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Preface

As we enter the twenty-first century, techniques borrowed from equilibrium and
non-equilibrium statistical physics have become widely applied to disciplines never
imagined by their founders. Statistical physics is turning into an essential discipline
and a fundamental framework for understanding and making quantitative predictions
on diverse phenomena involving a large number of interacting degrees of freedom.
These degrees of freedom may represent fundamental particles, such as electrons or
quarks, or neurons carrying information through synapses, or even speculative agents
trading in a competitive financial market. This holistic precept, that the whole is not
necessarily equal to the sum of its parts, finds in statistical physics its most beloved
tool.

Phase transitions and critical phenomena have consistently been among the princi-
pal subjects of active studies in statistical physics. The simple act of transforming one
state of matter or phase into another, for instance by changing the temperature, has
always captivated the curious mind. In that way, one can convert an almost uninterest-
ing state of matter into a superconducting material with tremendous implications and
applications. The Large Hadron Collider at the European Organization for Nuclear
Research (CERN), which is currently exploring the nature of fundamental interactions
at high energies, relies on the use of superconducting magnets, electromagnets built out
of coils of superconducting niobium-tin wire cooled by liquid helium. Those magnets
not only consume less power but most importantly can achieve an order of magnitude
stronger fields than ordinary magnets, a fact that is crucial to reach such high energies.

The unusual set of physical properties known today as critical phenomena were
discovered and apparently first reported in the Annales de Chimie et de Physique
(1822–1823) by the Baron Charles Cagniard de la Tour. He performed experiments on
liquids (water, alcohol, and ether) sealed in a glass cell under pressure, and observed
the remarkable fact that above a certain temperature, that itself depends on the
particular substance, the surface tension between the liquid and vapor disappeared,
thus discovering what is known today as the supercritical fluid phase. Trying to
prove that beyond a certain temperature the liquid gasifies regardless of pressure, he
also noticed that near particular pressure and temperature values something unusual
happened. In the neighborhood of this point, known as the critical point, the liquid
becomes increasingly milky, indicating that visible light is being strongly scattered.
The term critical point was coined later in 1869 by Thomas Andrews who observed
that carbon dioxide at 31 degrees Celsius and 73 atmospheres pressure displayed the
phenomenon of critical opalescence, that turbid and milky state previously observed
by Cagniard de la Tour in other substances. The underlying universality of critical
phenomena escaped the attention of their founders. It was Pierre Curie around
1895 who realized the similarity between the critical behaviors of a liquid–gas phase
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transition and that of the ferromagnetic transition in iron. The formal connection
and derived analogies between unrelated physical materials behaving in a similar,
universal, way near a continuous phase transition constitutes one of the landmarks of
critical phenomena. Since the discovery of the renormalization group method in the
early 1970s, the realm of applications of the concepts of scale invariance and criticality
has pervaded several fields in the natural and social sciences. Thus, in perspective, it
is of no surprise that these concepts, and the methods used to study them, can be
applied to disciplines as diverse as the ones indicated in our introductory paragraph.

This book provides an introductory account of the theory of phase transitions and
critical phenomena. The basic knowledge of the theory of phase transitions and critical
phenomena is now recognized to be indispensable for students and researchers from
many fields of physics and related disciplines. The book has been written having in
mind an advanced undergraduate or graduate student in science or mathematics. It has
been assumed that the reader has finished introductory courses of statistical mechanics
in addition to elementary courses in calculus, Fourier analysis, and probability theory.
Very basic undergraduate knowledge of quantum mechanics is required to understand
the very few extensions of the classical theory. Clarity and detailed user-friendly
derivations of usually accepted, as elementary and not so elementary, concepts have
been our guiding principle. We preferred this style of presentation to what is sometimes
known as rigorous, where at the expense of making the argument so sharp one loses
track of the main idea.

One of our goals in writing this book is to provide the mathematical tools
necessary for students to compute properties of critical systems in diverse contexts
and disciplines, such as biophysics or complex systems. Almost all parts are written in
a self-contained manner and all new concepts and calculations are explained in much
detail without assuming prior knowledge of phase transitions and critical phenomena.
We have avoided historical presentations of various topics allowing us to present
compact derivations of the concepts without hiding details. For example, it is typical
to first introduce the scaling hypothesis and then the renormalization group method
as a way of justifying that hypothesis. Rather, we preferred to derive the scaling laws
directly once the concept of a renormalization transformation is introduced, which, in
our opinion, is a more natural and pedagogical way of presenting the material.

Another of the goals of this book is to prepare the reader to start reading more
advanced books and research papers, in which basic accounts of common knowledge are
often omitted and consequently beginners are trapped in the jungle of undefined jargon
and complicated manipulations. Serious attempts have been directed toward a self-
contained modular approach so that the reader does not have to refer to other sources
for supplementary information. Accordingly, most of the concepts and calculations
are described in detail, sometimes with additional/auxiliary descriptions given in
appendices and exercises. It is, of course, impossible to cover all of the topics related
to phase transitions and critical phenomena in a single volume of this introductory
nature. One main omission is the general subject of quantum phase transitions, which
happen at zero temperature as a result of changes in the parameters of the Hamiltonian
representing the physical system. Although by itself a topic for a second volume, we
have explained a few extensions of classical concepts to the quantum realm when
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appropriate and not in danger of jeopardizing the main ideas. Most of these extensions
are written in the appendices. The bibliography at the end of the book will guide the
reader to other topics not covered in this book and also to more advanced references.

A number of important concepts and methods have been developed, such as mean-
field theory, scaling theory, the renormalization group method, exact solutions, series
expansions, and Monte Carlo simulations, most of which have turned out to be valuable
tools not only in statistical physics but also in other fields of physics. The present book
also contains pedagogical presentations of statistical field theory methods, including a
chapter on conformal field theory, random systems, percolation, the important use of
dualities, and various modern developments hard to find in a single textbook on phase
transitions. Moreover, as mentioned above, a series of appendices expand and clarify
several issues not developed in the main text. It has been done in this way to avoid
getting stuck in details and thereby losing the main flow of ideas. We would like to
invite the reader, however, to seriously explore those appendices in a second reading
since they are very useful to understand the depth and extensions of a particular topic.

In the first half of this book, standard topics such as mean-field theory, the renor-
malization group, and statistical field theory methods are explained. Then, slightly
more advanced, but commonly encountered, concepts and methods follow, including
the conformal field theory, the Kosterlitz–Thouless transition, effects of randomness,
exact solutions, duality, and numerical techniques. Special emphasis has been placed
on providing a physically intuitive description, sometimes with certain sacrifice of
mathematical rigor, except in the chapters that discuss exact solutions and duality.
The first five chapters are very basic and quintessential, followed by several chapters
that can be read independently of each other, provided that the first five chapters have
been finished. The important role played by symmetry and topology in understanding
the competition between phases and the resulting emergent collective behavior, giving
rise to rigidity and soft elementary excitations, is stressed throughout the book. Most
importantly, in accordance with Sophocles’ advice,1 exercises are presented as the
topics develop with solutions found at the end of the book, thus giving the text a
self-learning character. It is strongly recommended that the reader solves (or at least
tries to solve) the exercises as one proceeds in reading, since they often contain vital
information to understand the logic developed in the main text.

The book reflects lectures given by the authors at their Universities to graduate
students on the same topics and is thus classroom tested for its usefulness for
beginners to this field. Students attending those courses contributed significantly to the
improvement of presentation and material selection and the authors are very grateful
to them. We would like to express our special thanks to Matthew Dean Jones and Zsolt
Bertalan for proofreading and providing insightful remarks. We are also indebted to
John Cardy, Pierluigi Contucci, Michael Fisher, Cristian Giardina, Norio Kawakami,
Makoto Oka, Andrea Pelissetto, and David Sherrington for their crucial suggestions
and comments on the draft. Shu Tanaka kindly drew the impressive picture on the
cover of this book.

1 “One learns by doing a thing; for though you think you know it, you have no certainty until you
try.”
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Following the convention of many textbooks, we did not directly refer to original
research papers for almost all topics in this book. However, we don’t mean to claim
priority for the materials presented. On the contrary, virtually almost all concepts,
methods, and conclusions are well-established, standard ones. The book simply reflects
the authors’ interpretation of what constitutes a concise, consistent, coherent, and
clear manner of presenting a wide range of topics. Correspondingly, we tried to
avoid attributing each result to a specific person, except for a limited number of
very common names including (but not limited to) the Ising model, Heisenberg
model, Landau theory, Virasoro algebra, Kosterlitz–Thouless transition, Sherrington–
Kirkpatrick model, and Lee–Yang zeros. The reader is referred to the bibliography at
the end of the book for more detailed sources of information on the original references.
We, nevertheless, would like to express our sincere apologies to those who contributed
to the developments of the field for leaving out their names, with the expectation that
our approach is understood and accepted.

We hope this book will help anyone interested in this fascinating subject and,
moreover, inspire young scientists to continue developing this profound and far-
reaching field of science.2

Hidetoshi Nishimori and Gerardo Ortiz
Tokyo and Bloomington

March 2010

2 Updates, amendments and addenda will be posted on a dedicated web page at http://mypage.
iu.edu/∼ortizg/bookP.htm
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1

Phase transitions and critical
phenomena

As an introduction to the physics of phase transitions and critical phenomena, we
explain in this chapter a number of basic ideas such as phases, phase transitions
and critical phenomena. Intuitive accounts are given to the concepts of scaling and
renormalization, which are powerful, systematic tools to analyze critical behavior of
macroscopic systems. Also explained are several model systems, on the basis of which
phase transitions and critical phenomena have been studied.

1.1 Phase and phase diagram

We are surrounded by a number of substances in different states. A phase is a state
of matter in which the macroscopic physical properties of the substance are uniform
on a macroscopic length scale, e.g. 1 mm. Familiar examples are ice, liquid water, and
water vapor, each of which is a phase of water as a collection of macroscopic numbers
of H2O molecules. Roughly speaking, we call the length scale that we encounter in
our daily life the macroscopic scale, which is to be contrasted with the microscopic
scale as the standard of length in the atomic world. The goal of statistical mechanics
is to elucidate physical phenomena occurring on the macroscopic scale as a result of
the interactions among microscopic constituents.

A phase is characterized by a thermodynamic function, typically the free energy.
A thermodynamic function is a function of a few macroscopic parameters such as
the temperature and the pressure. Thus, the phase of a macroscopic substance is
determined by the values of these parameters. A phase diagram is a graph with those
parameters as the axes, on which the phase is specified for each point. An example of a
phase diagram is given in Fig. 1.1. A typical phase diagram has several specific features
including phase boundaries, a critical point (point C in Fig. 1.1), and a triple point
(point TP). A phase boundary separates different phases. A change in parameters
such as the temperature across a phase boundary causes a sudden change in the phase
of a substance. For example, a solid phase changes into a liquid phase at the melting
temperature. This is a phase transition. A phase boundary sometimes disappears at
a critical point, where the two phases become indistinguishable and the substance
shows anomalous behavior. The theory of critical phenomena explains this anomalous
behavior.

Three different phases coexist at the triple point. Consider the example of water.
Suppose that we confine some amount of water and ice in a container, seal it, and
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TP

p

C

Vapor

LiquidSolid

0 T

Fig. 1.1 Typical phase diagram. The phase of a substance is determined by the values of

the control parameters such as temperature T and pressure p. C denotes the critical point

and TP stands for the triple point.

evacuate the remaining air by using a vacuum pump. Then, the space above water
and ice will be filled by vapor, realizing the triple point where ice, water and vapor
coexist. The temperature and pressure of the triple point of water are T = 273.16 K
and p = 0.61 kPa, respectively.

A phase can be characterized by various physical quantities. Especially important
is the order parameter, which measures how microscopic elements constituting the
macroscopic phase are ordered or in a similar state. As detailed in the following
chapters, the order parameter is associated with the breaking of a symmetry of the
system under consideration. The order parameter measures the degree of asymmetry
in the broken symmetry phase (which is the ordered phase), i.e. it is non-zero in the
ordered phase (lower-symmetry state) and vanishes in the disordered phase (symmetric
phase).

In magnetic materials, for example, magnetization is a characteristic order para-
meter. Magnetization is the strength of a magnet, roughly speaking. The alignment
of microscopic electronic spins gives rise to macroscopic magnetism. The symme-
try that spontaneously gets broken is associated with the rotation of the spins.
In solids, atoms or molecules occupy periodic positions. In this case, the spatial
periodicity of molecules/atoms is the order parameter. A more abstract example is
the quantum-mechanical phase of superconductors. A superconductor is characterized
by a macroscopic quantum-mechanical wave function. The phenomenon of supercon-
ductivity is observed when the phase of this wave function has a constant value in
a macroscopically extended region. It is not always an easy task to determine the
order parameter. Indeed, some phases do not even have a local order parameter to
characterize them. Moreover, some order parameters couple to external physical probes
(e.g. the magnetization couples to an externally applied magnetic field), while others
do not (e.g. the phase of the macroscopic wave function, which is the superconducting
order parameter, does not couple to any physical external probe).

1.2 Phase transitions

A phase transition is a phenomenon in which a drastic change between thermodynamic
phases occurs as the system parameters such as the temperature and pressure are
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Solid Liquid

Vapor

T

Fig. 1.2 Singularities in physical quantities at transition points. S is the entropy and C is

the specific heat. (a) and (b) are first-order transitions, and (c) and (d) are second order.

varied. A familiar example is the melting of ice at 0 ◦C near 1 atm. The char-
acterization of a phase transition as a drastic change of macroscopic properties is
described theoretically as the emergence of singularities (non-analyticities) in functions
representing physical quantities. As shown in Fig. 1.2, quantities such as the entropy S,
the volume V and the specific heat C show such singularities as a discontinuity (jump),
a cusp or a divergence. An example is the melting of ice, in which latent heat must be
supplied to the system and consequently the entropy jumps as illustrated in Fig. 1.2(a).
When water boils and changes to vapor, the volume changes discontinuously. From
a physics standpoint the reason behind the occurrence of a phase transition is the
competition between the (internal) energy E and the entropy S of the system, which
together determine its free energy F = E − TS. While the first term (E) favors
order, the second (S) privileges disorder, and depending on the value of the external
parameters (such as T ), one of the two terms dominates.

According to the conventional classification, phase transitions are roughly divided
into two types by the degree of singularity in physical quantities. When the first-order
derivative of the free energy F shows a discontinuity, the transition is of first order.
The transition is called continuous if the second- or higher-order derivatives of the
free energy show a discontinuity or a divergence. It is also common to name phase
transitions by the order of the derivative that first shows a discontinuity or divergence,
e.g. it is called second order if it is the second-order derivative of the free energy that
first displays the discontinuity or divergence. For instance, the transition of ice to
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water accompanies latent heat and consequently a jump in entropy (ΔS > 0). Since
the entropy is the derivative of the free energy S = −(∂F/∂T )V , such a transition
is of first order. A transition with continuous entropy but a discontinuity in the
specific heat C, which is the derivative of the entropy, is of second order (Figs. 1.2(c)
and (d)). In many second-order transitions, the specific heat diverges at the transition
temperature. Examples include the λ transition, i.e. the superfluid transition in liquid
helium 4, and the paramagnetic–ferromagnetic transition in magnetic materials. A
particularly interesting and common transition in systems of low space dimensionality
is the Kosterlitz–Thouless transition (see Chapter 7), where all derivatives of the
free energy are continuous, nonetheless, the free energy has a singularity, known in
mathematics as an essential singularity.

Notice that from the statistical mechanics viewpoint, thermodynamics arises from
the free energy, which is determined by the partition function Z,

Z = e−F/kBT = Tr e−H/kBT , (1.1)

where kB is Boltzmann’s constant, and Tr (trace) represents a sum over all the degrees
of freedom that enter the Hamiltonian H of the system under study. Since Z is a sum
of exponentials of −H/(kBT ), non-analyticities of the free energy can only happen in
the thermodynamic limit, where the volume of the system V and number of degrees
of freedom (e.g. spins in magnetic materials) N grow to infinity, such that its ratio
remains constant, i.e. N/V → const.

A material may show both first- and second-order transitions depending on the
conditions. Figure 1.3(a) illustrates the phase diagram of a magnetic material placed
in an external magnetic field h. If the temperature T is lower than some Tc (critical
temperature, critical point, criticality, transition point), the sign of the magnetization m
jumps from minus to plus as the external magnetic field h is scanned from the negative
direction to the positive direction as realized by the path (b) of Fig. 1.3(a), thus a
first-order transition. For negative h, the spins in the magnetic material align with that
negative direction on the macroscopic scale. They suddenly change the direction as the

0
T

h
m

h
0

m

T
0

Tc

Tc

(b)

(c)

(a) (b) (c)

Fig. 1.3 (a) Phase diagram of a magnetic material, (b) first-order transition, and (c) second-

order transition. The dotted arrows marked (b) and (c) in panel (a) correspond to the changes

in parameters shown in panels (b) and (c), respectively.
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external field becomes positive.1 Thus, for T < Tc, a finite magnetization m remains
even after we take the zero-field limit h → 0+ as depicted in Fig. 1.3(b). The sign is
of course negative, m < 0, when h → 0−. This is called spontaneous magnetization,
a typical example of an order parameter. When the temperature is high, T > Tc,
the magnetization changes smoothly at h = 0 without any singularities. On the other
hand, if we keep the external magnetic field infinitesimally small, h = 0+, and lower
the temperature across Tc, then the spontaneous magnetization changes continuously
from 0 to a positive value (Fig. 1.3(c)), thus defining a second-order transition.

1.3 Critical phenomena

Continuous phase transitions are often synonymous with critical phenomena, i.e.
anomalous phenomena that appear around the critical point (C in Fig. 1.1) where
two or more phases become indistinguishable. The main goal of the present book is to
present the basic theory to understand critical phenomena.

Let us explain the idea of critical phenomena observed in magnetic materials.
Suppose that we decrease the temperature T toward the critical temperature (critical
point) Tc from above as in Fig. 1.3(c). The magnetization m keeps its vanishing
value throughout this process. Nevertheless, as a precursor to finite spontaneous
magnetization m > 0, h → 0+ below Tc, the magnetization increases very rapidly
if we apply a small but finite external magnetic field h at temperatures slightly above
the critical temperature. Thus, according to the definition of magnetic susceptibility χ

m = χh + O(h3), (1.2)

this χ assumes a very large value near the critical temperature Tc (Fig. 1.4).
The magnetization is proportional to the external field m ∝ h for T > Tc. When the

temperature is adjusted to be exactly at the critical point (T = Tc), the magnetization
grows more rapidly as a function of the external field, m ∝ h1/δ (1/δ < 1). If we define
the magnetic susceptibility as the first-order coefficient of h as in eqn (1.2), then the
susceptibility at the critical point behaves as χ ≈ m/h ∝ h1/δ−1 and diverges as h → 0.
See Fig. 1.4. Spins do not spontaneously align on the macroscopic scale in the high-
temperature region T > Tc but they, nevertheless, tend to have a similar direction
within fairly large regions for T close to Tc. These clustered spins respond coherently
to the external field, and consequently the magnetization increases very rapidly as the
field is applied. The degree of alignment of spins fluctuates significantly in space and
time. The singularities in physical quantities reflect these fluctuations.

Essentially, the same phenomena are observed around the liquid–vapor critical
point shown in Fig. 1.1. Suppose that we increase the temperature and pressure so
that the system stays on the coexistence curve (phase boundary) of liquid and vapor
along the curve between TP and C in Fig. 1.1. Since (low-density) vapor and (high-
density) liquid become indistinguishable beyond the critical point, there exist fairly
large regions in the liquid where the density is significantly lower than the average
at temperatures sufficiently close to (but below) the critical temperature. Similarly,

1 This is an idealized picture. The change in the direction of spins is actually much more complex
due to the magnetic domain structure.
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χ

TTc0

Fig. 1.4 The magnetic susceptibility diverges at the critical point.

large clusters of high density will show up in the vapor. These phenomena may be
described as fluctuations in the density, the difference of which between vapor and
liquid represents the order parameter. The length scale of such fluctuations ranges from
microscopic to quasi-macroscopic near the critical point. Consequently, fluctuations of
length scales close to the wavelength of visible light exist. Then, there appear white
cloud-like regions in the transparent liquid/vapor due to the reflection of light from
such clusters. This phenomenon is termed critical opalescence. One of the physical
quantities that show a singularity in such a case is the variance of density per unit
volume, which diverges at the critical temperature.

The degree of singularity or divergence of physical quantities near the critical
point is described by critical exponents or critical indices (α, α′, β, γ, γ′, δ, η, ν, · · · ).
Experiments show that physical quantities generally have power-law singularities as
functions of the difference between the control parameters (such as temperature) and
their critical values. Let us denote this difference by t and take it as a dimensionless
quantity. For example, t = (T − Tc)/Tc, where Tc is the critical temperature. Critical
exponents of simple magnetic materials are defined as follows

χ ∝ |t|−γ (T > Tc), |t|−γ′
(T < Tc) (1.3)

C ∝ |t|−α (T > Tc), |t|−α′
(T < Tc) (1.4)

m ∝ |t|β (T < Tc) (1.5)

m ∝ |h|1/δ (T = Tc) (1.6)

G(r) ∝ r−τ e−r/ξ (T �= Tc) (1.7)

ξ ∝ |t|−ν (T > Tc), |t|−ν′
(T < Tc) (1.8)

G(r) ∝ r−d+2−η (T = Tc), (1.9)

where χ is the susceptibility, C the specific heat, m the magnetization, G(r) the
connected two-point correlation function G(r) = 〈SiSi+r〉 − 〈Si〉〈Si+r〉 with two spins,
Si, Si+r, separated by a distance r, and d is the space dimensionality of the system.

As already mentioned, the magnetic susceptibility χ diverges at the critical point,
and the rate of divergence is described by eqn (1.3) using the critical exponents γ and
γ′. The symbol ∝ expresses the most singular contribution among the singularities
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in the function on the left-hand side. There actually exist additional weaker singu-
larities and non-singular (i.e. regular) terms and we have omitted the proportionality
constants. Therefore, a more accurate expression for χ should look like

χ = A|t|−γ + B|t|−γ+1 + · · · + const + t + t2 + · · · . (1.10)

The critical exponents for the higher-temperature side (t > 0) and the lower-
temperature side (t < 0) usually assume the same value. This is a non-trivial fact
and should be confirmed in each case.

Similar remarks apply to the other critical exponents. The index of singularity
in the specific heat C is α. The index β describes how the magnetization (order
parameter) m approaches zero as the temperature increases toward the critical point.
The magnetization m at Tc is a non-linear function of the external field h, a fact that
is expressed by the exponent δ. The correlation function G(r) decays exponentially as
a function of the distance as in eqn (1.7) if the temperature is not at the critical
point. The correlation function describes the degree of similarity of the states of
spins separated by a distance r. Thus, eqn (1.7) implies that the correlation between
spin states is very small beyond the distance ξ, called the correlation length. This
correlation length increases rapidly as the temperature approaches the critical point
and eventually diverges. The rate of this divergence is described by the exponent ν
defined in eqn (1.8). When the temperature is tuned to be exactly at the critical
point, the system sustains fluctuations of all length scales and the correlation function
decays slowly in a power law manner as in eqn (1.9). This power is characterized by
the exponent η.

Critical exponents are very basic quantities to characterize critical phenomena,
and an important goal of the theory of critical phenomena is to develop a systematic
method to calculate the values of critical exponents. Most importantly, there are
simple relations between exponents (scaling law), which allow one to determine an
exponent given the values of other exponents (i.e. not all exponents are independent).
For example, the Rushbrooke scaling law is α + 2β + γ = 2.

1.4 Scale transformation and renormalization group

An essential feature of critical phenomena is that fluctuations of all length scales
appear simultaneously, causing non-analytic behavior of physical quantities. The pres-
ence of singularities make standard theoretical perturbative approaches inappropriate.
Figures 1.5, 1.8 and 1.9 show such emergence of fluctuations in the two-dimensional
(d = 2) ferromagnetic Ising model (see Section 1.5) simulated by the Monte Carlo
method to be detailed in Chapter 11.

Let us first have a look at Fig. 1.5(a) that shows the state of the system at a
temperature slightly below the critical point, T = 0.995Tc. The two-dimensional Ising
model with a linear size 486 was simulated, and a typical spin configuration is shown
here with up spins in black and down spins in white. No external field h is applied. Most
spins are in the up state and the system is magnetically ordered. Up spins are connected
from one edge of the square to the opposite edge, whereas down spins exist only in
isolated islands. Most of these islands have a length scale of a few millimeters in the
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present printed scale (of the order of 10 spins in the number of sites). This length scale
is essentially the correlation length ξ.

Now, let us apply a block-spin transformation to the configuration of Fig. 1.5(a).
The result is depicted in Fig. 1.5(b). The block-spin transformation in this example
consists of replacing the neighboring 3 × 3 = 9 spins by a single spin according to the
majority rule illustrated in Fig. 1.6. Figure 1.5(b) can be regarded as a coarse-grained
version of 1.5(a) with the details of very short length scales washed out. The dominance
of black states is more prominent in (b) than in (a). The length scale is reduced to
1/3 of the original one and, correspondingly, the linear size of typical white regions
(correlation length) is reduced by the same factor. Figure 1.5(b) should therefore be
expanded (rescaled) by the factor 3 if we are to restore the original scale.

(a) (b)

(c)

(d)

Fig. 1.5 (a) Typical spin configuration of the two-dimensional ferromagnetic Ising model at

T = 0.995Tc. (b), (c) and (d) are the results of successive block-spin transformations.

Fig. 1.6 Block-spin transformation in which we apply the majority rule to replace 3 × 3 = 9

Ising spins by a single spin.
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0 Tc T

Fig. 1.7 The renormalization group transformation changes the effective temperature. If the

initial temperature is below the critical point, the effective temperature decreases, whereas

it increases when the initial value is above the critical temperature. The critical point

corresponds to the (unstable) fixed point of the transformation.

Repeated applications of block-spin transformation to (b) yield (c) and then (d).
These latter figures (c) and (d) are almost uniformly black. This is a consequence
of consecutive eliminations of fluctuations of short length scales (i.e. white islands
in the black sea) in order to focus our attention to the phenomenon of long length
scales. This process allows us to extract the essential features of the macroscopic
system near the critical point. This is the physical picture behind the renormalization
group. A block-spin transformation is a step to realize the idea of a renormalization
group transformation, which consists of elimination of short-length fluctuations (coarse
graining) and rescaling.2 The latter process of rescaling in the example of Fig. 1.5 is
just to expand (b) by the factor 3 and reproduce the original scale of (a).

The all-black state corresponds to the maximum magnetization, which is physically
realized at zero temperature. We may thus understand that the renormalization group
gradually lowers the effective temperature to eventually reduce the system to the zero-
temperature state of Fig. 1.5(d), see Fig. 1.7.

If we apply the same manipulations to the system exactly at the critical point
T = Tc, we obtain Fig. 1.8. The external field is zero in this case too. The initial state
(a) may give the reader an impression that the black state is slightly dominant over
the white state (or vice versa). However, when we apply the renormalization steps as
in (b), (c), (d), the system does not seem to approach an overwhelmingly black (or
white) state. The physical reason behind this behavior is that there exist fluctuations
(black and white islands) of all length scales at the critical point, from microscopic to
macroscopic scales, which makes it impossible to eliminate short-length fluctuations to
reduce the system to essentially the zero-temperature or infinite-temperature states.
The system remains unchanged by the renormalization group. In fact, white islands
of small to large length scales coexist in Fig. 1.8(a) and we cannot identify a typical
length scale. For temperatures lower than the critical one, T < Tc, as in Fig. 1.5,
fluctuations have a typical length scale ξ, and hence a few renormalization steps are
sufficient to eliminate these short-length behaviors. A critical region is a fluctuation-
dominated regime of the system. Exactly at the critical point, the system has an
essentially different property, that of the absence of a typical length scale. This fact
may be rephrased by stating that the effective temperature does not change by a
renormalization group transformation if the system is at the critical point. The critical
point corresponds to a fixed point of the renormalization group transformation.

2 There indeed exists an additional important process of renormalization (amplitude change of
microscopic degrees of freedom), as will be discussed in detail in Chapter 3.



10 Phase transitions and critical phenomena

(a) (b)

(c)

(d)

Fig. 1.8 Change of spin configurations by renormalization group transformations for a

system at temperature T = Tc.

The final example of block-spin transformation is for a temperature higher than
the critical point T = 1.05Tc. As shown in Fig. 1.9, a few transformations change the
system state to a completely random one. The situation in (c) and (d) resembles
the high-temperature limit of the system where spins rapidly change their states due
to strong thermal agitation. In this sense, the renormalization-group transformation
reveals that the system above the critical point has essentially the same properties
as the system in the high-temperature limit. The correlation length is of the order of
a few millimeters to a centimeter in (a), which is reduced to the very short distance
between neighboring (block) spins in (c) and (d).

A general strategy to study critical phenomena is, as suggested by the examples
mentioned above, to write a set of renormalization group equations, which describe
how parameters such as the temperature change as the degree of coarse graining and
rescaling is increased, and to analyze its solution around the (critical) fixed point. A
fixed point is a point in the parameter space, to which corresponds a state (or fixed-
point Hamiltonian) invariant under a renormalization group transformation. It has an
associated correlation length ξ that is either infinity (at a critical fixed point) or zero
(at a trivial fixed point in the high- or low-temperature limit, for example). These
ideas are formulated in detail in later chapters.
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(a) (b)

(c)

(d)

Fig. 1.9 Spin configuration at T = 1.05Tc and its block-spin transformations.

The important concept of universality emerges from the idea of renormalization
group that eliminates inessential short-range details and emphasizes increasingly
macroscopic viewpoints. More precisely, an important consequence of universality is
that quantities that describe the essential features of critical phenomena, typically the
critical exponents, do not depend on the system details but are specified only by a
few basic factors such as the symmetry of the system, range of the interactions (i.e.
short or long range), and its spatial dimensionality (more precisely, the connectivity
of its elementary degrees of freedom, e.g. spins in the Ising model, when the system is
defined on a lattice). For example, two apparently different critical phenomena share
the same critical exponents, one in the Ising model and the other in a simple liquid,
as long as both are in three dimensions. These two distinct physical systems are said
to belong to the same universality class. It is surprising that a model of magnetism
shows essentially the same critical behavior as one for the liquid. The physical reason
behind this behavior is that many characteristics of the system3 gradually recede as
the renormalization-group transformation proceeds and eventually only the essential
factors, the spatial dimensionality and the symmetry of the system, survive.

3 For example, whether or not the microscopic elements are located on discrete lattice sites (Ising
model) or distributed continuously spatially (liquid).
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The symmetry in the example of the Ising model in the absence of an external
field is that all the microscopic ingredients (Ising spins) can be transformed into
minus its values, Si → −Si (∀i), with the Hamiltonian kept invariant. This is a global
transformation that is mathematically represented by the group Z2, which consists
of two elements {1,−1} with the usual rule of multiplication. Correspondingly, the
order parameter is a scalar quantity, the number of components being just one. These
features are shared by the liquid–vapor transition in simple liquids.

Strong evidence to support such a viewpoint is provided by the experimental fact
that the critical exponents of simple liquids agree with those for single-component
magnets. Additional support for this view will be given from the explicit formulation
of the renormalization group method in later chapters. Another quantity that shows
universality, in addition to the critical exponents, is the ratio of critical amplitudes,
the coefficient A in eqn (1.10), on the high-temperature (t > 0) and low-temperature
(t < 0) sides of the phase transition. There are, of course, many properties that are
non-universal, the critical temperature itself being a relevant example that depends
on the microscopic details of the model.

1.5 Ising model and related systems

It is not necessary to construct and study a precise model Hamiltonian, which reflects
the details of a real material of interest, in order to understand the critical phenomena
shown by the material. Universality allows us to simplify the model to a very basic one,
eliminating all inessential characteristics, if we are interested in the values of universal
quantities such as the critical exponents. This fact provides the useful strategy that
consists of adopting the simplest possible model system for investigation. Critical
exponents are very robust against changes in the parameter values that specify the
system details.

A very popular basic model for phase transitions and critical phenomena is the
Ising model defined by the following equation, or Hamiltonian, or energy function

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si. (1.11)

Here, Si is the Ising spin (Si = ±1) at site (lattice site) i, and 〈ij〉 denotes an
interacting spin pair. An example is given in Fig. 1.10, where a neighboring pair

i j

Fig. 1.10 Square lattice and a pair of nearest-neighbor sites 〈ij〉.
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is shown on the square lattice. The coefficient J is the interaction constant (coupling
constant) and h represents the external magnetic field expressed in units of energy.
The Ising model is a simplified model of macroscopic systems with the number of
elementary components equal to unity (that is, Si is a scalar, not a vector quantity)
and has been studied extensively as a model of magnetism. In this latter case J
denotes the exchange interaction. For J > 0 the interaction is ferromagnetic and it is
antiferromagnetic if J < 0.

The three-dimensional Ising model describes the critical behavior of simple liquids
due to the effective symmetry shared by both systems (the Ising model and simple
liquid), i.e. the fact that the number of components of their relevant variables is one.
A more direct relation can also be established between the two systems using the idea
of a lattice gas. Molecules of gas and liquid distribute continuously in space. Near the
critical point, since fluctuations of long wavelength play a dominant role, it is allowed
to discretize the space and ignore phenomena that occur only in short-range scales.
Spatial discretization means to allow molecules to exist only on discrete lattice sites.
More concretely, let the Ising spin describe whether or not a molecule exists at site i by
the rule that Si = 1 when there is one and Si = −1, otherwise. Neighboring molecules
are assumed to have an interaction −φ when Si = Sj = 1. Then, the Hamiltonian
reads

H = −φ
∑

〈ij〉

1
2
(1 + Si) ·

1
2
(1 + Sj) − μ

∑

i

1
2
(1 + Si). (1.12)

The chemical potential is denoted by μ. This equation is rewritten in the usual form
of an Ising model using appropriate J and h as

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si + const. (1.13)

The density ρ is related to the average number of molecules per lattice site as

ρv0 =
1
2
(1 + 〈Si〉), (1.14)

where v0 is the unit volume. Thus, the density of liquid is related to the magnetization
of the Ising model m = 〈Si〉. This is another way of justifying the fact that the
magnetic and simple liquid–gas transitions belong to the same universality class.

The Ising model also represents a binary alloy, a mixture of two different species
of atoms, A and B (Fig. 1.11). The state Si = 1 denotes that site i is occupied by
an atom A and Si = −1 by an atom B. When the atoms interact with each other
with the energy values JAA (for atom pair AA) JBB (for BB) and JAB (for AB), the
Hamiltonian reads

H =
1
4

∑

〈ij〉
JAA(1 + Si)(1 + Sj) +

1
4

∑

〈ij〉
JBB(1 − Si)(1 − Sj) (1.15)

+
1
4

∑

〈ij〉
JAB {(1 + Si)(1 − Sj) + (1 − Si)(1 + Sj)} . (1.16)
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Fig. 1.11 Structure of a binary alloy. In this example, two types of atoms A and B, depicted

in black and white, occupy the lattice sites of the body-centered cubic lattice. The left panel

represents a disordered state and the right panel is for an ordered state.

This Hamiltonian may be rewritten as

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si + const. (1.17)

Here, J = −(JAA + JBB − 2JAB)/4 and h ∝ (JBB − JAA). There is an extra con-
straint for the spin variables in the case of the binary alloy, which fixes the difference
between the number of up spins (Si = 1) and down spins (Si = −1), corresponding to
the fixed magnetization of magnetic materials: Since the total number of atoms of each
type, A and B, is constant, the sum

∑
i Si is fixed to a given value. For instance, if

the numbers of A and B atoms coincide, this constant is 0. According to experiments,
critical exponents of binary alloys agree very well with those of the three-dimensional
Ising model. An example is provided by the alloy beta-brass (a mixture of copper and
zinc atoms), whose exponents are the same as those of the Ising antiferromagnet.

It will be useful to introduce a few other models in addition to the simplest Ising
model. The Ising model with the binary value for spins, Si = ±1, is sometimes called
the spin-1/2 Ising model. The reason is that the z-component of the quantum spin
operator takes only two values, Sz

i = ±1/2, if the magnitude of the spin operator is
S = 1/2 in units of the Planck constant �. A simple generalization of the spin-1/2
case is the spin-1 Ising model in which Si takes three values 1, 0,−1. The spin-1 Ising
model often has an extra term in its Hamiltonian representing anisotropy,

H = −J
∑

〈ij〉
SiSj − D

∑

i

S2
i − h

∑

i

Si. (1.18)

The anisotropy term of strength D is constant in the spin-1/2 case, since S2
i = 1, but

it is not when S = 1 in which case S2
i is 1 or 0. The consequences of the existence of

this term will be discussed in the next chapter in relation to the tricritical point.
In the q-state Potts model, the spin variable Si takes up to q values, where q is

an integer equal to or greater than 2. If we write these values as Si = 1, 2, · · · , q,
the interaction between two Potts spins is assumed to take two values depending on
whether these two spins are in the same state or not,

H = −J
∑

〈ij〉
δSi,Sj

− h
∑

i

δSi,1. (1.19)
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Here, δSi,Sj
is 1 when Si = Sj and is 0 otherwise, i.e. Kronecker’s symbol. The external

field is assumed to apply only if the spin is in state 1 in the above Hamiltonian. Other
choices are possible, for example, that the field applies to state 2 (δSi,2) or to a few
states (δSi,1 + δSi,2) . The q = 2 Potts model reduces to the Ising model by appropriate
changes in the definition of coefficients (Exercise 1.1). The Potts model shows a rich
variety of phase transitions and critical phenomena according to the value of q and
the spatial dimension and has been investigated extensively. The q = 1 limit of the
Potts model is closely related to the problem of percolation as will be explained in
Section 8.3.

The symmetry of the Hamiltonian may certainly change with q in the Potts model,
but it can also change when the number of components of the spin is greater than 1,
in which case the spin is a vector Si,

H = −J
∑

〈ij〉
Si · Sj −

∑

i

h · Si. (1.20)

The system with two components Si = (Sx
i , Sy

i ) is the XY model, and the three-
component system is called the Heisenberg model. The magnitude of the spin variable
S2

i is usually fixed to 1. Consequently, the Hamiltonian of the XY model is often
written as

H = −J
∑

〈ij〉
cos(φi − φj) − h

∑

i

cos φi, (1.21)

where Si = (cos φi, sin φi) and h has been chosen as h = (h, 0). These vector-spin
models have different critical exponents depending on the number of components of
the spin Si. In general, when Si has n components, the system is called the n-vector
model.

Rigorously speaking, spins are quantum-mechanical operators and we have to
justify the classical treatment mentioned so far. An intuitive reason is that critical
phenomena are caused by cooperation of a very large number of microscopic degrees
of freedom. Though each of these degrees of freedom may be quantum mechanical, the
net behavior of the system is essentially macroscopic, and quantum-mechanical effects
usually do not show up explicitly. This picture is confirmed by rich data of agreement
of critical exponents between classical theories and experiments. It is, nevertheless,
necessary to seriously consider quantum effects when critical phenomena are observed
at extremely low temperatures. We then should consider quantum spin systems by
regarding Si in eqn (1.20) as quantum-mechanical operators. The important subject
of quantum phase transitions is outside the scope of the present volume except for a
few simple examples.

EXERCISE 1.1 Show that the two-state Potts model is equivalent to the Ising
model. Since Si in the two-state Potts model takes two values, 1 and 2, it will
be useful to rewrite these two values in terms of Ising variables (to be denoted as
σi = −1, 1 to distinguish it from the Potts variable Si) and to express Kronecker’s
delta δSi,Sj by the product σiσj . A similar change will be necessary for the external
field term.
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Mean-field theories

The basic strategy of theoretical studies of phase transitions and critical phenomena is
to solve models, such as the ones described in the last section of Chapter 1, according
to the prescription of statistical mechanics. This program is actually quite hard to
follow closely. As an example, the total number of states for the N -spin Ising model
is 2N, since each spin may take one of the two values, 1 and −1. This exponential
number increases very rapidly with N , and it soon becomes impossible to calculate the
partition function exactly in a straightforward manner as N reaches a moderate value.
For instance, N = 10 yields 2N = 1024, and as N increases to N = 100, 1000, 10 000,
2N explodes from 1.27 × 1030, 1.07 × 10301 to 2.00 × 103010. In some limited cases we
may derive exact solutions by ingenious methods, as described in Chapter 9. However,
in general, we have to resort to approximate methods to understand the essential
features of the physical phenomena under consideration. One of the most common
and important approximations is called mean-field. In the present chapter we explain
the mean-field approximation, the Landau theory, the infinite-range model, and the
Bethe approximation, and show that all these (mean-field) theories are essentially
equivalent to each other. Also described are the Landau theory of tricritical behavior,
correlation functions, the limit of applicability of the mean-field theory, and dynamic
critical phenomena. These mean-field solutions provide a reasonable starting point for
more advanced methods including the renormalization group.

2.1 Mean-field approximation

Let us first explain the mean-field approximation for the Ising model. The basic
strategy is to focus our attention on a single spin and replace the neighboring
spins by their averages, as illustrated in Fig. 2.1. Then, the problem reduces to a
single-variable case, and the number of degrees of freedom appearing in the computa-
tion of the partition function is drastically reduced from 2N to 2. The problem of many
interacting particles is replaced by a non-interacting one, which greatly facilitates the
theoretical treatment. As will be shown below, this procedure is equivalent to the
approximation where one ignores the deviations (fluctuations) from the average value
of the spin variables. We explain this latter method since it provides a transparent
point of view on the essence of the mean-field approximation.

Let us separate the Ising spin variable Si into its thermal average m = 〈Si〉 and
the deviation (fluctuation1) from the average δSi = Si − 〈Si〉 in the Ising model

1 The term fluctuation is used in a few slightly different ways. In the previous chapter a fluctuation
meant that, within a spatial region, the degree of freedom takes a different value from that in the
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Fig. 2.1 In the mean-field approximation spin variables surrounding a given spin are

replaced by their average values (shown in gray circles).

Hamiltonian

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si. (2.1)

We have Si = m + δSi and ignore the second-order terms in δSi assuming that
fluctuations are not very significant. We expect that 〈Sj〉 does not depend on the index
j due to the spatial uniformity of the system (space translation symmetry). This may
seem a very crude approximation, but it turns out that qualitatively reliable results
can be derived on critical exponents as long as the criterion of validity (Ginzburg
criterion) described in Section 2.10 is satisfied. Equation (2.1) now reads

H = −J
∑

〈ij〉
(m + δSi)(m + δSj) − h

∑

i

Si

≈ −Jm2NB − Jm
∑

〈ij〉
(δSi + δSj) − h

∑

i

Si. (2.2)

Here, NB is the total number of interacting spin pairs,
∑

〈ij〉 1 = NB. We mainly
consider the cases in which only nearest-neighbor pairs of spins interact with each
other as depicted in Fig. 2.2. Then, NB is the number of bonds or the number of
interacting pairs.

We focus our attention on site i in the interacting pair in the second line of the
above equation. We find that δSi appears four times as seen in Fig. 2.2: Bonds to
the up, down, right, and left neighbors. If we write z for the coordination number (the
number of bonds emanating from a site), we have

H = −Jm2NB − Jmz
∑

i

δSi − h
∑

i

Si. (2.3)

It is convenient to further rewrite δSi in terms of Si using the definition δSi = Si − m,

H = −Jm2NB − Jmz
∑

i

(Si − m) − h
∑

i

Si

= NBJm2 − (Jmz + h)
∑

i

Si, (2.4)

surrounding regions. In the present section, the deviation of the value of a very local degree of freedom
from the average is called a fluctuation.
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i

Fig. 2.2 Site i and its nearest neighbors on the square lattice. The number of nearest

neighbors z is 4 in this case.

where the relation NB = zN/2 has been used. For example, the square lattice (z = 4)
has NB = 2N (assuming periodic boundary conditions).

Equation (2.4) coincides with the following Hamiltonian, which is obtained from
the original Hamiltonian (2.1) after replacement of Sj (those interacting with Si) by
the average m,

H ≈
∑

i

Hi = −(Jmz + h)
∑

i

Si, (2.5)

the difference between this (2.5) and eqn (2.4) being only in the additive constant.
The physical picture of Fig. 2.1 is realized in the replacement of Sj by m.

In eqn (2.4) the effects of interactions of spin Si with the neighboring spins are
expressed in the same form as those of an external field of strength Jmz. We thus
call such a term an effective field or a molecular field. Correspondingly, the mean-field
approximation is also called the molecular-field theory.

The problem has now been simplified to a single-site case as seen in eqn (2.5), where
no interactions between spins exist explicitly. All Si can be treated independently and
one may think that the problem has been solved. It is not the case yet, however. The
quantity m has been introduced as the average magnetization and we should specify
its value. To determine m, we note that m in eqn (2.5) is the average 〈Sj〉 of spins
neighboring to Si. Therefore, because of translational symmetry, we require that m
be equal to 〈Si〉, which is expressed as the self-consistent equation

m =

∑

Si=±1

Sieβ(Jmz+h)Si

∑

Si=±1

eβ(Jmz+h)Si

= tanhβ(Jmz + h). (2.6)

The symbol β is for the inverse temperature, β = 1/kBT .2 For simplicity we will adopt
the unit that reduces the Boltzmann constant kB to 1 throughout this book. It is not
difficult, if necessary, to recover the formulas explicitly including kB by dimensional
analysis.

Equation (2.6) determines m as a function of the external parameters h and β
and is also called the (mean-field) equation of state. It is not possible to explicitly

2 Not to be confused with the critical exponent β.
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m

y
b Jz > 1
b Jz < 1

tanhbJzm

y = m

0

1
m

T
0 Tc= Jz

(a) (b)

–1

Fig. 2.3 (a) Graphical solution of the equation of state for the mean-field approximation of

the Ising model. When βJz > 1, the line y = m and the curve y = tanh βJzm cross at two

points with m �= 0 as indicated by black dots. (b) The solution m(T ) marked by the black

dot in (a) is depicted as a function of T . Only the solution with m > 0 is shown here.

solve eqn (2.6) for m, but we may develop the following argument for the behavior
of the solution by using a graphical representation of the left- and right-hand sides.
Let us assume h = 0 for simplicity. As shown in Fig. 2.3(a), the slope of the right-
hand side tanh(βJmz) at the origin is larger than 1 when βJz > 1 and the equation of
state has non-vanishing solutions. This means that the system has a finite spontaneous
magnetization, the non-vanishing magnetization that exists in the limit of a vanishing
external field h → 0, below the critical point Tc = Jz. Figure 2.3(b) represents this
situation. The sign of m is determined by whether h approaches 0 from above (h = 0+)
or below (h = 0−). Only the solution m > 0 is shown in Fig. 2.3(b), but there exists
a corresponding negative solution with the same absolute value. The absolute value
of the solution m �= 0 increases as the temperature decreases. In this way, we have
reached a qualitative understanding of Fig. 1.3(c) from a mean-field perspective.

The mean-field approximation presented in this section represents one possible way
to realize a mean-field theory. A mean-field theory constitutes a general strategy to
reduce the original problem of exponential complexity (there are 2N = exp(N log 2)
possible configurations) into one of polynomial complexity, e.g. Nα with α ≥ 0. In our
particular example of the Ising model, we reduced 2N to 2. However, we could have
applied the same type of approximation to a cluster of Nc spins instead of a single
spin, with a reduction from 2N to 2Nc . An example of this latter case is the Bethe (or
Bethe-Peierls) approximation, to be discussed in Section 2.8.

EXERCISE 2.1 Consider the model Hamiltonian of eqn (2.1) for a collection of
spins of magnitude S with Si = −S,−S + 1, · · · , S − 1, S. Determine the critical
temperature of the system by using the mean-field approximation.

2.2 Critical exponents of the mean-field theory

We next study critical exponents of the mean-field approximation. As one sees in
eqn (1.5), the critical exponent β describes how the magnetization m vanishes as the
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temperature increases toward the critical point in the absence of an external field h.
Since we are interested in the region where m is very small, it is legitimate to expand
the right-hand side of eqn (2.6) around m = 0. For h = 0 we then obtain

m = βJzm − 1
3
(βJz)3m3 + · · · . (2.7)

Since we are interested in solutions with m �= 0, we divide both sides of this equation
by m and solve the result for m to find

m = ±
(

3(Jz − T )
(βJz)2Jz

)1/2

≈ ±
(

3(Tc − T )
Tc

)1/2

, (2.8)

where we used βJz ≈ 1 near the critical point. The critical exponent β is therefore
1/2.

The value of the critical exponent γ that describes the divergence of the magnetic
susceptibility χ, is 1. To confirm this fact, it is useful to notice that m and h both
approach 0 with the same order of magnitude as h → 0 when the temperature is above
the critical point T > Tc as in eqn (1.2). We therefore expand the equation of state
(2.6) assuming m and h are small quantities of the same order of magnitude,

m = βJzm + βh + · · · . (2.9)

By rewriting this relation to obtain χ defined by m = χh, we find

χ =
1

T − Tc
. (2.10)

Since the susceptibility diverges inversely proportionally to the temperature difference
T − Tc, the critical exponent is γ = 1 for T > Tc. As seen in Exercise 2.2, the
critical exponent assumes the same value for T < Tc. We therefore have γ = γ′ in
eqn (1.3).

EXERCISE 2.2 Show that the mean-field value of the critical exponent γ′ for the
magnetic susceptibility below the critical point T < Tc has the same value as the
high-temperature counterpart γ = γ′ = 1. It will be useful to first differentiate both
sides of the equation of state (2.6) with respect to h and then use the facts that
the susceptibility is given by χ = ∂m/∂h (h → 0) and that the magnetization m is
almost zero near the critical point.

To study the critical exponent α that characterizes the rate of divergence of the specific
heat, it is useful to notice that the specific heat C is calculated from the temperature
dependence of m derived above: When h = 0, the mean-field Hamiltonian (2.4)

H = NBJm2 − Jmz
∑

i

Si (2.11)

is reduced to H = 0, if T > Tc, since m = 0. The specific heat, the temperature
derivative of the energy, is therefore 0. In the low-temperature region T < Tc, on
the other hand, the Hamiltonian does not vanish as m is finite. The specific heat
consequently has a positive value. These considerations lead us to the temperature
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T

C

0 Tc

Fig. 2.4 The specific heat does not diverge but has a jump according to the mean-field

approximation.

dependence of the specific heat as depicted in Fig. 2.4 with a jump at Tc. This jump is
described by the exponent α = 0 because it implies C ∝ |T − Tc|0, that is, the specific
heat approaches a finite constant as the temperature reaches the critical value, which
is indeed the case both above and below Tc as shown above. This also confirms that
α = α′(= 0).

EXERCISE 2.3 Determine the average energy per spin and specific heat (h = 0)
of the Ising model in the mean-field approximation.

To find the value of the critical exponent δ that describes the magnetic-field
dependence of the magnetization exactly at T = Tc, it is useful to expand the equation
of state under the assumption that both m and h are small (but not necessarily of
the same order), thus providing the h dependence of m. The third-order expansion
of the right-hand side of the equation of state (2.6) with h kept non-vanishing yields

m ≈ βc(Jzm + h) − β3
c

3
(Jzm + h)3, (2.12)

where βc stands for 1/Tc = 1/Jz. This equation can be rewritten as

βch ≈ 1
3
{
(βch)3 + 3(βch)2m + 3(βch)m2 + m3

}
. (2.13)

Using the definition h ≈ mδ, we write the above equation just in terms of the order
of magnitude of m, [m], dropping the coefficients,

[mδ] ≈ [m3δ] + [m2δ+1] + [mδ+2] + [m3]. (2.14)

We have to choose δ = 3 so that the lowest-order terms of both sides are consistent
with each other.

The results for the mean-field critical exponents are summarized in the following
table:
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Exponent Mean-field value

α 0
β 1

2
γ 1
δ 3

A closer look at the above-mentioned derivation of critical exponents reveals that
universality is realized even within the mean-field approximation since the values of
the critical exponents depend just on some symmetry properties and not on other
details of the system. For example, the result β = 1/2 emerges from the fact that the
right-hand side of eqn (2.7) is composed of the first- and third-order terms of m: By
dividing both sides of this equation by m, we reduce m3 in the second term of the right-
hand side to m2 and the left-hand side to a constant. Then, the magnetization behaves
as the square root of the temperature difference. This means that the coefficient 1/3
of the second term of the right-hand side of eqn (2.7) has no influence on the critical
exponent. Only the negative sign matters. We further find that the explicit form as
a hyperbolic tangent of the right-hand side of the equation of state (2.6) does not
come into play, but the only ingredient that affects the result is that tanh(βJmz) is
an odd function of m with a negative coefficient in the third order. A similar comment
applies to the critical exponent γ. The only requirement to reproduce γ = 1 is that the
right-hand side of the equation of state is an odd function with a positive coefficient
in the first order of the expansion. A different value of this positive coefficient leads to
a different value of the critical point with the same critical exponent. We notice here
the non-universality of the value of the critical point.

EXERCISE 2.4 Let us study the Heisenberg model by the mean-field approxima-
tion. The Hamiltonian is

H = −J
∑

〈ij〉

Si · Sj − h
∑

i

Sz
i . (2.15)

Here, Si is a classical vector of unit length having three components Sx
i , Sy

i , Sz
i . Since

the external field is applied along the z-axis, the magnetization m = 〈Si〉 is also
parallel to the z-axis. Derive the mean-field Hamiltonian similar to eqn (2.4) by the
same argument as in the Ising model. Also, derive the self-consistent equation cor-
responding to eqn (2.6) using the log-derivative of the partition function. Calculate
the critical point and exponent β and confirm that the latter agrees with the Ising
case.

2.3 Landau theory

The Landau theory is a variant of the mean-field theory, which does not include
the elementary degrees of freedom of the statistical model. It is a phenomenological
theory in that no microscopic variables, such as the Ising spins, are used and the free
energy is written as a function of the magnetization (i.e. the order parameter) from
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Fig. 2.5 The m dependence of the Landau free energy. The locations of minima change

according to whether the temperature is above the critical point (a), at the critical point (b)

or below (c).

symmetry considerations alone. The condition of thermal equilibrium is realized as a
minimization of the free energy.

Let us first discuss the simple case of h = 0, i.e. no external field. The free energy
per microscopic degree of freedom or per unit volume will be written as f and is
regarded as a function of magnetization. The magnetization per spin m = 〈Si〉 changes
its sign, m → −m, if we change the signs of all the spins, Si → −Si, ∀i. In the absence
of external field h, the Hamiltonian (2.1) is a bilinear form of the spin variables,
and remains invariant under the overall inversion of the sign of the spins. This Z2

transformation represents a global symmetry. Consequently, the free energy remains
invariant under the same operation. Thus, the free energy f(m) is an even function of
the magnetization m.

Since we are interested in critical phenomena, the temperature is close to the
critical point and the magnetization m assumes a very small value. This would allow
us to expand the free energy in even powers of m and retain only the lowest-order
terms. This Landau free-energy expansion3 (analytic expansion in terms of the order
parameter) for the Ising universality class reads

f(m) = f0 + am2 + bm4, (2.16)

where f0, a and b are constants as functions of m but have temperature dependence.
Generally, the Landau free energy is determined by writing all possible scalar invariants
in terms of powers and products of the order parameter components. Thus, relevant
symmetries of the original microscopic model are preserved at a coarse-grained level
of description. See Section 5.5.

Thermal equilibrium is realized by minimization of f(m) for a given h (which
is 0 for the moment). It is convenient to graphically show the functional form of

3 Note that the Landau free energy f(m) in eqn (2.16), with m a given magnetization, is not the true
thermodynamic free energy as a function of T and h, since not all microscopic configurations (giving
other values of m) are included. As will be explained in Chapter 5, the Landau theory can be obtained
as a saddle-point approximation of a certain field theory. The value of the approximate equilibrium
free energy f(m0) is obtained by minimization of f(m) with respect to m. Then, thermodynamic
properties such as the specific heat are determined by differentiation of f(m0) with respect to the
corresponding parameters.
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eqn (2.16) to identify the locations of minima. We first notice that b should be positive.
Otherwise, the free energy f(m) decreases indefinitely as |m| increases, which implies
an instability. The m dependence of f(m) is illustrated in Fig. 2.5 for three possible
values of the coefficient a. For a > 0, the minimum is at m = 0 and thus there is no
spontaneous magnetization (Fig. 2.5(a)). When a is exactly 0, the Landau expansion
(2.16) starts from the fourth order and f(m) is very flat at the origin, Fig. 2.5(b),
but still the equilibrium magnetization remains 0. As soon as a becomes negative, two
minima emerge away from m = 0 and the absolute value |m0| at these points grows
with decreasing a, Fig. 2.5(c). The original Hamiltonian and free energy are symmetric
(invariant) under a change of sign of m, but the realized state for a < 0 does not have
such a symmetry since only one of the two minima is actually realized in a physical
system. In other words, the thermodynamic free energy is invariant under the overall
change of the sign of spins (Si → −Si, ∀i) but the realized equilibrium state has no
such symmetry. This phenomenon is called spontaneous symmetry breaking. A small
external field or the initial condition of time evolution of the system determines which
of the two states is actually realized, which is also called ergodicity breaking because
only a part of the phase space is reached by the system. This situation is common
with the mean-field approximation explained in Section 2.1.

Since the equilibrium position (minimum) of f(m) changes at a = 0, we may
identify a = 0 with the critical point T = Tc. This observation would allow us to
choose an odd power of kt as a, where k is a positive constant and t = (T − Tc)/Tc

is the deviation of the temperature from the critical point normalized by Tc, also
known as the reduced temperature. The simplest choice is a = kt, for which clearly
a > 0 above the critical point and a < 0 below. The temperature dependence of b does
not affect the qualitative behavior of the free energy around the critical point or the
critical exponents, and we therefore take b as a constant, independent of temperature.

Let us evaluate the resulting critical exponents of the Landau theory. The exponent
β is determined by the temperature dependence of m that minimizes the free energy
at the low-temperature side a < 0, i.e. T < Tc. Differentiation of the free energy gives
the minimization condition

df

dm
= 2am + 4bm3 = 0. (2.17)

Thus, the equilibrium value of magnetization, m0, is

m0 =
√

− a

2b
=

√
k(Tc − T )

2bTc
, (2.18)

from which we conclude β = 1/2.
To find the value of the critical exponent α, we differentiate the minimum (equilib-

rium) value of the free energy with respect to temperature and study how the specific
heat depends on temperature. Below the critical point, we find

f = f0 + am2
0 + bm4

0 = f0 −
k2(T − Tc)2

4bT 2
c

. (2.19)
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The specific heat is therefore finite at the critical point. Above the critical temperature,
f is a constant f0 since m0 = 0, and the specific heat vanishes. We conclude α = 0.

As for the critical exponent δ that describes the field dependence of the magnetiza-
tion exactly at the critical point, we add the external field term −hm to the free energy,
and differentiate the latter with respect to m to determine its equilibrium value,

df

dm
= 2am + 4bm3 − h = 0. (2.20)

Since a = 0 at T = Tc, we find δ = 3 from m3 ∝ h.4

The susceptibility χ = ∂m/∂h is evaluated from eqn (2.20) as

χ =
1

2a + 12bm2
. (2.21)

For T > Tc, we thus have

χ =
1
2a

=
Tc

2k(T − Tc)
, (2.22)

from which γ = 1 is concluded. If T < Tc,

χ =
1

2a + 12b(−a/2b)
=

Tc

4k(Tc − T )
, (2.23)

and hence we find γ′ = 1. The critical exponent γ takes the same value above and below
the critical point. The critical amplitudes, the coefficient of |T − Tc|, are different by a
factor of 2; compare eqns (2.22) and (2.23). Universality, nevertheless, manifests itself
in the ratio 2 between these critical amplitudes; the ratio does not depend on the
coefficient k or the critical temperature Tc.

EXERCISE 2.5 Confirm that the ratio of critical amplitudes for the magnetic
susceptibility has the universal value of 2 according to the mean-field approximation
of Sections 2.1 and 2.2. It will be useful to make use of the computations appearing
in Exercise 2.2.

The Landau theory uses only the symmetry properties of the free energy f(m), and
the resulting values for the critical exponents do not reflect the details of model sys-
tems. Consequently, the critical exponents do not depend on the spatial dimensionality
and/or the number of spin components, e.g. the Ising model has a single component
and the XY model has two, and the Heisenberg model has three components in its
microscopic spin variable. This latter independence of dimensionality and number of
components is characteristic of the Landau theory and mean-field theory, and is in
general incorrect.

The Landau theory shares its values of critical exponents with the mean-field
approximation of Section 2.1. In this sense, these two theories are equivalent to each
other. It is further possible to derive the Landau expansion (2.16) from the mean-field

4 To simplify notation, we use the same symbol m, instead of m0, for the equilibrium value of
magnetization.
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approximation of Section 2.1 as follows. The free energy as a function of m for the
mean-field Hamiltonian (2.4) is, if h = 0,

f =
1
N

⎛

⎝NBJm2 − T log
∑

{Si=±1}
eβJmz

∑
i Si

⎞

⎠

=
zJm2

2
− T log 2 cosh(βJmz). (2.24)

This expression is expanded to fourth order as

f = −T log 2 − Jz(Jzβ − 1)
2

m2 +
1
12

(Jz)4β3m4. (2.25)

This is of the same form as eqn (2.16). In particular, we confirm the important features
that the coefficient of the second-order term vanishes at the critical point, and that
the fourth-order term has a positive coefficient.

EXERCISE 2.6 The van der Waals equation of state characterizing a gas–liquid
transition

(
P +

N2a

V 2

)( V

N
− b

)
= T (2.26)

can be regarded as a mean-field theory, where P = −∂F/∂V is pressure, V volume,
N number of atoms, a > 0 is a measure of the attraction between atoms, and
b > 0 the excluded volume due to the finite atomic size. Define the volume per
atom v = V/N , then determine the critical values vc, Pc, Tc, and the ratio Pcvc/Tc.
Calculate the critical exponents δ and γ of the van der Waals fluid, and compare
them with those determined in the mean-field theory of a ferromagnet. Noticing the
correspondence to the magnetic quantities h → p, m → V, where p = (P − Pc)/Pc

and V = (v − vc)/vc are the reduced pressure and volume, respectively, we define
the critical exponent δ as

p ∝ Vδ, (2.27)

and the exponent γ as the rate of divergence of the isothermal compressibility
(v → vc)

κT = −1

v

∂v

∂P

∣∣∣∣
T

∝ (T − Tc)
−γ . (2.28)

EXERCISE 2.7 Strictly speaking, the Landau free-energy expansion is valid under
the assumption that the order parameter m vanishes as T → Tc. Consider the
situation where cubic terms are allowed

f = f0 + am2 + bm4 + cm3 (a, b > 0), (2.29)
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and determine the equilibrium value of m as a function of temperature. Show that
this situation represents a first-order transition. Hint: f should be minimized for
equilibrium.

2.4 Landau theory of the tricritical point

The Landau theory assumes a positive coefficient b for the fourth-order (quartic) term.
Under certain circumstances, however, a negative b describes the system behavior more
appropriately. A typical example is the critical behavior around a tricritical point,
where three lines of critical points meet. Let us see how the Landau theory is modified
when b is negative.

As explained already, the Landau expansion to fourth order (2.16) with negative b
leads to a thermodynamic instability because the equilibrium value of m is indefinitely
large, i.e. unbounded. This suggests that one needs to include a sixth-order term,

f =
1
2
am2 +

1
4
bm4 +

1
6
cm6 − hm. (2.30)

The coefficients in this equation involve rational numbers so that equations appearing
later look simpler after differentiation. In the following, we will show that the Landau
free energy f displays a phase transition whose order depends upon the sign of b.
Thermodynamic stability requires c > 0, and the signs of a and b are now arbitrary. For
b > 0, the situation is the same as in the previous section: The sign of a = kt determines
the equilibrium value of m. Similar is the case for b = 0 with some modifications in
the critical exponents because the starting order of m is six when a = 0. We will come
back to this point later.

The new case b < 0 needs a careful analysis. We assume h = 0 for simplicity and
study the a dependence of f(m) with b and c fixed to negative and positive constants,
respectively. First, at high temperature, a is positive and large, and f(m) has a simple
structure with the minimum at m = 0. As the temperature decreases, a becomes
smaller. In the range a < b2/4c(≡ a0), the negative coefficient of the fourth-order term
causes local minima at non-vanishing m, see Fig. 2.6(a).5 The local minimum value
of the free energy at the solution m �= 0 is higher than the global minimum at m = 0
when a is slightly smaller than a0 as depicted in Fig. 2.6(a). Then, the state with
m = 0 remains globally stable. The states with m �= 0 have local stability around each
local minimum and are called metastable states.

A further decrease of temperature causes a to be smaller than a1 = 3b2/16c, in
which case the global minimum shifts from m = 0 to the two symmetrically located
states with m �= 0. Consequently, the magnetization of the equilibrium state jumps
from m = 0 to m �= 0, see Fig. 2.6(b). This is a first-order phase transition. For a < 0
the local stability of the solution m = 0 is lost, Fig. 2.6(d).

5 The threshold of a for the minima to appear, a0 = b2/4c, can be derived from the condition that
the minimization equation ∂f/∂m = m(a + bm2 + cm4) = 0 starts to have non-vanishing real-valued
solutions.
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Fig. 2.6 For a negative coefficient of the fourth-order term, b, the Landau free energy

describes a first-order phase transition. (a) 3b2/16c = a1 < a < a0 = b2/4c, (b) a = a1,

(c) 0 < a < a1, (d) a < 0.
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aa1
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Fig. 2.7 A phase diagram that contains a tricritical point at the origin. The hatched region

is the ferromagnetic phase with m �= 0. Metastable states appear below the curve a0. The

transition is second order to the right of the origin and it is first order to the left.

EXERCISE 2.8 Derive the transition point a1 = 3b2/16c of the first-order
transition.

The result of these analyses is summarized in Fig. 2.7. When b > 0, the critical
point is at a = 0 and a spontaneous magnetization exists when a < 0. If b < 0,
metastable states appear at a = a0, and states with spontaneous magnetization
become globally stable at a = a1 through a first-order transition. The point b = 0
is at the border of these two distinct situations, and the origin a = b = 0 is a special
point, called a tricritical point.

The special point a = b = 0 is called a tricritical point for the following reason.
A similar analysis in the presence of an external field reveals the structure of the phase
diagram in a three-dimensional space with an additional axis for h. If we choose the
h-axis perpendicular to the plane of Fig. 2.7, the line of first-order transitions for b < 0,
a = a1, extends as a plane through the region with h �= 0. The first-order transition
line a = a1 drawn in Fig. 2.7 for h = 0 is a cross-section of this plane. For values of |h|
larger than a certain value, this plane of first-order transitions terminates with a line
of second-order transitions along the boundary. No transitions exist beyond this line.
This line of second-order transitions starts at the origin a = b = h = 0 and extends to
both regions of h > 0 and h < 0. Hence, these two lines for b < 0 and another line of
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second-order transitions for b > 0, i.e. a = h = 0, merge at the origin. This observation
justifies calling the origin a = b = h = 0 a tricritical point.

Critical exponents for the tricritical point are evaluated as follows. If we take the
derivative of the free energy with respect to m at b = h = 0, we obtain

m4 = −a

c
=

k(Tc − T )
cTc

. (2.31)

We therefore conclude β = 1/4. As for α, the minimum value of f(m) at m4 = −a/c
(valid below the critical point) is found to be f ∝ |t|3/2. The second-order derivative of
this free energy with respect to temperature reveals α = 1/2. To estimate δ, we study
the minimization condition of the Landau free energy in the presence of an external
field, as was the case for the ordinary critical point,

am + cm5 − h = 0. (2.32)

Since a = 0 at the critical point, we find m5 = h/c, and thus δ = 5. The exponent γ
is evaluated by using the expression for the susceptibility

χ =
1

a + 5cm4
, (2.33)

which was obtained by differentiation of both sides of eqn (2.32). It is easy to see
from this equation that χ = 1/a and χ = −1/4a from above and below the critical
point, respectively. We therefore have γ = γ′ = 1. The following table summarizes the
mean-field critical exponents at the tricritical point:

Exponent Mean-field value at the tricritical point

α 1
2

β 1
4

γ 1
δ 5

An example of a system that displays tricriticality is the spin-1 Ising model of eqn
(1.18) with Si = 1, 0,−1, also known as the Blume–Capel model. It may be viewed
as a classical spin-1 magnet or as a lattice gas with Si = 0 representing vacancies or
impurities in an otherwise spin-1/2 (Si = ±1) Ising model. This model may describe
liquid 4He–3He mixtures, where Si = 0 is identified with the presence of a 3He atom,
while Si = ±1 with a 4He atom on site i. One treats the interaction part of the
Hamiltonian (1.18) by the mean-field approximation developed in Section 2.1 and
expands the resulting free energy to sixth order in m, as mentioned in the last part of
Section 2.3. One then finds that the coefficient of the fourth-order term changes sign
depending on the values of Jz and D.

EXERCISE 2.9 Apply the mean-field approximation to the Hamiltonian (1.18)
with h = 0 and series-expand the free energy to sixth order in m. Show that the
coefficient of the fourth-order term can change sign when D is negative. Also confirm
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that the coefficient of the sixth-order term is positive when the sign of the coefficient
of the fourth-order term changes. It will be useful to carry out the expansion using
symbol-manipulation software on a computer as the algebra is lengthy.

One may now wonder what happens if the coefficients of the fourth- and sixth-
order terms are both zero. It is easy to imagine that new types of critical behavior
may emerge, and a different set of critical exponents would result, from the effects
of the eighth-order term. It is indeed possible to derive a series of mean-field critical
exponents in this manner. However, the experimental realization of these situations
is actually difficult because the system is assumed to have very special values of
adjustable parameters, as implied by the vanishing of many coefficients. For example,
the ordinary critical point is realized by tuning h and T to their critical values,
h = 0 and T = Tc. The tricritical point of the spin-1 Ising model needs an additional
adjustment of the anisotropy parameter D to its critical value. Higher-order critical
points need more and more tuning of the parameters, making these situations virtually
impossible to realize experimentally.

2.5 Infinite-range model

The theory described in Section 2.1 is an approximation to analyze model systems.
The infinite-range model is a very interesting system because it can be solved exactly
in the thermodynamic limit and the result coincides with the mean-field solution. Let
us first derive the solution and next show how the mean-field approximation gives the
exact result.

The infinite-range model with Ising spins is defined by the following Hamiltonian,

H = − J

2N

∑
i �=j

SiSj = − J

2N

((∑
i

Si

)2

−
∑
i

S2
i

)
. (2.34)

The summation runs over all distinct pairs of i and j, i.e. i = 1, 2, · · · , N and j(�=
i) = 1, 2, · · · , N . The factor 1/2 is necessary because a single pair appears twice; for
instance the pair (1, 2) is counted twice as i = 1, j = 2 and as i = 2, j = 1. All spin
pairs have the same interaction J/N , which may be interpreted as if the range of
the interactions extends to the infinitely distant sites. This is the origin of the name
infinite-range model. Although it may look very artificial, this model is important
because the mean-field method gives the exact solution, which makes it possible to
construct a mean-field-type theory for problems in which it is not easy to do so in a
conventional manner. Indeed, the mean-field theory of spin glasses is an example of
such an approach, as will be detailed in Chapter 8.

Our analysis of the infinite-range model starts from the definition of the partition
function. Using the standard notation K = βJ = J/T , we have

Z =
∑

{Si=±1}
exp

⎧
⎨
⎩

K

2N

(∑
i

Si

)2
⎫
⎬
⎭ , (2.35)

where we excluded the second term in eqn (2.34). This latter term is small, of relative
order O(N−1) compared to the leading first term, and therefore has no influence on the



Infinite-range model 31

solution in the thermodynamic limit, as described below. It will be useful to remove
the square in the exponent using the Gaussian integral

eax2/2 =

√
aN

2π

∫ ∞

−∞
dm e−Nam2/2+

√
Namx. (2.36)

An application of this formula rewrites the partition function (2.35) as

Z =
∑

{Si=±1}

√
KN

2π

∫ ∞

−∞
dm e−NKm2/2+Km

∑
i Si . (2.37)

The spin variables Si are now independent of each other, and the summation is
evaluated to give the result

Z =

√
KN

2π

∫ ∞

−∞
dm e−NKm2/2+N log(2 cosh Km). (2.38)

The problem has now been reduced to a single integral. It is impossible to evaluate
this integral in closed form in general. However, since the exponent of the integrand
is proportional to N , we can use the saddle-point method (the method of steepest
descents) as long as we are interested in the asymptotic behavior in the limit of large
N . A brief account on the saddle-point method is given in Appendix A.1. In short,
this method is a prescription to evaluate an integral whose integrand has a very sharp
peak; the value of the integral is asymptotically equal to the value of the integrand
at the peak. In the case of eqn (2.38), the exponent of the integrand is N times the
function g(m) = −Km2/2 + log(2 cosh Km). In the large-N limit eNg(m) has a very
sharp peak at the point where g(m) reaches its maximum, which allows us to apply
the saddle-point method.

The partition function is thus evaluated as

Z ≈
√

KN

2π
e−NKm2/2+N log(2 cosh Km). (2.39)

It should be remembered that m in this expression has a specific value that maximizes
the exponent g(m). The corresponding free energy reads

βf(m) = −g(m) =
Km2

2
− log(2 cosh Km). (2.40)

The factor
√

KN/2π on the right-hand side of eqn (2.39) can be ignored in the limit
N → ∞ since it is smaller than the other terms, as one sees by taking the logarithm
of the right-hand side. This result (2.40) agrees with the mean-field free energy (2.24)
after replacements of J with J/N and z with N .6

To maximize the integrand we take the derivative of f(m) and set it to zero (the
saddle-point condition). The result is m = tanhKm. This is the same equation as the
equation of state of the mean-field approximation (2.6) with h = 0 and Jz replaced by
(J/N) · N . Thus, the variable m, artificially introduced for the Gaussian integral,

6 The coordination number z in the infinite-range model is the number of all spins other than
itself, N − 1 ≈ N .
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actually represents the magnetization. It is indeed verified that the saddle-point
(extremum) condition for the exponent of the integrand in eqn (2.37) is found to be

m =
1
N

N∑

i=1

Si, (2.41)

which explicitly shows that m is for magnetization.7

It is not difficult to understand the physical reason why the mean-field approxi-
mation provides the exact solution to the infinite-range model. The Hamiltonian of
the infinite-range model is written as, if we ignore the contribution of the i = j terms
(which is negligible in the limit of large N),

H = −J

2

N∑

i=1

Si

⎛

⎝ 1
N

N∑

j=1

Sj

⎞

⎠. (2.42)

The quantity in parentheses on the right-hand side is identified with the magnetization
m in the limit of large N as one sees in eqn (2.41). We are thus allowed to replace
the expression in parentheses with its average value m, and the problem reduces to a
single-body (non-interacting) case.

In the infinite-range model each spin interacts with N − 1 other spins (which is
an infinite number in the thermodynamic limit N → ∞). It is useful to note here
that the coordination number is z = 2d in the d-dimensional hypercubic lattice, an
extension of the three-dimensional cubic lattice to an arbitrary space dimension d.
Consequently, the infinite-range model may be closely related with a system in a
very high-dimensional space. It would then be expected that critical exponents of
the infinite-range model, the mean-field values, accurately describe the behavior of
sufficiently high-dimensional systems. It will indeed be shown later that the mean-
field theories give the exact critical exponents for dimensions larger than the upper
critical dimension duc (which is usually duc = 4). The physical picture is that the
number of interacting partners of a spin is large for high-dimensional cases, which
would yield a large ‘force’ to fix the spin under consideration into a specific direction.
Such a large force is expected to reduce fluctuations, resulting in reliability of the
mean-field theories in which fluctuations are ignored.

2.6 Variational method

The following variational approach provides another viewpoint to understand the
physics behind the mean-field theories. The source of difficulty to perform exact
calculations of physical quantities lies in the non-trivial structure of the probability
distribution function P (S1, · · · , SN ) = e−βH/Z with, for example, the Hamiltonian
(2.1), where the degrees of freedom S1, S2, · · · , SN are coupled with each other. It may

7 Rigorously speaking, the right-hand side of eqn (2.41) is a stochastic variable, whereas the left-
hand side is not, the latter being the expectation value of each term on the right-hand side. This
implies that the left-hand side may take a different value from the right-hand side. However, in the
limit of large N , the probability for a finite difference between both sides vanishes, as will be explained
in some detail in Chapter 8 under the name of a self-averaging property.
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thus be useful to employ an approximation that decouples the distribution function
into a product of simpler functions, following the spirit of the mean-field approxi-
mation typically represented by eqn (2.5). The key element here is the decoupling
of the distribution function, not the Hamiltonian. We therefore approximate the full
distribution by the product of single-site functions,

P (S1, S2, · · · , SN ) ≈
∏

i

Pi(Si), (2.43)

and determine Pi(Si) by the general variational principle of statistical mechanics that
minimizes the free energy F = E − TS. Here, the internal energy E is the expectation
value of the Hamiltonian and S is the entropy (not to be confused with spin). Under the
above approximation, we find, noting that the entropy is the average of the logarithm
of the inverse probability, log(1/P ) = − log P ,

F =
∑

{Si}

{
H

∏

i

Pi(Si)

}
− T

∑

{Si}

{
∏

i

Pi(Si)

(
−
∑

i

log Pi(Si)

)}

= −J
∑

〈ij〉

∑

Si,Sj

SiSjPi(Si)Pj(Sj) − h
∑

i

∑

Si

SiPi(Si)

+T
∑

i

∑

Si

Pi(Si) log Pi(Si), (2.44)

where we have used the normalization
∑

Sk
Pk(Sk) = 1 for k other than i and j. The

variational principle consists of changing the function Pi slightly to Pi + δPi, and
demand that the resulting change δF of the free energy be vanishing. This amounts
to formally differentiating the free energy with respect to Pi and setting the result to
zero. If we incorporate the normalization condition by an additional term in the free
energy using a Lagrange multiplier, λ(

∑
Si

Pi(Si) − 1), we find

δF

δPi
= −J

∑

j

Simj − hSi + T log Pi(Si) + T + λ = 0, (2.45)

where we have written mj for
∑

Sj
SjPj(Sj). The summation in the first term is

restricted to neighboring sites of i. The condition (2.45) is solved for the distribution
function as

Pi(Si) =
exp

(
βJ

∑
j Simj + βhSi

)

ZMF
, (2.46)

where ZMF is the normalization factor. In the case of uniform magnetization mj (=
m), the result (2.46) together with the decoupling (2.43) leads to the distribution
P (S1, · · · , SN ) ∝ e−βH , with H being identical to the mean-field Hamiltonian (2.5).

The analysis so far has been general in that it did not use the values of the Ising
spins Si = ±1, and thus applies to many other cases. It is instructive to use the values
of the Ising spins now explicitly and see its consequences. Since Si takes only two
values ±1, we can always write any function of Si as a sum of a constant and a term
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proportional to Si because all higher-order terms reduce to one of these two since
S2

i = S4
i = · · · = 1, and S3

i = S5
i = · · · = Si. Thus, we may write

Pi(Si) =
1 + miSi

2
, (2.47)

which is compatible with the previous notation mi =
∑

Si
SiPi(Si) and the normal-

ization
∑

Si
Pi(Si) = 1. Substitution of eqn (2.47) into eqn (2.44) yields

F = −J
∑

〈ij〉
mimj − h

∑

i

mi

+T
∑

i

(
1 + mi

2
log

1 + mi

2
+

1 − mi

2
log

1 − mi

2

)
. (2.48)

Variation of this expression with respect to mi, which is effectively a differentiation of
F with respect to mi, leads to

mi = tanhβ

⎛

⎝J
∑

j

mj + h

⎞

⎠. (2.49)

This is identical to eqn (2.6) if the magnetization is uniform (mi = m, ∀i).

2.7 Antiferromagnetic Ising model

The mean-field theories described in most parts of the present chapter deal with the
ferromagnetic Ising model, in which neighboring spins tend to align parallel to each
other. In many materials, however, antiferromagnetic interactions exist,

H = J
∑

〈ij〉
SiSj − h

∑

i

Si (J > 0), (2.50)

where the stable configuration of a pair of neighboring spins is antiparallel, SiSj = −1.
For simplicity let us consider the case of a two-sublattice system, in which each site
belongs to one of the two sublattices (A or B), and the neighboring site always belongs
to the other sublattice (B or A) as depicted in Fig. 2.8. Many lattices including the
square lattice in two dimensions and the simple cubic lattice in three dimensions have
this structure. A typical exception is the triangular lattice, in which sites are classified
into three sublattices and the analysis becomes much more complicated than in the
two-sublattice case explained below.

The variational approach in the previous section provides a good starting point
because the results for the free energy (2.48) and the self-consistent equation (2.49)
remain valid just by a sign change of J since we did not use the sign of J in their
derivations. We therefore use eqn (2.49) and write mi = mA for i on sublattice A and
mi = mB for sublattice B. Since all neighboring sites of i ∈ A belong to sublattice B
and vice versa, eqn (2.49) with J → −J is expressed as
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mA = tanh β
(
−JzmB + h

)
(2.51)

mB = tanh β
(
−JzmA + h

)
(2.52)

for i ∈ A and i ∈ B, respectively. We next analyze the properties of the solution to
these equations.

A first observation is that the same equation as in the ferromagnetic case, m =
tanh(βJzm), results from eqns (2.51) and (2.52) when h = 0, if we choose mA =
−mB = m. This means that the spins on sublattice B have exactly the same properties,
except for the opposite orientation, as those on sublattice A, as naturally expected
from the antiferromagnetic interactions. Thus, the system develops a spontaneous
staggered magnetization, an alternating configuration of up and down spins, below the
critical point Tc = TN = Jz. The critical temperature for an antiferromagnet is often
termed the Néel temperature, from which the symbol TN comes.

The magnetic susceptibility χAF, however, does not diverge at T = TN, in contrast
to a ferromagnet because the spins do not align along the same orientation below TN,
and therefore a uniform field is not effective to cause a macroscopic response around
the critical temperature. To see how χAF behaves, we differentiate both sides of eqns
(2.51) and (2.52) with respect to h and then take the zero-field limit h → 0 to obtain
a set of equations satisfied by the sublattice susceptibilities χA = ∂mA/∂h|h→0 and
χB = ∂mB/∂h|h→0 as

χA = β(−JzχB + 1) sech2(βJzm) (2.53)

χB = β(−JzχA + 1) sech2(βJzm), (2.54)

where we have used mA = −mB = m for h → 0. The solution χA = χB can be identi-
fied with the total susceptibility per spin χAF,

χAF = β(−JzχAF + 1) sech2βJzm = β(−JzχAF + 1) (1 − m2), (2.55)

where we have used the relation 1/ cosh2(βJzm) = 1 − tanh2(βJzm) = 1 − m2. For
T ≥ TN, there is no spontaneous staggered magnetization, m = 0, and the susceptibil-
ity has a simple form according to eqn (2.55),

Fig. 2.8 Black dots denote sites on sublattice A and white dots are sites for sublattice B. In

antiferromagnets, at low temperatures, Ising spins on sublattice A point up, whereas those

on B point down (or vice versa).
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c

0 TN T

Fig. 2.9 The magnetic susceptibility of an antiferromagnetic Ising model according to

the mean-field approximation. There is no divergence, but a cusp develops at the Néel

temperature.

χAF =
1

T + Jz
=

1
T + TN

. (2.56)

Thus, the susceptibility does not diverge at the Néel temperature but has a finite
value. On the low-temperature side, T < TN, χAF behaves as

χAF =
1 − m2

T + Jz(1 − m2)
=

1 − m2

T + TN(1 − m2)
. (2.57)

These results are depicted in Fig. 2.9.
The susceptibility has a cusp at the Néel temperature and decreases quickly

towards 0 as T → 0.
One can mathematically introduce an external staggered magnetic field with +h

on sites A and −h on sites B, instead of the uniform h, and compute the resulting
staggered magnetic susceptibility ∂mA/∂h|h→0. Then, one finds a divergent staggered
susceptibility at the critical point. Notice that such staggered ordering magnetic field
is in general impossible to realize by direct experimental means. In this case one says
that there is no physical external probe that couples to the order parameter.

2.8 Bethe approximation

Let us return to ferromagnetic systems and study the Bethe approximation (also
called Bethe-Peierls approximation), a straightforward and useful approach to improve
over the mean-field approximation of Section 2.1. The latter approximation treats
exactly the degree of freedom of a single spin and replaces all the other variables
by their mean values. In the Bethe approximation, nearest neighbors are treated
without approximation and the spins beyond those neighbors are approximated by
their average, as illustrated in Fig. 2.10. For the Ising model of eqn (2.1), the self-
consistent Hamiltonian of the central cluster is

H = −J

z∑

i=1

SiS0 − hS0 − h

z∑

i=1

Si − h1

z∑

i=1

Si, (2.58)
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S2

S0

S4

S1S3

Fig. 2.10 The Bethe approximation treats neighboring spins exactly, and those beyond

nearest neighbors are replaced by their average.

where S0 is the central spin we focus our attention on, S1, S2, · · · , Sz are the neigh-
boring spins, h is the uniform external field, and h1 is the effective field that expresses
the influence of spins beyond nearest neighbors.

The problem is solved within the Bethe approximation if we find the value of the
unknown h1 in eqn (2.58). Similarly in spirit to the self-consistent mean-field equation
(2.6), we require that the average of the central spin 〈S0〉 = m0 be equal to that of
the neighboring ones 〈Si〉 = m1 (i = 1, · · · , z), i.e. m0 = m1 = m.

〈S0〉 = 〈Si〉. (2.59)

In order to calculate these averages, we first write the partition function for the
Hamiltonian (2.58) with h1 kept unknown,

Z =
∑

S0,··· ,Sz

exp

(
K

∑

i

SiS0 + βhS0 + βh
∑

i

Si + βh1

∑

i

Si

)
, (2.60)

where K = βJ . It is useful to separate the cases of S0 being fixed to 1 and of S0 = −1,
since the other spins from S1 to Sz are then independent variables and we can easily
perform the summation to find

Z± = e±βh
(
2 cosh(±K + βh + βh1)

)z
, (2.61)

where Z+ is for S0 = 1 and Z− for S0 = −1. Then, the total partition function is the
sum of these terms

Z = Z+ + Z− = eβh
(
2 cosh(K + βh + βh1)

)z + e−βh
(
2 cosh(−K + βh + βh1)

)z
.

(2.62)
The magnetization variables m0 and m1 can be expressed in terms of Z±. The

probability to get S0 = 1 is Z+/Z and that of S0 = −1 is Z−/Z, from which we have

m0 =
Z+ − Z−

Z
. (2.63)

As for m1, the logarithmic derivative of the partition function Z with respect to βh1

gives the sum of 〈Si〉 over i = 1, · · · z, i.e.
∑

i〈Si〉 = zm1. We thus find, using eqn
(2.62),
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m1 =
∂ log Z

z ∂(βh1)
=

Z+ tanh(K + βh + βh1) + Z− tanh(−K + βh + βh1)
Z

. (2.64)

From the condition m0 = m1, we find

e2βh1 =
(

cosh(K + βh + βh1)
cosh(−K + βh + βh1)

)z−1

. (2.65)

This is the self-consistent equation for the effective field h1, which can in principle be
graphically solved by the method used in Section 2.1.

EXERCISE 2.10 Derive eqn (2.65).

In the Bethe approximation the critical point can be obtained from eqn (2.65).
In this equation we set h = 0, take the logarithm, and expand the right-hand side to
third order in βh1,

2βh1

z − 1
= 2 tanh K · βh1 −

2 sinh K

3 cosh3 K
(βh1)3 + · · · . (2.66)

A phase transition occurs when the coefficients of the linear terms of both sides
coincide, as in the mean-field approximation,

1
z − 1

= tanhKc ⇐⇒ Tc =
2J

log
( z

z − 2

) , (2.67)

where Kc stands for J/Tc. This result coincides with the mean-field value Tc = zJ
in the limit of large z. For finite z, eqn (2.67) represents an improvement over the
mean-field approximation. For instance, in the case of the two-dimensional square
lattice with z = 4, the critical points are Tc/J = 4, 2.8854 and 2.2692 for the mean-
field approximation, the Bethe approximation, and the exact solution, respectively. In
one dimension, with z = 2, the mean-field approximation predicts Tc/J = 2, whereas
the Bethe approximation gives the exact result Tc = 0. The effects of fluctuations
are better taken into account in the Bethe approximation than in the mean-field
approximation of Section 2.1.

Critical exponents remain unchanged from the mean-field values. To estimate the
exponent β, let us expand the right-hand side of eqn (2.63) in powers of βh1 in the
absence of external field h. We find a linear term, and therefore the spontaneous
magnetization is proportional to the effective field h1. This motivates us to study
the temperature dependence of the effective field. Equation (2.66) is suitable for this
purpose: The role of m in the mean-field relation (2.7) is replaced here by βh1.
Accordingly, using the same argument as in the mean-field case, we find that βh1

is proportional to (Tc − T )1/2, and thus the critical exponent β is equal to 1/2.
To investigate the critical exponent α, we notice that the internal energy is finite

in the high-temperature (disordered) region T > Tc, in contrast to the mean-field
approximation, since nearest-neighbor interactions are taken into account explicitly.
The corresponding specific heat is finite in qualitative agreement with experiments.
In the low-temperature region the specific heat is also finite, as in the mean-field case.
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Hence, the value of the specific heat is improved quantitatively over the mean-field
approximation but still remains finite. This implies that the exponent α is unchanged,
i.e. α = 0. Similar conclusions are drawn for the other critical exponents γ and δ.

EXERCISE 2.11 Calculate γ and δ in the Bethe approximation. It will be sufficient
to evaluate γ for T > Tc, as the other case T < Tc is a little complicated. Write
explicitly the expansion (2.66) of the right-hand side of the self-consistent equation to
first order with an external field h included. The third-order term will be unnecessary
as it will not influence γ in the high-temperature region. The result will have the same
form as the mean-field equation (2.9), which allows us to apply the same argument
as in the mean-field case to derive γ. The other exponent δ can be evaluated by a
modification of the mean-field case.

Another interesting way to understand the Bethe approximation is through the
concept of the cavity method. Assume h = 0 for simplicity. The effective field h1 acting
on S1 in eqn (2.58) may be regarded as the accumulated effect of many spins beyond S1,
represented as dotted lines connected to S1 in Fig. 2.11, in the absence of interaction
between S0 and S1 since this last interaction is separately taken into account. Then,
the effect of the interaction between S0 and S1 onto S0 is calculated by taking the
trace over S1 as,

∑

S1=±1

eKS0S1+βh1S1 ≡ Aeβĥ1S0 , (2.68)

where A is a constant, and ĥ1, called the cavity bias, satisfies the following relation

βĥ1 =
1
2

log
1 + tanhK tanh βh1

1 − tanhK tanh βh1
= tanh−1(tanh K tanh βh1), (2.69)

since tanh−1 x = 1
2 log(1 + x)/(1 − x). This expression can be verified by equating

both sides of eqn (2.68) for the cases of S0 = 1 and S0 = −1 and then by eliminating
A. The effect of the other spins S2, S3, · · · , Sz−1 onto S0 are simply taken into account
as the sum of cavity biases because these effects are considered independent of each
other in the Bethe approximation,8

exp(βh0) ≡ exp

⎛

⎝β
z−1∑

j=1

ĥj

⎞

⎠. (2.70)

This h0 is the cavity field at site 0, i.e. the effective field in the absence of the remaining
interaction between S0 and Sz, drawn as a thin line in Fig. 2.11. From eqns (2.69) and
(2.70), it follows that

βh0 =
z−1∑

j=1

tanh−1(tanh K tanhβhj). (2.71)

8 Here, it is assumed that there are no direct or indirect interactions among S1, · · · , Sz except for
the indirect interaction via S0. This assumption is the basis of the Bethe approximation.
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S2

S0

S4

S1S3

Fig. 2.11 Cavity fields propagate from sites 1, 2, · · · , z − 1(= 3 in this example) to site 0.

Since the cavity field is expected to be uniform everywhere due to the equivalence
of all sites, we write h1 for all hs, h0 = h1 = · · · = hz−1, to adjust the notation to
eqn (2.58),

βh1 = (z − 1) tanh−1(tanh K tanh βh1). (2.72)

This equation is equivalent to the logarithm of eqn (2.65) for h = 0, as can be easily
verified. One can get better results by considering larger clusters.

2.9 Correlation function

It is impossible to analyze the properties of correlation functions by the simple mean-
field theories developed so far. The reason is that the spatial dependence of the spin
variables and their interactions are not taken into account. To consider this situation,
we discuss a generalization of the Landau theory in the present section. For simplicity,
we deal only with the high-temperature region (disordered phase) above the critical
point.

Suppose that the magnetization has some spatial dependence, which we write φ(r).
This quantity may be regarded as the local average of the spin variables in the vicinity
of point r. The corresponding two-point correlation function is written as

G(r) = 〈φ(r)φ(0)〉. (2.73)

Now, let us generalize the Landau free energy (2.16) without the quartic term to the
following form,

F =
∫ (

aφ(r)2 + b
(
∇φ(r)

)2
)

dr. (2.74)

Here, a is proportional to the temperature difference from the critical point, a = kt,
as before. The second term (∇φ(r))2 represents a ferromagnetic interaction that
suppresses large absolute values of the derivative ∇φ(r) and favors a uniformly
magnetized state ∇φ(r) = 0, in which case φ(r) reduces to the uniform magnetization
m. The coefficient b of the second term is a positive constant known as stiffness.

It turns out that b contains information about the range of the interactions of the
original microscopic system approximated by F . By dimensional analysis it goes as
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b ∼ R2 in terms of the range of the exchange interaction R because the second term
on the right-hand side of eqn (2.74) involves the spatial derivative squared, which
should scale as R−2 if R can be regarded as a typical microscopic length scale of the
system.

The capital F on the left-hand side is meant to stand for the total Landau free
energy, the integral of the local free energy, written as f(m) in eqn (2.16), over the
whole volume of the system. We dropped the quartic term as the critical exponents
above the critical point T > Tc can be evaluated only from the quadratic expression
(2.74) as one may remember from the case of γ in eqn (2.22). Equation (2.74) is
called the Gaussian model due to its quadratic form. More systematic discussions on
this type of field-theoretical descriptions of statistical systems will be developed in
Chapter 5.

Computation of the correlation function from the free energy (2.74) is facilitated
by Fourier transformation of basic variables,

φ(r) =
1

(2π)d

∫
dq eiq·rφ̃(q), φ̃(q) =

∫
dr e−iq·rφ(r). (2.75)

Likewise, for a finite system of volume Ω the Fourier transform is defined as

φ(r) =
1
Ω

∑

q

eiq·rφ̃(q), φ̃(q) =
∫

Ω

dr e−iq·rφ(r), (2.76)

and the Kronecker delta satisfies
∫

Ω

dr ei(q−q′)·r = Ω δq,q′ . (2.77)

This suggests the following relation between sums and integrals, and Dirac delta and
Kronecker delta in the infinite volume limit Ω → ∞

1
Ω

∑

q

→ 1
(2π)d

∫
dq , and Ω δq,q′ → (2π)dδ(q − q′). (2.78)

With the aid of the Fourier expression of the Dirac delta function

1
(2π)d

∫
dr eiq·r = δ(q), (2.79)

the free energy (2.74) is found to be rewritten as

F =
∫

dq

(2π)d

(
kt + bq2

)
φ̃(q)φ̃(−q). (2.80)

It is seen in eqn (2.80) that the degrees of freedom with different wave numbers q are
summed up independently. This fact enables us to compute various physical quantities
straightforwardly. In particular, the partition function of the model in the presence of
an external inhomogeneous field h(r) is

ZG =
∫ (∏

q′

dφ̃(q′)
)

exp
(
−βF +

β

(2π)d

∫
dq h̃(q)φ̃(−q)

)
, (2.81)
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which is taken as a functional integral over the configuration space of {φ̃(q)}. We will
come back to field-theoretical representations of partition functions in Chapter 5.

The expression of the correlation function in terms of Fourier components is

G(r) = 〈φ(r)φ(0)〉 =
1

(2π)d

∫
dq

〈
φ̃(q)φ̃(−q)

〉
eiq·r. (2.82)

We notice here that φ̃(−q) = φ̃(q)∗ holds because φ(r) is real, where ∗ stands for
complex conjugation. We thus evaluate

〈
φ̃(q)φ̃(−q)

〉
=

〈
|φ̃(q)|2

〉
≡ G̃(q). Since the

free energy (2.80) is a quadratic form composed of independent q-components, physical
quantities can be calculated by Gaussian integrals, where the integration variables are
{φ̃(q)} as in eqn (2.81). Since φ̃(q) is complex, we should integrate over its absolute
value and phase. The phase actually does not appear in the free energy (2.80), and
therefore its integration simply gives a constant. Only the integration over the absolute
value |φ̃(q)| ≡ yq should be performed. If we regard F as the effective Hamiltonian of
a coarse-grained system, the correlation function reads

G̃(q) =

∫ (∏

q′

dφ̃(q′)
)
|φ̃(q)|2e−βF

∫ (∏

q′

dφ̃(q′)
)

e−βF
=

∫ (∏

q′

dyq′

)
y2

qe−βF

∫ (∏

q′

dyq′

)
e−βF

. (2.83)

All wave numbers q′ other than the one under consideration q give the same contribu-
tion in the numerator and denominator and hence cancel out. Only the integral over
the specific q yields a non-trivial result. After the replacement cq = (kt + bq2)/(2π)d,
we have

G̃(q) =

∫
dyq y2

q exp
(
−βcqy

2
q

)

∫
dyq exp(−βcqy

2
q )

=
1

2βcq
=

(2π)dT

2(kt + bq2)
. (2.84)

The original correlation function is given by the Fourier transformation of eqn (2.84),

G(r) =
T

2

∫
dq eiq·r 1

kt + bq2
. (2.85)

As shown in Exercise 2.12, the asymptotic form of G(r) in the limit of large r � ξ =√
b/kt for positive t (T > Tc) is the Ornstein–Zernike formula,

G(r) ∝ r−(d−1)/2e−r/ξ. (2.86)

This agrees with the expression in eqn (1.7) with τ = (d − 1)/2. From ξ =
√

b/kt we
find ν = 1/2. When the temperature is exactly at the critical point t = 0, eqn (2.86)
does not apply and we should refer back to the integral of eqn (2.85). Let us multiply
q in eqn (2.85) by 1/r to extract all the r dependence out of the integral to find

G(r) ∝ r−d+2. (2.87)
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The critical exponent η is found to be η = 0 according to the definition of eqn (1.9).9

The following table summarizes the mean-field values of critical exponents related
to correlation functions:

Exponent Mean-field value

ν 1
2

η 0

EXERCISE 2.12 Let us perform the integral (2.85). We write the target integral
in a more general form as

g(r) =

∫ ∞

−∞
dq1 · · · dqd

ei(q1r1+···+qdrd)

q2
1 + · · · + q2

d + a2
. (2.88)

(a) First, use

1

b
=

∫ ∞

0

du e−bu (b > 0) (2.89)

and raise the denominator of the integrand in eqn (2.88) to the exponent to separate
the integral for each qi (i = 1, · · ·, d). (b) Next, carry out the integral for each qi and
derive the formula

g(r) = πd/2

∫ ∞

0

du u−d/2 exp

(
−a2u − r2

4u

)
. (2.90)

(c) The above integral is expressed in terms of the modified Bessel function of the
second kind,

Kμ(z) =
1

2

( z

2

)μ
∫ ∞

0

exp

(
−t − z2

4t

)
t−μ−1 dt. (2.91)

Use the asymptotic expression of the modified Bessel function

Kμ(z) ≈
√

π

2z
e−z (z � 1) (2.92)

and estimate the behavior of g(r) in the limit of large r with a kept finite.

9 The exponent η �= 0 introduces an anomalous dimension in the dimension of the order parameter
φ(r) from [φ(r)] = L−(d−2)/2 as suggested in eqn (2.87), to [φ(r)] = L−(d−2+η)/2 as seen in the
generic form, eqn (1.9). The existence of this anomalous dimension η �= 0 is rooted on the existence
of another microscopic length scale (apart from the correlation length) that needs to be included in
the dimensional analysis because of ultraviolet divergences (i.e. divergences in short length scales).
See, e.g., Section 3.9 for some more details.
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2.10 Limit of applicability of the mean-field approximation

The mean-field approximation is valid only when fluctuations around the average of
physical quantities are negligible. We therefore derive a condition for fluctuations of
the magnetization to be smaller than the average in the low-temperature region T < Tc

in order to understand when the mean-field approximation is reliable in d dimensions.
As a measure of fluctuations, it is convenient to adopt the accumulated fluctuations

of magnetization, δSr = Sr − 〈Sr〉, up to the length scale of the correlation length ξ.
For lengths larger than ξ the fluctuations become uncorrelated. We thus compare the
following quantity with the corresponding average,

σ2
m ≡

∫ ξ

0

〈(
Sr − 〈Sr〉

)(
S0 − 〈S0〉

)〉
dr =

∫ ξ

0

(
〈SrS0〉 − 〈Sr〉〈S0〉

)
dr. (2.93)

As shown in Appendix A.2, this quantity is simply the magnetic susceptibility χ times
the temperature T if the integral extends to the whole space. Actually, the integrand
decreases exponentially fast as r exceeds the correlation length ξ and hence the result
does not depend upon the upper limit of the integral as long as it is equal to or larger
than ξ. We thus find σ2

m = Tχ.
This result should be compared with the square of the magnetization integrated

over the same region,
∫ ξ

0

〈Sr〉〈S0〉dr ∝ m2ξd. (2.94)

If the fluctuation σ2
m = Tχ is sufficiently smaller than this quantity, the mean-field

approximation does not have an internal inconsistency,

Tχ � m2ξd. (2.95)

This self-consistent condition is known as the Ginzburg criterion. If we rewrite the
expressions for χ,m and ξ near criticality by using the critical exponents,

T (Tc − T )−γ � (Tc − T )2β(Tc − T )−νd. (2.96)

Thus, a necessary condition for consistency of the mean-field approximation is

γ < νd − 2β. (2.97)

By inserting the mean-field values γ = 1, β = ν = 1/2, we conclude d > 4.
The same result is derived from the following slightly different consideration. The

integrand in eqn (2.93) is the connected two-point correlation function G(r). This
G(r) takes an almost constant value for r smaller than the correlation length ξ and
rapidly decreases beyond. We therefore replace G(r) by its value at the correlation
length G(ξ) to estimate the integral,

σ2
m ∝ G(ξ)ξd. (2.98)

For internal consistency of the mean-field approximation, we then use G(ξ)ξd � m2ξd

instead of eqn (2.95), so that G(ξ) � m2. The correlation function behaves like G(ξ) ∝
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ξ2−d near the critical point. To show this, we insert t = ξ−2 and r = ξ into eqn (2.85)
to find

G(ξ) ∝
∫

dq eiqξ ξ2

k + b(qξ)2
. (2.99)

By multiplying the integration variable by 1/ξ, we have

G(ξ) = ξ2−d × (quantity independent of ξ). (2.100)

Therefore, the condition G(ξ) � m2 implies

(d − 2)ν > 2β. (2.101)

By using the mean-field critical exponents, we again find d > 4.
It is expected that, outside the critical region, fluctuations are small and the mean-

field approximation should be a better theory than inside the critical region. Therefore,
the close neighborhood of criticality is where we expect the mean-field approximation
to fail qualitatively. We would therefore like to establish the size of the critical
region where fluctuations dominate and the mean-field approximation is qualitatively
incorrect. As we will see, this size is non-universal, i.e. material dependent. To this
end we wish to evaluate more carefully the ratio

δg =
σ2

m∫ ξ

0

〈Sr〉〈S0〉dr

(2.102)

in the mean-field approximation. The numerator (∝ χ) is approximately Tc/4k|t|,
according to eqn (2.23), while the denominator is roughly Rd|t|1−d/2 because m2 ∝ |t|
and ξ ∝ R|t|−1/2. The condition δg � 1 then implies

εR−d � |t|(4−d)/2, (2.103)

where ε is a number of order one. This relation determines the size of the critical region.
For systems where the range of the interaction R is of the order of a microscopic length
(e.g. 1 nanometer), such as normal antiferromagnets or liquid 4He, the size of the
critical region is large for d < 4 because |t| should be large according to eqn (2.103).
This implies that the mean-field approximation is valid only well away from the critical
point. On the other hand, for type-I superconductors where R is large (of the order
of the size of a Cooper pair, typically a hundred nanometers), the critical region is
small, which explains why in such a case the critical region may become inaccessible
experimentally. Equation (2.103) also shows that fluctuations become more relevant
as the spatial dimensionality d becomes smaller.

We conclude that the mean-field approximation is reliable for d > 4. In fact, it
is proved rigorously that the critical exponents take the mean-field values for d > 4.
This boundary dimension duc = 4 is called the upper critical dimension. It was noted
in the last part of Section 2.5 that the infinite-range model (and mean-field theories in
general) predicts the critical exponents correctly in the limit of large spatial dimension.
It is surprising that the mean-field approximation is already reliable as soon as d
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Table 2.1 Critical exponents of the Ising model in two and three dimensions

as well as typical experimental values for materials in the Ising universality

class. The numbers in parentheses indicate uncertainties in the final digits.

Numerical and experimental values have been taken from A. Pelissetto and E.

Vicari, Phys. Rep. 368 (2002) 549.

Exponent Mean field d = 3 Ising d = 2 Ising Experiment

α 0 0.110(1) 0 (log) 0.1105+0.0250
−0.0270

β 1
2

0.3265(3) 1
8

0.341(2)

γ 1 1.2372(5) 7
4

1.233(10)

δ 3 4.789(2) 15 −−

ν 1
2

0.6301(4) 1 0.62(3)

η 0 0.0364(5) 1
4

0.042(6)

exceeds four. As was explained in Section 2.1, the mean-field approximation is a very
crude approximation in which the spin variable Si(±1) is separated into the average
m and fluctuation δSi and the higher-order terms of the latter are ignored, despite the
fact that the difference between the two possible values of δSi = Si − m = ±1 − m,
i.e. two, is clearly larger than the average m. Such a crude approximation captures
the essential part of the cooperative physics of critical phenomena for d larger than
four.

Our real world is three dimensional, and usually the mean-field theories do not
describe critical phenomena with quantitative reliability. It is, however, very difficult
to study three-dimensional problems directly, and the mean-field theories often serve
as our basis to approach the realistic situation by, for example, a series expansion from
four dimensions. To estimate how the mean-field theories get closer to reality, we list
some critical exponents in Table 2.1. The three-dimensional values are obtained from
numerical simulations and the two dimensional ones are exact results.

In some cases the upper critical dimension is different from four. For instance, the
tricritical point has the mean-field exponents of β = 1/4, γ = 1, ν = 1/2, which implies
duc = 3 for the upper critical dimension according to eqn (2.97).

The mean-field approximation predicts a finite transition temperature for any
spatial dimension d including the one-dimensional case. However, the lower the spatial
dimension is, the more unstable ordered states are due to larger fluctuations. It actually
happens that there is no finite temperature phase transition, i.e. Tc = 0, for d smaller
than a threshold value dlc, the lower critical dimension. For the Ising model the lower
critical dimension is dlc = 1, while the XY and Heisenberg models have dlc = 2, as will
be explained in Chapter 7.

2.11 Dynamic critical phenomena

Non-equilibrium, time-dependent quantities also show anomalous behavior near the
critical point, known as dynamic critical phenomena. This section is an introduction to
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dynamic critical phenomena within the mean-field perspective. The main physical idea
consists of taking the system out of equilibrium, but not very far, and studying how the
system relaxes back to equilibrium when it is close to a critical point and the dynamics,
bringing the system to equilibrium, is dissipative. Dynamics of phase transitions in
some steady state far from equilibrium is beyond the scope of the present section. In
this section t stands for time and not for the reduced temperature (T − Tc)/Tc.

2.11.1 Single degree of freedom

As a preparation to developing a mean-field theory for dynamic critical phenomena,
we first study the simple case of a single degree of freedom (e.g. a single particle)
moving with energy dissipation, i.e. a model of Brownian motion.

Suppose that a particle with instantaneous velocity v is moving in a medium under
a friction of strength Γ (dissipative force), and a random time-dependent force ζ(t)
due to the scattering by other particles in the medium (noise),

dv(t)
dt

= −Γv(t) + ζ(t), (2.104)

where we have normalized the mass to unity. Random forces are assumed to be
uncorrelated at two macroscopically distinct times, and we consider it reasonable to
choose ζ(t) to be a random variable with zero average and the following variance,

〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′), (2.105)

where D is the diffusion constant. In other words, the random variable is chosen from
a Gaussian probability distribution, a Gaussian noise. Equation (2.104), an example
of a stochastic differential equation also known as the Langevin equation, can be
solved as

v(t) = v(0)e−Γt +
∫ t

0

e−Γ(t−t1)ζ(t1)dt1. (2.106)

The first term on the right-hand side represents the influence of the initial condition,
which can be ignored after the system reaches equilibrium, and the particle moves
subject to the random force of the second term only. Then, the average of the square
of the velocity is

〈
v2(t)

〉
=

∫ t

0

dt1dt2 e−Γ(2t−t1−t2)〈ζ(t1)ζ(t2)〉 =
D

Γ
(
1 − e−2Γt

)
→ D

Γ
, (2.107)

where the long-time limit t → ∞ has been taken. According to the equipartition
theorem, the left-hand side of this equation is 2 × T/2 in equilibrium. We therefore
have Einstein’s relation

D = ΓT, (2.108)

a result of the interplay between fluctuations and dissipation.
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If we Fourier transform the equation of motion (2.104) with respect to time using

v(t) =
1
2π

∫ ∞

−∞
dω e−iωtṽ(ω), (2.109)

we find

−iωṽ(ω) = −Γṽ(ω) + ζ̃(ω), (2.110)

whose solution is

ṽ(ω) =
ζ̃(ω)

Γ − iω
≡ G̃(ω)ζ̃(ω). (2.111)

This equation implies that the external force ζ̃(ω) determines the system’s variable
ṽ(ω). The coefficient of proportionality G̃(ω) is called the response function.10

Another important quantity is the correlation function

〈v(t + t0)v(t0)〉 ≡ C(t), (2.112)

or its Fourier transform,

〈ṽ(ω)ṽ(ω′)〉 = 2πδ(ω + ω′)C̃(ω). (2.113)

By inserting eqn (2.111) into this equation and using the Fourier representation of eqn
(2.105)

〈ζ̃(ω)ζ̃(ω′)〉 = 4πDδ(ω + ω′), (2.114)

we establish the relation

C̃(ω) = 2DG̃(ω)G̃(−ω) =
2ΓT

ω
Im G̃(ω). (2.115)

This equation relates the correlation function, which represents fluctuations in equi-
librium, and the response function, which describes the system behavior slightly
away from equilibrium. The above relation (2.115) is called the fluctuation–dissipation
theorem and is known to hold for much more general systems than a single-variable
case.

2.11.2 Gaussian model

The mean-field theory of dynamic critical phenomena for multivariable systems is
formulated by generalization of the single-particle case to the Gaussian model. Let
us rewrite the equation of motion (2.104) using the Hamiltonian H = v2/2 of a free
particle of unit mass,

dv

dt
= −Γ

∂H

∂v
+ ζ(t). (2.116)

The right-hand side suggests that the motion is determined by two kinds of forces,
one that tends to decrease the energy (Hamiltonian) and the other a random force.

10 Strictly speaking, the response function is defined in terms of a non-random external field.

Notice, however, that the randomness of ζ̃ does not appear in the discussion that derives eqn (2.111).
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We are therefore justified to set up the evolution equation of the time-dependent local
magnetization field φ(r, t), a generalization of φ(r) in Section 2.9, of a multivariable
system as

∂φ(r, t)

∂t
= −Γ · δF

δφ(r, t)
+ ζ(r, t), (2.117)

which represents a non-linear generalization of the stochastic differential equation for a
Brownian particle. Here, F is the Landau free energy and ζ(r, t) is a random Gaussian
variable satisfying

〈ζ(r, t)ζ(r′, t′)〉 = 2TΓ(r − r′)δ(t− t′). (2.118)

In the absence of the random force the system relaxes to the minimum of F . Equation
(2.117) is a phenomenological equation describing the time dependence of macro-
scopic variables and has not been derived from a microscopic starting point like the
Schrödinger equation. This equation is, nevertheless, useful to analyze macroscopic
dynamic phenomena and is called the TDGL equation (time-dependent Ginzburg-
Landau equation). For a generic order parameter O(r, t) one needs to replace φ(r, t)
by O(r, t) and its corresponding Landau free energy F .

As written in eqn (2.118), Γ is a function of spatial variables and, correspondingly,
the term involving Γ on the right-hand side of eqn (2.117) is an abbreviation for

−
∫

Γ(r − r′)
δF

δφ(r′, t)
dr′. (2.119)

The gradient (functional derivative) of the free energy at position r′ affects the motion
at r by the strength Γ(r − r′).

The mean-field theory of dynamic critical phenomena is formulated by using the
Gaussian model for F . Integration by parts of the spatial derivative in eqn (2.74)
yields, if we assume that boundary terms vanish,

F =

∫ (
aφ(r, t)2 − b φ(r, t)∇2φ(r, t)

)
dr. (2.120)

Functional variation of this expression leads to

δF

δφ(r′, t)
= 2aφ(r′, t)− 2b∇2φ(r′, t), (2.121)

indicating that the stochastic differential equation is linear in this case and can be
solved by Fourier transformation. By inserting this relation into eqn (2.117) and
Fourier transforming the result, we can derive

∂φ̃(q, t)

∂t
= −(2a+ 2bq2)Γ̃(q)φ̃(q, t) + ζ̃(q, t). (2.122)

This equation has the same form as the single-body case of eqn (2.104), and we may
apply the argument of the previous section to the present problem by replacing Γ
there with (2a+ 2bq2)Γ̃(q).
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The average of φ̃(q, t) with respect to the probability distribution of the random
variable ζ̃ satisfies the following equation,

∂〈φ̃(q, t)〉
∂t

= −(2a+ 2bq2)Γ̃(q)〈φ̃(q, t)〉 (2.123)

since 〈ζ̃〉 vanishes. Then, 〈φ̃(q, t)〉 decays rapidly as e−t/τq with the following relaxation
time,

τq =
1

(2a+ 2bq2)Γ̃(q)
. (2.124)

In the long-wavelength limit, q → 0, if Γ̃(q) is finite, the relaxation time is

τ0 =
1

2aΓ̃(0)
∝ (T − Tc)

−1, (2.125)

with a divergence inversely proportional to T − Tc because a ∝ T − Tc. This fact
represents critical slowing down, in which the relaxation to equilibrium slows down
near the critical point due to fluctuations of all length scales. The dynamic critical
exponent11 z is defined by the rate of divergence of the relaxation time written in
terms of the correlation length as

τ0 ∝ ξz. (2.126)

The mean-field value of the dynamic critical exponent is z = 2 when Γ̃(0) > 0 since
ν = 1/2. For q �= 0 and T → Tc, a finite τq results.

Suppose now that the integral of the local order parameter over the whole space
(i.e. the zero-wavelength limit of the Fourier component) is a conserved quantity and
we wish to study its dissipative dynamics. This is indeed the case for binary alloys, in
which the numbers of the two types of atoms are fixed. An explicit expression of this
fact is

∂φ̃(0, t)

∂t
= 0. (2.127)

Then, Γ̃(q) approaches 0 as q → 0 according to eqn (2.123). This quantity behaves
for small q (large spatial scale) as Γ̃(q) ≈ cq2 since Γ̃(q) is an even function due to
the reflection symmetry Γ(r) = Γ(−r). The relaxation time therefore satisfies, using
a ∝ (T − Tc) ∝ ξ−2,

τq =
1

(2a+ 2bq2)cq2
=

ξ4

c(c′(ξq)2 + 2b(ξq)4)
, (2.128)

where c′ is a constant. If we focus our attention in the spatial region where ξq is small
but non-vanishing (i.e. the lengths scales larger than ξ but finite), τq is proportional to
the numerator ξ4, which implies z = 4. The following table summarizes our conclusion:

11 Not to be confused with the coordination number of the lattice z.
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Exponent Mean-field value

z 2 (non-conserved order parameter)
z 4 (conserved order parameter)

This indicates that dynamic critical phenomena may display different universality
classes depending upon the dynamical process.

To develop a theory beyond the mean-field approximation, we have to take into
account several points. First, the effects of the fourth-order contribution φ(r, t)4 to the
free energy should be evaluated, similarly to the equilibrium situations. Two additional
aspects specific to non-equilibrium problems are: (1) The degrees of freedom other than
the spins, like phonons, may not relax sufficiently quickly to equilibrium and may have
to be treated on the same footing as the spins. (2) Non-dissipative motions such as
precessions in continuous spin systems should be treated with sufficient care. The
limit of applicability of the dynamic mean-field theory in the present section should
be discussed under these additional conditions.



3

Renormalization group and scaling

Mean-field theory is usually taken as a first step toward understanding critical phe-
nomena, providing an overview that reveals qualitative behavior of physical quantities.
However, we have to proceed beyond the mean-field theory if we wish to better
understand the situation, both qualitatively and quantitatively, when fluctuations play
vital roles. Indeed, as was shown in the previous chapter, the mean-field theory loses its
internal consistency for spatial dimensions less than four for the simple Ising model,
and the critical exponents assume different values from the mean-field predictions.
In the present chapter we explain the basic concepts of the renormalization group
and scaling theory, which allow us to analyze critical phenomena with fluctuations
systematically taken into account. Implementation of the renormalization group in
realistic systems will be deferred to the next chapter, except for the simple one-
dimensional Ising model case.

3.1 Coarse-graining and scale transformations

As described in Chapter 1, the basic concept of the renormalization group is to follow
the change of physical quantities as we increase the length scale by coarse graining
and rescaling, which allows us to systematically take into account fluctuations near the
critical point. To quantify this idea, we start from the explanation of coarse graining
and (re)scaling and their consequent influences on physical quantities.

In this and the next chapters H stands for the Hamiltonian divided by the
temperature H/T , a dimensionless Hamiltonian, since the Hamiltonian appears always
in this combination. The concepts of coarse graining and scaling will be best illustrated
in the real-space renormalization group, in which we trace out a part of the microscopic
degrees of freedom such as the spin variables.

Suppose that the spin degrees of freedom interact with their nearest neighbors on
the square lattice as depicted on the left panel of Fig. 3.1. The model is not necessarily
restricted to the ferromagnetic Ising model. Because it is usually very difficult to
perform the trace over all degrees of freedom at once, we first take the trace over part
of the degrees of freedom. In Fig. 3.1, tracing over the spins marked × will leave the
spins marked © left untouched. The resulting system can be regarded as a new square
lattice, though oblique by 45 degrees, in which the interactions between © spins have
been generated by the trace-out operation on the original lattice. This operation is
expressed symbolically as

ZN (H) =
∑

{S◦}

∑

{S×}
e−H =

∑

{S◦}
e−H′ ≡ ZN ′(H ′). (3.1)
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Fig. 3.1 Illustration of the real-space renormalization group. By taking the partial trace

over the spin degrees of freedom marked ×, we are left with the other degrees of freedom

(marked ©), which interact with each other via new, renormalized interactions.

The trace over the crossed degrees of freedom is carried out in the second equality.
The symbols N and H stand for the number of the original degrees of freedom and the
original Hamiltonian, respectively, and N ′ and H ′ are those after the trace operation.
This latter Hamiltonian H ′ is formally defined by − log

∑
{S×} e−H . After the trace-

out operation (coarse graining), we change the spatial scale (rescaling) and normalize
the distance between the neighboring sites to the original value, unity. These two
elements, coarse graining and rescaling, constitute the essence of the renormalization
group operation. The scaling factor of space, b, is b =

√
2 in the present example.

This operation is essentially equivalent to the numerical block-spin transformation
explained in Chapter 1 since we trace out short-range fluctuations and shift our
attention to longer- and longer-length behavior of the system as the operation is
repeated. An unbounded repetition of these operations will reveal the critical behavior
of a macroscopic system, in particular, the values of critical exponents, because we
exhaust all length scales. The essence of the trick is to understand critical phenomena
as the asymptotic behavior of a system in the limit of infinitely many iterations of
renormalization processes only from the analysis of a single (and hence relatively
simple) renormalization step.

The basis of a renormalization group analysis is the rule that shows how physical
quantities are transformed in a single step. We first postulate that the partition
function is invariant, as in eqn (3.1),

ZN ′(H ′) = ZN (H). (3.2)

Let us write the transformation Rb of the Hamiltonian as

H ′ = Rb(H). (3.3)

This Rb is generally a complicated non-linear transformation. The length scale is
changed by the factor 1/b and correspondingly the wave number is scaled by b > 1.
The total number of degrees of freedom is reduced by b−d.

r′ = b−1r, q′ = bq, N ′ = b−dN. (3.4)



54 Renormalization group and scaling

The free energy per degree of freedom changes, according to the invariance of the
partition function (3.2) and eqn (3.4), as

f(H ′) = bdf(H). (3.5)

Notice that we have included the temperature factor in the free energy for simplicity
and have written f for βf .

The scaling dimension of a physical quantity A is defined as the index x in the
factor

A′ = bxA, (3.6)

where A is the value before renormalization and A′ after renormalization. Equation
(3.4) shows that the scaling dimension of length is −1, that for wave number is 1 and
the volume or the number of sites has x = −d. The total free energy βF = − log Z
has scaling dimension 0 from eqn (3.2), and the free energy per degree of freedom has
scaling dimension d from eqn (3.5). The magnitude of the microscopic variable, the
spin, also has a scaling dimension. Let us leave its evaluation to later sections and
write here a general form

S′(r′) = c(b)−1S(r), (3.7)

with c(b) defining the scaling of the spin field S(r). The symbols r and r′ denote the
position vectors of the same spatial point before and after renormalization. The cor-
responding rule for the connected correlation function G(r,H) = 〈S0Sr〉 − 〈S0〉〈Sr〉
reads

G(r′,H ′) = c(b)−2G(r,H). (3.8)

If the original system is exactly at the critical point, the system has fluctuations of
all length scales and consequently should stay essentially unchanged after many steps
of renormalization. This means that the Hamiltonian reaches a fixed point H∗ after
many renormalization steps. The fixed point is defined by

H∗ = Rb(H∗). (3.9)

The critical and fixed points are closely related with each other but are not identical.
If the original system with Hamiltonian H is at a critical point, H itself is not a fixed
point but the renormalized Hamiltonian asymptotically approaches a fixed point H∗,

H∗ = lim
n→∞

Rn
b (Hc), (3.10)

where Hc is the original Hamiltonian at the critical point.
In this way, we establish a map in Hamiltonian space (or parameter space as we

will see below) that mathematically defines a semi-group (and not a group) since
information is erased (b > 1) as one traces out degrees of freedom. In other words,
there is no inverse mapping (operation, R−1

b , that is required for those Rb to form a
group). That the set of transformations Rb forms a semi-group means that there exists
an identity map when b = 1, and two successive mappings Rb1 and Rb2 are equivalent
to a single map Rb1b2 . Mathematically,

H ′′ = Rb2(H
′) = Rb2 .Rb1(H) = Rb1b2(H). (3.11)
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3.2 Parameter space and renormalization group equation

Let us formulate the rule of change of a Hamiltonian under the operation of renor-
malization group. The Hamiltonian is written as the sum of products of a parameter
un (c-number) and operator On

1

H =
∑

n

unOn, (3.12)

and n is an integer number whose maximum value is a polynomial function of the
number of elementary degrees of freedom of the system (e.g. the maximum n is a
quadratic function of the total number of spins). For simplicity, the following equations
are written for the Ising model case but the idea is applicable to more general cases.
For example, in the Hamiltonian

H = −K
∑

〈ij〉
SiSj − h

∑

i

Si, (3.13)

K and h are parameters (or coupling constants) and SiSj and Si are operators. Here
again, the inverse temperature β is understood to be included in the Hamiltonian. Now,
if we apply the procedure of the renormalization group, the new Hamiltonian includes
operators that did not exist before renormalization. In other words, a renormalization
group map (i.e. coarse graining plus rescaling) induces a change of coupling constants.
In the example of the previous section, Fig. 3.1, the new Hamiltonian assumes
the form

H ′ = −K ′
∑

〈ij〉
SiSj − K ′

1

∑

A

SiSj − K ′
2

∑

B

SiSjSkSl + · · · , (3.14)

if we set h = 0 before renormalization. Here, A denotes the interaction between next-
nearest-neighbor sites (in the direction of the diagonal of a unit square), and B is
for the four-spin interaction surrounding a unit square (plaquette interaction). As
confirmed in Exercise 3.1, the partial summation for a system with nearest-neighbor
interaction only causes additional terms in the new renormalized Hamiltonian written
as K ′,K ′

1,K
′
2 in eqn (3.14). An additional renormalization step to the latter system

generates further complicated interactions. Repeated applications of this procedure
may seem impracticable since more and more involved terms keep showing up.
Nevertheless, we can develop a general formalism, which leads to a deep understanding
of critical phenomena, by considering a very generic form of the Hamiltonian from the
outset that includes all possible terms that may appear after renormalization.

EXERCISE 3.1 Carry out the real-space renormalization group operation in
Fig. 3.1. The left panel before renormalization represents the ferromagnetic Ising
model with nearest-neighbor interactions. One should take partial summation over
the spins marked by crosses. Since spins marked as crosses do not have direct
interactions with each other, it is allowed to consider each crossed spin separately.
Let us name the cross-marked spin S0 and the surrounding four spins marked by

1 It is customary in the renormalization group theory to call the microscopic degrees of freedom
operators, following the convention of field theory.
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4

Fig. 3.2 The spin S0 interacts with its four neighboring spins.

white circles S1, S2, S3, S4, see Fig. 3.2. Then, the problem is to calculate

∑

S0=±1

exp
(
KS0(S1 + S2 + S3 + S4)

)
(3.15)

and write the result as a function of S1, · · · , S4. In particular, show that the result
has the form of eqn (3.14).

The coarse-graining procedure is not unique. Choosing one leads to a particular
renormalization group scheme. In formal terms, any renormalization group transfor-
mation can be expressed as

e−H′(S′) = TrSP (S′, S)e−H(S), (3.16)

where P (S′, S) is a non-negative weight operator constructed so that the coarse-
grained variables S′ adopt the same values as the original S. For instance, if the
original variables are Ising spins {Si = ±1} each defined on lattice site i, the coarse-
grained variables {S′

j = ±1} also represent Ising spins defined on the renormalized
lattice. Clearly, P (S′, S) must preserve the symmetries of the original H and satisfies

TrS′P (S′, S) = 1, (3.17)

which is equivalent to the condition (3.2). For example, in Section 1.4 we defined
a block-spin transformation with an odd number of spins per block consisting of a
majority rule. This amounts to the following rule

P (S′, S) =
∏

j

δ
(
S′

j − sign
[ ∑

i∈j

Si

])
, (3.18)

where j represents a block-spin index, while i refers to a site of the original lattice.
Let us express the set of parameters corresponding to −K ′,−K ′

1,−K ′
2, · · · in eqn

(3.14) as a vector u and the set of spin variables (operators) corresponding to SiSj

(the first term on the right-hand side), SiSj (the second term), SiSjSkSl (the third
term) by a vector O. Then, eqn (3.14) may be formally viewed as the inner product
u · O. We therefore write the Hamiltonians before and after renormalization as follows,

H = u · O, H ′ = u′ · O′ = Rb(H). (3.19)

The set of operators O and O′ are well-defined quantities. The essential part of the
renormalization group calculation is to find the rule that implements the change of
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the parameter sets from u to u′. If we use the same symbol as in eqn (3.3), we may
write the induced map as

u′ = Rb(u). (3.20)

This equation, called the recursion relation or renormalization group equation, repre-
sents the rule of change of parameters by a single step of the renormalization group
operation and hence Rb involves no non-analyticities; it is an analytic transformation.
Under this renormalization group map, lengths are reduced by the scale factor b, and
therefore the correlation length transforms as

ξ[u′] = b−1ξ[u]. (3.21)

Successive applications of the recursion relation generates a discrete flow in the
parameter space,

u → Rb(u) → R2
b(u) → · · · → Rn

b (u) → · · · , (3.22)

which can be viewed as a series of points along a trajectory. The set of trajectories
generated from different initial parameter values, in (infinite-dimensional, at least in
principle) parameter space, is called the renormalization group flow. Similarly, the
correlation length transforms as

ξ[Rn
b (u)] = b−nξ[u], (3.23)

eventually vanishing if ξ[u] < ∞, indicating that the flow moves away from criticality.
However, if ξ[u] = ∞, the renormalized correlation length remains divergent.

The critical exponents that characterize the non-analyticities of physical quantities
are determined by the asymptotic behavior of the parameters u that emerge in the
limit of infinite repetitions of the renormalization group procedure. Singularities
of physical quantities have their origin in the infinitely many applications of the
renormalization group transformation, not in the function Rb itself. A fixed point of
the renormalization group transformation is a point u∗ in parameter space that is
invariant

u∗ = Rb(u∗), (3.24)

and has an associated fixed-point Hamiltonian H∗ that is also invariant under scale
transformations. At the fixed point

ξ[Rb(u∗)] = ξ[u∗] = b−1ξ[u∗], (3.25)

implying that ξ[u∗] can only take two values: 0 or ∞, and the latter case is due
to a critical fixed point. A trivial fixed point is indicated by a vanishing correlation
length, i.e. ξ[u∗] = 0. This finding expresses the physical fact that at a fixed point
there is no characteristic length scale and scale invariance or self-similarity manifests
itself.

The emergence of non-analyticities has an analogy to the situation in iterative
maps of classical dynamics. Only an infinite number of iterations may lead to singular
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behavior. Consider the dynamic equation, which corresponds to a single coupling
constant,

du

dt
= −2u(u2 − 1), (3.26)

and study the behavior of u(t) as a function of the initial condition u0. The solution
to this equation is u(t) = u0/

√
u2

0 − (u2
0 − 1)e−4t. Clearly, for any finite t, u(t) is a

continuous function of u0. It is only when t → ∞ that u(t → ∞) = sign[u0] (u0 	= 0)
becomes a discontinuous function of u0. The right-hand side of eqn (3.26) vanishes
for u = 0,±1. These three points are fixed points of eqn (3.26). In other words, if one
starts (t = 0) at points u0 > 0, the flow is attracted toward u∗ = 1, while for u0 < 0
it is attracted to u∗ = −1. The flow always repels u∗ = 0, and obviously is stuck at
that point only if u0 = 0. It is an unstable fixed point.

As we are interested in the singular properties of physical quantities near a critical
point, it is instructive to consider the departure of the parameter values slightly away
from the critical point and see the behavior of the recursion relation (3.20). This would
correspond to studying properties of the system with parameter values slightly away
from the fixed point. We thus write the parameters before and after renormalization
using the fixed-point value u∗ and slight deviations from it as

u = u∗ + δu, u′ = u∗ + δu′. (3.27)

Although the recursion relation u′ = Rb(u) is in general a non-linear transformation,
we expand the right-hand side of this equation around the fixed point and keep the
first-order term

u′ = u∗ + δu′ = Rb(u∗ + δu) = Rb(u∗) +
∂Rb

∂u

∣∣∣∣
u∗

· δu + · · · , (3.28)

because we are only interested in the vicinity of the fixed point. A Taylor expansion
is possible since Rb has no singularities, i.e. it is analytic. The linearized recursion
relation is then written as

δu′ = Tb(u∗) · δu, (3.29)

where Tb(u∗) =
∂Rb

∂u

∣∣∣∣
u∗

is a real matrix, with components given by

[Tb(u∗)]ij =
∂u′

i

∂uj

∣∣∣∣
u∗

, (3.30)

not necessarily symmetric. We are interested in those situations where Tb is diagonal-
izable with real eigenvalues. Critical phenomena will turn out to be characterized by
the eigenvalues and eigenvectors of this linear transformation Tb.

Let us recall that Tb is a function of the rescaling factor b. An eigenvalue of Tb is
in general expressed as a power of b,

λi(b) = byi . (3.31)
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The reason is as follows. A successive operation of two renormalization group trans-
formations of rescaling factors b1 and b2 is equivalent to a single transformation of
factor b1b2 (i.e. its semi-group property Tb2 · Tb1 = Tb1b2). The eigenvalue of the latter
λi(b1b2) coincides with the product of the former λi(b1)λi(b2) due to the linearity of
Tb: The first transformation of b1 multiplies the eigenvector by λi(b1) and the second
by λi(b2). The resulting relation λi(b1b2) = λi(b1)λi(b2) is satisfied only by a power of
b, λi(b) = byi .

It is instructive to expand δu and δu′ by the set of eigenvectors {φi} of Tb, Tb · φi =
λi(b)φi as,

u = u∗ +
∑

i

giφi, u′ = u∗ +
∑

i

g′iφi, (3.32)

implying after eqn (3.29) that g′i and gi are related as g′i = byigi. These g1, g2, · · · are
very important quantities that characterize the properties of the parameter space u
near the fixed point and are called scaling fields. The description of the behavior of
the system by the renormalization group has thus been reduced to the study of the
properties of the fixed point, the exponents y1, y2, · · · of eigenvalues of the linearized
transformation Tb and the scaling fields g1, g2, · · · . The following table summarizes the
main steps in a renormalization group analysis

Renormalization group procedure

i− Coarse graining and rescaling as represented by

P (S′, S) and b.

ii− Write down the renormalization group equations:

u′ = Rb(u).

iii− Solve the renormalization group equations iteratively:

u → u′ → u′′ → · · ·
iv− Determine the phase diagram from the flow diagram and fixed points u∗.
v− Linearize Rb → Tb close to the critical fixed point u∗.
vi− Determine the eigenvalues and eigenvectors of Tb(u∗):

{λi(b) = byi} and {φi}.
vii− Extract the exponents and scaling fields:

{yi, gi}.

One can formally write the renormalization group equation u′ = Rηb(u) as a
coupled set of non-linear differential equations by considering an infinitesimal rescaling
ηb = (1 + ε)b, with ε 
 1

du

db
= lim

ε→0

u′ − u

εb
=

1
b
β(u) , (3.33)
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or

du

dτ
= β(u) (3.34)

with τ = log b. The zeros of the beta function β(u), β(u∗) = 0, define the fixed points
of the transformation. This formulation elucidates the relation to eqn (3.26) for the
dynamical systems.

3.3 Renormalization group flow near a fixed point
and universality

The exponent yi appearing in the eigenvalue of the linear transformation Tb is an
important quantity characterizing the parameter flow near the fixed point. If yi is
positive, the eigenvalue byi is larger than unity (b > 1), and the scaling field gi

becomes amplified by the factor byi after each application of the renormalization group
transformation. The parameter therefore moves away from the fixed point. For negative
yi, on the other hand, the parameter converges to the fixed-point value. It is therefore
concluded that all the scaling fields gi with positive exponent yi > 0 should be tuned to
0 for the system parameters to be attracted to the fixed point. Since the adjustment
of the value of gi has a decisive effect on the system behavior, a scaling field with
positive exponent yi > 0 is called a relevant variable or a relevant field. A scaling field
with negative exponent yi < 0 rapidly diminishes toward 0 as the renormalization step
proceeds and has no essential effects on the critical properties. Such scaling fields are
thus called irrelevant variables. The intermediate case of yi = 0 is said to be marginal.
Marginal scaling fields are associated with logarithmic corrections to scaling. Note
that the notions of relevance, irrelevance or marginality are relative to a particular
fixed point. A relevant variable at one fixed point may be irrelevant at another.

Figure 3.3 illustrates the renormalization group flow of scaling fields gi and gj

with yi > 0 and yj < 0. The flow of gj with yj < 0 converges to the fixed point F
at gi = gj = 0 along the horizontal line gi = 0. If, however, gi is non-vanishing, gi

rapidly diverges away from the fixed-point value of 0 since yi > 0. Even in this case gj

approaches 0.

F
gj

gi

Fig. 3.3 Schematic illustration of the parameter flow when one of the exponents is positive

and the other negative, yi > 0 and yj < 0. The fixed point F has gi = gj = 0.
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F

K1c0

K2

K1

Fig. 3.4 Schematic diagram of the renormalization group flow in the space of interactions

in the absence of external field. The nearest-neighbor interaction is written as K1 and the

next-nearest-neighbor interaction as K2.

Critical phenomena are observed in a ferromagnetic system only when the two
parameters T and h are adjusted to critical values, T = Tc and h = 0, as shown in
Fig. 1.3. Slight deviations of these values from the critical point will drive the system
away from the critical point by renormalization group operations, as mentioned in
Section 1.4. This fact leads us to the identification of T and h as two quantities related
to relevant variables in typical critical phenomena. The scaling fields corresponding
to T and h, g1 and g2, will have positive exponents, y1 > 0, y2 > 0. The others are
negative, y3 < 0, y4 < 0, · · · . The scaling fields are derived from the function realizing
the transformation Rb(·), an analytic function, and hence gi should be analytic with
respect to T and h. We may therefore infer that g1 is proportional to t = (T − Tc)/Tc

and g2 proportional to h near the fixed point. Variables other than the temperature
and external field, represented by the other scaling fields g3, g4, · · · , do not affect the
essential features of critical phenomena, typically the critical exponents. Details of the
system properties other than the values of temperature and external field have no influ-
ence on the critical exponents. This is the statement of universality from the standpoint
of renormalization group. We hereafter write gt, yt for g1, y1 and gh, yh for g2, y2.

Figure 3.4 is a flow diagram under the condition h = 0, from which we learn
important lessons on the significance of scaling fields. Various types of interactions
emerge as the renormalization step proceeds, and Fig. 3.4 represents a projection of
such a multidimensional space onto the two-dimensional plane of K1 and K2, where K1

is the nearest-neighbor interaction divided by temperature and K2 stands for the next-
nearest-neighbor interaction divided by temperature. Each parameter changes as the
renormalization proceeds. If, for instance, there are only nearest-neighbor interactions
initially (K2 = 0), there appear next-nearest-neighbor interactions (K2 > 0) after a
single step of renormalization. Since only gt is a relevant scaling field when h = 0,
there is just a single direction along which the system is attracted toward the fixed
point F at gt = gh = g3 = · · · = 0. The gt axis corresponds to the direction along
which the renormalization flow moves away from the fixed point. The other directions
correspond to g3 or other irrelevant scaling fields, along which the flow is attracted to
the fixed point.
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It should now be clear that the scaling field gt should not be directly identified
with the parameter K1 − K1c of the initial Hamiltonian with K2 = 0, the so-called
bare parameter. We, nevertheless, observe that the scaling field gt, which expresses
a small deviation from the fixed point, is proportional to the deviation of the initial
parameter value from the critical value (K1 − K1c) as long as the system is close to
the fixed point. Both are proportional to t = (T − Tc)/Tc.

The set of fixed points is an important characteristic of a renormalization group
study. Each fixed point u∗ has a set of points in parameter space, known as a basin
of attraction, which flow into the fixed point u∗ under renormalization. The basin of
attraction of a critical fixed point is called a critical surface or a critical manifold.
Points on a critical manifold are attracted by renormalization to the fixed point F
in Figs. 3.3 and 3.4. As seen in Fig. 3.4, the transition point (critical point) lies on
the critical surface but should be distinguished from the fixed point itself. Moreover,
points u on the critical surface have infinite correlation length since ξ[u] = bnξ[Rn

b [u]],
and in the limit n → ∞, ξ[u] = ∞ since in that limit ξ[u∗] = ξ[Rn

b [u]] = ∞.
Fixed points are not necessarily isolated points in parameter space. They may

represent lines or generic surfaces, and one may classify them according to their
codimension. Points with codimension 0 (known as sinks) have no relevant direction
associated to them and represent bulk phases. Fixed points with codimension 1 can be
discontinuity fixed points (corresponding to first-order transitions, as will be discussed
in Exercise 3.3) or they may represent a stable bulk phase. A critical point has
codimension 2 since two relevant fields are involved. Those fixed points organize
the parameter space into regions with qualitatively different physical behavior. A
phase diagram, which has an associated fixed-point structure, summarizes the global
structure of the renormalization group flow.

3.4 Scaling law and critical exponents

We next relate the positive exponents yt and yh of eigenvalues of the linearized
renormalization group transformation Tb with the critical exponents. This is the
quintessence of the renormalization group theory and yet is formulated in a surprisingly
simple and elegant manner. The central idea lies in the analysis of the free energy under
a renormalization group transformation. This explains how the renormalization group
theory accounts for the origin of scaling law, as will be detailed toward the end of this
section.

According to eqn (3.5) and the discussions in Section 3.2, the free energy is
transformed in the following manner by a renormalization group transformation,

f(gt, gh, g3, · · · ) = b−df(g′t, g
′
h, g′3, · · · ), (3.35)

where gt is proportional to the deviation of temperature from the critical value t, and
gh is proportional to the external field h. Hereafter, we understand that f denotes the
singular part of the free energy. Then, as will be illustrated later in Section 3.6.3, the
right-hand side should include an additional non-singular term, rigorously speaking,

f(gt, gh, g3, · · · ) = b−df(g′t, g
′
h, g′3, · · · ) + w(gt, gh, g3, · · · ). (3.36)
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The last term w, however, does not play a crucial role in the determination of the
critical point or critical exponents, thus we omit it in this book and use eqn (3.35).
Notice, however, that this regular term is important to determine the total free
energy.

Let us drop g3, g4, · · · as they represent irrelevant fields. We also ignore the con-
stants of proportionality between gt and t and between gh and h since these play no
roles. Then, eqn (3.35) becomes, after n steps of renormalization,

f(t, h) = b−ndf(bnytt, bnyhh). (3.37)

For t 	= 0 we choose the number n such that the first argument of the right-hand side
reduces to unity, bnytt = 1.2 The physical idea is that we repeat the renormalization
group transformation many times so that the effective temperature is pushed away
from the critical region. As a result, the critical condition |t| 
 1 is replaced by t′ =
bnytt = 1 and the system has a high (or low) effective temperature. Panels (d) of
Figs. 1.5 and 1.9 correspond to this circumstance. Then, by inserting bn = t−1/yt in
the right-hand side of eqn (3.37), we find a very important relation known as the
scaling law,

f(t, h) = td/ytf(1, ht−yh/yt) ≡ td/ytΨ(ht−yh/yt). (3.38)

The free energy originally has two independent variables, the temperature and external
field. Nevertheless, as expressed in the last part of the above equation, it has effectively
become a single-variable function as far as the critical phenomena are concerned. The
function Ψ(·) is called the scaling function. As we will see below, the scaling law implies
functional relations among critical exponents.

From a mathematical standpoint, the scaling law above asserts that the (singular
part of the) free energy is a generalized homogeneous function. For n variables, those
functions transform as

f(λα1g1, λ
α2g2, · · · , λαngn) = λf(g1, g2, · · · , gn), (3.39)

where λ, αi are arbitrary numbers. It is clear that homogeneous functions can always
be written in terms of scaling functions such as the case of two variables in eqn
(3.38). Consider a homogeneous function f(g1, g2) and perform a scale transformation
λα1 = 1/g1. Then, f(λα1g1, λ

α2g2) = g
−1/α1
1 Ψ(g−α2/α1

1 g2), where Ψ(z) = f(1, z).

EXERCISE 3.2 Show that the lattice constant a, the distance between neighboring
lattice sites, is an irrelevant variable. It will be useful to generalize eqn (3.37) to
include a as an additional variable.

Comment: We conclude from this result that the value of the lattice constant
has no influence on the critical behavior. In particular, continuous field theories
obtained in the limit a → 0 are often used for the evaluation of critical exponents.
However, care must be exercised since in some cases irrelevant variables affect

2 For T < Tc, we choose bnyt |t| = 1 as t is negative. For simplicity of notation, we often write t for
|t| even when T < Tc in the present book. In this case, the first argument of the second expression of
eqn (3.38) is −1 instead of 1.
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scaling. Those variables are known as dangerous irrelevant variables, as will be
discussed in Section 4.2.1.

The scaling law is useful since it relates the exponents yt and yh to the critical
exponents. For instance, the specific heat is the second-order derivative of the free
energy with respect to the temperature, usually under the condition h = 0. Setting
h = 0 in eqn (3.38) and taking the derivative, we have

C(t, 0) ∝ ∂2f(t, 0)
∂t2

∝ td/yt−2. (3.40)

This should be proportional to t−α, from which we find α = 2 − d/yt.3 The exponent
yt, which describes the rate of amplification of the scaling field gt ∝ t by the renor-
malization group operation, determines the critical exponent α of the specific heat.
Next, to find the critical exponent β, we differentiate eqn (3.38) with respect to h and
then set h = 0,

m(t, 0) ∝ ∂f(t, h)
∂h

∣∣∣∣
h=0

∝ t(d−yh)/yt , (3.41)

which means β = (d − yh)/yt. Similarly for the critical exponent γ: By twice differen-
tiating eqn (3.38) with respect to h and setting h = 0, we obtain the susceptibility χ,

χ(t, 0) ∝ ∂2f(t, h)
∂h2

∣∣∣∣
h=0

∝ t(d−2yh)/yt . (3.42)

We thus conclude γ = (2yh − d)/yt. As for the critical exponent δ, we set t = 0 in
eqn (3.37) and differentiate the resulting expression with respect to h,

m(0, h) ∝ ∂f(0, h)
∂h

= b−nd+nyhf2(0, bnyhh), (3.43)

where f2 is the partial derivative of f with respect to the second argument. If we choose
n such that bnyhh = 1 is satisfied, the h dependence of the right-hand side becomes
h(d−yh)/yh , and δ = yh/(d − yh) follows. Those results are summarized as follows.

α = 2 − d

yt
, β =

d − yh

yt
, γ =

2yh − d

yt
, δ =

yh

d − yh
. (3.44)

We have used the relations bn = t−1/yt and bn = h−1/yh in the above argument.
These relations are interpreted as describing the system in a gradually coarse-grained
manner in renormalization group since smaller t or h (i.e. closer to the critical point)
needs larger steps of renormalization n according to bn = t−1/yt and bn = h−1/yh .

The behaviors of the scaling function Ψ(x) in eqn (3.38) in the limits of x → 0
and x → ∞ are determined from the following discussion. When h = 0, f satisfies

3 As mentioned before, the right-hand side of eqn (3.40) represents the singular term of the
specific heat. Additional contributions from non-singular terms must be added to recover the full
temperature dependence of the specific heat. This is particularly important when the critical exponent
α is negative, since then the magnitude of the non-singular terms is much larger than the singular
contribution. The same comment applies to all the following relations.
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f(t, 0) ≈ t2−α and therefore Ψ(0) should be a non-vanishing constant according to the
relation d/yt = 2 − α. To see the properties in the other limit, we notice the simple fact
that f(t, h) is a function only of h for t → 0. Then, the t dependence of the right-hand
side of eqn (3.38) must be canceled by the following behavior of Ψ(x) for x → ∞,

Ψ(ht−yh/yt) ≈
(
ht−yh/yt

)d/yh = hd/yht−d/yt . (3.45)

Hence, for x  1, Ψ(x) ≈ xd/yh . From the above result we find in the limit t → 0

f(0, h) ≈ hd/yh , (3.46)

which implies m ≈ hd/yh−1, leading to δ = yh/(d − yh). This is consistent with the
previous result.

We have derived important formulas to relate the exponents of eigenvalues to
critical exponents. These formulas are at the core of a theoretical framework to
evaluate critical exponents from the linearized renormalization group equation and
its eigenvalues. It is worth remembering here that there are usually only two relevant
scaling fields, i.e. positive exponents yt and yh, which implies that the four critical
exponents α, β, γ, δ are not completely independent. Knowledge of two of them is
sufficient to determine the remaining two. The scaling relations are explicit expressions
of this fact, which can be derived by eliminating yt and yh from eqn (3.44),

α + 2β + γ = 2, γ = β(δ − 1). (3.47)

Since these are derived from thermodynamic quantities, they represent thermodynamic
scaling relations. The critical exponents of the mean-field theories of critical and
tricritical points satisfy these scaling relations.

We note in passing that the following inequality, known as Rushbrooke’s inequality,
holds for the critical exponents α−, β, γ−,

α− + 2β + γ− ≥ 2, (3.48)

where α− and γ− are the exponents α and γ, respectively, for the low-temperature
side of the critical point.4 Rushbrooke’s inequality can be proved rigorously using
thermodynamics, as shown in Appendix A.3.

3.5 Scaling law for correlation functions and hyperscaling

In the previous section we have expressed the critical exponents α, β, γ, δ in terms
of yt and yh from the scaling law of the free energy. An additional scaling law for
the correlation function is necessary in order to relate the critical exponents ν and η
of the correlation function to yt and yh. Let us assume that h = 0. We identify the
scaling field gt with the temperature deviation from the critical point t as before. The
connected correlation function 〈S(0)S(r)〉 − 〈S(0)〉〈S(r)〉 will be written as G(r, t), a

4 Remember that β is defined only on the low-temperature side (ordered phase). The other critical
exponents are believed to have the same values below and above the critical point, which has, however,
been proved only in limited cases. An example will be given in Chapter 10.
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function of distance and temperature. Assume that G(r, t) depends on r only through
its absolute value r = |r|, independent of the direction, which is very plausible near
the critical point where short-scale properties (such as the lattice anisotropy) are
irrelevant.

According to the transformation rule of the spin variable S, eqn (3.7), the correla-
tion function G(r, t) acquires the factor c(b)2 after a single step of a renormalization
group operation since the correlation function is the average of the product of two
spin variables,

G(r, t) = c2(b)G(b−1r, bytt). (3.49)

Another piece of information comes from the scaling law of the magnetization m,
which is obtained by differentiation of eqn (3.37), for n = 1, with respect to h and
then setting h = 0,

m(t, 0) = b−d+yhm(bytt, 0). (3.50)

A comparison of this equation with a relation similar to eqn (3.49),

m(t, 0) = c(b)m(bytt, 0) (3.51)

reveals that c(b) = b−d+yh . Then, by writing eqn (3.51) as

m(bytt, 0) = bd−yhm(t, 0), (3.52)

we find the scaling dimension of the spin variable to be d − yh according to the
definition of scaling dimension, eqn (3.6).

Therefore, eqn (3.49) reduces to

G(r, t) = b−2d+2yhG(b−1r, bytt). (3.53)

By renormalizing n times, we obtain a relation where b is replaced by bn in this
equation. For t 	= 0, we can choose n such that bnytt = 1 holds as in the previous
section, and then the following scaling law for the correlation function is derived,

G(r, t) = t2(d−yh)/ytΦ(rt1/yt) (T 	= Tc). (3.54)

If we fix t to a small but finite value and let r increase, the correlation function should
decay exponentially as e−r/ξ. Since the correlation length ξ diverges proportionally to
t−ν , the exponent r/ξ in e−r/ξ should be proportional to rtν . Comparison of this fact
with eqn (3.54) indicates that r appears as a product with a power of t, rtν in e−r/ξ

and rt1/yt in eqn (3.54). Since both of these represent the same function, 1/yt should
coincide with ν. We therefore conclude ν = 1/yt.

The critical exponent η determines the power of decay of the correlation function
r−d+2−η exactly at the critical point. Setting t = 0 and b = r in eqn (3.53), we have

G(r, 0) ∝ r−2d+2yh (T = Tc), (3.55)
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from which we conclude η = d − 2yh + 2. To summarize,

ν =
1
yt

, η = d − 2yh + 2. (3.56)

Notice that the space dimensionality d appears explicitly in the scaling law for the
correlation function. Several scaling relations follow naturally,

α = 2 − dν, β =
ν(d − 2 + η)

2
, γ = ν(2 − η), δ =

d + 2 − η

d − 2 + η
. (3.57)

These equations relate the exponents for singularities of the free energy, α, β, γ, δ,
with those for the correlation function, ν and η, and are called hyperscaling relations.
The first relation in eqn (3.57) is sometimes referred to as the Josephson scaling
relation. In contrast to the (ordinary or thermodynamic) scaling relations (3.47),
hyperscaling relations are sometimes violated. For example, the mean-field exponents
do not satisfy the first relation of eqn (3.57) for d > 4. As will be discussed in the next
chapter, hyperscaling relations may be violated when a variable named ‘dangerous
irrelevant variable’ affects the behaviors of the free energy and correlation function in
different ways.

EXERCISE 3.3 Let us study a first-order phase transition from the perspective
of the renormalization group methodology. The ferromagnetic Ising model below
the critical temperature T < Tc goes through a first-order transition at h = 0 as
one changes h across h = 0 at a fixed temperature. For h > 0, the spins align
upwards and the magnetization is positive (m > 0), whereas for h < 0 down-pointing
spins dominate and m < 0, see the left-most panel of Fig. 1.3. As explained in
Section 1.4, the Ising model with h = 0 approaches the fixed point at T = 0 if the
initial temperature satisfies T < Tc, which implies that T = 0, h = 0 is a fixed point
stable along the temperature axis. This point determines the properties of the first-
order transition and is called a discontinuity fixed point.

Show that the exponent of renormalization y of the external field h at the
discontinuity fixed point is equal to the spatial dimension d. As a hint, the correlation
length does not diverge at a first-order transition, in contrast to a second-order phase
transition. This means that the correlation function does not decay as a power law,
from which one can infer the scaling dimension.

3.6 A simple example: One-dimensional Ising model

It is instructive to illustrate the general ideas using a simple example. We can solve
the one-dimensional Ising model exactly without recourse to the renormalization
group, as will be shown in Chapter 9. Nevertheless, it is well worth studying this
model by the renormalization group because this is one of the rare examples in
which the renormalization steps can be carried out exactly. Another reason is that
we can compare the result with the exact solution to check if the prescription of the
renormalization group works as expected.
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Fig. 3.5 Spin variables on even-numbered sites are traced out as a realization of the real

space renormalization group.

3.6.1 Recursion relation

Let us take the sum over half of the spin degrees of freedom, that is, over the spins
on even-numbered sites, as a simple realization of the renormalization group for the
one-dimensional Ising model. This is one of the simplest cases of the real-space renor-
malization group. This method is also called decimation. The starting Hamiltonian is

H = −K

N∑

i=1

SiSi+1 − h
N∑

i=1

Si. (3.58)

We assume that the inverse temperature 1/T is included in the Hamiltonian, and
a periodic boundary condition is used, SN+1 = S1. A transformation of scale factor
b = 2 is realized by the summation over spin variables on even-numbered sites as in
Fig. 3.5. For example, the summation over S2 proceeds as

∑

S2=±1

exp
(
KS2(S1 + S3) + hS2

)
= eK(S1+S3)+h + e−K(S1+S3)−h. (3.59)

This result can be expressed as a function of S1 and S3,

A exp
(
K ′S1S3 + h1(S1 + S3)

)
. (3.60)

The reason is as follows. Since eqn (3.59) is a function of S1 and S3, the exponent in
eqn (3.60) should have the form g(S1, S3). The expansion of this g(S1, S3) in powers
of S1 and S3 does not include terms of order higher than S1, S3 and S1S3 (such as
S2

1 or S1S
2
3) because of the identity S2

1 = S2
3 = 1.

We defer the actual evaluation of K ′ and h1 for a while and perform similar
manipulations at all even-numbered sites to find

∑

S2,S4,···
e−H = Ã exp

(
K ′(S1S3 + S3S5 + · · · ) + (h + 2h1)(S1 + S3 + · · · )

)
, (3.61)

where Ã is the product of A appearing in eqn (3.60). The coefficient h + 2h1 of (S1 +
S3 + · · · ) is the renormalized field h′. The factor two in front of h1 comes from the fact
that, for example, h1S3 emerges twice from the traces over S2 and S4. The remaining
task is to find the forms of K ′ and h′ as functions of K and h explicitly and to estimate
the eigenvalues of the linearized recursion relation around a fixed point. Notice that in
this problem the renormalization group mapping preserves the form of the Hamiltonian
with renormalized parameters. In other words, the mapping does not generate new
couplings as in the two-dimensional case of eqn (3.14).
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Fig. 3.6 Renormalization flow, or trajectories, of the one-dimensional Ising model.

To obtain K ′ and h′, we equate the right-hand side of eqn (3.59) to eqn (3.60)
and write four relations resulting from the four combinations, (S1 = ±1, S3 = ±1).
Actually, (S1 = 1, S3 = −1) and (S1 = −1, S3 = 1) give the same relation, and we
find three equations, which are necessary and sufficient to determine K ′, h′ and A as
functions of K and h. Details are left to Exercise 3.4, and we just quote the result,

e4K′
=

cosh(2K + h) cosh(2K − h)
cosh2 h

(3.62)

e2h′
=

e2h cosh(2K + h)
cosh(2K − h)

(3.63)

A4 = 16 cosh2 h cosh(2K + h) cosh(2K − h). (3.64)

These are the recursion relations of the renormalization group transformation with
scale factor b = 2 for the one-dimensional Ising model.

EXERCISE 3.4 Derive the recursion relations (3.62) to (3.64).

3.6.2 Fixed points and eigenvalues

It is necessary to find fixed points of the recursion relations (3.62) and (3.63) and
evaluate the eigenvalues of the linearized relations. It will be useful to use the variables
x = e−4K and y = e−2h instead of K and h since the critical temperature is at absolute
zero (K → ∞) in the present one-dimensional system. Equations (3.62) and (3.63) are
then expressed as

x′ =
x(1 + y)2

(x + y)(1 + xy)
= f1(x, y) , y′ =

y(x + y)
1 + xy

= f2(x, y) (3.65)

or in a vector notation
(

x′

y′

)
=

(
f1(x, y)
f2(x, y)

)
. (3.66)
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Fig. 3.7 Figure 3.6 redrawn in terms of the conventional variables as axes.

Figure 3.6 illustrates how x and y transform as (x, y) → (x′, y′) → (x′′, y′′) → · · · by
the above recursion relation. We find three fixed points (x∗, y∗):

(i) x∗ = 1 and arbitrary y∗ (attractive line of fixed points). This corresponds
to the high-temperature limit (K = 0) and has no important physical
significance. It represents the disordered phase.

(ii) x∗ = 0, y∗ = 1, i.e. T = 0, h = 0. This is a critical point (repulsive or
unstable fixed point). As shown in the phase diagram of Fig. 3.7,
which is drawn in terms of the conventional variables T and h instead
of x and y, the ordered phase of the one-dimensional Ising model is
restricted to a single point at T = 0, h = 0. Figure 3.6 shows that the
fixed point (ii) is unstable against infinitesimal introduction of finite
values of T and h. Thus, these two variables are relevant at this fixed
point.

(iii) The last fixed point is at x∗ = 0 and y∗ = 0 or T = 0 and h = ∞. This
is also uninteresting similarly to (i).

We now linearize the recursion relation (3.66) around the fixed point (ii) and eval-
uate the eigenvalues. Linearization near x∗ = 0, y∗ = 1 amounts to the approximation
that drops second and higher orders of x and ε = 1 − y,

x′ ≈ 4x, ε′ = 2ε. (3.67)

Eigenvalues within this linear approximation are clearly λt = 4, λh = 2. Using the
scaling factor b = 2, we obtain yt = 2 and yh = 1. Thus, the critical exponents are
found to be α = 3/2, β = 0, γ = 1/2, δ → ∞, ν = 1/2 and η = 1. The exponent β is not
actually well defined since the critical point is T = 0. The magnetization at T = 0 is
m = 1 for any positive h, which may be considered consistent with δ → ∞ in m ∝ h1/δ.
Similarly, the correlation function is fixed to G(r) = 1 at the critical point T = 0 and
is consistent with d = 1, η = 1 in G(r) ∝ r−d+2−η. The scaling dimension of spins is
xh = d − yh = 0 since d = yh = 1. This is again in agreement with G(r) ∝ r−2xh = 1.
The vanishing scaling dimension of spin variables xh = 0 is a special feature of the
one-dimensional system in which the magnetization jumps to a finite value at the
critical point.
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3.6.3 Singularities in physical quantities

Let us rewrite x and y in terms of the original variables to see the behavior of physical
quantities around the critical point T = 0, h = 0. The magnetic susceptibility is, from
γ = 1/2,

χ ∝ x−γ = (e−4K)−1/2 = e2K . (3.68)

This is in agreement with the exact solution derived in Section 9.1.1. The specific heat
diverges as

C ∝ x−α = (e−4K)−3/2 = e6K , (3.69)

in contrast to the vanishing behavior C ∝ e−2K as T → 0 of the exact solution of
Section 9.1.1. The reason for this discrepancy is in the replacement t → x in C ∝
∂2f/∂t2 in the discussions of the scaling law of the free energy. The scaling field in
the present section is x = e−4K , but the specific heat is the second order derivative of
the free energy with respect to t, and not x. Hence, the correction factor x2 = e−8K is
necessary in ∂2f/∂x2 to correctly reproduce the specific heat, which, in conjunction
with e6K in eqn (3.69), gives the correct temperature dependence C ∝ e−2K .

EXERCISE 3.5 Explain why the susceptibility result (3.68) agrees with the exact
solution without a correction factor, whereas the specific heat (3.69) should be
supplemented by e−8K .

A similar consideration holds for a general value of the scaling factor b. Suppose
that we take the trace over spins, one among b of them. Assume that there is no
external field, h = 0, for simplicity. The renormalization group equation then becomes

u′ = ub, (3.70)

where u = tanhK.

EXERCISE 3.6 Derive the recursion relation (3.70). Hint: Manipulations that
generalize eqn (3.59) to the scaling factor b will have to be carried out, that is
to take the trace over S2, S3, · · · , Sb to find the effective coupling constant between
S1 and Sb+1. It will be useful to take the trace over S2 first, S3 next, and so on.

Equation (3.70) shows that T = 0 (u = 1) is a fixed point. For T > 0, u is smaller
than 1 and decreases as the renormalization process of eqn (3.70) proceeds. This
means that the fixed point u = 1 (point (ii) Figs. 3.6 and 3.7) is unstable, as expected.
The correlation length should be transformed as

ξ(u′) =
1
b
ξ(u). (3.71)

From u′ = ub, we have ξ(ub) = ξ(u)/b, which is satisfied by the inverse of the logarith-
mic function,

ξ(u) =
const

| log u| =
const

| log tanhK| . (3.72)
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The temperature dependence of the correlation length has thus been worked out. The
above expression agrees with the exact solution to be derived in Section 9.1.1. In the
low-temperature limit K → ∞, the correlation length diverges exponentially due to
the expansion tanhK ≈ 1 − 2e−2K ,

ξ ≈ const · e2K . (3.73)

We have shown that we can carry out the renormalization-group calculations without
approximations for the one-dimensional Ising model.

Singularities in physical quantities near the critical point usually emerge as powers
of T − Tc, as has been discussed at length in the previous sections. It often happens,
however, that such a power-law singularity is replaced by an exponential law at the
lower critical dimension. Since the lower critical dimension of the ferromagnetic Ising
model is 1, the exponential divergences of the specific heat and magnetic susceptibility
reflect this feature of the lower critical dimension. The two-dimensional XY model to
be discussed in Chapter 7 also shows exponential singularities for the same reason.

It is useful to recall that the partition function acquires the factor Ã(K,h)
appearing in eqn (3.61) after a single step of the renormalization process. The
logarithm of Ã(K,h) corresponds to the regular part w in eqn (3.36). Repeating the
renormalization group calculations leads to successive multiplications of this factor,
Ã(K,h)Ã(K ′, h′) · · · , which reflects the change of parameters. After taking the trace
over all spin variables by very many steps of renormalization group calculations, we
are left with this factor only, which is simply the partition function of the whole
system. This argument applies not just to the one-dimensional Ising model but to
any case. The multiplicative factor does not affect critical exponents but should not
be forgotten when one wishes to know the value of the free energy, the logarithm of
the partition function.

3.7 Mean-field theory and scaling law

It is instructive here to analyze the mean-field theory from the standpoint of scaling
and renormalization and derive explicit forms of scaling functions.

Let us consider again the Landau theory for the Ising universality class. Mini-
mization of the Landau free energy gives a relation between m and h, the so-called
mean-field equation of state, eqn (2.20),

2am + 4bm3 = h. (3.74)

To solve this equation for m, we divide both sides by t3/2 and write a = kt to find

m√
t

+ c1

(
m√

t

)3

= c2 ·
h

t3/2
(3.75)

with some constants c1 and c2. This is a cubic equation for m/
√

t and the solution
has the form

m =
√

t g

(
h

t3/2

)
. (3.76)
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Now, according to the general theory developed in the previous sections, the h-
derivative of eqn (3.38) yields the scaling law of magnetization,

m = tβΨ′(ht−βδ), (3.77)

where use has been made of β = (d − yh)/yt and δ = yh/(d − yh). These two equations
(3.76) and (3.77) coincide if we use the mean-field exponents β = 1/2, δ = 3. Hence,
the mean-field theory satisfies the scaling law, and the scaling function Ψ′(·) is a
solution to the cubic equation (3.75).

A similar analysis reveals the scaling law for the magnetic susceptibility. The
Landau expression of the magnetic susceptibility (2.21) becomes, after using the above
relation for the magnetization (3.76),

χ =
1

t
(
c3 + c4g2(ht−3/2)

) , (3.78)

with constants c3 and c4. The second-order derivative of the free energy (3.38) with
respect to h gives the susceptibility in its scaling form,

χ = t−γΨ′′(ht−βδ). (3.79)

These two equations (3.78) and (3.79) become compatible when the mean-field expo-
nents γ = 1, β = 1/2, and δ = 3 are used.

It can also be confirmed that the Landau free energy before differentiation also
satisfies the scaling law (Exercise 3.7). We conclude that the mean-field theory (Landau
theory) is consistent with the scaling law, as far as the free energy is concerned.

EXERCISE 3.7 Show that the Landau free energy can be written in the form of
the scaling law of eqn (3.38).

EXERCISE 3.8 Is it possible to rewrite the equation of state of the mean-field
theory m = tanh β(Jmz + h) in a form that satisfies the scaling law? If not, mention
the physical reason.

3.8 Scaling dimension and scaling law

The two-point correlation function decays algebraically at the critical point with a
power that is twice the scaling dimension of the spin variables xh ≡ d − yh as in
eqn (3.55),

G(r, 0) ∝ r−2xh . (3.80)

Such algebraic behavior is observed also in other operators. Let us consider the example
of the local energy. The internal energy is given by the temperature derivative of the
free energy. In the case of the ferromagnetic Ising model with only nearest-neighbor
interactions, the internal energy E is proportional to the average of the local energy
operator Enn(x) ≡ S(x)S(x + δ), i.e. the product of neighboring spin operators. Here,
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δ is the vector to a neighboring site. Therefore, the t-derivative of the relation (3.37)
with n = 1 gives the scaling law of the local energy,

〈
Enn(x)

〉
= b−d+yt

〈
Enn(bytx)

〉
. (3.81)

This equation shows that the scaling dimension of the local energy operator is xt =
d−yt. This result allows us to derive the following asymptotic behavior of the energy–
energy correlation function at the critical point in a manner similar to the usual
spin–spin correlation function,

GE(r) ≡
〈
Enn(x)Enn(x + r)

〉
∝ r−2xt . (3.82)

More generally, when the operator ψi corresponds to the scaling field gi and the
exponent of the eigenvalue is yi, the scaling dimension of ψi is xi = d−yi. This relation
is understood by gi differentiation of the free-energy scaling law with an explicit gi

dependence,

f(t, h, gi) = b−df(bytt, byhh, byigi). (3.83)

The relation between gi and the average ψi is

ψ̄i ≡ 〈ψi〉 =
∂f

∂gi
, (3.84)

in the same way that the internal energy relates to t through the temperature derivative
of the free energy or the magnetization relates to h. We thus find

ψ̄i(t, h, gi) = b−d+yi ψ̄i(bytt, byhh, byigi), (3.85)

which indicates that xi = d−yi. Exactly at the critical point, the correlation function
decays as a power

〈ψi(x)ψj(x + r)〉 ∝ r−xi−xj . (3.86)

These discussions are valid even when gi and gj represent irrelevant variables.
The concept of scaling dimension makes it possible to derive scaling relations,

which connect critical exponents, through dimensional analysis. Let us assume that
singularities of physical quantities are caused essentially by the divergence of the
correlation length ξ ∝ t−ν . This is a reasonable assumption since the correlation length
is the most important characteristic length scale, the divergence of which should affect
all physical quantities. Therefore, by considering ξ to be the only fundamental physical
quantity with a dimension of length, we can derive scaling relations. For instance, the
free energy per degree of freedom, f , has the scaling dimension d, as was mentioned in
Section 3.1, and the correlation length ξ, the standard of distance, has the same scaling
dimension −1 as the length. These facts lead us to the relation between f and ξ,

f ∝ ξ−d ∝ tνd, (3.87)

from which the hyperscaling relation 2 − α = dν results. Notice here that eqn (3.87)
means that the most singular term in the free energy is proportional to ξ−d. The
whole free energy, including the regular part, should not be considered to be directly
proportional to ξ−d.
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3.9 Scaling and anomalous dimensions

We have already introduced the concept of scaling dimension x of a physical quantity
in Section 3.1, and in the last section we related it to the scaling laws. We remind the
reader that the scaling dimension defines the behavior of a physical quantity under a
scale transformation. In many situations the scaling dimension of a physical quantity is
simply determined by dimensional analysis. For example, consider the dimensionless
quantity that is a part of the Gaussian model (2.74) with the prefactor b chosen
to be 1,5

[∫
dr(∇φ(r))2

]
= 1. (3.88)

The notation [· · · ] indicates the dimension of the quantity inside the square bracket,
and the fact that it is dimensionless is indicated with 1 on the right-hand side. Since
the dimensions of the quantities inside the integral are

[dr] = Ld , [∇] = L−1, (3.89)

eqn (3.88) implies that

Ld · L−2 · [φ(r)]2 = 1 ⇐⇒ [φ(r)] = L−(d−2)/2, (3.90)

where L is the unit of length (associated to the correlation length ξ). This equation
defines the dimension of the physical quantity φ(r). In this way, one determines a
dimension from the dimensional analysis, also known as the canonical dimension, that
we name dφ = 1 − d/2 in this particular example. It turns out that in the Gaussian
model of Section 2.9 the scaling dimension of the magnetization field φ(r) is identical
to the dimension obtained from the dimensional analysis, i.e. xφ = dφ. As we will
explain below, this is why the exponent η of the Gaussian model is zero, as in the
mean-field case.

In general, the scaling dimension is not identical to the canonical dimension
obtained from the dimensional analysis. The difference between the two is proportional
to what is known as the anomalous dimension. For example, in a theory whose two-
point correlation function of scalar fields has non-vanishing η, the anomalous dimen-
sion means that dφ − xφ = (1 − d/2) − (d − yφ) = η/2 	= 0.6 This may also happen to
other critical exponents such as ν but in those cases it is customary not to give any
special name or symbol to the difference.

We have already seen in Chapter 2 that mean-field theories (such as the Landau
theory) share, regardless of the details, the same set of critical exponents typically rep-
resented in terms of rational numbers. An important observation is that the exponents
of any mean-field theory can be obtained from considerations of simple dimensional
analysis. This fact explains why those exponents are not irrational numbers. Therefore,
a central task of the theory of critical phenomena is to explain and determine those
anomalous dimensions, for example, by using the renormalization group method. After

5 Typically, the Hamiltonian as defined in eqn (3.1) is dimensionless, i.e. [H] = 1, since it appears
in the exponent of an exponential.

6 Notice that yφ here is identical to yh.
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all, critical behavior is dominated by fluctuations at all length scales, including lengths
smaller than ξ. The argument that close to the critical point the microscopic length a
may be ignored since ξ  a is not always accurate, as will be shown below. In other
words, if there were no anomalous dimensions, the whole field of critical phenomena
would be quite boring since all critical exponents would acquire the mean-field
values.

The reason behind the existence of anomalous dimensions can be heuristically
attributed to the importance of irrelevant fields (or variables, or operators) in estab-
lishing scaling, and thus modifying exponents. For example, in Exercise 3.2 one showed
that the lattice constant a is an irrelevant variable, and we said in the paragraph above
that critical phenomena are dominated by fluctuations at all length scales, including
the microscopic (minimal) length a or, equivalently, a given short-wavelength cutoff
Λ−1 in the terminology of field theory (see Chapter 5). Then, it may happen that
the correlation length ξ is insufficient to establish the right scaling and one also
needs to take into account a, which we show below. In the two-point correlation
function of eqn (3.53) the effect of the microscopic length a has been ignored since
a 
 ξ. At the critical point, t = 0, G(r, 0) ∝ r−2d+2yh . From considerations of simple
dimensional analysis, on the other hand, we have seen above that G(r, 0) should scale
as G(r, 0) ∝ r−d+2, with the result that η = 0. Indeed, this is the exact scaling behavior
of the Gaussian model, i.e. eqn (2.87), and of mean-field theories in general. However,
in most of the interesting cases, η 	= 0.

Consider the modified scaling relation, which includes the effect of a, at criticality

G(r, a) = b−d+2G(b−1r, b−1a), (3.91)

and choose b = r. Then,

G(r, a) = r−d+2G(1, a/r). (3.92)

The condition a 
 r does not imply that the function G(1, x) is non-vanishing near
x = 0. Close to x = 0 it can certainly behave as

G(1, x) ∝ xη, (3.93)

with an exponent η 	= 0, implying that the two-point correlation function scales as

G(r, a) ∝ aηr−d+2−η, (3.94)

thus heuristically explaining the origin of anomalous dimensions.

3.10 Data analysis by scaling law and finite-size scaling

Scaling laws are useful to estimate critical exponents from experimental or numerical
data. Let us first explain how one can extract the values of critical exponents β and δ
out of experimental data of magnetization m measured near the critical temperature.
A naive fit of magnetization data for very small external fields to the definition of β,
m ≈ |t|β , is better replaced by a more systematic application of the scaling laws.

We first rewrite the scaling law for magnetization, eqn (3.77), as

t−βm(t, h) = Ψ′(ht−βδ). (3.95)
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This equation implies that, if we know the values of β and δ, the plot of data with
abscissa ht−βδ and ordinate t−βm(t, h) will give a single curve for any h and t. More
practically, for a fixed h, we scan t and plot the values of t−βm(t, h) with the above-
mentioned abscissa and ordinate. Then, the same process is repeated for another fixed
value of h. If the scaling law does not apply, the second plot will give a different curve
from the first. However, due to the scaling law (3.95), the values of t−βm(t, h) coincide
for different hs for the same value of ht−βδ. The above procedure is repeated for various
values of h. In practice, we have no precise knowledge of β and δ beforehand, and it
is necessary to guess these values to proceed by trial and error to find the appropriate
β and δ, by which a single curve is obtained to a satisfactory precision.

Next, we show how to extract critical exponents from numerical data for the
magnetic susceptibility. Critical phenomena take place in macroscopic systems, and
physical quantities show singular behavior near a critical point theoretically only when
the system size is infinite. We can, however, carry out numerical computations only
for finite-size systems. It is therefore necessary to estimate critical exponents, which
characterize singularities of infinite systems, from the data for finite-size systems.
The idea of finite-size scaling is a well-established method for this purpose. We will
see later in this section that finite-size scaling can also be interpreted as a crossover
phenomenon in terms of the size of the system.

Suppose that we perform the process of renormalization group for a system on a
hypercubic lattice with linear size L. The parameters of the system should be carefully
tuned for the system to be at the critical point, i.e. t = h = 0. This condition only
applies to the infinite-size system, L → ∞. We interpret this last fact as the condition
that the parameter L−1 must be tuned to 0 in addition to t = h = 0 to keep the system
at the critical point, which implies that L−1 is a relevant variable. We thus include
L−1 in the argument of the free energy and write

f(t, h, L−1) = b−df(bytt, byhh, bL−1). (3.96)

It is seen that L−1 is a relevant variable with exponent yL = 1.
To derive the finite-size scaling of the magnetic susceptibility, we differentiate

eqn (3.96) twice with respect to h and set h = 0 to find

χ(t, 0, L−1) = b2yh−df2(bytt, 0, bL−1), (3.97)

where f2 is the second-order partial derivative of f(t, h, L−1) with respect to the second
argument. By choosing b = L, we obtain the following equation for some function Ψ̃(·),
analytic for finite L,

χ(t, 0, L−1) = L2−ηΨ̃(tL1/ν), (3.98)

where we have used 2yh − d = 2 − η = γ/ν and yt = 1/ν. The scaling function Ψ̃(·)
depends generally on the boundary conditions.

The analysis of numerical data proceeds as follows. One first fixes L and plots the
data by changing t with abscissa tL1/ν and ordinate Lη−2χ and repeats it for other
values of L. If the presumed values of η and ν are appropriate, these plots fall on the
same curve. An example is given in Fig. 3.8. As in the case of experimental data, one



78 Renormalization group and scaling

L
20
40
60

L
20
40
60

Lη–2χ Lη–2χ

tL1/ν tL1/ν

Fig. 3.8 Schematic illustration of data analysis by finite-size scaling. With inappropriate

values of the critical exponents and critical points, the data for different sizes L do not lie

on a single curve (left), whereas they collapse on a common curve with the correct values

(right). Both axes are drawn in logarithmic scales.

adjusts the working values of η and ν by trial and error to find the best possible single
curve.

Another parameter to be found in practice is the critical point Tc. Consider the
behavior of the correlation length under a renormalization group transformation

ξ(t, L−1) = b ξ(bytt, bL−1) = LΦ(tL1/ν), (3.99)

where we chose b = L and defined the scaling function Φ(x) that is regular when
x → 0. Then, the Taylor expansion of the scaling function Φ about t = 0 results in

ξ(t, L−1)
L

= Φ(0) + Φ′(0) tL1/ν + · · · . (3.100)

This relation shows that the critical temperature Tc (or t = 0) can be determined
as the intersection point of curves ξ(t, L−1)/L versus t for different sizes L since
ξ(t = 0, L−1)/L has no L dependence.

We notice a couple of points in relation to finite-size scaling. The magnetic
susceptibility diverges at the critical point in the thermodynamic limit L → ∞ but
remains finite for finite-size systems. Then, where does the peak of the susceptibility
appear in a finite-size system? According to eqn (3.98), the peak of the susceptibility
in a finite-size system as a function of temperature coincides with the peak of the
scaling function Ψ̃(x), which may or may not be located at x = 0, i.e. t = 0. If the
peak of Ψ̃(x) is located at x = c(	= 0), the peak of the susceptibility as a function of
temperature T is at t = cL−1/ν (the sign of c depends on the boundary conditions).
This implies that the peak is shifted from t = 0 for the infinite-size system to cL−1/ν .
We sometimes call 1/ν the shift exponent for this reason. Another point to be noticed
is the height of the peak of the finite-size susceptibility, which is proportional to
L2−η. This observation allows us to estimate 2 − η from numerical data for the
peak value.
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3.11 Crossover phenomena

In some cases we should tune the values of more than two parameters to observe richer
critical phenomena. An example is the tricritical point explained in Section 2.4 in the
context of the Blume–Capel model. In such a case there are more than two relevant
variables. In the present section we elucidate the concept of crossover between two
different types of critical phenomena that typically takes place when three or more
relevant variables compete. In other words, the phenomenon of crossover happens
when more than one critical fixed point appears in the phase diagram.

Suppose that a system has two or more relevant variables. For example, the
Heisenberg model with a uniaxial anisotropy (e.g. due to crystal fields)

H = −J
∑

〈ij〉
Si · Sj − D

∑

i

(Sz
i )2 (3.101)

shows critical behavior of the Heisenberg universality type for D = 0. At high tem-
peratures the system is in a paramagnetic (disordered) phase, and as one lowers the
temperature the system orders. For D 	= 0 the anisotropy explicitly breaks the global
rotational symmetry of the pure Heisenberg model in which simultaneous rotation
of all spins keeps the inner product Si · Sj invariant. Now, if D > 0, the anisotropy
energy of the second term on the right-hand side of eqn (3.101) is lower for larger
|Sz

i |. In particular, in the limit D → ∞ the system reduces to the Ising model with
Sz

i = ±1 under the normalization condition (Si)2 = 1. For finite D(> 0) the critical
phenomena are essentially of the Ising type. The reason is that repeated applications
of the renormalization group enhance the effective value of D and the parameters flow
toward an Ising-type fixed point, the point marked ‘I’ in Fig. 3.9. If D < 0, a smaller
|Sz

i | is stable and hence the spin variables tend to be restricted to the XY surface.
Then, the system is attracted toward another, XY -type, fixed point, which controls

D

0
TTc

I

XY

Fig. 3.9 Renormalization group flow of the anisotropic Heisenberg model with single-ion

anisotropy. The Heisenberg fixed point on the D = 0 axis is unstable along both the t and D

axes. Notice that critical and fixed points are not distinguished in this schematic diagram.
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Fig. 3.10 Crossover in the specific-heat divergence when D > 0. The critical exponent looks

different depending on the temperature range; α0 for the Heisenberg model is observed a little

away from the critical point and αI for the Ising model is seen when the parameter T is very

close to the critical point Tc. Note that the transition between regimes is not sharp.

the critical behavior for all negative D. This discussion indicates that the Heisenberg
(higher symmetry) fixed point with D = 0 has two relevant variables t ∝ T − Tc and D.
The external field is of course also relevant.

When D > 0, the critical properties are governed by a fixed point that describes
the Ising model (Z2 symmetry), while the critical behavior of the system with D < 0
will be determined by the fixed point of the XY model. In practice, however, when
|D| is small, these non-Heisenberg behaviors do not show up unless |t| is very small.

Let us write the scaling law of the free energy near the Heisenberg fixed point for
h = 0 as follows,

f(t,D) = b−df(bytt, byDD). (3.102)

Both variables are relevant, yt > 0 and yD > 0. We may choose b to satisfy bytt = 1,

f(t,D) = td/ytf(1,Dt−yD/yt) ≡ t2−α0Ψ(Dt−φ), (3.103)

where we have written α0 for the specific-heat critical exponent of the Heisenberg
model. The ratio of the two relevant exponents φ = yD/yt > 0 is called the crossover
exponent of anisotropy D. If D vanishes exactly, critical behavior of the Heisenberg
model is observed,

f(t, 0) = t2−α0 Ψ(0). (3.104)

For small D satisfying |Dt−φ| 
 1, Ψ(Dt−φ) should be approximately equal to Ψ(0)
and then the above equation (3.104) would be a good approximation. This suggests
that, for fixed D, the singularity of the specific heat would look like t−α0 in the
temperature range satisfying |Dt−φ| 
 1 (i.e. t not too close to 0), see Fig. 3.10.
For t smaller, |t| < |D|1/φ = tcross with tcross the crossover temperature, the asymptotic
properties of the function Ψ(x) for large x determine the behavior of f(t,D). The
Ising critical behavior appears for D > 0 and the XY -like properties dominate when
D < 0. This is the crossover of the critical region.
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The crossover exponent φ determines the parameter range Dt−φ ≈ 1, where
crossover takes place. The size of the crossover region is not universal. The exponent
for the temperature field yt is usually smaller than the exponent for anisotropy yD and
consequently φ > 1. A small deviation from zero for D changes the critical exponent
to a new value, which is observed in a temperature range around the critical point
|Dt−φ|  1. Out of this range, the critical exponent looks unaffected.

Crossover is observed generally between two relevant variables, not just between the
temperature and anisotropy D. As an example, the external field h and temperature
t are two prominent relevant variables and the crossover exponent is φ = yh/yt = βδ.
The mean-field value of this crossover exponent is φ = 3/2. Thus, zero-field (h = 0)
critical phenomena are observed in the presence of a very small field (which can be a
residual field experimentally) as long as we observe the temperature range |ht−φ| 
 1.
A difference from the case of anisotropy is that the external field h totally eliminates
critical phenomena, and no new critical phenomena are observed.

As already mentioned, the finite-size scaling may also be regarded as a kind of
crossover phenomenon. Equation (3.98) shows that the scaling function Ψ̃(·) should
behave as Ψ̃(tL1/ν) ≈ (tL1/ν)(η−2)ν for sufficiently large tL1/ν because then the L
dependence of the right-hand side cancels and the critical behavior χ ≈ t(η−2)ν =
t−γ of the infinite-size system is recovered. When tL1/ν is not very large, finite-
size effects show up and χ(t, 0, L−1) has L dependence. The condition tL1/ν  1
that finite-size effects disappear is reduced to L  ξ because of ξ ∝ t−ν . This is
a very reasonable criterion that the system size should be much larger than the
correlation length for the system to be regarded as infinitely large. The crossover
exponent from finite- to infinite-size system is φ = ν (Exercise 3.9). Crossover
takes place at |Dt−φ| ≈ 1 in the case of anisotropy. Correspondingly, the crossover
region for finite-size effects is |L−1t−ν | ≈ 1, i.e. L ≈ ξ, in agreement with the above
conclusion.

EXERCISE 3.9 Show that the crossover exponent for finite-size effects is φ = ν.

3.12 Dynamic scaling law

The concept of scaling also applies to non-equilibrium systems near a critical point. It
is convenient first to rewrite the scaling law of the correlation function in equilibrium
(3.53) in terms of its spatial Fourier transformation,

〈
S̃(q)S̃(−q)

〉
= b2−η

〈
S̃(bq)S̃(−bq)

〉
. (3.105)

Here, we have used the fact that the argument r on the right-hand side of eqn (3.53)
has a factor b−1, which leads to the additional factor of bd after Fourier transformation,
in conjunction with the relation 2yh − d = 2 − η. We have omitted the scaling field
proportional to (T − Tc)/Tc because the symbol t may be confused with time in the
present non-equilibrium problem. Now, let us introduce time t and generalize the above
relation to the dynamic correlation function
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〈
S̃(q, t)S̃(−q, 0)

〉
= b2−η

〈
S̃(bq, b−zt)S̃(−bq, 0)

〉
, (3.106)

where z is the scaling dimension of time t. If we write the time Fourier transformation
of the left-hand side as C̃(q, ω) following the notation of Section 2.11, we have

C̃(q, ω) = b2−η+zC̃(bq, bzω). (3.107)

The right-hand side carries the additional factor of bz due to the factor b−z in front
of t on the right-hand side of eqn (3.106).

The fluctuation–dissipation theorem (2.115) indicates that the scaling behavior of
the response function is different from that of the dynamic correlation function due
to the factor ω.7 The scaling law of the response function therefore reads

G̃(q, ω) = b2−ηG̃(bq, bzω). (3.108)

If we choose b = ξ, reducing the unwritten variable byt(T − Tc)/Tc to a constant, the
dynamic scaling law results,

G̃(q, ω) = ξ2−ηΦ(ξq, ξzω). (3.109)

This equation suggests that the typical time scale, the relaxation time τq, is given as

τq = ξzg(ξq). (3.110)

The mean-field relations (2.124) and (2.128) satisfy this equation and their dynamic
critical exponents are confirmed to be z = 2 and z = 4, respectively.

At the critical point, we set b = q−1 in eqn (3.108) to obtain

G̃(q, ω) = qη−2Φ(q−zω). (3.111)

The relaxation time is proportional to a power of the wave number, τq ∝ q−z.

7 Although eqn (2.115) was derived for a system with a single degree of freedom, results of
dimensional analysis from such a system remain valid for many-body systems.
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Implementation of the
renormalization group

We have formulated the general framework of the renormalization group theory. It
has been shown that the eigenvalues of a linearized recursion relation around the fixed
point determine the critical exponents. It has also been elucidated that the free energy
and related functions satisfy scaling laws, which are useful to analyze experimental
and numerical data. We next derive explicit forms of the recursion relation and find
its fixed points and eigenvalues. This chapter will discuss these topics. In contrast
to the elegant general theory of the previous chapter, actual computations of fixed
points and eigenvalues usually involve approximations, often crude ones, except for a
very limited number of simple cases such as the one-dimensional Ising model of the
previous chapter. There are established methods to systematically improve precision,
but they usually need a large number of (often numerical) calculations. The scope
of the present chapter is modest as we limit ourselves to basic examples. It is often
difficult to present a general prescription directly applicable to practical problems
that the reader may have at hand. Nevertheless, studies of well-known instances will
help better understand the renormalization group in general and may provide hints
to attack novel unsolved problems.

4.1 Real-space renormalization group for arbitrary dimensions

We have already discussed the simple example of the one-dimensional Ising model.
When the spatial dimension of the system is two or higher, the partial trace operation
generates various complicated interactions, and it rapidly becomes difficult to explic-
itly implement the renormalization group in terms of a tractable number of parameters.
It thus becomes essential to introduce certain approximations. Unfortunately, in real-
space renormalization group theory, there are no generic prescriptions applicable
to arbitrary problems of practical interest to systematically improve the degree of
approximation. We therefore have to devise a clever approximate method to treat the
problem of interest, taking full advantage of the specific features of the problem. The
following are some representative examples.

4.1.1 Partial sums and the two-dimensional Ising model

What happens if we naively trace over a part of the spin variables on the square
lattice as in Fig. 3.1? Implementation of the trace operation in this situation has
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been carried out in Exercise 3.1 and represents a particular coarse-graining scheme.
The result shows that three types of interactions are generated after the partial trace
when only nearest-neighbor interactions exist initially and h = 0. More explicitly, if
we denote the initial nearest-neighbor interaction by K and the renormalized nearest-
neighbor, next-nearest-neighbor and the four-spin interaction around a plaquette (unit
square) by K ′,K ′

1 and K ′
2, respectively, we find

K ′ =
1
4

log cosh 4K, (4.1)

K ′
1 =

1
8

log cosh 4K, (4.2)

K ′
2 =

1
8

log cosh 4K − 1
2

log cosh 2K. (4.3)

We have assumed that there is no external field. It is difficult to carry out another
step of renormalization that starts from these three kinds of interactions, which would
lead to additional complicated interactions. A crude approximation is to consider
only the nearest-neighbor interactions and neglect the next-nearest-neighbor and
four-body interactions. This approximation amounts to regarding eqn (4.1) as the
renormalization group equation for nearest-neighbor interactions and finding its fixed
point and eigenvalue. Equations (4.2) and (4.3) are simply ignored. A justification
may be that there is only one relevant variable in the absence of external field and the
nearest-neighbor interactions are the most important ones to be treated seriously.

Unfortunately, this idea does not work since the fixed points are located only
at K = 0 and K → ∞. This result is in contradiction to the existence of a critical
point in the two-dimensional Ising model. Note that eqn (4.1) is similar to eqn (3.62)
for the one-dimensional Ising model at zero field where we know that there is no
finite-temperature phase transition. We must conclude that the approximation has
been too crude. It may be worth trying to ignore only the four-body interaction and
keep the nearest K ′ and next-nearest-neighbor K ′

1 interactions. Both couplings K ′

and K ′
1 have the same sign and produce the net effect of aligning the spins. It turns

out that some further approximations should be introduced to perform calculations
that lead to renormalization group equations for these two kinds of interactions. A
high-temperature assumption, that these two interactions are small and higher-order
terms in the Taylor expansion are ignorable, makes it possible to explicitly write
the renormalization group equations. Let us mention only the consequence of this
approximation because a detailed account of the crude approximation is not very
productive. The result is that the critical point is at Kc = 0.333 with the critical
exponent ν = 0.64, which are not too far away from the exact solutions of Kc =
log(1 +

√
2)/2 = 0.441, ν = 1 but are not particularly impressive.1

Another very crude and easy way of estimating the effective renormalization group
equation is to note that the number of nearest- and next-nearest neighbors is the same
on the square lattice. In the fully aligned situation they provide the same contribution

1 From the exact exponents yt = 1 and yh = 15/8 one can determine the other critical exponents
by using, for example, the scaling relations eqns (3.44) and (3.56) with d = 2.
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S
s2 s1

s3

Fig. 4.1 Three Ising spins on a shaded triangle σ1, σ2, σ3 (σi = ±1) are grouped into a single

block spin S whose value is determined by the majority rule of eqn (4.7).

to the energy, and then one can define the effective nearest-neighbor coupling from
eqns (4.1) and (4.2)

K̃ ′ = K ′ + K ′
1 =

3
8

log cosh 4K, (4.4)

leading to the non-trivial (unstable) fixed point Kc = 0.507. From

dK̃ ′

dK

∣∣∣∣∣
Kc

= 1.449 = byt , (4.5)

with b =
√

2, it results that ν = 1/yt = 0.935.
Our conclusion is that direct partial sums are generally not a method of choice for

low-dimensional systems except for the one-dimensional case.

4.1.2 Block-spin transformation

The technique of block-spin transformation is an analytic realization of the numerical
renormalization group of Figs. 1.5, 1.8 and 1.9 in Section 1.4,2 for example, by a
majority rule for three neighboring spins on the triangular lattice. In this section we
are interested in applying this technique to the Ising model on the triangular lattice

H = −K
∑

〈ij〉
SiSj − h

∑

i

Si, (4.6)

where 〈ij〉 represents bonds on the triangular lattice (see Fig. 4.1). For notational
convenience, in the following, the spins of the original lattice will be denoted as σi

instead of Si. As shown in Fig. 4.1, we first group sites on the triangular lattice into
triples on triangles and then coarse grain the system by choosing a representative
single spin value for each of the triples forming a new triangular lattice with the scale
factor b =

√
3.

2 We have seen in Chapter 3 that the renormalization group mapping induces a flow in the
parameter space. In Figs. 1.5, 1.8 and 1.9 we show the associated flow in the configuration space
for the two-dimensional Ising model on the square lattice with b = 3.
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If we denote the three spins to be grouped as σ1, σ2 and σ3, the new block spin S
takes the value according to the majority rule,

S = sign
(
σ1 + σ2 + σ3

) (
=

σ1 + σ2 + σ3 − σ1σ2σ3

2

)
. (4.7)

Each value of the block spin S arises from four spin-σ configurations. The set of σ
configurations in the block I is denoted as σI = {σ1, σ2, σ3}. Then, the transformation

σ+
I = {− + +,+ − +,+ + −,+ + +} → S = 1 (4.8)

σ−
I = {+ −−,− + −,−− +,−−−} → S = −1 (4.9)

realizes a partition of the block configuration space into two sectors each with a well-
defined value of the block spin S. In the language of the previous chapter (Section 3.2)
this renormalization group scheme corresponds to a weight operator P (S, σ) like the
one in eqn (3.18).

One can rewrite the Hamiltonian H in terms of intrablock, H0, and interblock, V ,
interactions, H = H0 + V , where

H0 = −K
∑

I

∑

〈ij〉∈I

σiσj − h
∑

I

∑

i∈I

σi, (4.10)

V = −K
∑

I �=J

∑

i∈I,j∈J

σiσj , (4.11)

with letters I and J representing block indices. Our goal is to determine the renor-
malized Hamiltonian H ′ = Rb(H), and the idea is to accomplish this by dealing with
V in a perturbative manner.

For a given value of S in the block (e.g. S = 1), let us write the interaction within a
block as H0(S, σ) and the interaction between blocks as V (S, σ). Then, the interaction
among renormalized (block) spins H ′(S) is calculated as

e−H′(S) =
∑

{σS
I }

e−H0(S,σ)e−V (S,σ) =
〈
e−V (S,σ)

〉
0

∑

{σS
I }

e−H0(S,σ). (4.12)

Here, 〈· · · 〉0 is the expectation value with respect to the weight e−H0(S,σ),

〈
e−V (S,σ)

〉
0

=

∑
{σS

I } e−H0(S,σ)e−V (S,σ)

∑
{σS

I } e−H0(S,σ)
, (4.13)

and the sums are performed over all configurations realizing the chosen block-spin
value S in all blocks, i.e. {σS

I } = σS
1 , σS

2 , · · · , σS
I , · · · , σS

M , with M the total number
of blocks in the system.

The evaluation of the denominator in eqn (4.13) is straightforward after realizing
that the term H0 does not connect blocks and it simply represents a sum of indepen-
dent block terms

∑

{σS
I }

e−H0(S,σ) =
M∏

I=1

Zblock(SI). (4.14)
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Let us compute the partition function of a single block I

Zblock(S) =
∑

σS
I

e K
∑

〈ij〉∈I σiσj+h
∑

i∈I σi = 3 e−K+hS + e3K+3hS , (4.15)

where we have used the configurations of eqns (4.8) and (4.9).
Our goal is to evaluate the transformation rule of the renormalization group (4.12)

by using the coarse-graining scheme of eqn (4.7). This is actually difficult due to the
non-trivial couplings between many σs. The key approximation is then to assume
that the interblock interactions are weak and to only take into account the first-order
contributions of V in the evaluation of the expectation value of eqn (4.13). To first
order in a cumulant expansion, as described in Appendix A.4, we have

〈
e−V (S,σ)

〉
0
≈ e−〈V 〉0 , (4.16)

meaning that the renormalized Hamiltonian can be written as

H ′(S) = −
∑

I

log Zblock(SI) + 〈V 〉0 + O(V 2). (4.17)

We now consider the interblock interactions

V =
∑

I �=J

VIJ , VIJ = −K
∑

i∈I,j∈J

σiσj . (4.18)

The interaction between two blocks I = 1 and J = 2 (see Fig. 4.2) turns out to be

〈VIJ 〉0 = −K〈σ11σ22〉0 − K〈σ13σ22〉0
= −2K〈σ11σ22〉0 = −2K〈σ11〉0〈σ22〉0, (4.19)

the latter equality resulting from the fact that H0 does not couple different blocks.
To keep track of the block index I we have replaced σj by the variable σIi (where
i = 1, 2, 3). The expectation values appearing in eqn (4.19) involve only quantities
within a block and can be evaluated relatively easily. This is an advantage of the

S2

S1

s23

s21
s22

s11s12

s13

Fig. 4.2 When we take into account the interaction between blocks by a first-order pertur-

bation calculation, the couplings among σ11, σ13 and σ22 (the first index is the block index,

while the second represents the position inside the block) determine the effective interblock

interaction between S1 and S2.
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first-order approximation. Here, 〈σ11〉0, 〈σ13〉0, and 〈σ22〉0 are expectation values with
fixed values of S1 and S2,

〈σIi〉0 =
1

Zblock(SI)

∑

σ
SI
I

σIi eK(σI1σI2+σI1σI3+σI2σI3)+h(σI1+σI2+σI3). (4.20)

As an example, let us show the explicit formula for 〈σ11〉0. When S1 = 1, the
allowed configurations for the block are σ+

1 of eqn (4.8), which leads to

〈σ11〉0 =
e−K+h + e3K+3h

3 e−K+h + e3K+3h
. (4.21)

The other case of S1 = −1 requires the configurations σ−
1 . The end result can be

summarized as

〈σ11〉0 = S1
e−K+hS1 + e3K+3hS1

3 e−K+hS1 + e3K+3hS1
. (4.22)

Similarly, 〈σ12〉0 = 〈σ11〉0 = 〈σ13〉0 because of the equivalence of three spins σ11, σ12

and σ13 within the block.
Equation (4.22) needs some additional algebraic manipulations since the renormal-

ized block spin S1 appears in the exponent. One would like to write 〈σIi〉0 as some
expression linear in the block spin, i.e. 〈σIi〉0 = A + BSI , and this is always possible.
Simple algebra shows that eqn (4.22) can be written in this way with

A =
1
2

(
〈σ+

11〉0 + 〈σ−
11〉0

)
(4.23)

B =
1
2

(
〈σ+

11〉0 − 〈σ−
11〉0

)
, (4.24)

where 〈σ±
11〉0 represents 〈σ11〉0 for SI = ±1. Similarly, one needs to rewrite the

partition function of the block, eqn (4.15), in the form Zblock(SI) = eC+DSI with

C =
1
2
(log Zblock(+) + log Zblock(−)) (4.25)

D =
1
2
(log Zblock(+) − log Zblock(−)). (4.26)

One can then write the resulting renormalized Hamiltonian of eqn (4.17) to linear
order in V as

H ′(S) = −MC − D
∑

I

SI − 2K
∑

〈IJ〉
(A + BSI)(A + BSJ), (4.27)

and from this expression obtain the renormalization group equation
(

K ′

h′

)
=

(
2K(B(K,h))2

D(K,h) + 12KA(K,h)B(K,h)

)
, (4.28)
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where the number 12 has been derived as 12 = 2 × z with z = 6 the coordination
number of the triangular lattice.3

For h = 0 the effective coupling K ′ between blocks reads

K ′ = 2K

(
e−K + e3K

3 e−K + e3K

)2

. (4.29)

The critical fixed point is at K∗ = 1
4 log(1 + 2

√
2) ≈ 0.336, which is not very close to

the exact critical point for the Ising model on the triangular lattice, Kc(= 1/Tc) =
1
4 log 3 ≈ 0.275, but is also not too far away. Linearization of the renormalization group
equation (4.28) around the fixed point and the fact that

dK ′

dh

∣∣∣∣
K∗,h∗

=
dh′

dK

∣∣∣∣
K∗,h∗

= 0, (4.30)

lead to the eigenvalues of the relevant operators,

dK ′

dK

∣∣∣∣
K∗,h∗

= byt ,
dh′

dh

∣∣∣∣
K∗,h∗

= byh , (4.31)

with h∗ = 0, giving finally the critical exponent ν = 1.13 as shown in Exercise 4.1.
This value is fairly close to the exact solution ν = 1. One also obtains the exponent
yh = 2.034, which is to be compared to the exact yh = 15/8. We may regard this result
as a relatively satisfactory one in consideration of the crude approximations involved
in the above manipulations as well as the relative compactness of the calculations in
comparison with the derivation of the exact solution to be discussed in Section 9.5.

EXERCISE 4.1 Compute the fixed point and eigenvalue around the fixed point
for the renormalization group equation (4.29). Confirm that the critical exponent ν
is 1.13.

Three comments are in order. The first emphasizes the fact that both of the Ising
models on the square and triangular lattices share the same set of exact critical expo-
nents, which means that they belong to the same two-dimensional Ising universality
class. The critical temperature, on the other hand, is a non-universal quantity. The
exact critical temperature (in units of J) for the triangular lattice is higher than that
for the square lattice, i.e. T�

c = 4/ log 3 > T�
c = 2/ log(1 +

√
2), which is consistent

with the fact that the coordination number z of the triangular lattice is larger than the
one for the square lattice and so in agreement with the mean-field situation: Remember
that the mean-field value in units of J is Tc = z. The second comment concerns the
systematic improvement of this cumulant expansion approach to renormalization. One
could proceed to the next order of approximation by including the second cumulant,
and then higher-order cumulants. The convergence in general is non-uniform. Finally,
we mention that a simple way to proceed to lead to quite accurate results consists of
dealing with larger blocks known as the cluster method. For example, we could have
chosen as our block two triangles (six spins) instead of a single one.

3 Do not confuse this z with the dynamic critical exponent of Chapter 2.
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4.1.3 Migdal–Kadanoff renormalization group

Another approximate real-space renormalization group method often used in practice
is the Migdal–Kadanoff renormalization group (MKRG). A main technical problem
in the real-space renormalization group method is the difficulty in taking partial
sums except for the one-dimensional case. To avoid this problem, let us adopt an
approximation that ignores part of the interactions, as illustrated in Fig. 4.3 for b = 2.
To partly compensate for possible errors caused by this approximation, we multiply
the remaining interaction by the factor b(= 2). Then, the spins denoted by crosses in
the middle panel of Fig. 4.3 can be traced out easily as in the one-dimensional case.
The remaining spins shown in black dots have only nearest-neighbor interactions. The
type of interactions, nearest-neighbor only, is kept intact and only the strength of the
interactions has been renormalized from K to K ′. Then, we are able to repeat the
renormalization group calculations for the single variable K to find the fixed point
and eigenvalues.

Let us show explicit formulas to realize the MKRG for b = 2. The remaining
interactions in the middle panel of Fig. 4.3 have a strength of 2K. The partial trace
over the spins shown as crosses can be carried out as in the one-dimensional case, see
eqn (3.70), and tanh 2K is squared,

tanhK ′ = (tanh 2K)2, (4.32)

where K ′ is the renormalized coupling. Using the notation u = tanhK,u′ = tanhK ′,
the above equation is expressed as

u′ =
(

2u

1 + u2

)2

. (4.33)

A non-trivial (critical) fixed point u0 is easily found at u0 = 0.296, namely Tc = 3.28.
The exact critical point for the ferromagnetic Ising model on the square lattice is Tc =
2/ log(1 +

√
2) = 2.269, and the result Tc = 3.28 is not very impressive. To evaluate

the critical exponent, we linearize eqn (4.33) around the fixed point, u − u0 = ε � 1.

KK

K K

2K 2K K¢

Fig. 4.3 Steps to realize the MKRG for b = 2. The interactions shown as dashed lines in the

left panel are ignored (set to zero) and the other interaction strengths (couplings) are doubled

(middle panel). Then, the spins shown as crosses are traced out to yield the renormalized

coupling K′ (right panel).
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From

u0 + ε′ =
(

2(u0 + ε)
1 + (u0 + ε)2

)2

, (4.34)

we find

ε′ =
8u0(1 − u2

0)
(1 + u2

0)3
ε = 2ytε. (4.35)

Then, the critical exponent is yt = 0.747 or ν = 1.338. The exact value is ν = 1.
For general b, eqn (4.32) generalizes to

tanh K ′ = (tanh bK)b. (4.36)

If we could carry out renormalization group calculations without approximations, the
results on the fixed point and critical exponents would not depend on the scaling
factor b. In practice, approximations lead to b-dependent answers. In the MKRG,
approximations are considered less crude for b closer to unity because the number
of ignored interactions is smaller when b is closer to 1. Thus, it seems a good
approximation to set b = 1 + ε in eqn (4.36) and drop orders higher than the first
in ε to find

K ′ = K − εβ(K), − β(K) = K + cosh K sinhK log(tanh K). (4.37)

If we set db = ε, the above equation is rewritten as a differential equation,

dK

db
= −β(K). (4.38)

The function β(K) on the right-hand side is the beta function of the renormalization
group. This name ‘beta function’ is used also for generic cases, not just for the MKRG
as we saw in Section 3.2. As depicted in Fig. 4.4, the zero of the beta function β(K) = 0
is identified with the fixed point. The coupling K increases in the range above the fixed
point and decreases below. The fixed point of eqn (4.37), K∗ = 0.4407, turns out to
coincide with the exact solution derived in Sections 9.5 and 10.1, not just as a number
but as the analytical expression.

The eigenvalue byt of the linearized renormalization group mapping is the derivative
of the recursion relation at the fixed point as one sees in eqns (4.33)–(4.35). In terms of
the present notation, it is the derivative of −β(K)ε at the fixed point. Since −β′(K∗)ε
corresponds to εyt in byt = (1 + ε)yt ≈ 1 + εyt, we find

yt = − dβ

dK

∣∣∣∣
K∗

= 0.7535. (4.39)

This means ν = 1/yt = 1.327. The infinitesimal MKRG for the square lattice gives the
exact critical point but the associated critical exponent turns out to be approximate.

Although the MKRG may appear to be an unsophisticated approximation, it is
known that this method with integer b actually gives exact solutions for a special class
of lattices called hierarchical lattices.
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−0.2

0

0.2

0.40 0.2 0.6 0.8

K

–b(K )

Fig. 4.4 The beta function of the infinitesimal MKRG on the square lattice. The small circle

denotes the fixed point. The arrows indicate the directions of the renormalization flow of K.

In general, a problem with the real-space renormalization group method is that
the limit of applicability of the approximations involved is not clear in most cases.
We therefore are not certain beforehand how far we may trust the result. Thus, we
should be careful in applying the real-space renormalization group to problems for
which we do not have an idea about the correct result derived by other methods such
as numerical simulations or physical intuition. Nevertheless, it is sometimes important
to have a way to reach a solution, albeit approximate, when other methods are not
easily employed for whatever reasons.

4.2 Momentum-space renormalization group: ε = 4 − d expansion

The accuracy of the block-spin transformation deteriorates as the spatial dimension d
increases. For instance, imagine that neighboring 3 × 3 spins on the square lattice are
represented by a single block spin, assuming values ±1, determined by the majority
rule. The same block-spin operation in three dimensions involves 33 = 3 × 3 × 3 spins.
In a general d-dimensional case a block spin having values ±1 replaces 3d spins by the
simple majority rule. The range of the sum for 3d spins, −3d,−3d + 2,−3d + 4, · · · , 3d,
increases with d, and the approximation to assign ±1 to a block spin becomes more and
more inappropriate as d increases. This consideration suggests to use continuous-spin
variables (i.e. fields), as in the Landau theory, defined over a continuous space. These
spin variables can in principle take any value with more probable values around ±1.
We therefore discuss the properties of a continuous model near four dimensions in the
present section. More details about field-theoretic descriptions of statistical systems
will be developed in Chapter 5.

4.2.1 Gaussian fixed point

A standard model with continuous spin variables (fields) in continuous space is the φ4

model or the Landau–Ginzburg–Wilson model,
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H =
∫

dr
{(

∇φ(r)
)2 + tφ(r)2 + uφ(r)4 − hφ(r)

}
, (4.40)

obtained from eqn (2.74) in Section 2.9 with an additional quartic term and an external
field.4 We will show in Chapter 5 that this model serves as an effective field theory
for the critical Ising model near four dimensions. The Gaussian model of Section 2.9
appropriately describes the disordered phase when T > Tc, but fails to describe the
ordered phase for T < Tc. To describe the latter phase one needs to have u 
= 0.

Let us write the Hamiltonian renormalized by the scale factor b as

H ′ =
∫

dr′
{(

∇′φ′(r′)
)2 + t′φ′(r′)2 + u′φ′(r′)4 − h′φ′(r′)

}
. (4.41)

We now check the consequences of the scale invariance of the system, i.e. the equiva-
lence of eqns (4.41) and (4.40). It is useful to recall the transformation rules,

r′ = b−1r, ∇′ = b∇, φ′ = bd−yhφ, t′ = bytt, u′ = byuu, h′ = byhh. (4.42)

If we express the first term on the right-hand side of eqn (4.41) by the original
variables using eqn (4.42), the factor b−d+2+2d−2yh appears. The requirement of scale
invariance then suggests 2 + d − 2yh = 0, or yh = d/2 + 1. Similarly, scale invariance
of the second and third terms leads to yt = 2 and yu = 4 − d = ε. The fourth term
automatically remains invariant. Hence, scaling fields transform as

t′ = b2t, u′ = b4−du, h′ = bd/2+1h. (4.43)

An immediate consequence is that the quartic term is irrelevant for d > 4 (and becomes
relevant for d < 4). We are thus justified to ignore the u term and discuss the Gaussian
model if d > 4. The above recursion relations can also be written in a differential
form

dt

dτ
= 2t,

dh

dτ
=

(
1 +

d

2

)
h, (4.44)

with τ = log b.

EXERCISE 4.2 Show that the sixth-order term vφ(r)6, if added to the φ4 model,
would be more irrelevant than the quartic term for d > 4 in the sense that it decreases
more rapidly than the quartic term.

Setting u = 0 in the renormalization group equation (4.43), we find the Gaussian
fixed point at t∗ = h∗ = 0. Therefore, the fixed-point Hamiltonian is

H∗ =
∫

dr
(
∇φ(r)

)2
. (4.45)

The critical exponents around this fixed point are derived from the eigenvalues
yt = 2, yh = d/2 + 1 as

α = 2 − d

2
, β =

d − 2
4

, γ = 1, δ =
d + 2
d − 2

, ν =
1
2
, η = 0. (4.46)

4 The symbol F in Chapter 2 and the present H represent the same quantity.
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The values for the exponents γ, ν and η in this list agree with the mean-field prediction,
but the others α, β, and δ coincide with the mean-field theory only at d = 4. The
Gaussian fixed point indeed describes critical phenomena of the mean-field type for
d > 4. The reason for the superficial deviation of α, β and δ, all of which include d in
eqn (4.46), from the mean-field values is now explained.

Let us write the scaling law of magnetization (3.52), when h = 0, with the variable
u (irrelevant for d > 4) explicitly included as

m(t, u) = b1−d/2m(b2t, ub4−d). (4.47)

We may choose b arbitrarily, thus set b = t−1/2 to reduce the first argument of the
right-hand side to unity,

m(t, u) = t(d−2)/4m(1, ut(d−4)/2). (4.48)

If we simply ignore u since it is irrelevant for d > 4, we have

m(t, 0) = t(d−2)/4m(1, 0) ∝ t(d−2)/4, (4.49)

which gives the same β as in eqn (4.46). The problem is that m(1, u) actually behaves
like u−1/2 as u → 0, which precludes us from simply ignoring m(1, 0) as an unimportant
constant. We check this last fact as follows.

The minimization condition of the Landau free energy, 2tm + 4um3 = 0, for the
case of a spatially uniform order parameter φ(r) = m, leads to m ∝ u−1/2. We then
insert

m(1, ut(d−4)/2) ∝
(
ut(d−4)/2

)−1/2

(4.50)

into eqn (4.48) for small u to find

m(t, u) ∝ t(d−2)/4u−1/2t−(d−4)/4 = u−1/2t1/2, (4.51)

which shows the correct mean-field value β = 1/2. We can verify α = 0 and δ = 3 from
a similar argument. A variable u of this nature is called a dangerous irrelevant variable
when d > 4 and T < Tc.

EXERCISE 4.3 Show that the critical exponent δ assumes the mean-field value 3
if we take into account the dangerous irrelevant variable.

Let us expose the origin of these dangerous irrelevant variables. In eqn (3.37) we
assumed that the irrelevant fields g3, g4, · · · can be dropped from the scaling analysis.
Implicit in that fact was the assumption that the (singular part of the) free energy
can be Taylor expanded in those irrelevant variables near the critical fixed point
t∗ = 0, h∗ = 0. Consider only one irrelevant field g3, with exponent y3 < 0, then

f(t, h, g3) = b−df(bytt, byhh, by3g3). (4.52)
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If one chooses bytt = 1, it leads to

f(t, h, g3) = td/ytf(1, ht−yh/yt , g3t
|y3|/yt) ≡ td/ytΨ(ht−yh/yt , g3t

|y3|/yt)

= td/yt

(
Ψ(ht−yh/yt , 0) + Ψ′(ht−yh/yt , 0)g3t

|y3|/yt + · · ·
)
, (4.53)

where Ψ′(·, ·) stands for the partial derivative with respect to the second argument.
This equation shows that the main effect of the irrelevant field is to provide correction
terms to scaling. However, there are situations, e.g. the variable u in the φ4 model,
where such a Taylor expansion is impossible and the field g3 becomes a dangerous
irrelevant variable. In our present φ4 model the dangerous irrelevant variable affects
the scaling law of the free energy and its derivatives but not the correlation functions.
This leads to the breakdown of hyperscaling like α = 2 − dν that connects exponents
related to the free energy with those for the correlation function. This is an exceptional
situation and, while we may usually ignore irrelevant variables, care must always be
exercised.

The reader may wonder if it is legitimate to use the Landau theory to derive the
asymptotic form u−1/2 of m(1, u) as u → 0 because it amounts to using the Landau
(mean-field) theory itself to show that the critical exponent is of the mean-field type,
β = 1/2. It therefore makes sense to verify that the magnetization behaves as u−1/2 for
small u without recourse to the Landau theory. Since magnetization is the expectation
value of the spin variable φ(x), magnetization for the φ4 theory is

m =

∫ (∏

y

dφ(y)
)

φ(x) exp
(
−

∫
dz

{
(∇φ)2 + tφ(z)2 + uφ(z)4 − hφ(z)

})

∫ (∏

y

dφ(y)
)

exp
(
−

∫
dz

{
(∇φ)2 + tφ(z)2 + uφ(z)4 − hφ(z)

}) . (4.54)

We change the integration variable as φ → u−1/2φ to obtain

m =

∫ (∏

y

dφ(y)
)
φ(x) exp

(
− 1

u

∫
dz

{
(∇φ)2 + tφ(z)2 + φ(z)4 − u1/2hφ(z)

})

u1/2

∫ (∏

y

dφ(y)
)

exp
(
− 1

u

∫
dz

{
(∇φ)2 + tφ(z)2 + φ(z)4 − u1/2hφ(z)

}) .

(4.55)

Apparently, we may drop the external-field term in the limit u → 0, while h is kept
infinitesimally small but positive. Then, the asymptotic form of the magnetization
as u → 0 is determined by the saddle-point method due to the large factor 1/u. The
extremal values of the exponential parts of the integrands of the denominator and
numerator cancel out. Since the saddle-point equation is written only in terms of
the variable φ without u, the saddle-point value of φ(x) is independent of u. This
means that the saddle-point value of φ(x) in front of the exponential function in the
numerator does not depend on u. Consequently, the asymptotic form of m as u → 0
is not influenced by the ratio of the integrals, implying the desired result m ∝ u−1/2.
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4.2.2 Expansion from four dimensions

The quartic term is relevant below four dimensions. We therefore have to find a non-
Gaussian fixed point and study the renormalization flow around it. A standard method
to study critical phenomena is the ε expansion, in which we expand critical exponents
around four dimensions as a power series in terms of ε = 4 − d, i.e. near the upper
critical dimension.

When the quartic term is relevant, the renormalization group recursion relation of
the φ4 model, for t and u, has a fixed point with t∗ 
= 0 and u∗ 
= 0. The recursion
relation should have a little different form from the corresponding one near the
Gaussian fixed point (4.43). We may, nevertheless, expect that the effects of u are
not too large near four dimensions and thus a cumulant expansion in the quartic term
would be useful. Actual manipulations to derive the explicit recursion relations are
delegated to Appendix A.5. The result is written in a differential form,

dt

db
= 2t +

3c

t + Λ2
u (4.56)

du

db
= εu − 9c

(t + Λ2)2
u2, (4.57)

for infinitesimal b − 1 = db with Λ and c representing positive constants, the former
being the cutoff in the momentum-space integration. The Gaussian fixed point, t∗ =
u∗ = 0, continues to be a trivial fixed point of these equations. But now a non-Gaussian
fixed point emerges, also determined from the zeros of the beta function (which is
analytic), and satisfies

t∗ = − 3c

2(t∗ + Λ2)
u∗, u∗ =

(t∗ + Λ2)2

9c
ε. (4.58)

Insertion of the second relation into the first leads to

t∗ = − t∗ + Λ2

6
ε, (4.59)

from which we obtain

t∗ = − ε

6 + ε
Λ2 ≈ −Λ2

6
ε, (4.60)

the last relation being valid for small ε. We also find

u∗ =
4ε

(6 + ε)2
Λ4

c
≈ Λ4

9c
ε (4.61)

by ignoring O(ε2) terms. Note that the non-trivial fixed point depends on the cutoff
Λ. However, we will see below that the critical exponents are independent of the cutoff
and only depend upon ε.
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Linearization of eqns (4.56) and (4.57) by writing t = t∗ + δt, u = u∗ + δu results
in, to lowest order in ε,

d(δt)
db

= 2(t∗ + δt) + 3c(u∗ + δu) · Λ−2 ·
(

1 − t∗ + δt

Λ2

)

=
(
2 − ε

3

)
δt +

c

Λ2

(
3 +

ε

2

)
δu + O(ε2, δtδu) (4.62)

d(δu)
db

= ε(u∗ + δu) − 9c(u∗ + δu)2 · Λ−4 ·
(

1 − 2
t∗ + δt

Λ2

)

= −εδu + O(ε2, εδtδu, (δu)2). (4.63)

These equations imply yt = 2 − ε/3 and yu = −ε because, for example, δu′ = byu δu
for b = 1 + db leads to

d(δu)
db

= yu δu, (4.64)

to be compared with eqn (4.63). Notice that we may ignore the off-diagonal term
c(3 + ε/2)δu/Λ2 in eqn (4.62) since this term does not contribute to the eigenvalues
of the linearized transformation. Remember that for the Gaussian fixed point yt = 2
and yu = ε, as can be verified from the equations above when one uses t∗ = u∗ = 0.

The result t∗ = −(Λ2/6)ε, u∗ = (Λ4/9c)ε means that the Gaussian fixed point
destabilizes below four dimensions and a non-Gaussian fixed point t∗ < 0, u∗ > 0
emerges. Figure 4.5 illustrates this situation in the t–u plane. The eigenvalue cor-
responding to the external field can be evaluated in essentially the same manner, and

0

u

t 0

u

t

Fig. 4.5 The left panel is for the case d > 4 and has a set of points (critical surface)

that are attracted to the Gaussian fixed point at t∗ = u∗ = 0. All points on this critical

surface (represented as a line in the figure) flow toward the Gaussian fixed point and have

the standard critical exponents of the mean-field theory. This is the universality of critical

exponents stated in terms of the renormalization group. The situation changes in the right

panel when d < 4, in which a non-Gaussian fixed point attracts points on the critical surface.

The external field h is set to zero in both cases and the system has only one relevant variable

corresponding to the temperature. When d < 4 the Gaussian fixed point is unstable along

the two directions.
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the resulting exponent is yh = 3 − ε/2 to leading order in ε. The critical exponents are
then written explicitly to first order in ε as, for instance, ν = 1/(2 − ε/3) ≈ 1/2 + ε/12
and, to O(ε), η = d + 2 − 2yh = d + 2 − (6 − ε) = 0, which means that η = O(ε2).

The above discussions apply to systems with a one-component (n = 1) order
parameter, the Ising model being the typical example. A similar theory has been
developed for multicomponent cases like the XY and Heisenberg models with their
critical exponents evaluated below four dimensions as series expansions in powers of ε.

Summarizing, we have sketched a theoretical framework to systematically derive
the deviations of critical exponents from their mean-field values in powers of ε = 4 − d,
i.e. near the upper critical dimension. As long as the trivial fixed-point constitutes a
reasonable starting point and one has enough information about it, the ε expansion
represents a useful tool. These expansions are actually not Taylor-series expansions but
asymptotic expansions. According to the properties of the asymptotic expansion
explained in Appendix A.1, we may expect to have good estimates of the exponents
for small ε by truncating the expansions at an appropriate order. Indeed we find good
agreement between the values obtained by the ε expansion to second order (with ε = 1)
and those estimated from direct methods like numerical simulations, high-temperature
expansions and experiments.

The following table summarizes the expansions of α, β and γ to O(ε2) as functions
of the number of components n of the basic operator, n = 1 for the Ising model and
n = 2 for the XY model, for example. The other exponents can be estimated by scaling
relations from these values.

α = − n − 4
2(n + 8)

ε − (n + 2)2(n + 28)
4(n + 8)3

ε2

β =
1
2
− 3

2(n + 8)
ε +

(n + 2)(2n + 1)
2(n + 8)3

ε2

γ = 1 +
n + 2

2(n + 8)
ε +

(n + 2)(n2 + 22n + 52)
4(n + 8)3

ε2.

For example, the exponent γ of the Ising model (n = 1) to first and second order
in ε(= 1) is 1.167 and 1.244, respectively. Numerical simulations indicate that γ =
1.240 for the three-dimensional Ising model in good agreement with the second-order
result. It should, however, be pointed out that a simple inclusion of higher-order
terms in the ε expansion leads to deteriorated results. This reflects a characteristic of
asymptotic expansions, and a special caution is needed to make use of the results of ε
expansions.

4.3 Real-space renormalization group for a quantum system

We have so far considered a renormalization group framework that is suited to
study the critical phenomena in problems of classical statistical physics. One of the
reasons is that critical phenomena in macroscopic systems involve a large number
of degrees of freedom, which masks quantum effects at finite temperatures. At very
low temperatures, quantum effects cannot be ignored in general and quantum phase
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transitions may occur. At zero temperature, a quantum phase transition between
two quantum states with different correlations may take place as a parameter of the
quantum Hamiltonian is varied. Note that this parameter, which would represent some
physical interaction, plays the role of temperature in classical phase transitions in that
it is the ‘knob’ (the relevant variable to be tuned) that drives the transition. It is not
within the scope of this book to expand on quantum phase transitions. However, it
is illuminating to show a simple case that exemplifies the extension of the real-space
renormalization group framework to quantum systems.

4.3.1 Quantum phase transition in the transverse-field Ising model

Consider the spin system with a quantum Hamiltonian

H = −J

N−1∑

j=1

σz
j σz

j+1 − h

N∑

j=1

σx
j , (4.65)

where free boundary conditions are assumed. The spin-1/2 quantum operators Sx,y,z
j =

σx,y,z
j /2 (σx, σy, and σz are the Pauli matrices) are represented by the following

matrices (� = 1)

Sx =

⎛

⎜⎝
0

1
2

1
2

0

⎞

⎟⎠ , Sy =

⎛

⎜⎝
0 − i

2
i
2

0

⎞

⎟⎠ , Sz =

⎛

⎜⎝
1
2

0

0 −1
2

⎞

⎟⎠, (4.66)

satisfying the algebraic relations Sz
j Sx

j = −Sx
j Sz

j , Sz
i Sx

j = Sx
j Sz

i (i 
= j) and similarly
for the x, y and y, z components. This model is known as the one-dimensional Ising
model in a transverse field or the transverse-field Ising model. Let us denote the
eigenvectors of the spin operator Sz as

Sz|↑〉 =
1
2
|↑〉, Sz|↓〉 = −1

2
|↓〉. (4.67)

Then, the spin operator Sx flips the states as

Sx|↑〉 =
1
2
|↓〉, Sx|↓〉 =

1
2
|↑〉. (4.68)

The eigenvectors of Sx can be determined in terms of |↑〉 and |↓〉 as

Sx|+〉 =
1
2
|+〉, |+〉 =

|↑〉 + |↓〉√
2

(4.69)

Sx|−〉 = −1
2
|−〉, |−〉 =

|↑〉 − |↓〉√
2

. (4.70)

The factor 1/
√

2 is for normalization, i.e. 〈+|+〉 = 〈−|−〉 = 1.
This model has a quantum phase transition in the ground state as a function of

h/J , as depicted in Fig. 4.6. On the one hand, when h/J = ∞ (h > 0, J = 0), the spins
have a lower energy if they align parallel to the external magnetic field (x-direction),
and the ground state (the equilibrium state at zero temperature) is given by |Ψ0〉+ =
| + + + · · ·+〉 (assuming h > 0). On the other hand, when h/J = 0 (h = 0, J > 0),
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0

Ordered Disordered

1 h/J

Fig. 4.6 The one-dimensional Ising model in a transverse field has a spontaneous magneti-

zation along the z-direction for small values of the transverse field h but not for large h in

the ground state. A quantum phase transition takes place at (h/J)c = 1.

the spins align in the ground state in the z-direction, |Ψ0〉↑ = |↑↑ · · · ↑〉 or |Ψ0〉↓ = |↓↓
· · · ↓〉, which are doubly degenerate. As will be shown in Chapter 9, Exercise 9.8 in
particular, the system undergoes a quantum phase transition at (h/J)c = 1 between
a ferromagnetic phase (ordered state, which approaches |Ψ0〉↑ or |Ψ0〉↓ as h/J → 0)
and a paramagnetic phase (disordered state from the viewpoint of ordering along the
z-axis, which approaches |Ψ0〉+ as h → ∞). This latter state is expanded as

|Ψ0〉+ = 2−N/2
N∏

j=1

(
|↑〉j + |↓〉j

)

= 2−N/2
(
|↑↑ · · · ↑〉 + |↓↑ · · · ↑〉 + · · · + |↓↓ · · · ↓〉

)
, (4.71)

which indicates that this state is completely disordered from the viewpoint of the
z-axis. For h/J < 1, long-range order in the z-direction develops and the system has
a spontaneous magnetization in the z-direction, i.e. a finite expectation value of the
operator mz = (

∑
j Sz

j )/N . The same quantity vanishes for h/J > 1. This is one of
the simplest examples of quantum phase transitions.

4.3.2 Real-space renormalization group

We now develop a real-space renormalization group procedure to study this quantum
phase transition. To this end we divide the N -site lattice into M blocks of n = N/M
spins each. Let us rewrite the Hamiltonian in eqn (4.65) as

H =
∑

j∈odd

Hb,j +
∑

j∈even

Hb,j = Hb + Hc, (4.72)

where the block Hamiltonian is given by

Hb,j = −Jσz
j σz

j+1 − hσx
j . (4.73)

Obviously, for the partition in eqn (4.72), n = 2 and the rescaling of the lattice
spacing is b = 2. This is a most symmetric way to decimate the Hamiltonian, where
the intrablock Hamiltonian Hb and the interblock Hamiltonian Hc share the same
functional form. We could have chosen other ways still preserving the form of the
lattice. For example, we could have partitioned

H =
∑

j∈odd

Hb′,j +
∑

j∈even

Hc,j , (4.74)
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with

Hb′,j = −Jσz
j σz

j+1 − h(σx
j + σx

j+1), Hc,j = −Jσz
j σz

j+1. (4.75)

However, the particular partition of eqns (4.72) and (4.73) satisfies a form-preserving
transformation property, called self-duality (see Section 10.4), which leads to a better
approximation.

Once we have partitioned the system, we have to diagonalize the intrablock
Hamiltonian Hb,j (j ∈ odd). In our example, the latter is represented by a 22 × 22

matrix
⎛

⎜⎜⎝

−J 0 −h 0
0 J 0 −h

−h 0 J 0
0 −h 0 −J

⎞

⎟⎟⎠ (4.76)

in the Sz-orthonormal basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}. The eigenvectors are given by

|1〉 =
1√

h2 + (
√

J2 + h2 + J)2

[
(
√

J2 + h2 + J)|↑↑〉 + h|↓↑〉
]

(4.77)

|2〉 =
1√

h2 + (
√

J2 + h2 − J)2

[
(
√

J2 + h2 − J)|↑↓〉 + h|↓↓〉
]

(4.78)

|3〉 =
1√

h2 + (
√

J2 + h2 + J)2

[
−(

√
J2 + h2 + J)|↑↓〉 + h|↓↓〉

]
(4.79)

|4〉 =
1√

h2 + (
√

J2 + h2 − J)2

[
(−

√
J2 + h2 + J)|↑↑〉 + h|↓↑〉

]
, (4.80)

with corresponding eigenvalues ε1 = ε2 = −
√

J2 + h2 and ε3 = ε4 =
√

J2 + h2. Notice
that each eigenvalue is doubly degenerate, which implies that there is a symme-
try under the exchange of two degenerate states, as was the case in the original
system.

The central idea of the present renormalization group is to keep the two lowest-lying
eigenstates of each block, |1〉 and |2〉, and ignore |3〉 and |4〉. This is an approximation
expected to be effective to study the ground state. Then, the new renormalized block
operators can be defined as

1̃ = |1〉〈1| + |2〉〈2| , σ̃z = |1〉〈1| − |2〉〈2| , σ̃x = |1〉〈2| + |2〉〈1|, (4.81)

and a new renormalized Hamiltonian is defined on a lattice with N/2 sites. The
operator 1̃ is the projection onto the subspace spanned by |1〉 and |2〉, and σ̃x exchanges
these two states as σx did in the original Hamiltonian. The operator σ̃z gives 1 for |1〉
and −1 for |2〉,



102 Implementation of the renormalization group

I I +1

j j +1

Fig. 4.7 The index j belongs to the block I and j + 1 to I + 1 for j even.

To write the renormalized Hamiltonian, one needs to construct the projector onto
the coarse-grained system,

P = P1 ⊗ P2 · · · ⊗ PN/2 , PI = (|1〉〈1| + |2〉〈2|)I = 1̃I , (4.82)

where I represents a block index that will become a site index in the next iteration.
The renormalized intrablock Hamiltonian (j ∈ odd) is trivially a diagonal operator

PIHb,jPI = ε11̃I , (4.83)

because Hb,j |1〉 = ε1|1〉 and Hb,j |2〉 = ε1|2〉.
The site indices j and j + 1 define the block index I. The interactions in the new

coarse-grained lattice are dictated by the corresponding projection of the interblock
Hamiltonian that connects two blocks with indices I and I + 1. The index j (j ∈ even)
is related to the block index I, while j + 1 belongs to the index I + 1 (see Fig. 4.7).
Therefore,

(
PI ⊗ PI+1

)
Hb,j

(
PI ⊗ PI+1

)

= −J
(
PIσ

z
j PI

)
⊗

(
PI+1σ

z
j+1PI+1

)
− h

(
PIσ

x
j PI

)
⊗ 1̃I+1. (4.84)

We are thus left with the task of computing the projection of the original Pauli spin
operators. To evaluate the projections in eqn (4.84), the following relations will be
useful, which can be verified by using eqns (4.77) to (4.80),

I〈1|σz
j |1〉I = −I〈2|σz

j |2〉I = 1 (4.85)

I〈1|σz
j |2〉I = I〈2|σz

j |1〉I = 0 (4.86)

I+1〈1|σz
j+1|1〉I+1 = −I+1〈2|σz

j+1|2〉I+1 =
J√

J2 + h2
(4.87)

I+1〈1|σz
j+1|2〉I+1 = I+1〈2|σz

j+1|1〉I+1 = 0 (4.88)

I〈2|σx
j |1〉I = I〈1|σx

j |2〉I =
h√

J2 + h2
(4.89)

I〈1|σx
j |1〉I = I〈2|σx

j |2〉I = 0. (4.90)
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Then, simple algebraic manipulations lead to

PIσ
z
j PI = σ̃z

I (4.91)

PIσ
x
j PI =

h√
J2 + h2

σ̃x
I (4.92)

PI+1σ
z
j+1PI+1 =

J√
J2 + h2

σ̃z
I+1. (4.93)

Notice the asymmetry in the projections between sites j and j + 1. This asymmetry
can be traced back to the way we partitioned the lattice in eqn (4.73), where sites j
and j + 1 are non-equivalent.

We can finally collect all these pieces together and write the full renormalized
Hamiltonian after one step of renormalization,

PHP = H̃ = ε1

N/2∑

I=1

1̃I −
J2

√
J2 + h2

N/2−1∑

I=1

σ̃z
I σ̃z

I+1 −
h2

√
J2 + h2

N/2∑

I=1

σ̃x
I . (4.94)

It is interesting to note that, apart from a constant, our choice of renormalization group
transformation preserves the form of the Hamiltonian with no additional couplings.
Had we chosen a different partition, the form of the Hamiltonian would not have been
preserved. We have thus generated the following renormalization group equation

(
J ′

h′

)
=

⎛

⎜⎜⎝

J2

√
J2 + h2

h2

√
J2 + h2

⎞

⎟⎟⎠, (4.95)

or equivalently k′ = h′/J ′ = (h/J)2 = k2, which must be iterated many times.
The resulting fixed-point equation is k∗ = (k∗)2. This recursion relation has two

trivial (stable) fixed points. One is k∗ = 0 and corresponds to the ordered ferromag-
netic phase and the other is k∗ = ∞, which characterizes the disordered paramagnetic
phase. These trivial fixed points are separated by a non-trivial (unstable) fixed point,
which is critical, k∗ = kc = 1. This critical value is exact.

To determine the values of the critical exponents, we linearize the renormaliza-
tion group equation k′ = k2 close to the critical fixed point kc = 1 and obtain the
appropriate eigenvalue

λk = byk =
dk′

dk

∣∣∣∣
kc

= 2 = b1, (4.96)

which implies yk = 1. Since the correlation length should diverge as ξ ∼ (k − kc)−ν ,
and ξ′ = ξ/b, the linearized recursion relation

k′ − kc = 2(k − kc) (4.97)

implies that ν = 1/yk = 1. This is indeed the exact critical exponent for the correlation
length of the present system because the one-dimensional transverse-field Ising model
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is equivalent to the two-dimensional classical Ising model in a sense that will be
elucidated in Exercise 9.8 and Section 10.4.2.

The critical exponent β∗ of the magnetization of the left-most (boundary) spin
with j = 1 is calculated from the recursion relation of eqn (4.93),

〈σz
1〉 =

J√
J2 + h2

〈σ̃z
1〉 =

1√
1 + k2

〈σ̃z
1〉. (4.98)

This is to be compared with the generic form of eqn (3.50) to give

b−x =
1√

1 + k2
c

=
1√
2
, (4.99)

which implies x = 1/2. Then, according to eqn (3.44), we conclude β∗ = 1/2. This is
the exact value for the surface (boundary) magnetization. One should notice, however,
that the right-most spin with j = N has β∗ = 0 from the same argument using eqn
(4.91), which is inconsistent with β∗ = 1/2 for j = 1. Hence, the present method is an
approximation, which happens to give a part of the exact values for the critical point
and critical exponents.
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Statistical field theory

We have seen that statistical-mechanical systems often involve discrete elementary
degrees of freedom such as spins in the Ising model. Field theories, on the other hand,
have continuous fields, defined over the whole space-time or part of it, as fundamental
degrees of freedom. These two seemingly different descriptions of physical phenomena
can be related close to the critical point. The physical idea behind this is that close to
the critical region some correlation length diverges and the behavior of the correlations
between degrees of freedom over long distances is independent of the microscopic
details of the theory. This is true for both discrete variables and fields alike, and
what conceptually connects the two representations is the hypothesis of universality
underlying the renormalization group framework. In the present chapter we summarize
how the description by continuous fields emerges from discrete degrees of freedom in a
more systematic manner than in previous chapters. The important roles of symmetry
and topology are also elucidated in some detail.

5.1 From bits to fields

At its most fundamental level, the microscopic description of matter is in terms of its
elementary degrees of freedom, such as spins {Sj} in the case of a magnet, or positions
and momenta {qj , pj} in the case of an atomic gas. Typically, the time evolution of
those degrees of freedom is governed by a set of equations of motion derivable from
a Hamiltonian, H, or a Lagrangian density, L, that encodes the interactions between
those elementary degrees of freedom, or by master equations in the case of open
systems (i.e. systems that are not isolated but coupled to some external environment)
as described in Chapter 11. One can imagine that solving these equations for many
degrees of freedom (say N = 1023) is a daunting task that not only involves great
complexity but also is prone to failure. It is, in general, an intractable problem, except
for limited cases, as discussed in Chapter 9.

To attack this problem, one of the common procedures consists in performing
some sort of averaging, i.e. coarse graining, over many degrees of freedom with the
expectation that the system still retains its main physical properties, and at the same
time, the problem becomes manageable. The averaged degrees of freedom are no longer
discrete but turn into slowly varying continuous fields, thus eliminating the short-
wavelength (short-distance) modes. A field represents an infinite number of degrees of
freedom and it is, in general, a tensor-valued function of the coordinates r (or space-
time). It happens that this methodology is more accurate when the relevant physics
one is trying to describe is regulated by the collective behavior of those elementary
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degrees of freedom, where long wavelengths and long times are involved. As indicated
in previous chapters, it is precisely at a critical region where fluctuations have long
wavelengths and are correlated over distances of the order of the correlation length,
ξ � a, with a denoting some microscopic distance, typically the lattice constant.
Therefore, the local connectivity of the lattice, e.g. whether it is the square lattice
or the triangular lattice, is irrelevant from the standpoint of critical properties. It is
only relevant to determine non-universal properties such as the specific value of the
critical temperature. These correlated fluctuations involve many elementary degrees
of freedom and, thus, critical phenomena represent one of those problems where a
description by statistical field theory seems appropriate.

The equivalence between the original model described in terms of discrete variables
and the field theory is not usually realized by an exact algebraic mapping, like in the
one-dimensional quantum XY and free Fermion models in Section 9.4. It should rather
be regarded as an equivalence in the sense that both models share the same critical
behavior and thus belong to the same universality class. One may conjecture that,
as long as the statistical-mechanical system displays universal behavior at criticality,
there should be a corresponding statistical field theory that describes the same physics
of long wavelength.

Indeed, we have already seen a few examples of statistical field theories, e.g. the
Gaussian model in Sections 2.9 and 4.2. In this chapter we summarize more systematic
approaches to the foundation of statistical field theories. The present exposition will
also serve as a bridge to the conformal field theory described in the next chapter.
Also explained are the roles of symmetry and topology, in particular the concepts of
symmetry breaking, long-range order and topological defects, which are essential to
the deep understanding of phase transitions and critical phenomena.

5.2 Continuum limit and field theory

Before we proceed with the derivation of effective field theories for models with discrete
variables, let us illustrate the passage to the continuum with the simple case of a linear
chain of identical torsion pendulums that are coupled through bars of elastic constant
κ (Fig. 5.1). Let us denote the moment of inertia and the length of the pendulum as

fj

Fig. 5.1 One-dimensional series of torsion pendulums.
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I and l, respectively. The mass of the weight is m. Each pendulum is constrained to
move in a plane perpendicular to the elastic bars with an angle φj from the vertical
direction. Then, one can write the Lagrangian of the system of 2N + 1 pendulums as
(∂tφj = dφj/dt)

L =
I

2

N∑

j=−N

(∂tφj)2 −
(κ

2

N−1∑

j=−N

(φj − φj+1)2 + mgl

N∑

j=−N

(1 − cos φj)
)
. (5.1)

The equilibrium situation corresponds to φj = 0 (∀j), and g is the gravitational
acceleration. The Lagrangian L in eqn (5.1) is the difference between the kinetic
energy, the first term, and the potential energy.

We are interested in describing the system in the continuum limit. This limit is
obtained by letting the spacing between two pendulums, a, tend to zero and N → ∞.
In this limit, by making the associations (∂xφ = dφ/dx)

aj → x , φj → φ(x, t) ,
φj+1 − φj

a
→ ∂xφ(x, t) , a

∑

j

→
∫

dx, (5.2)

one obtains the following expression for L, known as the sine-Gordon Lagrangian,

L =
1
2

∫
dx

(
λ(∂tφ(x, t))2 − Y (∂xφ(x, t))2 − 2G(1 − cos φ(x, t))

)
, (5.3)

in terms of the scalar field φ(x, t) and its derivatives. Here, λ = I/a is the density of
the moment of inertia, Y = κa is the Young modulus, and G = ρgl with ρ = m/a. In
the limit that the gravitational force vanishes, the above Lagrangian becomes

L =
1
2

∫
dx

(
λ(∂tφ(x, t))2 − Y (∂xφ(x, t))2

)
. (5.4)

Formally, this is the same Lagrangian as the one that describes a harmonic crystal
whose elementary excitations are sound waves. The physical differences, though,
are that in the crystal case there are no pendulums but only masses connected by
elastic springs in a linear chain, and the angle variables are replaced by longitudinal
displacements of those masses from their equilibrium positions. The elasticity theory,
a phenomenological approach to studying the elastic properties of a crystal, is the
archetypal example of a field theory.

Since we are interested in studying the thermodynamic aspects of field theories,
i.e. statistical field theories, we would like to compute their generating functional Z.
This latter quantity corresponds to the partition function of statistical mechanics and
is defined in terms of an action S[φ], which plays a similar role as the Hamiltonian
in classical statistical mechanics. More precisely, one analytically continues time as
t → −it, which changes the Minkowski space with infinitesimal distance (dr)2 − (dt)2

to the Euclidean space with (dr)2 + (dt)2. By this correspondence, the Lagrangian
density of the linear chain of pendulums and the corresponding action are

L(φ, ∂μφ) =
λ

2
(∂r1φ(r))2 +

Y

2
(∂r2φ(r))2, (5.5)
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and

S[φ] =
∫

ddrL(φ, ∂μφ), (5.6)

respectively, where r = (r1, r2).1 The first component of the coordinate, r1, corre-
sponds to imaginary time. This Euclidean Lagrangian density can be identified with
the Hamiltonian density in classical statistical mechanics. The expression of the action
of eqn (5.6) is generic and we shall now discuss general properties not restricted to
the system of torsion pendulums.

The generating functional Z[J ] is an equivalent of the partition function,

Z[J ] =
∫

Dφ(r)W [φ(r)], (5.7)

where the statistical weight of a field configuration is

W [φ(r)] = exp
(
− S[φ] +

∫
ddrJ(r)φ(r)

)
, (5.8)

with J(r) being a generating current or a source term linearly coupled to the field
φ(r). The functional integral in eqn (5.7) will be defined below.

The source term plays the role of a probe to determine n-point correlation functions
by functional differentiation of the generating functional,

〈φ(r1) · · ·φ(rn)〉 =
1

Z[J ]
δnZ[J ]

δJ(r1) · · · δJ(rn)
. (5.9)

This is a continuum analog of the logarithmic derivative of the partition function by
local fields in classical statistical mechanics,

〈S1 · · ·Sn〉 =
1

Z(h)
∂nZ(h)

∂(βh1) · · · ∂(βhn)
, (5.10)

where, for example, the partition function is given by

Z(h) =
∑

{Si}
exp

(
β

∑

〈ij〉
JijSiSj + β

∑

i

hiSi

)
. (5.11)

It should be clear from this analogy that we may call the action S[φ] an effective
Hamiltonian H̃

S[φ] → H̃(φ), (5.12)

where the inverse temperature β = 1/T has been included in the effective Hamiltonian.
We use both names interchangeably for the same quantity in this and the next
chapters.

1 The change t → −it in eqn (5.4) yields the opposite sign for L. This does no harm if we choose
an appropriate sign in exponentiating the action to define the statistical weight, as will be done
shortly. Also, we write explicitly the superscript d for the differential of the variable of integration to
emphasize the important role of dimensionality.
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In eqn (5.7) the generating functional Z[J ] has been given by a functional integral
obtained as a limit of discrete integrals over all allowed configurations of the variables.
The passage to the continuum from a d-dimensional lattice model with scalar degrees
of freedom is accomplished by a simple extension of the relations in eqn (5.2) with a
functional measure defined as an appropriate limit

∫
Dφ(r) = lim

a→0,N→∞

∫ N∏

j=1

dφj , (5.13)

where, without loss of generality, we assumed that there are N points defining the
discretized lattice of constant spacing a and infinitesimal volume ad.

In field theories one often encounters unphysical divergences originating in the
continuum nature of fields or the infinite degrees of freedom as seen in the limits in
eqn (5.13). In such cases, discrete lattice models (before taking the limits N → ∞
and a → 0 on the right-hand side of eqn (5.13)) provide a natural regularization, a
way to remove divergences, and thus supply the precise mathematical meaning to the
functional integrals and other tricks of statistical field theories. The small length scale
a, the lattice constant, is called a cutoff in this context.

Clearly, the continuum limit of the mechanical system described in eqn (5.1)
is a well-defined field theory. There are several important differences between this
simple mechanical system and statistical field theories. First, the Hamiltonian of the
Ising model, for example, is not a genuine mechanical Hamiltonian since there are no
intrinsic dynamics and conjugate variables related by Poisson brackets. Secondly, one
needs to distinguish between lattice systems with continuous variables from those with
discrete degrees of freedom. In models of statistical mechanics the elementary degrees
of freedom are often realized by discrete variables, e.g. Ising spins. In those cases,
the way a continuous field is generated requires some care since there is a constraint
in the allowed values for the variables. Finally, most of the statistical field theories
require a physical cutoff to be mathematically well defined to avoid infinite integrals.
These cutoffs determine the limits of integration. An infrared cutoff refers to a long-
distance (or small-momentum or low-energy) cutoff, while an ultraviolet cutoff alludes
to a short-distance (or large-momentum or high-energy) cutoff.

5.3 Hubbard–Stratonovich transformation

In this section we illustrate a process to start from a microscopic lattice model and
derive its mapping to a functional integral over continuous fields. The Ising model
on a d-dimensional hypercubic lattice with lattice constant a is taken as an example.
The technique is known as the Hubbard–Stratonovich transformation, or the Gaussian
transformation, and is a generalization of the completing-the-square method in the
standard Gaussian integration.

The Ising Hamiltonian and its partition function are given by

H = −
∑

i,j

JijSiSj , Z =
1

2N

∑

{Si=±1}
exp

( ∑

i,j

KijSiSj

)
, (5.14)
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with Kij = βJij a matrix of coupling constants, not necessarily of nearest-neighbor
type. A trivial prefactor 2−N has been given to Z for later simplicity of notation. For
example, the uniform coupling Jij = J/2N defines the infinite-range Ising model of
Section 2.5, while Jij = J/2 for nearest-neighboring sites and zero otherwise represents
the usual Ising model with short-range interactions. We assume that the system is
translationally invariant.

Define the N -component vector S = (S1, S2, · · · , SN ), and an N × N sym-
metric coupling matrix K̃ij = K01ij + Kij , where 1 = diag(1, · · · , 1), with K0 ≥
maxi

∑
j Kij so that K̃ is a positive definite matrix. Then,

Z =
e−K0N/2

2N

∑

{Si=±1}
exp

(1
2
S · K̃ · S

)
. (5.15)

According to a formula of multivariable Gaussian integral, eqns (A.253) and (A.258),
the exponential on the right-hand side of eqn (5.15) is expressed as

exp
(1

2
S · K̃ · S

)
= e−A

∫

RN

( N∏

j=1

dσj

)
exp

(
− 1

2
σ · K̃−1 · σ − σ · S

)
, (5.16)

where eA = (2π)N/2(det K̃)1/2. This is the Hubbard–Stratonovich transformation and
is a multivariable generalization of eqn (2.36). If we realize that

2−N
∑

{Si=±1}
exp

(
− σ · S

)
= exp

( N∑

i=1

log cosh σi

)
, (5.17)

the partition function of the original Ising model becomes

Z = e−(A+K0N/2)

∫

RN

( N∏

j=1

dσj

)
exp

(
− 1

2
σ · K̃−1 · σ +

N∑

i=1

log cosh σi

)
. (5.18)

We would like to emphasize at this point that the mapping of the partition function
of eqn (5.14) into eqn (5.18) is exact. There are no approximations involved, and we
have simply transformed the original discrete variables into continuous variables.

The first term in the exponential of eqn (5.18) should provide terms leading to
derivatives in the field theory since it is the one containing spatial variations,

σ · K̃−1 · σ = 2
∑

i>j

σiK̃
−1
ij σj +

∑

i

K̃−1
ii σ2

i . (5.19)

The second term gives a potential, local, contribution

log cosh σi =
σ2

i

2
− σ4

i

12
+ O(σ6

i ). (5.20)

Notice that K̃
−1

can be written as

K̃
−1

= (K01 + K)−1 = K−1
0 1− K−2

0 K + K−3
0 K2 − K−4

0 K3 + O(K4) (5.21)
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in terms of the original coupling constants. Assume now a nearest-neighbor Ising
model. Then K includes non-vanishing elements to connect neighboring sites, K2 for
second nearest neighbors, K3 for third neighbors, and so on. If nearest neighbors are
the dominant, most relevant, parts of interactions, we may eliminate K2 and higher
orders in the expansion of eqn (5.21). Then, the leading contribution in eqn (5.19) can
be written in the form ((σi − σj)/a)2 for nearest neighboring i, j. The reason is that the
nearest-neighbor term (proportional to −σ · K · σ) coming from −K−2

0 K in eqn (5.21)
has a contribution proportional to −σiσj , which can be combined with part of the
simple quadratic terms of eqn (5.19) to yield the desired expression −2σiσj + σ2

i + σ2
j .

In the continuum limit, where a → 0 and N → ∞,

a i → r , σi → φ(r) ,
(σi − σj

a

)2

→ (∇φ(r))2, (5.22)

and the scalar field theory belonging to the Ising universality class is

Z ∼
∫

Dφ(r) exp
(
−

∫
ddr

{
b(∇φ(r))2 + tφ(r)2 + uφ(r)4

})
. (5.23)

This is identical to the φ4-field theory already considered in Section 4.2.1. For space
dimensions d close to the upper critical dimension (in this case duc = 4, see Sections
2.10 and 4.2.1) the higher-order terms become irrelevant in the renormalization group
sense at the Gaussian fixed point (Exercise 4.2) and thus can be dropped.

EXERCISE 5.1 The Hubbard–Stratonovich transformation is essentially a
Gaussian integration. Consider the general model Hamiltonian on a hypercubic
lattice

H = −
∑

ij

JijSi · Sj , (5.24)

where Si has n components and is normalized as |Si|2 = 1. The Ising model
is a particular case of this Hamiltonian with n = 1. Assume that the system is
translationally invariant and apply the same analysis as in the text to this n-
component system. In particular, show that the effective Hamiltonian, taken to
the quartic term in fields, is expressed as

H̃ =

∫
ddr

{
b

n∑

j=1

(
∇φj(r)

)2
+ t

n∑

j=1

φ2
j (r) + u

( n∑

j=1

φ2
j (r)

)2}
. (5.25)

5.4 Integrating out degrees of freedom: Coarse graining

We cannot always apply the above Hubbard–Stratonovich methodology to arbitrary
models to find the appropriate field theory. In general, there is no systematic standard
procedure to find the action for any given lattice model with discrete variables. Let
us assume now that we have already identified the relevant microscopic degrees of
freedom and proceed to apply a coarse-graining, averaging, procedure to determine
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an effective field theory. Again, for simplicity, assume that the microscopic degrees of
freedom are spins, not necessarily Ising spins, and define a block variable as

Sζ(r) =
1

Nζ(r)

∑

i∈blockr

Si, (5.26)

where r represents the center of the block of linear dimension ζ, a � ζ � ξ, with Nζ(r)
the number of spins in the block. Clearly, if Nζ(r) = 1 then Sζ(r) = Si with ia = r. In
this way, we construct new, approximately N/Nζ (if all Nζ are equal), coarse-grained
variables Sζ in terms of the original N spins Si. Notice that the mapping of eqn (5.26)
is not invertible, and therefore the procedure we will describe is not a mathematical
isomorphism. One expects on physical and mathematical grounds that Sζ(r) varies
smoothly on a microscopic scale a, which means to lower the space resolution of the
description, and only variations at a scale ζ will be appreciable, in the sense that it
can vary from block to block.

Given the Hamiltonian H({Si}), written in terms of the original degrees of freedom
{Si}, we would like to determine the corresponding Hamiltonian for the coarse-grained
variables Sζ(r). Formally, one can perform the following mapping

exp
(
− H̄({Sζ(r)})

)
= Tr

{
exp

(
− H({Si})

) ∏

r

δ
(
Sζ(r) − 1

Nζ(r)

∑

i∈blockr

Si

)}
,(5.27)

where the trace operation Tr =
∑

{Si} represents the sum over the original spins {Si},
with the constraint that only spin configurations that have a certain value Sζ(r) are
kept. The inverse temperature β has been incorporated into the Hamiltonian. Then,
the fundamental idea consists in summing over the degrees of freedom corresponding
to the shortest scales, thus generating effective models that describe the same long-
distance physics by elimination of the short-distance, microscopic, structure. Moreover,
in an ideal situation, one would like to keep the partition function of the original system
invariant,

Z = Tr exp
(
− H({Si})

)
=

∑

{Sζ(r)}
exp

(
− H̄({Sζ(r)})

)
. (5.28)

One can continue with the construction of a new Hamiltonian by defining new block-
spin variables from the coarse-grained {Sζ(r)} ones. This coarse graining, or cell,
procedure is simply the block-spin transformation of Chapter 4 and is the basis of the
real-space renormalization group method. The main point, though, is that eventually
the coarse-grained variables {Sζ(r)} become a field φ(r), or set of fields {φi(r)}, of
a continuous variable r and the partition function can be expressed as a functional
integral

Z =
∫

Dφ(r) exp
(
− H̃(φ(r))

)
=

∫
Dφ(r) exp

(
− S[φ(r)]

)
, (5.29)

the measure Dφ(r) meaning integration over the allowed configurations of the field.
Strictly speaking, H̃ is not a Hamiltonian since the coarse-grained variables are not
necessarily related by Poisson bracket relations; it simply determines the weight of the
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configurations. Because of its resemblance to the action of Euclidean field theories, we
will also call it an action S[φ(r)]. If two different, originally discrete, models have
the same limiting fixed-point Hamiltonian after this systematic procedure, then both
models belong to the same universality class.

Notice that there is nothing special about the real-space blocking procedure. One
can alternatively write the original microscopic H({Si}) in terms of the Fourier-
transformed, momentum q, spin variables

Sq =
∑

j

eiq·rj Sj , Sj =
1
N

∑

q

e−iq·rj Sq, (5.30)

and define a coarse-graining Hamiltonian in the momentum space through the aver-
aging process

exp
(
− H̄({Sq, q < Λ})

)
=

∑

{Sq ,q>Λ}
exp

(
− H({Sq})

)
. (5.31)

Here, we achieve a lower spatial resolution by integrating out higher Fourier compo-
nents (q > Λ), Λ being the momentum cutoff, and 2π/Λ should be identified with the
block size ζ.

We would like to make two remarks. The first is that, although this procedure
can be made rigorous in the case of classical systems, it is impractical since, except
for trivial cases, such as the one-dimensional Ising model of Section 3.6, the method
generates a large number of additional interactions. The second remark is that an
equivalent coarse-graining procedure for microscopic quantum-mechanical models is
subject to additional mathematical subtleties.

5.5 Phenomenological Landau–Ginzburg approach

An alternative program to generate effective field theories is the Landau–Ginzburg
approach. One constructs the effective Hamiltonian in a phenomenological way in
terms of collective degrees of freedom expressed as the field of order parameter Φ(r) =
{φ1(r), · · · , φn(r)}, with the symmetry of the microscopic Hamiltonian taken into
account. For example, a one-component scalar field (n = 1) may describe the standard
liquid–gas transition or the uniaxial Ising ferromagnet. A two-component, or complex,
field describes a transition to a superfluid or superconducting phase, and a three-
component, vector, field describes a classical magnetic transition. More esoteric order
parameters include second-rank tensorial quantities that describe the transition to
nematic or smectic liquid-crystal phases.

This process results in an effective field theory with couplings that are functions
not only of the original microscopic couplings but also of external control parameters
such as the temperature. Strictly speaking, the effective Hamiltonian H̃ is neither a
proper Hamiltonian nor a free energy since, for example, couplings in H̃ depend on
the temperature and fields. Also, the variables and their derivatives are not connected
by canonical dynamical relations.

One should take into account several constraints in constructing the effective
Hamiltonian. The first observation is that, if the original degrees of freedom are defined
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in a real space with local, short-range, interactions, one would expect that the resulting
continuous fields define a local field theory,

H̃(Φ(r)) =
∫

ddr H̃, (5.32)

where H̃ is a Hamiltonian density. Next, the effective Hamiltonian is a functional of
the field and its derivatives. It also includes the explicit dependence on the coordinate
r when the system is not uniform due, for example, to randomly distributed defects
or impurities. The effective Hamiltonian density is therefore written generically as

H̃ = H̃[Φ(r), ∂μΦ(r), ∂μ∂νΦ(r), · · · , r], (5.33)

where ∂μ = ∂/∂rμ and rμ (μ = 1, · · · , d) represent the components of the coordinate.
The existence of derivatives in the argument of the effective Hamiltonian density
reflects short-range interactions between nearby degrees of freedom in the microscopic
Hamiltonian.

One of the most important elements to consider is the symmetry of the system. For
instance, consider again the classical Ising Hamiltonian in the presence of an external
magnetic field h and nearest-neighbor couplings Jij ,

H = −
∑

〈ij〉
JijSiSj − h

∑

i

Si. (5.34)

It is clear that, if we perform the transformation Si → −Si, ∀i, the Hamiltonian
remains invariant under such reflections as long as we also change the sign of the
magnetic field h → −h. This global symmetry transformation (involving all the spins
in the system) forms the group Z2. The order parameter in this case, a scalar field
φ(r) (n = 1), is the magnetization and any effective Hamiltonian written in terms of
(a functional of) φ(r) should satisfy this symmetry constraint

H̃(φ(r), h) = H̃(−φ(r),−h). (5.35)

Moreover, if the system is translationally invariant, this symmetry should also be
preserved in the effective Hamiltonian density as

H̃ = H̃[φ(r), ∂μφ(r), ∂μ∂νφ(r), · · · ], (5.36)

without explicit dependence on the space coordinate r. Another example is furnished
by the classical ferromagnetic Heisenberg model without external field, where each spin
has three components, Si = (Sx

i , Sy
i , Sz

i ). Then, the order parameter is represented by
the vector magnetization (n = 3). In the absence of an external magnetic field, all
three directions of the spin are equivalent. Correspondingly, the effective Hamiltonian
should be rotationally invariant with a group of symmetry called SO(3).2 Usually, the
Hamiltonian is also translationally invariant.

Finally, the physical constraints of boundedness and stability should be taken into
account in the design of a sensible field theory. It is necessary to keep in mind
that the probability of a field configuration should remain finite. This implies well-
defined mathematical constraints on the sign and magnitude of the coefficients in the

2 Orthogonal transformation in three dimensions with determinant 1.
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analytic expansion of the effective Hamiltonian density. Moreover, these coefficients are
required to be analytic functions of the external parameters, such as the temperature
or pressure.

All these physical constraints lead us to the following standard form of the Landau–
Ginzburg (or Landau–Ginzburg–Wilson in the context of renormalization group
theory) effective Hamiltonian density for a translationally and rotationally invariant
system,3

H̃ = K

n∑

i=1

d∑

μ=1

∂μφi(r)∂μφi(r) + A

n∑

i=1

φ2
i (r)

+B
( n∑

i=1

φ2
i (r)

)2

−
n∑

i=1

hi φi(r). (5.37)

We have included only a few significant terms. The quartic invariant
∑n

i=1 φ4
i (r)

and higher-order terms have been omitted. We also added a source term, external
field hi, linearly coupled to the order parameter field. Since space variations of the
order parameter should be penalized, the coefficient K is positive and represents the
stiffness, favoring uniformity of the order parameter. Similarly, the highest-order power
in the expansion of eqn (5.37) should have a positive coefficient, B > 0, because of
stability reasons. We are thus left with the coefficient A. It is clear that the latter
coefficient should change sign at the transition point and is the one that drives the
transition. Therefore, A > 0 at high temperatures, favoring disorder, and A < 0 at low
temperatures, favoring order.

The Landau mean-field theory of Chapter 2 is recovered as the saddle-point approx-
imation of this effective field theory: It is obtained as the largest single contribution
that maximizes the integrand of the functional integral

Z =
∫

DΦ(r) exp
(
− H̃(Φ(r))

)
. (5.38)

Let us illustrate the idea for the scalar field (n = 1).
Consider the partition function of eqn (5.38) with a Landau–Ginzburg Hamiltonian

H̃(φ(r)) =
∫

ddr
{

(∇φ(r))2 + tφ(r)2 + uφ(r)4 − h(r)φ(r)
}

≡ H̃0(φ(r)) −
∫

ddrh(r)φ(r). (5.39)

We apply the saddle-point approximation of Appendix A.1, which amounts to approx-
imating the integral by its maximum value that corresponds to the most probable
configuration φ0(r). This is determined from

δH̃0(φ(r))
δφ(r)

∣∣∣∣∣
φ0(r)

= h(r). (5.40)

3 It is not essential in this chapter to distinguish covariant and contravariant derivatives, ∂μ and ∂μ.
See Appendix A.6.
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Then, the partition function is approximated as

Z[h] = e−H̃(φ0(r)). (5.41)

The magnetization field satisfies φm(r) = φ0(r). The saddle-point free energy per unit
volume V is minimized for the case of a uniform order parameter field φm(r) = m,
with the result4

f = −T

V
log Z[h] = t̃m2 + ũm4 − h̃m, (5.42)

where t̃ = Tt, ũ = Tu, and h̃ = Th. This is the Landau theory of Section 2.3.
It is possible to consider the leading-order correction to the saddle-point approx-

imation by the expansion of H̃0(φ(r)) to second order in Δ = φ(r) − φ0(r) and a
Gaussian integration. This is known as the loop expansion.

EXERCISE 5.2 Consider a system described by the following Landau–Ginzburg
effective Hamiltonian (with dimension of energy)

TH̃(φ(r)) =

∫
ddr

{
c(∇φ(r))2 + D(∇2φ(r))2 + tφ(r)2 + uφ(r)4

}
, (5.43)

with coefficients D, u > 0, and where φ(r) is a real scalar field. Assume that the
other two coefficients may change as

c = c0(Δ − Δc) , t = t0(T − Tc) (5.44)

as a function of some external parameter Δ and temperature T . Establish the phase
diagram in the (Δ, T ) plane near (Δc, Tc). Show that there are three distinct phases:
A paramagnetic, disordered, phase with vanishing order parameter, a spatially
homogeneous ordered phase, and an inhomogeneous, i.e. spatially modulated,
ordered phase. The three phase boundaries meet at a critical point (Δc, Tc) known
as the Lifshitz point. Determine the order of the phase transitions of the three phase
boundaries.

Hint: Use a periodically modulated φ(r) = φ0 cos(q · r), with φ0 a real constant,
as the ansatz saddle-point solution.

5.6 Symmetry and its breakdown

Symmetry is one of the key concepts to characterize phase transitions, or physical
phenomena at large. For example, it is well known that the invariance of a Hamiltonian
or Lagrangian with respect to time translation leads to the conservation of energy.
Similarly, invariance with respect to spatial translation is at the origin of momentum
conservation. Noether’s theorem as proved in Appendix A.6 is a general statement
about a conservation law resulting from a continuous symmetry of the system.

The existence of symmetries in a physical system is formally expressed by the
invariance of the Hamiltonian under the operation of elements of a group that specifies

4 Recall that the temperature T is included in the Landau–Ginzburg effective Hamiltonian.
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the symmetry. A simple example is the Ising model without external field, in which
the overall (global) change of sign, Si → −Si (∀i), keeps the Hamiltonian invariant.
This operation is an element of the group Z2 consisting of two elements {1,−1}. The
change of sign corresponds to the element −1, whereas the trivial element 1 changes
nothing and represents the identity element. Another example of a global symmetry
is the Heisenberg model, again in the absence of external field. The rotation of all
spins by the same angle, Si → R · Si (∀i), where R is a matrix of rotation in the
three-dimensional spin space, leaves the Hamiltonian invariant because the interaction
Si · Sj is an inner product. The corresponding group is called SO(3) and the above-
mentioned rotation matrix R is a representation of this group. The language of group
theory is often very useful to describe symmetry properties of a physical system. We
give a brief introduction to group theory in Appendix A.7 for the reader’s convenience.
In particular, the concept and language of Lie group and Lie algebra are of central
importance in the following chapter of conformal field theory. Although the text of
this book is written as readably as possible without detailed knowledge of group
theory, it is nevertheless useful to go through the appendix to better understand the
background.

The symmetry of a Hamiltonian should be distinguished from the symmetry of
a state of the same system. For instance, the Hamiltonian of the Ising model with-
out external field has the Z2 symmetry, but a state, for example the all-up state,
Si = 1 (∀i), clearly changes into a different state, Si = −1 (∀i), by the global reversal
of the sign. This observation implies that the symmetry possessed by the Hamiltonian
may be broken down in the states that are actually realized in the physical world.
This is the phenomenon of spontaneous symmetry breaking and has been discussed
already several times in this book. It should be noted that a global symmetry can
be broken spontaneously but a local symmetry, the invariance of a Hamiltonian
by an operation involving only a finite number of local degrees of freedom, is
never broken spontaneously. This important comment will be further clarified in
Section 7.7.

One of the central remarks in this section is that a symmetry can be broken
spontaneously only in the thermodynamic limit. Let us again take the example of the
Ising model. A quantitative measure of symmetry breaking is the order parameter,
the spontaneous magnetization in the present example. The magnetization per site as
a function of the external field, mN (h), for system size N , is an analytic function of
h as long as N is finite. The reason is that the partition function ZN (h) is a sum of
finite number of Boltzmann factors e−βH and thus mN (h), the logarithmic derivative
of ZN (h) with respect to h, is not a singular function of h. Thus, mN (h), an odd
function of h, has a well-defined limit

lim
h→+0

mN (h) = lim
h→−0

mN (h) = 0. (5.45)

The situation can change if we take the thermodynamic limit first,

lim
h→±0

lim
N→∞

mN (h) ≡ m0(±0) = 0, (5.46)
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which defines the spontaneous magnetization m0. A singularity at h = 0 may emerge
due to the limiting process N → ∞.

One can illustrate the mechanism leading to a state of spontaneously broken
symmetry with a trivial example. Consider again the infinite-range model of Section
2.5, which is Z2 symmetric, in the presence of an external magnetic field h

H = − J

2N

(∑

i

Si

)2

− h
∑

i

Si. (5.47)

The partition function is given by

ZN (h) =

√
KN

2π

∫ ∞

−∞
dx e−NKx2/2(2 cosh(Kx + βh))N

=

√
KN

2π

∫ ∞

0

dx e−NKx2/2
(
(2 cosh(Kx + βh))N + (2 cosh(Kx − βh))N

)
,(5.48)

where K = βJ . This equation clearly indicates that ZN (h) is an even function of h,
ZN (h) = ZN (−h). The evaluation of the magnetization proceeds as

mN (h) =
1
N

∂

∂(βh)
log ZN (h)

=

∫ ∞

−∞
dx e−NKx2/2

(
2 cosh(Kx + βh)

)N tanh(Kx + βh)
∫ ∞

−∞
dx e−NKx2/2

(
2 cosh(Kx + βh)

)N

= −mN (−h), (5.49)

and mN (h) is an odd function of h, as expected. It is clear from the equation above that

lim
h→±0

mN (h) = 0, (5.50)

and obviously

lim
N→∞

lim
h→±0

mN (h) = 0. (5.51)

On the other hand, if one takes the thermodynamic limit first, keeping h finite,

lim
N→∞

mN (h) = tanh(Km0(h) + βh), (5.52)

where we have used the saddle-point method to compute the integrals in eqn (5.49).
The quantity m0 is determined from the maximization of the function

g(x) = −Kx2

2
+ log

(
2 cosh(Kx + βh)

)
, (5.53)

which appears in the integrands as eNg(x), in the limit of large N . Not surprisingly (see
Section 2.5), the value of x that maximizes g(x), i.e. m0, satisfies the self-consistent
mean-field equation m0(h) = tanh(Km0(h) + βh). Therefore, for temperatures
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Fig. 5.2 In order for a ferromagnetic Ising system to go from a state with positive magneti-

zation to another state with negative magnetization, an intermediate state with domain walls

must be realized. For an infinitely large system, the creation of domain wall(s), indicated in

a dotted line, costs an infinitely large energy.

T below the critical temperature Tc = J , spontaneous symmetry breaking (or sponta-
neous magnetization) manifests itself as the singular limit

lim
h→±0

lim
N→∞

mN (h) = m0(±0) = 0. (5.54)

Likewise, for T > Tc, limh→±0 limN→∞ mN (h) = 0.
A related concept is ergodicity breaking. If we take the thermodynamic limit first,

it becomes impossible that the system explores the whole phase space when symmetry
breaking occurs for discrete symmetry. The system becomes trapped in a part of the
phase space. Again, in the simple example of the ferromagnetic Ising model without
external field, only the subspace of states satisfying

∑
i Si > 0 can be accessed by

the system when the symmetry is broken such that limh→+0 limN→∞ mN (h) > 0. The
other subspace with

∑
i Si < 0 is out of reach because the system has to go through the

barrier of (infinitely) high (free) energy separating these two subspaces, see Fig. 5.2.
Thus, ergodicity, which means that the system reaches all possible states, is broken.

The state of broken symmetry is characterized by long-range order, which is a
very similar notion to spontaneous symmetry breaking but not exactly the same.
Long-range order is defined by the existence of a finite (non-vanishing) limit of the
two-point correlation function,

lim
h→0

lim
|r−r′|→∞

lim
N→∞

〈O(r)O(r′)〉 = 0, (5.55)

with O(r) being the local order parameter, such as φ(r) for the φ4 model and Si

for the Ising model. It is assumed that O(r) is chosen such that the simple average
〈O(r)〉 vanishes in the zero-field limit h → 0 for a finite-size system.5 Intuitively, if a
symmetry is broken, the system is ordered in a global scale and the value of O(r) at
r is strongly correlated with the same quantity at a far position r′. Thus, long-range
order follows. To prove rigorously the equivalence of the existence of long-range order

5 The Potts spin degree of freedom in its simple form does not satisfy this criterion. See Exercise
8.5 for more details.
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and spontaneous symmetry breaking is a non-trivial mathematical problem, although
physically quite plausible.

Also to be noted is the property known as clustering, in which the limit of eqn
(5.55) reduces to the product of order parameters,

lim
h→±0

lim
|r−r′|→∞

lim
N→∞

〈O(r)O(r′)〉 = lim
h→±0

lim
N→∞

〈O(r)〉 · lim
h→±0

lim
N→∞

〈O(r′)〉. (5.56)

The sign of h should coincide in these limiting procedures.

5.7 Nambu–Goldstone modes

Attempts to change the particular broken-symmetry state to other possible broken-
symmetry configurations cost energy along certain directions in the order-parameter
space, as illustrated in Fig. 5.2 for the breaking of a discrete symmetry Z2. This
may be interpreted as the system displaying a generalized rigidity or stiffness. If a
continuous symmetry is spontaneously broken, on the other hand, the spectrum of
the Hamiltonian generically has gapless collective excitations or soft modes. A soft
mode means that changes along particular directions in the space of order parameters
require no energy. The mexican-hat potential shown in Fig. 5.3 is a typical example,
in which the system can move freely along the bottom of the potential.

These emergent excitations characterizing the ordered phase are known as the
Nambu–Goldstone modes. Examples of these low-energy excitations include spin waves
in the XY model, as explained in Chapter 7 (because of the spontaneous breaking
of the spin rotational symmetry) and acoustic phonons in crystalline solids (because
of the breaking of the space translational symmetry). The existence of these low-
energy excitations is the essence of the Goldstone theorem. This theorem states
essentially that, whenever a continuous symmetry is spontaneously broken in a system
with short-range interactions, there exist modes with zero excitation energy and a
continuous spectrum above it. As will be exemplified later, this fact manifests itself

V

f1

f2

Fig. 5.3 A continuum of minima exists for the mexican-hat-type potential V . The system

can continuously change its lowest-energy state from one of the continuous minima of the

potential to another one without energy cost.
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in the behavior of a correlation function in the Fourier space where that correlation
function has a pole at zero wave number.

Let us present an example to understand the physics behind this theorem. A
more formal manipulation to show the zero-energy mode is given in Appendix A.6.5.
Consider eqn (5.37) with n = 2, a two-component system,

H̃0 =
(
∇φ1(r)

)2 +
(
∇φ2(r)

)2 + t
(
φ1(r)2 + φ2(r)2

)
+ u

(
φ1(r)2 + φ2(r)2

)2
. (5.57)

We have set K = 1, A = t, B = u and hi = 0 in eqn (5.37). This system has the
mexican-hat potential

V = t
(
φ1(r)2 + φ2(r)2

)
+ u

(
φ1(r)2 + φ2(r)2

)2
, (5.58)

as a function of (φ1, φ2), as shown in Fig. 5.3 for t < 0. The Hamiltonian is

H̃0(Φ(r)) =
∫

ddr H̃0, (5.59)

with Φ(r) = (φ1(r), φ2(r)). This Hamiltonian displays an SO(2) symmetry that
involves transformations of the form

(
φ′

1(r)
φ′

2(r)

)
=

(
cos θ sin θ
− sin θ cos θ

) (
φ1(r)
φ2(r)

)
(5.60)

leaving H̃0(Φ(r)) invariant. As in the scalar case (n = 1), when t > 0, the system is
in the disordered phase with Φ(r) = 0. On the other hand, if t < 0, the potential V
displays a set of minima at

Φ(r)2 = φ1(r)2 + φ2(r)2 = − t

2u
> 0, (5.61)

signaling a broken-symmetry, i.e. an ordered phase. This solution is infinitely degener-
ate: Any state in the circle labeled by the angle θ ∈ [0, 2π) is a possible and legitimate
physical solution. A way to select one of those possible solutions is to apply an external
field h = (h1, h2)

H̃(Φ(r)) = H̃0(Φ(r)) −
∫

ddr
(
h1φ1(r) + h2φ2(r)

)
, (5.62)

and choose, for instance, h = (h1, 0) without loss of generality. This choice amounts
to selecting a corresponding direction in the order parameter space

Φ̃(r) = (φ̃1(r), φ̃2(r)) =

(√
|t|
2u

, 0

)
≡ (a, 0) (5.63)

among the possible solutions of eqn (5.61) for t < 0.
We are interested in the stability of the state of broken symmetry of eqn (5.63).

To this end, we write

φ1(r) = a + δφ1(r), φ2(r) = δφ2(r) (5.64)
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and expand H̃0 to second order in δφ1 and δφ2. The former δφ1 is used to
see the longitudinal stability because it is parallel to the vector order parameter
Φ̃ = (a, 0), and the latter δφ2 is a transverse perturbation to Φ̃. The result is

H̃0 =
(
∇δφ1(r)

)2 +
(
∇δφ2(r)

)2 + t
(
(a + δφ1(r))2 + (δφ2(r))2

)

+u
(
(a + δφ1(r))2 + (δφ2(r))2

)2

= ta2 + ua4 +
(
∇δφ1(r)

)2 + (t + 6ua2)
(
δφ1(r)

)2

+
(
∇δφ2(r)

)2 + (t + 2ua2)
(
δφ2(r)

)2

= − t2

4u
+

(
∇δφ1(r)

)2 + 2|t|
(
δφ1(r)

)2 + (∇δφ2(r))2. (5.65)

A first observation is that δφ1 and δφ2 are decoupled (no cross-term δφ1δφ2) and hence
the longitudinal and transverse modes can be analyzed separately. Secondly, a com-
parison with eqn (2.74) reveals that both fluctuations δφ1 and δφ2 are described by the
Gaussian model. Thus, the present Hamiltonian reads in the Fourier representation,
according to eqn (2.80),

H̃ =
∫

ddq

(2π)d

(
(2|t| + q2) δφ̃1(q)δφ̃1(−q) + q2δφ̃2(q)δφ̃2(−q)

)
, (5.66)

where we ignored the trivial constant term in eqn (5.65). If we interpret the coeffi-
cient of δφ̃i(q)δφ̃i(−q) as the excitation energy of the mode i for the wave number
(momentum) q, the longitudinal mode (i = 1) has a positive lowest excitation energy
2|t| for q = 0. In contrast, the transverse mode has a zero excitation energy for q = 0
and a continuum spectrum q2 above this zero-energy mode. Physically, the transverse
mode δφ2 changes the broken-symmetry state Φ̃ = (a, 0) to another ground state at
a slightly different position along the bottom of the mexican-hat potential. It is clear
that this change of the position costs no energy. The longitudinal mode, on the other
hand, has a finite excitation energy because the system should leave the bottom of the
potential if it tries to change the magnitude of the order parameter from Φ̃ = (a, 0)
along the first axis (i.e. keeping δφ2 = 0).

These statements may be re-expressed in terms of the correlation functions

G̃11(q) = 〈δφ̃1(q) δφ̃1(−q)〉 =
(2π)d

4|t| + 2q2
(5.67)

G̃22(q) = 〈δφ̃2(q) δφ̃2(−q)〉 =
(2π)d

2q2
(5.68)

G̃12(q) = G̃21(q) = 〈δφ̃1(q) δφ̃2(−q)〉 = 0, (5.69)

which have been derived using eqn (2.84) with T = 1. Equation (5.68) indicates that
the transverse correlation function in the Fourier representation has a pole at the
origin, which is an important characteristic of the Nambu–Goldstone mode, as stated
at the beginning of this section.



Topological defects 123

If the interactions are not short ranged, the Hamiltonian is not expressed just by
the squared gradients of fields, and the above arguments do not apply directly.

5.8 Topological defects

Another consequence of the spontaneous breaking of a symmetry is the emergence
of defect structures such as vortices in superfluids, domain walls in ferromagnets,
dislocations in periodic solids, or disclinations in nematic liquid crystals. These topo-
logical defects are responsible for determining important properties of real materials,
such as strain hardening, which is the strengthening of a metal when subjected to
plastic deformation. Although the energy of a macroscopic system is minimized when
the symmetry is broken uniformly throughout the system, it turns out that the
symmetry may be broken differently in different parts of the sample due to a variety of
reasons. Under those circumstances, defects will appear, for instance, in the boundary
separating those spatial regions characterized by states or configurations with different
values of the order parameter Φ. For example, in a ferromagnet a domain wall may
separate regions with different values or orientations of the macroscopic magnetization
as shown in Fig. 5.2.

In this section we will show how concepts borrowed from topology provide the
necessary tools to characterize, classify, and combine elementary defects. Let us start
from the concept of an order-parameter space U . Loosely speaking, this is the set of all
possible values of the order parameter Φ(r) in a d-dimensional space, r ∈ R

d. A simple
example is the XY model in two spatial dimensions. Suppose that low-temperature
spin configurations in a subspace of R

2, sometimes referred to as the ordered medium,
are mapped to a set of points in the space S

1 (the unit circle) by the rule

Φ(r)
|Φ(r)| =

(
cos φ(r), sin φ(r)

)
∈ S

1, ∀r ∈ Γ ∈ R
2, (5.70)

where Γ is a closed loop in R
2. See Fig. 5.4. In this case, S

1 is the order-parameter space.
Another familiar example is the Heisenberg model, in which the spin orientation at r ∈
R

d is specified by a three-dimensional unit vector. The order-parameter space is then
U = S

2, the surface of the unit sphere. Notice that the magnitude of the local (spin)
variable is ignored and only its direction is considered in the analysis of topological
defects. Examples of order-parameter spaces, S

1, S
2 and P

2, are illustrated in Fig. 5.5
One of the reasons to introduce the order-parameter space is its advantage in the

classification of topological defects and their stabilities. Consider again the XY model
in two dimensions. As shown in Fig. 5.4, the existence of a vortex, a typical topological
defect, significantly influences the image in the order-parameter space. In panels (a)
and (b), there is no vortex surrounded by the loop Γ, and the images in S

1, drawn
bold, are essentially the same in the sense that we can continuously deform the image
in (b) into a single point as in (a). In contrast, the images in (c) and (d) are equivalent
to each other but cannot be continuously reduced to a point as in (a) since those in
(c) and (d) wind the circumference of S

1. We say in the latter case that the winding
number is k = 1. Also, in the real space R

2, we can continuously change the spin
configuration of (b) into (a) and also (c) changes into (d), the latter by rotating each
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(a) (b)

(c) (d)

Γ Γ

Γ Γ

S
1

S
1

S
1

S
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2

R
2

R
2

R
2

Fig. 5.4 The spin configurations in the real space R
2 and the corresponding images in the

order parameter spaces S
1 for the two-dimensional XY model. The angle of each arrow along

a loop Γ, shown dashed, in R
2 is mapped to the corresponding point on S

1. In (a) and (b)

there is no vortex (topological defect) and the set of mapped points in (b) (drawn in bold)

can be continuously deformed to a single point in (a). In (c) and (d), the loop Γ encircles a

vortex and the corresponding images wind the circumference of S
1. The arrows in the order-

parameter space indicate the sense of motion of the images as one circles around the loop Γ

in the real space.

spin roughly by 90o. Such a continuous rotation never succeeds in changing (a) to (c).
The two configurations (a) and (b) are said to belong to the same homotopy class.
Similarly, the homotopy class of (c) and (d) is the same. In general, two configurations
are equivalent and belong to the same homotopy class if one of them can be deformed
continuously to the other.

The winding number, which is formally defined as

k =
1
2π

∮

Γ

∇φ(r) · dr, (5.71)

quantitatively characterizes the homotopy class and is an example of a topological
invariant. The latter name comes from the stability of the winding number under
continuous deformation. Remember that we refer to the topological stability, not the
thermodynamics stability. Nevertheless, the former often leads to the latter, as will be
studied in detail in Chapter 7.

It is possible to create a vortex in the XY model with winding numbers other than 0
(no vortex) or 1 by the field configuration φ(r) = kθ + const, where θ is the polar angle
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S
1

S
2

P
2

Fig. 5.5 The order parameter spaces S
1, S

2 and P
2 and images of closed loops in the real

space. The left and center panels represent the spaces for the XY and Heisenberg models,

respectively. The right panel corresponds to the nematic liquid crystal in d = 3, in which rod-

like molecules are oriented as in the Heisenberg model but without the sense of the arrows.

Thus, the up and down orientations are identified, and consequently only the upper half of a

sphere constitutes the order parameter space known as P2. Correspondingly, the two points

marked in black dots are identical and the curve drawn around the half sphere is a closed

loop.

of the position vector r and k is an integer, k ∈ Z. The image of spin configurations
in S

1 winds the circumference k times in this case. This fact is written formally as
π1(S1) = Z. The subscript 1 of π1 means that the loop Γ, a one-dimensional object,
is used to map the configuration in R

2 to S
1. Thus, the homotopy class is classified

by the group Z, in which the usual rule of addition represents the multiplication as a
group. The addition (or the aggregation) of two vortices of winding numbers k1 and k2

realizes a single vortex with winding number k = k1 + k2. This is one of the simplest
examples of the homotopy group.

These discussions can be generalized to arbitrary types of topological defects,
not just in spin systems but also in solids and liquid crystals. We, however, restrict
ourselves to spin systems for simplicity of presentation and consider next the XY
model in three spatial dimensions R

3. The basic topological defect is a line of vortices
created by stacking vortices, each on a two-dimensional cross-section. We write dd for
the dimensionality of the defect, and dd = 1 for a vortex line in R

3. The previous case
of two dimensions has dd = 0 since a vortex is an isolated point in R

2. In the case of
R

3, the order parameter space is again S
1 because the orientation of a spin can be

specified by a point on S
1. The homotopy group is also the same, π1(S1) = Z, each

element being specified by the winding number counted along a loop surrounding a
vortex line.

The Heisenberg model has three components and its order parameter space is S
2

as mentioned already. The basic topological defect is a hedgehog structure, and in its
most basic form, all spins point outward on the surface of S

2. The topological invariant
is the wrapping number. The above-mentioned simplest hedgehog has the wrapping
number 1. The relevant homotopy group is π2(S2) = Z. The subscript 2 of π2 is meant
for the two-dimensional sphere that wraps the topological defect. If we choose a loop,
a one-dimensional object, to encircle a topological defect of the Heisenberg model, the
loop slips on the surface of the order parameter space S

2 to eventually shrink to a
point as depicted in Fig. 5.6. This fact is written as π1(S2) = 0,
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Fig. 5.6 A loop around a two-dimensional sphere slips on the surface by a continuous

deformation and shrinks to a point.

Suppose in general that we surround a topological defect by an m-dimensional
object Γm (m < d) and consider an m-dimensional spherical closed surface S

m. To
surround a dd-dimensional defect, one needs a sphere of dimension

m = d − dd − 1. (5.72)

In the previous example of a vortex with dd = 0 in a d = 2 ordered medium, the
surrounding object was a loop of dimension m = 1. If d = 3, for a loop to con-
tinue being the relevant surrounding object, the vortex should constitute a line
defect, i.e. dd = 1. Similarly, a dd = 0 hedgehog defect in a three-dimensional ordered
medium requires a surrounding object of dimension m = 2. In general, for a defect
of dimensionality dd to be topologically stable in a d-dimensional ordered medium,
the mth homotopy group should not be trivial, πm(U) = 0. The fundamental group,
which means π1(U), may be non-Abelian, but πm(U) with m > 1 is known to be
always Abelian. A little more formal introduction to homotopy theory is found in
Appendix A.8. Table 5.1 summarizes the discussion above.

When these ideas are applied to an ordered medium with an n-component order
parameter Φ = (φ1, · · · , φn), it is easy to imagine that U = S

n−1 and we find

πm(Sm) = Z, πl(Sm) = 0 (l < m). (5.73)

The latter relation for l < m implies that an l-dimensional closed object on S
m with

l < m can always be shrunk to a point, which is a generalization of π1(S2) = 0. We

Table 5.1 Types of defects, e.g. point defects,

that may appear in a physical system of a

given spatial dimensionality d. Textures refer to

smooth d-dimensional configurations with fixed

constant boundary conditions.

d − dd − 1 0 1 2 3

d = 1 point texture

d = 2 line point texture

d = 3 surface line point texture
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conclude that, in order to have a topologically stable defect of dimension dd, the
relation

dd = d − n (5.74)

must be satisfied as eqn (5.72) with m = n − 1 suggests. Table 5.1 shows the types of
defects.

In the case of an ordered medium with a discrete symmetry group, such as the Z2

symmetry of the Ising model, topological defects have the dimensionality dd = d − 1.
They are always generalized domain walls separating regions with different values of
the order parameter Φ.



6

Conformal field theory

We have seen that a statistical system is scale invariant at criticality. Physical
properties remain the same if we change the length scale by a constant factor. It
is then natural to generalize the hypothesis of global scale invariance to an invariance
under a coordinate-dependent local scaling factor. It turns out that this approach
is enormously successful in two dimensions and produces a number of remarkable
results. The present chapter is an introductory account of the basic concepts and
important consequences of conformal symmetry, i.e. the invariance under local scale
transformations, in field theories characterizing critical behavior. The goal is to catalog
universality classes as a list of possible values of critical exponents and to find
restrictions on the functional forms of correlation functions. From a mathematics
standpoint, conformal symmetry applies to continuum theories, and therefore its
obvious application to critical phenomena is formulated in the language of field theory.
In this chapter, we do not discuss the microscopic model that gave origin to a particular
continuum field theory, or in other words, that belongs to the same universality class.
We will assume that such a statistical field theory exists and will study the physical and
mathematical consequences of that theory being conformally invariant in the critical
regime.

6.1 From scale invariance to conformal symmetry

In Chapters 1 and 3 we discussed the remarkable fact that scale invariance emerges
close to a critical point. A scale transformation is mathematically represented as a
dilation, i.e. a coordinate transformation r → r′ = b−1r with b a positive number. The
hypothesis of scale invariance leads to many conclusions, for instance, that all critical
exponents can be expressed in terms of a few scaling parameters, typically yt and
yh. Then, it seems natural to think that at criticality (a point of self-similarity) more
symmetries could emerge: One may wonder whether in the critical region a coordinate-
dependent scale invariance is possible, i.e. r → r′ = b(r)−1 r, which would certainly
have further implications. This is the extension of scale invariance to conformal
invariance. The hypothesis of conformal invariance appears to be quite generally true
in critical equilibrium systems as a result of the essential locality of the underlying
statistical field theory. We will assume conformal invariance of critical field theories
throughout this chapter.

The predictive power of the use of conformal symmetry depends on the dimen-
sionality d of the system under study. For d ≥ 3, conformal symmetry fixes possible
functional forms of some of the correlation functions. In two dimensions, much stronger
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results can be derived because the set of conformal transformations includes analytic
functions of complex numbers and there are infinitely many of them. Conformal field
theory then becomes an exercise in the theory of complex variables and analytic
functions. As a consequence, a number of remarkable results emerge such as a list of
possible critical exponents, admissible forms of correlation functions at criticality, and
constraints on finite-size effects. Our discussions in the present chapter will therefore
be focused on the two-dimensional case.

6.2 Conformal transformation

Conformal transformations are special coordinate mappings. A conformal transfor-
mation (conformal mapping) is an invertible map r → r′ of the space R

d (or part of
it) into itself (or part of it) that preserves angles between any two vectors but not
necessarily their length scales.1

For d ≥ 3 the conformal group, the set of conformal transformations, is composed
of a finite number of elements, i.e. the following transformations,

Translation by a constant vector a : r → r + a (6.1)

Rotation by a matrix R : r → Rr (6.2)

Dilation (dilatation) by a scale factor b : r → b−1r (6.3)

Special conformal transformation : r → r + ar2

1 + 2a · r + a2r2
. (6.4)

The special conformal transformation is a combination of space inversion, translation,
and another inversion,

r′ =

r

r2
+ a

( r

r2
+ a

)2 . (6.5)

Equations (6.1) to (6.4) constitute global conformal transformations, which means
mapping the whole space onto itself. In Appendix A.9 it is shown that these global
mappings exhaust the possible conformal transformations for d ≥ 3.

The two-dimensional case d = 2 is special in that an additional set of transforma-
tions are conformal because all analytic (holomorphic) functions of complex variables
preserve local angles, as is known in complex analysis. Let us therefore introduce a
complex coordinate,

z = r1 + ir2 , z̄ = r1 − ir2, (6.6)

where r = (r1, r2) is the Cartesian coordinate. The two complex numbers z and z̄ are
considered independent variables because the degree of freedom has originally two,

1 If we write gμν(r) for the metric tensor of the d-dimensional space under consideration, a
conformal transformation is formally defined as a mapping that leaves the metric tensor invariant
up to a scale, g′μν(r′) = Ω(r)gμν(r). Thus conformal transformations change the actual geometry of
space.
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Fig. 6.1 Examples of conformal mappings in two dimensions. These maps correspond to the

transformations f(z) = z,
√

z and z2 from left to right, respectively ((r1, r2) ∈ [−2, 2]).

r1 and r2 components. Then, any analytic function f(z), such that f ′(0) �= 0, defines
holomorphic and antiholomorphic transformations

z → f(z) , z̄ → f̄(z̄), (6.7)

which are conformal around the origin z = 0. Similarly to z and z̄, f and f̄ are
independent functions. For example, f(z) = z4 is analytic, while f(z) = |z|z4 is not
and thus does not represent a conformal map. See Fig. 6.1 for other examples.
Dilations and rotations are given by z → b−1z, z̄ → b−1z̄, and z → eiθz, z̄ → e−iθ z̄,
respectively.

In two dimensions, for flat space, the angle-preserving condition is well known to
be rewritten as the Cauchy–Riemann equations

∂r′2

∂r1
= −∂r′1

∂r2
,

∂r′1

∂r1
=

∂r′2

∂r2
, (6.8)

where we have written f = r′1 + ir′2, and the equivalent equations for antiholomorphic
functions. In terms of complex coordinates, the Cauchy–Riemann equations (6.8)
become

∂z̄f(z, z̄) = 0, (6.9)

where ∂z̄ = ∂/∂z̄ = (∂r1 + i∂r2)/2 and ∂z = ∂/∂z = (∂r1 − i∂r2)/2. This is the
mathematical statement that the conformal mapping must be holomorphic since
f(z, z̄) = f(z) without z̄ dependence. Similarly, we find ∂z f̄(z, z̄) = 0, which implies
f̄(z, z̄) = f̄(z̄).

Holomorphic and antiholomorphic functions define local conformal transformations
in the sense they are not analytic in the whole complex plane except for the trivial
case of a constant, as is well known in complex analysis.

In two dimensions the global conformal transformation of eqns (6.1) to (6.4) is
summarized in a compact form

f(z) =
az + b

cz + d
(ad − bc = 1, a, b, c, d ∈ C), (6.10)

which reproduces any one of eqns (6.1) to (6.4) by an appropriate choice of the
coefficients a, b, c and d. The condition ad − bc = 1 comes from invertibility of the map,
ad − bc �= 0, which can be reduced to ad − bc = 1 by an appropriate normalization of
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the constants. Equation (6.10) for a global conformal mapping is called a projective
mapping or a Möbius mapping.

EXERCISE 6.1 Confirm that eqn (6.10) can be reduced to any one of eqns (6.1)
to (6.4).

Since the number of holomorphic/antiholomorphic functions is not limited, there
exist an infinite number of local conformal transformations in two dimensions. This fact
makes conformal symmetry a very powerful tool to analyze and characterize critical
behavior in two dimensions: More symmetries impose more constraints. It ultimately
provides a classification of all possible critical theories, as will be seen later in this
chapter.

The decoupling between holomorphic and antiholomorphic coordinates is charac-
teristic of conformal field theories in two dimensions. Let us consider infinitesimal
conformal transformations

z → z′ = f(z) = z + ε(z) , z̄ → z̄′ = f̄(z̄) = z̄ + ε̄(z̄), (6.11)

where ε(z) and ε̄(z̄) are holomorphic and antiholomorphic functions. We think of these
functions as infinitesimal, although we have to keep in mind that it is not possible for
them to be globally small unless they are constant. We will write them as Laurent
expansions around z = 0

ε(z) =
∞∑

n=−∞
εnzn+1 , ε̄(z̄) =

∞∑

n=−∞
ε̄nz̄n+1. (6.12)

It is illuminating to associate an algebra to such an infinitesimal transformation by
noticing that

f(z + ε(z)) − f(z) ≈ f(z) + ε(z)∂zf(z) − f(z) ≡ −
∞∑

n=−∞
εn �nf(z), (6.13)

and similarly for the antiholomorphic part, using the generators of local conformal
mappings

�n = −zn+1∂z , �̄n = −z̄n+1∂z̄. (6.14)

These generators form an infinite-dimensional Lie algebra called the loop algebra,2

[�m, �n] = (m − n)�m+n , [�̄m, �̄n] = (m − n)�̄m+n , [�m, �̄n] = 0, (6.15)

as can be checked from eqn (6.14). This is infinite dimensional because n and m run
from −∞ to ∞. The holomorphic and antiholomorphic parts decouple due to the last
commutation relation of eqn (6.15).

The subalgebra generated by the subset with m,n = 0,±1 is closed, as one can
verify by inserting n,m = −1, 0, 1 in eqn (6.15). This subalgebra is a set of generators
of the global conformal mappings (6.1) to (6.4). The reason is that eqn (6.14) is

2 See Appendix A.7 for the concept of Lie algebra.
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non-singular at z = 0 if and only if n ≥ −1 and, additionally, non-singular at z → ∞
if and only if n ≤ 1, as seen from the inversion z → 1/z. The same holds for the
antiholomorphic part. This implies that a global mapping is possible if and only if
−1 ≤ n ≤ 1. Indeed it will be shown in the next section that �−1 and �̄−1 generate
translation, �0 and �̄0 are for rotation and dilation, and �1 and �̄1 generate the special
conformal transformation.

6.3 Primary and quasi-primary operators

As already mentioned, the two-dimensional case is special from the standpoint of
conformal symmetry since the local conformal group is isomorphic to the group of
analytic transformations on the complex plane and thus it contains an infinite number
of generators {· · · , �−1, �̄−1, �0, �̄0, · · · }. A conformally invariant theory satisfies an
infinite number of constraints called the conformal Ward identities. These identities
are written as differential equations for correlation functions. It is thus sometimes
convenient to characterize the behavior of a theory by the transformation properties
of its correlation functions rather than by the specific action S (which corresponds
to the Hamiltonian in classical statistical mechanics) of the system. In the following,
we will illustrate and demonstrate how these fundamental facts lead to very strong
consequences.

The local field operators that transform under a global conformal mapping z →
f(z), z̄ → f̄(z̄) as

φj(z, z̄) → φ′
j(f, f̄) = (∂zf)−hj (∂z̄ f̄)−h̄j φj(z, z̄) (6.16)

are called quasi-primary operators or quasi-primary fields.3 The real numbers hj , h̄j

are named the conformal weights of the operator φj . Correlation functions of quasi-
primary operators thus satisfy

〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·〉 =
( ∏

i

(∂zi
fi)hi(∂z̄i

f̄i)h̄i

)
〈φ′

1(f1, f̄1)φ′
2(f2, f̄2) · · ·〉, (6.17)

where the expectation value is defined by the weight e−S ,

〈(· · · )〉 =

∫
Dφ (· · · )e−S

∫
Dφ e−S

, (6.18)

with S being the action or the effective Hamiltonian. As an example, a simple rescaling
f(z) = b−1z, f̄(z̄) = b−1z̄ gives

φ′
j(f, f̄) = bhj+h̄j φj(z, z̄), (6.19)

whereas a rotation z → eiθz, z̄ → e−iθ z̄ leads to

3 Notice that the prime on φj is not a derivative.
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φ′
j(f, f̄) = e−i(hj−h̄j)θφj(z, z̄). (6.20)

Equations (6.19) and (6.20) make it possible to identify the sum and difference of the
conformal weights with the scaling dimension xj and the spin sj of the operator φj ,
respectively,

xj = hj + h̄j , sj = hj − h̄j . (6.21)

If φj transforms like eqn (6.16) for both global and local mappings, it is called a
primary operator. Thus, a primary operator is quasi-primary but the converse may
not necessarily be the case. Local scaling fields (operators) that do not transform as a
primary are called secondary operators. Secondary operators may or may not be quasi-
primary. The origin of these names, primary, quasi-primary, secondary operators, will
become clearer in Section 6.7.

Let us next study the consequences of invariance of correlation functions under
global conformal mappings. The infinitesimal transformations of eqn (6.11) induce a
change in quasi-primary fields. According to eqn (6.16),

δεε̄φj(z, z̄) ≡ φ′
j(f, f̄)− φj(f, f̄)

= −
(
ε(z)∂ + ε̄(z̄)∂̄

)
φj(z, z̄)− φj(z, z̄)

(
hj∂ε(z) + h̄j ∂̄ε̄(z̄)

)
, (6.22)

where ∂ = ∂z and ∂̄ = ∂z̄. If we now impose the condition of conformal invari-
ance by global mappings on the n-point correlation function of quasi-primary
operators,

δεε̄〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉 = 0, (6.23)

a differential equation results,

n∑
i=1

(
εi∂i + hi∂iεi + ε̄i∂̄i + h̄i∂̄iε̄i

)
〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉 = 0, (6.24)

where εi = ε(zi), ∂i = ∂zi
, and similarly for the antiholomorphic parts.

For global (projective) conformal mappings, the Lie algebra (the loop algebra of
eqn (6.15) in the present case) is generated by {�−1, �0, �1} and its antiholomorphic
counterpart, as was described in the final paragraph of the previous section. The
corresponding infinitesimal transformations are identified as ε = ε̄ = 1 for translation
generated by �−1, �̄−1, ε = z, ε̄ = z̄ for rotation and dilation (�0, �̄0), and ε = z2, ε̄ = z̄2

for special conformal transformation (�1, �̄1) as can be verified from eqns (6.1) to (6.4).
For example, a rotation is z → z + iδ · z = (1 + iδ)z ≈ eiδz (and similarly for z̄) with
δ a small real number.

EXERCISE 6.2 Show that ε = ε̄ = 1 represents translation, ε = z, ε̄ = z̄ is for rota-
tion and dilation, and ε = z2, ε̄ = z̄2 corresponds to the special conformal transfor-
mation.

We then have a set of projective Ward identities for n-point correlation functions of
quasi-primary operators, using eqn (6.24) for ε̄ = 0,
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n∑

i=1

∂i〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉 = 0, (6.25)

n∑

i=1

(zi∂i + hi)〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉 = 0, (6.26)

n∑

i=1

(z2
i ∂i + 2hizi)〈φ1(z1, z̄1)φ2(z2, z̄2) · · ·φn(zn, z̄n)〉 = 0, (6.27)

and a similar set of equations for the antiholomorphic variables, since both are
independent.

Equations (6.25) to (6.27) fix the functional form of two-point correlation functions.
Equation (6.25) reads

(
∂1 + ∂2

)
〈φ1φ2〉 = 0, (6.28)

where 〈φ1φ2〉 = 〈φ1(z1, z̄1)φ2(z2, z̄2)〉. According to eqn (6.28), 〈φ1φ2〉 should depend
on z1 and z2 only as their difference z1 − z2(≡ z12) (and similarly for z̄1 and z̄2). This is
simply a consequence of translation invariance as implied in ε = ε̄ = 1. Equation (6.26)

(
z1∂1 + z2∂2 + h1 + h2

)
〈φ1φ2〉 = 0 (6.29)

and its antiholomorphic counterpart fix the correlation function as

〈φ1φ2〉 =
1

(z12)h1+h2(z̄12)h̄1+h̄2
, (6.30)

as can be verified by insertion of eqn (6.30) into eqn (6.29). We have fixed the
normalization of φ1 and φ2 to reduce the numerator of the right-hand side to unity.4

It is left as an exercise to show that eqn (6.27) for 〈φ1φ2〉 demands h1 = h2(= h) and
h̄1 = h̄2(= h̄).

EXERCISE 6.3 Show that eqn (6.27) for a two-point correlation function requires
that the conformal weight h1 be equal to h2 (and similarly for the antiholomorphic
counterparts) if the correlation function is not to vanish.

We therefore have the explicit form of the two-point correlation function at critical-
ity as

〈φ1φ2〉 =
1

(z12)2h(z̄12)2h̄
. (6.31)

This equation suggests a relation between the conformal weights and critical expo-
nents. For example, if φ1 and φ2 are both usual spin operators and h = h̄, then
eqn (6.31) will be

〈S(r1)S(r2)〉 =
1

(r12)4h
, (6.32)

4 It is possible to leave the normalization arbitrary and write the numerator as C, but it does not
change the essence of the theory.
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because z12z̄12 = r2
12. This relation is consistent with the identification of the scaling

dimension x with 2h as in eqn (6.21). Equation (6.32) is to be compared with the
generic critical form of the critical spin–spin correlation function

〈S(r1)S(r2)〉 ∝ r−d+2−η
12 . (6.33)

In two dimensions, we therefore have 4h = η. In particular, the two-dimensional
ferromagnetic Ising model is known to have η = 1/4, from which we infer h = 1/16.

Similar arguments lead to constraints on n-point (n ≥ 3) correlation functions.
The functional form of the three-point correlation function is fixed by conformal
invariance. It is possible to write explicitly the four-point correlation function only
in two dimensions.

6.4 Energy–momentum tensor and the Ward identity

An infinitesimal transformation z → z + ε(z) cannot be holomorphic everywhere on
the complex plane unless it is a trivial constant. Suppose that ε(z) is holomorphic
inside a region D that includes the origin but not necessarily holomorphic outside D.
Let us consider an n-point correlation function of primary operators,

〈Xn〉 = 〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉, (6.34)

with all its arguments z1, z̄1, · · · , zn, z̄n inside D. The change in this correlation
function δεε̄〈Xn〉 involves an infinitesimal change in the action δS because, for ε not
necessarily conformal, δεε̄ applied to 〈Xn〉 affects not only Xn but also e−S . The
energy–momentum tensor Tμν , also known as the stress tensor, is defined as the rate
of change in the action,

δS = − 1
2π

∫
d2r ∂μενTμν(r), (6.35)

where the integral is over the region outside D.5 The indices μ and ν are for the two-
dimensional Cartesian coordinates. A summation is implicit in the repeated indices,
that is, the integrand is summed over μ and ν both from 1 to 2. In Appendix A.10,
it is shown, using eqns (6.22) and (6.35), that invariance of the correlation function
under the change z → z + ε(z) and z̄ → z̄ + ε̄(z̄) leads to the following equation,

−
n∑

i=1

(
εi∂i + hi∂iεi + ε̄i∂̄i + h̄i∂̄iε̄i

)
〈Xn〉

=
1

2πi

∮

C

dw ε(w) 〈T (w)Xn〉 −
1

2πi

∮

C

dw̄ ε̄(w̄) 〈T̄ (w̄)Xn〉, (6.36)

where C is the boundary of D, which means that the points z1, · · · , zn lie inside C
and ε(z) is holomorphic inside C. The operator T (w) and the antiholomorphic T̄ (w̄)
are defined in terms of the Cartesian components of Tμν ,

5 The prefactor 1/2π is for simplicity of later equations and is not essential.
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T (w) =
1
4
(
T11(w) − T22(w) − 2iT12(w)

)
(6.37)

T̄ (w̄) =
1
4
(
T̄11(w̄) − T̄22(w̄) + 2iT̄12(w̄)

)
. (6.38)

Equation (6.36) indicates that the energy–momentum tensor is the generator of an
infinitesimal transformation of operators, which may be written symbolically as

δεε̄Xn =
1

2πi

∮

C

dw ε(w) T (w)Xn − 1
2πi

∮

C

dw̄ ε̄(w̄) T̄ (w̄)Xn. (6.39)

Notice that eqn (6.36) is a generic equation satisfied by 〈Xn〉, whereas eqn (6.24) is a
consequence of the projective mapping ε(z) for which the integral over C on the right-
hand side of eqn (6.36) vanishes because C can be chosen to be infinitely far away.
Hereafter, we will often write only the holomorphic parts of the theory explicitly for
simplicity, as long as no confusion is expected. The antiholomorphic parts will have
the same expressions.

For ε̄ = 0, eqn (6.36) is equivalent to

〈T (w)Xn〉 =
n∑

i=1

( 1
w − zi

∂i +
hi

(w − zi)2
)
〈Xn〉, (6.40)

as one can verify by multiplying both sides of eqn (6.40) by ε(w) and integrating along
C to reproduce eqn (6.36) for ε̄ = 0. This equation suggests that the product T (w)Xn

is a meromorphic function6 of w with singularities at z1, z2, · · · , zn. Equations (6.36)
and (6.40) are called the conformal Ward identities.

Since eqns (6.36) and (6.40) are valid for arbitrary product of primary operators
Xn and arbitrary ε(z) which is holomorphic inside C, we may write symbolically, for
w close to z,

T (w)φi(z, z̄) =
hi

(w − z)2
φi(z, z̄) +

1
w − z

∂φi(z, z̄) + regular, (6.41)

where the symbol ‘regular’ stands for terms analytic in w that do not contribute to the
integral of eqn (6.36). This is an example of the operator product expansion (OPE),
which expresses the product of operators as a series expansion in terms of a complete
set of operators.

The energy–momentum tensor is expanded in a Laurent series, known as the mode
expansion,

T (z) =
∞∑

n=−∞

Ln

zn+2
, (6.42)

using the operators Ln, called conformal generators, acting on the space of all fields.
This expression can be formally inverted to give

Ln =
1

2πi

∮

C

dz zn+1T (z), (6.43)

6 A function that is holomorphic in a region, except at isolated poles.
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where C surrounds the origin. It is useful to define here T̂ as the operator acting on
Xn on the right-hand side of eqn (6.36) for ε̄ = 0,

T̂ =
1

2πi

∮

C

dw ε(w)T (w) =
∞∑

m=−∞
εmLm, (6.44)

where we used eqns (6.12) and (6.42). Then, one can rewrite the right-hand side of
eqn (6.36) for ε̄ = 0 as

〈T̂Xn〉 =
∞∑

m=−∞
εm〈LmXn〉, (6.45)

with the end result that the conformal generators must act as

〈LmXn〉 = −
n∑

i=1

(
zm+1
i ∂i + hi(m + 1)zm

i

)
〈Xn〉. (6.46)

Since the energy–momentum tensor T plays a crucial role in the following develop-
ments, it is useful to formulate the OPE of T with itself. If T were a primary operator,
the OPE of T with itself would have an expression as eqn (6.41) with φi(z) replaced
by T (z). Equation (6.40), however, suggests that the OPE of T (w)T (z) should have
an additional term proportional to (w − z)−4. To see this fact, it helps to replace Xn

in eqn (6.40) with T (z)Xn and expand 〈T (z)Xn〉, appearing in place of 〈Xn〉 on the
right-hand side, once again using the same eqn (6.40). It is therefore reasonable to
assume that the following expression is the correct OPE,7

T (w)T (z) =
c

2(w − z)4
+

2
(w − z)2

T (z) +
1

w − z
∂T (z) + regular. (6.47)

The first term on the right-hand side with a coefficient c, known as the central charge,
is absent in eqn (6.41) for a primary operator and is often referred to as the conformal
anomaly. The value of the central charge depends upon the particular conformal field
theory under study and is an important number to classify critical field theories.
Critical systems with real Boltzmann factors have real-valued central charges, as will
be exemplified later.

The OPE of eqn (6.47) implies that, under an infinitesimal conformal transforma-
tion, the energy–momentum tensor T (z) transforms as

δεT (z) =
1

2πi

∮
dw ε(w) T (w)T (z)

= ε(z)∂T (z) + 2
(
∂ε(z)

)
T (z) +

c

12
∂3ε(z), (6.48)

7 Remember that eqn (6.40) is valid for Xn that is the product of primary operators. If Xn here
is replaced by T (z)Xn, there is no guarantee that the same equation holds since T (z)Xn may not
necessarily be primary. Thus, the argument in the text is heuristic at best. The justification of the
OPE of eqn (6.47) is better expressed by its consistency with the non-infinitesimal transformation
developed later in this section.
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which is to be compared with eqn (6.39) with ε̄ = 0 for primary operators. The
existence of the third term of conformal anomaly is specific to the energy–momentum
tensor, which is not primary, and vanishes for an infinitesimal projective conformal
mapping represented as a second-order polynomial of ε(z). This observation suggests
that the energy–momentum tensor is quasi-primary but not primary.

Justification of the OPE of eqn (6.47) lies in its consistency with the non-
infinitesimal version of the transformation. It is useful to rewrite the infinitesimal
transformation (6.48) as a finite map,

T (z) → (∂zf)2T (f) +
c

12
{f, z}, (6.49)

where

{f, z} =
∂3

zf

∂zf
− 3

2

(∂2
zf

∂zf

)2

(6.50)

is called the Schwarz derivative or Schwarzian. It is not difficult to check that eqn
(6.49) reduces to eqn (6.48) for an infinitesimal transformation.

EXERCISE 6.4 Show that eqn (6.49) reduces to eqn (6.48) for an infinitesimal
transformation.

In solving Exercise 6.4, one notices that the coefficient 2 of (w − z)−2 on the right-
hand side of eqn (6.47) comes from the square (∂zf)2 on the right-hand side of
eqn (6.49). This square, in turn, reflects the fact that the energy–momentum tensor
has two coordinate indices μν and therefore should be multiplied by a factor of
(∂zf)2 under the map z → f(z). This explains the conformal weight h = 2 of the
energy–momentum tensor. It is also instructive to notice that eqn (6.50) satisfies
the consistency condition that two successive transformations z → f(z) → u(f) are
equivalent to a single transformation z → u(z).

EXERCISE 6.5 Confirm that a transformation of T by z → u(z) is reproduced by
two successive transformations z → f(z) → u(f) using eqn (6.49). For this purpose,
first show that the following relation is satisfied by the Schwarzian,

{u, z} = {u, f}
(

∂f

∂z

)2

+ {f, z}. (6.51)

Then, verify that eqn (6.49) applied to two successive transformations z → f(z) →
u(f) reproduces the relation for the single transformation z → u(z).

These arguments make it clear that eqn (6.49) is the legitimate finite extension of
the infinitesimal transformation (6.48). In other words, eqn (6.49) is equivalent to eqn
(6.48) and hence to eqn (6.47). This justifies the OPE of eqn (6.47).

We notice that the Schwarz derivative of a global conformal mapping (6.10)
vanishes. Hence, we again confirm that the energy–momentum is a quasi-primary
operator, though it is not primary.
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EXERCISE 6.6 Show that the Schwarz derivative of a global map vanishes.

6.5 Virasoro algebra

The algebra of the operators {Ln, L̄n}n, called the Virasoro algebra, is of central
importance in conformal field theory. To find the commutation relation of these
operators, we first define the integral representation of the product of two Lns as

LmLn =
∮

|z|>w

dz

2πi
zm+1

∮

C

dw

2πi
wn+1 T (z)T (w), (6.52)

where C surrounds the origin and the integral over z runs on a contour surrounding
w. Then, the commutator is

LmLn − LnLm =
∮

C

dw

2πi
wn+1

∮

w

dz

2πi
zm+1T (z)T (w), (6.53)

as can be seen from Fig. 6.2.
We therefore have

[Lm, Ln]=
∮

C

dw

2πi

∮

w

dz

2πi
wn+1zm+1

( c

2(z − w)4
+

2
(z − w)2

T (w) +
1

z − w
∂T (w)

)

=
∮

C

dw

2πi
wn+1

( c

12
(m + 1)m(m − 1)wm−2+ 2(m + 1)wmT (w)+ wm+1∂T (w)

)

=
c

12
m(m2 − 1)δm+n,0 + 2(m + 1)Lm+n −

∮

C

dw

2πi
(m + n + 2)wm+n+1T (w)

=
c

12
m(m2 − 1)δm+n,0 + (m − n)Lm+n. (6.54)

The same relation holds for the antiholomorphic part. The Virasoro algebra is thus
summarized as

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 , (6.55)

[L̄m, L̄n] = (m − n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 , (6.56)

[Lm, L̄n] = 0. (6.57)

z

– =
w z

w

w

z

Fig. 6.2 The difference of the two integral contours for LmLn and LnLm.
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This is called the central extension of the loop algebra of eqn (6.15). For n = 0,±1,
the final terms involving c and c̄ vanish and the Virasoro algebra reduces to a simple
loop algebra independent of the central charges c and c̄.

Any conformal field theory is characterized by c and c̄, which are not necessarily
equal. It is an important problem to identify the value of the central charge for a given
field theory.

6.6 Gaussian theory

The abstract formalism developed so far may be better digested through a simple
example. The Gaussian theory is best suited for this purpose since everything can be
worked out explicitly.

The action of the critical d = 2 Gaussian theory is

S =
∫

d2r
(
(∇φ)2 + aφ2

)
(a → 0), (6.58)

which is the same as eqn (2.74). This is the same quantity as the generalized Landau
free energy F in eqn (2.74) with b = 1. Also, the inverse temperature β in Section 2.9
is to be replaced by 1 because the Boltzmann factor is e−S here, whereas it was e−βF

in Section 2.9. The condition a = 0 ensures criticality and justifies the application of
the conformal field theory methodology.

The two-point correlation function has been evaluated in Section 2.9. According
to eqn (2.85) and Exercise 2.12, its explicit form for a > 0 is

〈φ(r2)φ(r2)〉 =
1
2

∫
dq eiq·(r1−r2)

1
a + q2

= πK0(
√

a r) (r = |r1 − r2|), (6.59)

where K0(x) is the modified Bessel function of the second kind. The asymptotic form
of K0(

√
a r) for small a gives

〈φ(r1)φ(r2)〉 = −π log(
√

a r) (
√

a � 1). (6.60)

We drop log
√

a as it does not play a role in the analysis of the r dependence of the
correlation function. This is an elementary instance of the process of regularization, in
which one subtracts a diverging constant. In order to simplify some of the expressions
appearing below, we multiply the field φ by an appropriate factor to yield

〈φ(r1)φ(r2)〉 = − log r. (6.61)

This rescaling of φ is allowed because it does not affect the criticality condition a = 0
and hence all the universal properties are kept intact. In terms of complex variables,
eqn (6.61) reads

〈φ(z, z̄)φ(w, w̄)〉 = −1
2

log(z − w)(z̄ − w̄), (6.62)

where we have chosen r = |z − w|. Taking the derivatives with respect to z and w, we
have

〈∂φ(z, z̄)∂φ(w, w̄)〉 = −1
2

1
(z − w)2

. (6.63)
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Comparison of this equation with eqn (6.30) suggests that ∂φ(z, z̄) is a primary
operator with the conformal weights h = 1, h̄ = 0.8 The field φ(z, z̄) itself is not
primary as the correlation (6.62) is not of the form of eqn (6.30). Similarly, the
antiholomorphic ∂̄φ(z, z̄) is primary with h = 0, h̄ = 1. We hereafter suppress the
antiholomorphic variables z̄, w̄ to simplify the notation.

In Appendix A.11 it is shown that the holomorphic part of the energy–momentum
tensor of the Gaussian theory can be chosen as −(∂φ)2. Since this expression involves
a divergence, as one sees in eqn (6.63) in the limit z → w, we subtract the trivial
divergent constant, which does not affect the essence of the theory9 and is another
case of regularization. We therefore define

T (z) = − lim
w→z

(∂φ(z)∂φ(w) − 〈∂φ(z)∂φ(w)〉) ≡ − :∂φ(z)∂φ(z) : . (6.64)

The last expression with colons on both ends is named the normal order.
Since the primary operator ∂φ has h = 1 as mentioned above, the OPE of T and

∂φ is, according to eqn (6.41),

T (w)∂φ(z) =
1

(w − z)2
∂φ(z) +

1
w − z

∂2φ(z) + regular. (6.65)

To determine the central charge, we take the expectation value of eqn (6.47),

〈T (z)T (w)〉 =
c

2(w − z)4
, (6.66)

where we have used 〈T (z)〉=0. See the footnote of page 152 and Exercise 6.7 for this
relation. We therefore evaluate 〈∂φ(z)∂φ(z)∂φ(w)∂φ(w)〉. This expectation value of
the product of four operators is decomposed into the product of two-point correlation
functions in the Gaussian theory, since all higher-order cumulants vanish, other
than the second order one, as discussed in Appendix A.4. To express the four-point
correlation function in terms of products of two-point functions, there are two ways
to combine the first z in the product ∂φ(z)∂φ(z)∂φ(w)∂φ(w) with w: The first z
can be combined with the third w as well as with the fourth w, giving two identical
contributions.10

This is a part of the general result under the name of Wick’s theorem. The reader
may feel convinced by the following simple example of a Gaussian integral,

〈f(x, y)〉 =
1
2π

∫ ∞

−∞
dxdy f(x, y)e−(5x2−6xy+5y2)/8. (6.67)

One easily verifies the relation numerically

〈xxyy〉 = 〈x2〉〈y2〉 + 2〈xy〉2 (6.68)

8 The normalization is achieved if we multiply ∂φ by i
√

2.
9 Such as the conservation law of the energy–momentum tensor, eqn (A.169), and the tracelessness,

eqn (A.171).
10 If we combine the first z with the third w, the second z automatically combines with the fourth

w. The combination of the first z with the second z drops by regularization.
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by inserting the results of direct calculations, 〈x2y2〉 = 43/16, 〈x2〉 = 〈y2〉 = 5/4 and
〈xy〉 = 3/4. The term corresponding to 〈x2〉〈y2〉 drops in our Gaussian theory problem
due to regularization.

Then, we find by using eqn (6.63)

〈T (z)T (w)〉 = 2〈∂φ(z)∂φ(w)〉2 =
1

2(z − w)4
. (6.69)

This implies c = 1.

6.7 Operator formalism

We now rewrite the formulation developed so far in terms of operators. This is
necessary to develop a representation theory of the Virasoro algebra in the next
section, from which strong constraints can be placed on the possible values of the
central charge. In the operator formalism, a primary field is replaced by a state or
a vector in a vector space and the conformal generator Ln acts on those states.11

Notice that we write the formulas only using the holomorphic part of the variables.
The complete expressions should include the antiholomorphic parts.

6.7.1 State and operator

Let us start with the vacuum state |0〉, which corresponds to the identity field at the
origin,

|0〉 ←→ 1(z = 0). (6.70)

This means that the quantity on the right-hand side is rewritten as in the left-hand
side, though they represent essentially the same content. According to eqns (6.43) and
(6.41), Ln (n ≥ −1) acts on 1(z = 0) as

Ln1(z = 0) =
1

2πi

∮

C

dw wn+1T (w)1(0) = 0 (6.71)

because the conformal weight of 1(z = 0) is 0: The identity does not change under
conformal transformations. This relation is translated into the operator formalism as

Ln|0〉 = 0 (n ≥ −1). (6.72)

Equivalently, the requirement of regularity at z = 0 of the following expression

T (z)|0〉 =
∞∑

n=−∞

Ln

zn+2
|0〉 (6.73)

11 The function φj(z), primary or not, has so far often been called an operator. This ‘operator’
has actually been a classical quantity and will be called a ‘field’ in this section. The role of such a
field is played by a state (or a vector) in the operator formalism, as will now be seen. An operator in
the present section refers to, typically, T (z) and Ln, which are considered to act on the states.
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leads also to eqn (6.72). Actually, L1|0〉 = L2|0〉 = 0 is sufficient for Ln|0〉 = 0 with
n ≥ 1 as one is convinced by induction: Using the Virasoro algebra (6.55), we find

L3|0〉 = [L2, L1]|0〉 = 0 (6.74)

if L1|0〉 = L2|0〉 = 0 and similarly for Ln|0〉 with n ≥ 4.
The state vector |hj〉 is defined as a quantity corresponding to the primary φj(z)

with the conformal weight hj in the limit z → 0,

|hj〉 ←→ lim
z→0

φj(z), (6.75)

or equivalently

|hj〉 = lim
z→0

φj(z)|0〉. (6.76)

An important property of this state is

L0|hj〉 = hj |hj〉, Ln|hj〉 = 0 (n ≥ 1). (6.77)

It is straightforward to prove these relations from eqns (6.43) and (6.41), for n ≥ 0,

Ln|hj〉 ←→ Lnφj(0) =
1

2πi

∮

C

dwwn+1T (w)φj(0)

=
1

2πi

∮

C

dwwn+1

(
hj

w2
φj(0) +

1

w
∂φj

)

= hjφj(0)δn,0

←→ hj |hj〉δn,0. (6.78)

Similarly to the case of Ln|0〉, the relations L1|hj〉 = L2|hj〉 = 0 automatically guar-
antee Ln|hj〉 = 0 for n ≥ 3. We note in passing that L−1 can be identified with the
differential operator,

L−1φj(0) =
1

2πi

∮

C

dwT (w)φj(0)

=
1

2πi

∮

C

dw

(
hj

w2
φj(0) +

1

w
∂φj(0)

)

= ∂φj(0). (6.79)

6.7.2 Conformal family

We next define a set of states generated from |hj〉 by repeated operations of
L−1, L−2, · · · ,12

|m1m2 · · ·mn;hj〉 ≡ Lm1
−1L

m2
−2 · · ·Lmn

−n |hj〉. (6.80)

12 Remember that the action of Ln with n ≥ 1 onto |hj〉 gives a trivial vanishing result.
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This state is called a descendant of |hj〉 or a secondary state derived from the primary
|hj〉. This is an eigenstate of the operator L0,

L0|m1m2 · · ·mn;hj〉 =
(
hj +

n∑

k=1

kmk

)
|m1m2 · · ·mn;hj〉. (6.81)

This equation is a consequence of the Virasoro algebra [L0, L−k] = kL−k (k ≥ 1). To
see it, we first note that the Virasoro algebra leads to

L0L
mk

−k = Lmk

−k L0 + kmkLmk

−k , (6.82)

which can be shown by induction, for example,

L0L−k = L−kL0 + kL−k (6.83)

L0L
2
−k = (L−kL0 + kL−k)L−k

= L−k(L−kL0 + kL−k) + kL2
−k

= L2
−kL0 + 2kL2

−k, (6.84)

and similarly for higher powers of L−k. Equation (6.82) makes it possible to push L0

to the right of the product of Lmk

−k in eqn (6.80) multiplied by L0 from the left, yielding
finally eqn (6.81).

The set of secondary states (or secondary fields) derived from a primary is called
the conformal family or the conformal tower. Also, the name Verma module is used.
The conformal family includes the derivatives of the primary, as L−1 is the derivative,
as well as fields not expressed as derivatives of the primary.

The conformal family in its state-vector representation is somewhat analogous to
the bases of the representation of angular momentum. The primary |hj〉 corresponds
to the state |�〉 with the largest value of the z-component of the angular momentum
operator. The raising operator �+ annihilates |�〉, whereas the lowering operator �−
generates other states with smaller values of the z-component |� − 1〉, |� − 2〉, · · · . The
operation �+|�〉 = 0 corresponds to Ln|hj〉 = 0 for n ≥ 1. The lowering operator �−
corresponds to L−n with n ≥ 1. The state |hj〉 is called the highest weight state
from this analogy. An important difference is that the conformal family is infinite
dimensional as it includes infinitely many states, whereas the angular momentum is
represented in a finite-dimensional vector (Hilbert) space.

A few additional remarks will be useful for later developments of the representation
theory of the Virasoro algebra. The descendants of a primary |hj〉 are classified by their
levels. The level N of the state of eqn (6.80) is defined as

∑n
k=1 kmk. For instance,

descendants at levels 1, 2 and 3 are

Level 1 : L−1|hj〉 (6.85)

Level 2 : L−2|hj〉, L2
−1|hj〉 (6.86)

Level 3 : L−3|hj〉, L−1L−2|hj〉, L3
−1|hj〉. (6.87)
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Clearly, the number of states at level N is the number of ways P (N ) to divide N into
a sum of natural numbers. For example, P (3) = 3 as 3 can be divided in three ways
as 3, 1 + 2, 1 + 1 + 1, corresponding to the three states in eqn (6.87). The P (N ) states
at level N are not necessarily all independent. This important fact will be elucidated
further in the next section.

The descendants of the vacuum have special properties:

Level 1 : L−1|0〉 = 0 (6.88)

Level 2 : L−2|0〉 = T (0)|0〉, L2
−1|0〉 = 0 (6.89)

Level n : L−n|0〉 = ∂n−2T (0)|0〉, · · · (n ≥ 3). (6.90)

The first relation is due to ∂1 = 0. The relations for L−2|0〉 and L−n|0〉 come from
eqn (6.43). It is seen from the second relation that the energy–momentum tensor is
not primary but a descendant of the vacuum.

6.7.3 Conjugate state

We have to introduce conjugate states to define the inner product. For a primary
field φj(z, z̄), we define the conjugate field φ†

j(z, z̄) by way of the global mapping
w = −1/z, w̄ = −1/z̄,

φ†
j(z, z̄) = w2hj w̄2h̄j φj(w, w̄). (6.91)

Correspondingly, the conjugate state is defined as

〈hj | = lim
z,z̄→0

〈0|φ†
j(z, z̄) = lim

w,w̄→∞
〈0|φj(w, w̄)w2hj w̄2h̄j . (6.92)

Then, the inner product has the desirable property,

〈hj |hk〉 = lim
w,w̄→∞

lim
z,z̄→0

〈0|φj(w, w̄)w2hj w̄2h̄j φk(z, z̄)|0〉

= lim
w,w̄→∞

w2hj w̄2h̄j w−2hj w̄−2h̄j δhj ,hk
= δhj ,hk

, (6.93)

where we used eqn (6.30) and the result of Exercise 6.3.
The conjugate operator of Ln is defined as

L†
n = L−n. (6.94)

Then, the operation of L†
n to the left is derived by conjugation. For a primary |hj〉,

we have from L0|hj〉 = hj |hj〉 and Ln|hj〉 = 0 (n ≥ 1),

〈hj |L†
0 = 〈hj |hj , 〈hj |L†

−n = 0 (n ≤ −1). (6.95)

Using the definition of the conjugate state, we can show that the vacuum expecta-
tion value of the energy–momentum tensor vanishes, 〈0|T (z)|0〉 = 0. Since Ln|0〉 = 0
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for n ≥ −1, we find

〈0|T (z)|0〉 =
∞∑

n=−∞
z−n−2〈0|Ln|0〉 =

−2∑

n=−∞
z−n−2〈0|Ln|0〉 =

∞∑

n=2

zn−2〈0|L−n|0〉.

(6.96)
According to the Virasoro algebra (6.55), L0L−n − L−nL0 = nL−n (n ≥ 2), and thus

〈0|T (z)|0〉 =
∞∑

n=2

zn−2 1
n
〈0|L0L−n − L−nL0|0〉 = 0, (6.97)

because of L0|0〉 = 0 and 〈0|L0 = 〈0|L†
0 = 0.

EXERCISE 6.7 Use the Virasoro algebra to prove

〈0|T (w)T (z)|0〉 =
c

2(w − z)4
. (6.98)

This provides a way to compute the central charge c.

EXERCISE 6.8 Use the Virasoro algebra to show

〈0|L2L−2|0〉 =
c

2
, 〈hj |L1L−1|hj〉 = 2hj . (6.99)

These equations imply c ≥ 0 and hj ≥ 0 if the norms are to be non-negative.

6.7.4 Correlations of secondary fields

An interesting consequence of the classification of fields in terms of primary and
secondary fields is that the correlation functions of secondary fields are completely
specified by those of primary fields. To illustrate this important statement, consider
the correlation function

〈(L−mφj)(z)Xn〉 =
∮

Cz

dw

2πi
1

(w − z)m−1
〈T (w)φj(z)Xn〉 (m ≥ 1), (6.100)

where Xn is the product of primary fields φ1(w1)φ2(w2) · · ·φn(wn), each with the
weight hi. The contour Cz closely encircles z such that the points w1, w2, · · · , wn are
not included. Using eqn (6.40), we rewrite T (w)Xn and change the integral contour
to encircle w1, w2, · · · , wn in the opposite direction, as in Fig. 6.3,

〈(L−mφj)(z)Xn〉

= −
n∑

i=1

∮

Cwi

dw

2πi
1

(w − z)m−1
〈φj(z)

( hi

(w − wi)2
φi(wi) +

1
w − wi

∂φi(wi)
)
〉

= L−m〈φj(z)Xn〉, (6.101)
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z

w2

w3

z
w1

w3

w2

w1

Fig. 6.3 The contour of the integral is changed from a circle around z to those around

w1, w2, · · · in the opposite direction. The large contour surrounding all points, shown as

dotted, does not contribute as the integrand decays sufficiently rapidly.

with the differential operator

L−m =
n∑

i=1

( (m − 1)hi

(wi − z)m
− 1

(wi − z)m−1
∂wi

)
. (6.102)

6.8 Unitary representation of the Virasoro algebra

The unitary representation of the Virasoro algebra is constructed in the vector space
defined in the previous section. The requirement of unitarity of the representation
leads to strong constraints on the values of the central charge and conformal weight.
A part of such constraints has already been discussed in Exercise 6.8, in which the
conditions c ≥ 0 and hj ≥ 0 were derived from positive semi-definiteness of the norms
of L−2|0〉 and L−1|hj〉. The result hj ≥ 0 is natural also from the physics point of view
that the two-point correlation function should not increase as the distance between
two points increases, see eqn (6.30).

It is known that we can catalog the possible values of the central charge and
conformal weight by studying the condition for the existence of states with van-
ishing norm, called the null states, in the Verma module. Since the proof is highly
involved and beyond the modest scope of this book, we just present the results
and refer the interested reader to more advanced books listed at the end of the
volume.

Let us start with the trivial case of the vacuum |0〉 as a primary. The descendant
of the vacuum at level 1 is L−1|0〉. This state vanishes because L−1 is a differential
operator. The state L−1|0〉 = 0 is thus a null state, and all its descendants vanish.

A non-trivial example starts from level 2 of a non-vacuum primary |hj〉. There
are two independent basis vectors at level 2, L2|hj〉 and L2

−1|hj〉, from which we may
construct a null state as

L−2|hj〉 + αL2
−1|hj〉 = 0 (6.103)
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by appropriately choosing the coefficient α. The requirement of the existence of a null
state leads to constraints on c and hj as follows. Let us apply L1 to eqn (6.103) from
the left. Using eqn (6.77) with n = 1 and the Virasoro algebra (6.55), we have

L1L−2|hj〉 + αL1L
2
−1|hj〉 = [L1, L−2]|hj〉 + α[L1, L

2
−1]|hj〉

=
(
3 + 2α(2hj + 1)

)
L−1|hj〉 = 0. (6.104)

Since L−1|hj〉 �= 0 except for the trivial case of the vacuum (hj = 0), we conclude
α = −3/(4hj + 2). Similarly, the application of L2 to eqn (6.103) from the left yields

[L2, L−2]|hj〉 + α[L2, L
2
−1]|hj〉 =

(
4hj +

c

2
+ 6αhj

)
|hj〉 = 0. (6.105)

Hence, the central charge satisfies

c = −4hj(3α + 2) =
2hj(5 − 8hj)

2hj + 1
. (6.106)

Therefore, the conformal weight satisfies, given the central charge c,

16h2
j + 2(c − 5)hj + c = 0 (6.107)

if we require the existence of a null vector at level 2. This equation relates the central
charge with the conformal weight. As will be mentioned later, the two-dimensional
Ising model has a central charge c = 1/2, and consequently the conformal weights are
hj = 1/16 and 1/2.

For general level N , the problem is reduced to the analysis of a determinant in
P (N ) dimensions. The conclusion of detailed studies is that the Virasoro algebra has
a non-trivial, irreducible, unitary representation with a finite number of primary fields
if the central charge is expressed as

c = 1 − 6
m(m + 1)

m = 3, 4, 5, · · · . (6.108)

The corresponding primary fields have conformal weights characterized by two integers
p and q,

hp,q = hm−p,m+1−q =

(
(m + 1)p − mq

)2 − 1
4m(m + 1)

(
1 ≤ p ≤ m − 1, 1 ≤ q ≤ m

)
. (6.109)

The field theories having these values of c and h are called minimal models. Also, the
case c > 1, h ≥ 0 has a unitary representation but with an infinite number of primary
fields.

Minimal models correspond to common statistical models. The Ising model is
known to have c = 1/2,m = 3. Other examples include the tricritical Ising model
m = 4 (c = 7/10) and the three-state Potts model m = 5 (c = 4/5).

We have concentrated on the representations of the holomorphic part of the
Virasoro algebra. The representations of the antiholomorphic components are built
in the same fashion. The overall representations of the algebra are the tensor products
of the holomorphic and antiholomorphic representations.
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The value of c alone does not define a unique model. In general, there may
be more than one model for a given c < 1, each with different (p, q) and different
physical significance of the field φp,q. Most importantly, unitary theories with c < 1
can be completely classified, which means that one can catalog all fixed points and
thus determine all possible universality classes. This goal has been achieved not by
solving all models explicitly but by symmetry arguments coming from conformal
invariance.

6.9 Ising model

The simplest non-trivial minimal model has m = 3 (c = 1/2), which is considered to
correspond to the Ising model at criticality for the following reason. The primary
fields of the theory are described by the conformal weights (hj , h̄j). According to eqn
(6.109), the possible conformal weights of primary fields for m = 3 are

h1,1 = 0 , h1,2 =
1
16

, h2,1 =
1
2
. (6.110)

All other hp,q are equal to one of these three cases due to the symmetry hp,q =
hm−p,m+1−q. The associated primary fields are

φ1,1 = 1 , φ1,2 , φ2,1, (6.111)

and the states are written as

|0〉 ,

∣∣∣∣
1
16

〉
= φ1,2 |0〉 ,

∣∣∣∣
1
2

〉
= φ2,1 |0〉 . (6.112)

In the full theory with holomorphic and antiholomorphic parts, the primary fields are
of the form Φp,q(z, z̄) = φp,q(z)φ̄p,q(z̄). These results are summarized in the following
table.

Operator hj(= h̄j) xj

φ1,1 0 0

φ1,2
1
16

1
8

φ2,1
1
2 1

We need next to identify the field operators φp,q with the scaling operators of the
critical Ising model. It is known from the exact solution of the two-dimensional Ising
model that the spin–spin and energy–energy correlation functions at the critical point
behave as

〈S0Sr〉 ∝
1
rη

, 〈Enn(0)Enn(r)〉 ∝ 1
r4−2/ν

, (6.113)

with critical exponents η = 1/4 and ν = 1, where Enn(r) = SrSr+1. See eqns (3.80)
and (3.82). The energy–energy correlation function is a four-point correlation in terms



150 Conformal field theory

of spins. On the other hand, from the expression for the two-point correlation function
of primary fields, eqn (6.31),

〈φ1,2(z, z̄)φ1,2(0, 0)〉 =
1

z1/8z̄1/8
=

1
r1/4

,

〈φ2,1(z, z̄)φ2,1(0, 0)〉 =
1

z1z̄1
=

1
r2

. (6.114)

These equations justify the identification of φ1,2 with the Ising spin field S and
φ2,1 with the energy density field Enn. In this way, the conformal field theory with
m = 3 (c = 1/2) is considered to represent the Ising model at the critical point.

6.10 Finite-size effects

One of the most remarkable applications of the conformal field theory to critical
phenomena is found in the analysis of finite-size effects. One can extract information
on the scaling dimension and conformal charge from finite-size computations. This
method provides a very useful practical tool to identify the universality class of a
model system out of numerical data of finite-size systems.

The idea starts from the conformal transformation

z −→ f(z) =
L

2π
log z, (6.115)

which maps the whole complex plane to an infinitely long cylinder of circumference
L. If we write z = reiθ, then the new coordinate on the cylinder is

f ≡ u + iv =
L

2π
log r + i

Lθ

2π
. (6.116)

The range θ : 0 → 2π is mapped to v : 0 → L with v being understood to be periodic
with period L. We apply this mapping to the two-point correlation function. If we
write h, h̄ for the conformal weight of a primary operator φ,

〈φ(z1, z̄1)φ(z2, z̄2)〉 =
(
(∂zf)(z1)(∂zf)(z2)

)h(
(∂z̄ f̄)(z̄1)(∂z̄f)(z̄2)

)h̄

〈φ(f1, f̄1)φ(f2, f̄2)〉.
(6.117)

Using the explicit form of the mapping of eqn (6.115) and also eqn (6.31) for the
left-hand side, the above relation is rewritten as

〈φ(f1, f̄1)φ(f2, f̄2)〉

=
(

2π

L

)2h+2h̄ (z1z2)h(z̄1z̄2)h̄

(z1 − z2)2h(z̄1 − z̄2)2h̄

=
(π

L

)2h+2h̄ (
sinh

π

L
(f1 − f2)

)−2h(
sinh

π

L
(f̄1 − f̄2)

)−2h̄

. (6.118)
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For a large separation of z1 and z2 along the infinitely long direction of the cylinder,
u1 − u2 � L, the above form of the correlation function reduces to

〈φ(u1, v1)φ(u2, v2)〉 ≈
(

2π

L

)2x

exp
(
−2πx

L
(u1 − u2)

)
, (6.119)

where we have written x = h + h̄ for the scaling dimension of φ and have assumed that
the spin vanishes, s = h − h̄ = 0. It is natural that the correlation function decays
exponentially for a finite-size cylinder as it is essentially a one-dimensional system.
A remarkable point of eqn (6.119) is that the correlation length is related directly to
the scaling dimension,

ξ =
L

2πx
. (6.120)

This formula allows us to estimate the scaling dimension x from the correlation length
ξ for a finite-size system.

Another application concerns a finite-size correction to the free energy. We again
use the transformation (6.115) and consider a small change (u, v) → (u + εu, v). Then,
the free energy as a function of the linear size, F (L), changes as

e−F (L+δL) =
∫

Dφ e−S−δS , (6.121)

where δL = εL. Expanding both sides to first order in δ, we obtain

e−F (L)

(
1 − δL

∂F

∂L

)
=

∫
Dφ e−S −

∫
Dφ δS e−S , (6.122)

or

∂F

∂L
=

〈δS〉
δL

. (6.123)

We can express 〈δS〉 on the right-hand side of this equation as, using eqns (6.35),
(6.37) and (6.38) and noticing ∂μεν �= 0 only for μ = ν = u,

〈δS〉 = − ε

2π

∫ L

0

dv 〈Tuu〉 = − ε

2π

∫ L

0

dv 〈T (f) + T̄ (f)〉. (6.124)

The expectation value of the energy–momentum tensor is

〈T (f)〉 = 〈T̄ (f)〉 = − c

24

(
2π

L

)2

, (6.125)

because, according to eqn (6.49),

(∂zf)2〈T (f)〉 +
c

12
{f, z} = 〈T (z)〉 = 0, (6.126)
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and the mapping (6.115) yields {f, z} = 1/(2z2).13 We thus arrive at

∂F

∂L
=

πc

6L2
, (6.127)

which leads to

F = F0 −
πc

6L
. (6.128)

The integration constant F0 actually corresponds to the bulk part of the free energy
proportional to L. Equation (6.128) shows that the correction of the order of L−1 has a
universal coefficient −πc/6, which can be used to evaluate c from finite-size numerical
calculations.

13 Remember that 〈T (z)〉 = 0 due to eqn (6.40) with Xn = 1, which has hi = 0. The expectation
value of T for the restricted geometry 〈T (f)〉 does not vanish.



7

Kosterlitz–Thouless transition

As the spatial dimensionality d decreases, fluctuations become larger and the stability
of the low-temperature ordered state deteriorates. Consequently, for instance, the Ising
model in one dimension does not display long-range order at finite temperatures, i.e.
does not have an ordered phase. If the basic variables and symmetries are continuous
as in the XY and Heisenberg models, the (long-range) ordered state at any finite
temperature disappears already in two dimensions. The XY model, nevertheless,
undergoes an unusual phase transition without an onset of long-range order in two
dimensions, which is known as the Kosterlitz–Thouless transition. We describe the
theory of such interesting behavior in this chapter. Also elucidated is Elitzur’s theorem
for the absence of spontaneous symmetry breaking in lattice gauge theories.

7.1 Peierls argument

Mean-field theory correctly describes conventional critical phenomena above four
dimensions (the upper critical dimension). As the spatial dimensionality d decreases,
the effects of interactions between a spin and its neighbors become weaker due mainly
to the decrease in the number of neighbors, and eventually long-range order disappears
at finite temperatures below a certain dimension. This borderline dimensionality is the
lower critical dimension dlc. Systems with discrete degrees of freedom such as the Ising
model have dlc = 1 and systems with continuous symmetries have typically dlc = 2. In
the present section we introduce an argument that makes clear the difference, as far
as long-range order at finite temperatures is concerned, between the one- and two-
dimensional ferromagnetic Ising models. The argument can generically be applied
to other systems such as the antiferromagnetic Ising and Potts models. Indeed, it
constitutes a very useful tool to argue for the existence of long-range order at finite
temperature in cases where no exact solution is available. The following sections will
discuss the conditions for the existence and absence of long-range order in the XY
model.

The first example is the one-dimensional Ising model, for which we develop a
physical picture for the absence of long-range order not by solving the model explicitly
(see Section 9.1) but by comparing the energy and entropy contributions to the free
energy. Let us fix the left-most spin in the up (or + ) state in the Ising model on
a chain with length L. The right-most spin remains free. The ground state to be
realized at T = 0 has all spins up because of our particular boundary condition. As
the temperature increases from zero, excited states appear, in which some spins have
the opposite direction (down or −) as in the left panel of Fig. 7.1. A parallel pair of
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Fig. 7.1 Spin configurations where some spins are reversed from the ferromagnetic (all +)

ground state in one dimension (left), and two dimensions (right).

spins (++ or −−) have energy −J and antiparallel pairs (+− or −+) have energy J ,
with J > 0. Thus, the energy to reverse the state of a pair from the lower (parallel) to
higher (antiparallel) energy configuration is +2J . The number of locations where such
a reversal may happen is L− 1 ≈ L, for large L, which implies an entropy of logL. It
follows that the free-energy increase due to the spin reversal is

ΔF = 2J − T logL. (7.1)

This formula shows that, for a fixed value of J , the free energy decreases ΔF < 0
by the reversal of spin pairs for a sufficiently large system (L � 1) and arbitrary
finite temperature (T > 0). The perfectly (long-range) ordered state with all spins
up is therefore easily destroyed by any small but finite temperature. Thus, a simple
argument consisting of a comparison between the energy and entropy contributions
to the free energy in the Ising model reveals the absence of long-range order in one
dimension at finite temperatures.

A two-dimensional version of this argument proceeds as follows. Consider a config-
uration of spins such as the one shown in the right panel of Fig. 7.1. Suppose that an
island of down (−) spins with perimeter Γ emerged in the Ising model of N sites with
a boundary condition consisting of all spins up (+), as in the right panel of Fig. 7.1.
This boundary condition, which destroys the up/down symmetry of the model, i.e.
Z2, favors a particular ground state (the one with all +), and mimics an infinitesimal
magnetic field. The continuous line separating the + spins from the − spins in the
island is called a domain wall. In general, the latter is not a closed polygon and it
can be open, but the chosen boundary condition forces the domain walls to be closed
polygons.

The energy to generate such an island is 2JΓ. The corresponding entropy is
evaluated by counting the number of different ways to generate an island with
perimeter Γ. This is the number of paths that return to the original position after
Γ steps (the lattice spacing is the unit of length) with the constraint to pass through
a single bond only once. On the square lattice, a single step to go from a site to the
next has three possibilities because three bonds out of four are allowed to be chosen
to avoid going back onto the same bond as in the preceding step. We therefore have
roughly 3ΓN possibilities for Γ steps. The factor N results from the fact that there
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are at most N sites to start from.1 Then, the entropy is log(3ΓN), and the free energy
cost to generate an island of reversed spins is

ΔF = 2JΓ− TΓ log 3 = Γ(2J − T log 3), (7.2)

if we choose an island such that 3Γ � N . For temperatures lower than Tc ≡ 2J/ log 3 =
1.8J , the island of reversed (−) spins costs a positive free energy (ΔF > 0) and
consequently is unlikely to happen, implying the stability of ferromagnetic long-range
order. At high temperatures T > Tc, on the other hand, many islands can exist and the
long-range order is destroyed. We therefore conclude that the two-dimensional Ising
model undergoes a phase transition around Tc = 1.8J , which is fairly close to the exact
solution 2.2J . These ideas constitute the Peierls argument to show the existence of a
phase transition in the two-dimensional Ising model. The Peierls argument is not a
rigorous proof for the existence of long-range order. It, nevertheless, gives us a lucid
physical picture that the existence of long-range order is determined by the balance
between energy and entropy. A more formal mathematical proof of the existence of
long-range order (ferromagnetic phase at finite temperature) can be developed based
on the Peierls argument, see Appendix A.12.

The above argument applies to models with short-range interactions. If the system
has long-range interactions, such as Jij = J/|i− j|1+σ, which decays in a power of
the relative distance between two sites, a one-dimensional model can have a phase
transition at a finite temperature.2 We, nevertheless, concentrate ourselves on short-
range interactions throughout this book unless otherwise stated explicitly (as in the
infinite-range model of Section 2.5) because they represent typical situations.

7.2 Lower critical dimension of the XY model

Long-range order of systems with continuous degrees of freedom and symmetries, such
as the XY model (n = 2) and Heisenberg model (n = 3), is vulnerable to instabilities
due to thermal fluctuations and is actually absent at finite temperatures in two
dimensions. Order is fragile in these systems and can be destroyed more easily than in
systems with discrete degrees of freedom. Let us study in some detail how the lower
critical dimension becomes two.

The following XY model on a hypercubic lattice as introduced in Section 1.5 will
be discussed as a concrete example,

H = −J
∑
〈ij〉

cos(φi − φj). (7.3)

This model has been used to study the critical behavior of the superfluid to normal
phase transition in liquid 4He and displays a global U(1) symmetry, which amounts to a
change φi → φi + α on every site, with α a real number. Suppose that the temperature
is very low and neighboring spins are aligned almost parallel to each other. Then, the

1 This simple evaluation fails to take into account the avoidance condition of overlaps with more
than a few steps before. A more accurate estimate leads to aΓN possibilities with a slightly less than
3, which, however, does not affect our conclusion qualitatively.

2 There are examples of classical systems with short-range interactions, such as Kittel’s zipper
model, that display true thermodynamic phase transitions in d = 1. Typically, these short-range
models include hard-core interactions.
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Fig. 7.2 The stable spin configuration with the left and right boundaries fixed.

argument φi − φj of the cosine is very small compared to π, and it would be a good
approximation to expand the cosine to second order. Since we are interested in the
behavior of the system over a large spatial scale, we are allowed to ignore discreteness of
the spatial coordinates of the lattice. We therefore construct an effective Hamiltonian,
valid at low temperatures, by using a Fourier representation as

H ≈ −J
∑
〈ij〉

(
1− 1

2
(φi − φj)

2

)
≈ J

2

∫
dr(∇φ)2 =

J

2

∫
dq

(2π)d
q2φ̃(q)φ̃(−q), (7.4)

where we have dropped an additive constant that does not play a role, and considered
the gradient along the spatial directions of the lattice φi − φj → (ri − rj) · ∇φ((ri +
rj)/2) with φ(r) a continuous function. This is the spin-wave approximation around
an assumed ordered state, a quadratic Hamiltonian, which is expected to be valid
at low temperatures. In this approximation no phase transition may occur, as seen
in the Gaussian model with t = 0 in eqn (2.80). In general, effective Hamiltonians
such as the one of eqn (7.4) with an analytic expansion, in terms of gradients of a
slowly varying hydrodynamic (i.e. phenomenological) variable, characterize generalized
elasticity problems. In the case of magnetic systems the parameter of rigidity J is
known as the spin-wave stiffness or the helicity modulus, and it is proportional to the
superfluid density in the case of superfluids, the latter being discussed in Section 7.4.

To understand what type of spin configurations are stable under the spin-wave
approximation, we adopt the variational principle with respect to a local angle variable
(or a scalar field) φ(r), δH/δφ(r) = 0, to find the following Laplace equation,

∇2φ = 0. (7.5)

We solve this Laplace equation under the boundary condition that the left boundary
(x = 0) has φ = 0 and the right (x = L) has φ = φ0, along the chosen x-direction. The
solution is the uniformly rotated state, φ = xφ0/L, as depicted in Fig. 7.2. Then, the
energy of this configuration has the value

E =
J

2
Ld−2φ2

0, (7.6)
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as can be verified by inserting ∇φ = (φ0/L, 0, 0, · · · ) to the intermediate expression
of eqn (7.4), assuming that the volume of the system is Ld. This result shows that
energy increases indefinitely as L → ∞ for d > 2. A very large energy is needed to
twist both sides of the system by a finite angle, suggesting that the system is robust
against the change of boundary conditions. The information on the specific state that
one end has propagates through the system to the other end. The system is thus
considered to have rigid long-range order. If d < 2, the twist energy (7.6) does not
increase with system size and the effects of the boundaries do not propagate deep
into the system. Hence no long-range order exists. This simple argument therefore
illustrates that the stability of the long-range order in the XY model changes when
the dimension of the system is d = 2. The case d = 2 is marginal and needs more careful
scrutiny.

So far, the theory was just developed for the susceptibility of the energy against
a change of boundary conditions and did not include the effects of temperature. We
therefore must evaluate the behavior of the system at finite temperatures to confirm
the validity of the conclusion that d = 2 is the borderline dimensionality, i.e. the lower
critical dimension. The goal is to calculate the fluctuation of the relative orientation
of two spins as a function of their distance. The fluctuation of the relative orientation
is written as, using the Fourier representation,

〈(
φ(r)− φ(0)

)2〉
=

∫
dq1dq2

(2π)2d
(eiq1·r − 1)(eiq2·r − 1)

〈
φ̃(q1)φ̃(q2)

〉
. (7.7)

The expectation value of Fourier-transformed angle variables in the integrand is to be
calculated from the Hamiltonian (7.4). Since eqn (7.4) is a quadratic form of φ̃(q), i.e.
a Gaussian theory, it is straightforward to apply the computations of Section 2.9 with
t = 0 and b = J/2 to find

〈
φ̃(q1)φ̃(q2)

〉
=

(2π)dT

Jq21
δ(q1 + q2). (7.8)

We then have

〈(
φ(r)− φ(0)

)2〉
=

T

J

∫
dq

(2π)d
|eiq·r − 1|2

q2
∝ T

J

∫ a−1

r−1

dq qd−3, (7.9)

where the upper limit of the integral, the largest allowed wave number, has been
replaced by the largest absolute value of the wave number, which is proportional to
the inverse of the lattice constant a−1. The lower limit of the integral is chosen to be
the inverse of the distance, r−1, because the integrand in the middle expression is very
small for q < r−1, i.e. eiq·r ≈ 1.3 For d > 2, the last integral of eqn (7.9) is

T

J(d− 2)
(a2−d − r2−d). (7.10)

3 A more rigorous evaluation of the integral leads to the same conclusion that the lower critical
dimension of the XY model is two.
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Since 2− d < 0, this expression converges to a finite value for large r. This suggests
that fluctuations of the angle difference stay finite and long-range order is not destroyed
because two spins far apart share essentially the same angle. If the dimensionality is
exactly two, the integral (7.9) yields a logarithmic term, log r, which diverges as r
tends to infinity. Fluctuations grow indefinitely as the distance increases. Therefore,
the two angle variables φ(r) and φ(0) become uncorrelated in the limit r → ∞ as long
as the temperature is finite. We conclude that long-range order does not exist at finite
temperatures in the two-dimensional XY model. The same is true for d < 2.

We have used several approximate estimates in the above discussion. It is possible
to derive the same result rigorously by using Schwarz inequalities, as will be shown in
the next section.

7.3 Mermin–Wagner theorem: Absence
of spontaneous magnetization

The Mermin–Wagner theorem states that two-dimensional short-range interacting
systems with continuous degrees of freedom and symmetries do not have spontaneous
magnetization at finite temperatures. More generally, it is a statement relating the
dimensionality of a system with continuous symmetry with the existence of the
phenomenon of spontaneous symmetry breaking. We have made use of the spin-wave
approximation in the previous section, and the same conclusion is derived rigorously
in the present section. The original theorem was given in the context of quantum spin
systems, but we explain here a classical version since it is slightly simpler and does
not need the introduction of quantum spin operators. A common physical mechanism,
related to symmetry and fluctuations, lies behind the formal proofs both for quantum
and classical systems. The quantum version of the theorem is proved in Appendix A.13.
Although illuminating, the reader who is not interested in the details of the proof can
skip this section.

The Hamiltonian of the XY model in the presence of a finite external field h is

H = −J
∑
〈ij〉

cos(φi − φj)− h
∑
i

cosφi. (7.11)

The sum in the first term on the right-hand side runs over nearest-neighbor pairs on
the square lattice. The starting point of the proof is the following Schwarz inequality
that holds under very general conditions,

〈AA∗〉 ≥
∣∣〈AB∗〉

∣∣2
〈BB∗〉 , (7.12)

where A and B are functions of angle variables (φi, φj) and 〈· · ·〉 denotes the thermal
average with respect to the canonical ensemble Boltzmann weight e−βH with β = 1/T .
The crux of the proof is to choose A and B as follows,

A =
1

N

∑
j

e−iq·rj sinφj , B =
1

N

∑
l

e−iq·rl
∂H

∂φl
. (7.13)
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Here, q is a wave vector and rj and rl are position vectors. We insert these definitions
into the Schwarz inequality (7.12) and sum both sides over q for a finite-size system
with periodic boundary conditions. The left-hand side is bounded as

∑
q

〈AA∗〉 = 1

N2

∑
i,j

∑
q

e−iq·(ri−rj)〈sinφi sinφj〉 =
1

N

∑
i

〈sin2 φi〉 ≤ 1. (7.14)

The numerator of the right-hand side of eqn (7.12) is

〈AB∗〉 = Tm

N
, (7.15)

where m is the magnetization per spin. To derive this identity, we first note that

〈AB∗〉 = 1

N2

∑
j,l

e−iq·(rj−rl)

〈
sinφj

∂H

∂φl

〉
, (7.16)

whose last expectation value is rewritten, after integration by parts, as

1

Z

∫ 2π

0

∏
i

dφie
−βH sinφj

∂H

∂φl
=

T

Z

∫ 2π

0

∏
i

dφi e
−βH cosφj δlj , (7.17)

where we used e−βH∂H/∂φl = −β−1∂e−βH/∂φl. It then follows

〈AB∗〉 = T

N2

∑
j

〈cosφj〉 =
Tm

N
. (7.18)

The denominator of the right-hand side of eqn (7.12) is upper-bounded as (q = |q|)

〈BB∗〉 ≤ T

(
Jq2 + h

N

)
. (7.19)

To understand this inequality it is useful first to insert the definition of eqn (7.13),

〈BB∗〉 = 1

N2

∑
l,j

e−iq·(rl−rj)

〈
∂H

∂φl

∂H

∂φj

〉
. (7.20)

We next use e−βH∂H/∂φl = −β−1∂e−βH/∂φl to rewrite the expectation value on the
right-hand side, after integration by parts, as

1

Z

∫ 2π

0

∏
i

dφie
−βH ∂H

∂φl

∂H

∂φj
=

T

Z

∫ 2π

0

∏
i

dφie
−βH ∂2H

∂φl∂φj
. (7.21)

The second order derivative appearing here is evaluated according to the combination
of indices.

� For l = j.

∂2H

∂φl∂φj
=

∂2H

∂φ2
l

= J
∑
δ

cos(φl − φl+ δ) + h cosφl. (7.22)
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Here, δ is the vector to the nearest-neighbor site on the square lattice. There
are four of them.

� For neighboring l and j.

∂2H

∂φl∂φj
=

∂

∂φl

(
J
∑
δ

sin(φj − φj+δ) + h sinφj

)
= −J cos(φj − φl). (7.23)

� Otherwise, it is 0.

Combining these three cases, we have

β〈BB∗〉

=
1

N2

∑
l

(
J
∑
δ

〈
cos(φl − φl+δ)

〉
+ h〈cosφl〉

)
− J

N2

∑
l,δ

e−iq·δ〈cos(φl − φl+δ)
〉

=
J

N2

∑
l

(4−
∑
δ

e−iq·δ)
〈
cos(φl − φl+δ)

〉
+

h

N2

∑
l

〈cosφl〉, (7.24)

where
〈
cos(φl − φl+δ)

〉
respects the symmetry of the square lattice in the sense that

it is independent of δ. Now, note that the sum over vectors to neighboring sites gives4

∑
δ

e−iq·δ = 2 cos qx + 2 cos qy. (7.25)

Using the trivial inequality 1− cos q ≤ q2/2, which can be verified by graphical means,
and another trivial relation 〈cos(· · · )〉 ≤ 1, we can rewrite the final expression of
eqn (7.24) as

β〈BB∗〉 = J

N2

∑
l

(4− 2 cos qx − 2 cos qy)
〈
cos(φl − φl+δ)

〉
+

h

N
m

≤ J

N
(q2x + q2y) +

h

N
=

(
Jq2 + h

N

)
. (7.26)

This is eqn (7.19).
Replacement of the relations (7.14), (7.15) and (7.19) into the corresponding

expressions in the Schwarz inequality (7.12) gives

1 ≥ T

N
m2

∑
q

1

Jq2 + h
. (7.27)

In the thermodynamic limit N → ∞ the sum becomes an integral,

1 ≥ Tm2

∫
dq

(2π)2
1

Jq2 + h
. (7.28)

In two dimensions, for any T > 0, this integral diverges as h → 0 due to the singularity
at the origin (infrared divergence). The inequality is satisfied only if m → 0 as h → 0,

4 We normalize the lattice constant to unity, i.e. a = 1.
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i.e. no spontaneous symmetry breaking can occur. This ends the proof that there is no
spontaneous magnetization in theXY model at finite temperatures in two dimensions.5

The square of the wave number q2 in the denominator of eqn (7.28) represents
essentially the same long-range processes as in the evaluation of the energy of a spin
wave in eqn (7.4). In the spin-wave approximation this q2 leads to the power of d− 3
in eqn (7.9) for the fluctuation of relative angles, and as a result, the integral diverges
in two dimensions. The same mechanism is seen to work to give a diverging integral
as h → 0 in eqn (7.28). We would like to mention that the general Mermin–Wagner
theorem of this section and Appendix A.13 can be applied to other classical or quantum
models with short-range interactions. Indeed, the original formulation was applied to
the classical Heisenberg model to prove that ferromagnetism (or antiferromagnetism)
cannot be present in d ≤ 2. When applied to other models, the starting point is
always the inequality of eqn (7.12) with appropriately chosen functions A and B
depending on the model. Notice that the theorem does not exclude the possibility
to have spontaneous symmetry breaking at T = 0. Indeed, at exactly T = 0 the two-
dimensional classical XY model has long-range order.

EXERCISE 7.1 Generalize the proof of this section to an arbitrary dimension d and
show that there is no spontaneous magnetization for d < 2 and that it is impossible
to show the same result for d > 2.

7.4 Kosterlitz–Thouless transition

We have seen that the two-dimensional XY model has no spontaneous magnetization
(long-range order) at finite temperatures and consequently has no ordinary (Landau-
type) phase transition. This system is, nevertheless, known to have a special type
of phase transition without long-range order. The low-temperature phase does not
display long-range order but has clearly different correlation properties from the high-
temperature paramagnetic phase. While correlation functions decay exponentially in
the paramagnetic phase, they slowly decrease as a power law in the low-temperature
phase (except at exactly T = 0 where there is long-range order). This power-law
correlation is reminiscent of what happens at the critical point. An important
difference from the usual critical point, though, is that this power-law behavior
extends over a finite temperature range. Sometimes this phase is referred to as a
low-temperature critical phase. Systems with power-law decay of (potential) order
parameter correlation functions are said to have quasi-long-range order. The XY
model is at the lower critical dimension in two dimensions, and this fact causes such
singular behavior. This special transition from quasi-long-range order to disorder is
known as the Kosterlitz–Thouless (KT) transition, and the critical phase is called the
Kosterlitz–Thouless (KT) phase.6

Let us calculate the correlation function using the spin-wave approximation, which
is valid at low temperatures, to verify its power-law behavior. The correlation function

5 Rigorously speaking, long-range order is not identical to spontaneous magnetization, the former
being defined by the limiting value of a correlation function as discussed at the end of Section 5.6.
We, however, often use these two names interchangeably in this book because they are physically
equivalent.

6 J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6 (1973) 1181. A similar idea was proposed by
V. L. Berezinskii in Sov. Phys. JETP 34 (1972) 610.
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of the XY model is expressed as
〈
cos

(
φ(r)− φ(0)

)〉
=

〈
ei(φ(r)−φ(0))

〉
. (7.29)

Note that the imaginary part of the right-hand side vanishes due to the symmetry
of global reversal of angle variables, φ(r) → −φ(r) ∀r, under which the Hamiltonian
remains invariant. The goal is to evaluate the expectation value on the right-hand
side using the spin-wave Hamiltonian (7.4). Since this Hamiltonian is quadratic in
the angle variables, the corresponding Gibbs–Boltzmann distribution is Gaussian. We
therefore use the fact that the cumulants of order higher than the second order vanish
for the Gaussian distribution (see Appendix A.4) to find〈

cos
(
φ(r)− φ(0)

)〉
=

〈
ei(φ(r)−φ(0))

〉
= e−

1
2 〈(φ(r)−φ(0))2〉. (7.30)

The expression in the exponent can be evaluated as in the integral (7.9) for the case
d = 2,

〈(
φ(r)− φ(0)

)2〉 ≈ T

J

∫
2− eiq·r − e−iq·r

q2
dq

(2π)2

=
T

(2π)2J

∫ a−1

0

dq

q

∫ 2π

0

(2− eiqr cosθ − e−iqr cosθ)dθ

=
T

(2π)2J

∫ a−1

0

dq

q
(4π − 4πJ0(qr))

=
T

πJ

∫ a−1

0

dq

q
(1− J0(qr)) =

T

πJ

∫ r/a

0

dy

y
(1− J0(y))

=
T

πJ

(∫ 1

0

1− J0(y)

y
dy +

∫ r/a

1

dy

y
−
∫ r/a

1

J0(y)

y
dy

)

≈ T

πJ
log

( r
a

)
, (7.31)

where J0(qr) is the Bessel function. The first term of the line above the last is
independent of r, the second term is log(r/a), and the third term approaches a
constant in the limit r → ∞. In that limit, the first and third terms can be neglected
in comparison with the second one, therefore leading to the final result.

Inserting this result into eqn (7.30), we have (r = |r|)〈
cos

(
φ(r)− φ(0)

)〉
= r−T/2πJ . (7.32)

Usually, correlation functions do not decay with distance if long-range order exists
and decay exponentially in the paramagnetic phase. Equation (7.32) shows a slow,
power-law decay in between, which is characteristic of systems exactly at the critical
point. However, the exponent η = T/2πJ is not universal since it explicitly depends on
T and J . Remarkably, this result holds for any temperature as long as the spin-wave
approximation is a justified assumption. We conclude that the system is critical for
a finite temperature range. This may also be understood as if there exists a fixed
line, i.e. a set of fixed points, under the renormalization group. Thus, this behavior is
called quasi-long-range order. The relative angle of the spin variables does not have
(long-range) order but changes slowly.
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Fig. 7.3 Vortices with n = 1, 1,−1,−1 and c = −π/2, 0, π/2, π from left to right, respec-

tively, where n and c are defined by φ(r) = nθ + c.

EXERCISE 7.2 Calculate the correlation function (7.29) for general d(�= 2) and
confirm that d = 2 is the borderline dimension of stability, the lower critical
dimension.

The spin-wave quadratic model is critical and it displays no phase transition.
However, at sufficiently high temperatures we would expect the XY model to be
in a paramagnetic phase with exponentially decaying relative angle correlations.
As the temperature increases from the low-temperature limit, it must happen that
the angle variables change more drastically than those expressed in the spin-wave
approximation. The Laplace equation ∇2φ = 0 admits, besides the uniform solu-
tions φ = const. studied above, non-uniform singular solutions. Topological vortex
solutions (see Section 5.8) are inhomogeneous states that cannot be described by a
continuous function such as the smoothly varying spin waves. In particular, vortex
configurations, not taken into account in the spin-wave approximation of theXY model,
gradually affect the state of the system, eventually destroying the quasi-long-range order.

To express configurations with vortices, we write the angle field variable φ(r)
as a function of the angle θ measured from the x-axis as φ(r) = nθ + c, with n an
integer known as the winding number (a topological invariant) and c a constant,
Fig. 7.3. Then, the derivative of the angle variable ∇φ appearing in the spin-wave
Hamiltonian (7.4) has as radial and azimuthal components as

(∇φ)r =
∂φ

∂r
= 0, (∇φ)θ =

1

r

∂φ

∂θ
=

n

r
. (7.33)

An excitation with a positive winding number is a vortex and one with a negative
value of n is also known as an antivortex. Then, the energy needed to create such a
vortex configuration is, according to eqn (7.4),

E =
J

2

∫
n2

r2
rdrdθ = n2πJ log

R

r0
+ EC. (7.34)

Here, R is the linear size (radius) of the system, r0 is the radius of the vortex core (the
lower bound of the integral and the short-distance cutoff), and EC is the vortex core
energy. We have assumed that the upper bound of the integral is R, the lower bound r0,
and the contribution below the lower bound r < r0 gives a finite energy EC. Thus, the
total energy of a vortex has two contributions, the first term in eqn (7.34) represents
the elastic energy, while the energy EC is a microscopic contribution associated with
the destruction of the uniform order at the core of the vortex. The entropy of a single
vortex S is given by the logarithm of the number of ways to place the center of the



164 Kosterlitz–Thouless transition

vortex in the region having a radius between r0 and R. This number of ways is expected
to be proportional to the relevant area of the region. We thus have

S = log

{(
R

r0

)2

· const
}
. (7.35)

The combination of these estimates of energy and entropy leads to the following free
energy needed to create a vortex with winding number n = 1,

ΔF = (πJ − 2T ) logR+ const. (7.36)

For the temperature range T > TKT ≡ πJ/2, the creation of vortices causes a
free-energy decrease. We therefore conclude that a phase transition takes place at
Tc = TKT, above which a large number of vortices proliferate and the spin-wave
approximation breaks down. For T > TKT, the angle variable around a vortex changes
very quickly, invalidating the spin-wave approximation, and the relative angle between
spins far apart are correlated only very weakly. Then, the quasi-long-range order is
destroyed and the system becomes paramagnetic. This is the Kosterlitz–Thouless
(KT) transition. The low-temperature region below TKT with quasi long-range order
is the KT phase.

In the KT phase the creation of a vortex increases the free energy, and a single
vortex is not stable. Nevertheless, a pair of vortices with different signs of their winding
number n may be stable if the distance between them is not too large. To show this
result we assume that several vortices exist around the origin. Then, the angle field
far from the origin is written as, instead of eqn (7.33),

(∇φ)r =
∂φ

∂r
= 0, (∇φ)θ =

1

r

∂φ

∂θ
=

∑
i ni

r
. (7.37)

The energy corresponding to eqn (7.34) is

E =

(∑
i

ni

)2

πJ log
R

r0
+ EC, (7.38)

where EC is the total vortex core energy. We may therefore conclude that several
vortices may exist even in the low-temperature KT phase as long as the condition
of neutrality

∑
i ni = 0 is satisfied. In particular, a pair of vortices having the same

absolute value but opposite signs of their winding numbers, ±n, are allowed to exist.
Since at low temperatures vortices can be bound in pairs, the Kosterlitz–Thouless

transition is physically associated with the unbinding of vortices. The simple and
heuristic energy–entropy argument developed in this section neglects interactions
between vortices that will be studied in the next section. A more sophisticated
renormalization group analysis, to be developed in a later section, shows that this
qualitative picture is the correct description of the transition.

EXERCISE 7.3 Draw vortex configurations with n = 2 and n = −2 similarly to
Fig. 7.3.

EXERCISE 7.4 Derive the condition for the term
∑

i cos(pφi) with p a natural
number to be relevant in the sense of renormalization group for the XY model. It
will be useful first to estimate the scaling dimension xp from the calculation of the
corresponding correlation function

〈
cos

(
pφ(r)− pφ(0)

)〉
generalizing the discussions
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in the first half of the present section. The result will reveal the condition for the
exponent yp to be positive. In particular, show that the term

∑
i cos(pφi) is relevant

if p is larger than a threshold p0 and the temperature is lower than some Tp. This
implies that this term is irrelevant in the temperature range Tp < T < TKT where
the KT phase is realized. On the other hand, this term is relevant for T < Tp and
the system has the same properties as the clock model in which the angles assume
only discrete values φi = 2πk/p (k = 0, 1, 2, · · · , p− 1).

A few words are in order on the superfluid transition of liquid helium. The kinetic
energy of a thin film of superfluid helium is written as

E =
ρs
2

∫
v2s dxdy =

ρs
2

(
�

m

)2 ∫
(∇ψ)2 dxdy, (7.39)

where ρs is the superfluid density per area and vs is the superfluid velocity, and we
have used the Landau–Ginzburg relation vs = (�/m)∇ψ. Comparison with eqn (7.4)
or eqn (7.48) in the next section reveals the relation J = ρs�

2/m2. It follows that the
ratio of ρs to T at the transition point Tc = TKT(= πJ/2) assumes a universal value
independent of experimental details,

ρs
TKT

=
2m2

π�2
. (7.40)

Since ρs = 0 above the transition due to the absence of superfluidity, ρs/T jumps
from the above finite value to zero at the transition. This is called the universal jump
of the superfluid density (stiffness) and has been confirmed experimentally. Also, the
problem of a roughening transition of equilibrium crystal surfaces displays a universal
jump in the smoothness parameter and has also been confirmed experimentally.

Equation (7.40) represents a quantity proportional to the ratio of J and T . This
turns out to lead to the fact that the critical exponent η assumes a specific number
η(TKT) = 1/4 at the transition point. The reason is that eqn (7.32) implies that
η = T/2πJ , proportional to the ratio between T and J , has the value 1/4 at the
transition point because TKT = πJ/2. The relation η(TKT) = 1/4 is often used to
check if a transition belongs to the same universality class as the KT transition.

7.5 Interaction energy of vortex pairs

We have learned that a vortex pair can exist in a stable manner around the origin
if the neutrality condition is satisfied. The physical properties of vortices are better
understood when we study the energy of vortices in their general configurations. In
the following we will establish a connection between the XY model and a neutral
Coulomb gas in two dimensions with charges ni, such that

∑
i ni = 0.

The angle variable or field for a single vortex with winding number n = 1 located
at the origin is written as

(∇φ)r = 0, (∇φ)θ =
1

r
. (7.41)
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Let us integrate the field v ≡ ∇φ around the vortex, along a closed circuit,
∮

v · dr =

∫ 2π

0

1

r
rdθ = 2π. (7.42)

Then, the Stokes theorem implies that (curlv)z = 2πδ(r), where the z-direction is
perpendicular to the two-dimensional xy plane. For a more general configuration with
many vortices, we have

(curlv)z = 2π
∑
i

niδ(r − ri) ≡ 2πN(r), (7.43)

where ri is the position of the vortex i, i.e. the location of its core.
Now, the Cartesian components of the vector field v = ∇φ for a single vortex with

n = 1 are, according to eqn (7.41),

vx =
∂φ

∂x
= − y

r2
, vy =

∂φ

∂y
=

x

r2
. (7.44)

If we introduce a new scalar field ψ = − log(r/r0), the above components are
expressed as

vx =
∂ψ

∂y
, vy = −∂ψ

∂x
. (7.45)

In a superfluid the real physical vortices can be described by these variables, in which
case v is called the superfluid velocity, φ the velocity potential, and ψ the stream
function. For a generic case with many vortices, we generalize ψ = − log(r/r0) to

ψ(r) = −
∑
i

ni log
|r − ri|

r0
. (7.46)

It is instructive to verify the validity of this generalization. From eqns (7.45) and
(7.46), we find

(curlv)z =
∂vy
∂x

− ∂vx
∂y

= −∂2ψ

∂x2
− ∂2ψ

∂y2
= −∇2ψ = 2πN(r), (7.47)

which is consistent with eqn (7.43).
The total energy of a (neutral) system with many vortices is therefore

E =
J

2

∫
(v2x + v2y)dxdy =

J

2

∫
(∇ψ)2dxdy

= −J

2

∫
(ψ∇2ψ)dxdy

= −πJ
∑
i �=j

ninj log
|ri − rj |

r0
+ EC. (7.48)

This equation can be interpreted as the total energy of a set of charged vortices (with
charge ni) interacting via a two-dimensional Coulomb potential having a logarithmic
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dependence on the relative distance. Notice that the energy of a pair of vortices
with opposite charges, ninj < 0, is minimized when they are close to each other,
i.e. tightly bound. At low temperatures two vortices with different signs (such as
n = ±1) are bound together, creating a gas of vortex–antivortex pairs or molecules,
and the system may be regarded as a dielectric. Above the KT transition point
those pairs are destroyed (melted) by thermal fluctuations and single vortices freely
move around, forming a plasma-like state. Unbound vortices correspond to free or
mobile charges. In this sense, the physics of the KT transition is equivalent to the
statistical mechanics of a two-dimensional Coulomb gas. Equation (7.48) suggests
that the coupling constant J is related to the dielectric constant ε by πJ = 1/ε. The
effective interaction energy between vortices (7.48) will be rederived in Section 10.3.4
without the ad hoc introduction of vortex degrees of freedom.

7.6 Renormalization group analysis

An analysis of the KT transition by the renormalization group method is a prominent
example in which the real-space renormalization works very successfully.

7.6.1 Renormalization group equation to describe the KT transition

Let us first identify the variables that determine the critical behavior of the present
system. Physical intuition is useful to find the relevant variables, and we eventu-
ally write renormalization group equations for these variables. The temperature is
clearly the most important variable. The corresponding scaling field x is chosen
as x = 2− πK(= 2− πJ/T ) such that it vanishes at the fixed point.7 The variable
x is actually not relevant but marginal. In conventional critical phenomena, the
temperature variable is relevant and renormalizes toward zero if the initial value is
below the critical point, as illustrated in Fig. 1.5. However, in the KT transition, there
is no isolated fixed point and all temperatures below the critical point are attracted
to corresponding points on a fixed line, which represents a set of fixed points. The
KT transition point does not correspond to an unstable fixed point characteristic
of a relevant scaling field. Nevertheless, the temperature is not irrelevant but is
marginal.

Another important variable to take into consideration is the number of vortices. If
there are few vortices, the spin-wave approximation describes the system qualitatively
faithfully and the system is in the KT phase. As the number of vortices increases,
the slow and smooth change of angles, as assumed in the spin-wave approximation,
is not respected and the angles vary quickly near vortices, eventually leading to the
KT transition into the paramagnetic phase. It is therefore reasonable to introduce as
a relevant variable the chemical potential μ of vortices, which controls the number
of vortices, or equivalently the fugacity obtained by exponentiating the chemical
potential, y0 = e−βμ. For small y0 (large chemical potential) the number of vortices

7 Strictly speaking, a fixed point should be distinguished from a critical point. Thus, K appearing
here is not the interaction constant before renormalization K = J/T (bare coupling) but is the
variable after many steps of renormalization (renormalized coupling). The difference between these
two concepts will be explained in more detail later.
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is small and the system is in the KT phase, whereas the paramagnetic phase has a
large y0 with very many vortices. This means that we have to see whether the fugacity
increases or decreases under a renormalization group transformation.

A more quantitative analysis is facilitated by the energy

E(r1, r2) = 2πJ log
|r1 − r2|

r0
+ EC, (7.49)

which describes a pair of vortices with opposite winding numbers n = ±1, located at
r1 and r2. This equation is derived from eqn (7.48) when we set n1 = −n2 = 1 or n1 =
−n2 = −1 with all other nis vanishing. The chemical potential for two vortices is 2μ,
and the corresponding fugacity is y20 . Then, the probability for the above configuration
of a pair of vortices to appear should be proportional to the following expression

y20e
−βE(r1,r2) = y20e

−βEC

∣∣∣∣
r1 − r2

r0

∣∣∣∣
−2πK

. (7.50)

The correlation function of vortex variables
〈
|n(r1)n(r2)|

〉
is calculated from con-

tributions of non-vanishing values of |n(r1)| and |n(r2)| and hence is proportional
to the probability of eqn (7.50) when there are only a small number of vortices
(|n(r1)|, |n(r2)| = 0 or 1). This observation leads to two interesting facts. First, the
distance-independent part of the above equation, y20e

−βEC , implies that the fugacity
y0 always appears as a product with e−βEC/2. We may thus adopt y = y0e

−βEC/2

as a basic scaling field instead of y0. Secondly, the scaling dimension of a vortex is
vx = πK.8

We are now ready to write the renormalization group equation for y, which controls
the number of vortices, using the relation between the scaling dimension vx and
the renormalization group exponent vy, vy = d− vx. The relation y′ = bvy y with the
scaling factor b reduces in the limit of an infinitesimal scaling factor b = 1 + dl to

dy

dl
= vy · y = (2− vx)y = (2− πK)y = xy, (7.51)

if we notice that bvy ≈ 1 + vydl. This is the differential renormalization group equation
for y.

To derive the renormalization group equation for the scaling field x, we assume
that the system is close to the KT transition point (|x| � 1). Moreover, we are
interested in whether or not the number of vortices increases by a renormalization
group transformation. These aspects justify keeping only the lowest-order term in the
Taylor expansion of the right-hand side of the renormalization group equation (beta
function) in powers of x and y. Since vortices show up as pairs in the KT phase, the

8 The scaling fields of the two-dimensional XY model are often written as x and y for historical
reasons. This notation may be confused with the scaling dimension or the exponent of the renormal-
ization group eigenvalue. In this book we write vx and vy for the scaling dimension and exponent,
respectively, of the vortex numbers. Do not confuse this notation with the Cartesian components of
the velocity field v of the previous section.
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second-order term is the lowest-order one in the variable y. As will be shown later, the
renormalization group equation for x is readily written only in terms of this effect,9

dx

dl
= a2y2. (7.52)

Since the presence of vortices disorders the system, x should increase by the effects of
y, and the coefficient on the right-hand side is chosen to be positive, a2. Let us confirm
that no other additive terms including a constant and a low-order term in x appear. It
is first clear that a constant term does not exist because x∗ = y∗ = 0 is a fixed point.
A term proportional to x represents an instability of the fixed point x∗ = 0 since a
temperature lower than the critical one renormalizes to still lower temperatures, see
Fig. 4.4, which is in conflict with the physical picture that the KT phase corresponds
to a fixed line, not an isolated fixed point. Similarly, x2 increases the temperature with
x < 0 toward x = 0, and the KT transition point x = 0 becomes a stable, isolated fixed
point, again incompatible with our physical intuition. Similar considerations exclude
all terms written as functions of x on the right-hand side of eqn (7.52). We therefore
conclude that eqns (7.52) and (7.51) are the right renormalization group equations to
describe the KT transition. They are called the Kosterlitz equations.

7.6.2 Solving the Kosterlitz equations

To solve the Kosterlitz equations, it is useful to note that the scale variable l can be
eliminated by taking the ratio between both sides of eqns (7.52) and (7.51),

dx2

dy2
= a2. (7.53)

The result is an equation for x and y, and its analytic solution is a hyperbola

x2 − a2y2 = const. (7.54)

Since the KT transition point is at x = y = 0, the solution corresponding to the
transition point has a vanishing constant on the right-hand side of eqn (7.54). This
means that the line y = ±x/a should go through the transition point on the xy plane.
The renormalization group flow is drawn in Fig. 7.4. Within the KT phase, the spin-
wave approximation captures the essence of the relevant physics and vortices do not
play an essential role, irrelevant in the renormalization group sense, and hence y is
renormalized to 0. This is the situation to the left of the line y = −x/a in Fig. 7.4.
In the paramagnetic phase y renormalizes to larger and larger values, as in the region
to the right of the line y = −x/a. These considerations lead to the renormalization
group flow illustrated in Fig. 7.4. On the low-temperature side, the KT phase, y is
renormalized to 0 and x is to a finite value that corresponds to the initial (bare) value,
and the system is attracted to the fixed line y∗ = 0, x < 0. On the high-temperature
side, the paramagnetic phase, y increases indefinitely and more and more vortices are
created as the renormalization group process goes on. The line y = −x/a separates
these two phases and is known as a separatrix.

9 Do not confuse the constant a of this section with the lattice constant.
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0 x

y
y = x/ay = –x/a

Fig. 7.4 Renormalization group flow of the Kosterlitz equations. The dashed line represents

the bare XY model before renormalization. The small black dot on this line is the KT

transition point written in terms of the bare coupling.

We have seen that the scaling field y is related to the fugacity y0 and the chemical
potential μ for vortices by the relation y = y0e

−βEC/2 = e−βμ−βEC/2. These quantities,
fugacity and chemical potential, have been introduced artificially to study the situation
with a small number of vortices and do not exist in the originalXY model. The original
problem corresponds to μ = 0 or y0 = 1, and hence the bare couplings lie on the curve
y = e−βEC/2 drawn as a dashed line in Fig. 7.4. This figure shows that the value of x
increases toward a slightly larger value on the line y = 0, x < 0 after renormalization
even within the KT phase (to the left of the line y = −x/a). Correspondingly, the
temperature is also renormalized to a larger value. The fixed line is reached after many
steps of the renormalization group transformation, and the dashed line of the original
system itself is not invariant under renormalization. It should also be noticed that the
fixed-point condition x∗ = 0 (T = TKT = πJ/2) representing the KT transition point
is to be described by the renormalized temperature. The transition temperature in
terms of the original variable is at the crossing point of the line y = −x/a and the
dashed curve, the small black dot in Fig. 7.4. Since this crossing point has x < 0, the
KT transition temperature in terms of the original variable is smaller than πJ/2.

We next study the singularities of physical quantities near the transition point
using the solution of the Kosterlitz equations. Since x2 − a2y2 = 0 at the transition
point, we will have x2 − a2y2 = −ct (t = (T − TKT)/TKT, c > 0) slightly above the
transition point. Then, the solution to the Kosterlitz equation

dx

dl
= a2y2 = x2 + ct (7.55)

is

l = l0 +
1√
ct

arctan
x√
ct
. (7.56)

Equation (7.55) indicates that x increases with l (x �= 0) independent of its sign,
meaning that the renormalization flows to the right in Fig. 7.4.

EXERCISE 7.5 Confirm that the Kosterlitz equation near the transition point
(7.55) has the solution (7.56).
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Now, suppose that l (essentially the same as the scale b of renormalization) has reached
the size of the system after many renormalization steps. If we write lf for this l and
set the value of arctan on the right-hand side of eqn (7.56) to its largest possible value
π/2, we have

lf = l0 +
k√
t

(
k =

π

2
√
c

)
. (7.57)

We will later use the fact that vortices cease to exist in pairs when l reaches lf since
almost all degrees of freedom have been traced out. In order to connect this lf with

the correlation length, we notice that the correlation length ξ̃′ measured from the
standard of the renormalized system of scale b is related to the correlation length ξ̃
in the original scale as ξ̃′ = ξ̃/b. Then, the renormalization group equation for the
infinitesimal scaling b = 1 + dl is

dξ̃

dl
= −ξ̃. (7.58)

This equation is solved as ξ̃ ∝ e−l. The value of ξ̃ obtained by integration of eqn (7.58)
is the correlation length measured in the standard after renormalization. If this value is
A, the correlation length measured in the unit of the unrenormalized system is ξ = Ael.
We therefore conclude that the limit length for a vortex pair to exist, measured in the
original scale (standard of length) is, from eqn (7.57),

ξ ≈ ξ0e
lf ≈ exp

(
k√
t

)
. (7.59)

The correlation length diverges exponentially, with a non-universal coefficient k, as the
temperature approaches the transition point from above. An exponential divergence is
very strong. For example, when t = 10−2, eqn (7.59) gives ξ ≈ 2× 105 if k is unity. It
is therefore necessary to take sufficient care in numerical studies of the KT transition.

In order to check the singularity of the free energy, we note that the scaling
law f(t) = b−df(bytt) can be rewritten as f = b−dg(b/ξ) because we have f(bytt) =
f((b/t−ν)yt) ≡ g(b/ξ) from ξ = t−ν = t−1/yt . This expression f = b−dg(b/ξ) for the
scaling function is valid even when the correlation length diverges exponentially, not
polynomially, because the argument is written as the ratio of b and ξ without reference
to a power of t explicitly. Let us set b = ξ in f = b−dg(b/ξ) and apply eqn (7.59) to
find

f = ξ−dg(1) ≈ exp

(
− 2k√

t

)
, (7.60)

which expresses the essential singularity of the free energy. This equation shows that
the free energy has a very weak singularity that is differentiable arbitrarily many times.
Consequently, the same is true for the specific heat. The essential singularity in the
specific heat at TKT is very weak and unobservable experimentally and in numerical
simulations. Indeed the specific heat has a broad non-universal peak slightly above
the transition point and has no sign of singularity.

Those peculiar exponential singularities in the correlation function and spe-
cific heat reflect the lower critical dimension (two) of the XY model. As seen in
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Section 3.6.3, similar exponential singularities are shared by the Ising model at its
lower critical dimension d = 1 near the transition point T = 0.

7.7 Lattice gauge theory and Elitzur’s theorem

In this section we digress from the main topic of KT transition and discuss the absence
of spontaneous symmetry breaking in systems with local (gauge) symmetry. The
theorem of Mermin and Wagner claims that continuous global symmetries do not
break down spontaneously in two or lower dimensions. The same is true for discrete
global symmetries in one dimension. We show in the present section that there exist no
spontaneous symmetry breaking in any dimensions for local symmetries. This result
contrasts the difference between global and local symmetries.

For this purpose we analyze the lattice gauge theory, which has been introduced to
understand the mechanism of confinement of quarks. Although the physical motivation
is different, some models in the lattice gauge theory show phase transitions, whose
properties are controlled by the symmetry and dimensionality of the system, similarly
to conventional spin systems.

7.7.1 Lattice gauge theory

Symmetries of a physical system can be classified into global or local (gauge) depending
on the character of the transformation realizing the mathematical mapping.10 For
example, in the conventional Ising model, one needs to change the sign of all spins
(Si → −Si, ∀i) to realize the global Z2 discrete symmetry of the model. The same
happens in the XY model, where all angle variables need to be transformed by the
same amount (φi → φi + α, ∀i) to realize the global U(1) continuous symmetry.11 On
the other hand, there are models where transforming only some degrees of freedom is
enough to achieve invariance. A gauge theory is defined by a Hamiltonian or action,
classical or quantum, that is invariant under a local or gauge transformation. It can be
defined on a lattice or in the continuum, e.g. as a field theory. According to the gauge
principle adopted widely in field theory, all fundamental physical interactions in nature
arise from actions or Hamiltonians that are invariant under local transformations. The
primary motivation to study lattice gauge theories is to provide a non-perturbative
approach for the standard theory of strong interactions in high-energy physics, also
known as quantum chromodynamics, and thus to attempt to explain the phenomenon
of quark confinement. This is well beyond the scope of this book, and we will only
concentrate on some of the aspects of critical phenomena in classical models of the
lattice gauge theory.

An example of a classical model that displays discrete gauge symmetries is the
Z2 lattice gauge theory, also known as the Z2 gauge theory or the Ising lattice gauge
theory. Consider Ising spins Si = ±1 that reside on the bonds i,12 and not on the
vertices (sites), of a three-dimensional cubic lattice. Then, the Hamiltonian of the Z2

10 Sometimes, a gauge symmetry is referred to as a gauge structure instead of a symmetry since
two states related by this gauge transformation are the same state but with a different label.

11 The group U(1) is composed of rotations on the complex plane.
12 A bond is often called a link in gauge theories.
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Fig. 7.5 The product of four spins on bonds around a plaquette constitutes the basic

interaction B� in the Z2 gauge theory.
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Fig. 7.6 The signs of spin variables on bonds emanating from a site I are changed. This is

a local, gauge transformation and keeps the Hamiltonian invariant.

gauge theory is defined as

H = −J
∑
�

B�, (7.61)

where the sum spans all possible square plaquettes� on the lattice each containing four
spins and, as we will see, is invariant under the G = Z2 gauge group. The interaction
term comprises the product of these four spins, as depicted in Fig. 7.5,

B� =
∏
i∈�

Si. (7.62)

In addition to the global Z2 symmetry, Si → −Si (∀i), this Hamiltonian has a Z2

gauge symmetry, which consists of the following transformation (see Fig. 7.6): Select
any vertex I of the lattice shared by six bonds (four bonds for d = 2 as in Fig. 7.6),
flip the sign of the spins on these six (four) bonds, Si → −Si if i emanates from I.
Since each plaquette connected with vertex I has two spins flipped, their product B�,
and thus the overall Hamiltonian, remains invariant.

Notice that, while the lowest-energy state in the usual Ising model is two-fold
degenerate, the ground-state degeneracy is much more enormous in the Z2 gauge
theory. For example, if the configuration on the left panel of Fig. 7.6 is a ground state,
the one on the right panel is also a ground state. This gauge transformation that
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Fig. 7.7 Allocation of variables on a plaquette to generate a gauge transformation in the

U(1) gauge theory.

generates another state with the same energy is applicable to any vertex. Consequently,
there exist a large number of degenerate states (exponential in the system size).

Another example of a classical model of gauge theory is the U(1) gauge theory
(U(1) lattice gauge theory) with a continuous local symmetry

H = −J
∑
�

A�, (7.63)

where the plaquette interaction A� is defined in terms of elements of the group U(1),
i.e. complex fields φj = eiAj with gauge variables −π < Aj ≤ π defined on the bonds
j, as

A� =
1

2

(
φjφkφ

∗
l φ

∗
m + φ∗

jφ
∗
kφlφm

)
= cos (Aj +Ak −Al −Am), (7.64)

with j, k, l,m bonds belonging to the plaquette � as in Fig. 7.7. We assume that those
plaquette interaction terms are defined on a general hypercubic lattice.

The following U(1) gauge transformation is a symmetry of the Hamiltonian of
eqn (7.63),

Aj → Aj + ϕJ − ϕM (7.65)

Ak → Ak + ϕK − ϕJ (7.66)

Al → Al + ϕK − ϕL (7.67)

Am → Am + ϕL − ϕM, (7.68)

with arbitrary c-number functions ϕJ defined on the vertices J of the lattice as
indicated in Fig. 7.7. It is straightforward to check that eqns (7.65) to (7.68) keep
eqn (7.64) invariant. This transformation is Abelian because the group U(1) is Abelian;
two successive changes of angles are equivalent to the changes in the other order and
are thus commutable. There are several non-Abelian generalizations of these models.

7.7.2 Elitzur’s theorem

The presence of local (gauge) invariance has important physical consequences. One
of those consequences is Elitzur’s theorem, which states that non-gauge-invariant (or
gauge-variant) local physical quantities cannot exhibit spontaneous breaking of gauge
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i

Fig. 7.8 An example of a sublattice Ci, which includes bond i, is shown as a dashed contour.

symmetries, discrete or continuous, in any dimensions. This does not imply that a
phase transition, signaled as a singularity in the free energy, cannot occur, as we will
see in the example of the three-dimensional Z2 gauge theory below. Therefore, the
expectation value of a gauge-variant quantity cannot be used as a Landau-type local
order parameter to describe such a phase transition. Since symmetry breaking of local
quantities is precluded, differences in the behavior of correlation functions in different
phases have to manifest themselves in non-local quantities written in terms of the
original local degrees of freedom.

We now prove Elitzur’s theorem. The essence of the proof is as follows. Consider
the absolute value of the average of any local quantity f(φi) (involving only a finite
number of fields or variables {φi} like Si), which is bounded and non-invariant under
a gauge symmetry group G of a Hamiltonian H (such as Z2 in the Z2 gauge theory).
This |〈f(φi)〉| is shown to be bounded from above by the absolute mean value of the
same quantity computed for a zero-dimensional Hamiltonian H̄ (i.e. it involves a finite
number of degrees of freedom) which is globally invariant under G and preserves the
range of the interactions. This upper bound is shown to vanish in the zero-field limit
after the thermodynamic limit due to the local character of the symmetry.

More explicitly, to determine if spontaneous symmetry breaking occurs, we evaluate

〈f(φi)〉 = lim
h→0

lim
N→∞

〈f(φi)〉h,N , (7.69)

where 〈f(φi)〉h,N is the average value of f(φi) calculated on a finite lattice of N sites
and in the presence of a symmetry breaking field h. Simple examples of f(φi) are
Si for the Z2 gauge theory and eiφi for the U(1) gauge theory. Since the lattice Λ is
formed out of the union of smaller finite sublattices, Λ =

⋃
l Cl, the bond i belongs at

least to one subset (see Fig. 7.8).
It is convenient to rename the fields in the following way: φl = ψl if l /∈ Ci and

φi = ηi if i ∈ Ci. Then, we can separate the variables to write 〈f(φi)〉h,N as

〈f(φi)〉h,N =

∑
{φl} f(φi)e

−β
(
H({φl})+h

∑
l φl

)

∑
{φl} e

−β
(
H({φl})+h

∑
l φl

) (7.70)

=

∑
{ψl} z{ψ}e

−βh
∑

l/∈Ci
ψlg({ψl})∑

{ψl} z{ψ}e
−βh

∑
l/∈Ci

ψl
, (7.71)
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where

z{ψ} =
∑
{ηi}

e−β
(
H({ψl,ηi})+h

∑
i∈Ci

ηi

)
, (7.72)

and

g({ψl}) =
∑

{ηi} f(ηi)e
−β

(
H({ψl,ηi})+h

∑
i∈Ci

ηi

)

z{ψ}
. (7.73)

From eqn (7.71), since z{ψ}e
−βh

∑
l/∈Ci

ψl is positive definite, 〈f(φi)〉h,N can be bounded
as follows

|〈f(φi)〉h,N | ≤
∣∣g({ψ̄l})

∣∣, (7.74)

where {ψ̄l} is the particular configuration of fields ψl that maximizes g({ψl}) in
eqn (7.71). The quantity H({ψl, ηi}) is a zero-dimensional Hamiltonian in that it
involves only a finite number of bonds as far as the field variables ηi are concerned.
This zero-dimensional Hamiltonian H({ψl, ηi}) is invariant under the global symmetry
group of transformations G over the fields ηi, e.g. Si → −Si (∀i) in the Z2 gauge
theory.

Let us define H̄({ηi}) ≡ H({ψ̄l, ηi}). The range of the interactions between the
η-fields in H̄({ηi}) is clearly the same as the range of the interactions between the
φ-fields in the original Hamiltonian H({φl}). Since H̄({ηi}) is a zero-dimensional
Hamiltonian with only a finite number of variables, g({ψ̄l}) is an analytic function of
h for any N including the thermodynamic limit. The exponential in the numerator
of eqn (7.73) is invariant under the global transformation G in the limit h → 0 after
N → ∞ but the function f(ηi) changes the sign in the Z2 gauge theory, e.g. f(ηi) may
be Si, which changes as Si → −Si. In the case of the U(1) gauge theory, the phase
changes like f(ηi) = eiφi → ei(φi+φ). Thus, g({ψ̄l}) = −g({ψ̄l}) for the Ising (Z2) case
and g({ψ̄l}) = eiφg({ψ̄l}) for the U(1) gauge theory, any one of which is satisfied only
if g({ψ̄l}) = 0. This completes the proof.

Notice that the frozen variables ψ̄l act like external fields in H̄({ηi}), which do not
break the global symmetry group of transformations G. From a physics standpoint, a
gauge symmetry involves a few degrees of freedom and it costs only a finite amount
of energy to change a stable state to another one, which is in marked contrast to the
case of global symmetry depicted in Fig. 5.2. This is the essence of the above proof.

7.7.3 Phase transitions in the lattice gauge theory

The three-dimensional Z2 gauge theory of eqn (7.61) is dual (i.e. essentially equivalent)
to the three-dimensional Ising model, as explained in Section 10.2. The latter has a
phase transition at finite temperature. This means that the free energy of the Z2 gauge
theory shows the same singularity at the critical temperature Tc as the conventional
Ising model. However, the phase transition in the Z2 gauge theory does not manifest
itself as a spontaneous symmetry breaking in the local spin variables due to Elitzur’s
theorem; the Z2 gauge theory does not have a Landau-type local order parameter.
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I

Fig. 7.9 A Wilson loop consists of the product of variables along a closed path Γ (thick

lines). In this figure the variables on Γ are denoted in black squares. A gauge transformation

of variables around a vertex I on Γ keeps WΓ invariant.

To characterize the low- and high-temperature phases, one must use a correlation
function that is gauge invariant. A well-known physical quantity used to characterize
the phases of gauge models is the Wilson loop, constructed for the Z2 gauge theory,
for example, as

WΓ =
〈∏

i∈Γ

Si

〉
, (7.75)

where i runs over the bonds forming a closed path or loop Γ as in Fig. 7.9. This
quantity WΓ is gauge invariant. For example, if one changes the signs of Sis connected
to a vertex I located on Γ, two of the Sis on bonds emanating from I and on Γ change
the sign and thus WΓ remains invariant.

From the dependence of WΓ on Γ in the limit of large loops, one can determine
the nature of the phases of the model. In the high-temperature phase, the Wilson
loop has an exponential decay controlled by the area of the loop, an area law WΓ ≈
e−c|A| (c > 0), where |A| is the size of the area surrounded by Γ (shown in gray in
Fig. 7.9). At low temperatures, it is controlled by the length of the loop, a perimeter law
WΓ ≈ e−c|Γ| (c > 0), where |Γ| is the length of Γ. The temperature at which there is
a change in the asymptotic behavior of WΓ defines the transition point Tc.

The two-dimensional version of the Z2 gauge theory is trivially solvable by a high-
temperature expansion, as elucidated in Section 10.2. It displays no finite-temperature
phase transition, and the lower critical dimension of the Z2 gauge theory is dlc = 2.
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Random systems

Real materials always contain randomness that cannot be expressed by idealized simple
model systems. For example, some of the magnetic atoms carrying spins may be
replaced by impurities without spins or the strength of interactions between spins
may change from bond to bond due to irregularities in the crystal structure. In the
present chapter we study the effects of randomness on phase transitions and critical
phenomena. At the initial stage of studies on randomness, some people believed
that randomness may obscure singular behavior such as the divergence of physical
quantities at the critical temperature. It is now established that well-defined phase
transitions continue to exist as long as randomness is not too strong, but the critical
behavior may get modified with respect to the pure sample. We will show what phase
transitions exist under the influence of randomness.

8.1 Random fields

Hamiltonians describing phase transitions and critical phenomena usually consist of
interaction and field terms. These are competing relevant terms, in the sense of
renormalization group, that determine the values of the exponents yt and yh. The
most basic model does not have other relevant operators. It follows that the effects of
randomness can be studied by its influences on those two terms. The present section
treats the field term with randomness. The randomness in interactions will be discussed
in the next section.

The Hamiltonian with randomness in the field term is written as

H = −J
∑

〈ij〉
SiSj −

∑

i

hiSi. (8.1)

For simplicity, we analyze only the Ising model in this chapter, unless stated otherwise.
The value of the external field is assumed to depend on the site index hi, reflecting
randomness. Since in most cases it is virtually impossible to identify the values of
randomness hi at each site i from experiments, it is customary to adopt a model dis-
tribution function of random fields {hi}. Typical examples are the following Gaussian
and binary distributions,1

P (hi) =
1√

2πh0

exp
(
− h2

i

2h2
0

)
(8.2)

P (hi) =
1
2
δ(hi − h0) +

1
2
δ(hi + h0). (8.3)

1 The standard deviation of the Gaussian distribution is usually denoted as σ but we write instead
h0 so that the notation is the same as the one used in the binary distribution.
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We assume that randomness at different sites is not strongly correlated and thus accept
independence of the distribution of randomness at different sites.

The random-field Ising model of eqn (8.1) may not directly represent realistic
magnetic materials unless much milder distributions than those in eqns (8.2) and (8.3)
are used, mild in the sense that the variance is small. It is usually considered impossible
to realize site-dependent fields that change the sign from site to site. It, nevertheless,
turns out that a randomly diluted antiferromagnet under uniform field and fluids in
random, porous media in their lattice-gas representation are examples that are well
described by the random-field Ising model.

8.1.1 Quenched system and self-averaging

The time scale for the change of randomness in fields is usually much longer than
that of thermal fluctuations. For example, when randomness comes from the random
mixture of magnetic and non-magnetic atoms, the positions of atoms do not change
within the experimental time scale but the orientation of spins changes quickly. The
corresponding theoretical framework is first to generate a set {hi} from the distri-
bution function P (hi) and then apply the usual statistical-mechanical prescription
to calculate the free energy and other physical quantities for the given fixed values
of {hi}. Randomness with this property is called quenched randomness, and the
corresponding system is named a quenched system. In contrast, if the degrees of
freedom of randomness change in a similar time scale as that of microscopic degrees
of freedom, the system is called an annealed system.2 We treat quenched systems that
correspond to most experimental situations.

It is difficult to calculate the free energy explicitly as a function of the quenched
randomness of {hi}, i.e. N variables h1, · · · , hN . Fortunately, it turns out, in the
thermodynamic limit N → ∞, that many physical quantities including the free energy
do not depend upon the values of fields {hi} themselves but only on the distrib-
ution function P (hi) as eqns (8.2) and (8.3). This fact is called the self-averaging
property.

To understand the self-averaging property let us divide a system into subsystems,
as depicted in Fig. 8.1. The size of the whole system is Ld

0 and that of a subsystem
is Ld

1, where d is the spatial dimension. We assume L0 � L1 � 1, that is, the whole
system and the subsystems are both very large and in addition the former is much
larger than the latter. From L1 � 1, the size of the interface between subsystems (the
surface of a subsystem) Ld−1

1 is much smaller than the size of the subsystem itself Ld
1,

as we have Ld−1
1 /Ld

1 = L−1
1 � 1. Then, the sum of the free energy of each independent

subsystem Fsub is very close to the free energy of the total system Ftot,

Ftot =
M∑

j=1

(
F

(j)
sub + O(Ld−1

1 )
)

=
M∑

j=1

F
(j)
sub + O(Ld

0L
−1
1 ). (8.4)

2 ‘Quenching’ means to quickly cool the system and freeze the degrees of freedom of randomness.
‘Annealing’ means to slowly cool the system down to a low temperature and thus the atoms
(randomness) have time to reach their equilibrium locations.
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L1

L0

Fig. 8.1 It is useful to divide the system into subsystems to understand the self-averaging

property.

Here, j is the index labeling the subsystem and M is the number of subsystems
(L0/L1)d(� 1). The last term of O(·) corresponds to the surface free energy related
to the interface between subsystems. If we divide both sides by the total number of
spins N = Ld

0 to find the free energy per spin ftot = Ftot/N, we have

ftot =
1
M

M∑

j=1

1
Ld

1

F
(j)
sub + O(L−1

1 ) ≈ 1
M

M∑

j=1

f
(j)
sub. (8.5)

The right-hand side is the average of the free energy of many (M � 1) independent
systems, each with different values of random fields {hi} generated from the same
distribution function P (hi). The left-hand side is, in contrast, the free energy of a
single large system with given values of random fields {hi}. Equation (8.5) suggests
that the free energy as a function of a fixed set of random fields {hi} (left-hand side)
coincides with the same free energy averaged over the distribution function (right-
hand side) in the limit of a sufficiently large system.3 The term self-averaging reflects
this property that the value of the free energy coincides with the average of itself.

The self-averaging property allows us to calculate the free energy averaged over
randomness instead of the free energy for a given set of random fields {hi}, the latter
being directly correlated to experimental situations. Since the former average is easier
to evaluate than the latter, we hereafter discuss the former quantity. The average over
randomness is termed the configurational average.

The self-averaging property is shared by many extensive quantities including the
internal energy, specific heat, magnetization, and magnetic susceptibility if they are
divided by the system size to give their values per spin. The reason is that these
quantities are obtained by differentiation of the free energy with respect to appropriate
variables.

The above discussions equally apply to randomness in the interactions, not just
randomness in the external fields.

3 A more accurate statement is that both sides of eqn (8.5) coincide with probability one. The
distribution function of ftot approaches a delta function that has a peak at the average value.
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8.1.2 Mean-field theory

Let us first apply the mean-field theory of Chapter 2 to the problem of a phase
transition in the presence of random fields. We would like to know how a uniformly
ordered ferromagnetic phase at low temperatures is affected by random fields. The
order parameter is the usual magnetization per spin m. From the self-averaging
property, the magnetization is expressed as

m =
1
N

N∑

i=1

〈Si〉 =
[
〈Si〉
]
. (8.6)

Here, the square brackets [· · · ] denote the configurational average.4 An application
of the mean-field theory described in Section 2.1 leads to the following mean-field
Hamiltonian,

H = NBJm2 − Jmz
∑

i

Si −
∑

i

hiSi. (8.7)

The free energy F = −T [log Z] is then straightforward to evaluate,

F = NBJm2 − TN
[
log 2 cosh β(Jmz + hi)

]
. (8.8)

The right-hand side is averaged over randomness using the self-averaging property.
Minimization of the free energy with respect to m leads to the self-consistent equation,
i.e. the equation of state,

m =
[
tanh β(Jmz + hi)

]
. (8.9)

We expand the right-hand side to third order in m to check the condition for
ferromagnetic order to exist m 
= 0 following the discussions in Section 2.2,

m = βJz
[
1 − tanh2(βhi)

]
m

− 1
3
(βJz)3

[
1 − 4 tanh2(βhi) + 3 tanh4(βhi)

]
m3. (8.10)

We have dropped odd powers of hi because the symmetric distribution of hi means a
vanishing configurational average for odd powers.

Let us proceed with the binary distribution (8.3) as an explicit example. The
configurational average of even powers like tanh2(βhi) is obtained simply by replac-
ing hi with h0 in the case of the binary distribution. Then, the equation of state
reads

m = βJz
(
1 − tanh2(βh0)

)
m − 1

3
(βJz)3

(
1 − 4 tanh2(βh0) + 3 tanh4(βh0)

)
m3.

(8.11)

The coefficient of the first-order term, m, on the right-hand side is small in the high-
temperature region βJ � 1 and is large at low temperatures βJ � 1. Therefore, the

4 Equation (8.6) shows that the configurational average (right-hand side) is equivalent to the spatial
average (middle expression).
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Fig. 8.2 The mean-field phase diagram of the ferromagnetic Ising model in the presence of

random fields with a binary distribution. The transition is second order above the tricritical

point drawn as a blank circle and is first order below. The constant J is chosen to be unity.

system undergoes a second-order transition at the temperature where the coefficient
is unity

βcJz
(
1 − tanh2(βch0)

)
= 1, (8.12)

and spontaneous magnetization exists below this temperature. This transition tem-
perature (8.12) agrees with the conventional mean-field value Tc = Jz when h0 = 0.

Equation (8.12) shows that the transition temperature decreases as h0 increases.
Random fields gradually destroy the ferromagnetic phase. Simultaneously, the coef-
ficient of the third-order term, m3, in eqn (8.11) decreases from the value (βJz)3/3
at h0 = 0 and eventually vanishes at tanh2(βh0) = 1/3. The coefficient of the third-
order term of the equation of state is the coefficient of the fourth-order term of the
Landau free energy. Vanishing of this coefficient means a tricritical point as elucidated
in Section 2.4. A further increase of h0 beyond the tricritical point causes a first-order
transition. The condition to determine the tricritical temperature Ttc is that the first-
and third-order coefficients vanish in eqn (8.11),

βtcJz
(
1 − tanh2(βtch0)

)
= 1, tanh2

(
βtch0

)
=

1
3
. (8.13)

The phase diagram on the h0T plane has thus been determined as depicted in Fig. 8.2.
As the strength of randomness h0 increases, the temperature for the second-order
transition decreases and changes over to a first-order transition beyond the tricritical
point drawn as a blank circle.

For a Gaussian distribution of randomness (8.2), there is no tricritical point and
the second-order transition continues to zero temperature. The mean-field theory thus
predicts that qualitatively different types of transitions happen depending on the type
of distribution function of random fields.
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L

Fig. 8.3 A cluster of inverted spins of linear size L appears under the influence of random

fields.

EXERCISE 8.1 Show that the random-field Ising model with a binary distribution
has a first-order transition when h0/Jz = 1/2 at T = 0 according to the mean-field
theory, as shown in Fig. 8.2.

EXERCISE 8.2 Show that there exists a second-order transition at h0,c =√
2/π Jz at zero temperature for the Gaussian distribution function of random

fields (8.2). It will be useful to take the zero-temperature limit in the equation of
state and then expand the result in powers of m.

8.1.3 Lower critical dimension

It is interesting to estimate the lower and upper critical dimensions to check when the
mean-field theory is applicable to random-field problems. The lower critical dimension
is known to be dlc = 2 for the Ising model and dlc = 4 for continuous spins. The
physical argument to derive these results is known as the Imry–Ma argument, which
is analogous to the Peierls argument of Section 7.1.

Suppose that a cluster of down spins of approximate linear size L appears under
the influence of random fields in the sea of up spins as illustrated in Fig. 8.3. Such an
inversion of spin orientation causes the increase of interaction energy at the surface of
the cluster, roughly of the order of JLd−1 in the Ising model. In the case of continuous
spins the increase would be about JLd−2.5 As for the energy due to random fields,
an all-up spin cluster has −

∑
i hiSi = −

∑
i hi, the average of which vanishes and the

variance is ⎡
⎣
(∑

i

hi

)2
⎤
⎦ =

∑
i

[
h2
i

]
= h2Ld, (8.14)

5 The increase in energy in the continuous spin case is smaller than the one in the Ising model
because the slow change of spin orientation spans the length scale of L from the center of the cluster
to the boundary (surface). The change of orientation of neighboring spins Δθ is of the order of L−1

since the orientation changes by π in the length L. Then, the increase in the interaction energy from
the perfectly ferromagnetic state Δθ = 0 is −J cosΔθ + J cos 0 ≈ O(L−2) for a neighboring pair of
spins. This energy increase exists approximately uniformly over the area of Ld, giving the total energy
increase O(Ld−2).
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where we have used that [hihj ] = [hi][hj ] = 0 for i 
= j. The same average and variance
are shared by an all-down cluster. For the Gaussian distribution (8.2), h2 is σ2, whereas
the binary distribution (8.3) has h2 = h2

0. Equation (8.14) indicates that fluctuations
of field energy with a standard deviation of the order of ±hLd/2 can well happen. Thus,
a cluster with inverted spins as in Fig. 8.3 may exist under the influence of fluctuations
in random fields, with an energy gain (decrease) of hLd/2. The total energy change is
therefore

JLd−1 − hLd/2 (8.15)

for the Ising model. The second term dominates if d < 2, and then large-scale
inversions of spin orientation due to random fields happen at many locations and
the ferromagnetic state breaks down. When d > 2, on the other hand, the increase
of the interaction energy is the dominant term, and the ferromagnetic state is sta-
ble against spin inversion by random fields. We therefore conclude that the lower
critical dimension is dlc = 2. A similar analysis leads to dlc = 4 for continuous-spin
systems.

The Imry–Ma argument is an intuitive, qualitative conjecture based on the stability
analysis of a perfectly ferromagnetic state. Actually, it has been proved rigorously that
the three-dimensional random-field Ising model has finite ferromagnetic order at low
temperatures as long as the strength of randomness is not too large.

8.1.4 Upper critical dimension

We need an additional tool to evaluate the upper critical dimension. It is necessary to
take the configurational average of the free energy −T [log Z], which is apparently
a difficult task because the dependence of log Z on random fields {hi} is quite
complicated. It is useful to remember here that each hi appears exponentiated as
exp(β

∑
i hiSi) in the partition function Z. The same is true for Zn, where n is a

natural number. We then use the identity

[
log Z

]
= lim

n→0

[Zn] − 1
n

, (8.16)

which allows us to first calculate the configurational average of Zn and then take the
limit n → 0. This technique is called the replica method since Zn means to prepare n
identical copies (replicas) of the partition function.

The operation of the limit n → 0 for a quantity evaluated in terms of a natural
number n may raise questions on the validity of such an ‘analytical continuation’.
It, nevertheless, turns out that most of the results obtained in this way for random
systems have been proved or conjectured to be true. Most physicists in this field believe
the validity of the replica method.

Let us recall here the derivation of the upper critical dimension duc = 4 for non-
random systems discussed in Section 2.10. The Ginzburg criterion for consistency of
the mean-field theory is written as G(r = ξ) � m2. For a non-random ferromagnet,
the Fourier transformation G̃(q) of G(r) is 1/(kt + bq2), and hence the correlation
function for r = ξ is, when t ≈ ξ−2,



Random fields 185

G(ξ) =

∫
eiqξ

1

kt+ bq2
dq = ξ2

∫
eiqξ

k + b(qξ)2
dq ∝ ξ2−d. (8.17)

We have multiplied the integral variable q by 1/ξ in the final step. This relation
leads to the condition ξ2−d � m2 or equivalently (d− 2)ν > 2β for the validity of the
mean-field theory. With the mean-field exponents, this condition reduces to d > 4.

It is clear in the above analysis that the q dependence of G̃(q) at t = 0, i.e. q−2,
determines the upper critical dimension four. If this dependence turns out to be q−4,
the same discussion leads to G(ξ) ∝ ξ4−d, and d > 6 is the condition for the validity
of the mean-field theory. The random-field Ising model has this property.

We therefore study the behavior of the system in the Fourier space by taking
the configurational average using the replica method. In particular, it is necessary
to check the wave-number dependence of the Gaussian effective Hamiltonian (free
energy), which is simply G̃(q)−1. Using the same notation as in Section 2.9, the n-time
replicated partition function is

Zn =

∫ (∏
r

n∏
α=1

dφα(r)

)
exp

{
−

n∑
α=1

(
kt

∫
dr
(
φα(r)

)2

+ b

∫
dr
(
∇φα(r)

)2
+

∫
dr φα(r)h(r)

)}
. (8.18)

Here, α is the replica index. We average Zn over the distribution of random fields
following the prescription of the replica method. Using the Gaussian distribution (8.2)
for each h(r), the random-field part of the above equation is squared,

[Zn] =

∫ (∏
r

n∏
α=1

dφα(r)

)
exp

{
−

n∑
α=1

(
kt

∫
dr
(
φα(r)

)2

+ b

∫
dr
(
∇φα(r)

)2)
+

σ2

2

∫
dr

n∑
α,β=1

φα(r)φβ(r)

⎫
⎬
⎭ . (8.19)

The representation in the wave number by Fourier transformation is

[Zn] =

∫ ∏
q

n∏
α=1

dφ̃α(q) exp

{
−

n∑
α=1

(
kt

∫
dq

(2π)d
φ̃α(q)φ̃α(−q)

+

∫
dq

(2π)d
bq2φ̃α(q)φ̃α(−q)

)

+
σ2

2

∫
dq

(2π)d

n∑
α,β=1

φ̃α(q)φ̃β(−q)

⎫
⎬
⎭ . (8.20)

The exponent on the right-hand side is the effective free energy −F that corresponds
to eqn (2.80).
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In order to confirm that G̃(q) diverges as q−4 at t = 0, we have to study the
coefficient of φ̃(q)φ̃(−q), which is now an n × n matrix with index {α} for each q. Let
us write the matrix as G̃(q)−1 using the same notation as in Chapter 2. Then, at the
critical point t = 0, we have

G̃(q)−1 = bq2 − σ2

2
E, (8.21)

where the first term on the right-hand side is the n × n unit matrix multiplied by bq2

and the second term is the matrix E with all elements unity multiplied by −σ2/2. This
equation (8.21) is a generalization of the denominator of the integrand of eqn (2.85)
with t = 0. Thus, the diagonal element of the inverse of the above matrix, G̃αα(q),
gives the Fourier transformation of the correlation function Gαα(r) =

〈
φα(r)φα(0)

〉
,

for which we check if it diverges as q−4 in the limit n → 0. If we notice the relation
E2 = nE, it is straightforward to see that the inverse matrix is written as

G̃(q) =
(

bq2 − σ2

2
E

)−1

= (bq2)−1

⎛

⎝1 +
∞∑

j=1

(
σ2

2bq2

)j

nj−1E

⎞

⎠

=
1

bq2
+

σ2E

bq2(2bq2 − nσ2)
. (8.22)

We therefore conclude that the leading divergence as q → 0 is proportional to q−4 in
the limit n → 0.

8.1.5 Systems in finite spatial dimensions

It is still actively studied what type of critical behavior the random-field Ising
model has between the upper and lower critical dimensions, in particular in three
dimensions.6 Problems of interest include (i) whether the structure of the mean-
field phase diagram, Fig. 8.2, remains qualitatively the same in three dimensions,
in particular the existence of a tricritical point, (ii) critical exponents of the second-
order transition for weak random fields, and (iii) difference between the Gaussian
and binary distributions. We avoid discussing these difficult, unsolved problems here
and check only the relevance of random fields as a perturbation to a non-random
system.

The relevance of random fields in the sense of renormalization group between the
upper and lower critical dimensions can be verified by calculating the renormalization
exponent y of the final term of eqn (8.19) as a perturbation to the other terms
representing a non-random system (σ = 0). It is useful for this purpose to evaluate
the scaling dimension of the correlation function of the operator φα(r)φβ(r) at the

6 Continuous-spin systems have dlc = 4 and no interesting physics exists in three dimensions.
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critical point t = 0. Since different replicas are decoupled in a non-random system, as
seen in eqn (8.19) with σ2 = 0, this correlation function behaves as

〈
φα(0)φβ(0)φα(r)φβ(r)

〉
0
∝
〈
φα(0)φα(r)

〉
0

〈
φβ(0)φβ(r)

〉
0

=
〈
φ(0)φ(r)

〉2
0
∝ r−4xh . (8.23)

Here, 〈· · · 〉0 is the expectation value for the non-random system and xh is the
scaling dimension of φ(r) for the non-random system, 〈φ(0)φ(r)〉 ∝ r−2xh . Thus, the
scaling dimension of the random-field term φα(r)φβ(r) of eqn (8.19) is 2xh and the
corresponding renormalization exponent is

y = d − 2xh = d − 2(d − yh) = 2yh − d. (8.24)

This y is positive for a ferromagnetic system, as can be verified from the relation
γ = (2yh − d)/yt > 0, and the random field term is a relevant perturbation to the
non-random system. It thus follows that the critical behavior between paramagnetic
and ferromagnetic phases is qualitatively different in the presence of random fields
from the non-random system if the ferromagnetic phase survives in the presence of
random fields.

8.2 Spin glass

Let us next investigate the effects of randomness in the interactions. Interactions
between spins sometimes may change sign or disappear at some places due to the
randomness in the constitution of the magnetic materials. The present section will
discuss the spin glass system in which the signs of the exchange interactions change
from bond to bond.

For a spin pair with a ferromagnetic interaction, the two spins tend to align parallel,
whereas they are likely to be antiparallel when the interaction is antiferromagnetic.
Then, a randomly ordered phase (spin glass phase) may exist, in which there is no
spatially uniform ordering as in the ferromagnetic phase but spins are apparently
random in space. The spin glass phase is, nevertheless, an ordered state because the
orientation of a given spin does not change significantly with time. We may therefore
view a spin glass phase as a state ordered in time but random in space. Notice that
the paramagnetic phase has neither temporal nor spatial order.

The goal of the spin glass theory is to clarify the conditions under which such a
strange state may exist as a stable thermodynamic phase. The standard theoretical
model for this purpose is the Edwards–Anderson model,

H = −
∑

〈ij〉
JijSiSj − h

∑

i

Si, (8.25)

in which the interactions are quenched random variables. Experimentally, the set
of interactions {Jij} is fixed (quenched) for a given sample. Correspondingly, we
assume in theoretical analyses that these interactions are generated from a distribution
function and fixed. It is known that a spin glass phase indeed exists within the
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mean-field approximation and the same is likely to be true in the three-dimensional
Edwards–Anderson model with Ising spins.

We mainly give an account of the mean-field theory in the present section with some
comments on finite-dimensional cases in the last part. The discussions on quenched
randomness and self-averaging properties of Section 8.1.1 also apply to spin glasses
without modifications.

8.2.1 Sherrington–Kirkpatrick model

The Sherrington–Kirkpatrick model (SK model) is the infinite-range version of the
Edwards–Anderson model, and a mean-field theory of spin glasses has been developed
for the SK model. Since the infinite-range model is known to give the same results
as the mean-field theory for the ferromagnetic system, we expect that the SK model
may be regarded as the mean-field model of spin glasses, since for the latter a direct
mean-field approximation is not easy to formulate.

The SK model has the following Hamiltonian,

H = −
∑

i<j

JijSiSj − h
∑

i

Si, (8.26)

where the spins are of the Ising type and the sum in the first term on the right-
hand side runs over all different pairs of spins.7 The number of terms in the first
contribution on the right-hand side is N(N − 1)/2, the number of combinations to
choose two out of N . The interaction Jij is a quenched random variable following the
Gaussian distribution function

P (Jij) =
1
J

√
N

2π
exp

{
− N

2J2

(
Jij −

J0

N

)2
}

, (8.27)

which is common for all pairs (ij). This probability distribution has the average and
variance,

[Jij ] =
J0

N
, [(ΔJij)2] =

J2

N
, (8.28)

both of which are proportional to 1/N . The first relation corresponds to the factor
1/N in front of the interaction in the non-random infinite-range model (2.34). The
second relation for the variance is necessary for extensive physical quantities, such as
the free energy and its derivatives, to become proportional to N, as will be shown
below.

It takes lengthy calculations to evaluate the free energy of this model. The details
are given in Appendix A.14. The result is

−βf =
β2J2

4
(1 − q)2 − 1

2
βJ0m

2 +
1√
2π

∫
e−z2/2 log

(
2 cosh βH̃(z)

)
dz, (8.29)

7 Notice that
∑

i<j is equivalent to (1/2)
∑

i�=j .
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where H̃(z) = J
√

qz + J0m + h and the range of integration is from −∞ to ∞. The
variable m is the magnetization that characterizes the ferromagnetic phase,

m =
[
〈Si〉
]
, (8.30)

and q is the spin glass order parameter that describes a randomly frozen state,

q =
[
〈Si〉2

]
. (8.31)

If the spin state is frozen randomly, the thermal average 〈Si〉 remains finite (which
is the definition of a frozen state) but its value and sign change randomly from site
to site due to the spatial randomness of the frozen state. It thus follows that the
configurational average (spatial average) [· · · ] in eqn (8.30) gives a vanishing value
m = 0 due to cancellation of plus and minus signs. The average of the square in
eqn (8.31) remains finite because the sign is always positive 〈Si〉2 > 0. Hence, the set
of parameter values q > 0 and m = 0 characterize the spin glass phase with a randomly
frozen state. Both of these order parameters are finite in the ferromagnetic phase.

We next derive the equations of state from the extremal condition of the free
energy (8.29) following the strategy of the Landau theory. Extremization of the free
energy with respect to the variable m gives

m =
1√
2π

∫
e−z2/2 tanh βH̃(z) dz. (8.32)

This is the equation of state for the ferromagnetic order parameter m. Comparison
of eqn (8.32) with the equation for the magnetization of a single spin in a field, m =
tanhβh, suggests that the effective field H̃(z) distributes according to the Gaussian
distribution because of randomness in the interactions.

The extremal condition of the free energy with respect to q gives

β2J2

2
(q − 1) +

1√
2π

∫
e−z2/2

(
tanh βH̃(z)

) βJ

2
√

q
z dz = 0, (8.33)

which is rewritten by integration by parts as

q = 1 − 1√
2π

∫
e−z2/2 sech2βH̃(z) dz =

1√
2π

∫
e−z2/2 tanh2 βH̃(z) dz. (8.34)

8.2.2 Phase diagram of the SK model

The solution of the equations of state (8.32) and (8.34) is determined by the values of
the temperature T and the center of the distribution of randomness J0. We assume
that there is no external field, h = 0.

When the distribution is symmetric, J0 = 0, we have H̃(z) = J
√

qz and tanhβH̃(z)
is an odd function of the argument. Thus, the magnetization is clearly zero m = 0 from
eqn (8.32). There is no ferromagnetic phase. The free energy is

−βf =
1
4
β2J2(1 − q)2 +

1√
2π

∫
e−z2/2 log

(
2 cosh(βJ

√
qz)
)
dz. (8.35)
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To study the behavior of the system when the spin glass order parameter q is close to
zero, we expand the right-hand side in powers of q,

βf = −1
4
β2J2 − log 2 − β2J2

4
(1 − β2J2)q2 + O(q3). (8.36)

The Landau theory suggests that the critical point is obtained by the condition that
the coefficient of the quadratic term q2 vanishes. We then have βJ = 1 as the transition
point between the paramagnetic and spin glass phases.

If the distribution of Jij is not symmetric but the average is positive (J0 > 0),
there is a possibility for a ferromagnetic solution (m 
= 0) to exist. We expand the
right-hand side of eqn (8.34) in powers of q and m and keep the leading order to find

q = β2J2q + β2J2
0m2. (8.37)

If J0 = 0, the critical point is where the coefficient β2J2 reaches unity, and the result
agrees with the prediction given by the expansion of the free energy. When J0 > 0 and
m > 0, eqn (8.37) suggests q = O(m2). We expand the right-hand side of eqn (8.32)
with this fact in mind and keep only the leading-order terms to have

m = βJ0m + O(q). (8.38)

This equation indicates that the ferromagnetic critical point is at βcJ0 = 1 or Tc = J0.
We have obtained the boundaries between the paramagnetic and spin glass phases

(βJ = 1) and between the paramagnetic and ferromagnetic phases (βcJ0 = 1). The
boundary between the spin glass and ferromagnetic phases can be evaluated by
numerically solving eqns (8.32) and (8.34). Figure 8.4 is the phase diagram thus
obtained. There exists a spin glass phase for J0 smaller than J (0 ≤ J0/J < 1).
Numerical solutions of eqns (8.32) and (8.34) show that the spin glass phase lies
below the ferromagnetic phase in the region J0/J > 1, as shown by the dashed line in
Fig. 8.4. This strange behavior is called the re-entrant transition.

This result has been derived under the assumption of a symmetry between different
replicas and is called the replica symmetric solution, as detailed in Appendix A.14.
The re-entrant transition on the dashed line in Fig. 8.4 is actually an artefact of
the replica symmetric solution and disappears if we correctly take into account the
symmetry breakdown in the abstract replica space. A very intricate setup is needed to
reveal this aspect and therefore we only mention here that the dashed line is actually
replaced by two full lines to distinguish the ferromagnetic, mixed and spin glass phases,
as drawn in Fig. 8.4. The mixed phase, which does not exist in the replica symmetric
solution, has features both of the ferromagnetic and spin glass phases in the sense that
the ferromagnetic order parameter is finite although very complicated spin states are
realized there.

Failure of the replica symmetric solution at low temperatures can be verified by
calculating the entropy from the free energy (8.29) for J0 = 0. It turns out that the
entropy is negative at low temperatures. The entropy is the logarithm of the number
of possible states and should be positive or zero in systems with discrete degrees of
freedom like the Ising model with or without randomness.
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Fig. 8.4 Phase diagram of the SK model. The dashed line is the erroneous boundary between

the spin glass and ferromagnetic phases suggested by the replica-symmetric solution. The

correct phase boundaries are drawn in full lines.

8.2.3 Systems in finite spatial dimensions

Let us estimate the upper critical dimension to confirm how far the mean-field
predictions can be trusted in more realistic systems in finite spatial dimensions. We
assume J0 = 0, and consequently m = 0, to exclude the effects of ferromagnetic order
to focus our attention on the spin glass phase.

Expansion of the free energy (8.29) in powers of q has a third-order term, as sug-
gested in eqn (8.36). This is in contrast to the infinite-range model of the ferromagnetic
system or the Landau theory, in which the next term to m2 was m4. The symmetry of
the free energy with respect to the inversion of magnetization, f(m) = f(−m), meant
that f(m) is an even function and does not have odd powers in its expansion. The
spin glass order parameter, on the other hand, is the average of the square of 〈Si〉
and is always positive, and consequently the operation of sign inversion of the order
parameter is not a proper symmetry of the system. Thus, there exist odd powers of q.

The above symmetry consideration holds irrespective of the replica method, and
the problem of replica symmetry breakdown does not change the conclusion. It is
therefore necessary to evaluate the renormalization-group exponent of the third-order
term of the order parameter to study the stability of the Gaussian fixed point, which
gives the mean-field exponent, following the prescription described in Section 4.2.1.
It turns out that the same invariance argument as in Section 4.2.1 applied to the
third-order term leads to the exponent yv = 3 − d/2 for the coefficient v of the third-
order term. This result means that the third-order term is irrelevant for d > 6 and the
mean-field description given by the Gaussian model is stable against the non-Gaussian
perturbation. This suggests that the upper critical dimension is six.

EXERCISE 8.3 Confirm that the value of the exponent of the third-order term is
yv = 3 − d/2 from invariance of the Hamiltonian under a change of scale.

The lower critical dimension is much harder to estimate than the upper critical
dimension. There is no known simple theory like the Imry–Ma argument because the
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stability criterion of a spatially uniform ordered state does not apply to the spin glass
problem. It is, nevertheless, believed mainly from numerical calculations that the lower
critical dimension is somewhere between two and three.

The relevance of randomness as a perturbation to a non-random system can
be studied following the method of Section 8.1.5. To see the relevance of random
interactions, it is useful to separate the Hamiltonian into a non-random term H0 and
a random-interaction term H1,

H0 = −J0

∑

〈ij〉
SiSj , (8.39)

H1 = −1
2

∑

r

∑

δ

Jr,r+δSrSr+δ ≡ −
∑

r

J(r)E(r), (8.40)

where we assume J(r) to be a quenched Gaussian variable with vanishing mean and
variance J2, and δ is the vector to a neighboring site. If we take the configurational
average of the n-time replicated system, the perturbation to the non-random system
due to randomness is written as, like the last term of eqn (8.19),

J2

2

∫
dr
∑

α,β

Eα(r)Eβ(r). (8.41)

The scaling dimension of this term is evaluated as 2xt(= 2(d − yt)) because at t = 0
we have, using eqn (3.82),

〈
Eα(0)Eβ(0)Eα(r)Eβ(r)

〉
0
∝
〈
Eα(0)Eα(r)

〉2
0
∝ r−4xt (α 
= β), (8.42)

where 〈· · ·〉0 is the average with respect to the weight of the non-random system.
It has been used that different replicas decouple in the non-random system. Thus,
the renormalization-group exponent that determines the relevance of the random-
interaction term is

y = d − 2xt = 2yt − d =
2 − dν

ν
. (8.43)

This relation indicates that the random interaction is not a relevant perturbation for
2 < dν and the critical exponents remain unchanged. This result is called the Harris
criterion. If we apply the hyperscaling 2 − dν = α to this relation, the Harris criterion
is restated by saying that the random interaction is not relevant if the critical exponent
of the specific heat is negative, α < 0.

We may interpret the Harris criterion intuitively as follows. The Harris criterion
measures the effects of the response of the system to a random perturbation to the
coefficient J(r) of the local energy term E(r). Since J(r) always appears in the
Boltzmann factor as a product with the inverse temperature β = 1/T , the perturbation
in J(r) may be regarded as a perturbation in the local temperature. The rate of change
of the energy 〈E(r)〉 with respect to temperature is the specific heat, which diverges
at the critical point if α > 0. Such a divergence suggests that the system is unstable
against local temperature changes when α > 0. Therefore, the perturbation is expected
to affect the critical behavior.
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The Harris criterion applies not just to spin-glass-type perturbations with positive
and negative signs but to general cases of quenched random interactions added to
a non-random system. For example, we may apply this criterion to the randomly
diluted ferromagnet discussed in the next section. The idea is to write the effective
Hamiltonian using the replica method, in which the leading term due to randomness
is quadratic in the local energy and the above argument applies. Higher-order terms
have smaller exponents of the renormalization group.

8.3 Diluted ferromagnet and percolation

In the previous section we studied the effects of random interactions with both positive
and negative signs. There exist other types of randomness in which some of the
interactions or some spins vanish. For instance, some of the magnetic atoms may be
replaced by non-magnetic atoms because of the effect of artificial mixing of magnetic
and non-magnetic materials. These substances are called diluted ferromagnets. We
explain the case of site dilution in the first part of this section, most of which applies
to bond dilution as well. In the former case, spins in some of the sites disappear, whereas
in the latter there are no interactions on some of the bonds. The bond dilution case will
be described in the last part of this section. Phase transitions in diluted ferromagnets
at zero temperature will be shown to be related to the geometrical phase transition
called percolation.

8.3.1 Diluted ferromagnet

A diluted ferromagnet has a ferromagnetic phase as its only ordered state at low
temperatures, in contrast to spin glasses.8 Let us be more concrete and assume
that a given site is occupied by a spin (magnetic moment) with probability p and
unoccupied with probability 1 − p, independently of other sites. As p decreases from
unity, the ferromagnetic phase become unstable and disappears completely below a
critical value pc, as depicted in Fig. 8.5. The Harris criterion applies to the present
case. The randomness, dilution, is relevant in the renormalization group sense if the
specific heat exponent is positive, α > 0, for the non-random (non-diluted) system
(p = 1). Then, the critical behavior changes from the non-random case.

The renormalization-group flow of parameters is shown schematically in Fig. 8.5.
The critical point of the non-random system at (p = 1, T = Tc) is unstable along
the temperature axis. If α > 0, the same point is also unstable along the horizontal
direction that decreases p from unity. In this case, there exists a random fixed point that
controls the critical behavior of the diluted ferromagnet at some intermediate values
of p and T , as indicated by a blank square in Fig. 8.5. To state it more accurately,
more and more new types of parameters emerge as the renormalization steps proceed,
and consequently the renormalization flow cannot be drawn on the two-dimensional
phase diagram. The random fixed point is located in a multidimensional space away
from the plane of Fig. 8.5, which is projected onto this figure as a blank square. There

8 There exists the possibility of a special phase called the Griffiths phase, which is hard to detect
experimentally due to its very weak singularity.
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Fig. 8.5 Phase diagram of a diluted ferromagnet. The probability that a site is occupied by

a spin is denoted as p. Arrows represent the flow of parameters by the renormalization group.

The blank square is the projection of the random fixed point onto the two-dimensional p–T

plane, which controls the critical phenomena along the phase boundary.

is no special critical point on the plane of Fig. 8.5 itself. This is a feature different
from the tricritical point of Fig. 8.2.

The structure of the diagram of Fig. 8.5 suggests that there can be another unstable
fixed point at zero temperature. The point marked pc on the p-axis is this fixed point.
The transition at this point along the p-axis is called the percolation transition, which
is a geometric transition. Ising spins all align parallel in the ground state and do not
play a role in the determination of the system properties. The percolation transition,
nevertheless, happens because the size of the clusters drastically changes at pc. A
cluster is a set of occupied sites connected by bonds. Assume that a bond exists
between neighboring occupied sites. In Fig. 8.6, there are four small clusters and a
single large cluster percolating from the top end of the system to the bottom.

Fig. 8.6 An example of percolation. Occupied sites are denoted by black circles. Four small

clusters are encircled by dotted lines. Another large cluster percolates from the top to the

bottom.
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Fig. 8.7 A cluster of size four in one dimension. Occupied sites are drawn in black and

unoccupied sites in white.

When the probability p of site occupancy is larger than the threshold pc, large
clusters of macroscopic size connect boundaries of the system. Strictly speaking, a
cluster percolates if and only if it is of infinite size. For p smaller than pc, only finite-
size clusters can exist. A percolation transition occurs at the point where a drastic
change between these different states takes place.

Ising spins on clusters all point to a single direction, up state (Si = 1), at zero
temperature under infinitesimally small but positive field. Thus, the sum of sizes of
clusters is given by

∑′
i Si, where the sum runs over all occupied sites. This means that

the magnetization of a diluted ferromagnet at zero temperature is closely related with
the sizes of the clusters. In the thermodynamic limit, where the system size tends to
infinity, finite-size clusters do not contribute to the magnetization per site. Therefore,
the magnetization per site agrees with the probability P that a site belongs to an
infinite-size cluster. The probability P decreases as p decreases and vanishes for p ≤ pc.

As will be shown below, many other quantities also show singular behavior at
pc. This phenomenon can be analyzed in a theoretical framework similar to the one
developed in previous chapters if we replace T − Tc by p − pc.

Percolation is a geometrical concept related to configurations of sites and bonds,
independent of magnetic properties of spins on occupied sites. The theory of percola-
tion has been applied to many fields including the spread of forest fire and the search
for crude oil in strata.

8.3.2 Scaling in a percolation transition

The number of finite-size clusters, with the size variable denoted as s, plays an
important role in the theory of percolation transitions. As a simple example, let
us consider the probability that a cluster of size four exists in one dimension, as
in Fig. 8.7. The probability that four consecutive sites are occupied is p4, and the
probability that sites neighboring to the left and right of the four-site cluster (shown
in white in Fig. 8.7) are both unoccupied is (1 − p)2. The number of ways to place
this cluster on a one-dimensional chain of size L is equal to the number of ways
to put the left-most site on the chain, which is approximately L. If we ignore the
boundary effects by considering an asymptotically infinitely long chain, the above
number is indeed L. Then, the total number of size-four clusters is Lp4(1 − p)2,
which we write as n4(p) = p4(1 − p)2, where n4(p) is the number of size-four clus-
ters divided by the number of sites L. Clearly, for general s, we have the cluster
number density ns(p) = ps(1 − p)2 = (1 − p)2 e−s/s0 , where the characteristic cluster
size, s0 = −1/ log p, diverges for p → pc = 1 as s0 ∼ (pc − p)−1/σ with σ = 1.9

9 The critical probability pc for a general Bethe lattice with coordination number z is given by
pc = 1/(z − 1), which becomes unity when z = 2, i.e. for the one-dimensional case.
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The probability that a given site belongs to a cluster of size s is sns(p) since the
site under consideration may be any one of the s occupied sites in a cluster.

It is difficult to write the expression of ns(p) for arbitrary s in higher dimensions.
Various types of clusters may exist, and it is impossible to list all of them for large s.
We therefore do not try to derive the explicit form of ns(p) and instead estimate its
asymptotic form for large clusters s � 1 as these large clusters should play dominant
roles in the critical phenomena around p ≈ pc.

Our goal is to reveal the asymptotic behavior of ns(p) for p close to pc and very
large s. An analogy with the usual thermal critical phenomena suggests to assume the
following scaling law,

ns(p) = s−τf
(
(p − pc)sσ

)
. (8.44)

This implies that the dependence of ns(p) on s and p is described essentially as a
single-variable function of the combination (p − pc)sσ.

We investigate the behavior of important physical quantities near pc using
eqn (8.44). The first target is the probability P that an occupied site belongs to an
infinite cluster, i.e. the percolating cluster. As was mentioned in the previous section,
P is essentially the zero-temperature magnetization of a diluted ferromagnet, which
is positive (non-vanishing, to be more accurate) when p > pc and zero for p ≤ pc. Let
us write β for the power by which P approaches zero toward pc,10

P ≈ (p − pc)β (p > pc). (8.45)

We recall here that the probability for a site to be occupied is the sum of the
probabilities for the site to belong to an infinite cluster and that to a finite cluster.
Accordingly, we have the following relation,

P +
∞∑

s=1

ns(p)s = p. (8.46)

This equation may be rewritten as, using
∑

s ns(pc)s = pc (since P = 0 at p = pc),

P =
∑

s

(
ns(pc) − ns(p)

)
s + (p − pc). (8.47)

If we assume that critical phenomena are dominated by the behavior of ns(p) for very
large s, we may ignore the discreteness of s, Δs = 1, compared to the magnitude of s
itself. Then, the sum in the above equation can be replaced by an integral. Using the
scaling law (8.44), eqn (8.47) now reads

P ≈
∫

ds s−τ+1
[
f(0) − f

(
(p − pc)sσ

)]
+ (p − pc). (8.48)

We can ignore the second term on the right-hand side, p − pc, for the purpose of
investigating the singularities of P . The change of the integral variable from s to
z = (p − pc)sσ yields, for p > pc,

10 One dimension is special. In that case, P = 0 for p < 1 and P = 1 at p = pc = 1 with β = 0.
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P ∝ (p − pc)(τ−2)/σ

∫
dz z−1+(2−τ)/σ

(
f(0) − f(z)

)
. (8.49)

Since the left-hand side is proportional to (p − pc)β , it is concluded that

β =
τ − 2

σ
. (8.50)

Let us next consider the average size of finite-size clusters. The probability for a
site to belong to a cluster of size s is sns(p), and hence the expectation value of the
size of a finite-size cluster, S,11 is

S =
∑

s

ns(p)s2 ≈
∫

ds s2ns(p). (8.51)

Assuming p < pc and changing the integral variable to z = (pc − p)sσ using eqn (8.44),
we rewrite the above equation as

S ∝ (pc − p)(τ−3)/σ

∫
dz f(−z)z−1+(3−τ)/σ. (8.52)

As p increases toward pc from below, larger and larger clusters emerge and the average
size of clusters S should diverge. If we define the exponent of this divergence as γ, the
above equation implies

γ =
3 − τ

σ
. (8.53)

The same relation as above holds also for p > pc if we consider finite-size clusters
only, excluding infinite clusters, and see the rate of divergence of the size of finite
clusters.

We write γ for the exponent of the divergence of S because S is proportional to
the susceptibility of a diluted ferromagnet in the low-temperature limit. When the
temperature is close to zero, almost all Ising spins in a cluster are oriented in the same
direction and so a cluster can be regarded as a single isolated spin that takes values
±s. Thus, the magnetization of a cluster of size s is s tanh(βsh) if the external field
h is of the same order of magnitude as the temperature (so that βh is of order one).
The total magnetization of the system is the sum of these contributions from clusters.
For p < pc, all clusters are of finite size, and the magnetization is

m =
∑

s

ns(p)s tanh(βsh). (8.54)

The susceptibility is therefore

χ =
∂m

∂h

∣∣∣∣
h→0

= β
∑

s

s2ns(p) = βS. (8.55)

This expression shows that χ is proportional to S, apart from the p-independent
factor β.12

11 In one dimension S is determined exactly as S = p(1 + p)/(1 − p) = p(pc + p)/(pc − p) and
diverges as (pc − p)−γ with a universal exponent γ = 1.

12 This β is 1/T , not a critical exponent.
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The total number of clusters M0 =
∑

s ns(p) also shows a singularity at pc. If we
write the singular part of M0 as (pc − p)2−α, it is possible to derive the following
relation in a similar way to that for β and γ,

2 − α =
τ − 1

σ
. (8.56)

Equations (8.50), (8.53) and (8.56) show that the exponents τ and σ defined
in (8.44) determine the other exponents, a similar situation to the conventional critical
phenomena. It is sometimes useful to remember that the exponents α, β and γ satisfy
the following scaling relation,

α + 2β + γ = 2. (8.57)

EXERCISE 8.4 Derive eqn (8.56).

8.3.3 Fractal dimension and hyperscaling

The scaling law (8.44) may look similar to the finite-size scaling (3.98) of conventional
critical phenomena. The variable t = (T − Tc)/Tc corresponds to p − pc and the length
scale L would correspond to the cluster size s. This identification, however, is not
necessarily correct. The size s is the number of sites in a cluster, which is different
from the linear size of a cluster. As the typical linear size of a cluster is the correlation
length ξ, it is necessary to relate the correlation length with the size s.

The starting point of the discussion is the definitions of the correlation function
G(r) and the correlation length ξ. The correlation function is the probability that a
site B at a distance r from a given occupied site A belongs to the same cluster as A.
A very simplified example is that all sites are occupied inside a circle of radius a from
site A and all sites are unoccupied outside of the same circle. Then, the correlation
function from A is G(r) = 1 for r < a and G(r) = 0 for r > a. This example should
be sufficient to convince the reader that the expectation value of the size of a cluster
S is the sum of G(r) over all r,

S =
∑

r

G(r). (8.58)

Let us assume p < pc, which allows us to consider only finite-size clusters. The
above equation is of the same form as the relation between the susceptibility and the
correlation function in spin systems. Since all clusters are of finite size, G(r) decays
exponentially beyond the length scale ξ, the correlation length,

G(r) ≈ r−ce−r/ξ. (8.59)

As p approaches pc, larger and larger clusters appear, and eventually the correlation
length diverges at pc. The critical exponent ν characterizes the rate of this divergence,

ξ ∝ (pc − p)−ν . (8.60)
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It is, by the way, natural to assume that the borderline size

s0 ≈ (pc − p)−1/σ (8.61)

between the regions of large and small z(= (p − pc)sσ) in eqn (8.44) is related to the
length ξ at which the correlation function G(r) starts to decay significantly. Indeed,
the change of s from values giving |z| = |(p − pc)sσ| smaller than unity to values giving
large |z| has the same effect on ns(p) as the change of p (with fixed s) from values near
pc to values far from pc. The system then moves from a region close to the critical point
to a region far from criticality, the borderline being at |z| ≈ 1. If we observe a cluster
with a much smaller length scale than the correlation length ξ, this correlation length
looks very large and the system seems as if it were in the critical region (|z| � 1). If, on
the other hand, the standard of length to observe the cluster is much larger than the
correlation length ξ, the finiteness of ξ is clearly recognized and the system is regarded
as being outside the critical region (|z| � 1). Consequently, the s0 corresponding to
|z| = 1 would be identified with the cluster size (the number of sites in the cluster)
where such a qualitative change of the system behavior takes place, namely the size
of a cluster of linear length ξ.

At pc, a finite-size cluster has a very complicated structure, very different from
a simple sphere, characterized by a fractal dimension D. Discussions in the pre-
vious paragraph indicate that s0 has a linear size ξ with a fractal dimension D
defined by

s0 ∝ ξD. (8.62)

A simple structure like a sphere has D equal to the spatial dimension d. In the case of
more complicated cases, fractal structures, the increase of occupied sites s as ξ grows
is slower than in simple sphere-like structures and thus D < d holds.13 In general,
if we observe a cluster from a length scale L smaller than the correlation length ξ,
the system may look critical (because the correlation length looks very long) and the
cluster looks fractal-like s ∝ LD. As L → ξ, s approaches s0.

Equations (8.60), (8.61) and (8.62) lead to the following relation,

s0 ∝ ξD ∝ (pc − p)−Dν ∝ (pc − p)−1/σ. (8.63)

It then follows that

Dνσ = 1. (8.64)

We have thus related the critical exponent ν with the fractal dimension D. Is
it possible to further establish relations between the fractal dimension D and the
spatial dimension d and hyperscaling that relates critical exponents with the spatial
dimension? The answer is yes with the relation

D = d − β

ν
. (8.65)

13 In one dimension D = d = 1.



200 Random systems

By eliminating D using Dνσ = 1, we find a hyperscaling relation. Equation (8.65)
shows how much the dimension decreases from the spatial dimension d to the fractal
dimension D, expressed in terms of two critical exponents.

In order to understand eqn (8.65), suppose that p is fixed to a value slightly larger
than pc and we count the number of occupied sites M(L) in a finite system of linear
length L(� ξ). We divide the system into subsystems with linear length ξ. The number
of such subsystems is (L/ξ)d. Since the number of occupied sites in a subsystem is
ξD according to eqn (8.62), the total number of occupied sites in the whole system
is (L/ξ)dξD = ξD−dLd. This number is identified with PLd from the definition of P ,
and then we obtain eqn (8.65) from P ∝ (p − pc)β .

If we eliminate D from Dνσ = 1 and D = d − β/ν and use the relation β + γ = 1/σ
(which comes from eqns (8.50) and (8.53)) as well as the scaling relation (8.57), we
arrive at the hyperscaling

2β + γ = dν = 2 − α, (8.66)

which is the same expression as in conventional critical phenomena. Hyperscaling holds
below the upper critical dimension as before. The upper critical dimension is six for
the problem of percolation, as will be explained in the next section.

8.3.4 Bond process and Potts model

It has been shown that the scaling analysis is useful to understand some aspects of
critical phenomena in percolation. A direct relation between spin systems at finite
temperature and percolation will further help us clarify the situation. This program
is realized through the Potts model with the number of states tending to unity.

We have so far treated the site process of percolation in which each site is occupied
or empty independently of the other sites. It is actually the bond process, in which each
bond is occupied randomly with probability p independently of the other bonds, that
has a direct correspondence with the Potts model. We will therefore consider the bond
process in the present section. It should be noticed that the scaling theory developed
in the previous sections applies without essential changes to the bond process since the
concepts of a cluster and the cluster size (the number of occupied bonds in a cluster)
can be defined essentially in the same way as in the site process.

Let us analyze the q-state Potts model on a lattice

H = −J
∑

〈ij〉
δSi,Sj

, (8.67)

introduced in Section 1.5, where Si is a Potts spin assuming the values 1, 2, · · · , q
at site i. We will now show that critical phenomena of this model as a function of
temperature are equivalent to critical phenomena of percolation if we take the limit
q → 1.

The partition function for the Hamiltonian (8.67)

Z =
∑

{Si}
exp

⎛

⎝K
∑

〈ij〉
δSi,Sj

⎞

⎠ =
∑

{Si}

∏

〈ij〉
eKδSi,Sj (8.68)
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Fig. 8.8 An example of a term in the partition function of a bond process. The bold lines

represent occupied bonds.

can be rewritten, using the relation eKδSi,Sj = 1 + (eK − 1)δSi,Sj
, as

Z =
∑

{Si}

∏

〈ij〉

(
1 + uδSi,Sj

)
(u = eK − 1). (8.69)

The expansion of the product on the right-hand side of this equation gives the factor
1 or uδSi,Sj

for each bond. This fact suggests that we can express the polynomial of
u, obtained from the expansion of the right-hand side, graphically as follows. If the
term uδSi,Sj

is chosen for a bond (ij), we take it as an occupied state of the bond
(ij), and 1 is understood as an unoccupied bond. Then, each term of the expansion is
represented by a graph showing the set of occupied bonds, as illustrated in Fig. 8.8.

An occupied bond has the constraint δSi,Sj
, that is, spins at sites i and j take the

same value. Thus, all sites in a cluster of occupied bonds have the same spin state.
Spins belonging to different clusters are uncorrelated. Consequently, the expansion of
Z as a polynomial of u is written as follows,

Z =
∑

config

qNcuNb . (8.70)

Here, the sum runs over all possible configurations of occupied bonds, i.e. all possible
ways to draw graphs like Fig. 8.8. Nc is the number of clusters in a given config-
uration of occupied bonds, and Nb is the number of occupied bonds in the given
configuration.

In the bond process of percolation, the probability Pconfig for a given configuration
of bond occupation is pNb(1 − p)NB−Nb , where NB is the total number of bonds,
occupied and unoccupied. We use this probability to rewrite eqn (8.70) multiplied by
(1 − p)NB , writing p/(1 − p) for u, as

Z̃(q, p) ≡ (1 − p)NBZ = (1 − p)NB
∑

config

qNc

(
p

1 − p

)Nb

=
∑

config

qNcPconfig. (8.71)

In the limit q → 1, Z̃(q, p) represents the sum of probabilities of all configurations of
occupied bonds. This suggests a close relationship between the Potts model in the
limit q → 1 and percolation.
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We need to be a little more careful because the simple substitution of q = 1
in Z̃(q, p) yields the sum of all possible cases, which is unity trivially. The leading
correction to the limit q → 1, q = 1 + ε for small ε, gives the non-trivial relation

Z̃(1 + ε, p) = 1 + ε
∑

config

NcPconfig = 1 + ε〈Nc〉 (8.72)

for the expectation value of the number of clusters. Using the notation of the previous
sections, we have, from dq = dε,

∂

∂q
log Z̃(q, p)

∣∣∣∣
q→1

= 〈Nc〉 =
∑

s

ns(p) = M0. (8.73)

Thus, M0 is given by the q → 1 limit of the free energy of the q-state Potts model, and
the q → 1 limit of the critical exponent α of the Potts model is the critical exponent
α of percolation. Other critical exponents satisfy similar relations.

Critical points of the two systems satisfy the relation

lim
q→1

eKc − 1 =
pc

1 − pc
, (8.74)

where Kc is the critical point of the Potts model and we have used u = p/(1 − p).
For example, the critical point of the q-state Potts model on the square lattice is
eKc =

√
q + 1 as will be shown in Exercise 10.2. Then, the above relation gives the

critical probability of the bond process on the square lattice as pc = 1/2.
Let us now consider the upper critical dimension and the mean-field theory for

percolation. It is useful to check the relevance of non-quadratic terms of the Landau
free energy, generalized to have a spatial dependence of the order parameter, around
the Gaussian fixed point. The Potts model does not have a symmetry under inversion
of spin variables except for the special case of the Ising model with q = 2. Hence,
the Landau free energy has both even and odd terms. Consequently, a correction
to the quadratic term begins with a cubic term, for which the borderline dimension
of relevance is six, as was discussed for the spin glass problem in Section 8.2.3. We
conclude that the upper critical dimension is six for percolation.

The mean-field critical exponent for d > 6 can be estimated easily from the
properties of the Gaussian fixed point. As was mentioned in Section 4.2.1, critical
exponents for the Gaussian fixed point satisfy

α = 2 − d

2
, β =

d − 2
4

, γ = 1, ν =
1
2
, η = 0. (8.75)

By inserting the value of the upper critical dimension d = 6, which is the limiting
dimension for the hyperscaling to be applicable, we find the mean-field exponents as
follows,

α = −1, β = 1, γ = 1, ν =
1
2
, η = 0. (8.76)

These values coincide with the direct solution of the percolation problem on the Bethe
lattice, a lattice with special structure on which the Bethe approximation gives the
exact solution.
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The final remark is on the order of the transition. The Potts model with q > 2
has a first-order transition in the mean-field theory since the Landau free energy has
a cubic term. The order changes at q = 2 because the coefficient of the cubic term
changes the sign there, and consequently the problem of percolation corresponding to
q → 1 undergoes a second-order transition.

EXERCISE 8.5 Let us confirm that the correlation function of the Potts model
reduces to the correlation function of percolation in the limit q → 1. We first recall
the definition of the correlation function of the Ising model, G(r) = 〈S0Sr〉, which
decays exponentially to zero as r → ∞ in the paramagnetic phase. Physically, this
behavior reflects the fact that each spin takes both values Si = 1 and Si = −1 with
equal probability, leading to the vanishing average. This observation suggests that
the correlation function of the Potts model is to be defined in terms of the product
of δSi,1 − q−1 (for which the simple average vanishes),

G(r) =
〈
(δS0,1 − q−1)(δSr ,1 − q−1)

〉
. (8.77)

We now reinterpret this quantity in terms of percolation by using the correspondence
explained in this section. (1) Show that the average of (δS0,1 − q−1)(δSr ,1 − q−1)
vanishes if site 0 and r belong to different clusters. (2) Show that the average
of (δS0,1 − q−1)(δSr ,1 − q−1) is (q − 1)/q2 if site 0 and r belong to the same
cluster. (3) Set q = 1 + ε and show that the coefficient of ε of the expansion of the
correlation function of the Potts model G(r) coincides with the correlation function
of percolation.
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Exact solutions and related topics

Only a limited number of models of phase transitions and critical phenomena can be
solved exactly. These examples, nevertheless, play important roles in many aspects
including the verification of the accuracy of approximation theories such as the mean-
field theory and renormalization group. Also, mathematical methods to solve such
examples are interesting in their own right and constitute an important subfield of
mathematical physics. In particular, the exact solution of the two-dimensional Ising
model occupies an outstanding status as one of the founding studies of the modern
theory of phase transitions and critical phenomena. We elucidate in the present chapter
simple but typical examples of exact solutions such as the one-dimensional classical
spin system, the spherical model, the one-dimensional quantum XY model and the
two-dimensional Ising model. An account of the Yang–Lee theory on the zeros of
the partition function will also be given as a set of basic rigorous results on phase
transitions.

9.1 One-dimensional Ising model

We have already studied the one-dimensional Ising model in the context of a real-space
renormalization group. It is, nevertheless, illuminating to explain the well-established
method of its solution here partly because the solution of the two-dimensional Ising
model is closely related to some aspects of the one-dimensional solution. Also, it is one
of those exactly solvable models where the independence of thermodynamic quantities
on the boundary conditions, in the thermodynamic limit N → ∞, can be rigorously
established. We will study the free and periodic boundary conditions cases.

9.1.1 Free boundary condition

The Hamiltonian of the one-dimensional Ising model at zero field, h = 0, under free
boundary conditions reads

H = −
N−1∑

i=1

JiSiSi+1. (9.1)

The interactions are considered to depend on site index i for later convenience. A
superscript (F) for the partition function Z will denote the free boundary condition,

Z
(F)
N =

∑

S1=±1

· · ·
∑

SN=±1

exp

(
β

N−1∑

i=1

JiSiSi+1

)
, (9.2)
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where β = 1/T is the inverse temperature. We first carry out the sum over SN , the
spin on the edge, to evaluate Z

(F)
N . If we separate the part that includes SN , we have

Z
(F)
N =

∑

S1,S2,··· ,SN−1

eβJ1S1S2+ ···+βJN−2SN−2SN−1 ·
∑

SN=±1

eβJN−1SN−1SN . (9.3)

The sum over SN can be performed easily to yield a factor
∑

SN=±1

eβJN−1SN−1SN = 2 cosh(βJN−1SN−1) = 2 cosh(βJN−1). (9.4)

We have used here that cosh is an even function and thus cosh(βJN−1SN−1) is
independent of SN−1(= ±1). We therefore have a recursion relation

Z
(F)
N = 2 cosh(βJN−1) · Z(F)

N−1 (9.5)

between Z
(F)
N and Z

(F)
N−1. Repeated applications of this recursion relation leads to

Z
(F)
N = 2 cosh(βJN−1) · 2 cosh(βJN−2) · · · 2 cosh(βJ1) · 2 = 2N

N−1∏

i=1

cosh(Ki), (9.6)

where the final factor 2 comes from the sum over S1 and Ki = βJi. This is the solution
for the partition function.

Equation (9.6) immediately gives physical quantities such as the free energy F ,
energy E, and specific heat C from the logarithm and its derivatives. The entropy is
S = (−F + E)/T . For a uniform system Ji = J , for which Z

(F)
N = 2(2 cosh K)N−1,

F = −T (log 2 + (N − 1) log(2 cosh K)) ≈ −TN log(2 cosh K) (9.7)

E = −J(N − 1) tanh K ≈ −JN tanhK (9.8)

C =
K2(N − 1)

cosh2 K
≈ K2N

cosh2 K
, (9.9)

where we have taken the large-N limit to replace N − 1 by N and chosen to ignore
log 2 in comparison with N log(2 cosh K). The dependence of the energy and specific
heat on the temperature is shown in Fig. 9.1. The specific heat in the low-temperature
limit (K � 1) is given as, using cosh2 K ≈ e2K/4,

C ≈ 4NK2e−2K . (9.10)

This function vanishes exponentially as K increases (T decreases).
Next, the correlation function is defined as

〈SiSi+r〉 =

∑
S1,··· ,SN

SiSi+r eβ(J1S1S2+···+JN−1SN−1SN )

Z
(F)
N

. (9.11)
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Fig. 9.1 Energy and specific heat per spin for the one-dimensional Ising model. The unit of

energy is set to J = 1. The specific heat has a peak around T = 1.

The numerator can be expressed as a derivative of the denominator Z
(F)
N : Using S2

j = 1
and eqn (9.6), we rewrite the above equation as follows,

〈SiSi+r〉 · Z(F)
N

=
∑

S1,··· ,SN

(SiSi+1) · (Si+1Si+2) · · · (Si+r−1Si+r) eβ(J1S1S2+···+JN−1SN−1SN )

=
∂

∂(βJi)
∂

∂(βJi+1)
· · · ∂

∂(βJi+r−1)
Z

(F)
N

= (2 cosh βJ1 · 2 cosh βJ2 · · · 2 cosh βJi−1)

·(2 sinh βJi · 2 sinh βJi+1 · · · 2 sinh βJi+r−1)

·(2 cosh βJi+r · · · 2 cosh βJN−1) · 2 = Z
(F)
N

i+r−1∏

j=i

tanhKj . (9.12)

Thus, the correlation function for the case of uniform interactions (Ji = J) is

〈SiSi+r〉 = (tanh K)r = exp
(
−r(− log tanhK)

)
, (9.13)

which is independent of i and N . The correlation length is then

ξ = − 1
log tanhK

. (9.14)

In the low-temperature limit, the correlation length diverges exponentially since
ξ ≈ e2K/2 from tanh K ≈ 1 − 2e−2K .

The evaluation of the susceptibility starts from its expression in terms of the sum
of correlation functions as described in Appendix A.2,
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Fig. 9.2 Susceptibility of the one-dimensional Ising model with the energy unit fixed to

J = 1. It diverges exponentially as T → 0.

χ = β
N∑

i,j=1

〈SiSj〉. (9.15)

We first notice that the correlation function 〈SiSj〉 depends only on the distance
between the two sites, |i − j|, as seen in eqn (9.13), not on i and j separately. If we
simplify the discussion by ignoring boundary effects (justified in the limit of large N),
we may replace the above equation with the following,

χ

N
= β

(
1 + 2

N∑

k=1

〈SiSi+k〉
)

. (9.16)

Here, the first term on the right-hand side comes from the terms with i = j in
eqn (9.15). The factor 2 on the second term comes from the two cases of j(≡ i + k)
larger than i (k > 0) and smaller than i (k < 0) in eqn (9.15). The double sum over i
and j in eqn (9.15) is replaced by a single sum over k in eqn (9.16) with the factor N
(the number of possible is) extracted to the outside, and the sum over j in eqn (9.15)
is rewritten in terms of the sum over k in eqn (9.16). We now insert eqn (9.13) into
eqn (9.16) and carry out the sum to find

lim
N→∞

χ

N
= β · 1 + tanhK

1 − tanhK
. (9.17)

This susceptibility shows a strong exponential divergence proportional to βe2K at low
temperatures, as depicted in Fig. 9.2. This feature reflects the fact that the lower
critical dimension is one with Tc = 0.

9.1.2 Periodic boundary condition

A periodic boundary condition does not allow us to trace out spin variables from the
boundary site one by one as in the free-boundary case. It is, nevertheless, possible to
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evaluate the partition function by a powerful technique called the transfer matrix
method. The transfer matrix method is a common tool in many contexts and is
used also in the solution of the two-dimensional Ising model, and so we explain this
technique in some detail.

Let us first write the definition of the partition function for the uniform system in
the presence of an external field h,

Z
(P)
N =

∑

S1,··· ,SN

exp
(
KS1S2 + hS1 + KS2S3 + hS2 + · · · + KSNS1 + hSN

)
, (9.18)

where the superscript (P) denotes a periodic boundary. It is useful to introduce the
following notation,

T (S1, S2) = exp
(

KS1S2 +
h(S1 + S2)

2

)
. (9.19)

Then, eqn (9.18) is written as follows,

Z
(P)
N =

∑

S1,··· ,SN

T (S1, S2)T (S2, S3)T (S3, S4) · · ·T (SN−1, SN )T (SN , S1). (9.20)

We note here that T (Si, Si+1) takes four values depending on Si and Si+1, and is thus
regarded as a 2 × 2 matrix (the transfer matrix),1

T =
(

T (1, 1) T (1,−1)
T (−1, 1) T (−1,−1)

)
=

(
eK+h e−K

e−K eK−h

)
. (9.21)

Then, the sums over S2 to SN in eqn (9.20) (excluding the sum over S1) may be
identified with the diagonal element TN (S1, S1) of the product of N matrices TN ,

TN (S1, S1) =
∑

S2,··· ,SN

T (S1, S2)T (S2, S3)T (S3, S4) · · ·T (SN−1, SN )T (SN , S1).

(9.22)
The final sum over S1 is equivalent to the trace of the matrix TN ,

Z
(P)
N = TrTN . (9.23)

Consequently, we have, by writing λ± for the two eigenvalues of T ,

Z
(P)
N = λN

+ + λN
− . (9.24)

The eigenvalues of T are easily calculated as

λ± =
eK+h + eK−h ±

√
(eK+h + eK−h)2 − 4 e2K + 4 e−2K

2
. (9.25)

This completes the evaluation of the partition function.
In the thermodynamic limit N → ∞, we expect the present result to agree with the

corresponding result for the free boundary condition, eqn (9.7), because the boundary

1 Do not confuse temperature T with the transfer matrix T .
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effects may be neglected. Since λ+ > λ−, we have

Z
(P)
N = λN

+

{
1 +

(
λ−
λ+

)N
}

→ λN
+ , (9.26)

from which the free energy per spin in the absence of fields (h = 0) is

lim
N→∞

F

N
= −T log λ+ = −T log(2 cosh K). (9.27)

This agrees with eqn (9.7). The derivatives of the free energy, i.e. energy and specific
heat, also do not depend on the boundary condition.

We next write the definition of the correlation function to evaluate it under
the periodic boundary condition, assuming h = 0 for simplicity. To be concrete, the
example of the correlation between S2 and S4 will be explained,

〈S2S4〉 · Z(P)
N =

∑

S1,··· ,SN

T (S1, S2)

·S2 · T (S2, S3)T (S3, S4) · S4 · T (S4, S5) · · ·T (SN , S1). (9.28)

As already mentioned, the trace over spin variables can be regarded as the trace
of the product of transfer matrices. We therefore calculate the expectation value of
the product from T (S1, S2) to T (SN , S1) in the summand of the above equation, the
expectation value being taken with respect to the eigenvectors of T . The normalized
eigenvectors for h = 0 are

|±〉 =
1√
2

(
1
±1

)
, (9.29)

where the signs correspond to the two eigenvalues λ±. We first take the expectation
value of the summand of eqn (9.28) over |+〉. The application of |+〉 from the right
leads to simple multiplication by λ+ as each of T (SN , S1) to T (S4, S5) is applied to
|+〉. Similarly, 〈+| applied to T (S1, S2) from the left yields λ+〈+|. Consequently,

z+ ≡
〈
+|T (S1, S2) · S2 · T (S2, S3)T (S3, S4) · S4 · T (S4, S5) · · ·T (SN , S1)|+

〉

= λ+

〈
+|S2T (S2, S3)T (S3, S4)S4|+

〉
λN−3

+ . (9.30)

Next, we notice that T (S3, S4)S4 is obtained from T (S3, S4) by changing the sign of
the second column, and therefore

T (S3, S4)S4 |+〉 =
(

eK −e−K

e−K −eK

)
· 1√

2

(
1
1

)
=

λ−√
2

(
1
−1

)
= λ−|−〉. (9.31)

Similarly, one finds

〈+|S2T (S2, S3) =
1√
2
(1 1)

(
eK e−K

−e−K −eK

)
=

λ−√
2
(1 − 1) = λ−〈−|. (9.32)
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Then, it follows that

z+ = λN−2
+ λ2

−. (9.33)

The expectation value z− obtained by using |−〉 can be evaluated in a similar fashion.
Simple replacements of λ+ by λ− and |+〉 by |−〉 are sufficient. The result is

z− = λN−2
− λ2

+. (9.34)

We therefore arrive at the following relation, using eqn (9.24),

〈S2S4〉 =
λN−2

+ λ2
− + λN−2

− λ2
+

λN
+ + λN

−
. (9.35)

From λ+ > λ−, the correlation function in the thermodynamic limit is

lim
N→∞

〈S2S4〉 =
(
λ−
λ+

)2

= tanh2 K. (9.36)

It is straightforward to apply the same method to an arbitrary correlation function.
The result is, for r ≤ N/2,

〈SiSi+r〉 =
(
λ−
λ+

)r

= (tanhK)r. (9.37)

This expression coincides with eqn (9.13) for a free boundary. We therefore conclude
that the correlation function does not depend on the boundary condition in the
thermodynamic limit.

It is interesting to notice here that eqn (9.37) can be rewritten as

〈SiSi+r〉 = exp

(
−r log

λ+

λ−

)
. (9.38)

The correlation length is written in terms of the logarithm of the ratio of two
eigenvalues of the transfer matrix,

ξ =
1

log
λ+

λ−

. (9.39)

It is established in higher dimensions as well that the correlation length can be
expressed as a function of the ratio of the two largest eigenvalues of the transfer
matrix.

EXERCISE 9.1 Evaluate the partition function of the three-state Potts model in
one dimension,

βH = −K
∑

i

δ(Si, Si+1) (Si = 0, 1, 2) (9.40)
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1N 11 12 13
• • • •• • • •

• • • • • • • •
2N 21 22 23

Fig. 9.3 A two-leg ladder.

with a free boundary condition. Solve the same problem also for a periodic boundary
condition. Confirm that the free energy per spin does not depend on the boundary
condition in the thermodynamic limit N → ∞.

EXERCISE 9.2 Evaluate the partition function of the two-leg ladder Ising model,

βH = −K1

N∑

i=1

S1iS1i+1 − K1

N∑

i=1

S2iS2i+1 − K2

N∑

i=1

S1iS2i (9.41)

with periodic boundary conditions, i.e. S1N+1 = S11, and S2N+1 = S21, see Fig. 9.3.
Write also the correlation function 〈S1iS1i+r〉 in terms of the transfer matrix. Hint:
The transfer matrix is a 4 × 4 matrix.

9.2 One-dimensional n-vector model

The n-vector model is a system of coupled spins {Si}, where Si is an n-component
classical vector at site i, Si = (Si1, Si2, · · · , Sin), normalized to unity, |Si| = 1. The
components of Si can take continuous values as long as the normalization condition
|Si| = 1 is satisfied. It is also called the O(n) model. The Hamiltonian is, in the absence
of external fields,

H = −J
∑

〈ij〉
Si · Sj . (9.42)

This model includes the Ising model when n = 1 and the XY and Heisenberg models
for n = 2 and n = 3, respectively. The n-vector model with n = 4 does not directly
represent real physical systems. It is, nevertheless, often useful to discuss general-n
cases for theoretical analyses. In particular, the limit n → ∞ is known as the spherical
model, for which the exact solution can be derived in any dimension, as will be shown
in Section 9.3.

The mean-field theory for the n-vector model yields critical phenomena (critical
exponents) independent of n. This result is not applicable to dimensions lower than
the upper critical dimension, where the critical exponents depend on n. In the present
section we solve the one-dimensional n-vector model under a free boundary condition
and discuss its properties.
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Let us start with the definition of the partition function of the n-vector model in
an N sites chain with free boundary,

Z
(F)
N =

∫ N∏
i=1

dSi exp
(
K(S1 · S2 + S2 · S3 + · · ·+ SN−1 · SN )

)
. (9.43)

The integration is carried out constrained to the normalization condition |Si| = 1 for
each i.

Now, we first perform the above integration for SN and then for SN−1, following
the prescription for the Ising model. The part involving SN is extracted for this
purpose,

Z
(F)
N =

∫ N−1∏
i=1

dSi exp
(
K(S1 · S2 + S2 · S3 + · · ·+ SN−2 · SN−1)

)

·
∫

dSN exp(KSN−1 · SN ). (9.44)

The range of integration for SN is over the unit sphere of the n-dimensional space.
Since the unit sphere is isotropic, we may choose any direction as the first axis of the
Cartesian coordinate. We therefore choose the direction of the vector SN−1 as the first
axis because this facilitates the calculation significantly. The product SN−1 · SN then
has only the first component SN1, and the SN -integral of eqn (9.44), to be denoted
as G(K), is written as

G(K) =

∫
dSN eKSN1

=

∫ ∞

−∞
dSN1 · · · dSNn δ

(
(SN1)

2 + (SN2)
2 + · · ·+ (SNn)

2 − 1
)
eKSN1 . (9.45)

This integral can be carried out as a Gaussian integral if we use the Fourier represen-
tation of the delta function as detailed in Appendix A.15. The result is

G(K) = c

(
K

2

)1−n/2

In/2−1(K), (9.46)

where c is a trivial constant and In/2−1(K) is the modified Bessel function of the first
kind.

The partition functions (9.43) and (9.44) thus satisfy the recursion relation Z
(F)
N =

G(K) · Z(F)
N−1. Repeated applications of this recursion relation lead to the following

solution,

Z
(F)
N = G(K)N−1 · const. (9.47)

We can now calculate the free energy and its derivatives. The energy per site is

E0 ≡ lim
N→∞

E

N
= −J

d

dK
logG(K) = −J

In/2(K)

In/2−1(K)
, (9.48)
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Fig. 9.4 The energy and specific heat of the one-dimensional (classical) Heisenberg model.

J is set to unity.

where the final equality was derived using the following identities satisfied by the
modified Bessel function,

I ′m(K) =
1
2

(Im+1(K) + Im−1(K)) , Im(K) =
K

2m
(Im−1(K) − Im+1(K)) . (9.49)

As an example, let us choose n = 3 corresponding to the Heisenberg model. The
modified Bessel functions applicable to this case can be written, in terms of elementary
functions, as

I3/2(K) =

√
2

πK
(cosh K − K−1 sinhK), I1/2(K) =

√
2

πK
sinhK. (9.50)

The energy per site E0 and its temperature derivative, the specific heat per site C0,
are

E0 = J

(
1
K

− 1
tanh K

)
, C0 = K2

(
1

K2
− 1

sinh2 K

)
. (9.51)

These functions are drawn in Fig. 9.4. The low-temperature limit of the specific heat is

C0 ≈ (1 − 4K2e−2K), (9.52)

which approaches a finite value at T → 0, a behavior significantly differently from the
Ising model, see Fig. 9.1. This qualitative difference originates in the symmetry; the
Ising model has a global discrete Z2 symmetry, whereas the model with n ≥ 2 has
a continuous symmetry, i.e. an invariance of the Hamiltonian under a simultaneous
rotation of all spins by the same angle.

To understand this behavior, it is helpful to differentiate the free energy with
respect to temperature to obtain the entropy. The entropy of the classical Heisenberg
model turns out to behave as S ≈ log T in the low-temperature limit and diverges
toward −∞. This is the same phenomenon as observed in the entropy of a classical
ideal gas. In a classical ideal gas the low-temperature entropy behaves unphysically due
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to the continuous translational invariance of the Hamiltonian. The same mechanism
works in the classical Heisenberg model. In real materials with continuous symmetries,
quantum effects come into play at low temperatures, preventing physical quantities
from diverging. Such an example will be shown in Section 9.4.

9.3 Spherical model

The n-vector model can be solved exactly in any spatial dimension d if we take the
limit n → ∞. The result shows a finite-temperature phase transition for d > 2, and the
low-temperature phase has finite spontaneous magnetization. The critical exponents
are functions of d in the range 2 < d < 4, whereas the same exponents take the mean-
field values above four dimensions d > 4. At d = 4 critical exponents coincide with the
mean-field results but with logarithmic corrections. The n-vector model in the limit
n → ∞ has been studied in detail due to these notable properties expected for more
conventional systems with finite n, which include the existence of upper and lower
critical dimensions and the d dependence of critical exponents between the upper and
lower critical dimensions.

The free energy of the n-vector model in the limit n → ∞ is known to be identical
to a model called the spherical model. Spins {Si} of the spherical model take arbitrary
real values under the constraint

∑N
i=1 S2

i = N , where N is the number of lattice sites.
The Hamiltonian has the conventional expression

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si. (9.53)

We can choose an arbitrary spatial dimension and lattice structure. The Ising model
also satisfies the constraint

∑N
i=1 S2

i = N , but a spin of the spherical model Si can
take values other than ±1. The constraint

∑N
i=1 S2

i = N represents an N -dimensional
sphere, from which the name comes. In the present section we derive the solution of
the n-vector model in the n → ∞ limit, which is often also called the spherical model.

9.3.1 Partition function and free energy

The Hamiltonian of the n-vector model in the presence of an external field reads

βH = −K
∑

〈ij〉
Si · Sj − h ·

∑

i

Si

= −K
∑

〈ij〉

n∑

a=1

SiaSja − h
∑

i

n∑

a=1

Sia

(
n∑

a=1

S2
ia = n, ∀i

)
, (9.54)

where Si is a vector with n components. In order to have a non-trivial result in the
limit n → ∞, we normalize Si as |Si|2 = n, not as |Si| = 1 employed in the previous
section. The external field h is assumed to be applied along all axes with the same
amplitude. For simplicity, we consider the d-dimensional hypercubic lattice and the
interactions only exist between nearest neighbors. Periodic boundaries will be assumed
for translational invariance.
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The partition function of this model is written as

Z =
∫ ∞

−∞

N∏

i=1

dSi exp

⎛

⎝K
∑

〈ij〉

n∑

a=1

SiaSja + h
∑

i

n∑

a=1

Sia

⎞

⎠

·
N∏

i=1

δ

(
n −

n∑

a=1

S2
ia

)
. (9.55)

From the Fourier representation of the delta function, we find

Z =
∫ ∞

−∞

N∏

i=1

dSi ·
1

(2πi)N

∫ i∞

−i∞

N∏

i=1

dzi

·
n∏

a=1

exp

⎛

⎝K
∑

〈ij〉
SiaSja + h

∑

i

Sia +
∑

i

zi(1 − S2
ia)

⎞

⎠. (9.56)

It is convenient to perform the integration over Si first. The integral over Si can be
performed independently over each component, a = 1, 2, · · · , n, and the result does not
depend on the index a. Thus, we may simply raise the integral over a single component
to the nth power,

Z =
1

(2πi)N

∫ i∞

−i∞

N∏

i=1

dzi

{∫ ∞

−∞

∏

i

dSi

· exp

⎛

⎝K
∑

〈ij〉
SiSj + h

∑

i

Si +
∑

i

zi(1 − S2
i )

⎞

⎠

⎫
⎬

⎭

n

. (9.57)

The multiple integral over {Si} is a Gaussian integral and can be evaluated explicitly.
The result is a function of {zi}, which we have to further integrate over {zi}. A
significant simplification takes place here in the limit n → ∞ since the integral over
{Si} is raised to the nth power, which allows us to apply the saddle-point method
to the z-integral. The result of the integral over {zi} is simply the maximum of the
integrand. This is why the spherical model can be solved exactly. This program will
be carried out explicitly.

Since all sites are equivalent, we may assume that the saddle point of zi is
independent of i. We therefore set zi = z and focus our attention on the evaluation of
the integral

I ≡
∫ ∞

−∞

∏

i

dSi exp

⎛

⎝K
∑

〈ij〉
SiSj − z

∑

i

S2
i + h

∑

i

Si

⎞

⎠ . (9.58)
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This is the multiple Gaussian integral detailed in Appendix A.16, where the following
formula is derived,

∫ ∞

−∞
e−

1
2

tx·Cx+itx·q dx =
(2π)N/2

(det C)1/2
e−

1
2

∑
n,l qnql(C

−1)nl . (9.59)

Here, x and q are N -dimensional vectors and C is an N × N matrix. We choose C in
this equation as follows,

Cii = 2z (diagonal), Ci,i+δ = −K (nearest neighbor), other Cij = 0, (9.60)

and set iq = t(h, h, · · · , h) to express eqn (9.58). Then, we can apply eqn (9.59) to the
present problem if we appropriately evaluate various quantities in this equation. We
start with the determinant of C in the denominator by writing the eigenvalues of C,
which can be obtained following the method of eqn (A.263),

C(k) = 2z − 2Kλ(k), λ(k) =
d∑

j=1

cos kj . (9.61)

This leads to

det C = (2K)N
∏

k

(
z̃ − λ(k)

)
, (9.62)

where z̃ = z/K. The quadratic form of q in the exponent of eqn (9.59) can be rewritten
as follows, using the translational invariance of the lattice Green function G(= C−1),
iq = t(h, h, · · · , h), and eqn (9.61),

−1
2

∑

n,l

qnqlGnl =
h2

2

∑

n,l

Gnl =
h2N

2

∑

l

Gnl

=
h2

2
NG(k = 0) =

h2N

2C(k = 0)
=

h2N

4(z − Kd)
. (9.63)

We are ready to use eqn (9.59) to write the result of the integral (9.58) explicitly,

1
N

log I =
1
2

log 2π − 1
2

log 2K − 1
2N

∑

k

log
(
z̃ − λ(k)

)
+

h2

4K(z̃ − d)
. (9.64)

The free energy per spin f is then written as, using the saddle point z0 (or z̃0 − d =
z0/K − d ≡ u),

βf(u) = − lim
N,n→∞

1
Nn

log Z = −1
2

log
π

K
− h2

4Ku
− (Ku + Kd)

+
1

2(2π)d

∫ 2π

0

log
(
u + d − λ(k)

)
dk (9.65)

in the limit N,n → ∞. We further need the explicit properties of the saddle point z0

(or u = z0/K − d), which will be analyzed in the next section.
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9.3.2 Solution of the saddle-point equation and critical exponents

The minimization condition of f as a function of u is

H(u) ≡ 1
(2π)d

∫ 2π

0

1
u + d − λ(k)

dk = − h2

2Ku2
+ 2K. (9.66)

Let us investigate the condition for this equation H(u) = 2K to have a solution in the
case of h = 0. We first note that H(u) is a monotone decreasing function of u, as can
be verified by differentiation. The function H(u) has three different types of behavior
around u = 0 depending on the dimensionality d as follows.

(i) d ≤ 2. The behavior of H(u) as u → 0, whether it diverges or not, is
determined by the properties of the integrand around the origin k = |k| ≈
0. We may therefore adopt the approximation, using λ(k) ≈ d − k2/2,

H(u) ≈
∫

0

kd−1

u + k2/2
dk, (9.67)

where the upper limit is omitted as it has no relevance for the divergence
at the lower limit. This integral diverges as u → 0 if d ≤ 2. The other
limit u → ∞ gives H(u) → 0. Consequently, H(u) takes all positive
values, which means that the equation H(u) = 2K always has a solution
for arbitrary K(> 0). It is also clear that H(u) has no singularities at
any positive u. Hence, u as the solution of H(u) = 2K is an analytic
function of K and f(u) is not singular as a function of K. Thus, the
system does not undergo a phase transition for d ≤ 2.

(ii) 2 < d < 4. As seen in eqn (9.67), H(u) tends to a finite value as u → 0
for 2 < d < 4. The first-order derivative of H(u), however, diverges as
u → 0. To see this, we set k =

√
2u x and rewrite eqn (9.67) as

H(u) ≈ ud/2−1

∫

0

xd−1

1 + x2
dx ∝ ud/2−1 + const. (9.68)

This equation shows that the first-order derivative diverges as ud/2−2 for
2 < d < 4.

The function H(u) thus behaves as H(u) ≈ H(0) − cud/2−1 for u ≈ 0.
It also monotonically decreases from H(0) at u = 0 to H → 0 as u → ∞.
Accordingly, the saddle-point equation H(u) = 2K has a solution in
the high-temperature region satisfying K < H(0)/2 ≡ Kc but not in
the low-temperature region K > Kc. The free energy therefore changes
drastically at Kc, a phase transition.2

2 No saddle point exists for K > Kc in the sense that eqn (9.66) does not have a solution and
f(u) is not stationary anywhere. We may, nevertheless, consider that the stationary point stays at
u = 0 since f(u) is minimum at u = 0, that is, the argument of the parentheses {·} of eqn (9.57) is
maximum at u = 0.
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An expansion of the saddle-point equation (9.66)(h = 0) near the
transition point yields, using H(0) = 2Kc,

2Kc − cud/2−1 = 2K, (9.69)

from which we have ΔK ≡ Kc − K ∝ ud/2−1. Since the integral in the
free energy (9.65) is given as the u-integral of H(u), the singular part
is proportional to ud/2 from H(u) ≈ H(0) − cud/2−1. Thus, the singular
part of the free energy is

f ∝ ud/2 ∝ (ΔK)d/(d−2). (9.70)

A comparison of this equation with the definition of the critical exponent
α, f ≈ (ΔK)2−α, yields

α = − d

d − 2
+ 2 =

d − 4
d − 2

. (9.71)

Consequently, the specific heat does not diverge for 2 < d < 4 since
α < 0. The exponent α diverges as d → 2 and tends to vanish as d → 4.
It is interesting to remember that α = 0 is the mean-field value.

Since u stays constant for K > Kc, the temperature dependence of
the free energy (9.65) exists only in the terms explicitly dependent on
K. The second-order derivative of this equation with h = 0 then shows
that the specific heat is a constant. We therefore conclude that the
specific heat has the temperature dependence as depicted in Fig. 9.5. A
notable feature is that the specific heat stays finite as T → 0, similarly
to the one-dimensional n-vector model, a problem specific to continuous
classical systems.

The susceptibility is the second-order derivative of f with respect to
h and is therefore divergent, as follows according to eqn (9.65),

χ ∝ u−1 ∝ (ΔK)−2/(d−2)
. (9.72)

The exponent is then γ = 2/(d − 2).3 The limiting behaviors are γ → ∞
as d → 2 and γ → 1 as d → 4, the latter reproducing the mean-field result.

These two critical exponents are sufficient to fix the other values from
the scaling relation,

α =
d − 4
d − 2

, β =
1
2
, γ =

2
d − 2

, δ =
d + 2
d − 2

, ν =
1

d − 2
, η = 0 (9.73)

Expansions of these expressions to second order in ε with 4 − d = ε
agree with the ε-expansion results of Section 4.2.2 in the limit n → ∞.
All these exponents approach the mean-field values as d → 4. Exponents
other than β and η diverge as d → 2, indicating that the rate of
divergence is larger than power laws at the lower critical dimension. This

3 In eqn (9.65) u is also a function of h through eqn (9.66) but this dependence can be ignored in the
evaluation of the derivative in the limit h → 0. This fact can be confirmed if we take the second-order
derivative of eqn (9.56) with respect to h, set h → 0 and reproduce the following argument.
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Fig. 9.5 A qualitative description of the temperature dependence of the specific heat of the

spherical model for d > 2.

is in agreement with the strong exponential divergence observed in the
two-dimensional XY model and the one-dimensional Ising model.

(iii) d ≥ 4. Since H(u) = H(0) − cu as u ≈ 0 above four dimensions, we
can apply the discussions for 2 < d < 4 to the present case simply by
setting d → 4. It of course means that the mean-field theory gives the
exact values for the critical exponents. At d = 4, logarithmic corrections
appear, reflecting the logarithmic divergence of physical quantities.

EXERCISE 9.3 Show that the spherical model does not have a phase transition in
any dimension if h �= 0. A finite field erases a phase transition, as in Fig. 1.3. It will
be useful to check if the saddle-point equation (9.66) has a solution for arbitrary K
and if the solution has a singularity.

EXERCISE 9.4 Evaluate the spontaneous magnetization of the spherical model
near the transition point for 2 < d < 4. Differentiate eqn (9.65) with respect to h
and eliminate u using eqn (9.66).

9.4 One-dimensional quantum XY model

The present book discusses topics of phase transitions and critical phenomena in
classical statistical mechanics. A main reason is that phase transitions and critical
phenomena are macroscopic phenomena involving very many degrees of freedom and
quantum effects, which usually appear prominently in microscopic length scales, do
not play significant roles. Quantum fluctuations, nevertheless, become dominant at
low temperatures, where thermal fluctuations become irrelevant, and phase transitions
caused by quantum effects sometimes appear.

We do not discuss quantum phase transitions in general. Nevertheless, one of the
simplest examples of quantum spin systems, the one-dimensional quantum XY model,
will be studied in the present section. This model is interesting not just because the
exact solution can be derived by relatively straightforward calculations but also since
the solution has common aspects with the two-dimensional Ising model to be discussed
in the next section.
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The Hamiltonian of the one-dimensional quantum XY model is

H = −J

N∑

j=1

(Sx
j Sx

j+1 + Sy
j Sy

j+1) − h

N∑

j=1

Sz
j , (9.74)

where Sj is a spin-1/2 quantum operator, whose algebra was already presented in
Section 4.3.1, and a field h is applied along the z-axis.4 The boundary condition
is periodic. The set of spin-1/2 operators along a one-dimensional chain, {Sj}, can
be written in terms of Fermionic operators {aj , a

†
j} by means of the Jordan–Wigner

transformation explained in Appendix A.17. The raising and lowering operators of
spins

S±
j = Sx

j ± iSy
j (9.75)

and the z-component Sz
j have the following expressions in terms of aj , and a†

j ,

S+
j = (1 − 2n1)(1 − 2n2) · · · (1 − 2nj−1)a

†
j

S−
j = (1 − 2n1)(1 − 2n2) · · · (1 − 2nj−1)aj

Sz
j = a†

jaj −
1
2
. (9.76)

Here, nj = a†
jaj is the number operator of Fermions with eigenvalues 0 and 1. From

the trivial relation (1 − 2nj)2 = 1, we obtain the following Fermionic representations
of the products of neighboring spin operators,

S+
j S+

j+1 = a†
j(1 − 2nj)a

†
j+1 = a†

ja
†
j+1

S−
j S−

j+1 = aj(1 − 2nj)aj+1 = −ajaj+1 = aj+1aj

S+
j S−

j+1 = a†
j(1 − 2nj)aj+1 = a†

jaj+1

S−
j S+

j+1 = aj(1 − 2nj)a
†
j+1 = −aja

†
j+1 = a†

j+1aj . (9.77)

Rewriting the x- and y-components of the spin operators in the Hamiltonian (9.74) by
eqn (9.75) and using the above equations, we find the representation of interactions
in terms of Fermionic operators,

Sx
j Sx

j+1 =
1
4
(a†

ja
†
j+1 + aj+1aj + a†

jaj+1 + a†
j+1aj)

Sy
j Sy

j+1 = −1
4
(a†

ja
†
j+1 + aj+1aj − a†

jaj+1 − a†
j+1aj). (9.78)

4 An application of fields along the x- or y-axis precludes the model to be exactly solved. Try it.
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The Hamiltonian is therefore5

H = −J

2

N∑

j=1

(a†
jaj+1 + a†

j+1aj) − h

N∑

j=1

(
a†

jaj −
1
2

)
. (9.79)

This Hamiltonian represents a set of free Fermions (i.e. Fermions without interactions)
hopping from a site to a neighboring site, for which we can derive the eigenvalues by
using translational invariance.

It is useful to change the basis from the real-space representation to the space
of wave numbers by Fourier transformation, as is usually done in the analysis of
translationally invariant systems. We then define

aj =
1√
N

∑

q

eiqjaq, a†
j =

1√
N

∑

q

e−iqja†
q, (9.80)

where the operators {aq, a
†
q} are also Fermionic. The Hamiltonian (9.79) is transformed

into

H = −
∑

q

(J cos q + h)a†
qaq +

hN

2
. (9.81)

Here, each wave number q is independent, i.e decoupled, and thus the problem has
been solved. Since the eigenvalues of a†

qaq are 0 and 1, the partition function is

Z = e−βhN/2
∏

q

(
1 + eβJ cos q+βh

)
. (9.82)

The free energy and energy per spin in the thermodynamic limit are calculated from
this partition function as

f =
h

2
− T

2π

∫ π

−π

log
(
1 + eβJ cos q+βh

)
dq (9.83)

E0 =
h

2
− 1

2π

∫ π

−π

J cos q + h

1 + e−βJ cos q−βh
dq. (9.84)

This is the exact solution of the one-dimensional quantum XY model.
Let us investigate the properties of this quantum system at zero and low temper-

atures, where the system behaves quite differently from the corresponding classical
system due to quantum fluctuations. The zero-temperature limit of the energy for
the case h = 0 is derived by setting h = 0 in eqn (9.84) and taking the limit β → ∞.
The cos q term in the denominator of the integrand has positive and negative values

5 The periodic boundary condition of spin operators does not directly correspond to the periodic
boundary of Fermionic operators. However, if we are interested only in the macroscopic quantities such
as the energy and magnetization in the thermodynamic limit, the boundary condition does not affect
the result. We therefore do not go into the details of the problem of boundaries. See Appendix A.17
and Section 9.5.2 for more details.
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Fig. 9.6 Specific heat of the one-dimensional quantum XY model with the unit of energy

J = 1.

depending on the range of q. Owing to the denominator in eqn (9.84), only the positive
range contributes to the zero-temperature limit and we have

E0 = − J

2π

∫ π/2

−π/2

cos q dq = −J

π
(9.85)

as the exact ground-state energy per spin. Non-trivial quantum effects manifest
themselves as the factor π. The specific heat per spin in the absence of external field

C =
β2J2

2π

∫ π

−π

cos2 q e−βJ cos q

(1 + e−βJ cos q)2
dq (9.86)

behaves in the limit T → 0 as

C → πT

3J
, (9.87)

and thus approaches 0 linearly in temperature.

EXERCISE 9.5 Derive eqn (9.87) by taking the low-temperature limit of the
specific heat C, eqn (9.86).

The specific heat of the quantum XY model vanishes at T = 0, in contrast to the
classical n-vector model, although the quantum system share the same invariance
properties under uniform rotation of the spins as the classical case. The temperature
dependence of the specific heat (9.86) is shown in Fig. 9.6.

The ground-state energy expression for non-vanishing h depends on whether h(> 0)
is larger or smaller than J . The result is

E0 =

⎧
⎪⎨

⎪⎩

−h

2
(h > J)

h

2
−

√
J2 − h2

π
− h

π
arccos

(
−h

J

)
(h < J)

. (9.88)
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Fig. 9.7 Ground-state magnetization along the z-axis for the one-dimensional quantum XY

model. The unit of energy is chosen as J = 1.

EXERCISE 9.6 Derive eqn (9.88) by taking the low-temperature limit of
eqn (9.84).

The magnetic susceptibility along the z-axis is obtained by differentiation of the
free energy with respect to −h. The final answer for T = 0, derived in a manner similar
to the ground-state energy, is

m = −1
2

+
1
π

arccos
(
−h

J

)
, (9.89)

for h < J . This function is plotted in Fig. 9.7. When h > J , all spins align in the
z-direction and the interactions in the XY plane become ineffective. For h < J the
interplay between the field and the interactions determines the spin state, which may
be understood classically that the spin orientation gradually becomes parallel to the
XY plane as the field along the z-axis is reduced. Actually, quantum fluctuations
make the system state more complex.

We may regard the sudden change of the state at h = J as a quantum phase
transition. Any finite temperature, however small, destroys this singularity.

EXERCISE 9.7 Evaluate the partition function of the following Fermionic Hamil-
tonian chain,

βH = −4K1

N−1∑

j=1

njnj+1 − 4K2

N−2∑

j=1

njnj+2 + 4(K1 + K2)
N∑

j=1

nj , (9.90)

with a free boundary condition. Here, nj = a†
jaj is the number operator with the

eigenvalues 0 and 1. Since this Hamiltonian is actually written only in terms of the
classical numbers {nj}, it is convenient to map this Hamiltonian to a next-nearest-
neighbor Ising chain (up to an irrelevant constant and boundary terms)

βH = −K1

N−1∑

j=1

SjSj+1 − K2

N−2∑

j=1

SjSj+2 (Sj = ±1). (9.91)
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Compute the partition function of this equivalent Ising chain. Determine also the
correlation function 〈SjSj+1〉 in the thermodynamic limit N → ∞.

9.5 Two-dimensional Ising model

The next example is the two-dimensional Ising model. The exact solution of the two-
dimensional Ising model is considered an outstanding milestone in the theory of phase
transitions and critical phenomena. There have been a number of methods of solution
proposed. In this section we explain the one that uses Majorana fields because it
involves a relatively smaller amount of computation than other methods.

9.5.1 Construction of the transfer matrix

It is convenient to reanalyze the transfer matrix method used for the one-dimensional
Ising model as a preparation for the two-dimensional case. Equation (9.21) shows that
the transfer matrix from site i to site i + 1 is, in the absence of external fields,

T (Si, Si+1) =
(

eK e−K

e−K eK

)
. (9.92)

The effect of this matrix is to add an interaction between spins Si and Si+1 and
extend the length of the one-dimensional system, see Fig. 9.8. This transfer matrix T
is represented by a Pauli matrix (see Section 4.3.1), using the fact that the diagonal
element is eK and the off-diagonal e−K in eqn (9.92), as

T = eK + e−Kσx = eK(1 + e−2Kσx)

= eK(1 + tanhK∗σx) = eK(cosh K∗)−1eK∗σx

≡ g(K)eK∗σx

. (9.93)

Here, K∗ is a function of K defined by e−2K = tanhK∗ and discussed in Chapter 10
in relation to duality. Also, we defined g(K) = eK/ cosh K∗ = (2 sinh 2K)1/2.

We now consider the two-dimensional case in which the process of extending the
system size, by adding columns one by one as in Fig. 9.9, is expressed by the operations
V1 (for the addition of interactions between two columns) and V2 (for the addition of
interactions within a column). We first notice that the addition of interactions between
columns represented by horizontal dashed lines in Fig. 9.9 can be performed at each
site independently of other sites. This operation of adding the interaction to the site
neighboring to the right of a given site is exactly the same as in the transfer matrix for

Si

T
Si +1

Fig. 9.8 The transfer matrix of the one-dimensional Ising model adds a spin to the existing

system.
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V1

L

M

V2

Fig. 9.9 The process to add columns by the operation of the transfer matrix. There are M

columns and L rows, both of which have periodic boundaries.

the one-dimensional model in Fig. 9.8. For the jth site (j = 1, 2, · · · , L), the operation
is expressed as g(K)eK∗σx

j , according to eqn (9.93). The total operation of this type
then amounts to

V1 = g(K)L exp

⎛

⎝K∗
L∑

j=1

σx
j

⎞

⎠ . (9.94)

The next operation of adding interactions within a column is written as follows
using the Pauli operator σz,

V2 = exp

⎛

⎝K

L∑

j=1

σz
j σz

j+1

⎞

⎠. (9.95)

Alternate operations of V1 and V2, M times, and then taking the trace reproduce the
partition function with periodic boundary conditions,

Z = Tr
(
V2V1

)M = Tr
(
V

1/2
2 V1V

1/2
2

)M ≡ TrV M . (9.96)

Here, we have introduced the symmetric operator V = V
1/2
2 V1V

1/2
2 because of its

useful properties such as the diagonalizability and its real-valued eigenvalues. Given
the structure of V1 and V2 this transformation realizes a classical–quantum mapping
from a classical d = 2 Ising model to an effective d = 1 quantum problem.

The problem has now been reduced to the evaluation of the largest eigenvalue of
the transfer matrix V . This matrix has a very large dimension 2L × 2L but can be
diagonalized as described in the following sections.

9.5.2 Representation in terms of Majorana fields

The transfer matrix V can be diagonalized by the Jordan–Wigner transformation,
which rewrites spin operators in terms of Fermionic operators, as we showed in the
one-dimensional quantum XY model. We adopt here a related but slightly simpler
approach that uses Majorana fields. Let us first define a set of operators ψ1(j),
ψ2(j) as
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ψ1(j) =
1√
2
σx

1σ
x
2 · · ·σx

j−1σ
y
j (9.97)

ψ2(j) =
1√
2
σx

1σ
x
2 · · ·σx

j−1σ
z
j . (9.98)

These ψ1(j), ψ2(j) are Hermitian operators because they are defined by the x-, y-,
z-components of the Pauli operators. It is straightforward to verify that they satisfy
the following anticommutation relations, using the commutation relations of the Pauli
operator,

[
ψa(j), ψb(l)

]
+
= ψa(j)ψb(l) + ψb(l)ψa(j) = δa,bδj,l. (9.99)

The set of operators satisfying these properties are Majorana fields. The matrices V1

and V2 in eqns (9.94) and (9.95) are expressed as follows in terms of Majorana fields

V1 = g(K)L exp

⎛
⎝−2iK∗

L∑
j=1

ψ1(j)ψ2(j)

⎞
⎠ (9.100)

V2 = exp

⎛
⎝2iK

L∑
j=1

ψ1(j)ψ2(j + 1)

⎞
⎠, (9.101)

as can be confirmed by rewriting ψ1 and ψ2 in these equations using eqns (9.97)
and (9.98).

Here, a comment on the boundary condition is in order.6 The product of Majorana
fields at boundary sites reads

ψ1(L)ψ2(1) =
i

2
σx

1 · · ·σx
Lσ

z
Lσ

z
1 , (9.102)

according to eqns (9.97) and (9.98). Correspondingly, if we want the boundary term
σz
Lσ

z
1 appearing in the Pauli-operator representation of V2, eqn (9.95), to be expressed

as in eqn (9.101), we have to impose an antiperiodic boundary condition ψ2(L+
1) = −ψ2(1) in the subspace U+, where σprod ≡ σx

1 · · ·σx
L results to be +1. In the

subspace U− with σprod = −1, in contrast, a periodic boundary ψ2(L+ 1) = ψ2(1) is
appropriate. Consequently, the wave number q after Fourier transformation has the
following different sets of values according to the sign of eiqL(= ±1),

U+ : q = ±π

L
,±3π

L
, · · · ,±L− 1

L
π (9.103)

U− : q = 0,±2π

L
, · · · ,±L− 2

L
π, π, (9.104)

where L has been assumed to be even. This subtle difference of the two subspaces
is essential for the evaluation of correlation functions as the difference between the

6 The reader may skip this paragraph on first reading.
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largest and second largest eigenvalues of the transfer matrix is related to the difference
of these two subspaces. This is the same situation as in the one-dimensional model
described in Section 9.1.2, where the ratio of the largest and second largest eigenvalues
was directly related to the correlation length. However, if we are interested only in
the free energy per spin in the thermodynamic limit, this subtlety does not come into
play, which is indeed the case in the following discussions.

9.5.3 Fourier representation in terms of Fermionic operators

The system is translationally invariant due to periodic boundary conditions. We thus
use Fourier transformation to represent the Majorana fields in terms of the Fermionic
operators C1(q), C

†
1(q), C2(q), C

†
2(q) for positive q,

ψi(j) =
1√
L

∑

q≥0

(
eiqjCi(q) + e−iqjC†

i (q)
)

(i = 1, 2). (9.105)

Here, the sum runs over all non-negative q in eqn (9.103) or eqn (9.104). It is not
difficult to confirm that ψi(j) is a Hermitian operator satisfying the anticommutation
relation of the Majorana field (9.99). Now, V1 and V2 in eqns (9.100) and (9.101) can
be rewritten in terms of the Fermionic operators as7

V1 = g(K)L exp

⎡

⎣−2iK∗
∑

q≥0

(
C1(q)C

†
2(q) + C†

1(q)C2(q)
)
⎤

⎦ (9.106)

V2 = exp

⎡

⎣2iK
∑

q≥0

(
e−iqC1(q)C

†
2(q) + eiqC†

1(q)C2(q)
)
⎤

⎦. (9.107)

The quadratic forms in the exponents commute with each other for different q, and
thus we can decompose the transfer matrix V = V

1/2
2 V1V

1/2
2 into a product of matrices

for different q as

V = g(K)L
∏

q≥0

V (q), V (q) = V2(q)1/2V1(q)V2(q)1/2. (9.108)

Here, V1(q) and V2(q) are the exponential matrices obtained by removing the summa-
tion symbols in the exponents of eqns (9.106) and (9.107), respectively. The problem
has been reduced to the diagonalization of V (q).

9.5.4 Eigenvalues and the free energy

It is convenient to adopt the states |n1n2〉, which are eigenstates of the number
operators C†

1(q)C1(q) and C†
2(q)C2(q), as the basis to diagonalize V (q). n1(= 0, 1)

7 The number of Fermions is conserved in this representation because C and C† appear in pairs.
This is in contrast to the conventional method using the Jordan–Wigner transformation, which makes
the problem slightly more complicated than in the present formulation.
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is the eigenvalue of the first Fermion number operator C†
1(q)C1(q), and n2(= 0, 1) is

for C†
2(q)C2(q).

Consider the two-dimensional space spanned by |00〉 and |11〉(= C†
1(q)C†

2(q)|00〉).
The operators in the exponents of eqns (9.106) and (9.107) for V1(q) and V2(q) have
only a vanishing eigenvalue in this subspace,

C1(q)C
†
2(q)|11〉 = C†

1(q)C2(q)|00〉 = 0. (9.109)

Hence, |00〉 and |11〉 are both eigenstates of V1(q) and V2(q) with eigenvalue 1, and
consequently of V (q). The matrix V (q) has a doubly degenerate eigenvalue 1 in this
two-dimensional subspace.

Next, we study the subspace spanned by |+〉 ≡ |01〉(= C†
2 |00〉) and |−〉 ≡ |10〉(=

C†
1 |00〉). The operators satisfy

−C1(q)C
†
2(q)|+〉 = 0, − C1(q)C

†
2(q)|−〉 = |+〉, (9.110)

which allows us to regard −C1(q)C
†
2(q) as a raising operator from state |−〉 to state

|+〉. Consequently, we can rewrite −C1(q)C
†
2(q) using a new Pauli operator τ ,

−C1(q)C
†
2(q) = τ+ =

τx + iτy

2
. (9.111)

Therefore, the operators Ṽ1(q) and Ṽ2(q), obtained by restricting V1(q) and V2(q) in
eqns (9.106) and (9.107) to the present two-dimensional subspace, are expressed as

Ṽ1(q) = exp
(
2iK∗(τ+ − τ−)

)
= exp(−2K∗τy) (9.112)

Ṽ2(q) = exp
(
− 2iK(τ+e−iq − τ−eiq)

)
= exp

(
2K(τy cos q − τx sin q)

)
. (9.113)

To facilitate the diagonalization of Ṽ2(q)1/2, it is useful to rotate the spin space by an
angle q around the z-axis,

Ṽ1(q) = exp
(
− 2K∗(τy cos q + τx sin q)

)
(9.114)

Ṽ2(q) = exp
(
2Kτy

)
. (9.115)

We further apply a rotation by π/2 around the x-axis, (τx, τy, τz) → (τx,−τz, τy),

Ṽ1(q) = exp
(
2K∗(τz cos q − τx sin q)

)
(9.116)

Ṽ2(q) = exp
(
−2Kτz

)
. (9.117)

Then, the exponential in Ṽ1(q) is expanded using (τz cos q − τx sin q)2 = 1 to derive
the following matrix representation,

Ṽ1(q) = C∗ + (τz cos q − τx sin q)S∗

=
(

C∗ + cos q S∗ − sin q S∗

− sin q S∗ C∗ − cos q S∗

)
(9.118)

Ṽ2(q)1/2 =
(

e−K 0
0 eK

)
, (9.119)
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where C∗ = cosh 2K∗, S∗ = sinh 2K∗. The resulting two-dimensional matrix is there-
fore written explicitly as

Ṽ2(q)1/2Ṽ1(q)Ṽ2(q)1/2 =
(

e−2K(C∗ + cos q S∗) − sin q S∗

− sin q S∗ e2K(C∗ − cos q S∗)

)
. (9.120)

The characteristic equation of this two-dimensional matrix reveals that the product
of the two eigenvalues is 1 and their sum is 2 cosh 2K cosh 2K∗ − 2 cos q, according to
the relation between the solutions and coefficients of an algebraic equation of second
order. The two eigenvalues can be expressed as e±ε(q,K) since their product is unity.
Their sum eε(q,K) + e−ε(q,K) satisfies

cosh ε(q,K) = cosh 2K cosh 2K∗ − cos q = cosh 2K coth 2K − cos q. (9.121)

The four eigenvalues of V (q) have been evaluated as 1, 1, e±ε(q,K). The partition
function is therefore

Z = g(K)LM
∏

q≥0

Tr
(
V (q)

)M

= g(K)LM
∏

q≥0

(
2 + eMε(q,K) + e−Mε(q,K)

)
. (9.122)

Since ε(q,K) > 0, only the eigenvalue eMε(q,K) survives in the large-M limit in the
above parentheses, and the free energy per spin is

−βf = lim
L,M→∞

1
LM

log Z =
1
2

log(2 sinh 2K) +
1
2π

∫ π

0

ε(q,K) dq, (9.123)

where ε(q,K) is the positive solution of eqn (9.121). This is the exact solution of the
two-dimensional Ising model.

Equation (9.123) can be rewritten in a more transparent form using the identity
∫ π

0

log(2 cosh ε − 2 cos x) dx = πε (9.124)

as

−βf =
1
2

log(2 sinh 2K)

+
1

2π2

∫ π

0

dq

∫ π

0

dx log
(
2 cosh ε(q,K) − 2 cos x

)

=
1
2

log(2 sinh 2K)

+
1

2π2

∫ π

0

dq

∫ π

0

dx log
(
2 cosh 2K coth 2K − 2 cos q − 2 cos x

)

= log(2 cosh 2K)

+
1

2π2

∫ π

0

dω1

∫ π

0

dω2 log
(
1 − k2

1 cos ω1 cos ω2

)
, (9.125)
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where

k2
1 =

2 sinh 2K

cosh2 2K
. (9.126)

This last expression appears more often than eqn (9.123) in the literature.

9.5.5 Logarithmic divergence of the specific heat

The celebrated logarithmic divergence of the specific heat is derived in this sec-
tion from eqn (9.123). Let us write the right-hand side of eqn (9.121) as u(q,K)
to have

ε(q,K) = log
(
u(q,K) +

√
u(q,K)2 − 1

)
. (9.127)

u(q,K) assumes its minimum as a function of K at Kc, which is the solution of
K = K∗. As shown below, this is the transition temperature with the value Kc =
0.4407 or Tc = 2.269 according to e−2Kc = tanhKc, which comes from K = K∗. The
expansion of u under the condition K ≈ Kc, q ≈ 0 is

u(q,K) ≈ 1 +
q2

2
+ 8(ΔK)2, (9.128)

where ΔK = K − Kc. The singular part of ε(q,K) is therefore
√

q2 + 16(ΔK)2. The
insertion of this relation into eqn (9.123) and performing the integration yields the
following expression for the singular part of the free energy,

∫ π

0

√
q2 + 16(ΔK)2 dq

=
1
2

[
q
√

q2 + 16(ΔK)2 + 16(ΔK)2 log
∣∣∣q +

√
q2 + 16(ΔK)2

∣∣∣
]π

0

= −8(ΔK)2 log |ΔK| + (regular part). (9.129)

We see clearly that the specific heat, the second-order derivative of the free energy
with respect to temperature, has a logarithmic singularity at ΔK = 0. It is concluded
that the two-dimensional Ising model has a phase transition with a logarithmically
divergent specific heat and a critical exponent α = 0. Equation (9.129) shows that the
critical amplitudes have the same value above and below the transition temperature.
Figure 9.10 depicts the temperature dependence of the specific heat.

EXERCISE 9.8 Solve the one-dimensional transverse-field Ising model defined by

H = −J

L∑

j=1

σz
j σz

j+1 − h

L∑

j=1

σx
j , (9.130)

where σx,y,z
j are Pauli operators. The method to diagonalize the transfer matrix of

the two-dimensional Ising model applies to this case almost without modifications.
Derive the expressions of the free energy and ground-state energy. From the latter,
show that the system undergoes a zero-temperature phase transition at h = J .
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Fig. 9.10 Temperature dependence of the specific heat of the two-dimensional Ising model.

The energy unit is J = 1.

9.6 Zeros of the partition function

This section discusses the Yang–Lee theory of phase transitions. This theory relates
singularities of the free energy as a function of the field h with zeros of the partition
function in the complex field plane, often termed the Yang–Lee (or Lee–Yang) zeros.
The partition function Z is usually positive as it is a sum of exponentials but can vanish
if we consider complex values of the field h. The vanishing of the partition function is
directly reflected in the singularity of the free energy F = −T log Z as can be realized
from the fact that the logarithmic function is singular only at the origin. The Yang–Lee
theory rigorously justifies this intuition and provides a unique point of view on phase
transitions for the Ising model and related problems such as gas–liquid transitions.

The following theorems are the central results.

THEOREM 9.1 Suppose that the partition function of the Ising model with
uniform (i.e. bond independent) interactions as a function of the complex field
h is free from zeros, Z(h) �= 0, in a region R that contains a segment of the
real axis. Assume also that the thermodynamic limit is taken appropriately
such that the number of sites on the surface is kept sufficiently smaller than
the total number of sites N . Then, N−1 log Z converges to a limit f uniformly
in R as N → ∞. As a consequence, the free energy per spin f is not singular
in R in the thermodynamic limit.

THEOREM 9.2[Circle theorem] Consider the Ising model with two-body
ferromagnetic interactions. Zeros of its partition function all lie on the imag-
inary axis in the complex field h plane, or equivalently, on the unit circle in
the plane of z = e−2βh.
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Fig. 9.11 Distribution of zeros of a finite-size ferromagnetic Ising model in the complex-z

plane (left panel) and complex-h plane (right panel).

A proof of Theorem 9.1 is given in Appendix A.18. A proof of Theorem 9.2 is more
complicated and we refer the interested reader to the original paper.8 Theorem 9.1
justifies the naive conjecture that the singularity of the free energy is caused by the
zeros of the partition function. Theorem 9.2 holds only for models with two-body,
ferromagnetic interactions, but the interaction strengths need not be translationally
invariant in Theorem 9.2, as long as they are ferromagnetic.

To see the significance of Theorem 9.2, it is convenient to write the partition
function Z as a function of z = e−2βh to see that Z is essentially a polynomial of z,

Z̃ ≡ e−βhNZ =
∑

{Si}
exp

⎛

⎝K
∑

〈ij〉
SiSj + βh

∑

i

(Si − 1)

⎞

⎠

= Z̃0 + zZ̃1 + z2Z̃2 + · · · + zN Z̃N , (9.131)

where Z̃k stands for

Z̃k =
∑

{Si}

′
exp

⎛

⎝K
∑

〈ij〉
SiSj

⎞

⎠. (9.132)

Here, the summation is over the spin configurations with k down spins. Since Z̃k > 0,
Z cannot vanish for real, positive z and hence the zeros or roots of Z all lie away from
the positive real axis in the complex-z plane as long as the system size N is finite,
as illustrated in Fig. 9.11. The number of roots increases with N . The zero closest to
z = 1 (h = 0) approaches z = 1 (h = 0) as the system size grows if the temperature is
lower than the critical value.

EXERCISE 9.9 Find the locations of the zeros of the partition functions for the
single-spin and two-spin Ising models,

H = −hS1, H = −JS1S2 − h(S1 + S2) (9.133)

8 C. N. Yang and T. D. Lee, Phys. Rev. 87 (1952) 404 and 410.
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Fig. 9.12 Density of Lee–Yang zeros of the ferromagnetic Ising model along the imaginary

axis on the complex field plane. θc is the edge of the density above the critical temperature.

in the complex-z plane.

As there are N zeros on the unit circle in the complex-z plane, according to
Theorem 9.2 and eqn (9.131), the partition function is expressed as

Z = eβhN
N∏

k=1

(z − eiθk). (9.134)

Correspondingly, the free energy per spin is written as

F

N
= −h − T

N

N∑

k=1

log(z − eiθk) −→ −h − T

∫ π

−π

log(z − eiθ)g(θ) dθ, (9.135)

where the thermodynamic limit has been taken in the last step, and the density of
zeros in this limit has been denoted as g(θ). This function is normalized as

∫ π

−π

g(θ) dθ = 1. (9.136)

Using the symmetry g(θ) = g(−θ), which comes from the symmetry Z(h) = Z(−h),
we can rewrite the above equation as

f = −h − T

2

∫ π

−π

log(1 − 2z cos θ + z2)g(θ) dθ. (9.137)

The magnetization is then

m(h) = 1 − 2z

∫ π

−π

z − cos θ

1 − 2z cos θ + z2
g(θ) dθ

= sinh 2βh

∫ π

−π

g(θ)
cosh 2βh − cos θ

dθ. (9.138)
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The spontaneous magnetization is therefore

m(0+) =
∫ π

−π

2πδ(θ)g(θ) dθ = 2πg(0), (9.139)

where we used the relation

lim
x→0+

sinhx

cosh x − cos θ
= 2πδ(θ). (9.140)

This last relation can be verified by the expansions of sinhx and cosh x for small x and
cos θ for small θ. Equation (9.139) indicates that the density of zeros at the origin in the
complex field plane is directly proportional to the spontaneous magnetization. Thus,
g(0) is finite for T < Tc, whereas it vanishes for T > Tc. In the latter high-temperature
region, the density g(θ) vanishes for θ < θc, where the threshold value θc is called the
edge of the density. The edge approaches the origin θ = 0 as the temperature decreases
toward the critical point, θc → 0+ as T → Tc + 0. The overall qualitative behavior of
the density is depicted in Fig. 9.12.

In general, the Yang–Lee theory provides a framework to characterize a phase
transition but does not establish analytically the presence or lack of a singularity in
the partition function in the thermodynamic limit.

EXERCISE 9.10 Show that the density of zeros g(θ) behaves as θ1/δ near the origin
θ = 0 at the critical point T = Tc. For this purpose, first expand sinh(·), cosh(·) and
cos(·) in eqn (9.138) for their small arguments assuming that the singular behavior
of m for small h is dominated by the values of the integrand at small θ as this is
where the integrand becomes largest. Then, insert the functional form g(θ) = θa to
the integrand and verify that m ∝ h1/δ results only when a = 1/δ.
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Duality

Exact solutions of model systems are the most reliable source of information in the
theory of phase transitions and critical phenomena, as typically exemplified in the
two-dimensional Ising model. However, there are not many model systems that can be
exactly solved and, consequently, many approximate schemes have been developed. It
is sometimes possible, though, to extract exact information without directly solving
those model systems. In two dimensions in particular, arguments using duality trans-
formations make it possible to derive the exact location of the phase-transition point
and the exact value of the energy at the transition point. These remarkable results
can be obtained by much simpler arguments than the direct solutions. Duality not
only determines the exact location of the transition point of the two-dimensional Ising
model and related models but also is useful to rewrite the XY model into a different
form, which reveals new physical aspects of the system.

10.1 Classical duality

Duality in classical statistical mechanics usually means a transformation that relates
the partition functions of two distinct model systems under the replacement of the
value of temperature by another value. When the two model systems involved are the
same, the duality transformation is known as self-duality. Self-dualities are mappings
between the high- and low-temperature phases of the model that allow us, for instance,
to determine the location of the phase transition point when there is a unique
singularity in the free energy.

It is convenient to write the partition function, a function of K = J/T , as Z(K).
If we write the conclusion first, the duality for the two-dimensional Ising model on the
square lattice with periodic boundaries without external field means that the partition
function satisfies the following relation

Z(K)
2N (cosh K)2N

=
Z(K∗)
2 e2NK∗ , (10.1)

or, equivalently,1

Z(K)
(sinh 2K)N/2

=
Z(K∗)

2(sinh 2K∗)N/2
. (10.2)

1 The factor 2 in the denominator of the right-hand side introduces a sort of asymmetry in the
self-dual relation, and is related to the particular periodic boundary conditions used in both spatial
directions. Boundary effects play no role in the thermodynamic limit, N → ∞.
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Fig. 10.1 The dual coupling K∗ as a function of the original coupling K. The value of the

partition function at some K, K1 for example, is equal to the value of the partition function

at K2 apart from a trivial factor.

Here, N is the number of lattice sites, 2N is the number of bonds (equal to the
number of nearest-neighbor interactions), and the dual coupling K∗ is a monotonically
decreasing function of K defined by

e−2K∗
= tanhK. (10.3)

See Fig. 10.1. This is indeed an example of a self-dual mapping since it relates the
same Ising model, i.e. the partition function of the same Ising model at two different
temperatures.

The duality transformation of the coupling (interaction strength), eqn (10.3),
transforms the high-temperature region (small K) to the low-temperature region (large
K∗) and vice versa. Thus, the duality relation (10.1) implies that the values of the
partition function are essentially equal at high and low temperatures, apart from the
trivial factors in the denominators. For example, two systems, one with coupling K1

and the other with K2(= K∗(K1)) of Fig. 10.1, have essentially the same partition
function. This fact leads to important consequences for the singularity of the free
energy.

Let us take the logarithm of both sides of eqn (10.1) and divide the result by the
number of spins,

1
N

log Z(K) =
1
N

log Z(K∗(K)) + (regular part). (10.4)

In the thermodynamic limit N → ∞, the function log Z/N has a singularity at the
phase transition point as this quantity is essentially equal to the free energy. Equa-
tion (10.4) indicates that, if the left-hand side is singular at Kc, so is the right-hand side
at K∗(Kc). Then, if it happens that Kc �= K∗(Kc), the function limN→∞ log Z(K)/N
is singular at Kc and K∗(Kc), two different singular points. Therefore, we conclude
that Kc = K∗(Kc) as long as the system is singular at a unique transition point. The
transition point of the two-dimensional Ising model is therefore given by

e−2Kc = tanhKc, (10.5)
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which is eqn (10.3) with K = K∗ = Kc. This relation is solved for e−2Kc as e−2Kc =√
2 − 1, in agreement with the direct exact solution in Section 9.5.

The duality relation allows us to evaluate the energy at the transition point. The
logarithm of both sides of eqn (10.1) divided by N is

1
N

log Z(K) − log 2 − 2 log cosh K =
1
N

log Z(K∗) − 2K∗, (10.6)

where the additional term −(1/N) log 2 has been ignored as it vanishes in the ther-
modynamic limit. A differentiation of this equation with respect to K yields

1
N

Z ′(K)
Z(K)

− 2 tanh K =
(

1
N

Z ′(K∗)
Z(K∗)

− 2
)

dK∗

dK
. (10.7)

Since the logarithmic derivative of the partition function Z ′(K)/Z(K) is equal to
minus the energy −E(K)/J(≡ −NE0(K)), we have

−E0(K) − 2 tanh K =
(
− E0(K∗) − 2

)dK∗

dK
. (10.8)

If the fixed point of the duality, the self-dual point, coincides with the transition point,
K = K∗ = Kc, and if the energy is a continuous function of K at this point, then
E0(K) and E0(K∗) in the above relation should share the same value E0(Kc) ≡ E0c.
At the fixed point we have tanhKc =

√
2 − 1 and dK∗/dK = −1 from eqn (10.3).

These relations together with eqn (10.8) lead to E0c = −
√

2, in agreement with the
exact solution, as can be verified from the exact free energy given in Section 9.5.

It is also possible to prove from duality that the specific heat is either divergent
or continuous at the transition point, which excludes the possibility that the specific
heat has a jump, as in the mean-field theory of Chapter 2. A further differentiation of
eqn (10.7) with respect to K leads to

1
N

{
Z ′′(K)
Z(K)

−
(

Z ′(K)
Z(K)

)2
}

− 2
cosh2 K

=
1
N

{
Z ′′(K∗)
Z(K∗)

−
(

Z ′(K∗)
Z(K∗)

)2
} (

dK∗

dK

)2

+
(

1
N

Z ′(K∗)
Z(K)

− 2
)

d2K∗

dK2
. (10.9)

The quantity in curly brackets {· · · } appearing on both sides is the K- or K∗-derivative
of the energy per spin (the minus sign of it, strictly speaking) and is equal to the specific
heat per spin C0 (the T -derivative of the energy) multiplied by T 2. We collect those
quantities related to the specific heat in the left-hand side,

T 2C0(K) − (T ∗)2C0(K∗)
(

dK∗

dK

)2

=
2

cosh2 K
− (2 + E0(K∗))

d2K∗

dK2
. (10.10)

The quantities on the right-hand side have the following values at the transition
point, cosh2 Kc = (1 +

√
2)/2, E0(Kc) = −

√
2 and d2K∗/dK2 = 2

√
2. Thus, the right-

hand side vanishes. The quantity (dK∗/dK)2 on the left-hand side is unity at the
transition point. Therefore, as the temperature approaches the transition point, there
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exist two possibilities, either C0(K) approaches C0(K∗) (continuous specific heat)
or both diverge. It is forbidden that C0(K) and C0(K∗) approach different values
from both sides of the transition point, as in the mean-field theory or the Bethe
approximation.

It is impossible to determine the value of the critical exponent from the duality
relation. We are, nevertheless, able to show that the critical exponents and critical
amplitudes at both sides of the transition point coincide. According to eqn (10.4) the
singular part of the free energy per spin fs is an invariant quantity under the duality
transformation,

fs(T ) = fs(T ∗(T )) + (regular part), (10.11)

where T ∗ is J/K∗. Let us assume that this singular part behaves near the transition
point (T ≈ Tc + ct (t = (T − Tc)/Tc)) as

fs(T ) ≈ A±|t|2−α± . (10.12)

Here, A± and α± are the critical amplitudes and critical exponents of the specific
heat above and below the transition point, respectively. The dual temperature behaves
around the transition point as

T ∗(T ) ≈ T ∗(Tc + ct) ≈ Tc + c(T ∗)′ct, (10.13)

where (T ∗)′c is the derivative of T ∗(T ) at Tc and it is −1 according to eqn (10.3). From
eqns (10.13), (10.11) and (10.12) we find

A+|t|2−α+ ≈ A−|t|2−α− (10.14)

assuming t > 0. This equation shows A+ = A− and α+ = α−.
Therefore, as has been shown, duality is an important mathematical tool to obtain

information on the system properties. In the rest of this chapter we prove the duality
relation (10.1) and its generalization to models other than the Ising model. The next
section will introduce a graphical discussion on the derivation of duality using high-
and low-temperature series expansions. More general arguments will be developed in
later sections. The last section introduces duality relations in quantum systems.

10.2 High- and low-temperature series expansions

The technique of series expansions can be applied to arbitrary discrete spin models,
and together with fast computers, it is a powerful means to study critical phenomena.
The main idea behind those expansions is to start from an exactly known limit and
expand in terms of graphs around that limit. The low-temperature series expansion
starts from the ground state and includes the low-energy excitations, while the high-
temperature series starts from the totally disordered state. The high-temperature
series expansion can also be easily applied to continuous-spin systems. In that case,
one basically expands the partition function in powers of β

Z = Tr e−βH = Tr
(

1 − βH +
(βH)2

2
+ · · ·

)
, (10.15)

or, similarly, the expectation value of any arbitrary physical quantity.
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In this section we are interested in applying the series-expansion technique to the
Ising model but in the context of deriving the self-duality of the two-dimensional
model, eqn (10.1).2 The latter duality relation can be derived by the correspondence
between high-temperature and low-temperature expansions of the partition function.
A more general framework will be developed in the next section, based on the
technique of Fourier transforms, in which the result of the present section is included.
It should, nevertheless, be useful to learn the basic knowledge of series expansions.
Also, the present graphical derivation is easier to understand intuitively than the
formal algebraic discussions.

The first topic is the high-temperature expansion of the partition function. Since
SiSj = ±1 for Ising spins, the identity

eKSiSj = cosh K + SiSj sinhK (10.16)

holds, from which the following expression of the partition function results,

Z(K) =
∑

{Si}
eK

∑
〈ij〉 SiSj

=
∑

{Si}

∏

〈ij〉
(cosh K + SiSj sinhK)

= (cosh K)2N
∑

{Si}

∏

〈ij〉
(1 + SiSj tanhK). (10.17)

We have used
∏

〈ij〉 cosh K = (cosh K)2N in the final equality since we assume periodic
boundary conditions on the square lattice, where the total number of bonds 〈ij〉 is
2N . The expansion of the product over nearest-neighbor pairs in the final expression
of eqn (10.17) yields either 1 or SiSj tanh K for each pair 〈ij〉. Let us draw a bold
line between site i and site j in the latter case for SiSj tanhK and do nothing in the
former case of 1. Then, each term of the expansion of the product is expressed as a
combination of bold lines, as in Fig. 10.2. Each bold line carries the weight tanhK,
and we may order the graphs by the number of bold lines in the graphs, which results
in a series expansion of the partition function in powers of tanhK.

Another factor to consider is the sum over spin configurations,
∑

{Si}, in
eqn (10.17). If a term in the expansion has an even power of Si, it does not vanish since
S2n

i = 1, with n an integer, and hence
∑

{Si} S2n
i is positive. A term of odd power,

in contrast, vanishes since S2n+1
i = Si and

∑
{Si} Si = 0. For example, all terms but

the 0th order in Fig. 10.2 have a factor Si at the end of a bold line and thus vanish.
Non-vanishing contributions come only from closed graphs, as illustrated in Fig. 10.3,
in which each spin Si appears an even number of times (none, twice, or four times).

The series expansion in powers of tanh K is the high-temperature expansion
because smaller K (higher temperature) corresponds to smaller tanhK. Any Si

appears an even number of times in a closed graph and contributes with unity, giving

2 Hereafter, high- and low-temperature series expansions will be called high- and low-temperature
expansions for simplicity.
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0th

2nd 3rd 4th

1st 1st

Fig. 10.2 A graphical representation of some of the terms appearing in the expansion of the

partition function of the Ising model. A bold line is for the factor SiSj tanh K. All graphs

drawn here but the 0th order do not contribute to the high-temperature expansion. The order

of the expansion is given by the power of tanh K.

Fig. 10.3 Closed graphs that contribute to the high-temperature expansion of the partition

function. A bold line expresses the factor tanh K.

∑
{Si} 1 = 2N . Hence, the high-temperature expansion is symbolically written as

Z(K)
2N (cosh K)2N

=
∑

n=0,2,3,···
(the number of closed graphs with 2n bold lines)(tanh K)2n.

(10.18)
The term n = 1 is missing in the summation because any closed graph has more
than two bold lines. For example, the coefficient of (tanhK)4 is the number of ways
to draw unit squares (plaquettes) on a square lattice. Since each unit square can be
represented by the site on the left-lower corner, the number of unit squares is equal
to the number of sites N .3

3 Corrections are necessary if we use free boundary conditions. The number of unit squares is
slightly smaller than the number of sites in such a case. We do not go into those details because we
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Fig. 10.4 Representation of the low-temperature expansion by closed graphs. Each bold line

separates neighboring antiparallel spins and carries the factor e−2K .

We next consider the low-temperature expansion of the partition function. To
write the result first, a graphical representation of the low-temperature expansion
has exactly the same set of graphs as in the high-temperature expansion. This makes
it possible to find a one-to-one correspondence between the terms of the two types
of series expansions. We can then equate the partition functions written in terms of
tanhK (high-temperature expansion) and of e−2K (low-temperature expansion), the
latter being the small parameter of the low-temperature expansion, leading to the
duality relation of eqn (10.1). To show this result, it is useful to choose an appropriate
order in taking the summation in the definition of the partition function

Z(K) =
∑

{Si}
eK

∑
〈ij〉 SiSj . (10.19)

Let us first pick the all-up configuration (Si = 1, ∀i), whose contribution is e2NK ,
corresponding to the upper-left graph of Fig. 10.4. The correct factor is indeed twice
this, 2e2NK , because the all-down configuration (Si = −1, ∀i) gives the same factor.
These are ground-state configurations. The next configuration to be considered in the
sum of eqn (10.19) is a state with a single spin flipped from the all-up state, the
upper-middle graph of Fig. 10.4. The inverted spin has the interaction energy raised
from −J(= −J · 1 · 1) to J(= −J · 1 · (−1)) for each bond, and there are four of them
around a site on the square lattice. Thus, the factor e−4·2K multiplies the ground-state
Boltzmann factor. Since there are N ways to flip a single spin, the first two terms of
the low-temperature expansion are4

Z(K) = 2 e2NK(1 + Ne−8K + · · · ). (10.20)

will be interested in the system behavior in the thermodynamic limit, N → ∞, in which boundary
effects are expected to play no role.

4 The overall factor 2 is the one responsible for the asymmetry in eqn (10.2).
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Each term inside the parentheses has its corresponding term in the high-
temperature expansion of eqn (10.18). A graphical expression of the low-temperature
expansion helps us understand this correspondence. A term of the low-temperature
expansion is expressed as a graph with inverted spins surrounded by up spins.
If we draw bold lines between neighboring antiparallel spins, we obtain a set of
closed graphs, as in Fig. 10.4. It should be clear that a graph in Fig. 10.4 has
its unique counterpart in Fig. 10.3. Then, if we replace e−2K with tanhK in each
term of the low-temperature expansion of Z(K)/(2e2NK), eqn (10.20), we obtain the
high-temperature expansion of Z(K)/(2N (cosh K)2N ), eqn (10.18). This completes
the proof of the duality relation (10.1) and the law of change of the temperature
parameter (10.3).

Series expansions are often formulated not for the partition function but for its
logarithm, the free energy, and its derivatives like the susceptibility. Although it
is often difficult to evaluate the coefficients of high-order terms of an expansion,
methods to extrapolate the result of finite-order calculations to infinite order have
been developed and have turned out to be powerful tools to estimate the critical points
and critical exponents. Types of graphs in these expansions of the free energy and its
derivatives are known to be a little different from the present case of the partition
function.

EXERCISE 10.1 Determine the coefficient of the sixth-order term (tanh K)6 in
the high-temperature expansion of the partition function of the Ising model on the
square lattice.

We next apply these techniques to the Z2 lattice gauge theory introduced in
Section 7.7, again in the context of duality.5 The Hamiltonian is the sum of four-
spin interactions,

H = −J
∑

�
SjSkSlSm (10.21)

with each Ising spin residing on a bond, as depicted in Fig. 7.5. The lattice may not
necessarily be the square lattice. The summation extends over all plaquettes (unit
squares) of the lattice. The partition function can be expanded as in eqn (10.17),

Z(K) =
∑

{Si}
eK

∑
� SjSkSlSm

= (cosh K)Np

∑

{Si}

∏

�
(1 + SjSkSlSm tanhK), (10.22)

where Np is the total number of plaquettes. Similarly to the high-temperature expan-
sion of the usual Ising model, the spin variables should appear an even number of
times if the summation over the spin values {Si = ±1} is to give a non-vanishing
contribution. Since spins are located on bonds, this constraint for finite contributions

5 This part can be skipped on a first reading unless the reader is interested in the generalization
of duality techniques to systems with many-body interactions in higher dimensions.
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Fig. 10.5 Two leading-order graphs of the high-temperature expansion of the three-

dimensional Z2 gauge theory. A bold line represents a bond where spin variables appear twice

to give unity, S2
j = 1. A shaded plaquette corresponds to a bond drawn bold in Fig. 10.3 and

carries the weight tanh K.

requires any bond to appear an even number of times in the expansion of the product
of eqn (10.22). In two dimensions, the expansion of eqn (10.22) can be expressed
by graphs of the type of Fig. 10.3, where each plaquette inside the closed bold lines
represents a factor SjSkSlSm tanhK. Spin variables are located on all bold lines of the
diagrams and thus the summation over their values, ±1, gives zero. Spin variables on
bonds inside a closed graph (written as thin lines in Fig. 10.3) appear twice, yielding
S2

j = 1, because a bond on the square lattice is shared by two neighboring plaquettes.
In this way, any graph in Fig. 10.3, except for the trivial one at the upper left corner,
vanishes. Therefore, the partition function of the two-dimensional Z2 gauge theory is
trivially given by

Z(K) = (cosh K)Np · 22N . (10.23)

The corresponding free energy has no singularity and the system does not have a phase
transition at finite temperature.

In three dimensions, non-trivial contributions exist in the high-temperature expan-
sion. The leading term comes from the product of four-spin interactions over six
plaquettes surrounding a unit cube, as depicted in the left graph of Fig. 10.5. The
next term is the right graph of Fig. 10.5, in which ten plaquettes form a product
over two unit cubes. The essential difference from the two-dimensional case is the
possibility to generate closed objects surrounded by plaquettes. They are analogous
to the closed polygons in the high-temperature expansion of the usual Ising model
illustrated in Fig. 10.3. The weight of the left graph of Fig. 10.5 is (tanhK)6

since there are six plaquettes surrounding the unit cube. The right graph has a
weight (tanh K)10.

Each of these graphs in the high-temperature expansion of the three-dimensional
Z2 gauge theory has its counterpart in the low-temperature expansion of the usual
Ising model in three dimensions. The left graph of Fig. 10.5, for instance, corresponds
to a down spin at the center of the cube surrounded by up spins everywhere else (dual
lattice). In general, the sites of the dual Ising model are located at the centers of the
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cubes. The right graph, similarly, has two down spins inside the closed object in the
corresponding low-temperature expansion of the Ising model. The analogy with the
correspondence between the high- and low-temperature expansions of Fig. 10.4 should
be clear. We thus conclude that the partition functions of the three-dimensional Z2

gauge theory and of the usual Ising model are related by a duality relation similar
to eqns (10.1) and (10.3) but with different partition functions on the two sides of the
equality and with 3N bonds. In other words, the Ising and Z2 gauge theory models in
three dimensions are not self-dual models. Since the three-dimensional Ising model has
a phase transition at finite temperature, i.e. a singularity in the free energy, it readily
follows that the three-dimensional Z2 gauge theory also undergoes a phase transition
at finite temperature.

10.3 Duality by Fourier transformation

The graphical derivation of duality relations is intuitively appealing and relatively
easy to understand, but it is not straightforward to generalize to models other than
the Ising model. Another formulation based on Fourier transformation, albeit a little
abstract, is more suitable to apply systematically to a wide class of model systems
including the Ising model. We explain this method in the present section.

10.3.1 General form of the partition function

Suppose that a spin variable ξi(= 1, 2, · · · q) is assigned to site i. The Boltzmann
factor u(ξi, ξj) for the neighboring pair 〈ij〉 will be assumed to be a function only of
the difference between ξi and ξj and periodic with period q,

u(ξi, ξj) = u(ξi − ξj) (mod q). (10.24)

The partition function is written as

Z =
∑

{ξi}

∏

〈ij〉
u(ξi − ξj). (10.25)

As an example, the q-state Potts model

H = −J
∑

〈ij〉
δ(ξi, ξj) (10.26)

has u(0) = eK and u(ξi − ξj) = 1 (ξi − ξj �= 0). The q-state clock model

H = −J
∑

〈ij〉
cos(θi − θj)

(
θi =

2πξi

q

)
(10.27)

has the Boltzmann factor u(ξi − ξj) = exp
(
K cos(2π(ξi − ξj)/q)

)
. Both of these mod-

els reduce to the Ising model when q = 2. Equation (10.25) is therefore a generalization
of the Ising model.

Duality of the partition function (10.25) is derived by the Fourier transformation
of the Boltzmann factor at each bond. As a preparation, it is convenient to Fourier
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^

Fig. 10.6 The sign of the difference of spin variables ξi − ξj is determined by the sense of

arrows pointing up and right.

transform u(ξi − ξj) using its periodicity as

u(ξi − ξj) =
1
q

q∑

ηij=1

exp
(

2πi
ξi − ξj

q
ηij

)
λ(ηij). (10.28)

An outstanding advantage of this expression is that the dependence on ξ is very simple
on the right-hand side and we can sum the Boltzmann factor over spin variables easily.
The partition function can then be written as a product of λs after summation over
ξ, and this turns out to be simply the duality transformation.

10.3.2 Duality transformation

To be concrete, let us consider the case of the square lattice to illustrate the procedure
and consequences of the summation over ξ. For a given i, the variable ξi appears in the
Boltzmann factors for interactions with four neighboring sites. As shown in Fig. 10.6,
we choose the sense of arrows as up and right, and assign the sign such that i is at the
head of an arrow and j is at the tail in ξi − ξj .6 Then, ξi appears as follows according
to eqn (10.28),

exp
2πi
q

{
(ξi+x̂ − ξi)ηi+x̂,i + (ξi − ξi−x̂)ηi,i−x̂

+(ξi+ŷ − ξi)ηi+ŷ,i + (ξi − ξi−ŷ)ηi,i−ŷ

}
, (10.29)

where x̂ and ŷ are the unit vectors along the x- and y-axes, respectively.7 This
expression permits us to take the sum over ξi(= 1, 2, · · · , q) easily to give the constraint

−ηi+x̂,i + ηi,i−x̂ − ηi+ŷ,i + ηi,i−ŷ = 0 (mod q). (10.30)

If all the Fourier variables η satisfy this constraint, the sum over ξi for a given i is
just the sum of 1 over ξi = 1, 2, · · · , q, which gives q, and the total result is the factor
qN . Consequently, the partition function is represented as the sum of the product of

6 It is not essential how to choose the sense of arrows. Nevertheless, it is useful to assign the sense
systematically in order to keep the discussions transparent.

7 The lattice constant is chosen to be unity.
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Fig. 10.7 New spin variables are defined on dual lattice sites shown in black dots and the

original variable ηij is written in terms of the difference of neighboring spins on the dual

lattice, which is also a square lattice.

λ(ηij) with the restriction of eqn (10.30),

Z = qN−2N
∑

{ηij}

′
∏

〈ij〉
λ(ηij). (10.31)

The term −2N in the exponent of q comes from the factor 1/q on the right-hand side
of eqn (10.28), applied to all 2N bonds.8 The prime (′) denotes the restriction that
the sum over η includes only those terms satisfying eqn (10.30) for all i.

Figure 10.6 allows us to present a transparent interpretation of the set of η variables
satisfying the constraint of eqn (10.30). ηij is a bond variable with the sense from site
i to site j. Equation (10.30) indicates that the sum of incoming ηij is equal to the sum
of outgoing ηij . If we regard ηij as an electric current flowing along the bond 〈ij〉,
eqn (10.30) suggests that the current is conserved at each site and hence the field is
free of divergence. As is well known in vector analysis, a divergence-free field can be
represented in terms of the curl of another field. The present field is defined on lattice
sites and assumes only integer values. It, nevertheless, has similar properties to the
case of continuous fields.

To show this fact, we place a site of the dual lattice at the center of a plaquette (a
unit square) and define a variable μj(= 1, 2, · · · , q) there, see Fig. 10.7. The two sets
of variables η and μ are chosen to be related as

ηi+x̂,i = μj − μj−ŷ, ηi+ŷ,i = μj−x̂ − μj ,

ηi,i−x̂ = μj−x̂ − μj−x̂−ŷ, ηi,i−ŷ = μj−x̂−ŷ − μj−ŷ, (10.32)

all of which are valid modulus q. The sign of the difference of the variables μ on the
right-hand sides is determined as follows. We first rotate the arrow of the original
bond η by +90o and subtract the μ at the tail of the arrow from the μ at the
head. It is straightforward to check that the divergence-free condition (10.30) is

8 We are assuming periodic boundary conditions.
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satisfied. Equation (10.32) implies that the curl of the two-dimensional field μ gives the
field η.9

The constraint on η, eqn (10.30), is automatically satisfied if we rewrite η in terms
of μ at all sites, and the partition function

Z = q−1−N
∑

{μi}

∏

〈ij〉
λ(μi − μj) (10.33)

results.10 Here, 〈ij〉 stands for the neighboring pair on the dual lattice. The partition
function has thus been shown to have two different expressions, eqn (10.25) and its
dual eqn (10.33). This is the generalized form of duality.

It is possible to apply the above argument to two-dimensional lattices other than
the square lattice. We first place a dual lattice site at the center of a unit polygon
surrounded by bonds. After fixing the sense of bonds on the original lattice, we
determine the sense of dual bonds by rotating the original bonds by +90o. The
difference of dual variables is fixed by the sense of the bonds. The argument of the dual
Boltzmann factor λ(ηij) is replaced by the difference μi − μj , and the total Boltzmann
factor of the dual system is represented by the product of local dual Boltzmann factors.
The partition function is the sum of this total Boltzmann factor over the dual variables
μ, which coincides with the original partition function up to a trivial factor.

Apparently, in many instances, the essence of duality is the Fourier transformation
of the local Boltzmann factor. The lattice structure is arbitrary. Regular lattices like
the square, triangular and hexagonal lattices are of course included, and irregular
lattices with non-uniform coordination number are also allowed. It should, however, be
remembered that the lattice structure generally changes after a duality transformation.
The square lattice is one of the exceptions, in which the dual lattice is another square
lattice. The dual of the triangular lattice is the hexagonal lattice. The boundary
condition also changes after duality, except for the case of periodic boundaries. The
concept of duality applies also to other spatial dimensions. For example, in three
dimensions, a bond of the original lattice corresponds to a plaquette of the dual lattice.
As a consequence, the dual system is not the usual Ising model but the Z2 gauge theory
as discussed at the end of the previous section.

10.3.3 Ising model

Let us confirm that the general duality relation

Z =
∑

{ξi}

∏

〈ij〉
u(ξi − ξj) = q−1−N

∑

{μi}

∏

〈ij〉
λ(μi − μj) (10.34)

9 Equation (10.32) indicates that the x-component of η, ηi+x̂,i, is the difference of μ along the
y-axis, μj − μj−ŷ, and the y-component of η, ηi+ŷ,i, is the minus sign of the difference of μ along
the x-axis, −(μj − μj−x̂). This is the discrete, or lattice, curl in two dimensions, the continuum limit
of which is ∂yμ for the x-component and −∂xμ for the y-component of the vector η, and hence the
field is divergence free, ∂xηx + ∂yηy = 0.
10 The overall factor q−1 is there to remove the extra degree of freedom in μ to change all μs

simultaneously by a constant according to eqn (10.32), which makes the sum over μ in eqn (10.33)
redundant by the factor q.
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reproduces the duality for the Ising model (q = 2) derived previously by the high- and
low-temperature series expansions.

The interaction between two neighboring spins takes the values ±J , and accord-
ingly the local Boltzmann factor results u(0) = eK for the spin-parallel (Si = Sj ,
i.e. ξi − ξj = 0 (mod 2)) and u(1) = e−K for the antiparallel cases (Si = −Sj ,
ξi − ξj = 1(mod 2)). Application of the inverse Fourier transformation to eqn (10.28)

λ(ηij) =
q∑

ξij=1

exp
(
−2πi

ξij

q
ηij

)
u(ξij) (10.35)

for the Ising (q = 2) case gives

λ(0) = u(0) + u(1) = eK + e−K , λ(1) = u(0) − u(1) = eK − e−K . (10.36)

Thus, the dual Boltzmann factor λ(0) for the same state of the neighboring dual
variables is eK + e−K , and λ(1) = eK − e−K for different states. Since the ratio of the
Boltzmann factors for the two states of neighboring spins (parallel and antiparallel) is
u(1)/u(0) = e−2K on the original lattice, it is reasonable to define the dual coupling
K∗ by λ(1)/λ(0) ≡ e−2K∗

. Then, the relation e−2K∗
= tanhK follows, which is the

duality relation of eqn (10.3).
Equation (10.1) for the partition function can also be derived from the general

framework. We first replace the mod 2 variable ξi with the conventional Si(= ±1) and
similarly for the dual variable, σi(= ±1) instead of μi. Then, eqn (10.34) reads

∑

{Si}
eK

∑
〈ij〉 SiSj = 2−1−N

∑

{σi}
e
∑

〈ij〉(K
∗σiσj+a). (10.37)

The constant a comes from the ambiguity of a multiplicative factor in the dual Boltz-
mann factor that was defined only by the ratio of λ(1) and λ(0), λ(1)/λ(0) = e−2K∗

.
To specify this constant we note that λ(0) = eK + e−K is equal to eK∗+a,11

ea =
2 cosh K

eK∗ . (10.38)

Then, eqn (10.37) is rewritten as

∑

{Si}
eK

∑
〈ij〉 SiSj = 2−1−N

∑

{σi}
eK∗ ∑

〈ij〉 σiσj

(
2 cosh K

eK∗

)N∗
B

, (10.39)

where N∗
B is the number of bonds on the dual lattice.

The above discussion applies not only to the square lattice but also to arbitrary
lattices. In particular, the square lattice is self-dual and has N∗

B = 2N , from which
we conclude that eqn (10.39) reduces to eqn (10.1). The self-duality manifests itself
as the same function Z on both sides of eqn (10.1). Non-self-dual lattices such as the
triangular lattice will have a different function Z∗ on the right-hand side from Z on the
left-hand side. The duality relation holds in such cases as well but it relates different
functions,

11 This also means that λ(1) = eK − e−K is equal to e−K∗+a.
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Fig. 10.8 The triangular and hexagonal lattices are mutually dual.

Z(K) =
(2 cosh K)NB

21+NeNBK∗ Z∗(K∗). (10.40)

It is therefore impossible, from eqn (10.40), to identify the unique transition point
using the argument of Section 10.1.

A similar theory can be developed for the Potts model to derive the transition
point on the square lattice.

EXERCISE 10.2 Apply the general theory of duality to the Potts model and derive
the duality relations corresponding to eqns (10.1) and (10.3). Identify the transition
point on the square lattice.

EXERCISE 10.3 Derive a relation between the critical exponents above and below
the transition point, α±, for the three-state Potts model on the square lattice. Also,
derive a relation of the same type for the critical amplitudes A±.

EXERCISE 10.4 Consider Ising models on the triangular and hexagonal lattices.
Derive a relation between the critical exponents above and below the transition
temperature, α±, the former for the triangular lattice and the latter for the hexag-
onal lattice. Do the same for the critical amplitudes, A±. Notice that the triangular
lattice is dual to the hexagonal lattice and vice versa. See Fig. 10.8.

EXERCISE 10.5 Let us determine the transition point of the Ising model on the
triangular lattice by the introduction of a star–triangle transformation in combina-
tion with the duality relation. If Z(K) on the left-hand side of eqn (10.40) is the
partition function for the triangular lattice, then Z∗(K∗) on the right-hand side is
the partition function for the hexagonal lattice. Since the function Z is different
from Z∗, the duality relation (10.40) is insufficient to identify a unique singularity.
We can, nevertheless, reduce the Ising model on the hexagonal lattice to the Ising
model on a triangular lattice by taking a partial trace, as depicted in Fig. 10.9, from
which the (dual) partition function for the Ising model on the hexagonal lattice
is transformed to the partition function of another Ising model on the triangular
lattice, Z(K̃). In combination with the duality relation, we then have a relation
connecting the Ising models on triangular lattices, which allows us to apply the
argument in Section 10.1 and identify the fixed point with the singularity.

Now comes the problem: The central black spin S0 in Fig. 10.9 has interactions
with neighboring white spins with the Boltzmann factor B = eK∗S0(S1+S2+S3).
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S0

S1 S2

S3

Fig. 10.9 Trace over alternating spins on the hexagonal lattice, shown in black dots,

generates two-body interactions between the remaining spins (marked white), effectively

realizing a new triangular lattice.

Suppose we perform a trace over spin S0 and write the result as a set of interactions

between white spins as AeK̃(S1S2+S2S3+S3S1). This is the star–triangle transforma-
tion. Write K̃ explicitly as a function of K∗. Use this result to find the transition
point of the Ising model on the triangular lattice from the fixed-point condition
K = K̃.

10.3.4 Villain model and roughening transition

The concept of duality applies also to systems with continuous degrees of freedom
like the XY model. As elucidated in detail in Chapter 7, the two-dimensional XY
model has two physically relevant types of excitations, the spin wave that represents
a slowly changing state and the vortices that correspond to rapid changes of the spin
orientation around specific points. The existence of vortices is intimately related with
the periodicity of the system manifested by a Hamiltonian invariant under a rotation
by 2π. We therefore often treat the Villain model, whose local Boltzmann factor is
a periodic version of the spin-wave Boltzmann factor e−Kψ2

ij/2 (which is derived by
expanding the cosine interaction of the original Boltzmann factor eK cos ψij (ψij =
φi − φj),

exp
(
V (ψij)

)
≡

∞∑

m=−∞
exp

(
− K

2
(ψij − 2πm)2

)
. (10.41)

This is the sum of the spin-wave Boltzmann factors with period 2π and is sometimes
called the periodic Gaussian model. The Villain model has both vortex and spin-wave
excitations and consequently has a KT phase similarly to the XY model. Since the
Villain model is essentially the same as the XY model in its properties concerning the
phase transition, but is easier to analyze than the XY model itself, the theory of
the KT transition is often developed for the Villain model instead of the XY model.
The second half of Chapter 7 was essentially for the Villain model.

We first write the partition function to study the duality of the Villain model,

Z =
∫ 2π

0

∏

i

dφi exp
( ∑

〈ij〉
V (φi − φj)

)
. (10.42)
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The initial step of a duality transformation is to Fourier transform the local Boltzmann
factor, which in the present case consists of multiplying eqn (10.41) by e−ilψij and then
integrate the result over ψij from 0 to 2π. The integration range of ψij then expands
from −∞ to ∞ due to the infinite sum over m, and we can carry out integration easily.
In this way, we have the Fourier series expression

exp
(
V (ψij)

)
=

1√
2πK

∞∑

l=−∞
exp

(
− l2

2K
+ ilψij

)
. (10.43)

Similarly to the case of discrete degrees of freedom explained in Section 10.3.2, we
give a sense of arrow to each bond and collect the factors of the form eilij(φi−φj)

involving φi for each i. Then, the integration over φi from 0 to 2π shows that l is a
divergence-free field. This field is next expressed by the curl of a field μ on the dual
lattice. Equation (10.32) remains valid for the square lattice, the only difference being
in the absence of a constraint of modulus q. Equation (10.33) is now replaced by

Z = const ·
∞∑

{μi=−∞}
exp

(
− 1

2K

∑

〈ij〉
(μi − μj)2

)
. (10.44)

The sum over μi runs over all integers, from −∞ to ∞, which is different from
eqn (10.33) where μi = 1, 2, · · · , q. This is the dual representation of the Villain model.
Since eqn (10.44) is written in terms of discrete variables in contrast to the original
representation of the Villain model (10.42) or the XY model, the system is not
self-dual even on the square lattice.

The dual representation of the Villain model (10.44) may be regarded as a solid-on-
solid (SOS) model of roughening transitions, in which the surface of a solid suddenly
changes its smoothness at a transition temperature. Suppose that μi atoms stack up at
lattice site i on the surface of a solid. It is reasonable to assume that a site with a higher
stack is unstable. This fact is expressed by writing the energy as (μi − μj)2, which
is higher for larger differences of neighboring heights. The partition function (10.44)
corresponds to this model.

The Villain model has a KT transition and the free energy shows a singularity there.
The dual representation (10.44) implies that there exists a roughening transition in
the corresponding model of solid surfaces. For small K, the system is dominated by
states with small (μi − μj)2 and the surface is smooth. As K grows, larger differences
of height are likely to appear due to thermal fluctuations,12 and the surface suddenly
roughens at the transition temperature.

Let us return to the XY model. The dual representation of the Villain
model (10.44) is of the same form as the spin-wave approximation discussed in Sec-
tion 7.2, if we disregard the discreteness of μi. By taking into account this discreteness,
we can derive the energy of vortices (7.48) of Section 7.5 as follows.

12 Here, K is identified with the temperature, not the inverse temperature, since it appears in the
denominator of eqn (10.44).
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The Poisson summation formula
∞∑

μ=−∞
g(μ) =

∞∑

n=−∞

∫ ∞

−∞
e2πiφng(φ) dφ (10.45)

is useful to replace the discrete variable μi with a continuous counterpart φi. See
Appendix A.19 for the derivation of this formula. Using this formula, we can rewrite
eqn (10.44) as

Z =
∞∑

{nj=−∞}

∫ ∞

−∞

∏

j

dφj exp
(
2πi

∑

j

φjnj −
1

2K

∑

〈ij〉
(φi − φj)2

)
(10.46)

up to a trivial constant. This multiple Gaussian integral over {φi} can be performed
as detailed in Appendix A.16 to give the result

Z =
∞∑

{nj=−∞}
exp

(
− 2π2K

∑

j,l

njnlG(j − l)
)

(10.47)

up to a trivial multiplicative factor. Here, G(j − l) is the lattice Green function,

G(j − l) =
1

2(2π)2

∫ π

−π

eiq·(j−l)

2 − cos qx − cos qy
dqxdqy, (10.48)

where we have recovered the vector notation for two-dimensional vectors. It should be
remembered that the neutrality condition

∑
j nj = 0 applies to {nj} in eqn (10.47)

as in Section 7.4. The asymptotic behavior of the lattice Green function for large
|j − l| ≡ r is analyzed in Appendix A.16 with the result

G(0) − G(r) ≈ 1
2π

log r. (10.49)

Then, the partition function (10.47) may be written as

Z =
∑

{nj}
exp

(
πK

∑

j �=l

njnl log |j − l|
)
. (10.50)

This is in accordance with the energy of vortices in eqn (7.48). We have reached
the same expression from a more systematic approach than in Section 7.5, where an
intuitive argument assuming the dominant role of vortices was employed.

EXERCISE 10.6 Let us study the roughening transition using the dual represen-
tation of the Villain model (10.44). We write Tr for K and call it the temperature
since K appears in the position of temperature in eqn (10.44). In the limit of low
temperature, (μi − μj)

2 takes only the smallest possible value, 0, and hence all μi

assume a common value to be denoted as k. This corresponds to a perfectly smooth
surface. As the temperature rises, some of the variables become deviated from k to
k ± 1. This is an Ising-like discrete excitation, and therefore long-range order exists
at low temperatures, a smooth phase. In the limit of high temperature, on the other
hand, we may approximate the discrete variable μi by continuous values since the
minimum change of (μi − μj)

2/(2Tr) is very small.
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Problem: Show in the high-temperature phase that fluctuations of μi diverge in
the long-range limit, which implies a rough surface. It will be useful to evaluate the
expectation value of (μi − μi+r)

2 and analyze its large-r limit.

10.4 Quantum duality

It has been shown in Exercise 9.8 that the transverse-field Ising model in one dimension
undergoes a quantum phase transition, i.e. a qualitative change of the ground-state
correlations, as the field strength h is varied. The critical properties of this transition
are identical to those of the two-dimensional classical Ising model where the control
parameter is the temperature T . This fact suggests an essential equivalence between
these two model systems. This is indeed the case, as can be shown by a quantum-
classical mapping. Quantum dualities are unitary mappings between quantum Hamil-
tonians that preserve the quasi-local character of their interaction terms. In some
cases, known as quantum self-dualities, those mappings also conserve the form of
the Hamiltonian operator. Physically, through this mapping one relates the weak-
coupling phase of the model to its strong-coupling phase. Our goal in this section is
first to prove a quantum duality, indeed a self-duality, relation for the one-dimensional
transverse-field Ising model, from which we can locate the quantum phase transition
point. Secondly, we show how classical and quantum dualities are simply related by a
quantum-classical mapping.

10.4.1 Duality in the transverse-field Ising chain

Let us consider the transverse-field Ising model on a chain with free boundary
conditions,

H[J, h] = −J

N−1∑

j=1

σz
j σz

j+1 − h

N∑

j=2

σx
j . (10.51)

Notice that the transverse field h is not applied to site 1. This special arrangement
makes it possible to formulate an exact quantum duality in a compact manner.

The dual spin operators are defined as follows,

σ̃x
1 = σz

1σz
2 , σ̃x

2 = σz
2σz

3 , · · · , σ̃x
N−1 = σz

N−1σ
z
N , σ̃x

N = σz
N (10.52)

σ̃z
1 = σx

1 , σ̃z
2 = σx

1σx
2 , σ̃z

3 = σx
1σx

2σx
3 , · · · , σ̃z

N = σx
1σx

2σx
3 · · ·σx

N . (10.53)

These dual operators satisfy the usual anticommutation relations for Pauli operators,

σ̃x
j σ̃z

j = −σ̃z
j σ̃x

j . (10.54)

The reason is that σ̃x
j and σ̃z

j have a common site index only in σz
j and σx

j . Hence, the
anticommutation relation of the dual operators reflects that of the original operators.
The y-component of the dual operator is constructed by the usual rule, e.g.

σ̃y
1 = −i σ̃z

1 σ̃x
1 = −σy

1σz
2 . (10.55)



254 Duality

This set of dual operators {σ̃x
j , σ̃y

j , σ̃z
j } are themselves Pauli operators.

The exchange interaction term of the Hamiltonian (10.51) can be expressed in
terms of the dual operators as

−J

N−1∑

j=1

σz
j σz

j+1 = −J
N−1∑

j=1

σ̃x
j , (10.56)

while the field term becomes an exchange interaction,

−h

N∑

j=2

σx
j = −h

N−1∑

j=1

σ̃z
j σ̃z

j+1. (10.57)

Therefore, the total Hamiltonian is rewritten as

H[J̃ , h̃] = −J̃
N−1∑

j=1

σ̃z
j σ̃z

j+1 − h̃

N−1∑

j=1

σ̃x
j (10.58)

with the dual parameters defined as J̃ = h and h̃ = J . This hermitian operator is of
the same form as the original Hamiltonian (10.51) with a slight difference in the
site index; the site without field is j = 1 in eqn (10.51), whereas it is j = N in
eqn (10.58). This difference can be eliminated by the change of site numbering back-
ward, (1, 2, · · · , N) → (N,N − 1, · · · , 2, 1). Thus, the form of the original Hamiltonian
and its dual is the same and the present duality becomes a self-duality.

The transformation of the Hamiltonian eqn (10.51) into the dual eqn (10.58)
preserves the eigenvalue spectrum and is unitary. Mathematically, a quantum self-
duality corresponds to13

H[J, h] = UH[h, J ]U †, (10.59)

where U is the unitary operator performing the duality. This, in turn, means that the
eigenvalues En of the Hamiltonian and its dual are related by

En(J, h) = En(h, J). (10.60)

Then, it readily follows that the quantum critical point, if a singularity exists in the
ground-state energy, should be located at the fixed point of the duality, h = J , in
agreement with the direct solution.14 The quantum critical point is known as the
self-dual point of the duality mapping.

Notice that the exact quantum duality mapping can be performed over a finite-
N chain. Care must be exercised when one performs the transformation in the
thermodynamic limit, N → ∞, since appropriate boundary terms must be kept. For

13 A general quantum duality corresponds to H[J, h] = UH∗[h, J ]U†, where H∗ is the dual Hamil-
tonian.

14 If there is more than one singularity and the model is self-dual, the phase transition point does
not necessarily coincide with the self-dual point. This is the case in the p-clock model when p ≥ 5,
and the self-dual point is in-between the two transitions. See Exercise 7.4 in which the existence of
an intermediate phase, and thus of two phase transitions, is shown.
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instance, if we consider the same Hamiltonian of eqn (10.51) but with an additional
boundary term, h σx

1 , i.e.

H = −J
N−1∑

j=1

σz
j σz

j+1 − h

N∑

j=1

σx
j , (10.61)

then there is no exact quantum self-duality.
The transformation of eqns (10.52) and (10.53) can be systematized so that it is

applicable to more general problems, which is, however, beyond the scope of this book.

10.4.2 Relation between classical and quantum duality

A natural question that emerges is whether there is any relation between the quan-
tum and classical dualities, i.e. relations between the partition functions that were
presented in previous sections. The answer is affirmative and the result is that both
are two sides of the same coin. To address this issue we will illustrate the main ideas
with the transverse-field Ising model. However, the reader must keep in mind that the
above is a very general and deep statement.

The main idea consists in finding a representation of the trace of the exponential
of the quantum Hamiltonian operator H[J, h] of eqn (10.51)

Tr e−H[J,h] ∝
∑

{σi}
e−βHc[J,h] (10.62)

in terms of a sum over classical configurations {σi} with weights that can be associated
to a classical model system with energy function Hc[J, h] and fictitious temperature
T = 1/β. Let us start by rewriting the quantum Hamiltonian

H[J, h] = Hz + Hx, (10.63)

where Hz represents the exchange interaction, which is diagonal in the σz-basis, and
Hx is the transverse-field component. Notice that

e−H[J,h] �= e−Hze−Hx , (10.64)

since these two operators do not commute, i.e. [Hz,Hx] �= 0. However, one can use
the Suzuki–Trotter–Lie decomposition of an exponential, whose argument is the sum
of two bounded operators,

e−(Hz+Hx) = lim
N→∞

[
e−

1
N Hze−

1
N Hx

]N
= lim

N→∞

[
e−

1
N Hxe−

1
N Hz

]N
. (10.65)

It is not difficult to understand this formula by taking the leading-order contribution
of O(1/N ) on the right-hand side as

lim
N→∞

[
e−

1
N Hxe−

1
N Hz

]N
= lim

N→∞

(
1 − Hx

N − Hz

N

)N
= e−(Hz+Hx). (10.66)
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Therefore, the trace can be rewritten as

Tr e−H[J,h] = lim
N→∞

∑

{σ1}
〈σ1|e−

1
N Hxe−

1
N Hz · 1 · e− 1

N Hxe−
1
N Hz · 1 · · · e− 1

N Hxe−
1
N Hz |σ1〉

= lim
N→∞

∑

{σ1,··· ,σN }
〈σ1|e−

1
N Hxe−

1
N Hz |σN 〉〈σN |e− 1

N Hxe−
1
N Hz |σN−1〉

· · · 〈σ2|e−
1
N Hxe−

1
N Hz |σ1〉

= lim
N→∞

∑

{σ1,··· ,σN }
〈σ1|e−

1
N Hx|σN 〉e− 1

N Hz(σN )〈σN |e− 1
N Hx|σN−1〉e−

1
N Hz(σN−1)

· · · e− 1
N Hz(σ2)〈σ2|e−

1
N Hx |σ1〉e−

1
N Hz(σ1), (10.67)

with l = 1, 2, · · · ,N , and where we have intercalated N − 1 resolutions of the identity

1 =
∑

σl

|σl〉〈σl|. (10.68)

This sum over σl represents a sum over the complete set of 2N configurations of the
one-dimensional transverse-field Ising model in the σz-basis. One such configuration is,
for instance, | − 1 − 1 + 1 + 1 · · · − 1 + 1〉, which is an eigenstate of σz

1 with eigenvalue
−1, and of σz

N with eigenvalue +1. Thus, the index l labels an extra dimension. Note
that because of its origin in a trace, eqn (10.67), the boundary condition in that extra
dimension is periodic, while the boundary condition in the other direction is free.

Since we have chosen the eigenstates of σz as the basis, it implies that the
exponential of the exchange interaction term Hz becomes diagonal since

〈σl| eJσz
j σz

j+1 |σl〉 = eKz(J) σj,lσj+1,l , (10.69)

with Kz(J) = J , and classical Ising spins σj,l = ±1. It only remains to compute the
matrix elements of the exponential of Hx in that basis. This is simple to accomplish
because of the mathematical identity

〈σl+1| ehσx
j |σl〉 = 〈σl+1|(cosh h + sinh h σx

j ) |σl〉 = A(h) eKx(h) σj,lσj,l+1 ,(10.70)

where

Kx(h) = −1
2

log tanh(h), A(h)2 =
1
2

sinh(2h). (10.71)

The validity of eqns (10.70) and (10.71) can be checked by setting σl = σl+1 in
eqn (10.70) (in which case cosh h = A(h)eKx(h)) and σl = −σl+1 (in which case
sinhh = A(h)e−Kx(h)). Finally, we have accomplished the task to effectively map
the original quantum transverse-field Ising chain in d = 1 into a classical statistical
mechanical problem in d = 2 dimensions

Tr e−H[J,h] = lim
N→∞

A(Kz
h)N (N−1)

∑

{σi}
e−βHc[J,h], (10.72)
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where the classical energy function is given by

−βHc[J, h] =
N∑

l=1

N−1∑

j=1

(Kz
J σj,lσj+1,l + Kx

h σj,lσj,l+1), (10.73)

and corresponds to a classical Ising model with couplings Kz
J = Kz(J/N ), and Kx

h =
Kx(h/N ). We have thus managed to relate the trace of e−H of a quantum problem in
d dimensions with the partition function of a classical statistical-mechanics problem
in d + 1 dimensions

Z(Kz
J ,Kx

h) =
∑

{σ}
e−βHc[J,h]. (10.74)

The quantum-classical mapping described above allows us to derive the self-duality
of the two-dimensional classical Ising model. The quantum self-duality, which is
basically a unitary mapping, i.e. H[J, h] = UH[h, J ]U †, implies

Tr e−H[J,h] = Tr Ue−H[h,J]U† = Tr e−H[h,J], (10.75)

because of the cyclic invariance of the trace operation and the fact that U†U = 1.
This equality, eqn (10.75), in turn leads us trivially to the classical self-dual relation15

Z(Kz
J ,Kx

h)
A(Kz

J )N (N−1)
=

Z(Kz
h,Kx

J )
A(Kz

h)N (N−1)
. (10.76)

By identifying Kz = Kz
J , Kx = Kx

h , and K∗
z = Kz

h, K∗
x = Kx

J , and using eqn (10.71),
one arrives at the relation for the dual couplings

e−2K∗
z = tanhKx, e−2K∗

x = tanhKz, (10.77)

or, more symmetrically,

sinh 2Kx sinh 2K∗
z = 1, sinh 2Kz sinh 2K∗

x = 1, (10.78)

which correspond to the dual relations for the d = 2 anisotropic Ising model case. In
the isotropic case, Kz = Kx, eqn (10.77) reduces to eqn (10.3),

e−2K∗
z = tanhKz, (10.79)

and the quantum self-dual point, h = J , corresponds to K∗
z = Kz. We have in this

way shown that quantum and classical dualities, which seem to have a different origin
and physical interpretation, are mathematically related and represent two sides of the
same entity.

15 Compare to eqn (10.2) and note the lack of the factor 2. This is because of the use of different
boundary conditions.
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Numerical methods

This short chapter introduces a few typical numerical methods used in modern studies
of phase transitions and critical phenomena in spin systems. The first section describes
the dynamics of a generic system with discrete degrees of freedom following the master
equation. This section serves as a theoretical basis for the method of Monte Carlo
simulations explained in the second section. Another useful numerical technique is
the transfer matrix method, described in the last section, and that is applied for
numerically exact evaluation of the free energy and related physical quantities.

11.1 Master equation

Monte Carlo simulations are realized as the numerical implementation of stochastic
dynamics, which is conveniently represented using the master equation. We first
introduce the master equation and analyze the properties of its solutions in order to
establish a theoretical basis for Monte Carlo simulations that reproduce equilibrium
expectation values of physical quantities by stochastic dynamics.

We often use notations for the Ising model in the present chapter but in principle
the discussions here apply to arbitrary systems with discrete degrees of freedom. The
Ising model is a classical spin system for which there is no intrinsic dynamics, such as
a Newton or Schrödinger equation of motion, which determine the time evolution of
microscopic degrees of freedom. We, nevertheless, think it natural that each spin flips
from time to time under the influence of thermal agitation from the environment. The
master equation is a useful way to formulate this idea in terms of stochastic changes
of spin configurations. This stochastic dynamics, built on concepts of probability
theory, represents a fictitious dynamics that, as we will see, allow us to study the
thermodynamic properties of the model.

Let us denote a spin configuration by an alphabet, e.g. a = {1,−1,−1, · · · , 1}.
We describe the state of a system using the probability that the system has a
configuration a at time t, P (a, t). The Ising model with N spins has the total number
of configurations 2N and hence we have a complete stochastic description of the system
at time t if we know the 2N values of P (a, t) for all possible as. The master equation
describes how this set of probabilities evolves with time.

Suppose that the configuration changes from a to b with the transition proba-
bility w(a → b)Δt (≥ 0) in a small time interval Δt.1 Then, the probability that
the system has the configuration a decreases by w(a → b)Δt · P (a, t) because the

1 The transition probability w(a → b) is a conditional probability.
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system was in a with probability P (a, t) and then has changed to b with probability
w(a → b)Δt. Similarly, the probability that the system is in configuration a would
increase by the amount w(b → a)Δt · P (b, t) if there is an influx of the configuration
from b(�= a). Thus, the net change of the probability should be the balance of these two
contributions,

P (a, t + Δt) − P (a, t) = −
∑

b( �=a)

w(a → b)P (a, t)Δt +
∑

b( �=a)

w(b → a)P (b, t)Δt.

(11.1)
This is the master equation.

Implicit in the above discussion is the concept of a Markov process, where the
state of the system at the next time step t + Δt is determined only by the present
state at time t and is unaffected by the previous states at t − Δt, t − 2Δt, · · · . This
is a reasonable assumption, although it is usually hard to deduce rigorously from
more fundamental rules, and we follow the convention to adopt this assumption here.
Also, it is sometimes useful to take the continuous-time limit Δt → 0 and write the
master equation as a differential equation. In the present section we use the discrete
representation with an application to Monte Carlo simulations in mind.

It is convenient to rewrite the master equation in a compact form as

P (a, t + Δt) =
(
1 −

∑

b( �=a)

w(a → b)Δt
)
P (a, t) +

∑

b( �=a)

w(b → a)Δt · P (b, t)

≡
∑

b

LabP (b, t), (11.2)

where

Laa = 1 −
∑

b( �=a)

w(a → b)Δt, Lab = w(b → a)Δt (b �= a), (11.3)

or, in a matrix-vector notation,

P (t + Δt) = LP (t). (11.4)

The ath component of vector P (t) is P (a, t). Suppose that the stochastic matrix L
has right eigenvectors and corresponding eigenvalues,

Leα = λαeα. (11.5)

If the set of eigenvectors {eα} is complete, we can expand the probability P (t) as

P (t) =
∑

α

cα(t)eα, (11.6)

and the time evolution (11.4) is expressed as

P (t + Δt) =
∑

α

cα(t)Leα =
∑

α

cα(t)λαeα. (11.7)
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After n steps of time evolution from the initial state t = 0, the probability becomes

P (nΔt) =
∑

α

cα(0)λn
αeα. (11.8)

The behavior of the probability as a function of time step n is therefore dictated by
the eigenvalue spectrum {λα}.

The requirement of the conservation of probability,
∑

a P (a, t) = 1, places a strong
constraint on the eigenvalue spectrum. Since the sum of all components of the left-hand
side of eqn (11.8) is unity, so is the right-hand side,

∑

α

cα(0)λn
α

∑

a

eα(a) = 1, (11.9)

where eα(a) is the ath component of eα. This relation holds for arbitrary n. For the
left-hand side of eqn (11.9) to be independent of n, the largest eigenvalue λ0 should
be unity, with the corresponding eigenvector satisfying

∑
a e0(a) = 1, and all other

eigenvectors must satisfy
∑

a eα(a) = 0 (α �= 0). It is further necessary that c0(0) = 1
and |λα| < 1 for α �= 0. This latter condition on the eigenvalues λα comes from the
observation that the probability P (a, nΔt) should not grow indefinitely with n. Since
all matrix elements of L are positive semi-definite,2 the Perron–Frobenius theorem3

guarantees that the eigenvector for the leading eigenvalue λ0 is non-degenerate, as long
as the matrix L is irreducible (which means that any configuration can be reached from
any other configuration after a finite number of steps). This irreducibility condition is
satisfied in Monte Carlo simulations by standard choices of the transition probability,
as will be explained in the next section.

We conclude that the system evolves toward a unique equilibrium distribution e0

as n → ∞,

P (nΔt) = e0 + c1(0)e−n| log λ1|e1 + · · · (11.10)

with the relaxation time 1/| log λ1|, where λ1(< 1) is the second largest eigenvalue
of L. It is in this sense guaranteed that the stochastic dynamics under the master
equation eventually realizes the equilibrium distribution e0.

Discussions in this section are very general and apply to any choices of the
transition probability and matrix L as long as the latter is irreducible and positive
semi-definite. Accordingly, the equilibrium distribution e0 may not necessarily be the
Gibbs–Boltzmann distribution e−βH/Z. We study in the next section the conditions
that the transition probability must satisfy for the Gibbs–Boltzmann distribution to
be realized as the equilibrium distribution.

2 The diagonal element Laa in eqn (11.3) should be positive semi-definite because it is the
probability that the system stays in the present configuration a.

3 This theorem states that an irreducible square matrix with positive semi-definite elements has
its largest (in magnitude) eigenvalue positive and the corresponding eigenvector is non-degenerate
with all its components being positive.
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11.2 Monte Carlo simulation

It is necessary to choose appropriate transition probabilities in Monte Carlo simula-
tions so that the equilibrium distribution is of the Gibbs–Boltzmann form P (a, t) =
e−βH(a)/Z ≡ Peq(a). Suppose that an equilibrium has been achieved in the master
equation (11.1) with P (a, t) = Peq(a). Then, the left-hand side vanishes and conse-
quently

∑

b( �=a)

w(a → b)Peq(a) =
∑

b( �=a)

w(b → a)Peq(b). (11.11)

This relation constrains the possible form of the transition probability. A sufficient
condition for the above relation to hold is to equate both sides term by term,

w(a → b)Peq(a) = w(b → a)Peq(b). (11.12)

This relation is called the detailed balance condition. If we use the Gibbs–Boltzmann
distribution for Peq(a) in the above equation, the ratio of the transition probabilities
satisfies

w(a → b)
w(b → a)

= e−β(H(b)−H(a)). (11.13)

Common choices of the transition probability that satisfy the detailed balance condi-
tion are the heat-bath method

w(a → b) =
e−βH(b)

e−βH(a) + e−βH(b)
, (11.14)

and the Metropolis method

w(a → b) = e−β(H(b)−H(a))+ , (11.15)

where (f)+ = f if f ≥ 0 and 0 otherwise.

EXERCISE 11.1 Confirm that the heat-bath and Metropolis methods satisfy the
detailed balance condition.

We next have to determine what types of transitions are allowed, that is, what
combinations of a and b would have w(a → b) > 0. The process of a single-spin flip is
often used in Monte Carlo simulations of the Ising model, in which only a single spin
is flipped in a given time step. We choose site i and decide whether to flip Si to −Si

according to the probability w(a → b), where

a = {S1, S2, · · · , Si, · · · , SN}, b = {S1, S2, · · · ,−Si, · · · , SN}. (11.16)

The transition probabilities for all other processes are considered vanishing. It is clear
that any configuration {S1, S2, · · · , SN} can be reached from any other configuration
{S′

1, S
′
2, · · · , S′

N} by successively flipping spins at sites where Si �= S′
i. Thus, this choice

of the transition probability generates an irreducible matrix L. For the single-spin flip
process, the heat-bath and Metropolis methods are written as
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w(Si → −Si) =
e−βH(−Si)

e−βH(Si) + e−βH(−Si)
=

e−βΔEi

1 + e−βΔEi
, (11.17)

and

w(Si → −Si) = e−β(ΔEi)+ , (11.18)

respectively. Here, ΔEi = H(−Si) − H(Si) and the dependence of H on spins other
than Si has been suppressed for simplicity of notation.

Equations (11.17) and (11.18) are particularly useful if we notice that ΔEi can be
written by the local spin configuration around site i. Suppose that the Hamiltonian
has the following expression

H = Hi + H ′ = −
∑

j

JijSiSj + H ′, (11.19)

where H ′ is the part that does not include Si, and Jij = J for a neighboring pair 〈ij〉
and 0 otherwise in the summation. Then, the change of the energy by a single-spin
flip is

ΔEi = H(−Si) − H(Si) = 2
∑

j

JijSiSj . (11.20)

This quantity is easily calculated numerically and can be inserted into eqn (11.17) or
eqn (11.18) to evaluate the transition probability.

EXERCISE 11.2 Consider a simple two-spin system with H = −JS1S2. There
are four possible configurations of spins, a = {1, 1}, b = {1,−1}, c = {−1, 1}, d =
{−1,−1}. Write the transition probabilities between these four configurations using
the heat-bath method under the single-spin flip process. Write, further, the matrix
L and evaluate its right eigenvalues and eigenvectors. Confirm that the largest
eigenvalue is unity with the corresponding eigenvector being the Gibbs–Boltzmann
distribution. Observe that other eigenvectors have both positive and negative com-
ponents and satisfy

∑
a eα(a) = 0 (α �= 0).

In Monte Carlo simulations one regards the calculation of the expectation value of
a physical quantity Ô as an average over the configurations generated by the stochastic
dynamics. Assume, for instance, that we want to evaluate the magnetization m of the
Ising model in the Gibbs–Boltzmann ensemble

m = 〈m̂〉Peq =
1
N

〈
N∑

i=1

Si

〉

Peq

=
∑

a

Peq(a)

(
1
N

N∑

i=1

Si

)
, (11.21)

where the sum is performed over all 2N configurations. Monte Carlo methods choose
a subset of configurations according to the stochastics dynamics generated by the
transition probabilities w. One then constructs an estimator of m by choosing a number
of sampled configurations, e.g. M configurations,
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mE =
1
M

∑

ã

m̂(ã), (11.22)

where the M configurations ã are sampled according to Peq, a probability measure
on the space of configurations. The estimator mE has the property that it becomes
a more accurate estimate of m as M grows larger. That means that for a sufficiently
large number of sampled configurations one can come arbitrarily close to the desired
expectation value. Indeed, the strong law of large numbers guarantees that

Prob

{
lim

M→∞

1
M

∑

ã

Ô(ã) = 〈Ô〉Peq

}
= 1, (11.23)

i.e. it converges with probability 1.
The sequence of statistically independent sampled configurations {ã} constitutes

a random walk. The initial probability distribution P (a, t = 0) and the transition
probability w(a → b) characterize the random walk. If the equilibrium distribution
exists, under the hypothesis of ergodicity,4 then the random walk converges to Peq,
irrespective of the initial distribution P (a, t = 0). Since an infinite random walk cannot
be simulated in practice, the natural question that arises is: What is the error involved
if the random walk is of length M? The answer to that question is provided by the
central limit theorem, which states that for large M the estimator OE = 1/M

∑
ã Ô(ã)

becomes normally distributed about 〈Ô〉Peq with variance

var
{
〈Ô〉Peq

}
=

1
M

(
〈Ô2〉Peq − 〈Ô〉2Peq

)
=

σ2

M
, (11.24)

if the M random variables ã are statistically independent. So, the central limit theorem
allows us to assign numerical confidence limits to our best estimate of the value of a
physical average

〈Ô〉Peq ≈ OE ± σ√
M

, (11.25)

where the uncertainty in the estimate represents a main contribution to the statistical
error.

In practice, the structure of the algorithm is as follows. Notice that we choose
Δt = 1.

1. Initialize the spin configuration {Si}, typically to a random configuration
or a perfectly ferromagnetic state.

2. Choose site i for flip trial.
3. Calculate the energy change ΔEi.
4. Generate a uniform random number r between 0 and 1 and compare it with

w(Si → −Si). Execute the flip Si → −Si if r < w(Si → −Si) and keep Si

unchanged if r > w(Si → −Si). In this way, the transition takes place with
the designated transition probability.

4 Ergodicity is the requirement that our Markov process can reach any configuration of our system
from an arbitrary configuration, if we run it long enough.
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5. Calculate the physical quantities of interest for the present configuration
{Si}.

6. Repeat 2 to 5 until sufficient statistics has been collected.

Sample codes are listed in Appendix A.20.
There are a number of points to be noticed in the actual implementation of

the algorithm. For example, the effects of the initial condition should be discarded
because it takes some time, τ = 1/| log λ1|, for the system to equilibrate, as discussed
in the previous section. Measurements of physical quantities are also to be performed
at some intervals of Monte Carlo steps, not at each single step, since consecutive
spin configurations are correlated, which prevents us from collecting data drawn
independently from the equilibrium distribution. If these conditions are satisfied, spin
configurations thus generated are considered to be drawn independently from the
Gibbs–Boltzmann distribution, and hence the simple averages of physical quantities
as in eqn (11.22) are usually reliable approximations of the canonical average. Also, as
is always the case in data analysis, statistical and systematic errors must be properly
estimated, the former as in eqn (11.25) and a typical example of the latter being the
finite-size effects. The method of finite-size scaling is useful for this purpose.

11.3 Numerical transfer matrix method

The numerical transfer matrix method is another popular technique to numerically
evaluate physical quantities especially in two dimensions. According to the transfer
matrix method described in Chapter 9, we introduce a 2 × 2 transfer matrix for the
one-dimensional Ising model and diagonalize it to obtain the partition function in the
thermodynamic limit using the largest eigenvalue. The two-dimensional case is similar
in spirit but is much more complicated in practice because a large 2L × 2L matrix,
where L is the linear length of a finite-size square lattice, should be diagonalized. The
numerical transfer matrix method is used instead to evaluate the partition function of
a long strip of size M × 2L, where M can, in principle, be chosen as large as we wish.

Suppose that we have successfully evaluated the partition function numerically up
to the lth row indicated by circles in Fig. 11.1, starting from the bottom row and
tracing out all spin variables shown in black dots. The result is stored as 2L numbers,
Z(S(l)

1 , S
(l)
2 , · · · , S

(l)
L ) for {S(l)

1 = ±1, S
(l)
2 = ±1, · · · , S

(l)
L = ±1}. We next evaluate the

effects of the interaction between S
(l)
1 and S

(l+1)
1 , the latter being the spin just above

S
(l)
1 in the next row, as

Z̃(S(l+1)
1 , S

(l)
2 , · · · , S

(l)
L ) =

∑

S
(l)
1 =±1

eKS
(l)
1 S

(l+1)
1 Z(S(l)

1 , S
(l)
2 , · · · , S

(l)
L ). (11.26)

Then, the interaction between S
(l)
2 and S

(l+1)
2 is taken into account as

Z̃(S(l+1)
1 , S

(l+1)
2 , · · · , S

(l)
L ) =

∑

S
(l)
2 =±1

eKS
(l)
2 S

(l+1)
2 Z̃(S(l+1)

1 , S
(l)
2 , · · · , S

(l)
L ). (11.27)
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Fig. 11.1 The numerical transfer matrix method evaluates the partition function row by

row for the two-dimensional lattice.

The interaction between S
(l+1)
1 and S

(l+1)
2 will be considered later. By repeating similar

processes, we obtain the values of Z̃(S(l+1)
1 , S

(l+1)
2 , · · · , S

(l+1)
L ). The transfer from the

lth row to the (l + 1)th row completes by adding horizontal interactions within the
row, assuming periodic boundary conditions, as

Z(S(l+1)
1 , S

(l+1)
2 , · · · , S

(l+1)
L ) = eK(S

(l+1)
1 S

(l+1)
2 +S

(l+1)
2 S

(l+1)
3 +···+S

(l+1)
L S

(l+1)
1 )

× Z̃(S(l+1)
1 , S

(l+1)
2 , · · · , S

(l+1)
L ). (11.28)

It is straightforward to reach the final Mth row by repeating this procedure to have
Z(S(M)

1 , S
(M)
2 , · · · , S

(M)
L ). Assuming a free boundary at the final row, that is, there is

no (M + 1)th row, the total partition function is the sum of Z(S(M)
1 , S

(M)
2 , · · · , S

(M)
L )

over all possible values of S
(M)
i = ±1 (∀i). The initial value is the Boltzmann factor

for the horizontal interactions,

Z(S(1)
1 , · · · , S

(1)
L ) = eK(S

(1)
1 S

(1)
2 +S

(1)
2 S

(1)
3 +···+S

(1)
L S

(1)
1 ). (11.29)

A clear advantage of this method is that we do not have to directly diagonalize a
large matrix and the computational cost is linear in M . The memory and computa-
tional cost in terms of L is exponential, 2L, which limits the actual size somewhere
between L = 10 and L = 20.

Since the partition function and its logarithm can thus be obtained numerically,
physical quantities are evaluated by numerical differentiations with respect to the
temperature or the external field.

Although the simple two-dimensional Ising model has an exact solution and thus
does not need to be analyzed by numerical methods, the method of numerical transfer
matrix is useful for more general cases, such as random systems and non-Ising models.
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Appendix A

A.1 Saddle-point method

Suppose that a function f(x) has a maximum at x = x0 as illustrated in Fig. A.1.
Then, the integral

I =
∫ ∞

−∞
eNf(x) dx (A.1)

is evaluated asymptotically in the limit N → ∞ as

I ≈ eNf(x0), (A.2)

which simply amounts to keeping the maximum value of the integrand. This is the
result of applying the saddle-point method or the method of steepest descents.

The expansion of f(x) around x0 starts from the quadratic term since its first-order
term vanishes at the maximum x0,

f(x) ≈ f(x0) +
1
2
(x − x0)2f ′′(x0) (f ′′(x0) < 0). (A.3)

Cubic and higher-order terms become non-negligible for larger |x − x0|, where f(x) is
significantly smaller than f(x0). In the integrand of eqn (A.1), f(x) is multiplied by N
and is exponentiated, which leads to overwhelmingly smaller values of eNf(x) for x �= x0

compared to eNf(x0) for large N . As a concrete example, if Δf = f(x) − f(x0) = − 1
and N = 10, then r ≡ eNf(x)/eNf(x0) = 4.5 × 10−5. For the same difference of the
functional values Δf = −1, N = 100 gives r = 3.7 × 10−44, and r = 5.1 × 10−435 for
N = 1000. It should be clear that the leading contribution comes only from the
immediate neighborhood of x0 in the limit N → ∞. We may therefore ignore the cubic
and higher-order terms in the expansion of eqn (A.3).

The asymptotic expression can be evaluated by the Gaussian integral using
eqn (A.3),

I ≈
∫ ∞

−∞
dx exp

(
Nf(x0) −

N

2
(x − x0)2|f ′′(x0)|

)

= exp
(

Nf(x0) +
1
2

log 2π − 1
2

log
(
N |f ′′(x0)|

))
. (A.4)

Since the term Nf(x0) is much larger than the other terms in the exponent, we often
keep only eNf(x0) as the asymptotic form. This is eqn (A.2).

The name ‘saddle-point method’ comes from the behavior of the function in the
complex plane: The function f(z), an analytical continuation of f(x) to the complex
plane, is maximum at z = x0 along the real axis but is minimum along the path
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f (x)

xx0

Fig. A.1 The function f(x) is assumed to have a maximum at x0.

parallel to the imaginary axis, as can be verified from eqn (A.3). See also Fig. A.2.
This method is also called the method of steepest descents since the integration runs
along the path where the change of the functional value is largest.

Let us comment on the higher-order terms for those readers who are curious about
how the higher-order terms affect the result. For simplicity, choose x0 = 0 and assume
that f(x) is an even function. We expand f(x) around x = 0 and keep terms up to
the fourth order. Then, the integral I to be evaluated has the following form,

I ≈ eNf(0)

∫ ∞

−∞
exp
(
−aN

2
x2 + bNx4

)
dx, (A.5)

where b should be negative since the integral diverges otherwise. As f(x) is maximum
at x = 0, a should be positive. Set x = t/

√
aN to have

I ≈ eNf(0)

√
aN

∫ ∞

−∞
exp
(
− t2

2
+

bt4

a2N

)
dt. (A.6)

A naive next step consists of ignoring the fourth-order term in the limit N → ∞ as
its coefficient has the factor N−1. This corresponds to the saddle-point result (A.4).
This argument applies to any higher-order terms not just the fourth-order one.

Let us evaluate the effects of corrections due to the fourth-order term in a more
careful way. The fourth-order term in the exponent prevents us from performing the
integral directly, so we expand ebt4/a2N around t = 0. The nth-order term of the
expansion is proportional to t4n/(n!Nn). Its integral

Fig. A.2 The path in the integral is chosen along the arrow such that the function becomes

largest at the saddle point.
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∫ ∞

−∞

t4n

n!Nn
exp
(
− t2

2

)
dt (A.7)

is proportional to (2n)!/(n!Nn) for large N . Since (2n)! � n!, the coefficient of the
expansion is larger for higher-order terms and consequently the expansion does not
converge. Thus, this is not a Taylor expansion but it is an asymptotic expansion.

An asymptotic expansion does not converge and is anomalous in this sense. It
is, nevertheless, useful to terminate the expansion at an appropriate finite order and
then take the limit of a very small parameter value N−1, in which case the difference
between the approximate value using the asymptotic expansion and the correct value
can be reduced arbitrarily. In the present example of eqn (A.6), the correction of the
first term (n = 1) gives
∫ ∞

−∞
exp
(
− t2

2

)(
1 +

b

a2N
t4
)

dt =
√

2π

(
1 +

3b

a2N

)
≈

√
2π exp

(
3b

a2N

)
. (A.8)

Then, the asymptotic expansion of the integral to first order reads

I ≈ exp
(

Nf(0) +
1
2

log 2π − 1
2

log(aN) +
3b

a2N

)
. (A.9)

This value is close to the correct integral value for large N . For the quartic function
f(x) = −x2/2 − x4, for instance, the direct integral value I1 and the value I2 of the
formula (A.9), in their logarithmic form, are compared as log I1 = −0.3860, log I2 =
−0.5324 for N = 10, log I1 = −1.4099, log I2 = −1.4137 for N = 100, and log I1 =
−2.5379, log I2 = −2.5379 for N = 1000. This example shows the numerical accuracy
of the asymptotic expansion for sufficiently large N .

A.2 Expressing the susceptibility in terms of correlation functions

The magnetic susceptibility, a thermodynamic quantity, can be written in terms of
correlation functions. We show this fact for a model with Ising variables by starting
from the definition of the magnetization of a system with Hamiltonian H0 and external
field h,1

M =

∑
{Si}
(
S1 + · · · + SN

)
e−βH0+βh

∑
i Si

∑
{Si} e−βH0+βh

∑
i Si

. (A.10)

The susceptibility is the h-derivative of M in the limit h → 0. If we write χ for the
susceptibility per spin, we have

Nχ = lim
h→0

∂M

∂h
=

β
∑

{Si}
(
S1 + · · · + SN

)2 e−βH0

∑
{Si} e−βH0

−β

(∑
{Si}(S1 + · · · + SN ) e−βH0

∑
{Si} e−βH0

)2
. (A.11)

1 Notice that the factor β = 1/T is not absorbed in the definition of the Hamiltonian.
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The first term on the right-hand side is a sum of correlation functions and the second
term is the square of the spontaneous magnetization,2

Nχ = β

N∑

i,j=1

〈SiSj〉 − βM2. (A.12)

If the system is translationally invariant,

〈SiSj〉 = 〈S0Sr〉 (r = |i − j|), 〈Si〉 =
M

N
= m (∀i), (A.13)

and we may rewrite the susceptibility as

χ = β
∑

l

(
〈S0Sl〉 − 〈S0〉〈Sl〉

)
. (A.14)

This equation shows that the susceptibility is the sum of connected correlation
functions (defined by the quantity in the parentheses on the right-hand side) and
connects the divergence of χ at the critical point with the two-point correlation
function. This relation holds not only for the Ising model but also for other systems
and is known as the static susceptibility sum rule. In the paramagnetic (disordered)
phase, the second term on the right-hand side of eqn (A.14) vanishes because there is
no spontaneous magnetization.

This sum rule is a consequence of the linear response theory and is a special
example of the fluctuation–dissipation theorem. Consider an arbitrary system whose
Hamiltonian H0 is modified because of the presence of an external inhomogeneous
field B(r) (a magnetic field being an example) as

H = H0 −
∫

dr O(r)B(r), (A.15)

where O(r) is the system variable that linearly couples to the external field (the
magnetization being an example). The free energy of the system is F = −β−1 log Z in
terms of the partition function

Z = Tr exp
(
− βH0 + β

∫
dr O(r)B(r)

)
. (A.16)

Let us define a generalized isothermal susceptibility

χ(r, r′) = − δ2F

δB(r)δB(r′)
(A.17)

as the second-order functional derivative of the free energy with the result

χ(r, r′) =
1
β

(
1
Z

δ2Z

δB(r)δB(r′)
− 1

Z

δZ

δB(r)
· 1
Z

δZ

δB(r′)

)
(A.18)

= β
(
〈O(r)O(r′)〉 − 〈O(r)〉〈O(r′)〉

)
≡ βG(r, r′). (A.19)

2 Rigorously speaking, it is necessary to take the thermodynamic limit N → ∞ first and then the
limit h → 0 to evaluate the spontaneous magnetization. See Section 5.6.
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If the system is translationally invariant, G(r, r′) = G(r − r′), and we have

χ =
∫

drχ(r) ≡ β

∫
dr G(r). (A.20)

This is a very profound result that explains why a divergent χ is associated with the
increase in the range of the two-point correlation function. In the case of a fluid, O(r) =
ρ(r) may represent the particle density and χ = κ is the compressibility. Therefore, a
divergent compressibility is correlated to the increase of both density fluctuations and
the range of the density–density correlation function. When the correlation length ξ
becomes comparable to the wavelength of light, the latter will be strongly scattered
by density inhomogeneities and the phenomenon of critical opalescence emerges.

Equation (A.20) connects the response χ of the system to an external perturbation
B with the fluctuations G in equilibrium. It thus has a similar physical content to the
fluctuation–dissipation theorem explained in critical dynamics, eqn (2.115).

A.3 Rushbrooke’s inequality

We prove here Rushbrooke’s inequality

α− + 2β + γ− ≥ 2. (A.21)

This inequality is related to the scaling relation α + 2β + γ = 2, the difference being,
first that the equality is replaced by an inequality, and secondly that the critical
exponents α and γ are restricted to those below the critical point. The present section
uses only a thermodynamic stability condition in contrast to the scaling theory in
Chapter 3.

The Helmholtz free energy F of a gas is a function of temperature T and volume
V . Correspondingly, the Helmholtz free energy of a magnetic system is a function of T
and m, the magnetization per spin. We define the heat capacity at fixed magnetization
m by the second-order derivative of F with respect to T , corresponding to the heat
capacity at fixed volume for a gas,

Cm = T

(
∂S

∂T

)

m

= −T

(
∂2F

∂T 2

)

m

. (A.22)

The entropy is also a function of temperature and magnetization, S(T,m). We now
consider the situation where m is determined as a function of the external field h and
temperature T and replace m in S(T,m) by m(h, T ) to have S(T,m(h, T )), which
we express by the same symbol S(T, h) for simplicity. The T -derivative of S(T, h)
corresponds to the heat capacity at constant pressure for a gas,

Ch = T

(
∂S(T, h)

∂T

)

h

(
= −T

(
∂2G

∂T 2

)

h

)
, (A.23)

where G is the Gibbs free energy. Using the relation between S(T, h) and S(T,m),
that is S(T, h) = S(T,m(h, T )), we have

(
∂S(T, h)

∂T

)

h

=
(

∂S(T,m)
∂T

)

m

+
(

∂S(T,m)
∂m

)

T

(
∂m

∂T

)

h

. (A.24)
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Then, if we write χ for the susceptibility ∂m/∂h, we find

χ(Ch − Cm) =
(

∂m

∂h

)

T

· T
(

∂S

∂m

)

T

(
∂m

∂T

)

h

. (A.25)

We use here the relation to be derived later,
(

∂m

∂h

)

T

(
∂S

∂m

)

T

=
(

∂m

∂T

)

h

, (A.26)

to obtain

χ(Ch − Cm) = T

{(
∂m

∂T

)

h

}2

. (A.27)

Now, the internal energy E satisfies

Cm = T

(
∂S

∂T

)

m

=
(

∂E

∂T

)

m

, (A.28)

and E is a monotonically increasing function of T due to the thermodynamic stability
of a macroscopic system.3 This implies Cm ≥ 0, and hence from eqn (A.27),

χCh ≥ T

{(
∂m

∂T

)

h

}2

. (A.29)

We take the limit h → 0 and substitute the definitions of critical exponents below
the critical point, χ ∝ (Tc − T )−γ− , Ch ∝ (Tc − T )−α− , ∂m/∂T ∝ (Tc − T )β−1 to get
Rushbrooke’s inequality (A.21).

It remains to show the identity (A.26). First, the following relation is derived,
(

∂h

∂m

)

T

(
∂m

∂T

)

h

(
∂T

∂h

)

m

= −1. (A.30)

For this purpose it is useful to note the functional relation f(h,m, T ) = 0 for some f
(not to be confused with the free energy), which shows that two variables among h,m
and T determine the value of the remaining one. An equivalent expression is h(m,T ).
Let us thus differentiate f(h(m,T ),m, T ) = 0 with respect to m to have

∂f

∂h

(
∂h

∂m

)

T

+
∂f

∂m
= 0. (A.31)

Similarly, from f(h,m(h, T ), T ) = 0,

∂f

∂m

(
∂m

∂T

)

h

+
∂f

∂T
= 0, (A.32)

and from f(h,m, T (m,h)) = 0

∂f

∂T

(
∂T

∂h

)

m

+
∂f

∂h
= 0. (A.33)

3 Otherwise, the system heats up (ΔT > 0) as its energy decreases (ΔE < 0).
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These three relations immediately lead to eqn (A.30). We now apply the Maxwell
relation (

∂S

∂m

)

T

= −
(
∂h

∂T

)

m

, (A.34)

derived by differentiation of

−S =

(
∂F

∂T

)

m

, h =

(
∂F

∂m

)

T

, (A.35)

to eqn (A.30) to prove (A.26).

A.4 Cumulants

The nth moment of a stochastic variable x with the probability density function P (x)
is defined as

〈xn〉 =
∫

dxxnP (x). (A.36)

The average of eikx can be expanded in terms of the moments as

〈eikx〉 =
∞∑

n=0

(ik)n

n!
〈xn〉, (A.37)

the exponentiation of which defines the cumulant 〈xn〉c,
∞∑

n=0

(ik)n

n!
〈xn〉 = exp

( ∞∑
n=1

(ik)n

n!
〈xn〉c

)
. (A.38)

For example, the first cumulant is equal to the average (the first moment) and the
second cumulant is the variance, as can be easily verified from the above definition,

〈x〉c = 〈x〉, 〈x2〉c = 〈x2〉 − 〈x〉2. (A.39)

The Gaussian distribution has the special property that 〈eikx〉 can be evaluated
explicitly to give

〈eikx〉 = exp

(
ik〈x〉 − k2

2
〈x2〉c

)
. (A.40)

This shows that all higher-order cumulants than the second-order one vanish. This
is a very convenient property of cumulants in comparison with moments, the latter
being non-vanishing to higher orders for the Gaussian distribution.

A.5 Renormalization group equations from the ε expansion

In this appendix we derive the differential renormalization group equation, eqns (4.56)
and (4.57), from the ε expansion in a d-dimensional system.
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The basic strategy is to start from the φ4 model (4.40) and carry out the processes
of coarse graining (integration of short-range degrees of freedom), rescaling of length
and renormalization of the spin degrees of freedom (i.e. fields) by using a perturbative
expansion in powers of the quartic term. As we will see below, a main mathematical
tool is the Gaussian integration.

It is convenient to write the basic Hamiltonian (4.40) with h = 0,

H =
∫

dr
{(

∇φ(r)
)2 + tφ(r)2 + uφ(r)4

}
, (A.41)

in the Fourier-transformed (wave-number) expression, often called the momentum
space representation following the convention of field theory,

φ(r) =
1

(2π)d

∫ Λ

0

dq eiq·rφ(q), φ(q) =
∫

dr e−iq·rφ(r), (A.42)

as in eqn (2.75). Here, we have used the same symbol φ both for the original and
Fourier-transformed variables to simplify the notation. The integral over momentum
is cutoff at the absolute value of momentum |qmax| = Λ, so that we have approximated
the volume of integration to a hypersphere of radius Λ. Singularities are expected to
come from the long-wavelength (small-q) modes, and therefore the cutoff is supposed
not to affect the results, which is indeed the case, as is shown in Section 4.2.2.
The momentum cutoff Λ is proportional to the inverse of the shortest length scale,
the lattice constant a, which will be gradually increased (i.e. coarse grained) as the
renormalization group proceeds. This means that Λ will be gradually decreased by
successive elimination of the large-q (short-length) degrees of freedom.

The Hamiltonian (A.41) is written as

H =
∫ Λ

0

dq

(2π)d

(
t + q2

)
φ(q)φ(−q)

+
u

(2π)4d

∫ Λ

0

dq1 · · · dq4(2π)dδ(q1 + · · · + q4)φ(q1)φ(q2)φ(q3)φ(q4), (A.43)

as can be verified by using

1
(2π)d

∫
dr eiq·r = δ(q). (A.44)

The quartic term in eqn (A.43) will be denoted as V in this appendix, i.e. H = H0 + V .
We will consider perturbations in powers of V .

A.5.1 Gaussian model: zeroth-order contribution

The zeroth-order contribution is the Gaussian model because the quartic term V
is absent, i.e. H = H0. Although we have already analyzed the Gaussian model in
Section 4.2.1, it is instructive to formulate the momentum-space renormalization group
for this model to illustrate the basic ideas used in higher-order calculations. As in
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the real-space renormalization group approach, one needs to perform two steps. The
first consists of integrating out (partial trace) the large momenta (short-wavelength)
degrees of freedom while the second step is concerned with the rescaling of (momen-
tum) variables and spin fields.

Let us introduce separate notations for spin variables with |q| smaller and larger
than Λ/b,

φ(q) =
{

S(q) 0 ≤ |q| < Λ/b
σ(q) Λ/b ≤ |q| ≤ Λ, (A.45)

where b is the scaling factor to be chosen slightly larger than 1. Notice that the spatial
rescaling by b corresponds to the momentum (wave number) rescaling by 1/b as they
are dimensionally inverse to each other. The Gaussian Hamiltonian is separated into
two parts, H = HS + Hσ, where

HS =
∫ Λ/b

0

dq

(2π)d
(t + q2)S(q)S(−q), Hσ =

∫ Λ

Λ/b

dq

(2π)d
(t + q2)σ(q)σ(−q).

(A.46)
Correspondingly, the partition function is the product of two parts, Z = ZSZσ, where

ZS =
∫ ∏

|q|<Λ/b

dS(q) e−HS , Zσ =
∫ ∏

Λ/b≤|q|≤Λ

dσ(q) e−Hσ . (A.47)

If one wishes to be mathematically more rigorous, one should define the system over
a finite volume Ω, and then perform the thermodynamic limit. In that case one needs
to replace integrals over q by sums, as indicated in Section 2.9, and the measure of
integration in eqn (A.47) should include a factor Ω−1/2 per mode q. The final result
is the same.

At the Gaussian level there is no coupling between S and σ variables. Following
the spirit of coarse graining of the short length scales, we perform the integration only
over the σ variables, i.e. a partial trace, and study what happens to the remaining
part HS . This process is equivalent to eliminating fluctuations at length scales a <
|r| < ba, i.e. to trace out the spin degrees of freedom within a region that corresponds
to a block in the real-space language. The integral over σ is the Gaussian integral
discussed in Section 2.9 and gives just a regular function of t and Λ, independent
of S

Zσ =
∏

Λ/b≤|q|≤Λ

(
(2π)1+d/2

2

√
π

t + q2

)
, (A.48)

which contributes to the free energy but not to the critical phenomena. Thus, the part
of HS in Z is trivially kept intact by this process. This feature is characteristic of the
Gaussian model.
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The rest of the renormalization group calculation consists of rescaling the momen-
tum space variables and renormalizing the spin degrees of freedom (rescaling of
momenta and spin fields)4

qb ≡ bq, φ(qb) ≡ ζ(b)−1S(q). (A.49)

The renormalized Hamiltonian for S now reads

HS =
∫ Λ

0

dqb

(2π)d
b−d(t + b−2q2

b )ζ2φ(qb)φ(−qb). (A.50)

This has the same form as the original Gaussian Hamiltonian, eqn (A.43) with u = 0,
if we choose

b−d−2ζ2 = 1, tb ≡ b−dζ2t. (A.51)

The spin-renormalization factor is therefore fixed to ζ = b1+d/2, and the renormalized
t satisfies

tb = b2t, (A.52)

in agreement with eqn (4.43).

A.5.2 First-order contribution

We next consider the effect of the quartic term V perturbatively. For this purpose we
again separate the partition function into S and σ parts,

Z =
∫ ∏

|q|<Λ/b

dS(q)
∫ ∏

Λ/b≤|q|≤Λ

dσ(q) e−HS−Hσ−V (S,σ)

=
∫ ∏

|q|<Λ/b

dS(q) e−HS Zσ 〈e−V (S,σ)〉σ, (A.53)

where V depends explicitly on both S and σ variables, and

Zσ =
∫ ∏

Λ/b≤|q|≤Λ

dσ(q)e−Hσ (A.54)

〈e−V (S,σ)〉σ =
1

Zσ

∫ ∏

Λ/b≤|q|≤Λ

dσ(q) e−Hσ e−V (S,σ). (A.55)

The expectation value 〈e−V 〉σ in eqn (A.53) is rewritten as a cumulant expansion,

Z = Zσ

∫ ∏

|q|<Λ/b

dS(q) e−HS e−〈V 〉σ+(〈V 2〉σ−〈V 〉2σ)/2+O(V 3). (A.56)

4 Rescaling of the spin field in real space is different. See eqns (3.7) and (4.42). They are related
by the Fourier transformation in the following way c(b)−1 = bdζ(b)−1.
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To evaluate the various contributions, it is necessary to separate the S- and σ-
variables in the Hamiltonian. We write the quartic term V (S, σ) as

V (S, σ) =
u

(2π)4d

∫ Λ

0

dq1 · · ·dq4 (2π)dδ(q1 + · · · + q4)φ(q1)φ(q2)φ(q3)φ(q4)

=
u

(2π)4d

{∫ Λ/b

0

dq1 · · · dq4 (2π)dδ(q1 + · · · + q4)S(q1)S(q2)S(q3)S(q4)

+
∫ Λ/b

0

dq1dq2dq3

∫ Λ

Λ/b

dq4(2π)dδ(q1 + · · · + q4)S(q1)S(q2)S(q3)σ(q4)

· · ·

+
∫ Λ

Λ/b

dq1 · · · dq4 (2π)dδ(q1 + · · · + q4)σ(q1)σ(q2)σ(q3)σ(q4)

}

≡ SSSS + 4SSSσ + 6SSσσ + 4Sσσσ + σσσσ, (A.57)

the latter expression having an obvious interpretation. For example, 4SSSσ stands for

u

(2π)4d

{∫ Λ/b

0

dq1dq2dq3

∫ Λ

Λ/b

dq4(2π)dδ(q1 + · · · + q4)S(q1)S(q2)S(q3)σ(q4)

+
∫ Λ/b

0

dq1dq2dq4

∫ Λ

Λ/b

dq3(2π)dδ(q1 + · · · + q4)S(q1)S(q2)σ(q3)S(q4)

+
∫ Λ/b

0

dq1dq3dq4

∫ Λ

Λ/b

dq2(2π)dδ(q1 + · · · + q4)S(q1)σ(q2)S(q3)S(q4)

+
∫ Λ/b

0

dq2dq3dq4

∫ Λ

Λ/b

dq1(2π)dδ(q1 + · · · + q4)σ(q1)S(q2)S(q3)S(q4)

}
. (A.58)

Similar abbreviations have been used for the other terms in eqn (A.57). Our goal is to
determine the renormalized Hamiltonian in terms of the long-wavelength variables S.
We will proceed in a way similar to the block-spin method of Section 4.1.2. Therefore,
the integral in the partition function is to be carried out only over the σ-variables, as
in the zeroth-order (Gaussian) case.

Our task in this section is to evaluate the first-order contribution, i.e. 〈V 〉σ,

〈V 〉σ = SSSS + 4SSS〈σ〉σ + 6SS〈σσ〉σ + 4S〈σσσ〉σ + 〈σσσσ〉σ, (A.59)

where the long-wavelength variables S have been kept intact, according to the defini-
tion of 〈· · · 〉σ. The first term SSSS is the unchanged quartic term for |q| < Λ/b and
will be rescaled later. The odd-order terms 〈σ〉σ and 〈σσσ〉σ vanish identically as Hσ

is even in σ in the definition of the integral, eqn (A.55). The final term in eqn (A.59),
〈σσσσ〉σ, gives an additive constant and plays no role in the calculation of parameter
changes under a renormalization group transformation (but contributes to the regular
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part of the free energy). Thus, only the term 6SS〈σσ〉σ yields a non-trivial correction
of O(V ) to the renormalized Hamiltonian.

Let us write SS〈σσ〉σ explicitly as

u

∫ Λ/b

0

dq1dq2

(2π)2d
S(q1)S(q2)

∫ Λ

Λ/b

dq3dq4

(2π)2d
(2π)dδ(q1 + · · · + q4)〈σ(q3)σ(q4)〉σ

= u

∫ Λ/b

0

dq1dq2

(2π)2d
S(q1)S(q2)(2π)dδ(q1 + q2)

∫ Λ

Λ/b

dq

(2π)d

1
2(t + q2)

, (A.60)

where we have used

〈σ(q3)σ(q4)〉σ = (2π)dδ(q3 + q4)
1

2(t + q2
3)

, (A.61)

as in eqn (2.84).5 The last integral in eqn (A.60) will be denoted as I1/2 hereafter,

I1 =
∫ Λ

Λ/b

dq

(2π)d

1
t + q2

. (A.62)

We now rescale q and renormalize S as

qb,i ≡ bqi, φ(qb,i) ≡ ζ(b)−1S(qi) (i = 1, 2). (A.63)

Then, eqn (A.60) becomes

uζ2b−2d

∫ Λ

0

dqb,1

(2π)d
φ(qb,1)φ(−qb,1)b

d · I1

2
, (A.64)

where we have used

δ(q1 + q2) = bdδ(qb,1 + qb,2). (A.65)

This result (A.64) represents a correction to the SS term in the Hamiltonian, the
q-independent part, as

tb ≡ ζ2b−dt + uζ2b−d · 6 · I1

2
= ζ2b−d(t + 3uI1), (A.66)

where the first term on the right-hand side is the Gaussian contribution, eqn (A.51).
The factor 6 comes from 6SS〈σσ〉σ. For ζ = b1+d/2 as required from the invariance of
the q-dependent part of the quadratic term, we find

tb = b2(t + 3uI1). (A.67)

5 Notice that the factor of temperature T in eqn (2.84) is absorbed in the definition of the
Hamiltonian in this section.
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The remaining SSSS term in eqn (A.59) needs just rescaling of q and renormal-
ization of S,

SSSS =
u

(2π)4d

∫ Λ/b

0

dq1 · · · dq4 (2π)dδ(q1 + · · · + q4)S(q1) · · ·S(q4)

=
uζ4b−4d+d

(2π)4d

·
∫ Λ

0

dqb,1 · · · dqb,4 (2π)dδ(qb,1 + · · · + qb,4)φ(qb,1) · · ·φ(qb,4). (A.68)

Thus, the renormalized value of u is

ub ≡ ζ4b−3du = b4−du, (A.69)

as has been found already in eqn (4.43).

A.5.3 Second-order contribution

The renormalization group equation for t, eqn (A.67), has a non-trivial correction term
3uI1 that may possibly yield to a non-Gaussian fixed point, t∗ �= 0, u∗ �= 0. Equation
(A.69) for u, in contrast, has yet no correction to the simple Gaussian evaluation, eqn
(4.43), and the only fixed point is u∗ = 0. Therefore, we need to calculate the next
order correction only for the coefficient u of the quartic term.

To find non-trivial contributions to the second-order correction, 〈V 2〉σ − 〈V 〉2σ, see
eqn (A.56), it is useful to write 〈V 2〉σ and 〈V 〉2σ explicitly as

〈V 2〉σ = 〈(S1S2S3S4 + 4S1S2S3σ4 + 6S1S2σ3σ4 + 4S1σ2σ3σ4 + σ1σ2σ3σ4)

· (S5S6S7S8 + 4S5S6S7σ8 + 6S5S6σ7σ8 + 4S5σ6σ7σ8 + σ5σ6σ7σ8)〉σ (A.70)

〈V 〉2σ = 〈S1S2S3S4 + 4S1S2S3σ4 + 6S1S2σ3σ4 + 4S1σ2σ3σ4 + σ1σ2σ3σ4〉σ
· 〈S5S6S7S8 + 4S5S6S7σ8 + 6S5S6σ7σ8 + 4S5σ6σ7σ8 + σ5σ6σ7σ8〉σ . (A.71)

From the argument in the preceding paragraph, we look for SSSS-type terms in eqn
(A.70), i.e. quartic in S, since these are the terms contributing to the renormalized u.
A generic term such as S1S2S3S4σ5σ6σ7σ8 means

S1S2S3S4σ4σ5σ6σ7 = u2

∫ Λ/b

0

dq1dq2dq3dq4

(2π)4d
S(q1)S(q2)S(q3)S(q4)

·
∫ Λ

Λ/b

dq5dq6dq7dq8

(2π)4d
σ(q5)σ(q6)σ(q7)σ(q8)

· (2π)2dδ(q1 + q2 + q3 + q4)δ(q5 + q6 + q7 + q8). (A.72)

Thus, the following classes of second-order corrections to the quartic term result:

(i) S1S2S3S4〈σ5σ6σ7σ8〉σ.
In 〈V 2〉σ − 〈V 〉2σ, this term cancels with the same term in eqn (A.71).
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(ii) S1S2S3〈σ4σ6σ7σ8〉σS5.
This term vanishes for the following reason. We first notice that
〈σ4σ6σ7σ8〉σ = 〈σ(q4)σ(q6)σ(q7)σ(q8)〉σ vanishes unless q4, q6, q7 and q8

are paired as (q4 = −q6, q7 = −q8), (q4 = −q7, q6 = −q8), or (q4 =
−q8, q6 = −q7) due to the quadratic structure of Hσ in eqn (A.46).6 For
example, if q4 is independent of q6, q7 and q8, then the integral over σ(q4)
will be decoupled from the others,

〈σ(q4)σ(q6)σ(q7)σ(q8)〉σ = 〈σ(q4)〉σ〈σ(q6)σ(q7)σ(q8)〉σ, (A.73)

which vanishes as Hσ is even in σ. In other words

〈σ4σ6σ7σ8〉σ = 〈σ4σ6〉σ〈σ7σ8〉σ + 〈σ4σ7〉σ〈σ6σ8〉σ + 〈σ4σ8〉σ〈σ6σ7〉σ.
(A.74)

The constraint q4 + q6 = 0, q7 + q8 = 0 is incompatible with the other
constraint q1 + q2 + q3 + q4 = 0, q5 + q6 + q7 + q8 = 0, which comes from
expressions such as eqn (A.58). The reason is that q7 + q8 = 0 and q5 +
q6 + q7 + q8 = 0 mean q5 + q6 = 0, which together with q4 + q6 = 0 leads
to q4 = q5. This is impossible since |q4| ≥ Λ/b (q4 is in σ) and |q5| < Λ/b (q5

is in S). Similar analyses apply to the combinations (q4 = −q7, q6 = −q8)
and (q4 = −q8, q6 = −q7).

(iii) S1S2〈σ3σ4σ7σ8〉σS5S6.
This gives a non-trivial contribution. As noticed above, the four-body
expectation value breaks up into three terms,

〈σ3σ4σ7σ8〉σ = 〈σ3σ4〉σ〈σ7σ8〉σ + 〈σ3σ7〉σ〈σ4σ8〉σ + 〈σ3σ8〉σ〈σ4σ7〉σ.
(A.75)

The first term on the right-hand side represents S1S2〈σ3σ4〉σS5S6〈σ7σ8〉σ,
which cancels with the same term in 〈V 〉2σ of eqn (A.71). Thus, only the last
two terms in eqn (A.75) contribute, both of which give the same value. We
then evaluate the second term and double its contribution,

2S1S2S5S6〈σ3σ7〉σ〈σ4σ8〉σ = 2u2

∫ Λ/b

0

dq1dq2dq5dq6

(2π)4d
S(q1)S(q2)S(q5)S(q6)

·
∫ Λ

Λ/b

dq3dq7

(2π)2d
〈σ(q3)σ(q7)〉σ

∫ Λ

Λ/b

dq4dq8

(2π)2d
〈σ(q4)σ(q8)〉σ

·(2π)2dδ(q1 + q2 + q3 + q4)δ(q5 + q6 + q7 + q8). (A.76)

6 The evaluation of these correlation functions constitute an application of the general Wick’s
theorem, which can be straightforwardly understood as a consequence of simple Gaussian integration.
See also Section 6.6.
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The factor after the integral over q3 and q7 (second and third lines in eqn
(A.76)) is evaluated as
∫ Λ

Λ/b

dq3dq7

(2π)2d
(2π)dδ(q3 + q7)

1
2(t + q2

3)

∫ Λ

Λ/b

dq4dq8

(2π)2d
(2π)dδ(q4 + q8)

1
2(t + q2

4)

·(2π)2dδ(q1 + q2 + q3 + q4)δ(q5 + q6 + q7 + q8)

=
∫ Λ

Λ/b

dq3

(2π)d

1
2(t + q2

3)

∫ Λ

Λ/b

dq4

(2π)d

1
2(t + q2

4)

·(2π)2dδ(q1 + q2 + q3 + q4)δ(q5 + q6 − q3 − q4)

=
∫ Λ

Λ/b

dq3

(2π)d

1
2(t + q2

3)
1

2(t + (q3 − q5 − q6)2)
(2π)dδ(q1 + q2 + q5 + q6)

≡ I2 + O(q5, q6)
4

(2π)dδ(q1 + q2 + q5 + q6). (A.77)

Here, the integral over q3, with q5 and q6 set to 0, has been defined as I2,

I2 =
∫ Λ

Λ/b

dq

(2π)d

1
(t + q2)2

. (A.78)

Then, the present contribution (A.76) reads

2u2

(2π)4d

∫ Λ/b

0

dq1dq2dq5dq6S(q1)S(q2)S(q5)S(q6)

·(2π)dδ(q1 + q2 + q5 + q6) ·
I2 + O(q5, q6)

4
. (A.79)

The correction term O(q5, q6) will be neglected hereafter since it corre-
sponds to spatial derivatives of S, and thus is not relevant to the renor-
malization group evaluation of the simple quartic term. Rescaling of q and
renormalization of S change eqn (A.79) into

2u2b−4d+dζ4 · I2

4
· 1
(2π)4d

∫ Λ

0

dqb,1dqb,2dqb,5dqb,6

·(2π)dδ(qb,1 + qb,2 + qb,5 + qb,6)φ(qb,1)φ(qb,2)φ(qb,5)φ(qb,6). (A.80)

This shows that the O(V 2) correction to the coefficient u of the quartic term
is, with ζ = b1+d/2 taken into account,

1
2
u2b4−dI2 × 6 × 6 × 1

2
= 9u2b4−dI2, (A.81)

where 6 × 6 comes from the corresponding numerical coefficients in eqn
(A.70), and the final 1/2 is due to the factor in front of 〈V 2〉σ − 〈V 〉2σ in the
exponent of eqn (A.56).
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(iv) S1〈σ2σ3σ4σ8〉σS5S6S7.
This vanishes for the same reason as in (ii).

(v) 〈σ1σ2σ3σ4〉σS5S6S7S8.
This also vanishes for the same reason as in (i).

We have exhausted all possibilities and have the following renormalization group
equations for t and u according to eqns (A.67), (A.69) and (A.81),

tb = b2(t + 3uI1) (A.82)

ub = b4−du(1 − 9uI2), (A.83)

where the minus sign of 9uI2 is due to the difference in the sign in front of 〈V 〉σ and
(〈V 2〉σ − 〈V 〉2σ)/2 in the exponent of eqn (A.56).

A.5.4 Differential form of the renormalization group equation

The integrals I1 and I2 are simplified in the limit of b close to 1, or 1 − 1/b ≡ l � 1
(b ≈ 1 + l), corresponding to an infinitesimal renormalization group transformation.
In that limit we can approximate the integrals in eqns (A.62) and (A.78) as (n = 1, 2)

In =
∫ Λ

Λ(1−l)

dq In(q) ≈ In(Λ)Λl, (A.84)

with

In(q) =
S

(2π)d
qd−1 1

(t + q2)n
, (A.85)

where S is the surface area of the unit sphere in the d-dimensional q space (not to be
confused with the spin field).7 Then,

I1 =
ΛdlS

(2π)d

1
t + Λ2

≡ cl

t + Λ2
(A.86)

I2 =
cl

(t + Λ2)2
. (A.87)

Therefore, for small l, eqns (A.82) and (A.83) reduce to

Δt = tb − t ≈ (1 + 2l)
(

t +
3cl

t + Λ2
u

)
− t ≈ 2lt +

3cl

t + Λ2
u, (A.88)

Δu = ub − u ≈ (1 + εl)u
(

1 − 9cl

(t + Λ)2
u

)
− u ≈ εlu − 9cl

(t + Λ)2
u2, (A.89)

7 The surface area of a unit sphere S can be computed in the following way

∫ ∞

−∞
dx1 · · · dxd e−(x2

1+···+x2
d) = πd/2 = S

∫ ∞

0
dx xd−1e−x2

=
S

2
Γ(d/2),

so that S = 2πd/2/Γ(d/2), where Γ(x) is the gamma function.



284 Appendix A

where ε = 4 − d. We finally have the desired differential equations with db = l

dt

db
= 2t +

3c

t + Λ2
u (A.90)

du

db
= εu − 9c

(t + Λ2)2
u2. (A.91)

A.6 Symmetry and Noether’s theorem

Symmetry plays important roles in physics and is often related to conservation
laws. For instance, invariance of the Lagrangian under time displacement implies
the conservation of energy. Noether’s theorem is a formal mathematical statement
about the consequences of a field theory having continuous symmetries: To every
continuous group of transformations that leave the action invariant corresponds a
conserved charge. We assume in the present appendix that the reader has some basic
knowledge of the concepts and notation of geometry or general relativity such as
covariant and contravariant tensor quantities and an implicit summation over repeated
indices, known as Einstein summation.8

A.6.1 Principle of stationary action

Consider a classical field theory whose action is given by

S[Φ] =
∫

Γ

ddr L(Φ, ∂μΦ), (A.92)

with the Lagrangian density L containing only up to first-order derivatives of the
fields φi, collectively denoted by Φ(r) = {φ1(r), · · · }. This ensures that the equations
of motion for the fields, the field equations, are second-order differential equations in
the time variable, as will be shown later. Notice that the Lagrangian density does not
depend explicitly on the coordinates rμ, where μ = 1, . . . , d.

To write down the field equations we need to apply a variational principle, by
considering variations of the action δS[Φ] ≈ S[Φ + δΦ] − S[Φ], such that variations of
the field δΦ are zero on the boundary ∂Γ of the volume Γ. The explicit form of the
variation is

δS[Φ] =
∫

Γ

ddr δL(Φ, ∂μΦ) =
∫

Γ

ddr

(
∂L
∂φi

δφi +
∂L

∂(∂μφi)
∂μδφi

)
. (A.93)

Integrating the second term by parts and remembering that δφi = 0 on the boundary
∂Γ, we obtain

δS[Φ] =
∫

Γ

ddr
( ∂L

∂φi
− ∂μ

( ∂L
∂(∂μφi)

))
δφi. (A.94)

8 There exists a version of the theorem for classical discrete systems but we are going to discuss
only the field-theory formulation.
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From the stationarity condition that δS[Φ] = 0 for arbitrary δΦ (satisfying the van-
ishing boundary condition), this expression leads to the following equation of motion
of the field, the Euler–Lagrange equations, one for each field φi,

∂L
∂φi

− ∂μ

( ∂L
∂(∂μφi)

)
= 0. (A.95)

This is a set of partial differential equations for the fields. When one of the variables
is time, this equation is a second-order differential equation of time t when the
Lagrangian density is quadratic in ∂tφi, as is usually assumed.

A.6.2 Symmetries and conserved charges

A sufficient condition for a transformation to be called a symmetry transformation of
the theory is that it either preserves the functional form of the Lagrangian density or
it only changes the Lagrangian density by the addition of a divergence. Then, under
the mapping Φ(r) → Φ′(r′),

L′(Φ′(r′), ∂′
μΦ′(r′)) = L(Φ′(r′), ∂′

μΦ′(r′)) + ∂′
μΘμ(r′). (A.96)

This preserves the Euler–Lagrange equations of motion since the last divergent term
is rewritten as a surface contribution after integration using Gauss theorem and hence
does not affect the variational calculations leading to eqn (A.94).

Suppose that one performs a transformation that affects both the coordinates and
the fields, i.e. r → r′ (r′μ = Λμ

ν rν) and Φ(r) → Φ′(r′) = F(Φ(r)). Then, the action
changes to

S′[Φ′] =
∫

Γ′
ddr′ L(Φ′, ∂′

μΦ′) =
∫

Γ

ddr J(r) L(F(Φ),Λ−1 · ∂F(Φ)), (A.97)

where J(r) is the Jacobian of the transformation.
As a simple example, consider a scale transformation r → b−1r, Φ(r) → Φ′(r′) =

bΔΦ(r), with Δ the scaling dimension of the field and with the Jacobian J(r) = b−d.
Then, the transformed action is

S′[Φ′] = b−d

∫

Γ

ddr L(bΔΦ, b(1+Δ)∂μΦ). (A.98)

If the Lagrangian density corresponds to a real scalar field φ(r)

L(φ, ∂μφ) = ∂μφ ∂μφ + λφn, (A.99)

with λ a coupling constant and n an integer, the action is scale invariant S[Φ] = S′[Φ′]
only if Δ = d/2 − 1, and n = d/Δ = 2d/(d − 2).

We now reflect on the effect of infinitesimal coordinate transformations on the
action of the form

r′μ = rμ + εa δrμ

δεa
, Φ′(r′) = Φ(r) + εa δF

δεa
(r), (A.100)

where {εa} is a set of infinitesimal, coordinate-dependent, parameters characterizing
the continuous mapping. For example, a simple uniform translation has r′μ = rμ + εμ
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with a constant vector εμ. To first order in εa, the Jacobian matrix and its inverse
transform as

∂r′ν

∂rμ
= δν

μ + ∂μ

(
εa δrν

δεa

)
,

∂rν

∂r′μ
= δν

μ − ∂μ

(
εa δrν

δεa

)
, J(r) = 1 + ∂μ

(
εa δrμ

δεa

)
.(A.101)

Then, the transformed action becomes

S′[Φ′] =
∫

Γ

ddr J(r) L
(

Φ + εa δF
δεa

,
(
δν
μ − ∂μ

(
εa δrν

δεa

))
∂ν

(
Φ + εa δF

δεa

))
. (A.102)

Let us evaluate δS = S′ − S, which does not vanish in general. For this purpose, we
expand the Lagrangian in the integrand of eqn (A.102) as

L
(

Φ + εa δF
δεa

, ∂μΦ + ∂μ

(
εa δF

δεa

)
− ∂μ

(
εa δrν

δεa

)
∂νΦ

)

= L(Φ, ∂μΦ) + εa δF
δεa

∂L
∂Φ

+∂μ

(
εa δF

δεa

) ∂L
∂(∂μΦ)

− ∂μ

(
εa δrν

δεa

)
∂νΦ

∂L
∂(∂μΦ)

. (A.103)

Here, since Φ represents a collection of fields {φi}, the above expression assumes a sum-
mation over the field index; for instance ∂L/(∂(∂μΦ))∂νΦ means ∂L/(∂(∂μφj))∂νφj .
With the Jacobian contribution of eqn (A.101) taken into account, the change in the
action is

δS =
∫

Γ

ddr

(
εa δF

δεa

∂L
∂Φ

+ ∂μ

(
εa δF

δεa

) ∂L
∂(∂μΦ)

−∂μ

(
εa δrν

δεa

)
∂νΦ

∂L
∂(∂μΦ)

+ ∂μ

(
εa δrμ

δεa

)
L
)

. (A.104)

Notice that the action is invariant, δS = 0, if εa is a constant independent of the
coordinates, i.e. a global symmetry. This means that for a coordinate-dependent εa, δS
involves only the first-order derivative of εa with respect to the coordinates. We there-
fore drop terms involving εa without derivatives. Equation (A.104) therefore becomes

δS = −
∫

Γ

ddr Jμ
a ∂μεa, (A.105)

with

Jμ
a =

( ∂L
∂(∂μΦ)

∂νΦ − δμ
νL
)δrν

δεa
− ∂L

∂(∂μΦ)
δF
δεa

, (A.106)

where Jμ
a is called the canonical current associated with the transformation.

Integration by parts yields

δS =
∫

Γ

ddr (∂μJμ
a ) εa. (A.107)

If δS = 0 for arbitrary small εa, the divergence of the current should vanish,

∂μJμ
a = 0. (A.108)
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This is a conservation law because, if the zeroth coordinate is time and the other
coordinates are spatial, this equation can be written as

∂ρ

∂t
+ ∇ · J = 0, (A.109)

where ρ is the zeroth component of the current vector, J0, and
J = (J1, J2, J3, . . . , Jd). The subscript a plays no role in this example. This is
the well-known charge–current conservation. The emergence of a conservation law,
eqn (A.108), as a consequence of symmetry (or invariance δS = 0) is the statement
of Noether’s theorem.

We point out that there is some freedom in the definition of the current. One may
add to the canonical current the divergence of an antisymmetric tensor, Bνμ

a = −Bμν
a ,

Jμ
a → Jμ

a + ∂νBνμ
a , and still eqn (A.108) is satisfied.

In classical field theories, time t plays the role of a coordinate and is typically
associated with the zeroth component of rμ, i.e. r0 = t. One can then define a charge
associated with the current J0

a in the following way

Qa =
∫

V

dd−1r J0
a , (A.110)

with the integral performed over the spatial coordinates in volume V . Now, consider
its time derivative, using eqn (A.108),

∂0Qa =
∫

V

dd−1r ∂0J
0
a = −

∫

V

dd−1r ∂iJ
i
a = −

∫

∂V

dSi J i
a. (A.111)

This vanishes, ∂0Qa = 0, if the current becomes zero sufficiently rapidly towards the
surface. Therefore, under these conditions, Noether’s theorem also implies the (time)
conservation of a charge associated with a conserved current.

A.6.3 Energy–momentum tensor

The energy–momentum tensor or the stress tensor is the conserved current associated
with translational invariance and, therefore, Noether’s theorem can be used to derive
it. Its preponderant role in conformal field theory compels us to look at its properties
in more detail.

For a translationally invariant system, the Lagrangian density must be invariant
under the transformation r′μ = rμ + εμ. The corresponding conserved canonical cur-
rent is, according to eqn (A.106),

Tμ
ν =

∂L
∂(∂μΦ)

∂νΦ − δμ
νL, (A.112)

which satisfies ∂μTμ
ν = 0, see eqn (A.108). The four-momentum is the conserved

charge, using eqn (A.110),

P ν =
∫

V

dd−1r T 0ν , (A.113)



288 Appendix A

where the doubly contravariant energy–momentum tensor has been used,

Tμν = gρνTμ
ρ =

∂L
∂(∂μΦ)

∂νΦ − gμνL. (A.114)

The energy density corresponds to the component T 0
0 = T 00 of the tensor and the

total energy is P 0, which defines the Hamiltonian. For a real scalar field φ(r) with
Lagrangian (in the Euclidean space-time),

L(φ, ∂μφ) =
1
2
(∂μφ ∂μφ + m2φ2), (A.115)

the doubly covariant energy–momentum tensor (Tμν = gμρT
ρ
ν ) is

Tμν = ∂μφ ∂νφ − gμνL, (A.116)

and turns out to be symmetric Tμν = Tνμ. For an arbitrary field theory, though, it
is not necessarily true that the conserved canonical current produces a symmetric
tensor. We have seen in the previous section that there is some freedom in the
definition of the conserved current. By adding the divergence of an antisymmetric
tensor, Bρμν = −Bμρν , to the conserved canonical current, one can generate another
conserved current Tμν → Tμν + ∂ρB

ρμν , since ∂μ∂ρB
ρμν = 0. The important fact is

that this addition does not alter the conservation law. In field theories with rotation
(Euclidean) or Lorentz (Minkowski) invariance, Tμν can be made symmetric. See also
Appendix A.10.9

A.6.4 Generators of symmetry transformations

It is instructive to show the relation between the canonical current and the generators
of infinitesimal transformations. These generators {ga} are defined as

Φ′(r) = (1 − iεaga)Φ(r). (A.117)

If εa is coordinate independent, the transformation defines a global symmetry. From
eqn (A.100), we may rewrite the fields in terms of the transformed coordinate to lowest
order in εa

Φ′(r′) = Φ(r) + εa δF
δεa

(r) = Φ(r′) − εa δrμ

δεa
∂′

μΦ(r′) + εa δF
δεa

(r′), (A.118)

and thus identify

igaΦ(r) =
δrμ

δεa
∂μΦ(r) − δF

δεa
(r). (A.119)

The conserved canonical current of eqn (A.106) in terms of the generators can be
written as

Jμ
a = i

∂L
∂(∂μΦ)

gaΦ − δμ
ν

δrν

δεa
L. (A.120)

9 One can define a symmetric energy-momentum tensor in an alternative way, as in eqn (6.35). In
other words, it can be defined as the functional derivative of the action with respect to the metric.
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As an example, consider the case of an infinitesimal translation by a vector εμ = εμ,
i.e. r′μ = rμ + εμ. Then, δF/δεμ = 0, and δrμ/δεν = δμ

ν , which leads us to the well-
known generator of translations

ga = Pν = −i∂ν . (A.121)

Another example of great interest for conformal transformations is the case of an
infinitesimal homogeneous Lorentz transformation in Euclidean space-time

r′μ = rμ + εμ
ν rν , (A.122)

where εμ
ν = ωμρgρν = ωρνgρμ, with an antisymmetric tensor ωμν = −ωνμ and the flat

space metric gμν = diag(1, 1, · · ·, 1). This implies, using gμρgρν = δμ
ν and gμν = gνμ,

δrμ

δωρν
=

1
2
(gρμrν − gνμrρ). (A.123)

Similarly, the effect of the Lorentz transformation on the field Φ is

F(Φ) = (1 − i
2
ωρνSρν)Φ, (A.124)

with a Hermitian matrix Sρν . It follows that

δF
δωρν

= − i
2
SρνΦ. (A.125)

By inserting eqns (A.123) and (A.125) into eqn (A.119), we find the generators of the
Lorentz transformation as

2ga = Lρν = i(rρ∂ν − rν∂ρ) + Sρν . (A.126)

A.6.5 Goldstone theorem

The Goldstone theorem states that there exists a massless (zero-energy) mode if a
continuous global symmetry is spontaneously broken. To formulate it more precisely,
consider a Lagrangian density

L(Φ, ∂μΦ) =
1
2
∂μΦ∂μΦ + V (Φ), (A.127)

where Φ(r) = (φ1(r), · · · , φn(r)) is an n-component vector field. We may define the
mass matrix as

(M2)ij =
∂2V

∂φi∂φj
(A.128)

because, for a simple single-component Gaussian field theory,

L(φ, ∂μφ) =
1
2

∂μφ ∂μφ +
1
2

m2φ2, (A.129)

the parameter m is called the mass in field theory. Suppose that, under a global
symmetry operation gα (see Appendix A.7), the field Φ̄ (representing a broken
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symmetry state) changes into another state gαΦ̄ = e−iεagaΦ̄(�= Φ̄). Here, ga is the
generator of an infinitesimal transformation,

Φ′(r) = (1 − iεaga)Φ(r). (A.130)

Since the system has the symmetry under g, the potential V is invariant under an
infinitesimal transformation,

∂V (gαΦ)
∂εa

∣∣∣∣
εa=0

=
∂V

∂φj

∂(gαΦ)j

∂εa

∣∣∣∣
εa=0

= −i
∂V

∂φj
(gaΦ)j = 0 (A.131)

for generic Φ. Then, by differentiating this last equation with respect to φi, we obtain

∂

∂φi

(
∂V

∂φj
(gaΦ)j

)
=

∂2V

∂φi∂φj
(gaΦ)j +

∂V

∂φj

∂(gaΦ)j

∂φi
= 0. (A.132)

If we restrict ourselves to the state of broken symmetry, Φ = Φ̄, the derivative of the
potential vanishes by definition, ∂V/∂φj |Φ=Φ̄ = 0, and therefore the mass matrix has
a massless mode,

(M2)ij(gaΦ̄)j = 0. (A.133)

A.7 Basics of group theory and Lie algebras

A minimum amount of basic knowledge, mainly the definitions and notations, is
summarized in this appendix for the group theory and Lie algebra.

A.7.1 Group and its representations

Symmetries may be classified as external or space-time (e.g. the Lorentz group,
the group of Lorentz transformation) and internal. The latter refers to the set of
transformations that leave the Hamiltonian or action invariant and act on the fields
but not on the coordinates; these are the symmetries of the physical laws. The set of
transformations forms a group G and is written as

G = {gα}, (A.134)

with group elements gα: A group is a non-empty set of elements, which is closed
under an associative product (gα · gβ) · gγ = gα · (gβ · gγ), contains an identity, e, and
all of its elements are invertible, i.e. gα · g−1

α = e. The number of elements of the
group defines its order, which may be finite, denumerable infinite (discrete), or non-
denumerable infinite (continuous). In general, groups of symmetries in physics are
either finite or non-denumerable infinite (known as Lie groups, see below). Besides,
a group G may be Abelian, in which all its group elements commute gα · gα′ = gα′ ·
gα,∀α, α′, or non-Abelian. A group representing symmetries of a physical system may
be local (also called gauge), meaning that the symmetry applies to subsystems of the
original physical system, or global, where all the degrees of freedom are involved in the
transformation. Invariant physical observables, O, are those physical quantities that
remain invariant under the symmetry group G.

Table A.1 shows representative examples of physical models displaying different
kinds of symmetries. For instance, the Heisenberg Hamiltonian without external field
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Table A.1 Examples of models displaying different

kinds of symmetries. The group (or subgroup) of

symmetries involved is written in parentheses. BCS

stands for the Bardeen-Cooper–Schrieffer model of

superconductivity.

Symmetry Discrete Continuous

Ising [Z2] XY [SO(2)]

Global

p-clock [Zp] Heisenberg [SO(3)]

Z2 gauge [Z2] U(1) gauge [U(1)]

Local

BCS [hidden SU(2)]

is invariant under all the geometric symmetries of the lattice as well as under the
group SO(3) that applies to the spin space (the Special Orthogonal group in three
dimensions, which is non-Abelian). This means that, if we rotate all spins through
an arbitrary angle about a fixed axis in three dimensions, the Hamiltonian remains
invariant because the interaction is written as the inner product of two spins, Si · Sj .
Similarly, if one considers the φ4 field theory model of eqn (5.23) and performs the Z2

mapping φ(r) → −φ(r) at all r, the Hamiltonian (or action) remains invariant. The
Abelian group Zp is composed of p elements, each of which corresponds to the rotation
in a two-dimensional space by an angle that is a multiple of 2π/p. The p-clock model
has the same expression as the XY model

H = −J
∑

〈ij〉
cos(φi − φj), (A.135)

the difference being in the values of the angle variable; φi is an integer multiple of
2π/p. This Hamiltonian clearly has the global symmetry of Zp, φi → φi − 2πk/p (∀i)
with an integer k. The XY model is recovered in the limit p → ∞. Some accounts are
given on the lattice gauge theory listed in Table A.1 in Section 7.7.

With each group element gα there is an associated matrix that will be denoted as
Oα = O(gα) satisfying the same group relations. The set {Oα} forms a representation
of the group G. A representation is a homomorphic mapping of the group G onto
a set of matrices O such that: O(e) = 1 and OαOβ = O(gαgβ). The dimension of
the representation, dim(O), is the dimension of the (vector) space on which it acts.
In this book, by a representation we simply mean a non-singular dim(O)×dim(O)
matrix representation. A representation is irreducible if its invariant subspaces under
the action of all the elements of the group are only the empty space and the full space.
A completely reducible representation can be written as a direct sum of irreducible
representations, known as irreps.

Consider the Hamiltonian of a quantum system, H, which commutes with Oα,
i.e. [H,Oα] = 0. The set of eigenstates {|Ψn〉} with the same eigenvalue En form an
invariant subspace
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HOα|Ψn〉 = OαH|Ψn〉 = EnOα|Ψn〉. (A.136)

This implies that |Ψ′
n〉 = Oα|Ψn〉 is also an eigenstate with the same eigenvalue.

When the dimension of this invariant subspace is larger than one, the energy eigenvalue
En is degenerate. The dimension of the degenerate subspace is equal to the dimension of
the representation of G associated with the eigenstate |Ψn〉. If the group G is Abelian,
all the irreps are one-dimensional and there is no degeneracy induced by G. It is
important to emphasize that symmetry does not always imply degeneracy.

A.7.2 Lie algebra

An interesting case, because of the physical consequences, is realized by the presence
of continuous symmetries, such as SO(3). We have already seen that the set of
continuous transformations forms a group, known as the Lie group. Lie groups play
a fundamental role in physics. In the Lie group, a notion of continuity or closeness
should be defined such that a finite transformation of the group can be generated by
a series of infinitesimal ones. A simple example is the group of spatial translations, for
which a finite amount of translation is achieved by the accumulation of infinitesimal
translations.

For a one-parameter continuous group, a representation of its elements can be
written as

Oμ(θ) = eiθXμ , (A.137)

where θ is a continuous parameter and the Xμs are the generators of the Lie group.10

The representations of the group elements are defined such that θ = 0 represents the
identity operator 1 and an infinitesimal transformation δθ is expressed as

Oμ(δθ) = 1 + i δθ Xμ. (A.138)

The generators form a Lie algebra: A real/complex Lie algebra L is a linear space
over real/complex numbers, where a Lie product [ , ] is defined that satisfies the
following rules, (a, b, c ∈ L and α, β ∈ R or C):

[αa + βb, c] = α[a, c] + β[b, c]

[a, b] = −[b, a]

0 = [a, [b, c]] + [b, [c, a]] + [c, [a, b]]. (A.139)

An example of a Lie product is the commutator [a, b] = ab − ba. The Poisson bracket
used in classical mechanics also satisfies the above condition. The Lie algebra is
required to be closed by the Lie product, i.e. [Xμ,Xν ] ∈ L,

[Xμ,Xν ] = iCγ
μν Xγ , (A.140)

where an implicit summation over the repeated index γ is assumed (Einstein summa-
tion). The coefficient Cγ

μν is called the structure constant of the algebra. The relation
of eqn (A.140) is also often called the Lie algebra in the physics literature.

10 Precisely speaking, a generator is defined by the differentiation of an element of the Lie group
near the identity e, not necessarily by using the representation of the element. We, nevertheless, refer
to an element and its representation interchangeably in this book as long as it causes no confusion.
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A.8 Basics of homotopy theory

We formulate the theory of homotopy described in Section 5.8 in a little more formal
way. Let X and Y be two topological spaces and consider the set of maps F = {fi}
from closed curves in X to Y. In the example of the XY model in two dimensions
given in Section 5.8, X is R

2 and Y is S
1. Two maps f0 and f1 are homotopic if

they can be continuously deformed into each other. For example, any loop Γ on the
surface of a sphere is homotopic to a point since Γ can be continuously deformed
to a point, as shown in Fig. 5.6. On the other hand, the surface of a doughnut has
loops that can be shrunk to a point while other loops, e.g. the ones wrapping the main
circumference, cannot be. This equivalence relation defines an equivalence class known
as the homotopy class. Mathematically, let I be the interval [0, 1] and x0 a point in
X . Then, a loop is defined as a continuous map

Γ : I � x → Γ(x) ∈ X , (A.141)

with Γ(0) = Γ(1) = x0. The product of two loops Γ1,Γ2 based at x0 is another loop
Γ1 ◦ Γ2 : I → X such that

Γ1 ◦ Γ2(x) =
{

Γ1(2x) 0 ≤ x ≤ 1/2
Γ2(2x − 1) 1/2 ≤ x ≤ 1 , (A.142)

while the inverse of a loop Γ is Γ−1(x) = Γ(1 − x) that corresponds to traversing the
loop in the opposite direction. The product or composition of loops is associative, i.e.
Γ1 ◦ (Γ2 ◦ Γ3) = (Γ1 ◦ Γ2) ◦ Γ3. The loops by themselves do not have a group structure,
but the equivalence classes of loops form a group (see Appendix A.7).

Let us start by defining the equivalence relation ‘homotopic to’. Two loops Γ1 and
Γ2 based at x0 are homotopic, symbolically written Γ1 ∼ Γ2, if there is a continuous
map Υ, called the homotopy,

Υ : I × I � (x, t) → Υ(x, t) ∈ X , (A.143)

such that Υ(x, 0) = Γ1(x),Υ(x, 1) = Γ2(x), ∀x ∈ I, and Υ(0, t) = Υ(1, t) = x0, ∀t ∈ I.
As anticipated, the relation ∼ defines an equivalence relation with the class of loops
homotopic to a representative loop Γ denoted as [Γ]. The product or composition of
homotopy classes is defined by [Γ1] ◦ [Γ2] = [Γ1 ◦ Γ2]. The first homotopy group or the
fundamental group, π1(X , x0), is the set of homotopy classes of loops based at x0 ∈ X .
If the topological space X is arcwise connected,11 then two groups based at different
points x0 and x1 are isomorphic, π1(X , x0) ∼= π1(X , x1), which means that we can
simply write π1(X ) for the fundamental group. In our example of the XY model, the
fundamental group is π1(S1) = Z, the group of integers under addition.

The first homotopy group classifies classes of loops in a given topological space X .
One may sometimes wish to assign other groups to X . Indeed, it is possible to define
homotopy classes of n-dimensional (n ≥ 1) spheres S

n in X with the property that they
realize higher homotopy groups, πn(X ). As before, if X is arcwise connected, one does
not need to specify the base point. The n-loop based at x0 ∈ X is a continuous map

11 X is arcwise connected if, for any x0 and x1 ∈ X , there exists a path joining these two points.
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Γ : In � xn → Γ(xn) ∈ X , (A.144)

and the homotopy is defined in terms of the unit n-cube interval

Υ : In × I � (xn, t) → Υ(xn, t) ∈ X . (A.145)

Although the fundamental group may be non-Abelian, higher homotopy groups
(n > 1) share the property of being always Abelian.

We would like to emphasize that homotopy groups classify maps, or specifically in
our XY model example, classify spin configurations. Homeomorphisms between the
topological spaces X and Y categorize those spaces into equivalent classes. The fact
that homotopy groups can be defined gives a real intrinsic value to homotopy theory
since that same group structure provides the laws for the combination of defects and
the rules for their characterization and classification.

A.9 Restrictions on the type of conformal mappings

We show in this appendix that translation, rotation, dilatation and the special confor-
mal transformation exhaust the list of possible conformal transformations for d ≥ 3.
Also shown is that the Cauchy–Riemann equations emerge for d = 2, which means that
holomorphic transformations are allowed as conformal mappings in two dimensions in
addition to the above-mentioned transformations. It is assumed also in the present
and next appendices that the reader is familiar with the notations of geometry or
general relativity. We consider an infinitesimal transformation of the Euclidean metric,
gμν = δμν , where δμν is Kronecker’s symbol, and consequently we do not distinguish
between covariant and contravariant quantities, i.e. upper and lower indices.

Let us consider an infinitesimal coordinate transformation r′μ = rμ + εμ(r). This
induces local variations of the metric as (∂μ = ∂/∂rμ)

g′μν = gμν − (∂μεν + ∂νεμ) = gμν + δgμν (A.146)

because of the definition

g′μν(r′) =
∂rκ

∂r′μ
∂rλ

∂r′ν
gκλ(r), (A.147)

and its consequence for an infinitesimal transformation r′μ = rμ + εμ

∂rκ

∂r′μ
= δκμ − ∂μεκ. (A.148)

According to eqn (A.146), the requirement of local angle preservation for conformal
mappings

g′μν(r′) = Ω(r)gμν(r) (A.149)

implies

∂μεν + ∂νεμ = f(r)gμν (A.150)

for some f(r). Summing it over μ = ν, we find

2∂μεμ = f(r)d, (A.151)
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so that eqn (A.150) becomes

∂μεν + ∂νεμ =
2
d

gμν (∂κεκ). (A.152)

Now, let us apply ∂κ to eqn (A.150) as

∂κ∂μεν + ∂κ∂νεμ = gμν∂κf, (A.153)

and write two equivalent equations obtained by the changes of indices μ ↔ κ and
ν ↔ κ,

∂μ∂κεν + ∂μ∂νεκ = gκν∂μf (A.154)

∂ν∂μεκ + ∂ν∂κεμ = gμκ∂νf. (A.155)

If we sum eqns (A.153) and (A.154) and subtract eqn (A.155) from the result, we reach

2∂μ∂κεν = gμν∂κf + gκν∂μf − gμκ∂νf. (A.156)

Summation of this equation over μ = κ results in

2∂2εν = (2 − d)∂νf, (A.157)

or, by a further differentiation,

2∂2∂μεν = (2 − d)∂μ∂νf. (A.158)

Notice that this equation holds if we exchange μ and ν since the right-hand side is
symmetric with respect to μ and ν. An application of ∂2 to eqn (A.150) yields

∂2(∂μεν + ∂νεμ) = gμν∂2f, (A.159)

the left-hand side of which coincides with the left-hand side of eqn (A.158) because of
the symmetry of this latter equation under the exchange of μ and ν. We then arrive at

(2 − d)∂μ∂νf = gμν∂2f. (A.160)

Summation of both sides over μ = ν yields

(2 − d)∂2f = d ∂2f. (A.161)

If d �= 1, 2, we conclude ∂2f = 0 and thus ∂μ∂νf = 0 according to eqn (A.160).
Consequently, f is at most linear in coordinates, and εμ is therefore at most
quadratic according to eqn (A.151). As discussed in Sections 6.2 and 6.3, infinitesimal
transformations of at most quadratic order correspond to translation, rotation,
dilatation and the special conformal transformation. This is what we planned to show.

In two dimensions, d = 2, we have the additional result that eqn (A.152) yields the
Cauchy–Riemann equations. Let us write the right-hand side of eqn (A.152) explicitly
as

gμν (∂κεκ) = δμν (∂1ε1 + ∂2ε2). (A.162)

Then, the diagonal case μ = ν = 1 of eqn (A.152) is

2∂1ε1 = ∂1ε1 + ∂2ε2, (A.163)
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and the off-diagonal case μ = 1, ν = 2 is

∂1ε2 + ∂2ε1 = 0. (A.164)

These are the Cauchy–Riemann equations, ∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1. We thus
conclude that any holomorphic function represents a conformal mapping in two
dimensions.

A.10 Properties of the energy–momentum tensor

In this appendix we derive eqn (6.36) and discuss a few important properties of the
energy–momentum tensor in two dimensions.

Since a coordinate transformation z → z + ε(z) does not change the value of a
correlation function 〈Xn〉 and since the partition function does not change by the
same transformation, the numerator of the definition

〈Xn〉 =

∫
Dφ Xne−S

∫
Dφ e−S

(A.165)

also remains invariant,
∫

Dφ
(
δXn

)
e−S −

∫
Dφ Xn

(
δS
)
e−S = 0, (A.166)

or more explicitly,
∑

i

〈φ1(z1, z̄1) · · · δεε̄φi(zi, z̄i) · · ·φn(zn, z̄n)〉

+
1
2π

∫

D̄

d2r ∂μεν〈Tμν(r)φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 = 0, (A.167)

where D̄ is the region outside D defined in Section 6.4. We rewrite a part of the second
term by integration by parts as

1
2π

∫

D̄

d2r ∂μενTμν(r) =
1
2π

∮

C

drλ ωλμενTμν(r) − 1
2π

∫

D̄

d2r εν∂μTμν(r), (A.168)

where the first term on the right-hand side is the surface (indeed, line) contribution
and ωλμ is an antisymmetric tensor ω12 = −ω21 = 1, ω11 = ω22 = 0. Since εν can be
chosen arbitrarily in D̄ and the final result should not depend upon this choice, we
conclude from the second term that the energy–momentum tensor satisfies

∂μTμν = 0. (A.169)

The integrand of the first term on the right-hand side of eqn (A.168) can be rewritten
in terms of complex variables

w = r1 + i r2, w̄ = r1 − i r2, ε(w) = ε1 + i ε2, ε̄(w̄) = ε1 − i ε2, (A.170)
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and using the following properties of the energy–momentum tensor, to be proved later,

T12 = T21, T11 + T22 = 0, (A.171)

it results

drλ ωλμενTμν = i dw ε(w)T (w) − i dw̄ ε̄(w̄)T̄ (w̄), (A.172)

where we have used the definition of T (w) and T̄ (w̄) in eqns (6.37) and (6.38). We
insert this equation into eqn (A.168) and then into eqn (A.167) and use eqn (6.22) for
δεε̄φi to complete the derivation of eqn (6.36).

It remains to be shown that the energy–momentum tensor is symmetric and
traceless, eqn (A.171). For a conformally invariant theory, the action is invariant under
rotations

z + ε(z) = eiθz ≈ (1 − iθ)z. (A.173)

This means ε1 = θr2, ε2 = −θr1, which leads to ∂2ε1 = θ, ∂1ε2 = −θ with other
derivatives being zero. Then, the definition of the energy–momentum tensor, eqn
(6.35), becomes

δS = − θ

2π

∫
d2r (T21 − T12) = 0 (A.174)

for arbitrary (but small) θ, from which we conclude T12 = T21. Analogously, invariance
under dilatations, z + ε(z) = (1 + a)z, leads to ∂1ε1 = ∂2ε2 = a and other derivatives
vanish. It then follows that T11 + T12 = 0 from a similar argument as above.

Strictly speaking, the left-hand side of the definition of T and T̄ in eqns (6.37) and
(6.38) should include both w and w̄ in the arguments as T (w, w̄) and T̄ (w, w̄). We
show that T actually depends only on the holomorphic variable and T̄ only on the
antiholomorphic variable, which justifies the notation of eqns (6.37) and (6.38), i.e.

∂z̄T (z, z̄) = 0, ∂zT̄ (z, z̄) = 0. (A.175)

To show this result, let us take the derivative of T (z, z̄) with respect to z̄,

∂z̄T (z, z̄) =
1
2
(∂1 + i∂2) ·

1
4
(
T11 − T22 − 2iT12

)
. (A.176)

By using eqns (A.171) and (A.169), this expression is easily seen to be zero. Similarly
for ∂zT̄ (z, z̄) = 0.

A.11 Energy–momentum tensor of the Gaussian theory

We show in this appendix that the energy–momentum tensor of the two-dimensional
critical Gaussian theory may be chosen as T (z) = −(∂zφ(z))2, which is used in



298 Appendix A

Section 6.6. It is illuminating to use the Cartesian coordinates and write the
Lagrangian density as

L =
1
2
(∂1φ)2 +

1
2
(∂2φ)2. (A.177)

According to eqn (A.116), the energy–momentum tensor has the components

T11 = (∂1φ)2 − L =
1
2
(∂1φ)2 − 1

2
(∂2φ)2 (A.178)

T22 = (∂2φ)2 − L = −1
2
(∂1φ)2 +

1
2
(∂2φ)2 (A.179)

T12 = (∂1φ)(∂2φ) = T21. (A.180)

These results satisfy the generic properties of eqn (A.171), T11 + T22 = 0, T12 = T21.
The holomorphic component of the energy–momentum tensor is, using eqn (6.37),

T (z) =
1
4
(T11 − T22 − 2iT12) =

1
4
(
(∂1φ)2 − (∂2φ)2 − 2i (∂1φ)(∂2φ)

)
. (A.181)

This is rewritten as T (z) = (∂zφ)2, as can be verified by the relation

∂zφ =
1
2
(∂1φ − i ∂2φ). (A.182)

It is customary to choose the energy–momentum tensor with the opposite sign,
T (z) = −(∂zφ)2. Such a change of the sign is allowed as long as it does not affect the
important properties of the energy–momentum tensor such as the symmetry T12 = T21

and tracelessness T11 + T22 = 0.

A.12 Existence of spontaneous magnetization
in the two-dimensional Ising model

This section proves the existence of spontaneous magnetization in the Ising model on
the square lattice at sufficiently low temperatures by a sophisticated version of the
Peierls argument discussed in Section 7.1.

Consider the ferromagnetic Ising model on the square lattice of finite size N . All
spins on the boundary are in the up state (Si = +1) as depicted in Fig. 7.1. No external
field h is applied. This boundary condition breaks the global inversion (Z2) symmetry
in a finite-size system. The effects of boundaries diminish as the system size increases,
and the present boundary condition is considered to be equivalent to an infinitesimally
small external field in the thermodynamic limit. The average magnetization per spin is

m =
N+ − N−

N
= 1 − 2

〈N−〉
N

, (A.183)

where N+ (N−) is the total number of up (down) spins in a given configuration of
spins and satisfies N = N+ + N−. Our goal is to obtain an upper bound to 〈N−〉 as

〈N−〉 ≤
1 − α

2
N, (A.184)
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where α is a positive constant independent of N . If eqn (A.184) is proved, it readily
follows that

m ≥ α > 0, (A.185)

according to eqn (A.183). In other words, there is a non-vanishing spontaneous
magnetization.

To prove eqn (A.184), we first fix the configuration of spins and draw a (vertical or
horizontal) line segment between two neighboring spins if they are antiparallel (+− or
−+) as in Fig. 7.1. It is evident that such line segments form closed polygons (domain
walls) because all spins on the boundary are up and hence no line segment exists
between two spins that lie on the boundary. For a given polygon of length Γ, the total
number of down (−) spins the polygon encloses, NΓ, is at most (Γ/4)2, NΓ ≤ (Γ/4)2,
since the area that the domain wall encloses is maximal when the polygon is a square,
i.e. N� = (Γ/4)2. Notice that the lattice spacing is the unit of length. Thus, for a
given (fixed) configuration of spins, the total number of down spins is bounded as

N− ≤
∑

Γ≥4

(
Γ
4

)2 ν(Γ)∑

j=1

Xj
Γ, (A.186)

where Xj
Γ = 1 if the jth polygon of length Γ is present in the spin configuration and

Xj
Γ = 0 otherwise. The quantity ν(Γ) in eqn (A.186) is the total number of possible

polygons of length Γ in the system. We provide a bound on ν(Γ) below. The sum
over Γ starts at four because a closed polygon has at least four edges, and includes
only even numbers since we are dealing with a square lattice. The average over spin
configurations of eqn (A.186) is

〈N−〉 ≤
∑

Γ≥4

(
Γ
4

)2 ν(Γ)∑

j=1

〈
Xj

Γ

〉
. (A.187)

The next step is to estimate an upper bound for 〈Xj
Γ〉. The thermal average of Xj

Γ

is calculated as12

〈
Xj

Γ

〉
=

∑
{Si} Xj

Γ e−βH

∑
{Si} e−βH

=

∑′
{Si} e−βH

∑
{Si} e−βH

, (A.188)

where the sum
∑′

{Si} in the numerator is restricted to those spin configurations

{C} in which the jth polygon is realized (Xj
Γ = 1). An upper bound for

〈
Xj

Γ

〉
, eqn

(A.188), is obtained by restricting the sum over {Si} in the denominator to some
special configurations of spins {C∗}. Especially convenient configurations to be left
in the denominator are the following ones. For each configuration C of spins in the
numerator of eqn (A.188) we associate another configuration C∗ obtained from C by
reversing all spins inside the jth polygon of length Γ. Since a pair of spins neighboring
across a line segment are antiparallel to each other in C and parallel in C∗, we find a
relation between the energies of the two configurations

12 Notice that the factor β = 1/T is not absorbed in the definition of the Hamiltonian.
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H(C∗) = H(C) − 2
∑

domain wall

J = H(C) − 2JΓ. (A.189)

By restricting the sum over {Si} in the denominator of eqn (A.188) to {C∗}, we have
an upper bound as

〈
Xj

Γ

〉
≤
∑

{C} e−βH

∑
{C∗} e−βH

= e−2βJΓ, (A.190)

because all other factors coming from H(C) in eqn (A.189) cancel each other between
the numerator and denominator. Therefore, we have

〈N−〉
N

≤
∑

Γ≥4

(
Γ
4

)2
ν(Γ)
N

e−2βJΓ. (A.191)

We next provide an upper bound for the number of polygons of length Γ, i.e. ν(Γ).
It is upper-bounded by 3Γ−1N for the following reason. Consider drawing a closed
polygon of length Γ by starting from a given site of the present finite square lattice
system. There are at most N sites to start from, and we draw a line segment (a step
in the polygon) in any one of them. Then, we have at most three choices of paths to
go a step further, if we exclude the previous path. Thus, the total number of possible
closed polygons is upper-bounded by 3Γ−1N , where the −1 in the exponent comes
from the condition to reach the starting point at the final step, i.e. ν(Γ) ≤ 3Γ−1N .
This is essentially the same discussion as in Section 7.1, except that we have taken
into account the fact that the number 3Γ−1N is a rigorous upper bound, not just an
approximate estimate.

It is evident from eqn (A.191), with ν(Γ) replaced by 3Γ−1N , that 〈N−〉/N can be
made arbitrarily small independently of N if β = 1/T is large enough. Let us quantify
this last statement. One can rewrite the right-hand side of the inequality (A.191) as

∑

Γ=4,6,8,···

Γ2

48
qΓ =

∑

j=2,3,4,···

j2

12
xj , (A.192)

where q = 3e−2βJ , x = q2, and evaluate this series in the following way

N−1∑

j=2,3,4,···
j2 xj = x

(
dR0

dx
+ x

d2R0

dx2
− 1
)

, (A.193)

where

R0 =
N−1∑

j=0,1,2,···
xj =

1 − xN

1 − x
. (A.194)

If one assumes that x < 1, in the thermodynamic limit (N,N ) → ∞, it results that
∞∑

j=2,3,4,···
j2 xj =

x2

(1 − x)3
(4 − 3x + x2). (A.195)
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For sufficiently large β one can always fulfil the condition q < 1, and therefore the
inequality is written as, denoting 〈m−〉 = limN→∞ 〈N−〉 /N ,

〈m−〉 ≤
q4

12(1 − q2)3
(4 − 3q2 + q4), (A.196)

and the right-hand side can be smaller than 1/2, implying m ≥ α > 0. This completes
the proof of eqn (A.184) and hence of eqn (A.185).

Throughout the above proof we treated the Ising system with a particular boundary
condition, all spins up in the boundary, in the absence of an external field h. The
spontaneous magnetization is actually defined as

lim
h→+0

lim
N→∞

m(h), (A.197)

where the system has free or periodic boundary conditions. Intuitively, these two types
of spontaneous magnetization are equivalent since both conditions (all spins up in the
boundary, and the application of an infinitesimal external field h) select one out of the
two degenerate states reflecting the Z2 symmetry. This equivalence has indeed been
rigorously established.

A.13 Quantum version of the Mermin–Wagner theorem

In this appendix we prove the Mermin–Wagner theorem for the absence of spontaneous
symmetry breaking for the quantum Heisenberg model in two and lower dimensions.
For this purpose we first derive a few inequalities and then prove Bogoliubov’s
inequality. The latter inequality is used to prove the main theorem in the final section.

A.13.1 Quantum inequalities

Consider arbitrary quantum operators A and B, not necessarily Hermitian. The
expectation value of the commutator

∣∣〈Ψ|[A†, B]|Ψ〉
∣∣ =
∣∣〈[A†, B]〉

∣∣ =
∣∣〈A†B − BA†〉

∣∣ =
∣∣〈A†B〉 − 〈BA†〉

∣∣ (A.198)

over an arbitrary quantum state |Ψ〉 can certainly be bounded as
∣∣〈[A†, B]〉

∣∣ ≤
∣∣〈A†B〉

∣∣+
∣∣〈BA†〉

∣∣ , (A.199)

as a result of the triangle inequality. The expression 〈A†B〉 represents a scalar product.
By using the Schwarz inequalities

∣∣〈A†B〉
∣∣ ≤
√

〈A†A〉〈B†B〉 ,
∣∣〈BA†〉

∣∣ ≤
√
〈AA†〉〈BB†〉 , (A.200)

eqn (A.199) can be written as
∣∣〈[A†, B]〉

∣∣ ≤
√

〈A†A〉〈B†B〉 +
√

〈AA†〉〈BB†〉. (A.201)

This implies, after noting, for example, that (
√

〈A†A〉 −
√
〈B†B〉)2 ≥ 0 or 〈A†A〉 +

〈B†B〉 ≥ 2
√

〈A†A〉〈B†B〉,
2
∣∣〈[A†, B]〉

∣∣ ≤ 〈[A†, A]+〉 + 〈[B†, B]+〉, (A.202)
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with [A†, A]+ = A†A + AA†, etc., representing anticommutators.
Another quite useful relation results after squaring inequality (A.201) and noticing

that 〈A†A〉〈BB†〉 + 〈AA†〉〈B†B〉 ≥ 2
√

〈A†A〉〈B†B〉〈AA†〉〈BB†〉,
∣∣〈[A†, B]〉

∣∣2 ≤ 〈[A†, A]+〉〈[B†, B]+〉, (A.203)

which represents a generalized Heisenberg uncertainty relation for arbitrary quantum
operators. Notice that in the particular case where A = A† and B = B† are observ-
ables, i.e. Hermitian operators, the inequality above reduces to the standard Heisen-
berg uncertainty relation. The inequalities derived above are not used in the proof of
the Mermin–Wagner theorem but are sometimes useful to discuss the properties of
long-range order in quantum systems.

We have so far not taken into account the temperature. The standard generalization
of the Mermin–Wagner theorem to quantum systems concerns finite temperatures. To
this end we need to define a scalar product of two arbitrary operators A and B that
involves the temperature T = 1/β. A standard scalar product of this kind, sometimes
known as the Duhamel two-point function, is

(A,B)ρ =
1
β

∫ β

0

dxTr
[
ρA†(x)B

]
, (A.204)

where ρ = e−βH/Z represents the density matrix of the canonical ensemble13 and
A†(x) = exHA†e−xH . It is straightforward to prove that (A,B)ρ is a legitimate
scalar product. In other words, it satisfies: (i) (A,B + C)ρ = (A,B)ρ + (A,C)ρ,
(ii) (A, λB)ρ = λ(A,B)ρ with λ a complex number, (iii) (A,B)ρ = (B,A)∗ρ with ∗

meaning complex conjugation, and (iv) (A,A)ρ ≥ 0, and vanishes iff A = 0. One can
then use the Schwarz inequality

|(A,B)ρ|2 ≤ (A,A)ρ (B,B)ρ, (A.205)

where the equality is satisfied whenever A and B are linearly dependent. This equation
(A.205) constitutes the quantum version of the classical inequality (7.12).

A.13.2 Bogoliubov’s inequality

Note that one can re-express eqn (A.204) in terms of the energy eigenvalues Em and
orthonormal eigenvectors, H|m〉 = Em|m〉, as

(A,B)ρ =
1

βZ

∑

n,m

〈n|A†|m〉〈m|B|n〉
(

e−βEm − e−βEn

En − Em

)
, (A.206)

where the last factor for the case En = Em is defined by the limit En → Em. This
factor for general n and m is bounded as

0 <

(
e−βEm − e−βEn

En − Em

)
≤ β

2
(
e−βEm + e−βEn

)
, (A.207)

13 Notice that the factor β = 1/T is not absorbed in the definition of the Hamiltonian since it is
explicitly needed for integration.
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because of the inequality

0 <
e−v − e−u

u − v
≤ 1

2
(e−u + e−v), (A.208)

the second inequality being a consequence of concavity of the exponential function.
Equations (A.206) and (A.207) lead to the following inequality

(A,A)ρ ≤ 1
2

Tr
[
ρ[A†, A]+

]
≡ 1

2
〈
[A†, A]+

〉
ρ
. (A.209)

Similarly, one can generically define B in terms of another operator C as B = [C†,H]
and insert it into eqn (A.206) to obtain

β(A,B)ρ =
〈
[C†, A†]

〉
ρ

, β(B,B)ρ =
〈
[C†, [H,C]]

〉
ρ
. (A.210)

The relation known as Bogoliubov’s inequality is obtained by combining eqns (A.205)
and (A.209)

∣∣∣
〈
[C†, A†]

〉
ρ

∣∣∣
2

≤ β

2
〈
[A†, A]+

〉
ρ

〈
[C†, [H,C]]

〉
ρ
. (A.211)

A.13.3 Proof of the Mermin–Wagner theorem

The absence of spontaneous symmetry breaking can be proved for quantum spin
systems with continuous symmetry in two and lower dimensions by using Bogoliubov’s
inequality. We show the example of the spin-1/2 ferromagnetic Heisenberg model on
the square lattice with nearest-neighbor interactions.

The Hamiltonian

H = −J
∑

〈ij〉
(Sx

i Sx
j + Sy

i Sy
j + Sz

i Sz
j ) − h

∑

i

Sz
i (A.212)

is first rewritten in terms of the raising and lowering operators S±
j = Sx

j ± iSy
j as

H = −J
∑

〈ij〉

(1
2

S+
i S−

j +
1
2

S−
i S+

j + Sz
i Sz

j

)
− h
∑

i

Sz
i . (A.213)

It will be convenient to further rewrite it using the Fourier variables

Sj =
1
N

∑

q

eiq·rj Sq, Sq =
∑

j

e−iq·rj Sj (A.214)

as

H = −2J

N

∑

q

γq

(1
2

S+
q S−

−q +
1
2

S−
q S+

−q + Sz
q Sz

−q

)
− hS0, (A.215)

where

γq =
1
4

∑

δ

eiq·δ =
1
2
(
cos qx + cos qy

)
, (A.216)
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with δ being the vector to neighboring sites on the square lattice, as in eqn (7.25). We
have suppressed vector notations for subscripts for simplicity (q → q).

The following commutation relations will be used in the evaluation of various terms
in Bogoliubov’s inequality (A.211),

[S±
q , Sz

q′ ] = ∓S±
q+q′ , [S+

q , S−
q′ ] = 2Sz

q+q′ , (A.217)

which are consequences of the relations in the real space,

[S±
j , Sz

j ] = ∓S±
j , [S+

j , S−
j ] = 2Sz

j . (A.218)

It is the crux of the proof to choose the following operators as A and C in Bogoliubov’s
inequality,

A† = C = S−
−q, A = C† = S+

q . (A.219)

Then, the left-hand side of eqn (A.211) is
∣∣〈[C†, A†]

〉∣∣2 =
∣∣〈[S+

q , S−
−q]
〉∣∣2 = |2〈Sz

0 〉|
2 = 4N2m2

z, (A.220)

where mz is the magnetization per site along the z-axis. The subscript ρ for 〈· · ·〉ρ has
been omitted for simplicity.

Next, the first factor on the right-hand side of eqn (A.211) is bounded as

〈[A†, A]+〉 = 〈[S−
−q, S

+
q ]+〉 = 2〈Sx

−qS
x
q + Sy

−qS
y
q 〉

≤ 2〈Sx
−qS

x
q + Sy

−qS
y
q + Sz

−qS
z
q 〉 = 2〈S−q · Sq〉. (A.221)

The summation of both sides over q yields
∑

q

〈[A†, A]+〉 ≤ 2
∑

q

〈S−q · Sq〉 = N
∑

j

〈S2
j 〉 = N2S(S + 1) (A.222)

with S = 1/2.
The commutation relation of H and C on the right-hand side of eqn (A.211) is

calculated as, using (A.217),

[H,C] = −2J

N

∑

q′

(γq′ − γq′−q)(Sz
q′−qS

−
−q′ + S−

−q′S
z
q′−q) + hS−

−q. (A.223)

Then we find, again using eqn (A.217),

〈
[C†, [H,C]]

〉
=

J

2N

∑

q′

∑

δ

(1 − eiq·δ)eiq′·δ
〈
4Sz

q′Sz
−q′ + S+

−q′S
−
q′ + S−

−q′S
+
q′

〉
+ 2hNmz.

(A.224)
The expectation value of spin operators in the above equation is upper-bounded by
4〈Sq′ · S−q′〉 as before, and we therefore obtain

∣∣〈[C†, [H,C]]
〉∣∣≤ 2J

N

∑

q′

∑

δ

∣∣1 − eiq·δ∣∣〈Sq′ · S−q′〉+2hNmz ≤JNq2S(S + 1)+2hNmz.

(A.225)
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Bogoliubov’s inequality (A.211), with both sides divided by 〈[C†, [H,C]]〉 (> 0) and
summed over q, reads

1
2

∑

q

〈
[A†, A]+

〉
≥
∑

q

T
∣∣〈[C†, A†]

〉∣∣2

〈[C†, [H,C]]〉 . (A.226)

If we insert eqns (A.220), (A.222) and (A.225) into this inequality, we obtain

N2S(S + 1)
2

≥ 4TN2m2
z

N

∑

q

1
Jq2S(S + 1) + 2hmz

. (A.227)

This is essentially equivalent to eqn (7.27) for the classical case and hence we can
conclude mz → 0 as h → +0 after N → ∞. The case of d < 2 can be discussed
similarly.

A.14 Replica symmetric solution of the SK model

This section derives the replica symmetric solution of the SK model, eqn (8.29), for
the Ising spin glass with random infinite-range interactions.

A.14.1 Replica average of the partition function

Suppose that the interaction with quenched randomness in the Hamiltonian

H = −
∑

i<j

JijSiSj − h
∑

i

Si (A.228)

obeys the following distribution function,

P (Jij) =
1
J

√
N

2π
exp

{
− N

2J2

(
Jij −

J0

N

)2
}

. (A.229)

We use the replica method to evaluate the configurational average of the free energy.
The first step is to take the configurational average of the partition function raised to
the power n,14

[Zn] =
∫ ⎛

⎝
∏

i<j

dJijP (Jij)

⎞

⎠Tr exp

⎛

⎝β
∑

i<j

Jij

n∑

α=1

Sα
i Sα

j + βh

N∑

i=1

n∑

α=1

Sα
i

⎞

⎠, (A.230)

14 Notice that the factor β = 1/T is not absorbed in the definition of the Hamiltonian, eqn (A.228).
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where Tr stands for the sum over all spin variables and α is the replica index. The
integral over Jij can be carried out independently for each (ij) using eqn (A.229) to
give the result

Tr exp

⎧
⎨

⎩
1
N

∑

i<j

⎛

⎝1
2
β2J2

∑

α,β

Sα
i Sα

j Sβ
i Sβ

j + βJ0

∑

α

Sα
i Sα

j

⎞

⎠+ βh
∑

i

∑

α

Sα
i

⎫
⎬

⎭
(A.231)

up to a trivial constant. We rearrange the sum over i < j in the exponent as

[Zn] = eNβ2J2n/4Tr exp

⎧
⎨

⎩
β2J2

2N

∑

α<β

(
∑

i

Sα
i Sβ

i

)2

+
βJ0

2N

∑

α

(
∑

i

Sα
i

)2

+ βh
∑

i

∑

α

Sα
i

⎫
⎬

⎭ (A.232)

for sufficiently large N .

A.14.2 Reduction to a single-body problem

The trace over Sα
i in eqn (A.232) would be able to be taken independently at each

i if the quadratic forms in the exponent were linear. Thus, we apply the Gaussian
integral formula to the exponential of

(∑
i Sα

i Sβ
i

)2 with integral variable qαβ and to
the exponential of

(∑
i Sα

i

)2 with integral variable mα to derive

[Zn] = eNβ2J2n/4

∫ ∏

α<β

dqαβ

∫ ∏

α

dmα exp

⎛

⎝−Nβ2J2

2

∑

α<β

q2
αβ − NβJ0

2

∑

α

m2
α

⎞

⎠

· Tr exp

⎛

⎝β2J2
∑

α<β

qαβ

∑

i

Sα
i Sβ

i + β
∑

α

(J0mα + h)
∑

i

Sα
i

⎞

⎠ . (A.233)

If we denote Tr also for the sum
∑

Sα
i

of a single site, the expression after Tr in the
above formula is

⎧
⎨

⎩Tr exp

⎛

⎝β2J2
∑

α<β

qαβSαSβ + β
∑

α

(J0mα + h)Sα

⎞

⎠

⎫
⎬

⎭

N

≡ exp
(
N log TreL

)
,

(A.234)
where

L = β2J2
∑

α<β

qαβSαSβ + β
∑

α

(J0mα + h)Sα. (A.235)
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We now have

[Zn] = eNβ2J2n/4

∫ ∏

α<β

dqαβ

∫ ∏

α

dmα

· exp

⎛

⎝−Nβ2J2

2

∑

α<β

q2
αβ − NβJ0

2

∑

α

m2
α + N log TreL

⎞

⎠. (A.236)

A.14.3 Saddle-point evaluation

The exponent of the integrand of the above equation is proportional to N , and we can
use the saddle-point method to evaluate the integral. In the limit N → ∞,

[Zn] ≈ exp

⎛

⎝−Nβ2J2

2

∑

α<β

q2
αβ − NβJ0

2

∑

α

m2
α + N log TreL +

N

4
β2J2n

⎞

⎠

≈ 1 + Nn

⎧
⎨

⎩−β2J2

4n

∑

α
=β

q2
αβ − βJ0

2n

∑

α

m2
α +

1
n

log TreL +
1
4
β2J2

⎫
⎬

⎭ .

Here, we have taken the limit n → 0 with N kept large but finite. It is necessary
to insert into qαβ and mα the saddle-point values to extremize the expression inside
{· · · }.

The free energy is now written as, according to the replica method,

−βf = lim
n→0

[Zn] − 1
nN

= lim
n→0

⎧
⎨

⎩−β2J2

4n

∑

α
=β

q2
αβ

−βJ0

2n

∑

α

m2
α +

1
4
β2J2 +

1
n

log TreL

}
. (A.237)

The saddle-point condition that the free energy is extremum with respect to the
variable qαβ(α �= β) yields

qαβ =
1

β2J2

∂

∂qαβ
log TreL =

TrSαSβeL

TreL
= 〈SαSβ〉L, (A.238)

where 〈· · ·〉L is the average with respect to the weight eL. The extremum condition
with respect to mα can also be written as

mα =
1

βJ0

∂

∂mα
log TreL =

TrSαeL

TreL
= 〈Sα〉L. (A.239)

A.14.4 Replica symmetric solution

Further progress in the evaluation of eqn (A.237) is possible only if we know the
explicit dependence of qαβ and mα on the replica index α, β. A naive guess is that
the physics should not depend on these indices because replicas have been introduced
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as a mathematical trick to take the configurational average. This idea suggests to
assume replica symmetry, or independence of the parameters on the replica indices,
qαβ = q (α �= β) and mα = m.

If we accept this replica symmetry, the free energy (A.237) reduces to, before the
limit n → 0,

−βf =
β2J2

4n

{
−n(n − 1)q2

}
− βJ0

2n
nm2 +

1
n

log TreL +
1
4
β2J2. (A.240)

The third term on the right-hand side can be evaluated using the definition of L
(A.235) and the Gaussian integral as

log TreL = log Tr

√
β2J2q

2π

∫
dz

· exp

(
−β2J2q

2
z2 + β2J2qz

∑

α

Sα − n

2
β2J2q + β(J0m + h)

∑

α

Sα

)

= log
∫

Dz exp
(
n log 2 cosh(βJ

√
qz + βJ0m + βh) − n

2
β2J2q

)

= log
(

1 + n

∫
Dz log 2 cosh βH̃(z) − n

2
β2J2q + O(n2)

)
. (A.241)

Here, Dz = dz exp(−z2/2)/
√

2π and H̃(z) = J
√

qz + J0m + h. We insert eqn (A.241)
into (A.240) and take the limit n → 0 to find

−βf =
β2J2

4
(1 − q)2 − 1

2
βJ0m

2 +
∫

Dz log 2 cosh βH̃(z). (A.242)

This is the replica symmetric solution of the free energy of the SK model.

A.14.5 Order parameters

The integral variables qαβ and mα introduced artificially for the Gaussian integrals
are indeed order parameters as in the ferromagnetic model of Section 2.5. To confirm
this fact, we notice that eqn (A.238) can be written as follows,

qαβ =
[
〈Sα

i Sβ
i 〉
]

=

[
TrSα

i Sβ
i e−β

∑
γ Hγ

Tre−β
∑

γ Hγ

]
, (A.243)

where Hγ is the γth replica Hamiltonian,

Hγ = −
∑

i<j

JijS
γ
i Sγ

j − h
∑

i

Sγ
i . (A.244)

We can show the equivalence of eqns (A.238) and (A.243) almost in the same way
as in the previous sections. First, notice that the denominator of eqn (A.243), Zn,
approaches unity in the limit n → 0 and can thus be ignored. The numerator is
expressed by inserting Sα

i Sβ
i after the Tr symbol in the expression of [Zn]. If we
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follow the calculation of Section A.14.1 with this fact in mind, we obtain the following
in place of eqn (A.234),

(
TreL

)N−1 · Tr
(
SαSβeL

)
. (A.245)

The term log TreL is proportional to n as eqn (A.237) suggests, and consequently TreL

should approach unity as n → 0. Hence, eqn (A.245) reduces to Tr(SαSβeL) for n → 0.
Noting that the denominator approaches unity in eqn (A.238), we conclude that eqn
(A.245) coincides with eqn (A.238). This completes the proof that eqn (A.243) and
eqn (A.238) agree with each other. We find similarly that

mα =
[
〈Sα

i 〉
]
. (A.246)

Equation (A.246) shows that m is the conventional ferromagnetic order parameter.
The other quantity qαβ represents the spin glass order parameter. To understand the
latter interpretation, we notice that the trace operations for replicas other than α and
β appear in exactly the same way in the denominator and numerator in eqn (A.243),
which causes cancellation of these common factors to give

qαβ =

[
TrSα

i e−βHα

Tre−βHα

TrSβ
i e−βHβ

Tre−βHβ

]
=
[
〈Sα

i 〉〈Sβ
i 〉
]

=
[
〈Si〉2

]
≡ q. (A.247)

In the high-temperature paramagnetic phase, 〈Si〉 vanishes at any site i and hence
m = q = 0. In the ferromagnetic phase, most spins align in the same direction (to be
taken to be positive for example), 〈Si〉 > 0, and we have m > 0 and q > 0.

The spin glass phase has randomly frozen spins at most sites, in which 〈Si〉 takes
a site-dependent sign and absolute value. 〈Si〉 changes randomly from site to site but
this spatially random pattern does not change with time, and is frozen in this sense.

The randomly frozen spin state changes if the configuration of interactions {Jij}
changes because the environment of each spin changes drastically. This suggests the
interpretation that the average of 〈Si〉 over the distribution of {Jij} is equivalent
to the average over the possibilities of 〈Si〉 > 0 and 〈Si〉 < 0, and we may well have
m =

[
〈Si〉
]

= 0. On the other hand, q is the configurational average of a positive
quantity and does not vanish, implying the possibility of a phase characterized by
m = 0, q > 0. This is the spin glass phase and q is the spin glass order parameter.

A.15 Integral for the partition function of the n-vector model

The integral used in the calculation of the partition function of the one-dimensional
n-vector model of Section 9.2

G(K) =
∫ ∞

−∞
dx1dx2 · · · dxn δ(x2

1 + x2
2 + · · · + x2

n − 1) eKx1 (A.248)

is evaluated in this section. The Fourier representation of the Dirac delta function
yields

G(K) =
1
2π

∫ ∞

−∞
dx1dx2 · · · dxn

∫ ∞+iε

−∞+iε

eiu(x2
1+···+x2

n−1)+Kx1 du. (A.249)
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z

o C

Fig. A.3 The path is changed from the dashed line to the full line to have the integral

representation of the modified Bessel function of the first kind.

The integral over each xi can be performed as a Gaussian integral.15 The result is

G(K) = a ·
∫ ∞+iε

−∞+iε

exp
(
−iu +

iK2

4u

)
u−n/2 du, (A.250)

where a trivial constant has been written as a. A change of integral variable as u =
−iKt/2 gives, with b another trivial constant,

G(K) = b ·
(

K

2

)1−n/2 ∫ i∞−ε

−i∞−ε

exp
(
−K

2
(t + t−1)

)
(−t)−n/2 dt. (A.251)

The integration path starts from −i∞ and extends to i∞, always staying to the left of
the imaginary axis. We deform the path so that it runs under the real axis, goes around
the origin clockwise and returns to ∞ above the real axis, as shown in Fig. A.3. Then,
the integral coincides with an integral representation of the modified Bessel function
of the first kind, up to a constant, to give

G(K) = c ·
(

K

2

)1−n/2

In/2−1(K). (A.252)

A.16 Multiple Gaussian integral and lattice Green function

We show how to integrate the exponential of a quadratic form of N variables,

FC(q) =
∫ ∞

−∞
e−

1
2

tx·Cx+itx·q dx, (A.253)

where C is a real, positive definite symmetric matrix and tx = (x1, x2, · · · , xN ) is the
transpose of vector x. Let us write U for the orthogonal matrix that diagonalizes C
and write U−1CU = D (diagonal matrix) and U−1x = y, U−1q = r. Then,

15 We have introduced a small imaginary part iε in u such that iu has a negative real part in order
to guarantee the convergence of the integral. The conventional Gaussian integral formula applies in
spite of the complex coefficient in front of x2

i by analytic continuation.
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FC(q) =
∫ ∞

−∞
e−

1
2

txUU−1CUU−1x+itxU ·U−1q dx

=
∫ ∞

−∞
e−

1
2

ty·Dy+ity·r dy. (A.254)

Since D is diagonal, the final integral can be easily carried out as a single-variable
Gaussian integral for each component of y separately. The result is an exponential of
a quadratic form of r. We write d1, d2, · · · , dN for the diagonal elements of D (namely
the eigenvalues of C) and express the result of the Gaussian integral in terms of the
components of q using U−1q = r,

FC(q) =
(2π)N/2

(det C)1/2
e−

1
2

∑
n,l qnqlGnl , (A.255)

where det C =
∏

l dl, and Gnl is a matrix defined by

Gnl =
∑

m

Unm(U−1)ml

dm
. (A.256)

It turns out that G is the inverse matrix of C. To confirm it, we notice C = UDU−1

to have

(GC)ij =
∑

l

GilClj =
∑

l

∑

m

Uim(U−1)ml

dm

∑

n

Ulndn(U−1)nj

=
∑

m,n

Uim

dm
dn(U−1)nj

∑

l

(U−1)mlUln

=
∑

m

Uim(U−1)mj = δi,j . (A.257)

To summarize, the multiple Gaussian integral (A.253) is evaluated as

FC(q) =
(2π)N/2

(det C)1/2
e−

1
2

∑
n,l qnql(C

−1)nl . (A.258)

Let us now apply this result to eqn (10.46). We first scale the variable from φi to√
Kφi to remove the coefficient K. This leaves

√
K in the linear term. Comparison

with eqn (A.253) reveals that the matrix C has the following non-vanishing elements
in the present problem, with all the rest vanishing,

Cnn = 4, Cn,n+δ = −1. (A.259)

The first equation is for diagonal elements and δ in the second equation is a vector
connecting neighboring sites. We need the inverse C−1 = G to apply the result (A.258).
This goal is achieved by Fourier transformation because the system is translationally
invariant and consequently Cnm depends only on the difference of indices Gnm =
G(n − m). By setting
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Cnm =
1

(2π)2

∫ π

−π

C̃(k)eik·(n−m) dk (A.260)

Gnm =
1

(2π)2

∫ π

−π

G̃(k)eik·(n−m) dk, (A.261)

we have G̃(k) = C̃(k)−1.16 The reason is that the following quantity

(CG)nm =
∑

l

CnlGlm

=
1

(2π)4

∫ π

−π

C̃(k1)G̃(k2)
∑

l

eik1·(n−l)+ik2·(l−m) dk1dk2

=
1

(2π)2

∫ π

−π

C̃(k)G̃(k)eik·(n−m) dk (A.262)

is equal to δn,m, which means C̃(k)G̃(k) = 1. Thus, we have Gnm from eqn (A.261)
if we find C̃(k). C̃(k) can be evaluated as the inverse Fourier transformation of Cnm.
We set the lattice constant to unity and have, from eqn (A.259),

C̃(k) =
∑

n

e−ik·nCl,l+n

= 4 − (e−ikx + eikx + e−iky + eiky )

= 4 − 2 cos kx − 2 cos ky. (A.263)

Hence,

Gnm = G(n − m) =
1

2(2π)2

∫ π

−π

eik·(n−m)

2 − cos kx − cos ky
dk. (A.264)

This matrix G of eqn (A.264), the inverse of C of eqn (A.259), is the lattice Green
function.

Let us return to the evaluation of eqn (10.46). By setting qj = 2π
√

Knj in eqn
(A.253) in consideration of eqn (10.46) after scaling of the integral variable, we have
the integral result from eqn (A.258)

Z = e−2π2K
∑

j,l njnlG(j−l). (A.265)

The trivial multiplicative factor has been dropped. This is eqn (10.47).
It should be noted here that G(0) diverges because of the contribution coming from

|k| → 0 (the short-wavelength or large-system-size limit) according to eqn (A.264).
Then, the term j = l diverges in eqn (A.265) and consequently we have a senseless

16 k and n, m, δ are actually two-dimensional vectors k, n, m, δ and k · (n − m) stands for the
inner product k · (n − m). We do not use the vector notation here for simplicity of notation. The
integral

∫
dk is also the two-dimensional integral

∫
dkxdky .
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result Z → 0. The neutrality condition
∑

j nj = 0 helps us avoid this difficulty because

this condition allows us to add
(∑

j nj

)2
G(0)(= 0) to the exponent,17

Z = e2π2K
∑

j,l njnl{G(0)−G(j−l)}. (A.266)

Hence,

G(0) − G(r) =
1

2(2π)2

∫ π

−π

1 − eik·r

2 − cos kx − cos ky
dkxdky (A.267)

does not diverge as k → 0.
The remaining task is the evaluation of G(0) − G(r) as r → ∞. We notice to this

end that, as k · r in the exponent of the numerator of eqn (A.267) approaches 0, the
numerator almost vanishes since eik·r ≈ 1 and thus does not contribute to the integral.
This implies that the significant contribution comes from the range where |k| is larger
than c/r with c some constant. We thus write the integral in polar coordinates as

G(0) − G(r) ≈ 1
2(2π)2

∫ π

c/r

1
k2/2

kdk

∫ 2π

0

dθk ≈ 1
2π

log r + const. (A.268)

We have used here the fact that eik·r does not contribute to the integral for large r
because eik·r moves rapidly on the unit circle in the complex plane as k changes and
hence 1 − eik·r ≈ 1. Equation (A.266) in that limit is finally

Z = eπK
∑

j �=l njnl log |j−l|, (A.269)

where the term j = l is excluded due to the condition |j − l| � 1. This is eqn (10.50).

A.17 Jordan–Wigner transformation

Spin-1/2 operators on a one-dimensional chain can be expressed in terms of Fermionic
operators on the same chain as follows,

S+
j = (1 − 2n1)(1 − 2n2) · · · (1 − 2nj−1)a

†
j (A.270)

S−
j = (1 − 2n1)(1 − 2n2) · · · (1 − 2nj−1)aj (A.271)

Sz
j = a†

jaj −
1
2
, (A.272)

where nj = a†
jaj and S±

j = Sx
j ± iSy

j . This is the Jordan–Wigner transformation. To
prove the validity of this transformation, it is sufficient to show that the inverse
transformation from spin to Fermion

a†
j = (−2)j−1Sz

1Sz
2 · · ·Sz

j−1S
+
j (A.273)

aj = (−2)j−1Sz
1Sz

2 · · ·Sz
j−1S

−
j (A.274)

17 We first keep the system size finite so that G(0) stays finite with
∑

j nj = 0 and take the

thermodynamic limit in the end. In this way
(∑

j nj

)2
G(0) always stays 0.
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satisfies Fermionic commutation relations. The equivalence of eqns (A.273) and
(A.274) to eqns (A.270)–(A.272) can be verified by insertion of the latter to the right-
hand sides of the former.

Let us first recall a few properties of spin-1/2 operators. All components commute
with each other at different sites, that is, if j �= l,

[
Sa

j , Sb
l

]
= 0 (a, b = x, y, z). (A.275)

On the same site, different components anticommute,
[
Sx

j , Sy
j

]
+

=
[
Sy

j , Sz
j

]
+

=
[
Sz

j , Sx
j

]
+

= 0, (A.276)

where
[
A,B]+ = AB + BA represents the anticommutator. The spin size S is 1/2 and

consequently the square of any component is 1/4, e.g. (Sz
j )2 = 1/4.

These properties lead to anticommutation relations for the set {aj , a
†
j} at different

sites. For example,
[
aj , a

†
j+1

]
+

=
[
S−

j , (−2)Sz
j S+

j+1

]
+

= −2
[
S−

j , Sz
j

]
+
S+

j+1 = 0. (A.277)

Similarly, it is straightforward to show
[
aj , a

†
l

]
+

=
[
aj , al

]
+

=
[
a†

j , a
†
l

]
+

= 0 for arbi-
trary j �= l. On the same site, proper anticommutation relations can be verified, for
example, as
[
a†

j , aj

]
+

=
[
S+

j , S−
j

]
+

=
[
Sx

j + iSy
j , Sx

j − iSy
j

]
+

= 2(Sx
j )2 + 2(Sy

j )2 = 1. (A.278)

Other relations
[
aj , aj

]
+

=
[
a†

j , a
†
j

]
+

= 0 are similarly easily checked. These results

are sufficient to confirm that {aj , a
†
j} are Fermionic operators.

Attention is needed to the boundary condition. If we impose a periodic boundary
condition to the spin variable in a given Hamiltonian, products such as Sx

NSx
1 and

Sy
NSy

1 may appear as in the Hamiltonian of the XY model, eqn (9.74). To rewrite
these terms using the Fermionic operators, we notice

S+
NS−

1 = (1 − 2n1) · · · (1 − 2nN−1)a
†
Na1

= (1 − 2n1) · · · (1 − 2nN−1)(1 − 2nN )(1 − 2nN )a†
Na1

= −(−1)Ua†
Na1, (A.279)

where the parity operator is given by

(−1)U = (1 − 2n1) · · · (1 − 2nN−1)(1 − 2nN ), (A.280)

or equivalently

U =
N∑

j=1

nj . (A.281)

Similarly, we find

S−
NS+

1 = (−1)UaNa†
1. (A.282)
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It is appropriate to impose an antiperiodic boundary condition aN+1 = −a1, a†
N+1 =

−a†
1 for U even and a periodic boundary condition aN+1 = a1, a†

N+1 = a†
1 for U odd

because, then,

Sx
NSx

1 + Sy
NSy

1 =
1
2
(S+

NS−
1 + S−

NS+
1 )

= − (−1)U

2
(a†

Na1 − aNa†
1)

=
1
2
(a†

NaN+1 + a†
N+1aN ). (A.283)

This is of the same form as the other terms with j = 1, · · ·, N − 1 in eqn (9.79). The
difference in the boundary condition according to the parity of U affects the wave
numbers as in eqns (9.103) and (9.104) in the context of Majorana fields.

A.18 Proof of Theorem 9.1

To prove Theorem 9.1 we first introduce the following theorem.

THEOREM A.1 [Existence of the thermodynamic limit] Consider the
Ising model with uniform interactions. The free energy per spin

f =
F

N
= − T

N
log Z (A.284)

converges to a limit as N → ∞ if the number of sites on the surface of the
system is sufficiently smaller than the total number of sites N .

This theorem is valid irrespective of the sign of the interactions. It also holds for a
model with many-body interactions. For simplicity, however, we present here the proof
for the more restricted case of ferromagnetic, two-body, nearest-neighbor interactions
only,

H = −J
∑

〈ij〉
SiSj − h

∑

i

Si (J, h > 0). (A.285)

It will also be assumed that boundary conditions are free, although Theorem A.1 can
in fact be proved for periodic boundaries as well. The thermodynamic limit will be
taken by multiplications of system size by four or other appropriate integers.

Proof of Theorem A.1 under restricted conditions. It is useful to consider a
slightly more general Hamiltonian than eqn (A.285),

H = −
∑

〈ij〉
JijSiSj − h

∑

i

Si, (A.286)

where Jij is an adjustable parameter in the range 0 ≤ Jij ≤ J . The free energy
corresponding to eqn (A.286) is a monotone decreasing function of an arbitrary
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Fig. A.4 A system composed of four subsystems and the bonds connecting them.

interaction Jkl,

− ∂F

β∂Jkl
= 〈SkSl〉 ≥ 0. (A.287)

The last inequality, called the first Griffiths inequality, can be verified by the expansion
of the Boltzmann factor,18

Z · 〈SkSl〉 =
∑

{Si}
SkSl eβ

∑
〈ij〉 JijSiSj+βh

∑
i Si

=
∑

{Si}
SkSl

∞∑

n=0

βn

n!

⎛

⎝
∑

〈ij〉
JijSiSj + h

∑

i

Si

⎞

⎠
n

≥ 0. (A.288)

The final inequality holds because any term obtained by the expansion of the nth
power is a product of J , h and S and the summation over S gives either 0 or a
positive value.

Now, suppose that the system is composed of several identical subsystems con-
nected by interactions at interfacial bonds as depicted in Fig. A.4. For example, if
there are four subsystems,

H = HA + HB + HC + HD + Hint, (A.289)

where interactions within HA,HB ,HC and HD are uniform, whereas interfacial bonds
are kept arbitrary as in eqn (A.286). If F represents the free energy of the total system
with uniform interactions also at interfacial bonds, the monotonicity of the free energy,
eqn (A.287), implies

F ≤ FA + FB + FC + FD = 4FA (A.290)

because F is obtained from FA + FB + FC + FD by increasing the values of interfacial
bonds from 0 to J . The final equality comes from the fact that all subsystems are
identical. Then, the free energy per spin is monotone decreasing with system size,

18 Notice that the factor β = 1/T is not absorbed in the definition of the Hamiltonian since it is
formally needed for a Taylor expansion.
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F

N
≤ FA

NA
, (A.291)

where NA = N/4. Since the free energy per spin is bounded from below, as will be
shown as Lemma A.2, the free energy per spin is concluded to converge to a limit in
the thermodynamic limit. Although we have illustrated the idea for the case with four
subsystems, the argument clearly holds for more general cases.

Lemma A.2 The free energy per spin of the system of eqn (A.285) is uniformly
bounded from below for real values of the parameters.

Proof. It is helpful to use the notation of the lattice gas. The translation ni =
(1 − Si)/2 (= 0, 1) applied to eqn (A.285) yields19

H = −4J
∑

〈ij〉
ninj + (2Jc + 2h)

∑

i

ni (A.292)

up to a trivial additive constant, which we ignore for simplicity, and c is the coordi-
nation number. The partition function is

Z =
∑

{ni}
e4K

∑
〈ij〉 ninj−2β(Jc+h)

∑
i ni =

N∑

k=0

ykQk(K), (A.293)

where y = e−2β(Jc+h) and

Qk(K) =
∑

{ni}

′
e4K

∑
〈ij〉 ninj . (A.294)

The summation with a prime runs under the constraint
∑

i ni = k. Since there exist
k non-vanishing nis and each of them has at most c non-vanishing neighboring njs,
the sum in the above exponent is bounded as

∑

〈ij〉
ninj ≤ ck. (A.295)

Taking into account the number of combinations to choose k non-vanishing nis out of
N of them, we find

Qk(K) ≤
(

N
k

)
e4Kck. (A.296)

We insert this bound into eqn (A.293) to have

Z ≤
N∑

k=0

yk

(
N
k

)
e4Kck = (1 + y e4Kc)N . (A.297)

Hence, the free energy per spin is uniformly bounded from below as

F

N
≥ −T log(1 + y e4Kc). (A.298)

19 The correspondence rule ni = (1 − Si)/2 is different from ni = (1 + Si)/2 in Section 1.5 just by
the exchange of up and down states of all the Ising spins.
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Proof of Theorem 9.1. We use the lattice gas representation, eqn (A.293). The
difference between z = e−2βh and y = e−2β(Jc+h) can be adjusted by a simple shift of
the real axis in the complex-h plane. The free energy per spin for general complex y

F

N
= − T

N
log

(
N∑

k=0

ykQk(K)

)
(A.299)

is analytic in the region R according to the assumption Z �= 0 of the theorem. The
same quantity is also uniformly bounded from above inside a circle with its center
somewhere on the real axis in R,

∣∣∣∣
F

N

∣∣∣∣ ≤
T

N
log

(
N∑

k=0

|y|kQk(K)

)

≤ T

N
log

(
N∑

k=0

rkQk(K)

)

≤ T log(1 + re4Kc). (A.300)

Here, r is the largest absolute value of y in the circle under consideration, and we have
used the bound (A.296) for Qk(K). In consideration of Theorem A.1, we conclude that
F/N converges uniformly to a limit within the above-mentioned circle due to Vitali’s
theorem stated below. The region of validity can be extended to the whole region R
by repeating the discussion with the center of the circle shifted elsewhere inside the
previous circle.

THEOREM A.3[Vitali’s theorem] Consider a region D and a series of
points A ⊂ D accumulating to a point in D. If a series of regular functions
defined in D and uniformly bounded in D converge to a limit on A, then the
series of functions converge uniformly in D.

A.19 Poisson summation formula

The Poisson summation formula replaces a sum of functional values over integers by
an integral,

∞∑

l=−∞
f(l) =

∞∑

n=−∞

∫ ∞

−∞
e2πiφnf(φ) dφ. (A.301)

To prove this relation it is sufficient to show that the sum over n on the right-hand
side leaves only integer values of φ in the integral, i.e.

∞∑

n=−∞
e2πiφn =

∞∑

l=−∞
δ(φ − l). (A.302)
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For this purpose we first make use of the Fourier series of a periodic function g(x)
with period 1,

g(x) =
∞∑

m=−∞
e2πimx g̃(m). (A.303)

The Fourier coefficient has the following expression with c an arbitrary real number,

g̃(m) =
∫ c+1

c

g(y)e−2πimy dy. (A.304)

Insertion of this formula into eqn (A.303) yields

g(x) =
∞∑

m=−∞

∫ c+1

c

g(y)e2πim(x−y) dy =
∫ c+1

c

g(y)
∞∑

m=−∞
e2πim(x−y) dy. (A.305)

A necessary and sufficient condition for the above equation to hold for arbitrary x
and c is that the part of summation in the integrand is a Dirac delta function that is
non-vanishing only for integer x − y,

∞∑

m=−∞
e2πim(x−y) =

∞∑

l=−∞
δ(x − y − l). (A.306)

This is eqn (A.302).

A.20 Sample codes for Monte Carlo simulation
of the Ising model

Here are the sample codes of Monte Carlo simulations of the two-dimensional Ising
model on the square lattice. The codes in this section are written as illustrations of
the theory explained in Section 11.2. It is necessary to optimize the codes when the
reader uses them for practical purposes.

A.20.1 Code in Fortran

Note that ‘ran(iran)’ is a random number generator between 0 and 1 and should be
prepared appropriately.

!------------------------------------------------------------------
! Monte Carlo simulation of the two-dimensional Ising model
! Metropolis method. Ferromagnetic interaction, J=1.
!------------------------------------------------------------------

integer,parameter::L=40 !Linear size
integer,parameter::mcs=100000 !Total MC steps (per spin)
integer,parameter::discard=500 !# of steps to remove initial

effects
integer,parameter::measure=10 !Measurement interval
integer::mcprocess,i,j !Variables to control loops
integer::i1,i2 !Site index for flip trial
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integer::spin(L,L) !Spin configuration
integer::ip(L),im(L) !Table of right and left neighbors
integer::iran !Random number seed
real,parameter::T=2.0 !Temperature
real::delta_E,energy !Energy change and energy
real::ecurrent !Local energy
real::field !Local field
real::denominator !Measurement normalizer

!--------------------Initialization-----------------------
! Table of nearest-neighbor sites for periodic boundaries

do i=1,L
ip(i)=i+1 ! Right (upper) neighbor
im(i)=i-1 ! Left (lower) neighbor

end do
ip(L)=1 ! Right (up) of L is 1.
im(1)=L ! Left (bottom) of 1 is L.

! Initial configuration. All up.
spin=1

! Random number initialization
iran=991963

!--------------------- Main loop -------------------------
energy=0.0

Main_loop: do mcprocess=1,mcs*L*L
!-------------------------------------------

i1=ran(iran)*L+1 !Randomly choose a site for flip trial.
x coordinate.

i2=ran(iran)*L+1 !Same for y coordinate.
field=spin(ip(i1),i2)+spin(i1,ip(i2))+spin(im(i1),i2)

+spin(i1,im(i2))
!Sum of spin states around spin(i1,i2)

delta_E=field*spin(i1,i2)*2.0
!Energy change caused by the flip of
spin(i1,i2).

!Execution of the Metropolis method-----------------------
if(delta_E<0)then
spin(i1,i2)=-spin(i1,i2) !Flip if energy decreases.
else if(exp(-delta_E/T)>ran(iran))then
spin(i1,i2)=-spin(i1,i2) !Probabilistic flip for energy
increase.

end if
!---------------------Measurement ------------------------
Stat: if(mod(mcprocess,measure*L*L)==0)then ! Measurement at some

interval
if(mcprocess>discard*L*L)then ! Skip until the system

equilibrates.
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ecurrent=0.0
do i=1,L
do j=1,L
field=spin(ip(i),j)+spin(i,ip(j))+spin(im(i),j)
+spin(i,im(j))
ecurrent=ecurrent+spin(i,j)*field

end do
end do
ecurrent=-ecurrent/2.0

!Divide by two since each bond is counted twice.
energy=energy+ecurrent

end if
end if Stat

!-----------------End of the Monte Carlo loop ------------
end do Main_loop

!------------------------Avereage-------------------------
denominator=(mcs-discard)/real(measure)*real(L*L)

!Number of data points divided by the system size
energy=energy/denominator

! Simple average approximates the canonical average.
!-------------------------Output--------------------------

write(6,200)energy
200 format(’ Average energy per spin :’,f12.6)

end

A.20.2 Code in C

Note that ‘genrand()’ is a random number generator between 0 and 1 and should be
prepared appropriately.

/* ----------------------------------------------------------------
Monte Carlo simulation of the two-dimensional Ising model
Metropolis method. Ferromagnetic interaction, J=1.
------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#define ls 40 // linear size of the system

int main(void){
int mcs=100000; // total MC steps (per spin)
int discard=500; // # of steps to remove initial effects
int measure=10; // measurement interval
int i,j; // variables to control loops
int i1,i2; // site index for flip trial
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int mcprocess; // current Monte Carlo step
int spin[ls][ls]; // spin configuration
int ip[ls],im[ls]; // table of right and left neighbors
double t=2.0; // temperature
double delta_E,energy; // energy change and energy
double ecurrent; // local energy
double field; // local field
double denominator; // measurement normalizer
double genrand(void); // random number generator
//--------------------Initialization-----------------------
// Table of nearest-neighbor sites for periodic boundaries
for (i=0;i<ls;i++){

ip[i]=i+1; // right (upper) neighbor
im[i]=i-1; // left (lower) neighbor

}
ip[ls-1]=0; // right (up) of ls-1 is 0.
im[0]=ls-1; // left (bottom) of 0 is ls-1.
// Initial configuration. All up.
for (i=0;i<ls;i++){

for (j=0;j<ls;j++){
spin[i][j]=1;

}
}
srand((unsigned)time(NULL)); // random number initialization
//--------------------- Main loop -------------------------
energy=0.0;
for (mcprocess=1;mcprocess<=mcs*ls*ls;mcprocess++){
i1=(int)(genrand()*ls);

// Choose a site for flip trial. x coordinate.
i2=(int)(genrand()*ls);

// Same for y coordinate.
field=spin[ip[i1]][i2]+spin[i1][ip[i2]]+spin[im[i1]][i2]

+spin[i1][im[i2]];
// Sum of spin states around spin[i1][i2]

delta_E=field*spin[i1][i2]*2.0;
// Energy change caused by the flip of spin[i1][i2].

// Execution of the Metropolis method-----------------------
if(delta_E<0){

spin[i1][i2]*=-1; // Flip if energy decreases.
}
else{

if(exp(-delta_E/t)>genrand()) spin[i1][i2]*=-1;
} // Probabilistic flip for energy increase.

//---------------------Measurement ------------------------
if(mcprocess%(measure*ls*ls)==0){
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if(mcprocess>(discard*ls*ls))//Skip until the system
equilibrates.

{
ecurrent=0.0;
for (i=0;i<ls;i++){
for (j=0;j<ls;j++){
field=spin[ip[i]][j]+spin[i][ip[j]]+spin[im[i]][j]
+spin[i][im[j]];
ecurrent+=spin[i][j]*field;
}
}
ecurrent/=-2.0;

//Divide by two since each bond is counted twice.
energy+=ecurrent;
}

}
//-----------------End of the Monte Carlo loop ------------
}

//------------------------Avereage-------------------------
denominator=(mcs-discard)/(double)measure*ls*ls;

//Number of data points divided by the system size
energy/=denominator;

// Simple average approximates the canonical average.
//-------------------------Output--------------------------
printf("Average energy per spin :%f\n",energy);
return 0;

}
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Solutions to exercises

Chapter 1

1.1

Let Si = 1 correspond to σi = −1 and Si = 2 to σi = 1. Then, we have

δSi,Sj
=

1
2

+
1
2
σiσj , δSi,1 =

1
2
− σi

2
. (B.1)

This relation shows that the two-state Potts model is equivalent to the Ising model.
To be more explicit, we can rewrite eqn (1.19) as

H = −J

2

∑

〈ij〉
σiσj +

h

2

∑

i

σi + const. (B.2)

Chapter 2

2.1

According to the mean-field approximation of eqn (2.5), the Hamiltonian is reduced
to

H ≈
∑

i

Hi = −(Jmz + h)
∑

i

Si, (B.3)

where Si = −S,−S + 1, · · · , S − 1, S, with S an integer or a half-odd integer. The
total partition function is Z =

∏
i Zi, where

Zi =
S∑

Si=−S

eβ(Jmz+h)Si =
sinh

(
(S + 1

2 )β(Jmz + h)
)

sinh β
2 (Jmz + h)

(B.4)

is the single-spin partition function. The magnetization is defined as

m = 〈Si〉 =
1
Zi

S∑

Si=−S

Si exSi =
d log Zi

dx
=

(
S +

1
2

)
coth

((
S +

1
2
)
x
)
− 1

2
coth

(x

2

)
,

(B.5)
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with x = β(Jmz + h). At h = 0, the slope of the right-hand side of eqn (B.5) at m = 0
is greater than 1 when

βzJ
S(S + 1)

3
> 1, (B.6)

and therefore the critical temperature is

Tc = zJ
S(S + 1)

3
. (B.7)

Note that the Ising model in this notation corresponds to S = 1/2, and if one wishes to
recover eqn (2.6) from eqn (B.5), the following changes must be applied to eqn (B.5),
2m,J/4, h/2 → m,J, h.

2.2

Differentiation of both sides of the equation of state with respect to h and setting
h → 0 give the following equation,

∂m

∂h
= sech2(βJmz)

(
βJz

∂m

∂h
+ β

)
. (B.8)

When the system is very close to the transition point, m is very small and we are
allowed to expand sech2(βJmz) in the above equation to second order in m. Then,
we can write the susceptibility as

χ =
β
(
1 − (βJmz)2

)

1 − βJz
(
1 − (βJmz)2

) . (B.9)

Below the transition point, eqn (2.7) gives

(βJmz)2 =
3(βJz − 1)

βJz
= 3

(
1 − T

Tc

)
, (B.10)

and therefore

χ =
β
(
1 − 3(1 − T/Tc)

)

1 − βJz
(
1 − 3(1 − T/Tc)

) . (B.11)

The second term in the numerator, the term with the prefactor 3, is much smaller
than the first term and can be ignored. By rewriting the denominator we have

χ =
1

2(Tc − T )
, (B.12)

from which γ′ = 1 is concluded.

2.3

From eqn (2.4) the total partition function is

Z = e−βNBJm2
(
2 cosh

(
β(Jmz + h)

))N

, (B.13)
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and the average energy per spin is, if we remember that m = tanh(βJmz),

ε(T ) = − 1
N

∂ log Z

∂β

∣∣∣∣
h=0

=
Jz

2
m2 − tanh(βJmz)Jzm = −Jz

2
m2. (B.14)

On the other hand, the specific heat (h = 0) is defined as, using Tc = Jz,

c(T ) =
∂ε(T )
∂T

= Jzβ2m
∂m

∂β
=

(
Tc

T

)2
m2

cosh2
(
(Tc/T )m

)
− Tc/T

. (B.15)

Note that ε(T ) = 0, c(T ) = 0, for T ≥ Tc, and ε(T ) = 3(T − Tc)/2, c(T ) = 3/2, for
T → T−

c . In other words, the specific heat is discontinuous at T = Tc.

2.4

We set Si = m + δSi and use the approximation that neglects quadratic terms in δSi

as in Section 2.1 to obtain

H = NBJm2 − (Jmz + h)
∑

i

Sz
i . (B.16)

Here, it has been assumed that m has only a z-component. The partition function is
then written as

Z = e−NBβJm2
[∫

dS eβ(Jmz+h)Sz

]N

. (B.17)

The integral is performed over the unit sphere |S| = 1. Since the magnetization m is
the average of Sz, we have

m =

∫ (
∏

i

dSi

)
Sz

i e−βH

∫ (
∏

i

dSi

)
e−βH

=

∫
dS Szeβ(Jmz+h)Sz

∫
dS eβ(Jmz+h)Sz

=
∂

∂(βh)
log

(∫
dS eβ(Jmz+h)Sz

)
. (B.18)

The integral here can be evaluated as follows using polar coordinates in three dimen-
sions. Sz is the projection of the unit vector onto the z-axis and is cos θ. Thus,

∫
dS eβ(Jmz+h)Sz

=
∫ π

0

sin θdθ

∫ 2π

0

dφ eβ(Jmz+h) cos θ

= 2π

∫ 1

−1

dμ eβ(Jmz+h)μ =
4π sinhβ(Jmz + h)

β(Jmz + h)
. (B.19)

The log-derivative of this equation with respect to βh

m = coth β(Jmz + h) − 1
β(Jmz + h)

(B.20)



Chapter 2 327

is the self-consistent equation. We expand the right-hand side in powers of m with
h = 0 in order to determine the critical point and critical exponent,

m ≈ βJmz

3
− (βJmz)3

45
. (B.21)

The critical point is found to be Tc = Jz/3 from the condition that the coefficient of
the linear term on the right-hand side is unity. Since the coefficient of the third-order
term of the right-hand side is negative, we conclude that the critical exponent β is
1/2 by using the same reasoning as in Section 2.2.

2.5

The magnetization vanishes above the transition point m = 0, and hence from
eqn (B.9) we have χ = 1/(T − Tc). Comparison of this result with eqn (B.12) for
the low-temperature side of the transition point reveals 1/2 for the ratio of critical
amplitudes, a universal value independent of the details of the system. The Landau
theory also gives 1/2 from eqns (2.22) and (2.23) for the susceptibility above and
below the transition point.

2.6

As is well known in the van der Waals theory, the critical point (T → Tc) is defined from
the equation of state as the inflexion point of the function P (v) = T/(v − b) − a/v2

∂P (v)
∂v

=
∂2P (v)

∂v2
= 0, (B.22)

or equivalently

Tc

(vc − b)2
=

2a

v3
c

,
Tc

(vc − b)3
=

3a

v4
c

, (B.23)

which gives the critical volume vc = 3b and the critical temperature Tc = 8a/(27b).
By replacing these critical values in the equation of state, we obtain Pc = a/(27b2).
The ratio between these critical parameters is a universal number

Pcvc

Tc
=

3
8
. (B.24)

Let us compute some critical exponents directly from the equation of state. Rewrite
the latter in terms of the reduced variables p = (P − Pc)/Pc, t = (T − Tc)/Tc and V =
(v − vc)/vc as

p + 1 =
8(t + 1)

3(V + 1) − 1
− 3

(V + 1)2
. (B.25)

By setting t = 0 (the critical isotherm) and expanding near V = 0, one finds

p = −3
2
V3 ∝ −Vδ, (B.26)
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which means δ = 3. Similarly, one can compute the isothermal compressibility

κT = −1
v

∂v

∂P

∣∣∣∣
T

=
(

Tv

(v − b)2
− 2a

v2

)−1

≈ 4b

3
(T − Tc)−1, (B.27)

implying γ = 1. As we will see in Chapter 3, to determine the critical behavior we
only need to compute two exponents since the others are related by scaling relations.
Therefore, we conclude that the critical behavior of the van der Waals fluid is of the
mean-field type.

2.7

First, notice that the free energy is not Z2-symmetric, i.e. f(m) �= f(−m). To
determine the equilibrium value of the magnetization we differentiate the Landau
free energy and set the result to zero, ∂f(m)/∂m = 2am + 4bm3 + 3cm2 = 0. The
solutions are

m = 0 , m± =
−3c ±

√
9c2 − 32ab

8b
. (B.28)

A non-vanishing physical solution must satisfy 9c2 ≥ 32ab. If a = kt, this implies that
t ≤ t̄ = 9c2/(32kb)(> 0). This means that the non-vanishing physical solution is still
valid for temperatures larger than Tc (t = 0). When t > t̄, m = 0 is the equilibrium
solution. At 0 < t = t1 = c2/(4kb) < t̄, when c < 0 (c > 0), the solutions m = 0 and
m+(m−) have the same free energy, i.e. both are stable. For t < t1, the non-vanishing
solution is the equilibrium one (global minimum of the free energy). Therefore, at
t = t1 the magnetization (order parameter) jumps discontinuously, indicating a first-
order transition. The addition of a cubic term to the free energy clearly leads to a
first-order transition within the Landau framework. If the jump in magnetization at
the transition point is not small, then the Landau expansion is not necessarily accurate.
It is important to remember that fluctuation effects over the mean-field may change
the order of the transition.

2.8

The equation indicating that the free energy is equal to 0 (the value at the origin)
should have non-vanishing multiple solutions when the magnetization jumps from 0 to
a non-vanishing value. The non-vanishing solution to the equation am2/2 + bm4/4 +
cm6/6 = 0 is m2 = (−3b ±

√
9b2 − 48ac)/4c. Hence, the condition for a multiple solu-

tion is 9b2 − 48ac = 0 or a = 3b2/16c.

2.9

The application of the mean-field approximation to the Hamiltonian (1.18) with h = 0
leads to

H = NBJm2 − Jzm
∑

i

Si − D
∑

i

S2
i . (B.29)
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Since each spin is independent in this equation, we can take the sum over Si = −1, 0, 1
at each site, and the free energy per spin is derived as

f =
Jm2z

2
− T log

(
eKzm+βD + 1 + e−Kzm+βD

)
. (B.30)

Here, K = βJ , and we have used NB = zN/2. Expansion of the logarithm to sixth
order in m gives, with eβD written as u,

f =
Jm2z

2
− T

(
log(1 + 2u) +

u(Kz)2

1 + 2u
m2 +

u(1 − 4u)(Kz)4

12(1 + 2u)2
m4

+
u(1 − 26u + 64u2)(Kz)6

360(1 + 2u)3
m6

)
. (B.31)

The coefficient of the fourth-order term changes sign at u = 1/4. This condition, eβD =
1/4, has a solution if D is negative. It is straightforward to check that the coefficient
of the sixth-order term is positive when u = 1/4.

2.10

Since m0 = m1, we equate eqn (2.63) to (2.64),

eβh
(
2 cosh(K + βh + βh1)

)z − e−βh
(
2 cosh(−K + βh + βh1)

)z

= eβh
(
2 cosh(K + βh + βh1)

)z tanh(K + βh + βh1)

+e−βh
(
2 cosh(−K + βh + βh1)

)z tanh(−K + βh + βh1). (B.32)

By collecting the terms with eβh on the left-hand side and those with e−βh on the
right-hand side, we have

eβh
(
cosh(K + βh + βh1)

)z(1 − tanh(K + βh + βh1)
)

= e−βh
(
cosh(−K + βh + βh1)

)z(1 + tanh(−K + βh + βh1)
)
, (B.33)

which is equivalent to
(
cosh(K + βh + βh1)

)z−1e−K−βh1 =
(
cosh(−K + βh + βh1)

)z−1e−K+βh1 . (B.34)

This is the desired relation.

2.11

The second term of the right-hand side of the self-consistent equation (2.66) is much
smaller than the first term and can be neglected. Then, the self-consistent equation in
the presence of an external field is

2βh1

z − 1
= 2 tanh K · (βh1 + βh), (B.35)

from which we have
h1

h
=

tanh K

1/(z − 1) − tanhK
∝ 1

T − Tc
. (B.36)
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We next study the relation between this ratio h1/h and the susceptibility with m =
m0 = m1 in mind. The expansion of eqn (2.61) for small h and h1

Z± = (2 cosh K)z
(
1 ± βh ± z sinhK · (βh + βh1)

)
(B.37)

is inserted into eqn (2.63) to give

m0 = βh + z sinhK · (βh + βh1). (B.38)

Differentiation of both sides with respect to h leads to

χ =
∂m0

∂h
= β + βz sinhK ·

(
1 +

∂h1

∂h

)
. (B.39)

Since the final term on the right-hand side diverges as 1/(T − Tc) as in eqn (B.36),
we conclude that the susceptibility also diverges with the same rate, and so γ = 1.

To evaluate δ it is useful to rewrite eqn (2.66) with an external field added as

2 tanh K · βh =
2 sinh K

3 cosh3 K
(βh1 + βh)3, (B.40)

where the condition has been used that the system is exactly at the transition point.
Combination of this and the relation

βh + βh1 =
m − βh

z sinhK
(B.41)

that results from eqn (B.38) yields

2 tanh K · βh =
2 sinh K

3 cosh3 K

(
m − βh

z sinhK

)3

. (B.42)

This equation is not satisfied in the small-h limit unless m is proportional to h1/3.

2.12

The integral is immediately separated by (a) as

g(r) =
∫ ∞

0

du e−ua2
d∏

i=1

∫ ∞

−∞
dqi e−uq2

i +iqiri . (B.43)

Gaussian integration of this expression easily leads to eqn (2.90). This integral is
written in terms of the modified Bessel function of the second kind as

g(r) = πd/2ad−2 2
(

2
ar

)d/2−1

Kd/2−1(ar). (B.44)

The asymptotic form of the modified Bessel function of the second kind in the limit
of large r gives g(r) ∝ r−(d−1)/2e−ar. The original problem (2.85) has kt/b for a2 in
eqn (2.88), and we have ξ =

√
b/kt in the exponent of e−ar = e−r/ξ.
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Chapter 3

3.1

Equation (3.15), to be written as Zlocal, is

Zlocal = eK(S1+S2+S3+S4) + e−K(S1+S2+S3+S4). (B.45)

Since the simultaneous inversion of all four spins Si → −Si (∀i) does not change Zlocal,
it should be expressed in terms of even products of S1, · · · , S4. The logarithm log Zlocal

should also have the same property, and hence we can write

Zlocal = A exp
{
K ′

1(S1S2 + S1S3 + S1S4

+S2S3 + S2S4 + S3S4) + K ′
2S1S2S3S4)

}
. (B.46)

Other fourth-order terms like S2
1S2

2 and higher-order terms such as S1S
2
2S2

3S4 reduce
to the above form because of the identity S2

i = 1. As eqn (B.45) includes S1, · · · , S4 in
a symmetric way, eqn (B.46) is also written in a form symmetric under the exchange
of any pair of spins.

We next have to fix the values of A,K ′
1,K

′
2 as functions of K by comparison of

eqns (B.45) and (B.46). This problem turns out to be relatively easy if we equate those
two equations at specific values of S1, · · · , S4. Since we need only three equations to
determine the three parameters A,K ′

1,K
′
2, we write the relation that eqn (B.45) is

equal to (B.46) for three cases, the first for all Si to be unity, the second S1 = −1 and
all others 1, and the third S1 = S2 = −1 and S3 = S4 = 1,

2 cosh 4K = Ae6K′
1+K′

2 , 2 cosh 2K = Ae−K′
2 , 2 = Ae−2K′

1+K′
2 . (B.47)

By taking the ratio of these relations, we find the explicit expressions for K ′
1 and K ′

2

as

K ′
1 =

1
8

log cosh 4K, K ′
2 =

1
8

log cosh 4K − 1
2

log cosh 2K. (B.48)

The nearest-neighbor spins after renormalization, S1S2, S2S3,S3S4, S4S1 (see
Fig. B.1), acquire the same renormalized interaction K ′

1 from the adjacent block
of spins, and thus the renormalized neighboring coupling is K ′ = 2K ′

1. The

1

2

3

4

Fig. B.1 A single step of renormalization produces a system with interactions among four

spins S1, · · · , S4.
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next-nearest-neighbor interactions, S1S3 and S2S4, do not have such contributions
and the interaction remains K ′

1, and so does the four-spin interaction K ′
2.

3.2

The scaling law of the free energy is written as, with the lattice constant a included
as a variable,

f(t, h, a) = b−df(bytt, byhh, byaa). (B.49)

After renormalization by the scale b, the lattice constant should be multiplied by 1/b,
and the exponent is ya = −1. Hence, a is irrelevant.

3.3

Since the correlation function does not decay as a power law, eqn (3.55) implies y =
yh = d.

3.4

Let us equate eqn (3.59) with eqn (3.60) and insert ±1 into S1 and S3 to have

e2K+h + e−2K−h = AeK′+2h1 (B.50)

eh + e−h = Ae−K′
(B.51)

e−2K+h + e2K−h = AeK′−2h1 . (B.52)

The ratio of eqns (B.50) and (B.52) gives

e4h1 =
cosh(2K + h)
cosh(2K − h)

. (B.53)

Hence,

e2h′
= e2h+4h1 =

e2h cosh(2K + h)
cosh(2K − h)

. (B.54)

This is eqn (3.63). Next, from the ratio of eqns (B.50) and (B.51),

e2K′+2h1 =
cosh(2K + h)

cosh h
. (B.55)

Further, from the ratio of eqns (B.52) and (B.51),

e2K′−2h1 =
cosh(2K − h)

cosh h
. (B.56)

Multiplication of these two equations leads to eqn (3.62),

e4K′
=

cosh(2K + h) cosh(2K − h)
cosh2 h

. (B.57)

Lastly, from eqn (B.51), we have eqn (3.64),

A4 = e4K′
(2 cosh h)4 = 16 cosh2 h cosh(2K + h) cosh(2K − h). (B.58)
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3.5

The scaling relation for the specific heat is derived from the scaling law of the
free energy by differentiation of the latter twice with respect to t, the scaling field
corresponding to the temperature. The discussions for the one-dimensional system
had this t replaced by x = e−4K . As mentioned in Section 3.6.3, the dependence on
the original temperature variable in the limit K → ∞ is recovered only after the
correction of x2. The field is also replaced by y = e−2h, but the fixed point of our
interest is at h = 0, which reduces the correction factor to unity, i.e. y = 1.

3.6

We just repeat the same procedure as in the case of b = 2. The quantity to calculate
is

∑

S2,S3,··· ,Sb

eK(S1S2+S2S3+···+SbSb+1). (B.59)

To perform the sum over all spins simultaneouly will complicate the situation, and so
we start with S2 = ±1,

∑

S2

eK(S1S2+S2S3)

= cosh2 K
∑

S2

(1 + S1S2 tanh K)(1 + S2S3 tanhK)

∝ 1 + S1S3 tanh2 K. (B.60)

The next sum to be taken is over S3. Similarly to the above,
∑

S3

(1 + S1S3 tanh2 K)(1 + S3S4 tanhK) ∝ 1 + S1S4 tanh3 K. (B.61)

The same process for S4 gives
∑

S4

(1 + S1S4 tanh3 K)(1 + S4S5 tanhK) ∝ 1 + S1S5 tanh4 K. (B.62)

It is now apparent that the result of consecutive summations over S2 to Sb is 1 +
S1Sb+1 tanhb K ≡ 1 + S1Sb+1u

′, which gives the desired result u′ = ub.

3.7

We insert the scaling law of magnetization (3.76) and a = kt to the Landau free energy
f = am2 + bm4 − hm, (a = kt) to have

f = t2
{
kg(ht−3/2)2 + bg(ht−3/2)4 − ht−3/2g(ht−3/2)

}
. (B.63)

This is of the form of the general scaling law (3.38) with the mean-field exponents,
d/yt = 2 − α = 2, yh/yt = βδ = 3/2.
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3.8

It cannot be written. If we assume that m and h are small around the critical point
and expand the hyperbolic tangent to third order in m, we obtain essentially the same
equation as the equation of state of the Landau theory, eqn (3.74), and the scaling
law is satisfied. A general m, not necessarily small, does not satisfy the scaling law
because this law is valid only near the critical point.

3.9

We choose b = t−1/yt = t−ν in the finite-size scaling (3.96),

f(t, h, L−1) = tνdf(1, t−yh/yth, t−νL−1). (B.64)

Comparison with eqn (3.103) suggests that L−1 corresponds to D and hence the
crossover exponent of L−1 is ν.

Chapter 4

4.1

The fixed-point equation is eqn (4.29) with K = K ′ = K∗, which is solved to
give e4K∗

= 1 + 2
√

2, or numerically K∗ = 0.336. We next linearize the parameters
around the fixed point as K ′ = K∗ + ε′,K = K∗ + ε. Insertion of these relations into
eqn (4.29) and expansion to first order in ε give

ε′ =
2(1 + e4K∗

)
(
4(1 + 4K∗)e4K∗

+ e8K∗
+ 3

)

(e4K∗ + 3)3
· ε. (B.65)

The coefficient of ε on the right-hand side is the renormalization eigenvalue λ = b1/ν .
From e4K∗

= 1 + 2
√

2, the eigenvalue is numerically λ = 1.624, and consequently ν =
1.13 from b =

√
3.

4.2

The same dimensional analysis as in Section 4.2.1 will give the desired result under
the assumption that the sixth-order term is renormalized as v → byvv. Invariance of
the Hamiltonian, in particular the sixth-order term, leads to yv = 6 − 2d. Since the
quartic term has yu = 4 − d, the exponent of the sixth-order term is smaller for d > 4
and is more irrelevant.

4.3

The scaling law for magnetization at t = 0 around the Gaussian fixed point is

m(u, h) = b1−d/2m(b4−du, b1+d/2h). (B.66)

If we choose b such that the h dependence disappears from the right-hand side, we
have

m(u, h) = h(d−2)/(d+2)m(h(2d−8)/(d+2)u, 1). (B.67)
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The u dependence of m(u, h) can be revealed by the mean-field theory. The equation
of state of the Landau theory for the Gaussian model at t = 0, 4um3 − h = 0, suggests
m ∝ u−1/3, and hence m on the right-hand side of eqn (B.67) depends on the first
argument with power −1/3. Consequently,

m(u, h) = h(d−2)/(d+2) ·
(
h(2d−8)/(d+2)u

)−1/3 ∝ h1/3. (B.68)

Chapter 5

5.1

If the interaction Si · Sj is decomposed into components, S
(1)
i S

(1)
j + S

(2)
i S

(2)
j + · · · +

S
(n)
i S

(n)
j , the process of the Hubbard–Stratonovich transformation in the text can be

applied separately to each component. The differences from the single-component case
are, first, that the variable σ has n components (σ(1)

i , σ
(2)
i , · · · , σ

(n)
i ) for each site i

and, secondly, that the summation in eqn (5.17) is replaced by the integral

g
(
{σ(j)}

)
=

∫ ( N∏

i=1

dSi

)
δ(S2

i − 1) exp
(
−

n∑

j=1

σ(j) · S
)
. (B.69)

The result of this integral is independent of the direction of the vector σ(j) but
depends only on its magnitude (σ(j))2 because of the rotational symmetry of the
integration weight δ(S2

i − 1). Therefore the effective Hamiltonian in terms of φ should
be rotationally invariant, i.e. a function of the magnitude of the φ-field,

∑n
j=1 φj(r)2.

The expansion of this isotropic potential gives the second and third terms on the
right-hand side of eqn (5.25). The first term proportional to the gradient emerges just
as in the case of a single component.

5.2

One can use the ansatz φ(r) = φ0 cos(q · r) to compute the free energy in the two
cases q = 0, i.e. no modulation, and q �= 0. The result of this simple calculation for
the effective Hamiltonian per volume is

fh = tφ2
0 + uφ4

0 (B.70)

f inh =
1
2
(
cq2 + Dq4 + t

)
φ2

0 +
3u

8
φ4

0, (B.71)

where we have used the fact that the averages over the periodic functions are

1
V

∫
ddr sin2(q · r) =

1
V

∫
ddr cos2(q · r) =

1
2

,
1
V

∫
ddr cos4(q · r) =

3
8
. (B.72)

If c > 0, it is energetically favorable to have a homogeneous phase, i.e. q = 0.
Therefore, if t < 0 then the stable solution is the ordered phase φ0 �= 0, while for t > 0
the disordered phase φ0 = 0 is more stable. The phase transition is second order.

On the other hand, when c < 0, one needs to consider all the three phases and
determine which one has minimal free energy in the (Δ, T ) plane. Let us start by
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looking for the modulation that minimizes f inh. By taking the derivative of cq2 + Dq4,
we find that the modulation is given by

q0 =

√
|c|
2D

, (B.73)

and the minimal free energy for the modulated phase is

f inh =
1
2

(
t − c2

4D

)
φ2

0 +
3u

8
φ4

0. (B.74)

When the coefficient of the quadratic term is positive, i.e. t > c2/(4D), the paramag-
netic phase is favorable, while for 0 < t < c2/(4D) the modulated phase is stable. The
transition between the disordered and spatially modulated phases is second order.

It remains to analyze the case t < 0 and c < 0. The competing phases are the
spatially homogeneous and inhomogeneous states. At the minimum, as shown by the
minimization of eqns (B.70) and (B.74) with respect to φ0, the two free energies are
given by

fh
0 = − t2

4u
, f inh

0 = − 1
6u

(
|t| + c2

4D

)2

, (B.75)

which indicates that for t < t̄ the stable phase is homogeneous, while for t > t̄ it is
modulated for some t̄. This boundary value is determined by equating the two free
energies fh

0 (t̄) = f inh
0 (t̄) and is given by

t̄ = − c2

4D

(√
3
2
− 1

)−1

, (B.76)

and represents a first-order transition. The point t = 0, c = 0 is a Lifshitz point. The
resulting phase diagram is shown in Fig. B.2.

One can define general (d, n) Lifshitz points, where n is the number of components
of the order parameter field φ(r). The present problem describes a (d, 1) Lifshitz point.

D

H

M
c

t

0

Fig. B.2 Phase diagram with a Lifshitz point at the origin. D, H and M stand for the

disordered, homogeneous and modulated (inhomogeneous) phases, respectively.
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Chapter 6

6.1

Translation is reproduced by a = 1, c = 0, d = 1 and finite b. Rotation has b = 0,
c = 0, d = 1 and complex a = eiθ with real θ. Similarly, dilation corresponds to b =
0, c = 0, d = 1 and real positive a. The special conformal transformation of eqn (6.5)
is rewritten by using a complex number z as

f(z) =

z

|z|2 + a

∣∣∣∣
z

|z|2 + a

∣∣∣∣
2 . (B.77)

By multiplying the denominator and numerator by |z|4, we find

f(z) =
|z|2(z + a|z|2)
|z + a|z|2|2 =

z(1 + az̄)

|1 + az̄|2 =
z

1 + āz
, (B.78)

where z̄ stands for complex conjugate. This is of the form of eqn (6.10).

6.2

The case ε = ε̄ = 1 is, according to eqns (6.11) and (6.12),

f(z) = z + ε−1 · 1, f̄(z̄) = z̄ + ε̄−1 · 1, (B.79)

where we have arbitrarily introduced infinitesimal constants ε−1 and ε̄−1. This is a
translation. Next, when ε = z, ε̄ = z̄, the transformation reads

f(z) = z + ε0z, f̄(z̄) = z̄ + ε̄0z̄. (B.80)

This is a dilation if ε0 and ε̄0 are real. It is a dilation and a rotation for complex ε0
and ε̄0 since the latter includes the change of the phase. Lastly, we discuss ε0 = z2.
The antiholomorphic part will have the same behavior and is omitted for simplicity.
The transformation is

f(z) = z + ε1z
2 = x+ c1(x

2 − y2)− 2c2xy + i(y + c2(x
2 − y2) + 2c1xy), (B.81)

where we have written z = x+ iy, ε1 = c1 + ic2 with real x, y, c1, c2. The special con-
formal transformation of eqn (6.4) is rewritten for infinitesimal a as

r → r + a r2 − 2(a · r) r. (B.82)

By writing r = (x, y) and a = (−c1, c2), the two components of this transformation
are

x → x+ c1(x
2 − y2)− 2c2xy, y → y + c2(x

2 − y2) + 2c1xy, (B.83)

which agree with eqn (B.81).

6.3

Only the holomorphic part is written explicitly here for simplicity. The application
of the differential operator (z21∂1 + 2h1z1 + z22∂2 + 2h2z2) to the right-hand side
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of eqn (6.30) yields an expression with the denominator zh1+h2+1
12 z̄h̄1+h̄2

12 and the
numerator

−(h1 + h2)z2
1 + 2h1z1(z1 − z2) + (h1 + h2)z2

2 + 2h2z2(z1 − z2) = (z1 − z2)2(h1 − h2).
(B.84)

This can vanish for z1 �= z2 only when h1 = h2.

6.4

Using f(z) = z + ε(z) and taking only the leading order of ε, we easily see that the
Schwarzian is {f, z} = ∂3ε. Then, the right-hand side of eqn (6.49) minus T (z) becomes

(
(1 + ∂ε)2T (z + ε) +

c

12
∂3ε

)
− T (z) = 2(∂ε)T (z) + ε∂T (z) +

c

12
∂3ε. (B.85)

6.5

Straightforward applications of the definition of the Schwarz derivative show that both
sides of eqn (6.51) are equal to

A

2
(

∂u

∂f

)2 (
∂f

∂z

)2 , (B.86)

where

A = 2
∂u

∂f

∂3u

∂f3

(
∂f

∂z

)4

− 3
(

∂2u

∂f2

)2 (
∂f

∂z

)4

+ 2
(

∂u

∂f

)2
∂f

∂z

∂3f

∂z3
− 3

(
∂u

∂f

)2 (
∂2f

∂z2

)2

. (B.87)

The second half of the problem is solved by successive applications of two transforma-
tions,

T (z) →
(

∂f

∂z

)2

T (f) +
c

12
{f, z}

→
(

∂f

∂z

)2
((

∂u

∂f

)2

T (u) +
c

12
{u, f}

)
+

c

12
{f, z}

=
(

∂u

∂z

)2

T (u) +
c

12
{u, f}

(
∂f

∂z

)2

+
c

12
{f, z}

=
(

∂u

∂z

)2

T (u) +
c

12
{u, z}. (B.88)

6.6

The projective mapping of eqn (6.10) yields

∂3
zf

∂zf
=

6c2

(cz + d)2
,

∂2
zf

∂zf
= − 2c

cz + d
, (B.89)
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from which the Schwarzian is easily seen to vanish.

6.7

If the correlation function is written in terms of the conformal generators

〈0|T (w)T (z)|0〉 =
∞∑

m,n=−∞
w−m−2z−n−2〈0|LmLn|0〉, (B.90)

we notice that n actually runs only for n ≤ −2 and m runs for m ≥ 1 because of
eqns (6.72), (6.94) and (6.95). We thus have

〈0|T (w)T (z)|0〉 =
∞∑

m=1

∞∑

n=2

w−m−2zn−2〈0|LmL−n|0〉. (B.91)

Using the Virasoro algebra

[Lm, L−n] = (m + n)Lm−n +
c

12
m(m2 − 1)δm−n,0, (B.92)

and the fact that from [L0, Lk] = −kLk it results 〈0|Lk|0〉 = 0, we rewrite the above
expression as

〈0|T (w)T (z)|0〉 =
c

12

∞∑

n=2

w−n−2zn−2n(n2 − 1) =
c

12wz3

∞∑

n=3

n(n − 1)(n − 2)
( z

w

)n

,

(B.93)
where we have rewritten n → n − 1 in going from the second to the third expression.
We can confirm that this expression is equal to c/2(w − z)4 by taking the third-order
derivative of the series expression

1
w − z

=
1
w

∞∑

n=0

( z

w

)n

(B.94)

by z.

6.8

The following consequences of the Virasoro algebra

[L2, L−2] = 4L0 +
c

2
, [L1, L−1] = 2L0 (B.95)

and the relations Ln|0〉 = 0 (n ≥ −1) lead to the desired results.

Chapter 7

7.1

The calculations remain the same for an arbitrary d up to the second line of eqn (7.24).
In the third line, (4 −

∑
δ e−iq·δ) is changed to (2d −

∑
δ e−iq·δ). The right-hand

side of eqn (7.25) is now 2 cos q1 + 2 cos q2 + · · · + 2 cos qd, and accordingly in the
final expression of eqn (7.26) q2

x + q2
y is replaced by q2

1 + q2
2 + · · · + q2

d = q2. The
integral (7.28) has (2π)d in place of (2π)2 and the other factors and the integrand
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remain the same. This integral diverges as h → 0 if d ≤ 2, and m → 0 follows as long
as T > 0. When d > 2, the integral is finite, and no inconsistency arises with finite m.

7.2

We evaluate the equivalent of integral (7.31) for general d by using eqn (7.9). The r
dependence of the result of integral (7.9) is −r2−d/(d − 2) if d �= 2. When d > 2, the r
dependence vanishes in the large-r limit, and the correlation function (7.30) converges
to a finite value, which means the existence of long-range order. For d = 2 we have
already shown the power law decay of the correlation function. In the case of d < 2,
the integral diverges to +∞ as r → ∞ and the correlation function vanishes. These
analyses show that d = 2 is the lower critical dimension.

7.3

Shown in Fig. B.3.

7.4

Let us multiply φ(r) and φ(0) by p in eqn (7.30). Then, the correlation function is

〈
cos

(
p
(
φ(r) − φ(0)

))〉
= exp

(
−p2

2
〈(

φ(r) − φ(0)
)2〉

)
. (B.96)

Thus, the final expression of the correlation function is eqn (7.32) with the power of r
multiplied by p2. This means that the scaling dimension xp is xp = Tp2/4πJ according
to eqn (3.80). Then, yp = d − xp = 2 − Tp2/4πJ , and the relevance condition yp > 0 is
T < 8πJ/p2 ≡ Tp. It should be noticed here that the temperature Tp should be lower
than TKT(= πJ/2) in order for the above argument based on the spin-wave theory
to make sense. We therefore have πJ/2 > 8πJ/p2 or p > 4 ≡ p0. In conclusion, the
angle variable φi tends to take discrete values 2πk/p in the low-temperature range
0 < T < Tp(< TKT) when p is larger than four.

7.5

We collect the x dependence of eqn (7.55) to the left-hand side and integrate,
∫

dx

x2 + ct
=

∫
dl. (B.97)

Fig. B.3 n = 2, 2,−2,−2 from left to right.
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The integral is simplified by the change of variable x =
√

ct tan θ,
∫

dθ√
ct

=
∫

dl = l + const, (B.98)

from which we find

l = l0 +
θ√
ct

= l0 +
1√
ct

arctan
x√
ct

. (B.99)

Chapter 8

8.1

The zero-temperature limit β → ∞ of the equation of state (8.9) has the solutions
m = 0 and m = 1 for h0 < Jz and only m = 0 for h0 > Jz. The zero-temperature
limit of the free energy (8.8), on the other hand, is F (0) = −Nh0 and F (1) = −NJz/2
for m = 0 and m = 1, respectively, because of NB = zN/2. Comparison of these two
values reveals the transition point h0 = Jz/2 at which F (0) and F (1) match.

8.2

The equation of state (8.9) for the Gaussian distribution reads

m =
1√

2πh0

∫ ∞

−∞
e−h2/2h2

0 tanh β(Jmz + h) dh. (B.100)

In the zero-temperature limit β → ∞, the factor tanhβ(·) in the integrand is either
+1 or −1 according to the sign of Jmz + h,

m =
1√

2πh0

∫ ∞

−Jmz

e−h2/2h2
0 dh − 1√

2πh0

∫ −Jmz

−∞
e−h2/2h2

0 dh. (B.101)

We rewrite the right-hand side in terms of the error function using the notation h =√
2 h0x,1

m = 1 − 2√
π

∫ ∞

Jmz/
√

2h0

e−x2
dx = Erf

(
Jmz√

2h0

)
. (B.102)

Expansion of the error function to third order of its argument gives

m =
2√
π

(
Jmz√

2h0

− 1
3

(
Jmz√

2h0

)3
)

. (B.103)

Since the coefficient of the third-order term is negative, we conclude the existence of
a second-order transition when the coefficient of the first-order term becomes unity,
h0,c =

√
2 Jz/

√
π.

1 The error function is defined as Erf(x) = 2√
π

∫ x
0 e−t2 dt.
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8.3

It suffices to closely follow the discussions of Section 4.2.1. We replace φ(r) by the field
of the spin glass order parameter q(r) and uφ(r)4 by vq(r)3. After the change of scale
this third-order term is multiplied by b−d+yv+3(d−yh). Invariance then implies −d +
yv + 3(d − yh) = 0, from which we find yv = 3 − d/2 using the result of invariance of
the first term, yh = d/2 + 1. This argument is valid irrespective of the presence of
replica indices in q as qαβ . Only the existence of the third-order term matters.

8.4

We follow the processes for β and γ. In the following expression,

M0 =
∑

s

ns(p) ≈
∫

ds s−τf
(
(p − pc)sσ

)
, (B.104)

the integration variable is changed as z = (pc − p)sσ,

M0 ∝ (pc − p)(τ−1)/σ

∫
dz f(−z)z−1+(1−τ)/σ, (B.105)

from which 2 − α = (τ − 1)/σ is derived.

8.5
1. When site 0 and r belong to different clusters, variables δS0,1 − q−1 and

δSr ,1 − q−1 are independent of each other. Since all values of Si contribute
with the same weight in a cluster,

∑q
S0=1(δS0,1 − q−1) =

∑q
Sr=1(δSr ,1 −

q−1) = 0.
2. Two sites are in the same cluster. Let us call the summation over spin

variables within a cluster the ‘spin summation’ and consider the spin sum-
mation of terms appearing in the expansion of (δS0,1 − q−1)(δSr ,1 − q−1)
by noting S0 = Sr within a cluster. The spin summation of δS0,1δSr ,1 is
1, those of q−1δS0,1 and q−1δSr ,1 are both q−1, and that of q−2 is q−1.
Then, the spin summation of (δS0,1 − q−1)(δSr ,1 − q−1) is 1 − q−1, and
consequently the expectation value is obtained by dividing this by q as
(q − 1)/q2.

3. For q = 1 + ε, (q − 1)/q2 = ε + O(ε2). The solutions to the previous two
problems indicate that coefficient of the term ε in the expansion of the
correlation function of the Potts model represents the probability that
0 and r are in the same cluster, which is the correlation function of
percolation.

Chapter 9

9.1

For a free boundary, the partition function is written as

Z
(F)
N =

∑

{Si}
eK{δ(S1,S2)+δ(S2,S3)+···+δ(SN−1,SN )}. (B.106)
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We follow the method for the solution to the Ising model and first sum over the variable
SN as

Z
(F)
N =

∑

S1,··· ,SN−1

eK{δ(S1,S2)+δ(S2,S3)+···+δ(SN−2,SN−1)}

·
∑

SN=0,1,2

eKδ(SN−1,SN ) = Z
(F)
N−1 · (eK + 2). (B.107)

This is a recursion relation for the partition function, which we repeatedly use to
obtain the partition function as Z

(F)
N = 3(eK + 2)N−1. The free energy per spin in the

thermodynamic limit is

βf = − lim
N→∞

1
N

log Z
(F)
N = − log(eK + 2). (B.108)

For a periodic boundary, the transfer-matrix method applies. The transfer matrix
for the three-state Potts model has the elements T (Si, Si+1) = eKδ(Si,Si+1). More
explicitly,

T =

⎛

⎝
eK 1 1
1 eK 1
1 1 eK

⎞

⎠. (B.109)

The eigenvalues are eK + 2, eK − 1, eK − 1 with the corresponding un-normalized
eigenvectors t(1, 1, 1), t(1, e2πi/3, e4πi/3), t(1, e−2πi/3, e−4πi/3), respectively. The par-
tition function is then

Z
(P)
N = (eK + 2)N + 2(eK − 1)N . (B.110)

Since eK + 2 > eK − 1, the free energy per spin in the thermodynamic limit is

βf = − lim
N→∞

1
N

log Z
(P)
N = − log(eK + 2), (B.111)

which agrees with the free-boundary result (B.108).

9.2

The partition function is given by

Z
(P)
N = Tr TN , (B.112)

where the transfer matrix is the 4 × 4 matrix

T =

⎛

⎜⎜⎝

e2K1+K2 1 1 e−2K1+K2

1 e2K1−K2 e−2K1−K2 1
1 e−2K1−K2 e2K1−K2 1

e−2K1+K2 1 1 e2K1+K2

⎞

⎟⎟⎠, (B.113)
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with matrix elements T (S11, S21, S12, S22) = eK1S11S12+K1S21S22+K2(S11S21+S12S22)/2,
and basis vectors |S1jS2j〉

|11〉 =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠, |1 − 1〉 =

⎛

⎜⎜⎝

0
1
0
0

⎞

⎟⎟⎠, | − 11〉 =

⎛

⎜⎜⎝

0
0
1
0

⎞

⎟⎟⎠, | − 1 − 1〉 =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠. (B.114)

The eigenvalues of the matrix T are:

λ1,2 = 2
(

cosh(2K1) cosh(K2) ±
√

1 + sinh2(K2) cosh2(2K1)
)

, (B.115)

λ3,4 = 2 sinh(2K1)e±K2 , (B.116)

and, therefore, the partition function is given by

Z
(P)
N = λN

1 + λN
2 + λN

3 + λN
4 . (B.117)

Since λ1 is the largest among the four eigenvalues, only this term remains in the
thermodynamic limit.

To compute the correlation function 〈S1jS1j+r〉, one needs to observe that

〈S1j−1S2j−1|TS1j |S1jS2j〉 = 〈S1j−1S2j−1|T σ̄|S1jS2j〉, (B.118)

where

σ̄ =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠, (B.119)

because of the choice of the basis as in eqn (B.114). Then, the correlation function is
given by

〈S1jS1j+r〉Z(P)
N = Tr

(
T j−1 σ̄ T r σ̄ TN−j−r+1

)
= Tr

(
σ̄ T r σ̄ TN−r

)
. (B.120)

9.3

The expression

Hh(u) ≡ H(u) +
h2

2Ku2
, (B.121)

which appears in the saddle-point condition, is a monotone decreasing function, diverg-
ing as u → 0 in any dimension if h �= 0 and approaching 0 as u → ∞. Consequently,
the saddle-point condition Hh(u) = 2K has a solution for any K. Since any derivatives
of Hh(u) do not diverge for u > 0, this function is not singular. This implies that the
solution u of the saddle-point condition is not singular as a function of K. Thus, the
spherical model has no phase transition when h �= 0.
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9.4

Differentiation of eqn (9.65) with respect to h gives −m. Hence,

m =
h

2Ku
. (B.122)

The relation between u and h is determined by eqn (9.66). Since the solution u of
eqn (9.66) vanishes as h → 0, u should be small for small h. Then, eqn (9.66) is
written as

H(0) − cud/2−1 +
h2

2Ku2
= 2K. (B.123)

Since the second term on the left-hand side ud/2−1 is smaller than the other term, we
neglect it and use H(0) = 2Kc to rewrite the above relation as

h2

2Ku2
= 2K − 2Kc. (B.124)

This equation is solved for h/u and we insert the result into eqn (B.122) to have

m =

√
1 − Kc

K
. (B.125)

9.5

Let us evaluate the integration part, named I, of the general equation (9.86). We write
βJ = K and have

I = 2
∫ π

0

cos2 q e−K cos q

(1 + e−K cos q)2
dq

= 2
∫ π/2

0

cos2 q e−K cos q

(1 + e−K cos q)2
dq + 2

∫ π

π/2

cos2 q e−K cos q

(1 + e−K cos q)2
dq

= 2
∫ π/2

0

cos2 q e−K cos q

(1 + e−K cos q)2
dq + 2

∫ π/2

0

cos2 q eK cos q

(1 + eK cos q)2
dq

= 4
∫ π/2

0

cos2 q e−K cos q

(1 + e−K cos q)2
dq. (B.126)

For large K, contributions from small cos q dominate the integral. We thus change the
variable as x = π/2 − q so that the behavior of the integrand around q = π/2, where
cos q is small, is easier to see,

I = 4
∫ π/2

0

sin2 x e−K sin x

(1 + e−K sin x)2
dx. (B.127)
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Since the leading contribution as K � 1 comes from the range of small x, we
approximate sinx ≈ x to find

I ≈ 4
∫ π/2

0

x2 e−Kx

(1 + e−Kx)2
dx

= 4K−3

∫ πK/2

0

t2e−t

(1 + e−t)2
dt

≈ 4K−3

∫ ∞

0

t2e−t

(1 + e−t)2
dt =

2π2

3K3
. (B.128)

Multiplication of this result by the factor in front of the integral of eqn (9.86) yields
eqn (9.87).

9.6

When h > J , the denominator of the integrand of eqn (9.84) is unity in the low-
temperature limit because the exponent appearing in the denominator is always
negative. We thus find

E0 =
h

2
− 1

2π

∫ π

−π

(J cos q + h) dq = −h

2
(B.129)

as the ground-state energy. For h < J , the denominator of the integrand is unity when
the absolute value of q is smaller than q0 defined by J cos q0 = −h. Otherwise, the
exponential function in the denominator grows indefinitely and the integral vanishes.
Thus,

E0 =
h

2
− 1

2π

∫ q0

−q0

(J cos q + h) dq

=
h

2
− J sin q0

π
− hq0

π

=
h

2
−

√
J2 − h2

π
− h

π
arccos

(
−h

J

)
(B.130)

is the ground-state energy.

9.7

The mapping from the Fermionic to the Ising spin Hamiltonian is realized by the
relation Sj = 2nj − 1. We disregard the boundary terms in the resulting spin Hamil-
tonian since we are only interested in the thermodynamic limit. Hence, our starting
Hamiltonian is eqn (9.91).

Consider now a map between spin variables and bond variables

SjSj+1 = S̃j . (B.131)
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Clearly there are N − 1 variables S̃j = ±1, while there are N spins Sj . Thus, let us
keep S1, and the (N − 1) S̃j as our new variables. In terms of these new variables the
Hamiltonian reads

βH = −K1

N−1∑

j=1

S̃j − K2

N−2∑

j=1

S̃jS̃j+1 (S̃j = ±1), (B.132)

which corresponds to an Ising chain with N − 1 sites in a longitudinal field K1. The
partition function is

Z
(F)
N =

∑

S1

∑

{S̃j}

e−βH = 2
∑

{S̃j}

e−βH . (B.133)

We will use the transfer-matrix technique of Section 9.1.2 to determine Z
(F)
N , but

notice that now we are dealing with free boundary conditions as opposed to periodic
boundary conditions. The trick consists of using the same periodic boundary condition
technique but with the last bond treated differently, i.e. we set K2 = 0 in the last bond.
The bulk transfer matrix is

T =
(

eK2+K1 e−K2

e−K2 eK2−K1

)
= U

(
λ+ 0
0 λ−

)
U−1, (B.134)

with the 2 × 2 matrix U given by (UU−1 = U−1U = 1)

U =

⎛

⎜⎜⎝

e−K2

√
e−2K2 + (λ+ − eK2+K1)2

e−K2

√
e−2K2 + (λ− − eK2+K1)2

λ+ − eK2+K1

√
e−2K2 + (λ+ − eK2+K1)2

λ− − eK2+K1

√
e−2K2 + (λ− − eK2+K1)2

⎞

⎟⎟⎠, (B.135)

U−1 =

⎛

⎜⎜⎝

− λ− − eK2+K1

√
e−2K2 + (λ− − eK2+K1)2

e−K2

√
e−2K2 + (λ− − eK2+K1)2

λ+ − eK2+K1

√
e−2K2 + (λ+ − eK2+K1)2

− e−K2

√
e−2K2 + (λ+ − eK2+K1)2

⎞

⎟⎟⎠, (B.136)

and eigenvalues (eqn (9.25))

λ± =
eK2+K1 + eK2−K1 ±

√
(eK2+K1 + eK2−K1)2 − 4 e2K2 + 4 e−2K2

2
(B.137)

= eK2

(
cosh(K1) ±

√
cosh2(K1) − 2e−2K2 sinh(2K2)

)
. (B.138)

Therefore, the partition function is given by

Z
(F)
N = 2Tr

(
TN−2

(
eK1 1
1 e−K1

))
= 2Tr

((
λN−2

+ 0
0 λN−2

−

)
U−1

(
eK1 1
1 e−K1

)
U

)
.

(B.139)
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In the thermodynamic limit N → ∞, since (λ−/λ+)N → 0, we obtain

lim
N→∞

F

N
= −T log λ+. (B.140)

The correlation function in the same limit is translationally invariant and is given by

〈SjSj+1〉 = 〈S̃j〉 →
1
N

∂ log Z
(F)
N

∂K1
→ sinh(K1)√

cosh2(K1) − 2e−2K2 sinh(2K2)
. (B.141)

9.8

We closely follow the method to solve the two-dimensional Ising model. First, we
replace the variables as K∗ → βh,K → βJ in eqns (9.94) and (9.95) and ignore the
factor g(K). Since the density matrix has the Hamiltonian operator in the exponent,
we do not have to make a product, like the product of V1 and V2, and write the
partition function simply as

Z = Tr exp

⎛

⎝βJ
∑

j

σz
j σz

j+1 + βh
∑

j

σx
j

⎞

⎠. (B.142)

The representation by Majorana fields and the Fourier transformation apply similarly
to lead to

Z = Tr
∏

q≥0

T (q) (B.143)

T (q) = exp
[
2iβJ

(
e−iqC1(q)C

†
2(q) + eiqC†

1(q)C2(q)
)

−2iβh
(
C1(q)C

†
2(q) + C†

1(q)C2(q)
)]

. (B.144)

The eigenvalues of T (q) in the two-dimensional space spanned by |00〉 and |11〉 are
two degenerate unities. The projection of T (q) onto the space spanned by |01〉 and
|10〉 is, corresponding to eqns (9.116) and (9.117),

T̃ (q) = exp
(
2βh(τz cos q − τx sin q) − 2βJτz

)
. (B.145)

The quantity in the outer brackets on the right-hand side is written as a matrix as

2β

(
h cos q − J −h sin q
−h sin q −h cos q + J

)
, (B.146)

whose eigenvalues are ±2β
√

h2 + J2 − 2hJ cos q. Thus, the partition function is

Z =
∏

q≥0

(
2 + 2 cosh 2β

√
h2 + J2 − 2hJ cos q

)

=
∏

q≥0

(
2 cosh β

√
h2 + J2 − 2hJ cos q

)2

. (B.147)
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The free energy per spin is

−βf =
1
π

∫ π

0

log
(
2 cosh β

√
h2 + J2 + 2hJ cos q

)
dq, (B.148)

where the variable has been changed as q → π − q. This is the exact solution for the
free energy.

The zero-temperature limit β → ∞ of the free energy f is the ground-state energy.
For h > 0, the zero-temperature limit of the above solution is

E0 = − 1
π

∫ π

0

√
h2 + J2 + 2hJ cos q dq

= −2(h + J)
π

∫ π/2

0

√
1 − k2

1 sin2 ω dω

= −2(h + J)
π

E(k1), k2
1 =

4hJ

(h + J)2
, (B.149)

where E(k1) is the complete elliptic integral of the second kind. This function is
known to have a singularity at k1 = 1 (h = J). To confirm it, we set h/J = 1 + ε and
use k2

1 ≈ 1 − ε2/4. We notice in eqn (B.149) that the singularity could emerge when
the integrand vanishes and so rewrite the right-hand side as

E0 ≈ −4J

π

∫ π/2

0

√

1 −
(

1 − ε2

4

)
cos2 ω dω

≈ −4J

π

∫ π/2

0

√

1 −
(

1 − ε2

4

)(
1 − ω2

2

)
dω

≈ − 4J√
2π

∫ π/2

0

√
ω2 +

ε2

2
dω. (B.150)

This is the same expression as eqn (9.129) and behaves singularly as −ε2 log |ε| around
ε = 0. The singularity appears as a function of the transverse field, not as a function
of the temperature.

9.9

For the single-spin case,

Z = eβh + e−βh = eβh(1 + z2) = 0, (B.151)

which means z = ±i. The two-spin system has

Z = e2βh+K + e−2βh+K + 2e−K = 0. (B.152)
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This gives z = −e−2K ± i
√

1 − e−4K , whose absolute value is unity, as expected.

9.10

The integral expression of magnetization (9.138) is approximated as

m = 4βh

∫ π

−π

g(θ)
4β2h2 + θ2

dθ. (B.153)

Inserting g(θ) = θa and changing the integral variable as θ → hφ, we find

m = 4βha

∫ π/h

−π/h

φa

4β2 + φ2
dφ −→ 4βha

∫ ∞

−∞

φa

4β2 + φ2
dφ, (B.154)

where the last expression is valid in the asymptotic limit of h → 0. Since the integral
part is now independent of h, the correct behavior m ∝ h1/δ results only if a = 1/δ.

Chapter 10

10.1

The upper right and lower left graphs of Fig. 10.3 represent the sixth-order term of the
high-temperature expansion, and no other contributions exist of this order. There are
N ways to locate either one of these graphs on the square lattice because such a number
is identical to the number of ways to locate the lower-left corner of a graph. Hence,
the total number is 2N , which is the coefficient of the sixth-order term according to
eqn (10.18).

10.2

We need the original Boltzmann factor u(ξi − ξj) and its Fourier transform λ(ηij) to
apply the theory of Section 10.3. The former is already written in the text for the
Potts model, u(0) = eK , u(1) = · · · = u(q − 1) = 1. The latter is obtained using the
inverse transformation (10.35) with u(0) = u(q) taken into account as,

λ(η) =
q∑

ξ=1

e−2πiξη/qu(ξ) = u(0) +
q−1∑

ξ=1

e−2πiξη/q =
{

eK + q − 1 (η = 0)
eK − 1 (η �= 0) . (B.155)

Since the ratio of the two different Boltzmann factors is u(1)/u(0) = e−K for the
original system, the dual ratio is used to define the dual coupling as λ(1)/λ(0) = e−K∗

,

e−K∗
=

eK − 1
eK + q − 1

. (B.156)

The uniqueness assumption of the transition point allows us to identify the transition
point with the fixed point of the duality, K = K∗ = Kc, in the case of a self-dual
lattice like the square lattice, leading to eKc = 1 +

√
q.
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As for the duality relation of the partition function, we notice that the following
relation holds, as in eqn (10.37),

Z(K) ≡
∑

{ξi}
eK

∑
〈ij〉 δ(ξi−ξj) = q−1−N

∑

{μi}
e
∑

〈ij〉(K
∗δ(μi−μj)+a), (B.157)

where a is determined by λ(1) = eK − 1 = ea. Therefore, we have

Z(K) = q−1−N (eK − 1)N∗
BZ(K∗). (B.158)

This is the duality relation of the partition function.

10.3

The same discussion applies as in the Ising model given in Section 10.1 with the neces-
sary modification being the evaluation of (T ∗)′c. From eKc = 1 +

√
3 and eqn (B.156)

we find (T ∗)′c to be −1 as in the Ising case. Accordingly, the relations for the critical
exponents and critical amplitudes, α+ = α− and A+ = A−, remain intact.

10.4

The argument developed in Section 10.1 applies. If the left-hand side of eqn (10.11)
represents the singular part of the free energy for the triangular lattice, the right-hand
side is for the hexagonal lattice. Hence, eqn (10.14) relates critical exponents and
amplitudes of the Ising models on the triangular and hexagonal lattices. If we denote
these quantities for the triangular lattice by At

±, αt
± and those for the hexagonal lattice

by Ah
±, αh

±, the obtained relations are At
± = Ah

∓ and αt
± = αh

∓.

10.5

Let us take a trace over S0 in the Boltzmann factor B,
∑

S0=±1

eK∗S0(S1+S2+S3)

=
∑

S0=±1

cosh3 K∗(1 + S0S1 tanhK∗)(1 + S0S2 tanhK∗)(1 + S0S3 tanh K∗)

= 2 cosh3 K∗(1 + (S1S2 + S2S3 + S3S1) tanh2 K∗). (B.159)

We define K̃ such that the above expression is equal to AeK̃(S1S2+S2S3+S3S1),

AeK̃(S1S2+S2S3+S3S1)

= A cosh3 K̃(1 + S1S2 tanh K̃)(1 + S2S3 tanh K̃)(1 + S3S1 tanh K̃)

= A cosh3 K̃
(
1 + tanh3 K̃ + (S1S2 + S2S3 + S3S1)(tanh K̃ + tanh2 K̃)

)

= A cosh3 K̃(1 + tanh3 K̃)

×
(

1 +
tanh K̃ + tanh2 K̃

1 + tanh3 K̃
(S1S2 + S2S3 + S3S1)

)
. (B.160)
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Hence,

tanh2 K∗ =
tanh K̃ + tanh2 K̃

1 + tanh3 K̃
=

tanh K̃

1 − tanh K̃ + tanh2 K̃
, (B.161)

is the desired relation. K̃ is a function of K through K∗.
The system with interaction K̃ is the Ising model on a triangular lattice with the

same number of sites as in the original Ising model on the triangular lattice.2 Thus,
the partition function of the system we just obtained is identical to the partition
function of the original system up to a trivial prefactor, Z(K) ∝ Z(K̃). We eliminate
K∗ using eqns (10.3) (or its equivalent e−2K = tanhK∗) and (B.161) to establish a
relation between K and K̃,

(e4K − 1)(e4K̃ − 1) = 4. (B.162)

This equation shows that K̃ is a monotone decreasing function of K. Therefore, we may
identify the fixed point of this relation with the unique singularity of the free energy.
From the fixed-point condition K = K̃, we finally obtain e4Kc = 3 as the transition
point.

10.6

When μi is a continuous variable, the Boltzmann factor e−(μi−μj)
2/2Tr has the same

form as the spin-wave approximation discussed in Section 7.2. It has already been
shown there that the expectation value of (μi − μj)2 diverges in two dimensions as
log r when r grows. This means that the height variable μi is uncorrelated with another
height variable at a far-away place, and hence the surface is rough.

Chapter 11

11.1

The heat-bath method trivially satisfies the detailed balance condition. As for the
Metropolis method, if H(b) > H(a), w(a → b) = e−β(H(b)−H(a)) and w(b → a) = 1.
Then, their ratio is easily confirmed to satisfy the detailed balance. When H(b) <
H(a), w(a → b) = 1 and w(b → a) = e−β(H(a)−H(b)), which is also seen to be compat-
ible with the detailed balance condition.

11.2

Energies of spin configurations are H(a) = H(d) = −J and H(b) = H(c) = J . With
the notation u = e−K/(2 cosh K) and v = eK/(2 cosh K), where K = βJ , non-
vanishing transition probabilities are w(a → b) = w(a → c) = w(d → b) = w(d → c) =
u and w(b → a) = w(b → d) = w(c → a) = w(c → d) = v. The corresponding matrix is

L =

⎛

⎜⎜⎝

1 − 2uΔt vΔt vΔt 0
uΔt 1 − 2vΔt 0 uΔt
uΔt 0 1 − 2vΔt uΔt
0 vΔt vΔt 1 − 2uΔt

⎞

⎟⎟⎠. (B.163)

2 There is a small correction due to boundary effects, which is irrelevant to the singularity and is
therefore ignored here.
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Notice that Lab = w(b → a)Δt (b �= a). The right eigenvalues are 1, 1 − 2uΔt,
1 − 2vΔt, 1 − 2uΔt − 2vΔt and their corresponding un-normalized eigenvectors are

⎛

⎜⎜⎝

v
u
u
v

⎞

⎟⎟⎠,

⎛

⎜⎜⎝

−1
0
0
1

⎞

⎟⎟⎠,

⎛

⎜⎜⎝

0
−1

1
0

⎞

⎟⎟⎠,

⎛

⎜⎜⎝

1
−1
−1

1

⎞

⎟⎟⎠. (B.164)

The first eigenvector is the equilibrium distribution after proper normalization. The
components of each of the other eigenvectors sum to zero.
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