electromag-
netic behavior of zero DC resistance and ideal diamagnetism, the brothers Fritz
and Heinz London [LL35] extended the Drude model of normal metals to su-
perconductors within the scope of classical electrodynamics. London’s theory
considers the superconducting state at finite temperatures, consisting of two sepa-
rate, noninteracting fluids, the normal (index j = n) and superconducting (index
j = s) charge carriers with either mass mj, charge qj and mean scattering time t0,j.
Electrodynamics of both fluids is described by the Drude model each

qjE = mj

(
d
dt

+
1

t0,j

)
vj =

mj

njqj

(
d
dt

+
1

t0,j

)
jj (2.1)

and the normal conducting static case results in Ohm’s law E = σnjn with the

normal conductivity σn =
nnq2

nt0,n
mn

. The superconducting state, however, is charac-
terized by zero DC resistance, and thus t0,s → ∞, which is why, the classical Ohm’s
law is replaced by the first London equation

∂js

∂t
=

nsq2
s

ms
E. (2.2a)

Equation (2.2a) is Newton’s second law for superconducting charge carriers and
means that electric fields vanish from the superconductor’s interior in the stationary
state. To examine the magnetic behavior, this first London equation (2.2a) is inserted
in Faraday’s law ∇ × E = − ∂B

∂t and by taking magnetic flux expulsion from
the inside, according to the Meissner-Ochsenfeld effect, into account, the second
London equation is found to be

∇× j = −nsq2
s

ms
B. (2.2b)
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2.1 Basics of superconductivity

These two London equations (2.2a) and (2.2b) can be combined using the electro-
magnetic vector potential A and the London gauge and result in

j =
nsqs h̄

ms
∇θ − nsq2

s
ms

A. (2.2c)

The additional term (∝ ∇θ) in Eq. (2.2c) originates from London’s later derivation
[Lon48] that is based on the postulate of superconductivity as a macroscopic quan-
tum state, described by one single wave function encompassing all superconducting
charge carriers

ψ(r) = ψ0(r)eiθ(r) =
√

ns(r)eiθ(r). (2.3)

The Meissner-Ochsenfeld effect is comprehended by these basic assumptions: By
applying the Maxwell equations to the London equation (2.2c), the magnetic flux
density and current density have to satisfy the differential equations

∇2B = µ0
nsq2

s
ms

B, (2.4a)

∇2j = µ0
nsq2

s
ms

j, (2.4b)

respectively. Within a bulk superconductor, the solution of this second-order dif-
ferential equation describes screening currents underneath the superconductor’s
surface that decay exponential on the length scale of the so-called London penetra-
tion depth

λL =

√
ms

µ0nsq2
s

. (2.5)

In the interior of the bulk superconductor, these screening currents compensate an
applied magnetic field Ha, manifesting ideal diamagnetism with µr = 0.

Apart from explaining zero direct current (DC) resistance and the Meissner-
Ochsenfeld effect of superconductors, the London theory can explain the su-
perconductor’s response to alternating (AC) fields Eac = Eeiωt and consequently
jac = jeiωt. Within the scope of the two-fluid model, the normal conducting and
the superconducting charge carriers exhibit a complex net conductivity [Tin04]

j = jn + js =

 njq2
j t0,j

mj

(
1 + ω2t2

0,j

) − i
njq2

j ωt2
0,j

mj

(
1 + ω2t2

0,j

)
 E =

(
σ1,j − iσ2,j

)
E, (2.6)

where the real part σ1 denotes ohmic dissipation in the normal state, whereas the
imaginary part σ2 accounts for the superconducting charge carrier’s inertia.

7



2 The principles of quantum electrodynamics in long Josephson junctions

2.1.2 Fluxoid and magnetic flux quantization

Due to their macroscopic wave function, which has to be single-valued for in-
tegration along a closed path ∂S [Lon50], Fritz London predicted a “fluxoid”
quantization in multiple connected superconductors. The wave function of Eq. (2.3)
is invariant for phase changes in integer multiples of 2π, such that the closed line
integral of the phase gradient holds∮

∂S
∇θdl = lim

r2→r1

r2∫
r1

∇θdl = lim
r2→r1

[θ(r2, t)− θ(r1, t)] = 2πn, n ∈ Z. (2.7)

Thus, the closed line integral of the London equation (2.2c) yields the fluxoid

Φ′ =
∫

S
BdS + µ0λ2

L

∮
∂S

jdl = n · h
qs

, (2.8)

which is Bohr-Sommerfeld-like quantized in multiples of the superconducting
flux quantum Φ0 = h/qs. In case of bulk superconductors, well inside the super-
conductor, screening currents vanish according to the Meissner-Ochsenfeld effect
and the fluxoid quantization of Eq. (2.8) results in a magnetic flux quantization∫

BdS = Φ = nΦ0. This means that multiple connected superconductors can
merely enclose integer multiples of the superconducting flux quantum Φ0.

Fritz London assumed erroneously qs = −e, but experiments, e.g., by Robert
Doll and Martin Näbauer [DN61] as well as Bascom Sine Deaver Jr. and William
Martin Fairbank [DF61] in 1961, showed the superconducting charge quantum
to be qs ≡ −2e. This supports the idea of Cooper pairs retrospectively, on which
the microscopic BCS theory bases. The superconducting magnetic flux quantum’s
current value in the literature is [Tie+21]

Φ0 ≡ h
2e

= 2.067 833 848 × 10−15 V s. (2.9)

2.1.3 Ginzburg-Landau theory

The previously mentioned observation, that the Meissner-Ochsenfeld effect is ther-
modynamically reversible, reveals that superconductivity is a separate thermody-
namic state. This motivated Witali Lasarewitsch Ginzburg and Lew Dawidowitsch
Landau to describe the superconductor’s second order phase transition by Landau’s
theory of phase transitions [Lan37], extended by the superconductor’s response
to external magnetic fields [LG50; GL09]. The Landau theory relates the system’s
changing properties with its breaking symmetry that is characterized by the oc-
currence of a complex, spatially varying order parameter ψ(r). As per definition

8



2.1 Basics of superconductivity

of second order phase transitions, this order parameter exists exclusively in the
less symmetric phase, approaches zero continuously at the phase transition and
its square turns out to be the superconducting charge carrier density ns. As the
order parameter is small near the phase transition, the free energy without external
magnetic field can be expanded into a symmetric power series

Fs =
∫

fsdV =
∫

fn + αGL|ψ|2 +
βGL

2
|ψ|4 +O

(
|ψ|6

)
dV. (2.10)

Here, fn is the free energy density of the normal conducting state that is assumed to
be constant. The occurrence of superconductivity as the energetically favorable state
below Tc necessitates αGL < 0 and βGL > 0 in order to fulfill the energy lowering
fs < fn at a finite nonzero order parameter (see Fig. 2.1 a)). Then, the equilibrium

states at the local minima, which hold ∂fs
∂|ψ|

∣∣∣
ψ=ψ∞

= 0, yield βGL = − αGL
|ψ∞ |2 with the

order parameter of the spatially homogeneous equilibrium ψ∞.

As superconductors expel external magnetic fields from their interior, their Gibbs
free energy density gs is increased by the magnetic work −

∫
MdBa in the presence

of external magnetic fields. In case of perfect diamagnetism (χm = −1), the mag-
netization is M = −H = −Ba/µ0 and the field expulsion work becomes B2

a/2µ0

[GC34]. The induced currents are further associated with the charge carriers’ kinetic

energy p̂2

2ms
, where p̂ is the canonical momentum −ih̄∇− qsA derived from the

principle of minimal coupling. All in all, for superconductors the Gibbs free energy
density functional reads

gs[ψ, A] = gn + αGL|ψ|2 +
βGL

2
|ψ|4 + 1

2ms
|(−ih̄∇− qsA) ψ|2 + B2

a
2µ0

. (2.11)

The order parameter in the equilibrium is obtained by minimizing the Gibbs
free energy both with respect to variations in the order parameter δψ (while ψ∗

is regarded independently) and the vector potential δA and results in the two
Ginzburg-Landau equations

0 = αGLψ + βGL|ψ|2ψ +
1

2ms
(−ih̄∇− qsA)2 ψ, (2.12a)

js =
qs h̄

2ims
(ψ∗∇ψ − ψ∇ψ∗)− q2

s
ms

ψ∗ψA

=
qs

ms
Re(ψ∗ (−ih̄∇− qsA) ψ). (2.12b)

For homogeneous superconductors, the whole ensemble of superconducting elec-
trons can be treated as macroscopic quantum state with one single wave function

9



2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.1: Ginzburg-Landau free energy and field dependence of the emerging order parameter.
a) Symmetry breaking at the normal to superconducting phase transition. For αGL > 0 the equilibrium
state is characterized by the absence of the order parameter ψ = 0, which is the case for T > Tc, while
the occurrence of a finite order parameter ψ = ψ∞ below T < Tc requires αGL < 0. The resulting
energy lowering (difference of the super- and normal conducting free energy densities fs − fn) can
for instance be suppressed by applied magnetic fields, and thus overcome by exceeding the critical

value Hc =
√

αGL
2

µ0 βGL
. b) The order parameter ψ is suppressed in strong electric fields, which results in a

nonlinear supercurrent density js with a maximal (critical) value jc.

ψ(r) = |ψ|eiθ(r) according to Fritz London’s postulate [Lon48]2 and the supercur-
rent density of Eq. (2.12b) results in

js =
qs

ms
|ψ|2 (h̄∇θ − qsA) = qs|ψ|2vs. (2.13)

The comparison with the London equation (2.2c) identifies the order parameter
to be given by the superconducting charge carrier density |ψ|2 = ns. For weak
perturbation fields, the last two terms of gs in Eq. (2.11) are negligibly small, so
that the thermodynamic equilibrium state emerges in the potential minima at
|ψ| = |ψ∞| =

√
−αGL/βGL, as illustrated in Fig. 2.1 a). In case of strong fields,

however, the superfluid’s kinetic energy 1
2 nsms|vs|2 can no longer be neglected.

Since the kinetic properties of the superconducting charge carriers will be of
particular interest for the experiments in this work, they will be considered in
more detail below. Optimizing the homogeneous order parameter of the Ginzburg-
Landau Gibbs free energy

gs[ψ, A] = gn + αGL|ψ|2 +
βGL

2
|ψ|4 + 1

2
ms|vs|2|ψ|2 +

B2
a

2µ0
(2.14)

2 This assumption was justified by means of microscopic BCS theory by Lev Petrovich Gor’kov [Gor59].
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2.1 Basics of superconductivity

yields |ψ|2 = |ψ∞|2
(

1 − ms|vs|2
|αGL|

)
[Tin04] and consequently a nonlinear supercur-

rent density js = qs|ψ|2vs by inserting in Eq. (2.13). Figure 2.1 b) shows both the
reduced charge carrier densities with increased superfluid velocities vs. Depairing
thermodynamically is thus favored, and the maximum supercurrent density is

reached for |αGL| = 3msv2
s

2 . This means that there is a maximal (critical) current
density

jc =
2
3

qs|ψ∞|2vc (2.15)

above which superconductivity collapses. With the corresponding critical velocity
vc, the supercurrent density results in

js = |ψ∞|2qsvs

(
1 − |vs|2

3v2
c

)
. (2.16)

As mentioned above, the second Ginzburg-Landau equation (2.12b) corresponds
to the London equation (2.2c) with the characteristic London penetration depth
in the case of a homogeneous superconducting charge carrier density, and thus
order parameter. Furthermore, the Ginzburg-Landau theory exhibits a second
characteristic length scale of superconductors, on which ψ(r) may vary spatially.

In the absence of magnetic fields and for small order parameters, e.g., near Tc,
the O

(
|ψ|2ψ

)
term is negligible and the first Ginzburg-Landau equation (2.12a)

becomes ∇2ψ = 2ms|αGL|
h̄2 ψ. This means that small perturbations δψ decay exponen-

tially on the characteristic length scale, the so-called Ginzburg-Landau coherence
length

ξGL =

√
h̄2

2ms|αGL|
. (2.17)

These two length scales, the coherence length ξGL and the London penetration
depth λL, are main results of the Ginzburg-Landau theory and important quan-
tities to describe the different properties of superconductors. For instance, the
ratio λL/ξGL defines whether superconductivity collapses abruptly above one
critical magnetic field Hc (type-I superconductor with λL/ξGL ≤ 1/

√
2) or the

superconductor allows magnetic flux to penetrate partially above the first critical
field Hc1 and becomes completely normal conducting not until the second critical
field Hc2 > Hc1 (type-II superconductor with λL/ξGL > 1/

√
2). In the so-called

Abrikosov or Shubnikov phase between Hc1 and Hc2 of the latter case, flux quanta
with normal conducting cores get in the superconductor, and thus make for imper-
fect diamagnetism (−1 < χm < 0) [DP19]. This second critical field can exceed the
first critical field by orders of magnitudes [MW18].
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2 The principles of quantum electrodynamics in long Josephson junctions

The phenomenological Ginzburg-Landau theory covers the superconductor’s
unique behavior, namely electrodynamics and thermodynamics, using a macro-
scopic wave function of conduction electrons. However, it provides neither a mi-
croscopic explanation of their origin nor of the occurrence of superconductivity in
general.

2.1.4 Microscopic Bardeen-Cooper-Schrieffer theory

The microscopic theory of superconductivity by John Bardeen, Leon Neil Cooper
and John Robert Schrieffer (BCS) heralded a breakthrough in basic understanding
of superconductivity. This theory is founded on a boson-like ground state of con-
densed, paired conduction electrons originating from an attractive electron-electron
interaction, as it would not be possible for single electrons according to the Pauli
exclusion principle [Tin04; Sch19; DP19]. Despite the repulsive Coulomb interaction
between two isolated electrons, a virtual phonon can mediate a net attractive inter-
action in the solid body of conventional superconductors.3 This counterintuitive
exchange mechanism is inspired by evidencing the isotope effect of superconduc-
tors [Max50; Rey+50; Frö50; Bar50], whose transition temperature depends on the
isotope mass as Tc ∝ 1/

√
mu and therefore on the phonon frequency. Since phonon

energies are limited to the Debye frequency h̄ωD, the interaction happens between
the Fermi energy EF and EF + h̄ωD and is most effective for electrons with opposite
momentum and spin |k ↓,−k ↑⟩. 4 The energy of these two electrons, a so-called
Cooper pair, is lowered by approximately [Tin04]

∆E ≈ −2h̄ωDe
− 2

Nn(EF)V (2.18)

compared to two “free” electrons of energy 2EF. The Hamiltonian of the whole
ensemble of superconducting electrons in the volume V holds

HBCS = ∑
k,σ

εk ĉ†
k,σ ĉk,σ + ∑

k,k′

gk,k′

V
ĉ†

k′ ,↑ ĉ†
−k′ ,↓ ĉ−k,↓ ĉk,↑, (2.19)

where ĉ†
k,σ and ĉk,σ denote electron’s creation and annihilation operators, respec-

tively.5 The first term represents the electron’s kinetic energy εk = h̄2k2

2m − µ with

3 It should be noted that this net attractive interaction does not necessarily need to be mediated by a
virtual phonon. This is only the case for “conventional” superconductors, but for instance Tc ≳ 90 K
of high-temperature superconductors cannot be explained by a phononic interaction [Czy17].

4 These singlet s-wave Cooper pairs with zero total spin and orbital angular momentum S = L = 0 are
the simplest case, but for instance singlet d-wave Cooper pairs characterize high Tc superconductors
[SB07; BK03; BK04].

5 These fermionic creation and annihilation operators fulfill the typical commutation rules{
ĉk,σ , ĉ†

k′ ,σ′

}
= δk,k′ δσ,σ′ and

{
ĉ†

k,σ , ĉ†
k′ ,σ′

}
=
{

ĉk,σ , ĉk′ ,σ′
}
= 0.

12



2.1 Basics of superconductivity

the chemical potential µ. The Cooper pairing mechanism in the second term is
described by the attractive interaction gk,k′ of two electrons that are scattered
from momentum ±k to ±k′. These Cooper pairs typically extend over a range of
100 nm–1000 nm, overlapping with ∼ 109 Cooper pairs. Therefore, the interaction
among Cooper pairs can be considered as interaction with a Cooper pair mean-field
∆k = − 1

V ∑k′ gk,k′
〈
ĉ−k′ ,↓ ĉk′ ,↑

〉
[Tin04; Czy17].

Moreover, the many-particle wave function describing the superconducting system
simplifies in the mean-field approximation to [Tin04; Sch19]

|ΨBCS⟩ = ∏
k

(
uk + vk ĉ†

k,↑ ĉ†
−k,↓

)
|Ψ0⟩ = ∏

k

(
|uk|+ |vk|eiθ ĉ†

k,↑ ĉ†
−k,↓

)
|Ψ0⟩ . (2.20)

Here, |vk|2 denotes the probability of the singlet pair |k ↓,−k ↑⟩ being occupied,
|uk|2 = 1 − |vk|2 the probability being unoccupied, respectively. The coefficients
uk, vk ∈ C can be chosen as uk = |uk| and vk = |vk|eiθ , since the creation operator
ĉ†

k,↑ ĉ†
−k,↓ creates one Cooper pair with a certain phase eiθ from the vacuum state

|Ψ0⟩. This reveals that the BCS ground state is a coherent many-particle state
in which all Cooper pairs are in a single common quantum state. Due to the
long-range coherence of the BCS ground state, superconductors can effectively be
described by the macroscopic wave function of Eq. (2.3), as postulated by London
[Lon48] and assumed in the Ginzburg-Landau theory (see Sec. 2.1.3).

As can be seen in the BCS-Hamiltonian of Eq. (2.19), electrons are created and
annihilate in pairs exclusively, so that their creation and annihilation operators
need to be decoupled from each other by means of a linear transformation, the
so-called Bogolyubov-Valatin transformation. The new fermionic operators [BTŠ58;
Val58] are given by(

γ̂k,↑
γ̂†
−k,↓

)
=

(
uk −vk

v∗k u∗
k

)(
ĉk,↑

ĉ†
−k,↓

)
⇔
(

ĉk,↑
ĉ†
−k,↓

)
=

(
u∗

k vk

−v∗k uk

)(
γ̂k,↑

γ̂†
−k,↓

)
. (2.21)

In case of phonon mediated singlet s-wave Cooper pairs, the attractive electron
interaction gk,k′ is bound to the Debye energy around the Fermi surface and is
further isotropic [Col15], such that

gk,k′ =

{
−g, |εk|, |εk′ | ≤ h̄ωD

0, otherwise
∆k =

{
∆, |εk| ≤ h̄ωD

0, otherwise
. (2.22)

The diagonalized effective BCS-Hamiltonian finally holds

Heff
BCS = ∑

k,σ
Ekγ̂†

k,σγ̂k,σ + ∑
k
(εk − Ek) +

V∆2

g
. (2.23)
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2 The principles of quantum electrodynamics in long Josephson junctions

The second and third term in Eq. (2.23) denote the constant energy gained due to
the creation of Cooper pairs (condensation energy). The introduced energy

Ek =
√

ε2
k + |∆|2 (2.24)

emphasizes that ∆ manifests as a gap in the superconductor’s energy spectrum
even at the Fermi level, where εk = 0. This energy gap and the macroscopic wave
function are the reason for the superconductor’s vanishing DC resistance up to the
critical current, since the absence of free states does not allow for scattering with
an equivalent energy transfer less than 2∆. The size of the superconducting energy
gap varies among different materials and at absolute zero temperature is given by

∆0 =
h̄ωD

sinh
(

1
N (EF)g

) ≈ 2h̄ωDe
− 1

Nn(EF)g = πe−γkBTc ≈ 1.764kBTc (2.25)

with Euler’s constant γ ≈ 0.5772. Equation (2.25) explains the superconducting
isotope effect since the superconductor’s gap energy is both directly proportional
to its critical temperature Tc and the Debye frequency.

Excitations that exceed the minimum energy of 2|∆| break a Cooper pair into
two Bogoliubov quasiparticles, as described in the first term of Eq. (2.23) by the
operators γ̂k,σ.6 The quasiparticles’ density of states, as visualized in Fig. 2.2 a),
results in [Tin04; Kit05]

Nqp(Ek) =
V

(2π)3

∫
E=const

dSk

|∇kEk|
= Nn(EF)

Ek√
E2

k − ∆2
Θ(Ek − ∆) (2.26)

with the normal conducting density of states at the Fermi level Nn(EF) =
m|kF|
2π2 h̄2 .

From the quasiparticles’ density of states, a band diagram can be deduced that fea-
tures no contribution of quasiparticles to the conductance at zero temperature and
a thermally populated conductance band above the gap for finite temperatures.7

6 It is conspicuous that the operators couple electrons and holes, which is why these new fermions are
called quasiparticles.

7 Cooper pairs at the Fermi energy EF might be confusing since their energy is lowered by the
superconducting gap according to Eq. (2.18). In the picture of band diagrams that illustrate fermionic
densities of states and possible gaps, the boson-like Cooper pairs that condensate in a common
ground state can not be included in the same manner. To illustrate transport properties, however, a
combined band diagram of Cooper pairs and their quasiparticle excitations is useful. First, the Fermi
energy in superconductors at zero temperature is above a fully occupied band and below an empty
band because there is no fermionic conductance band. Small changes within this gap do not change
the superconducting behavior, so they can be considered fermionic insulators. However, they show
perfect conductivity but carried by boson-like Cooper pairs. Second, the energy 2∆ is required to
excite two quasiparticles, which were not in any other fermion states of the density of states before.
Thus, Cooper pairs are below the lower edge of the upper unoccupied valence band by ∆.
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2.2 Granular high-kinetic inductance superconductors

Figure 2.2: Quasiparticle density of states and the deduced superconductor’s band structure. a) The
quasiparticle density of states shows a superconducting gap of size 2∆ around the Fermi level, where
there are no states available. However, near above the gap, far more states are possible compared to
the normal conducting case, whose value Nn(EF) is approached far above the gap. b) Against this
backdrop, a band diagram can be designed for superconductors, which is a useful concept to describe
the transport behavior of coupled superconductors such as the Josephson effect [NSS60; KW19].

2.2 Granular high-kinetic inductance
superconductors

For the design of superconducting circuits, the basic components, namely resistors,
capacitors, and inductors, need to be known. As superconductors stand out be-
cause of their zero DC resistance, resistors rather appear from normal conducting
quasiparticles. Capacitors are dominated by their dielectric, and thus are not influ-
enced by superconducting electrodes. However, the inductance of superconducting
devices may feature additional terms compared to common normal conductors,
which are addressed in this section.

2.2.1 Kinetic inductance

Like any other current-carrying conductor, superconducting strip lines exhibit a lin-
ear geometric inductance Lg, which depends on their actual shape and dimensions
and stores energy in the surrounding B-field 1

2µ0

∫
B2dV = 1

2 Lg I2. This magnetic
energy, however, is not the entire energy that is carried by the electric current since
moving charge carriers themselves naturally hold kinetic energy 1

2

∫
nsms|vs|2dV.

15



2 The principles of quantum electrodynamics in long Josephson junctions

As current I and charge carrier velocity are proportionally to the first order, the
kinetic part contributes to the total inductance, too. In normal conductors, the
magnetic due exceeds the kinetic due by orders of magnitudes, except for very
high frequencies f ≳ 1013 Hz [SMU97]. In thin superconducting strips or films,
however, charge carriers can gain kinetic energies comparable or exceeding the
magnetic energy even for f → 0 because of the substantially higher charge carrier
mobility [Ann10].

The fact that the energy, associated with a kinetic inductance, is spatially confined
to the superconductor’s interior leads to a material specific constant inductivity
and a constant inductance per unit square for thin homogeneous films of fixed
thickness d. In the latter case, the element’s total inductance kinetic inductance
L□

k = Lk/N□ scales with its number of squares N□ = l/w, where l and w denote
its length and width, respectively. In contrast, geometric inductances couple to
the surrounding magnetic fields and depend on the element’s actual shape and
dimensions but not on its material. This is why the geometric inductance is usually
referred to the constant inductance in terms per unit length L′

g = Lg/l.

By definition, the inductance relates the change in current through and the voltage
drop across an element as El = Lk

dIs
dt = L□

k
l
w wd djs

dt . The electric field E, in turn,

accelerates the superfluid qsE = dps
dt = ms

dvs
dt to increases its momentum ps =

msvs. This leads to the kinetic square inductance of a superconductor [MT69;
CHS71; ASB89]

L□
k =

|E|
d

(
d|js|

dt

)−1
=

ms

qsd
d|vs|

dt

(
d|js|

dt

)−1
=

ms

qsd

(
djs
dvs

)−1
. (2.27)

As already discussed as part of the Ginzburg-Landau theory in Sec. 2.1.3, the
homogeneous supercurrent density is described by the London theory js = nsqsvs

with ns = |ψ|2 = |ψ∞|2 in the simplest case of thin superconducting films in weak
perturbating fields [Tin04] and therefore the kinetic square inductance results in

L□
k (0) =

ms

nsq2
s

1
d
= µ0

λ2
L

d
. (2.28)

In case of strong perturbations, however, the js(vs) dependence becomes nonlinear,
as given in Eq. (2.16) and calculating the kinetic square inductance of Eq. (2.27)
results in [ASB89]

L□
k (vs) =

ms

|ψ∞|2q2
s d
(

1 − v2
s

v2
c

) = L□
k (0)

(
1 − v2

s
v2

c

)−1

. (2.29)

To use the more measurable quantities, supercurrent and critical current density,
js(vs) needs to be inverted along its stable branch. The Eqs. (2.15) and (2.16) relate
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2.2 Granular high-kinetic inductance superconductors

Table 2.1: Properties of several high-kinetic inductance superconductors. The kinetic sheet inductance
L□

k is both affected by critical temperature Tc as a measure of the superconducting gap energy and the
normal state resistivity ρn according to Eq. (2.32). These quantities are reported from several circuits
made from different high-kinetic inductance superconductors with comparable thicknesses.

material ρn

(µΩ cm)

Tc

(K)

L□
k

8

(pH sq−1)

references

NbN ∼1000 ∼7.2 ∼80 [NBB19; Gra+08; Luo+14]
TiN ∼450 ∼3.0 ∼235 [Led+10; She+18; Swe+13; Vis+10]

NbTiN ∼200 ∼9.3 ∼35 [Bar+10; Sam+16; Haz+19]
MoGe ∼220 ∼6.0 ∼45 [Dau+21; Bol+08]
AlOx ∼6000 ∼1.6 ∼2000 [Rot+16]

js
jc

= 3vs
2vc

− v3
s

2v3
c

and for small bias currents, where only the first order term is
considered, the kinetic square inductance is approximated to [ASB89]

L□
k (js) ≈

L□
k (0)

1 −
(

2js
3jc

)2 ≈ L□
k (0)

(
1 +

(
2js
3jc

)2
+

(
2js
3jc

)4
+O

(
j6s
))

. (2.30)

Apart from this bias dependence, L□
k (0) ∝ n−1

s strongly depends on the temperature
since the superfluid density vanishes at the phase transition at T → Tc. The exact
temperature dependence is individual for different superconductors [Tin04], but

can be approximated by the Gorter-Casimir two-fluid model ns(T)
ns(0)

= 1 −
(

T
Tc

)4
.

Finally, the kinetic square inductance is given by

L□
k (T, js) = L□

k (0)
1

1 −
(

T
Tc

)4

(
1 +

(
2js
3jc

)2
+

(
2js
3jc

)4
+O

(
j6s
))

. (2.31)

In any superconductor, the kinetic inductance diverges close to Tc, where order
parameter approaches zero, and plays an important role for any superconductor. At
low temperatures far below Tc, kinetic inductance is only relevant in superconduc-
tors with small superfluid densities. This can be explained descriptively as follows:
By driving a given bias current, less participating superconducting charge carri-
ers are accelerated to antiproportionally faster velocities and their kinetic energy
thus increases quadratically, such that the kinetic energy of the whole superfluid
increases antiproportionally to ns.

8 at a film thickness of d = 20 nm
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2 The principles of quantum electrodynamics in long Josephson junctions

2.2.2 Mattis-Bardeen theory of granular superconductors

Due to their suppressed superfluid density, granular superconductor devices are
propitious to achieve large values of kinetic inductance. In order to describe the ki-
netic inductance of circuits made from granular superconductors by means of their
normal conducting properties, it is worth to look at kinetic inductance from another
perspective of AC circuit analysis. The superconductor’s AC response exhibits
a negative susceptance Im

(
Z−1) ∝ σ2 (see Sec. 2.1.1), which corresponds to an

inductance that accounts for the superfluid’s inertia. Hence, the superconductor’s
complex admittance σs = σ1 − iσ2 defines its impedance by σs

wd
l = 1

Z = 1
R+iωLk

.
Considering the superconductor’s vanishing DC resistance, its impedance is exclu-
sively given by its kinetic inductance |Z| = ωLk, such that this kinetic inductance
results in L□

k = 1
ω Im(σs)d

.

In the local (l0 ≪ λL), dirty (l0 ≪ ξ) and low-frequency limit (h f ≪ kBT) this
imaginary superconductivity Im(σs) is related to the real normal state conductivity
σn by the Mattis-Bardeen theory as Im(σs)

σn
= π∆(T)

h f tanh
(

∆(T)
2kBT

)
. [MB58; Tin04].

Thus, the kinetic sheet inductance

L□
k =

1
ω Im(σs)d

=
h̄R□

n
π∆(T)

coth
(

∆(T)
2kBT

)
T→0−→ h̄R□

n
π∆(0)

(2.32)

is directly linked to the normal sheet resistance σn = ρ−1
n = (Rndw/l)−1 =(

R□
n d
)−1. To reach large kinetic inductance values, superconductor with small

superconducting gaps (∝ Tc) and large normal state resistances are preferred. An
incomplete compilation of different popular granular superconductors as well as
their kinetic inductance values is given in Tab. 2.1.

2.3 Superconducting microwave circuits

Nowadays, superconducting quantum circuits are commonly manipulated and
read out in the microwave regime [Gu+17]. Unlike the DC measurement scheme,
RF coupling can prevent galvanic contacts to the environment that would be
a substantial decoherence channel. Thereby, microwave resonators are used as
suitable detectors for coupled quantum systems since their resonant frequency
shifts dispersively depending on the quantum state of the coupled system [Bla+04;
Wal+04].
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2.3 Superconducting microwave circuits

2.3.1 Scattering matrix of a microwave network

A common technique of electrical engineering to describe a microwave signal’s
interaction with any circuit, representing an n-port network, is an n × n complex
scattering matrix, which relates the complex output and input voltage at port i and
port j by [Poz11]

Sij =
Vout

i
Vin

j

∣∣∣∣∣
Vin

k =0,k ̸=j

. (2.33)

This means that Sii denotes the reflection coefficient of the port i, whereas Sij is
the transmission coefficient from port j to i. Throughout this work, microwave
spectroscopy is done at a two-port network, as illustrated in Fig. 2.3 a), given by9(

Vout
1

Vout
2

)
=

(
S11 S12

S21 S22

)(
Vin

1
Vin

2

)
⇔ Vout = SVin. (2.34)

In the present experiments, both ports are connected with a continuous transmis-
sion line, whose characteristic impedance is typically terminated to Z0 = 50 Ω, and
this transmission line is shunted to ground by a load with an arbitrary impedance
Zl (see Fig. 2.3). For this so-called notch-type configuration of a parallel scatterer,
Kirchhoff’s laws yield the scattering matrix [Poz11; Bra18]

Snotch =


(

1 + 2Zl
Z0

)−1 (
1 + Z0

2Zl

)−1(
1 + Z0

2Zl

)−1 (
1 + 2Zl

Z0

)−1

 . (2.35)

To give a vivid description, the abrupt impedance mismatch in the transmission
line due to the external load yields a part of the incident signal being reflected
and the other part being transmitted. Thereby, complete reflection is obtained for
Zl → 0, complete transmission for Zl → ∞, whereas the signal is split in equal
parts in case of Zl = Z0/2.

2.3.2 Superconducting microwave resonators

One of the simplest loads featuring quantized excitations are quantum harmonic
oscillators in the form of RLC-circuits. In this work, such RLC-resonators are
coupled to a microwave feedline on the one hand and to long Josephson junctions

9 The matrices ST = S of the circuits studied in this work are symmetric, which means that interchang-
ing the ports 1 and 2 will not vary the system’s behavior. The whole measurement setup where these
samples are embedded, however, include active components (amplifiers) and ferrites (isolators) that
break the time reversal symmetry so that the S-matrix is no longer symmetric.
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.3: Schematic of a half-wavelength notch-type resonator embedded in a two port-network.
a) The particular notch-type configuration consists of an LC transmission line with specific impedance
Z0 =

√
L/C that is shunted to ground via a load with impedance Zl. In the present case, this load is a

terminated transmission line whose two open ends define a distributed λ/2 resonator. The two-port
network of this assembly is characterized by relating the incident and scattered microwaves at both
ports of the transmission line. The coupling between feedline and resonator is assumed to be capacitive
with loss rate κc and the resonator itself has an internal linewidth κi. b) As a schematic circuit, the
infinite transmission line is modeled as an inductive waveguide that is capacitively shunted to ground.
The distributed RLC-resonator has a well-defined length, whose impedance mismatch at the open ends
forms a resonating cavity.

on the other hand to investigate single photon excitations in these junctions. In
order to probe these extended junctions, open-ended distributed λ/2 resonators
are suitable since their current distribution is defined by the excited mode. In the
center part of the resonator, λ/2 resonators exhibit current nodes and antinodes for
odd and even harmonics, respectively, that probe the junctions differently. A λ/2
resonator itself is formed from a waveguide of a certain length l, which constrains
resonating wavelengths to integer multiples of λ/2. Neglecting the frequency shift
induced by the coupling capacitors, the resonant frequency of the nth harmonic of
a λ/2-resonator holds

ωr
n = n · ωr

1 = n · 1
2l
√

L′C′
. (2.36)

The fundamental frequency ωr
1 depends on the inductance per unit length L′ and

capacitance per unit length C′. Since this quantity does not account for dissipation,
quality factors are introduced, describing the ratio between the total energy stored
in the resonating system Etot and the energy dissipated per cycle Ediss = Ploss/ωr.

Q = ωr Etot

Ploss
=

ωr

κ
. (2.37)
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2.3 Superconducting microwave circuits

Here, κ denotes the inverse photon lifetime in a linear resonator, meaning that the
excited resonator decays into its ground state at a rate κ/2. In the frequency domain,
κ corresponds to the full width at half maximum of a resonator’s Lorentzian shaped
amplitude signal. For the whole load, there are two main loss channels: an internal
due originating in ohmic dissipation and dielectric losses and a coupling due to
other systems as e.g., the transmission line. For that reason, the total quality factor
of the whole load Ql composes of an internal quality factor Qi and a coupling
quality factor Qc. Since decay rates κ add linearly, the loaded quality factor is given
by

Q−1
l = Q−1

i + Q−1
c κl = κi + κc. (2.38)

In the notch-type configuration, the load’s frequency-dependent input impedance
can be expressed in terms of the internal and coupling quality factor as well as the
frequency detuning from the resonant frequency [Bra18]

Znotch
in (ω) = Z0

(
Qc

2Qi
+ iQc

ω − ωr

ωr

)
. (2.39)

The S-parameters of ideal notch-type resonators can be found by inserting Eq. (2.39)
into Eq. (2.35). Since the scattered signal propagates to both ports, S11 + S21 = 1
holds. In the following only S21 is treated since this is the later measured matrix
entry and as it implies S11 = 1 − S21. The complex signal is usually given in the
polar form with amplitude and phase

Snotch
21 =

(
1 − Ql/Qc

1 + 2iQl
ω−ωr

ωr

)
= 1 − S11, (2.40a)

∣∣∣Snotch
21

∣∣∣2 = 1 − 1 − (Ql − Qc)
2 /Q2

c

1 + 4Q2
l

(
ω−ωr

ωr

)2 , (2.40b)

arg
(

Snotch
21

)
= − arctan

(
2Ql

ω − ωr

ωr

)
− arctan

(
2QlQc

Ql − Qc

ω − ωr

ωr

)
. (2.40c)

Figure 2.4 shows both the complex plane, the amplitude, and the phase of S21 of a
notch-type resonator. In the complex plane, the S21-parameter manifests as a circle
with diameter Ql/Qc around the center, located at 1 − Ql/2Qc. The Lorentzian
shaped squared amplitudes |S21(ω)|2 correspond to the Fourier transform of an
exponential decay in the time domain and exhibit a full width at half maximum
of κl. As can be seen in Fig. 2.4, the interplay of Qi and Qc plays a key role in the
response of resonating systems that are usually categorized in three cases:

• under-coupled (Qi < Qc): Here, most of the energy is lost internally resulting
in a weak signal both in amplitude and phase, and thus in a circle with a
small diameter and a large distance from the origin
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.4: S21-parameter of a notch-type resonator for different coupling regimes. a) In the complex
plane, frequency sweeps around the resonant frequency feature circles, starting and ending at the
off-resonant point S21 = 1. The the diameter of the circle increases with the ratio of Qi/Qc and tends to
1 for Qi/Qc → ∞ (dashed). b) The squared amplitude shows Lorentzian dips, the deeper the larger
Qi/Qc and c) the phase signal maximally rolls off from −π/2 to π/2 for Qi/Qc → ∞.

• critically coupled (Qi = Qc): Here, half the energy is lost internally and the
other half by coupling such that the amplitude on resonance equals |S21| = 0.5
(−6 dB)

• over-coupled (Qi > Qc): Here, most of the energy is lost during coupling,
resulting in the strongest signals with maximal diameter 1, zero transmission
amplitude and a phase roll-off from −π/2 to π/2.

The complex-valued S21 data are experimentally acquired with the two-port vector
network analyzer (VNA) and analyzed with a circle-fit routine (see Fig. 2.5), which
provides values for the quality factors Ql, Qi, and Qc [Pro+15]. For this purpose,
Eq. (2.40) for an ideal notch-type resonator is adapted to the experimental setup.
The environment is considered by an overall factor aeiα0 e−iωτel that includes at-
tenuation and amplification of the whole signal a, a global phase offset α0, and
a cable delay τel denoting the signal’s traveling time through the setup. Possible
impedance mismatch is further taken into account by an asymmetry angle ϕZ that
rotates the circle’s center around the origin. This means that the resonance point is
no longer on the real axis of the complex plane and the squared amplitude does
not follow a clean Lorentzian. Having regard to these corrections, the transmission
coefficient holds [Kha+12; Pro+15; Sch20]

Snotch
21 = aeiα0 e−iωτel

(
1 − Ql/QceiϕZ

1 + 2iQl
ω−ωr

ωr

)
. (2.41)
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2.3 Superconducting microwave circuits

Figure 2.5: Measured and fitted S21-parameter of a notch-type resonator. a) In the complex plane,
the circle is rotated around the origin by the angle ϕ, which accounts for impedance mismatches.
b) This further manifests in the asymmetrically distorted Lorentzian amplitude, whose right shoulder
exceeds the left one. All the amplitudes are offset corrected by a global factor including attenuation
and amplification of the measurement setup. c) The phase signal is shifted by the electrical delay and a
global phase offset of the setup. The circle fit routine [Pro+15] yields the quality factors Ql ≈ 51300,
Qc ≈ 64400, and consequently Qi ≈ 250500.

Power dependence of high-kinetic inductance microwave resonators

Microwave resonators with a substantial kinetic inductance feature significant
power dependence. On the one hand, the resonant frequency, given in Eq. (2.36)
is dominated by the nonlinear kinetic inductance of Eq. (2.30) and consequently
power-dependent, too. Thereby, the relevant scale is the induced current flowing
through the resonators with respect to the superconductor’s critical current Ic. This
nonlinear resonant frequency also affects the whole S21 spectra for high powers on
the other hand: While sweeping the probe frequency close to and even through
the initial resonance, the resonator becomes more and more excited, which in turn
increases the kinetic inductance, and thus lowers the effective resonant frequency
[Swe+13]. This behavior is often called “bifurcation” and exhibits interrupted
circles in the complex plane and abrupt jumps in amplitude and phase, as shown in
Fig. 2.6. As a consequence, the S21-parameter that is analytically given in Eq. (2.40)
is only valid for small probe powers, meaning few photons in the resonator.

The average photon number is a suitable power scale, especially with regard to
quantum systems, interacting with single photons. Therefore, the total energy
in the definition of the internal quality factor Qi of Eq. (2.37) is considered as
Etot = ⟨nphoton⟩ h̄ωr. In the notch-type configuration, the power lost in the system
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.6: Power dependence of high-kinetic inductance microwave resonators. The resonance fre-
quency of devices with dominating nonlinear kinetic inductance strongly depends on the drive power
until the resonance vanishes. This entails bifurcating S21 spectra, featuring a discrete jump both in
amplitude and phase as well as a discontinuous circle in the complex plane. The given powers bear on
the feedline to which the notch-type resonator couples.

can further be related to the input power and the reflection and transmission
coefficients Ploss = Pin − Pout = Pin

(
1 − |S11|2 − |S21|2

)
. On resonance (ω = ωr),

the S-parameters of Eq. (2.40) become S21(ω
r) = 1 − S11(ω

r) = 1 − Ql
Qc

and in
consequence, the average photon number in a notch-type resonator holds [Sch20]

⟨nphoton⟩ =
2Pin

h̄ωr2
Q2

l
Qc

. (2.42)

2.3.3 Coupled resonant systems

The load, coupled to the transmission line in notch-type configuration, as illus-
trated in Fig. 2.3, naturally can not only consist of one microwave resonator, but
also of two or even more coupled resonating systems. Such arrangements are
of particular interest, if the individual resonant frequencies may be tuned by an
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2.3 Superconducting microwave circuits

Figure 2.7: Avoided level crossings of two coupled resonant systems with constant coupling strength,
but different dispersion relations. If the two individual systems are strongly detuned, they are mostly
unaffected by the other, such that their resonant frequencies are shifted only weakly. The closer to bare
eigenfrequencies (dashed gray lines) come to each other, the larger the new eigenfrequencies (solid
lines) repel each other. Where both bare frequencies would coincide, the frequency difference ω+ − ω−
takes its minimal value of 2g.

external parameter, as for instance by magnetic or electric fields, such that their
bare resonant frequencies would cross each other. However, if the systems can
exchange energy at a constant rate g, their oscillation modes will hybridize when
their resonance frequencies are close,

∣∣ωr,1 − ωr,2
∣∣ ∼ g. The interplay between these

two coupled systems, each oscillating with aj(t) = ajeiωr,jt, is described by the
eigenvalue equation [Nol18](

ω − ωr,1 g
g ω − ωr,2

)
·
(

a1(t)
a2(t)

)
= 0 (2.43)

and results in the new eigenfrequencies

ω± =
ωr,1 + ωr,2

2
±

√
(ωr,1 − ωr,2)

2
+ 4g2

2
. (2.44)

These solutions are schematically depicted in Fig. 2.7 and reveal an avoided level
crossing, also called “anticrossing”.

The approach of Eq. (2.43) provides merely information about the eigenfrequencies,
but not on the whole spectra including all specific linewidths. Within the scope
of the input-output theory [GC08], the S21-parameter of a resonant system with
bare frequency ωr,2 and internal linewidth κi,2, coupled to a notch-type resonator
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Figure 2.8: Calculated S21 spectra of avoided level crossings at different internal quality factors. The
first resonator is chosen to be critically coupled, its linewidths are kept fixed at κi,1/2π = κc/2π =

10 MHz, and the coupling strength between both systems remains constant at g/2π = 50 MHz, too.
From left to right, both amplitude and phase signal blur out, during the transition from strong to weak
coupling by increasing the internal linewidth of the second resonator κi,2.

(coupling constant 2g) with its resonant frequency ωr,1, internal, and coupling
linewidth κi,1 and κc

10 is given by [Sar+15]

S21(ω) = 1 − κc

2i (ω − ωr,1) + (κc + κi,1) +
4g2

2i(ω−ωr,2)+κi,2

. (2.45)

Both amplitude and phase of the S21-parameter are plotted in Fig. 2.8 depending
on the internal linewidth of the second resonator κi,2. In the case of strong coupling
κi,2 < g (left), the two new eigenfrequencies are clearly visible and correspond
to Eq. (2.44), but the avoided level crossing becomes more and more indistinct
with increasing losses in the second system. In this case of weak coupling, the
second resonator is nothing but an additional loss channel for the first one since
its excitation decays faster than it can couple back to the first resonator. This
mechanism further accounts for the line widening of the first resonator in case of
weak coupling (right).

10 Note that all linewidths κ are defined as full width at half maximum, whereas the coupling constant
g is the half width at half maximum for reasons of convention.
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2.3.4 Coherence and relaxation properties of a two-level
system

In general, not only two harmonic systems, but any kind of resonant system can
be coupled to a harmonic oscillator. In particular, superconducting resonators are
widely used as detectors for coupled quantum systems and to read out their state.
In the simplest case, such a circuit is an effective two-level system comparable
to a spin 1/2 particle, having a ground state |0⟩ = (0, 1)T and an excited state
|1⟩ = (1, 0)T orthogonal to |0⟩. Thus, every possible state of this “quantum bit”,
often abbreviated as “qubit”, can be expressed as a superposition thereof [Kra+19]

|Ψ⟩ = a |0⟩+ b |1⟩ . (2.46)

Since |Ψ⟩ is normalized to ⟨Ψ |Ψ⟩ = 1, the complex amplitudes must hold |a|2 +
|b|2 = 1, where |a|2 and |b|2 describe the probabilities that the system is in the
ground and excited state, respectively. The global phase of |Ψ⟩ has no physical
meaning, so a ∈ R can be chosen to be real-valued. In spherical coordinates with
the azimuth angle θ and the polar angle ϕ, an arbitrary state reads [Kra+19; Sch20]

|Ψ⟩ = cos
(

θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ . (2.47)

and is on the surface of a sphere, the so-called Bloch sphere [Blo46]. For historical
reasons, |0⟩ is aligned in positive and |1⟩ in the negative z-direction. In this picture,
any qubit operation can be described as linear combination of the Pauli matrices σ̂x,
σ̂y, and σ̂z that correspond to rotations of π around the respective axis. For example,
creation and annihilation operators that excite the ground state σ̂+ |0⟩ = |1⟩ and
deexcite the excited state σ̂− |1⟩ = |0⟩ can be defined as

σ̂± =
1
2
(
σ̂x ± iσ̂y

)
. (2.48)

In terms of the qubit transition energy E01 = h̄ω01, the qubit Hamiltonian is given
by

Hqubit =
h̄ω01

2
σ̂z. (2.49)

The time evolution of the pure qubit state given in Eq. (2.47) is governed by

|Ψ(t)⟩ = Û (t, t0) |Ψ(t0 = 0)⟩ = exp
(
− i

h̄
Hqubit · (t − t0)

)
|Ψ(t0 = 0)⟩

= cos
(

θ

2

)
|0⟩+ ei(ϕ−ω01t) sin

(
θ

2

)
|1⟩ , (2.50)

using the time evolution operator Û and the qubit Hamiltonian of Eq. (2.49). This
time evolution corresponds to a continuous rotation around the z-axis with the
transition frequency ω01, i.e., a Lamor precession.
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Figure 2.9: Drive frequency and amplitude dependence of Rabi oscillations. The qubit population
oscillates with the pulse length of a photon field, where the frequency strongly depends on the drive
frequency and amplitude (see Eq. (2.52)). a) This Rabi frequency is maximal for zero detuning ∆ω,
meaning the drive frequency ωd exactly matches the qubit’s transition frequency ω01. Small detunings
give rise to typical Chevron patterns and the Rabi frequency approaches ∆ω for large detunings. b)
For quantum mechanical Rabi oscillations, their frequency increases linearly with the amplitude of the
drive tone.

Rabi oscillations

In order to drive a qubit transition, a microwave tone of amplitude V and frequency
ωd is applied, which couples transversally, and thus in terms of the Pauli matrix
σ̂x. Therefore, the Hamiltonian of a driven qubit holds [SN17; Bra18; Sch20]

H =
h̄ω01

2
σ̂z + h̄V cos(ωdt)σ̂x. (2.51a)

As the microwave drive itself rotates with the ωd around the z-axis, the qubit is
more intuitively described within the rotating frame of this electromagnetic field.
Using the unitary operation Û = exp(iωdtσ̂z/2), the driven qubit Hamiltonian of
Eq. (2.51a) can be transformed from the reference to the rotating frame and results
in

H̃ =
h̄∆ω

2
σ̂z +

h̄V
2

σ̂x. (2.51b)

Here, only rotations of the frequency detuning ∆ω = ω01 − ωd remain. The di-
agonalized eigenfrequency corresponds to the generalized Rabi frequency ΩR =√

V2 + ∆ω2 and depends on the frequency detuning ∆ω = ω01 − ωd and the drive
amplitude V.
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Analysis of the time evolution in the new basis yields the qubit’s excitation proba-
bility p|1⟩, or rather the expectation value of σ̂z [SN17]

p|1⟩ =
1
2

(
1 −

(
∆ω

ΩR

)2
)
(1 − cos(ΩRt)) , ⟨σ̂z⟩ = 2p|1⟩ − 1. (2.52a)

Dispersive readout

Nowadays, qubits are often manipulated and read out via the resonator to which
they are coupled. In analogy to an atom in a cavity as in optics, the resonator-
qubit interaction can be described by the Jaynes-Cummings model. There, the total
Hamiltonian HJC composes of parts of the bare harmonic oscillator Hr, the pure
qubit Hqubit, and their interaction Hint and reads in the rotating frame [JC63; HR06;
WM08].

HJC = h̄ωr

(
â† â +

1
2

)
︸ ︷︷ ︸

Hr

+
h̄ω01

2
σ̂z︸ ︷︷ ︸

Hqubit

+ h̄g
(

σ̂+ â + σ̂− â†
)

︸ ︷︷ ︸
Hint

. (2.53)

Here, â† and â denote the photon creation and annihilation operator, respectively,
ωr the resonator’s harmonic eigenfrequency, and g the coupling strength between
resonator and qubit.

In general, qubit and resonator exchange energy, which is why the eigenstates of
the coupled system are neither eigenstates of the pure resonator nor of the qubit.
This means that a part of the resonator excitation is in the qubit and vice versa,
enabling manipulation, readout, and decay of the qubit via the resonator.

If the detuning of the resonator and the qubit is large compared to their coupling
∆ω = ωr − ω01 ≫ g, the eigenstates are similar to those of the pure resonator and
qubit. In this so-called dispersive limit [Bla+04], the system’s eigenstates can be
approximated as product states of resonator and qubit, while the coupling is only
a small perturbation. Perturbation analysis of the Jaynes-Cummings Hamiltonian
(2.53) yields

H̃JC = h̄ (ωr + χσ̂z) â† â +
1
2
(ω01 + χ) σ̂z +O

(
g2

∆ω2

)
(2.54)

with the dispersive shift χ = g2/∆ω for true two-level systems without higher har-
monics. Since the Jaynes-Cummings Hamiltonian in the dispersive limit (Eq. (2.54))
is diagonalized, the effective qubit ω̃01 = ω01 + χ and resonator frequencies
ω̃r = ωr + χσ̂z equal the diagonal elements. The latter’s dependence on σ̂z means
that the qubit state can be determined by measuring the resonator frequency. This,
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2 The principles of quantum electrodynamics in long Josephson junctions

however, is a projective measurement, where the qubit’s wave function (2.47) col-
lapses either into |0⟩ or |1⟩ with the probabilities cos2(θ/2) and sin2(θ/2), so only
ω̃r = ωr ±χ can be measured. Repeating the same measurement many times to per-
form statistics yields the expectation value of the qubit state ⟨σ̂z⟩ that corresponds
to the qubit’s excitation probability as [Sch20]

⟨σ̂z⟩ = ⟨Ψ | σ̂z |Ψ⟩ = −|a|2 + |b|2 = − cos θ. (2.55)

2.4 Dynamics of long Josephson junctions

2.4.1 Basics of the Josephson effect

Key elements of manifold superconducting devices, such as superconducting quan-
tum bits [NPT99; Wal+00a; CW08], but also superconducting quantum interference
devices (SQUIDs) [Jak+64; ZTH70; Mer70; Cla66], and voltage standard circuits
[Tay+67; FFT73; Ham00], are Josephson tunnel junctions as they feature unique
electromagnetic characteristics. The Josephson effect was predicted by Brian David
Josephson in 1962 [Jos62] and experimentally proven for the first time by Philip
Warren Anderson and John Martin Rowell in 1963 [AR63].

It describes coherent Cooper pair tunneling between weak link superconduc-
tors, separated by a thin insulating or normal conducting barrier or constric-
tions, point contacts, etc. Due to the good controllability of electronic properties,
superconductor-insulator-superconductor (SIS) junctions find widespread usage
and are therefore utilized in this work. It is remarkable for tunneling processes
between superconductors that the tunneling probability of a whole Cooper pair
equals the one of single electrons, and thus is of measurable order of magnitude.
This originates in the superconductors’ macroscopic quantum states, whose wave
functions are reduced from the bulk values inside the tunnel barrier but overlap
nonvanishing. In a perturbation theory treatment, this manifests by a constant
coupling energy g on the off-diagonal of the time-dependent Schrödinger equation
[FLS64a]

ih̄∂t

(
ψ1

ψ2

)
=

(
H1 g
g H2

)(
ψ1

ψ2

)
. (2.56)

Thereby, both superconductors hold the macroscopic wave function Ψj(t) =√
nsj(t)e

iθj(t), as given in Eq. (2.3) that solves the individual Schrödinger equation
ih̄∂tψj = Hjψj = Ejψj with the ground state eigenenergies Ej. Assuming weak
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tunneling between identical superconductors with ns1 = ns2 and ṅs1 = −ṅs2, the
real part of Eq. (2.56) results in the so-called first Josephson equation

jJ = jc sin (φ) . (2.57)

Instead of a DC voltage, as expected in case of normal state tunneling, Eq. (2.57)
reveals that DC supercurrents across a tunnel barrier need to be driven by the
gauge-invariant phase difference

φ = θ2 − θ1 −
2π

Φ0

∫ 2

1
Adl (2.58)

up to the junction’s critical current density across the barrier jc = 2gns/h̄. This
quantity is a substantial parameter and includes information about barrier proper-
ties, temperature dependence, etc.

Within the scope of the BCS theory, Vinay Ambegaokar and Alexis Baratoff gave a
description of coherent Cooper pair tunneling between two, in general different,
superconductors [AB63; Wal76; BP82; Wol11]. They found the dependency of the
critical current of lumped element junctions on the normal state tunnel resistance
Rn and the gap energies ∆1 and ∆2 as

Ic =
∆1(T)

eRn
K

√1 −
(

∆1(T)
∆2(T)

)2
. (2.59a)

Here, K(x) denotes the complete elliptic integral of the first kind and in case of
identical superconductors, Eq. (2.59a) simplifies to the well-known Ambegaokar-
Baratoff relation

Ic =
π∆(T)
2eRn

tanh
(

∆(T)
2kBT

)
T→0−→ π∆(T = 0)

2eRn

(2.25)
≈ 2.388× 10−4 V K−1 · Tc

Rn
. (2.59b)

Hence, the critical current of the Josephson junction can be estimated by the normal
conducting tunnel resistance Rn, the critical temperature Tc or the gap energy ∆ and
allows experimentalists to characterize the tunnel junctions at room temperature
without the elaborate cooling far below Tc. From the imaginary part of Eq. (2.56)
follows another characteristic dependency, commonly referred to as the second
Josephson equation. If the eigenenergies of the two weak link superconductors
are shifted against each other by E2 − E1 = 2eV, this difference in the electrical
potentials is given by

V(t) =
h̄
2e

dφ

dt
=

Φ0

2π

dφ

dt
. (2.60)

According to the two Josephson equations, applied constant voltages V < 2∆/e
imply a rotating phase difference, and thus an oscillating current across the barrier,
often referred to as the AC Josephson effect. Moreover, the second Josephson
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equation resembles Faraday’s law of inductance with the phase-flux relation φ =
2π
Φ0

Φ. However, the voltage does not originate in the magnetic energy but in the
Cooper pair’s kinetic energy instead. In analog to Sec. 2.2.1, this goes along with
an inherent kinetic-type inductance [Jos64]

L(φ) =
V

∂I(φ)
∂t

=
V

∂I
∂φ

∂φ
∂t

=
V

Ic cos(φ) 2π
Φ0

V
=

Φ0

2π Ic cos(φ)
=

LJ

cos(φ)
. (2.61)

Depending on the phase difference applied, and thus the current flowing across the
tunnel barrier, Josephson junctions exhibit a nonlinear inductance with the mini-
mum absolute value LJ ≡ h̄

2eIc
= Φ0

2πIc
, the so-called Josephson inductance [Wal76].

This unique nonlinear inductance makes Josephson junctions key elements for most
superconducting quantum circuits since it enables, for instance, anharmonic LC
oscillators with distinct artificial two-level systems utilized as quantum bits. The
AC Josephson effect, originating in the nonlinear Josephson inductance implies,
that energy is stored in the lumped element junction. When increasing a bias cur-
rent from zero (where φ = 0, too) to a finite value I < Ic, the phase difference has
to change consistent with the first Josephson equation (2.57). Although the voltage
will be zero, when reaching the current I and Cooper pairs can tunnel across the
junction without any dissipation, while this phase change yields a nonzero voltage
during the current increase. As a consequence, an external current source has to
do work on the junction and the free energy stored in the kinetic energy of the
moving superfluid is given by [OD91; GMD16]

FJ =

t∫
0

VIdt̃ =
t∫

0

Φ0

2π

dφ̃

dt̃
Ic sin(φ̃)dt̃ =

Φ0 Ic

2π

φ∫
0

sin(φ̃)dφ̃ = EJ (1 − cos(φ)) .

(2.62)

From another perspective, this energy resembles molecular binding energy be-
tween atoms, originating in the overlap of the macroscopic wave functions and the
increased accessible space for Cooper pairs. Therefore, EJ ≡ Φ0 Ic

2π is referred to as
Josephson coupling energy [Jos65; BP82].

Resistively and capacitively shunted junction model for current biased junctions

In order to gain an insight into the phase dynamics of lumped element Josephson
junctions, a useful model was established by Wilbert C. Stewart and Dean E.
McCumber [Ste68; McC68]. On the one hand, the Josephson junction’s weak link
can be considered as two conductors, separated by a dielectric layer, like in a
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capacitor.11 On the other hand, the weak link also provides tunneling of both
superconducting Cooper pairs and (in case of finite temperature or magnetic
field) normal conducting quasiparticles like a tunnel junction. As a consequence, a
Josephson junction can be considered as a parallel connection of a resistor with
current IR = V

R , accounting for ohmic quasiparticle tunneling, a capacitor with its
displacement current IC = q̇ = C dV

dt and the Josephson junction with IJ = Ic sin φ,
representing Cooper pair tunneling. For such resistively and capacitively shunted
junctions (RCSJ) [McC68], [Ste68], the net current reads

I = C
dV
dt

+
V
R

+ Ic sin φ
(2.60)
=

Φ0C
2π

d2 φ

dt2 +
Φ0

2πR
dφ

dt
+ Ic sin φ. (2.63a)

In dimensionless units Eq. (2.63a) can be rewritten as

γ =
d2 φ

dt̄2 +
1√
βc

dφ

dt̄
+ sin φ, (2.63b)

where γ = I
Ic

denotes the normalized bias current and the time is normalized
to t̄ ≡ ωpt in terms of the inverse plasma frequency of the junction ωp.12 This
characteristic frequency describes the frequency of small phase oscillations at zero
bias current and equals the resonance frequency of the LC-circuit formed by the
Josephson inductance LJ and the junction capacitance C

ωp ≡

√
2π Ic

Φ0C
=

1√
LJC

. (2.64)

Moreover, the so-called Stewart-McCumber parameter βc ≡ 2π
Φ0

R2CIc is introduced
as a measure for damping. The dissipation of a Josephson junction is caused by
ohmic quasiparticle tunneling, whose corresponding time constant equals τRC =

RC. Hence, the quality factor of a Josephson junction is given by [Tin04]

Q = ωpτRC =
√

βc. (2.65)

Equation (2.63) can be considered as a classical equation of motion for a fictitious
phase particle of mass mφ = C(Φ0/2π)2 and is well comparable with a damped
gravity pendulum, described by mẍ − ζ ẋ = − ∂U

∂x . In analogue, the potential energy
of a current biased Josephson junction in the RCSJ model can be identified as

U(φ) = −EJ (γφ + cos φ) , (2.66)

11 The existence of a junction capacitance is in general not necessarily given (for instance in
superconductor-normalconductor-superconductor junctions), but the resistively and capacitively
shunted junction model is an adequate description of dielectric tunnel barriers such as in SIS junc-
tions used throughout this work.

12 The term “plasma” frequency is due to its dispersion relation, which equals plasma oscillations in
metals, as can be seen later in Sec. 2.4.3.
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which is often called “tilted washboard potential” and is illustrated in Fig. 2.10 a).
Without any bias current γ, the potential energy is cosinusoidal, but applying
bias currents tilts the potential proportionally to γ. This yields local maxima at
φb = π − arcsin(γ) and local minima at φ0 = arcsin(γ), giving rise to metastable
states of the phase particle. The barrier height in between is

U0 = U(φb)− U(φ0) = 2EJ

(√
1 − γ2 − γ arccos(γ)

)
(2.67a)

≈ 4
√

2
3

EJ (1 − γ)
3
2 +

√
2

15
EJ (1 − γ)

5
2 +O

(
(1 − γ)3

)
. (2.67b)

The typical experimental situation EJ ≫ kBT implies that thermal excitation be-
comes relevant for γ → 1, the center of the Taylor expansion, given in Eq. (2.67b).

Due to its bias current dependence, the potential wells are in general anharmonic
and current-dependent, too. By Taylor expanding the potential around the local
minima, the frequency of small amplitude oscillations is related to the potential

curvature in the well ∂2U(ϕ)
∂ϕ2

∣∣∣
ϕ=ϕ0

and the oscillating particle’s mass mφ by [Dah+68]

ω0(γ) =

√√√√√ ∂2U(φ)
∂φ2

∣∣∣
φ=φ0

mφ
= ωp

(
1 − γ2

)1/4
. (2.68)

Beyond these energetic and dynamic considerations, the RCSJ model provides
information about Josephson junction’s time averaged IV characteristics (IVC).
Within the scope of the tilted washboard potential, the IVC shows a vertical slope
in the superconducting branch below Ic due to ⟨φ̇⟩ = ⟨V⟩ = 0 (zero-voltage state)
and a finite slope R−1

n in the normal conducting branch above Ic, where the current
cannot be carried completely by the supercurrent through the junction but also by
dissipative quasiparticles.

The IVCs vary for different Stewart-McCumber parameters, as can be seen in
Fig. 2.10 b). In the overdamped case βc ≪ 1, even though the phase particle can
move from one valley to another for Ib ≳ Ic, it does not achieve the running state.
This is because the released energy is dissipated, and the phase particle needs to
be activated in every single valley. Hence, the rate dφ

dt is small and the resulting
voltage does not jump directly to the gap voltage V∆ = 2∆

e . In the underdamped
case βc ≫ 1, however, the phase particle can run down the full potential after
overcoming the first potential well since the gained energy (minus the dissipated
energy that is small because of low damping) suffices to overcome the next potential
well. As a consequence, this running state maintains, even if the bias current Ib
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2.4 Dynamics of long Josephson junctions

Figure 2.10: Potential energy for varying bias currents and numerically simulated IV-characteristic
for different damping values within the scope of the RCSJ model. a) For zero bias current, the
phase particle is trapped in a minimum of the potential well with potential height EJ and oscillates
inside with the specific plasma frequency ωp. Since ωp is typically in the order of tens to hundreds of
gigahertz, in transport measurements, only time averaged values are measured. These mean values
are time-independent ⟨φ̇⟩ = 0 and according to the second Josephson equation (2.60) no voltage drops
across the junction. However, an applied bias current tilts the washboard potential and if it exceeds
the critical current Ib > Ic the phase particle can overcome the potential well with a finite phase
velocity ⟨φ̇⟩ ̸= 0 which results in a voltage drop across the junction. b) A damping-independent
superconducting behavior characterizes the up-sweep of the bias current Ib up to the critical current Ic,
where the voltage drops abruptly to the superconducting gap voltage V∆ in case of low damping (dark
line color). Beyond an underdamped junction shows an ohmic dependency due to ohmic quasiparticle
tunneling. With increasing damping (brighter line color), this mentioned voltage drop decreases, and
normal conducting behavior approaches the linear ohmic slope slowly and more slowly. Furthermore,
the hysteretic behavior between up- and down-sweep of the bias current increases with decreasing
damping (from dark blue to yellow), meaning the IVC follows the ohmic straight below Ic down to a
retrapping current Ir, where it becomes superconducting again.

is decreased again down to a retrapping current Ir < Ic. The resulting hysteresis
and, in particular, the ratio of retrapping to critical current is a measure of the
Josephson junction’s quality factor, given in Eq. (2.65).

Although the RCSJ model describes significant parts of the junction’s IV charac-
teristics correctly, such as the occurrence of a zero-voltage state and a damping-
dependent hysteresis, it is essential to recognize that real Josephson junctions do
not follow the ohmic branch during the down-sweep, but remain almost constant at
the gap voltage V∆ (see Fig. 2.11 a)). At this branch, the RCSJ model is limited by its
assumption of an ohmic, voltage-independent quasiparticle tunneling resistance.
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.11: IV-characteristic of a current biased and underdamped Josephson junction. a) IVC of a
110 µm × 5 µm wide underdamped Josephson junction with electrodes made from AlOx and pure Al
measured at T ≈ 20 mK. b) The simulated IVC by means of the nRCSJ model in Eq. (2.69) exhibits an
almost vertical slope (conductance) around the gap voltage at the down-sweep between the critical and
the retrapping current. c) Various conductance on different branches of a real junction’s IVC within the
scope of band diagrams of two weak link superconductors [Poo+14]. (i) Below the critical current,
the junction remains in the zero-voltage state, where superconducting (s) Cooper pairs may tunnel
coherently and without any dissipation (s → s). (ii) At the critical current, the junction jumps to the
gap voltage 2∆/e, while Cooper pairs are broken in two quasiparticles (q) each. These fermions may
tunnel through the barrier dissipatively with a nonlinear resistance due to the quasiparticles’ increased
density of states (s → q). (iii) Far above the critical current, and thus way beyond the gap voltage,
lots of normal free electrons (n) tunnel yielding the ohmic normal state resistance (n → n). When
decreasing the bias below the critical current underdamped junctions remain in the running state at the
gap voltage down to a retrapping current (analog to (ii)). (iv) Close to the retrapping current, and
thus below the gap voltage, a small number of not yet recondensed quasiparticles may tunnel with
dissipation (q → q), which is often referred to as Stewart-McCumber branch.
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2.4 Dynamics of long Josephson junctions

In real Josephson junctions, however, this resistance is much smaller for voltages
close to the gap voltage V∆ than for those far above. This nonlinear resistance
around the gap originates in the drastically increased quasi-particle density (see
Fig. 2.2) that are available for only few thermally activated quasiparticles [Sco70;
PS73; BP82; KW19]. This behavior is covered by a nonlinear resistive and capaci-
tively shunted junction (nRCSJ) and can be modeled by the power law expression
[MK83]

I(V) =
V
R
·

(
V
V∆

)n

1 +
(

V
V∆

)n , n ≫ 1 (2.69)

and results in a nearly constant gap voltage in the down-sweep, similar to experi-
mental data (compare Fig. 2.11 a) and 2.11 b)).

2.4.2 Magnetic field and size effects of distributed junctions

For all the former mentioned phenomena of Josephson junctions, they were so far
taken as point like “lumped elements” with spatially homogeneously distributed
supercurrent densities js(x) = js and phase differences φ(x) = φ. Real SIS junc-
tions, however, involve a spatial extension along x and y of length ℓ and width w,
respectively, which may feature spatially varying js(x, y) and φ(x, y).

Low-inductance limit of bulk electrodes

In order to work out the phase difference introduced between two positions, say,
along the x-coordinate, a cross-section of a distributed junction with bulk electrodes,
as sketched in Fig. 2.12, is considered. In this scheme, two closely spaced pairs of
points in the vicinity of the junction are regarded and the closed contour C through
these four points can be split into the two paths across the junction and these along
the electrodes

Φ =
∮

C
Adl =

∫ rb
1

rt
1

Adl︸ ︷︷ ︸
junction 1

+
∫ rb

2

rb
1

Adl︸ ︷︷ ︸
bottom el.

+
∫ rt

2

rb
2

Adl︸ ︷︷ ︸
junction 2

+
∫ rt

1

rt
2

Adl︸ ︷︷ ︸
top el.

. (2.70a)

Well inside bulk electrodes d ≫ λL screening supercurrents j are negligible small
and the first London equation reduces to A = Φ0

2π∇θ. Consequently, the phase
drops along the bottom and top electrode are described by

2π

Φ0

∫ rb
2\rt

1

rb
1\rt

2

Adl = θ
(

rb
2\rt

1

)
− θ
(

rb
1\rt

2

)
. (2.70b)
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.12: Spatial phase variation in distributed junctions and the Josephson vortex solution. a) The
Josephson junction is supposed to consist of both a bulk bottom and top electrode that are separated
along the xy-plane by a tunnel barrier layer of thickness dI. An external magnetic field is applied
along the y-axis and penetrates the bulk electrodes on the scale of the London penetration depth λL.
b) Gauge-invariant phase difference, magnetic flux density, and current density of the Josephson vortex
solution for the Ferrell-Prange equation. The magnetic field and the Josephson current density decay
with the characteristic length scale λJ. The current’s opposite signs indicate the ring current associated
with 2π phase kink, whereas the net current is zero. The integration of the magnetic flux density B
across the vortex’s cross-section equals a total flux of the superconducting magnetic flux quantum Φ0.

With the definition of the Josephson junction’s gauge-invariant phase difference in
Eq. (2.58), the phase drops across the junctions result in

2π

Φ0

∫ rb
1\rt

2

rt
1\rb

2

Adl = θ
(

rb
1\rt

2

)
− θ
(

rt
1\rb

2

)
∓ φ(x1\x2), (2.70c)

depending on the direction of walking the contour. The enclosed magnetic flux
through this the selected area is Φ = µ0Hy · (x2 − x1)Λ with the magnetic thickness
Λ = λL,1 + λL,2 + dI [Jos64]. For an infinitesimal small spacing dx in the x-direction,
the magnetic field results in

Hy(x) =
Φ0

2πµ0Λ
lim

x2→x1

φ(x2)− φ(x1)

x2 − x1
=

Φ0

2πµ0Λ

dφ(x)
dx

∝
dφ

dx
. (2.71)

The supercurrent along z, driven by this phase gradient, is on the one hand linked

with the magnetic field by Ampere’s law jz =
dHy(x)

dx and on the other hand defined
by the first Josephson equation (2.57) jz(x) = jc sin(φ(x)). In combination, the
phase holds a stationary, unperturbed sine-Gordon equation that is often referred
to as Ferrell-Prange equation [FP63]

Φ0

2πµ0Λjc
d2 φ

dx2 =
d2 φ

dx̄2 = sin(φ). (2.72)
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2.4 Dynamics of long Josephson junctions

With the electrode’s sheet inductance L□
0 = µ0Λ [Swi61; Lik86], the junction’s

characteristic length scale is given by

λJ ≡
√

Φ0

2πµ0Λjc
=

√
Φ0

2πL□
0 jc

(2.73)

that is often called as Josephson penetration depth. In dimensionless units, the
length x is normalized to λJ so that x̄ ≡ x/λJ. The general solution of this Ferrell-
Prange equation is for instance given in [OS67; LS67]. From a physical perspective,
the most interesting particular solution in linear geometry junctions in the limit
ℓ → ∞ are Josephson vortices13

φF(x̄) = ±4 arctan
(
ex̄−x̄0

)
+ 2πn. (2.74a)

whose center of mass is located at x̄0. As can be seen in Fig. 2.12 b), this solution is
associated with a change of the phase difference across the junction of 2π, which
is why it is often referred to as “2π-kink solution”. This twist extends over the
characteristic length scale of the Josephson penetration length and is centered
around x̄0.

From Eq. (2.71), the magnetic flux density that goes along to this solution results
in

BFy(x̄) =
Φ0

2πΛ

∂φF

∂x̄
∂x̄
∂x

= ± Φ0

πΛλJ

1
cosh(x̄ − x̄0)

. (2.74b)

The corresponding magnetic flux equals the superconducting magnetic flux quan-
tum ΦF =

∫ ∞
−∞ dx

∫ Λ/2
−Λ/2 dzBFy(x̄) = Φ0 (see Fig. 2.12 b)), which is why this solution

is also often called “fluxon”.

According to Ampère’s law, the associated supercurrent

jFz(x̄) =
1

µ0

∂BFy

∂x̄
∂x̄
∂x

= ± Φ0

πµ0Λλ2
J

sinh(x̄ − x̄0)

cosh2(x̄ − x̄0)
= 2jc

sinh(x̄ − x̄0)

cosh2(x̄ − x̄0)
(2.74c)

comes as a ring current around the tunnel barrier, which is why the denotation
“Josephson vortex” solution. It should be noted that in contrast to Abrikosov vor-
tices in type-II superconductors, Josephson vortices feature no normal conducting
core. As superconductivity is weakest in the junction region, the fluxon’s energy is
the lowest around the junction, which is why they enter there and are pinned to
the tunnel barrier (see Fig. 2.16).

13 Richard A. Ferrell, and Richard E. Prange quoted the solution φ(x̄) = 2 arcsin[sech(x̄ − x̄0)] that is
an equivalent representation for a semi-infinite Josephson junction (0 ≤ x̄ ≤ ∞) which fulfills the
boundary condition φ(∞) = 0 [FP63].
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2 The principles of quantum electrodynamics in long Josephson junctions

High-kinetic inductance limit of thin-film electrodes

In Josephson junctions with electrodes made from high-kinetic inductance super-
conductors, the magnetic penetration depth λL ∼ 3 µm exceeds the typical film
thickness d ∼ 20 nm, which yields incomplete screening of applied magnetic fields.
Therefore, the assumption of vanishing screening currents well inside the electrode,
made in Eq. (2.70b) for the derivation of the Ferrell-Prange equation, is no longer
valid, and this case needs to be discussed separately.

By solving the Poisson equation of screening currents (2.4b) (see London theory in
Sec. 2.1.1) under the boundary conditions of an extended Josephson junction by
means of Fourier transformation, Alfimov and Popkov worked out that the phase
difference across a junction with thin-film electrodes is given by [IS90; AP95]

sin(φ) =
1
λ̄

∫ ∞

−∞
Gd̄

(
|x̄ − u|

λ̄

)
d2 φ

du2 du (2.75a)

Gd̄(ν) =
1

2π

∫ ∞

−∞

tanh
(

d̄
√

1 + k2
)

√
1 + k2

eikνdk. (2.75b)

Here, d̄ = d
λL

denotes the normalized electrode thickness with respect to the

London penetration depth and λ̄ = λL
λb

J
the ratio of London penetration depth

and the bulk Josephson length. In the limit of large λJ, meaning λ̄ ≪ 1, as it
is the case throughout this work, the kernel of the integral operator, given in

Eq. (2.75b) simplifies to limλ̄→0
1
λ̄

Gd̄

(
|x̄−u|

λ̄

)
= tanh(d̄)δ(x̄ − u) with the Dirac

delta distribution δ and Eq. (2.75a) result in the spatial phase variation

sin(φ) =
∫ ∞

−∞
tanh(d̄)δ(x̄ − u)

d2 φ

du2 du = tanh(d̄)
d2 φ

dx̄2 . (2.76)

This result is a local sine-Gordon equation with the effective Josephson length

λeff
J = λb

J

√
tanh

(
d

λL

)
. (2.77)

The equal result is obtained from the Josephson length’s definition in Eq. (2.73) by
inserting an effective magnetic thickness in junctions with thin-film electrodes, as
derived earlier by Weihnacht [Wei69]

Λeff =
λL1

tanh
(

d1
λL1

) +
λL2

tanh
(

d2
λL2

) + dI (2.78)

with identical bottom and top electrode and negligible tunnel barrier thickness dI.

The Josephson vortex solution (2.74) remains valid for Eq. (2.76), though the char-
acteristic length is λeff

J instead of λb
J [AP95]. It should be noted, that this solution
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2.4 Dynamics of long Josephson junctions

still features a phase winding (fluxoid) quantization in 2π, which, however, does
not necessitate quantized magnetic flux anymore. As the major part of the vortex’s
total 2π phase winding drops at the dominating kinetic inductance that does not
couple to magnetic fields and implies incomplete screening, the magnetic flux
possessed by a Josephson vortex Φ is thus significantly smaller than the magnetic
flux quantum Φ0. Therefore, this kind of vortex should be more correctly denoted
as “fluxoid” instead of “fluxon” [Wil+22].

Magnetic diffraction pattern of the critical current

The occurrence of Josephson supercurrents is an interference effect of two macro-
scopic wave functions that may vary both in time and space. As already mentioned
in Sec. 2.4.1 and what is known as AC Josephson effect, applied electric fields (DC
voltages) make for a temporally rolling phase difference, according to the second
Josephson equation (2.60)). This yields (oscillating) supercurrents that are periodic
in time. Applied magnetic fields, however, cause a spatially rolling gauge-invariant
phase difference, as described by Eq. (2.71). Therefore, if the self-field is small
compared to the external field, which is the case for short junctions with ℓ < λJ,
the Josephson current across a rectangular junction of length ℓ and width w results
in

IJ(H) =

w/2∫
−w/2

dy
ℓ/2∫

−ℓ/2

dxjc sin
(

2πµ0HΛ

Φ0
x + φ0

)
= Ic(0)

sin
(

πΦ
Φ0

)
πΦ
Φ0

sin(φ0).

(2.79a)

As can be seen in Eq. (2.79a), the Josephson current vs. magnetic field distribution
generally equals the Fourier transform of the junction’s cross-section [Tin04]. In
particular, the magnetic diffraction pattern of a rectangular junction cross-section
gives rise to a sinc-shaped pattern function. Maximizing the current with respect
to φ0, results in the critical current [Jos64]

Ic = Ic(0)

∣∣∣∣∣∣
sin
(

πΦ
Φ0

)
πΦ
Φ0

∣∣∣∣∣∣ , (2.79b)

which resembles the Fraunhofer pattern in optical single-slit experiments, where
two wave functions also interfere with varying path differences. In distributed
Josephson junctions, this path difference originates in the magnetic field depen-
dence of the gauge-invariant phase difference and modifies the interference ampli-
tude of the two superconducting wave functions. Figure 2.13 shows both simulated
and experimentally acquired magnetic diffraction pattern of short junction’s critical
currents.
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.13: Fraunhofer-like magnetic diffraction pattern of a short junction’s critical current. a) Mea-
sured diffraction pattern of an 80 µm × 5 µm junction in inline geometry with electrodes made from
high-kinetic inductance AlOx and pure aluminum. The slight asymmetry arises because of the inhomo-
geneous bias current distribution in the inline bias scheme in combination with different inductances
in the bottom and top electrode [Sch70; BJV75; Mon+13]. These experimental data resemble b) the
analytically calculated sinc-shaped diffraction Fraunhofer pattern, which, however, features dissonantly
sharp turns at integer multiples of Φ0. More advanced simulations [PRS91], assuming a normalized
junction length ℓ/λJ = 0.3, cover this detail splendidly.

The simulated data are generated with the approach of Pagano et al. [PRS91] that is
based on evaluating the phase space configuration φx̄(φ) of the perturbed Ferrell-
Prange equation. In doing so, stable points can be found at a given applied field
and for different fluxon branches, which yield extremal junction length depending
on the applied bias current. This dependency is numerically inverted to find a
critical current Ic at a fixed junction length ℓ.

In case of the above analytical derivation, the self-field, generated by the induced
screening currents is completely neglected, such that the magnetic field inside the
tunnel barrier equals the applied magnetic flux density B = µ0H. This assumption
is valid as long as the applied field penetrates the entire junction, which is the case,
while the junction length ℓ exceeds the twice Josephson length λJ, the so-called
“short junction” limit ℓ ≲ 2λJ

14 [OS67].

In the opposite regime of long junctions ℓ ≫ λJ, however, self-fields become sig-
nificant since screening currents repel magnetic fields from the junction’s interior,
in the same way as described by the Meissner-Ochsenfeld effect of bulk materials

14 The factor 2 arises since the field penetrates the junction from both sides, as illustrated in Fig. 2.16 a).
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Figure 2.14: Magnetic diffraction pattern of the critical current for different junction lengths. The
simulations follow the approach of Pagano et al. [PRS91] and assume a homogeneous bias current
distribution, such as is the case for the overlap geometry. The initially rounded lobes of the Fraunhofer
diffraction pattern of short junctions

(
ℓ̄ = 0

)
become more and more linear with increasing junction

lengths. Thereby, the main maximum widens and eventually covers the former adjacent higher-order
side maxima. The different lobes correspond to the number of inherent flux quanta, while it should be
stressed that junctions enter the state that may carry the maximal possible current to minimize their
free energy, which is observed in experiments, too.

(see Sec. 2.1) Similar to type-II superconductors, in Josephson junctions, screening
currents increase with the applied magnetic field to maintain perfect diamagnetism,
which collapses above a first critical field Hc1. There, entering of a magnetic flux
quantum in the junction is energetically favorable, and since screening currents
only need to repel parts of the applied flux, they decrease. As a consequence,
the junction can carry larger bias currents, and a side maximum occurs in the
magnetic diffraction pattern. Increasing the magnetic field further lets the same
effect start all over again, and each lobe corresponds to the number of inherent
magnetic flux quanta, starting from zero in the case of the main maxima [OS67].
The Meissner-like linear increase in screening currents manifests in long junc-
tions’ magnetic diffraction pattern of the critical current as linear slopes of the
individual lobes. As can be seen in Fig. 2.14, there is no sharp transition from short
to long junctions with any hard criterion, but typically junctions are denoted as
one-dimensional “long junction” for normalized junction lengths ℓ̄ = ℓ/λJ ≳ 7,
whereas short widths w ≪ λJ do not allow for spatial phase variations along the
y-direction [PRS91].
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2 The principles of quantum electrodynamics in long Josephson junctions

Aside from their normalized length, long Josephson junctions’ exact magnetic
diffraction pattern is defined by the junction geometry as this goes along with dif-
ferent current distribution [OS67; Sch70; BJV75; BP82]. There are three widespread
main types of linear electrode configurations, whose schematic and length-
dependent maximal critical current are shown in Fig. 2.15:

• overlap geometry: In this configuration, as shown in Fig. 2.15 a) (i), bias
currents distribute homogeneously across the whole length, such that the
junction’s maximum Josephson current increases proportionally to the total
junction area as

IJ

2wλJ jc
=

ℓ

2λJ
. (2.80a)

• inline geometry: In the symmetric inline arrangement, as depicted in Fig. 2.15 a)
(ii), bias currents are injected and ejected close to the two edges over a length
of λJ, which is why the normalized maximum Josephson current holds

IJ

2wλJ jc
=

2 sinh
(

ℓ
2λJ

)
cosh

(
ℓ

2λJ

)
+ 1

, (2.80b)

and thus converges towards 2 for long junctions. An asymmetric inline
geometry, as illustrated in Fig. 2.15 a) (iii) is also possible, where only the one
edge close to the bias leads is stressed, and thus the normalized maximum
Josephson current is given by

IJ

2wλJ jc
= tanh

(
ℓ

2λJ

)
, (2.80c)

saturating at 1 for long junctions.

• crossover geometry: This configuration, as schematically presented in Fig. 2.15 a)
(iv), is a particular combination of inline and overlap configuration, where
bias currents are injected along the short side (as in the case of inline ge-
ometry) and ejected along the long side (like in overlap junctions). If the
Josephson inductance dominates the low lead inductance, the normalized
maximum Josephson current is 1 ≤ limℓ→∞

IJ
2wλJ jc ≤ 2, depending on the

fraction of bias current flowing in each edge. In the particular case of high-
and low-inductive leads in the y- and x-direction, this yields a homogeneous
current distribution, which is why it is referred to as quasi-overlap geometry
[Sar+91].
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Figure 2.15: Schematic layout and maximum Josephson current for different junction geometries.
a) Popular one-dimensional linear long junction geometries are referred to as (i) symmetric inline,
(ii) asymmetric inline, (iii) overlap, and (iv) crossover. b) These configurations differ in their current
distribution, for what reason, their maximum Josephson current varies significantly. Merely the overlap
geometry provides a uniform current distribution, and thus its maximal Josephson current does not
saturate in the long junction limit, as otherwise. This figure is adapted from Ref. [BJV75].

2.4.3 The sine-Gordon model of long junctions

To analyze phase dynamics, covering both spatial and temporal phase variations
φ(x, t), the junction capacitance needs to be considered similarly to the RCSJ model,
but for distributed junctions with inductive electrodes 11. Within this scope, one-
dimensional junctions can be modeled by N → ∞ infinitesimally small lumped
elements of resistively and capacitively shunted junctions in the z-direction, which
are extended along the x-axis, and thus connected via inductive and resistive leads.
The finite resistance in parallel to the electrode’s inductance is due to surface losses.
As shown in Appendix A.1, the inductances of both electrodes can be mapped
to a single effective inductance, resulting in the equivalent circuit illustrated in
Fig. 2.16 b). Using common circuit quantization techniques [VD17] with N node
fluxes Φj, the system holds the Lagrangian

L =
N−1

∑
j=0

cJw∆x
2

(
∂tΦj

)2 −
N−1

∑
j=1

(
Φj − Φj−1 − Φext

j + Φext
j−1

)2

2L□
0

∆x
w

−
N−1

∑
j=0

Φ0 jcw∆x
2π

(
1 − cos

(
2π

Φ0
Φj

))
+

N−1

∑
j=0

jbw∆xΦj

(2.81a)
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Figure 2.16: Schematic screening currents and equivalent circuit of long Josephson junctions. a) Ac-
cording to the Meissner-Ochsenfeld effect, screening currents (black solid lines) are induced by an
applied magnetic field, which penetrate the bulk electrodes on the scale of the London penetration
depth λL. By comparison, superconductivity is suppressed in the junction region, for what reason
the penetration depth there, the Josephson length λJ, exceeds the λL significantly. Screening currents
penetrate vertically on the scale of the magnetic thickness Λ that composes of the tunnel barrier’s
thickness dI and the λL of each electrode. b) The long junction’s equivalent circuit is represented by

lumped elements of resistively
(

R′
J

)
and capacitively

(
C′

J

)
shunted junctions (Jc) in the z-direction,

which are extended along the x-axis, and thus connected via inductive (L′
0) and resistive (R′

0) leads.

L = w

ℓ∫
0

[
cJ

2
(∂tΦ)2 − (∂xΦ − A)2

2L□
0

− Φ0 jc
2π

(
1 − cos

(
2π

Φ0
Φ

))
+ jbΦ

]
dx.

(2.81b)

Here, cJ = Ctot
J /wℓ denotes the specific junction capacitance, L□

0 = Ltot
0 w/ℓ the

electrode’s sheet inductance that sums up both the geometric and kinetic parts,
jc = Itot

c /wℓ, and jb = Itot
b /wℓ describe the critical and bias current density,

respectively. The quoted bias current is commonly driven by external current

sources, but magnetic field induced currents jz =
dHy(x)

dx can be treated analogously.

During the transition to the continuous limit of distributed long junctions (N → ∞,
∆x → 0), the sum is replaced by an integral ∑N−1

j=0 . . . ∆x →
∫ ℓ

0 . . . dx, the difference

quotient becomes a derivative lim∆x→0
Φj−Φj−1

∆x = dΦ(x)
dx , and the external flux is

transferred to the electromagnetic vector potential lim∆x→0
Φext

j −Φext
j−1

∆x = dΦext(x)
dx =

A(x). In order to describe the junction’s phase dynamics, node fluxes are translated
to node phases via the phase-flux relation Φj =

Φ0
2π φj.

With the assumption of static external magnetic flux ∂tΦ
ext = 0, the phase dif-

ference can be redefined, shifted by electromagnetic vector potential A, so that
φ → φ + 2π

Φ0

∫
Adz = φ − φext with the externally applied phase φext. Finally, the
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long junction’s phase dynamics are described by the sine-Gordon Lagrangian in
normalized units

L̄ =

ℓ̄∫
0

[
1
2
(∂t̄ φ)2 − 1

2
(∂x̄ φ)2 −

(
1 − cos

(
φ − φext))+ γφ

]
dx̄. (2.81c)

Here, the Josephson plasma frequency ωp, the Josephson penetration depth λJ,
and EJ are the characteristic inverse time, length, and energy scales in the long
Josephson junction, such that these quantities are normalized to

t̄ = ωpt, ωp =

√
2π jc
Φ0cJ

, (2.82a)

x̄ = x/λJ, λJ =

√
Φ0

2π jcL□ , (2.82b)

L̄ = L/EJ, EJ =
Φ0 jcλJw

2π
, (2.82c)

γ = jb/jc. (2.82d)

Applying the Euler-Lagrange equation [BP82; Leg87; CF91] yields the equation of
motion [Jos65]

0 =
d
dt̄

∂L̄
∂t̄ φ

+
d

dx̄
∂L̄
∂x̄ φ

− ∂L̄
∂φ

, (2.83a)

γ = ∂t̄t̄ φ − ∂x̄x̄ φ + sin φ. (2.83b)

This so-called sine-Gordon equation is a nonlinear wave equation, which describes
dynamic properties in a Josephson transmission line. The characteristic prop-
agation velocity inside this Josephson medium is denoted as Swihart velocity
c̄ = ωpλJ =

1√
L□cJ

and is typically in the order of ∼ 10−2 c0. The corresponding

junction impedance ZJ =
1
w

√
L□
cJ

∝ c̄−1 is consequently in the order of a few ohms.

For the purpose of Lagrangian formalism, dissipative perturbations that are un-
preventable in real long junctions are usually included by a Rayleigh dissipation
functional R =

∫ 1
2R (∂tΦ)2 dx [JV09; EGK15]. Introducing both the ohmic quasi-

particle tunneling resistance RJ = ρJdI/w∆x = rJ/w∆x and the lateral electrode
resistance due to surface losses in the superconductor R0 = ρ0∆x/wd = R□

0 ∆x/w,
as depicted in Fig. 2.16 b), results in

R =
N−1

∑
j=0

w∆x
2ρJdI

(
∂tΦj

)2
+

N−1

∑
j=1

w

2R□
0 ∆x

(
∂tΦj − ∂tΦj−1

)2 (2.84a)

= w

∫ ℓ

0

(
1

2rJ
(∂tΦ)2 +

1
2R□

0
(∂t∂xΦ)2

)
dx. (2.84b)
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2 The principles of quantum electrodynamics in long Josephson junctions

With the typical normalization of time, length, and energy, given in Eq. (2.82), the
dimensionless Rayleigh dissipation functional results in [MS78]

R̄
ωp

=
1
2

∫ ℓ̄

0

(
α (∂t̄ φ)2 + β (∂x̄t̄ φ)2

)
dx̄ (2.84c)

with the dimensionless damping coefficients covering quasiparticle tunneling
across the tunnel barrier α and electrode’s surface losses β

α =

√
Φ0

2π jcr2
J cJ

= β−1/2
c , (2.85a)

β =

√√√√ 2π jc
(

L□
0
)2

Φ0cJ
(

R□
0
)2 . (2.85b)

The junction’s Hamiltonian, governing its total energy, can be obtained by a classical
Legendre transformation and is commonly split in a sine-Gordon summand H̄SG

and a perturbation summand H̄P including bias and dissipation

H̄ = H̄SG + H̄P, (2.86a)

H̄SG =

ℓ̄∫
0

[
1
2
(∂t̄ φ)2 +

1
2
(∂x̄ φ)2 + (1 − cos(φ − φext))

]
dx̄, (2.86b)

dH̄P

dt
=

ℓ̄∫
0

[
γφt̄ − αφ2

t̄ − βφ2
x̄t̄

]
dx̄. (2.86c)

The Euler-Lagrange equation including dissipation by means of the Rayleigh
functional reads [GPS14; Nol14]

d
dt̄

(
∂L̄

∂ (∂t̄ φ)

)
+

d
dx̄

(
∂L̄

∂ (∂x̄ φ)

)
− ∂L̄

∂φ
=

1
ωp

d
dx̄

(
∂R̄

∂ (∂x̄t̄ φ)

)
− 1

ωp

∂R̄
∂ (∂t̄ φ)

(2.87)

and results in the perturbed sine-Gordon equation[MS78]

∂t̄t̄ φ − ∂x̄x̄ φ + sin φ = γ − α∂t̄ φ + β∂x̄x̄t̄ φ. (2.88)

In order to describe the phase dynamics of long junctions with finite length prop-
erly, magnetic fields, influencing the spatial phase dependence φ(x̄), need to be
analyzed. The part of externally applied fields in the y-direction Ha always affects
φ(x̄) according to Eq. (2.71), whereas the part Hb, induced by a bias current Ib,
strongly depends on the junction’s geometry [MS78; LPS83; Ols+86].

In case of the overlap configuration (see Fig. 2.15 a) (i)) the bias current both in
the top and bottom electrode is applied in the y-direction, hence, the induced
Hb is bound to the xz-plane. Since, it is perpendicular to the junction’s area, the
z-component does not influence the gauge-invariant phase difference at all. Due to
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2.4 Dynamics of long Josephson junctions

the small junction width w ≪ λJ, the magnetic flux through the yz-plane, generated
by the x-component of the induced magnetic field, is negligible small for phase
variation on the scale of λJ. That is, the bias current induced magnetic fields do
not affect the phase junction’s dynamics that is fully governed by the externally
applied field according to Eq. (2.71), such that the boundary conditions of overlap
junctions hold

(φx̄ + βφx̄t̄)
∣∣∣
x̄=0

= (φx̄ + βφx̄t̄)
∣∣∣
x̄=ℓ̄

=
2πµ0ΛλJ

Φ0
H := η. (2.89)

The situation changes for the inline geometry (see Fig. 2.15 a) (ii)), where the bias
currents flow in parallel to the junction’s long side along x and its induced magnetic
fields are in the yz-plane. As for overlap junctions, the z-component does not affect
φ(x̄), but the y-component contributes in the same manner as the Hay does. Inside
the junction (0 < x̄ < ℓ̄), Hb of the bottom and top electrode cancel to zero, but
at one junction end, the Hb above the bottom electrode and at the other end Hb

below the top electrode contribute with different signs. Therefore, the boundary
conditions of symmetric inline junctions are given by

(φx̄ + βφx̄t̄)
∣∣∣
x̄=0

=
2πµ0ΛλJ

Φ0
H +

Ib
2jcλJw

:= η + γ
ℓ̄

2
, (2.90a)

(φx̄ + βφx̄t̄)
∣∣∣
x̄=ℓ̄

=
2πµ0ΛλJ

Φ0
H − Ib

2jcλJw
:= η − γ

ℓ̄

2
, (2.90b)

or vice versa, depending on whether both dues sum up constructively or destruc-
tively.

Small-amplitude plasma wave solution

The generally nonlinear sine-Gordon equation (2.83b) of an infinite length Joseph-
son junction can be linearized for small amplitudes φ ≪ 1 and becomes a Klein-
Gordon equation

φx̄x̄ − φt̄t̄ = φ, (2.91)

whose solution are plane waves with normalized wave number k̄ = k · λJ, frequency
ω̄ = ω/ωp, and small amplitude φ0 ≪ 1

φp(x̄, t̄) = φ0ei(k̄x̄−ω̄t̄) + 2πn. (2.92)

The propagation of these small amplitude excitations in space and time is illustrated
in Fig. 2.17 a). Inserting this plane wave solution of Eq. (2.92) in the Klein-Gordon
equation (2.91) yields the dispersion relation ω̄ =

√
1 + k̄2 (see Fig. 2.17 b)), which

resembles plasma oscillations since it features a gap in the spectrum at a small k̄ of
1 (of ωp in SI units). This is the reason why such a linear excitation is commonly
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2 The principles of quantum electrodynamics in long Josephson junctions

Figure 2.17: Small amplitude plane wave solution of the linearized sine-Gordon equation. a) Plane
waves, solving the linearized sine-Gordon equation for small amplitudes φ0 = 0.1 ≪ 1, propagate both
in space with the wave number k̄ = 1 and in time with the frequency ω̄ = 1. b) Their dispersion relation
exhibits a gap for small wave numbers k̄ and approaches a linear course for k̄ ≫ 1.

called “Josephson plasma oscillation” or simply “plasmon” [OD91] and the former
introduced oscillation frequency in Josephson junctions is referred to as “Josephson
plasma frequency”.

Josephson vortex solution

The solution of infinite length junctions, which attracted most attention in the last
decades, is the Josephson vortex solution. Neglecting perturbations on the right
side of Eq. (2.88), this sine-Gordon equation is solved by

φF(x̄, t̄) = 4 arctan
(

exp
(
± x̄ − v̄t̄ − x̄0√

1 − v̄2

))
+ 2πn, (2.93)

which is nothing but the dynamic version of Josephson vortices of Eq. (2.74)
discussed in Sec. 2.4.2, however, traveling along the junction with velocity v̄ = v/c̄.
This means that the sign of the exponent of Eq. (2.93) determines the direction of
propagation, manifesting as vortex or antivortex with opposite ring current.

These Josephson vortices behave absolutely as solitons [Ust98], which are self-
reinforcing wave packages with permanent shape due to balanced perturbations
while propagating a medium. This requires nonlinear effects that cancel dispersive
effects in a manner that the wave package’s faster frequency components are
converted into slower ones and vise versa, resulting in the dynamic equilibrium
of the soliton. The propagation velocity is limited to the Swihart velocity c̄, the
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2.4 Dynamics of long Josephson junctions

Figure 2.18: Josephson vortex solution in long Josephson junctions. a) The 2π phase kink solution
(red line) spans over two neighboring valleys in the tilted washboard potential of a spatially extended
long junction. b) At relativistic velocities, the Josephson vortex reveals Lorentz contraction such that the
2π-kink becomes sharper and sharper (from dark to bright).

speed of light inside the Josephson medium. As can be seen from the Lorentz factor(
1 − v̄2)−1/2 in Eq. (2.93), these solitons are invariant with respect to the Lorentz

transformation

x̄ → x̃ =
x̄ − v̄t̄√
1 − v̄2

, (2.94a)

t̄ → t̃ =
t̄ − x̄/v̄√

1 − v̄2
, (2.94b)

since both the d’Alembert operator and sin(φ) in the unperturbed sine-Gordon
equation (2.83b) are Lorentz invariant. As a consequence, the solitons behave like
relativistic particles, exhibiting Lorentz contraction (see Fig. 2.18 b)) for velocities
approaching the Swihart velocity. Furthermore, Josephson vortices’ total energy
are given by

ĒF = H̄(φF) =
8√

1 − v̄2
, (2.95)

which features a relativistic mass increase and the normalized rest mass m̄F = 8
[MS78]. The soliton propagation can be driven up to relativistic velocities by
external forces, such as a current bias that acts via a Lorentz-Magnus force on
the vortex’s participating charge carriers. This acceleration is accompanied by
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2 The principles of quantum electrodynamics in long Josephson junctions

dissipation that yields an equilibrium velocity v̄∞, which can be determined by
equating the time derivatives of the sine-Gordon and perturbation Hamiltonians

dH̄SG

dt̄

∣∣∣
φ=φF

=
8v̄

(1 − v̄2)
3/2

dv̄
dt̄

, (2.96a)

dH̄P

dt̄

∣∣∣
φ=φF

= −8α
v̄2

(1 − v̄2)
1/2 − 8

3
β

v̄2

(1 − v̄2)
3/2 − 2πγ, (2.96b)

and results in the first-order ordinary differential equation for v̄(t̄) [MS78]

dv̄
dt̄

= −αv̄
(

1 − v̄2
)
− 1

3
βv̄ − π

4
γ
(

1 − v̄2
)3/2

. (2.97)

The situation, where the input power supplied by the external current source

equals the dissipated power, is characterized by dv̄
dt̄

∣∣∣
v̄=v̄∞

= 0 with the power

balance velocity v̄∞ and yields

γ =
4
π

|v̄∞|√
1 − v̄2

∞

(
α +

β

3 (1 − v̄2
∞)

)
. (2.98)

2.4.4 Quantumness of long Josephson junctions

From a more quantum mechanical perspective, the long junction’s Lagrangian is
conveniently written in the form [HSB94; SBM97]

L =
h̄c̄
¯̄hJ

ℓ∫
0

1
2c̄2 (∂t φ)2 − 1

2
(∂x φ − A)2 − 1

λ2
J
(1 − cos(φ)) dx. (2.99)

The overall coefficient

¯̄hJ =
h̄ωp

EJ
=

4π2 h̄
Φ2

0

√
L□

cJw2 ∝ ZJ (2.100)

defines the system’s energy scale with respect to its quantized eigenenergies. In
doing so, ¯̄hJ can be interpreted as a normalized Planck constant in the Josephson
medium [KWU02] that is a measure for the quantumness of LJJs. It is zero in the
classical limit, whereas the larger ¯̄hJ, the smaller the system’s energy scale, and thus
the more quantum the junction is. For a typical 1 µm wide Al/AlOx/Al-junction,
this normalized Planck constant is about ¯̄hJ ≈ 2 × 10−3 [KI96], which means that
energy scale of inherent excitations such as Josephson vortices exceed the quantized
eigenenergies by 1/ ¯̄hJ. In consequence, such a conventional Josephson medium
and its excitations are quite classical according to the Ehrenfest theorem.

The quantum regime can be approached by increasing the junction impedance
by either narrowing the sample, decreasing the junction’s specific capacitance, or
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2.4 Dynamics of long Josephson junctions

increasing the electrode’s inductance. In previous works, the junction widths w

were reduced down to ∼ 200 nm–300 nm, yielding normalized Planck constants
in the range ¯̄hJ ≈ 7 × 10−3–9 × 10−3 [Wal01; Kem06]. The further narrowing is
experimentally challenging since the state-of-the-art fabrication technology limits
the feasible structure sizes. Moreover, the widths cannot be reduced arbitrarily to
ensure well-defined phases in the superconducting electrodes by avoiding phase
slips [Vos+21]. The electrode’s geometric inductance L□

g is mostly defined by
the actual shape and dimensions and is difficult to increase further. The specific
capacitance is bound to suitable tunnel barrier materials that also control the critical
current density and quasiparticle dissipation so that these three parameters are
mainly exhausted.

However, the advent of high-kinetic inductance materials, exceeding the geometric
inductance by orders of magnitude, is a promising, additional parameter for ¯̄hJ

that relaxes the requirement on the lithographic fabrication resolution. The ap-
proach, taken throughout this work, to increase the junction’s quantumness is the
replacement of the junction’s bulk electrodes with thin films of very high-kinetic
inductance superconductors.
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3 Experimental methods
The replacement of bulk long junction electrodes with a high-kinetic inductance
superconductor is a promising approach for increasing the junction’s impedance
and its concomitant quantumness (see Sec. 2.4.4). In the following, the experimental
realization chosen for this work is reported. There, the choice of granular aluminum
as a high-kinetic inductance superconductor is motivated by elaborating the main
properties of this material. After that, details of fabrication techniques and the
measurement framework are specified. The latter consists of a refrigerator to cool
the sample to cryogenic temperatures with inherent low-noise DC and RF wiring
that ensure an appropriate environment. Finally, measurement electronics for
transport or microwave measurements outside the cryostat are sketched out.

3.1 Fabrication techniques for high-impedance long
junctions

Since most superconducting parameters are material-specific, the junction’s elec-
trode material, providing high kinetic inductance, plays a crucial role in the ex-
perimental realization. As seen in Tab. 2.1, thin films of granular aluminum oxide
(AlOx) are promising candidates since their large kinetic inductance exceeds the
geometric due by orders of magnitudes. This is mandatory to increase the junc-
tion’s impedance substantially. The combination of the material’s adjustable large
kinetic inductances with good microwave coherence of circuits made from AlOx

[Rot+16; Grü+18; Grü+19; Sch+20], are the main arguments for the usage of granu-
lar aluminum oxide for high-quality and high-impedance Josephson junctions. This
material further turns out to be very suitable for making long Josephson junctions
because of the good compatibility with common AlOx tunnel barriers that are most
widely used for quantum junctions due to performance and the straightforward
native oxidation. In addition, AlOx is resilient to magnetic in-plane fields [CA68;
Chu+81b; Bor+20], which, for instance, are required to inject Josephson vortices
in long junctions. Moreover, the critical temperature Tc ≈ 1.6 K–2.0 K well exceeds
typical dilution refrigerators’ base temperatures of ∼ 10 mK, avoiding thermal
quasiparticle excitations.
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Figure 3.1: Transmission electron microscopy photograph of granular aluminum oxide. The high-
lighted areas with parallel stripes in the diffraction pattern are identified as crystalline pure aluminum
grains with an approximated diameter of 3 nm–4 nm. These nanocrystals are randomly embedded in
an insulating amorphous aluminum oxide matrix, such that this granular material can be regarded as
disordered network of (super-) conducting islands separated by tunnel barriers.

3.1.1 Thin films of granular aluminum oxide

Initiated by the superconducting isotope effect and suggestions of electron-lattice
interactions that are affecting the superconducting behavior, superconductors have
been studied in the dirty limit for decades. In doing so, Buckel and Hilsch found,
pure aluminum, deposited on a 4 K cold quartz substrate, to form a granular
structure and to reveal a increased transition temperature up to Tc = 2.59 K [BH54].
The grain size can be reduced, while increasing the critical temperature to Tc ≈ 3 K
by depositing aluminum inside an oxygen atmosphere [ACC66].

Such granular aluminum oxide is used throughout this work and consists of
pure crystalline aluminum grains embedded in insulating amorphous aluminum-
oxide, as depicted in Fig. 3.1. Both the normal and the superconducting transport
properties are dominated by these intrinsic nanoscopic tunnel barriers [Deu+73a].
In the superconducting phase, this granular structure can be treated as a network
of nanoscopic Josephson junctions [Deu+73a] providing a kinetic-type Josephson
inductance [Jos64], which is related to the normal state tunnel resistance Rn and
the superconducting gap ∆ by Lk = h̄Rn/π∆ [MB58; GT57; Ann+10; Rot+16] (see
Eq. (2.32)). The AlOx’s conductivity and inductance can range over five orders of
magnitude [Deu+73b; Chu+81a] depending on the oxygen concentration in the
nanoscopic tunnel barriers (TBs) [ZHB78], which is controlled by the oxygen partial
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3.1 Fabrication techniques for high-impedance long junctions

pressure during the reactive sputtering process [Rot+16]. This enormous versatility
enables us to use AlOx in different regimes for depositing junction stacks with
high kinetic inductance as bottom electrode, an insulating tunnel barrier, and a top
electrode made from AlOx and pure aluminum.

3.1.2 Trilayer sputter deposition

The junction trilayers are deposited on a c-plane sapphire substrate using a reactive
DC magnetron sputter process in a homemade sputter tool. This device consists of
an ultrahigh vacuum chamber to avoid contamination and a sputter gun formed by
a ring-shaped anode close to the aluminum sputter target that serves as the cathode.
Applying sufficiently high voltages ∼ 400 V enables a dielectric breakdown of the
argon working gas, ignites an argon plasma that bombards the sputter target, and
thus eject clusters of aluminum atoms. The sputtering rate is increased via a radial
magnetic field that deflects charge carriers on an elongated spiral track, leading to
an intensified plasma [DM08].

To grow AlOx, oxygen is added as a reactive gas that oxidizes aluminum naturally
and yields the desired granularity. The oxygen concentration, thus the normal
sheet resistance R□

n , and the concomitant kinetic inductance per unit square L□
k , are

defined by the oxygen partial pressure during the deposition [Rot+16]. Especially
for sheet resistances beyond ∼ 1 kΩ, the resistivity is so sensitive to slight variations
of the oxygen partial pressure that the reproducibility suffers from this exponential
dependence.

To gain necessary control in this regime, both film thickness d and resistance R□
n

are monitored during the film deposition.1 The film thickness is measured using
a quartz oscillator, whose resonant frequency shifts with the mass of deposited
material. This quartz oscillator is placed close to the sample, and the frequency
shift to thickness conversion is calibrated using a profilometer.

Conventional four-point probes of the film resistance are falsified by large currents
∼ 10 mA that flow from the plasma to the sample. To overcome this impact, large
measurement signals, exceeding this plasma current by orders of magnitudes,
cannot be used since they heat the film beyond its melting point. Such heating
results in an inhomogeneous resistivity with undefined granularity and even
bubbles on the film surface. Therefore, a counter voltage ∼ 200 V between the

1 This in situ R(d) measurement enables the estimation of the bottom electrode’s sheet inductance,
which would not be possible for the whole trilayer.
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insulated sample holder and the grounded chamber is applied to decelerate the
argon plasma, and thus avoid targeting the film and falsifying the measurement.
The uncharged sputter material is unaffected by this electrical field, and the sputter
rate remains the same.

This in situ R(d) measurement enables us to fit the specific conductance σ(d) ≡
ρ−1 =

(
R□

n d
)−1 and to estimate the final specific resistance ρn0 already during

the deposition [Wil+22]. The granular aluminum oxide’s thickness-dependent
specific conductance follows the model for fine-grained polycrystalline thin films
by Mayadas et al. [MSJ69]

σ

σ0
≡ ρn0

ρn
= 3

[
1
3
− α

2
+ α2 − α3 ln

(
1 +

1
α

)]
. (3.1)

Equation (3.1) is the solution of a linearized Boltzmann equation including ordinary
scattering mechanisms as in bulk materials and superimposed scattering at grain
boundaries. There, σ0 is the intrinsic thickness-independent conductivity from the
film interior and α := l0

d
r

1−r denotes the ratio between the background mean free
path l0 and the film thickness d, reduced by a scattering reflection coefficient r.

For the in situ fit, as shown in Fig. 3.2, an offset thickness has to be included,
above which the model holds. The fit performed for trilayer A yields the resistivity
ρ0 = (70.7 ± 0.2) µΩ cm and l0r

1−r = (5.04 ± 0.17)Å. The product of resistivity and
mean free path is a material specific measure of its Fermi surface SF and can be
assumed to be ρ0l0 = 12π3 h̄/e2SF = 1.6 × 10−11 Ω cm−2 for granular aluminum
oxide [CA68]. This yields the mean free path l0 = (22.62 ± 0.07)Å in the order of a
few nanometers and the substantial reflection coefficient r = (18.2 ± 0.5)%, which
confirms diffusive transport in the granular material. The discrepancy between
measurement and theoretical model for small film thicknesses originates in an
inhomogeneous film thickness and the conductivity of the not perfectly repelled
argon plasma that contributes especially for small film thicknesses, where the film
is not entirely connected.

As can be seen in Fig. 3.2, this in situ R(d) measurement is a powerful tool to achieve
the aimed kinetic inductance value. On the one hand, the deposition can be stopped
when reaching the desired sheet resistance, subjecting the exact film thickness to
slight variations. On the other hand, if the fitted final resistivity deviates from the
goal, the oxygen partial pressure can be readjusted, visible as knees in the R(d)
curves for trilayers B and C in Fig. 3.2. Consequently, the desired sheet resistance
Rn
□ at the fixed film thickness can be achieved with a deviation of less than 10 %

[Wil+22], which is great progress in controlling the sheet resistance of granular
aluminum oxide.
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3.1 Fabrication techniques for high-impedance long junctions

Figure 3.2: In situ resistance measurement during reactive sputter deposition of different trilayers.
a) On two opposing sides of the substrate, there are previously deposited silver strips to ensure that
the resistance of the squared film equals the sheet resistance, which is connected to a four-point
measurement. b) The measured thickness-dependent normal resistance Rn(d) is fitted to the model of
fine-grained polycrystalline thin films by Mayadas et al. [MSJ69] in order to estimate the final resistance.
If needed, the oxygen partial pressure is readjusted during the deposition to achieve the desired
resistance, as is the case for trilayers B and C. The inset points out the tunnel barrier creation, where
low-ohmic pure aluminum is deposited (a to b) and afterward statically oxidized (b to c). (This Figure
is also published in Ref. [Wil+22].)

The trilayers’ tunnel barriers are formed by depositing a thin film of pure alu-
minum, that is later oxidized statically. There, the critical current density is con-
trolled by the product of oxidation pressure pox and time tox [KMM95]

jc(pox, tox) = aox (pox · tox)
box . (3.2)

Fitting results of the later transport measurements yield the constants aox = (3.36±
0.12)× 104 and box = −0.666 ± 0.016, when using the SI units ampere, meter, bar
and second. For details, see Fig. B.2, given in Appendix B.2.

The barrier thickness can be estimated from R(d) in situ measurement. The pure
aluminum layer as a low-ohmic shunt first decreases the total sheet resistance (from
a to b in the inset of Fig. 3.2) before coming back to the initial resistance at the
end of the static oxidation of the whole aluminum layer (from b to c in the inset of
Fig. 3.2). A complete oxidation is achieved for ≈ 1.2 nm–1.5 nm thick aluminum
layers, but slightly depends on the barrier’s transparency.

Finally, a top electrode is deposited similar to the bottom electrode but eventually
with different oxygen concentrations. The characteristic parameters of the trilayers
used in this work for long junction experiments are given in Tab. 3.1.
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Table 3.1: Trilayer fabrication parameters. During the deposition of the bottom electrode, the sheet
resistance R□

n is measured by four-point probes, and the film thickness d1 is measured with a quartz
oscillator. To create the tunnel barrier, a layer of pure aluminum of thickness dI is first sputtered and
statically oxidized in an oxygen partial pressure pox for a time tox. The layer of pure aluminum is then
deposited on the bottom electrode. If necessary, the top electrode of thickness d2 is continued with
another layer of thickness d3.

trilayer R□
n

(Ω)

pox

(bar)
tox

(min : s)
d1

(nm)

dI

(nm)

d2

(nm)

d3

(nm)

A 38 21.0 20: 00 20.4 2.6 20.6 20.0
B 75 0.51 4: 00 20.4 2.1 21.1 20.2
C 778 5.1 4: 00 18.6 1.5 20.4 20.1
D 2295 0.025 4: 00 34.6 1.2 30.0
E 947 0.286 4: 00 46.6 1.2 30.0

Long Josephson junctions are patterned from these stacks using e-beam and pho-
tolithography techniques in combination with inductively coupled plasma etching,
anodic passivation and thermal evaporation of leads to the junction’s top electrode.
As the exact process differs for junctions read out in the DC or the RF scheme, this
is discussed in detail in Sec. 4.2, Sec. 5.2, and Sec. 6.2.

3.2 Measurement setup

To study the physics of long Josephson junction devices, an appropriate framework
of low-noise DC and RF connections as well as proper static magnetic fields are
required. Therefore, the long junction samples are hosted in a gold-plated oxygen-
free copper sample holder that provides two coaxial SMP jacks, which are soldered
to 50 Ω matched microstrip transmission lines on microwave-suitable printed circuit
boards (PCB). Aluminum wire bonds both connect these PCBs with the on-chip
feedline and the DC microstructures with another PCB that supplies 24 DC lines
from a micro D metal (MDM) connector. Moreover, a homemade superconducting
niobium coil (Tc ≈ 9.2 K) is placed around the sample holder to apply an in-plane
magnetic field. To shield external magnetic fields, the whole box is surrounded
by a Cryoperm shield.2 The assembly used throughout this work is depicted in
Fig. 3.3.

2 Cryoperm is low-temperature suitable permalloy made from a soft magnetic nickel-copper-
molybdenum-iron alloy. Due to its high permeability µr ≈ 70 000 at 4 K and the entailing low
reluctance, magnetic flux prefers being inside the shield instead of in the vacuum at its inner.
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3.2 Measurement setup

Figure 3.3: Sample holder with DC and RF connectors, surrounded by a magnetic coil and a permalloy
shield. a) The sample chip, containing long junction experiments, is embedded in a sample holder,
where aluminum wire bonds contact both junction’s leads and microwave feedline to appropriate
PCBs installed in the sample holder. b) The DC lines are connected to an MDM connector, whereas
the RF-suitable PCBs are soldered to SMP jacks (accessible from the sample holder’s bottom side, and
thus not visible on this photograph). The hosting sample holder and its lid are made from copper and
gold-plated to provide a good thermal connection to the cryostat. c) This closed box is surrounded by
a superconducting coil to apply well-defined magnetic fields and mounted deep inside a Cryoperm
shield, which screens magnetic fields from the sample.

Naturally, Josephson junction devices, made from aluminum (oxide) trilayers, ne-
cessitate cooling down to millikelvin temperatures. First superconducting phenom-
ena, such as zero DC resistance, ideal diamagnetism and even coherent Josephson
tunneling, already occur just below Tc. However, avoiding thermally populated
dissipative quasiparticles and thermally activated tunnel processes that would
destroy quantum coherence require way colder temperatures.

3He/4He dilution cryostats meet the demanding requirements and provide contin-
uously sufficient cooling power to cool the solid bodies of samples and necessary
measurement equipment. Therefore, the whole sample holder as portrayed in
Fig. 3.3 is thermally connected to the base plate of a 3He/4He dilution cryostat.

The following describes how such refrigerators operate in principle and how they
must be equipped to suit measurements on Josephson junction devices. In this
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work, these samples are probed both by DC and RF measurement techniques,
whose essentials are presented after that.

3.2.1 Pulse tube precooled 3He/4He dilution cryostat

3He/4He dilution cryostats are multistage cooling units whose precooling to a
few kelvins can either be implemented by baths of liquid nitrogen and helium or
mechanical cryocoolers like a closed cycle pulse tube refrigerator. The latter are
very popular as they circumvent moving parts in their low-temperature part, and
thus avoid vibrations. As shown in Fig. 3.4, two of such pulse tube refrigerators
are thermally connected to the first two stages and precool the 3He/4He mixture
down to liquefaction. This is cooled further by means of a Joule-Thomson valve,
where the temperature decreases under isenthalpic expansion [ADK18].

Now, below ≈ 870 mK, the 3He/4He mixture undergoes a spontaneous phase
transition and separates in two phases: a 3He rich phase (concentrated phase)
that consists almost exclusively of 3He and a 3He poor phase (dilute phase) that
consists in its thermodynamic equilibrium at 20 mK of ≈ 93.5 % 4He and ≈ 6.5 %
3He [EH05]. Due to their different densities, the concentrated phase in the mixing
chamber floats above the dilute phase, which is connected with a reservoir at still.
There, the higher temperature and the decreased pressure favor the evaporation
of almost exclusively 3He because of the isotopes’ different vapor pressures. As
a result, there is a nonequilibrium with a concentration gradient that goes along
with an osmotic pressure between the dilute phases at the base and still stage.
To compensate for this and maintain the thermodynamic equilibrium, 3He of the
concentrated phase must mix itself with the dilute phase. The required entropy
of mixing is extracted from the system in the form of heat [EH05]. To ensure
continuous cooling, the evaporated 3He is sent to the cryostat again, cooled by
heat exchangers on the condenser side, and fed into the concentrated phase in the
mixing chamber.

Even though this cooling principle enables theoretically arbitrary low temperatures,
its finite cooling power ∼ 10 µW limits the base temperature of 3He/4He dilution
cryostats to ∼ 10 mK, because of thermal connections between the stages, heat
input through circulating mixture, thermal radiation, and unavoidable Joule heat
input of electronic devices. Nontransparent metallic shields at each stage suppress
the latter, where the warmest ones have the greatest bearing according to the
Stefan–Boltzmann law P ∝ T4. For this reason and for convenience, the used
Bluefors LD250 cryostat abstains from a base shield. Thermal connections between
the stages as well as their thermal contact with the environment are reduced by
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Figure 3.4: Cryogenic measurement setup. a) The cryostat is a multistep refrigerator, whose precooling
unit is a two-stage pulse tube generating about 40 K and 3 K, respectively, that is thermally coupled
by heat exchangers to the primary dilution refrigerator. By means of a Joule-Thomson valve in this
3He/4He cycle, temperatures at still of about 700 mK are reached, which suffices to obtain a separation
into a concentrated and a dilute phase of the 3He/4He and run the dilution refrigeration cycle. Thereby,
3He is pumped down at still from the dilute phase and recondensed to ensure continuous cooling.
b) The photograph of a Bluefors LD250 refrigerator shows the implementation used in this work,
including the wiring. c) The measurement framework consists of low-pass filtered DC wires, coaxial RF
lines, and high-current supply lines for magnetic coils.
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pumping the cryostat’s outer vacuum chamber to ∼ 10−6 mbar and by an elaborate
choice of materials used for the cooling unit and measurement wiring.

The later presented experiments were run in the commercial 3He/4He dilution
cryostat Bluefors LD250, as depicted by the photograph in Fig. 3.4 b), whose mea-
surement setup is configured to the special needs of Josephson devices. For this
purpose, DC and RF connections, as well as high-current supply lines, are mounted,
where the heat input to the individual stages due to thermal conductivity is kept
minimal by the careful choice of suitable materials and wire cross-sections. Great
care is also taken to reduce the thermal noise in the measurement lines by means
of filters at different temperatures.

Commercial microwave electronics generate signals at room temperatures with
order of magnitudes too high powers for Josephson devices that require a few to a
few thousands of photons. This is the reason why thin stainless steel coaxial cables
with comparable large damping (23.5 dB m−1 at 300 K (compare to Fig. B.1 a) in
Appendix B.1) and 14.7 dB m−1 at 4 K, both at 1 GHz) can be used as input lines,
to reduce the thermal conductance between the individual stages. The stainless
steel’s comparably high electrical resistivity originates in a strong electron-phonon
interaction that is beneficial to thermalize the electrons. For experiments with a
few photons, the input signal’s noise temperature, which is approximately room
temperature, is of particular interest and needs to be reduced. Therefore, it is
advantageous to thermalize attenuators at the lowest possible stages that provide
sufficient cooling power since each resistor contributes with thermal Johnson-
Nyquist noise. The signal’s final noise temperature passing an attenuation chain of
N stages, each with attenuation factor aj > 1 and temperature Tj (with T1 ≈ 10 mK
at base and room temperature TN+1 = 300 K) results in [Fri44] [Sch20]

Tn = T1 +
N

∑
i=1

Ti+1

∏i
j=1 aj

. (3.3)

As the base temperature T1 contributes without any attenuation, this should be
kept as low as possible, and due to the limited cooling power, the attenuation
cannot be arbitrarily large there. For this reason, and to decouple the cold stages
thermally, attenuators are typically distributed over the three coldest stages, as
illustrated in Fig. 3.4 c) [Kri+19]. The total attenuation, which is usually desired to
be in the order of ≈ 70 dB, sums up by about 40 dB at 10 GHz in the stainless steel
cables and of several attenuators with in total 30 dB in the present setup.

To analyze the signal’s few photons, scattered by the sample, at room temperature,
resistive coaxial lines are not applicable, by which ∼ 99.99 % of the signal would
be lost. This requires amplification at cold temperatures that is realized by high
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electron mobility transistors (HEMTs) at the two pulse tube stages.3 The sample
is optimally connected with the first HEMT by superconducting niobium coaxial
lines due to their perfect electric conductance and the coexistent thermal isolation.
After an amplification of ≈ 35 dB, normal conducting coaxial lines can further be
used. In the present setup, the signal is led through silver-plated stainless steel
cables that combine weak thermal conductivity in the outer and the middle of
the center conductor and good electric conductivity underneath the surface of the
center conductors. This silver layer is exactly the area where most of the microwave
signals are located according to the skin effect.

In close vicinity to the sample, both input and output signals are low-pass filtered
with a cutoff frequency of 18 GHz and infrared filters based on Mie scattering on
sapphire powders of different diameters. The latter filter is essential as the coaxial
line’s and attenuator’s typical dielectric PTFE, commonly known by its brand name
Teflon, is transparent to infrared radiation. Moreover, to avoid incoming (reflected)
signals at the sample’s second port, a circulator with a 50 Ω termination is installed
that only allows for transmission in one direction and otherwise attenuates by
≈ 20 dB (see Fig. 3.4 c)).

Conventional source measure units for transport measurements provide insufficient
signal-to-noise ratios, so these signals must also be filtered. In doing so, the DC
lines are made from twisted pairs of constantan wires with a rather high resistance
of 66 Ω m−1, all embedded in epoxy glue with copper powder acting as infrared
filter [LU08], and shielded by a stainless steel mesh. The signals are further low-
pass filtered at room temperature by a CLC filter in π topology with a cutoff
frequency of about ≈ 300 kHz, and at the second pulse tube stage by an RCR filter
in T topology with a cutoff frequency of about ≈ 1 kHz. The latter RCR filter
is installed at ≈ 3 K in order to reduce the resistors’ thermal Johnson-Nyquist
noise voltage Vn =

√
4kBTR∆ f , while having sufficient cooling power available.

More details such as the transmission spectrum of such DC measurement lines are
specified in Fig. B.1 b) in Appendix B.1.

Supply lines for magnetic coils that need to carry high currents consist of massive
copper wires between room temperature and the first pulse tube stage, whose
thermal load is increased in this manner. Due to its good thermal conductance
and the lower cooling power at further stages, such copper wires with large cross-
sections are not possible to use there while maintaining millikelvin temperatures

3 A semiconductor heterostructure provides a two-dimensional electron gas with high electron mobility,
such that these amplifiers can operate at a few kelvins, where most other semiconducting amplifiers
would not be able to operate.
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at base. This is why high-temperature superconductors, featuring zero resistance
and good thermal isolation, are used between both pulse tube stages. Below this
stage, with about ≈ 3 K, conventional metallic superconductors are available that
are way cheaper and much easier to handle. For this purpose, wires are used where
multiple filaments of NbTi are embedded in a CuNi matrix. With this combination
of materials, avoiding plug-connections and using only clamp connections and
superconducting solder joints, the wire resistance is minimized to about 0.3 Ω,
while enabling coil currents of a few amperes with negligible Joule heat input to
the cryostat.

As 3He/4He dilution refrigerators are conceptualized to operate at millikelvin
temperatures, but not around 1 K, an additional stage is thermally weakly coupled
to the mixing chamber by thin-walled stainless steel tubes if needed for such tem-
peratures. This extra stage has an individual heater and a separate resistive RuO2

thermometer, thus allowing for precise temperature control and fast temperature
sweeps. This gadget benefits from its small thermal mass and weak thermal con-
nection, so it avoids heating the mixing chamber beyond the critical temperature,
where the mixture would vaporize. Thus, temperatures around 5 K can be achieved
easily, with base not exceeding 100 mK.

3.2.2 Transport measurement setup

To take IV-characteristics of current biased Josephson junctions with critical cur-
rents down to a few nanoamperes, high signal-to-noise ratios are required even at
current resolutions in the order of tens of picoamperes. The bias current is gener-
ated by means of a homemade voltage biased current source, providing different
amplification factors (2 × 10−2 A V−1 to 2 × 10−6 A V−1). Its core is a reference
amplifier consisting of two high-precision monolithic dielectrically isolated FETs
OPA2111. This current source is supplied by a source-measure unit (SMU), whose
output signal is prefiltered by the low-noise preamplifier Stanford SR560.

The measured voltage drop across the Josephson junction, in turn, is amplified
by a low-noise instrumentation amplifier INA 105KP and measured by the SMU.
IV-characteristics are recorded by linear staircase sweeps, provided by the SMU,
which is in this work either the sourcemeter Keithley 2636A or the data acquisition
system NIDAQ USB-6259 BNC, if the real-time resolution is needed.

A method to take data of transport measurements with customized sequences of
sweeps is integrated into the Qkit measurement framework [qki] that is developed
in Alexey Ustinov’s group at KIT.
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3.2.3 Microwave measurement setup

Spectroscopic measurements

Scatter parameters of 2 port networks can be acquired during frequency sweeps
for each frequency point employing vector network analyzers (VNA) such as the
model Keysight VNA E5080B, which was used in this work. In doing so, the complex
scattered signal, detected at port 2, is related to the complex signal applied at port 1
to obey the definition of the transmission coefficient S21 in Eq. (2.33). The obtained
microwave spectrum contains the whole cryogenic RF setup in general but is
dominated by the Josephson device in case of proper wiring, as described above.
As the receiver’s (at port 2) typical intermediate frequency (IF) bandwidth is in the
order of 1 Hz–104 Hz, such measurements analyze the system in the steady-state,
which is sufficient for basic characterizations such as resonances.

As theoretically treated in Sec. 2.3.3, coupled systems are typically characterized via
two-tone spectroscopy. Thereby, the second system is driven by an additional tone
with power Pd and frequency fd that is swept and in the vicinity of the resonant
frequency, the second system is populated. This results in a dispersive shift of
the first resonator monitored by a VNA. The second tone is generated by a local
oscillator (LO), such as the model Keysight N5173B in this work, and is added to the
VNA’s probe signal by means of a directional coupler. The setup is schematically
shown in Fig. 3.5 a).

Time resolved measurements

If steady-state measurements are insufficient and time-resolved measurements
are needed, a time-domain setup, as schematically shown in Fig. 3.5 b) is used.
Commercially available electronics, such as arbitrary waveform generators (AWGs)
or digital-to-analog converters (DACs), usually operate with a few gigasamples
per second, which is why the required pulses cannot be generated directly with
carrier frequencies in the gigahertz range. Instead, only the pulses’ envelopes are
generated with such devices at a maximum intermediate frequency of 500 MHz
and mixed with another carrier frequency generated with an LO, which is at most
20 GHz.

To obtain only a single sideband with this up-conversion, two 90◦ phase-shifted
envelopes are generated and multiplied together with the carrier frequency by IQ
mixers to form a complex signal. This way, both manipulation and readout pulses
are generated, which are then added with a directional coupler before being sent
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Figure 3.5: Microwave setup for steady-state two-tone spectroscopy and time-resolved measurements.
a) In a two-tone spectroscopy microwave setup, a probe tone of a vector network analyzer (VNA)
with frequency fVNA and power PVNA is added by means of a directional coupler to a drive tone of
another local oscillator with frequency fd and power Pd. The scattered signal is detected at the VNA’s
receiver and related to the probe signal to determine the scatter parameter S21. b) For time-resolved
measurements, the pulses’ envelopes of both I and Q are generated by a digital-to-analog converter
(DAC) and multiplied by IQ mixers with a carrier frequency of a local oscillator (LO) for single-sideband
mixing. Both manipulation and readout pulses are amplified with variable gain, and their signals are
added by a directional coupler. For the readout signal, the microwave is previously split into equal
parts for the up and down conversion to ensure a common reference for both frequency and phase.
The signal scattered by the sample is down-converted, low-pass filtered, amplified and recorded using
an analog-to-digital converter (ADC). This schematic of the time domain setup is reduced to the basic
components. For details, see the thesis of my colleague Richard Gebauer [Geb22], in whose context this
setup was developed.

to the sample. The pulses scattered by the sample are again down-converted with
IQ mixers using the same LO signal as for the previous up-conversion to ensure a
common frequency and phase reference. Before these I and Q measurement signals
are recorded with analog-to-digital converters (ADCs), they are low-pass filtered
to get rid of high-frequency mixing products and amplified to match the ADC’s
input levels.

During this work, a time-domain setup was used, which was developed in cooper-
ation with the Institut für Prozessdatenverarbeitung und Elektronik (IPE) at the
KIT. The setup combines central processing units (CPUs), field-programmable gate
arrays (FPGAs), DACs and ADCs to generate and detect the signals [Geb+20a;
Geb+20b]. An in-depth description of the system can be found in [Geb22].
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Josephson junctions

Long Josephson junctions (LJJs), whose usual bulk electrodes are replaced by thin
films of granular aluminum oxide, must be tested experimentally for their suitability
for quantum circuits. For this purpose, we experimentally check whether such high-
impedance junctions are still governed by the sine-Gordon model, which means
that vortices can be excited in this Josephson medium. The existence of vortices
in the LJJs is mandatory, which means that the junctions are describable by the
sine-Gordon model. Moreover, it needs to be checked whether the additional kinetic
inductance can really increase the junction impedance, and thus the quantumness.
Furthermore, high-quality tunneling barriers are required to observe quantum
coherence, which entails as few dissipative quasiparticle excitations as possible.
All these properties are studied in transport measurements by analyzing the LJJs’
IV characteristics, their magnetic field dependence, their temperature dependence,
and their response to microwave irradiation. The main results of the experiments
presented in this chapter have already been published in Ref. [Wil+22].

4.1 Sample considerations and design

In order to study the influence of the kinetic inductance in the junctions’ electrodes
on the characteristic junction parameters, namely magnetic thickness Λ, Josephson
length λJ, plasma frequency ωp and Swihart velocity c̄, the kinetic inductance of the
bottom electrode is varied. For this purpose, the partial oxygen pressure, and thus
the sheet resistance, is varied during trilayer deposition and the critical current
density is adjusted during static oxidation of the tunnel barrier so that the theo-
retically predicted Josephson length is a few tens of micrometers. In this manner,
junctions can be patterned from the trilayers A, B, and C by photolithography with
the same optical masks, varying the width w = 2 µm–5 µm < λJ and the length
ℓ = 20 µm–120 µm > λJ (for stack properties see Tab. 3.1).

Moreover, since the spatial distribution of the phase difference and current density
is defined by the junction geometry (see Sec. 2.4.2), three different types of them
are studied: In the quasi-overlap geometry, the high-kinetic inductance bottom
electrode is contacted along the entire length of the junction (along x) on both sides

69
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Figure 4.1: Schematic patterning of junction stacks for transport measurements. The upper row
illustrates the structure’s top view and the lower row its side view along the dashed line after each
fabrication step. Starting from the deposited junction stack (i) the areas of junctions and DC leads to the
bottom electrode are patterned by an argon-chlorine-based inductively coupled plasma (ICP) etching
process. The junctions are defined from the remaining stacks (ii) by removing the top electrode in the
vicinity of the active area by ICP etching. The bare surfaces are further anodic oxidized to insulate the
bottom electrode. Onto the resulting active (iii) and close parts of the passive region, DC leads are
finally contacted to the top electrode by thermal evaporation of pure aluminum, where the galvanic
contact is ensured by the previous removal of the native oxide at the surface by argon milling. The
quasi-overlap geometry of the final long junction (iv), illustrated here, is characterized by two DC leads
to both the bottom and top electrode that allows four-point probes.

with leads that themselves consist only of the AlOx bottom layer. Their high kinetic
inductance compared to the Josephson inductance of the LJJ leads to a homoge-
neous current distribution since the top electrode is shunted with low-inductive
pure aluminum, which is led out at the two short sides of the junctions (along
y). This geometry allows four-point probes, even for room temperature prechar-
acterizations. In the inline geometry, bottom and top electrodes are contacted at
both ends of the LJJs to allow four-point probes. In this geometry, the bias current
typically peaks at the junction ends, and the top electrode’s low-inductance shunt
increases the current distribution’s resulting inhomogeneity since it also becomes
asymmetric. In addition, squared short junctions of different sizes are fabricated
with a current distribution as homogeneous as possible to determine the critical
current density.

4.2 Sample fabrication details

Starting from trilayers A, B, and C that are deposited as described in Sec. 3.1.2, long
junctions that provide galvanically connected leads for probing the sample with
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Figure 4.2: Micrograph of a 100 µm× 5 µm long Josephson junction device in quasi-overlap geometry.
To enable four-probe measurements at the junction, both its bottom and top electrode are galvanically
connected with two bond pads each. One line offers an L-shaped coupler close to a microwave feedline
that allows for RF irradiation as required for measuring the plasma frequency. In the inset, the bright
field image is superimposed by a dark field micrograph to pronounce edges and highlight the junction
underneath the top electrode.

transport measurements, are patterned in three steps: First, the Josephson junctions
and their leads to the bottom electrodes are patterned using optical lithography and
an argon-chlorine-based inductively coupled plasma (ICP) reactive ion etching (RIE)
process. The latter technique offers high etching rates, high selectivity and low-
damage processing by combining a high chlorine radical density for the aluminum’s
chemical etching and a high argon-ion density for physical removal, similar to the
sputtering process. In doing so, all parts that are not protected by the photoresist
are etched down to the substrate, as illustrated in the top view of Fig. 4.1 (ii).

The junctions’ exact dimensions are defined in the second step, where a photoresist
covers the active regions and distant parts of the bottom electrode. At the bare areas,
only the trilayers’ top electrodes are removed by ICP etching, and the resulting
surfaces are oxidized using an electrolyte of ammonium pentaborate and ethylene
glycol for anodic oxidation1 (see Fig. 4.1 (iii)). This passivation is mandatory for the
subsequent contacting of the top electrodes without shorting the junction stacks by
the deposited superconducting layers in the third step.

1 For the anodic oxidation, all junctions have to be connected to a common pad, where the voltage is
applied. These joints between individual junctions are cut during dicing the chip into 5 mm × 5 mm
pieces that are installed in the sample holder.
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Table 4.1: Properties of the fabricated high-impedance trilayers. The normal conducting sheet resis-
tance of the bottom electrode R□

n is extracted from the film deposition. The critical current densities jc
are determined from squared junctions, and Ambegaokar–Baratoff estimations coincide to switching
current measurements. The superconducting gap energies are fitted to temperature-dependent gap
voltages. Magnetic thickness Λexp and Josephson penetration depth λJ are derived from the critical
current’s magnetic field dependence of inline junctions at T ≈ 300 mK, from which the geometry factor
g(r) also follows. From overlap junctions, the Swihart velocity c̄ and the impedance Z is acquired
from the periodicity of zero-field and Fiske steps at around 1 K. (These data are also published in
Ref. [Wil+22].)

trilayer R□
n

(Ω)

jc
(A cm−2)

∆t

(µeV)

∆b

(µeV)

A 38 0.32 ± 0.03 227.1 ± 0.8 278.6 ± 0.6
B 75 12.5 ± 0.3 193.2 ± 0.4 267.5 ± 0.6
C 778 1.90 ± 0.01 201.5 ± 0.7 278.1 ± 0.7

Λexp

(nm)

λJ

(µm)

g(r)
(10−2)

c̄zfs/c0

(10−3)

c̄FS/c0

(10−3)

Z
(Ω)

A 69 ± 2 LJJ limit not reached for ℓ ≤ 120 µm 6.56 ± 0.03 2.79 ± 0.04
B 72 ± 9 17.2 ± 2.2 15 ± 4 4.27 ± 0.06 3.64 ± 0.02 4.11 ± 0.06
C 94 ± 9 19.5 ± 1.8 13 ± 3 3.37 ± 0.08 3.22 ± 0.03 14.0 ± 0.4

To ensure galvanic contact in the active region, the native oxides at the surfaces
of the trilayers’ former deposited top electrodes are removed by argon milling,
whereas the passive region remains insulating. Without breaking the vacuum,
the final top electrode and efferent leads are deposited thermally immediately
after (see Fig. 4.1 (iv)), which is experimentally much easier to realize with pure
aluminum instead of granular aluminum oxide. See Appendix B.2 for details of
parameters concerning optical lithography (Tabs. B.1, B.2, and B.4), ICP etching
(Tab. B.5), and anodic oxidation (Tab. B.6).

Figure 4.2 shows an optical microscopy image of a typical fabrication results of
this process. The sample includes an LJJ in quasi-overlap geometry (see inset) and
four DC lines, where one of them is attached to an L-shaped radio frequency (RF)
coupler in the vicinity of a microwave feedline.
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4.3 IV-characteristics of high-impedance Josephson
junctions

First, IV-characteristics of high-impedance Josephson junctions of different sizes
and geometries are taken at low temperatures of about 20 mK. As can be seen
exemplarily in Fig. 4.3 a), such junctions exhibit a large hysteresis between the
switching and retrapping current that confirms a high quality factor originating
in only little quasiparticle dissipation. The switching currents themselves are
stochastic, which is why their distribution is measured statistically, as depicted
in the inset of Fig. 4.3 a). The probability that the junction escapes from the zero-
voltage to the nonzero-voltage state within the interval dI around the current I is
given by [FD74a]

pecs(I)dI = Γecs(I)
∣∣∣∣dIb

dt

∣∣∣∣−1
1 −

I∫
0

pecs( Ĩ)d Ĩ

 dI. (4.1a)

This probability depends on the inverse bias sweeping rate dt/dIb, the activation
rate Γ(I) and the probability that the junction was not already switched at a lower
current. The integral equation for the escape probability, given in Eq. (4.1a), can be
solved for the escape probability density (epd) [FD74a]

pecs(I) = Γecs(I)
∣∣∣∣dIb

dt

∣∣∣∣−1
exp

−
∣∣∣∣dIb

dt

∣∣∣∣−1 I∫
0

Γecs( Ĩ)d Ĩ

 (4.1b)

and further for the escape rate [FD74a]

Γecs(I) =
∣∣∣∣dIb

dt

∣∣∣∣ ln


∞∫
I

pecs( Ĩ)d Ĩ

∞∫
I+∆I

pecs( Ĩ)d Ĩ

 . (4.1c)

In the experiment, the bias current is swept with a constant rate dIb/dt using
a 16-bit digital to analog converter (DAC) and the switching current from the
zero-voltage to the nonzero-voltage state Ic is recorded for 10 000 events with a
sample rate of 1.25 MS/s by a 16-bit analog to digital converter (ADC) of the data
acquisition system NIDAQ USB-6259 BNC. A histogram is calculated from these
switching currents, by counting the number of switching events necs

j within the

jth bin of the width ∆I, as done in Fig. 4.4 a). The escape probability density is
obtained by normalizing the individual number of events necs

j to unity both by the
total number of switching events N and the bin width ∆I, so that

pecs
j (I) =

necs
j

N∆I
. (4.2)
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Figure 4.3: Critical currents for different junction sizes and geometries, measured with various
techniques. a) The IV-characteristic of a 10 µm × 10 µm junction of trilayer B shows a large hysteresis
between critical and retrapping current, indicating low damping, and thus a high junction quality factor.
The inset points out the statistics of measured switching currents that differ every time, ramping up the
current as each escape from the zero voltage to the nonzero voltage state is a stochastic process. (This
figure is also published in Ref. [Wil+22].) b) Different methods to determine the critical current are
compared exemplarily for square-shaped junctions made from the same trilayer B with various junction
areas. The critical current, estimated from the normal state resistance by the Ambeagaokar-Baratoff
relation (AB), conforms with the most likely switching current (ML), which is slightly less than the
fitted result of switching current measurements (SCM) due to thermal excitation. The area variation of
junctions in quasi-overlap and inline geometry is exclusively covered by different lengths ℓ, whereas the
width is kept constant at w = 5 µm. The critical currents are linear to the junction area for the quasi-
overlap and squared geometry, which goes along with homogeneous current distribution. In contrast,
the critical current of inline junctions saturates for large junction lengths due to the inhomogeneous
current distribution.

As mentioned in Eq. (4.1c), the escape probability determines the junction’s activa-
tion rate, whose discrete version is calculated from the experimentally acquired
values pesc

j (I) [Wal01] (see Fig. 4.4 a))

Γecs(Ik) =

∣∣∣dIb
dt

∣∣∣
∆I

ln

 ∑
j≥k

pecs
j

∑
j≥k+1

pecs
j

 . (4.3)

Within the scope of the RCSJ model (see Sec. 2.4.1), underdamped junctions switch
to the nonzero voltage state when overcoming the potential barrier of the junction’s
tilted washboard potential U0(I) given by Eq. (2.67). In general, this process can
either be because of macroscopic quantum tunneling of the phase through the
potential barrier or because of thermal activation over the barrier [DMC85] (see
Fig. 4.4 b)).
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Figure 4.4: Switching current measurements of squared high-impedance junctions. a) To evaluate
the distribution of switching currents from the zero-voltage to the nonzero voltage state with 20 000
events, the activation rate is determined from the escape probability distribution (epd), whereby the
linear course indicates that this is thermally dominated. A fit of this thermal activation rate as described
by Eq. (4.4) provides the critical current Ic and escape temperature Tesc as free fit parameters. b) The
escape of the phase from the junction’s potential well can be of thermal and quantum mechanical origin,
both depending on the bias-dependent barrier height and the thermal population of higher energy
levels.

The crossover temperature, below which the escape rate transitions from thermal
to quantum mechanical origin (where it becomes temperature-independent) is
given by T∗ = h̄ωp/2πkB for underdamped junctions [Aff81; DMC85]. This is
not a sharp transition, so even just below the theoretical transition temperature, a
relevant number of higher levels are still thermally occupied due to the long tail
of the thermal occupancy distribution. Furthermore, it is challenging to bring the
electrons in the measurement lines down to the bath temperature so that the real
system temperature is higher than the bath temperature [Gia+06].

Accordingly, in the present measurements of the escape from zero voltage to the
nonzero voltage state thermal activation must be considered, whose rate is given
by the attempt rate ∝ ωp as well as the ratio of barrier height U0 and effective
escape temperature Tesc [BHL83; DMC85]

Γecs
th (I) =

ωp

2π
exp

(
− U0(I)

kBTesc

)
=

ωp

2π
exp

−
EJ

4
√

2
3

(
1 − I

Ic0

)3/2

kBTesc

 . (4.4)
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4 Fluxons in high-impedance long Josephson junctions

The experimentally determined activation rate of Eq. (4.3) is fitted to this thermal
activation rate to determine the fitting parameters, namely escape temperature T∗

and critical current Ic0.

Using square contacts as examples, critical fitted current values Ic0 (SCM) and
most likely switching currents Ic (ML), both determined by switching current
measurements, are compared with those estimated by normal resistance according
to the Ambegaokar-Baratoff relation of Eq. (2.59) [AB63]. As shown in Fig. 4.3b
the Ambegaokar-Baratoff (AB) estimations are in good agreement with the most
likely switching currents Ic, which are systematically just below the fitted critical
currents Ic0.

Figure 4.3 a) also shows the critical currents for different junction geometries, each
with different junction areas ℓw, only dependent on ℓ if w is kept constant for long
junction geometries. It can be seen that the critical currents of the quasi-overlap
junctions increase linearly with the junction’s length, coincide with the squared
junctions, and thus exhibits a homogeneous current distribution as desired. In
contrast, the critical currents of the inline junctions saturate already above a length
of 40 µm (corresponding to an area of 200 µm2 at a fixed width of 5 µm), which
allows a Josephson length in the order of 20 µm to be roughly estimated. The
critical current densities listed in Tab. 4.1 are determined for squared junctions.

In addition to the critical current, the voltage at which the junction jumps is also an
important parameter for IV characteristics of Josephson junctions. After the escape
from the zero-voltage to the nonzero voltage state, the phase particle runs down the
washboard potential, whereby an equilibrium velocity of energy gain due to the tilt
and loss due to dissipation emerges. These losses increase dramatically when the
voltage is reached, which is just enough to break Cooper pairs into two dissipative
quasiparticles each, so that the equilibrium velocity is approximately equal to
this voltage. As shown in Fig. 2.11 c), this voltage corresponds to V∆ = 2∆/e
for SIS junctions with identical superconductors with gap ∆. In case of S1IS2

junctions with different superconductors for the bottom and top electrode with
gaps ∆b and ∆t, respectively, the gap voltage holds V∆ = (∆b + ∆t) /e. In the
latter case, a second singularity is possible at V = |∆b − ∆t| /e [NSS60; BP82]. To
observe these two singularities, the IV characteristics are recorded up to the critical
temperature, the two effective gaps are extracted, and if both are measurable the
two superconductors’ gaps are calculated by

∆eff
1 =

|∆b − ∆t|
2

,

∆eff
2 =

|∆b + ∆t|
2

,
⇔

∆b = ∆eff
2 + ∆eff

1 ,

∆t = ∆eff
2 − ∆eff

1 .
(4.5)
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4.4 Magnetic diffraction patterns

Figure 4.5: Temperature-dependent IV-characteristic and extracted critical current and gap energies.
a) Since superconductivity is suppressed with increasing temperature, both the gap voltage, which
is a measure for the Cooper pair density, and superconductor’s overlap, the critical current, decrease
and finally disappear completely for T → Tc. The increasingly thermally excited quasiparticles thereby
increase the dissipation in the system, which b) translates into a higher Stewart-McCumber parameter,
thus a larger retrapping current, and c) in a reduced superconducting gap.

The resulting gaps of the bottom electrode ∆b ≈ 265 eV–280 eV and the top electrode
∆t ≈ 190 eV–230 eV of the three different trilayers A, B, and C corresponds to that of
granular aluminum oxide and that of by AlOx proximitized aluminum, respectively.
The temperature dependence of both superconductors can each be described with
the Gorter-Casimir two-fluid model [GC34]

∆ j(T) = ∆ j(0)

√√√√1 −
(

T
Tcj

)4

. (4.6)

The gap values for the different trilayers listed in Tab. 4.1 are extrapolated to T = 0
from such fits of ∆ j(T), as for example depicted in Fig. 4.5 c).

4.4 Magnetic diffraction patterns

The high-impedance junction’s characteristic lengths along and perpendicular to
the tunnel barrier, the Josephson length λJ and the magnetic thickness Λ, respec-
tively, are experimentally determined from the critical current’s dependence on
in-plane magnetic fields. As explained in Sec. 2.4.2, externally applied magnetic flux
causes a spatial variation of the junction’s phase difference along its x-direction,
which leads to a diffraction pattern of the critical current intensity. The linear
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4 Fluxons in high-impedance long Josephson junctions

Figure 4.6: Magnetic diffraction pattern of a 110 µm × 5 µm long junction of trilayer B in inline
geometry at different temperatures. a) The linear decrease of the Meissner phase confirms reaching
the LJJ limit and the extrapolated root of the main lobe corresponds to ±Hc1. The asymmetric lobes
of the magnetic field-dependent critical current arise because of inhomogeneously distributed bias
currents in inline junctions in combination with different inductances in the two electrodes [Sch70;
BJV75; Mon+13] (This figure is also published in Ref. [Wil+22].) b) The maximum of the main lobe
decreases for higher temperatures according to the Ambegaokar-Baratoff model of S1IS2 junctions
with different superconducting gaps ∆ j(T), whereas the Josephson length increases because of the
temperature-dependent kinetic inductance.

slopes of the lobes in such patterns, as exemplified by Fig. 4.6, confirm that the
junction can be considered as long, meaning that self-field effects are not negligible.
Accordingly, Meissner-Ochsenfeld-like screening currents can shield the junction’s
interior from small fields. Since these screening currents penetrate deeper and
deeper along the tunnel barrier from the edges, only smaller and smaller additional
bias currents can be carried so that the Meissner phase decreases linearly when the
magnetic field is increased from zero. A long junction maintains this behavior up
to its first critical field [FP63; Sch70]

Hc1 =
Φ0

πµ0ΛλJ
, (4.7)

at which a quantum of flux penetrates the junction by overcoming its edge barrier.
Far above, in large in-plane fields, the junction is considered to be completely
penetrated by magnetic flux, such that flux quanta are laterally lined up close
together along the tunnel barrier. The flux-penetrated extent in the z-direction, the
magnetic thickness is accordingly given as

Λ =
Φ0

ℓ∆Ba
, (4.8)
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4.5 Microwave induced switching

where ∆Ba is the critical current’s periodicity of higher side maxima. As can be seen
in Tab. 4.1, Lk affects Λ, since the proximitized top electrode’s London penetration
depth λL enlarges with increasing Lk, whereas the bottom electrode of each stack
is without exception in the thin-film limit d1 ≪ λL1, and thus contributes to Λ with
d1/2 [Wei69].

The first critical field Hc1 can be determined by the extrapolated zeros of the linear
slopes of the main maximum. By inserting this value and the already determined
magnetic thickness Λ in Eq. (4.7), the Josephson length can finally be calculated as

λJ =
Φ0

πµ0Hc1Λ
. (4.9)

Using the definition of the Josephson length from Eq. (2.73), the kinetic inductance,
contributing locally to λJ, can be determined. The comparison of this value g(r)L□

k
with the kinetic inductance of the bottom layer L□

k , estimated from the resistance
R□

n measured in situ as R(d) during the sample deposition, yields the geometry
factor g(r) on the order of 10−1, as given in Tab. 4.1 [Wil+22].

As can be seen in Fig. 4.6 b), the Josephson length enlarges with increasing tempera-
ture since both the critical current and the electrode’s dominating kinetic inductance
strongly depends on the temperature. The data fit the empirical dependency

λJ(T) = λJ(0) ·
(

1 −
(

T
Tc

)4
)−1/4

(4.10)

that is motivated by the temperature dependence of the two-fluid model with the

characteristic factor
(

1 −
(

T
Tc

)4
)α

. The temperature dependence of the main lobe’s

maximal critical current is again in good agreement with the model of Ambegaokar
and Baratoff of Eq. (2.59) [AB63] as depicted in Fig. 4.6 b).

4.5 Microwave induced switching

The Josephson plasma frequency is the small-amplitude oscillation frequency of
a virtual phase particle in a potential well of an unbiased Josephson junction, as
illustrated in Fig. 2.10 a). Since the junction’s potential is tilted by a bias current,
the oscillation frequency strongly depends on the bias as ω0(γ) = ωp

(
1 − γ2)1/4

[Dah+68] (see Sec. 2.4.1).

An off-resonant external AC bias merely yields weak oscillations of the potential
tilt. It thus adds slightly to the DC bias so that smaller DC currents suffice that
the junction escapes from the potential well. However, if an additional microwave
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4 Fluxons in high-impedance long Josephson junctions

Figure 4.7: Resonance current at different external microwave drives of a squared junction with
(10 µm)2 of trilayer B at 20 mK. a) The junction’s phase oscillation frequency in a potential well
strongly depends on the bias current. Forced oscillations by microwave irradiation can provoke a phase
particle’s escape from such a potential well if its resonance frequency or nth subharmonics matches
the drive frequency. b) If so, the junction’s switching current becomes multivalued, and the secondary
peak in the switching current distribution is identified as resonance current, where its full width half
maximum is the error. (This figure is also published in Ref. [Wil+22].)

tone drives the oscillations resonantly, subharmonically or superharmonically, a
significantly smaller DC bias current is necessary to escape from a potential well
and reach the running state characterized by a nonzero voltage [Grø+04]. This
shows up as a secondary peaks in the switching current distribution [Wal+03a;
Grø+04; BCG10], as exemplified in Fig. 4.7 b), that is identified as resonant cur-
rent, for which the fixed external drive frequency equals the junction’s resonance
frequency ω0, its integer multiples or fractions of ω0.

In the experiment with a 10 µm× 10 µm squared junction of trilayer B as an example
[Wil+22], switching current measurements with 10 000 events are taken under
microwave irradiation of a variable but fixed frequency. After finding a multivalued
switching current distribution, the power of the microwave excitation is adjusted so
that the additional peak is still clearly visible but does not yet shift towards smaller
currents [Wal+03a]. This is the case if the integrals over the individual peaks are
nearly equal.
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4.6 Current steps

The current value of the additional peak and the corresponding frequency are a
single data point in Fig. 4.7 a) and for many such measurements branches of the
different harmonic n can be found, obeying

ωn(γ) =
ωp

n

(
1 −

(
I
Ic

)2
)1/4

. (4.11)

The extrapolation of the oscillation frequency with orthogonal distance regression
to I = 0 yields the plasma frequency ωp/2π = (13.28 ± 0.05)GHz and the critical
current Ic = (8.36 ± 0.08) µA.

This fit enables the calculation of the tunnel barrier’s specific capacitance using
the definition of the Josephson plasma frequency in Eq. (2.64). The value cJ =

(36.4 ± 0.4) fF µm−2 is a typical number for tunnel barriers made from thermally
oxidized aluminum [Mae+95] and indicates that the additional kinetic inductance
does not affect the plasma frequency to the first order.

4.6 Current steps

Apart from the static measurements on long junctions in applied magnetic fields
to determine the Josephson length and the measures on short junctions to de-
termine the plasma frequency, their product, the Swihart velocity c̄ = λJωp, is
determined in independent measurements separately. As explained in Sec. 2.4.3
extended Josephson junction stacks can be viewed as nonlinear transmission lines
through which different excitations, such as plasma waves or solitons in the form
of Josephson vortices, can propagate with at most the Swihart velocity c̄ [Ped86].
The impedance mismatch at the two open ends of a one-dimensional long junction
forms a cavity that allows standing wave excitations.

One-dimensional linear long junctions with open boundaries have no topological
constraints on the number of inherent vortices and antivortices. Therefore, fluxons
can be trapped in such junctions even in zero magnetic fields,2 where the overlap

junction’s boundaries hold (φx̄ + βφx̄t̄)
∣∣∣
x̄=0

= (φx̄ + βφx̄t̄)
∣∣∣
x̄=ℓ

= 0. In this geome-

try, solitons are driven shuttle-like along the tunnel barrier by a Magnus-Lorentz
force caused by a nearly homogeneously distributed bias current. At the junction
ends, they are reflected, reversing not only their direction but also their polarity to

2 At first sight this may seem counterintuitive, but theoretical considerations show that in long junctions
even the smallest perturbations are sufficient for a Josephson vortices to be energetically more
favorable [Lik86].
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4 Fluxons in high-impedance long Josephson junctions

Figure 4.8: Current singularities due to junction cavity resonances of 100 µm × 5 µm and 110 µm ×
5 µm long junctions of sample B in quasi-overlap geometry without and with magnetic fields,
respectively. a) Zero-field steps arise only with sufficient damping in the junctions, which is realized by
temperatures just below the critical temperature Tc ≈ 1.25 K. b) Fiske steps occur at different magnetic
fields and their characteristic rounded shape originates from the increased damping at T = 1.0 K. Both
current steps feature a bias current depending characteristic shape according to Eq. (4.12), whose fits
and errors as displayed as dark gray line and the gray shaded area. (These figures are also published in
Ref. [Wil+22].)

satisfy the boundary condition. This process can be regarded as a virtual collision
with an antisoliton. Thereby, soliton and antisoliton move towards the junction
boundary with opposite velocities, collide at the edge and pass through each other
if their velocities are large enough, such that the soliton leaves, whereas the anti-
soliton enters the junction [Ust05]. Due to its reverse polarity, this antisoliton is
driven in the opposite direction of the soliton. In doing so, the soliton is reflected as
antisoliton at the one junction boundary and vice versa at the opposite boundary,
yielding resonances in the junction cavity in zero magnetic fields [CFL71; FD73;
FD74b].

Accordingly, two 2π-kinks pass each point of the junction per period ∆t, giving rise
to the time-averaged voltage ⟨V⟩ = 2Φ0/∆t across the junction. The period is given
by the junction length and the propagation velocity from Eq. (2.98) as ∆t = 2ℓ/v,
so that the voltage drop is given for β = 0 by [MS78; BP82; Lik86]

VZFS
n (γ) =

Φ0 c̄
ℓ

n√
1 +

(
4α
πγ

)2
. (4.12a)

Here, n denotes the number of participating solitons that cause equidistant current
steps in the IV curves, which approach the voltage Φ0 c̄/ℓ in the relativistic limit
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4.6 Current steps

(v → c̄) achieved for large bias current. For their experimental observation, ho-
mogeneous bias current distributions such as those obtained in the quasi-overlap
geometry are advantageous to ensure a shuttle-like soliton motion and avoid their
edge pinning as observed in inline junctions.

To reliably access such current singularity features in the IV characteristic arising
from the subgap resistance branch, it further helps to increase the dissipation of the
underdamped junctions by increasing the sample temperature. Then, however, as
shown in Fig. 4.8 a), the Stewart-McCumber branch cuts the lower part of the higher-
order steps. Nevertheless, the current steps are fitted to Eq. (4.12) to determine the
Swihart velocity.

In finite magnetic fields, this perception of shuttle-like vortex motion remains valid
only in a very narrow parameter range [EFP83] of low magnetic fields H ≈ Hc1/2,
intermediate junction lengths ℓ̄ ⪅ 10, and comparable large damping [EFP83]. In
this configuration, fluxons can travel the Josephson transmission line without being
reflected at the junction edges, but being rather annihilated at a boundary. The
released energy travels back as a slowly decaying plasmon, which in turn triggers
a fluxon at the opposite boundary [Due+81; Ust05]. Consequently, a single 2π per
fluxon kink passes each point of the junction per full period, which results in half
the voltage of the zero-field steps [Fis64; Kul65; Kul67]

VFS
n (γ) =

Φ0 c̄
2ℓ

n√
1 +

(
4α
πγ

)2
. (4.12b)

Thus, such Fiske steps with even numbers of participating fluxons n coincide exactly
with the former zero-field steps. Fiske steps can also be observed apart from this
narrow parameter range with identical characteristics, although the underlying
mechanism differs. In general, the Josephson frequency of a biased junction excites
electromagnetic standing waves in the junction cavity, whose higher harmonics
give rise to periodic current singularities, as shown in Fig. 4.8 b). For underdamped
junctions, cavity oscillations are unstable for ω ≲ ωp [Cir+97; Cir+98], which
explains missing the first Fiske step in Fig. 4.8 b).

Nevertheless, the Swihart velocity c̄ is determined by the periodicity of the current
singularities and the well-defined junction length ℓ (see Tab. 4.1). Knowing the
junction width w from fabrication and the specific capacitance cJ, the impedance
of the Josephson medium can be calculated by ZJ =

1
wc̄cJ

To analyze the impact of the electrode’s kinetic inductance on LJJs, their character-
istic parameters, listed in Tab. 4.1, are compared with estimations for conventional
LJJs with equal tunnel barrier properties jc and cJ, but made from pure aluminum.
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4 Fluxons in high-impedance long Josephson junctions

Here, we assume that pure aluminum electrodes have negligible kinetic inductance.
The result of this comparison is that the electrode’s kinetic inductance reduces both
the Josephson length λJ and the Swihart velocity c̄ by a factor of up to 40, while the
Josephson plasma frequency ωp remains nearly unchanged. Accordingly, the wave
impedance of LJJs is increased by the same factor. The inductance contributing
to Josephson plasma oscillations is dominated by the macroscopic stack tunnel
barrier rather than the nanoscopic tunnel barriers in AlOx due to the much stronger
intergrain coupling so that the increase in Lk can be neglected to the first order.
The combination of the independently measured parameters corresponds to the
conventional sine-Gordon model with c̄ = λJωp.

4.7 Concluding remarks

The reported transport measurement results demonstrate that the novel high-
impedance Josephson junctions made from disordered oxidized aluminum as a
high-kinetic inductance superconductor are promising candidates for studying the
quantum coherence of Josephson vortices. These long junctions feature high quality.
The observation of zero-field steps proves the existence of Josephson vortices in
the long junctions, and thus confirms the sine-Gordon model being applicable for
high-impedance long junctions.

Beyond, the experiments demonstrate a decrease in the vortex’s size and a reduction
of its limiting (Swihart) velocity by about one order of magnitude compared with
conventional LJJs, whereas the plasma frequency is unaffected to the first order.
The measured Swihart velocities down to a small fraction of 3× 10−3 of the vacuum
light velocity, in turn, correspond to an increase in the junction’s wave impedance
up to 14 Ω compared to 4 Ω of conventional, similarly made LJJs. The enhancement
of this impedance goes along with an increased quantumness ¯̄hJ ∝ Z. As ¯̄hJ plays
the key role in experimentally reaching the quantum regime of Josephson vortex
dynamics [Wal+03b], high-kinetic inductance electrodes also facilitate observing
the quantum electrodynamics phenomena in long Josephson junctions.

Apart from the goal in this work of quantum coherence of Josephson vortices,
these high-impedance junctions are promising for the research field of active
Josephson microwave components. The high-kinetic inductance electrodes enable
tailoring the junction impedance and facilitate solving the long-standing problem
of impedance matching LJJs to external circuits and 50 Ω cables. Matching the
impedance to external loads is crucial for increasing the efficiency of Josephson
flux-flow oscillators used for microwave generation and amplification [Wil+22].
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5 Long junctions embedded in a
high-impedance resonator

Observations of quantum coherence are experimentally challenging using DC
measurements since the sample is galvanically connected to the environment,
representing a massive decoherence channel. However, excitations with alternating
electromagnetic fields allow for manipulation and readout of the circuit with-
out such DC lines. For this purpose, long junctions are coupled to high-quality
microwave resonators that are completely galvanically decoupled from the envi-
ronment and act as very narrow band-pass filters even for AC by coupling only on
resonance. This readout scheme is well established for superconducting quantum
bits [Bla+04; Wal+04], but not yet for long Josephson junctions. The following
chapter elaborates on a method to couple high-impedance long Josephson junc-
tions (LJJs) to such resonators and their fabrication process. Further, spectroscopy
measurement data involving the anharmonicity and the magnetic field dependence
are compared to a theoretical model of coupled junction and resonator.

5.1 Sample considerations and design

One possible way to couple a high-impedance long junction with a distributed
λ/2 high-kinetic inductance resonator is to expand the junction’s bottom electrode
to a resonator. In other words, a section of the resonator is shared as the bottom
electrode of the long junction, where a tunnel barrier and a top electrode are
deposited on top (see Fig. 5.1).

For infinitely long junctions, the currents in this assembly, driven by alternating
electromagnetic fields, branch out in the two electrodes according to their induc-
tance ratio as described by Kirchhoff’s current law. Because of the supercurrent
tunneling through the junction, a resonator-junction interaction is achieved, whose
coupling strength is controlled by the inductance ratio of the bottom to the top
electrode as well as the widths of the junction and resonator. Strong coupling can,
for instance, be realized by a high-kinetic inductance bottom electrode made of
AlOx and a top electrode of pure aluminum, whose orders of magnitude smaller
inductance is negligible (see Fig. 5.1). In this extreme case, the major part of the
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5 Long junctions embedded in a high-impedance resonator

Figure 5.1: Schematic sample design for long junctions embedded in a microwave resonator. a) An
open-end microstrip LC transmission line forms a distributed λ/2 resonator. The center part of this
high-kinetic inductance resonator serves as bottom electrode of a high-impedance long Josephson
junction, whose top electrode is made from a pure aluminum. b) The resonator is coupled capacitively
to a microwave feedline in notch type configuration.

current driven in the resonator tunnels through the junction and flows in the upper
branch.

The extent of the junction’s edge regions, where this current tunnels across the
barrier, is governed by the ratio between Josephson and electrode inductance, and
thus by the dimensionless screening parameter βL = L0/LJ, which is related to the
Josephson length.

As distributed resonators exhibit spatially varying electromagnetic field distribu-
tions, the choice of the LJJ’s position is decisive: Assuming a homogeneous kinetic
inductivity, the spatial center corresponds to the symmetry point of the current
distribution in the resonator. This means there are current nodes for even and
antinodes for odd harmonics, respectively.

For this reason, the LJJ’s impact on the resonator varies depending on the excited
mode since the phase drop along the junction ∆ϕ ∝ LI differs.

FEM simulations1 analyze the impact of varying inductance in the resonator’s
center part (this is where the LJJ will be placed) on its resonant frequency. In
the extreme case of zero inductance of the inner 10 % of the resonator area even
harmonics are affected insignificantly as the resonant frequency changes only by
0.03 % for the second harmonic and 0.8 % for the fourth harmonic. In contrast,
odd harmonics with current antinodes in the center of the microstrip resonator

1 The resonant frequencies are estimated by employing Ansys HFSS, a multipurpose, full-wave 3D
electromagnetic simulation software that utilizes a finite element method (FEM) eigenmode solver.
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drastically change their resonant frequency by ≈ 10.4 %. Thus, spectroscopy mea-
surements to determine higher-order resonance frequencies of such samples can
be used to experimentally verify whether the proposed arrangement couples LJJs
to resonators, making the former suitable for RF readout.

As LJJs’ inductances are sensitive to magnetic in-plane fields, such fields should
significantly impact the resonant frequencies. For this purpose, a model of phase-
biased junctions was developed in this work, which is described in detail in Sec. 5.3.

To attribute the expected anharmonicity and modified magnetic field dependence
to the LJJ, a reference resonator without any LJJ on top is fabricated in the same
fabrication run. Frequency multiplexing of several notch-type resonators on a
common feedline is utilized to measure multiple resonators with a small spatial
distance to be as insensitive as possible to inhomogeneities in the trilayer. In
addition, fewer RF lines and cooldowns are needed to measure and compare
different resonators, but the measured resonances need to be unambiguously
identified.

Two-dimensional on-chip waveguides are usually realized in a coplanar structure,
where center conductors are separated by an insulating gap from semi-infinite
ground planes or by microstrip lines, whose ground electrodes are placed on the
chip’s backside. Since homogeneous in-plane fields are applied in the present ex-
periment, the microstrip variant with a normal instead of superconducting ground
plane will be used. Normal metals prevent bending magnetic fields near the junc-
tions due to Meissner screening in the ground plane. Besides, a normal conducting
backside metallization avoids trapping Abrikosov vortices, which would interfere
with the applied magnetic field.

In the AC experiments, it is convenient to use microwave frequencies on the
order of a few gigahertz since their corresponding energies are, on the one hand,
sufficiently below the superconducting gap (e.g., 2∆/h ≈ 87 GHz for aluminum)
to avoid quasiparticle excitations. On the other hand, gigahertz frequencies are
adequately above the available temperatures (kBT/h ≈ 200 MHz for conventional
dilution refrigerators reaching T ∼ 10 mK) to dominate thermal excitations and
enable deliberate manipulation. Moreover, the manifold commercial electronic
equipment used for telecommunication operates in the kilohertz to gigahertz band.
Access to this microwave technology required for the RF measurements, such as
vector network analyzers, microwave sources, amplifiers suitable for cryogenic
temperatures, circulators, mixers, etc., ease experimental implementations.

87



5 Long junctions embedded in a high-impedance resonator

Figure 5.2: Schematic patterning of a long junction embedded in a microwave resonator. The upper
row depicts the circuit’s top view, and the lower row the side view along the resonator and long junction
(dashed line) after each fabrication step. Starting from the deposited junction stack (i) the resonator
area that includes the junction is patterned by an argon-chlorine-based inductively coupled plasma
(ICP) etching process. The top electrode of the remaining trilayer (ii) is also removed by ICP etching at
the outer parts of the resonator to define the long junction in the middle of the resonator only (iii).

To achieve a large coupling strength between resonator and junction, granular
aluminum oxide with R□

n = 2 kΩ which corresponds to L□
k = 1.5 nH, as bottom and

pure aluminum as top electrode are desired. In order to exhibit fundamental modes
in the frequency range 4.5 GHz–7.5 GHz, the resonators’ lengths are designed to
l ≈ 300 µm–500 µm at a uniform width of w = 2 µm. The junctions extend over
the entire width of the resonators w = w and their lengths are fixed to 10 % of the
resonator length, so that ℓ ≈ 30 µm–50 µm. While these values should correspond
to long normalized junction lengths ℓ̄ ≈ 9–15, the Josephson length is targeted
around λJ ∼ 3.5 µm. Therefore, the desired critical current density is estimated to
be jc ∼ 100 A cm−2.

5.2 Sample fabrication details

The trilayer D, whose measurements are shown below, meets the desired parameters
(see Tab. 3.1) and is sputtered as described in the Sec. 3.1.2. Resonators and
long junctions are patterned each by photolithography and argon-chlorine-based
inductively coupled plasma (ICP) reactive ion etching (RIE), as schematically
illustrated in Fig. 5.2: First, areas of the resonators, including the long junctions, are
covered by a photoresist, and the rest of the trilayer is subsequently etched down
to the sapphire substrate. Second, only the smaller junction area in the center of the
resonator is covered by a photoresist, and the top electrode layer only is removed
next to it so that the outer part of the resonator consists only of the AlOx layer. This
step is delicate because it must be ensured that the junction, i.e., the low-inductance
aluminum top electrode, is completely removed while the plasma does not etch too
deeply into the bottom electrode. Unfortunately, since there is no selective etch that
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Figure 5.3: Atomic force micrograph of an AlOx strip with an LJJ on top. The atomic force micrograph
(a)) shows the long junction embedded in a microstrip resonator, and the schematic of the microstructure
is illustrated in b). From the measured height profile, the width of the vertical trilayer strip is estimated
to ≈ 1.7 µm. In the lower part (y ≲ 9.5 µm), the long junction’s trilayer stack survives, whereas the top
electrode is etched away in the upper region. For this purpose, a photoresist, which protects against
etching, is patterned photolithographically with a horizontal excess length of ≈ 2 µm, resulting in a
slightly higher substrate there.

etches only pure aluminum but not granular aluminum oxide, this etching result
can only be achieved by choosing the appropriate etching time. See Appendix B.2
for details of parameters concerning optical lithography (Tabs. B.1, B.2, and B.4)
and ICP etching (Tab. B.5).

Finally, an additional 100 nm thick layer of niobium is deposited onto the microstrip
feedline in an optical liftoff process. Niobium features high critical temperature,
high critical magnetic in-plane fields, and negligible kinetic inductance that allows
for well-defined impedance matching to the standard microwave components with
50 Ω. To confine the electromagnetic fields properly, a backside metallization is
deposited in the form of a 100 nm thick layer of silver with a 5 nm thick coat of
titanium beneath to improve its adhesion on the sapphire substrate.

During patterning of sample D, the top electrode was slightly overetched, that
is to say the granular aluminum layer was thinned down by a few nanometers.
As the thickness of the resonator layer decreases, the sheet resistance or rather
the kinetic inductance increases (compare the Rn(d) curve in Fig. 3.2 b)), which
can be verified by test structures at room temperature. Four-point probes on test
strips with 150–250 squares yield a sheet resistance of R□

n = (4.6 ± 0.6) kΩ, which
corresponds to L□

k = (4.9 ± 0.6) nH according to Eq. (2.32). FEM simulations
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5 Long junctions embedded in a high-impedance resonator

with this estimated kinetic inductance value yield fundamental modes between
2.6 GHz–4.3 GHz for the six fabricated resonators, whose dimensions are listed in
Tab. C.1 in Appendix C.

The height profile from atomic force microscopy of a typical fabrication results
of this process is depicted in Fig. 5.3. There, the structures can be measured in
all three spatial directions so that the width of the resonators and junctions is
determined to be about ≈ 1.7 µm. From the height profile, it can be confirmed that
a thin layer of the top electrode was removed in the second etch step. The window
extending beyond the junction comes from the fact that the resist in the second etch
step protrudes about 2 µm beyond the functional structure onto the bare substrate
to become insensitive to misalignment along this direction.

5.3 Phase-biased Josephson junctions

To determine the eigenfrequencies of the coupled system of the long junction and
microwave resonator, the eigenmode solver of the electromagnetic FEM simulation
suite Ansys HFSS is deployed. For this purpose, the inductances of the resonator’s
parts with and without the junction are treated differently. In the outer regions of
the bare AlOx layer, the dominant kinetic inductance is estimated from Eq. (2.28).
The spatial phase distribution along the junction is analyzed in the resonator’s
critical center part with the LJJ. The inductance, included in the FEM simulation, is
then calculated from the phase drop between the two junction ends.

For this analysis of the phase distribution, the inductance in the top electrode LAl
0

is neglected since it is small compared to the inductance in the bottom electrode
LAlOx

0 ≫ LAl
0 . As shown in Fig. 5.4, the distributed LJJ is divided into N → ∞

discrete segments and Kirchhoff’s current law is applied at each node j ∈ [1, N]. In
doing so, inside the junction, the jth node flux is coupled by the nearest neighbors
as

Φj+1 − Φj − Φext
j+1 + Φext

j

L0/(N − 1)
+

Ic

N
sin
(

2π

Φ0
Φj

)
=

Φj − Φj−1 − Φext
j + Φext

j−1

L0/(N − 1)
. (5.1a)

At the junction edges, the bias current I, driven by the resonator, are bought into
the equation, so that the boundary conditions hold

Φ2 − Φ1 − Φext
2 + Φext

1
L0/(N − 1)

− Ic

N
sin
(

2π

Φ0
Φ1

)
= I, (5.1b)

I − Ic

N
sin
(

2π

Φ0
ΦN−1

)
=

ΦN − ΦN−1 − Φext
N + Φext

N−1
L0/(N − 1)

. (5.1c)
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5.3 Phase-biased Josephson junctions

Figure 5.4: Schematic circuit of a galvanically coupled long junction to a microwave resonator. The
microstrip structure forms an open-end LC transmission line with the strip’s geometric and kinetic
inductance L0 = L′

0l and the capacitance against the backside ground electrode C = C′ l. The resonator’s
conductor is shared as the long junction’s bottom electrode, which is weakly coupled with the top
electrode by an insulating tunnel barrier with the critical current Ic = Jcℓ. Since the bottom electrode’s
kinetically dominated inductance exceeds the purely geometric inductance of the top electrode by
orders of magnitude, this is dropped in the schematic circuit.

The node fluxes can be translated into node phases by means of the junction’s
well-known flux-phase relation Φj =

Φ0
2π φj. Additionally, a homogeneous external

magnetic flux causes a constant external phase drop between two adjacent nodes

Φext
j+1 − Φext

j = Φ0
2π

φext

N−1 = Φ0
2π ∆φext ∀ j. By further identifying the Josephson induc-

tance LJ =
Φ0

2π Ic
and introducing the screening parameter βL = L0

LJ
= 2πIc L0

Φ0
(for

details see Appendix A.2), the conditional equations can be formulated as

φ2 = φ1 + ∆φext +
βL

N(N − 1)
sin (φ0) +

βLγ

N − 1
, (5.2a)

φj+1 = 2φj − φj−1 −
βL

N(N − 1)
sin
(

φj
)

, (5.2b)

βLγ

N − 1
= φN − φN−1 − ∆φext +

βL

N(N − 1)
sin (φN) . (5.2c)

Starting from the phase at one junction boundary φ1, the phase develops according
to these recursive formulas (5.2) depending on the bias current I and the external
phase ∆φext.

For numerical calculations with various but fixed I and ∆φext, we guess values
of the initial phase φ1 ∈ [0, 2π), apply the Eqs. (5.2a) and (5.2b), and verify by
Eq. (5.2c), whether the chosen initial phase conforms to the boundary conditions
or not. A valid solution stands out due to current conservation, which means that
the injected current at the one junction boundary equals the ejected current at the
other one.
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5 Long junctions embedded in a high-impedance resonator

Figure 5.5: Numerically simulated anharmonicity and magnetic field dependence of a phase-biased
junction. a) Odd harmonics of hybrid systems of resonators with LJJs (stars) feature significantly
increased eigenfrequencies compared to reference resonators without any junction (dots). b) This
fundamental distinction is also evident in the resonant frequencies’ magnetic field dependence, whose
odd harmonics are affected way stronger by the LJJ than even harmonics.

By running a nested interval algorithm, multiple mathematical solutions are found,
where the energetically most favorable solution is picked as the physical solution.
The phase drops along the junction φN−1 − φ0 for different bias currents yields
a current-phase relation I(∆φ), which is fitted to a fifth-degree polynomial. The
coefficient of the linear term equals the reciprocal of the inductance, which is
inserted in the FEM simulation to obtain the resonant frequencies.

The simulated resonant frequencies of the first four harmonics, as well as their
magnetic field dependence, are depicted in Fig. 5.5. Both results show that the
coupling strength between LJJ and resonator depends on the excited harmonic,
and thus confirm the earlier discussed considerations.

5.4 Spectroscopic characterization

The transmission spectrum of the complex S21-parameter exhibits numerous res-
onances, each as described in Sec. 2.3.2. These are different harmonics of the
frequency multiplexed resonators, which first have to be assigned to the corre-
sponding circuits (see Fig. 5.6 a)). The fundamental modes match the results of
FEM simulations and are governed by the differing resonator length l, as width,
capacitance per unit length, and sheet inductance are constant.
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5.4 Spectroscopic characterization

Table 5.1: Measured and simulated anharmonicity of resonators with and without an embedded
long junction in zero magnetic fields. The anharmonicities of the first three modes from spectroscopy
measurements fit exactly to the Ansys HFSS FEM simulations in the case of the bare reference resonator
with a sheet inductance of L□ = 5.649 nH. Assuming the same inductance for the AlOx layer of the
resonator and the junction’s sheet inductance of L□ = 0.554 nH, the FEM simulations show good
agreement with the measured resonance frequencies.

circuit f2/ f1 f3/ f1

experiment simulation experiment simulation

bare resonator 1.915 ± 0.005 1.915 ± 0.003 2.807 ± 0.005 2.809 ± 0.012
resonator & LJJ 1.768 ± 0.005 1.759 ± 0.004 2.76 ± 0.02 2.807 ± 0.014

The higher harmonics are attributed to the fundamental modes by two-tone spec-
troscopy measurements, whose schematic setup is explained in Sec. 3.2.3. Thereby,
the fundamental mode is probed, while the second tone’s frequency is swept with
a way higher power. If the second tone is in resonance with any harmonic, the
resonator is populated so much that its fundamental mode shifts to lower frequen-
cies due to the nonlinear inductance. Using this Kerr effect and the well-known
resonator geometries, the resonant frequencies can be attributed to the frequency
multiplexed resonators, as shown in Fig. 5.6.

The reference resonator (#3) without any coupled LJJ can be unambiguously iden-
tified since it shows almost no magnetic field dependence at fields far below Hc2 of
AlOx (see Fig. C.1 in Appendix C) [Bor+20] and as its harmonics match FEM sim-
ulations as listed in Tab. 5.1. From the comparison of the measured and simulated
resonance frequencies, a sheet inductance of L□

AlOx
= 5.469 nH can be estimated.

This value agrees with the resistivity measurements of the test structures at room
temperature and originates in the already discussed overetching of the sample.

5.4.1 Anharmonicity of the coupled system

Their relative spatial current distributions for the other five coupled systems of
resonators and LJJs are identical since each LJJ covers the inner 10 % of the resonator.
This similarity is why the fundamental modes of these coupled systems show a
uniform length dependence, as can be seen in Fig. 5.6 a). Compared to the reference
resonator, the fundamental resonant frequency is increased by about 7.3 %, which
is in good agreement with the FEM simulations described in the model of phase-
biased junctions in Sec. 5.3.

In contrast, both resonators with and without an embedded LJJ feature a uniform
length dependence of their second harmonic frequency. This is because the low-
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5 Long junctions embedded in a high-impedance resonator

Figure 5.6: First three harmonic resonance frequencies of different resonators with and without LJJ
in the zero-field and their magnetic field dependence. a) The measured resonant frequencies of the
coupled systems of the resonator and long junction in zero magnetic field show a length dependence
illustrated by straight lines to guide the eye. Unlike the second harmonic of the reference resonator
(#3), the resonant frequency deviates from this course for odd harmonics. This different behavior of
circuit #3 is apparent from the anharmonicity plotted as stars on the right ordinate. b) The magnetic
field-dependent amplitude signal of a resonator with LJJ (exemplarily shown for circuit #2) exhibits a
significantly larger shift to lower resonant frequencies for odd than for even harmonics.

inductive shunt of the junction is placed in the current node, and thus modifies the
phase drop along this segment only slightly.

The third harmonics show an increased resonant frequency similar to the first
harmonics because there is again a current antinode at the position of the LJJ.
Unfortunately, not all third harmonics of the six circuits are measurable, but the
remaining four values resemble the theory. The fourth and higher harmonics are
regrettably not measurable.

A comparison of the average measured and simulated anharmonicities of the
resonators with and without LJJ show good agreement between theory and ex-
periment, as listed in Tab. 5.1. The slight deviation originates in the assumption
for the simulation of the long junctions’ homogeneous sheet inductance that, in
reality, spatially differs. Especially at the long junctions’ edge regions where the
supercurrent mainly tunnels through the tunnel barrier, the inductance peaks as
the vertical Josephson inductance adds to the lead inductance.
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5.4.2 Magnetic field dependence of the resonant frequencies

An LJJ embedded in a resonator affects not only the anharmonicity but also
the magnetic field dependence, which was theoretically discussed in Sec. 5.3.
Microwave spectroscopy data confirm a comparable dependency experimentally, as
exemplarily depicted for the circuit #2 in Fig. 5.6 b). Since the reference resonator
does not feature such a field dependence, but is constant in its resonant frequency
far below Hc2 (see Fig. C.1 in Appendix C), it is reasonable to attribute this effect
to the additional LJJ.

5.5 Concluding remarks

These proof of principle measurements show that LJJs can be galvanically cou-
pled to microwave resonators by extending the bottom electrode to a microstrip
resonator that biases the junction at microwave frequencies. The combination of
LJJ position and current distribution of the excited resonator mode is crucial for
the resonant frequency of the coupled system and its magnetic field dependence.
Spectroscopy measurements of these two parameters show good agreement with
FEM simulations, in which the phase drop along the junction is numerically cal-
culated by the model of a phase-biased junction. These simulations further reveal
that the coupling strength of the two systems varies with the inductance ratio of
the bottom and top electrodes and the width ratio of the junction and resonator.

This RF manipulation and readout scheme has been used for the first time for long
junctions and offers tremendous advantages for experimentally investigating quan-
tum coherence effects in long junctions. Since the resonator is a narrowband Purcell
filter and the circuit is galvanically isolated from the environment, this strong
decoherence channel is significantly reduced compared to DC measurements.
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6 Josephson vortices as quantum
particles

In the previous chapters, we could demonstrate by transport measurements (see
Sec. 4) that the junction impedance, and thus the quantumness of long junctions,
can be increased with additional kinetic inductance in the junction electrodes. With
the RF measurement scheme described in Sec. 5, an appropriate method was found
for quantum coherence measurements. We are now ready to investigate the vortices’
quantum character with these prerequisites. For this purpose, very narrow junctions
are patterned from high-impedance trilayers and coupled to a microwave resonator
each. These samples are characterized by steady-state microwave spectroscopy and
pulsed microwave measurements.

6.1 Sample considerations and design

In principle, a similar sample design is used as described in Sec. 5.1, but the LJJs are
significantly narrowed to increase the inherent vortices’ quantumness. A junction
width of w = 200 nm is a good tradeoff between this aimed quantumness and
reliably producible structure sizes without creating constrictions or broadenings
that would cause pinning potentials for vortices [SBM97]. Moreover, tens of microns
long and 200 nm wide AlOx strips as junction electrodes are still wide enough to
ensure a certain phase of the superconducting wave function and avoid phase slips
[Vos+21].

To read out the system’s quantum state using the dispersive shift of the resonator,
it is mandatory that the resonator’s eigenfrequency remains stable over time. The
previous measurements of high-impedance resonators (see Sec. 5), however, have
shown fluctuations of the resonant frequency in the order of hundreds of kilohertz.
Such strong variations are known from different works about superconducting films
near the superconductor to insulator transition and appear if the sheet resistance
exceeds the superconducting resistance quantum Rq = h/(2e)2 = 6.45 kΩ [FI18;
Kri22]. In the circuits of trilayer D, the high sheet resistance R□

n = (4.6 ± 0.6) kΩ
results from the already large intended value of R□

n = 2.3 kΩ and the overetching.

Therefore, to reduce frequency fluctuations in new samples, AlOx bottom layers
with a sheet resistance of R□

n = 1 kΩ at an enlarged thickness of d1 = 50 nm
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6 Josephson vortices as quantum particles

Figure 6.1: Schematic patterning of junction stacks for microwave measurements. The functional
microstructure’s top and side view after each fabrication step are illustrated in the upper and lower
row, respectively. Starting from the deposited junction stacks (i), the long junctions’ top electrodes are
patterned in by electron-beam lithography and an argon-chlorine-based inductively coupled plasma
(ICP) etching process (ii). The resonators (iii) are defined afterwards by optical lithography and ICP
etching of the remaining bottom electrode, too.

are targeted. Since the slope of R(d) (see Fig. 3.2) decreases with larger film
thicknesses, the sheet resistance of thicker films is less sensitive to overetching.
According to Eq. (2.28), the desired sheet resistance of R□

n = 1 kΩ corresponds to a
sheet inductance of L□

k = 0.75 nH.

Again, a 30 nm thick layer of pure aluminum is used as top electrode to strongly
couple junctions to resonators. Moreover, the coupling strength is varied by design-
ing resonators with a width of 2 µm, 4 µm, and 8 µm, while the junction width re-
mains fixed at 200 nm. To obtain resonant frequencies in the range 4.5 GHz–7.5 GHz
for the fundamental modes, a 750 µm and a 900 µm long resonator are designed for
each resonator width. The junctions lengths are still 0.1 · l, i.e., 75 µm and 90 µm.

6.2 Sample fabrication details

Due to the similar design, the fabrication process is related to the one of LJJs coupled
to microwave resonators, which is presented in Sec. 5.2. The main difference is the
requirement of electron beam (e-beam) lithography to resolve the LJJs’ structure
size of 200 nm.

This process step will be performed before patterning isolated microstrip resonators
to prevent damaging the LJJ by electrostatic discharge due to the deposited electrons
during e-beam lithography. Due to the much smaller tunnel resistance over the
extensive area of 2 cm × 2 cm, the risk of such damage is reduced significantly.
The deposited charge can further be led away from the still completely connected
trilayer much easier via clamps.
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6.3 Energy spectrum of vortex tunneling

The photoresist ma-N 2403 is suitable as it is sensitive to both e-beam and deep UV,
it provides a resolution of ≳ 50 nm, and it is resilient against argon-chlorine-based
inductively coupled plasma (ICP) reactive ion etching (RIE). Moreover, using this
negative photoresist saves exposure time since its exposed areas persist in the
development while the unexposed resist is lifted so that only the tiny junction areas
need to be written by the electron beam. With this method, illustrated in Fig. 6.1,
long junctions are patterned from trilayer E, whose characteristic parameters are
given in Tab. 3.1. The resonators are defined in the second process step, using
photolithography and ICP etching as before. The subsequent deposition of a
backside metallization is analog to previous samples and consists of 5 nm titanium
and 100 nm silver. See Appendix B.2 for detailed parameters concerning optical
and e-beam lithography (Tabs. B.1, B.2, B.3, and B.4) and ICP etching (Tab. B.5).

6.3 Energy spectrum of vortex tunneling

Spectroscopy measurements show resonances with internal and coupling quality
factor Qi = (1.4 ± 0.4)× 105 and Qc = 1828 ± 4 in the single photon limit, whose
resonance frequencies fluctuate insignificantly. The overall magnetic field depen-
dence resembles previous spectroscopy measurements of an LJJ embedded in a
resonator, reported in Sec. 5.4, described with the model of phase-biased junctions.

In addition, pairs of avoided level crossings are observed that appear at particular
flux densities B̃n, as can be seen in Fig. 6.2 and Fig. 6.3 a). Such features indicate
that the driven resonator exchanges energy with a coupled system at a similar bare
resonant frequency. As long as the coupled system is sufficiently nonlinear, its
mode spectrum vs. applied magnetic field can be tracked by two-tone spectroscopy,
similar as explained in Sec. 2.3.3. For this purpose the resonance dip is determined
at each field value, the resonant frequency is probed with the VNA fp, and the
second tone’s drive frequency fd is swept with an additional microwave source
(for the setup see Fig. 3.5 a)). If this extra drive tone excites the second mode,
the resonance curve shifts dispersively so that both phase and amplitude signals
change drastically. As shown in Fig. 6.2 b), such two-tone spectroscopy data exhibit
hyperbolas, which are an unambiguous signature of quantum tunneling in a two-
level system that is associated with a double-well potential.

The ratios of the magnetic flux density values B̃n, at which these pairs of avoided
level crossings occur, match the intersections of adjacent fluxons states in the
magnetic diffraction pattern as shown in Fig. 6.3. Thus, the two states can be
understood as |n − 1⟩ and |n⟩ vortices in the LJJ, whose eigenenergies are similar,
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6 Josephson vortices as quantum particles

Figure 6.2: Magnetic field-dependent spectrum and two-tone spectroscopy data. a) The overall mag-
netic field dependence of the samples of trilayer E resembles those of the samples D as expected since
the basic design is the same, and only the dimensions of the long junction differ. Therefore, the system
of a long junction embedded in a resonator can further be described by the model of a phase-biased
junction. In addition, sets of two mirrored avoided level crossings are observed at particular magnetic
field values. b) Two-tone spectroscopy on one of these anticrossings shows a mode that depends hyper-
bolically on the applied magnetic flux density. The constant line at f = 8.015 GHz can be attributed to
the resonator, which naturally also changes its resonant frequency because of the self-Kerr effect when
strongly driven by the second tone.

so that a single vortex can tunnel in and out of the junction. Within the scope of the
standard tunneling model (STM), this tunneling between two energetically similar
states is described by the Hamiltonian [FLS64b; Leg+87]

HSTM =
1
2

(
ε ∆

∆ −ε

)
=

1
2

εσ̂z +
1
2

∆σ̂x. (6.1)

Here, ∆ denotes the coupling energy between the lowest bound states in each
potential well, so to say the tunneling amplitude, ε is the energy asymmetry of the
two wells, and σ̂x, σ̂z the Pauli matrices. The double well potential is symmetric in
the sweet spots B̃n where the |n − 1⟩ and |n⟩ fluxons states are energetically equal
and by overcoming the energy at the junction boundary, one fluxon can tunnel in
and out of the LJJ. At applied magnetic flux densities slightly below the sweet spot
Ba ≲ B̃n, the |n − 1⟩ state becomes more favorable, whereas the |n⟩ state is more
likely for slightly larger flux densities Ba ≳ B̃n. The off-diagonal elements in the
STM-Hamiltonian of Eq. (6.1) couple the |n − 1⟩ and |n⟩ states through tunneling,
so that the first two eigenstates of the two wells hybridize as

|ψ−⟩ = cos
(

ϑ

2

)
|n − 1⟩ − sin

(
ϑ

2

)
|n⟩ , (6.2a)
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Figure 6.3: Operating principle of a Josephson vortex qubit. a) The |S21|2-spectrum against applied
magnetic flux shows three pairs of avoided level crossings, whose magnetic flux densities B̃n coincide
with the simulated intersections of two adjacent fluxon states for a normalized junction length of ℓ̄ ≈ 7
c) (indicated by gray arrows). For these values, the states of |n − 1⟩ and |n⟩ fluxons are energetically
similar, so a single fluxon can tunnel into the junction. In doing so, the fluxon has to overcome the
energy of the junction boundary, which can be modeled as a double well potential c). In the sweet spot,
where the two energies are identical (En = En−1), the potential is symmetric (ε = 0) and the fluxon is
maximally delocalized between the two minima, so to say in the junction inside and outside. Off the
sweet spot |ε| ≫ ∆ the fluxon is trapped in one of the two minima. d) The energy difference of the two
hybridized eigenstates |Ψ±⟩ shows a hyperbola as a function of the asymmetry ε and can be excited as
shown by two-tone spectroscopy (see Fig. 6.2 b)).

|ψ+⟩ = sin
(

ϑ

2

)
|n − 1⟩+ cos

(
ϑ

2

)
|n⟩ , (6.2b)

where the mixing angle ϑ = arctan(∆/ε) is introduced. In the basis of these
eigenstates, the STM-Hamiltonian reads HSTM = 1

2 Eσ̂z with the energy difference
between the eigenstates

E =
√

∆2 + ε2. (6.3)

The energy of Eq. (6.3) exactly represents the previous mentioned hyperbola,
measured as a function of the applied magnetic flux, and thus the asymmetry of
the two potential wells (see Fig. 6.2 b) and Fig. 6.3 d)).
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6 Josephson vortices as quantum particles

6.4 Coherence properties of vortex tunneling

Knowing the transition energy between the ground and excited state from two-
tone spectroscopy measurements, the quantum system can be driven with pulsed
microwave signals to explore its coherence properties. For these measurements, a
magnetic field bias at the sweet spot is suitable since the influence of field noise
on the qubit frequency is minimal there. For the following pulsed microwave
measurements, a magnetic flux density of Ba ≈ B̃2 ≈ 48.44 mT is applied, which
cannot be guaranteed to permanently correspond to the exact sweet spot due to
temporal instability of the magnetic bias over the measuring period of several days.

6.4.1 Rabi oscillations

In the experiment, the system is repeatedly excited from the ground state by
x-pulses of variable duration τ, meaning rotated around the x-axis to different
angles θ, and read out immediately afterwards. Including decoherence and energy
relaxation, the projection of this rotation with constant Rabi frequency ΩR on the
z-axis results in a damped cosinusoidal oscillation

⟨σ̂z⟩ = e−τ/TRabi cos
(

2πτ

2tπ

)
. (6.4)

Figure 6.4 a) depicts such Rabi oscillations, which are characterized by alternating
excitations due to photon absorption and deexcitations due to stimulated emission.
From these measured data, on the one hand, the time constant of the envelope
TRabi = 2/(T−1

1 + T−1
2 ) can be determined, which is given by the relaxation time

T1 and dephasing time T2. On the other hand, the half-period duration tπ can be
determined from the Rabi frequency, which is as the pulse length to excite the
qubit from |0⟩ to |1⟩, i.e., to perform a π-rotation on the Bloch sphere (compare to
Sec. 2.3.4).

The quantum Rabi frequency depends both on the drive frequency and amplitude,
as explained in Sec. 2.3.4. For Rabi measurements with different drive frequency fd,
Chevron patterns are expected according to Eq. (2.52) (see Fig. 2.9 a) for theoretical
simulations). Measured data, as exemplarily depicted in Fig. 6.4 b), are in good
accordance to theoretical predictions since the Rabi frequency speeds up while the
amplitude decreases with increasing detuning. These effects can be explained by
the fact that the driven rotation is no longer around the pure x-axis, but around a
tilted axis in the xz-plane [SN17; Bra18; Sch20]. As a consequence, the rotations
still start at |0⟩, but |1⟩ cannot be reached anymore due to the tilt.
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6.4 Coherence properties of vortex tunneling

Figure 6.4: Quantum mechanical Rabi oscillations in a Josephson vortex qubit. a) Repeatedly applied
manipulation pulses of variable duration τ rotate the qubit state by different azimuth angles on the Bloch
sphere, so that the expectation value ⟨σ̂z⟩ features Rabi oscillations. b) The Rabi frequency depends on
the drive frequency or rather the detuning from the qubit frequency. Eq. (2.52) reproduces the measured
data and exhibits the typical Chevron pattern. c) For quantum mechanical Rabi oscillations, their
frequency increases linearly with the amplitude of the drive tone. The good agreement of measured
data and the theory proves the quantum nature of the Josephson vortex and confirms the device to be a
Josephson vortex qubit.

In Fig. 6.4 c) the quantum Rabi oscillation’s linear dependence on the drive ampli-
tude V is shown, which is in excellent agreement with the theoretical expectations.
This power dependence is characteristic of quantum mechanical Rabi oscillations,
whose bare Rabi frequency without detuning equals the drive amplitude V. In
other words, at higher powers, there are, on average more photons in the system,
which drive the qubit more strongly, thus faster. The linear slope of the generalized
Rabi frequencies ΩR against the drive amplitude V finally proves the Joseph-
son vortex’ quantum character. Together with the hyperbolic spectrum, shown in
Fig. 6.2 b), these data manifest that a Josephson vortex tunnels coherently in the
system under consideration, which makes the device a Josephson vortex qubit.

103
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6.4.2 Relaxation and dephasing times

The envelope of Rabi oscillations shows an exponential decay caused by interactions
with the environment. This coupling to the environment is indispensable since
qubits are intended to be manipulated and read out from outside. Two processes
can be fundamentally distinguished:

First, real qubits relax from the excited state to the ground state under spontaneous
emission into the resonator, the environment, or internal modes in the solids such
as defects. The time constant of this exponential decay is usually called energy
relaxation time T1. In the Bloch sphere illustration, the energy relaxation manifests
as a decay along the z-axis into |0⟩, so that the qubit state is no longer bound to
the sphere’s surface but may be in its interior.

Second, fluctuations in the transition frequency ω01 lead to the dephasing of the
qubit. Averaging multiple measurement values with random dephasing reveals a
decay towards zero within the xy-plane. For example, magnetic field noise leads to
a fluctuating phase, and thus to another exponential decay with the characteristic
dephasing time T2.

Relaxation time

To measure the energy relaxation time T1, the qubit is brought into the excited state
|1⟩ by means of a tπ-pulse. After a delay time ∆t, the probability of the excited
state ⟨σ̂z⟩ is determined using the resonator’s dispersive shift. During the time ∆t
the qubit is free to evolve and decays to the ground state, which is described by

⟨σ̂z⟩ = 1 − 2e−∆t/T1 . (6.5)

Figure 6.5 a) depicts the schematic measurement protocol, the illustration in the
Boch sphere, and the measured ⟨σ̂z⟩ data. By fitting these data to Eq. (6.5), the
energy relaxation time T1 can be determined, whose statistical distribution is shown
in Fig. 6.5 d). For this purpose, the T1 measurement is repeated 1465 times within
≈ 86 h and yields on average T1 = (45 ± 5) µs.

Ramsey dephasing time

To determine the dephasing time T2, a “Ramsey” measurement is performed,
where the qubit state is brought with a tπ/2-pulse around the x-axis to the state

1√
2
(|0⟩+ |1⟩) on the equator. Arriving in the xy-plane, the qubit evolves freely for

a variable duration ∆t, which is nothing but an effective Lamor precession at the
detuning frequency ∆ω in the rotating frame. The quantum state can only be read
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6.4 Coherence properties of vortex tunneling

Figure 6.5: Energy relaxing and dephasing time measurements on a Josephson vortex qubit. a) To
determine the energy relaxation time T1 experimentally, the qubit is excited to |1⟩ with a tπ-pulse and
after a waiting time ∆t the qubit state is read out. During the free evolution ∆t the qubit decays expo-
nentially along the z-axis, where the half-life is the energy relaxation time T1. b) Since dephasing occurs
perpendicular to z, but only the projection on z is measurable, in Ramsey dephasing measurements
the qubit is rotated to and from the equator with a tπ/2-pulse at the beginning and just before the
measurement, respectively. In between, the qubit evolves freely in the xy-plane for time ∆t. Thereby
detuning leads to an effective Lamor precession and dephasing to a decay towards the origin of the
Bloch sphere, which in combination results in a damped oscillation. c) Low-frequency dephasing can be
circumvented in Hahn-echo measurements by a tπ-pulse around y after half of the free evolution. The
individual pulses are illustrated on the Bloch sphere in the same color. d) Long-term measurements for
≈ 86 h of T1, TR

2 , and TE
2 yield Gaussian distributions.
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6 Josephson vortices as quantum particles

out by projection on the z-axis so that a second tπ/2-pulse around the x-axis is
necessary. Without dephasing (as it is the case for ∆t = 0), this pulse sequence
effectively corresponds to a tπ-pulse, split in two parts, so that the qubit ends
up in |1⟩. With dephasing, however, the state rotates around the z-axis, and thus
cosinusoidal in y, which is rotated by the second tπ/2-pulse in the z-direction.1 In
addition to the effective Lamor precession due to detuning, dephasing causes the
qubit to decay towards the origin of the Bloch sphere. In consequence, the overall
result is a damped oscillation

⟨σ̂z⟩ = −e−∆t/TR
2 cos(∆ω∆t) (6.6)

with half-life TR
2 . Since for very small detunings ∆ω, the first quarter wave of the

oscillation would be difficult to distinguish from the superimposed exponential
decay, and thus challenging to fit, one usually deliberately chooses a detuning
∆ω ∼ 1 MHz to see a few oscillations during the decay. The Ramsey pulse sequence,
its illustration on the Bloch sphere, and example measurement data are depicted
in Fig. 6.5 b). Long-term measurements for ≈ 86 h with 568 repetitions give the
distribution shown in Fig. 6.5 d) and a mean Ramsey dephasing time of TR

2 =

(0.9 ± 0.4) µs.

Hahn-echo dephasing time

To become insensitive to dephasing with slower frequencies than the inverse
measurement duration, a tπ-pulse around y can be introduced at half of the free
evolution time, i.e., after ∆t/2 (see Fig. 6.5 c)). This pulse mirrors the state on the y-
axis and the two rotations around the z-axis during ∆t/2 partially compensate each
other. In these so-called “Hahn-echo” or “spin-echo” measurements, an exponential
decay

⟨σ̂z⟩ = e−∆t/TE
2 (6.7)

is obtained with the characteristic Hahn-echo dephasing time TE
2 ≥ TR

2 (see
Fig. 6.5 c)). The significantly longer Hahn-echo dephasing time TE

2 = (7.2 ± 1.4) µs
(for 1441 measurement repetitions) indicates that the Ramsey dephasing time
strongly suffers from low-frequency noise of the qubit transition frequency. One
major noise source is current noise of the magnet coil. Persistent current coils, for
example, could provide a remedy for this.

1 This is why, the measured ⟨σ̂z⟩ is plotted in Fig. 6.5 b), although the qubit decays in the xy-plane.
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6.5 Concluding remarks

In summary, we have demonstrated the, to our knowledge, first experimental real-
ization of a Josephson vortex qubit using a quasi-one-dimensional high-impedance
long junction. At particular applied magnetic flux densities, the device features
coherent quantum tunneling of a single vortex in and out of the junction, form-
ing a two-level system. Such quantum systems have a characteristic hyperbolic
mode spectrum, observed experimentally by two-tone spectroscopy and strongly
indicates the increased quantumness of the inherent Josephson vortices.

Moreover, pulsed microwave measurements reveal quantum Rabi oscillations,
whose frequency increases proportionally to the applied drive frequency. This ob-
servation again proves the Josephson vortex’ quantum nature. The average energy
relaxation time of T1 ≈ 45 µs is comparable to state-of-the-art superconducting
qubits. This result is impressive against the background that the measured qubit
is the very first of its kind, focusing on the principle implementation but not on
optimized relaxation and coherence times. With that said, the average Hahn-echo
dephasing time of TE

2 ≈ 7 µs is appealing, too.

T2 should be theoretically limited by 2T1, which is why much longer T2 times can
be expected with an optimized setup regarding magnetic field noise. Apart from
these limitations, which could be similarly solved for other superconducting qubit
types, the vortex qubits devised in this work are a promising development for the
research field of superconducting quantum circuits and the long-standing dream
of quantum computing.
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7 Summary and outlook
The goal of this work was to experimentally investigate the quantum coherence of
fluxons in quasi-one-dimensional long Josephson junctions. Entering the Josephson
vortices’ quantum regime is experimentally challenging to reach [Wal+03b] since
such excitations in conventional junctions occur on an energy scale that exceeds
the system’s quantized eigenenergies by orders of magnitude. In consequence, the
Josephson medium and its inherent excitations are pretty classical.

The long junction’s crucial energy scale decreases with its increasing impedance

ZJ =
(

L□/cJw
2)1/2 and is defined by the electrodes’ sheet inductance L□, the

specific junction capacitance cJ, and its width w. The approach followed in this work
was to replace bulk junction electrodes with thin films of high-kinetic inductance
superconductors in addition to very narrow junctions. The kinetic inductance in
strips of the superconductor granular aluminum oxide exceeds the geometrical
part by several orders of magnitude. It thus facilitates an increased quantumness
of the long junction, as outlined in Sec. 2.4.4.

Within the scope of this work, we developed fabrication techniques for impedance-
tailored junctions featuring good controllability of the kinetic inductance during
sputter deposition and, if desired, high impedances.

With transport characterization measurements at millikelvin temperatures, we
demonstrate high quality factors of the junctions. Long junctions also show typical
magnetic diffraction patterns of their critical currents and zero-field and Fiske
steps, which we use to determine the Josephson length and the Swihart velocity,
respectively. These zero-field steps prove the existence of Josephson vortex exci-
tations in the high-impedance long junctions. Furthermore, we determined the
Josephson plasma frequency by switching current measurements under microwave
irradiation.

The results of these three independent measurements demonstrate that the sine-
Gordon model is valid without restrictions for high-impedance long junctions
and c̄ = λJωp is still satisfied. Here, λJ and c̄ are reduced by about one order of
magnitude due to the additional kinetic inductance, while ωp it is nearly unaffected.
The reduced Swihart velocity is accompanied by an impedance increase up to 14 Ω,
which corresponds to the largest value ever measured in long junctions to our
knowledge [Wil+22]. From these measurement results, we conclude that the chosen
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approach is suitable to increase Josephson vortices’ quantumness so that they could
behave like quantum particles.

A suitable measurement scheme for quantum coherence properties is possible in
the framework of circuit quantum electrodynamics, namely a Josephson medium
connected to a microwave resonator. For this purpose, we galvanically couple high-
impedance long junctions to a distributed microstrip resonator each, which we
manipulate and read out by microwave photons. By measuring the anharmonicity
and the magnetic field dependence of the coupled system’s resonant frequency,
we attribute the junction’s influence on the resonator unambiguously. This result
confirms the coupling of the two systems and is understood by the theoretical
treatment of phase-biased junctions.

We combine our findings gathered from previous experiments and focus on the in-
trinsic quantumness of Josephson vortices by significantly increasing the impedance
of the long junction through high kinetic electrode inductances and narrow junction
widths. This junction is embedded in a microwave resonator for manipulation and
readout with single photons. In microwave spectroscopy measurements versus ap-
plied magnetic flux density, we observe hyperbolic modes at particular fields. This
mode spectrum is characteristic of quantum tunneling in a two-level system. We
attribute this signature to a tunneling process of a single fluxon in and out of the
long junction since measured magnetic field values correspond to the intersections
between |n − 1⟩ and |n⟩ fluxon states from theoretical predictions.

By driving the transition of this two-level system by pulsed microwave signals, we
observe quantum Rabi oscillations, whose frequency is proportional to the drive
amplitude. This measurement demonstrates the quantum nature of the vortices
for the first time to our knowledge. The vortex qubit features a measured mean
energy relaxation time of T1 = (45 ± 5) µs and an average Hahn-echo dephasing
time of TH

2 = (7.2 ± 1.4) µs.

The experimental methods developed in this work could also be used in various
future experiments. For instance, the coupling of the Josephson junction to a
microwave resonator suggests using these circuits to study the internal mode
spectrum of the long junction and to directly excite, e.g., the Josephson plasma
frequency, zero-field, and Fiske resonances.

Besides, the high-kinetic inductance electrodes enable impedance-tailored junctions
to match external circuits and 50 Ω cables. This impedance matching is crucial for
increasing the efficiency of Josephson flux-flow oscillators applied for microwave
generation and amplification.
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The discovery of Josephson quantum vortices is a promising starting point for
further experimental and theoretical work. One could study the dynamic properties
of such quantum particles in the nonlinear Josephson medium, i.e., quantum
solitons within the scope of the quantum sine-Gordon model [Roy+21].

Beyond these uniform media, one could design more sophisticated junction geome-
tries, such as spatially periodic structures, including potential barriers and wells.
They can be realized by broadenings (“microshorts”) or constrictions (“microre-
sistors”) of the long junction, where the quantum vortices are repelled or pinned.
Quantum coherent entities in such metamaterials should lead to a band structure
for propagating collective linear and nonlinear excitations, similar to phonons in
crystals.

The last point, we want to outline here, is optimizing the properties of the Joseph-
son vortex qubit. The priority should be to reduce its dephasing by filtering the
magnetic field noise or, ideally, using persistent current coils. Furthermore, alter-
native vortex qubits are also possible. For instance, microshort- and mircoresistor-
impurities can be used to design two-level systems whose pinning and repulsion
potentials allow for coherent tunneling.
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Appendix

A Circuit quantization of long Josephson junctions

A.1 sine-Gordon model of long Josephson junctions
including high-kinetic inductance

Long Josephson junctions can be modeled by N → ∞ infinitesimally small lumped
elements of resistively and capacitively shunted junctions in z-direction, which
are extended along the x-axis, and thus connected via inductive bottom and top
electrodes (see Fig. A.1 a)). Using common circuit quantization techniques with N
node fluxes in the top and bottom electrodes Φt

j and Φb
j , the Lagrangian holds

L =
N−1

∑
j=0

cJw∆x
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(A.1b)

Here, cJ = Ctot
J /wℓ denotes the specific junction capacitance, L□

t = Ltot
t w/ℓ and

L□
b = Ltot

b w/ℓ the top and bottom electrode’s sheet inductance that sums up both
the geometric and kinetic parts and jc = Itot

c /wℓ describe the critical and bias
current density.
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Figure A.1: Equivalent circuit of long Josephson junctions. a) A long junctions is modeled by lumped
element junctions that are connected by inductive top and bottom electrodes, whose inductance may
differ. b) In this circuit, the two inductance are equivalent to only one effective inductance in one
electrode.

Applying the Euler-Lagrange equation [BP82; Leg87; CF91] yields the coupled
equations of motion

0 =
d
dt̄
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Calculating (A.2b)/L□
b − (A.2c)/L□

t yields
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Φ
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In the last step, the node fluxes Φt −Φb = Φ are substituted by one single node flux,
describing the difference of top and bottom electrode and the vector potentials At −
Ab = A are treated analogously. Furthermore, an effective electrode inductance

is identified as L□
t L□

b

(
1

L□b
+ 1

L□t

)
= L□

t + L□
b = L□

tot the sum of top and bottom

electrode’s inductance. Hence, the circuit can be simplified to having only one total
inductance as shown in Fig. A.1 b).

136



Circuit quantization of long Josephson junctions

A.2 Model of phase biased long Josephson junctions

In order to analyze the phase distribution of a distributed long junction is divided
into N → ∞ discrete segments and Kirchhoff’s current law is applied at each node
j ∈ [1, N]. In comparison to the high-kinetic inductance in the bottom electrode
LAlOx

0 ≫ LAl
0 , the top electrode’s purely geometric inductance LAl

0 is negligible, and
the jth node flux is coupled by the nearest neighbors as
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including the boundary conditions at the junction edges, defined by the bias
current I. The node fluxes can be translated into node phases by means of the
junction’s well-known flux-phase relation Φj = Φ0

2π φj. Besides, a homogeneous
external magnetic flux causes a constant external phase drop between two adjacent
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By further identifying the Josephson inductance LJ = Φ0
2πIc

and introducing the

screening parameter βL = L0
LJ

= 2π Ic L0
Φ0

, the conditional equations result in

φ2 = φ1 + ∆φext +
βL

N(N − 1)
sin (φ0) +

βLγ

N − 1
, (A.6a)

φj+1 = 2φj − φj−1 −
βL

N(N − 1)
sin
(

φj
)

, (A.6b)

βLγ

N − 1
= φN − φN−1 − ∆φext +

βL

N(N − 1)
sin (φN) . (A.6c)
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B Experimental details

B.1 Cryogenic measurement setup

Figure B.1: Spectra of RF and DC measurement lines. a) Spectrum of RF signal lines at room tem-
perature. The attenuation of the stainless steel coaxial cables shows the typical 1/

√
f behavior if the

wavelength λ is smaller than the diameter of the coaxial line ≈ 0.3 mm. b) Spectrum of DC measurement
lines at cryogenic temperatures. The spectrum shows characteristics of two low-pass filters with ≈ 30 dB
attenuation each. The lower cutoff frequency ≈ 1 kHz is attributed to an RCR filter at the second pulse
tube stage, made from temperature insensitive thin-film resistors with R = 180 Ω and multilayer ceramic
(NP0) capacitors with C = 1 nF. The upper cutoff frequency 300 kHz corresponds to the CLC low-pass
filter at room temperature, consisting of shielded wire-wound SMD inductor with a ferrite core with
L = 100 µH and multilayer ceramic (NP0) capacitors with C = 1 nF. This type of LC circuit shows a
different spectrum in resonance depending on whether the complex or real-valued signal is measured.
The data in the low-frequency range from 1 Hz to 5 MHz are acquired with a Lock-in amplifier, whereas
the microwave range from 14 kHz to 20 GHz is measured with a VNA.
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B.2 Fabrication parameters

Table B.1: Resist application. To coat a sample with a resist of thickness d, the spin coater accelerates
with a, where the resist is distributed of the whole chip in a first ramping step with speed vr for the
duration tr. In a second step, the targeted thickness is achieved by spinning with speed vs for the time
ts. Afterwards the resist is softbaked at the temperature TB for the time tB to vapor solvents and set the
resist.

resist d
(µm)

a
(rpm/s)

vr

(rpm)

tr

(s)
vs

(rpm)

ts

(s)
TB

(◦C)

tB

(s)

S1805
(optical)

∼0.5 6000 500 1 6000 60 115 60

AZ5214E
(optical)

∼1.2 7500 500 5 6000 60 110 50

ma-N 2403
(e-beam)

∼0.3 1000 3000 65 90 60

S1818
(protective)

∼1.8 2000 4500 60 80 300

Table B.2: Optical resist exposure parameters. A XeHg lamp emitting the wavelength λ = 365 nm
is used to expose the photoresist under a mask for the time tex. Thereby a constant power mode,
controlling the power Pex, or constant intensity mode, adjusting the dose Dex, is available.

resist process mask Pex

(W)

Dex

(mW cm−2)

tex

(s)

S1805 positive soda lime 370 1.8
AZ5214E positive soda lime 13.0 5.0

Table B.3: Electron-beam resist exposure parameters. Depending on the required resolution and
accuracy of the desired structures, two different beam currents I, step sizes ∆x are used to pattern the
ma-N 2403 resist, whereas the average area dose D is kept constant. The small beam current and step
size is used for writing the 200 nm wide long junction structures. The microstrip feedline and DC leads
of test structures, however, are written with higher beam currents and step sizes in order to save writing
time.

resist D
(µC cm−2)

I
(nA)

∆x
(nm)

ma-N 2403 240 2 10
ma-N 2403 240 30 50
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Table B.4: Resist development parameters. Each exposed resist is developed in a selective solvent
(developer) for a time td, which is stopped in a stop bath.

resist developer td

(s)
stop bath

S1805 AZ developer : H2O (3 : 2) 33 H2O
AZ5214E AZ developer : H2O (1 : 1) 33 H2O

ma-N 2403 MF-319 50 H2O

Table B.5: ICP trilayer etching parameters. Depending on requirements of (an-) isotropy and etching
rate, different ICP processes are used that differ in participating gases, RF, and ICP power. The etching
time is chosen to etch the desired layers as properly as possible.

trilayer layers IAr

(sccm)

ICl2
(sccm)

IO2

(sccm)

PRF

(W)

PICP

(W)

t
(s)

A trilayer 15 15 0 50 100 205
A top 15 15 0 50 100 90
B trilayer 15 15 0 50 100 180
B top 15 15 0 50 100 90
C trilayer 15 15 0 50 100 215
C top 15 15 0 50 100 110
D trilayer 2 12 0 100 200 70
D top 15 3 1 100 200 32
E top 15 3 1 100 100 5
E bottom 2 12 0 100 200 120

Table B.6: Anodic oxidation parameters. The sample is facing a platinum anode in a fixed distance of
2 cm in an electrolyte of 156 g ammonium pentaborate in 1120 ml ethylene glycol and 760 ml demineral-
ized water. The oxide layer is defined by the applied voltage V and the measured current saturated
over the time t. The influence of different voltages was studied at trilayer A, where three 5 mm × 5 mm
in a row were dipped successive deeper and deeper in the solution by decreasing the voltage.

trilayer chip V
(V)

t
(min)

A 1–3 9 15
A 4–6 11 15
A 7–9 13 15
B 1–9 11 15
C 1–9 11 15
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Additional measurement data

Figure B.2: Static oxidation parameters for tunnel barrier creation. The critical current densities of
trilayers A, B, and C are determined from short squared junctions measured at millikelvin temperatures.
According to Kleinsasser et al. [KMM95], jc depends exponentially on the product of oxygen (partial)
pressure pox and oxidation time tox.

C Additional measurement data

Table C.1: Design parameters of Trilayer D for long junctions, each embedded in a resonator. A long
junction of length ℓ and width w is placed in the center of a rectangular microstrip resonator of length
l and width w.

device l
(µm)

w
(µm)

ℓ

(µm)

w

(µm)

Res #1 503.0 2.0 50.3 2.0
Res #2 440.4 2.0 44.0 2.0
Res #3 390.9 2.0 0.0 0.0
Res #4 350.8 2.0 35.1 2.0
Res #5 317.7 2.0 31.8 2.0
Res #6 289.9 2.0 29.0 2.0
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Figure C.1: Magnetic field dependence of coupled systems of a long junction embedded in a res-
onator. The amplitude’s frequency spectrum |S21| of Res #1 in the lowest row to the Res #6 in the
uppermost row is depicted as color depending on the applied magnetic field. The magnetic field
dependence of the system’s resonant frequency (dark lines) differs significantly for the first (left),
second (center), and third (right) harmonics caused by the LJJ’s magnetic field dependent inductance.
(Note the different frequency scales for different harmonics in the three columns.) The eigenfrequencies
of the reference resonator (Res #3) feature no magnetic field dependence.
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In the last decades, superconducting devices have emerged as a promising 
platform for quantum technologies, including quantum sensing and quantum 
computing. Their key elements are Josephson junctions, which allow for coherent 
supercurrent tunneling between two weakly linked superconductors. If such a 
junction is extended in one direction to a long junction, the superconducting 
phase difference can vary in space and time and may allow for quantized phase 
windings that drive supercurrent vortices. The physics of such Josephson vorti-
ces spans from nonlinear soliton dynamics with relativistic effects to technical 
applications like microwave generation and amplification. In all these cases the 
vortices behave as non-quantum particles. This restriction to classical behavior 
originates in the long junction‘s limited geometrical properties, in particular its 
electrode inductance.
The advent of superconducting high-kinetic inductance circuits relaxes these 
constraints and enables an increased junction impedance, which goes along 
with the vortices‘ quantumness. In this work it is demonstrated that the junction 
impedance can be enhanced beyond the geometric limitations, which facilitates 
various applications. A hybrid system is studied particularly, that consists of a 
high-impedance long junction embedded in a microwave resonator. This galvanic 
coupling enables the dispersive readout scheme to determine the quantum states 
of different vortex configurations. In the vortices‘ quantum regime, coherent 
tunneling of single vortices in a two-level system is observed, forming a Joseph-
son vortex quantum bit. Quantum Rabi oscillations with energy relaxation and 
dephasing times in the microsecond range are measured, making the system 
promising for future quantum technologies.
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