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It has been said that human behavior is much like the weather—totally 
unpredictable. Indeed, as recently as the 1980s predicting where, when, and how 
intense a hurricane might be when it hit land was largely based on regression 
models that were of little practical use, particularly beyond 24 hours. However, 
after Hurricane Andrew hit the coast of Florida in 1992, the national weather 
service and other agencies began ramping up and refining computational models 
of hurricanes. Since then, predictions regarding hurricane trajectories and their 
intensities over those trajectories have improved dramatically, allowing local 
authorities to determine evacuation needs with enough certainty to obtain much 
more compliance than in the past. Meanwhile, climate models, which reside 
at a much higher level of abstraction and a much grosser timescale (i.e., are 
less granular) than weather models, have been instrumental in validating the 
causes and consequences of greenhouse gases, as well as provide a sobering 
forecast of the future with or without change in human behavior. These models 
have motivated authorities to make policies and set goals to try and address 
the issue. On a different front, in 2020 the United States and many other 
governments shut down their economies to “flatten the curve” projected by a 
computational model of disease spread and death due to a coronavirus known 
as COVID- 19. Within a year, a vaccine for the virus was produced, thanks in 
part to a computational model of coronaviruses. Indeed, the natural sciences rely 
heavily on computational and mathematical modeling to explicate their theories 
and provide a basis for applying those theories.

In each of the previous three scenarios, the computational models provided 
scientists and policy makers with not only better scientific knowledge but also 
more practical knowledge. However, although scholars got better at predicting 
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the weather, our ability to predict and understand human behavior has not pro-
gressed at the same rate. Thus, although we have useful computational models 
of climate change, hurricanes, and infectious disease spread, we also need com-
putational models to help us understand and predict human responses to these 
same events. For example, a computational model of a hurricane and where it 
will touch down is of limited use if the people in the path of the hurricane do 
not leave the area. We must not only understand the hurricane, but we also must 
understand the people subject to the hurricane’s wrath.

Thankfully, the quest to understand and predict human behavior with com-
putational models has begun in earnest in psychology (Farrell & Lewandowsky, 
2010; Sun, 2008) and other fields relevant to industrial-organizational (I-O) psy-
chology like organizational science (e.g., Lomi & Larsen, 2001) and economics 
(e.g., Lee et al., 1997). Computational models are a set of rules (e.g., equations or 
formally specified propositions) used to represent processes. Moreover, the rules 
in computational models are represented in a way that can be simulated. The 
simulations reveal how behavior emerges from the processes represented, and 
how they interact with one another over time. Fortunately, the ability to simulate 
computational models means one does not need to solve the equations to deter-
mine how the system will behave or what states it will predict. Indeed, one does 
not need to be a mathematician to work with computational models. However, 
one does need to be a student of the phenomenon and systems they are studying.

One area of inquiry where phenomena arise from single or multiple systems is 
I-O psychology. Specifically, I-O focuses on the human system operating within 
an organizational system. Indeed, the field has developed a substantial amount 
of understanding of the phenomena regarding individuals and sets of individuals 
(e.g., teams) working within organizations, including a growing recognition of 
its dynamic, interactive quality. Toward that end, increasing attention has been 
paid to measurement, design, and modeling issues related to data collection 
and analysis (Wang et al., 2016). On the other hand, there has been relatively 
less recognition that dynamics, whether across multiple systems, time, or both, 
create challenges for theory specification. Fortunately, the field has begun to 
appreciate the usefulness and value of computational modeling when it comes to 
developing, representing, and communicating theory and the measurement, pre-
diction, and applications that might emerge from this formal approach to theory 
representation (e.g., Kozlowski et al., 2013).

Still, that appreciation is more narrowly represented in the field than it should 
be given the nature of the phenomena studied by I-O psychologists. To help 
expand appreciation for computational modeling, we developed this edited book. 
As discussed in more detail later, the book includes chapters that review key 
modeling achievements in several domains relevant to I-O psychology, includ-
ing decision making, diversity and inclusion, learning and training, leadership, 
and teams. Moreover, the book provides specific how-to-chapters on the two 
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most used modeling approaches in the field: agent-based modeling and system 
dynamics modeling. It also provides information about how to evaluate mod-
els qualitatively and quantitatively. Finally, it provides advice on how to read, 
review, and publish papers with computational models.

Meanwhile, to help motivate the current readers’ interest in computational 
modeling, we provide a description of the myriad of values computational mod-
eling can bring to our science. We also provide a brief history of computational 
modeling as it relates to the field of I-O psychology. This is followed by a more 
complete description of our goals for the book. That is, we describe the learning 
objectives for various levels of computational model aficionados, from scholarly 
consumers to computational model creators. Finally, we provide an overview of 
the chapters.

The Value of Computational Modeling

It is not difficult to articulate the various ways computational modeling can serve 
a science. Foremost, it is important to understand that computational modeling 
is not a statistical technique; rather, it is a way of theorizing. Most often, the 
theorizing represented in computational models began more informally as natu-
ral language or verbal theories (Busemeyer & Diederich, 2010). Computational 
modeling can provide formality and thus discipline to such theories (Farrell & 
Lewandowsky, 2010). This includes confirmation of a theory’s viability and 
a greater degree of transparency regarding a theory’s explanation. Moreover, 
formal modeling can facilitate integration, generalization, and differentiation of 
theories and constructs, given the abstract universality of mathematics. Com-
putational models also provide tools for critiquing theory and interpreting find-
ings, discovering new phenomena, guiding empirical needs and protocols, and 
providing better prediction and prescription (e.g., Harrison et al., 2007). We note 
that the value of computational modeling is not only via the representations of 
theoretical processes that can be simulated, given their formal rendering, but 
also in the process of computational modeling, from start to finish. That is, com-
putational models have value, but computational modeling also has value, given 
the thinking processes, supported by the modeling platforms, that are needed 
to create a working model of the entities and phenomena of interest (Farrell & 
Lewandowsky, 2010; Hintzman, 1990).

However, before extolling further on the virtues of computational models, 
a warning against applying the list of values too strictly is needed. Consider, 
I-O psychologists attempt to address an array of practical problems via the 
application of understanding of the phenomena of the individual or individu-
als in some context (e.g., work). This understanding is often derived from one 
or more general theories that appear relevant to the particular problem at hand. 
Additionally, it is possible to articulate multiple understandings or alternative 
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explanations. To support the application of a particular understanding, it is gen-
erally required to identify patterns in the data that are consistent with the under-
standing (i.e., hypotheses). These patterns must be substantiated by data that 
reject null hypotheses and collected in a way as to minimize the presence of 
alternative explanations. What is generally not required is that the understanding 
be represented in a form that can generate the patterns of data presumed to fol-
low from the understanding/theory. Rather, one must rely on an understanding of 
the theory and one’s mental model to imagine the patterns that might appear in 
data (i.e., hypotheses generation) because typical understandings are expressed 
in informal ways.

This is important because when one is evaluating a computational model, 
one should be wary of asking the computational model to do more than a verbal 
theory does. This may seem ironic, given we are about to go into detail extolling 
the value that computational models over verbal theories. Yet, no computational 
model will be able to realize all the values. Our greatest fear in articulating a list 
of values is that reviewers will translate the list into a checklist when critiquing 
a computational model or modeling paper. Such a checklist is almost certainly 
going to doom the paper. Indeed, if one is tempted as a reviewer to start a sen-
tence “aren’t most computational models supposed to . . .” and end it with “. . . 
but this one does not,” please resist. Many responses to reviewers’ comments 
have been about explaining why some model or set of models in question should 
not be expected to realize this or that criterion. To be sure, all papers and presum-
ably the models within them should add some value or there is no point to the 
model/paper. That is, the same criteria for all scholarly contributions should be 
applied to computational models—some value is added. The expectation is not, 
however, that a scholarly product (e.g., an empirical paper) could maximize on 
all the desideratum (McGrath, 1981). This same affordance should be offered to 
computational modeling products. Meanwhile, we believe a lot of value will be 
added by a field that embraces computational modeling in general. We begin our 
discussion of the value of modeling at this very general level.

The Need for a New Paradigm

Heidegger (1927, 1996) proposed that a field is typically absorbed in its prac-
tices without questioning them or their limitations. Similarly, Kuhn (1962, 2012) 
proposed that most of the time scholars operate under “normal science,” where 
scholars problem solve and operate under the dominant paradigm. However, 
when there are some significant anomalies, breakdown, or disruption, a field 
might reflect on its practices more closely. Currently, psychology has been 
reflecting on its practices in the face of issues related to replication, questionable 
research practices, lack of testable theories, theory proliferation, construct pro-
liferation, weak prediction, and the generalizability of our theory and findings. 
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One outcome of such reflection can be a new paradigm. For us, that new para-
digm is computational modeling. To be sure, we are not naïve enough to believe 
that computational modeling is the only solution to all the disruptions noted 
previously. Indeed, to some extent, some may think that computational modeling 
is more unique from current ways of doing science than it in fact is. However, 
as explained in the following paragraphs, we believe computational modeling 
provides a path to addressing many of the issues or at least a new perspective 
on them.

A Different Way of Thinking: Need for a Working Model

The first major specific benefit of modeling is that it forces one to think more 
completely about a phenomenon and the explanations forwarded about it. 
Indeed, Farrell and Lewandowsky (2010) point out that simply trying to con-
struct a computational model may substantially improve one’s reasoning about a 
phenomenon and/or a theory because simulations of the model directly test one’s 
reasoning. That is, rather than just saying that if T theory is true, one ought to 
see effects E1–Ek, a computational modeler must show that effects E1–Ek occur 
in simulations of theory T. Such a process is a form of theoretical proof unavail-
able to natural language theories unless they are translated into computational 
models. Moreover, Farrell and Lewandowski note that our higher-level reason-
ing skills are not typically up for the task of reasoning about how combinations 
of simple, dynamic processes work (see also Hintzman, 1990). Thus, if one does 
get a formal representation of a combination of such processes to work, one has 
at least a viable explanation, if not a valid one.

An example of the aforementioned value of computational modeling can be 
found in the debates among self-regulation theorists spanning decades. That is, 
critics of motivational control theories (e.g., Bandura, 1986; Bandura & Locke, 
2003) argued that such theories could not explain discrepancy production (i.e., 
raising one’s goal following previously successful performance) because the 
theory’s core process is one of discrepancy reduction (i.e., applying resources 
until a goal level is reached). In contrast, they claimed, social cognitive theory 
could explain discrepancy production. Yet, Scherbaum and Vancouver (2010) 
noted that social cognitive theory only claimed that discrepancies were pro-
duced. Other than naming a construct involved (i.e., self-efficacy), it did not 
explain the mechanism that produced the discrepancies. Meanwhile, Scherbaum 
and Vancouver built a computational model that produced discrepancies using a 
combination of a few basic discrepancy-reducing structures (i.e., consistent with 
motivational control theory, Powers, 1973).

In another case, Vancouver et al. (2020) translated goal theory, which is a pre-
sumably robust, practical theory of motivation (Locke, 1997; Locke & Latham, 
2002), from a static, semi-formal model (i.e., a path diagram with their statistical 
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equations at least implied) to (1) a static computational model and (2) a dynamic 
computational model. In the process of translating the model from static to 
dynamic, several presumably reasonable process functions at a key point in the 
dynamics (i.e., at the return in a feedback loop) were tested to see which might 
be viable, given goal theory was ambiguous on this point. Only one survived. 
That is, the process of building the models revealed gaps in specification, and 
simulations of possible formulations allowed the modelers to test what could and 
could not account for the phenomena the theory presumably explained. Indeed, 
modeling platforms, particularly ones devoted to theory development, can help 
substantially in this process, and the chapters in the second half of this book 
discuss these processes extensively.

The Benefit of Computational Models: Theory Integration

Several of the complaints about the state of I-O psychology and management 
science relate to theory proliferation. Yet, science is about simplifying nature 
to facilitate understanding, as well as to help predict and navigate nature bet-
ter. Toward that end, theory proliferation has arguably become an impediment 
rather than a facilitator of that process. One way to reduce theory prolifera-
tion is theory integration. Fortunately, computational models can often facilitate 
theoretical integration by reducing theories to sets of mathematical equations 
and key, recurring structures. For example, Vancouver et al. (2010b) integrated 
classic theories of behavior (i.e., self-regulation theories) and classic theories of 
choice (i.e., subjective expected utility/expectancy theories) using one simple 
information processing structure. To be sure, the structure was repeated and with 
different inputs to address the different purposes each individual structure had 
(e.g., multiple instances of one structure within one model). Subsequently, Van-
couver and Purl (2017) used a variant of the aforementioned model to integrate 
the forethought processes key to Bandura’s (1986) social cognitive theory with 
the feedback processes central to control theory models of self-regulation.

In another case of high-level integration, Vancouver et  al. (2014) showed 
that the math used to represent the simple structure noted earlier was identi-
cal to the math used to represent another psychological process: supervised 
learning. Supervised learning occurs when one can compare an expected state 
with an observed state, known as the supervisor signal, to correct the internal, 
mental model used to create the expected state. Vancouver et al. (2014) added 
these supervised learning components to the 2010 model and thus provided an 
integrated model of goal pursuit and learning using only a single, simple, but 
repeated architecture. Indeed, this simple computational architecture matches, 
mathematically, connectionist (i.e., neural network) architecture (Rumelhart & 
McClelland, 1986). Meanwhile, specific neural network models have been 
applied to lots of specific learning problems. For example, Van Rooy et  al. 
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(2003) showed that the outgroup homogeneity effect (i.e., the impression that 
members of outgroups have less within-group variation than one’s in-group) 
could be modeled as a function of learning and the differences in exposure to 
members of the respective groups. Higher-order processes (e.g., attributions) 
were not needed to explain the phenomenon. To be sure, the connectionist archi-
tecture likely does not account for all that is involved in human learning, but 
it does a good job of emulating how we do it most of the time. Indeed, it often 
learns better (or at least faster) than humans, such that it is now the basis of 
machine learning and artificial practical applications.

Continuing the process described earlier, Ballard et al. (2016) integrated a 
cognitive theory of dynamic decision making into the original goal pursuit model 
of Vancouver et al. (2010b). This was followed by Ballard et al. (2017) show-
ing how another variant of the structure could account for how humans avoid 
unwanted states (i.e., avoidance goals) as well as desired states (i.e., approach 
goals). Finally, Ballard et al. (2018) generalized the original model to include the 
elements needed to explain how humans handled goals with different deadlines. 
To be sure, despite the repetition of the simple structure, most of the models 
build look very complicated. Indeed, it would be foolish to expect anyone to 
look at the structures and equations and be able to explain what they could do 
without a detailed explanation or, better yet, interacting with the computational 
model within the software platform. That is, the core of a theory can be parsimo-
nious, but the scope of the theory comprehensive. This paradox arises because 
the results of the interaction of the model parts (i.e., subsystems), even if simple, 
are beyond our imaginations.

The Benefit of Computational Models: Experimentation 
and Exploration

We noted earlier that computational models provide a proof of concept via a 
working model that produces the behavior one is attempting to explain with a 
theory. We also noted that to get to a working model, one might need to explore 
alternative functions or processes to find one that works. This exploration 
involves experimenting with the model (Davis et  al., 2007). Another form of 
exploration and experimentation with a model can happen after a working model 
is produced. It often involves determining which subprocesses and parameters 
are key. This sensitivity analysis involves running simulations with various 
parameter values to assess the role the parameters play in the behavior of the 
model. Some might substantially affect the model behavior, and some might not. 
When the parameters can be linked to construct measures or manipulations, the 
results of sensitivity analyses can be used for developing hypotheses for empiri-
cal studies, including null hypotheses where variation in the parameter is found 
to have little effect on model behavior.
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Beyond parameters, subprocesses can be tested by turning them on or off 
across simulations of the model to reveal whether they are key or not to some 
phenomenon. For instance, Vancouver et  al. (2016) assessed several possible 
explanations for positively skewed distributions of performance using a dynamic 
computational model. The possible explanations were added as they built the 
model, stopping when they were able to represent a process that reproduced a 
referent data set (i.e., an empirical observation of the phenomenon). In contrast, 
Vancouver et al. (2020) removed components that were shown to be unnecessary 
when a static model was made dynamic. In this way, the addition of a dynamical 
perspective increased the parsimony of the theory without needing additional 
empirical work. Indeed, where exploration and experimentation are especially 
useful is when empirical data is difficult to acquire. This issue is more common 
with macro-level models, which Davis et al. (2007) describe to great effect.

Meanwhile, when empirical model testing is available, computational mod-
eling can be very valuable in revealing the empirical patterns to look for when 
challenging or pitting theories. For example, Vancouver and Scherbaum (2008) 
used a computational model to first explicate the difference between self-
regulating behavior and self-regulating perceptions, including how the models 
make different predictions, given an experimental protocol. They then imple-
mented the protocol to see what the data revealed. Similarly, Vancouver et al. 
(2010a) used a computational model to illustrate how the typical empirical pro-
tocols used to evaluate a dominant theory of proactive socialization were not up 
to the task because researchers did not know that they needed to take the rates of 
processes into account when collecting data. Moreover, they showed how even 
time-series data might not be diagnostic because an alternative theory, which 
Vancouver et  al. (2010a) also modeled, produced the same pattern of results. 
However, they subsequently used the models to illustrate what empirical pro-
tocols might differentiate the competing theories. These examples show how 
computational modeling can be used to critique and as well as guide empirical 
protocols.

The Benefit of Computational Models: Falsification and 
Improved Prediction

According to Popper (1963, 2014), what makes a model scientific is that it can 
be proven wrong (i.e., falsifiability). Of course, all models, whether verbal or 
computational, are wrong (Sterman, 2002), so usefulness is a better criterion. 
Still, unlike verbal theories, computational models must be internally consist-
ent or simulations of them would not run, or they would produce behavior 
inconsistent with the phenomenon they presumably explain. Thus, the need to 
produce a working model provides an initial opportunity to falsify a theory (as 
well as undermine its usefulness). In addition, computational models are more 
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transparent than verbal theories (Adner et  al., 2009; Weinhardt & Vancouver, 
2012). Thus, whether mathematical or propositional, the explicit functions 
provide an opportunity to question the scientific plausibility of a function or  
process (i.e., set of functions). Moreover, via exploring alternative functions  
or processes, one might find alternatives that also work, alternatives that might  
(or might not) change the behavior or predictions of the model as revealed in sim-
ulations of the alternatives. Via these differences, one might be able to develop 
protocols to see which or when (i.e., under what conditions) models make better 
predictions. We described this process earlier in the section on exploration and 
experimentation.

Yet another benefit of computational models is improved prediction (Adner 
et al., 2009). This not only increases the ability to falsify, but it also increases 
the usefulness and thus reduces the likelihood the model will be discarded. To 
explain, Meehl (1990) noted that where many constructs tend to be intercon-
nected, it is relatively easy to find support for theories. As such, demonstrating 
a relationship between constructs is often a straightforward task, and thus theo-
ries that simply predict some relationships are likely to be confirmed. However, 
computational models improve our ability to make predictions (i.e., ones that 
move beyond predictions of mere association). Computational models can pro-
vide predictions not only of the relationships and their direction but also of the 
levels of variables over time and the shape of relationship between variables 
and/or over time. To be sure, this feature depends on the quality of inputs when 
constructing a model (e.g., are the rates and delays of processes well-known?) 
as well as the quality of inputs into simulations or model fitting exercises. For 
instance, computational models of emotion intensity onset and decay are ham-
pered by imprecise knowledge of such rates (Hudlicka, 2023). Still, a computa-
tional model will be much better positioned to render precise predictions when 
the measurement models allow it.

Yet, even when measurement and design are lacking, computational models 
can improve prediction via competitive prediction. In a field that boasts a wealth 
of theoretical and empirical contributions, it frequently lacks competition among 
theories. That is, merely identifying a theory that accounts for a particular phe-
nomenon in isolation does not align with the fundamental principles of scientific 
inquiry (Gigerenzer & Brighton, 2009). Instead, the pursuit of science requires 
the identification of theories that surpass existing ones in accounting for a par-
ticular phenomenon or expanding the scope of what has been explained (Popper, 
1959, 2002). Therefore, it is crucial to evaluate theories by contrasting them 
with alternative theories to determine their validity and comprehensiveness in 
explaining a phenomenon.

To realize the benefits of falsifiable models and improved prediction, one 
needs to look no further than our earlier discussion of the many competing mod-
els of multiple-goal pursuit. In less than 10  years, the original multiple-goal 
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pursuit model (Vancouver et al., 2010) has lost in competition with modifications 
of the model or simply expanded its predictive power via integration with other 
models across six papers to better account for human behavior. This rapid pro-
gress would not likely have occurred if not for the theories being computational. 
Meanwhile, computational models clearly eliminated some explanations for phe-
nomena. For example, on the way to providing a sound person-environmental 
interactional explanation for the positive skew typically found in the distribution 
of performance across individuals, Vancouver et al. (2016) eliminated several 
possible person-centered explanations.

Meanwhile, pitting theories against each other empirically assumes that the 
explanations are not both true. For example, Ballard et  al. (2018) pitted two 
explanations for increasing motivation as a deadline approached. They found 
evidence supporting both explanations. More important, they were able to rep-
resent the two explanations within a single, relatively simple (i.e., conceptually 
parsimonious) computational model of goal choice and striving. As noted ear-
lier, this redundancy of processes is commonly found in biology, but it is rarely 
recognized in verbal theories in psychology.

Even in cases where alternative descriptions of human behavior presumably 
predict different effects, computational modeling can provide the path to unifica-
tion. For example, Vancouver and Purl (2017) used their computational model to 
explain when one might see a positive, negative, null, and curvilinear relation-
ship between two constructs as a function of what appeared to be two competing 
theories. The model revealed the logic, and contingencies, where the various 
empirical models might arise while also reconciling the theories. More recently, 
Shoss and Vancouver (2023) presented a model that included three countervail-
ing processes that lead to opposing hypotheses and yet likely work in concert. 
Such configurations of apparently incongruous parts operating harmoniously 
with a single system are difficult to describe verbally or believed workable with-
out demonstration. Computational modeling can address those limitations to 
conventional theorizing.

The Benefits of Computational Modeling: Final Thoughts

To summarize the earlier arguments, computational modeling is needed to real-
ize the promise of science, which is to simplify nature. Ironically, computational 
models are often seen as so complex as to be of little scientific value (i.e., the 
Bonini paradox). However, upon further consideration, the ability of compu-
tational models to integrate and generalize via repetitions of simple agents, 
whether subprocesses or actors with a small rule set, offers the desired advantage 
of conceptual parsimony. To be sure, sometimes the modeling reveals where dif-
ferentiation is needed (i.e., self-regulated behavior ≠ self-regulated perception; 
Vancouver & Scherbaum, 2008) or where systems have functional redundancy 
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across two or more subprocesses (e.g., Ballard et al., 2018), but that too is part 
of science. However, more often they reveal conceptual overlap via the abstract 
math used to build the model.

One Nobel Prize-winning chemist described the desired state of formal mod-
eling as where “the models become modules in the theoretical erector set, shut-
tled into any problem as a first (not last) recourse” (Hoffmann, 2003, quoted 
in Rodgers, 2010, p. 9). The sentiment expressed by this Nobel Prize-winning 
scientist in a mature field of inquiry is the goal we have for I-O psychology and 
management science. Like many sciences, psychology and management science 
focuses on and tries to understand complex systems interacting over time, nested 
in a cascade of higher-order systems, and utilizing a cascading set of subsystems. 
Computational models are built to evaluate explanations of some small part of 
that network of systems over some presumably relevant timescale, depending on 
the problem at hand. Eventually, the templates of the models can be used for new 
parts or problems, or the models themselves can be combined to address more 
complex parts of some whole. Moreover, because the models are computational, 
we do not need to rely on human’s limited (but still very impressive) computa-
tional prowess because we have built the supporting tools needed to utilize the 
understandings developed. Of course, to get there we need to train ourselves and 
future scholars in our field to understand the tools and what they can do for us.

Unfortunately, for the uninitiated, little about computational modeling seems 
simple. Moreover, no one person will likely be able to understand all modeling 
approaches, much less all models. As we attempted to articulate earlier, the value 
of computational modeling is not merely in its products but also in its process. 
No paper on computational modeling should be expected to realize any more 
than one or two of the values we described earlier, and some papers might not 
even explicitly realize even one. That is, once one learns to computationally 
model, one might merely use it to check one’s thinking about how a theory or 
process would play out and thus whether the paradigm one wants to implement 
to challenge some explanation is up to the task but without publishing the model. 
Indeed, one might not want to share with the world their own skepticism about 
their reasoning prowess, even though most modelers will tell them such humil-
ity is well-placed (Sterman, 2002). That said, in the next section, we review 
key examples of I-O psychologists laying bare their skepticism regarding their 
reasoning prowess.

Brief History of Computational Modeling in I-O Psychology

The history of computational modeling is a relatively short one, especially in 
I-O psychology. In general, computational modeling only emerged in psychol-
ogy and management science in the second half of the 20th century (Simon, 
1969). For example, Forrester (1961) pioneered system dynamics modeling, 
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which was used to address macro-organizational issues like managerial deci-
sion making (e.g., Sterman, 1989) and organizational learning (e.g., Senge, 
1990). Using a more general modeling approach, March (1991) considered some 
dynamics related to organizational learning. Lomi and Larsen (1996) examined 
the dynamics of organizational populations. Hanisch et al. (1996) modeled the 
macro (i.e., organizational) implications of different possible withdrawal pro-
cesses. In that same year, Martell et al. (1996) published a paper in American 
Psychologist describing simulations of a model where small but accumulating 
adverse effects of bias on promotions for women could possibly account for 
the absence of women in the highest offices of organizations. Also around this 
time, papers related to dynamic decision making and feedback processes at the 
individual level were being published in what was the precursor to Organiza-
tional Behavior and Human Decision Processes (e.g., Gibson et al., 1997; Ster-
man, 1989). On a more basic, psychological level, John R. Anderson (1983) 
developed a propositional computational model focused on human learning and 
behavior called ACT theory that informed theories of learning and training. At 
an even more granular level, a great deal of attention was paid to neural net-
work models as a way of understanding learning (e.g., McClelland & Rumelhart, 
1981; Anderson, 1996). As noted earlier, those models are now the backbone of 
machine learning algorithms.

Seeing the promising but relatively low use of computational modeling in the 
field at the turn of the century, Ilgen and Hulin (2000) published an edited book 
about computational modeling of behavior in organizations. The book included 
several chapters from well-known researchers presenting relatively simple com-
putational models on many topics of potential interest to I-O psychologists, 
like the effects of faking on personality measures in selection (Zickar, 2000), 
effects of pay-for-performance systems (Schwab & Olson, 2000), group deci-
sion making (Stasser, 2000), applications of a modeling system (i.e., Petri 
nets) on various problems (Coovert & Dorsey, 2000), cultural norm formation 
(Latané, 2000), organizational change (McPherson, 2000), organizational adap-
tation (Carley, 2000), and other implications of the withdrawal processes model 
(Hanisch, 2000). Unfortunately, the book had limited impact on the field. Part 
of the problem may have been that the learning curve seemed too steep and the 
benefit too obscure to put the time in to learn about computational modeling and 
what it might do for one’s science and career.

In another attempt to promote computational modeling to the mainstream 
of organizational and management research, Academy of Management Review 
(AMR) published a special issue on computational modeling in 2007. Two 
important and highly cited articles focusing on the process of computational 
modeling were published in that edition (Harrison et  al., 2007; Davis et  al., 
2007). Unfortunately, this did not lead to an increase in computational models 
in AMR largely because of a limited audience amenable to appreciating such 
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models. Indeed, it seems a critical mass of scholars who can understand, appreci-
ate, and develop computational models are needed to realize their potential and 
mature the discipline.

Still, macro computational models were being published in other well-
respected journals in management like Administrative Science Quarterly and 
Organization Science. Yet, most were published in journals specializing in 
computational or mathematical modeling, like System Dynamics Review, which 
started in 1985, and Computational and Mathematical Organizational Theory, 
which started in 2004. Indeed, with the occasional exception in OBHDP, top 
I-O and management journals were not publishing micro- or meso-level models.

However, something changed in 2010. First, Vancouver et al. (2010a) pub-
lished a computational model in the Journal of Management. In the paper, three 
related computational models were used to explain a paradox in the socializa-
tion literature by highlighting how the empirical paradigms used to evaluate the 
major theories of proactive socialization were not diagnostic, given the dynam-
ics inherent in the theories. Two of the models were at the individual level, and 
one was a meso-level model representing an employee-supervisor dyad. Second, 
Vancouver et al. (2010b) built a computational model of an individual pursuing 
multiple goals and used it to explain an interesting but unexplained finding in an 
earlier empirical paper (Schmidt & DeShon, 2007). The model, though invented 
little new theory, addressed a large theoretical gap in the literature on work moti-
vation. The model was built using combinations of a simple, single architecture 
(i.e., the negative feedback control system) that integrated and made dynamic 
several traditional theories of motivation (e.g., expectancy theory, goal theory). 
The paper also thoroughly explained the model-building and model-evaluating 
process. Finally, Dionne et al. (2010) published a computational model in The 
Leadership Quarterly that focused on leadership, shared mental models, and 
team performance. This meso-level model also provided a way to address some 
longstanding theoretical gaps, while employing a new, dynamic twist on existing 
theory on leadership and teams.

Since 2010, many more computational modeling papers have been published 
in I-O’s top journals. Indeed, the first set of chapters in this book review compu-
tational modeling work in decision making as it applies to organizations (Cooney 
et al., Chapter 2, this volume), diversity and inclusion (Samuelson et al. Chap-
ter 3, this volume), training and socialization (Hardy, Chapter 4, this volume), 
leadership in teams (Zhou, Chapter 5, this volume), as well as teams and groups 
more generally (Kennedy & McComb, Chapter 6, this volume). In some cases, 
like the work on decision making, most of the modeling has been around for a 
while but not applied to I-O psychology problems. In other cases, like the work 
on diversity and inclusion, training, leadership, and teams, much of the modeling 
is more recent (e.g., past 10 years). Still, this work has both computational and 
theoretical roots that have been long established. Perhaps most importantly, all 
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the chapters highlight the vast amount of work that needs to be done, given the 
nascent nature of the computational approach within the field. Fortunately, top 
I-O journals have now opened their doors to computational modeling papers, 
making the presumably steep learning curve worth climbing not only for those 
interested in applying the tool to their projects but also for those reviewing and 
reading those journals. Still, to get a critical mass of modelers and a sophisti-
cated audience, training is needed.

Computational Modeling Training: Levels of Schooling

As noted earlier, computational modeling has great potential to facilitate our 
understanding of organizational phenomena. However, the extent to which 
these potentials can be realized depends on whether there exist “well-trained 
craft persons” to leverage the strength of the “tool.” Apprentices and journey-
level workers, in the form of sophisticated readers, reviewers, and researchers, 
through masters, in the form of model builders, need to be trained before real-
izing the trade that is computational modeling. Indeed, there may be heterogene-
ous training goals contingent upon one’s specialized role within the trade. In the 
following sections, we summarize what is expected of readers and reviewers, 
researchers, and modelers to support the development of computational mod-
eling in applied psychology and management.

Apprentices: Sophisticated Readers and Reviewers of 
Computational Modeling Papers

The first type of craftsperson are readers and reviewers of computational mod-
eling papers. It might seem odd to include reviewers, who are supposed to be 
experts, with readers, who are not expected to have such qualifications. How-
ever, reviewers are often chosen for their expertise in the topic but not necessar-
ily the method or analysis used. Still, we want any reviewer, like most readers, 
to be able to (1) know the conventional vocabulary of computational modeling; 
(2) understand what goes into creating, validating, and evaluating the model; and 
(3) understand how the model can help in understanding, studying, predicting, or 
controlling the phenomenon of interest.

First and foremost, computational modeling involves a systematic repertoire 
of vocabulary to ensure conceptual ideas and theoretical logic are communicated 
formally and precisely. Some vocabularies speak to the nature of constructs. 
For example, dynamic variables (also called level or stock variables) refer to 
variables that exhibit inertia and only change values when external forces are 
applied (Forrester, 1968; Vancouver & Weinhardt, 2012; Wang et al., 2017). This 
feature is extremely important in the modeling of time but is difficult to illus-
trate precisely in verbal theories. Other vocabularies are borrowed from related 
domains but carry particular importance in computational modeling, such as 



Better Theory and Practice Through Computational Modeling  17

exogenous and endogenous variables that delimit the core mechanisms included 
in the model. That is, endogenous variables are affected by other variables in the 
model, whereas exogenous variables are not.

Also, like informal theories, computational modeling uses specialized 
vocabularies and graphics to depict relationships among variables. The central 
difference is that in addition to verbal/graphic depictions, variable relation-
ships are also represented in mathematical forms. However, the mathematical 
functions can be more complex than the four simple operations (addition, sub-
traction, multiplication, and division), and they are conventionally presented 
in a way that variables involved in a function all point at the construct (i.e., 
the result of the function). Thus, when depicting a computational model, one 
should not expect to see an arrow point at an arrow to depict a multiplicative or 
moderating function. Instead, consult the actual function. Also, the functions 
can reveal what variables are dynamic, given that integration and/or differen-
tiation with respect to time is frequently used to capture dynamic processes. 
Further, there are specialized vocabularies in computational modeling for 
model evaluation (Taber & Timpone, 1996), including internal validity (i.e., 
how well the model successfully translates the corresponding verbal theory), 
outcome validity (i.e., model fit), process validity (i.e., the correspondence 
between the model’s mechanisms and the actual processes being modeled), 
and sensitivity analysis (i.e., how changes in parameters values affect model 
predictions).

Arguably, the conventional vocabulary of computational modeling can be an 
entry barrier and requires some specialized efforts invested, but such efforts are 
worth it not only for those seeking to convey precise, unambiguous, and compre-
hensive theories, but for those seeking to benefit from, build upon, or question 
such models. As Vancouver and Weinhardt (2012: 605) stated, “If mathematics 
is the language of science, and computational models are an expression of that 
language, scientists should be at least familiar with it,” and “the best way to do 
this is to use the language.”

After learning the conventions (e.g., vocabulary), the second objective is to 
learn the processes. Computational modeling involves systematic procedures 
in terms of building and evaluating the model. In this regard, Vancouver and 
Weinhardt (2012) offer a comprehensive summary starting from problem identi-
fication and ending with model evaluation. Weinhardt (Chapter 9, this volume) 
offers a comprehensive evaluation framework that outlines the work one must 
do to evaluate models. Here we offer a quick overview.

To begin, the problem of interest is mostly based on an existing conceptual 
framework that depicts a dynamic process (Busemeyer & Diederich, 2010). Fur-
ther, the problem is usually defined in a narrow but precise way. This reflects 
the likely complexities that will arise once one begins to represent the processes 
needed and clarifies how the computational model contributes to theory refine-
ment. Problem selection is followed by system definition, typically including 
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determining the units of analysis, the time scale and boundary of the dynamic 
process, and the variables involved. These aspects can be partly determined by 
the theoretical framework adopted. However, some theories (especially verbal 
theories) can have much broader scopes than the bounds of typical computa-
tional models, requiring decisions on which part(s) of the theories to be mod-
eled. Then the model is built based on the variables and parameters identified. 
Specifically, relationships between variables are expressed both graphically and 
mathematically, and multiple software platforms are available to facilitate the 
process (e.g., C++, Python, MATLAB, Vensim, R, etc.).

The model is then evaluated via various approaches and criteria. For example, 
simulations can be run to see if variables exhibit reasonable dynamic patterns 
(e.g., reaching an equilibrium level as opposed to increasing or decreasing infi-
nitely, unless that is what is observed [e.g., wealth accumulation]). The model 
prediction can be tested against empirical data qualitatively (e.g., whether the 
empirical data exhibits the patterns predicted by the model) or quantitatively (e.g.,  
the accuracy or fit of the model after parameter estimation). The model can also 
be compared to alternative models to identify the relevance of different theoreti-
cal mechanisms. In this book, we cover both qualitative (Weinhardt) and quanti-
tative (Ballard et al.) model evaluation, but as is always the case with scholarly 
work, the evaluation depends on the purpose and the purpose depends on where 
value is likely to be added to the existing literature. That said, in general, a for-
mal rendering of theory adds value when so little formal modeling exists.

Third, besides the terminology and modeling process, it is also important to 
understand what the model does to illustrate the phenomenon of interest. Gener-
ally, as a particular type of formal theory, computational modeling has unique 
advantages in terms of theorizing about and representing complex systems. This 
can be illustrated by (1) comparing formal theories to informal theories and  
(2) comparing computational modeling to analytic formal theories (Adner et al., 
2009). For example, compared with informal theories, formal theories enable 
theoretical clarity and a deeper understanding by providing descriptions of pro-
cess details of complex dynamic phenomena. That is, because the set of pro-
cesses needed to produce the phenomena must be specified at least somewhat, 
computational models have less “handwaving” (i.e., processes left unexplained) 
than informal theories. Of course, computational models will often have to live 
with black boxes and simplifying assumptions, even when attempting to illumi-
nate a black box or test an assumption (e.g., any information processing theory 
must contend with our vague understanding of how information is represented 
in the mind).

Meanwhile, when compared with analytic formal theories, an advantage of 
computational modeling is that they can handle complex dynamic processes 
with causal loops and nonlinearities. These features of the phenomena that I-O 
psychologists study are often intractable using pure analytic approaches (Wang 
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et al., 2016). Thus, to understand what a computational model does, readers and 
reviews should pay special attention to the unique and incremental theoretical 
contribution of computational modeling above and beyond informal theories and 
analytic formal theories. Relatedly, the processes (the mechanisms) specified 
in the model should be carefully examined against the scientific plausibility of 
the processes depicted, which sheds light on what the model does, whether the 
model has fidelity, as well as how the model refines existing theories.

Of course, a more sophisticated reader and reviewer of papers describing 
computational models will have experience working with such models. This can 
include working with existing models to find ways to validate or challenge them; 
however, to truly understand models one should build them. This book will help 
you do that. Starting with some simple examples is necessary to build the skills 
needed to start creating your own models. Still, most of the work of model build-
ing is likely more about extending the models of others via generalizing existing 
models or applying existing architectures to new problems. Eventually, one may 
feel existing architectures are insufficient for tackling certain kinds of problems 
and feel inspired to create one’s own architecture, but it is more likely that one 
will use simple functions and modules to represent somewhat standard processes 
or rules that when cobbled together in a coherent formal description of a process 
will produce a value-added contribution to the field.

For example, I-O psychology and management are replete with process theo-
ries of domain-relevant phenomena. A key mission of “crafts persons” is to vet 
these process theories computationally. Such vetting requires (1) demonstrating 
whether core processes of the model can explain the phenomenon of interest and 
(2) providing core structures that can be expanded for evaluating interventions 
and boundary conditions or extensions (i.e., moderators). To find where exten-
sions are needed, one need only consult the discussion sections of published 
computational models. That is, like empirical papers whose discussion sec-
tions talk about needed future theory and research, modeling papers talk about 
research that might challenge the model and the extensions needed to further the 
scope of what the model can handle. Of course, researchers are free to identify 
other substantial theoretical limitations or extensions. For example, presumed 
moderators should not suggest the bounds of a theory or model, but the territory 
into which the model can expand. Meanwhile, no modeling endeavor can handle 
all that needs to be represented just as no empirical paper should be considered 
the final say in some empirical question. Modelers need to provide ideas regard-
ing where a model needs to go as well as what research might challenge it. They, 
and the reviewers of the papers, need to be okay with leaving this work to future 
research (e.g., Zhou et al., 2019). At the same time, readers and reviewers need 
to retain a skeptical attitude. An unsophisticated readership or reviewer may 
be too easily impressed by a computational model because it is beyond their 
comprehension. We see this happen too frequently with sophisticated statistical 
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techniques, especially when new (e.g., interpreting causal conclusions drawn 
from structural equation models as internally valid). We do not want readers 
and reviewers rejecting a computational model due to myths regarding compu-
tational models (i.e., that they are more complex than the phenomena they seek 
to explain), but we do not want them acquiescing to a computational model due 
to some blind faith in the accuracy and integrity of the process. It is just a tool 
like any other.

Journey-Level: Researchers Who Can Design Studies to Test Models 
Empirically or Via Simulations

The second type of craft persons are researchers who can design studies to test 
computational models empirically or via simulations. This is needed because 
science is a system just like the phenomena scientists study. Just as computa-
tional models often depict iterative or circular processes, so too would a good 
model of the scientific process. Thus, the linear process described by Vancouver 
and Weinhardt (2012) is merely an arc in a scientific problem-solving process. 
Few vetted models should be considered settled models. Imperfection should 
not keep a model from being published, and a published model should not be the 
last word. Indeed, one reason for a large set of sophisticated readers-to-builders 
is to make sure the self-correcting nature of science can operate. In between 
readers and builders are those who vet computational models derived from pro-
cess theories. Here again, vocabulary can be daunting because of the negative 
transfer interference with convention and the use of qualitative terms when clean 
distinctions are hard to come by.

For example, there exists, and we have chapters devoted to quantitative 
(i.e., parameterizing) and qualitative (i.e., pattern matching) fitting methods for 
model evaluation (Busemeyer & Diederich, 2010). Quantitative fitting involves 
estimating the free parameters in the model. In line with the common procedures 
in statistical modeling, parameterizing for computational models is usually done 
via minimizing some type of loss function (e.g., least squares estimation) or max-
imizing some type of likelihood function (e.g., maximum likelihood estimation). 
Notably, since each unit (e.g., individual) tends to exhibit a unique dynamic pat-
tern, parameter estimation may be repeated for each individual, though Bayesian 
methods are now commonly employed to handle this multilevel analysis issue 
(see Ballard et al., Chapter 10, this volume).

Parameters obtained from the optimization algorithm can be examined 
directly (e.g., the distribution of each parameter, the covariation between differ-
ent parameters). However, a more important function of parameter estimation 
is to provide a model fit index capturing the extent to which the model fits the 
observed data (Vancouver & Weinhardt, 2012). Specifically, by freely estimat-
ing some parameters, the optimization algorithm can find the best fit between 
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model-expected outcomes and empirically observed outcomes. A  fit signifi-
cantly better than chance suggests that the model is effective (e.g., Vancouver 
et al., 2005), especially if the modeling fitting algorithm can recover the param-
eters used when data is generated from the model (see Ballard et al., Chapter 10, 
this volume). That is, best practice includes fitting data generated from a model 
that represents the nature of the measures, the sample size, and the design ele-
ments before attempting to fit observed data. This will show if the model fitting 
algorithm will work reliably given the model. This is most important if using 
the model for application (i.e., for obtaining parameter values for a unit to be 
used for understanding or prediction regarding that unit). When assessing the 
validity of the model, knowledge of the reliability of parameter estimates is use-
ful to prevent over- and under-interpretation of the results of model fitting. It 
can also be useful for assessing the diagnostic power of an empirical design for 
assessing parameters. Typically, the data generated from a protocol might help 
allow for the reliable estimate of one or two parameters, but it may not do a good  
job allowing other parameters to be estimated because some subprocess may or 
may not be involved in the protocol (e.g., Ballard et al., 2018). In general, typi-
cal experimental and passive observational designs, even if longitudinal, will 
struggle to produce reliable estimates if very many processes are involved. For 
example, Vancouver et  al. (2010b) illustrated how multiple parameters could 
explain the same individual differences in goal-striving behavior over time.

Another stringent test is to pit the proposed model against alternative models 
(not limited to a null or saturated model) to demonstrate its superiority. One 
challenge of this approach is that computational modeling has not been widely 
adopted in the field of organizational science, so there are hardly existing models 
to be compared with. Nevertheless, researchers have sought to develop alter-
native models on their own. For example, Zhou et  al. (2019) compared their 
proposed model to several alternative models derived from different theoretical 
perspectives. Such comparisons are valuable in deepening our understanding of 
core theoretical mechanisms behind observed phenomena. They, like the model 
fitting studies described earlier, are likely not the last word on a model, given the 
theoretically infinite number of alternative models and the inability of most data 
collection enterprises to constrain the possibility of fitting models.

As noted, quantitative model fitting is a sophisticated and often difficult 
enterprise, given the qualities of the data needed, especially if the model has 
several unknown (i.e., free parameters) that must be estimated. Fortunately, 
there is much one can do under the qualitative model fitting moniker to evalu-
ate a computational model. Indeed, qualitative approaches to model fitting is a 
broad category with some elements looking quite close to what one would con-
sider a quantitative procedure in typical research projects. For example, in our 
field, a hypothesis derived from theory and/or past research merely describes 
a pattern (i.e., some effect exists and is of a certain sign, as in the correlation 
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should be positive). That is, the question asked is if one or more patterns found 
in the data match what a theory would expect the pattern[s] to look like. Toward 
that end, some statistical model is used based on the pattern one wants to exam-
ine, and then the resulting statistics are compared to the predicted patterns (i.e., 
the hypothesis). Thus, qualitative model fitting often involves quantitatively 
estimated effects.

Meanwhile, which comes first, the data or the model, determines mostly only 
whether they call the process prediction or postdiction (Taber & Timpone, 1996; 
Vancouver et  al., 2010b). Given that theories are derived to explain observa-
tions (i.e., inductively or abductively), and computational models are represen-
tations of theories, postdiction is often a fine choice, especially if there is a lot 
of research on the topic. Indeed, model builders often need to confirm that their 
computation model can reproduce phenomena and effects found in the existing 
literature (Vancouver et al., 2010b; Vancouver & Weinhardt, 2012; Vancouver 
et al., 2020). At the journey level, we would expect to see researchers applying 
existing models to existing data sets to assess the generalizability or applicabil-
ity of the model to phenomena. This typically requires tweaking little in the 
model of the unit, which is typically what the model is about, but something 
in the model of the environment or object (e.g., task) with which the unit is 
interacting. For example, Vancouver et  al. (2014) assessed a model against a 
dataset described by DeShon and Rench (2009) after tweaking it to represent the 
DeShon and Rench protocol. The model was built by Vancouver et al. (2010b) 
and assessed originally against a dataset presented by Schmidt and DeShon 
(2007). Such testing of the generalizability or applicability of models should 
help reduce theoretical clutter. Indeed, as more models appear in the literature, 
the postdiction exercise of matching an existing model with an existing study 
(actual data from the study not required) could be an experiential learning oppor-
tunity for any modeling trainee.

Besides serving as a replication to verify the fidelity or generalizability of the 
computational model, postdiction can also shed light on the underlying processes 
through which certain phenomena and effects occur. This can complement infor-
mal theories, especially when informal theories fail to recognize dynamic factors 
at play and cannot account for the phenomenon. In this regard, Vancouver et al. 
(2010b) offered an example where a poorly understood phenomenon discovered 
in the existing literature was not only reproduced but also explained elabora-
tively based on the dynamic pattern generated by their model.

Meanwhile, prediction is more likely to be used when the existing data may 
not be up to the task of challenging a model. This can happen because the 
model produces some surprising pattern no one thought to look for, but more 
likely it is because computational models produce data not typically consid-
ered. For example, computational models can produce trajectories with non-
linearities (e.g., bifurcations, discontinuities); something few verbal theories 
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would dare propose. And though qualitative, one can use quantitative methods 
for pattern matching. For example, Vancouver et al. (2005) used interclass cor-
relation coefficients (ICCs) to fit progress trajectories across time for each indi-
vidual from a study created to assess a computational model of goal striving. 
They also matched trial performance with two versions of the model for each 
individual. Finally, they matched the results for each condition that emerged 
from the model with the data, averaged across individuals and trials, across 
the ABA design. The model data emerged from a single run of the data, but it 
could have been from multiple simulations where one or more parameters are 
pulled for each run by specified distributions. Either way, this latter type of fit 
could be considered postdiction, given the predicted effect is exactly what the 
model was built to explain. It just happened to be a new study was commis-
sioned to acquire the moment-by-moment trajectories that the informal theory 
did not speak to.

Still, other times the predicted hypothesis is derived to challenge a parameter 
related to a mechanism added to fill a gap between the theory formalized into 
a model and thus not previously assessed, or that reveals itself as central to 
some mechanisms only heretofore described verbally. An example of this lat-
ter form can be found in Ballard et al.’s (2018) test of two mechanisms thought 
responsible for increasing motivation for a task as its deadline approaches.  
In this kind of case, the modeling can identify or confirm a diagnostic test of  
the explanation depicted in the theory/model. That is, the researcher might “ask” 
the model to confirm that some effect would arise were the explanation valid or the  
researcher might observe an effect by conducting sensitivity analyses that would 
be unlikely to arise from a different process and that had not yet been systemati-
cally observed. Science has a special fondness for confirming such predictions, 
but they are only as special as the uniqueness of the explanation for them. That 
is, prediction is not as critical as the absence, to the degree possible, of alterna-
tive explanations. Toward that end, the construction of explanatory models is 
needed. This is the highest level of craft person the field needs.

Masters Level: Builders of Computational Model

Most of the time academics and practitioners know what statistical analysis they 
need to use to examine some dataset. Still, it is very useful to be able to consult a 
statistics expert or two in one’s department, whether that department is in a uni-
versity, an organization, or a government agency. Likewise, a mature science will 
and should have computational modeling experts who specialize in one or more 
computational architectures, and who can help others build, extend, and evaluate 
computational models. Preferably, they are familiar with the verbal theories and 
existing empirical work surrounding some phenomenon, but they also may work 
with others who broaden that expertise. At the current time, these individuals 
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tend to come from other disciplines or subdisciplines where computational mod-
eling is more prevalent (e.g., cognitive psychology or organizational theory). 
This provides opportunities for cross-pollination and thus a broader integration 
of modeling platforms. However, such individuals are typically hired to further 
their own discipline’s computational work, need to be trained in the substantive 
phenomena, or are wedded to the vocabulary of their subdiscipline. Also, there 
just are not enough of them.

Given that I-O psychology has always been one of the more quantitatively 
sophisticated subdisciplines of psychology, we would hope that the field can also 
begin to produce these model builders. Still, it is not the intent of this book to 
produce a master class of computational modelers. Rather, it is to illustrate the 
potential of computational modeling for our field and to begin the apprentice-
ship of a new set of scholars, some of whom will become master computational 
model builders. Indeed, we believe that the information one can gain from the 
chapters in this book will inspire you to pick up a new tool and that the “how 
to” chapters will reveal that the learning curve may not be as steep as originally 
presumed.

Indeed, building models will provide the best background for reading, 
reviewing, and assessing models. Building models related to a topic of interest 
will also provide a perspective not always appreciated by modelers naïve to the 
subject matter. For example, modelers from more sophisticated subdisciplines 
tend to focus on quantitative model fitting. As a result, they emphasize the value 
of limiting the number of free parameters. In contrast, someone trying to repre-
sent a process explanation of a phenomenon is likely to consider several sources 
of differences among units (e.g., individual differences) or unknowns regarding 
processes (e.g., rates of change) that might matter in important ways. Assessing 
the effects of these differences and or different values for unknown parameters in 
the model is likely a prudent and useful step. One will likely find, via sensitivity 
analysis, that some can be removed because they do not affect model behavior 
much. Still, others are needed to remain true to the phenomenon and mecha-
nisms represented, even if they are more than someone wanting to fit the model 
to data would like. To be sure, parameter proliferation can easily get out of hand 
such that one does not have a very useful model in terms of understanding. The 
question a modeler must answer, which may be unknown at the beginning but 
often reveals itself in the building process, is what the purpose of the model is, 
at least for some presentation of it. The purpose, which will need to make some 
contribution to the literature, will also dictate what free parameters might be set 
to 1 (if a weight, i.e., multiplier) or 0 (if a bias, i.e., additive term), which might 
be set to some constant (e.g., 0.5, as in “shoulder shrug”) at least temporarily, 
allowed to be free, or represented as multiple conditions for some key construct 
(i.e., high and low on x). How things will shake out in the end (or along the way) 
may often be hard to tell.
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Indeed, model builders should be “lazy.” That is, one can and should use 
existing architectures (e.g., neural networks, control system models) when 
building new models, if possible (Hoffmann, 2003). This will simplify the build-
ing process and increase the likelihood that the model will be a special case of a 
general theory (i.e., a paradigm). Similarly, a modeler can model existing verbal 
theories applied to the phenomena of interest. Modeling existing theories means 
that one likely has an empirical and conceptual foundation for the model. It also 
reduces theory proliferation and can possibly lead to theory trimming if, upon 
attempting to model a theory, the logic laid bare comes up wanting (see, e.g., 
Vancouver & Purl, 2017; Vancouver et al., 2020). If there are multiple theories 
existing within the domain, one might model more than one to provide a way to 
pit theories or demonstrate the viability of the mechanisms, whether opposing or 
complimentary, coexisting in a reasonable way (e.g., Ballard et al., 2018).

It is important to acknowledge that modeling is not easy. One must translate 
an explanation into a set of functions and get them to all work together well and 
in line with the conceptual space that the mathematical symbols and operations 
are supposed to be representing. One also must defend the translation decisions 
to an audience often unfamiliar with process explanations of phenomena. One 
likely must identify errors in coding when the model produces peculiar behavior 
or clearly track down the source of the behavior to understand and explain why 
the observed behavior of the model makes sense (i.e., that it is not a coding error, 
but it is a prediction of the model [but it is usually a coding error]). To accomplish 
these things with reasonable efficiency, one must know the modeling platform 
well. It takes time and practice to develop these skills, especially across multiple 
platforms or in very flexible platforms like R, Python, or MATLAB. Indeed, none  
of the editors of this book have achieved such a level of proficiency. However, 
it is a brave new world, and some readers out there will achieve such a level of 
proficiency. The science is depending on it.

Book Chapter Summaries

In total, this book reflects where we have been, where we currently are, and 
where we are going regarding computational modeling in organizational psy-
chology. Still, where we go is up to you, the reader. We hope that this book 
begins a new scientific journey for you and for our field. We have broken down 
the chapters in this book across two broad themes. In the first section, “The 
Call for Computational Modeling in I-O Psychology,” the chapters provide over-
views of how computational modeling has been and could be applied to a range 
of organizational issues. In the second section, “Creating and Validating Com-
putational Models,” the chapters provide the reader with the how-to knowledge 
to develop, validate, publish, and review computational modeling papers. Next, 
we summarize each chapter.
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The Call for Computational Modeling in I-O Psychology

Computational models of decision making have been a staple in the applied cog-
nitive literature since the beginning of computational modeling (Simon, 1969). 
Indeed, the field of decision making, and its embrace of computational models, 
is a good roadmap for how we can move our science forward. Cooney, Kaplan, 
and Braun (Chapter 2) provide a review of computational models of decision 
making and their application to organizational decision making. The authors 
present a typology of computational models of decision making broken down 
by whether the model is static or dynamic, whether the model is descriptive or 
prescriptive, and whether the model is micro, meso, or macro. This typology will 
be instrumental for researchers seeking to learn which decision-making models 
might be useful for their research questions.

Samuelson, Lee, Wessel, and Grand (Chapter  3) overview how computa-
tional modeling has impacted and can further impact diversity and inclusion 
research. These models also have a long history in the relatively short history 
of computational models. For instance, one of the first agent-based models was 
Schelling’s (1971) model of residential racial segregation. This model showed 
that even a slight preference for living by people who are similar to oneself can 
lead to severe segregation over time. Chapter 3 reviews past work on computa-
tional modeling regarding diversity and how these models have benefits rang-
ing from understanding basic psychological and social processes such as those 
underlying stereotypes and stigma to more applied issues such as optimizing 
interventions to reduce bias. Finally, the authors outline how specific modeling 
approaches (e.g., agent-based, neural network models) can spur future computa-
tional research on diversity and inclusion.

Hardy (Chapter  4) reviews applications of computational modeling to the 
literatures on learning, training, and socialization. Like the fields of decision 
making and diversity, this is another topic area that has embraced computational 
modeling. For example, both March’s (1991) learning model and Anderson’s 
(1996) adaptive control of thought (ACT-R) model come from this literature and 
are two of the most influential computational models in psychology and man-
agement. After reviewing previous models and insights from models regarding 
learning, training, and socialization, Hardy outlines a future research agenda 
for computational models focused on adult learning, informal learning, learning 
interventions, and how models can be used to highlight the utility of training for 
organizations.

Zhou (Chapter 5) reviews computational models of leadership in teams. Lead-
ership is a complex and dynamic process, which when mixed with the complex-
ity and dynamics of teams necessitates computational modeling. Zhou reviews 
past computational work on topics such as the emergence of leadership struc-
ture and group member participation among other important leadership topics. 
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Zhou’s review shows that leadership is well suited for computational modeling 
and that multiple different computational modeling architectures have been 
applied to understanding leadership. Finally, Zhou shows how computational 
modeling has implications for advancing empirical and theoretical research on 
leadership. Moreover, computational modeling of leadership has important prac-
tical applications such as testing how different leadership structures are likely to 
affect group performance.

Kennedy and McComb (Chapter 6) conducted a systematic review of simula-
tion research on groups and teams from 1998 to 2018. Their review shows that 
there has been an increase in simulation studies on groups and teams during this 
period and that multiple different modeling architectures have been used to study 
teams and groups. For each simulation paper, they identify the focal variable, the 
modeling technique, the simulation approach, and the insights gained from the 
study. The review emphasizes the theoretical considerations and opportunities 
for pursuing the examination of complex and emergent phenomena, as well as 
the flexibility simulation offers for tackling different types of research questions. 
Overall, the review suggests that simulation is a burgeoning approach that has 
the potential to advance group and team research.

Creating and Validating Computational Models

Tang and Liu (Chapter 7) kick off the section on how to create and validate 
computational models with their chapter on agent-based modeling (ABM). 
ABM is a powerful computational modeling technique that can help research-
ers gain insights into the dynamics of interactions among agents in a complex 
system, such as organizations. ABM involves revealing how the interactions 
among a collection of heterogeneous and adaptive agents following a (typi-
cally) small set of rules lead to complex behavioral patterns. Thus, ABM 
allows researchers to study emergent phenomena that arise from the interac-
tions among agents. Tang and Liu provide an overview of ABM, including its 
defining characteristics, strengths, and limitations. They then review articles 
published in premier organizational and psychological journals that used ABM 
to model organizational phenomena. Finally, the chapter provides a detailed 
walkthrough of building a simple ABM for the scenario of newcomers joining 
a team of seasoned organizational members. This example illustrates how ABM 
can be used to model the dynamics of organizational phenomena and build 
organizational theories.

Vancouver and Li (Chapter 8) introduce readers to system dynamics mod-
eling, which is another computational modeling platform useful for a large set of 
computational modeling opportunities. Systems dynamics has been around for 
a long time (e.g., Forrester, 1968), and researchers in this field have developed 
a user-friendly software platform for rendering computational models. After a 
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short history of system dynamics thinking, the chapter focuses on how to build 
a model in the platform as well as some simple structures responsible for com-
mon dynamics, like growth, learning, calibration, and goal striving. They also 
describe how these structures and other common issues can be applied to address 
typical theoretical issues and phenomena in I-O psychology.

Switching from how to build models to how to validate them, Weinhardt 
(Chapter 9) outlines a framework for evaluating computational models called 
the Model Evaluation Framework (MEF). MEF specifies that a well-justified 
and useful model has three criteria: (1) logical consistency, (2) accurate, crucial 
predictions, and (3) generalizability. This provides the reader with a guide on 
how to qualitatively evaluate computational models. The MEF specifies that the 
work of evaluation requires two roles: the modeler and the evaluator. The mod-
eler’s work is to specify and justify their model to the full extent of their ability. 
The evaluator’s work is to evaluate the usefulness and validity of the model—a 
process that will likely require iterations with the modeling role to accomplish 
the necessary work. Weinhardt guides the reader not only on the step-by-step 
process of model evaluation but also guides the reader through the philosophical 
underpinnings of this model evaluation process.

Ballard, Palada, and Neal (Chapter 10) provide a tutorial on quantitatively fit-
ting computational models to data. Fitting computational models to data can be 
important not only when testing the validity of a model but also when estimating 
free parameters that are needed to make predictions for the specific system(s) 
being simulated. That is, the fitting process allows researchers to quantify the 
degree of correspondence between the model and the observed data, as well 
as compare the fit of alternative models. The chapter provides a tutorial on the 
process of model fitting, using the multiple-goal pursuit model as an example. 
The tutorial covers the steps required to code a model, estimate its parameters, 
and assess its fit to the data. The tutorial is aimed at readers who have some basic 
familiarity with computational modeling, but who may have limited experience 
with the R programming language often used for quantitative fit and parameter 
estimation. By the end of the tutorial, readers will have gained practical experi-
ence in model fitting and be equipped to extend the approach to more complex 
research questions in their own work.

Finally, Neal, Ballard, and Palada (Chapter 11) provide practical insights and 
recommendations on how to publish and review computational models. As the 
practice of computational modeling is still in its infancy within our field, there 
is often a lack of clear guidance on how to write and assess papers that utilize 
this approach. The chapter first outlines the steps involved in creating a com-
putational modeling paper and recommendations for how these papers can be 
published in top journals within the field. They then discuss the key issues that 
authors and reviewers need to consider when publishing and reviewing these 
types of papers, with special attention paid to the similarities and differences 
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between traditional papers and computational modeling papers. By the end of 
this chapter, both authors and reviewers will have a better understanding of how 
to approach and evaluate computational modeling research in the organizational 
sciences.

Conclusion

Computational modeling is exploding within the general field of psychology. 
In 2007, the Cambridge Handbook of Computational Psychology included 26 
chapters on computational modeling. In 2023, the new edition has 38 chapters, 
including one devoted to I-O psychology. Indeed, like the trajectory illustrated 
in our brief history of computational modeling in I-O psychology and manage-
ment, the references in the new handbook include a smattering of classic compu-
tational work within each subdiscipline, though going back a bit (i.e., the 1950s 
or so). Still, many more references are to work done in the past 10 to 15 years 
not because the charge was to review recent computational modeling work, but 
because so much more work is being done. Some of this work is very relevant 
to I-O psychologists but likely largely unknown. For instance, Read et al. (2017) 
created a neural network model relating to the activation of three motivational 
systems and used it to recreate the psychometric structure of the Big Five per-
sonality dimension. Indeed, it likely reveals a whole new set of worlds with 
which few in I-O psychology are familiar.

Likewise, we think this book will surprise and, dare we say, delight readers 
regarding the value and opportunities computational modeling can provide the 
individual researcher, research teams, and the fields of I-O psychology and man-
agement. Computational modeling provides a way of thinking about phenomena 
in the field that is refreshing and much needed. The book describes this tool that 
supports the scientific enterprise to a level not seen since the introduction of 
statistical methods. Using the tool provides a way for one to have confidence in 
the internal consistency of one’s mental models and other’s verbal models of the 
way things are thought to work. If all goes well, the field might be able to say 
that it is as good at what it does as meteorologists!  
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